
The Pennsylvania State University

The Graduate School

MITIGATING RAPIDLY PROPAGATING WORM THREATS IN

EMERGENT NETWORKS

A Dissertation in

Computer Science and Engineering

by

Liang Xie

c© 2008 Liang Xie

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2008

The dissertation of Liang Xie was reviewed and approved∗ by the following:

Sencun Zhu

Assistant Professor of Computer Science and Engineering &

Information Sciences and Technology

Dissertation Advisor, Chair of Committee

Thomas F. La Porta

Distinguished Professor of Computer Science and Engineering

Guohong Cao

Associate Professor of Computer Science and Engineering

Zan Huang

Assistant Professor of Supply Chain and Information Systems

Raj Acharya

Professor of Computer Science and Engineering

Head of the Department of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

This dissertation presents a series of techniques that help both client devices and
network elements defend against a wide variety of worm attacks. These techniques
can be deployed to secure emergent networks including peer-to-peer (P2P) file-
sharing systems and wireless communication systems.

In recent years, worms have emerged as one of the most disastrous security
threats to various information systems and network infrastructures. Although
Internet worms have been extensively studied, worm issues in such emergent net-
works as peer-to-peer (P2P) systems and cellular networks have yet received due
attention. This dissertation aims at designing automated, realtime, and systematic
countermeasures, which leverage the existing internal communication mechanisms
and network infrastructure to contain worm propagation. The proposed defenses
consist of security solutions for both client and system software.

For P2P networks, this dissertation first proposes a partition-based scheme and
a CDS-based scheme to contain ultra-fast topological worm spreads. These schemes
leverage the underlying P2P overlay for distributing automated security patches
to vulnerable machines. They are unique in adopting graph-theory techniques for
containing fast spreading worms. This dissertation then proposes a P2P-tailored
solution to combat file-sharing worms in P2P environments. Our solution consists
of a download-based scheme and a search-based scheme. Both schemes utilize
the existing file-sharing mechanisms to internally disseminate security patches to
participating peers in a timely and distributed fashion.

For cell-phone networks, this dissertation proposes two device-level defenses
for securing smartphone software, namely an access-control–based scheme and a
GTT-based scheme. These schemes are unique in that they either enforce security
policies in phone devices to identify and block worm attacks or leverage artificial
intelligence (AI) methods to differentiate human or worm initiators of the phone
applications. This dissertation also proposes a systematic countermeasure con-

iii

sisting of both terminal-level and network-level defenses for combating cell-phone
worms. Unlike the existing solutions that split the collaboration between the ter-
minal device and the network to throttle system-wide worm spreads, the proposed
solution adopts an identity-based signature scheme at both the sender and the
receiver side, and a detection-based automated patching scheme at the network
side. Combining terminal-level and network-level defenses effectively speeds up
the process of worm detection and victim disinfection.

This dissertation also provides solid mathematical analyses, extensive simula-
tions and experiments to evaluate the effectiveness and show the applicability of
the proposed defenses. In addition, it discusses some open issues related to the
proposed solutions and suggests some interesting directions in combating the worm
threats as the emergent networks evolve.

iv

Table of Contents

List of Figures viii

List of Tables xi

Acknowledgments xii

Chapter 1
Introduction 1
1.1 Emergent Networks . 1

1.1.1 Peer-to-peer Networks . 1
1.1.2 Cellular Networks . 3

1.2 Security Problems . 5
1.3 Summary of Contributions . 6
1.4 Organization . 8

Chapter 2
Preliminaries 9
2.1 Peer-to-Peer Systems . 9

2.1.1 Network Topology . 9
2.1.2 File-sharing Applications . 10

2.2 Messaging in Cellular Networks . 10
2.2.1 MMS Communications . 10
2.2.2 Blue-tooth Communications 11
2.2.3 Identity-based Signature . 12

Chapter 3
Combating Ultra-fast Topological Worms in P2P Networks 13
3.1 Introduction . 13

v

3.1.1 System Model . 16
3.2 System Overview . 18
3.3 Partition-based Scheme . 19
3.4 A CDS-based Scheme . 23
3.5 Evaluation of Effectiveness . 25

Chapter 4
Combating File-sharing Worms in P2P Networks 30
4.1 Introduction . 30
4.2 System Model . 34
4.3 System Overview . 35
4.4 A Download-based Approach . 37

4.4.1 Scheme Description . 37
4.5 A Search-based Approach . 41

4.5.1 Scheme Description . 42
4.6 Security and Performance Analysis 45
4.7 Evaluation of Effectiveness . 45

Chapter 5
Designing Device-level Countermeasures against Cell-phone Worms 50
5.1 Introduction . 50
5.2 Categorizing Cell-phone Malware 54

5.2.1 Infection Vectors . 54
5.2.2 Attacking Strategies . 55
5.2.3 Malicious Behavior . 57

5.3 Overview of Countermeasures . 57
5.3.1 Architecture and Components 58
5.3.2 Access control–based Protection 59
5.3.3 GTT-based Protection . 62

5.4 Implementation . 64
5.4.1 Access control–based Protection 64

5.4.1.1 Porting SELinux on TI OMAP-5912OSK Board . . 64
5.4.1.2 Cell-phone Malware Containment with SELinux . . 65
5.4.1.3 Defining Policy for Securing Messaging 67

5.4.2 Graphic Turing Test on Cell Phones 69
5.4.3 Comparing Device-level Countermeasures 75

5.5 Evaluations of Effectiveness . 76
5.5.1 Experimental Settings . 76
5.5.2 Access control–based Defense 80
5.5.3 GTT-based Defense . 82

vi

Chapter 6
Designing Systematic Countermeasures against Cell-phone Worms 86
6.1 Introduction . 86
6.2 System Model . 88
6.3 System Overview . 90

6.3.1 Architecture and Components 90
6.3.2 Terminal-level Defense . 91
6.3.3 Network-level Defense . 91

6.4 Implementation . 93
6.4.1 Authentication for Both Sides 93
6.4.2 Countermeasures from the Network Side 94

6.5 Performance Analysis . 98
6.5.1 Analysis of the NULL Scheme 98
6.5.2 Analysis of the Systematic Countermeasure 100
6.5.3 Summary . 102

6.6 Evaluation of Effectiveness . 102
6.6.1 Evaluation of the Systematic Approach 104

Chapter 7
Summary and Open Issues 108
7.1 Summary . 108
7.2 Some Interesting Open Issues . 109

Appendix A
Performance Analysis of Internal Patching against File-sharing

Worms 111
A.1 Deriving the percentage of abnormal files 111
A.2 A Fluid Model for Worm Propagation 112
A.3 Analysis of the Download-based Defense 113
A.4 Analysis of the Search-based Defense 115

Appendix B
Performance Analysis of Systematic Countermeasures against

Cell-phone Worms 119
B.1 Epidemic Threshold of Cell-phone Worms 119
B.2 Time to Reach Worm Extinction 120

Bibliography 121

vii

List of Figures

2.1 A network graph of modern P2P systems 9
2.2 An abstract view of cellular network supporting Multi-media Mes-

saging Service (MMS). 11

3.1 Partitioning the overlay graph to contain worm spread (within par-
tition A) . 21

3.2 CDS node 1, 2 are found in an well-connected overlay. Node 3, 4
form a weakly connected dominating set. 24

3.3 Test results when applying the partition-based scheme in Gnutella
0.6 overlays (partial snapshots). (a) and (b) each shows the immune
rate as a function of the number of partitions and the worm hit-list
size, repectively . 26

3.4 Fraction of key nodes needed in the partition-based scheme (Gnutella
0.6); it shows the percentage of key nodes needed to achieve an im-
mune rate ≥ 85% (hit-list size = 90). The baseline scheme [1]
requires more guardians. 27

3.5 Impacts of node dynamics on the partition-based scheme (Gnutella
0.6) . 27

3.6 Immune rate vs. hit-list size and proportion of CDSs used in the
CDS-based scheme . 28

3.7 Average hop-count of alert dissemination as a function of percentage
of CDSs selected . 28

3.8 Impacts of node dynamics on CDS-based scheme 28
3.9 Infection rate vs. time . 29
3.10 Immune rate vs. hit-list size . 29

4.1 Node state transition during the defense of internal patching. Ini-
tial recoveries include individual updates from security vendors; its
percentage is relatively low as a new worm surges. 35

4.2 Message format of security patch MSGa 39

viii

4.3 An illustration of the search-based approach. In this example, key
node P detects an infected file fp and delivers security patch MSG′

a

to k = 6 suspicious nodes in the search list Sp. 44
4.4 Comparing performance of different patching mechanisms in Gnutella

0.6; fraction of immune nodes vs. time; N=20k nodes, M=1k files,
λd=1 file/hour, λa= 1.0, α=10%, β=0.7 46

4.5 Comparing performance of different patching mechanisms in Gnutella
0.6; N=20k nodes, M=1k files, λd=1 file/hour, λa= 1.0, α=10%,
β=0.7 . 47

4.6 Impact from user behavior on the defense scheme (Gnutella 0.6) . . 48
4.7 Message overhead of the defense scheme (N = 20,000 nodes, Ψ =

90%); the download-based approach has less overhead than the
search-based one due to no alert duplicates. 49

5.1 Architecture of device-level countermeasure. 59
5.2 Cell-phone malware containment with access control on key system

resources . 64
5.3 GTT-based protection on cell phone 70
5.4 A Symbian messaging application 72
5.5 Integrating GTT into Symbian library function 73
5.6 Implementing GTT in Linux-based smartphones 73
5.7 OMAP-5912OSK as a generic development platform for both WinCE

and Linux-based smartphones; in our experiments, we use Linux
kernel 2.6.20.4, Qtopia Phone Edition 4.2 77

5.8 Configuration of cell-phone experiments (using OMAP-5912OSK
platform as an example). 78

5.9 Access-control–based scheme identifies and blocks a malware which
adopts attacking strategy I; Phone device: OMAP-5912OSK, Plat-
form OS: Linux 2.6 kernel, Phone application framework: Qtopia
4.2 . 78

5.10 Nokia 3230 compromised by malware adopting attacking strategy
II; average CPU occupancy exceeds 35% 81

5.11 Effectiveness of GTT protection in Symbian phones (Nokia 3230) . 82
5.12 Conducting different forms of CAPTCHA tests in cell-phone devices 84

6.1 Architecture of proposed systematic countermeasure. 90
6.2 IBS scheme for both sender and receiver side authentication 95

ix

6.3 A flow of the push-based–patching mechanism. Step 1 ∼ 3 a worm
message reaches a home MMSC; step 4 ∼ 5 the MMSC detects the
attack and alerts a security vendor; step 6 ∼ 8 the security vendor
sends patch updates to an infected phone. 97

6.4 Configuration of the network simulator (similar as in Fig.6.3); Two
MMSCs may belong to different service providers. 104

6.5 Degree distributions of three different messaging network. Network
I is the most connected system. 104

6.6 Cell-phone worm propagation in cellular networks. N=20,000 nodes,
β = 0.033, α = 70%. 105

6.7 GTT helps slow down worm spreads. N=20,000 nodes, MMS net-
work I, Bluetooth: λb = 1%, v = 0.3m/s, r = 10m) 106

6.8 A systematic defense blocks worm attacks and disinfects victims.
N=20,000 nodes, MMS network I, detection threshold βth = 25
msg/hour, Bluetooth: λb = 1%, v = 0.3 m/s, r = 10m 106

A.1 Fraction of infected nodes vs. time 112
A.2 Immunity rate as a function of time an and key nodes 115
A.3 System evolution status under the download-based defense 115
A.4 Immune population vs. time and key nodes 117
A.5 System evolution status in search-based scheme 117

x

List of Tables

5.1 Benchmark results in OMAP-5912OSK. All measurements are in
microseconds. Smaller is better. 81

6.1 Notation for analysis . 98
6.2 Time delay of IBS and RSA (in milliseconds) 103

A.1 Notation for worm propagation model 111

xi

Acknowledgments

There are many people who have contributed significantly to my work and I would
like to acknowledge their contributions.

Thanks to the members of my thesis committee, Dr. Sencun Zhu, Dr. Thomas
F. La Porta, Dr. Guohong Cao, and Dr. Zan Huang for their support and valuable
suggestions. I would like to thank them for their comments on my thesis proposal
and their help with the reviews of this dissertation. Special thanks to my advi-
sor Dr. Sencun Zhu, for his help and suggestions during our weekly meetings. A
significant portion of the ideas for this dissertation originated during our discus-
sions there. I also appreciate his excellent guidance on doing research and writing
papers. Words are not sufficient to thank all of you.

Dr. Xinwen Zhang in Samsung Information Systems American provided the
OMAP-5912OSK smartphone environment in the Trust Computing Lab. Thanks
to him for helping prepare the root file system and the tool chain on the OMAP
board. Thanks to Dr. Trent Jaeger for giving useful comments on designing
systematic countermeasures against cell-phone worms. Thanks to Dr. Hui Song
(former CSE student) for discussions on the internal patching against file-sharing
worms and some writing issues.

Major Portions of this work were funded by CAREER NSF-0643906 – support
that is gratefully acknowledged.

xii

Chapter 1
Introduction

1.1 Emergent Networks

This dissertation studies two different types of emergent networks: Peer-to-peer

(P2P) networks and cellular networks. These networks are popular and they are

playing important roles in people’s daily life.

1.1.1 Peer-to-peer Networks

A peer-to-peer (P2P) computer network uses diverse connectivity between partic-

ipating hosts in a network and the cumulative bandwidth of network participants

rather than conventional centralized resources where a relatively low number of

servers provide core services or applications to other client hosts. P2P networks

such as Gnutella [2], KaZaA [3], and Chord [4] are typically used for connecting

hosts via largely ad hoc connections. Such networks are useful for many purposes.

Nowadays sharing content files containing audio, video, data or anything in digital

format is very common in P2P systems. Realtime data, such as telephony traffic,

is also passed using P2P technology [5].

A pure P2P network does not have the notion of clients or servers, but only

equal peer nodes that simultaneously function as both “clients” and “servers” to

the other nodes on the network. This model of network arrangement differs from

the client-server model (e.g., the FTP service) where communication is usually to

and from a central server. An important goal in P2P networks is that all clients pro-

2

vide resources, including bandwidth, storage space, and computing power. Thus,

as nodes arrive and demands on the system increase, the total capacity of the

system also increases. This is not true of a client-server architecture with a fixed

set of servers, in which adding more clients could mean slower data transfer for all

users. The distributed nature of P2P networks also increases robustness in case of

failures by replicating data over multiple peers, and – in pure P2P systems – by

enabling peers to find the data without relying on a centralized index server. In

the latter case, there is no single point of failure in the system.

The P2P overlay network consists of all the participating peers as network

nodes. There are links between any two nodes that know each other, i.e., if a

participating peer knows the location of another peer in the P2P network, then

there is a directed edge from the former node to the latter in the overlay network.

Based on how the nodes in the overlay network are linked to each other, we can

classify the P2P networks as unstructured or structured. In unstructured systems,

file placement is random and has no correlation with the topology; in structured

systems, placement of shared data and the topology characteristics of the network

are tightly bound based on distributed hash tables (DHTs).

An unstructured P2P network is formed when the overlay links are established

arbitrarily. Such networks can be easily constructed as a new peer that wants to

join the network can copy existing links of another node and then form its own

links over time. In an unstructured P2P network, if a peer wants to find a desired

piece of data in the network, the query has to be flooded through the network to

find as many peers as possible that share the data. The main disadvantage with

such networks is that the queries may not always be resolved. Popular content is

likely to be available at several peers and any peer searching for it is likely to find

the same thing. But if a peer is looking for rare data shared by only a few other

peers, then it is highly unlikely that search will be successful. Since there is no

correlation between a peer and the content managed by it, there is no guarantee

that flooding will find a peer that has the desired data. Flooding also causes a high

amount of signaling traffic in the network and hence such networks typically have

very poor search efficiency. Most of the popular P2P networks such as Gnutella

[2], KaZaA [3], and BitTorrent [6] are unstructured.

Structured P2P network employs a globally consistent protocol to ensure that

3

any node can efficiently route a search to some peer that has the desired file,

even if the file is extremely rare. Such a guarantee necessitates a more structured

pattern of overlay links. By far the most common type of structured P2P network

is the distributed hash table (DHT), in which a variant of consistent hashing is

used to assign ownership of each file to a particular peer, in a way analogous to

a traditional hash table’s assignment of each key to a particular array slot. Some

well known DHTs are Chord [4], Pastry [7], Tapestry [8], and CAN [9].

1.1.2 Cellular Networks

A cellular network is a radio network made up of a number of radio cells (or just

cells) each served by a fixed transmitter, known as a cell site or base station. These

cells are used to cover different areas in order to provide radio coverage over a wider

area than the area of one cell. Cellular networks are inherently asymmetric with a

set of fixed main transceivers each serving a cell and a set of distributed transceivers

(generally mobile phones) which provide service to the network’s users. Cellular

networks offer a number of advantages over other wireless communication systems.

These advantages include increased user capacity, reduced power consumption, and

better radio coverage.

The primary requirement for a cellular network is to develop a standardized

method for each mobile phone to distinguish the signal emanating from its own

transmitter (serving cell) from the signals received from other transmitters (neigh-

boring cell). Currently there are two major solutions: frequency division multiple

access (FDMA) [10] and code division multiple access (CDMA) [11]. FDMA works

by using varying frequencies for each neighboring cell. By tuning to the frequency

of a chosen cell mobile phones can avoid the signal from other cells. The principle

of CDMA is more complex, but achieves the same result; mobile phones can select

one cell and listen to it. In CDMA, multiple phones share a specific radio channel;

the signals are separated by using a pseudo-noise code (PN code) specific to each

phone. Another available method of multiplexing, time division multiple access

(TDMA), is used in combination with either FDMA or CDMA in a number of

systems to give multiple channels within the coverage area of a single cell.

Most existing cellular radio systems are still in their second generations (2G

4

and 2.5G). For example, Global System for Mobile Communications (GSM) [12]

focuses on circuit-based voice service and General Packet Radio Service (GPRS)

[13] further provides low-speed (up to 150∼170 kbps downstream) packet-data

service to users. Nowadays the fast-growing third generation cellular systems (3G

systems), for example, Wideband Code Division Multiple Access (W-CDMA) net-

works, support higher data transmission speed (up to 8∼10 Mbps downstream)

and larger user capacity. In addition, they allow different systems to inter-operate

in order to attain global roaming across different networks [14]. The International

Telecommunication Union (ITU) has a candidate for the international 3G standard

known as IMT-2000; European Community [14] defines its version of 3G standard

named UMTS (universal mobile telecommunication system).

As cellular networks grows rapidly, wideband packet-data services such as

web browsing, image and video transmission, and Multimedia Messaging Service

(MMS) have been quickly provided to mobile users with similar quality as in wired

networks. This fact also contributes to the fast development of mobile phones,

especially the quick surge of smartphones in the terminal market. Most smart-

phones today use an identifiable embedded operating system (e.g., Symbian [15],

WinCE [16], and Linux), often with the ability to add new applications (e.g., for

enhanced data processing, connectivity or entertainment) - in contrast to regular

phones which only support very limited applications based on voice or text. Smart-

phone applications may be developed by the phone manufacturer, by the network

operator or by third-party software developers.

In addition to the voice and packet-data transmission through the cellular net-

work infrastructure, most existing smartphones support Bluetooth and even Wi-Fi

communications. These capabilities enrich a smartphone’s connectivity with the

outside world. In terms of functionalities, most smartphones today support full-

featured voice call, email, and messaging capabilities. Other additional function-

alities might include software for contact management, navigation, media software

for playing music and video clips, internet browsers, and additional hardware such

as a miniature QWERTY keyboard, a touch screen, or a built-in camera, etc.

5

1.2 Security Problems

A worm is malicious code which can propagate from an infected system to other

systems in an automated way. The highly automated nature of worms combined

with software mono-cultures of the Internet and the uncontrolled Internet com-

munication model have enabled a large number of systems in the Internet to be

compromised within a matter of hours or even seconds [17]. In the last several

years, worms have emerged as one of the leading threats to our information sys-

tems and critical infrastructure. Besides causing damages to infected hosts, worms

are increasingly being used as the vehicles for installing remote-controlled zom-

bies and botnets, which are responsible for large-scale network attacks such as

Distributed Denial-of-Service (DDoS) attacks. Indeed, worm propagation itself ef-

fectively creates a denial of service in many parts of the Internet because of the

huge amounts of scan traffic generated). Disruption of services caused by worm

attacks could have catastrophic effects, including huge financial losses, disruption

of essential services, and even loss of human life. For instance, the outbreak of

the CodeRed worm infected more than 359,000 hosts, causing financial losses of

approximately 2.6 billion dollars [18]. Because of the number of organizations and

users on the Internet and their increasing dependency on the Internet to carry out

day-to-day business, effectively containing worm propagation are of paramount

importance in preventing the happening of catastrophic events with impacts on

our safety, security, economy and society.

Recently, tremendous research effort has been taken to combat Internet worms.

For example, there are techniques using such macro symptoms as Internet back-

ground radiation (observed by network telescopes) to raise early warnings of Internet-

wide worm infection [19], techniques using such local traffic symptoms as content

invariance, content prevalence and address dispersion to generate worm signatures

and/or block worms (e.g., Earlybird [20], Autograph [21], Ploygraph [22]), and

TRW [23], techniques using worm code running symptoms to detect worms (e.g.,

Shield [24], Vigilante [25], COVERS [26]), and techniques use anomaly detection

on packet payload to detect worms and generate signature (e.g., [27, 28, 29]).

Despite the great number of approaches that have been proposed, our war

against worms does not seem to end in the near future. New computer and system

6

vulnerabilities are continuously reported, and new worm attacks still keep succeed-

ing [30, 31]. Also we observe another significant trend in worm attacks: the number

of worm attacks against emergent networks is rapidly growing. For example, with

the increasing popularity of applications based on peer-to-peer networking, P2P

networks have provided a great opportunity for worm propagation. A P2P worm

may take advantage of the topological information of the participating hosts to

expedite its propagation [32, 1], or disguise itself as an attractive file to get spread

to many users in the network (e.g., the Benjamin.a worm, the Realmony worm,

Duload worm, Togod worm, etc.). In cellular networks, various worms have been

reported exploiting vulnerabilities in mobile phone software to propagate through

MMS (Multimedia Messaging Services) or Bluetooth interface [33, 34, 35]. Because

of the unique communication models and resource- constraints of the emergent net-

works, most of the existing solutions for defending against Internet worms are not

directly applicable to these networks. Hence, there is an immediate demand on de-

signing new techniques to effectively contain worm propagation in these emergent

networks. This is the objective of the research in this dissertation.

1.3 Summary of Contributions

This dissertation focuses on two major types of worms that are threatening the

emergent networks around people’s daily life. Specifically, we study P2P worms in

P2P networks and cell-phone worms in mobile communication networks. Our goal

is to first analyze and model worm propagation characteristics in different network

environments, and then to devise automated and systematic countermeasures. Our

countermeasures will leverage the existing network infrastructures and internal

communication mechanisms to actively and quickly launch protection against the

worm attacks. Specifically, we propose the following solutions to achieve the above

design goals.

For P2P networks,

• we first study topological worms, which exploit host software vulnerabilities

and network topology information to propagate in an ultra-fast way. Faced

with the challenge of designing an automated and systematic defense against

7

these ultra-fast spreading worms, we study the feasibility of leveraging the ex-

isting P2P overlay infrastructure for distributing automated security patches

to those vulnerable machines. We adopt graph theory in designing strategies

for containing topological worms: a partition-based scheme and a Connected

Dominating Set (CDS)-based scheme.

• We then study file-sharing worms, which are malware spreading via users’

file-sharing activities in P2P systems. We propose a P2P-tailored patch-

ing system, which can be used as a complement of the existing automated

patching tools such as Microsoft Windows Update and Symantec Security

Update. We study the feasibility of utilizing the existing file-sharing infras-

tructure including the file download process and the file search process to

internally disseminate security patches to participating peers in a systematic

and automated way. We devise two corresponding distributed mechanisms

for containing file-sharing worms in a wide variety of P2P systems.

For cell-phone networks,

• We first study the attack and propagation behavior of cell-phone worms and

categorize them into different classes. Based on real implementations of two

major forms of attacks on smarphone devices, we first seek device-level so-

lutions to combat the security threats. Specifically, we design an access-

control–based mechanism in smartphone to defend against worms which

launch attacks through running malicious processes; considering such de-

fense alone is not capable of blocking elaborated worms which hijack ex-

isting phone applications (e.g., messaging) to execute their malicious codes

within a legitimate security domain, we further adopt artificial intelligence

(AI) techniques such as Graphic Turing test (GTT) to provide more secure

and comprehensive protection on those vulnerable smartphones.

• We then propose a systematic countermeasure involving defenses at both

terminal and network levels to combat cell-phone worms. Our terminal-level

defense has two components: sender-side defense and message authentica-

tion. The sender-side defense leverages device-level protection such as the

GTT mechanism to identify and block worm attacks within smartphones; the

8

message authentication consists of an identity-based signature scheme which

helps both sender and receiver sides prevent unauthorized messages from

leaving compromised phones and entering normal phones. At the network

level, we propose a push-based automated patching mechanism for cleansing

compromised phones once they have been identified. Our systematic coun-

termeasure achieves real-time, self-healing, and automated defense against

cell-phone worms.

1.4 Organization

The rest part of this dissertation is organized as follows: In Chapter 2, we review

the preliminaries of the proposed work. In Chapter 3, we propose a partition-based

scheme and a CDS-based scheme to combat ultra-fast topological worm propaga-

tion in P2P networks. In Chapter 4, we propose a download-based approach and a

search-based approach to contain file-sharing worms in P2P systems. In Chapter

5, we propose device-level defenses including an access-control–based and a GTT-

based defense to combat cell-phone worms within smartphone devices. In Chapter

6, we propose a two-level defense framework for cellular networks. Our solution is

featured by an identity-based signature scheme at both the sender and the receiver

side, and a detection-based automatic patching scheme at the network level. We

summarize the proposed countermeasures and discuss some interesting open issues

in Chapter 7.

Chapter 2
Preliminaries

2.1 Peer-to-Peer Systems

2.1.1 Network Topology

Modern P2P systems such as Gnutella [2] and KaZaA [3] typically adopt a two-

tier overlay [36] in which a subset of peers, called supernodes or ultra peers, form a

top-level overlay while other participating peers, called leaf peers, are connected to

the top-level overlay through one or multiple supernodes. A supernode maintains

a directory of files stored at its leaf nodes. When a leaf node queries a file, it sends

the request to its supernode. If the latter knows the file location (i.e., one of its

leaf nodes stores the file), it replies the requester directly. Otherwise, it floods the

query to other supernodes.

Physical Domain

Leaf Peer

Supernode (Ultrapeer)

Figure 2.1. A network graph of modern P2P systems

In our work, we generalize a P2P overlay topology as an undirected random

10

graph, in which each vertex corresponds to a peer and each edge reflects the current

neighboring relationship between two peers. If the overlay adopts the two-tier

hierarchy, it usually follows power law. A P2P graph is dynamic because it updates

when peers join or leave the system. However, it is not influenced by the P2P traffic,

and it remains relatively static during the very short time period of topological

worm spread. We note that the P2P graph is a logical concept. Physically, peers

connect to an Internet routing infrastructure whose key part consists of hundreds

of thousands of routers. Therefore, each edge in the topology graph has a latency,

which is largely determined by the hop-count between the two end hosts.

2.1.2 File-sharing Applications

Many P2P file-sharing systems are available these days (a nice comparison can

be found in [37]), very popular ones including eMule, KaZaA, Gnutella, and Bit-

Torrent. For concreteness, however, our discussion will focus on the unstructured

networks such as Gnutella and KaZaA.

We describe the file-sharing process using Gnutella as an example. Each node

uses a shared folder to store the files it wishes to share. When a node initiates

a download request for a specific file, it places a search for the target node(s)

responsible for the given file ID. The search request is routed through a 2-tiered

system of ultrapeers and leaves. In response, the user collects a list of peers (search

list), each of which contains a file copy. The user then connects to a target node in

the list and downloads the copy. Having successfully acquired the file and stored

it in the local machine, she usually opens it for use.

2.2 Messaging in Cellular Networks

2.2.1 MMS Communications

Multimedia Message Service (MMS) [38] evolves from Short Message Service (SMS),

a text-only messaging technology in mobile networks. With MMS, a cell phone

can send and receive multimedia messages containing graphics, video clips, appli-

cation software, etc.. MMS is designed to work in mobile packet data networks

such as GPRS and UMTS systems. Fig.2.2 shows an abstract view of the MMS

11

network. A MMS Center (MMSC) typically contains an MMS proxy-relay and an

MMS server. The former is responsible for message routing between MMSCs and

the latter provides message storage and retrieval. A typical MMS data flow starts

when a subscriber uses a smart-phone to compose, address and send an MMS mes-

sage to another subscriber. The initial submission by an MMS client to the home

MMSC is accomplished using HTTP with specialized commands and encodings.

Upon receiving an MMS message, the recipient MMSC notifies the receiver using

either a SMS notification, HTTP Push or WAP Push.

 Wireless
Network

��� ������

����

��� ����	
���	

 Wireless
Network ����

 Internet
/Intranet

���� ������

Figure 2.2. An abstract view of cellular network supporting Multi-media Messaging
Service (MMS).

Two delivery modes are available in a recipient MMSC: immediate or deferred.

In the immediate mode, when the receiver gets the notification, it immediately

retrieves the message content from the MMSC; in the deferred mode, the receiver

is alerted and allowed to choose whether and when to retrieve the new message.

The former method hides the network latencies from the user but is less secure

because of its instant retrieval. Our work is based on the latter mode due to its

popularity in cellular networks.

