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ABSTRACT 

 

Using the perceptual-motor skill of rhythmically bouncing a ball as an 
experimental vehicle the present dissertation examined questions about control 
strategies and their acquisition, adaptation and transfer. Previous studies had already 
documented that the actor is sensitive to the stability properties of the task dynamics 
and performs the rhythmic actions with a strategy where effects of perturbations 
converge back to steady state without requiring error-correcting racket movements. 
This behavior is consistent with the predictions from stability analyses of a dynamic 
model of the task. Experiment 1 continued to scrutinize this prediction by applying a 
range of perturbation magnitudes, designed to be within and outside of the model’s 
basin of attraction. Results showed that even small perturbations that were predicted 
to equilibrate passively were blended with active control flexibly responding to 
perceived errors. However, the time course of return to steady state performance was 
qualitatively consistent with predictions from passive stability. Experiment 2 
investigated how the actor combined passive stability with active control when the 
dynamic stability of the task was manipulated by varying the coefficient of restitution 
at the racket-ball contacts. To quantify the degree of control the covariance structure 
of the state variables was compared with model predictions. These predictions were 
obtained from a model that was extended by stochastic components to yield 
predictions about the structure of fluctuations at steady state. Results revealed that, 
paradoxically, variability of performance decreased with decreasing stability, contrary 
to common expectations in motor control. This was explained by increasing 
compensatory variability in execution, a signature of control. Hence, actors rely on 
passive stability when the stability of the system is high and employ more active 
control when stability is reduced. Applying the same variability and stability analysis 
Experiments 3 and 4 revisited issues of acquisition, adaptation and transfer in the 
same skill. Both experiments clearly demonstrate that the performance improvement 
is correlated with increased sensitivity to passive stability. Variability was evaluated in 
a space spanned by execution and result variables by applying the 
TNC-decomposition of variability (Tolerance, Covariation, Noise). Results 
highlighted how learning and adaptation is a migration through the execution space 
combined with the fine-tuning of covariation between relevant variables and a 
reduction of noise. Sensitivity to passive stability forms some abstract knowledge that 
is easily transferable across effectors. Compared to the mere examination of outcome 
measures, the decomposition method provided finer-grained insights about learning, 
adaptation, and transfer. Taken together, the four studies extend our understanding 
about how coordinated performance is achieved by exploiting task stability and active 
control accompanied by changes in the structure of variability. 
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CHAPTER 1 

Introduction and Literature Review 

 

1.1. Redundancy and Task Constraints in Movement Coordination  

 In everyday life humans are continuously engaged in achieving specific task 

goals in ever changing environments. How biological systems coordinate and regulate 

their many degrees of freedom in such varying contexts is arguably the central issue 

in motor control. One of the well-known example tasks to explain the degree of 

freedom problem is to reach to a target with the tip of one’s finger. The task involves 

the rotation of several joints, each of which has more than one degree of freedom in 

orientation and amplitude. Therefore, different joint angle combinations can achieve 

the same endpoint position. This redundancy similarly exists at the muscular level, 

where multiple muscles span one or several joints with different lines of action rotate 

each joint such that different combinations of muscular contractions can lead to the 

same joint rotation. The same phenomenon repeats itself at more microscopic levels. 

The fact that the entities in the human body that need to be controlled outnumber the 

variables describing the motor task is commonly referred as Bernstein’s (1967) 

degrees of freedom problem or redundancy problem.  

What is less often emphasized is that not only the human action system poses this 

challenge but also the task offers redundant degrees of freedom. Many tasks have 

different solutions that lead to an equivalent level of success. For instance, in a dart 

throwing task, a large release angle combined with a small release velocity can hit the 

exact same spot at a bull’s eye as a small release angle with a high release velocity. 

These two variables can be combined in a compensatory manner to offer an infinite– 

redundant – number of different solutions. Hence, the redundancy problem is not only 

caused by the complexity of the human action system, but also by the specific task 

that the actor is engaged in. 

There is general agreement in motor control research that it is highly unlikely that 
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there is an omnipotent controller in the brain that specifies every degree of freedom 

all the time. It appears to be more reasonable to assume that simpler control strategies 

have evolved for coordinating the behavioral patterns in human and other biological 

systems. The question, however, is what are the principles from which these simpler 

strategies arise? For example the dynamical systems perspective has cast the problem 

in the language of dynamical systems and complexity theory: behavioral patterns are 

simple structures that emerge from the complexity of the high-dimensional dynamical 

system. Such coordinative structures are defined as a group of muscles across a 

certain number of joints that act as a functional unit, also referred to as synergies in 

later texts (Turvey, Fitch, & Tuller, 1978). Such functional units are hypothesized to 

operate as a dynamical system that is subject to constraints which, following Newell’s 

proposition, arise from three sources: the organism, the environment, and the task 

(Newell, 1986). The question, of course, is how these dynamical systems emerge from 

the constraints. 

1.1.1. Organismic, Environmental and Task Constraints 

The importance of organismic constraints has for example been highlighted in 

studies where subjects oscillate two pendulums, one held in each hand, with different 

masses and lengths, emulating limbs with different mass length properties. When 

subjects are asked to swing them in phase at the same frequency, the pendulum with 

larger moments of inertia will lag behind the pendulum with less moment of inertia. 

This phase relationship is systematically dependent on the difference in 

eigenfrequencies between the two pendular limbs and the observation can be modeled 

by coupled oscillator system. If the two pendulums are regarded as modeling the 

actor’s limbs, this example shows how physical properties of the actor determine the 

coordination pattern he/she displays. For the more ecological situation of locomotion 

it was shown that the eigenfrequencies of the legs successfully predicted the preferred 

walking speed of humans and quadrupeds (Holt, Hamill, & Andres 1990, 1991; 

Kugler & Turvey, 1987). Organismic constraints not only include the biomechanical 

factors, but also include the neural and psychological factors such as handedness or 
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personal preferences developed from past experience.  

The actor interacts with the environment both physically via force fields and 

informationally via perceptual coupling. Examples for the former are that human 

movements are always embedded in the gravitational field but also all manipulations 

and collisions with objects produce forces. The informational influence from the 

environment can also be demonstrated with numerous examples. In static postural 

control it has been shown that if the task is to stand still, visual and haptic information 

can significantly influence the migration of the center of pressure. Haptic information 

from lightly touching an external surface significantly reduces or biases the direction 

of postural sway and oscillations in the visual surrounds impose synchronized 

fluctuation patterns with systematic phase relationships (Dijkstra et al., 1994a, b; Jeka 

et al., 1997; van Asten, Gielen & Denier van der Gon, 1988). A recent study on a 

reaching task demonstrated that the uncertainty of sensory feedback is combined with 

prior knowledge about the task to plan the action such the information from the 

environment largely determines the strategy that the actor selects (Körding & Wolpert, 

2004). 

 The third kind of constraints, those exerted by the task, have been investigated 

less frequently. When the actor is involved in a motor task in interaction with the 

environment, the specific task solution is restricted by the physics of the task. For 

instance, Dingwell et al. (2004) studied a reaching task where the actor was required 

to transport a mass, connected to the hand with a spring, quickly to a target. A 

physical model of this hand-mass-spring system was developed to derive predictions 

for the hand movement such that the mass moves in an optimally smooth way. By 

comparing the predictions from this model with actual human trajectories, the authors 

found that indeed the trajectory of the transported object was indeed smooth which 

implied that the hand’s trajectory was not smooth and sometimes even biphasic. These 

results showed task induced unusual trajectories of the hand that no longer displayed 

minimum jerk (Flash & Hogan, 1985). A similar approach the control problem was 

taken in a series of studies on cascade juggling (Beek, 1988; Beek & Turvey, 1992; 
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Beek, 1995). Rather than starting with an analysis of the hand movements or 

perceptual information about the ball trajectories, Beek and colleagues followed an 

insight by Claude Shannon who identified that the hand loop times and ball dwell 

times stood in a very simple relation to the number of balls and the number of hands. 

This relation presented essential constraints on the duration that the balls had to be 

held that every juggler had to satisfy. Further analysis of these timing relations 

showed how jugglers chose the time windows and how they maneuvered their timing 

to remain maximally flexible and adaptive. These studies exemplify how specific 

details of the task set windows on how the actor can assemble his/her movement 

systems to obtain successful performance. The question is how does the actor 

discover the task dynamics and assemble and tune his/her coordinative structure 

accordingly?  

1.1.2. Bouncing a Ball: A Simple Task with Interesting Dynamics 

The present thesis picks up this challenge and examines movement coordination 

from this perspective. The first step to answer this question is to analyze the task and 

its constraints. To this end a specific model task must be chosen that is simple enough 

to permit such analysis but is also representative for a class of actions to allow 

generalization. The present research has chosen the task of bouncing a ball as its 

model system in continuation of previous research by our group. The task requires the 

actor to move a racket to rhythmically propel the ball in the air. The task goal is to 

keep the ball amplitude consistent, which is consistent with performing a stable 

rhythmic bouncing pattern. The rationale for choosing this model system is that 

bouncing a ball presents a tractable dynamical system that, despite its simplicity, 

shows interesting dynamics. The bouncing ball system has been used in text books on 

nonlinear dynamics as a example for a nonlinear map that display stability with a 

period-doubling route to chaos (Guckenheimer & Holmes, 1983; Tufillaro, Abbott, & 

Reilly, 1992). If an actor performs this rhythmic task, he has to face and solve all the 

essential “problems” of perception and action. Further, the task is representative for 

all those movements that involve a contact with an external object where its control is 
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focused onto one moment. A comparable focus is found in walking and running where 

control of the movement pattern is confined to the phase of foot contact with the 

ground. Of course many other hitting tasks are found in sport activities.  

1.1.3. Stability as a Soft Task Constraint 

Having chosen a dynamical model for the task the next step in our task-based 

approach is to analyze the model. Specifically, the goal of the analysis is to examine 

the stability as it originates from the dynamics of the task and how it serves as a 

constraint for performance. The principal concepts are stability and attractor. An 

attractor is a stable state of a dynamical system such that any trajectory close to it 

remains close even if slightly perturbed. In mathematics and nonlinear dynamics 

stability has several different definitions, including bounded-in bounded-out stability, 

neutral stability, to Lyapunov stability, and asymptotic stability. For the present thesis 

we adopted the definition by Hasan (2005) adapted to issues concerning movement: 

“small effects of a perturbation on a trajectory are posited to remain forever small, 

whether they are in states of maintained position or movement”. This definition is 

similar to Lyapunov stability as defined in mathematics texts which states that the 

dynamic system is stable in the Lyapunov sense if infinitesimally small variations in 

the state of the system remain infinitesimally small forever (Hasan, 2005; Jordan & 

Smith, 1987). 

In a given task stability can arise from the interaction between the actor and the 

environment. The actor perceives behaviorally relevant information from the 

environment and performs adaptive movements according to this information and the 

task goal. The action, in turn, modifies the environment physically and thereby creates 

new information for the ensuing action (Warren, 2006). How perceptual information 

is used in stabilizing coordination patterns has been studied in the context of bimanual 

rhythmic coordination. For rhythmic movement coordination between two index 

fingers Kelso and colleagues found that the inphase and antiphase relationship 

between two oscillations were the two most stable modes and the transition from 

antiphase mode to inphase mode would happen as a result of stability change upon 
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increasing oscillation frequency (Kelso, 1984). These phenomena were explained 

using the concept of stability in the HKB model (Haken, Kelso, & Bunz, 1985). 

Several follow-up studies showed that the coupling between two oscillations was 

largely information-based, since the same phenomena happened for different effectors 

(arm and leg coordination for example, Kelso & Jeka, 1992), and even for 

inter-person coordination (Richardson, Marsh, & Schmidt, 2005; Schmidt, Carello, & 

Turvey, 1990; Schmidt et al., 1998). The latter finding highlights that perceptual 

coupling alone can give rise to the same attractor landscape.  

In contrast, the stability arising from the physical interaction between the actor 

and the environment has been rarely addressed in the motor control literature. The 

physics of some tasks can offer stable fixed point or limit cycle solutions. If this 

stability originates only from the physical dynamics of the task without including any 

biological control mechanisms it will be termed passive stability.  

1.1.4. Dynamic Walking in Robotics: Passive Stability in Locomotion 

One area of research where passive stability has been studied at great length is 

locomotion – or rather passive dynamic walking. Dynamical stability analyses of 

legged locomotion have revealed that a completely passive two-legged robot without 

any actuators and control can produce stable locomotion (McGeer, 1990). Such a 

biped walker with well-tuned physical parameters can walk down a gentle slope with 

a surprisingly human-like gait. The small fluctuations in the stepping motion are 

dissipated due to the stability properties of this system. This original passive dynamic 

walker has been further developed by including relatively simple actuators such that it 

can now walk on level ground (for a review see Collins et al., 2005). The important 

implications from these studies for biological movement control is that the dynamics 

as it arises from the interaction between the actor and its environment can offer 

inherent stability in the context of a specific task. The exhibited coordination pattern 

can be significantly influenced by this stability if the actor attunes to the stable regime 

and exploits it. One core attraction of this understanding of movement is that stability 

can be obtained without any control. Small fluctuations converge back to the attractor 
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without requiring explicit error compensation. Hence, performing with passive 

stability is very efficient in terms of control effort.  

However, this exploitation of passive stability can be complemented by additional 

active control. For example, passive dynamic walking models only offer a small basin 

of attraction and the stability resisting external disturbances is limited (Schwab & 

Wisse, 2001; Garcia et al., 1998). Active control can enlarge the spectrum of 

behaviors to come closer to human walking which seems fairly resistant to 

perturbations. With a view to locomotion in biological systems, which integrates rapid 

short-loop reflexes and long-loop feedback mechanisms, Kuo (2002) combined a 

feedforward central pattern generator with a feedback loop in a model of rhythmic 

locomotory movements. The proposed hybrid feedforward and feedback model not 

only yielded fictive locomotion, but also compensated for both external disturbances 

and noise from sensors. In sum, this research in robotics showed that by a subtle 

combination of active control with passive stability both stability and adaptability is 

enhanced and ultimately richer behavior is obtained. 

1.1.5. Passive Stability and Active Control in Ball Bouncing  

Our research on the ball bouncing task has taken a similar strategy as the research 

in robotics to understanding movement coordination. In previous work a minimal 

model was developed that describes the physics of the task (Dijkstra, Katsumata, de 

Rugy, & Sternad, 2004; Schaal, Sternad, & Atkeson, 1996; Sternad, Duarte, 

Katsumata, & Schaal, 2001). Three elementary physical facts are the foundation for 

this model: gravity governs the ballistic flight of the ball, the racket moves 

periodically, the impact between the ball and the racket is instantaneous with a 

coefficient of restitution capturing the energy loss. In a second step, predictions about 

stability were derived using linear stability analysis and a non-local stability analysis. 

Despite its relative simplicity the model has dynamically stable solutions, with 

period-1 solutions and a period-doubling route to chaos. The stable period-1 solutions 

are characterized by ball-racket contacts that occur during the upwardly decelerating 

phase of the racket trajectory. If the actor performs the task with a strategy that is 
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consistent with this criterion for stability, then small deviations in the movement 

variables introduced either from motor noise or external perturbations can disappear 

without explicit corrective adjustments in the racket movements. This stable solution 

has the advantage in control effort as only open-loop control is needed. 

Previous empirical results showed that human subjects indeed exploit passive 

stability. A series of experiments was run using three different experimental set-ups 

that consisted of a real racket and a ball suspended to a long boom such that the ball 

was confined to an approximately vertical trajectory consistent with the vertical 

motions of the model. In all experiments human actors opted for a strategy where the 

racket hit the ball at its decelerating phase. Further, some individual subjects’ data on 

learning showed that performance variability decreased across practice and this time 

course was accompanied by an increasing attunement to the stable solutions (Dijkstra 

et al., 2004; Sternad et al., 2001). It is important to emphasize that these findings are 

not trivial as rhythmic bouncing can also be achieved by other control strategies. For 

example, a robotic implementation of the same task by Bühler and Koditschek (1994) 

showed how the so-called mirror algorithm also achieves stable behavior. This 

algorithm scales the racket movements to the ball movements such that the racket 

velocity continuously “mirrors” the ball velocity to achieve periodic bouncing. This 

feedback-based strategy has been implemented successfully in a robot juggler 

operating both in 2D and 3D. Importantly for the present argument is that the 

implementation of the mirror algorithm yields different performance characteristics 

than the ones predicted by our stability analyses. Experimental data revealed that the 

mirror strategy was not adopted by human subjects (Dijkstra et al., 2004).  

The common assumption is that preferred movements are maximally efficient in 

some energy measure. For instance, the preferred walking speed was determined to be 

“optimal” as it is consistent with minimum energy expenditure (Holt, Hamill, & 

Andres, 1990). Interestingly, the preferred and stable solutions in the ball bouncing 

task are not the most biomechanically efficient way to satisfy the task demands. To 

minimize the racket movement for an intended ball bouncing height, the ball-racket 
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collisions should be happen at the peak velocity of the racket, which corresponds to 

an impact acceleration of zero m/s2. As previous studies repeatedly found that 

especially experienced bouncers opted for negative impact acceleration this suggests 

that when a less energy efficient solution affords performance stability, actors give 

priority to stability.  

Despite the evidence for the attunement to passive stability, active control can 

also be expected, not too dissimilar from dynamic walking. This issue was addressed 

in an earlier experiment by de Rugy et al. (2003). In this study perturbations were 

applied to the ball trajectory to examine whether subjects relied on the passive 

properties of the ball-racket system or whether subjects modulated their racket 

movement to compensate for the applied perturbations. Based on the identified 

modulations of the racket trajectory, and the fast return to steady state behavior, active 

control was inferred. The results suggested that passive stability as offered from 

open-loop dynamics coexists with active control based on perceptual information 

about the error. This mixture of strategies is functionally advantageous for human 

movement control as it provides the actor both with stability in performance and 

flexibility in the face of large perturbations and varying movement contexts.  

1.1.6. Motivation of Experiment 1: Passive Stability and Active Control in 

Response to Perturbations  

While this study gave a first indication that actors “actively tracked passive 

stability”, the perturbations were designed without knowledge about the basin of 

attraction. In the interpretation of the results it could not be distinguished whether a 

perturbation could have converged back to steady state or whether it was outside the 

basin of attraction because no theoretical analyses of the basin of attraction were 

available. Posthoc analyses also revealed that the perturbations in this study were 

relatively large and very small perturbations were excluded by design. To extend these 

first investigations Experiment 1 of the present thesis presents a derivation of the 

basin of attraction for the period-1 attractor of the ball bouncing model. The 

experimental perturbations were designed such that they covered a wide range both 
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inside and outside the basin. Furthermore, the coefficient of restitution of the racket, a 

critical variable influencing the shape of the basin of attraction, was also 

systematically varied. Based on the locations of perturbations in the basin, predictions 

about the response of a purely passive strategy could be made. These predictions are 

then compared with the actors’ performance to elucidate the relationship between 

passive dynamics and active control. 

1.1.7. Motivation of Experiment 2: Passive Stability and Active Control During 

Steady State Performance  

Given these results and the findings in Experiment 1, it can be safely inferred that 

active control is utilized when noticeable perturbations are applied (de Rugy et al., 

2003; Wei, Dijkstra, & Sternad. 2007, submitted). However, these results do not speak 

to the control regime that is used during steady state performance. Could active 

control also be present during unperturbed bouncing? One route into addressing this 

question is the analysis of small fluctuations in actor’s performance. If no other 

control were present, the random fluctuations would die out according to the stability 

properties of the ball-racket system. A statistical way to summarize the return 

behavior of stochastic fluctuations is to analyze the covariance structure of the state 

variables. The state variables are velocity and time between impacts. To make 

predictions about the covariance structure as provided by the open-loop model, the 

deterministic ball bouncing model had to be extended by adding stochastic 

components. Following this further model development, analytical and numerical 

predictions could be derived and compared with similar data extracted from subjects’ 

performance. Using the stochastic version of the bouncing ball map by Dijkstra et al. 

(2003) Experiment 2 aimed to compare human performance with the predictions of 

this model. As the model has different stability characteristics for different 

coefficients of restitutions, the experimental trials were performed with four different 

coefficients of restitution. Further, attempts to quantify the contribution of active 

control in this rhythmic goal-directed task will be made. To this end, the additional 

measure of covariation as developed by Müller and Sternad (2003) was applied. This 
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measure captures whether compensatory relations between relevant variables existed. 

Compensatory relation has been argued to be a signature of control (Scholz & 

Schöner, 1999; Scholz, Schöner & Latash, 2000).  

Taken together the results of Experiment 1 and 2 will present a solid foundation 

to evaluate the blend of active and passive components in the performance of the 

rhythmic ball bouncing task. 

 

1. 2. Learning, Adaptation and Transfer 

Learning new motor skills is essential in human life as humans constantly face 

new challenges. This begins in early life when an infant has to master all the 

seemingly simple but essential skills, such as sitting upright, reaching to a toy, and 

walking. Evidently, such challenges continue throughout the life span when more 

complex tasks are acquired such as hand writing, driving a car, or riding a bicycle. 

Interestingly, humans seem to enjoy these challenges as they deliberately create them 

in their leisure time activities, including such “unnecessary” skills as ice skating or 

skateboarding. Therefore it is not surprising that skill acquisition, and more generally 

motor learning, has been studied for more than a century in experimental psychology, 

neurophysiology, physical education, and in the more recently emerging 

interdisciplinary research area of motor control. Numerous textbooks speak to the 

centrality of this topic: frequently adopted texts in current undergraduate teaching 

include the ones by Schmidt and Lee (2005), Magill (2001), Rose (1997), Rosenbaum 

(1992) and Shadmehr and Wise (2005).  

Side-stepping the century-long history and focusing on the more recent 30 years 

of research studies in motor learning have been conducted under two theoretically and 

philosophically different frameworks. One line of investigation has the motor 

program concept as its central notion and is often referred to as the representational 

approach (Keele, 1968; Schmidt, 1975; Shadmehr & Wise, 2005). Another line of 

research has adopted the dynamical systems perspective where the emergence of 
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patterns is a central notion and tools of nonlinear dynamics figure prominently 

(Fowler & Turvey, 1978; Newell, 1986; Saltzman & Kelso, 1987; Kelso, 1995; 

Kugler & Turvey, 1987; Turvey, 1990; Warren, 2006). The present thesis is rooted in 

the latter approach. 

1.2.1. The Representational Approach to Motor Learning 

The motor program approach, and more specifically schema theory, is grounded 

in the computer metaphor where information processing provides the core framework 

to describe the functioning of the brain and human performance. Perceptual-motor 

skills are viewed as controlled by abstract representations of the task (Keele, 1968; 

Schmidt, 1975). Acquisition and adaptation of a motor skill is regarded as first 

obtaining a motor program followed by the tuning of its parameters with practice. The 

generalization of the original motor program concept in Schmidt’s schema theory was 

proposed to account for two fundamental problems in motor learning: One is the 

novelty problem, i.e., how the actor learns a motor task that he/she has not known 

before. The second problem concerns storage, i.e., how could humans possibly store 

the details for every single movement acquired over the life span, assuming that the 

memory capacity of the human nervous system is not large enough. Numerous studies 

aimed to detail the elements of the generalized motor program or schema, the sensory 

feedback and its integration into the program (for an overview see Schmidt, 1982). 

More recent advances in computational neuroscience similarly have abstract 

representations as their core concept. The concept of the internal model, central to 

numerous current studies, can be viewed as a further development of the generalized 

motor programs (Jordan, 1992; Warren, 2006; Wolpert & Kawato, 1998). In brief, the 

ability to perform an action is governed by an internal model that includes both 

forward and inverse models of the human body performing a movement. For a 

specific task, appropriate motor commands are generated by the forward model as 

inputs to the dynamic motor system to achieve some desired movement output. The 

reverse transformation from sensory variables to control variables is captured by the 

inverse model. Different to the schema theory that relates outcome measure like 
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reaching or throwing distance to performance measures like force, the mapping in the 

internal model includes more detailed knowledge of the dynamics of the 

biomechanical plant.  

Acquiring a skill is regarded as the establishing and tuning the internal model for 

a given task. For example, research in computational neuroscience has been focused 

on how feedback calibrates the forward and inverse modules in the internal model 

(Jordan & Rumelhart, 1992; Kawato, 1990; Wolpert & Kawato, 1998). Using imaging 

tools such as functional fMRI and transcranial magnetic stimulation, the changes in 

the neuronal activities in motor cortex and the cerebellum have been associated with 

different functional components in the internal model (Imamizu et al., 2000; Wolpert, 

Miall & Kawato, 1998). This line of investigation is currently very active and more 

research will detail more of the postulated relationships and their anatomical and 

functional correlates. 

1.2.2. The Dynamical Systems Approach to Motor Learning 

A different approach to skill acquisition is presented by research grounded in the 

perspective of dynamic systems. Learning a motor skill is conceptualized as the 

process organizing the complex high-dimensional movement system into a 

task-specific device by exploring the constraints of the actor, the task, and the 

environment (Fowler & Turvey, 1978; Newell, 1986; Saltzman & Kelso, 1987). This 

task-specific organization has been referred to as a coordinative structure (Tuller, 

Turvey, & Fitch, 1982; Turvey, 1986) or, more recently, coordination dynamic (Mitra, 

Amazeen, & Turvey, 1998). Turvey, Mitra and colleagues rephrased the process of 

learning in the language of dynamical systems and dimensionality. In their proposition, 

the early phase of learning consists of discovering and establishing the relevant 

collective variable that captures the essence of the coordination pattern (Gelfand & 

Tsetlin, 1962). The most prominent example for a collective variable has been relative 

phase as calculated by the phase difference between two rhythmically moving limbs. 

At this stage the dimensionality of the dynamics is still high due to the independence 

of many subsystems. The intermediate phase proceeds with standardizing and 
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stabilizing this variable. In this second phase the dimensionality of the learned 

coordination dynamics is reduced as expressed by fewer active degrees of freedom. 

Active degrees of freedom are defined as the minimum number of first-order 

autonomous differential equation necessary to express the system behavior. The third 

phase involves a final step of increasing the determinism of the acquired coordination 

by reducing and organizing the “noise” processes originating from the more 

microscopic levels. This decrease in active degrees of freedom during skill 

improvement echoes the general idea of Bernstein (1967) that learning is reflected in 

the mastery of redundant degrees of freedom.  

1.2.3. Learning Dynamics at the Example of Rhythmic Bimanual Coordination  

Compared to the wealth of studies from the representational approach, there are 

relatively few studies that have taken a dynamical systems perspective to motor 

learning. One series of experiments, however, that directly followed the seminal work 

on the two-finger coordination paradigm, exemplifies the approach and demonstrates 

how a different perspective can uncover aspects of this complex problem that were 

previously less attended to.  

On the basis of the Haken-Kelso-Bunz model (1985) for the coordination 

between two rhythmically moving fingers Kelso and Zanone (1992) examined the 

acquisition of a new phase relationship between two fingers. As established in 

previous studies, rhythmic interlimb coordination with 0 deg (inphase) and 180 deg 

(antiphase) are the two stable modes that are intrinsic to the human movement system. 

Extending from this fact Zanone and Kelso investigated the acquisition of the novel 

90 deg phase lag between the two fingers. Hence, the 90 deg pattern is initially a 

relatively unstable pattern and had to be specified to the subject by a visual stimulus. 

The experiment showed that if a subject was unstable in the 90 deg pattern before 

practice, an abrupt change in the stability with a phase transition to the 90 deg pattern 

was observed with practice. On the other hand, if the to-be-learned 90 deg pattern was 

already stable in an individual, a gradual consolidation of the 90 deg pattern was 

observed. In addition, results also showed that further practice temporarily 
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destabilized the initially stable pattern of 180 deg. In a subsequent study Zanone and 

Kelso (1997) found that learning the 90 deg pattern also made the 270 deg phase 

pattern, the symmetrical counterpart of pattern of 90 deg pattern, simultaneously 

stable. These findings highlight how existent behavior is modified by the new 

to-be-learnt pattern and that practice not only creates new stable patterns, but also 

influences the existing dynamics and potentially changes the entire layout of 

coordination dynamics. Similar conclusions have been reached in a study of learning 

a postural pattern with novel relative phase between the hip and ankle joints 

(Faugloire, Bardy, & Stoffregen, 2006). 

1.2.4. Choice of Variables and the Coordinate System 

Assessing the change of a certain outcome variable over time has been central to 

much inquiry in the motor learning literature. Over a century of studies on motor 

learning revealed many different types of learning curves, i.e., changes of a dependent 

measure with practice. These curves include exponential, hyperbolic, S-shaped, 

discontinuous, and power law functions, where the latter have been the most 

prevailing ones (Newell & Rosenbloom, 1981; Liu, Mayer-Kress, & Newell, 2003, 

2006). Newell and colleagues (2001) proposed a dynamical account of changes in 

learning recognizing that the different learning functions may be an expression of 

changes on multiple time scales (see also Kugler, 1986; Port & van Gelder, 1995; 

Thelen & Smith, 1994). For instance, while an exponential function is a reflection of 

change at a single time scale, the power law function characterizes a change that is 

organized over all time scales, i.e., scale-free (Schröder, 1991). Newell and colleagues 

suggested that all learning functions can be realized by viewing the learning process 

as a migration of the system’s trajectory on an evolving attractor landscape, as 

demonstrated by their simulations. This proposition attempts a unified framework to 

accommodate many different observations under one umbrella perspective.  