2.2.2 Blue-tooth Communications

Unlike the MMS which utilizes the network infrastructure to deliver messages

among users, the Blue-tooth technique helps cell phones set up localized wireless

connections for message dissemination. Specifically, two Blue-tooth–enabled cell

phones that are in close proximity with each other can set up a secure communica-

tion channel through pairing (a symmetric key authentication process). Through

12

this secure channel, cell phones may exchange data (e.g., video clips, applications)

with a throughput of 700K∼2.1M bps. Typically, Blue-tooth uses 2.4 GHz radio

waves and has a coverage of 10 meters (Class II) or 100 meters (Class I).

2.2.3 Identity-based Signature

In 1984, Shamir [39] proposed an extra twist on a public key cryptosystem: in

stead of generating a random pair of public/secret keys and publishing one of these

keys, a use may choose her identity information as her public key. This enables any

pair of users to verify each other’s signature without exchanging public keys, hence

reducing the message overhead in a communication system. Since Boneh et al. [40]

provided the first practical IBE system based on bilinear paring in 2001, several

IBS variations [41, 42] have been proposed. Typically, an IBS scheme consists of

four algorithms:

• Setup(k): This algorithm is executed by a Private Key Generator (PKG),

which takes a random parameter k and generates a master key Km and a set

of public parameters params (typically include the PKG’s public key, some

known functions and groups of numbers).

• Keygen(IDi, Km, params): Based on a user i’s identity IDi, the PKG uses

Km and params to compute for user i a string QIDi
and the corresponding

private key dIDi
.

• Sign(M, params, dIDi
): This algorithm is run by user i to sign a message

M , the user takes params and the private key dIDi
to compute a signature

σ for M .

• Verify(M, σ, IDi, params): A user j runs this algorithm to verify a message

M and a signature σ sent from user i. j first derives QIDi
from IDi and

params, it then performs a test V ERIFY (M, σ, QIDi
, params). j accepts

the signature if the result is TRUE and rejects otherwise.

Chapter 3
Combating Ultra-fast Topological

Worms in P2P Networks

3.1 Introduction

Recent Internet worms outbreaks indicates that hundreds of thousands of Internet

servers and client machines can be infected within a few minutes. Worm threats

also become imminent and devastating to distributed P2P systems, which are

featured by huge population and frequent data accesses. P2P worms may first

compromise client machines, and then propagate through such strategies as scan-

ning IP addresses [43], harvesting email addresses, discovering P2P neighbors from

those victims, or carried in shared files.

Internet worms adopt three major scanning strategies in identifying new vic-

tim targets: random, hit-list–based, and topological scanning. A random scanning

worm selects targets’ IP addresses at random. It needs to probe if a host with the

specific IP address really exist; a hit-list–based scanning worm collects a preference

list of susceptible nodes (based on node importance or the overlay topology) and

choose new targets from the list; a topological scanning worm exploits topology

information from infected hosts and accurately locate new targets. Topological

scanning worms typically combine the hit-list–based and the topological scanning

strategy to propagate. Specifically, a worm starts by attacking initial targets cho-

sen from a hit-list, it then scans the neighbor sets or the routing tables of these

14

victims and identifies all susceptible neighbors as new targets. In this way, the

worm continues its spread cycle and eventually spread to the entire overlay. Note

that for the tractability of the problem, we assume the size of a hit-list is up to

1.0% of the population. For example, a worm may initiate a file search and obtain

a list of nodes, to which it launches attacks. To prevent an attacker from building

a huge hit-list, we assume some mechanism has been (or will be) deployed to reject

unauthorized crawling of the P2P topology.

Our focus here is on the topological scanning worm (or topological worm in

short), which exploits neighborhood information from the overlay to locate new

targets for the system-wide spread. Compared with an IP scanning worm that

randomly probe IP addresses to discover new targets, a topological worm does

not need interactions, thus are less likely to be detected by an IDS and will be

more accurate in target-seeking and faster in spread. These facts make it more

difficult to containment topological worm propagation in P2P networks. Although

no instance of a topological worm has been witnessed in a real P2P network, there

are strong evidences that such worms could happen. For example, worms have

been reported in [44, 45] to exploit the buffer overflow vulnerability in FastTrack,

KaZaA, iMesh and other P2P client programs to launch denial-of-service attacks

on supernodes and potentially other machines.

Recently some attention has been drawn to addressing security problems in

P2P networks. However, The most deadly and imminent topological worm threats

in P2P systems somehow have largely been ignored. Vojnovic et al. [46] demon-

strated that effective automatic patching is feasible for an overlay network if com-

bined with mechanisms to bound worm scan rate and with careful engineering of

the patching system. Their work reveals a race between the worm spread and the

patch dissemination. Zhou et al. [1] proposed an end-host based defense infras-

tructure for containing topological worms. Their scheme adopts the self-certifying

alerts [32] and their preliminary results have shown effectiveness in protecting var-

ious overlays. Cai et al [47] suggests a collaborative way of worm containment

in a DHT-based overlay. This approach automatically generates worm signatures

by analyzing payload contents and address dispersions to identify alerting traffic.

Considering the fact that users often delay or ignore installing security patches

due to complications of application/system restarts, Altegar et al. [48] designed a

15

dynamic patching tool which applies fixes to C programs at run time.

In our research, we address a challenging question: how can we contain the

ultra-fast topological worms when they start to surge in a real network? Given

that today’s Internet worms such as Slammer may infect millions of machines in

minutes and topological worms could propagate even faster, human response is

clearly too slow. In other words, we must rely on a systematic and automatic

worm containment system. The research challenge is: Is this type of automatic

containment system at all feasible, considering such a system must provide (1) au-

tomatic worm detection, (2) automatic patch generation, and (3) automatic patch

dissemination, verification and application? The first two issues are being actively

studied [24], and here we assume they will be completely addressed someday soon.

Through the appropriate choice of the number of initially infected nodes, we may

simulate the delay caused by the first two steps. We will focus on addressing the

third problem: how can we disseminate the security patches to the vulnerable hosts

before the worm reaches them? We note that although automatic update mecha-

nisms such as Windows Automatic Updates and Symantec security updates have

been in place for directly acquiring the latest security patches from vendor sites, as

shown in [46], the time to disseminate patches to hundreds of millions of Windows

PCs would be of the order of hours, which is much longer than what is needed

for worm spread. Thus, a faster way of patch dissemination, at least comparable

to the speed of worm spread, is needed. Clearly, nothing can we do if the worm

has already finished its spreading, and nothing should be further done if all the

hosts have received and applied the proper patch. As such, we are interested in

a quantitative study of the speeds of worm and patch when they are in an arms

race.

While the solution space could be huge and better solutions could exist, in

this work as an initial study of this important and challenging problem, we study

the feasibility of constructing a defense infrastructure within a P2P system for

rapid patch dissemination and examine its effectiveness. We observe that the

order of patch dissemination among hosts plays a critical role in combating worm

propagation. Network-wide flooding is not necessarily the fastest and most effective

way. On the other hand, security patches do not have to reach all the hosts

in such a short racing period if the worm could be first quarantined in a small

16

island. Based on these observations, we examine the effectiveness of two types of

strategies. First, we propose to proactively select a set of worm-immune nodes in

the overlay to block the possible worm spreads. Second, by exploiting the P2P

network topology information, we may first disseminate the security patch to a

select set of nodes, which will further flood it to local neighbors. Specifically, we

propose a partition-based scheme in which immune nodes are chosen in a way that

they partition the overlay graph into many nearly-balanced sub-graphs and each

blocks the worm spread within its area. We also propose a CDS-based scheme in

which a dominating set of nodes are chosen from the overlay and these nodes are

utilized to disseminate security alerts in a timely fashion.

3.1.1 System Model

Network Model There are two categories of P2P systems: unstructured, and

structured. In unstructured systems, such as Gnutella and KaZaA, file placement

is random and has no correlation with the topology; in structured systems, such

as Chord and Pastry, placement of shared data and the topology characteristics

of the network are tightly bound based on distributed hash tables (DHTs). Our

main focus in this dissertation is the unstructured P2P systems.

Modern unstructured systems such as Gnutella typically adopt a two-tier over-

lay [36] in which a subset of peers, called supernodes or ultra peers, form a top-

level overlay while other participating peers, called leaf peers, are connected to the

top-level overlay through one or multiple supernodes. A supernode maintains a

directory of files stored at its leaf nodes. When a leaf node queries a file, it sends

the request to its supernode. If the latter knows the file location (i.e., one of its

leaf nodes has the file), it replies the requester directly. Otherwise, it floods the

query to other supernodes.

In our work, we generalize a P2P overlay topology as an undirected random

graph, in which each vertex corresponds to a peer and each edge reflects the current

neighboring relationship between two peers. A P2P graph is dynamic because it

updates when peers join or leave the system. However, it is not influenced by

the P2P traffic, and it remains relatively static during the very short time period

of topological worm spread. We note that the P2P graph is a logical concept.

17

Physically, peers connect to an Internet routing infrastructure whose key part

consists of hundreds of thousands of routers. Therefore, each edge in the topology

graph has a latency, which is largely determined by the hop-count between the two

end hosts.

Node States We define three security states for P2P hosts: susceptible, infected

or immune. A susceptible host is not protected against the worm. It either gets

infected when exposed to the worm attack or becomes immune when a protection

is in place before the worm arrives. By protection we mean the host installs a

security patch and activates it. We note that an infected host may get recovered

when, for example, the user activates a patch and scans the machine to cleanse

the infection. However, such recovery is usually too late because the worm may

have caused serious damages (e.g., system crash) to the victim. We should avoid

infections on the hosts.

Attack Model Internet worms adopt three major scanning strategies in iden-

tifying new victim targets: random, hit-list–based, and topological scanning. A

random scanning worm selects targets’ IP addresses at random. It probes if a host

with the specific IP address really exists; a hit-list–based scanning worm collects

a preference list of susceptible nodes (based on node importance or the overlay

topology) and choose new targets from the list; a topological scanning worm ex-

ploits topology information from infected hosts and accurately locate new targets.

Topological worms typically combine the hit-list–based and the topological scan-

ning strategies. Specifically, a worm starts by attacking initial targets selected from

a hit-list (acquired by simply initiating a file search), it then scans the neighbor

sets or the routing tables of these victims and identifies all susceptible neighbors

as new targets. In this way, the worm continues its spread cycle and eventually

spread to the entire overlay. Note that for the tractability of the problem, we as-

sume the size of a hit-list is up to 1.0% of the population. To prevent an attacker

from building a huge hit-list, we assume some mechanism has been (or will be)

deployed to reject unauthorized crawling of the P2P topology.

18

3.2 System Overview

As described earlier, we study the topological worms for which the patches to ad-

dress the security vulnerabilities have been generated, for example, by the security

vendors such as Microsoft and Symantec. We assume for security purpose, such

vendors may deploy a group of security servers in P2P systems, which form a

separate overlay. These servers are publicly known. They are well maintained by

the vendors so that they keep the up-to-date worm definitions and the security

patches. In addition, these servers may collaborate and share security information

with each other. The number of security servers is typically determined by the

size of the P2P system. As P2P networks are distributed, security servers can

be deployed in various locations, each taking care of a certain proportion of the

network. In our schemes, these servers also secretely construct periodic snapshots

of the P2P overlay and utilize this information to help secure other hosts. On the

other hand, these servers do not participate the file-sharing process, so they do not

have to be very powerful.

We take two defense principles. The first is to proactively select a set of worm-

immune nodes in the overlay to block the worm spread; the second is to compete

with the worm so that susceptible nodes may be alerted and immunized before the

worm attacks reach them. Along the first design principle, we propose a partition-

based scheme, in which some worm-immune nodes (key nodes) are systematically

chosen by the security servers in a way that they partition the overlay graph

into as many nearly-balanced sub-graphs as possible. Thus, worm propagation

can be effectively contained within these sub-graphs. Along the second design

principle, we propose a CDS-based scheme, in which the security servers select

a small proportion of hosts to form a connected dominating set for the overlay.

Once a topological worm has been detected, the servers disseminate security alerts

through this set to notify vulnerable hosts of the surging worm attack and urge

them to launch the protection.

Previously, Zhou et al. [1] introduced a random patch dissemination scheme,

which falls in the second category of the design principles. It assumes each node

in the system has an independent probability p of being a guardian node. When a

worm starts propagating and reaches a guardian, the guardian immediately detects

19

the worm and notifies other nodes by disseminating a self-certifying alert (SCA)

[32] in a flooding mode. Since this scheme does not make use of any topological

information, it is much less effective than ours in containing topological worms.

We will use this scheme as the base-line approach and show the comparisons with

our schemes.

3.3 Partition-based Scheme

Basic Principle In this approach, security servers periodically collect and assem-

ble the latest snapshot of the overlay from those supernodes. According to this

topological information, security servers construct a small group of worm-immune

hosts (named key nodes hereafter) which protect the susceptible hosts by stopping

the worm spread within the overlay graph.

The issue here is how to decide such a small set of key nodes from the overlay

topology. If security servers can predict the worm hit-list, the choice of key nodes

may be biased towards the neighbors of those initial victims. However, in real

applications the worm’s hit-list varies with link latency, node degree and host

vulnerability. We propose a heuristic for choosing key nodes: Key nodes should

partition the overlay graph into as many separate pieces as possible and block worm

propagation within each partition. A partition contains non-zero number of nodes

and (ideally) worm propagation from an infected node inside its partition to the rest

of the region has to go through a key node, which blocks the propagation. Thus,

an occurrence of the worm attack will be confined within a partition, leaving other

partitions of the overlay intact. This approach is optimal if we assume that servers

have no knowledge on the origins of the worm attacks. Worm containment now

becomes a graph problem and we may utilize graph-theory techniques to solve it.

Acquiring Overlay Topology In the partition-based scheme, security servers

adopt a scalable parallel crawling technique [36, 49] featured by a master-slave

architecture, to collect topology information in a P2P system. Specifically, a mas-

ter process running in the security server coordinates multiple slave processes in

a selected list of supernodes that crawl disjoint proportions of the network in par-

allel. Each security server is responsible for managing the list of supernodes and

constructing the final topology graph. Each supernode in the list receives some

20

initial points from the security server and start discovering the network topology

around these points. We note that a distributed crawler (e.g., Cruiser [36]) is able

to accurately capture a complete snapshot of a Gnutella network with more than

one million hosts in just a few minutes. Moreover, the overlay graph is relatively

static during the short period of worm spread and the security servers do not have

to frequently reconstruct the overlay graph. We note that the crawling interval is

determined by the overlay dynamics, which reflect the frequency of node joins and

departures. We will evaluate the impact from overlay dynamics in our experiments.

Partitioning an Overlay Graph Once the servers have constructed the snapshot

of the overlay graph, they may partition the graph and choose key nodes. We start

with a simple example. Suppose we have a undirected graph G = (V, E), where

V is a finite set of vertices and E is a finite set of edges. We partition V into

two sub-sets, A and B. As a result we get a sub-set C which consists of edges

spanning A and B and incident vertices of these edges. We define edges in C as

cut edges and the vertex set {1,2} as the vertex separator of G. Clearly, deletion

of the vertex separator will disconnect A and B. Our goal is to obtain a minimal

vertex separator while maintaining an appropriate balance (e.g., the same number

of vertices) between A and B. To achieve this goal, we first need to obtain a

minimal set of cut edges, based on which we may further derive the minimized

vertex separator.

The problem now becomes to partition the vertices of an overlay graph G into

k subsets such that each of them has a nearly equal size of vertices, while the

number of cut edges spanning the subsets is minimized (see Fig.3.1). We define it

as a relaxed k-way graph partitioning problem as follows.

Definition 1 (Relaxed K-way Graph Partitioning) Given a graph G = (V, E)

with |V | = n, partition V into k subsets V1, V2, ..., Vk such that Vi ∩ Vj = 0 for

i 6= j, |Vi| ≈ n/k, ∪iVi = V , and the number of cut edges is minimized.

Compared with [50], we relax the strict balance requirement, so that vertex

numbers in subsets do not have to be exactly equal. This allows security servers

to provide an approximated overlay graph as the input. Besides, this produces

a nice feature that we may always derive a good vertex separator from a mini-

mized set of cut edges [51] (we show an efficient algorithm to achieve this later).

Finding an exact minimized set of cut edges for a given graph is NP-hard. Fortu-

21

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

���
���
���
���

 1

6

3

2

4

95

8

Partition B

7

Partition C

Worm attacks

Partition A

to leaf peers

Guardian node

Figure 3.1. Partitioning the overlay graph to contain worm spread (within partition
A)

nately, we may use some approximations because we do not require partitions to

be precisely balanced. A popular technique in practice (especially when graph G

is complex) is the multilevel k-way partitioning [50] approach. The basic structure

of this approach is as follows. The graph G = (V, E) is first coarsened down to a

small number of vertices and a k-way partitioning of this small graph is computed,

typically using the Kernighan-Lin algorithm [52] in a recursive way (i.e., divide

and conquer), and then this partition is projected back towards the original graph

(finer graph), by successively refining the partitioning at each intermediate level.

Now we may apply the partition-based algorithm in a P2P system. We use an

undirected graph GO = (VO, EO) to denote the overlay graph, where VO denotes

the vertex set and EO denotes the edge set (Section 2.1). The proposed algorithm

is executed periodically in the security servers and consists of the following four

steps:

1. Security servers collect the overlay topology and map it to a graph GO.

2. Security servers execute the multi-level k-way partitioning algorithm and

obtain the cut edges of GO.

3. Security servers run Algorithm 1 to compute a minimum vertex separator

from the set of cut edges.

4. Security servers choose members from the vertex separator as the key nodes

and push the security alerts to them.

22

Algorithm 1 Minimum Vertex Separator Algorithm

Input: Ec = {e1, e2, ..., em} ∈ EO: a set of cut edges;
Procedure:

1: Vs ← φ
2: while Ec 6= φ do
3: select v ∈ VO which is shared by the most number of cut edges in Ec

4: add v to Vs

5: remove from Ec any cut edge whose end point is v
6: end while

Output: Vs = {v1, v2, ..., vn}: the vertex separator of GO;

We propose Algorithm 1 for further deriving a minimum vertex separator from

the cut edges (obtained from step 2). Using the overlay graph in Fig.3.1 as an

example, a typical sequence of adding nodes to the vertex separator is: node 5→

6 → 2, 9. Accordingly, the sequence of deleting cut edges (in bold line) between

the partitions is: edge (5, 3), (5, 6), (5, 7), (5, 8)→ (6, 1), (6, 3)→ (9, 8), (4, 2).

Protecting Key Nodes In the partition-based scheme, security servers require a

key node to launch the protection once it has received the security alert. Each alert

typically contains the specific worm information, a vendor patch and the vendor’s

signature for verification. A key node is aware of its importance in the overlay

and is urged to launch immediate protection to protect itself and others. However,

in some special cases when a selected node refuses to be a key node or ignores

the patch, several unseparated partitions could be merged into a larger one and

a worm will eventually escape from a single partition. To address this problem,

we propose that security servers pre-define a threshold, say St, as an upper-limit

of node population in each partition. Based on the responses from those key

node candidates, security servers leverage the graph knowledge to investigate the

population s in each merged partition. Once they find s exceeds St, the servers

will repartition this unbalanced piece and set up new key nodes to launch the

protection.

We notice that the set of key nodes may overlap with those supernodes in

the overlay. However, we do not simply choose the latter to partition the overlay.

Sometimes there exist far more supernodes than necessary key nodes. On the other

hand, the overlay evolves with time and some non-supernodes may become key

23

nodes. Moreover, some P2P systems [53] make supernode selections very dynamic

and adaptive to reduce the flooding cost of queries.

3.4 A CDS-based Scheme

Basic Principle In this section, we consider to flood the security patch to all the

hosts in a race with the worm. Clearly, if we inject the patch to one host, which

then propagates the patch to its neighbors, which recursively in turn forward to

their own neighbors, just as a worm does, it will not be effective because the

worm started earlier. Randomly selecting a small set of key nodes to start the

propagation will be better, however, it is still not optimal because the distance (in

terms of number of hops) of a node from a key node is not bounded–some nodes

may wait long to receive the patch. To achieve the best performance, we must

exploit the P2P network topology information to start the dissemination process,

so that the patch latency is more guaranteed.

We propose that the security servers compute a small group of nodes named

dominating set each time when the overlay graph has been constructed. A group

of nodes is a dominating set if every node not in the subset is adjacent to at

least one node in the subset. Also, security servers prefer nodes in this subset to

be connected for the ease and reliability of alert delivery. These selected hosts

are called CDS nodes hereafter. The CDS nodes are only derived by the servers,

which securely construct and maintain the topology graph. We note that the P2P

overlay usually has rich node connectivity, hence the set of CDS is relatively small.

An example in Fig.3.2 shows that, when the security server pushes a patch into

the CDS nodes {1, 2}, everyone receives it within 1-2 hops from the server.

Finding CDS Nodes in the Overlay We show how security servers derive the

set of nodes to which they directly push the security alert. We first define an

Overlay CDS problem, which aims at finding a feasible set of CDS nodes based on

an overlay graph. We give the following definitions.

Definition 2 (Dominating Set) Given an overlay graph GO = (VO, EO), a domi-

nating set D of GO is a subset of VO such that for every node v ∈ VO, either v ∈ D

or there exists a node u ∈ D such that (u, v) ∈ EO.

Definition 3 (Overlay CDS problem) The Overlay CDS problem is to find a

24

4

3

Overlay Graph

1

2

security server(s)

alert & patch

Figure 3.2. CDS node 1, 2 are found in an well-connected overlay. Node 3, 4 form a
weakly connected dominating set.

minimal subset S of nodes, such that the subgraph induced by S is connected and

S forms a dominating set in the overlay graph GO.

The CDS problem was originally defined in [54], and it has already been shown

that finding the CDS in a general graph is a NP-complete problem [55]. However, a

good approximation can always be found for an overlay graph GO, which typically

has high connectivity among the supernodes. We adopt the following two-phase

algorithm from Guha and Khuller [54] to derive the CDS nodes:

1. Initially all nodes are colored white. Each time we include a vertex in the

dominating set, we color it black. Dominated nodes are colored gray (once

adjacent to a black node). In the first phase, we pick a node at each step and

color it black, coloring all adjacent white nodes gray. A piece is defined as a

white node or a black connected component. At each step we pick a node to

color black that gives the maximum (non-zero) reduction in the number of

pieces.

2. In the second phase, we have a collection of black connected components. We

recursively connect pairs of black components by choosing a chain of vertices,

until there is only one black connected component. The final solution is the

set of black vertices that form the connected component.

We further adapt the solution to the P2P environment. Due to the complexity

and the randomness of an overlay graph, sometimes the size of the resulting CDS

25

nodes could be unreasonably large. Considering the bandwidth limit, it is not

scalable for the servers to simultaneously push the security alert to a full set of

CDS nodes. Moreover, such a message may contain multiple patch payloads, which

typically happens when the server fails to infer a specific patch from the worm

notification it receives. To balance the trade-off between scalability and security,

we propose security servers push the alert to a random subset of the CDS nodes.

We note that CDS nodes are well connected in the P2P overlay. Therefore, our

strategy only slightly increases the receiving latency (i.e., nodes receive the alert

through a few more hops). Currently we do not consider alternatives such as the

k-dominating set [56] or the weakly connected dominating set [57] in which the

resulting nodes typically are less connected.

3.5 Evaluation of Effectiveness

Environmental Setting To construct overlay graphs for P2P systems such as

Gnutella 0.6 and KaZaA, we implemented two distributed crawlers [49, 36]. The

crawlers walk over the network and adopt the membership protocol (PING/PONG

mechanism) to collect topology information. They also make use of the two-tier

overlay structure to reduce the crawling time. In our experiments, we set up a

security server (a PC with Intel Pentium 4 2.5GHz CPU) to run a server thread,

which coordinated the client crawler threads launched on 8 different PCs (with

the similar configuration as the server PC). Snapshots of the overlay graph were

assembled in the server side. According to our observations, in Gnutella 0.6, about

15% of the supernodes depart from the overlay within less than 3 ∼ 4 hours.

To reflect network dynamics, we used a 4-hour crawling interval. Note that if

the interval is too long, the topology graph in the security servers will become

distorted; if it is too short, much overhead will be added to the crawling hosts and

the normal P2P traffic.

To obtain various overlay networks, we selected different subnets (each has

a population of 40,000 nodes) from the constructed topology graphs. Note that

these subnets depict the logical connections between the participating hosts. We

then randomly placed the hosts in a subnet into an Internet environment with

5050 hierarchical routers (generated using Georgia Tech’s Transit-Stub Internet

26

Topology Generator [58]). The latency between each pair of hosts was computed

according to the routers between them. We further designed a worm simulator

in which a remote worm [45] exploits a common buffer overflow vulnerability and

causes denial of service attacks to those unprotected hosts in the system. Initially,

a number of supernodes are chosen by the attacker to form a hit-list. These initial

victims accept incoming requests from the worm that overflow their stack buffers.

Before these victims crash, they are hijacked to execute the malicious code provided

by the requests and forward the same message to their neighbors. Each of our tests

takes 50 runs. We report the mean of test data. To evaluate the schemes on their

tolerance against node dynamics, we keep the graph knowledge unchanged while

perform a number of rewirings on the underlying topology, according to the speed

in which the network evolves.

50 100 150 200 250 300 350 400 450
82

84

86

88

90

92

94

Number of partitions in the overlay

Im
m

un
e

ra
te

 (
%

)

hit−list size = 60
hit−list size = 90
hit−list size = 120

30, 600 nodes, 7.96% supernodes

(a) Topology I (7.96% supernodes)

50 100 150 200 250 300 350 400 450 500
84

85

86

87

88

89

90

91

92

93

94

Number of partitions in the overlay

Im
m

un
e

ra
te

 (
%

)

hit−list size = 60
hit−list size = 90
hit−list size = 120

30, 750 nodes, 10.44% supernodes

(b) Topology II(10.44% supernodes)

Figure 3.3. Test results when applying the partition-based scheme in Gnutella 0.6
overlays (partial snapshots). (a) and (b) each shows the immune rate as a function of
the number of partitions and the worm hit-list size, repectively

Partition-based Scheme Our results show that the server divides an overlay

(40,000 hosts) into 300 ∼ 500 nearly-balanced pieces in one second and with an

averaged CPU usage below 17%. Fig.3.3 (a)∼(b) illustrates the results when the

partition-based scheme is applied in various Gnutella 0.6 overlays. The figures

indicate that a higher immune rate can be achieved when there are more partitions

in the overlay. They also demonstrate that the size of worm hit-list has a negative

influence to the defense. A further comparison reveals that an overlay with a

higher percentage of supernodes achieves a higher immune rate. Fig.3.4 illustrates

the proportions of key nodes needed in various overlays. The result indicates that

27

we may nicely partition the overlay graph and achieve an immune rate higher than

90% by simply utilizing less than 10% of the population as key nodes.

50 100 150 200 250 300 350 400 450 500
2

4

6

8

10

12

14

16

18

20

22

Number of partitions in the overlay

P
er

ce
nt

ag
e

of
 k

ey
 n

od
es

/g
ua

rd
ia

ns
 (

%
)

baseline, 85% immune rate
31,950 nodes, 4.41% supernodes
30,600 nodes, 7.96% supernodes
30,750 nodes, 10.44% supernodes

Figure 3.4. Fraction of key
nodes needed in the partition-based
scheme (Gnutella 0.6); it shows the
percentage of key nodes needed to
achieve an immune rate ≥ 85%
(hit-list size = 90). The baseline
scheme [1] requires more guardians.

0 50 100 150 200 250 300
70

75

80

85

90

95

Number of changes during a crawling interveral

Im
m

un
e

ra
te

 (
%

)

hit−list size = 60
hit−list size = 90
hit−list size = 120

30, 600 nodes, 7.96% supernodes, 350 partitions

Figure 3.5. Impacts of node
dynamics on the partition-based
scheme (Gnutella 0.6)

Fig.3.5 shows the impacts of node dynamics on the partition-based scheme.

Here the number of changes (e.g., node joins, departures, reconnections) reflects

a degree of overlay dynamics. We notice that the partition-based scheme keeps

a good result even when the servers’ topology information becomes outdated due

to the crawling delay. However, as the worm hit-list size increases, this tolerance

deteriorates a little bit. In our test, 250 changes of supernodes typically happens

within a 3-hour time period and the figure shows a good tolerance to a 3-hour

crawling interval.

CDS-based Scheme We evaluated the performance of the CDS-based scheme

in Gnutella 0.6 systems. Our results show that using the Guha and Khuller’s

algorithm [54], a security server can derive the CDS nodes of an overlay (40,000

hosts) in 0.5 second, with its averaged CPU usage below 23%. Fig.3.6 illustrates the

containment result when security servers choose different proportions of CDS nodes

to deliver worm containment alerts. Clearly, a larger subset results in a higher

immune rate. For example, when 1/2 CDS nodes (12% of the total population)

are selected, a worm with an hit-list of 500 nodes can be successfully contained

(with a final infection rate below 5%). However, considering the bandwidth limit

28

50 100 150 200 250 300 350 400 450 500
65

70

75

80

85

90

95

100

Number of peers in hit−list

Im
m

un
e

ra
te

 (
%

)

send to 1/2 CDS nodes
send to 1/4 CDS nodes
send to 1/8 CDS nodes
send to 1/16 CDS nodes

30300 nodes, 7523 CDS nodes (24.8%) in total

Figure 3.6. Immune rate vs. hit-
list size and proportion of CDSs
used in the CDS-based scheme

0 1/5 1/10 1/15 1/20 1/25 1/30 1/35
1

2

3

4

5

6

7

8

Percentage of CDS nodes to deliver message

A
ve

ra
ge

 h
op

−
co

un
t f

or
 a

le
rt

s

32,400 nodes, 10.78% supernodes
30,600 nodes, 6.96% supernodes
30,300 nodes, 3.03% supernodes

Figure 3.7. Average hop-count of
alert dissemination as a function of
percentage of CDSs selected

and the impact to the normal P2P traffic (this becomes worse when the messages

contains heavy payload), security servers may want to push the message directly

to a smaller node set. Fig.3.6 indicates that choosing 1/4 CDS nodes keeps a good

balance between immune rate and overhead.

0 100 200 300 400 500 600 700 800 900 1000
84

86

88

90

92

94

96

Number of changes in crawling interveral

Im
m

un
e

ra
te

 (
%

)

hit−list size = 100
hit−list size = 200
hit−list size = 300

32,400 nodes, 10.78% supernodes
send to 1/4 CDS nodes

Figure 3.8. Impacts of node dynamics on CDS-based scheme

Fig.3.7 shows the average hop-count (logical) through which security alerts are

forwarded. Different subset of CDS nodes were tested and the result demonstrates

that a full set of CDS nodes results in the lowest hop-count (less than 2). As

the subset becomes smaller, the hop-count increases, i.e., a security alert has to

go through more forwarding nodes before reaching the destination. When the

overlay has a higher fraction of supernodes, more forwarding nodes exist between

a pair of end hosts and the average hop-count increases. Figure 3.8 illustrates

the impacts of network dynamics on the CDS-based scheme. Compared with the

partition-based scheme which depends more on an exact overlay topology (Fig.3.5),

29

the CDS-based scheme shows more tolerance to the topology distortions: it keeps

good performance even when there are 1000 changes among the supernodes. The

crawling interval, therefore, is set to 12 hours.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

10

20

30

40

50

60

time (ms)

In
fe

ct
io

n
ra

te
 =

 #
in

fe
ct

ed
 /

N
 (

%
)

basic scheme
partition−based scheme
CDS−based scheme

Gnutella 0.6, N = 41, 400 nodes
2242 supernodes, hit−list size = 300

Figure 3.9. Infection rate vs. time

50 100 150 200 250 300 350 400 450 500
10

20

30

40

50

60

70

80

90

100

Number of hosts in initial hit−list

Im
m

un
e

ra
te

 (
%

)

CDS−based scheme
partition−based scheme
basic scheme

KaZaA overlay, N = 30, 300 nodes,
1575 supernodes, 938 key nodes/guardians

Figure 3.10. Immune rate vs. hit-
list size

Comparing the Schemes We used the scheme [1] as the base-line approach

and compared it with our schemes in different overlays (Gnutella and KaZaA).

The comparisons were based on the same fraction of key nodes/guardians and the

same size of initial worm hit-list. Fig.3.10 demonstrates that in a KaZaA system,

both our schemes achieve a higher immune rate than the baseline approach. When

the worm hit-list is relatively small, two schemes attain the similar immune rate.

As the hit-list size increases, the CDS-based scheme outperforms the partition-

based scheme. Fig.3.9 shows the change of the infection rate when applying two

schemes in a Gnutella system. Initially the infected population increases as the

worm launches the attacks, it is then slowed down as the defenses take effects.

Eventually the system reaches a stable state. Both our schemes outperform the

basic approach in that they help the system retain a lower infected population.

Chapter 4
Combating File-sharing Worms in

P2P Networks

4.1 Introduction

P2P file-sharing programs such as KaZaA, iMesh, Morpheus are popular Internet

applications that allow users to download and share electronic files. As one of the

most popular networks, KaZaA has four million simultaneous users. The powerful

data access feature however creates unique privacy and security threats in the

system. Besides adware and spyware may be introduced into hosts, these machines

may also be placed at the risk of viruses and other malicious codes [59].

Our focus in this work is file-sharing worms1, which also are malware spreading

through file-sharing applications in P2P systems. A file-sharing worm usually

copies itself to a host’s shared folder and publish it with an attractive name, for

example, as a popular song or movie. Sometimes attackers replace real movie or

sound files with their copies or add executable extensions to such files. When a

host searches the system for some file and finds a match on an infected machine, it

downloads and uses the file without being aware of the threat. Thus, the worm is

activated and it copies/attaches itself to all the files in the shared folder(s) of this

new victim host. In this way, the worm continues its spread cycle. Recently, many

file-sharing worms have been reported attacking P2P systems, e.g., the Benjamin.a

1Like mass-mailing worms, file-sharing worms also require human’s operations to propagate. As such, they
are sometimes referred to as viruses or malware.

31

worm, Franvir worm, Bare.a worm, Darby.m worm, and Duload worm in KaZaA,

iMesh, Morpheus and eDonkey2000 file exchange networks [60, 61]. These worms

all replicate by copying themselves into the shared file folder(s) of a victim machine.

One experimental study reports that 44% of the 4,788 executable files downloaded

through a KaZaA client program contain malicious code [62]; another experimental

study reports that over 12% of KaZaA client hosts were infected by over 40 different

worms in February and in May, 2006 [63]. Some consequences of worm infections

are opening backdoors, changing system registries and client configurations, and

collecting client confidential data [61].

So far, more than 200 file-sharing worms have been reported already [60]. It

would not be surprising that attackers will increasingly exploit P2P file-sharing

as an additional attack vector. Clearly, without any defense against the worm at-

tacks, they may eventually spread to the entire system. As such, before they cause

havoc, a timely study on defenses against file-sharing worms is highly demand-

ing. However, so far the problem has not received due attention. Currently, the

focus of the research community is on combating Internet worms. Moreover, the

earlier study was mainly on modelling the propagation of file-sharing worms, but

few defense mechanisms have been proposed — they merely rely on some simple

and passive means such as individual users detecting and cleansing the infected

machines or reducing the sizes of shared folders (this apparently affects normal

file-access services).

It would not be surprising that worms will increasingly exploit file-sharing ap-

plications as their major infection vector. However, research on these imminent

threats has just started and most existing work focused on modeling worm prop-

agations. Dimitriu et al. [64] used analytical models and simulations to study the

resilience of P2P file sharing systems. They demonstrated that the effectiveness of

file-sharing attacks is highly dependent on the clients’ behaviors such as willingness

to share files and quickness in removing infected files. Kumar et al. [65] developed

a suite of fluid models that model pollution proliferation in P2P systems. These

fluid models lead to systems of non-linear differential equations. They captured a

variety of user behaviors and described how the injection of multiple versions of

corrupted content impacts a client’s ability to receive a valid copy. Their analysis

revealed intelligent strategies for attackers as well as strategies for clients seeking

32

to recover non-polluted content within large-scale P2P networks. Thommes et al.

[66] derived deterministic epidemiological models for the propagation of file-sharing

viruses through a P2P network and the dissemination of pollution. They showed

by simulations that the models remain sufficiently accurate despite variations in

individual peers and provided insight into the behavior of the file-sharing system.

They also used the models to examine some mitigation techniques such as deploy-

ing the Credence system [67] in the network to increase the elimination rate of

infected files.

Since most of the above work focuses on modelling the evolutions of file infection

or pollution in various P2P systems, none of them are directly applicable to the

study of file-sharing worm containment. Using Thommes’s epidemiological models

[66] as an example. They failed to consider that a node could become immunized

to the same worm attack once it has the security patch installed; they also failed

to reveal the evolution of files and its influence to the node states, and their

assumption that the uninfected files in the system remain the same during worm

propagation is problematic. For these reasons, we need to derive a more accurate

worm propagation model without the above limitations. Other closely related

work is on security patch and alert distribution. Zhou et al. [1] explored the

feasibility of applying a mitigation mechanism which disseminates self-certifying

alerts (SCA) [32] to immunize vulnerable hosts under the threat of scanning worms.

SCAs are proofs of vulnerability that can be inexpensively verified by any receiver.

Vojnovic et al. [68] studied the efficacy of patching and filtering techniques in

protecting a network against scanning worms. Their study shows that whether

alerts and patches can be propagated fast enough to limit the spread of worm

attacks depends on the speeds of different processes, namely, worm spread, alert

spread, and patch download from trusted sites.

We have to admit that the problem of quarantining P2P worms has not been

adequately addressed by security vendors (e.g., Microsoft and Symantec, McAfee)

either. Currently the best defense mirrors the strategy against Internet computer

viruses with the inception of security patches from vendors. The method of au-

tomated security update is widely employed by security servers to automatically

push the latest security patches to Internet hosts[68]. This generic solution cer-

tainly helps protect Internet hosts at the earliest stage of worm spreads, but it

33

is not P2P-oriented. That is, security servers either have to blindly deliver P2P

patches to all the Internet hosts (including those non-P2P machines and those who

have installed P2P software but are not executing it), or have to scan for currently

running P2P client programs within each Internet host before sending a patch

to it. In both cases, system resources and network bandwidth could be greatly

wasted. Moreover, unnecessary security updates could cause annoying machine

reboots (sometimes required for a complete security update), which unavoidably

interrupt those non-related users’ on-going tasks running on their hosts.

In this work, we study the feasibility of utilizing the existing file-sharing in-

frastructure to internally push security updates to the participating nodes in P2P

systems. We propose two BitTorrent-like mechanisms for distributing the security

patches. In file-sharing networks such as Gnutella, a very small fraction (5%) of

hosts usually provide a large fraction of the shared files (70%) [69]. Exploiting this

asymmetry in file-sharing, we consider first disseminating the security patches to

these popular hosts, such that most of the other participating hosts can receive

the patches from these popular hosts when they actively download files from them.

Our second approach is based on the belief that P2P users as a community should

help each other in combating worm attacks. Therefore, when a host detects worm

infection from a downloaded file, it first re-performs a search on the infected file

to identify those hosts possessing the same file, and then it collaboratively noti-

fies these hosts of the worm information as well as the security patch. Based on

a modified fluid model, we analyze worm spreads and evaluate the effectiveness

of our approaches in unstructured networks. Our result demonstrates that both

schemes can help a file-sharing system with 20, 000 hosts achieve a high immunity

rate (90%) within a few dozens of hours after the initial worm surge.

Our solutions are not a substitution for the existing automatic patching systems

but rather a nice complement to them. Our proposed techniques are not necessarily

very complex, but our work, backed up with solid analytic modelling and extensive

experiments, makes a concrete movement towards solving the important security

problem facing many P2P users. Also, our solution is scalable and easy to deploy by

leveraging the existing P2P infrastructure, without involving a dedicated Content

Distribution Network (CDN) (e.g., Akamai).

34

4.2 System Model

Network Model Many P2P file-sharing systems are actively running in these

days (a comparison can be found in [37]). The most popular ones include eMule,

KaZaA, Gnutella, and BitTorrent. For concreteness, however, our discussion will

focus on those unstructured networks such as Gnutella and KaZaA.

We use Gnutella as an example to describe the file-sharing process. Specifically,

each node uses a shared folder to store those files it wishes to share. When a

requesting node initiates a download request for a specific file, it places a search

for the target node(s) responsible for the given file identifier. The search request is

routed through a two-tiered system of ultra-peers and leave nodes in the Gnutella

overlay. In response, the requester collects a list of peers, each of which contains

a file copy (probably with different versions). The requester then connects to one

target node in the list and downloads the copy. Finally, she opens the downloaded

file for use.

Attack Model A file-sharing worm usually copies itself to a host’s shared folder

and publishes it with an attractive name, for example, as a popular song or movie.

Sometimes attackers replace real movie or sound files with their malicious copies

or add executable extensions to such files. When a host searches for some file

and finds an match from an infected machine, it downloads and opens the file

without being aware of the threat. Consequently, the worm is activated and it

copies/attaches itself to all the files in the shared folder(s) of this new victim. In

this way, a file-sharing worm continues its spread cycle.

We define two states for a file in P2P systems: normal and abnormal. A file is

normal when it is valid and clean, and it becomes abnormal once malicious codes

have been injected or attached to it. Also, we define three states with respect to

a surging worm for each host in the systems: vulnerable, infected, and immune.

A vulnerable host is not well-protected against the worm, hence it gets infected

when exposed to the attack. For example, when a user opens an downloaded file

which is abnormal, all files inside the shared folder(s) of this infected machine con-

sequently become abnormal. A vulnerable/infected node becomes immunized once

the protection (e.g., a patch) has been in place. Fig 6.2 illustrates the node state

transitions. We note that in real applications, some P2P users could voluntarily

35

install the vendor patch on their machines. Therefore, these nodes are initially

immunized to the worm. For simplicity, we assume no such individual recoveries

occur during the period of defense.

VulnerableInfected

download & activate
an abnormal file

Immune

initial recoveries

initial recoveries

security alert (patch)

Figure 4.1. Node state transition during the defense of internal patching. Initial
recoveries include individual updates from security vendors; its percentage is relatively
low as a new worm surges.

We notice that a few elaborated worms such as Worm.Win32.Hofox were re-

cently reported to be able to block the anti-virus protection services or kill anti-

virus programs on P2P hosts. Clearly, at the system level, some local countermea-

sures will be devised to protect defense tools from being eliminated, and the arms

race will continue. In this dissertation, however, we assume that P2P worms can-

not disable the patching protocol deployed in end hosts, so that an infected host

can receive patches and become immunized as it is expected. Note that this as-

sumption will not affect the correctness of our approaches, and our analysis model

presented later can be slightly changed for the case when this assumption does not

hold.

4.3 System Overview

To effectively combat file-sharing worms, we cannot merely rely on users’ precau-

tion and worm elimination skills; rather, we need an automated and systematic

approach to disseminate security patches to the P2P users. Existing automated

patching systems can be utilized to secure P2P hosts as well by simply treat-

ing them as normal Internet hosts; however, they are not necessarily the best-fit

choices because not all Internet hosts are equally exposed to those P2P worms. For

P2P users who often download files, their machines are more likely to be affected

by P2P worms, whereas for non-P2P users, their machines will not be affected

36

by worms exploiting P2P applications. Moreover, a traditional centralized model

of patch distribution could cause single-point failure or overloading on the patch

servers.

As such, we are motivated to study a P2P-tailored automated patching mech-

anism as a supplement to existing solutions and examine its effectiveness. Our

approach utilizes the existing file-sharing infrastructure to internally push security

updates (alerts) to the participating peers. It has several good features. First, it is

customized for P2P environments and delivers security updates to P2P hosts only.

This avoids unnecessary consumption of network/computer resources. Second, it

adopts a distributed manner to disseminate security patches to those vulnerable

peers in need and no longer strains the central servers. Third, our push-based

scheme delivers security updates more promptly than the traditional once-a-day

update adopted by existing patching systems.

Internal patching should leverage the existing file-sharing infrastructure for dis-

tributing security patches. Approaches utilizing IP address scanning or topology

exploration to locate alive patching targets bring extra computation and com-

munication overhead to P2P systems. Moreover, these methods could be easily

exploited by malicious users and used as the vehicle for rapid worm spread and

denial-of-service attacks.

We choose to study two two push-based patching mechanisms for P2P systems.

We first examine a download-based approach, in which a small fraction of popular

nodes (also referred as key nodes) act as early patch distributors and a node which

downloads a file from a key node will also be offered with a security patch/alert.

Thus, the patch is propagated to many active hosts along with the file-download

process. We then examine a search-based approach, in which once a key node

detects worm infection in a downloaded file, it re-performs a file search to identify

those active hosts that possibly possess the abnormal file and disseminates the

patch to immunize/disinfect them.

In the following sections, we will address the issues related to the realization

of these approaches and evaluate their effectiveness. We assume each node keeps

simple file-sharing records such as its file uploading and downloading rates.

37

4.4 A Download-based Approach

In our download-based approach, a small set of key nodes internally push the se-

curity patches to participating peers through the file-downloading process. Nodes

that are notified of the approaching threat hence have a good chance of being

immunized/disinfected against the worm. The design of our scheme involves an-

swering the following questions.

• Which hosts in the system should be decided as the key nodes so that they

distribute security patches to others in a most efficient and timely manner?

Key nodes cannot be determined in a centralized mode because no node in

the system holds a global knowledge of file-sharing activities of others.

• What is the user’s strategy to choose a download source and what is its

impact on the patch dissemination? How should the existing P2P file transfer

protocol be utilized to support the patch dissemination?

• How could a receiver verify the authenticity of the patch messages? In a

distributed P2P system, even if a public key infrastructure (PKI) may be

deployed to provide sender authentication, it cannot prevent malicious peers

from injecting worms instead of security patches. In other words, a node

cannot fully trust others in the system. Moreover, how does the receiver

process the patch and how does her decision affect the immunity level of the

system?

4.4.1 Scheme Description

Bootstrapping Key Nodes The first important issue is the choice of key nodes.

An immediate thought is that vendors such as Symantec and Microsoft deploy

some dedicated patch distribution servers in the system and hope users to contact

them for security patches. However, a user may not be interested in actively

searching and obtaining security patches from these machines, given that some

more automatic and trustable channels (such as directly downloading from a vendor

site) exist; even if they are deployed, to be effective in distributing patches, many

of them are needed, causing high deployment and maintenance costs. As such,

38

a better alternative is to utilize some ordinary nodes in the system as the patch

distributors (key nodes). In most decentralized systems (e.g., Gnutella, KaZaA),

downloading traffic is highly focused around a small minority of popular items and

these popular files tend to be gradually concentrated in a small set of providers.

For example, in Gnutella, 50% of all files are served by just 1% of nodes and 98%

of all files are shared by the top 20% nodes [69]; in KaZaA, 10% most popular files

generate 60% of the download traffic and 70% of the highly popular files will remain

popular for at least 10∼15 days [70]. These are strong indications that a small

fraction of popular hosts which share most interesting files could be conveniently

utilized as the distributors to push security patches to those active downloaders in

the system.

We consider a distributed algorithm for bootstrapping key nodes in the P2P

systems. Initially, a small set of key nodes are individually decided according to

a predefined policy. These key nodes then automatically download and launch

the vendor patch so that they become immunized against the surging worm. To

describe the algorithm in detail, we first introduce a parameter named file-offering

rate φO, which is defined as the number of files a node offers to its requesters in a

unit time. This parameter reflects a degree of node popularity in the system. Typ-

ically a node calculates its φO based on its own file-sharing history. For example,

node i may derive φO(i) = Dout(i)/Tf , where Dout(i) denotes i’s out-degree in its

file-access graph within its neighborhood time window Tf . Now we may adopt the

following policy to bootstrap the key nodes: key nodes are selected from a subset of

popular nodes with the highest file-offering rates in the system. Specifically, each

candidate node i refers to its recent file-offering rate φO(i) and decides to be a

key node only if φO(i) ≥ HO satisfies. Here HO is a globally defined threshold,

which controls the fraction of key nodes. This policy is automatically enforced

through the client program. Once a node decides to become a key node, it should

automatically fetch the latest security updates (if there are any) from the trusted

vendor(s) and immediately launch the protection on the local machine (another

option is they register to the vendors so that the vendors may push the latest

security patch to them once available). In this way, the key nodes get immunized

against the surging worm and are ready to assist those file requesters. We note

that as an active holder of more popular files, the user has to sacrifice a little

39��� �������������� ���� ������ �� !�"� #�$����� %�$��& �'()������ * +,% %��- .�����/0#�1� �2��3� ��� & ��� �
�������� �����4

Figure 4.2. Message format of security patch MSGa

bit freedom (patch activation if needed) and bandwidth (patch transfer) for the

security of the entire system. On the other hand, a key node might be malicious

or a regular node may claim to be a key node. We will discuss the related security

issue shortly.

Disseminating Security Patches Next, we discuss the format of a security patch

generated by the key node. This patch is used to notify the receivers of the worm

threat and to provide the source of the security update. As illustrated in Figure

4.2, a patch message MSGa typically contains two parts: a message header which

contains the key nodes’s identifier, and a message payload which contains (1) the

worm alert (name, type, severity level, etc..), (2) the security patch itself (e.g., a

Microsoft XP patch in binary delta compression format [71]) or simply a link to the

URL of that patch (e.g., the Microsoft Security Bulletin), (3) a vendor signature

of (1) and (2). We note that for a specific worm (defined by a specific vendor), the

payload of its security patch message is unique. Also, the security patch is self-

verifiable: either a signature of the well-known vendor is attached to the patch, or

the link can be verified on the vendor’s website. This mechanism of secure software

updates has been adopted by many vendors [72]. For example, since the public

key of Microsoft is stored in a user’s machine during the installation of Windows

OSes, whenever the user receives a software update from Microsoft, she starts an

authentication before accepting the update. Similarly, our scheme does not require

the receiver to authenticate the patch distributor. Instead, it directly verifies the

authenticity of the message content with the vendor or through its web site – these

are considered more reliable and trustable.

The next issue is how key nodes may utilize the existing P2P file transfer

protocol to internally distribute the security patches to the file requesters. Using

Gnutella 0.6 system as an example, search results are delivered over UDP directly

40

to the node who initiated the search If the user decides to download the file from a

resulting node, both sides should establish an additional channel or use the existing

control channel to perform patch transfer. Typically this requester delivers an

HTTP Request to the provider and reads the bit stream of the file content that

follows the HTTP Response [73]. We propose the downloader includes its latest

patch version in the HTTP Request. Thus, a key node may verify this request

and decide whether to deliver an security patch to the downloader just before the

file transfer. To indicate the existence of a security patch to the receiver, the key

node simply specifies an extra field for the patch content in its HTTP Response.

In the case when the provider is behind a firewall, a PUSH process is executed

to establish the connection [73] and the remainder of the file download and patch

dissemination is identical to the above.

Client Strategy and User Behavior In response to a file search, a client receives

a set of replies pointing to different file providers. The main decision that the client

needs to make is which one of these node to ask for a copy of the file. This choice

clearly has some influence on the defense. We consider the following three major

selection strategies:

Random. The client selects a random node, independent of the node’s adver-

tised resources. In this mode, when there are α percentage of key nodes in the

system, every client has an equal chance of α to download the file from a key node.

This also implies that every client will eventually receive the security patch from

key nodes.

Best. The client selects the node that advertises the best performance, i.e.,

the node with the lowest estimated delay (the node’s queue length times the file

size times the maximum number of simultaneous uploads divided by the access link

bandwidth). Unlike the random mode, in this mode every client has a higher chance

of downloading files from key nodes (i.e., those popular file holders). However, a

small fraction of nodes which are not interested in the popular files may not have

a chance to receive the security patch from key nodes.

Redundant. The client performs redundant download from either randomly

chosen C nodes or C nodes with the lowest estimated delay. Once the first down-

load finished and the content is verified for correctness, the other downloads are

stopped. When the file download from a key node is aborted, the client cannot

41

receive the patch that follows.

Next, we discuss how receivers process and react to the security alert. Al-

though our approach effectively leverages the internal infrastructure to expedite

patch propagation and ensures most participating pees receive the update as their

file downloads proceed, the immunity level of the system is still in some degree de-

termined by users’ responses to the patch update. Upon receiving a security patch

MSGa, the client program first examines the message payload and compares it

with the existing version of the patch. Any out-dated or duplicated patch will

be discarded. An accepted patch typically notifies the user of an emergent worm

threat in the system. Such P2P-oriented warning reminds the users to immedi-

ately launch the protection. However, the user’s decision still matters even if her

incentive of patch acceptance has been boosted. If she accepts the patch, the ap-

plication authenticates the patch payload either by directly examining the vendor

signature or by visiting the trusted vendor site and verifying if the patch link is con-

sistent with the specific worm information. The application applies the new patch

in the local machine (sometimes it may first download the content) immediately

after a successful authentication. In this case, the host gets immunized/disinfected

against the surging worm and consequently all the files in its shared folder become

normal. However, when a user declines the offer, either unwilling to follow the

link to install the patch or failing to activate the patch coming with the message,

her machine remains vulnerable to the worm. We will quantitatively analyze the

impacts of user behavior on the system immunity level in our work.

4.5 A Search-based Approach

This section proposes a search-based approach, in which once a key node detects

worm infection in the file it has just downloaded from other participating peers, it

immediately performs a search and exploits the result to infer a set of suspicious

hosts, to which it pushes the security patch to disinfect or immunize them. This is a

reactive defense because patch dissemination is triggered by the detection of a worm

instance during the file downloads. Given the latest vendor updates, we assume

key nodes are able to detect on-going worm attacks based on techniques such as

worm signature matching, taint analysis, or anomaly detection [74, 75, 76, 77, 78].

42

Next we will focus on answering the following questions in our design.

• Which hosts in the system should be chosen as the key nodes so that they

detect file anomalies and distribute patches to others in a most efficient and

timely manner? Key nodes should also be bootstrapped in a distributed way.

• Once the key node has detected the file anomaly, how does it infer a set of

suspicious nodes through exploiting the query responses and how does it deal

with network dynamics?

• How does the key node disseminate the security patches to those suspicious

nodes? To be scalable, how should the key node limit its bandwidth for patch

delivery?

• What is the user’s reaction towards the security patch and how does it influ-

ence the immunity level of the system.

4.5.1 Scheme Description

Bootstrapping Key Nodes To address the first issue, we consider a distributed

algorithm to bootstrap key nodes in the search-based approach. Similar to the algo-

rithm in Section 4.4.1, key nodes automatically install and launch the latest vendor

patches so that they become immunized against the surging worm. However, here

we adopt a different policy for individually determining key nodes. We first intro-

duce a parameter named file-downloading rate φI , which is defined as the number

of files a node downloads from others in a unit time. This parameter reflects the

activity level of the downloader. Each node i may derive φI(i) = Din(i)/Tf , where

Din(i) denotes the number of files i has downloaded within the time window Tf .

Now we may adopt the following policy to bootstrap the key nodes: key nodes

are selected among a subset of nodes with the highest file-downloading rates in the

system. Specifically, each candidate node i refers to its recent file-downloading

rate φI(i) and decides to be a key node only if φI(i) ≥ HD satisfies. Here HD is a

globally defined threshold which controls the fraction of key nodes. This policy is

automatically enforced through the client application.

The above policy chooses those active file requesters as the key nodes because

these nodes keeps actively downloading and activating files from various sources,

43

hence their chance of being infected is relatively higher than normal hosts. Keeping

these nodes updated with the latest vendor patches not only protects these vul-

nerable nodes themselves against the worm attack, but also provides these nodes

with the ability to detect the infection from the file providers. In the search-based

approach, whenever a key node P finishes downloading a file fp, it immediately ex-

amines the status of the file to detect possible attacks. Once an anomaly has been

identified in the downloaded file, the key node immediately composes a security

patch Msga using the format we discussed in Section 4.4.1.

Inferring Suspicious nodes The next issue is to which nodes these security

patches should be disseminated. Pushing the patch directly to the provider who

has uploaded the abnormal file is effective. However, this is not efficient because

the key node has a good reason to suspect that other file-owners may have also

been infected. On the other hand, simply flooding the patch or locating the targets

by IP address scanning or topology exploration is not scalable. Our solution is to

let the key nodes exploit the file search list to locate those suspicious file providers

and disseminate the patch to these nodes. However, there exist a time gap between

the original file search and the worm detection and this time gap could be in hours

(determined by the file downloading rate 1/λd). During this period, nodes may

frequently join and leave the network. A good strategy for the key node is to

re-perform a file search once it has detected any anomaly in the downloaded file.

From the search result, it may acquires the latest file-sharing information and node

statuses based on which it may further identify those suspicious targets.

We use Gnutella 0.6 protocol [73] as an example to show the mechanism of a file

search list. When a user initiates a query and delivers a Query message (0x80), his

request is routed through a tier of ultrapeers using QRP (Query Routing Protocol).

Each peer receiving the request matches the search criteria against its local shared

files and sends a QueryHit message (0x81) along the same path that carried the

incoming Query message once a match is found. The user then aggregates these

QueryHits and acquires a search list of peers who currently share the file. Besides

the description of the resulting file, each QueryHit message also contains (1) The IP

address and port number of the responding host; (2) sufficient information for the

user to evaluate the download chance from this peer, such as the bandwidth of its

access link (in Kb/second), its queue length, the maximum number of simultaneous

44

uploads, etc. If the key node has determined that one or several copies of the file

are abnormal, it is very naturally to suspect that some recent accessors of the file

could also been infected.

Key Node

Peer
n-1

Peer
1

Peer
n

Peer
2

Location
Level of

Activity

La
2

La
3

La
4

La
5

La
6

IP
7

La
7

IP
8

La
8

IP
9

La
9

IP
10

La
10

File
p

File
p

File
p

Search list of File
p

File
p

Infected?La
1

IP
5

IP
4

IP
3

IP
2

IP
1

IP
6

Yes

Send

Security Alert

No

Do Nothing

File
p

Figure 4.3. An illustration of the search-based approach. In this example, key node P
detects an infected file fp and delivers security patch MSG′

a to k = 6 suspicious nodes
in the search list Sp.

Delivering Security Patches Next, we show a distributed algorithm for dissem-

inating the security patch. Once a key node P has detected a worm infection in

the downloaded file fp, it immediately re-perform a search on fp and consequently

receives multiple (usually in hundreds) QueryHit responses. It sorts the destina-

tion nodes according to their current activity level and constructs a ranked search

list Sp. Here a node i’s activity level La(i) is computed from its access link band-

width Spd(i), queue length QLen(i) and number of uploads Nup(i) in the QueryHit

message, i.e., La(i) = f(Spd(i), QLen(i), Nup(i)), where f is a monotonically in-

creasing function. Based on this ranked search-list Sp. the application in the key

node computes an activity lower bound HL(P) based on the bandwidth Spd(P)

and the current number of connections (ongoing P2P traffic) in the local machine.

The key node will always choose from Sp top k target nodes whose activity level

satisfies La ≥ HL(P) and establishes a direct HTTP connection with each of these

suspicious nodes to push the security patch to them. Note that this patch transfer

is out-of-band (not transferred over the Gnutella overlay). Figure 4.3 illustrates

an example of the search-based approach.

In the above process, a security patch message MSG′

a also contains the identi-

fier of the infected file fp. Upon receiving this patch, each suspicious node, say j,

needs to verify the existence of fp and then displays a warning message in the local

45

machine. Similar as in Section 4.4.1, a user decides to launch the patch update or

simply ignore it. If she accepts the update, the application first authenticate the

patch content/link to ensure that it is from a trusted vendor. Once the patch has

been successfully applied, node j becomes immunized to the worm threat and its

shared folder will be immediately scanned and cleansed. We will quantitatively

analyze the impact of user behavior on the system immunity level in our work.

4.6 Security and Performance Analysis

We discuss two attacks that may happen in both schemes.