What is not explicitly addressed but implicit in their arguments is that the time 

course of a learning curve is not only dependent on the level of analysis but also 

highly dependent on the chosen variable. It is noteworthy that in most studies on 
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motor learning outcome variables have served as the predominant index to assess 

motor learning (Schmidt & Lee, 2005). Typically, an error score or its variance 

suggested itself for study as the instruction emphasized this variable. This is 

understandable as the experimental work on motor learning was largely driven by 

practical questions such as how to train skills more effectively, how to best deliver 

knowledge of results to facilitate learning, and how to enable transfer across effectors 

and task. The focus of attention was on the effect of manipulations on relevant 

measures of success and little heed was paid to the issue of whether the measured 

variable was the best reflection of the change in the underlying processes of control. 

Smeets (2000) has raised this issue demonstrating that the time course of learning is 

dependent on the dependent measure, pointing to the example of movement time or 

velocity as frequently used dependent measures. Müller, Frank, and Sternad (2007) 

similarly demonstrated for a fictive data set how the quantification of the dependent 

measure can significantly alter the time course. These exemplary demonstrations 

highlight the importance of the chosen measure, especially when control is at issue. 

1.2.5. Relation between Movement Execution and Outcome 

In previous work from a dynamical systems perspective this question was 

regarded as mute or “solved”. As the relatively few studies on learning directly built 

on the seminal work on phase transitions in interlimb coordination which identified 

relative phase as the collective variable, it was unquestioned that this same variable 

was the best one to assess the learning process. However, this issue is an interesting 

problem itself and needs to be addressed when examining new tasks where relative 

phase is not applicable. The ball bouncing task of the present investigation raises such 

a problem. However, based on a long series of previous work we suggest that the 

variable acceleration of the racket at impact constitutes a good candidate measure as it 

characterized the control strategy of exploiting passive stability. In fact, Sternad et al. 

(2001) argued this variable to have the status of an essential variable in the sense of 

early theorizing of Gelfand and Tsetlin (1971). Hence, learning will be assessed by 

changes in this variable reflecting the change in sensitivity to passive stability, i.e. 
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characteristics of control. 

A second and related point is that most studies in motor learning have evaluated 

performance improvement by analyzing one or few outcome measures. Typically, an 

error score or its variability suggested itself for study as it directly reflected the 

instruction or the task goal. However, in the wake of Bernstein it is important to 

highlight that execution variables describing the behavior of the action system may be 

similarly or even more important to reveal the underlying processes of control. The 

frequently cited example of an expert hammering on an anvil is informative: while the 

endpoint trajectory is relatively invariant for experienced performers, the joint angle 

trajectories of the arm may be significantly more variable (Bernstein, 1967; Turvey & 

Carello, 1995). This at first sight paradoxical observation is explained by the 

compensatory relationship between the variables: a deviation in one angle is 

compensated for by a variation in the other angle that offsets the error seen in a third 

result variable. The lesson to learn from this example is that execution variables may 

provide the suitable coordinate system in which changes can be analyzed.  

The present thesis will investigate performance changes with practice in both its 

movement outcome and the space of execution variables. In the hammering example 

by Bernstein movement outcome is the accuracy of the hitting action or, when viewed 

over time, the trajectory of the tip of the hammer; movement execution refers to the 

combination of joint angles at the moment of hit or, over time, the trajectories of the 

joint angles. Essential to this decomposition into two causally related sets of variables 

is that there is a redundancy, a many-to-one mapping or a many-to-many mapping. 

Hence, there is a set of different solutions that lead to the same performance and that 

satisfy the task criteria. The subset in the space of the execution variables that 

“solves” the task perfectly will be referred to as the solution manifold, a geometric 

representation of the multiple combinations of execution variables that lead to the 

same outcome variable. Important for this analysis is that the functional relationship 

between execution and result is deterministic and known. For the example of 

multi-joint limb movements the joint angles and the execution of the endeffector 
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position in external space are connected by a nonlinear function.  

The ball bouncing task is a different kind of behavior that also lends itself for 

analysis from this point of view. Focusing on a single bounce - the racket hitting the 

ball to achieve a specific target height -, and performing a basic mechanical analysis it 

can be easily seen that there are three variables that completely determine the 

subsequent amplitude and error of the ball with respect to a target: racket velocity at 

ball impact, ball velocity before impact, and impact position relative to the target 

height. Different combinations of these three execution variables lead to the same 

result, ball height. The three execution variables form the execution space where the 

set of perfect solutions form the solution manifold. Performance with a given error 

form “iso-error bands” around this manifold. Once, the task is represented like this 

learning can be viewed as the migration of solutions in execution space with respect 

to this solution manifold. Experiments 3 and 4 will adopt this perspective and analyze 

learning, adaptation, and transfer in the ball bouncing task within this coordinate 

representation. Note, in contrast to how ball bouncing was introduced earlier, this 

analysis perspective analyses each bounce as a separate event. 

1.2.6. The TNC-Method: Decomposition of Variability in a Redundant Task 

Müller and Sternad developed the so-called TNC-method to analyze the 

distribution properties of a set of data in execution space with respect to the solution 

manifold (Müller & Sternad, 2003, 2004; Müller, Frank, & Sternad, 2007; Smeets & 

Louw, 2007). In the ball bouncing task every contact is a data point, defined by the 

triplet of execution variables. This data point has a value in result space, the ball’s 

height error. The series of bounces in one trial constitute the sets of data that are 

analyzed with respect to the solution manifold. The TNC-method decomposes the 

distributional properties in a set of trials into three components that quantify changes 

in the result of these data sets over time: improvement originating from exploration 

and migration in execution space to error-tolerant locations on the solution manifold 

(called tolerance T), improvement due to covariation between execution variables 

(called covariation C), and reduction of stochastic elements in execution (called noise 
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N). The latter component noise reduction is, of course, a widely acknowledged 

phenomenon for performance improvement in skill learning. The second component 

covariation captures compensatory relations between execution variables that achieve 

a better movement result, in the spirit of the hammering example discussed above. 

Tolerance is conceptualized with the recognition that certain combinations of 

execution variables are more tolerant to error than others. This expresses the notion of 

sensitivity where small deviations in execution may lead to large errors in result (high 

sensitivity, low tolerance). Improvements in performance, after some exploration of 

the task, are then related to the migration of performance to more “error-tolerant” 

locations on the solution manifold.  

This approach is similar in spirit to another line of research, the method of the 

“Uncontrolled Manifold” (UCM) that has developed a different analysis method to 

examine variability in redundant movements (Scholz & Schöner, 1999; Scholz, 

Schöner & Latash, 2000). Central to the UCM approach is that good performance is 

characterized by variance in execution space that aligns with the tangent of the 

manifold at mean performance; variance orthogonal to this linearization of the 

manifold reflects unwanted “motor noise”. The alignment of variability in a selected 

direction was interpreted as the signature of control (Yang & Scholz, 2005; Yang, 

Scholz, & Latash, 2007). 

Analysis of the structure of variability across learning can reveal the relative 

contributions of conceptually distinct components during the learning process in the 

coordinate space. Conceptually, this approach to the learning process has a kinship 

with that of Newell and colleagues (2001) who emphasized that the learning should 

be interpreted as a migration of the system’s trajectory on an evolving attractor 

landscape. The difference is that the space within which this migration happens is 

different. For the TNC-method the space is defined by execution variables, where the 

“potential landscape” is given by the result. Further, it is the distributional properties 

that are center stage in the TNC-method. Analysis of the structure of variability can 

highlight new thus far ignored aspects in learning. Hence, the TNC analysis will be 
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performed in the current thesis for learning and adaptation (Experiment 3) and 

transfer (Experiment 4). 

1.2.7. Motivation of Experiment 3: Variability and Stability during Learning and 

Adaptation 

Having laid the foundation for the analysis of stability and a novel analysis of the 

distributional properties of execution variables in the redundant task, Experiment 3 

will examine the time course of skill improvement in the task of ball bouncing. In 

addition, having established support for this description of the task in previous 

experiments, distortions will be introduced in execution space. The goal of this 

manipulation is to test how actors adapt their strategies to such novel conditions and 

search for new solutions. Central to the question is how distributional properties 

tolerance, covariation and noise change. How is stability reestablished after a 

distortion? 

1.2.8. Motivation of Experiment 4: Variability and Stability during Learning and 

Interlimb Transfer  

Acquiring a new skill is only really valuable if such a learnt skill will adapt and 

generalize to new contexts. Hence, the study of adaptation and transfer is essential 

and can also retrospectively shed light on the nature of the learning process. An 

example for such an adaptation was studied in Experiment 3. Experiment 4 extends 

this question and asks whether the acquired skill of ball bouncing will be transferred 

to being performed with another limb. Such intermanual transfer will reveal to what 

degree the skill is peripheral and tied to the specific effector that performs the task or 

whether the skill implies a more central component that is easily transferred to 

another limb.  

Transfer was a core issue in experimental work on motor learning in the 1960s 

until 1980s when research was driven by more practical questions (Adams, 1987; 

Schmidt, 1982).   

When tailored more to the conceptualization of the task at hand, the question is 

20 



 
 

whether learning the system dynamics is similar to obtaining an abstract presentation 

of the task, the knowledge of exploitation of passive stability learnt from one effector 

should be transferable to another effector. The Experiment 4 in this thesis will 

investigate this hypothesis.  
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CHAPTER 2 

Research Questions 

 

Experiment 1: Passive Stability and Active Control in a Rhythmic Task 

 Previous studies on passive stability in ball bouncing had already documented 

that the actor is sensitive to the stability properties of the task dynamics and performs 

the rhythmic actions with a strategy where perturbed performance converges back to 

steady state without requiring error-correcting racket movements. This behavior is 

consistent with the predictions from stability analyses of a dynamic model of the task. 

However, how much stability the task dynamics can offer and perturbations of what 

magnitudes can be accommodated by using passive stability alone has not been 

addressed. The first aim of Experiment 1 is to reveal the actor’s sensitivity to the 

global layout of attractor space for a specific task. The second aim is to discover the 

control strategy when passive stability cannot afford stabilization for large 

perturbations. The hypothesis is that humans are not only sensitive to task dynamics 

and deliberately utilize it, but are simultaneously flexible to apply active control when 

needed. The basin of attraction for the period-1 attractor of the model will be derived 

to make quantitative predictions about convergence based on the passive dynamics. 

Human behavior will be compared to these model predictions to reveal the control 

strategies for accommodating perturbations of different magnitudes.  

 

Experiment 2: Fluctuations and Passive Stability in Ball Bouncing Task 

Given the findings of a previous study and Experiment 1, it can be concluded that 

active control is utilized when noticeable perturbations are applied (de Rugy et al., 

2003; Wei, Dijkstra, & Sternad. 2007, submitted). However, when there are no 

perturbations as in steady-state performance, does the actor solely rely on the 

automatic correction or blend active control to compensate for small fluctuations? The 

first aim of Experiment 2 is to demonstrate the presence of feedback-based control 

blended with passive strategy. It has long been recognized that fluctuations are 
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inevitable in human performance and often times researchers model them as random 

noise. To reveal the signature of control from seemingly random fluctuations of the 

performance, the covariance structure of state variables of a stochastic model, which 

captures the passive task dynamics, will be compared to actual human performance. 

The second aim of the study is to investigate whether the actor will resort to more 

active control as passive stability of the task system decreases. The degree of stability 

is manipulated by changing the coefficient of restitution. We will use covariation 

between execution variables of the task as an index to quantify the active control. The 

result of this experiment will not only elucidate the relative contribution of passive 

stability and active control for steady-state performance, but also further our 

understanding about the nature of fluctuations in rhythmic movements. 

 

Experiment 3: Variability and Stability during the Acquisition and Adaptation of 

a Rhythmic Skill 

Previous studies had illustrated that during acquisition of the ball bouncing skill 

the increasing attunement to passive stable is accompanied by a reduction of 

variability in performance. While this finding is consistent with the common belief 

that variability is equal to the inverse of stability, it does not establish the causality 

relationship between variability and stability in human performance. The first aim of 

Experiment 3 is to replicate that skill improvement is indeed characterized by utilizing 

passive stability but additional to show that the structure of variability changes 

independently. The second aim is to demonstrate learning process of a redundant task 

can be expressed as systematical changes of distributional properties of the variability 

of the execution. Applying a novel analysis method the learning process will be 

evaluated in the execution space, which is spanned by relevant execution variables 

that lead to the movement outcome variable. A set of individual events will be 

represented as a distribution in the execution space that contains a manifold of 

solutions. The third aim of Experiment 3 is to demonstrate that acquisition and 

adaptation of a learned skill can be characterized by exploration and optimization of 
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stability properties as analyzed in this space. To induce adaptation the solution 

manifold will be modified such that actors have to change their strategy and 

re-establish the passively stable regime.  

 

Experiment 4: Variability and Stability in Learning and Interlimb Transfer 

 One core issue in motor learning is whether a newly learned skill can be adapted 

and generalized to other situations or other effectors. The typical indicators to 

evaluate and quantify adaptation and transfer are movement outcome measures. The 

aim of Experiment 4 is to demonstrate that utilizing passive stability as originating 

from task dynamics is subtle and abstract in nature. As a result, the passive strategy is 

expected to be transferred across two limbs and the transfer is symmetrical. The 

second aim is to demonstrate the distributional properties of movement execution are 

also transferable between different effectors. To achieve this, Experiment 4 will also 

adopt the variability decomposition method to further unravel the structure of 

variability changes during learning and transfer. This study will provide insights into 

the nature of transfer by focusing on the changes in the stability properties and of the 

structure of variability.   
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Abstract 

Parallel to research on passive dynamic walking rhythmically bouncing a ball with 

a racket has been demonstrated to be a task that affords a passively stable solution. 

Results from stability analyses of a mechanical model and accompanying empirical 

results from human performance support the conclusion that actors exploit this passive 

dynamics of the task thereby reducing computational demands of the task. Passive 

stability is characterized as solutions where perturbations converge back to the steady 

state without active corrective control. The present study investigated the response to 

systematic perturbations of 14 different magnitudes, in conjunction with predictions 

derived from the basin of attraction derived from the model. Given that predictions 

depended on the coefficient of restitution in the model, four different conditions were 

experimentally tested. Three predictions were tested in a virtual reality set-up with a 

haptic interface. Relaxation times estimated from the performance errors showed 

significantly faster returns than predicted from the purely passive model, indicative of 

active error correction. However, the pattern of relaxation times was qualitatively 

consistent with predictions based on passive stability: relaxation times were larger for 

larger perturbations (Prediction 1); the return was shorter for positive and longer for 

negative perturbations (Prediction 2). For higher coefficients of restitution relaxation 

time for positive perturbations was longer (Prediction 3). Racket accelerations at 

contact were negative for all perturbations except the three most negative ones, 

indicating passive stability. It was concluded that stability properties of the task 

dynamics are a factor in movement control. During unperturbed performance humans 

exploit passive stability afforded by the task minimizing the control effort. When facing 

perturbations, participants show sensitivity to whether perturbations require corrections 

or whether passive stability is sufficient to maintain the stability. 
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Introduction 

Human actions necessarily express themselves as physical interactions with the 

environment where the biological system creates and is subject to forces that constrain 

the execution and the control of action. The stability of these forces is key to their 

control. Stability in postural and movement control is achieved by many different 

means: physiologically, it can arise from the stiffness of the muscular and tendonous 

tissues mediated by stretch reflexes; from a control perspective, stability is attained 

through feedback-based responses that correct for errors; a third source of stability is 

of mechanical and dynamical origin: the stability of the actor-environment system as 

it is set up by the task. This system may also provide stability “for free” that is not 

brought about by the active compensations of errors, i.e., feedback control, but rather 

it is brought about by the inherent stability of the task. A prominent example that has 

demonstrated the importance of this source of stability is the passive dynamic walker. 

McGeer (1990) showed, by using both an analytic model and a multilink robot, that a 

purely mechanical system without actuators and control could maintain a stable 

walking pattern when walking down a gentle slope.  

Models of this type achieve dynamic stability without active control, relying 

solely on the passive dynamics of the physical constructs. Over the past two decades, 

a lot of attention and effort has been directed to applying the idea of passive dynamics 

to the design of human-like biped robots walking on level ground (Coleman & Ruina, 

1998; Collins, Wisse & Ruina, 2001). Several models demonstrated that walking in 

two dimensions has inherent stability but to achieve walking in three dimensions 

additional actuation was needed. However, the fundamental reliance on passive 

dynamics has offered these 3D walkers efficiency in energy expenditure, reduced 

demands in control, and elegant mimicry of human motion (Collins et al., 2005; 

Tedrake et al., 2004). The striking similarity of these minimally controlled walking 

machines with human walking suggests that passive dynamics may play an important 

role in shaping coordinated human behavior. Without downplaying the importance of 
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muscular forces and their tuning by perceptual information in determining behavior, 

the passive dynamic walkers show that our understanding about control can be 

deepened by studying the motion that may emerge without control. 

 To tease apart the contributions of passive dynamics and active control, a motor 

task is wanted that first affords such a passively stable solution. Sternad and 

colleagues have shown this to be the case for the task of rhythmically bouncing a ball 

on a racket (Sternad et al., 2000, 2001; Dijkstra et al., 2004; Schaal, Sternad, & 

Atkeson, 1996; de Rugy et al., 2003). This task requires an actor to bounce the ball 

with a racket up in the air to a consistent height over repeated bounces. By viewing 

the racket as an oscillating planar surface and the ball as a point mass colliding with 

the racket with an inelastic impact, a simple mechanical model was derived for the 

ball bouncing task. Stability analyses of this model yielded predictions about criteria 

for which this passive stability is achieved.  

Empirical studies of the ball bouncing task confirmed that humans exploit the 

passive stability properties as predicted by the model. Experienced actors hit the ball 

with negative racket accelerations in a variety of experimental conditions: when 

different ball amplitudes were required (Schaal et al., 1996), when the movement of 

the ball was confined to the vertical dimension only (Sternad et al., 2000, 2001), or 

when the ball and the racket moved freely in three dimensions; when the ball was 

bounced by using a paddle moving downward instead of a hand-held racket moving 

upward to hit the ball (Schaal et al., 1996), or when the experiment was conducted in 

a virtual reality setup (de Rugy et al., 2003). In contrast, novice actors performed with 

positive impact acceleration and only gradually, within approximately 30 minutes of 

practice, tuned their movements to use negative impact acceleration (Dijkstra et al., 

2004). This result was accompanied by decreasing variability supporting the 

interpretation that performance had improved with this change of strategy. This latter 

result highlighted that hitting the ball with negative impact acceleration was not an 

intuitive or trivial solution for actors. The task offers the advantage of stability but it 

has to be learnt. In sum, the empirical results on the ball bouncing task support the 

28 



 
 

interpretation that actors exploit the stability properties of the task. 

This ball bouncing model shares many features with the passive dynamic walking 

model. First, both models are formulated over the actor/acting system and the 

environment that it is in interaction with. Central to the walker are its collisions with 

the ground, central to the ball bouncing model are the ball-racket collisions. The 

models are based on mechanics without neuromuscular control mechanisms. Second, 

the only forces considered are the gravitational and the collision forces. The original 

2D passive dynamic walking model is only governed by gravity and inelastic 

foot-ground contacts. Similarly, in ball bouncing the ball flight is governed by the 

gravitational force and the inelastic ball-racket impact. Third, both models permit 

intermittent control at the moment of contact: step-to-step adjustment in walking are 

only controllable at the moment of foot-ground contact since in the swing phase the 

leg movement can be viewed as a pendulum (Mochon & McMahon, 1980); 

equivalently, the ball-racket contact is the only moment when the actor can control the 

ball flight. Fourth, since both tasks are periodic, the stability analyses used the same 

Poincare section technique to relate the system at one bounce/step to the next 

bounce/step. Fifth, both tasks have multiple stable solutions. The passive dynamic 

walker has a period-1 solution and period-n solutions corresponding to a limping gait. 

Similarly, the ball bouncing model has a period-1 solution but also period-n solutions 

and the so-called sticking solutions where the ball sticks to the racket. This sticking 

solution corresponds to the situation when the walker falls down.  

 The presence of multistability immediately raises the question about the boundary 

between these multiple solutions. How large can a perturbation be before the system 

ends up in another solution? How large is the basin of attraction? Results of passive 

dynamic walkers show that the basin of attraction is not very large, even with 

meticulous tuning of the parameters (Schwab & Wisse, 2001; Garcia et al., 1998). As 

a result, the bipedal robots are sensitive to initial conditions and demand a careful 

launch. Even a small perturbation like a small bump on the slope can destabilize the 

robot and make it fall (Schwab & Wisse, 2001; Wisse & van Frankenhuyzen, 2003). 
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These observations are in contrast to human walking which is much more robust to 

perturbations and adaptive to different conditions. This contrast points to the presence 

and importance of active control in human walking.  

Although multistability similarly exists in the ball bouncing map, only period-1 

performance has been investigated thus far. Parallel to the line of investigation in 

passive walking, further understanding about the relationship between passive 

stability and active control can be obtained by examining the basin of attraction 

(Schwab & Wisse, 2001; Garcia et al., 1998). Hence, the present study investigates 

the ball bouncing task with periodic solutions under systematic perturbations that are 

designed in view of the basin of attraction for the period-1 solution. Will the actor 

discard the strategy of using passive stability and turn to active control with error 

feedback on a cycle-to-cycle basis? Alternatively, will the actor rely on passive 

stability without active error corrections when the ball is only slightly perturbed, with 

perturbations inside the basin of attraction? Or will the actor adopt a mixture strategy 

with both the exploitation of passive stability and of perception-guided error 

correction? In sum, are actors sensitive to the boundaries of the basin of attraction of 

the period-1 solution? 

These questions can be answered by applying perturbations of different 

magnitudes. In a previous study de Rugy et al. (2003) applied perturbations by 

randomly changing the coefficient of restitution of the racket upon impacts leading to 

unexpected under- or overshooting of the ball with respect to the target height. Results 

showed that actors quickly reestablished negative impact acceleration at impact, 

indicating the use of passive stability. Yet, for all the applied perturbations 

modulations of racket movements also indicated signs of active control. While this 

study gave a first indication that actors “actively tracked passive stability”, the 

sensitivity to the basin of attraction could not be tested because no theoretical 

analyses of the basin of attraction were available. Posthoc analyses revealed that the 

perturbations were relatively large and mostly took the system outside the basin of 

attraction. In fact, very small perturbations were excluded by design. To extend these 
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first investigations the current study provides a derivation of the basin of attraction for 

the period-1 attractor of the ball bouncing map. The experimental perturbations were 

designed such that they covered a wide range both inside and outside the basin. 

Furthermore, the coefficient of restitution of the racket, a critical variable influencing 

the shape of the basin of attraction, was also systematically varied. Based on the 

locations of perturbations in the basin, predictions about the response of a purely 

passive strategy can be made. These predictions are then compared with the human 

performance to elucidate the relationship between passive dynamics and active 

control. 

 

The Model 

The predictions are based on the same model that was derived in earlier work 

(Dijkstra et al., 2004; Guckenheimer & Holmes, 1983; Holmes, 1982, Sternad et al., 

2001; Tuffilaro, Abbott, & Reilly, 1992). As mentioned above, the task of 

periodically bouncing a ball with a racket to a target height affords a passively stable 

period-1 solution. This solution is entirely open-loop and, once initiated, requires no 

control or error correction. The period-1 solution co-exists with other solutions, in 

particular sticking solutions and period-n solutions. The latter solutions give rise to 

the period-doubling route to chaos and were an important motivation for the initial 

studies of the map (see Tuffilaro et al., 1992). However, they are of no concern in the 

current context. 

The ball bouncing map is based on the following three assumptions: 1) Ballistic 

flight: between the k-th and the k+1-th bounce the vertical ball position xb(t) follows 

the ballistic flight equation: 

xb (t) = xb (tk ) + vb
+(t − tk ) − (g /2)(t − tk )2 tk < t < tk+1 (1)  

with xb(tk) the vertical ball position at the time of the last (k-th) impact,  the ball 

velocity immediately after impact, and g the acceleration due to gravity (9.81 m/s

vb
+

2). 2) 
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Instantaneous impact: the impact is instantaneous such that the ball velocity 

immediately after impact vb
+

 is determined by:  

(vb
+ − vr ) = −α (vb

− − vr ) (2) 

where  and v  denote ball velocity just before and after impact, respectively. vvb
−

b
+

r 

denotes the velocity of the racket at impact and α denotes the coefficient of restitution 

which captures the energy loss at the impact. The velocity of the racket does not 

change during impact because the mass of the racket is much larger than the mass of 

the ball. 3) Sinusoidal racket movement: The racket movement is a pure sinusoid: 

x(t) = ar sinωrt (3)  

with amplitude ar and angular frequency ωr. 

The validity of these assumptions for bouncing a physical ball is discussed in 

Dijkstra et al. (2004) and Brody et al. (2002). Since the task is performed in a virtual 

set-up (see methods below), the ballistic flight and impact assumptions are satisfied 

by design. The assumption of a pure sinusoid is not obeyed, not even in the virtual 

set-up: actors pick a periodic waveform with a slope that is slightly steeper than a sine 

wave in the ascending phase when the racket meets the ball. Unfortunately, there is no 

simple mathematical description of this waveform. However, we note that only 

position and velocity with which the racket hits the ball determine the ball trajectory. 

Thus, for mathematical simplicity we use an equivalent sinusoid that is close to the 

actual waveform at the impact. The equivalent frequency of this sinusoid is calculated 

from the period between bounces. The equivalent amplitude of this sinusoid ar is 

calculated from the stationary phase of impact θ as (see Dijkstra et al., 2004, eq 8): 

ar = π 1−α
1+ α

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

g
ωr

2 cosθ
(4) 

From these assumptions, the ball bouncing map can be derived as: 
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vk+1 = (1+ α)arωr cosθk+1 −α vk + (gα /ωr )(θk+1 −θk ) (

0 = a

5)

rωr
2(sinθk − sinθk+1) + vkωr (θk+1 −θk ) − (g /2)(θk+1 −θk )2 (6)

    

This is an implicit map with the two state variables vk, the ball velocity just after 

impact, and θk, the racket phase of impact. The ball bouncing map has a period-1 

attractor which is locally linearly stable when the acceleration at impact, denoted by 

AC, is bounded by: 

−2 1+ α 2

(1+ α)2 < AC < 0 (7) 

The period-1 attractor co-exists with other attractors: for AC more negative than 

the lower boundary, there exist attractors where the ball sticks to the racket for part of 

the cycle; for positive AC several attractors exist, among them the period-doubling 

route to chaos (Tuffilaro et al., 1992).  

The domain of attraction of the period-1 attractor depends on the parameters of 

the map: g, the acceleration of gravity, α, the coefficient of restitution, ωr, the racket 

frequency, and ar, the racket amplitude. However, these parameters can be tightly 

controlled or determined in the experiment to obtain a good quantitative match with 

the model. The first two parameters, g and α, are independent of the actor and can be 

experimentally manipulated. Since the linear stability in the model and the domain of 

attraction depend strongly on α (see Figure 1), this parameter was varied as a 

dependent measure in the current study. The racket period and amplitude are more 

difficult to control experimentally, since they do depend on the actors’ performance. 

However, the racket frequency ωr can be fixed by having actors bounce to a visual 

target. Since the ball amplitude determines the racket period (through the flight 

equation) and actors hit the ball at an approximately constant height relative to the 

floor, having a target at a fixed height relative to the floor fixes the racket period. The 

racket amplitude was not prescribed but the actual movement amplitude was 

estimated from the impact phase, using eq 4. The model parameter ar was set 

accordingly for the calculations. 
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 The domain of attraction of the period-1 solution was calculated by numerically 

iterating the ball bouncing map (eqs. 5 and 6). The initial conditions and the 

parameters of the map were chosen to be as close as possible to the experiment. In 

detail, the initial velocity values were taken from the range 2 to 4.5 m/s (y-axis in 

Figure 1) and the initial phase values were taken as the stationary phase for that 

particular coefficient of restitution. Gravity g was 9.81 m/s2 and the racket frequency 

ωr was 2π/0.65 rad/s, which is based on the grand average of the time between 

bounces over all actors and conditions. The grand average of impact phase varied with 

the coefficient of restitution α. For the experimentally used values of α, 0.5, 0.6, 0.7, 

and 0.8, the respective phase values were 6, 7, 8 and 13 deg. From these phase values 

the equivalent racket amplitudes ar were calculated using eq. 4. For values of α 

between the experimentally used ones, spline interpolation and extrapolation was 

applied to obtain phase values. With these initial conditions and parameters the ball 

bouncing map was iterated 100 times. First, it was tested whether the state variables 

were close to the stationary ones; criterion for closeness was the band around the 

stationary values of 0.1 m/s for velocity and 10 deg for phase. These values for the 

bandwidth equaled the observed variability during unperturbed bouncing. The results 

showed that the domain of attraction does not strongly depend on these values.  

34 



 
 

 

Figure 1: Basin of attraction of the ball bouncing map. The dashed horizontal line 

denotes the stationary release velocity. The grey shading indicates how many bounces 

or cycles are needed for the perturbations to die out. The white dots denote 

perturbations used in the experiment: 14 different magnitudes for each of the four 

coefficient of restitution. The three larger dots highlight three selected perturbations 

for α = 0.6 for which the time course is illustrated in Figure 2, following the ordering 

from the top to the bottom. 

 

The results of these computations are presented in Figure 1, where the white and 

grey shaded areas denote the domain of attraction with increasing relaxation times 

(counted in number of cycles). The black area indicates (a) initial conditions that did 

not converge to the stationary state within 100 iterations, or (b) a sticking solution 

where the time between impacts was smaller than 1 ms. The four vertical columns of 

dots in Figure 1 indicate the different perturbation magnitudes that were used for the 

four different α values in the experiment. Figure 2 shows some simulation results for 
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the three marked selected perturbation magnitudes in Figure 1. Panels A and B 

illustrate the time course of the two state variables at impact following a large 

perturbation that takes 7 bounces to return to steady state. Equivalently, panels C and 

D show the state variables for a smaller perturbation that relaxes back within 4 

bounces. The continuous time series on panels E and F illustrates how a sticking 

solution occurs. 

  

 

Figure 2: Simulations for three selected perturbations of the ball bouncing map. A 

and B: Time evolution of the state variables impact phase and ball release velocity, 

respectively. The shaded area denotes the bandwidth when the system is considered to 
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be back at equilibrium. These two panels correspond to the perturbation marked as a 

cross in Figure 1. C and D: Equivalent plots for the perturbation marked as x in 

Figure 1. E and F: Time series of continuous position and velocity of both the racket 

and the ball, showing a sticking solution. This was obtained for the perturbation 

marked as a white circle in Figure 1. 

 

From these analyses the following predictions can be formulated: 

Prediction 1: The basin of attraction has a boundary separating stable period-1 

solutions from sticking and period-n solutions. Actors are sensitive to this boundary 

and rely on passive stability when perturbations are inside the basin of attraction. For 

perturbations outside the basin, they adopt an active strategy seen in qualitative 

changes in the racket kinematics that aim to correct for errors.   

Note however that sticking or period-1 solutions have never been observed in the 

current experimental set-up (de Rugy et al., 2003). Hence, if this discontinuous 

change in strategy is not seen, we still expect qualitative changes in behavior as a 

function of perturbation magnitude and coefficient of restitution. Therefore, three 

more qualitative predictions can be formulated: 

Prediction 2a: With increasing perturbation magnitude, the time for returning to 

steady state performance increases for all coefficients of restitution. Larger 

perturbations that take the system further out of the basin of attraction lead to longer 

relaxation times. 

Prediction 2b: The relaxation time is longer for negative perturbations than for 

positive perturbations for all coefficients of restitution (i.e., for release velocities 

smaller than the average release velocity). This follows from the observation that the 

lower boundary of the basin of attraction is closer to the stationary state than the 

upper boundary. 

Prediction 3c: For positive perturbations the smaller coefficients of restitution 

have a wider basin of attraction. Hence, for positive perturbations the smaller 

coefficients of restitution should show faster returns than the higher coefficients of 
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restitution. For negative perturbations there should be no difference in relaxation time 

for different coefficients of restitution. 

 

Method 

Participants. Seven volunteers participated, with ages ranging from 23 to 47 

years. All participants reported to be right-handed and used their preferred right hand 

to bounce the ball with the racket. Before the experiment, all participants were 

informed about the procedure and signed the consent form approved by the 

Regulatory Committee of the Pennsylvania State University.  

Experimental Apparatus. In the virtual reality setup, participants manipulated a 

real table tennis racket in order to bounce a virtual ball that was projected on a screen 

in front of them (Figure 3). Participants stood about 0.5 m behind a back-projection 

screen with width 2.5 m and height of 1.8 m. A PC (2.4 GHz Pentium CPU, Windows 

XP) controlled the experiment and generated the visual stimuli with a graphics card 

(Radeon 9700, ATI). The same PC also acquired the data using a 16 bit A/D card 

(DT322, DataTranslation). The images were projected by a Toshiba TLP 680 

TFT-LCD projector and consisted of 1024 by 768 pixels with a 60 Hz refresh rate. 

Accelerations of the racket were measured using a solid state piezoresistive 

accelerometer mounted on top of the racket (T45-10, Coulbourne). The mechanical 

brake on the rod attached to the racket was controlled by a solenoid (Magnet-Schultz 

type R 16x16 DC pull, subtype S-07447). A light rigid rod with three hinge joints was 

attached to the racket surface and ran through a wheel whose rotation was registered 

by an optical encoder (see Figure 3). Its accuracy was one pulse for 0.27 mm of racket 

movement. The pulses from the optical encoder were counted by an onboard counter 

(DT322). The racket could move and tilt with minimal friction in three dimensions 

but only the vertical displacement was measured. Images of racket and ball position 

were shown on-line using custom-made software. The delay between real and virtual 

racket movement was measured in a separate experiment and found to be 22 ms on 

average with a standard deviation of 0.5 ms. 
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Figure 3: Virtual reality setup for the ball bouncing task, a side view and a front view 

of the screen display. 

 

The virtual racket was displayed at the same height from the floor as the real 

racket and its displacement was the same as that of the real racket. The movement of 

the ball displayed on the screen was governed by ballistic flight and an instantaneous 

impact event when the virtual racket impacted the virtual ball. Just before the virtual 

ball hit the virtual racket a trigger signal was sent out to the mechanical brake that was 

attached to the rod. The trigger signal was sent out 15 ms before the ball-racket 

contact to overcome the mechanical and electronic delay of the brake. The brake 

applied a brief downward force pulse to the rod to create the feeling of a real ball 

hitting the racket. The duration of the force pulse (30 ms) was consistent with the 

impact duration observed in a real ball-racket experiment (Katsumata, Zatsiorsky, & 

Sternad, 2003). The brake force was not scaled to the relative velocity of the ball and 
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the racket but stayed the same for all impacts.  

The computer program controlling the experiment would read the latest racket 

position from the optical encoder and racket acceleration from the accelerometer. 

When the racket was away from the ball, the program would update the ball positions 

based on the ballistic flight equation. On the 2.4 GHz computer under Windows XP 

this led to an update rate of around 800 Hz. When the ball and racket were close, the 

computer program would keep a running estimate of time-to-contact and control the 

brake accordingly. The increased computational load led to a slow-down of the update 

rate to around 250 Hz in the 30 ms surrounding an impact. The update rate was not 

fixed because Windows XP is not a real-time operating system and thus timing is not 

deterministic. Hence, all data were time-stamped using the high-resolution timer on 

the Pentium CPU, with an accuracy better than 1 microsec. 

Procedure and Experimental Conditions. Prior to each experiment, the participant 

was placed on a support base to adjust for height differences. The support height was 

adjusted such that the height of the racket, when held with the forearm horizontally, 

was 10 cm above its lowest position. This ensured that the base height of the racket 

position was the same for all participants. Each trial began with a ball appearing at the 

left side of the screen and rolling on a horizontal line extending to the center of the 

screen (Figure 3 inset). Upon reaching the center, the ball dropped from the horizontal 

line (0.7 m high). The task instruction was to rhythmically bounce the ball for the 

duration of a trial (55 s) as accurately as possible to the target line (the same line that 

the ball started on). The experiment consisted of a total of 80 trials, which were 

collected in two sessions. Each session lasted approximately one hour. 

The entire experiment was divided into 4 blocks of 20 trials, one block for each 

value of the coefficient of restitution α: 0.5, 0.6, 0.7, and 0.8. The blocks were 

presented in either ascending or descending order, counterbalanced among 

participants. The first two and the last two trials of each block were control trials 

without any perturbation. In the remaining 16 experimental trials perturbations were 

applied at random impact times. A perturbation was created by an abrupt change of 
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the ball release velocity immediately after the ball-racket impact. This led to an 

unexpected ball amplitude without any other noticeable change in the ball trajectory. 

This perturbation in velocity was chosen randomly from 14 magnitudes which were 

added or subtracted from the current release velocity  -1.0, -0.86, -0.71, -0.57, -0.43, 

-0.29, -0.14, 0.14, 0.29, 0.43, 0.57, 0.71, 0.86, 1.0 m/s. Negative values led to smaller 

ball amplitudes, positive values to larger ball amplitudes. With an average ball 

amplitude of 0.55 m and a corresponding average bounce period of 650 ms, the effect 

of these perturbations can be converted to deviations from the target height. The 

largest positive perturbation caused an overshoot of 0.37 m above the target, and the 

largest negative perturbation an undershoot of 0.27 m. The smallest perturbation of 

0.14 m/s caused an overshoot of 0.047 m and -0.14 m/s an undershoot of 0.045 m. 

The 14 different magnitudes of perturbations ranging from -1 m/s to +1 m/s were 

labeled as P-7, P-6, P-5, …. to P+6, P+7. 

The complete set of 14 perturbations for each α was delivered on two successive 

trials, with 7 perturbations within one trial in randomized order. As each trial had 

approximately 80 to 90 bounces, the perturbations occurred randomly on the 8th, 9th, 

or 10th bounce relative to the previous perturbation. Across the 16 experimental trials, 

the set of 14 perturbations could be administered 8 times. With randomization of both 

time and magnitude of perturbation, participants were unable to anticipate the ball 

amplitude or the time of the perturbations.  

Data Reduction and Analysis. The raw data of the racket displacement and 

acceleration were resampled at a fixed frequency of 500 Hz and filtered with a 

4th-order Savitzky-Golay filter with a window size of 0.01 s on both sides (Gander & 

Hrebicek, 2004). The filter order and window size were chosen empirically to remove 

measurement noise while not excessively smoothing the signals. The Savitzky-Golay 

filter is superior for smoothing data that have abrupt changes as compared to 

conventional filters like Butterworth filters. These abrupt changes occurred in the data 

when the racket exhibited a sudden drop in acceleration, caused by the brake. The ball 

displacement was generated by the computer so it contained no measurement noise. 
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Therefore, no filtering was necessary. As a verification of our filtering procedure, 

racket displacement was double-differentiated using a Savitzky-Golay filter and 

compared with the acceleration data collected by the accelerometer. The comparison 

showed a good match between the two types of data, supporting the validity of the 

data acquisition.  

Dependent Measures. Figure 4 illustrates the primary dependent measures. 

Performance was evaluated by the ball height error, HE, which was defined as the 

signed difference between the maximum ball height and the target height. Height error 

was equivalent to the state variable ball velocity at the moment of release from the 

racket, as this velocity determined the subsequent ball amplitude in the gravitational 

field if the impact position was relatively constant. The racket amplitude, AR, was 

calculated as half the distance from the minimum to the maximum of the racket 

trajectory during one cycle. The period between impacts, T, was calculated from the 

time intervals between the impacts of successive bounces. The acceleration of the 

racket at impact, AC, was determined from the accelerometer signal one sample 

before the time of impact.  
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Figure 4: Segment of an exemplary trial with a large perturbation (P-7). The impacts 

are marked by numbers and the perturbed impact is marked as the 0th impact.  

 

Relaxation Time after Perturbation. The bouncing cycles were labeled in 

sequential order starting from the unperturbed impact directly before the perturbed 

impact. This last unperturbed cycle was labeled C-1, the perturbed cycle was labeled 

C0, and the following cycles were labeled C1, C2, and so on (Figure 4). Some of the 

dependent measures, for example HE and AR, showed an abrupt change after a 

perturbation with a subsequent exponential return to a final level. However, this final 

level did not always coincide with the pre-perturbation levels. In order to quantify this 

exponential return with variable final level, least-squares fitting of an exponential 

function was performed using the following functional form: 

yk = y0 e−k /τ + y∞ (8)  

where yk was the dependent measure of interest and k was the cycle number with k = 0 
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denoting the perturbed bounce at C0. Fitted parameters were the amplitude of the 

perturbation y0, the final level y∞  and the relaxation time τ. We used the 

Levenberg-Marquardt least squares fitting algorithm (Matlab 6.5, Mathworks). 

 

Results 

I. Performance during Control Trials 

Racket Acceleration. Given that the objective of the study examined 

perturbations away from stable performance the data first had to be examined whether 

actors indeed performed the task in accord with the criteria of passive stability. Hence, 

performance was evaluated in the control trials (four trials for each of the four α 

condition). The primary measure indicating performance at passive stability is the 

mean impact accelerations AC across all bounces of one trial (typically 70-80 bounces 

during 60s long trials). The mean values across the four control trials, determined 

separately for each of the four α conditions, are listed for all 7 participants in Table 1. 

Overall, participants showed negative AC values as predicted by the model and seen 

in previous studies, with only two exceptions: Participant 1 and 2 had small positive 

values for α = 0.8 and 0.5, respectively. Excluding these two cases, these results 

verified that all participants indeed performed the task consistent with criteria for 

passive stability. A 4 (α) x 7 (participant) ANOVA was performed on these data with 

participant treated as a random factor. The results showed no significant differences 

between different α values, F(3, 84) = 0.63, p = 0.607. The main effect of participant 

and the interaction were significant, F(6, 84) = 9.98, p < 0.0001, and F(18, 84) = 3.02, 

p < 0.0001, respectively. The grand mean of these control data were used as the 

baseline for the design of the perturbation magnitudes and the calculations of the 

basin of attraction. 
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Table 1:  

Impact accelerations (m/s2) of individual participants in control trials. The values are 

means across 6 trials. Standard deviations are shown in parentheses. 

 α = 0.5 α = 0.6 α = 0.7 α = 0.8 Participant 

Mean 

Participant 1 -1.25 (3.29) -0.07 (2.11) -2.26 (2.10) 0.29 (2.04) -0.82 (2.39) 

Participant 2  1.00 (2.70) -0.11 (2.68) -1.08 (2.75) -0.72 (2.09) -0.23 (2.56) 

Participant 3 -2.43 (2.28) -2.22 (1.98) -1.43 (1.50) -1.50 (1.25) -1.90 (1.75) 

Participant 4 -4.21 (2.48) -3.56 (1.74) -4.37 (1.67) -3.64 (1.09) -3.95 (1.75) 

Participant 5 -3.21 (2.39) -3.46 (1.79) -2.66 (2.05) -2.76 (1.56) -3.02 (1.95) 

Participant 6 -0.59 (2.13) -0.34 (1.94) -1.60 (1.90) -2.57 (2.05) -1.28 (2.01) 

Participant 7 -0.96 (2.46) -0.68 (2.04) -0.84 (1.13) -2.00 (0.91) -1.12 (1.64) 

Grand average -1.66 -1.49 -2.03 -1.84  

 

Height Error. Performance during control trials was also evaluated in terms of 

the primary performance measure, height error HE. Subjecting the mean values 

determined across each trial in the four α conditions to a 4 (α) x 7 (participant) 

ANOVA did not identify significant difference between α conditions. Differences 

between individuals were significant, F(6, 84) = 7.90, p < 0.0001. Overall, actors tend 

to slightly overshoot the target by an average of 0.016, 0.017, 0.017 and 0.023 m for α 

= 0.5, 0.6, 0.7, and 0.8, respectively. 

Racket Period and Amplitude. For a better characterization of the task 

performance the continuous racket trajectories during steady state were assessed by 

their mean period and amplitudes per trial. The same 4 (α) x 7 (participant) ANOVA 

performed on period yielded significant differences between different α values, F(3, 

84) = 8.91, p < 0.005, and between different participants, F(6, 84) = 20.56, p < 

0.0001. The interaction between participants and α was also significant, F(18, 84) = 

4.44, p < 0.0001. A small but clear trend can be seen: the racket periods slightly 
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increased for larger α conditions (634±38, 642±44, 654±45, 679±44ms). The cause 

for this trend is that in the higher α conditions participants impact the ball at slightly 

lower positions although performance measured in HE was not affected. The 

equivalent ANOVA on amplitudes revealed a decreasing trend for higher α, F(6, 84) 

= 173.22, p < 0.0001, indicating that subjects moved the racket less when the 

ball-racket contact was bouncier: 0.067±0.007m, 0.049±0.005m, 0.036±0.003m and 

0.025±0.005m for α conditions 0.5, 0.6, 0.7 and 0.8, respectively. The main effect for 

participant and the interaction were significant, F(6, 84) = 3.87, p < 0.05, F(18, 64) = 

6.76, p < 0.0001. 

 

 II. Performance Following Perturbations 

Height Error. Figure 5 displays the grand averages of HE over all repetitions and 

all seven participants as a function of cycle number directly before and following the 

perturbation. Due to space limitations, only 8 perturbation magnitudes are displayed. 

As to be expected, large effects of the perturbation are observed at the perturbed cycle 

C0 and HE deviates from the baseline level with a magnitude that scales with the 

perturbation; larger perturbations lead to larger amplitudes of the ball, hence larger 

HE values. During subsequent cycles, HE shows an approximately exponential return 

back to pre-perturbation values, indicating that the experimental perturbation had a 

significant effect on the performance. This return is not symmetrical for positive and 

negative perturbations of the same magnitudes. Comparing the largest negative 

perturbation, P-7, with the largest positive perturbation, P+7, it is apparent that P+7 

shows a faster return, even though for P+7 the ball amplitude deviated more from 

target (approximately +0.37 m vs. –0.27 m for P+7 vs. P-7, respectively).  
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Figure 5: Grand averages over all repetitions and participants of height error HE 

plotted as a function of cycle number. The eight panels show the data for eight 

perturbation magnitudes. Different α conditions are shown by different grey shades.   

 

The second observation is that for small perturbations the time of return to 

pre-perturbation values is as short as one cycle and only approximately three cycles 

for large perturbations. This indicates that participants managed to recover from 

perturbations faster than the model predicted. Even large perturbations that take the 

system outside of the basin of attraction are compensated within three cycles. There is 

no visible difference between the different coefficients of restitution for negative 
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perturbation, but some for large positive perturbations: for example, the data for P+7 

shows that higher values of α have slower relaxation times than lower α. These 

observations will be quantified by the following curve fitting analysis. 

Relaxation Times of Height Error. In order to quantify the rate of return, an 

exponential function was fitted to the HE data (eq. 8). The relaxation time τ expresses 

how fast the system returns to the baseline level. The exponential curve fits are 

illustrated for all 14 perturbation magnitudes and for α = 0.5 in Figure 6. The different 

lines represent the fitted curves for HE over eight cycles following the perturbation 

(from C0 to C7). The curve fits rank order with perturbation magnitude, with larger 

perturbations producing larger perturbation amplitudes (y0) and longer relaxation 

times (τ). The R2 values for the 14 fits for all participants ranged between 0.84 and 

0.99, with an average of 0.96.  
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Figure 6: Exponential curve fits of the height error HE for 14 different perturbation 

magnitudes for coefficient of restitution 0.5. The dots are grand averages over 

repetitions and participants. The shaded area indicates the band of variability 

measured in the unperturbed control trials. 

 

The relaxation time estimates obtained from these fits are plotted in Figure 7. The 

filled symbols denote perturbations inside the basin of attraction, the hollow symbols 

larger perturbations outside the basin of attraction. Note that the boundary is different 

for negative and positive perturbations and also for different α conditions. This figure 

provides a first basis to test the predictions. Prediction 1 anticipated a qualitative 

change in behavior from perturbations inside to outside the basin of attraction. 

However, the figure does not reveal such discontinuous change in the relaxation 

constant. Still, the τ values show a distinct pattern that can be evaluated in view of the 

second set of predictions. Consistent with Prediction 2a, relaxation times were higher 

for larger perturbations. Further, there was a noticeable asymmetry between negative 

and positive perturbations; relaxation times were larger for large negative 

perturbations than for their corresponding positive ones, consistent with Prediction 2b. 

It can also be seen that different α conditions did not induce differences in relaxation 

times across all perturbation magnitudes, with the only exception that for positive 

perturbations lower α conditions appeared to show shorter relaxation times. This 

finding supports Prediction 2c: the basin of attraction narrows for larger α, but only 

on the positive side. 
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Figure 7: Relaxation times τ obtained from the exponential fits of the height error HE. 

Different α conditions are shown by different lines and symbols. 

 

Racket Acceleration. A first assessment of the strategy that actors applied can be 

obtained by the analysis of the racket-ball contact characteristics. Figure 8 shows the 

grand averages over repetitions and participants of AC plotted over cycles before and 

after the perturbations; again, only 8 of the 14 perturbation conditions are shown. 

Only the three largest negative perturbations (P-7, P-6, P-5) introduced significant 
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deviations in AC from the baseline. For all positive perturbations and small negative 

perturbations AC did not change. This observation was supported by calculating the 

percentage of trials that had a significant change in the cycle directly following a 

perturbation. In the first cycle after a perturbation (C1), the percentages of trials with 

a change of more than one standard deviation from mean control trial performance 

(baseline) were 10%, 7%, 4%, 9%, 10%, 11%, 8%, 12% and 11% for perturbation 

magnitudes P-2 to P+7, respectively. (Note that at cycle C0 at which the perturbation 

was applied, 6% of trials had AC values different from baseline.) Only the three 

largest negative perturbations (P-7, P-6, P-5) introduced significant deviations in AC: 

83%, 78% and 59% of trials showed changes in C1 greater than one standard 

deviation. The values of AC jumped from around -2.0 m/s2 at the pre-perturbation 

cycles to around +10 m/s2 in C1. The large positive impact acceleration suggested that 

the ball contacted the racket earlier in the upward movement due to the undershoot of 

the ball amplitude caused by these three large negative perturbations.  

In sum, the perturbations had minimal effects on the racket-ball contact and the 

racket continued to contact the ball with negative accelerations even for large 

perturbations outside the basin of attraction. 
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Figure 8: Impact acceleration AC (averages over participant and repetition) plotted as 

a function of cycle number. Each of the eight panels shows the data for one 

perturbation magnitude. Different α conditions are shown by different lines. 

 

Thus far, the data give some seemingly inconsistent answers to the predictions. 1) 

The racket contact results (AC) indicate that participants overall continue to use 

passive stability to recover from perturbations. 2) However, the return behavior is 

quantitatively inconsistent with the predictions resulting from passively stable 

behavior, as the return is significantly faster. 3) There is no sign of a qualitative 

change when the perturbations are inside or outside the basin of attraction. 4) 
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However, there are several qualitative features that speak to the fact that the basin of 

attraction does play a role in the return behavior. These results point to the fact that 

actors must have made adjustments in their racket trajectories to achieve such fast 

recovery from the perturbations. If so, were these adjustments in the racket 

movements sensitive to the boundary of the basin of attraction, relying on passive 

stability for small perturbations? These questions were addressed in a detailed 

analysis of the racket kinematics.  

Racket Periods and Amplitudes. Figures 9 and 10 illustrate how the racket periods 

T and amplitudes AR changed in the face of perturbations. As for AC and HE, T and AR 

were averaged across trials and participants of each α condition and plotted against 

cycle number for different perturbation magnitudes. The period results in Figure 9 

show a rank ordering of α conditions: smaller α conditions lead to shorter racket 

periods, similar to the behavior observed in the control trials. Additionally, T also 

showed systematic deviations from baseline in C0 and the magnitudes of deviations 

scaled with the perturbation magnitude similar to HE. The changing pattern of T 

indicates that the racket periods were adjusted according to the perturbed ball 

trajectory such that the racket periods were scaled with the ball amplitude following 

the perturbations. This coupling between the racket and the ball was in effect during 

the very first cycle following perturbation. There was no discernable difference 

between α conditions. 
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Figure 9: Period averages (over participant and repetition) between impacts T as a 

function of cycle number. Each of the eight panels shows the data for one perturbation 

magnitude. Different α conditions are shown by different lines. 
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Figure 10: Racket amplitude averages (over participant and repetition) AR plotted as a 

function of cycle number. Each of the eight panels shows the data for one perturbation 

magnitude. Different α conditions are shown by different lines. 

 

Figure 10 summarizes the amplitudes AR: a strong dependence on α, i.e., the more 

elastic the ball-racket contact was (higher α value), the smaller was AR. (Note that no 

change is seen for C0 since the perturbation was applied at C0 and did not yet affect 

the racket movement.) In addition, AR systematically changed following the 

perturbation, increasing or decreasing depending on the sign of the perturbation. The 

larger the perturbation, the larger were the changes in AR. However, for the very small 

perturbations, the changes in AR were relatively small. There was no discernable 
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difference between α conditions in terms of changing pattern of AR.  

This qualitative display indicates changes in the racket kinematics which are 

consistent with the observations of the fast return following perturbations and the lack 

of change in the racket-ball contacts. To assess whether these racket adjustments were 

sensitive to the boundary of the basin of attraction (Prediction 1) exponential fits were 

applied in the same fashion as for HE. Using eq.8 the three parameters of the 

exponential function were fitted: the relaxation time τ, the gain y0, and the baseline 

value y∞. The parameter values for both period and amplitude data are summarized in 

Figure 11. The pattern of the τ values shows a qualitatively similar pattern as the ones 

for HE, although slightly less systematic in racket amplitude. The gain parameter y0 

shows a linear change with the perturbation magnitude for both period and amplitude. 

The baseline parameter shows a gradual decrease for period with perturbation 

magnitude; the same parameter for the amplitude fits is unmodulated by perturbation 

magnitude. With a view to Prediction 1, no support can be found that the racket 

movements show qualitative changes to adapt to large perturbations outside the basin 

of attraction. It is also noteworthy that the gradual change also covers the very small 

perturbation magnitudes. 
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Figure 11: Parameters obtained from the exponential fits of the racket periods T (left 

column) and racket amplitudes AR (right column) following the perturbation. The 

three parameters (the relaxation time τ, the gain y0, and the baseline value y∞; see eq. 

8) are plotted as a function of the 14 perturbation magnitudes. Results from different 

α conditions are indicated by different symbols. The filled symbols indicate 

perturbations inside of the basin of attraction, the hollow symbols denote 

perturbations outside the basin of attraction. 
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Discussion 

The present experiment examined the role of passive stability and active control in 

a rhythmic perceptual-motor task where participants aimed to steadily bounce a ball to 

a given target height. Previous studies on steady state performance of the same 

experimental task established that actors are sensitive to and exploit the stability 

properties defined by the dynamics of the racket and ball movements (Schaal, et al., 

1996; Sternad, et al., 2000, 2001; Dijkstra et al., 2004). This strategy implies that 

small errors, such as unintended deviations of the ball from the target height, require 

no corrections as the ball trajectory passively relaxes back to its steady state. Large 

perturbations, however, may take the system outside its basin of attraction and stable 

period-1 solutions are lost if the errors are not actively corrected for. The present 

study applied perturbations to examine whether actors change their strategy to correct 

for such induced errors and whether their strategy is dependent on the magnitude of 

perturbations. 

A set of 14 perturbations of different magnitudes was designed for each of the four 

coefficients of restitution based on the basin of attraction that was determined from 

the ball bouncing model. As the stability boundaries were different for different 

coefficients of restitution, the experiment was conducted with four coefficients of 

restitution. The predictions about relaxation behaviors after perturbations were based 

solely on the passive dynamics of the ball-racket system as the ball bouncing model 

does not include any active control of the racket movements. The first prediction was 

that actors exploit this passive stability and do not change their racket movement 

according to perceived error information as long as errors are small; in contrast, for 

larger perturbations, actors either lose stability or apply active corrections to their 

racket movements to regain stability. Such sensitivity to the boundary of stability is 

present in purely passive dynamical walking models where disturbances outside the 

narrow basin of attraction make the bipeds fall (Schwab and Wisse, 2001; Garcia, 

Chatterjee, Ruina and Coleman, 1998). A second set of predictions, also derived from 
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the passive model, formulated more qualitative expectations: a) With increasing 

perturbation magnitude, the time for returning to baseline performance increases for 

all coefficients of restitution α. b) The relaxation time is longer for negative 

perturbations than for positive perturbations for all α. c) For positive perturbations the 

smaller α should show faster returns than the higher α. The alternative hypothesis was 

that actors perceived all applied errors, even small errors, and actively adjusted their 

racket movements to regain steady state performance. 

The previous study by de Rugy et al. (2003) already examined perturbations in the 

ball bouncing task and identified active modulations of the racket trajectory. However, 

several essential aspects were different in this previous study. First, the perturbations 

were applied in terms of changes in the coefficient of restitution α, a parameter of the 

model, and not in terms of ball release velocity, a state variable of the model. 

Therefore, the actual perturbation effects on the height error depended also on the ball 

and racket velocity. As perturbation magnitudes were not as accurately controlled as 

in the present study, the resulting effects were not analyzed as a function of 

perturbation magnitude but rather pooled over all perturbations. Further, small 

perturbations were excluded to ensure that effects were observable. As no analyses of 

the basin of attraction were available, the effect of the stability boundary on behavior 

could not be addressed. Also, the virtual set-up only provided a visual interface and 

was therefore not as realistic as the current development with the haptic contact. 