Fake Security Alerts A malicious node, either a key node or a regular node

claiming to be a key node, may replace security patches with worms and deliver

them to other hosts. This attack will fail because our signature-based mechanism

allows a receiver to verify if the patch truly comes from a trusted vendor or the link

to the patch is correct. On the other hand, we notice that a lot of false messages

may cause a DoS attack to other hosts. Since we do not assume a PKI, P2P nodes

may not be able to authenticate each other. Indeed, even a PKI is available, it does

not solve this type of insider attacks. A simple solution is that a node blacklists the

nodes reporting false alerts based on their IP addresses. To prevent IP spoofing,

before a node accepts a security alert, it challenges the source.

Patch Suppression Attack A malicious (or selfish) candidate key node may not

propagate security patches. That is, in the download-based approach, it does not

offer the security patches to downloaders and in the search-based scheme it does

not care about other susceptible nodes. This patch suppression attack will degrade

the effectiveness of our schemes. However, it only decreases the actual α. As long

as they are not a lot, our schemes will still work. Otherwise, we should increase

the value of α.

We analyze the performance of the internal patching schemes and provide the

theoretical results in Appendix A.

4.7 Evaluation of Effectiveness

Environmental Setup We evaluated and compared our schemes in a variety

46

0 50 100 150 200 250
10

20

30

40

50

60

70

80

90

100

Time (1 unit = 1/4 hour)
F

ra
ct

io
n

of
 im

m
un

e
no

de
s:

 I m
(t

)/
N

 (
%

)

download−based
download−based (analytical)
search−based (theoretical)
search−based (k = 6 ~ 10)
no defense

Figure 4.4. Comparing performance of different patching mechanisms in Gnutella 0.6;
fraction of immune nodes vs. time; N=20k nodes, M=1k files, λd=1 file/hour, λa= 1.0,
α=10%, β=0.7

of file-sharing systems. For unstructured networks we implemented a Gnutella

simulator based on Gnutellasim from limewire.org; for structured networks we used

P2PSim ([79]) to construct a basic Chord [4] infrastructure for routing queries and

responses. We implemented a protocol similar as NeuroGrid [80] to generate large-

scale file-sharing traffic on top of the routing infrastructures. We studied the case

when a file-sharing worm Benjamin.a [81] surges in the network and evaluated the

effectiveness of our countermeasures.

We adopted the following metrics in our evaluations: t0, time takes to reach

an immunity rate Ψ = 90%; h(t0), the the percentage of abnormal files at time

t0, which also reflects the infection rate If/N(t0) when λa → 1; If (max), the

maximum infection rate which indicates how severe the system has been attacked.

For each scheme, we also investigated the system evolution status, the impacts

from user behavior and the message overhead. To examine the schemes’ toler-

ance against node dynamics (joins/departures), our implementation followed the

observations from Gnutella 0.6, i.e., 45% of the nodes quit the network in less

than 4 ∼ 5 hours, and 22% persistent node tend to stay in the network for longer

than 24 hours. Each of our experiments takes 100 runs. We report the mean of

the measurement results. Unless otherwise indicated, in all our tests, the total

population N = 20, 000 nodes. The number of files (with different contents) varies

from 1, 000 to 10, 000 and the average size of shared folders ranges from 5 to 50

files. We set the initial the percentage of abnormal files h(0) = 1.5%, the initial

infection If(0)/N = 0 and the initial immunity rate i(0) = 15%. Among these

47

immune nodes, α = 5 ∼ 10% of the entire population were bootstrapped as key

nodes and each of them obtained the latest security updates from vendors.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

Time (1 unit = 1/4 hour)

F
ra

ct
io

n
of

 in
fe

ct
ed

 n
od

es
: I

f(t
)/

N
 (

%
)

no defense
download−based
search−based (k=6~10)

(a) Fraction of infected nodes vs. time

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

Time (1 unit = 1/4 hour)

F
ra

ct
io

n
of

 v
ul

ne
ra

bl
e

no
de

s:
 V

(t
)/

N
 (

%
)

search−based (k=6~10)
no defense
download−based

(b) Fraction of vulnerable nodes vs.
time

Figure 4.5. Comparing performance of different patching mechanisms in Gnutella 0.6;
N=20k nodes, M=1k files, λd=1 file/hour, λa= 1.0, α=10%, β=0.7

Scheme Effectiveness We compared the time performance and the system evo-

lution status of different approaches, using the same set of parameters (e.g., λa,

λd, α and β). We also used the no-defense case as the base line. Our test results

are shown in Figure 4.5. Figure 4.4 illustrates the change of immune population

over time. Without any defenses, the system keeps a low immunity rate and has to

rely on individuals’ patch updates. The download-based approach and the search-

based approach both significantly increase the immunized population. The former

takes around 35.5 hours to achieve a 90% immunity rate while the latter takes

around 62.5 hour due to its reactive nature. The download-based approach largely

depends on the activity level of file downloads and the search-based approach is

triggered by worm detections. Figure 4.5(a) shows the change of the infected pop-

ulation over time. Without any defenses, the worm spreads in a relatively high

speed and infects all the vulnerable hosts within 9.5 hours. Both our schemes

effectively help the system reduce the infected population by internally pushing

the security patch to disinfect those victims. A further comparison indicates that

the search-based approach has a relatively slower disinfection speed; it takes 62.5

hours to reduce the overall infection rate to below 10%. However, it keeps a lower

maximum infection rate (If (max)/N = 37%). On the contrary, the download-

based approach takes 45 hours to reach an infection rate below 5%, but it yields a

higher maximum infection rate (If(max)/N = 44%) in the system. Figure 4.5(b)

48

illustrates the change of vulnerable population over time. Without any defenses,

the vulnerable population quickly drops to zero (within 10 hours) as more and

more nodes get infected during file downloads. Our schemes effectively slow down

this process by either immunizing the vulnerable hosts or disinfecting the victims.

We can see that after around 62.5 hours, there remain few vulnerable nodes and

victims in the system and the immunity rate exceeds 90%.

0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

Users’ patch acceptance rate

t 0: t
im

e
to

 r
ea

ch
 Im

m
un

e
ra

te
 9

0%
 (

ho
ur

s)

search−based (λ
d
=1)

search−based (λ
d
=2)

download−based (λ
d
=1)

download−based (λ
d
=2)

(a) t0 vs. (β, λd)

0.6 0.7 0.8 0.9 1
28

30

32

34

36

38

40

42

44

46

48

Users’ patch acceptance rate

I f(m
ax

):
 m

ax
im

um
 in

fe
ct

io
n

ra
te

 u
nd

er
 d

ef
en

se
 (

%
)

download−based (λ
d
=1)

download−based(λ
d
=2)

search−based (λ
d
=2)

search−based (λ
d
=1)

(b) If (max) vs. (β, λd)

Figure 4.6. Impact from user behavior on the defense scheme (Gnutella 0.6)

User Impacts and Overhead We evaluated the impacts of system parameters

and user behavior on the defense. Figure 4.6 illustrates the test result in Gnutella

0.6 system. Figure 4.6(a) shows that both schemes take less time (t0) to achieve an

90% immunity rate as the speed of file download (λd) increases. For the download-

based approach, a higher download speed results in a faster patching process; for

the search-based approach, a higher download speed leads to more worm infections

and this in turn speeds up the patching process. The figure also indicates that in

the download-based approach, t0 gets reduced as users become more willing to

accept the patch (β increases). However, this is not distinct in the search-based

scheme due to its reactive nature. When more users are patched, the defense

also gets slowed down. Figure 4.6(b) shows that in the download-based scheme,

the severity level of worm attacks (If(max)) quickly drops as β increases. When

β ≥ 0.85, the maximum infection rate in the system is below that of the search-

based scheme.

Figure 4.7 illustrates the message overhead of the defense schemes. Using Mi-

crosoft XP as an example, the patches during SP2 are in binary delta compression

49

0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

70

Users’ patch acceptance probability: β
M

es
sa

ge
 c

ou
nt

 (×
 1

00
0)

download−based
search−based (worst)
search−based (average)
search−based (optimal)

Figure 4.7. Message overhead of the defense scheme (N = 20,000 nodes, Ψ = 90%); the
download-based approach has less overhead than the search-based one due to no alert
duplicates.

format [71] and the mean patch size is 32.9 KBytes [82]. This patch and its

vendor signature (typically around 300 Bytes) constitute the main part of the pay-

load in an alert message. Thus, the average length of a patch message is 33.2

KBytes. The figure shows that when β increases from 0.6 to 1.0, the message

count of the download-based approach decreases until finally it reaches around

20, 000 × (90% − 15%) = 15, 000. We examined three cases for the search-based

scheme: (1) worst case in which each key node simply delivers the patch to its

targets. Patch messages could be duplicated and the message count is above 50,

000; (2) average case in which a key node does not deliver a patch to the same

target and the message count is above 28,000; (3) optimal case when key nodes col-

laborate to avoid patch duplicates or each node indicates its current patch version

in the QueryHit response. Hence, there are few patch duplicates and the message

count approaches 15, 000 when β → 1.

Chapter 5
Designing Device-level

Countermeasures against Cell-phone

Worms

5.1 Introduction

Mobile communications supporting both voice and data services become ubiqui-

tous and essential in people’s daily life. This popularity however also makes cellular

networks and mobile devices such as cell phones and PDAs attractive targets to

various malicious attacks. The introduction of new functionalities (such as email,

file download, Blue-tooth communication, etc.) and the adoption of common op-

erating systems (such as Symbian [15] and Windows CE [16]) in mobile devices

make them even more vulnerable to attacks. This situation gets even worse as

mobile devices evolve very quickly. Today’s cell phone, especially the thriving

smart-phones are typically as powerful as a-few-year-old PCs. This indicates the

trend that cell phones will soon be facing with the similar worms that are terror-

izing today’s PCs. According to F-Secure [83], currently there are more than 200

mobile worms (or viruses) in circulation. Examples of the most notorious threats

to cell phones include the Skull [34], Cabir [35] and Mabir [84] worms targeting at

the Symbian operating systems. The research organization IDC estimates that by

2008 the market for mobile security software will grow yearly by 70%.

51

In our work, we refer to these worms as cell-phone worms. Cell-phone worms are

malicious codes that exploit the vulnerabilities in cell-phone software and propa-

gate in the network through popular services such as MMS (Multimedia Messaging

Service), Blue-tooth communication, or both. Traditional cell-phone worms (such

as Skull [34], Cabir [35] and Mabir [84]) take control of a phone’s Blue-tooth in-

terface and continuously scan for other Blue-tooth-enabled devices that enter the

scanning range, and finally infect any such devices. Due to the limited radio cover-

age and the localized wireless connections, worm propagation through Blue-tooth

alone is usually too slow to spread throughout the entire network. Some latest

cell-phone worms also utilize the network infrastructure to achieve faster and more

global propagation. For example, CommWarrior [33], which continues to wreak

havoc among Symbian phone users in many countries, scans an infected phone’s

contact list and randomly sends itself in an MMS message. Because most users

would already trust the originator, they usually accept the attachments in the

messages and unwittingly get their phones infected. This process is repeated and

more cell phones could be quickly infected.

Cell-phone worms are destructive both to the users and to the network infras-

tructure. A user of an infected phone will be unconsciously charged for numerous

messages sent by the worm, and the battery of the cell phone will be drained very

quickly. Moreover, the reported damage caused by cell-phone worms so far extends

from the loss of data and privacy to damaging the device hardware. For example,

the first trojan spy for Symbian phones named Flexispy [85] records information

of the victim’s phone calls and messages, then sends them to a remote server.

In addition, automated cell-phone worms generates huge unauthorized traffic to

cause misuse or denial-of-service to the network infrastructure. Therefore, both

cell-phone designers and network service providers must employ appropriate coun-

termeasures to get well prepared for the surging worm threats from cell phones.

Cole et al. [86] analyzed computer worm propagation and the impact of mitiga-

tion in mobile ad-hoc networks. Mickens et al. [87] introduced a new probabilistic

queuing model to investigate malicious worms (e.g., Cabir) which spread through

Blue-tooth links among cell phones. Their model treats node mobility as a first-

order concern. Abhijit et al. [88] designed an agent-based model for the worm

spread. Their work reveals various phone vulnerabilities and the possible severity

52

of hybrid threats. Shackman [89] discussed platform security for Symbian OS.

Hurman [90] demonstrated the techniques of exploiting Window CE vulnerabili-

ties. F-Secure [83] and Symantec [91] provided worm-signature–based solutions to

detect and eliminate various worms from the smart phones. Mulliner et al. [92]

demonstrated a proof-of-concept exploit that crosses service boundaries in Win-

dows CE phones. They used the labeling technique to protect the phone interface

against malicious attacks that come through the phone’s PDA interface. They

also revealed several buffer overflow vulnerabilities (e.g., SMIL in the MMS mes-

sage) in Windows CE phones and proposed solutions such as boundary checks

and MMSC sanitization [93]. Guo et al. [94] suggested some security solutions

such as smart-phone hardening, telecom-side and Internet-side defenses. Radmilo

et al. [95] demonstrated an unique attack from the Internet that utilizes MMS

vulnerabilities to exhaust cell phones’ batteries. They identified two vulnerable

components in the network and proposed mitigation strategies.

The problem of quarantining cell-phone malware, to our best knowledge, has

not been adequately addressed. Currently, the best defense mirrors the strategy

against computer viruses with the inception of security patches for cell-phones.

However, it is challenging for users to acquire signature files in a timely manner.

Some recent work proposes more active ways to defend against the threats. For

example, Bose et al. [96] proposed an algorithm to automatically identify com-

promised phones based on user interactions and suggest a proactive containment

framework to quarantine those suspected devices. Cheng et al. [97] designed

a collaborative virus detection and alert system named SmartSiren for securing

smartphones. These solutions, however, rely on network or some external agents

to throttle worm spreads. We notice that countermeasures deployed on phone

devices are more effective both in detecting malware and in preventing malicious

messages from entering the network in an early stage. On this side, Mulliner et al.

[92] adopt a labelling technique to protect a phone against cross-service attacks

from the phone’s PDA interface. However, they did not provide solutions against

automated phone malware [93].

As there is a wide variety of malware threatening cell phones in different aspects,

a comprehensive and comparative study on their attacking strategies and propa-

gation behavior is very necessary for designing effective countermeasures against

53

them. A solution is incomplete if it considers only a subset of malware features.

Towards these design goals, we make the following contributions in designing a

device-level countermeasure against cell-phone worms.

• First, we categorize cell-phone malware based on their infection vectors, ma-

licious behavior and attacking strategies. We analyze two major attacking

strategies from software perspective which could be adopted by malware to

exploit security vulnerabilities in phone devices. Based on our real imple-

mentations on these attacks, we put forward challenging issues on combating

existing and upcoming threats to cell phones. Our categorizations and im-

plementations are among the first known complete work in the literature.

• Second, we propose an access control–based mechanism which controls ac-

cesses to key system resources through enforcing a customized access control

policy in cell-phone environment. More importantly, we are the first to show

how to integrate realtime support and the proposed security protection into a

commodity version of platform OS (for Linux-based phones) and our solution

also applies to smartphones based on Symbian and Mac OS.

• Third, by realizing the limitations of the access control–based mechanism

in containing more elaborated cell-phone malware, we further propose a

more comprehensive and intelligent protection scheme which identifies and

blocks cell-phone malware using artificial intelligence (AI) techniques such as

Graphic Turing test (GTT). Through challenging a resource-requesting appli-

cation, our scheme differentiates whether this application is legitimate (user-

initiated) or illegal (malware-initiated). We show how to instantiate and

integrate GTT through detailed implementations on Symbian-base phones.

To our knowledge, we are the first to introduce AI techniques into cell-phone

devices for combating malware attacks.

• Forth, different from previous work which only show proof-of-concept attacks

and preventions, we provide detailed implementations and thorough evalua-

tions of our protection schemes on two major types of cell-phone platforms:

Symbian and Linux OS. The experimental results including benchmark and

54

performance data demonstrate that both our solutions are effective in iden-

tifying and blocking malware in a wide variety of smartphone devices. Also,

both of them are lightweight and can be conveniently deployed on existing

cell-phone hardware.

5.2 Categorizing Cell-phone Malware

We first do a comparative study on existing and upcoming security threats to cell-

phone devices. Our study focuses on three different aspects of cell-phone malware,

namely infection vectors, attacking strategies, and malicious behavior.

5.2.1 Infection Vectors

Infection vectors are vehicles that malware exploit to propagate within cellular

networks. Existing infection vectors of cell-phone malware include Blue-tooth,

MMS/SMS messaging, and Wi-Fi communications. In the future, any communi-

cation channel between a cell phone and other devices in a network can be exploited

by a malware for spreading malicious programs.

Bluetooth technique helps cell phones set up localized wireless connections for

message dissemination. Specifically, two Bluetooth–enabled phones that are in

close proximity with each other initiates a symmetric key authentication process

named paring to set up a secure channel, through which they exchange data files.

Most traditional cell-phone malware such as Skull [34], Cabir [35] and Mabir [84]

exploit this vector to propagate. As Bluetooth has only a short coverage from 10

meters (Class II) to 100 meters (Class I), and phone users have to manually accept

such connections (i.e., worm spreads rely on user operations), Bluetooth is not the

most effective vehicle in propagating malware among cell phones.

Unlike Bluetooth, text-based Short Message Service (SMS) and its enhanced

version – Multimedia Message Service (MMS) are provided by 2G/3G wireless net-

works. Exploiting MMS/SMS message deliveries, a cell-phone malware can include

its malicious code either in a message attachment or in the message content and

propagate throughout the network. In this mode, the malware travels through

the network infrastructure and reaches remote targets, hence its spread is more

55

system-wide and faster than that of Bluetooth-based malware. Recently emerg-

ing malware (e.g., CommWarrior [33]) adopts this effective vehicle in addition to

traditional infection vectors such as Bluetooth.

Nowadays, new smartphones (e.g., Nokia 9300) also use 802.11b wireless inter-

face to communicate with each other or visit the Internet. These devices typically

incorporate cell phone and PDA functionality. Malware can exploit Wi-Fi commu-

nications and infect their PDA and phone modules, and then launch cross-service

attacks [92, 98] to their cellular network.

5.2.2 Attacking Strategies

From software perspective, we study two basic forms of attacking strategies adopted

by existing malware to compromise a cell-phone device. The key difference between

these two strategies is whether a malware creates a new process in order to launch

its attack.

Attacking Strategy I: In this case, a malware always creates a new process

within the software platform to execute its malicious code and compromise a cell

phone. Note that this new process typically has a new security context (in terms

of access control mechanism) which is different from that of the existing running

process (legitimate application), e.g., a different type or domain. As the security

context of an application is typically determined based on its authenticity and

integrity information, a malicious code cannot provide these to be verified by the

platform OS. Most existing malware adopt this strategy because people usually

have limited accesses to the implementation details of phone platform OS (e.g.,

Symbian, Windows Mobile) and the internal application framework (e.g., messag-

ing and phone calls). In most cases, OS such as Symbian are only open to phone

manufacturers. People cannot easily change and recompile a kernel as they do in

Linux; user-level programs in Symbian phones cannot directly invoke system calls.

Instead, they have to invoke related framework APIs (provided by manufacturers)

and register themselves within the platform in order to be executed. Most cell-

phone malware exploit this feature and launch attacks through legally installed

user applications. For example, a Symbian malware [84, 35, 34] includes its mali-

56

cious code in an SIS installation file 1 and attaches it to an infection vector (e.g.,

a MMS message). Once a recipient activates this SIS file, the malicious program

is installed and executed, incurring serious attacks to the phone, e.g., the program

could invoke messaging APIs to deliver numerous malicious messages, or secretly

collect user information and send to a malicious server. In addition, a malware in

Linux-OS–based phone can also adopt this strategy to launch attacks. A figure in

[99] demonstrates our implementation of attack strategy I in Motorola A1200 [100].

In a running messaging application named qtmail, when a user opens an malicious

email/message attachment, a new sub-process is forked and it invokes an exec func-

tion to switch to a malicious program which launches the email/messaging attack.

This malicious program (named attack in the figure) has a new security context.

Attacking Strategy II: In this case, a malware does not create a new process

in the phone. Instead, it hijacks an existing cell-phone application (e.g., messaging

process) to execute its malicious code within a legitimate security domain. These at-

tacks usually happen in cell phones with open platform OS and application frame-

works, e.g., Linux-based phones. Automated malware adopt this strategy through

exploiting software vulnerabilities such as buffer-overrun to launch attacks. Note

that the malicious code to be executed when an application is hijacked can be

either pre-injected to the existing framework (e.g., in APIs) or directly loaded

into memory in real time (e.g., through messaging). Compared with strategy I,

this attacking method is more elaborated because it simply utilizes the security

context of the hijacked process to execute the malicious code, hence it is more

challenging for a malware detector/blocker. In addition, it is more disastrous to

cell phones because it does not require human operations to trigger the attack

program. Mulliner et al. [93] revealed software vulnerabilities in MMS messaging

and demonstrated a proof-of-concept attack in Windows CE-based phones. As the

market share of Linux–based smartphones increases (reaches 25% in global and

over 30% in Asia during 2007 [101]), we believe that more automated malware

will appear in Linux platforms. A figure in [99] demonstrates our implementation

of attack strategy II in Motorola A1200. A worm hijacks a legitimate messag-

ing application named qtmail and frequently accesses messaging APIs to generate

malicious messages. Identifying such a hijacked process is difficult because the

1The format of an user-initiated installation file for distributing Symbian applications.

57

security context of qtmail remains valid.

5.2.3 Malicious Behavior

After compromising a cell phone, a malware executes its malicious code to continue

propagation and bring various damages to the device. Typically, a MMS/SMS-

based malware scans the phone address book and randomly chooses some members

to launch attacks through sending malicious messages to these new targets. A

Bluetooth–based malware takes control of a victim phone’s Bluetooth interface

and continuously scans for other Bluetooth-enabled phones within its range. Once

a new target is detected, the worm inter-connects two devices and transfers the

malicious message to the target, which gets infected and becomes a new attack

source.

Besides the above propagation behavior, a malware can also make various dam-

ages to a compromised phone. For example, user privacy information such as

friends’ names and contacts can be secretly collected by a malware (e.g., a Trojan

spy named Flexispy [85]) and delivered to an external malicious server; deliver-

ing numerous malicious messages can quickly deplete a phone’s battery power;

malicious program can also crash the running applications of a phone and erase

important data in the device. Our implementation [99] demonstrates the behav-

ior of an external attack server, which keeps receiving private user information

and malicious messaging requests (e.g., sendmail) from a malware residing in a

compromised Motorola A1200 phone.

5.3 Overview of Countermeasures

Based on the comparative study, we focus our work on designing system-level

countermeasures to detect and block cell-phone malware. We consider a general

attack model in which a malware (e.g., Commwarrior [33]) adopts MMS/SMS

or Bluetooth as its major infection vector and executes its malicious code on a

compromised phone to exploit new targets from the address book and disclose

user privacy information to an external server. This attack model is representative

to most existing and upcoming cell-phone malware.

58

In the following discussions, we assume that a malware always launch attacks

from application level, i.e., they could compromise software for phone applications

such as email and MMS/SMS messaging. However, they cannot break the ker-

nel. We note that there are a few techniques which can be applied to cell-phone

platform and help prevent malware’s kernel-hacking, for example, using integrity

measurement architecture (IMA) [102, 103] for identifying modifications on Linux

kernel modules, and using virtualization techniques [104] for isolating kernel-level

attacks. These countermeasures are not the focus of this dissertation.

5.3.1 Architecture and Components

To achieve the goal of combating cell-phone malware, our system-level solution

should first be real-time so that it is able to detect new and polymorphic malware

instead of merely known attacks. Besides, it should be automated and self-healing,

such that cell phones are able to autonomously recover from infection. Our de-

fense should also be lightweight in that its computational overhead and battery

consumption on phone devices are minimal.

Our countermeasure consists of two schemes. Specifically, we design an access

control–based protection scheme to defend against malware which adopt attacking

strategy I (i.e., a malware launches attacks through running malicious processes

with new security context). Considering such a defense is not capable of identi-

fying more elaborated malware which adopt attacking strategy II (i.e., a malware

hijacks an existing phone application to execute malicious code within a legitimate

security domain), we adopt artificial intelligence techniques such as Graphic Tur-

ing test (GTT) to provide more secure and intelligent authentication against both

forms of malware attacks. Figure 6.1 illustrates a high-level architecture of the

countermeasure.

Our access control–based protection scheme prevents key system resources in

a phone from being accessed by illegal processes. It consists of two components:

defining policy for protecting key system resources and authenticating resource ac-

cess via system calls, while the latter depends on the former. Our GTT-based

authentication scheme employs artificial intelligence techniques in a phone device

to differentiate a hijacked process from a normally running process. It also con-

59

566 78 9:;8<=>?@<A;>B C:?DD<8E<F ;89>;G<FF<F
H;D7G7<F =;>B<I ><F;J>G<F KGG<FF G;8L>;D;8 FIFG?DDF

MNNOPQRST USV SWRS
XYYSRR YZW[\Z]̂ PQRST TSV SWRS

``abcdefg`ha`ifj k``abcdefg`ha`ifj kk
Figure 5.1. Architecture of device-level countermeasure.

sists of two phases: embedding GTT in phone framework and challenging resource-

requesting processes. Both schemes help users identify and block known/unknown

malware attacks and recover their phones in an automated and self-healing way.

5.3.2 Access control–based Protection

We first investigate the MMS/SMS messaging service, a major infection vector for

malware attacks. In order to deliver a message to the recipient, a normal messaging

process in the phone invokes a sequence of key system calls to access important

system resources (e.g., file, socket, and modem device) and acquire related system

services. For example, in a Linux-based phone (e.g., Motorola A1200 and E680), to

search for the email address or the phone number of a recipient, a messaging process

named mmsclient invokes open(“address book”, O RDONLY) to access the contact

list in the phone address book; to deliver the SMS/MMS message, mmsclient

calls fd=open(“/dev/ttyS0”, O RDWR) to open the modem device 2 (i.e., serial

device ttyS0) and invokes write(fd, message, length) to send a composed message

message to the modem, which eventually processes the message and transmits

it to the air interface; to send an email messaging through Wi-Fi interface, a

process named smtpclient invokes socket(AF INET, SOCK STREAM) to create

a stream socket through which it communicates with a SMTP server. We notice

that these key system calls are important monitoring and authentication points

in the kernel, because no matter what a malicious application could be, its final

goal is to invoke these system calls as a normal process does and gain accesses to

important system resources and launch malicious attacks. Therefore, to examine

2Modem device is a separate phone unit, which contains radio frequency (RF) and base-band components,
low-level coding-decoding software and wireless protocol stacks.

60

the difference between a normal application and a malicious process, we aim at

examining the security attributes of the on-going process at these checking points.

Traditional cell-phone OS have built in discretionary access control (DAC)

mechanisms such as capability list and access control list. For example, Symbian

OS 9.0 uses a capability-based framework [105], where 40% of its APIs are pro-

tected with capabilities. To use a service, an application either has to pass certain

tests and be signed against a certificate (Symbian signing), or is installed by a

signed installation package containing the required list of capabilities. However,

the fundamental weakness in DAC model is that the ability to grant and use access

creates a big security hole, where malicious process can get control of important

system resources. For example, in native Linux system, the owner-group-world

mode specifies the permissions to a file in filesystem. An owner of the file can

grant permissions to others. However, as other users always access the file with

programs in the system, the behavior of the programs cannot be justified. Thus

malware can get the permissions if they are invoked by authorized users. There-

fore, we design our access control–based protection scheme based on an embedded

kernel level mandatory access control (MAC) mechanism, which labels each pro-

gram according to its required permissions such that an individual user cannot

change the label. There are different MAC policy models in PC platform, e.g.,

Biba [106], and Clark-Wilson [107].

We adopt a defense model that is similar to Security Enhanced Linux (SELinux) [108]

to achieve strong protection in cell-phone devices. Based upon the principle of least

privilege [109], SELinux employs Linux Security Modules (LSM) inside Linux ker-

nel to implement strong MAC. This clearly boosts the security level of a tradi-

tional phone OS, which itself is only based on DAC. SELinux associates labels

(security contexts) of the form user:role:type to all subjects (processes) and ob-

jects (files/directories, programs, sockets, etc.). Within a security context, the

type attribute represents the type of the subject or the object, e.g., sshd t and

syslogd t. Instead of directly associating a user with a type, SELinux associates a

user with a role and a role with a set of types. The role merely simplifies the man-

agement of users. This means that access control in SELinux is primarily enforced

via so-called Type-Enforcement [110] policy model.

In our defense model, permissions that a subject can have are defined accord-

61

ing to object classes, e.g., file:{read, write, append, lock}, and netif:{tcp send, tcp

recv}. A typical policy rule is to allow a type of subjects to have some permis-

sions on another type objects. For example, the following rules define two types

qtmail t and qtaddressbook t within a cell phone: any subject of qtmail t can have

all permissions to any object of qtaddressbook t ; any subject of user t only has the

permission of getattr, e.g., can see the file with ls command. We note that without

defining other policy rules on qtaddressbook t, it can only be read and written by

qtmail t subjects, i.e., we only allow processes with type qtmail t (e.g., a normal

email messaging process named qtmail) to have full permissions on the resource of

address book. We adopt similar policy rules for access control on other key system

resources (e.g., modem device and socket) in cell phones. Such a defense model

can be flexibly configured to achieve fundamental security goals such as limiting

raw access to private user data in cell phones, protecting platform OS and system

file integrity, confining process privileges, and separating processes and domains.

type qtmail t;

type qtaddressbook t;

allow qtmail t qtaddressbook t:file *;

allow user t qtaddressbook t:file getattr;

The above security policy can be enforced through Linux Security Module

(LSM), which is a kernel module that has been included in Linux kernel 2.6. With

LSM enabled in a cell-phone OS, a set of hooks are placed in Linux kernel such

that whenever sensitive system call functions (defined as the monitoring points

for cell phones) are invoked by user level processes, the corresponding hooks start

the authentication and authorization by checking with the LSM. Within LSM,

a security server implements the decision logic based on its TE policy model,

where the binary policy is pre-loaded. Thus, through authenticating these system

calls, our defense denies unauthorized accesses to key system resources in phone

devices and identifies those malicious resource-requesting processes. By defining

appropriate policy rules, our scheme can support the Mobile Phone Reference

Architecture recently specified by Trusted Computing Group (TCG) [111, 112].