Despite these shortcomings, the findings clearly indicated that actors adjusted their 

racket movements in order to re-establish the stable pattern, i.e., they “actively 

tracked passive stability”. The present study built on this experiment but significantly 

developed the theoretical framework and fine-tuned experimental approach to afford 

model-based quantitative and qualitative predictions about the effects of perturbations 

on dynamically stable behavior.  

Interestingly, the results provided no support for Prediction 1: Participants’ 

behavior showed no signs of sensitivity to the boundary of the basin of attraction. 

Both the performance measure height error and also the racket trajectories showed 

gradually more pronounced adaptations to increasing perturbation magnitudes. The 
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result of these adaptations was that the height error quickly decreased or increased to 

baseline, i.e., stable performance was quickly resurrected. The gradual change in 

racket kinematics also reveals that compensatory modulations in the racket trajectory 

existed for very small perturbations. This indicated that for all applied errors some 

compensatory behavior is seen, despite the dynamic stability afforded by the task. Yet, 

the focal dependent measure, acceleration of the racket at contact, exhibited very little 

changes for all but the three largest negative perturbations. 

Analysis of the performance after perturbation showed qualitative agreement with 

the second set of predictions of the model that deemphasized the discontinuous 

boundary of stability. First, the return to steady state after a perturbation took longer 

for larger perturbation magnitudes in all α conditions. This was evidenced by the 

increasingly longer relaxation times of the ball height errors over successive cycles 

after the perturbation with larger perturbation magnitudes. Second, relaxation times 

were shorter for positive compared to negative perturbations of corresponding 

magnitudes, mirroring the asymmetry in the basin of attraction. Third, lower α 

conditions exhibited faster returns for positive perturbations than higher α conditions. 

This is consistent with the topology of the basin of attraction whose width is wider for 

higher α conditions but only on the positive side.  

While these results were qualitatively consistent with the model predictions, the 

results did not match the predictions quantitatively. Overall, the relaxation behavior 

was considerably faster than the model predicted. Based on the assumption that the 

racket trajectory remains unchanged in the face of perturbations, the model predicted 

that the return to steady state should take two to several tens of bounces for 

perturbations, even when the perturbation was still inside the basin of attraction. 

Solutions other than period-1 or the sticky solutions as predicted for perturbations 

outside the basin of attraction were never observed. This shows that in all cases 

participants actively accelerated their returns to the pre-perturbation steady state to as 

fast as one to three bounces. 

This fast return behavior was accomplished by active modulation of the racket 

trajectory in both amplitude and period. Both of these racket measures showed 
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systematic deviations from baseline levels in the cycles after perturbations with an 

exponential return to their respective baselines. Interestingly, these modulations were 

seen from very small to very large perturbations, showing that even very small 

perturbations induced compensatory adaptations in the racket movements. In contrast 

to these significant modulations, impact accelerations of the racket remained negative 

during all perturbations, except for the three largest negative perturbations (reasons 

discussed below). Thus, while racket trajectories were actively adjusted to 

compensate for perturbations, conditions for passive stability, negative acceleration at 

impact, were maintained or immediately reestablished. One needs to keep in mind that 

this is possible with small deviations from purely sinusoidal trajectories. Viewing 

these changes in racket movements together permits the conclusion that actors may 

set up conditions for passive stability to assist return to steady state by active 

correction. 

For the three most negative perturbations (P-7, P-6, P-5) high positive impact 

accelerations were observed in the two cycles following the perturbation, coincident 

with relatively large changes in the racket amplitudes. Two effects might contribute to 

this observation. First, assuming that actors perceived the smaller ball amplitude in 

sufficient time, they may have made a faster upswing of the racket to propel the ball 

to the desired amplitude in the following bounce. If the impact happened during this 

accelerating phase, the impact acceleration would be positive. Support for this 

interpretation comes from the observation that the values of AC on bounce C1 scaled 

with α values (see first and second panel of Figure 8). The higher the α, the less 

forceful an impact was required, thus the AC values were lower. A second and 

similarly likely explanation is that for large negative perturbations the ball amplitudes 

were significantly lower and, concomitantly, the impact-to-impact periods 

significantly shorter. Assuming approximately sinusoidal racket movement, an earlier 

impact during the upward movement of the racket will result in a more positive racket 

acceleration. Thus, the large positive values of AC following the three largest negative 

perturbations might be, at least partially, a direct consequence of the unexpected 
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undershooting of the ball. This explanation is supported by the fact that the period 

following these perturbation in C1 was merely about 500 ms. Assuming the actor can 

only observe the perturbation when the ball reaches the maximum height, it will only 

leave him about 250 ms, i.e., half of the period, to prepare a more appropriate impact. 

The findings of the present study support the conclusion that in the ball bouncing 

task human actors adopt a strategy of blending active control with exploiting the 

passive dynamics of the task. Active control and passive stability have been studied 

extensively in human walking and walking robots. Mathematical models of purely 

passive dynamic walkers (without any actuators) revealed that stability is attainable 

from few mechanical assumptions, such as ballistic motion of the swing leg and an 

instantaneous double support phase. These passive dynamic walkers do not have 

actuators similar to the neuromuscular apparatus and the only energy input was the 

potential energy derived from descending a gentle slope (McGeer, 1990). However, 

the basin of attraction of the passive walker is narrow and several constraints have to 

be satisfied to utilize this passive stability: the walker has to be started off correctly, 

the energy input has to be high enough to overcome the dead point where the potential 

energy of the system is the highest, and the swing foot has to reach a forward position 

in time. During walking, the passive dynamic walker is also not very resistant to 

perturbations and small unevenness of the floor can cause the walker to fall (Schwab 

& Wisse, 2001; Wisse & van Frankenhuizen, 2003).  

Stability becomes even more critical if the walking robot can also move in the 

lateral direction, i.e., when the passive walking model is extended from 2D to 3D: 

lateral balance requires additional control or constraints. One solution was to 

mechanically couple the lateral motion of the leg to the hip rotation such that the 

side-to-side shift of the center of pressure caused by the change of the supporting leg 

was counteracted by a rotation of the hip (Wisse, Schwab & Linde, 2001). Although 

this solution brought lateral stability, humans much rather show adjustments in their 

foot placement between successive steps, i.e., they actively modify their behavior 

instead of using a simple mechanical coupling between hip and leg movements. 
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Additionally, very fast adjustments were observed in lateral ankle movements during 

every step (Hof, van Bockel, Schoppen, & Postema, 2006). These modifications are 

obviously based on perceived deviations from stability. In other words, an active 

control mechanism based on sensory information and feedback is necessary to extend 

the passive model to mimic biological behavior.  

These considerations lead to the intriguing question about the role of perceptual 

information for achieving or tuning stable behavior. For walking, Bauby and Kuo 

(2000) suggested that humans harness passive dynamic properties of the limb in the 

sagittal plane, but they also include perceptually guided active control to stabilize 

lateral motion. In ball bouncing, little work has examined the role of perceptual 

information. In one comparisons of performance with visual and haptic information 

the results showed that both types of information provide sufficient information to 

maintain the bouncing action, even though haptic information ensure more stable 

behavior than visual information alone (Sternad et al., 2000). In a two-dimensional 

version of the task, where the task is extended to a ball-in-a-wedge billiard Ronsse 

and colleagues showed that visual information alters the behavioral strategies that 

humans adopt compared to performance with haptic information only (Ronsse, 

Levebre, & Sepulchre, 2006). Given that the dimensionality of this task is higher, it is 

also likely that perceptual information plays a more important role. Yet, more work is 

needed to examine the online modulation and the required perceptual information. 

An active form of control has been implemented by Bühler, Koditschek and 

colleagues (Bühler & Koditschek, 1990, Bühler, Koditschek, & Kindlmann, 1994). In 

their studies on ball bouncing in 2D and 3D, using a planar robot arm that bounces a 

puck, they implemented the so-called mirror law. With this algorithm the racket 

movements “mirror” the down coming ball movements such that the velocity of the 

racket is tightly coupled to the visually perceived ball velocity. One interesting 

outcome of this tight perception-action coupling is that the ball-racket contact then 

occurs at positive impact accelerations, which, according to our model, produce 

unstable solutions. Nevertheless, using this mirror algorithm the robot juggler 
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obtained successful bouncing actions in 2D and 3D.  

In summary, the present study on perturbed ball bouncing revealed that actors 

apply a blend of passive stabilization and active perceptual control. On the one hand, 

the actor utilizes the passive stability afforded by the task and the performance 

qualitatively bears the signature of the basin of attraction derived from a mechanical 

model of the task. On the other hand, there were significant modulations of the actions 

upon changes brought about by perturbations of all sizes. The theoretically predicted 

boundary of stability did not seem to induce significant qualitative changes in 

performance. This is consistent with the idea that actor stabilize and flexibly control 

their behavior in the context task, environmental, and informational constraints (e.g., 

Newell, 1986; Warren, 2006). To account for this blend of control, perceptually-based 

tuning of the passively stable dynamics should be included in the purely passive ball 

bouncing model. This will be left for future work. 

64 



 
 

Acknowledgements 

This research was supported by grants from the National Science Foundation 

BCS-0450218, the National Institutes of Health R01 HD045639, and the Office of 

Naval Research N00014-05-1-0844. 

65 



 
 

Literature 

Bauby, C.E. & Kuo, A.D. (2000). Active control of lateral balance in human walking. 

Journal of Biomechanics, 33, 1433-1440.

 

Brody, H., Cross, R., & Lindsey, C. (2002). The physics and technology of tennis. 

RacquetTech Publishing. 

 

Bühler, M., Koditschek, D.E. (1990). From stable to chaotic juggling: Theory, 

simulation, and experiments. Paper presented at the IEEE International Conference on 

Robotics and Automation. Cincinnati, OH. 

 

Bühler, M., Koditschek, D.E., & Kindlmann, P.J. (1994). Planning and control of 

robotic juggling and catching tasks. International Journal of Robotics Research, 13, 

101-118. 

 

Coleman, M. J., & Ruina, A. (1998). An uncontrolled walking toy that cannot stand 

still. Physical Review Letters, 80, 3658-3661. 

 

Collins, S.H., Wisse, M., & Ruina, A. (2001). A three-dimensional passive-dynamic 

walking robot with two legs and knees. International Journal of Robotics Research, 

20(7), 607-615. 

 

Collins, S.H., Ruina, A., Wisse, M., & Tedrake, R. (2005). Efficient bipedal robots 

based on passive-dynamic walkers. Science, 307, 1082-1085. 

 

de Rugy, A., Wei, K., Müller, H. & Sternad, D. (2003). Actively tracking ‘passive’ 

stability in a ball bouncing task. Brain Research, 982, 64-78. 

 

Dijkstra, T. M. H., Katsumata, H., de Rugy, A., & Sternad, D. (2004). The dialogue 

66 



 
 

between data and model: Passive stability and relaxation behavior in a ball bouncing 

task. Nonlinear Studies, 11(3), 319-345. 

 

Gander, W., & Hrebicek, J. (2004). Solving problems in scientific computing using 

Maple and MATLAB. 4th Ed. New York: Springer. 

 

Garcia, M., Chatterjee, A., Ruina, A., & Coleman, M. (1998). The simplest walking 

model: stability, complexity, and scaling. Journal of Biomechanical Engineering, 

120(2), 281-288. 

 

Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, 

and bifurcations of vector fields. New York: Springer. 

 

Hof, A.L., van Bockel, R.M., Schoppen, T., & Postema, K. (2006). Control of lateral 

balance in walking: Experimental findings in normal subjects and above-knee 

amputees. Gait & Posture. [Epub ahead of print]. 

 

Holmes, P.J. (1982). The dynamics of repeated impacts with a sinusoidally vibrating 

table. Journal of Sound and Vibration, 84(2), 173–189. 

 

Jin, H.L., & Zacksenhouse, M. (2003). Oscillatory neural networks for robotic yo-yo 

control.  IEEE Transactions in Neural Networks, 14(2), 317–325. 

 

McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics 

Research 9(2), 62–82. 

 

Mena, D., Mansour, J. M. & Simon, S. R. (1981). Analysis and synthesis of human 

swing leg motion during gait and its clinical applications. Journal of Biomechanics, 

14, 823–832. 

 

67 



 
 

Mochon, S. & McMahon, T.A. (1980). Ballistic walking: An improved model. 

Mathematical Biosciences, 52(3-4), 241-260. 

 

Newell, K.M. (1986). Constraints on the development of coordination. In M.G. Wade 

and H.T.A. Whiting (Eds.), Motor development in children: Aspects of coordination 

and control (pp. 341–360). Dordrecht, The Netherlands: Nijhoff. 

 

Ronsse, R., Lefevre, P., & Sepulchre, R. (2006). Sensorless stabilization of bounce 

juggling. IEEE Transactions of Robotics, 22(1), 147-159. 

 

Schaal, S., Sternad, D., & Atkeson, C.G. (1996). One-handed juggling: Dynamical 

approaches to a rhythmic task. Journal of Motor Behavior, 28(2), 165-183. 

 

Schwab, A. & Wisse, M. (2001). Basin of attraction of the simplest walking model. 

Proceedings of DETC’01, ASME 2001, Pittsburgh, Pennsylvania, September 9-12. 

 

Sternad, D., Duarte, M., Katsumata, H., & Schaal, S. (2000). Dynamics of a bouncing 

ball in human performance. Physical Review E, 63, 011902-1 –011902-8. 

 

Sternad, D., Duarte, M., Katsumata, H. & Schaal, S. (2001). Bouncing a ball: Tuning 

into dynamical stability. Journal of Experimental Psychology: Human Perception and 

Performance, 27, 1163-1184. 

 

Tedrake, R., Zhang, T.W., Fong, M., Seung, H.S. (2004). Actuating a simple 3D 

passive dynamic walker. IEEE International Conference on Robotics and Automation, 

5, 4656-4661. 

 

Tufillaro, N.B., Abbott T. & Reilly, J. (1992). An experimental approach to nonlinear 

dynamics and chaos. Redwood City, CA: Addison-Wesley. 

 

68 



 
 

Warren, W.H. (2006). The dynamics of perception and action. Psychological Review, 

113(2), 358-389. 

 

Wisse M., Schwab, A.L., & van Linda, R.Q. (2001). A 3D passive dynamic biped with 

yaw and roll compensation. Robotica, 19, 275-284. 

 

Wisse, M. & van Frankenhuyzen, J. (2003). Design and construction of MIKE: a 2D 

autonomous biped based on passive dynamic walking. Proceedings of the 2nd 

International Symposium on Adaptive Motion of Animals and Machines, Kyoto, 

March 4-8.  

69 



 
 

 

CHAPTER 4 

 

Passive Stability and Active Control During Steady-state 

Performance 

 

Chapter 4 contains an original manuscript prepared for submission to a journal. 

 

“Kunlin Wei1, Tjeerd M.H. Dijkstra2, Dagmar Sternad1” 

1Department of Kinesiology and Integrative Biosciences, Pennsylvania State 

University 

2University Medical Center, Leiden, The Netherlands 

 

70 



 
 

Abstract 

 

We investigated movement control in a task where subjects rhythmically bounce 
a ball with a hand-held racket to a prescribed amplitude. In previous studies on the 
same task, stability analysis of an open-loop mechanical model revealed that passively 
stable solutions exist if the racket is decelerating to hit the ball. Several studies 
reported that experienced subjects indeed bounce the ball with negative racket 
acceleration, consistent with the notion of passive stability. Perturbation studies also 
identified active adjustment of the racket movement with respect to the perturbed ball 
movement. However, whether active control exists at steady-state performance has 
been left unchecked, due to the difficulty to quantify the active adjustment when the 
racket movement is stereotypical with little fluctuations. The present study extended 
the open-loop mechanical model with stochastic components allowing us to derive 
predictions for the correlation functions of the state variables, ball velocity after 
impact and time between impacts. Predictions from this model are that fluctuations 
take longer to die out with increasing α. In particular, the lag-1 correlation increases 
with α. 

A virtual reality set-up was used where participants held a real racket and 
manipulated a virtual ball. Eight subjects performed in this virtual reality set-up for 
values of the simulated coefficient of restitution (α) of the racket ranging from 0.3 
(sticky racket) to 0.9 (bouncy racket) in steps of 0.1. Results indicated that correlation 
functions of state variables matched well with the predictions for small α conditions. 
In trials with large α, performance decreased as measured by the lag-1 correlation but 
was more stable than the model predicted. Paradoxically, variability of performance 
decreased with decreasing stability. These observations can be explained by 
increasing compensatory variability in execution, a signature of control. Hence, actors 
rely on passive stability when the stability of the system is high and employ more 
active control when stability is reduced. 
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Introduction 

 

It is widely agreed upon that stability is an indispensable goal for many motor 

tasks. Despite the influence of external perturbations and intrinsic noise in the action 

system itself, static postures must be maintained and movements need to be 

performed consistently and reliably with little variability. The human 

perceptual-motor system has a variety of solutions to meet the challenge of stability, 

ranging from stiffness of muscular and tendonous tissues to reflexes of different 

latencies and to feedback-based voluntary intervention. However, besides these purely 

internal contributions to stability, there is another type of stability originating from the 

interaction between the actor and the environment. Since humans interact with objects 

that pose physical constraints, an analysis of the task performance, including the 

evaluation of stability, must take the environment, the action system and their 

interaction into account.  

Some tasks have inherent stability that requires little or no additional control. 

Small perturbations die out without active error correction if the task is performed to 

exploit this “passive” stability. One example is the passive dynamic walking model 

from robotics. McGeer (1990) first demonstrated that a passive mechanical biped 

could walk along a gentle slope without actuation and control. The small fluctuations 

in the stepping motion could be dissipated, solely relying on the stability properties of 

this “life-less” system. The principles of passive dynamic walking have been further 

developed and implemented for robots walking on the level ground (for a review see 

Collins et al., 2005). The important implication from these studies for human 

movement control is that stability analysis of movements should not be limited to the 

neuromuscular substrate of the actor alone. A comprehensive analysis of the whole 

system, including the physics of both the actor and the physical environment, must be 

conducted to understand the task dynamics that constrains the available coordination 

strategies.  

The idea of passive stability has been investigated in a series of studies on the 

task of rhythmically bouncing a ball on a racket (Schaal et al., 1996; Sternad et al., 
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2000, 2001; de Rugy et al., 2003; Dijkstra et al., 2004). The task requires the actor to 

use a hand-held racket to bounce a ball vertically into the air to a consistent height. 

Similar to the passive dynamic walking studies, the research started with a model of 

the mechanics of the task ignoring neuromuscular aspects or control mechanisms. 

Stability analysis of this model revealed that the task affords a passively stable 

solution if the ball is hit by a decelerating racket. Small fluctuations or perturbations 

do not have to be explicitly corrected and stability of the system can be achieved with 

open-loop control. Empirical studies confirmed that experienced actors indeed 

adopted this strategy and organized the racket movement to hit the ball with negative 

racket acceleration (Dijkstra et al., 2004; Sternad et al., 2001). 

Such reliance on passive stability does not necessarily exclude active control of 

racket movement using perceptual information about the ball movement. A learning 

study revealed that novice actors started the bouncing task with positive impact 

acceleration and gradually tune to the passive regime with negative impact 

acceleration after approximately 30 minutes of practice (Dijkstra et al., 2004). This 

finding suggests that utilizing negative impact acceleration is not an intuitive solution 

for the actor and exploitation of passive stability is learnt through perception-guided 

practice. It was also found that actors adjusted their racket movements according to 

target errors induced by experimentally controlled perturbations (de Rugy et al., 2003; 

Wei, Dijkstra, & Sternad. 2007, submitted). At the same time, the racket impact 

acceleration in the subsequent bounces following a perturbation remained unchanged 

in the negative range despite changes in other racket kinematical variables. As a result, 

the error introduced by the perturbation was corrected much faster than the passive 

model would predict. It was suggested that actors shortened the relaxation process by 

using perceptually guided active control. However, actors simultaneously tune their 

performance to be dynamically stable to facilitate the correction of errors. Taken 

together, these results suggest that a mixture strategy, exploitation of passive stability 

and active control, was adopted by the actor when faced with perturbations.  

The question remains open whether the actor, when performing at steady state, 

solely relies on the passive strategy identified in previous studies. Negative impact 
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accelerations were found during steady state performance (Schaal et al., 1996; Sternad 

et al., 2001; Dijkstra et al., 2004) but the possibility of additional active components 

cannot be eliminated. It is possible that examination of racket kinematic variables has 

been too coarse-grained such that active control of racket movement with a more 

subtle presence has not been revealed. One route to evaluate performance in a 

finer-grained fashion is to examine the correlation structure of the state variables in 

the system. To make fine-grained predictions about the correlation structure, the 

current deterministic ball bouncing model must be extended with stochastic 

components. The present study adopted the stochastic model for the ball bouncing 

task proposed by Dijkstra and his colleagues (Dijkstra et al., 2004, see Model 

session).   

Extending a deterministic model with a stochastic component is one approach to 

further test a dynamic model. Fluctuations in movement execution are always present, 

due to intrinsic noise in the biological system. For example, the HKB model (Haken 

et al., 1985) was developed as a deterministic model to account for differential 

stability and the observed transition between the in-phase and anti-phase coordination 

modes. To account for the enhanced fluctuations preceding a phase transition, Schöner, 

Haken, and Kelso (1986) extended the HKB model by adding stochastic terms to the 

state dynamics. This stochastic model not only quantitatively accounted for 

fluctuations during the transition, it also made new predictions. For example, the 

so-called critical slowing down phenomenon before transition was one of the 

predicted features from the stochastic model. These predictions were confirmed in 

later experiments (Scholz, Kelso & Schöner, 1987). 

The current study followed the same strategy and added stochastic components to 

the original deterministic ball bouncing model representing the fluctuations during 

steady-state performance. Assuming that they are small, these fluctuations propagate 

across bounces with a specific relaxation behavior that can be captured by the 

covariance structure of the state variables and quantitative comparisons between the 

model and the data can be performed. Does the actor solely rely on passive stability 

for correcting small fluctuations in performance?  

74 



 
 

 

Model 

The model is based on the same bouncing map previously derived in (Tuffilaro, 

Abbott, & Reilly, 1992; Sternad et al., 2001; Dijkstra et al., 2004). Since we study 

stationary performance, we compare theory and experiment using the correlation 

functions of the state variables as yardstick. In order for the model to make 

predictions about the correlation functions, we briefly review the deterministic ball 

bouncing map and its stochastic extension (Dijkstra et al., 2004). The map is based on 

three assumptions: (1) between bounces the ball follows ballistic flight under 

influence of gravity (2) the impact is instantaneous with the coefficient of restitution 

capturing the energy loss at impact. (3) The racket movement is assumed to be a pure 

sine wave with fixed amplitude and frequency. This assumption is not strictly obeyed 

in experimental data. Human actors move the racket in an approximately sinusoidal 

trajectory but with a steeper slope just around the impact position. Unfortunately no 

simple expression is available to faithfully represent the actual waveform. Thus, for 

mathematical simplicity we use an equivalent sinusoid that is identical to the actual 

waveform around the time of the impact. The equivalent frequency of this sinusoid is 

calculated from the period between bounces. The equivalent amplitude of this 

sinusoid is calculated from the stationary phase of impact θ as: 

ar = π 1−α
1+ α

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

g
ω r

2 cosθ
(1) 

This equivalent amplitude is about twice as large as the observed amplitude and is 

such that the slope of the equivalent sinusoid closely matches the observed racket 

wave form. Based on these assumptions, the deterministic ball bouncing map can be 

derived as: 

vk +1 = (1+ α)arω r cosω rtk +1 − αvk + gα(tk +1 − tk ) (
0 = a

2)

r (sinω rtk − sinω rtk +1) + vk (tk +1 − tk ) − (g /2)(tk +1 − tk )2 (3)
    

75 



 
 

This is an implicit map with state variables vk, the ball velocity just after impact, 

and tk, denoting the racket time of impact. Parameters are g, the acceleration of gravity, 

α, the coefficient of restitution and ωr and ar the angular frequency and amplitude of 

racket motion. The map has a period-1 attractor that is stable when the impact 

acceleration AC fulfills the following constraints: 

−2 1+ α 2

(1+ α)2 < AC < 0 (4)  

The stochastic ball bouncing map is a straightforward extension with a small 

caveat for the implicit time map (eq 3): we introduce the intermediate state variable 

1+kτ  representing the noiseless time of the next impact. Using this variable, the 

stochastic ball bouncing map is:   

vk +1 = (1+ α)arωr cos(ωrtk +1) −αvk + gα(τ k +1 − tk ) + qvξk (5)
0 = ar (sin(ωktk ) − sin(ωkτ k +1)) + vk (τ k +1 − tk ) − (g /2)(τ k+1 − tk )2 (6)
tk +1 = τ k+1 + qtξk (7)

 

where kξ denotes a Gaussian white noise process with zero mean and unit variance. 

The model has two additional parameters, the noise strengths of the velocity and time 

dynamics, which are denoted by  and , respectively. Potentially, the noise in the 

velocity and time dynamics could be dependent leading to a third parameter capturing 

the correlation. As we show later in the results section, the experimentally observed 

correlation is essentially zero and thus we do not bother to introduce a parameter for 

this correlation. 

vq tq

 The correlation structure of the state variables can be calculated by linearizing the 

stochastic map around the period-1 attractor. To this end, we denote the state of the 

system by yk and the noise by εk: 

yk =
vk − ?v 
tk − ?t 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ εk =

qvξk

qtξk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

with linearized stochastic dynamics: 

yk+1 = Jyk + εk       (8) 
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where J denotes the Jacobian of the ball bouncing map. The derivation autocovariance 

function of this vector autoregressive system of order 1 (VAR(1)) is standard (Kendall 

& Ord 1990, Shumway &Stoffer 2000). Ry(0) at lag-0 of the two state variables can 

be calculated from the Lyapunov equation: 

Ry (0) = JRy (0) JT + Q  (9) 

with Q denoting the autocovariance matrix of the noise εk. For non-zero lag l the 

autocovariance function follows from: 

Ry (l) = J lRy (0)       (10) 

The Jacobian depends on all four parameters of the ball bouncing map. However, in 

their paper Dijkstra et al (2004) show that in many cases the absolute values of the 

eigenvalues of the Jacobian depends only on α, the coefficient of restitution. 

Specifically, the absolute values of the eigenvalues of the Jacobian equal α. Thus, the 

autocovariance function in eq 10 can be approximated as: 

Ry (l) =|α |l Ry (0)  (11) 

There is one more caveat in using the theory above for comparing theory and 

experiment: state variable tk, the time of impact, does not have a stationary state at 

zero. Specifically, the stationary state is determined by tk+1 = tk + T with T = 2π/ωr. 

This creates a problem when calculating the stationary state from data as T also has to 

be estimated from the data and T fluctuates within a trial when actors shift their 

impact height. In order to avoid this problem, we used the time between impacts δk = 

tk – tk-1 as state variable. The autocovariance function based on this new state variable 

(Rz(l)) is related to the old one (Ry(l)) as follows: 

Rz(l) =
Ry

1,1(l) Ry
1,2(l) − Ry

1,2(l −1)
Ry

2,1(l −1) − Ry
2,1(l) Ry

2,2(l) − 2Ry
2,2(l −1) + Ry

2,2(l − 2)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   (12) 

with R1,1 denoting matrix element 1, 1. With this background, the stochastic model 

makes the following predictions: 

Prediction 1: Consistent with previous experiments, negative impact acceleration of 

the racket will be observed. 
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Prediction 2: Stability, as quantified by the autocovariance function, decreases with 

increasing coefficient of restitution (α). Particularly, from eq 11 it follows that the 

autocorrelation function at lag-1 equals α. 

Prediction 3: With decreasing passive stability offered by the task dynamics, actors 

utilize more active control to stabilize their performance if a comparable performance 

is maintained at higher α conditions. The less dynamic stability the task offers, the 

more active control should be used. The stochastic model of ball bouncing assumes 

that oscillatory movement of the racket is purely passive without any modulation 

according to ball movement. More active control in higher α conditions will make the 

model deviate more from this assumption about passive dynamics. Therefore there 

should be an increasing mismatch between the predictions from the passive stochastic 

model and the real performance from the data with increasingly larger α.  

To quantify the amount of active control during steady-state performance, the 

present paper will calculate covariation between execution variables by using the 

permutation method introduced by Müller and Sternad (2003, 2004). It has long been 

recognized that execution variables such as joint angles can compensate for each other 

to lead to the same movement result such as an end point location. This covariation 

between execution variables has been proposed as a signature of control for 

movement coordination (Bernstein, 1967; Arutyunyan et al., 1969; Scholz and 

Schöner, 1999; Müller & Sternad, 2003, 2004). The present paper will define relevant 

execution variables for the ball bouncing task and evaluate the covariation in different 

α conditions.  

Prediction 4: Assuming that higher covariation means better or tighter control of 

execution variables to achieve the performance, then more active control is expected 

for higher α conditions.  

 

Method 

Participants 

Eight volunteers, with ages ranging from 21 to 47, participated in this experiment. 

All participants were right-handed and used their preferred right hand to bounce the 

78 



 
 

ball with the racket. Before the experiment, all participants were informed about the 

procedure and signed the consent form approved by the Regulatory Committee of the 

Pennsylvania State University.  

Experimental Apparatus 

In the virtual reality setup, participants manipulated a real table tennis racket in 

order to bounce a virtual ball that was projected on a screen in front of them (Figure 

1). Participants stood about 0.5 m behind a back-projection screen with width 2.5 m 

and height of 1.8 m. A PC (2.4 GHz Pentium CPU, Windows XP) controlled the 

experiment and generated the visual stimuli with an ATI Radeon 9700 graphics card. 

It also acquired the data using a 16 bit DT322 A/D card (DataTranslation). The 

images were projected using a Toshiba TLP 680 TFT-LCD projector and consisted of 

1024 by 768 pixels with a 60 Hz refresh rate. Accelerations were measured using a 

solid state piezoresistive accelerometer mounted on top of the racket (T45-10, 

Coulbourne). The mechanical brake on the rod attached to the racket was controlled 

by a solenoid (Magnet-Schultz type R 16x16 DC pull, subtype S-07447). A light rigid 

rod with three hinge joints was attached to the racket surface and ran through a wheel 

whose rotation was registered by an optical encoder with an accuracy of one pulse for 

0.27 mm of racket movement. The pulses from the optical encoder were counted by 

an onboard counter (DT322). The racket could move and tilt with minimal friction in 

three dimensions but only the vertical displacement was measured. Images of racket 

and ball position were shown on-line using custom-made software. The delay between 

real and virtual racket movement was measured in a separate experiment and found to 

be 18 ms on average with a standard deviation of 4 ms. 
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Figure 1: Experimental setup for the ball bouncing task in virtual reality.  

The virtual racket was displayed at the same height as the real racket and its 

displacement was the same as that of the real racket. The ball displayed on the screen 

was a virtual ball and its movement was governed by ballistic flight and an 

instantaneous impact event when the virtual racket impacted the virtual ball. Just 

before the virtual ball hit the virtual racket a trigger signal was sent out to the 

mechanical brake that was attached to the rod. The trigger signal was sent out 15 ms 

before the ball-racket contact to overcome the mechanical and electronic delay of the 

brake. The brake applied a brief force pulse to the rod to create the feeling of a real 

ball hitting the racket. Thus, the impact caused by the brake and the impact observed 

on the screen coincided. The duration of the force pulse (30 ms) was consistent with 

the impact duration observed in a real ball-racket experiment (Katsumata, Zatsiorsky, 

& Sternad, 2003). The impact force applied was not modulated according to the 

velocities of the ball and the racket as it stayed the same for all impacts.  

To summarize the experimental apparatus, the computer program controlling the 
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experiment would read the newest racket position from the optical encoder and racket 

acceleration from the accelerometer. When the racket was far from the ball, the 

program would update ball and racket positions based on the ballistic flight equation. 

On the 2.4 GHz computer under Windows XP this lead to an update rate of around 

800 Hz. When the ball and racket were close, the computer program would keep a 

running estimate of time-to-contact and control the brake accordingly. The increased 

computational load leads to a slow-down of the update rate to around 250 Hz in the 30 

ms surrounding an impact. The update rate was not fixed because Windows XP is not 

a real-time operating system and thus timing is not deterministic. To solve this 

problem all data were time-stamped using the high-resolution timer on the Pentium 

CPU, with accuracy better than 1 microsec. 

Procedure and Experimental Conditions 

Each trial began with a ball appearing at the left side of the screen and rolling on a 

horizontal line extending to the center of the screen. Upon reaching the center, the ball 

dropped from the horizontal line (0.8 meter high) to the racket. The task is to bounce 

the ball periodically to the target line (the line the ball started on). 

The experiment was conducted in 14 blocks with 7 different α values (0.3, 0.4, 0.5, 

0.6, 0.7, 0.8 and 0.9). Each α condition was presented in two blocks with 3 trials in 

each block. For 4 participants, the blocks were presented first in ascending and then 

descending order of α values, i.e., from 0.3 to 0.9 then from 0.9 to 0.3. For the other 4 

participants, the blocks were presented first in descending order and then in ascending 

order. Each trial lasted 40 seconds. 

Data Reduction and Analysis 

The first 5 seconds of data were eliminated from the analysis because subjects 

stabilized their performance in the initial part of the trial. The raw data of the racket 

displacement and acceleration were filtered by a 4th order Savitzky-Golay filter 

(Gander & Hrebicek, 1993) with a window size of 0.01 s on both sides. The filter 

order and window size were chosen empirically to remove the measurement noise 

while not excessively smoothing the signals. The Savitzky-Golay filter is superior for 

smoothing data that have abrupt changes as compared to conventional filters like 
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Butterworth filters. These abrupt changes occurred in the data when the racket 

exhibited a sudden drop in acceleration at impact, caused by the brake. The ball 

displacement data was simulated by the computer so it contained no measurement 

noise. Therefore, no filtering was performed. 

As a verification of our setup, the racket displacement was double-differentiated 

using a Savitzky-Golay filter and compared with the acceleration data collected by the 

accelerometer. The comparison showed a good match between the two types of data, 

supporting the validity of the customized data acquisition program.  

Dependent Measures 

Figure 2 illustrates the definitions of the primary dependent measures. Performance is 

evaluated by the ball height error, HE, defined as the signed difference between the 

maximum ball height and the target height. The amplitude of the racket movement (AR) 

was calculated as half the distance from the minimum to the maximum of the racket 

trajectory during one cycle. The period of the ball-racket actions (T) was calculated 

from the time intervals between impact moments of successive bounces. Impact 

acceleration (AC) was calculated from the accelerometer signal at the time of impact. 

For presentation, we used the grand mean of the dependent measures averaged 

over occurrences within trials, across trials and subjects. As measure of variability we 

used the standard deviation calculated from pooled occurrences within trials and 

across trials but averaged over subjects. 
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Figure 2: The racket and the ball position from a part of an exemplary trial with 

dependent measures HE, AR and T illustrated. 

 

Correlation Function 

 The vector autocorrelation function (ACF) is calculated from the vector 

covariance function by normalizing with the lag-0 covariances. The ACF captures the 

correlation of state variables across lags, which correspond to bounces in the model. 

The vector autocorrelation function encompasses both the autocorrelations and the 

cross-correlations of the two state variables. We denote vector autocorrelation 

function by ACF, with ACF v-v and ACF t-t as the autocorrelations for ball release 

velocity and impact period, respectively. The cross-correlations are denoted by ACF 

t-v and ACF v-t. For a given lag, the vector autocorrelation function equals the 

Pearson product-moment correlation of state variable (say release velocity) and a 

lagged copy of a state variable (say release velocity lagged by two bounces). At 

steady state a small deviation of a state variable (such as release velocity) propagates 

across bounces. If the system is stable, the deviation dies out relatively quickly and 
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the correlation function shows a quick decrease towards zero. If the system is less 

stable, a deviation takes longer to die out. 

The ACF of a single trial was calculated from the detrended release velocity and 

impact period. To calculated a mean ACF, the ACF’s were averaged over all trials and 

subjects for a given α. To calculate a measure of variability of the ACF, the standard 

deviation over trials was calculated for each subject and averaged over subjects. 

To calculate the predicted ACF from the model, four parameters have to be 

specified. Two parameters are specified by the experimental design: g is fixed at -9.81 

and α varies with condition. The other two parameters are calculated from the 

performance of each participant: the average bouncing frequency ωr and the average 

impact phase θ. From these four parameters, the racket amplitude and the Jacobian 

can be calculated (See Model section). Then by applying Equations 10, 11 and 12, the 

ACF is calculated. In sum, ACF is calculated from the linearized model, by 

incorporating some performance estimations from individual participants. The 

comparison of ACF from the data and ACF from the model serves as a test of the 

model.  

Covariation between Execution Variables 

The ball bouncing task can be viewed as a goal directed task such that the goal of 

every bounce is to propel the ball to the fixed target height. There are three execution 

variables on the task level that determine the bounce height of the ball: the impact 

position Ximp, the ball velocity immediately before impact Vbal and the racket velocity 

at impact Vrac. The bounce height is related to these variables by the ballistic flight 

equation (Equation 1) and the elastic impact equation (Equation 2). More specifically, 

the height error (HE) can be written as a function of these three execution variables: 

HE = ((1+ α)Vrac −αVbal )
2 /(2g) + Ximp − Xtarget   (13) 

where Xtarget is the target height set at 0.8 m in the present study. By applying this 

equation, a triplet of execution variables (Ximp, Vbal, Vrac) leads to one result variable 

(HE). The covariation of the execution variables is calculated in two steps. First, 

triplets from all the bounces in one trial are randomly permuted to produce a 
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pseudo-random data set, which contains no covariation between the three execution 

variables. By applying Equation 13 the height errors corresponding to this random 

data set can be computed. The average absolute value of the height errors is devoid of 

any covariation between the execution variables. By repeating the randomization 

many times (100 in our case), and averaging the resulting absolute value of the height 

errors, we calculate a reference value. Second, the difference is taken between this 

reference value and the observed average absolute value of the height errors without 

permutation. This difference quantifies the contribution from covariation between 

execution variables in units of the performance measure. 

 

Results 

Performance Measure (HE) 

As shown in Figure 3, average HE values pooled over trials and participants were 

positive, indicating that there was a tendency for participants to overshoot the target. 

The overshoot was larger with higher α. The error bars denote the average standard 

deviations over all the trials for the different α conditions. As evident from the figure, 

the variability of HE decreased with increasing α.  
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Figure 3: Ball height error (mean ± std) across α conditions.  

 

Racket Kinematics: Racket Amplitude, Racket Period, and Impact Acceleration 

The means and standard deviations of racket amplitude (AR), racket period (T), 

and impact acceleration (AC) within trials were calculated and then averaged across 

participants (Figure 4). There are clear changes in these variables with α: AR 

decreases and T increases with increasing α. The decrease in AR can be understood 

from the physics of the task: the more “bouncy” the racket is, the less racket velocity 

is necessary at impact to bounce the ball to a fixed target height. Hence, participants 

moved the racket less with higher α leading to smaller AR. It was also found for the 

more bouncy racket that participants tended to lower the racket impact position by a 

few centimeters (result not shown). This was allowed as participants were free to 

choose their preferred impact position, even though the target height was fixed. This 

effectively increased the ball amplitude and hence racket period with increasing α.  
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Average impact accelerations were negative. This result is consistent with 

prediction 1 and shows that subjects exploited passive stability of the task for all 

α conditions. The range of impact acceleration also fell within the boundaries as 

predicted by the model (Equation 4). The variability of all these racket kinematic 

variables decreased with increasing α. To elucidate this tendency, the standard 

deviations of these variables within each trial were calculated and then averaged over 

participants for each α condition, as shown in Figure 4. AR, T and AC show a clear 

decrease in variability with increasing α.   

 

 
Figure 4: The mean and standard deviation of racket amplitude, racket period and 

impact acceleration. The error bars denote the standard deviations across participants. 

 

Covariance Functions 

Figure 5 illustrates lag-1 ACFs of v-v, v-t, t-v and t-t as a function of α. The first 

thing to notice is the similarity between all four ACFs, both the experimentally 
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observed ones and the theoretically predicted ones. This is caused by the strong 

coupling between the two state variables, ball release velocity and time between 

contact. A positive fluctuation in one state variable (say ball release velocity) 

necessarily leads to a positive one in the other (a larger time between contact). 

Secondly, both the lag-1 ACFs from the data and the model increased with increasing 

α, indicating a decreasing stability. Thus, model prediction number 2 about the α 

dependency of stability was confirmed by the data. ACF values from the model and 

from the data matched closely for α ≤ 0.5, but not for higher α conditions. In these 

conditions, the data exhibit smaller lag-1 ACF than the model, indicating that better 

dynamic stability was achieved by the actor than the model predicted. This 

observation is consistent with prediction 3. 
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Figure 5: Lag-1 auto- and cross- correlation functions of release velocity and impact 

period as a function of α. Derived both from the data (grey lines) and the model 

(black crosses). Error bars denote the standard deviations across trials.  

 

Figure 6 shows the autocorrelation function between release velocities (ACF v-v) 

for different α conditions, both from the model and the data of a typical participant.  

From Figure 5 one might get the idea that there is a difference between observed 

ACFs and the theoretical ones for larger coefficients of restitution but that the 

difference is not that large: for α > 0.6 the theoretical predictions are outside of a band 

of 1 std from the observed mean but less than say 1.5 times the std. Figure 6 shows 
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the difference to be larger especially for α > 0.7. Since the eigenvalues of the 

Jacobian are complex (imaginary part is non-zero), the theoretical ACFs display 

oscillatory behavior quite different from the experimentally observed ACFs. The 

autocorrelation of time between impact and the crosscorrelations between release 

velocity and period revealed similar patterns as ACF v-v, therefore are not shown. 

As discussed in prediction 3, we interpret the increasing difference between the 

predicted and observed ACF as indirect evidence for an increasing contribution of 

active control. To uncover potential contribution of active control more directly, we 

performed a covariation analysis. 
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Figure 6: Autocorrelation functions of release velocity as a function of lag in different 

α conditions. Derived from the data (grey lines) and the model (black crosses). Error 

bars are the standard deviations across trials.  

 

Covariation between Execution Variables 

Covariation captures the contribution of mutual compensation between execution 

variables in reducing the variability of performance measures. Larger covariation 

values indicate more control. The statistical framework of covariation analysis 

assumes independent execution variables. As seen in the previous section subsequent 

bounces are statistically correlated, with correlations dying out after two bounces. In 

order to eliminate the observed correlation between adjacent bounces, all the bounces 

within one trial were down-sampled by 3, i.e., every fourth bounce was grouped 

together. Thus, the original data set from a trial was separated into 3 data sets for the 

purpose of the covariation analysis. Covariation was calculated separately for each 

data set and averaged to obtain a mean covariation for that trial. Covariations from all 

trials within each α condition were then averaged. 

To demonstrate that covariation is indicative of active control rather than a 

consequence of the task dynamics, covariation was calculated from the stochastic 

passive stability model. With noise at a level comparable to human performance, the 

model was simulated with 100 bounces in one trial. A total of 100 simulated trials 

were obtained for each α condition and covariation was calculated. As shown in 

Figure 7 for real human performance covariation increases with increasing α, 

indicating that mutual compensation between execution variables was more 

pronounced in the dynamically less stable conditions. Covariation from the simulated 

data set presents a very different picture: the values are significantly smaller and stay 

close to zero for the different α conditions. This indicates that the model with passive 

dynamics can only produce negligible levels of covariation between execution 

variable. Therefore, the large covariation from the actual performance was not an 

artifact from the task dynamics, but stems from active control of the actor.  
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Figure 7: Covariation between three execution variables (Ximp, Vbal and Vrac), averaged 

for each α condition. Error bars stand for the standard deviation between trials within 

each α condition. The bold line is from the data and the thin line is from the model 

simulation.  

 

Discussion 

The present study aimed to reveal the influence of passive stability and active 

control on the performance of a rhythmic ball bouncing task at steady-state 
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performance, where exploitation of passive stability had been found to be a preferable 

action strategy (Schaal et al., 1996; Dijkstra et al., 2004). This strategy alleviates the 

necessity for cycle-to-cycle adjustments of racket movements based on the perceived 

changes of the ball movement. However, whether active control of the racket 

movement exists at steady-state performance has been left untested. We recognized 

that the racket movement is stereotypical with little variations from cycle to cycle and 

subtle adjustments are hard to test as evidence for control. The present study chose the 

covariance structure of two state variables of the task dynamics to evaluate the 

correlation from one cycle to the following cycles. To make predictions about the 

covariance structure, the original deterministic model was extended to a stochastic 

model with the addition of noise terms to the dynamics (see Dijkstra et al., 2004). The 

coefficient of restitution of the ball-racket contact was identified as a key parameter 

influencing stability in the model. Dynamic stability of the system was predicted to 

decrease with increasing α such that lag-1 correlations should increase indicating a 

higher correlation between one cycle to the next. We speculated that with less 

dynamical stability of the system, the actor would turn to employ more active control 

in order to achieve a comparable stable performance. As a consequence, with more 

contribution of active control in the higher α conditions, lag-1 correlations should 

have smaller values than the model predicted since the model only includes passive 

stability. Further, there should be increasing mismatch between the data and the 

model predictions with increasing α.    

The major performance measures are the means and standard deviations of height 

error (HE) in each individual trial. It turned out that actors consistently overshot the 

target, as indicated by positive mean values of HE. Mean HE increased when the 

racket became “bouncier” at larger α. More importantly, the standard deviations of 

HE decreased with increasing α, showing a decreased variability in performance. This 

seems to be contradictory to the expectation based on the passive model, which 

predicts that dynamic stability should decrease with increasing α. Less stability of the 

system should lead to more variability in the human performance. Regarding the 

racket kinematics, it was found that the racket period increased and the racket 
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amplitude decreased with increasing α. The increased racket period can partly be 

explained by the increasing overshoot of the ball over the target and partly by a 

lowered impact position. The decreased racket amplitude is expected as the racket 

moves less to lead to a smaller velocity at impact when the racket becomes bouncier. 

Thus, the observed means of racket period and racket amplitude can be understood by 

the physics of the task. However, all these variables showed less variability with 

increasing α. It appears that actors managed to reduce their variability in movement 

execution when stability of the task deteriorated with changes in α. Another important 

finding is that impact acceleration was negative in all α conditions. A previous 

Lyapunov analysis suggested that mean impact acceleration between -2 and -5 m/s2 is 

optimal for exploitation of passive stability (Schaal et al., 2006). The mean results for 

each α condition were in this range, signifying that utilizing passive stability was still 

a preferable strategy adopted by the actor when faced with different degrees of 

dynamic stability of the task.   

The covariance structure of the state variables revealed that stability of the task 

was indeed reduced when α became larger. Lag-1 correlations within and between the 

two state variables all showed an increasing tendency (Figure 5). As lag-1 correlations 

reflect the degree of dissipation of small fluctuations from one bounce to the next, this 

result shows that stability of the task decreases with increasing α, as predicted by the 

model. However, the actor’s performance showed smaller lag-1 correlations for 

higher α, indicating that actors achieved better and more stable performance for these 

conditions by using a mechanism other than relying on passive stability. Moreover, 

this mismatch between the model prediction and the actual performance increased 

with increasingly larger α. The results on autocorrelation and cross-correlation over 

different lags reinforced this impression. The model prediction and the actual 

performance showed similar pattern for α < 0.6 conditions; for increasingly larger α, 

these two departed from each other more. These results suggested that the 

performance for low α conditions can be well accounted by the passive model. 

However, with less dynamic stability in high α conditions, actors employed other 

strategies, presumably by using more active control.  
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One piece of evidence for more active control in high α conditions is that 

variability of racket kinematics, including racket period, racket amplitude and impact 

acceleration, decreased with increasing α as stated above. This result shows that 

actors more carefully controlled their racket movement when confronted with less 

stability of the task. Except impact acceleration, these variables are descriptive about 

the continuous racket movement. Focusing on the discrete impact events, we 

recognized that three execution variables at impact determine the ball height 

following that bounce. This many-to-one relationship between execution variables 

and the result variable is related to the redundancy problem (Bernstein, 1967). Many 

researchers suggested that compensation between multiple execution variables to 

achieve a single goal is one of the solutions to the redundancy problem (Bernstein, 

1967; Arutyunyan et al., 1968, 1969; Scholz & Schöner, 1999; Müller & Sternad, 

2003, 2004). Using the permutation method suggested by Müller and Sternad (2003), 

we calculated the covariation of execution variables in different α conditions. The 

covariation is regarded as a signature of active control as it reflects the degree of 

mutual compensation between execution variables at impact. It turned out that 

covariation increased gradually and consistently with increasing α. This result is a 

second piece of evidence that more active control was utilized for higher α conditions. 

To elucidate that larger covariation for higher α conditions was not caused by the 

passive dynamics of the task, the stochastic model was numerically simulated to yield 

predictions about covariation as a function of α. The passive model without any 

active control component produced much smaller covariation than exhibited by the 

actual performance, suggesting the increasingly large covariation was indeed a 

reflection of more active control.  

 The present study reveals that when the stability property of a task is modified the 

actor can flexibly adopt two different control strategies: exploitation of passive 

dynamics and perception-guided active control. When the dynamic stability of the 

task is high in low α conditions, active control is not pronounced and exploitation of 

passive stability is the primary strategy. The support for the first claim is that 

covariation between execution variables was relatively small and variability in 
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movement execution was large. The support for the second claim comes from the 

good match between the model prediction and the actual performance in terms of 

covariance structure of state variables, suggesting that the passive model suffices to 

explain the actor’s performance. More support for the second claim comes from the 

impact acceleration, an indicator of exploitation of passive stability, that was in the 

optimal range as predicted by the model. 

When the dynamic stability of the task was reduced with increasingly larger α, 

there was evidence that active control became more pronounced while passive 

stability was still exploited. Covariation increased and variability in racket kinematics 

dropped with increasing α values, indicating a better and tighter control of action. 

Impact acceleration remained negative in the optimal range. It appears that actor 

resort to active control when passive stability becomes insufficient in maintaining 

comparable stable performance as in low α conditions.  

 The stability the present study examined is the consistency of kinematics of an 

external object that is manipulated repetitively by the actor. This stability is different 

to what is usually defined as stability in human control system where a stable 

movement of the human body itself is at concern. Hasan (2005) reviewed many 

studies about the response of human control system to mechanical perturbations and 

made a long list of various phenomena that are defined as stable behaviors. These 

stable behaviors included staying static though free to move, moving but within 

certain boundaries, successful maintaining articular relationships without damage or 

irritation, reliable movements, moving but showing little random or chaotic motion 

and so on. Despite the diversity of these operational definitions of stability in the 

motor control literature, stability of a dynamical system can be rigorously defined: 

Jordan and Smith state that “a dynamic system is stable in the Lyapunov sense if 

infinitesimally small variations in the state of the system remain infinitesimally small 

forever” (Hasan, 2005; Jordan & Smith, 1987).  

In motor control, stability is usually equated with the inverse of variability. 

However, stability is more than invariance or a reduced level of variability in certain 

performance measures. Specifically, dynamical stability is a formal and rigorous 
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concept in mathematics and physics as mentioned above. It can be quantified 

independently from measured variability in human movement. This point is illustrated 

in the present study: when the passive stability of the movement system decreased 

with increasing α, the variability of ball amplitude actually decreased, opposite to 

common expectation. The analysis on the execution of the task, instead of merely the 

result variable, revealed that actors adopted a higher degree of active control of the 

racket when dynamic stability was reduced. This result suggests that evaluation of 

stability of overt performance measure based on examination of its variability is not 

sufficient to understand the control that leads to performance changes. By modeling 

the physics of the task system and by analyzing execution details, the relative 

contribution of open-loop dynamics and closed-loop control can be distinguished and 

provide more insights into the underlying reasons for variability changes in 

performance.    

97 



 
 

References 

 

Arutyunyan, G. H., Gurfinkel, V. S., & Mirskii, M. L. (1969). Organization of 

movements on execution by man of an exact postural task. Biophysics, 14, 

1162–1167. 

Bernstein, N.A. (1967). The coordination and regulation of movements. London: 

Pergamon Press. 

Bühler, M., Koditschek, D.E., & Kindlmann, P.J. (1994). Planning and control of 

robotic juggling and catching tasks. International Journal of Robotics Research, 13, 

101-118. 

Collins, S.H., Ruina, A., Wisse, M., & Tedrake, R. (2005). Efficient bipedal robots 

based on passive-dynamic walkers. Science, 307, 1082-1085. 

de Rugy, A., Wei, K., Müller, H. & Sternad, D. (2003). Actively tracking ‘passive’ 

stability in a ball bouncing task. Brain Research, 982, 64-78. 

Dijkstra, T.M.H., Katsumata, H., de Rugy, A. & Sternad, D. (2004). The dialogue 

between data and model: Passive stability and relaxation behavior in a ball bouncing 

task. Nonlinear Studies, 11, 3, 319-345.  

Gander, W. & Hrebicek, J. (1993). Solving Problems in Scientific Computing using 

Matlab and Maple, Verlag: Springer. 

Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transition 

in human hand it, movements. Biological Cybernetics, 51, 347-356.  

Hasan, Z. (2005). The human motor control system’s response to mechanical 

perturbation: Should can it and does it ensure stability? Journal of Motor Behavior, 37, 

6, 484-493.  

98 



 
 

Jordan, D. W., & Smith, P. (1987). Nonlinear ordinary differential equations. New 

York: Oxford University Press. 

Katsumata, H., Zatsiorsky, V., & Sternad, D. (2003). Control of ball-racket 

interactions in the rhythmic propulsion of elastic and non-elastic balls. Experimental 

Brain Research, 149, 17-29. 

Kendall M., & Ord, K. (1989) Time series. Oxford University Press. 

McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics 

Research 9, 2, 62–82. 

Müller, H. & Sternad, D. (2003). A randomization method for the calculation of 

covariation in multiple nonlinear relations: Illustrated at the example of goal-directed 

movements. Biological Cybernetics, 89, 22-33.  

Müller, H., & Sternad, D. (2004). Decomposition of variability in the execution 

of goal-oriented tasks – Three components of skill improvement. Journal of 

Experimental Psychology: Human Perception and Performance, 30, 1, 212-233  

Schaal, S., Atkeson, C.G. & Sternad, D. (1996). One-handed juggling: A dynamical 

approach to a rhythmic movement task. Journal of Motor Behavior, 28, 165-183. 

Scholz, J.P., Kelso, J.A.S., & Schöner, G. (1987). Nonequilibrium phase transitions in 

coordinated biological motion: Critical slowing down and switching time. Physics 

Letters A, 123, 390-394. 

Schöner, G., Haken, H., & Kelso, J.A.S. (1986). A stochastic theory of phase 

transitions in human hand movement. Biological Cybernetics, 53, 442-452. 

Shumway, R.H., & Stoffer, D.S. (2001) Time series analysis and its applications 

Springer. 

99 



 
 

Sternad, D., Duarte, M., Katsumata, H. & Schaal, S. (2001). Bouncing a ball: Tuning 

into dynamical stability. Journal of Experimental Psychology: Human Perception and 

Performance, 27, 1163-1184. 

Sternad, D., Duarte, M., Katsumata, H., & Schaal, S. (2000). Dynamics of a bouncing 

ball in human performance. Physical Review E, 63, 011902-1 – 011902-8.  

Tufillaro, N.B., Abbott, T., & Reilly,J. (1992). An experimental approach to nonlinear 

dynamics and chaos, Redwood City, CA: Addison-Wesley. 

Wei, K., Dijkstra, T.M.H., & Sternad, D. (submitted). Perturbations of passive 

stability in a ball bouncing task. Journal of Neurophysiology. 

 

 

 

 

 

100 



 
 

 

CHAPTER 5 

 

Variability and Stability during Learning and Adaptation 

 

Chapter 5 contains an original manuscript prepared for submission to a journal. 

 

“Variability and Stability during the Acquisition and Adaptation of a Rhythmic 

Skill” 

Tjitske Boonstra, Kunlin Wei, Dagmar Sternad 

 Department of Kinesiology and Integrative Biosciences, Pennsylvania State 

University 

101 



 
 

Abstract 

 

It has been argued that acquisition of a skill is characterized by the exploration 

and exploitation of variability within a given task. Actors first explore the space of 

solutions to find a stable strategy for a given task and then further decrease variability. 

One of our previous studies had illustrated that during acquisition of the ball bouncing 

skill the increasing attunement to passive stable is accompanied by a reduction of 

variability in performance. The present study aims to confirm that skill improvement 

is indeed characterized by utilizing passive stability but additional to show that the 

structure of variability changes independently. Applying a novel analysis method the 

learning process will be evaluated in the execution space, which is spanned by 

relevant execution variables that lead to the movement outcome variable. A set of 

individual events will be represented as a distribution in the execution space that 

contains a manifold of solutions. The study also studied the adaptation of the learned 

skill in the execution space when the original preferred solutions became unstable. 

The process of adaptation was characterized by exploration in execution space and 

simultaneous re-establishment of the passively stable regime. 
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Introduction 

 

While many basic behaviors are developed early in life, such as walking upright 

and grasping an object, humans continually face new perceptual-motor tasks ranging 

from tying shoelaces or hammering a nail into the wall to the numerous 

“unnecessary” challenges created by leisure time activities. Often they are invented 

exactly because they pose new challenges to the perceptual-motor system. Apparently, 

humans like to and constantly have to modify and adapt their learnt movements to the 

ever-changing demands from the environment. Acquisition and adaptation of skills is 

often viewed as the same process although they may happen at different time scales 

and may be of different degree.  

In studies on motor learning the typical indicators for documenting performance 

improvement is a decrease in error or in the variability of a performance variable, 

such as distance from a target or period and amplitude in a rhythmic performance 

(Darling & Cooke, 1987; Gottlieb, Corcos, Jaric, & Agarwal, 1989; Worringham, 

1991, 1993). Reducing variability has often been equated with an increase in stability. 

This simple inverse relationship, however, obscures the fact that empirical variability 

can be indicative of many different facets ranging from the obvious “lack of control” 

to more beneficial aspects, such as compensatory variation between parameters, and 

exploration of new tasks. Dysfunctional behavior is not only evidenced by abnormal 

levels of variability, as seen in tremor or excessive movements, but also by the 

absence of fluctuations in stereotypy and, consequently, the absence of adaptability of 

the system. 