Specifically, a cell-phone is a multi-stakeholder computing environment, where

resources from different stakeholders (typically, manufacturer, network provider,

62

service provider, and the user) need to be strongly isolated, and the communication

between them have to be tightly controlled. Our access control–based scheme can

meet these requirements.

5.3.3 GTT-based Protection

At the system level, we want to design malware containment techniques to prevent

unauthorized messages from leaving compromised phones or from entering those

benign cell phones. Specifically, a sender has strong motivation not to let her

phone be compromised; even if it is compromised, she wishes to block the malware

in the earliest stage so that her phone will not become an attacking source in

the system. To identify and throttle malware within cell phones devices, we first

need to differentiate a malware-initiated messaging process from a normal user-

initiated messaging process. This is relatively easy when a malware always creates

an unauthorized (or unregistered) process to invoke system calls or messaging

framework APIs to execute the malicious program, because such malicious process

typically has new security context which can be identified according to predefined

security policies. However, in the case when a malware launches attacks through a

registered application (e.g., the email messaging process qtmail in a Linux-based

phone), this becomes a challenging task because the malicious process obtains the

same security context as the registered application (i.e., qtmail), which is legitimate

to access sensitive resources. This case is demonstrated in [99].

To detect this malware behavior, one approach is to use content-based filtering

[113]. For example, those messages that are delivered with .SIS attachments and

attractive titles are more suspicious than others. However, as we have experienced

from combating PC email spam, this involves complex learning engines and does

not work well either in resource-constraint cell-phone devices. Another approach is

to let a user manually confirm every message that is leaving her phone. Specifically,

when sending a message to the air interface, the messaging framework requires the

user to enter YES/NO using the keypad (or touch-screen) to confirm her message

delivery. This of course helps block some simple attacks. However, more elaborated

malware could compromise the application-layer keypad (or touch-screen) driver

and inject a false input to circumvent this single-touch protection. Moreover, a

63

malware can easily crash the phone by generating numerous messaging requests to

deplete system resources.

We adopt artificial intelligence (AI) techniques to solve this challenging issue.

Our idea is to rely on AI techniques to authenticate the messaging behavior of

an ongoing process and identify malware attacks. Specifically, our countermeasure

involves executing a Graphic Turing test (GTT) before a messaging framework

eventually delivers a message to the air interface. GTT has a nice feature that

human can always pass a Turing test while an automated malware cannot. In

this case, even if an elaborated malware has compromised the application-layer

keypad driver, it is still unable to figure out the correct answer of a GTT to

fabricate a story that the message is initiated by a human being. We note that

this countermeasure identifies cell-phone malware adopting both forms of attacking

strategies, because it does not simply verify the security attributes of the on-going

process; instead, it differentiates a malicious message originator from a normal user

through authenticating their genuine natures (AI techniques are capable of doing

this). Moreover, this approach helps a user detect a wide variety of malware,

including new malware that are unknown to security vendors (e.g., zero-day or

polymorphic ones), so that the user can immediately block the malware within

the phone device and apply a security patch to recover it whenever the patch is

available.

Although our GTT-based protection scheme requires an user operation during

the message delivery, the rate of normal MMS/MMS messaging (on the order

of 0∼10.07 messages/hour [114]) is unlikely to be very frequent for every user

due to the limited resources of dedicated signalling channels, for example, Stand-

alone Dedicated Control Channels (SDCCHs) in GSM [115], configured for SMS

messaging service in Base Stations. Moreover, in the worst case, this operation

takes only several seconds to complete the test, which nearly has no impact on the

time response when compared to the time a user takes to compose a message. We

note that a user is motivated to take such a test because she hopes to prevent her

phone from sending numerous malicious messages which will cause privacy leakage,

extremely high service charges and quick depletion of battery power3. In addition,

3Transmission via the radio interface consumes most power in messaging due to its signaling interactions with
network. GTT blocks malicious transmission and saves power.

64

System Calls, e.g.,

 open(address_book, O_RDONLY)

 open("/dev/ttyS0", O_RDWR)

 socket(AF_INET,SOCK_STREM)

Linux DAC Check

LSM Hooks

Access Operations, e.g.,

 read(fd, contact_buffer, length)

 send(socket, message, length)

Policy Management Tools and

Interfaces

SELinux Filesystem

Access

Vector

Cache

Security Server

(Binary Policies and Decision

Logic)

SElinux LSM Module in Cell-phone

User Space

Kernel Space

Allow or deny?

Qtopia Phone Edition

Plugins

Qtmail
Qtmms
 Qtcalendar

JVM

...

Secure Qtopia

Policy Source Code

Applications

Figure 5.2. Cell-phone malware containment with access control on key system re-
sources

a phone user can temporarily turn off the functionality of GTT or switch it to a

semi-protection mode, in which the messaging framework randomly executes GTTs

to challenge the message sender. This is especially useful when the user decides to

deliver a large amount of messages, for example, during holidays or birthdays. Of

course, a tradeoff between user convenience and security always exists.

Based on the above design principles, we study practical problems of how to

instantiate a GTT and embed it into a wide variety of smart phones which run

different platform OS, and where to perform GTT security challenge to message

initiators. We also study whether there are alternatives for GTT and how to

prevent GTT from being circumvented by a more elaborated malware. We discuss

these implementation issues in Section 5.4.

5.4 Implementation

5.4.1 Access control–based Protection

5.4.1.1 Porting SELinux on TI OMAP-5912OSK Board

To our best knowledge, there is no existing Linux phone on the market that includes

SELinux 4. We ported the NSA SELinux [116] into TI OMAP-5912OSK [117],

4Motorola A1200 implements some kind of access control called Motoac. However the source code and policy
file are not public yet.

65

which is a generic smartphone development board with ARM9 processor operating

at 192 MHz, 32 Mb RAM and 32 Mb Flash. The OMAP-5912OSK originally comes

with a MontaVista Linux 2.4 binary (including a kernel patch of realtime support

for cell phone), with which we found that porting SELinux is difficult. Our porting

includes three main tasks: building a SELinux-enabled Linux kernel, building a

SELinux-aware root filesystem, and porting SELinux libraries and tools. The first

task is the easiest one as Linux 2.6 has already included NSA SELinux Module

and it has incorporated the realtime feature since kernel version 2.6.18. We use

the standard Linux 2.6.20 source code and customize it for the OMAP-5912OSK

hardware. Thus, we completely replace the original MontaVista Linux 2.4 on the

board.

We use Buildroot [118] to build a root filesystem. Buildroot integrates ba-

sic packages for a root filesystem for embedded systems. Most importantly, it

seamlessly integrates Busybox, which combines tiny versions of many common

UNIX utilities into a single small executable, thus reducing memory and disk

spaces for embedded environments. We then ported the NSA stable SELinux

release [116] onto the board, which includes libsepol-1.16.6, checkpolicy-1.34.3,

libselinux-1.34.13, libsemanage-1.10.5, and policycoreutils-1.34.11. All these are

libraries and tools to compile and manage policy, configure SELinux, and provide

interfaces to security-aware applications. The porting also includes libpython-2.4,

which is required by SELinux tools. To test our porting, we run the NSA example

policy [116] on the OMAP-5912OSK board.

Some significant efforts of our porting lie in the difference between uClibc [118]

and glibc. The NSA SELinux libraries and tools are built on glibc, while our devel-

opment filesystem on OMAP-5912OSK is built with uClibc, which is optimized for

embedded devices. As a result, a lot of configurations and patches of SELinux have

to be changed according to the different implementations of C libraries. The details

are included in our ported package which is available for public downloading.

5.4.1.2 Cell-phone Malware Containment with SELinux

Figure 5.2 shows a complete flow of applying access control on key system resources

to contain cell-phone malware. Here we explain in details how this scheme works

in Qtopia phone edition 4.2 [119], the major application platform for Linux-based

66

phones such as Motorola A1200, Sony Mylo and many others [120]. Recall that

our strategy is to authenticate accesses to key resources such as user address book,

modem devices, and Wi-Fi interfaces on a mobile device. Therefore, we focus

our control on the system calls that are invoked towards these resources, such as

open(“address book”, O RDONLY), open(“/dev/ttyS0”, O RDWR), and write(fd,

message, length). Fortunately, hooks can be defined by LSM in most places where

we want to control system file openings and device accesses. Therefore the main

task in this scheme is to (1) define SELinux policy rules to limit the permissions

that a program can have, (2) label corresponding programs to confine the access

to these resources, and (3) limit domain transitions from any other domains to

those that are allowed to access these resources. We explain these steps as follows,

respectively.

The fundamental goal of our access control–based scheme is to only allow le-

gitimate accesses to key resources. Therefore, SELinux policies should permit

legitimate access requests while deny others. The key problem is to identify what

kind of privileges are required for each program or subject, such as to satisfy the

least privilege principle. One feature of SELinux policy is that all allow rules in

a policy.conf are positive; that is, a single rule always adds some permissions to

a subject type. Therefore to prevent any illegal subject type having unexpected

permissions, we define “private” types of our target resource objects such that they

are only visible to subject types in the same domain. Here by domain we mean all

trusted subjects that are allowed to access a target object. For example, in Qtopia

platform, Qt applications and plugins (e.g., qtmail, qtmms) are typically trusted to

the address book object. Thus permissions from them to read/write user address

book are allowed, while those from others are denied.

To provide private object types, we leverage the recent SELinux Loadable Pol-

icy Module, which offers a flexible way to create self-contained policy modules that

are linked to an existing policy without re-compiling the whole policy source each

time. A policy module can define private types and attributes and then define

interfaces so that other modules can use them, thus enabling type encapsulation

and controlled communication between the subjects whose types are defined in

different modules. After a module is created, it can be loaded to the kernel during

runtime using SELinux policy management tools. A significant benefit with this

67

approach is that, as a mobile phone is a multi-stakeholder computing environment,

each stakeholder can deploy its own security policy without any interference with

other stakeholders. As a result, the integrity and confidentiality of its data and

applications deployed on the phone is preserved. In addition, a loadable policy

module can be updated during runtime and over-the-air, e.g., with regard to the

policy change of a stakeholder.

To correctly enforce SELinux policies and confine the behavior of applications,

another key issue is subject and object labelling. As SELinux is label-based access

control, assigning appropriate labels to target subjects and objects, and controlling

the permissions to change these labels are critical. Particularly, in cell-phone

environment we have to solve two problems: (1) we need to label the key resources

and trusted subjects with appropriate labels on a cell-phone OS, and (2) besides

the policy rules to enable trusted subjects’ permissions on target resources, we need

to define rules for permission labelfrom and labelto to subjects and key resources

such that only legitimate processes can get these permissions and re-label them.

Significantly different from DAC which an object owner determines the permissions

to access an object, SELinux controls which domain can have these permissions

such as to enable the permissions based on corresponding types.

Domain transition is another mechanism to confine permissions of a process.

Particularly, when a process executes another program, the new process first has

the same security context as the calling process. If domain transition rules are

defined, the new process can be transited to a new type so that some sensitive

permissions can be given to it. The principle behind domain transition in SELinux

is that, by defining a particular program with which a privileged domain can be

entered, some permissions can be tightly controlled since only this program can

have these permissions. Thus, policy rules are required to specify what kind of

subjects can invoke these privileged programs.

5.4.1.3 Defining Policy for Securing Messaging

Next, we use a concrete example to demonstrate how cell-phone malware can

be effectively contained with the above techniques. Specifically, we show how to

construct a policy module for securing messaging services in Linux-based phones

which adopt Qtopia Phone 4.2 as the application platform. Qtopia provides a

68

number of integrated messaging applications (e.g., SMS, MMS, email client) to

phone users. Here we use qtmail – the email messaging application as an example.

We note that policy rules can be defined for other applications within this module

or with other modules. As discussed in Section 5.2, a malware attacks the cell

phone either by executing a malicious process from the framework of qtmail, or by

directly hijacking qtmail (we show detailed implementations in Section 5.5.1). Note

that both scenarios eventually result in malicious exploits on system resources. In

this example, we examine malware exploits on user address book. We show how

to define SELinux policy rules and explain from the domain transition perspective

why such policy rules help protect the Qtopia messaging application against a

malware which adopts attacking strategy I. We first construct the following policy

module.

policy module(qtmail, 1.0)

require {

type base t;

type sysadm t;

}

type qtmail t;

type qtaddressbook t;

allow qtmail t qtaddressbook t:file *;

allow base t qtaddressbook t:file getattr;

allow sysadm t qtmail t:{dir file}

{relabelto relabelfrom};

allow sysadm t qtaddressbook t:{dir file}

{relabelto relabelfrom};

allow type transition base t qtmail t:

process qtmail t;

allow qtmail t qtmail t:file entrypoint;

allow base t qtmail t:process transition;

As previously discussed, we define two types: qtmail t for Qtmail client ap-

plication, and qtaddressbook t for user email address book object file. Two allow

rules specify that only qtmail t subject can read and write the address book ob-

ject, while any other subjects (base t) can have the getattr permission of it, e.g.,

by using ls command. Any other accesses to the address book object are denied

69

by SELinux security module. The next two allow rules state that only sysadm t

subjects can label objects (including program file and data file) to/from qtmail t

and qtaddressbook t ; that is, only a system administrative program can make a

program file to qtmail t such as to read object file of qtaddressbook t. This pre-

vents the possibility that a malicious program can relabel an arbitrary program

to qtmail t which then can read the address book file. The last three allow rules

define the domain transition that when a qtmail t program file is executed, the

new process is transited from base t to qtmail t automatically. This ensures that

a qtmail t process only can be created by executing a qtmail t program file.

Hence, by enforcing this policy module, we can ensure that only qtmail t process

can read and write user address book, a qtmail t process can only be created by

executing a qtmail t program file, and only system administrative process can

label a program file to type qtmail t. Therefore, without an explicit administrative

change, any malicious process launched by a malware cannot be labelled as qtmail t

and its access to the user address book object will be denied.

For attack II, as the legitimate qtmail process is hijacked, which is already

labelled with qtmail t when it is launched, our access control–based scheme cannot

block its malicious access to the user address book. Therefore we need a more

intelligent scheme as described in next sections.

5.4.2 Graphic Turing Test on Cell Phones

AI techniques such as GTT helps people differentiate normal human behavior

from automated attacks, hence they are popularly adopted by network servers

for filtering automated actions from spammers or worms, e.g., in securing email

account registration [121] and defending against DoS attacks [122]. In our case,

we design a GTT-based mechanism which helps a cell phone identify a worm-

initiated messaging process and take further protection against it. This mechanism

is equally effective in combating Bluetooth-based worms. However, here we use

MMS-based worms as our example.

Instantiating GTT We choose to incorporate a visual CAPTCHA (Completely

Automated Public Turing test to Tell Computers and Human Apart) [123] test

into a mandatory point of each message delivery. CAPTCHA is a program that

70

can generate and grade tests that most humans can solve, but automated programs

such as worms cannot. Thus, for a normal cell-phone user, she simply needs to

pass an easy visual test before sending her newly composed message to the output

interface (usually a buffer named Outbox). However, a worm most probably fails

this authentication and all its unauthorized out-going messages will be eliminated

from the cell phone. One realization of CAPTCHA is GIMPY, which concatenates

an arbitrary sequences of letters to form a word and renders a distorted image of

the sequence. GIMPY relies on the fact that humans can read the words within

the distorted image and existing automated software cannot. A user authenticates

herself by entering an ASCII text in the same sequence of letters as what appears

in the image. Fig.5.3(a) shows an example of GIMPY test in a cell phone.

(a) GIMPY test in cell
phone

(b) Flow of protection

Figure 5.3. GTT-based protection on cell phone

In choosing an appropriate GTT instance, there exists a tradeoff between the

instance’s complexity (i.e., security) and its convenience to the user. A GIMPY

test with less number of characters are more likely to be broken by an intelligent

worm. However, normally users do not want to spend much time in answering

the challenges. In this dissertation, although for demonstration purpose we use

GIMPY, our scheme conveniently supports an upgrade to a more secure instance

of GTTs, e.g., Animal-PIX, which asks a user to select between a set of pre-defined

animals. Unlike Gimpy, Animal-PIX has never been reported broken even in the

PC world, and it helps reduce a user response time through her immediate observa-

71

tions. We note that there is an advantage that strongly favors our applications of

CAPTCHA on cell-phones, because a worm is unlikely to install complex machine-

learning tools such as neural networks in a resource-constraint phone device (the

latest model has a 600 MHZ CPU and hundreds of Mbytes memory) to build classi-

fiers and recognize the texts and figures, although there had been several successful

cases against simple CHAPTCAs [124, 125] in PC systems. We give further dis-

cussions on this issue in Section 5.5. On the other hand, since it is unrealistic to

assume a system with perfect CAPTCHA, we will consider in the modeling (Ap-

pendix B) a non-zero probability that GTT can be accidently circumvented by a

worm’s random guesses in this context. Another alternative in CAPTCHA is to

apply biometric techniques on cell phones, for example, a user can conveniently

uses her finger-prints [126] to confirm each message delivery. However, this as-

sumes that a worm cannot access the user’s finger-print. This can be achieved by

applying the access control mechanism in platform OS security [127].

Implementing GTT on Symbian Phones The next issue is where to incor-

porate a GIMPY test. In our Symbian phone experiment, we embed a GIMPY

test within the messaging framework (Nokia S60 and Sony-Ericsson UIQ 3 SDKs),

whose APIs must be invoked each time before an application eventually accesses the

hardware interface (i.e., modem) to transmit a message. A modem is responsible

for data coding/decoding and protocol stacks in a cell phone, and any messaging

request (e.g., MMS and SMS) and the message content should be finally directed

to this device in order to be transmitted to the air interface (see AT commands de-

fined in GSM protocol 0707, 0705 [38]). Specifically, phone vendors such as Nokia

and Sony-Ericsson can integrate the test into a Symbian messaging library function

named CMmsClientMtm :: SendL(). This function is invoked each time when a

user application initializes a communication entity named iMmsMtm and com-

poses a new MMS message (Figure 5.4). A closer look into a messaging procedure

shows that iMmsMtm first sets the message content (including recipient address,

attachment, etc.) and moves the message to a temporary buffer named Outbox

(through calling CMmsClientMtm :: SendL()). At the same time, iMmsMtm

starts a timer by calling wait→ start() and has the system scheduler deal with the

final message delivery to the modem interface. Through augmenting the library

function CMmsClientMtm :: SendL() into CMmsClientMtm :: NewSendL()

72

(Figure 5.5), we place the GIMPY test at the point right after the message con-

tent has been built and just before it is sent to the buffer of the modem interface.

Thus, only authorized messages that pass the authentications are transferred to

the modem. Because Gimpy test is embedded in the messaging APIs, a user can

conveniently update it through downloading a new function library from a phone

vendor’s website. For example, she can upgrade the software to execute another

form of GTT such as Animal-PIX [123].

/* inside user or malware application */

...

iMmsMtm = (CMmsClientMtm *)NewMtmL(KTypeMMS);

iMmsMtm->CreateMessageL(serviceId, aMsgId);

iMmsMtm->SetMessagePriority(priNormal);

iMmsMtm->AddAddressL(aRealAddress);

iMmsMtm->SetSubjectL(aSubject);

iMmsMtm->CreateAttachmentL(aAttId, aFileName) ;

...

iMmsMtm->SetMessageRootL(aAttId);

iMmsMtm->entry()->setVisible(true);

iMmsMtm->SaveMessageL(aMsgId);

iMmsMtm→ NewSendL(); /* invokes GTT */
wait.Start();

CActiveSceduler::Start(op);

...

Figure 5.4. A Symbian messaging application

Addressing challenges from Open-source Devices The above solution, how-

ever, only considers the case when the worm leverages the existing messaging

framework to launch attacks and to propagate. An application-layer worm in a

Linux-based smartphone can exploit the openness of the communication software

and launch attacks that directly deliver malicious data to the modem interface,

without following the existing messaging framework. For example, in the above

example, a worm may bypass mmsclient and directly invoke write(fd, message,

length) to transfer its malicious message. Although such attacks have not yet

been reported from existing smartphones, the potential threats are approaching

as Linux-based phones with open source are taking more and more market shares

(reached 15% in 2007). We know that Linux 2.6 has incorporated SELinux into the

kernel and enables privileged users to conveniently define access-control policies for

73

/* rewriting lib funcion */

CMMSClientMtm::NewSendL() {
InsertGimpyPicL(RandomNo);

EchoL(KGTTMessage);

...

while(++gttry <= NumTry){
GTTDialog->ExecuteLD(R GTT DIALOG);

iGTTString->Des() = gttinput;

if(!CompGimpy(RandomNo, iGTTString)){
EchoL(KCompareSucceed);

CMMSClientMtm::SendL(); /*orignal lib function*/
break;}

...}
if(gttry == NumTry) BlockSendMtm(this);

...

}

Figure 5.5. Integrating GTT into Symbian library function

system resources on a per-process basis. Thus, any illegal process directly access-

ing phone resources such as the address-book file and the modem from outside the

messaging framework does not follow the defined policies and will be immediately

identified and blocked. However, as we mentioned earlier, in the case when a le-

gitimate process such as mmsclient is hijacked, its security context remains valid

and unauthorized accesses to the resources can still be granted according to the

security policy.

lmno pqrsntnounv tnw mwmxny srvvzuxnosnqxz{u pwmxny srvv|ru}vno
u{oyrv rqq~{oy rqq {x|norqqm���y{}�vn ��x|nuxzsrxz{u�}n�����

lmno zuq�x����v�{ozx|y�oryn ����no qrmm �rzv
Figure 5.6. Implementing GTT in Linux-based smartphones

We propose a more effective solution – a kernel-module based approach to solve

this challenging issue. Fig.5.6 shows the defense architecture which consists of two

parts: key system-call interceptions and a GTT kernel module. Specifically, we

74

monitor and intercept key system calls which may be invoked by both a normal

application or a worm process. Once such a system call is caught, a kernel-level

GTT module presents a challenge to the call initiator.

A normal MMS process and a worm process both need to invoke the system call

write(fd, message, length) to eventually transfer the message content to the mo-

dem, although they have different initiators. To intercept this key system call, we

place a hook in write() and enforce a simple parameter checking each time when it

is invoked. Specifically, we only aim at catching a system call write() with the first

argument being “/dev/ttyS0” (modem interface) and the second argument begins

with “AT+CMGS” (AT command type for messaging request in GSM 0705 [38]).

Upon detecting the first messaging request, a GTT module is immediately loaded

by the kernel to provide authentication. Note that this protection resides in the

kernel memory until it is explicitly removed or when there has been no messaging

requests for a sufficient long period of time. This GTT module has two components:

the GTT algorithm and the authentication part. The GTT algorithm is similar as

we introduced above except that its rendering function writes the output directly

to the frame-buffer driver instead of the phone’s application view. In Linux Kernel

2.6, the frame-buffer device represents the memory buffer of the video hardware

and allows user programs to access the graphics hardware through a well-defined

interface [128]. Specifically, the frame buffer can be treated as a memory device

(similar as /dev/mem), and each user program can use mmap() to map the frame

buffer into its own address space and seek the desired position to read/write the

memory content. Considering that in Linux smartphones, application-level GTT

could be compromised by worms, directly writing GTT output to the frame-buffer

device provides a more secure way of presenting an authentic/unfalsified graphical

challenge to the phone user. The authentication part simply verifies the user’s

GTT response and invokes the original system call (i.e., write()) if her response is

correct. Note that we do not need to protect the user input (response) at the ap-

plication level, because even if the worm successfully compromises the user input,

it is still unable to figure out the correct answer of a GTT challenge 5. As a result,

such attack will be identified and the original system call will not be invoked.

5Nor do we need to worry about a Denial-of-Service attack in which a worm destroys the frame-buffer display
of GTT, because an anomaly will be detected once a normal user fails to reply the GTT challenge.

75

Identifying and Blocking Worms Deploying GTT in a cell phone not only

prevents unauthorized messages from leaving the terminal but also helps a user

identify on-going attacks in the phone in a automated and real-time manner. Con-

sidering that a human could inadvertently enter wrong answers to a challenge, we

devise a worm-blocking mechanism, as shown in Fig.5.3(b). Basically, a terminal

defines a threshold Gth as the allowed number of GTT failures during a messag-

ing attempt. This threshold is set by the user and stored as a phone parameter.

The value of Gth should allow human mistakes such as typos while never let a

worm succeed in guessing the GTT answer. Also, anyone who fails a GTT will

be given a brand new challenge. In this way, a worm can be clearly identified

after continuously failing GTTs for Gth times. Once the phone has detected the

worm’s existence, it should temporarily block the outgoing messaging interface.

For example, in Symbian OS it blocks the ClientMtm entity and hence related

AT commands for sending messages to the modem. Note that this protection does

not influence the interface for incoming messages. The phone user will be notified

of the worm attack and the on-going defense, so that she can disinfect this blocked

phone by installing a security patch or sending it for professional maintenance.

5.4.3 Comparing Device-level Countermeasures

We have introduced two system-level countermeasures to throttle cell-phone mal-

ware, namely the access-control–based and the GTT-based protection scheme.

These two schemes have some common features. First, none of them rely on

known signatures and manual updates to contain the malware, hence they essen-

tially provide realtime protection to phone devices. Second, these two schemes

both achieve automated malware detection and isolation, based on which auto-

mated online security update becomes very practical.

We also note that there are significant differences between the two schemes.

First, the former identifies malware according to pre-defined process capabilities

on accessing key system resources, while the latter identifies malware by telling

the nature of a resource-requesting process, i.e., whether the initiator is human

or malware. From this sense, the latter is more comprehensive and intelligent, as

we have shown in combating malware adopting both forms of attacking strategies.

76

However, the GTT-based scheme has false positives due to its nature of using ar-

tificial intelligence, while the access control–based scheme does not. We evaluate

the GTT selection criteria and show how to reduce false positives in Section 5.5.

In real life, choosing which protection scheme heavily depends on some practical

factors in the context of cell-phones, for example, the platform OS currently used

(i.e., the complexity of defense implementation), and the current hardware config-

uration of the cell phone (i.e., whether malware can launch some complex tools to

do more than random-guessing towards a challenge).

5.5 Evaluations of Effectiveness

We implemented our system-level defenses on real devices, including Symbian-

based and Linux-based phones, which represent the majority of existing smart-

phone products. In this section, we evaluate the feasibility and effectiveness of

these defenses.

5.5.1 Experimental Settings

Symbian-based smartphone We conducted our experiments on Symbian-based

phones because of their popularity in current smartphone market. Symbian OS

is a proprietary operating system designed for mobile devices, with associated

libraries, user interface frameworks and common tools, provided by Symbian Ltd.

Based on the standard Symbian OS, phone manufacturers such as Nokia and Sony-

Ericsson have developed their own versions of Symbain C++ SDKs for application

developers, for example, Nokia platform uses Series 60 (S60) SDKs, and Sony-

Ericsson platform uses UIQ SDKs.

In our tests, we chose Nokia S60 phones (Nokia 3230, E62) and Sony-Ericsson

UIQ phones (Sony-Ericsson P900) as the target devices. Each of these smart-

phones has a 32-bit RISC CPU (ARM-9 series, 123-220MHZ) and an expandable

memory of 10-32 MB. All these devices support Bluetooth and MMS/SMS func-

tionalities. We adopted Metrowerks CodeWarrior V3.1.1 (for Symbian OS v9.0) as

the integrated development environment (IDE). To test the compatibility of our

GTT-based defense with most smartphone vendors, we implemented the scheme

77

using two major Symbian C++ SDKs, Nokia S60 2rd Edition and Sony-Ericsson

UIQ 2.1, respectively. Using the CodeWarrior compiler, object codes of malware

and defenses were first built into PC executables and tested in a Windows-based

Symbian phone emulator named WINSCW. Finally, these programs were built into

target executables for the ARM-9 hardware platform and deployed to real phone

devices.

Figure 5.7. OMAP-5912OSK as a generic development platform for both WinCE and
Linux-based smartphones; in our experiments, we use Linux kernel 2.6.20.4, Qtopia
Phone Edition 4.2

Linux-based Smartphone Linux-based smartphones have had substantial growth

in recent years. In our tests, we chose OMAP-5912OSK [117] as the development

board for Linux-based phones. OMAP-5912OSK is a generic hardware platform for

developing smartphones based on both Windows CE and Linux OS. The OMAP

board includes TI processor ARM926TEJ operating at 192MHZ, 32 MByte RAM,

Mistral’s Q-VGA/touchscreen, ethernet/USB/serial port. Original OMAP board

ships with MontaVisa Linux OS for OSK (kernel 2.4). We customized it to ker-

nel version 2.6.20.4 for deploying our access control–based defense. To develop

phone applications based on the hardware, we chose Trolltech [119] Qtopia Phone

Edition 4.2 as the application platform. Qtopia is currently running in a wide va-

riety of Linux-based phones [120] (e.g., Motorola A1200, OpenMoko), it provides

a complete set of C++ SDKs, user-friendly tools and APIs to application develop-

ers. Our source code of malware and defenses was first built into PC executables

and tested in a Linux-based emulator. Finally, these programs were cross-compiled

78

into target executables for the ARM-9 processor and deployed to the OMAP board.

Figure 5.7 shows our smartphone testbed using OMAP-5912OSK board.

Figure 5.8. Configuration of cell-phone experiments (using OMAP-5912OSK platform
as an example).