Stability is a similarly broad concept and the commonsense use of the word as 

invariance of a task parameter over repetitions does not capture its full meaning. 

Specifically in dynamical systems and control theory stability is a well-defined 

concept. With a view to biological systems, stability is defined as the ability of an 

organism to persevere in a particular behavior in spite of perturbations from an internal 
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or external environment (Jagacinski & Flach, 1999; Strogatz, 1994). More formal 

definitions hold for specific aspects of stability, such as global, neutral, or Lyapunov 

stability (Jordan & Smith, 1987; Strogatz, 1994). Stability was probably first 

recognized in its central role for biological movement systems by Bertalanffy who 

postulated that goal-directed behavior is governed by equifinality, i.e., equilibrium 

states (Bertalanffy, 1950, 1973). In a similar vein the dynamical systems perspective 

has proposed that the high-dimensional movement system is organized around stable 

states. The most fertile line of research has focused on rhythmic uni- and bimanual 

coordination, which was modeled as coupled nonlinear oscillations which show limit 

cycle behavior (Amazeen, Amazeen, & Turvey, 1998; Kelso, 1995). Important for the 

present argument is that in these studies fluctuations were only captured in terms of 

stochastic noise processes which represented processes operating at another 

spatio-temporal scale of the system, e.g., faster frequencies at the neural or molecular 

level. Further, variability was only analyzed in its inverse relationship with stability. 

The present study will extend this approach and connect the analysis of stable 

behavior with an analysis of the structure of variability. 

In a series of previous studies Sternad and colleagues investigated the skill of 

bouncing a ball rhythmically on a racket as an exemplary perceptual-motor task in 

which dynamical stability plays a central role (Katsumata, Zatsiorsky, & Sternad, 

2003; Schaal, Sternad, & Atkeson, 1996; Sternad, 2000; Sternad, Duarte, Katsumata, 

& Schaal, 2000, 2001). This task has received attention in both the robotics and the 

motor control literature (Aboaf, Drucker, & Atkeson, 1989; Bühler, 1990; Buhler, 

Koditschek, & Kindlmann, 1994). The actor (or actuator) holds a racket in his/her 

hand and hits a ball into the air keeping a consistent period and amplitude. The cyclic 

ball-racket interactions have been modeled by a system of nonlinear discrete 

equations in modification of the “hopping particle model” that was originally 

developed in the applied mathematics literature. There, it provided a study case to 

investigate dynamical stability and the period-doubling route to chaos (Guckenheimer 

& Holmes, 1983; Tufillaro, Abbott, & Reilly, 1992). The application of this model to 
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human performance was first advanced by Sternad and colleagues in a series of 

studies using an experimental set-up that closely mimicked the physical model of the 

ball bouncing on a periodically moving table (Dijkstra, Katsumata, de Rugy, & 

Sternad, 2004; Schaal et al., 1996). Stability analyses of the task dynamics indicate 

that there exists a stable regime if the racket hits the ball with negative acceleration. 

Tuning to this stable regime, small fluctuations in performance can be dissipated 

without active error corrections. This strategy is optimal in terms of control effort and 

it stands in contrast to the more computationally expensive approach of classical 

control theory in which a deviation of the ball has to be compensated for by an 

explicit change of the actuator trajectory. Empirical studies showed that indeed 

experienced actors are sensitive to the stability properties of the task and bounce the 

ball with negative racket acceleration (Dijkstra et al., 2004; Schaal et al., 1996; 

Sternad et al., 2001).  

How do humans learn to exploit this stability? It has been proposed that humans 

first try to find the stable points of a system and from there on further refine their skill. 

For example, (Beek & van Santvoord, 1992) suggested that learning a new motor skill 

involves the discovery of invariance or fixed points in the perceptual-motor 

workspace of the skill. (Schöner, Zanone, & Kelso, 1992) suggested that the dynamics 

of the task evolves with practice to develop an attractor solution near the 

to-be-learned pattern. (Milton, Small, & Solodkin, 2004) reported that the first step in 

learning a motor task consists of an increasing reliance on the self-regulatory aspects 

of the motor task, i.e., the dynamics of the task, followed by a minimization of 

intentionally directed corrective movements. However, none of these studies have 

combined a systematic quantification of both stability and variability. 

One previous study on ball bouncing already addressed skill acquisition as a 

process of tuning to stable regime (Dijkstra et al., 2004; Sternad et al., 2001). It was 

found that novice bouncers started their practice with positive racket impact 

acceleration, which was unstable solution according to the stability analysis of the 

task. With practice, the impact acceleration gradually decreased to negative values 
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within an optimally stable range as predicted by the model. The variability of the ball 

amplitude decreased simultaneously with this tuning to passive stability regime. 

While this finding is consistent with the common belief that variability is equal to the 

inverse of stability, it does not establish the causality relationship between variability 

and stability in human performance. The present study aims to firstly replicate that 

skill improvement is indeed characterized by utilizing passive stability but additional 

to show that the structure of variability changes independently. In order to reveal 

changes in the structure of variability during skill acquisition, the so-called TNC 

decomposition as proposed by (Müller & Sternad, 2003, 2004) will be adopted. This 

method parses changes in variability during learning into three conceptually different 

components, tolerance T, noise reduction N, and covariation C.  

The TNC-analyses are performed in so-called execution space. The execution 

space is spanned by the execution variables that determine the task outcome 

completely. For example, in a throwing task, the release angle, velocity, and position 

determine whether the ball is going to hit the target. If the goal of performance is to 

achieve a given ball amplitude, it follows from basic mechanics that the ball 

amplitude is completely determined by three execution variables: racket velocity ( ), 

ball velocity before impact ( ) and impact position (

Rx&

−
Bx& xB). The result, i.e., ball 

amplitude, can be calculated with the equations of ballistic flight in a gravitational 

field given a coefficient of restitution capturing the energy loss at the moment of 

contact. Each bounce is thus regarded as a separate event or data point in execution 

space. An example of execution space of the ball bouncing is given in Figure 1. The 

3-dimensional surface is the solution manifold containing all the possible 

combinations of the execution variables for perfect hits that lead to a target ball 

amplitude of 0.8m. Further, all points in this space can be assigned a value of the 

result variable. Figure 2 depicts this by showing a 2-dimensional section of the 

three-dimensional space, taken at the impact position of 0.285m. In each panel, the 

white areas represent combinations of execution variables that result in zero error 

(solution manifold) and the increasingly darker shades indicate increasingly larger 
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errors. The black data points stand for individual bounces. Different clouds of data 

points in these 4 subplots schematically illustrate performance at different stages of 

learning.   
 

 

 

Figure 1: Execution space for ball bouncing with the surface representing all 

possible solutions with zero error, i.e., hitting the target exactly. The dots denote 

the bounces of one trial.  
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Figure 2: Execution space and solution manifold in ball bouncing taken at a section of 

the impact position at 0.285m. The white shading indicates all possible solutions (ball 

velocity and racket velocity combinations) with zero error in ball height. The grey 

shades show the corresponding error (see legend). Four panels represent performances 

at different stages of learning (details in text). Each black dot denotes one bounce. 

 

Task Tolerance (T). The first component is task tolerance which accounts for the 

search for areas with better solutions in execution space. As shown in Figure 2, data 

points at the average location denoted by A move to location B. One can intuit that a 

broader solution space is less sensitive or more tolerant with respect to perturbations 

or errors. Therefore, finding the areas in the execution space that are more tolerant to 

errors will contribute to the improvement in performance. This part of improvement 

in performance is captured by T.  

Noise Reduction (N). It is commonly known that a certain degree of fluctuations 

or noise is inevitable in movement performance and can never be completely 

eliminated. Reduction of such fluctuations as a consequence of practice is widely 
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acknowledged as an important reflection of skill improvement (e.g., Darling & Cooke, 

1987; Gottlieb, Corcos, Jaric & Agarwal, 1989; Worringham, 1991, 1993). The 

TNC-method can separate the influence of noise reduction (reduced data scatter in 

execution space) on the performance improvement from other influences. Returning 

to Figure 2 consider data sets B and C. Both sets are at the same location in execution 

space; however, the dispersion of the two data sets differs significantly. This change in 

variability from B to C is referred to as reduction of Noise, N.  

Covariation (C). The difference between data sets C and D can be viewed as a 

third factor contributing to decreases of the variability in the result. Data set D 

clusters along the direction of the solution manifold, whereas C does not. The two 

execution variables covary in the data set D such that the data distribution is aligned 

with solution manifold. It has long been recognized that execution variables such as 

joint angles can compensate for each other to lead to movement results of less 

variability, such as more consistent trajectories. Several studies have shown that 

human actors indeed use covariation to decrease the variability in the result. This 

covariation between execution variables has been proposed as a signature of control 

for movement coordination (Arutyunyan, Gurfinkel, & Mirskii, 1969; Bernstein, 1967; 

Müller & Sternad, 2003, 2004; Scholz & Schöner, 1999). The improvement in 

variability by covarying the execution variables is referred as Covariation, C.  

The present study will simultaneously investigate the changes in stability and 

variability during learning of the ball bouncing task. While a model of the task and its 

stability analysis about dynamic stability has already been developed and shown to be 

insightful, the execution of bouncing will also be analyzed for its structure of 

variability, i.e., relative contributions of variability components. Changes in 

variability and stability and their relationship can be independently determined and 

examined during the process of skill acquisition.  

Further, in order to study how stability and variability of performance change 

during adaptation to a novel execution space, the present study will introduce 

perturbations in the execution space after actors already stabilized their performance. 

This change of task properties was conducted by manipulating the solution manifold 
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of ball bouncing in a virtual set-up. From previous studies, it is expected that after 

practicing the task, the actor will adopt the strategy to utilize the passive stability with 

negative racket impact acceleration. By experimental manipulations, the introduced 

perturbations will effectively destabilize the originally preferred executions forcing 

the actor to migrate from the perturbed region to a new region in execution space. 

Will the actor change their strategy to employ more perception-guided active control 

as the errors introduced by perturbations become obvious? Or alternatively, will the 

actor continue to utilize passive stability while changing location in execution space? 

If the actor maintains the strategy of tuning to passive stability, how does the structure 

of variability change with this adaptation? During relocation in execution space, how 

far will the actor move to avoid the perturbed region? These questions will be 

addressed by analyzing the impact acceleration, distributional properties of the 

variability in the execution space and TNC variability decomposition.  

 

Methods 

Participants. Eight right-handed participants (4 male, 4 female) from the 

undergraduate and graduate population at the Pennsylvania State University 

volunteered to participate in this experiment (mean age: 31.2 years, SD: 7.3 years). 

They were informed about the purpose of the experiment, but were naïve about the 

nature of the manipulations in Part II of the experiment. Prior to the experiment the 

participants were instructed about the experiment and signed an informed consent 

form in agreement with the Institutional Review Board of the Pennsylvania State 

University. They were paid for their participation. 

Apparatus. A virtual set-up was used to conduct the experiment (Figure 3). This 

set-up consisted of a real table tennis racket which had a rigid rod attached underneath. 

The rod itself was 1.5m long and consisted of three segments that were connected by 

hinge joints. With these linkages it was possible to freely move and tilt the racket in 3 

dimensions. Even though the task did not require movements in 3D, this configuration 

of the rod ensured that displacements of the racket away from vertical movements did 

not encounter resistance. The lower segment of the rod ran through a noose in the 
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floor piece. On the side of the noose was a wheel that was rotated by the vertical 

displacements of the rod. The revolutions of this wheel were measured with an optical 

encoder. The signal of the optical encoder was transformed by a digital-to-analog 

converter and sent online to the computer that controlled the visual display. Note that 

only the vertical movements of the racket were measured. In principle the racket 

could move in all three dimensions, but these movements were negligible as the 

virtual ball movements only required vertical displacements of the racket (see below).  

 
Figure 3: Virtual reality setup for the ball bouncing task 

 

The participant stood behind the apparatus on a platform that could be adjusted for 

different heights. The criterion for adjustment was that in the rest position the 

participant held the racket in a comfortable arm position with the elbow and upper 

arm at right angle (shown in Figure 3). A back projection screen with width of 2.5m 

and height of 1.8m was used to project the movements of the racket and the ball. The 

participant was positioned approximately 1m behind this screen, with the projected 

racket directly in front of the real racket at the same height. Movements of the virtual 
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racket corresponded to the online recorded movements of the real racket such that 

10cm of real racket displacement would be shown as 10cm of virtual racket 

displacement on the screen. The total latency between the recorded and the displayed 

signal of the racket movements was 11ms. Both the ball and the racket movements 

were confined to the vertical direction only.  

In order to simulate the impact of the ball, a mechanical brake pulled on the rod at 

every ball-racket impact producing a force that was similar to the force imparted by a 

tennis ball. This braking action was produced by a solenoid and was applied for 30ms. 

Participants moved the real racket to interact with the virtual ball, while both the 

racket and the ball were shown on the screen. The mean sampling rate was about 

800Hz. The refresh rate for the visual display was 75Hz. Custom-written software 

was developed in Visual C++ 6.0 (Microsoft) to collect the racket displacement data, 

compute the ballistic flight of the ball and the impact event, and subsequently display 

both the ball and the racket.   

As the acceleration of the racket movements at the ball contact was a central 

variable in the analysis, an additional accelerometer was attached to the base of the 

real racket (uni-axial V94-41, range ±10g, resolution .01g, Colbourn, PA). Its analog 

signal was collected and converted to digital at the same sampling frequency as the 

displacement of the racket.  

The ball’s trajectory was calculated using the equations of ballistic flight and 

elastic impact. If the ball is in the air, its vertical motion is only influenced by gravity:  

0,0,
22/1)( BBB xtxgttx ++−= &     (1) 

xB (t)  is the vertical position of the ball, t is the time which is reset to zero at every 

impact, g denotes gravity, xB,0 is the position of the ball at impact,  is the 

velocity of the ball immediately after impact.  is determined by the impact 

relation: 

0,Bx&

0,Bx&

)()( RBRB xxxx &&&& −−=− −+ α     (2) 
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+
Bx&  denotes the velocity of the ball after contact, equivalent to  in Eq.1;  is 

the velocity of the ball before the contact. α is the coefficient of restitution that 

captures the energy loss during the impact event. Due to the assumptions that the 

impact is instantaneous and that the racket has a much larger mass than the ball, 

racket velocity  remains the same before and after impact. For the experiment α 

was set to 0.6. The ball displacement was calculated and sampled at the same 

frequency as the racket displacement was sampled. 

0,Bx& −
Bx&

Rx&

Procedure and Design. The participants were instructed to bounce the virtual ball 

rhythmically for the duration of one trial. They were instructed to bounce the ball so 

that the peaks of the ball trajectory reached the target line as accurately as possible. 

The target line was at a height of 0.8m measured from the lowest possible racket 

position. At the beginning of each trial, the ball appeared on the right side of the 

screen and rolled across a horizontal target line, which extended to the middle of the 

screen directly above the racket position. When the ball reached the end of the line, it 

dropped down onto the center of the racket (Figure 2). This starting procedure was 

designed to prepare the participants for each trial.  

The experiment consisted of two parts, each consisting of two sessions of data 

collection. In Part I, participants completed 24 trials on the first day and 24 trials on a 

consecutive day. Each trial lasted 60 seconds. In Part II, participants similarly 

performed two sessions with 24 trials each on consecutive days, but now under 

perturbed conditions. To provide a transition the first session in Part II began with an 

additional 10 trials where participants performed with the same unperturbed condition 

as in Part I.  

In the first session of Part I, participants were introduced to the experiment with a 

standardized instruction. To familiarize them with the set-up, they first practiced the 

task for 3 trials without any data recording. At the first session of Part II, participants 

were informed about the presence of perturbations and were encouraged to adapt as 

best as they could. No further information was given as to the nature of the 

perturbations. 
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Data Processing and Calculation of Dependent Measures. As the sampling 

frequency for the racket and ball displacements and racket acceleration was slightly 

variable depending on the performance of the computer, these data were re-sampled at 

a uniform frequency of 500 Hz using a spline interpolation algorithm. While racket 

and ball displacements did not require filtering, the re-sampled acceleration signals 

were filtered with a Savitzky-Golay filter (order 0, window size 0.01). All analyses 

were performed with Matlab (Version 7.0.1, The Mathworks). 

Performance Measures. For every trial, the mean absolute error (AE) and the 

standard deviations of ball amplitude (SDB) were calculated. For each bounce, the 

absolute difference between the peak position of the ball trajectory and the height of 

the target line was calculated. The average of the absolute errors, AE, and its standard 

deviations, SDB, were calculated over the individual bounces of each trial. The first 8 

seconds of each trial were not included in the analyses to eliminate possible start-up 

transients before the participant had established a stable bouncing pattern. As the 

entire trial included approximately 80-100 bounces, the performance measures were 

calculated over approximately 70-80 bounces. 

Acceleration at Impact. In order to determine the racket acceleration directly prior 

to impact (AC) from the continuous accelerometer signal, the time of impact was 

defined as the moment when the brake started to pull on the rod. This moment was 

determined by the time when the computer sent the signal to trigger the break 

including a correction for the delay. This delay was measured separately and was 

about 6ms. The AC values were then determined from the accelerometer signal at one 

sample prior to impact. For every trial, the mean AC was calculated over the estimates 

for the 70-80 bounces per trial, similarly eliminating the first 8s of the trial. 

Execution Variables at Impact. The three execution variables impact position (IP 

equivalent to xB,0 in Eq. 1), velocity of the ball before impact (BV, equivalent to  

in Eq. 1) and velocity of the racket at impact (RV, equivalent to  in Eq. 2) were 

registered by the data acquisition program directly when a racket-ball impact 

happened. (The notations for three execution variables were changed from now on for 

0,Bx&

Rx&
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clarity.) The mean values and standard deviations of the execution variables were 

calculated over all 70-80 bounces per trial.  

Variability Components. Based on the execution variables at each bounce, the 

TNC analyses were performed as described in Appendix A. One trial was treated as a 

data set consisting of approximately 70-80 data points, i.e., bounces. The calculations 

of T, N, and C were conducted as follows: In Part I, the first trial from the first session 

was taken as a reference trial. Each subsequent trial was then compared with this first 

trial such that the changes and contributions of T and N were calculated in a pairwise 

comparison manner. Hence, the values of T and N for subsequent comparisons 

reflected the changes over practice in a cumulative fashion. C was calculated by 

comparing the data set from each trial to the shuffled data set. In Part II, the last trial 

of the 10 unperturbed trials served as the reference trial. Except this change, all the 

other calculation steps were the same as in Part I. For the calculation of covariation in 

the respective data pairs, the data was permuted 50 times. A detailed explanation is 

provided in Appendix A and in Müller and Sternad (2003). 

Distortion of Execution Space. The objective of Part II was to evaluate how 

participants adapted to changes of the topology of the solution manifold. Given that 

participants had established their individual solution strategies in Part I, a distortion of 

the manifold was designed in an individualized way to afford comparisons across 

participants. The individual’s strategy as established in Part I was assessed from the 

first 10 trials under normal conditions in Part II. Before this procedure was applied, 

we verified that the means and distributions of the first 10 trials were not significantly 

different from the last 10 trials in Part I. The individual’s performance corresponded 

to a data distribution in execution space, where the means and dispersions of the 

execution variables characterized an individual’s strategy: means IP , BV , RV  and 

their respective standard deviations SDIP, SDBV, SDRV. Note that the variables in 

general had a normal distribution such that the mean was an appropriate statistic. 

Figure 4 shows the execution space with the large ellipsoid representing the 3D 

distribution of the pre-distortion trial bounded by two standard deviations in the 
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directions of the three execution variable. The small ellipsoid represents the 

distribution of data at the end of the session. 

 

Figure 4:  The dispersion of three execution variables in the execution space. The 

center of the ellipsoid is the mean performance ( IP , BV , RV ), the radii are the 2 

times standard deviation of each variable (2*SDIP, 2*SDBV, 2*SDRV). The bigger 

ellipsoid is from the 10th trial under normal condition in Part II, the smaller ellipsoid 

is from the last trial in Part II.  

 

These parameters provided the baseline to calculate the distortion of the solution 

manifold for each individual participant. A perturbation was applied when a bounce 

was within the 3D ellipsoidal distribution determined from the 10 pre-distortion trials. 

The magnitude of the perturbation was maximum when the bounce occurred at 

exactly the mean preferred solution ( IP , BV , RV ), the center of the ellipsoid. The 

perturbation magnitude linearly decreased with increasing distance from the preferred 
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solution and became zero at the surface of the ellipsoid. The perturbation consisted of 

adding some value to the ball velocity BV at release of that particular bounce i, 

leading to a deviation from the expected and physically correct ball amplitude (see 

Eqs. 1 and 2). Thereby, the originally preferred solution in execution space was no 

longer successful. Further, each bounce i could be now characterized by its geometric 

distance Di to the preferred solution ( IP , BV , RV ). For the calculation of the 

perturbation magnitude the distances Di from the preferred solution had to be 

normalized because the three variables had different units and magnitudes. Di was 

computed as the Cartesian sum over the three normalized distances in each dimension, 

DIPi , DBVi , and DRVi : 
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Hence, for each bounce Di was computed. If the data point was inside the 

ellipsoid, i.e., Di was between 0 and 1, a perturbation was applied. The magnitude of 

the perturbation was such that for Di = 0, the perturbation was maximum, 

corresponding to a deviation in ball amplitude of 0.15m. For Di ≥ 1, perturbations 

were zero. For 0 ≤ Di ≤ 1 the perturbation scaled linearly producing amplitude 

deviations between 0 to 0.15m. Note that Di was always positive. However, if the 

original bounce would have undershot the target, the applied perturbation was 

assigned a negative direction, amplifying the undershooting even more. Conversely, if 

the ball overshot the target, perturbations were assigned a positive direction. This sign 

convention avoided a canceling of ball amplitude errors and reduced the possibility of 
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confusing feedback to the participants. 

These perturbations led to an effective distortion of the solution manifold, as 

shown in Figure 5 for a typical subject. Figure 5A displays a 2D slice of the 

undistorted manifold; Figure 5B shows a 2D slice through the distorted manifold, 

illustrating the oblique orientation of the ellipsoid calculated for an individual’s 

performance. The 2D slice was selected at IP , the mean performance for that subject. 

This corresponded to slice through the center of the ellipsoid. Grey shades denote 

absolute errors of the ball amplitude with white denoting zero error. Note that while 

zero error solutions disappear within the ellipsoid, a hint of slightly better solutions 

close to the original manifold remain, visible as a thin light grey line. This is due to 

the fact that the perturbations that modified the ball amplitude are not proportional to 

the original ball amplitude. 
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Figure 5: Solution manifold in ball bouncing before distortion (A) and after distortion 

(B) It shows all possible solutions (ball velocity and racket velocity combinations) for 

impact position at 0.27m. The associated AEs with the solutions are shown in different 

grey shadings.  

 

Curve Fitting. The time course of dependent measures AE, SDB and AC over the 

trials in Parts I and II were fitted by an exponential regression equation:  

y(t) = ae−bt + c  

where y is the dependent measure, t denotes the independent measure which was trial 
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number in the present case, and a, b and c were fitting parameters. The nonlinear 

Levenberg-Marquardt regressions were performed by using the curve fitting toolbox 

in Matlab 7.01.  

Elimination of Trials. In Part I inspection of the raw data made it necessary to 

discard one participant’s (P5) accelerometer data from the analyses because it showed 

too much noise. This was traced to a problem with the accelerometer, which was 

subsequently repaired. As the signal of the encoder was unaffected and all other 

measures based on its position readings could be determined they were included in the 

analyses. In Part II of the experiment the data of Participant 4 had to be eliminated 

from the analyses, because of an error in the calculation of the distortion of the 

solution manifold. Additionally, some selected trials had to be eliminated as 

participants failed to perform a regular pattern. The criterion for elimination was that 

the ball amplitude was two standard deviations below the mean amplitude for three 

consecutive bounces. In Part I four such trials, in Part II six such trials were detected. 

When analyzing the time course of the trial means within participants these missing 

data points were filled in by taking the average of the two adjacent data point. 

 

Results 

Part I: 

Task Performance. For a first evaluation of task performance, the absolute error of 

the ball to the target AE was examined. Figure 6A depicts the group averages over the 

course of the 48 trials together with an exponential fit as shown by the solid line. For 

each trial the AE means of all 8 participants were averaged. The overall R2 of the 

exponential fit was 0.92. The exponential decrease in AE indicated that participants 

indeed became more accurate at bouncing the ball to the target height. The average 

error decreased from 0.08m to 0.035m. Figure 6B shows the individual exponential 

fits for each of the 8 participants’ data, showing an exponential decrease in error for 

all but one participant. The data points of each trial are not shown in the figure for 
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clarity of presentation. The R2-scores for the 8 regression fits ranged between 0.60 

and 0.88. The dashed line corresponds to the participant with the lowest R2-value of 

0.60. This participant (P8) had a lot of experience in recreational table tennis, which 

might explain his relatively good performance level already at the beginning. 
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Figure 6: Absolute error of ball height across the series of 48 trials of Part I of the 

experiment. A: Group averages calculated for each trial number. The solid line 

represents the exponential fit. The fitted exponential function is shown with r-square 

value. B: Exponential fits for individual participants. Each line represents one 

participant. Data points for individual trials were omitted for clarity. 

 

Figure 6A shows that the participants still had an absolute error of 0.035m even 

after 48 trials, indicating that the participants remained to either under- or overshot the 

target. Therefore, it was also useful to examine variability in terms of variable error or 

standard deviations of ball amplitude, SDB. The same exponential regressions were 

performed on both the group’s and the individual participants’ data. A comparison of 

the fit parameters of the exponential regressions of the AE and the SDB revealed that 

the rate of decrease was very similar. The R2-values for SDB were slightly smaller. 

Table 1 summarizes the parameters of the individual fits and their R2-values. 
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Table 1:  

Parameters of the exponential fits of the individual participants’ and group average 

data of absolute error of ball height (AE), standard deviations of ball height (SDB) and 

accelerations at impact (AC) in Part I of the experiment. For Participant 5 there were 

no acceleration data available. 

    

AE SDB AC 

Participants 

a b c R2 a b c R2 a b c R2

P1 0.068 0.058 0.032 0.65 0.081 0.053 0.041 0.58 202.8 0.0007 -197.70 0.68 

P2 0.096 0.309 0.036 0.65 0.134 0.319 0.044 0.58 15.65 0.017 -14.680 0.79 

P3 0.070 0.183 0.041 0.65 0.076 0.175 0.536 0.57 9.721 0.035 -6.332 0.72 

P4 0.085 0.063 0.015 0.88 0.107 0.07 0.022 0.86 6.402 0.039 -0.896 0.77 

P5 0.081 0.145 0.038 0.60 0.099 0.197 0.046 0.57 – – – – 

P6 0.096 0.189 0.042 0.61 0.107 0.168 0.051 0.61 5.836 0.035 -3.176 0.64 

P7 0.075 0.115 0.039 0.74 0.077 0.108 0.049 0.58 4.644 0.179 -3.203 0.62 

P8 0.018 0.051 0.021 0.60 0.026 0.024 0.0182 0.57 5.109 0.144 -1.941 0.63 

Average 0.051 0.078 0.032 0.92 0.058 0.071 0.039 0.91 6.306 0.048 -3.395 0.93 

 

Dynamical Stability. To investigate the change in performance stability, the racket 

accelerations immediately before impact, AC, were analyzed. Figure 7A shows the 

group averages over 48 trials. AC decreased exponentially over practice (R2 = 0.93) 

from initially positive to negative values. The dashed horizontal line at zero highlights 

this change. The individual exponential fits in Figure 7B show that each participant 

had a tendency to decrease their AC values from positive to negative throughout the 

48 trials. The R2-values for the individual fits ranged between 0.62 and 0.79. The data 

points are not shown for clarity of presentation. Table 1 lists the fit parameters of both 
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the individual participants and their group average. On average the AC values turned 

negative from trial 13 onwards. Note that the change in the initial part of the trial 

sequence is more rapid in the AC values than in the AE and SDB values. Further, the 

AE and SDB values tended to asymptote, whereas the AC values did not seem to have 

reached a plateau after 48 trials.  
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Figure 7: Racket accelerations at impact AC across the series of 48 trials.  A: Group 

average of racket accelerations AC. Each point represents the average of 8 participants 

in a trial. The solid line represents the exponential regression fit. The dashed 

horizontal line at AC = 0 is plotted to highlight the transition from positive to negative 

values. B: Exponential regressions for individual participants. 

 

Variability Decomposition. Figure 8 illustrates the contributions to performance 

improvement by the three components, tolerance T, noise reduction N, and covariation 

C, plotted over the 48 trials. The change in AE from trial 1 to trial n (n = 2, 3, …48) 

was parsed into the three components, which are indicated by the different shadings of 

the bars in Figure 7. The decomposition was performed for each individual participant 

for each of the 48 trials. Subsequently, each of the three components were averaged 

over 8 participants and plotted per trial. It can be seen that the improvement in 

performance was mainly brought about by N, which continued to increase until the 

last trial. There was also a small positive contribution of T and C, which was 
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relatively invariant throughout practice.  