Figure 5.9. Access-control–based scheme identifies and blocks a malware which adopts
attacking strategy I; Phone device: OMAP-5912OSK, Platform OS: Linux 2.6 kernel,
Phone application framework: Qtopia 4.2

79

Experiment Configuration Figure 5.8 shows the configuration of our smart-

phone experiments. An administrator can control an OMAP board and log its

events through an external Minicom terminal (serial port). Each OMAP board

connects to a standard modem device through which it communicates with other

smartphones within 2G/3G cellular networks. In addition, each board can access

the Internet through its on-board network interface (using either wired or Wi-Fi

communications). We also implemented an external malicious server, which es-

tablishes connections (SSL) with the on-board malware and receives private user

contact information stealthily gathered from the OMAP board. Therefore, be-

sides the malware attacks inside the board, the malicious server itself can exploit

disclosed user information and launch automated messaging attacks to vulnerable

phones by executing its own messaging service such as sendmail.

We implemented two representative malware: Cabir [35] and CommWarrior [33]

in both Linux and Symbian-based smartphones. These malware adopt attacking

strategy I. For instance, when a Symbian phone user unwittingly opens an at-

tachment in a message titled “Breaking News”, a CommWarrior process is started

and it randomly retrieves some recipients from the phone addressbook as its new

victim targets and secretly delivers (in background) malicious messages with the

similar attractive titles to them. For each of these messages, the malware speci-

fies the MIME type as “application/vnd.symbian.install” and attaches a malicious

SIS file which contains a complete installation of CommWarrior. The detailed

messaging flow invoked by CommWarrior in Symbian platform has been shown in

Figure 5.4. In our tests, we set the malware’s messaging speed as once in every

20 ∼ 30 seconds, which is much more frequent than users’ normal messaging rate

(on the order of 0 ∼ 10 messages/hour). Note that although these malware were

only reported from Symbian-OS, in our implementations, we extended the above

malware cases to the environment of Linux-based phones which are receiving more

and more attentions from malware writers.

In addition, we implemented an automated malware which adopts attacking

strategy II in compromising smartphone devices. Using the OMAP-5912OSK de-

vice as an example, when a user just clicks on (or highlights) a newly arrived mes-

sage entitled “Breaking News”, the running process named qtmail which belongs to

Qtopia’s email messaging framework invokes function EmailHandler::mailRead(Email*

80

mail) to process the message and interpret it on the phone screen. However, there

is a buffer-overrun vulnerability inside this function (i.e., no boundary check for its

temporary storage of the message content). The malware exploits this vulnerabil-

ity and hijacks the program flow by replacing the return address of this function.

Now that the execution of qtmail has been redirected to the injected code6, which

starts a malware timer by executing QTimer::start() and associates the timer event

to an attack function named attackLoop(). This attackLoop() results in the sim-

ilar attacks as we mentioned above. Similarly, for MMS messaging, the malware

seeks buffer-overrun vulnerability in a function named MMSHandler::MMSRead(),

which is invoked by the MMS messaging process qtmms. We note that in these

attack cases, the malware does not include any attachment to the message and

wait for user’s reaction to install itself on the phone.

5.5.2 Access control–based Defense

We launched both forms of attacks. The Attack I is successfully prevented by the

access control–based scheme with customized policy, as Figure 5.9 shows. The

avc: denied exception message shows that the system call open(“address book”,

O RDONLY) is rejected due to the security context of the malicious process. As

expected, attack type II cannot be prevented by this scheme, we do not show the

snapshot due to space limit here.

As SELinux LSM inserts hooks and checks access control policies in many sys-

tem calls, it introduces overhead to main primitive functions and inter-process

communications (IPCs). We studied the performance of our access control–based

scheme with microbenchmark to investigate the overhead for various low-level sys-

tem operations such as process, file, and socket accesses in phone devices. Our

test includes two policies: our simplified policy for cell-phone environment, and

the original NSA example policy. We compared the results with those measured

without SELinux involved (baseline).

Our benchmark tests were performed with the LMbench 3 suites [129]. Ta-

ble 5.1 shows the measurements in microseconds. For each operation, the SELinux

overhead consists of all required permission checks. For example, the null I/O

6This malicious code could either exist in the message content or be pre-injected into some library files such
as libqtmail.so and libqtmms.so by the malware.

81

Benchmark Baseline Our Policy % NSA Policy %

null I/O 22.5 31.4 39 29.5 31
stat 48.4 66.5 37 67.9 40
open/close 1113 1179 6 1277 14
0KB create 2985.1 3257.3 9 3436.4 15
0KB delete 3174.6 3268.0 3 3546.1 11
fork 4169 4270 2 4281 2
exec 18K 19K 5 19K 5
sh 78K 83K 6 83K 6

pipe 264.2 319.6 20 322.8 22
AF UNIX 460 529 15 511 11
UDP 574.1 648.3 13 817.9 12
TCP 771.4 858.6 11 1044 35

Table 5.1. Benchmark results in OMAP-5912OSK. All measurements are in microsec-
onds. Smaller is better.

benchmark measures the average time for a one-byte read from /dev/zero and a

one-byte write to /dev/null. The overhead consists of permission revalidation for

both of them. The stat operation overhead includes permission checks for search-

ing a path and obtaining file attributes. The open/close measures the time to open

a file for reading and close it after that. The 0KB create and delete measure the

time to create and delete a zero-length file. The fork, exec, and sh benchmarks

measure the times to create process in different ways. The other tests measure

round-trip latency for different IPC mechanisms.

Figure 5.10. Nokia 3230 compromised by malware adopting attacking strategy II;
average CPU occupancy exceeds 35%

Both sets of measurements show the same trend that security checks in null I/O

82

and stat operations introduce more overhead percentage than others. However, the

total time of security checks is quite small in these operations, i.e., less then 20 mi-

croseconds. Typical file related operations such as open/close and create/delete,

and process related operations such as fork, exec, and sh, also have very small

overhead. The average is around 5%. Another observation with our benchmark

results is that, although the NSA example policy introduces more overhead due

to its large policy size, in most operations it has the same order of overhead as

our simplified policy. The reason is that, although NSA example policy includes

many types and rules, in a cell-phone environment, typically there are much fewer

processes (and thus types) concurrently running in the system than that in a PC

environment. Therefore, the variance of permission check overhead with different

policies in the phone context is not significant. As a summary, using Linux ker-

nel 2.6 as the platform OS, our access control-based defense is lightweight when

compared with the baseline benchmark.

(a) GTT blocks malware and reduces av-
erage CPU occupancy to 6%

(b) GTT’s memory usage is as low as
3.13%

Figure 5.11. Effectiveness of GTT protection in Symbian phones (Nokia 3230)

5.5.3 GTT-based Defense

To evaluate the effectiveness of the GTT-based protection scheme and test its

overhead (e.g., CPU occupancy and memory usage) in real phone environments, we

launched both forms of attacks on Symbian-based and Linux-based smartphones.

The experiment result in Figure 5.10 demonstrates the system resource usages

of a Nokia 3230 phone which is compromised by a malware adopting attacking

strategy II to cause the same damages as CommWarrior [33] does. We can see

83

that the malware automatically generates a malicious message in every 20 seconds

(according to the timer it starts). This results in 35% CPU occupancy by average.

We note that there is difference in CPU usage between a normal messaging and

a malware-initiated messaging, because the latter is executed in the background

hence does not involve Graphic User Interactions (GUIs) during its messaging

process.

Figure 5.11 shows the effectiveness and the overhead of the GTT-based scheme.

We chose EZ-Gimpy [130], a CAPTCHA which is currently used by Yahoo! to

screen out bots. In this instance of CAPTCHA, a message initiator is challenged

with a single word (5 characters) image, which has been distorted, and a cluttered

and textured background has been added to confuse OCR (optical character recog-

nition) software. As aforementioned, we embedded GTT into the Symbian library

function CMMSClientMtm :: SendL(), which is currently used in the messaging

framework of both Nokia S60 phones and Sony-Ericsson UIQ phones. We chose the

threshold Gth = 3, which means that a message sender can fail up to three different

GTT challenges before the out-going messaging interface gets blocked. Figure 5.11

demonstrates a typical case in which our GTT-based scheme successfully identifies

and blocks the malware and prevents misuses of system resources. We can see

that our protection scheme reduces the average CPU occupancy to 6% or below.

In addition, two GTT trials in the test (here the user inadvertently fails the first

EZ-GIMY but passes the second) incur low overhead on CPU and memory usage.

Specifically, the maximum CPU occupancy is 5% and it only happens within less

than one second, the memory space required for an EZ-GIMPY is in order of hun-

dreds of KBytes (as shown in Figure 5.11(b)). Another important thing is that

each EZ-Gimpy takes a user 1.5∼2.0 seconds (note that the time unit is one second

in Figure 5.11) to complete, hence it has a good time response compared with the

time that a user spends in composing a message.

To test different instances of CAPTCHA and evaluate their feasibility and

performance in cell-phone environment, we conducted three major forms of tests

in Symbian platform. These tests includes (1) EZ-GIMPY [130], in which phone

users are presented with an image of a single word. This image has distorted,

cluttered, and textured background. (2) GIMPY [?], which is a more difficult

variant of a word-based CAPTCHA. For example, 5 words are presented to a user

84

in distortion and clutter similar to EZ-GIMPY. The words are also overlapped,

providing a CAPTCHA test that can be challenging for human in some cases. The

user is required to name 3 of 5 words in the image in order to pass the test. (3)

Animal-PIX [123]: an instance of graphic-based CAPTCHA, in which a phone user

is presented with a distorted image of one out of 12 different animals (e.g., bear,

cow, pig, etc.). The user is asked to select from the set of predefined animals.

1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

Threshold of GTT rounds (G
th

)

C
el

l−
ph

on
e

us
er

’s
 p

as
s

ra
te

 (
%

)

Animal−PIX
EZ−GIMPY
GIMPY

(a) User’s pass rate vs. number of retries

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Threshold of GTT rounds (G
th

)

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

EZ−GIMPY
Animal−PIX
GIMPY

(b) False positive rate vs. number of re-
tries

Figure 5.12. Conducting different forms of CAPTCHA tests in cell-phone devices

In our experiments, we adjusted the GTT threshold Gth (the allowed number of

GTT trials during each messaging). 30 cell-phone users were given the above three

types of CAPTCHAs and we recorded the pass rate (%), which is the percentage

of users who have eventually passed a GTT (with given Gth opportunities). We

also conducted the same set of tests on an automated malware, which typically

uses a random-guess strategy to answer the challenge. Note that although some

simple CAPTCHAs have been broken by automated tools using machine learning

technologies [124, 125], these tools require high performance machines to conduct

complex tasks such as training and learning. This is extremely difficult for a

malware which hides in a resource-constraint cell phone. However, we assume a

malware has some degree of intelligence in our tests. For example, in EZ-GIMPY,

the malware is able to refer to a dictionary to associate characters in the single

word and improve its random guess. Each of our tests with users and malware

took 20 runs and we took the mean value. We set the confidence interval to 95%.

Figure 5.12 shows the results of our GTT experiments on cell phones.

Figure 5.12(a) demonstrates that cell-phone users have different success rates

85

on different forms of GTTs. Besides the difficulties of the GTTs themselves, con-

venience of user input from keypad (or touch-screens) can also influence the pass

rates. Specifically, graphic-based Animal-PIX is relatively convenient for a phone

user to choose one among twelve animals (using navigation keys or touchscreen);

EZ-GIMPY requires only a single word input from the user, hence it is easy to

achieve using the keypad; GIMPY test requires multiple word inputs from the

user, hence it is relatively inconvenient. More convenient input always helps to

improve the pass rate. The figure also indicates that when the GTT threshold

Gth increases, a cell-phone user has a higher chance to pass the GTT. However,

this also brings higher false positives to the GTTs, as shown in Figure 5.12(b).

Figure 5.12(b) shows that an automated malware has certain chance to succeed

in three GTTs. EZ-GIMPY is the easiest for malware because it requires only a

single word and the malware can improve its guess with the help of a dictionary;

Animal-PIX could be broken when the malware happens to choose the correct one

out of twelve predefined animal images; GIMPY is the hardest for the malware

because it requires multiple words and relatively complex inputs. Because we need

to control the false positives, we conclude that choosing Gth = 2 ∼ 3 is a good

strategy for executing GTTs in cell-phone devices. We also believe Animal-PIX

is a preferable instance of GTT for securing cell phones, although its overhead on

memory usage could be a little bit higher than the other two instances.

Chapter 6
Designing Systematic

Countermeasures against Cell-phone

Worms

6.1 Introduction

Cell phones are increasingly becoming attractive targets of various worms, which

not only cause the leakage of user privacy, extra service charges and depletion of

battery power, but also introduce malicious traffic into the network infrastructure.

Examples of the most notorious threats to cell phones include the Skull [34], Cabir

[35] and Mabir [84] worms targeting at Symbian operating systems. The research

organization IDC estimates that by 2008 the market for mobile security software

will grow yearly by 70%. Therefore, both cell-phone designers and network service

providers must employ appropriate countermeasures against such threats.

The problem of quarantining cell-phone worms in a systematic manner, to our

best knowledge, has not been adequately addressed. Currently, the best defense

mirrors the strategy against computer viruses with the inception of security patches

for cell-phones. However, it is challenging for users to acquire worm signature files

in a timely manner. Some recent work proposes more active ways to defend against

the worms. At the terminal-device level, Mulliner et al. [92] adopted a labeling

technique to protect the phone against cross-service attacks from the phone’s PDA

87

interface; from the network level, Bose et al. [96] proposed an algorithm to auto-

matically identify compromised phones based on user interactions and suggested

a proactive worm containment framework to quarantine those suspected devices.

Cheng et al. [97] designed a collaborative virus detection and alert system named

SmartSiren for securing smartphones. These solutions, however, are still not com-

plete because they do not leverage collaborations between terminal devices and

networks to throttle worm spreads in a systematic way. Moreover, some solutions

require deploying external proxies to monitor cell-phone groups [97], which bring

extra overhead and alter network architecture.

Contributions: As cell-phone worms threaten both user devices and networks, a

solution is partial if it only considers either of them. We aim to design effective

yet efficient countermeasures for protecting both sides. We make the following

contributions in this dissertation.

• First, after carefully examining the design challenges, we propose a system-

atic approach, which consists of comprehensive defense mechanisms at both

terminal-device level and network level. The design goal of our terminal-level

defense is to prevent a compromised phone from stealthily sending MMS

messages to others as well as to prevent a user from accepting messages

that cannot be authenticated. For the devices that are lack of terminal-side

protection, we resort to the network to identify compromised phones based

on their misbehavior, and further push the proper security patches to these

phones to disinfect them.

• Second, to realize our design goals, we adopt AI techniques such as Graphic

Turing test (GTT) to throttle automatic worm transmissions and crypto-

graphic techniques such as identity-based signature (IBS) to authenticate re-

ceived messages. Adopting the GTT technique (Chapter 5), our approach is

unique in that it is capable of combating elaborated cell-phone worms which

cannot be detected by existing access control mechanisms (e.g., Symbian

platform security [127] and SELinux). Moreover, our techniques can be im-

plemented in a wide variety of smartphone devices. Based on our cell-phone

solutions, we also devise a push-based secure patching scheme to rescue cell

phones that are identified as compromised.

88

• Third, we adopt discrete time and recursive analysis to model the epidemic

behavior of cell phone worms that exploit both MMS and Bluetooth for

spreading. Generic worm models such as [131] are not accurate enough be-

cause they assume homogenous network topologies, and existing work either

only experimentally demonstrates such system-wide threat [88] or only an-

alyzes mobile worms which exploits Bluetooth communications [87]. There-

fore, these results do not directly apply to a complete modeling which math-

ematically depicts worm propagation for cellular systems.

• Forth, we evaluate the effectiveness of the proposed defenses through real ex-

periments, extensive simulations and theoretical analysis. The results clearly

demonstrate that our systematic solution effectively helps mobile communi-

cation systems retain a low worm infection rate (less than 3% within 30

hours) even under severe worm attacks.

6.2 System Model

Network Model We consider a network model which supports both MMS and

Bluetooth, because these two popular services consist of the major infection vehi-

cles of cell-phone worms. Similar as PC email systems, each MMS-enabled phone

keeps a contact list in its address book. Each record in this contact list contains

a phone number or an e-mail address of a valid MMS user. An MMS network can

be modeled as a directed graph G(V, E), in which each node n ∈ V represents an

active cell phone (i.e., it has been attached to the data network) and each edge

eab ∈ E from node a to b indicates that a has b in its contact list. We define

out-degree of a node in the directed graph G as the size of its contact list. On

the other hand, Bluetooth communications add variations to this network graph

G. A Bluetooth–enabled cell phone i moves randomly and it scans within a short

range any Bluetooth–enabled neighbors. Once a neighbor j has been explored, i

may have a connection with j (sometimes a manual pairing is needed on their first

meet). This connection breaks as they move out of range. During this process,

node i essentially varies its edges in the network graph. This variation is deter-

mined by multiple factors such as node speed, node density and radio coverage.

89

Attack Model and Security States An MMS-based worm starts by attacking

some initial targets (namely hit-list) in the network. Each infected phone scans its

contact list and randomly picks up some members to deliver malicious messages. A

susceptible receiver will most likely trust the incoming message (due to its attrac-

tive title or familiar source). She activates the attached file and unwittingly gets

her phone infected. This process repeats in the network. A Bluetooth–based worm

takes control of a victim phone’s Bluetooth interface and continuously scans for

other Bluetooth-enabled phones within its range. Once a new target is detected,

the worm inter-connects two devices and transfers the malicious message to the

target, which gets infected and becomes a new attack source.

An active phone has two security states: susceptible and infected. A susceptible

phone is not protected against security threats and it gets infected when exposed to

a specific worm, such as CommWarrior [33]. This infected phone returns to suscep-

tible state when its user launches some protection (e.g., applying a patch against

CommWarrior from Symantec) on the device. Note that it remains susceptible to

other type of worms.

Security Assumptions To our knowledge, all existing attack cases reported from

Symbian, WinCE, and Linux-based smartphones, are generated by application-

level worms [83, 91]. Using Symbian as an example, a worm uses SIS files 1 as

the infection media. Once a recipient activates the message attachment (i.e., the

malicious SIS file), a worm application is started such that it compromises the mes-

saging framework (by invoking Symbian APIs) and begins the propagation cycle.

Similar processes happen in WinCE and Linux-based devices. The common fact

here is that phone OSes are usually more reliable and secure than those popular

phone applications in front of worm exploits. Implementation details of Symbian

and WinCE OS are not revealed to 3rd-party developers, and security mechanisms

such as Symbian Platform Security [127] and SELinux have added enough difficul-

ties to OS-level malware designers. In our work, we focus on addressing different

forms of application-level attacks on cell phones. In addition, we assume that

the platform OS is robust enough so that a phone will not easily get crashed by

application-level attacks.

1SIS is the format of an user-initiated installation file to distribute Symbian applications.

90

6.3 System Overview

Our goal is to effectively combat cell-phone worms. To achieve this, our defense

should be real-time so that it is able to detect new and polymorphic worms in-

stead of merely known attacks. Besides, our defense should be automated and

self-healing, such that cell phones are able to autonomously recover from infec-

tion. Clearly, this requires collaborations between terminal and network. Our

defense should also be lightweight in that its computational overhead and battery

consumption on terminal devices are affordable.

6.3.1 Architecture and Components

We propose a systematic countermeasure against cell-phone worms. This approach

consists of a terminal-level defense and a network-level defense. Fig.6.1 illustrates

the high-level architecture of the defense framework.

��� ���������������
�������������� �������������

����� ¡¢£¢�¤�¢ ¥�¦ � §�
¨�©ª«�¬£¢�¤�¢ ¥�¦ � §�

­®¯°±

²³±´µ¶¯··³¸¯
Figure 6.1. Architecture of proposed systematic countermeasure.

Our terminal-level defense has two components: sender-side worm detection

and blocking and send-and-receiver-side (two-side) message authentication. In

sender-side protection, a new technique based on Graphic-Turing-test (GTT) de-

tects and blocks worms within phone devices, thus preventing unauthorized mes-

sage deliveries; in two-side protection, a signature scheme helps both terminal sides

verify the authenticity of messages. Our terminal-level defense achieves real-time

protection because GTT identifies both known and any new forms of worm attacks

using artificial intelligence (AI) techniques.

Leveraging terminal-level protection, our network-level defense consists of a

detection phase and a patching phase. In the detection phase, the network monitors

terminals’ messaging behavior and detects anomalies using different strategies; in

91

the patching phase, the network initiates an automated and secure patching process

on those suspected terminal devices. Through these two phases, infected phones

recover in an automated and self-healing way.

6.3.2 Terminal-level Defense

On the terminal side, we want to design techniques to prevent unauthorized mes-

sages from leaving compromised phones or from entering benign phones. A sender

has strong motivation not to let her phone be compromised. Even if it is compro-

mised, she needs to detect the worm in an earliest stage so that her phone will not

become an attacking source in the system. For a recipient, she does not want to

accept any unauthorized messages because of the potential attacks and the extra

service charges (service providers such as Verizon and Cingular also charge message

recipients).

As we mentioned in Chapter 5, we can adopt AI techniques to provide an ef-

fective enhancement of the existing platform security (access-control–based mech-

anisms) at the terminal level. Our device-level defense addresses both forms of

attacks. It involves executing a GTT before the messaging framework delivers a

message to the air interface. GTT has a nice feature that human can pass the

test while automated worms cannot. In this case, even if an elaborated worm has

compromised the application-layer keypad driver, it is still unable to figure out the

correct answer of a GTT to prove that the message is initiated by a human being.

Although GTT helps block malicious messages within a sender’s device, the

recipient cannot figure out whether an incoming message has been authorized (i.e.,

passed GTT) or it is a malicious one sent by a non-protected terminal. We propose

that right after completing a GTT, the cell phone generates a lightweight digital

signature and attaches it to the out-going message, proving that the message has

been authorized by the sender. The recipient simply verifies the signature and

decides whether and when to retrieve the incoming message.

6.3.3 Network-level Defense

On the network side, the best strategy is to block malicious messages before they

enter the rest part of the network infrastructure. Otherwise, not only those mes-

92

sage recipients could be threatened, but also network resources (e.g., radio chan-

nels, communication bandwidth) could be greatly wasted. To achieve this goal, a

network-level defense should first be able to monitor terminals’ messaging behavior

and detect any anomalies which reflect on-going attacks on the phones. Once the

network identifies compromised phones, it should immediately take countermea-

sures to disinfect the attack sources, such that their malicious messages will be

prevented from entering the network system.

We cannot merely rely on terminal-level defense to block worm messages be-

cause some phone devices may not support GTT in the near future. These sus-

ceptible devices could be the major sources of attacks that eventually enter the

network infrastructure. Existing solutions such as [97] suggest deploying exter-

nal proxies for monitoring cell phone groups and alerting the threatened devices.

However, this brings extra overhead and essentially changes network architecture.

More importantly, their approach only quarantines those compromised terminals

without further actions such as launching user-side protection or disinfecting them.

Based on the incremental deployment status of GTT on phone devices, we de-

sign three strategies for detecting compromised phones from network level. First,

when GTT has just been introduced into terminal devices, we propose that the

network identifies compromised phones through monitoring users’ messaging be-

havior (e.g., messaging rate). Second, when GTT has been widely deployed in the

system, we propose that the network instead of the recipient verifies the message

sender’s signature. Any worm message that fails the verification is considered as

malicious. Third, in an intermediate stage when GTT has been partially deployed,

we propose a hybrid strategy, which combines the above two and treats terminal

devices differently depending on whether they support GTT protection.

In addition to these online-detection techniques, we further propose a push-

based–patching mechanism, in which the network disinfects origins of malicious

messages through automatically pushing software patches to those compromised

terminals. Unlike a pull-based solution where users themselves have to manually

connect to security vendors and request patches for their phone devices, a push-

based approach is automated and it actively eliminates malicious origins from the

system in the earliest stage.

93

6.4 Implementation

6.4.1 Authentication for Both Sides

Based on the device-level protection such as GTT, We further design a signature

scheme for sender-side signing and receiver-side verifying authorized messages.

Choosing Signature Algorithm Traditional signature techniques such as RSA

and DSS use digital certificates to bind a user’s public key with her identity. In

cell phone platform, however, we adopt identity-based signature (IBS) [39] as our

basic algorithm, in which a user’s identifier instead of the digital certificate is used

as the public key for signature verification. IBS scheme has an advantage that

both parties may verify signatures without prior distribution of keys between indi-

vidual participants (as required by traditional Public-key schemes [132]). This is

extremely useful for a cellular system where pre-distribution of authentication keys

is expensive or infeasible. Using the traditional RSA-based approach, a recipient

needs to have the public key of the sender; it is neither convenient nor scalable

for a sender to include her certificate (typically several-hundred-bytes long) in ev-

ery out-going message. On the other hand, according to 3GPP TS 23.140 [38],

a recipient is notified of the sender’s identifier in the initial stage of MMS/SMS

messaging. This identifier is in the form of E.164 telephone number (MSISDN)

and can be conveniently utilized for verifying the signature of the message. Note

that due to the user authentication mechanism in wireless systems, this identifier

cannot be faked during messaging (3GPP TS 33.102 [38]). Our experiments in Sec-

tion 5.5 shows that IBS scheme provides a good time response based on security

requirement and existing phone hardware.

Implementing Signature Scheme on Cell Phones Basically, our signature

scheme consists of two stages, as illustrated in Figure 6.2. In the initial stage

(step 1 ∼ 5), a trusted third party PKG (Private Key Generator) H creates a set

of public parameters params for all users and distributes a secret key SK(s) to

each registered user. Note that k is a random parameter and params includes

H ’s public key, known crypto-functions and groups of numbers. Qs is a string

generated together with key SK(s) but it is kept in the PKG.

One important issue here is which party can act as a PKG and how to pre-

distribute keys. A natural choice is a network component responsible for security

94

data management. For example, in a 3G UMTS system, users’ security data

are stored/retrieved in/from the Home Location Register/Authentication Center

(HLR/AuC). As there are several service providers (SPs), we propose to pre-load

their public parameters to cell phones when users open their accounts or let users

retrieve these parameters from HLR/AuC when they activate GTT in their phones

for the first time. Thus, a user does not have to obtain public parameters from

the network on the fly for every message, ensuring service availability and reducing

latency. In a very rare case when a service provider decides to update in its public

parameters, it broadcasts the changes through the system messages to all registered

cell phones. Similarly, a user may choose to pre-store her private key in the local

phone or securely retrieve it from HLR/AuC.

The second stage (step 6 ∼ 8) is involved in a messaging process, where a sender

S signs the message content using its secret key SK(s), and the message recipient

R uses the sender’s identifier (phone number) s and the public parameter params

to derive string Qs and then verifies the message signature σ. Here we propose the

sender concatenates a single-bit GTT indicator Gind to the message body M . This

indicator is set to 1 once GTT has been enabled on the sender’s phone and it should

be included when the sender generates the message signature σ. Through this

indicator the recipient learns whether the message is under GTT protection, and it

decides whether or when to retrieve the message from its MMS server. Specifically,

for a recipient who performs the verification, any GTT-protected message that

passes its verification will be fully trusted and retrieved from the server in a high

priority; any GTT-protected message which fails the authentication (either the

signature or the indicator Gind is faked by the worm) should be discarded from

the server; any unprotected message is usually given a lower receiving priority and

phone users are hence encouraged to enable the terminal-level defense.

6.4.2 Countermeasures from the Network Side

Our network-level defense consists of two phases: identifying victim phones and

rescuing these phones from the network side.

Identifying Compromised Phones We propose three following strategies for

identifying compromised phones at the network level.

95

Notation:

• H is HLR/AuC, which is used as a PKG

• S is the sender, which originates a message

• R is the recipient, which receivers a message

• ∗ denotes all users in the network

• MK is the master key of the HLR/AuC

• s is the phone number of user S

• Gind is a GTT indicator

• MD is message digest of message M , using MD5 hash function

• A→ B : M denotes that user A delivers message M to userB

A Complete IBS Flow:

1. H : (MK,params) = Setup(k)

2. H → ∗ : params // params is known to all users

3. S → H : s = ID(S) // S asks HLR for its private key

4. H : (Qs, SK(s)) = Keygen(s,MK, params)

5. H → S : SK(s) // HLR replies S with private key

6. S : (σ) = Sign(Gind|MD,params, SK(s))

7. S → R : Gind|M |σ // S sends ind., msg, signature to R

8. R : V erify(Gind|M,σ, s, params)

Figure 6.2. IBS scheme for both sender and receiver side authentication

Signature-based. A home MMSC adopts the similar method as described

in Section 6.4.1 to verify a sender’s message signature. Any malicious message

that fails the verification should be discarded from the network and the sender is

considered compromised. Because the network always authenticates a user before

granting her messaging service request (MM1 submit.REQ), a home MMSC ac-

quires the sender’s real identity (phone number) and then adopts the signature

scheme (see Section 6.4.1) to verify the message before it reaches the rest part

96

of the network. Clearly, this approach requires that GTT be widely deployed on

terminal devices. Note that when some messages are left unsigned, a home MMSC

is unable to differentiate malicious messages from those legitimate ones.

Threshold-based. A home MMSC monitors terminals’ messaging behavior

and detects compromised terminals once it has found anomalies. For example,

the network side may adopt messaging rate as a metric to measure terminal’s

behavior. A normal user usually delivers MMS/SMS messages at a rate of 0 ∼

10.07 messages/hour [114]. However, a cell phone compromised by CommWarrior

[33] delivers at a rate over 120 ∼ 150 messages/hour (see our experiment in Section

5.5). To measure user i’s messaging rate, a home MMSC simply counts within a

recent time window ∆T the number of messaging requests (MM1 submit.REQ) it

receives from user i (we denote this number as Mi). If this messaging rate exceeds a

predefined threshold βth, i.e., we have Mi

∆T
− βth > δ, where δ is an error tolerance,

sender i will be considered suspicious within this time window. However, we

know that a user’s messaging rate could be high on some special occasions (e.g.,

New Year holiday and birthday), which may cause false positives. We adopt a

challenge-based mechanism to reduce this error. When the home MMSC suspects

a terminal’s messaging behavior, it immediately sends a CHALLENGE message

to the user, urging her either to launch GTT protection on her device or otherwise

to manually confirm the normal variation of the messaging rate (e.g., messaging

during holidays). Another issue is how to determine this βth. We first provide a

general threshold (e.g., 25 ≤ βth ≤ 100 messages/hour) according to the overall

messaging rate. This parameter is then fine-tuned by the network, which divides

phone users into different clusters according to their daily or weekly messaging

records. Users within the same cluster share a common threshold βth, which is

derived from a subset of cluster members who have launched the terminal-level

defense. Users’ messaging profiles can be stored in HLR so that MMSCs can

conveniently retrieve them. The threshold-based method is effective at an early

stage when GTT has just been introduced into the network. It requires more

network resources to learn individuals’ messaging behavior.

Hybrid. This approach is a combination of the above two methods. Specif-

ically, for GTT-enabled phones, a home MMSC adopts the signature-based ap-

proach; while for non-GTT phones, MMSC adopts the threshold-based approach

97

to detect compromised terminals. As more and more users enable GTT in their de-

vices, the signature-based approach will gradually become the majority. Moreover,

the threshold-based approach encourages users to launch terminal-level defense

whenever it has identified anomalies on their devices.

 Wireless

Network

 Internet
/Intranet ¹º» ¼¹ ½½¾¿

ÀÁÂÃÄÅ
Æ Ç È ÉÊËÌÍÎÎÏ ÐÑÒÒÓÔÑÕÖÑ×Ø ØÙ ÚÑÛÜÙ×ÏÑÝÞ×ßØà ÞáÜÓØÑÒ

Figure 6.3. A flow of the push-based–patching mechanism. Step 1 ∼ 3 a worm message
reaches a home MMSC; step 4 ∼ 5 the MMSC detects the attack and alerts a security
vendor; step 6 ∼ 8 the security vendor sends patch updates to an infected phone.

Pushing Patches to Compromised Phones Once a cell phone is suspected

being compromised by a cell-phone worm, its MMSC immediately notifies a se-

curity vendor (e.g., F-Secure and Symantec) through a direct link or an Internet

routing infrastructure. Note that the user’s phone number is also included in the

notification, so that the vendor knows which cell phone has been suspected and

it may deliver the latest security patch(s) (worm-signature–based) to disinfect or

immunize the cell phone. Specifically, a security patch contains worm information

(e.g., worm type and severity level) and the vendor’s signature. This patch should

be delivered to the phone via a HTTPS data connection or incrementally using

Secure SMS Messages [133]. Upon receiving the patch, the user first authenticates

the patch origin. If it is from a trusted vendor, the user decides whether to install

and activate the patch. A security update usually involves charges. However, re-

cipients have incentive to install them simply because delivering numerous worm

messages to others costs them much more.

Fig.6.3 illustrates a flow of this push-based–patching scheme. We note that this

automated and self-healing mechanism of security update is based on our terminal-

level anomaly detection (see Section 6.4.2). Besides, individual users sometimes

voluntarily connect to the security vendors and request the latest patches for their

phone devices. This belongs to a less effective Pull-based service, because phones

98

are not patched in a timely manner. We give analysis on the effectiveness of

the push-based–patching mechanism in Appendix 6.5 and evaluate them through

simulations in Section 6.6.1.

6.5 Performance Analysis

In this section, we theoretically analyze the effectiveness of our systematic solution,

namely the terminal-level and network-level defenses. We start with a NULL

scheme case where no defense has been deployed in the system.

Table 6.1. Notation for analysis
Note Explanation

r Coverage radius of Bluetooth radio signal
v Average moving speed of mobile phones
ρ Distribution density of phones (uniform distribution)
λb Percentage of Bluetooth–enabled cell phones
β Probability that a victim delivers worm message to a

neighbor (also represents the victim’s worm messaging rate)
α Probability that a node accepts a worm message
t Time stamp
pi,t Probability that node i is infected at time t
ζi,t Probability that node i does not receive worm messages

from its neighbors at time t
ηt Infected population at time t
δ Vendor’s patching probability on an infected phone (also

represents the vendor’s patching rate)
N Total cell-phone population in the system

6.5.1 Analysis of the NULL Scheme

We derive a mathematical model for characterizing worm spreads in cellular net-

works. Kephart and White [131] designed an epidemic model which adopts ho-

mogeneous network graphs to depict user communications and worm propagation.

Their model assumes nodes have similar connectivity level. However, our network

model in Section 6.2 clearly deviates from such homogeneity. In our analysis, we

consider phone mobility and the resulting variations in their connectivity. To sim-

99

plify the problem, we use discrete time to conduct recursive analysis [134, ?]. Table

6.1 lists the notation we use.

We first consider the case when no defense has been deployed in the system.

During a unit time, an infected node j delivers a worm message to its neighbor i

with probability β. We denote the probability that node i gets infected at time

t as pi,t and derive ζi,t, the probability that a node i will not receive any worm

messages from its neighbors at time t as

ζi,t=
∏

j∈Nri,t

(pj,t−1(1− β) + (1− pj,t−1))=
∏

j∈Nri,t

(1− β · pj,t−1), (6.1)

where Nri,t denotes all neighbors that deliver messages to i during {t− 1, t}. We

have Nri,t = Nri ∪ Nr∗i,t, where Nri is the set of nodes who include i in their

address books and Nr∗i,t denotes those who have Bluetooth communication with

node i during {t−1, t}. Note that Nri represents a relatively stable set. We derive

the average size of Nr∗i,t

|Nr∗i,t|=((πr2 + 2rv) · ρ− 1) · λ2
b � |Nri|, when λb � 1.

This equation computes node i’s average Bluetooth connections in unit time. It

indicates that when λb � 1 (i.e., the percentage of Bluetooth–enabled phones

is low or most phones reject connections when they meet), we can use Nri to

approximate Nri,t in Eq.6.1.

Next, we derive pi,t, the probability that node i is infected at t. Note that there

are two causes for the infection: either i has been infected at time t − 1, or i is

susceptible at t − 1 but accepts a worm message from neighbors. Therefore, we

have

pi,t = pi,t−1 + (1− pi,t−1)(1− ζi,t) · α

≈ 1− ζi,t + pi,t−1 · ζi,t, if α→ 1, (6.2)

where i = 1 ... N . Given the network topology and related parameters (α, β), we

solve Eq.6.2 and obtain the evolution of the infected population ηt =
∑N

i=1 pi,t.

100

6.5.2 Analysis of the Systematic Countermeasure

We first derive a generic worm containment model for cellular networks. Using

this model, we evaluate our systematic approach by analyzing the contributions of

its components.

Generic Containment Model We know that node i remains healthy (suscepti-

ble) at time t due to one of the following reasons: (1) i was healthy at t− 1 and it

did not receive worm messages during {t− 1, t}; (2) i was infected at t− 1, but it

eventually became healthy at t. Meanwhile, it did not receive worm messages; (3)

i was infected at t− 1, it received worm messages but eventually became healthy

at time t. We note that in case (2) and (3), node i installed a patch from the

security vendor at a certain time-point between t−1 and t. Thus, we compute the

probability that node i remains healthy at time t

1− pi,t = (1− pi,t−1)ζi,t + δpi,t−1ζi,t + (1−
α

2
)δpi,t−1(1− ζi,t), (6.3)

where i = 1 ... N , δ denotes the patching rate, and ζi,t is the probability that node

i will not receive worm messages from neighbors during {t− 1, t} (Eq. 6.1). Note

that here we assume in case (3) the patching happened at time t− ∆t
2

, where ∆t

is the length of unit time. This equation gives a generic worm containment model

for cellular networks. Given network topology G(V, E), worm messaging rate β

and patching rate δ, we can derive the evolution of infected population, which is

ηt =
∑N

i=1 pi,t. Next, we derive an epidemic threshold for this worm containment

model.

Theorem 1. (Containment Condition) In our worm containment model, if

worm spread eventually dies out, then it is necessarily true that 2β

(3−α)δ
< τ = 1

λ1,A
,

where λ1,A is the largest eigenvalue of the adjacency matrix A of network graph

G(V, E).

This theorem shows the basic requirement for a good defense. It can be proved by

substituting Eq.6.3 to Theorem 1 in [134]. We give the proof details in Appendix B,

it Also, we derive that when worm spread is diminishing due to the countermeasure,

infection probability pi,t (i = 1 ... N) decays exponentially over time (Corollary 1

in [134]). This also indicates that the infected population decreases exponentially

101

over time. Therefore, we may further derive the defense time needed for achieving

worm extinction in the system.

Theorem 2. (Containment Time) If worm spread dies out in a cellular network,

the time it takes to reach extinction satisfies Te ≤ logλ1,S

Ne

N0
, where λ1,S = 1 −

(3−α
2

)δ + βλ1,A, N0 and Ne denote the initial and the final infected population,

respectively.

The proof is given in Appendix B. This theorem indicates that lower values of

infection parameters (α, β) and a higher patching rate δ accelerate the worm con-

tainment process.

Effectiveness of the Systematic Solution In our terminal-level defense, GTT

blocks worm messages originating from compromised phones and IBS helps discard

unauthorized messages arriving at recipients. Essentially, the former reduces worm

messaging rate β while the latter reduces worm acceptance rate α. Let λg represent

the fraction of GTT-enabled phones, we may derive

β = β0(1− λg) + β0λg · rf < β0, (6.4)

where β0 is the worm delivery rate without protection and rf � 1 is the failure

rate of a GTT test. Also, we have

α = α0(1− λg) + α0λg · (1− λg) < α0, (6.5)

where α0 is the worm acceptance rate without protection. From Eq.6.1 and 6.2,

we know that this increases ζi,t (the probability i does not receive worm messages)

and reduces pi,t (the probability i gets infected), respectively. Also, we can see

from Theorem 1 and 2 that GTT helps reduce the left-hand side of the condition

and the extinction time Te.

Our network-level defense identifies compromised phones and employs a push-

based–patching mechanism to disinfect these victims. Our goal is to find a good

detection/patching rate, which not only nicely satisfies the epidemic threshold for

worm containment but also reduces the extinction time. Let Rmms denote the

fraction of MMS-based worms, Cdet represent network’s capability of detecting an

infected phone and αp denote a user’s acceptance probability towards a security

102

patch, we have

δ = Rmms · 0 + Rmms · Cdet · αp = Rmms · Cdet · αp. (6.6)

This equation shows that disinfections are influenced by the network’s detection ca-

pability and users’ willingness to install the patch. We introduced three strategies

to improve the former factor in Section 6.4.2.

6.5.3 Summary

The terminal-level defense aims at eliminating worm messages from the system,

instead of actively disinfecting victims. Without a good patching mechanism (i.g.,

a good δ), the containment condition 2β

(3−α)δ
< τ = 1

λ1,A
can never be satisfied. On

the other hand, our network-level defense achieves a higher detection rate (with

lower false positives) as more and more users launch GTT on their terminals. In

this sense, the components in our systematic approach are complementary to each

other and our best strategy is to combine these components together and deploy

them simultaneously in the system. Specifically, our systematic solution aims at

achieving the lowest set of infection parameters on communication links and at

the same time the highest patching rate on infected phones to obtain the best

containment result, i.e., we have Minimize(α, β)∧Maximize(δ). We validate our

results in the next section.

6.6 Evaluation of Effectiveness

As an initial study, we implemented the user-level defense on real cell-phone devices

and evaluate its feasibility and effectiveness.

Smart-phone Environment We chose to conduct the experiments on Symbian-

OS–based phones because of its popularity. We adopted the Metrowerks Code-

Warrior V3.1.1 for Symbian OS v7.0 as the integrated development environment

(IDE). To test the compatibility with major smart-phone manufacturers, we im-

plemented the schemes using two different Symbian C++ SDKs, namely the Nokia

Series 60 2rd Edition (S60) and the Sony-Ericsson UIQ 2.1 (UIQ).

In our experiments, we chose S60 phones (Nokia 3230 and E62)as the target

103

devices. Typically, each smart-phone we used has a 32-bit RISC CPU based on

ARM-9 series (123-220MHZ) and an expandable memory of 10-32 MB. All the

devices support both Blue-tooth and MMS (GPRS-based) communications. Using

the CodeWarrior compiler, object codes are first built into the executable and

tested in a PC-based WINSCW emulator. Eventually, successful programs are

built for the ARM targets and deployed to the devices.

Table 6.2. Time delay of IBS and RSA (in milliseconds)

Device CPU Scheme 128 bit 512 bit 1024 bit

Nokia 3230 123 MHz IBS 391 593 1,203
Nokia E62 235 MHz IBS 242 387 736
S-E P900 156 MHz IBS 315 528 1,009
Nokia 3230 123 MHz RSA – 261 414

Implementing IBS on Smartphones To achieve IBS in real smart-phone envi-

ronments, we modified the MIRACL cryptographic library from Shamus Software

[135] and ported it to Symbian OS v9.1. This library includes Boneh and Franklin’s

bilinear-paring–based IBE scheme [40]. In our protected MMS messaging process,

every message that passes GTT is signed with the sender’s private key before its de-

livery and is verified by the receiver using the sender’s ID. During the experiment,

we examined and compared the time performance of IBS on different smart-phone

platforms (3 typical Symbian phones). We set the user ID (MSISDN) to 13 dig-

its and varied the key size from 128 to 1024 bits during the test. A longer key

provides a higher level of security to the scheme. Our test takes 20 runs and we

report the mean of measurement data. Fig.6.2 shows the time performance (sign-

ing/verification) of IBS and RSA on different phone devices. The result clearly

demonstrates a trade-off between security and time. Considering the security level

(The IBS based on bilinear maps on non-supersingular curves [41] adopts a short

key size of 171 bits to achieve 1024-bit security in RSA) and the time response (a

processing delay less than 300 ms is acceptable), we conclude the 128-bit key size

is a good choice for the current hardware configuration of Symbian phones, which

typically have a 235 MHZ CPU or below.

104ââãäå ââãäæ
 Wireless

Network
 Wireless

Network

ãçèéêëìí îçïðñê

Figure 6.4. Configuration of the network simulator (similar as in Fig.6.3); Two MMSCs
may belong to different service providers.

6.6.1 Evaluation of the Systematic Approach

Environmental Setting To study worm propagation and evaluate the proposed

systematic defense, we designed a network simulator in which two MMSCs provide

messaging service to 20,000 smartphone users (each for 10,000 users). Both MM-

SCs are securely connected to a security vendor (e.g., F-secure). As we mentioned

in Section 6.2, cell phones have a number of contacts in their address books and

their messaging relationship forms a logical social network. This social network

resembles an email network whose topology is typically heavy-tailed distributed

[136, 137]. We used the Barabasi Graph Generator [138] to generate power-law

graphs and build messaging networks with different degree distribution 2. To gen-

erate normal messaging traffic, we let each MMS user randomly delivers 5 message

to its contacts within each hour [114].

10
0

10
1

10
2

10
3

1e−5

1e−4

0.001

0.01

0.1

1

Node degree

C
D

F
 o

f n
od

e
de

gr
ee

 d
is

tr
ib

ut
io

n Messaging network I

Messaging network II

Messaging network III

Figure 6.5. Degree distributions of three different messaging network. Network I is the
most connected system.

For Bluetooth communications, we assume each node has 10 ∼ 20-meter radio

range and its movement follows the random way-point model [139], in which each

2Although for test purpose we used power-law graphs for logical MMS networks, our result is independent of
the power-law assumption in the network graph

105

node chooses a random destination, travels there and pauses for a constant time,

and then picks another random destination. We adopted CMU’s SETDEST tool

in NS-2.29 to generate scenario files. The average node speed is 0.1 ∼ 1.0 m/s, and

the pause time is 60 ∼ 240 seconds. Our tests took place in a 25,000-meter–wide

square area. Each test takes 30 runs and we report the mean values.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

Time (1 unit = 30 mins)

F
ra

ct
io

n
of

 in
fe

ct
ed

 n
od

es
 (

%
)

Blue−tooth: λ
b
 = 1%, v = 0.3 m/s, r = 10m

MMS network I
MMS network II
MMS network III

(a) Worm spreads are fast in various cellular net-

works (through MMS Messaging and Bluetooth)

0 5 10 15 20 25 30
45

50

55

60

65

70

Time (1 unit = 30 mins)
F

ra
ct

io
n

of
 in

fe
ct

ed
 n

od
es

 (
%

)

Analytical Result

Blue−tooth, v = 0.3 m/s, r = 20m

Blue−tooth, v = 0.1 m/s, r = 20m

Blue−tooth, v = 0.1 m/s, r = 10m

Without Blue−tooth

(b) Bluetooth contributes slightly to worm

spreads (MMS network I, Bluetooth:λb=1%)

Figure 6.6. Cell-phone worm propagation in cellular networks. N=20,000 nodes, β =
0.033, α = 70%.

Worm Propagation Fig.6.5 shows degree distributions of three messaging net-

works. Note that here network I has the highest average degree while network III

has the lowest. Fig.6.6 demonstrates worm propagation in the systems without

defense. Fig.6.6(a) shows that when every user accepts a worm message (with at-

tractive titles) in a probability α0 = 70%, the worm spreading at a messaging rate

β0 ≈ 0.033 (2 msg/min in Fig.5.10) quickly infects 70% of the entire population.

Our result also indicates that worms spread faster in more connected systems.

Fig.6.6(b) illustrates Bluetooth connections have little impact on worm spreads.

Our result clearly indicates that a wider communication range r and a higher

moving speed v to some extent accelerate worm propagation in the system. This

result is consistent with our propagation model in Section 6.5.1. Besides, the

average node density ρ is another important factor. In our test, we chose ρ =
2×104

25×25
= 32 smartphones/km2.

Effectiveness of Proposed Defense Fig.6.7 shows the effectiveness of our terminal-

level defense, namely the GTT protection on phone devices. We examine if this

protection alone is effective enough for containing worm spreads. We studied a real

106

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Time (1 unit = 30 mins)
F

ra
ct

io
n

of
 in

fe
ct

ed
 n

od
es

 o
ve

r
th

e
po

pu
la

tio
n

(%
)

60% GTT+IBS
70% GTT+IBS
80% GTT+IBS
90% GTT+IBS

N = 20, 005 nodes, MMS network I
Blue−tooth: λ

p
=1%, v=0.3 m/s, r=10m

Figure 6.7. GTT helps slow down worm spreads. N=20,000 nodes, MMS network I,
Bluetooth: λb = 1%, v = 0.3m/s, r = 10m)

case when GTT is incrementally adopted by phone users. Fig.6.7 demonstrates

that when 60% ∼ 90% phone users have launched the protection, worm propaga-

tion can be significantly slowed down (compared with Fig.6.6(a)). As more and

more users deploy GTT on their devices, the system gets better protected against

worms. Note that in our test we assumed a rf ≤ 5% error rate for GTT. The result

also indicates that in real applications, gradually deploying terminal-level defense

on phone devices can not completely throttle the worm spread in the system.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Time (1 unit = 30 mins)

F
ra

ct
io

n
of

 in
fe

ct
ed

 n
od

es
 (

%
) β = 0.0132, α = 0.45, δ = 0.171

2β/((3−α)*δ) = 0.061 < τ = 0.092
containment condition satisfied

60% GTT
70% GTT
80% GTT
90% GTT

(a) Fraction of infected phones vs. time

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Time (1 unit = 30 mins)

F
ra

ct
io

n
of

 p
at

ch
ed

 n
od

es
 (

%
) 60% GTT

70% GTT
80% GTT
90% GTT

(b) Fraction of patched phones vs. time

Figure 6.8. A systematic defense blocks worm attacks and disinfects victims. N=20,000
nodes, MMS network I, detection threshold βth = 25 msg/hour, Bluetooth: λb = 1%, v
= 0.3 m/s, r = 10m

We then studied our systematic defense which combines terminal-level and

network-level defenses. Specifically, we set different percentages of phone devices

as GTT–enabled and at the same time launched the network-level device monitor-

107

ing and patching scheme. Meanwhile, we adjusted the worm detection threshold

βth and examined its influence on the patched population and the messaging traf-

fic. Fig.6.8 demonstrates that our systematic countermeasure effectively throttles

worm spreads in the system. From Fig.6.8(a), we can see that initially when

there are not many victims identified by the network, the worm spread reaches

a certain level (6%, much lower than in Fig.6.7). However, along with the worm

detection and the automated patching process, compromised phones gradually get

disinfected and the infected population starts to decrease. This result validates

our worm containment condition in Theorem 1. Also, we can see that when more

users adopt GTT (α is higher), worm detection reacts slower as there are less

compromised phones, and this leads to a slower worm extinction (i.e., containment

time becomes longer). This result is consistent with Theorem 2. Fig.6.8(b) shows

the patched population versus time. It also suggests that a lower percentage of

GTT-enabled phones in the system gets defense compensation of faster worm de-

tection and patching from the network. In this sense, components in our systematic

approach are complementary to each other.

Chapter 7
Summary and Open Issues

7.1 Summary

Based on the recent worm outbreaks in P2P systems and the emergence of various

worm attacks in cellular networks, we predict that worms/malware are becoming

the most dominating and devastating security threats to these hot networks in

people’s daily life. Current defenses in these systems rely too much on users’ self

recovery, for example, each user applies the security patch to disinfect her indi-

vidual machine. This requires the user’s precaution, awareness and skills; rather,

we prefer designing automated, real-time and systematic countermeasures which

leverage the existing terminal devices and network infrastructure, and internal

communication mechanisms to actively and quickly launch protection against the

worm attacks. These approaches of worm defense should be lightweight and easy to

deploy. Also, they should keep one-step ahead and be well prepared in combating a

wide variety of new worm threats in the near future. Specifically, for P2P networks,

we have proposed a partition-based scheme and a CDS-based scheme to contain

ultra-fast topological worm propagation; we have also proposed a download-based

approach and a search-based approach for containing file-sharing worms in P2P

environments. For cell-phone devices, we have proposed two device-level defenses,

namely an access-control–based defense and a GTT-based defense, for blocking

cell-phone worm attacks within terminals. We have also designed a systematic

countermeasure which consists of both terminal-level and network-level defenses

for combating cell-phone worms. Our solution is featured by an identity-based

109

signature scheme at both sender and receiver sides, and a detection-based auto-

matic patching scheme at the network side. More importantly, we showed through

detailed reasoning and extensive evaluations that our solutions are are both appli-

cable and effective for containing worm spreads in these hot networks. They can

be easily implemented or embedded into existing client programs (e.g., terminal

software) or network elements to launch protection in a timely manner. Below, we

suggest some interesting future research that could be derived from our existing

work.

7.2 Some Interesting Open Issues

Some interesting open issues from our research goes in the following two major

directions.

• For file-sharing worm containment in P2P systems, we will consider node

diversity in detecting worms and delivering security patches (the free-rider

problem [140]), and user diversity which causes deviations from their ex-

pected file-sharing behavior. We will further study the cases of best and re-

dundancy strategies in modeling and evaluating the download-based scheme.

For the search-based scheme, there could also exist multiple client strate-

gies. Current strategy will lead to the same set of file provides receiving

many offerings, but other providers will receive nothing. A more reasonable

mode would be randomly selecting k providers. In addition to the above

two defense schemes, we will also propose a reverse path forwarding scheme.

In this scheme, whenever a key node has downloaded a file from a source

node, it immediately scans the file. If a worm infection is detected, the key

node sends a security patch (with alert) back to the source. The receiver is

encouraged to install the patch and then cleanses it folders. Also, it traces

back to the neighboring infected points and forwards the security patch to

these direct neighbors. In such a hop-by-hop and reverse path forwarding

mode, all suspicious nodes on the infection paths (of a specific file) can be

disinfected. We will further analyze and evaluate this new scheme in both

structured and unstructured P2P file sharing systems.

110

• For cellphone worm containment in mobile networks, we will consider impacts

from the diversity of smart-phone OSes and interworking between different

service providers on our two-level defense schemes. In addition, we will con-

sider potentially more devastating cellphone worms which automatically ex-

ploit software vulnerabilities and launch OS-level attacks in cellphone devices

without relying on the phone user’s activation of a received file. Specifically,

malicious worms may cause buffer overflow attacks in phone devices and try

to bypass the user-level defense (e.g., GTT), which typically has been em-

bedded into the standard MMS messaging architecture in mobile operating

systems (e.g., Symbian OS). To defend against these automated and system-

level attacks, we will focus our study on two major directions. One is to

analyze the content of the received MMS message (payload) and see if the

attached file has contained any malicious code; the other is to monitor the

process behavior and compare it with known normal process behavior. In the

second approach, we need to investigate process states and their transitions

in order to differentiate an abnormal process from a normal one. This can be

achieved by constructing graphs for a series of system calls in the application

(e.g., the messaging process) and examining the similarity between the call

graphs. We propose adopting machine learning techniques such as Hidden

Markov Model (HMM) to learn the state transition probabilities in the call

graph and use it for detecting anomalies caused by process misbehavior.

Appendix A
Performance Analysis of Internal

Patching against File-sharing Worms

We derive a new fluid model for worm propagation and analyze the security and

performance of the download-based approach. We refer to notation in Table A.1.

Table A.1. Notation for worm propagation model
Note. Explanation

N the total number of hosts in the network
V (t) the number of vulnerable hosts
If (t) the number of infected hosts
Im(t) the number of immune hosts
F (t) the total number of files
h(t) the proportion of abnormal files in the system
s(t) the average size of a shared folder
λd the average rate of file download (files/hour)
λa the probability a user activates the downloaded file
α the percentage of key nodes in the system
β the probability at which a user accepts a patch

A.1 Deriving the percentage of abnormal files

Proof. We refer to Table A.1 for notation. Let A(t) denote the number of abnormal

files at time t, we have h(t) = A(t)/F (t). The change rate of the total number of

112

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

time (1 unit = 1/4 hour)

F
ra

ct
io

n
of

 n
od

es
 in

 th
e

sy
st

em
 (

%
) h(t) (λ

d
 = 1)

I
f
(t)/N (λ

d
 = 1)

h(t) (λ
d
 = 0.5)

I
f
(t)/N (λ

d
 = 0.5)

h(0) = 1.5 %

20k nodes sharing 10k different files

Figure A.1. Fraction of infected nodes vs. time

files F (t) is
dF (t)

dt
= λdN i.e., F (t) = F0 + λdN · t,

where F0 is the initial number of files in the system. A newly added abnormal

file could be caused either by a vulnerable host activating another abnormal file in

the same folder, or by a node directly downloading an abnormal copy from others.

Therefore, we have the change rate of the number of abnormal files

dA(t)

dt
= λd · λa · V (t) · h(t) · (s(t)− 1) + Nλdh(t). (A.1)

Considering s(t)− 1 ≈ F (t)/N and A(t) = F (t) · h(t), we solve equation A.1 and

finally get

h(t) = h(0) · e
λd·λa

N

∫ t
0

V (τ)dτ , (A.2)

where h(0) is the initial percentage of abnormal files.

We may compute an approximation for h(t). Assuming all the nodes have a

similar size of s(t) for their shared folders and the user parameter λa approaches 1,

which means every client usually activates (opens) the file he has just downloaded,

all the abnormal files should gradually be kept by those infected hosts in the

system. Hence, we may derive h(t) ≈
If (t)

N
.

A.2 A Fluid Model for Worm Propagation

We first consider the case when no defense has been deployed in the system. Each

node is either in vulnerable or immune state, i.e., relation N = V (t)+ If (t) always

113

satisfies. We show the evolution status of the system under the worm threat. The

vulnerable population decreases as some nodes unfortunately download abnormal

files, activate these files and get infected. We have

dV (t)

dt
= −λdλa · V (t) · h(t). (A.3)

Here 1/λd is the average time a node takes to download a file, and h(t) reflects the

percentage of abnormal files at time t. Solving the above differential equation, we

get

V (t) = N − If(t) = V (0) · e−λdλa

∫ t

0
h(τ)dτ , (A.4)

where V (0) denotes the initial number of vulnerable hosts. This equation indicates

that the vulnerable population in the system decreases exponentially as there are

more file downloads and activations; the increase of the proportion of abnormal

files accelerates the worm spread. We further derive the file state.

Lemma 1. In a P2P file-sharing system, the percentage of abnormal files can be

computed as h(t) = h(0) · e
λd·λa

N

∫ t

0
V (τ)dτ , where h(0) is the initial abnormal rate.

An approximation of h(t) can be computed as h(t) ≈
If (t)

N
, assuming λa → 1.

This lemma is proved in Appendix A.1. It shows that user behavior has significant

impact on the percentage of abnormal files: more file downloads and activations

lead to more infections. However, as the amount of files increases and the vulner-

able population decreases, worm infection is gradually slowed down.

A.3 Analysis of the Download-based Defense

Time Performance Next, we examine the download-based defense. For simplic-

ity, we assume users always adopt the random strategy to choose file providers

(see 4.4.1) and all infected hosts have a patch acceptance probability β. We de-

fine immunity rate i(t) as the fraction of immune nodes i(t) = Im(t)/N , and let

the initial immune population be Im(0). Note that these nodes, including the key

nodes, either have applied the patch or does not expose the software vulnerability

to the worm.

114

To study how long it takes to achieve a certain level of immunity rate, we

formalize the problem as finding a lower bound t0 for time t, so that we have

i(t) ≥ Ψ when t ≥ t0, where Im(0)
N
≤ Ψ ≤ 1 is a predefined threshold.

Lemma 2. In a file-sharing system which adopts the download-based defense, the

number of immune nodes is Im(t) = N +(Im(0)−N) ·e−λdαβt and the system takes

at least t0 = 1
αβλd

ln N−Im(0)
N(1−Ψ)

hours to achieve an immunity rate Ψ.