The same decomposition was also performed on the second performance measure 

SDB. The results were very similar. This is partly to be expected as the changes of 

SDB and AE with practice had a very similar time course.  

 

 

 

Figure 8: Contribution of the three components T, N and C to performance 

improvement. Each line represents the group averages per trial. 

 

Part II: 

In Part I, all 8 participants completed 48 trials in which the measured performance 

indicators reached a plateau, suggesting that they learnt the task. In Part II of the 

experiment, participants were exposed to distortions of execution space to study 

adaptation as the search for new solutions. At the beginning of Part II participants 

were informed about the upcoming distortion but not about the nature of the distortion. 
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They were told that they could and should adapt and improve their performance as 

much as possible. At the end of Part II participants were asked whether they 

understood how their performance became perturbed and how they thought that they 

had changed their strategy. Except for one participant (P3), nobody was able to 

explicitly tell how they had adapted to the perturbations. P3 remarked that he noticed 

that changes of his impact position had an effect on the perturbations. 

Task Performance. The values of AE averaged over 7 participants are shown in 

Figure 9A. The first 5 data points represent the 5 trials before the distortion was 

implemented; the following 48 trials depict the performance under distorted 

conditions. Before distortion onset, AE was on average 0.03m; at the first distorted 

trial, AE increased significantly to 0.075m. However, shortly after the distortion onset 

AE decreased again and from trial 35 onwards, AE had returned to pre-distortion 

levels. Figure 9B shows the exponential regressions of all 7 individuals.  
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Figure 9: Absolute error of ball height across the series of 48 trials of Part II of the 

experiment. A: Group averages calculated for each trial number. The solid line 

represents the exponential fit. The fitted exponential function is shown with r-square 

value. B: Exponential fits for individual participants. Each line represents one 

participant. Data points for individual trials were omitted for clarity. 

 

To further test whether participants returned to pre-distortion levels at the end of 

the session, pairwise t-tests compared the 5 trials that directly preceded distortion 

onset and the 5 last trials in this session. With the exception of P8, all participants 

performed better at the end of the session, decreasing their absolute error by .002m 

down to .013m. However, in only three participants these comparisons were 

significant (P1, P2, P3). Hence, following the adaptation to the distortion, participants 

still improved their performance. 

Racket Accelerations at Impact. The change of racket accelerations at impact AC 

over trials before and during the distortion are graphed in Figure 10. Four of the seven 
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participants showed similar exponential patterns and their average is displayed in 

Figure 10A: prior to distortion the impacts were performed with negative values 

similar to the ones seen at the end of the preceding sessions. With distortion onset AC 

became significantly more negative but then gradually increased towards the 

pre-distortion values. Interestingly, the negative AC values were re-established from 

more negative values, opposite to the change seen across learning in Part I where 

participants began with positive values. The exponential regression performed over 

the distorted trials had a R2-value of 87.8%. Figure 10B highlights this pattern of 

return by the respective individual regression fits for those 4 participants. The 

remaining three participants showed less systematic patterns and the R2 values of their 

regressions were very low. Their individual data are plotted in Figure 11C. Although 

their AC trial data showed considerable scatter without a clear pattern, overall the data 

still show convergence towards a negative AC value.  
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Figure 10: Racket accelerations at impact AC across 48 trials under distortion 

condition in Part II.  A: Group average of racket accelerations AC. Each point 

represents the average of 4 selected participants with good exponential fitting. The 

solid line represents the exponential regression fit. B: Exponential regressions for the 

selected 4 individual participants. C: The data for the three participants that were not 

included in the group average due to their lack of an exponential return pattern. 

 

Execution space Analysis. For a first inspection of how participants adapted to the 

distortions, their data were plotted in execution space. Figure 11 shows the execution 

space with the planar solution manifold and the distorted ellipsoid of P2. The black 

dots show the means of execution variables of all 48 trials with distortion. As can be 

seen, performance was changed away from the ellipsoid to another more successful 

location on the solution manifold. Interestingly, the change in location appears 

relatively large. With a view to Figure 4, which also shows the distribution of 

execution variables of the last trial, it can be seen that the relocation takes the variance 
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of the trial into account such that there is no overlap of the scattered data with the 

distorted ellipsoid. It is further striking that the mean data move along the planar 

surface rather than a random search in all three dimensions. This may be due to the 

fact that there was some local “ghost” of the solution manifold left (see Figure 5). 

 

Figure 11: The perturbation ellipsoid (ellipsoid) and the mean performance from 

individual trials (diamond markers) in Part II from P2.  

 

To test whether participants successfully moved out of the distorted area in 

execution space, the average D was calculated for each trial and then averaged across 

participants. Figure 12 shows this increase in D, the error bars indicate standard 

deviation across subjects. Note that once D > 1, the triplet of execution variables have 

moved outside the distorted ellipsoid. While participants are very fast in leaving the 

location of maximum perturbation, it takes until trial 20 where also the variance is no 

longer within the distorted ellipsoid. Note that D did not increase further from trial 20 
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onwards. This indicated that for most of the bounces, the execution was just outside of 

the distortion ellipsoid.  

 

Figure 12: The average DP across participants in Part II. The error bar stands for the 

average standard deviation for each trial.    

 

Variability Decomposition. To apply the TNC-decomposition the first trial of the 

distorted condition was compared to all the other trials in the distortion condition. 

Figure 13 presented the results for all participants. It was evident that T contributed 

most to the performance improvement. From trial 20 onwards the contribution of T 

plateaued at a constant level. N markedly increased in contribution from trial 13 

onwards and then remained relatively constant until trial 48. C had relatively large 

contribution at the beginning and turned smaller from trial 14 onwards. The major 

difference between Part I and Part II was the use of tolerance, i.e., exploration of 

execution space. 
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Figure 13: Contribution of the three components T, N and C to performance 

improvement in Part II. Each line represents the group averages per trial. 

 

 

Discussion 

 Ball bouncing task has been investigated as an exemplary task to study how 

humans exploit the properties of the task and adopt coordination patterns under task 

constraints. Stability analysis of a simple mechanical model for the task has revealed 

that there exist a set of dynamic solutions when the racket hit the ball with negative 

acceleration. Using this stable solution effectively makes the bouncing system operate 

round a period-1 attractor, thus small fluctuations in the performance die out without 

the necessity to make corrective movement of the racket. This stability property is 

termed passive stability, as it requires no active control and comes from a pure 

mechanical system deprived of adaptive neural control. Humans were found to exploit 

this passive stability and hit the ball with negative racket acceleration (Schaal et al., 

1996; Sternad et al., 2001; Dijkstra et al., 2004). However, this strategy was not an 
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intuitive solution for the actor, as a previous learning study found out that novice 

actors first hit the ball with positive racket acceleration, then after practice they 

gradually changed to use negative impact acceleration (Dijkstra et al., 2004). This 

learning process was accompanied by performance improvements. How the actor 

discovered the solutions of using passive stability through practice is still a question. 

To unravel the learning process, we adopted the TCN method to study the changes in 

performance variability over practice.   

 The TNC method partitions the variability improvement in performance into 

three components: tolerance, noise and covariation. Tolerance captures the 

improvement gained from locating the data set of execution variables to a different 

place in the execution space where the area of successful solutions is larger and more 

tolerant to noise/fluctuations in execution. In ball bouncing task we found out the 

solution manifold is more or less the same (approximately homogeneous) at different 

locations in the execution space, thus the relocation of solutions will not help the 

performance improvement too much. In Part II of the present study, a distortion of the 

solution manifold was introduced to force the actor move away from their preferred 

region in the execution space. Hence the relative contribution of tolerance 

components can be studied during the adaptation. Noise captures the improvement 

gained from reducing the variability of all possible execution variables. While a 

decreased level of noise has been universally recognized as a result of learning, it is 

usually assessed in term of variability reduction of the movement result, for example, 

the variability of ball amplitude in the ball bouncing task. The TNC method 

recognizes that noise reduction is only one of the three components in the 

performance improvement and it comes from the stochastic nature of all execution 

variables. It is calculated after the other two components are subtracted from the total 

performance improvement. Covariation captures the improvement from covarying the 

execution variables according to the relationship between the execution variables and 

the movement outcome. Geometrically, it can be shown as alignment of the data set 

along with the solution manifold in the execution space. It was recognized as a 
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signature of control in other studies on variability (Latash, Scholz, Danion, & Schöner, 

2002; Shöner & Scholz, 1999). In the TNC method, covariation is calculated by first 

computing within-trial covariation, which is the difference in performance between 

the original data set and the permutated data set, then computing the improvement in 

within-trial covariations across trials.  

It was found all participants showed improvement in performance with practice 

under normal condition, and the improvement was accompanied by a change in 

impact acceleration from positive values to negative values. This result was consistent 

to previous findings (Dijkstra et al., 2004). However, the previous study only had 

limited number of subjects to show the simultaneous change in variability measure 

and in impact acceleration. The present study confirmed that utilizing passive stability 

is an acquired strategy and the process of tuning to stable regime may assist the 

reduction in variability of overt performance measure. Note this result was from the 

present virtual reality setup. Its consistency to the result from real ball bouncing 

provide a support for validity to study ball bouncing task in virtual reality (see also de 

Rugy, Wei, Müller, & Sternad, 2003).  

In Part 1, TNC method revealed that tolerance component was relative small and 

its contribution was almost the same throughout the learning. This result is expected 

as the solution manifold for the ball bouncing task under normal condition is 

homogeneous in the execution space, i.e., different locations in the execution space 

offer equivalent tolerance to noise. Thus even actors’ solutions (the data cloud of 

execution variables from one trial) migrate in the execution space, as long as average 

solution for that trial is on the solution manifold, tolerance would be the same. From 

this aspect, the finding of a nearly constant tolerance showed actors learned the 

solution manifold in the early phase of practice and stayed around the manifold 

(instead of moving away from it) during the learning process. It appeared that the 

solution manifold, as a reflection of physics of the ball bouncing task, is easy to 

comprehend by the actor. Noise reduction contributed the most to the performance 

improvement. Geometrically, noise reduction can be visualized by a reduction in 
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scatter of execution variables in the execution space. Though participants made their 

average performance (the center of the scatter) stay on the solution manifold, they 

further improved their performance by reducing the scatter, as evidenced by a 

continuing improvement in noise reduction. Covariation was almost zero at the 

beginning then remained small throughout the practice session. This may related to 

the relatively flat solution manifold for ball bouncing task, as compared to 

complicated nonlinear solution manifold as in skittle throwing task, for example 

(Müller & Sternad, 2004). As a result, the control aspect that is reflected by 

covariation, i.e., how to combine the three execution variables, is easy for the ball 

bouncing task. Covariation did not reduce as a result of reliance on passive stability.   

Passive stability was exploited such that small fluctuations could die out without 

active corrections in the racket movement. How much did this strategy contribute to 

the overall performance improvement as compared to the noise reduction? We can not 

make a conclusive remark on this matter given current results. The impact 

acceleration decreased to negative values from about 10th trials onwards, however, 

noise component continued to improve until the end of Part I. There is no casual 

relationship between adopting negative acceleration and reducing noise in movement 

execution. Both of these two aspects contributed to the performance improvement.  

Upon the introduction of distortion, the performance error was significantly 

increased. Trial by trial, participants adapted to the distorted solution manifold and 

improved their performance to pre-distortion level. Racket impact acceleration 

showed different changes for individual participants. For 4 participants, impact 

acceleration became more negative in the early phase of adaptation, and then 

gradually returned to pre-distortion level. Note this change was in the opposite 

direction as the one in Part I when the impact acceleration changed from positive 

values to more negative values. Thus, there appeared to have a preferred range of 

impact acceleration for individual participants. For the remaining three participants, 

impact acceleration did not show a clear changing pattern, instead, it scattered more 

within the negative range. These results indicated passive stability was still exploited 
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in the process of adaptation. No matter whether the distortion brought an abrupt 

change in impact acceleration or it was kept negative within a bounded range, hitting 

the ball with negative acceleration was always guaranteed. This suggested 

exploitation of passive stability was still the preferred solution for the ball bouncing 

task with distorted solution manifold.  

Consistent to the prediction, tolerance contributed most to the performance 

improvement during adaptation. While not unintuitive, the analysis highlighted this 

conception of exploration well acknowledged in the motor control literature. It 

increased to reach some plateau at approximately 20th trial. The inspection of 

execution variables in execution space found out that at the 20th trial, the average 

solution moved out of the distorted area (Figure 1). This showed that the participant 

found his/her new solution in the execution space that was distinct from the original 

preferred location. This relocation in execution space was a continuous process on the 

solution manifold, not a random search in any direction possible (Figure 11). Noise 

reduction was relatively small when the distortion was introduced. After new solution 

was established in the execution space at approximately 20th trial, noise reduction 

increased much further. Covariation was relatively large in the early phase of 

adaptation, but it became smaller with the other two components getting larger. This 

might suggest that actors resorted to better combinations of execution variables when 

perturbations were applied. It is possible that the actor strived to align their variability 

along with the original solution manifold, which is shown as a thin light grey line in 

Figure 4. This location offers slightly better solutions compared to other locations in 

the perturbed region. As a result, this alignment helped to improve the performance as 

compared to the performance with shuffled data set. However, after moving out of the 

perturbed region in the execution space, the solution manifold became flat and 

familiar to the actor again. As such the covariation changed back to its original values 

before perturbations were introduced. Taken together, results from the TNC analysis 

suggested that the changes in variability components during adaptation happened in 

sequence: confronted with a strange and unfamiliar solution manifold, the actor 
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remained on the original solution manifold and simultaneously relocated to a more 

tolerant area along the solution manifold; noise in execution was reduced to further 

improve the performance. 

The actor seemed to take the variance of performance into consideration when 

relocating their new solution, since after adaptation the scatter of execution variables 

did not overlap with the distortion ellipsoid (Figure 4). The other evidence is that the 

distance to the center of the distortion ellipsoid (DP) was slightly larger than 1 plus 

one standard deviation of DP after 20th trials (Figure 12). This effectively made most 

of the bounces stay out of the distortion ellipsoid. After the solution (with its scatter) 

just moved out of the distortion ellipsoid, it remained there without further movement 

on the solution manifold, as shown by a nearly constant DP after 20th trial. The fact 

that actors just barely moved out of the perturbed region and not further, suggests that 

they not only change their performance (many other locations in execution space 

would have been possible), but they are also attracted by the previously preferred 

location in the task space. This resonates with the proposition that learning a new 

coordination pattern is governed by the interaction between initial coordination 

dynamics and the to-be-learned coordination pattern (Zanone & Kelso, 1992). The 

final location outside of the perturbation ellipsoid indicates the adaptation is an 

outcome of the compromise between the initial and the to-be-adapted patterns. 
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Appendix A 

For a trial with n bounces, each bounce i (i = 1, .. n) is described by the vector ei 

= (XIP,, VB, VB R), where XIP is the impact position, VBB the ball velocity immediately 

before impact, and VR is the racket velocity at impact. Thus, all bounces from a trial 

produce a matrix of execution variables E with a dimension of n×3. Each row of this 

matrix corresponds to one bounce and one data point in execution space. Calculating 

the resulting ball amplitude and the resulting error from the target line according to 

Equation 1, E produces a vector with n values of AE. As average of AE is regarded as 

the primary measure of performance, the mean of AE within one trial are calculated.  
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Figure A1: Schematic illustration of the computational steps of the TNC 

decomposition with fictive trials. Panels A and E illustrate a fictive trial early and late 

in the learning process, respectively. For details of the computation see the Appendix.  

 

Using two fictive trials, the five panels in Figure A1 illustrate the computational 

steps for the TNC-decomposition. Panel A represents one trial at the early stage of 

learning, panel E at the late stage of learning. The five data sets in panels A-E are 

labeled as EA, EB, EC, ED and EE for clarity. The average result of SD-AE of EA is 

worse than EE as it occurs earlier in the learning process.  

Step 1: Permutate each column of EA and EE separately. This permutation rearranges 

the data in the three execution variables such that a different result is obtained for 

each bounce. From these new results SD-AE are calculated. The permutations of Sets 

A and E are shown by EB and EB D, respectively.  

Step 2: The mean locations of EB and ED are calculated by taking the means of each 

execution variable, separately. Move EB to the mean location of ED by adding the 

distance between EB and ED for each execution variable to EB. This step creates the 

new data set EC. 

Step 3: Calculate SD-AE for each set by applying Equation 3.  

Step 4: Calculate the following differences in SD-AE to obtain the three components: 

- The difference between EE and ED is called Covariation, C, which quantifies the 

performance improvement due to co-varying execution variables in a 
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goal-relevant way. Covariation can also be calculated between EA and EB. 

- The performance difference between EB and EC is called Tolerance, T, which 

quantifies the performance improvement obtained from a better location that is 

more tolerant to errors or noise. The only difference between EB and EC is the 

location in execution space.  

- The performance difference between EC and ED is termed Noise, N, which 

quantifies performance improvement due to decreased scatter in the data. Note 

that both EC and ED are at the same location in execution space but have no 

covariation.  
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Abstract 

Using the task of rhythmically bouncing a ball with a racket held in one hand, it 

was demonstrated earlier that actors can employ a “passive” strategy where explicit 

error corrections are not necessary. This study pursues several aims: first, in two days 

of practice it tested whether stability changes concomitant with result measures of 

performance improvement. Second, it tested whether this strategy was equally 

expressed in the dominant and non-dominant hand. Third, a transfer design tested 

whether this strategy is transferred across hands. Fourth, a variability decomposition 

method aimed to uncover components of change in the structure of variability. Two 

groups of 10 right-handed participants performed the ball bouncing task on two 

successive days. On each day participants practiced the task for 30 trials with one 

hand, followed by 10 more trials performed with the second hand. Group 1 performed 

the sequence starting with their preferred hand, group 2 reversed the order. Results 

showed that stability had an exponential change towards more negative values 

indicating a strategy utilizing more passive stability. This change persisted even when 

performance variability plateaued to steady values, reflecting continued 

reorganization of strategy. Learning and continued reorganization was seen in both 

hands, regardless of dominance. The acquired passive strategy showed positive 

transfer to the opposite limb with no asymmetry in direction of transfer. Variability 

decomposition revealed significantly more exploration in the learning phase of the 

dominant hand. Finally, there appeared to be an asymmetry in the continued change in 

the dominant hand such that after continued improvement transfer to the 

non-dominant hand was no longer evident. 

147 



 
 

Introduction 

Confronted with the ever-changing environment humans need to continuously 

learn and adjust their behaviors. Hence, when learning a new skill it is most central 

that this skill can be adapted and generalized to other situations. One example for 

such generalization is to perform an acquired skill with another limb. Motor learning 

and adaptation and, more specifically, interlimb transfer are long-standing issues in 

motor control that have received a lot of attention, particularly from more practically 

oriented research. Both for the training of athletes and in rehabilitation it is essential 

to know whether such interlimb transfer exists and how it can be used for optimal 

practice. Is training with the dominant hand concomitantly training the nondominant 

hand? Can training with the nondominant limb simultaneously improve skill with the 

dominant limb?   

Significant evidence for such positive transfer has been provided in many 

different task contexts. The typical indicators by which adaptation and transfer has 

been evaluated and quantified are error measures and their variability. Yet, most 

studies in motor learning have had a very practical flavor, asking whether certain 

practice conditions lead to positive transfer or not. The questions about what is learnt 

and what it transferred are still insufficiently understood in more basic research terms. 

Several conceptual frameworks have been brought to bear to understand learning and 

transfer: Research couched in the framework of schema theory suggested that the 

learner acquires a generalized motor program that is subsequently parameterized for 

new tasks or new effectors, while the temporal structure of the movement is preserved 

across different effectors (Schmidt, 1975). A similar conceptualization of learning and 

transfer has been adopted in more recent accounts that propose internal models as the 

core concept of their theorizing (Imamizu, Uno, & Kawato, 1995; Kawato, 1999; 

Wolpert, Ghahramani, & Jordan, 1995). In these accounts the internal model, which is 

a nonlinear mapping between performance and intrinsic variables, is developed and 

parameterized during learning. For adaptation to new task demands or to a new 

effector, only parameters need to be tuned.  
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From a dynamical systems perspective, learning and transfer has been described 

as creating a dynamical model or a coordination dynamic (Mitra, Turvey, & Amazeen, 

1997). In the context of learning new phase relationships between two rhythmic 

movements (Zanone & Kelso, 1992, 1997) showed how existent stable attractor states 

were reshaped and a new focal task was developed. Due to the effector-unspecific 

nature of the dynamic model, transfer of the learned skill would also be expected to 

occur across different effector systems (Kelso & Zanone, 2002). Stability is the core 

concept … Despite their different conceptual frameworks these accounts agree that 

there exists some higher-order structure that is acquired during skill practice which 

facilitates skill transfer to untrained tasks or untrained effectors.  

In a series of recent studies Sternad and colleagues demonstrated the prominent 

role of dynamical stability in human performance at the example of a rhythmic ball 

bouncing task (de Rugy, Wei, Müller, & Sternad, 2003; Dijkstra, Katsumata, de Rugy, 

& Sternad, 2004; Schaal, Sternad, & Atkeson, 1996; Sternad, Duarte, Katsumata, & 

Schaal, 2000, 2001). Based on a mathematical model of the mechanical interactions 

of the ball and racket during rhythmic bouncing, stability analyses revealed that there 

are passively stable solutions to this task. Specifically, the criterion for a passively 

stable solution was that the racket contacts the ball in an upwardly decelerating phase. 

If humans adopt this performance strategy, then small perturbations will not require 

active error compensation. Empirical studies provided supportive evidence that actors 

indeed exploited this stable regime offered by the physics of the task and coordinated 

their limb movement to perform racket-ball impacts with negative acceleration 

(Schaal et al., 1996; Sternad et al., 2001). Furthermore, a previous study on learning 

revealed that novice subjects started off with positive impact acceleration (the 

unstable strategy from the model prediction) and with practice adopted the passively 

stable strategy. During the acquisition process, the impact acceleration was gradually 

tuned to the negative range (the predicted stable strategy), together with reduced 

performance variability (Dijkstra et al., 2004; Sternad et al., 2000). Hence, the stable 

solution for the ball bouncing task is not an intuitive solution. Instead, it has to be 
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“discovered” by the actor through practice. Given its subtle nature, one open question 

is whether this strategy is transferred across different effector systems. This is the first 

question that will be tested in the present study. 

In most studies on motor learning and transfer, the primary indicator for 

performance improvement is the error or the variability of a given performance 

variable. Acquiring a skill is characterized by a reduction of errors and variability with 

practice. Decreasing variability is also often equated with increasing stability in 

performance. This simple inverse relationship, however, obscures the fact that 

empirical variability can be indicative of many different facets, ranging from the lack 

of control to more beneficial aspects, such as compensatory variation between 

variables, and exploration of new tasks (Riccio, 1993)To further the understanding of 

the variability and its changes over practice, Müller, Sternad and colleagues 

developed the so-called TNC-decomposition method that decomposes variability in 

redundant tasks into three components, tolerance, noise and covariation (Müller, 

Frank, & Sternad, 2007; Müller & Sternad, 2003, 2004). Central to this approach is 

the parsing of the task into execution and result variables. For example, reaching with 

a multi-joint arm to a target is separated into execution space spanned by the degrees 

of freedom of the joint variables and the endpoint error. 

TNC variability decomposition decomposes the improvement of variability in 

result variables into three components: improvement originated from exploration and 

migration in execution space (Tolerance), reduction of purely stochastic components 

in execution (called Noise), and improvement due to tighter covariation between 

execution variables (Covariation).  

Given redundancy in the motor system, the mapping between execution variables 

and the result variable is many-to-one, i.e., different combinations of execution 

variables can lead to the same result. This mapping can be conceptualized as a 

solution space with a family of solutions associated with different levels of  

“success” in the result variable. Depending on the nature of the solution space and 

inherent noise, different locations in the solution space have different probabilities of 
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success and different “tolerance” to noise. Improvements in performance, after some 

exploration of the task, are then related to the migration of performance to a better 

location in the solution manifold. This part of improvement is captured by the 

tolerance component. The second component, noise reduction, is a widely 

acknowledged phenomenon in skill learning. For the third component covariation, it 

has also been discovered for long that variability of execution variables can 

compensate for each other to achieve a better movement outcome. This covariation 

between execution variables has been interpreted as a signature of control.  

By applying TNC variability decomposition, the learning process can be 

unraveled so as to identify the relative contribution of different components at 

different learning stages. For example, the aforementioned tuning to the stable regime 

offered by the task dynamics can be related to the tolerance and/or covariation 

changes at the early stage of learning, while noise reduction is a continuous process 

until certain asymptote is reached. More specific for the present study, is the question 

whether after initial acquisition with one effector, whether different variability 

components will change their contributions when transferring to another effector. This 

question will further the understanding of what is transferred under the surface of 

apparent improvement in a single result variable. Further, if variability is a signature 

of performance, does the structure of this variability change during learning and 

transfer? 

The present study investigates the learning and transfer of the single-handed ball 

bouncing task in novice participants. The participant will start practice by using the 

dominant or nondominant hand, then switch to the contralateral hand. The 

performance error, variability in execution and the stability strategy adopted will be 

evaluated over practice and transfer. Positive transfer in performance variability 

between arms is expected. More importantly, it is expected that after subjects 

comprehend the task dynamics and exploit its stability property, they will transfer this 

strategy to the untrained arm. This transfer of the action strategy should be 

symmetrical between arms due to its abstract nature. However, some kinematic 
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measures of the task might be transferred asymmetrically due to the effects of 

handedness and proficiency of hemispheres. The learning and transfer process will 

also be scrutinized in terms of changes in variability by using TNC decomposition 

method.  

 

Method 

Participants. There were 20 volunteer young adults (10 males and 10 females) 

between 24 to 27 years of age. The participants declared themselves right-handed. 

They were also tested with the handedness questionnaire by Hull and showed values 

between 89 and 99%. None of the participants had previous experience with the 

experimental task. All of them had normal or corrected-to-normal vision. Prior to the 

study the participants were informed about the experimental procedure after which 

they signed the consent form in compliance with the Regulatory Committee of the 

Pennsylvania State University. 

Experimental Apparatus and Data Collection. The task was performed in a virtual 

reality set-up the subject manipulated a real tennis racket in front of a large screen 

(2.5 m wide and 1.8 m high) onto which the visual display was projected (Figure 1). 

The subject stood upright at a distance of 1.0 m from the screen and held the racket 

vertically at a comfortable height. A rigid rod with three hinge joints and one swivel 

joint was attached underneath the racket and ran through a noose that rotated a wheel, 

whose revolutions were measured by an optical encoder. The digital signal from the 

optical encoder was transformed by a digital board (16 bit DT322 A/D card, Data 

Translation) and sent online to the computer that controlled the experimental set-up. 

Thus, only the vertical displacement of the racket was measured, even though the 

joints of the rod permitted the racket to move and tilt in three dimensions to avoid 

friction.  
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Figure 1. The virtual reality set-up and data collection for the ball-bouncing task.  

 

The data acquisition program projected the displacement of the racket on the 

screen in nearly real time with an electromechanical delay of 11 ms. The virtual 

racket was displayed at the same height as the real racket and its displacement was the 

same as that of the real racket. The participant manipulated the real racket to control 

the movement of the virtual racket, which bounced a virtual ball on the screen. This 

movement of the virtual ball was determined by ballistic flight and the racket-ball 

impacts. In order to simulate the impact force between the racket and the ball, a 

mechanical brake was attached to the rod. The brake applied force to the rod at each 

impact for a duration of 30 ms, which was close to the real racket-ball contact 

duration (Katsumata, Zatsiorsky, & Sternad, 2003). The brake would decelerate the 

motion of the rod and the attached racket, which was sensed by the participant. The 

force developed by the brake was adjusted to mimic the amount of impact that 
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produced by a tennis ball falling on the racket. However, due to the hardware 

constraints, the force was constant for all contacts irrespective of the racket/ball 

velocity at each contact. The data acquisition program was written in Visual C++ 

(Microsoft, v6.0) and the virtual display was realized by Open GL Graphics. The 

sampling frequency of the racket and the ball movement was 800 Hz, but the visual 

display was updated at 75 Hz.  

The ball’s trajectory was calculated using the equations of ballistic flight and 

elastic impact. When the ball was in the air, its vertical displacement was only 

influenced by gravity:  

0,0, 2/1- BBB xtxgtx ++= &    (1) 

where x is the vertical position of the ball, g is gravity and  and  are the 

initial position and velocity of the ball immediately after impacts, t is the time elapsed 

from the last impact. Assuming instantaneous elastic impact, was determined by 

the impact relation: 

0,B
x

0,B
x&

0,B
x&

)x-x(α-)x-x( R
-
BRB &&&& =+     (2) 

where  and  denote the velocity of the ball immediately before and after 

contact, respectively;  denotes the velocity of the racket at impact. The coefficient 

of restitution α captures the energy loss at impact with a value ranging between 0 and 

1. 0 means complete energy dissipation and 1 means no energy loss during impacts. In 

the present experiment, α was set to 0.5. It was also assumed that the mass of the 

racket was sufficiently larger than the mass of the ball such that the effect of the 

impact on the racket trajectory could be ignored.  