Proof. From the state diagram in Fig 6.2, we know that N = V (t) + If(t) + Im(t)

always holds. Each time when a node downloads a file from a key node, it also

receives a patch and the user decides whether or not to accept it. Note that only

infected and vulnerable (If (t) + V (t)) nodes are immunized/disinfected in this

process. We derive the change of immunity rate.

dIm(t)

dt
= (If (t) + V (t))λdαβ = (N − Im(t)) · λdαβ. (A.5)

Here α also denotes the probability that each client selects a key node as the

provider. Solving this differential equation for Im(t), we get the number of immune

nodes in the system

Im(t) = N + (Im(0)−N) · e−λdαβ·t. (A.6)

From the given condition i(t) = Im(t)/N ≥ Ψ, we may further derive t ≥ t0 =
1

αβλd
ln N−Im(0)

N(1−Ψ)
.

Fig A.2 illustrates the change of immunity rate i(t) when the percentage of key

nodes (α) varies from 5% to 15%. Clearly, as there are more patch distributors,

the system takes less time to reach a certain level of immunity rate (in our case

90%). For example, when α = 5%, it takes 60 hours for 90% of nodes to receive

the patch, whereas it takes 20 hours when α = 15%. This figure also shows that

in the random selection mode, each downloader (including those not interested in

the popular files) will eventually receive the patch from a key node.

System Evolution Status We also examine the evolution status of the sys-

tem which adopts the download-based defense. During the worm containment, a

vulnerable host either (1) becomes infected when it downloads and activates an

abnormal file from a non-key node, or (2) gets immunized when it downloads a file

115

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

100

Time (hours)

Im
m

un
e

ra
te

 i(
t)

 =
 I m

(t
)/

N
 (

%
)

Threshold Ψ
α = 15%
α = 10%
α = 5%

N = 2×104, Ψ= 0.90, λ
d
 = 1 file/hour

β = 70%, I
m

(0)/N=15%

Figure A.2. Immunity rate as
a function of time an and key
nodes

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Time (hours)

F
ra

ct
io

n
of

 p
op

ul
at

io
ns

 in
 th

e
sy

st
em

 (
%

)

V(t)
I
m

(t)
I
f
(t)

N = 2×104, Ψ = 0.9, λ
d
 = 1 file/hour, α = 5%

β = 70%, λ
a
 = 1, I

m
(0)/N = 15%

Figure A.3. System evolution
status under the download-
based defense

from a key node and accepts the patch. Hence, we set up the following equation

for the change of the vulnerable population.

dV (t)

dt
= −λdλa(1− α) · V (t) · h(t)− λdαβ · V (t). (A.7)

Note that here λdλa(1−α) ·V (t) ·h(t) computes the reduction caused by (1) (1−α

denotes the probability of downloading from a non-key nodes) and λdαβ · V (t)

computes the reduction caused by (2). We use the approximation h(t) ≈
If (t)

N
and

the solution in Equ.A.6 to solve this differential equation for V (t). We also compute

If(t) using the relation N−Im(t)−V (t). Fig A.3 illustrates the evolution status of a

file-sharing system. Initially, the percentage of infected nodes increases as the worm

surges. However, when more and more file downloaders receive the patch, worm

infections are gradually cleansed from the network and the infected population

starts to decrease. Eventually, immune nodes become the major population. The

figures also indicate that the immune time t0 is determined by several factors: the

fraction of the key nodes (α), the file downloading rate (λd), patch acceptance

rate (β) and the initial immunity rate. Our analytical result has been validated in

Section 4.7 (Fig 4.5).

A.4 Analysis of the Search-based Defense

Time Performance We analyze the effectiveness of the search-based defense. Let

k denote the average number of suspicious targets to which a key node distributes

116

the security patch, we first derive how long the system takes to achieve an immunity

rate Ψ. According to the state diagram in Fig 6.2, N = V (t)+If (t)+Im(t) always

holds. In the search-based scheme, the increased immune population comes from

either vulnerable nodes or infected nodes. Hence, the rate at which the immune

population increases can be computed as

dIm(t)

dt
= Nλd · αh(t)(

N − Im(t)

N
) · kβ

= a(N − Im(t)) · h(t), (A.8)

Where a = αβλdk. Note that αh(t)(N−Im(t)
N

) computes the probability that a key

node downloads an abnormal file from those non-immune hosts.

Also, the decrease of the vulnerable population could be caused either by (1)

worm infections or (2) by host immunizations (or disinfections). Therefore, the

rate at which vulnerable nodes become either infected or immunized is

dV (t)

dt
= −λaλdV (t)h(t)−Nλd · αh(t)(

V (t)

N
) · kβ

= −(a + b)V (t)h(t). (A.9)

where b = λaλd. Here λaλdV (t)h(t) computes the reduction caused by (1); Nλd ·

αh(t)(V (t)
N

) ·kβ computes the reduction caused by (2), in which αh(t)(V (t)
N

) denotes

the probability a key node downloads an abnormal file from a vulnerable host (not

infected yet). In this case, the latter receives the patch and could be immunized.

Finally, we know that the infected population (1) increases when some vul-

nerable nodes get infected, and (2) decreases when some victim nodes have been

disinfected. Hence we derive the following differential equation.

dIf(t)

dt
= λaλdV (t)h(t)−Nλd · αh(t)(

If (t)

N
) · kβ

= bV (t)h(t)− aIf (t)h(t). (A.10)

Note that here λaλdV (t)h(t) computes the increase of infected nodes caused by

(1); Nλd · αh(t)(
If (t)

N
) · kβ computes the reduction of infected nodes caused by

(2), where αh(t)(
If (t)

N
) denotes the probability a key node downloads an abnormal

file from an infected host. In this case, the latter receives the patch and could be

117

disinfected. To solve these differential equations, we derive the immune population

Im(t). We divide Equ.A.8 by Equ.A.9 and get

V (t) = V
−

b
a

0 · (N − Im(t))
a+b

a , (A.11)

where V0 = V (0) denotes the initial vulnerable population in the system. We then

apply the approximation h(t) ≈
If (t)

N
= N−Im(t)−V (t)

N
and substitute Equ.A.11 into

Equ.A.8. Thus, we have

du

dt
= −

a · V0

N
· u2(1− u

b
a) (A.12)

where u = (N − Im(t))/V0. We further solve this equation for Im(t) and illustrate

the change of Im(t) in Fig A.4. This figure indicates that under an average size

k = 30, the search-based approach only needs to deploys 5% nodes as key nodes

and help the system achieve a 90% immunity rate within 60 hours.

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

Time (hours)

Im
m

un
e

ra
te

 i(
t)

 =
 I m

(t
)/

N
 (

%
)

α=15%
α=10%
α=5%
Threshold Ψ = 90%

N = 1×106, V(0) = 8.5 ×105, λ
a
 = 0.75

λ
d
 = 1 file/hour, β = 70%, k = 30

Figure A.4. Immune popula-
tion vs. time and key nodes

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Time (hours)

F
ra

ct
io

n
of

 h
os

ts
 in

 th
e

sy
st

em
 (

%
)

V(t)
I
m

(t)
I
f
(t)

N = 1×106, V(0) = 8.5 ×105, λ
a
 = 0.75

λ
d
 = 1 file/hour, α=10%, β = 70%, k = 30

Figure A.5. System evolution
status in search-based scheme

System Evolution Status Adopting the similar method as above to solve Equ.

A.8, A.9, A.10, we derive the following

dV (t)

dt
= −

a + b

N
(c · V 1+ a

a+b (t)− V 2(t)), (A.13)

where c = V
b

a+b

0 . Hence we may compute V (t). Using If(t) = N − V (t) − Im(t),

we may further derive the infected population If (t). We illustrate the system

evolution status in Fig A.5. The figure shows that the infected population initially

increases due to the surging worm. However, this triggers the defense and many

118

suspicious nodes receive the patch. Eventually worm infections are eliminated and

immune nodes become the major population. The above analytical result has been

validated in Section 4.7 (Fig 4.5).

Appendix B
Performance Analysis of Systematic

Countermeasures against Cell-phone

Worms

B.1 Epidemic Threshold of Cell-phone Worms

Proof. We have node i’s healthy probability from Eq.6.3

1− pi,t = (1− pi,t−1)ζi,t + δpi,t−1ζi,t + (1−
α

2
)δpi,t−1(1− ζi,t).

We rearrange the above items and get

1− pi,t ≈ (1−
α

2
)δpi,t−1 + (1− pi,t−1 +

1

2
δpi,t−1) · ζi,t,

where ζi,t =
∏

j∈Nri,t
(1− β · pj,t−1). Following the approximation (1− a)(1− b) ≈

1− a− b (when a · b << 1), we derive the healthy probability

1− pi,t ≈ 1 + (
3− α

2
δ − 1)pi,t−1 − β

∑

j

pj,t−1.

120

Thus, we have pi,t ≈ (1− δ
′

)pi,t−1 + β
∑

j pj,t−1,where δ
′

= 3−α
2

δ. Converting this

equation to the matrix form

Pt ≈ ((1− δ
′

)I + βA)Pt−1 = SPt−1 = StP0, (B.1)

where S = (1−δ
′

)I+βA, and A is the adjacency matrix of network graph G(V, E).

Decomposing the matrix, we get

Pt ≈
∑

i

λt

i,S vi,S tr(vi,S) P0, (B.2)

where λi,S is the i’th eigen value of S, vi,S is the i’th eigen vectior of S, and tr(vi,S)

is the transpose of vi,S. According to [134], we have

λi,S = 1− δ
′

+ βλi,A, ∀i (B.3)

The goal of our defense is to let worm spread declines until to the extinction,

hence vector Pt should approach zero for t, which is large enough. This happens

when ∀i, λt
i,S goes to 0, and we should have the largest eigen value λ1,S < 1, i.e.,

1− 3−α
2

δ + βλ1,A < 1. Hence, we get 2β

(3−α)δ
< τ = 1

λ1,A

B.2 Time to Reach Worm Extinction

Proof. Suppose in t = 0, we have N0 infected smartphones in the system. We want

to derive the time Te, at when the infected population decreases to Ne, due to our

network-level countermeasure (the push-based–patching scheme). According to

Eq.B.2, Pt ≈
∑

i
λt

i,S vi,S tr(vi,S) P0 = λt

1,S ∗ C, where C is a constant vector.

Therefore, we derive the infected population as

nt =

N∑

i=1

pi,t = λt
1,S ∗

∑

i

Ci, (B.4)

where Ci is the i’th element in vector C. This means the number of infected nodes

decays exponentially over time. We have Ne = λTe

1,S ·N0, i.e., Te = logλ1,S

Ne

N0
, where

λ1,S = 1− 3−α
2

δ + βλ1,A.

Bibliography

[1] Zhou, L., L. Zhang, F. McSherry, N. Immorlica, M. Costa, and
S. Chien (2005) “A First Look at Peer-to-Peer Worms: Threats and De-
fenses,” .

[2] http://en.wikipedia.org/wiki/Gnutella.

[3] http://en.wikipedia.org/wiki/KaZaA.

[4] Stoica, I., R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan (2002) “Chord: A Scalable Peer-to-peer
Lookup Protocol for Internet Applications,” in IEEE/ACM Transactions on
Networking.

[5] http://en.wikipedia.org/wiki/Skype.

[6] http://www.bittorrent.com.

[7] Rowstron, A. and P. Druschel (2001) “Pastry: Scalable, distributed
object location and routing for large-scale p2p systems,” in Proc. of Inter-
national Conference on Distributed System Platforms.

[8] Zhao, B., J. Kubiatowicz, and A. Joseph (2001) “Tapestry: An in-
frastructure for fault-resilient wide-area location and routing,” in Technical
Report UCB/CSD-01-1141, U.C.Berkeley.

[9] Ratnasamy, S., P. Francis, M. Handley, R. Karp, and S. Shenker

(2001) “A Scalable Content-Addressable Network,” in SIGCOMM’01.

[10] http://en.wikipedia.org/wiki/Frequency division multiple access.

[11] http://en.wikipedia.org/wiki/CDMA.

[12] http://en.wikipedia.org/wiki/GSM.

122

[13] http://en.wikipedia.org/wiki/General Packet Radio Service.

[14] Zeng, A. and et al. (1999) “Recent advances in cellular wireless commu-
nications,” in IEEE Communications.

[15] (2006) “http://www.symbian.com/developer/index.html,” Symbian Ltd.

[16] (2006) “Windows Mobile-based Smartphones,”
http://www.microsoft.com/windowsmobile, Microsoft Corp.

[17] Staniford, S., D. Moore, V. Paxson, and N. Weaver (2004) “The
Top Speed of Flash Worms,” Proc. of ACM Workshop on Rapid Malcode
(WORM’04).

[18] Moore, D., C. Shannon, and K. Claffy (2002) “Code Read: A Case
Study on the Spread and Victims of an Internet Worm,” Proc. of ACM
SIGCOMM Internet Measurement Workshop.

[19] Pang, R., V. Yegneswaran, P. Barford, V. Paxson, and L. Pe-

terson (2004) “Characteristics of Internet Background Radiation,” Proc.
of ACM IMC.

[20] Singh, S., C. Estan, G. Varghese, and S. Savage (2003) “The Earlybird
System for Real-time Detection of Unknown Worms,” Tech. Rep., CS2003-
0761.

[21] Kim, H. and B. Karp (2004) “Autograph: Toward automated, distributed
worm signature detection,” Proc. of the 13th Usenix Security Symposium.

[22] Newsome, J., B. Karp, and D. Song (2005) “Polygraph: Automatic
Signature Generation for Ploymorphic Worms,” IEEE Security and Privacy
Symposium.

[23] J.Jung, V. Paxson, A. Berger, and H. Balakrishnan (2004) “Fast
Portscan Detection Using Sequential Hypothesis Testing,” Proc. of IEEE
Symposium on Security and Privacy.

[24] Wang, H., C. Guo, D. Simon, and A. Zugenmaier (2004) “Shield:
Vulnerability-driven Network Filters for Preventing Known Vulnerability Ex-
Ploits,” Proc. of the ACM SIGCOMM Conference.

[25] Costa, M., J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
and P. Barham (2005) “Vigilante: End-to-end Containment of Internet
Worms,” SOSP’05.

123

[26] Liang, Z. and R. Sekar (2005) “Fast and Automated Generation of At-
tacks Signatures: A Basis for Building Self-protecting Servers,” Proc. of 12th
ACM Conference on Computer and Communication Security.

[27] Wang, K. and S. Stolfo (2004) “Anomalous Payload-based Network In-
trusion Detection,” RAID’04.

[28] Wang, K., G. Cretu, and S. Stolfo (2005) “Anomalous Payload-based
Worm Detection and Signature Generation,” RAID’05.

[29] Locasto, M., K. Wang, a. Keromytis, and S. Stolfo (2005) “Flips:
Hybrid Adaptive Intrusion Prevention,” RAID’05.

[30] http://securityresponse.symantec.com.

[31] “United States Computer Emergency Reading Team,” http://www.us-
cert.gov/nav/t01.

[32] Costa, M., J. Crowcroft, M. Castro, and A. Rowstron (2004) “Can
We Contain Internet Worms?” .

[33] Lactaotao, M. (2005) “Security information: virus encyclopedia: sym-
bos comwar.a: technical details, trend micro incorporated,” .

[34] Chien, E. (2004) “Security Response: Symbos.skull, symantec corpora-
tion,” .

[35] Ferrie, P., P. Szor, R. Stanev, and R. Mouritzen (2004) “Security
Response: Symbos.cabir, symantec corporation,” .

[36] Stutzbach, D., R. Rejaie, and S. Sen (2005) “Characterizing Unstruc-
tured Overlay Topologies in Modern P2P File-sharing Systems,” in Internet
Measurement Conference.

[37] http://en.wikipedia.org/wiki/Comparison of file sharing applications.

[38] (March, 2006) “3GPP TS 23.140 V6.12.0,” in
http://www.3gpp.org/ftp/Specs/.

[39] Shamir, A. (1984) “Identity-base cryptosystems and signature schemes,”
in Proc. of Crypto’84, Springer-Verlag.

[40] Boneh, D. and M. Franklin (2001) “Identity-Based Encryption from the
Weil Pairing,” in Proc. of Crypto’01, Springer-Verlag.

[41] Boneh, D., B. Lynn, and H. Shacham (2001) “Short Signatures from the
Weil Pairing,” in ASIACRYPT’01.

124

[42] Cha, J. and J. Cheon (2003) “An Identity-Based Signature from Diffie-
Hellman Groups, Public Key Cryptography,” in Proc. of PKC’03.

[43] Weaver, N., V. Paxson, S. Staniford, and R. Cunninggham (2004)
“A taxonomy of computer worms,” in USENIX Security’04.

[44] http://www.symantec.com/avcenter/security/Content/7680.html.

[45] “KaZaA and Fasttrack P2P network client buffer overflow vulnerability,”
http://secunia.com/advisories/8868/.

[46] M.Vojnovic and A. Ganesh (2005) “On the Effectiveness of Automatic
Patching,” in WORM’05.

[47] Cai, K., Y. Kwang, S. Song, and Y. Chen (2005) “Collaborative Internet
Worm Containment,” in IEEE Security and Privacy’05.

[48] Altekar, G., I. Bagrak, P. Burstein, and A.Schultz (2005) “OPUS:
Online Patches and Updates for Security,” in USENIX Security’05.

[49] Ripeanu, M., I. Foster, and A. Iamnitchi (2002) “Mapping the Gnutella
Network: Properties of Large-Scale Peer-to-Peer Systems and Implications
for System Design,” in IEEE Internet Computing Journal.

[50] Karypis, G. and V. Kumar (1998) “A fast and high quality multilevel
scheme for partitioning irregular graphs,” in SIAM Journal on Scientific
Computing.

[51] Anthony, B. and G. Blelloch http://www.cs.cmu.edu/afs/cs/project/pscico-
guyb/realworld.

[52] Kernighan, B. and S. Lin (1970) “An efficient heuristic procedure for
partitioning graghs,” in Bell Systems Technical Journal.

[53] Chawathe, Y., S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker (2003) “Making Gnutella-like P2P systems scalable,” in ACM
SIGCOMM’03.

[54] Guha, S. and S. Khuller (Apr. 1998) “Approximation algorithm for con-
nected dominating sets,” in Algorithmica.

[55] Garey, M. and D. Johnson (1979) “Computers and Intractability: A
Guide to the Theory of NP-Completeness,” Freeman, New York.

[56] Kutten, S. and D. Peleg (1995) “Fast distributed construction of k-
dominating sets and applications,” in PODC’95.

125

[57] Chen, Y. and A. Liestman (2002) “Approximating minimum size weakly-
connected dominating sets for clustering mobile ad hoc networks,” in ACM
MOBIHOC’02.

[58] Zegura, E., K. Calvert, and S. Bhattacharjee (March 1996) “How
to model an internetwork,” in IEEE INFOCOMM’96.

[59] Good, N. and A. Krekelberg “Usability and pri-
vacy: a study of KaZaA P2P file-sharing, 2002,” in
http://www.hpl.hp.com/shl/papers/kazaa/index.html.

[60] “http://www.facetime.com/securitylabs/imp2pthreats.aspx,” .

[61] “www.viruslist.com/en/virusesdescribed?chapter=153311928,” .

[62] Zetter, K. (2004) “KaZza Delivers More Than Tunes,” in The Wired Mag-
azine.

[63] Shin, S., J. Jung, and H. Balakrishnan “Malware Prevalence in the
KaZaA File-Sharing Network,” in ACM Internet Measurement Confer-
ence’06.

[64] Dumitriu, D., E. Knightly, A. Kuzmanovic, I. Stoica, and
W. Zwaenepoel (2005) “Denial-of-Service resilience in peer-to-peer file
sharing systems,” in Sigmetrics’05.

[65] kumar, R., D. Yao, A. Bagchi, K. Ross, and D. Rubenstein (2006)
“Fluid modeling of pollution proliferation in P2P networks,” in Sigmet-
rics’06.

[66] Thommes, R. and M. Coates (2006) “Epidemiological modeling of peer-
to-peer viruses and pollution,” in Infocom’06.

[67] Walsh, K. and E. Sirer (2005) “Thwarting P2P pollution Using object
reputation,” in Cornell technical report TR2005-1980.

[68] Vojnovic, M. and A. Ganesh (2005) “On the race of worms, alerts and
patches,” in ACM Workshop on WORM.

[69] Hughes, D., G. Coulson, and J. Walkerdine (2005) “Free Riding on
Gnutella Revisited: the Bell Tolls,” in Proc. of IEEE Distributed Systems
Online.

[70] Leibowitz, N., M. Ripeanu, and A. Wierzbicki (2003) “Deconstructing
the KaZaA Network,” in Proc. of IEEE IWAPP’03.

126

[71] “Using binary delta compression technology to update windows operating
systems,” Microsoft online White Paper.

[72] Bellissimo, A., J. Burgess, and K. Fu (2006) “Secure Software Updates:
Disappointments and New Challenges,” in USENIX Hot Topics in Security
Workshop (Hot-Sec’06).

[73] “The Gnutella Protocol Specification,” http://www.the-gdf.org.

[74] Brumley, D., J. Newsome, D. Song, H. Wang, and S. Jha (2006)
“Towards Automatic Generation of Vulnerability-based Signatures,” in Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy.

[75] Barrantes, E., D. Ackley, T. Palmer, D. Stefanovic, and D. Zov

(2003) “Randomized instruction set emulation to disrupt binary code injec-
tion attacks,” in ACM CCS’03.

[76] Kc, G., A. Keromytis, and V. Prevelakis (Oct. 2003) “Countering
code-injection attacks with instruction-set randomization,” in ACM CCS’03.

[77] Newstone, J. and D. Song (2005) “Dynamic taint analysis: Auto-
matic detection and generation of software exploit attacks,” in Proceedings
of the 12th Annual Network and Distributed System Security Symposium
(NDSS’05).

[78] Mulz, D., F. Valeur, C. Kruegel, and G. Vigna (2006) “Anomalous
system call detection,” in ACM Transactions on Information and System
Security, 2006.

[79] “P2PSim: a simulator for peer-to-peer protocols,”
http://pdos.csail.mit.edu/p2psim.

[80] Joseph, S. (2002) “NeuroGrid: Semantically Routing Queries in Peer–to–
Peer Networks,” in International Workshop on Peer-to-Peer Computing.

[81] http://www.viruslist.com/en/viruslist.html?id=49790.

[82] Gkantsidis, C., T. Karagiannis, P. Rodriguez, and M. Vojnovic

(2006) “Planet Scale Software Updates,” in Proc. of SIGCOMM’06.

[83] http://www.f-secure.com/wireless/threats.

[84] Chien, E. (2005) “Security Response: SymbOS.Mabir, Symantec Corpora-
tion,” .

[85] http://www.f-secure.com/v-descs/flexispy a.shtml.

127

[86] Cole, R., N. Phamdo, M. Rajab, and A. Terzis (2005) “Requirements
on Worm Mitigation Technologies in MANETS,” in PADS’05.

[87] Mickens, J. and B. Noble (2005) “Modeling Epidemic Spreading in Mo-
bile Networks,” in ACM WiSe’05.

[88] Bose, A. and K. Shin (2006) “On Mobile Virus Exploiting Messaging and
Bluetooth Services,” in SecureComm’06.

[89] Shackman, M. (2005) “Symbian OS v9 – Platform Security,” Symbian
Developer Network.

[90] Hurman, T. (2006) “Exploring Windows CE Shellcode,” Pentest Security
Assurance.

[91] http://securityresponse.symantec.com/.

[92] Mulliner, C., G. Vigna, D. Dagon, and W. Lee (2006) “Using Labeling
to Prevent Cross-service attacks against smart phones,” in DIMVA’06.

[93] Mulliner, C. and G. Vigna (2006) “Vulnerability Analysis of MMS User
Agents,” in Proc. of ACSAC’06.

[94] Guo, C., H. Wang, and W. Zhu (Nov. 2004) “Smartphone Attacks and
Defenses,” in HotNets-III, UCSD.

[95] Racic, R., D. Ma, and H. Chen (2006) “Exploiting MMS Vulnerabilities
to Stealthily Exhause Mobile Phone’s Battery,” in SecureComm’06.

[96] Bose, A. and K. Shin (2006) “Proactive Security for Mobile Messaging
Networks,” in Proc. of WiSe’06.

[97] Chen, J., S. Wongand, H. Yang, and S. Lu (2007) “SmartSiren: Virus
Detection and Alert for Smartphones,” in Proc. of MobiSys’07.

[98] Miller, C., J. Honoroff, and J. Mason “Security Evaluation of Apple’s
iPhone,” http://www.securityevaluators.com/iphone.

[99] http://www.cse.psu.edu/˜ lxie/snapshots/mserver.html.

[100] http://direct.motorola.com/hellomoto/us/motoming.

[101] http://www.linuxdevices.com/news/NS9419753617.html.

[102] Sailer, R., X. Zhao, T. Jaeger, and L. Doom (2004) “Design and Im-
plementation of a TCG-based Integrity measurement architecture,” in Proc.
of Usenix Security Symposium’04.

128

[103] Jaeger, T., R. Sailer, and U. Shankar (2006) “PRIMA: Policy-
Reduced Integrity Measurement Architecture,” in Proc. of SACMAT’06.

[104] http://www.virtuallogix.com/.

[105] (2006) “Symbian OS: Overview to Security,” in
http://www.forum.nokia.com/info, Nokia Corperation.

[106] Biba, K. J. (1977) Integrity Consideratio for Secure Compuer System, Tech.
rep., Mitre Corp. Report TR-3153, Bedford, Mass.

[107] Clark, D. and D. Wilson (1987) “A Comparison of Commercial and Mil-
itary Computer Security Policies,” in Proc. of IEEE Symposium on Security
and Privacy.

[108] Loscocco, P. and S. Smalley (2001) “Integrating Flexible Support
for Security Policies into the Linux Operating System,” in Proceedings of
USENIX Annual Technical Conference, pp. 29 – 42.

[109] Saltzer, J. H. and M. D. Schroeder (1975) “The protection of informa-
tion in computer systems,” Proceedings of the IEEE, 63(9), pp. 1278–1308.

[110] Boebert, W. E. and R. Y. Kain (1985) “A Practical Alternative to Hier-
archical Integrity Policies,” in Proceedings of the Eighth National Computer
Security Conference.

[111] “TCG Mobile Reference Architecture Specification Version 1.0,”
https://www.trustedcomputinggroup.org/specs/mobilephone.

[112] Zhang, X., O. Aciicmez, and J. Seifert (2007) “A Trusted Mobile Phone
Reference Architecture via Secure Kernel,” in ACM workshop on Scalable
trusted computing.

[113] et al., J. H. (2006) “Content Based SMS Spam Filtering,” in DocEng’06.

[114] Enck, W., P. Traynor, P. McDaniel, and T. L. Porta (2005) “Ex-
ploiting open functionality in sms-capable celluar networks,” in CCS’05.

[115] http://www.3gpp.org/ftp/Specs/archive.

[116] http://www.nsa.gov/selinux.

[117] http://www.elinux.org/OSK.

[118] http://buildroot.uclibc.org.

[119] http://trolltech.com/products/qtopia.

129

[120] http://trolltech.com/products/qtopia/qtopiainuse/qtopiadevices.

[121] http://www.pcmag.com/article2/0,4149,1306805,00.asp.

[122] Morein, W., A. Stavrou, D. Cook, A. Keromytis, V. Misra, and
D. Rubenstein (2003) “Using graphic turing tests to counter automated
ddos attack against web servers,” in ACM CCS’03.

[123] Ahn, L., M. Blum, N. Hopper, and J. Langford (2003) “CAPTCHA:
Using Hard AI Problems for Security,” in EUROCRYPT’03.

[124] Chellapilla, K. and P. Simard (2004) “Using Machine Learning to Break
Visual Human Interaction Proofs (HIPs),” in Proc. of Neural Information
Processing Systems (NIPS’04).

[125] Mori, G. and J. Malik (2003) “Recognizing Objects in Adversarial Clut-
ter: Breaking a Visual CAPTCHA,” in CVPR 2003.

[126] Singh, G., C. Estan, and S. Savage (2004) “Automated worm finger-
printing,” in Proc. of OSDI’04.

[127] http://forum.nokia.com/main/platforms/s60/security.html.

[128] http://en.wikipedia.org/wiki/Linux framefuffer.

[129] http://sourceforge.net/projects/lmbench/.

[130] http://www.captcha.net/news/ai.html.

[131] Kephard, J. and S. White (May, 1991) “Directed-graph epidemiological
models of computer virus,” in Proc. of 1991 Computer Society Symposium
on Research in Security and Privacy.

[132] Constantinos, S., F. Grecas, and I. Venieris (2003) “Introduction of
the asymmetric cryptography in GSM, GPRS, UMTS, and its public key
infrastructure integration,” in Mobile Network and Applications.

[133] http://www.f-secure.com/small businesses/products/fsms.html.

[134] Wang, Y., D. Chakrabarti, C. Wang, and C. Faloutsos (2003) “Epi-
demic Spreading in Real Networks: An Eigenvalue Viewpoint,” in SRDS.

[135] http://indigo.ie/˜ mscott/.

[136] Newman, M., S. Forrest, and J. Balthrop (2002) “Email networks
and the spread of computer viruses,” in Physical Review.

130

[137] Zhou, C., D. Towsley, and W. Gong (2004) “Email Worm Modeling
and Defense,” in ICCCN’04.

[138] Barabasi, A. and R. Albert (Oct., 1999) “Emergence of Scaling in Ran-
dom Networks,” in Science, pages 509-512.

[139] Broch, J., D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva (1998) “A
Performance Comparison of Multi-hop Wireless Ad-hoc Network Routing
Protocols,” in Proc. of MobiCom’98.

[140] Biddle, P., P.England, M.Peinado, and B. Willman (2002) “The
Darknet and the Future of Content Distribution,” in ACM Workshop on
Digital Rights Management.

Vita

Liang Xie

Liang Xie was born on the 4th of August 1971. He received his Bachelor’s de-
gree in Electrical Engineering from Soochow University, China in 1993. Before he
joined the department of Computer Science and Engineering in Pennsylvania State
University in fall 2004, he had been working in telecommunication companies as
a software engineer and team manager for around 10 years. His former employers
were Huawei Technologies and China Telecom, and his area covered communication
protocols and system architectures in both wired and wireless networks.