-
B

x& +
B

x&

R
x&

Procedure and Experimental Conditions. Each trial began with the ball appearing 

on the left side of the screen and rolling on a horizontal line that extended to the 

middle of the screen. When the ball reached the end of the line, it dropped down 

towards the racket (Figure 1). This starting procedure visually prepared the participant 

154 



 
 

for the beginning of the task. The virtual racket was located directly below the drop 

position of the ball and it could move in the vertical direction only. Participants held 

the racket with one hand and waited for the ball to drop. The participant was 

instructed to rhythmically bounce the virtual ball such that the peaks of the ball 

trajectory were as close as possible to the target line (the same line that the ball started 

on, 0.7m above the initial racket position). Participants had visual information about 

their performance from the continuous visual display of the racket and ball on the 

screen.  

Participants were divided into two groups of 10 individuals each. Each group 

performed two sessions of a total of 44 trials each; the two sessions were scheduled 

on two consecutive days. The first four trials in each session tested performance in the 

preferred and non-preferred hand to evaluate the participant’s initial performance in 

each hand (pre-test). This was followed by a practice phase of 30 trials and a transfer 

phase of 10 trials. Group 1 performed the pre-test first with their preferred hand (PH) 

for two trials and then with their non-preferred hand (NPH), again for two trials. The 

practice phase was performed with their preferred hand and the transfer phase with 

their non-preferred hand. On Day 2 the order of hands was switched (Figure 2). Group 

2 performed all parts of the two sessions with the order of hands reversed hand. 

Before the formal data collection on the first day, participants were given two extra 

trials with each hand to familiarize themselves with the virtual task. These trials were 

not included in the analysis. 
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Figure 2. Experimental design for Group 1. PH refers to the performance with the 

preferred hand; NPH refers to the non-preferred hand. Group 2 followed the same 

pattern of sessions only the sequence of preferred and non-preferred hand was 

reversed. 

 

Data Reduction and Analyses. The displacement and the acceleration data of the 

racket movements were low-pass filtered using the Savitzky-Golay filter with a cutoff 

frequency of 20 Hz. The displacement of the ball did not require further processing as 

it was simulated and, hence, contained no measurement noise. Figure 3 shows a 

typical time series showing the approximately sinusoidal displacements of the racket 

and the ballistic flight trajectory of the ball. The ball-racket contacts are highlighted 

by the symbols and the vertical dashed lines. The target line at 0.70m is also displayed. 

The difference between the apex of the ball trajectory and the target height is the error 

defined as the absolute difference between the peak of the ball trajectory and the 

target height, AE. The acceleration trace of the racket shows a more noisy signal with 

a very marked sudden change at the time of the ball-racket contact. At each bounce 

the acceleration of the racket one sample directly before the impact was used for the 

measure AC. For each trial the values of all bounces were averaged their standard 

deviations were determined, SD.  
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Figure 3. Segment of an exemplary time series of the ball and racket trajectory and 

the acceleration signal measured separately by an accelerometer. The grey dots and 

the dashed vertical line correspond to the moments of the impact of ball-racket. The 

solid horizontal line represents the target height.  

 

To assess the changes in performance during practice and transfer sessions the 

time course of both SD-AE and AC were quantified by fitting exponential functions 

over the sequence of trials. Using the Levenberg-Marquardt method in Matlab v.7 for 

curve fitting the rate of change was estimated by the following function: 

f (t) = a + b*e
−

t
τ   (3) 
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where t is the trial number, f is the dependent measure, a and b are fitting parameters 

for the regression to estimate. The parameter t denotes the learning rate, as it is the 

relaxation time of the exponential function.  

To evaluate the amount of performance improvement during practice and transfer, 

changes in SD-AE and AC were quantified by two indices (Figure 2). The index of 

performance improvement, PI, was calculated by the difference of the mean of the 

two trials of the pre-test (trial 1 and 2) and the mean of the two last trials of the 

practice phase (trial 33, 34). To evaluate the transfer across hands, the index of 

transfer, IT, was calculated as the difference between the mean of the two pre-test 

trials (trials 3, 4) and the mean of the two first trials in the transfer session (trials 35, 

36). Each index compared performance of the same hand. 

Statistical Analyses. The dependent measures were subjected to mixed-effect 2 

(day) x 2 (group) ANOVA and where considered significant when p < 0.05. Only 

significant effects are reported. 

Task Analysis. Different to the model-based analysis of stability which analyzes 

the task performance as a dynamical system, the ball bouncing task can also be 

viewed as a sequence of individual bounces, where each bounce propels the ball to the 

given target height. The height of the ball trajectory is determined by three execution 

variables: the racket velocity at ball impact VR, the ball velocity immediately before 

impact VB, and the impact position XB IP. The bounce height is related to these variables 

by the ballistic flight equation (Eq 1) and the elastic impact equation (Eq 2). More 

specifically, the performance measure absolute error AE can be written as a function 

of these three execution variables: 

AE = ((1+ α)*VR −α *VB )2 /(2* g) + XIP − XT    (4) 

where XT is the target height set at 0.7 m in the present study. By applying this 

equation, a triplet of execution variable (VB, VB R, XR) can lead to one result variable AE. 

Importantly, different combinations of the three execution variables can lead to the 
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same result, i.e., the task is redundant. This relation can be viewed by spanning a 

space of execution variables and plotting the results for all combinations of the 

execution variables. Figure 4A displays the execution space and the surface represents 

the set of solutions that have zero error (AE = 0m). This manifold of solutions is 

approximately planar for ball bouncing but may take on any nonlinear shape 

depending on the task. There are an infinite number of other manifolds that are 

defined by different results, i.e., AE = 0.05, 0.10m, etc.; however, for clarity, only the 

zero solution manifold is plotted. The points represent the bounces of one trial. 

To better graphically illustrate the conceptual steps of the variability 

decomposition of variability the three-dimensional space is “sliced” at one value of 

XIP to obtain the two-dimensional depiction in Figure 4B. The different grey shades 

denote different levels of error, AE = 0.03m, with white denoting AE = 0m (see 

legend). Each data point is one bounce, such that the set of points in Figure 4A and 4B 

represent one trial. Once, the task is depicted in this fashion, the variability of trials 

and its change across trials can be further decomposed. 

 

 

A 
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Figure 4: A: 3D illustration of the execution space for the ball bouncing task. The 

surface indicates the composite of all solutions that lead to exact hit of the target. 

Each dot stands for a single bounce. B: 2D displace of the execution space with 

impact position fixed at 0.285m. The grey shades stands for the error the target.   

 

Quantification of the Components of Variability. If the task can be parsed into 

execution and result variables with a known functional relation (Müller & Sternad, 

2003, 2004) proposed a method to decompose the variability in performance into three 

components: tolerance T, noise N, and covariation C. The application of the method 

requires a parsing of the performance into sets of data. For ball bouncing each trial of 

40s duration forms a set with approximately 50-70 bounces. For the following 

explanation of the decomposition method, two fictive data sets, Set A and Set B, are 

shown in the two-dimensional slice of the execution space of Figure 4B.  
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Figure 5: A schematic illustration of computational steps for TNC variability 

decomposition. Subplot A and E illustrate two fictive trials early and late in the learning 

process, respectively. See details in Appendix.  

 

Panel A shows a data set of a single trial at the early phase of learning, while 

panel E shows data at the late phase of learning. Set E yields better performance due 

to three types of changes compared to Set A: Set E is at a location with smaller 

performance errors as indicated by the lighter shades of grey; Set E has less dispersion; 

Set E has an elliptic shape and aligns with the solution manifold. The performance 

improvement in SD-AE from Set A to Set E can be decomposed into three 

components to quantify these components: The performance improvement due the 

different locations in execution space between A to E is captured by Tolerance, T, 

visualized by the comparison of Set B and Set C. Note that before this shift in location, 
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Set A was permutated to eliminate influences from the orientation of the data 

distribution. The changes in performance before and after the permutation quantify 

the contribution of Covariation C. The third component quantifies how much a 

decrease in dispersion reduces the performance error, a component called Noise N.  

The component is visualized in the comparison between Set C and Set D.  Note that 

Set D is obtained from transforming Set E by permutation. More calculation details 

for these three components are shown in the Appendix (see also Müller & Sternad, 

2004) 

To learn how T and N change during practice and transfer, comparisons were 

made between the first trial and each of the subsequent 43 trials of each day. C is 

calculated by taking the difference in performance between one data set and its 

permutated data set. Thus, C represents the covariation within a particular trial. 

 

Results 

Initial Performance Level. Before the specific analyses on the effects of practice 

and transfer were examined, it first had to be established that the two groups were of 

the same initial performance level. Second, it was of interest to test whether the 

preferred and non-preferred hand had different degrees of skill in the ball bouncing 

task. These questions were assessed by comparing the two dependent measures, the 

variability estimate standard deviations of absolute errors, SD-AE, and the racket 

acceleration at impact, AC, across hands and groups. For each participant the means 

of the two trials of the pre-test performed with the same hand were calculated and all 

participants’ estimates were submitted to a 2 (group) x 2 (hand) ANOVA. Neither of 

the two dependent measures yielded significant effects. Hence, the two groups could 

be considered of comparable skill level before starting the experiment. Second, 

neither the degree of variability nor the values of racket acceleration were different 

for the dominant and non-dominant hand at the initial stage. 

Performance Improvement during Practice. To evaluate the improvement in 

performance with practice on the two days the variability measures SD-AE across 

trials were fitted with exponential functions. Figure 6 shows the time course of the 
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group averages of SD-AE for each day, together with the fitted exponential curves for 

both groups on Day 1. Each data point is the average value over 10 participants of one 

group for each trial with the error bars denoting standard errors across the 10 

participant means. Note the first two trials of the same hand from the pretest were 

included in the curve fits as they were regarded as part of the practice process. These 

exponential fits were only applied to the practice phases only, as the 10 trials in the 

transfer phase were not long enough to warrant the same curve fit. For Day 2 no 

exponential curves are shown because there was essentially no change in these 

performance measures and exponential fits were consequently not appropriate. The 

R2-values of the shown fits for the group averages were .90 and .78, for Group 1 and 2 

respectively. The learning rates were 7.84 and 8.35 for Group 1 and 2, respectively. 

The same fits were performed on each individual’s data and the learning rates of these 

10 curve fits were submitted to a one-way ANOVA comparing the two groups. No 

significant differences could be identified.  
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Figure 6: Standard deviations of the absolute error SD-AE are plotted as a function of 

trials for two groups and two days separately. The error bars stands for standard errors 

across participants. The bold lines are the fitted exponential curves.  

 

To quantitatively assess the amount of improvement for the two groups on the two 

days, the difference in mean SD-AE in the two last trials of the practice phase (trials 

33, 34) and the two pre-test trials of the same hand was calculated for each participant. 

This performance index, PI-SD-AE, was compared between days and groups with a 2 

(group) x 2 (day) ANOVA. The analysis demonstrated that the improvement on Day 1 

was larger than on Day 2 only a significant main effect for day, F(1, 36) = 5.77, p 

< .05 (Figure 7A). This showed that the change was comparable for dominant and 

non-dominant hand. As the exponential learning curves already illustrated above, the 

two groups showed similar learning rates. Given the relatively small performance 

improvement on the second day, additional t-tests evaluated whether the 

improvements on Day 2 were different from zero. One-sample t-tests against zero 

showed that the improvement was still significant for both groups on the second day 

(p-values < 0.05). However, as the time series in Figure 6 illustrates this difference in 

performance is probably only due to the warm-up decrement in the first few trials as 

the data appear to show no change during practice. To test this interpretation, the 

same performance index was calculated between the first trials of the practice phase 

(trial 5 and 6) and the last trials (trials 33 and 34). With this adjustment the difference 

became non-significant (p = 0.40). This suggests that in the practice phase on Day 2 

there was no more noticeable improvement. A last close inspection of the plots 

suggests that on Day 2, the second group, which practiced with the preferred hand, 

lowered their variability score further than Group 1. This small difference, although 

not significant, may be helpful in interpreting a significant effect in the transfer phase 

below. 
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Figure 7: A, B: Performance index and index of transfer for the standard deviations of 

absolute error, PI-SD-AE and IT-SD-AE, respectively, for both days and groups (for 

definition see text). C, D: Performance index and index of transfer for the racket 

accelerations at impact, PI-AC and IT-AC, respectively, for both days and groups (for 

definition see text). The error bars denote the standard error across the participant 

means.  

 

Transfer of Performance. To assess whether there was skill transferred from 

practice with one hand to the other hand, the index of transfer was calculated as the 

difference between the means of the first two trials of the transfer phase (trial 35, 36) 
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and the means of the two trials of the pre-test performed with the same hand 

(IT-SD-AE). t-tests compared these IT-SD-AE values against zero, separately for both 

groups and days. The t-tests for Day 1 yielded significant differences for both groups, 

attesting to the fact that there was positive transfer: Group 1: t(9) = 4.32, p < 0.005; 

Group 2: t(9) = 2.80, p < 0.05. In contrast, on the second day the differences were no 

longer significant: Group 1: t(9) = 1.42, p = 0.19; Group 2: t(9) = 1.55, p = 0.16. This 

absence of transfer on the second day was probably due to the fact that also the 

performance did not change very much any more. To assess whether this positive 

transfer was different for the two groups, IT-SD-AE was submitted to a two-way 

ANOVA. Results only confirmed the effect of day seen that was already in the t-test 

above: the main effect of day was significant, F(1, 36) = 14.38, p < .005. Figure 7B 

summarizes this result.  

Effects of Practice in Racket Acceleration. Figure 8 displays the time course of the 

participant averages of AC per trial including the standard errors across the participant 

means. As above, the two pre-test trials that were performed with the same hand as 

the practice session are included in the figure. Both groups started with positive AC 

values on Day 1 that gradually decreased to values close to zero across the 30 practice 

trials. This trend persisted in the transfer phase. On Day 2 the average trial values 

were positive in the pre-test but then decreased towards negative values. To highlight 

the time course exponential functions were fitted to the data which are shown by the 

solid lines in the practice phases of both days. Note that in contrast to SD-AE also the 

second day of both groups shows an approximately exponential change in AC. The 

R2-values and the learning rates for the mean fits were: Group 1, Day 1: 0.60, 2.44; 

Group 1, Day 2: 0.72, 7.27; Group 2, Day 1: 0.55, 1.60; Group 2, Day 2: 0.62, 9.49. 

The ANOVA on the individual learning rates did not reveal any significant differences 

between groups and days.  
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Figure 8: Racket acceleration at impact, AC, for both groups and days with both 

preferred and non-preferred hands, plotted for both groups across practice and transfer 

phases. The data show the average values across 10 participants; the error bars 

denoting standard errors across the 10 participant means. The solid lines for the 

practice phases on Day 1 and Day 2 are the exponential fits to the data.  

 

To evaluate the change in AC due to practice, the same performance index as 

above was calculated and analyzed by a two-way ANOVA. Neither the two main 

effects, nor the interaction showed significant differences (Figure 7C). Contrary to the 

results on SD-AE (Figure 7A), PI-AC did not show significant differences between 

Day 1 and Day 2, indicating that there was still a comparable amount of change in AC 

on Day 2. This highlighted that while the performance variables SD-AE reached a 

plateau on Day 2, changes in AC still continued. To establish that the changes were 

indeed positive and different from zero, four t-tests were performed on PI-AC. All 

four t-tests verified a significant difference from zero with two p-values smaller than 

0.005 and two greater than 0.05. 
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Further inspection of the data on Day 2 revealed that, similar to SD-AE, there were 

some differences between groups in the AC values. Although small, the AC-values 

that Group 2 reached at the end of practice on Day 2 were lower than in Group 1. This 

non-significant trend is in accord with the slightly lower variability observed in the 

performance results and is of interest when interpreting the change in the transfer 

phase observed after practice with the preferred hand on Day 2. 

Transfer in Racket Acceleration. To test whether there was evidence for positive 

transfer in the AC values, the index of transfer, IT-AC, were calculated for both days 

and groups. Four t-tests compared the IT-AC-values against zero. Three comparisons 

established significant differences indicating positive transfer (p-values were smaller 

than 0.01, 0.05, and 0.05, for Group 1, Day 1 and 2, and Group 2, Day 1, respectively). 

The exception was the second day of Group 2 with a p-value of 0.706. Viewing the 

time profiles in Figure 8, this absence of a transfer effect can be understood by the 

increase of AC-values from the practice to the transfer phase of Day 2. Note, that this 

change in performance corresponds to a change observed in SD-AE, which, however, 

did not achieve significant results (see Figure 6). When IT-AC was submitted to a 2 

(group) x 2 (day) ANOVA, the main effect of day was significant, F(1, 36) = 6.21, p 

< .05. The overall smaller transfer on Day 2 is partly attributable to the same 

observation, even though the interaction did not reach significance. In sum, after 

continued practice with the preferred hand the same improvement in performance is 

no longer transferred to the non-dominant hand.  

TNC Decomposition. To reveal more aspects of these changes across the practice 

and transfer phases the changes in the variability measure SD-AE were decomposed 

into the three components Tolerance, T, noise, N, and covariation, C. Tolerance was 

calculated as a difference measure that quantifies the performance gain due to change 

in the location in execution space between the initial trial and trial n, where n refers to 

the trial number across practice and transfer. Performance gain was measured by the 

decrease in SD-AE. Analogously, N expresses the difference in performance between 

the initial trial in the pre-test and trial n. Covariation is derived from comparison 
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between the original data of trial n and the surrogate data set. Figures 9 and 10 shows 

the changes across practice and transfer on the two days, separately for the two groups. 

Inspecting Group 1 on Day 1, both N and T gradually increased throughout the 

practice phase while C remained almost constant. This lack of change in C indicates 

that the contribution from covarying execution variables remains unchanged 

throughout practice. While the highest contribution to performance improvement 

came from N, T showed a similarly growing contribution to the observed performance 

improvement.  
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Figure 9: Time course of Tolerance, Noise, and Covariation and their relative 

contribution to performance improvement during acquisition and transfer in Group 1. 

The three components are plotted as a function of trials for two days.  

 

 
 
Figure 10: Time course of Tolerance, Noise, and Covariation and their relative 

contribution to performance improvement during acquisition and transfer in Group 2. 

The three components are plotted as a function of trials for two days. 
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When switching to the non-preferred hand in the transfer phase, the three 

variability components did not show any abrupt changes, indicating relatively 

complete transfer of all three components. On Day 2 for Group 1 the three 

components were small and close to zero, reflecting again the fact that there was not 

much change in the performance variable SD-AE. This result was accompanied by a 

weak contribution of the three components in the transfer phase. For Group 2 the 

variability components showed similar patterns of change across practice and transfer 

trials, except one noticeable difference: On Day 1 T contributed visibly less than N 

and C. Hence, practice with the non-preferred hand showed less changes in T, 

exploration of the execution space.  

To better understand this result Figure 11 illustrates one participant with such a 

pattern of result. The dark symbols represent a subset of bounces from one early trial 

that shows visibly more scatter than the later trial represented by hollow symbols. The 

average location of this early trial changes and the data migrate to the apparently 

preferred location of the late trial. At this location the data are more clustered and 

align with the manifold leading to better results. The component tolerance quantifies 

this migration in execution space. As the summarized data show participants who 

practice with their dominant hand first tend to search the execution space more 

leading to better performance towards the end of the practice. 

 

171 



 
 

 

Figure 11: Execution space with a solution manifold. The dots represent individual 

bounces from an exemplary subject. The dark symbols represent a subset of bounces 

from one early trial and the hollow symbols represent the later trial. 

 

 

Discussion 

The objective of the present study was to examine learning and transfer of a 

perceptual-motor skill and to better understand what is learnt and what is transferred 

given the apparent improvements seen in the result variables. The task of rhythmic 

ball bouncing served as the experimental vehicle as it affords an independent 

investigation of stability and variability to assess the process of acquisition and 

interlimb transfer.  

Results on the typical performance variables, standard deviation of error, clearly 

and not surprisingly demonstrated that participants improved their skill and performed 

with less variability. Regardless of hand, both groups showed evidence that they 

improved their performance with practice to the same degree. Practicing with the 
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preferred hand showed the same improvement as practice with the non-preferred hand. 

This has been evidenced by a host of previous research over many decades (see 

Schmidt, 2005). Further, this decrease in variability was also transferred without 

decrement to the other hand and this bilateral transfer was symmetrical to both the 

preferred and the non-preferred hand. On the second day this improved skill was 

maintained and no further change was observed. Inspection of the standard deviations 

of ball height showed a trend that the group that practiced with their preferred hand 

acquired a slightly lower level of variability. However, these results were not 

significant. Further, there were some indications that this level of skill was not 

completely transferred to the non-preferred hand. Again, these results were not 

significant due to high inter-individual variability. 

Typically this reduction of variability is equated with an increase in stability, a 

characteristic in skilled performance. However, this simple equation is not always 

technically correct and is at best an operationalization of the concept. By using ball 

bouncing as the experimental task, we aim to examine the two aspects separately, with 

the goal to obtain more insight into learning and transfer. As previous studies already 

showed ball bouncing lends itself to a separate analysis of stability independent of 

variability of performance measure. Based on linear stability analyses of a 

mathematical model of the task criteria for dynamical stability were derived (Dijkstra 

et al., 2004; Schaal et al., 1996; Sternad et al., 2001). The racket acceleration at the 

moment of contact was shown to be an indicator of performance stability. Specifically, 

negative racket acceleration at the moment of impact indicates stable performance. 

Using this independent measure of stability, the data showed that participants 

significantly changed their performance strategy. Starting with positive racket 

acceleration on Day 1, both groups showed an exponential change in this quantity 

towards more negative values, characteristic for passively stable solutions. This 

parallel change in variability and racket acceleration was already shown in few 

subjects (Sternad et al., 2000; Dijkstra et al. 2004). However, the previous study was 

performed in a real experimental set-up without the virtual display. Hence, it is 

important to see that the same change occurred when the task was performed in a 
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virtual set-up. It should be emphasized that this solution is not trivial and participants 

can also perform the task with positive accelerations. In fact, from a biomechanical 

point of view, solutions with appositive or zero acceleration would be expected, as at 

this moment of maximum velocity the maximum ball amplitude would be obtained. 

The parallel learning curves are a strong support for the interpretation that the 

measure acceleration is indicative of a strategy. The strategy was discussed in more 

detail in other investigations where perturbations were applied to test for the predicted 

passive (Wei, Dijkstra, & Sternad, submitted-a, submitted-b). 

Comparing the exponential changes of both variability of the error score and 

acceleration with practice it is noteworthy that variability reached a plateau at the end 

of Day 1 and there was no more change seen on Day 2. This fast asymptotic learning 

was observed for both hands. In contrast, the exponential change in racket 

acceleration continued on the second day. This continued reorganization was seen in 

both groups, indicating that this effect was not dependent on the performing hand. 

Argued differently, the absence of hand effects were probably due to the presence of 

high interindividual variability. Hence, even if this variability may suppress such 

laterality effects, it did not prevent large effects in these variables. The continued 

change in acceleration on day 2 and absence of change in variability strongly 

indicates a reorganization in the underlying strategy that was no longer reflected in 

the observable measure. 

Performance Differences between Hands. It is commonly acknowledged that 

dominant and non-dominant hands differ in their degree of adeptness, although the 

underlying causes are still little understood. The current results show surprisingly 

little evidence for different skill in performance. The comparison between both groups 

at the pre-test did not reveal differences between hands, neither in variability nor 

acceleration. This could be either because interindividual variability was too large or 

this task was novel to all participants. Closer inspection of individual data did not 

reveal any further hints at hand differences. What did we do? Is there any evidence 

that hand dominance becomes more pronounced with more practice? Conversely, the 

task is special because control is effectively confined to one moment when the racket 
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hits the ball. However, playing tennis clearly reveal hand differences.  

The most likely explanation is that at the initial stage hand differences are not 

pronounced. One more piece of evidence points to this explanation. The data of group 

2 that practiced with their dominant hand on the second day reached slightly better 

performance than group 1 practicing with their non-dominant hand. Hence, it appears 

that the dominant hand continues to improve. Further, the change back to the 

non-dominant hand in the transfer phase reveals that this change was indeed specific 

to the dominant hand as it could no longer be transferred to the non-dominant hand. 

This finding is visible in both dependent measures and contrast with the results of 

group 1. 

The variability decomposition provides further consistent results. The most 

striking result was that during the first day of practice noise and tolerance steadily 

contribute in the group that performs with their preferred hand. In contrast, practicing 

first with the non-preferred hand reveal that only noise contributes to performance, 

not tolerance. As explained above, tolerance is an operationalization of migration and 

exploration. Therefore, it can be concluded that the dominant hand appears to explore 

execution space more, potentially to find the best solution and strategy. Hence, the 

slightly increasing performance for the dominant hand may be attributed to having 

fond a better location in execution space.  

The seamless continuation of the three components without any interruption when 

changing from one hand to the other is one further strong indication that the transfer 

of skill across limbs was very smooth. This holds for both the first and second day of 

both groups. Covariation did not contribute very much because the task had a very 

planar manifold with the iso-error bands symmetrical and unchanging across 

locations. 
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Appendix 

For a trial with n bounces, each bounce i (i = 1, .. n) is described by the vector ei 

= (XIP,, VB, VB R), where XIP is the impact position, VBB the ball velocity immediately 

before impact, and VR is the racket velocity at impact. Thus, all bounces from a trial 

produce a matrix of execution variables E with a dimension of n×3. Each row of this 

matrix corresponds to one bounce and one data point in execution space. Calculating 

the resulting ball amplitude and the resulting error from the target line according to 

Equation 4, E produces a vector with n values of AE. As variability of AE is regarded 

as the primary measure of performance, the standard deviations of AE within one trial 

are calculated.  

Using two fictive trials, the five panels in Figure 5 illustrate the computational 

steps for the TNC-decomposition. Panel A represents one trial at the early stage of 

learning, panel E at the late stage of learning. The five data sets in panels A-E are 

labeled as EA, EB, EC, ED and EE for clarity. The average result of SD-AE of EA is 

worse than EE as it occurs earlier in the learning process.  

Step 1: Permutate each column of EA and EE separately. This permutation rearranges 

the data in the three execution variables such that a different result is obtained for 

each bounce. From these new results SD-AE are calculated. The permutations of Sets 

A and E are shown by EB and EB D, respectively.  

Step 2: The mean locations of EB and ED are calculated by taking the means of each 

execution variable, separately. Move EB to the mean location of ED by adding the 

distance between EB and ED for each execution variable to EB. This step creates the 

new data set EC. 

Step 3: Calculate SD-AE for each set by applying Equation 4.  

Step 4: Calculate the following differences in SD-AE to obtain the three components: 

- The difference between EE and ED is called Covariation, C, which quantifies the 

performance improvement due to co-varying execution variables in a 
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goal-relevant way. Covariation can also be calculated between EA and EB. 

- The performance difference between EB and EC is called Tolerance, T, which 

quantifies the performance improvement obtained from a better location that is 

more tolerant to errors or noise. The only difference between EB and EC is the 

location in execution space.  

- The performance difference between EC and ED is termed Noise, N, which 

quantifies performance improvement due to decreased scatter in the data. Note 

that both EC and ED are at the same location in execution space but have no 

covariation.  
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CHAPTER 7 

General Discussion 

 

7.1. Hard and Soft Constraints to Human Performance 

At first sight human behavior appears to have no bounds: the number of 

variations and the complexity of patterns that humans can exhibit appear limitless. 

Even simple tasks such as opening a door or climbing stairs are performed differently 

every time. Dancers and musicians repeatedly show us that seemingly impossible 

movements are indeed possible. And yet, despite this rich repertoire of observed 

behaviors there are numerous constraints on human and, in fact, all biological 

movements. Such constraints arise from the physical conditions of the environment 

and the mechanics of the human body, from the specific limits of the nervous system, 

and finally from the task that the actor is engaged in. Some of these constraints are 

hard such as physical laws that cannot be violated. Other constraints are soft and do 

not preclude a certain behavior but impose disadvantages or costs.  

Examples for hard constraints set by the physical conditions of the environment 

and the body are many. Moving in the gravitational field imposes limits that cannot be 

overcome. The fact that a normal sized humans will never run 100 meters in 5 

seconds and will never walk faster than 3 m/s is due to physical constraints set by the 

muscular-skeletal properties of the human body and gravity. For example only as long 

as the upward acceleration during a step is smaller than the gravitational pull humans 

can walk otherwise they fly off the ground, as when walking on the moon (Alexander, 

1992). On the other hand, walking speed is also subject to soft constraints: when 

walking casually, humans will most likely adopt a stepping frequency that is close to 

the eigenfrequency of the legs as determined by their inertial properties (Holt, Hamill, 

& Andres 1990, 1991). Although humans can certainly walk faster and slower than 

this preferred speed, there will be a cost such as increased metabolic rate, higher 

variability, or inferior accuracy if the task involves accuracy.  
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Both hard and soft constraints are also set by the nervous system. The delays in 

information transmission due to the limited transmission speed of nervous signals are 

one obvious example. A similar hard constraint is the asymmetry of the human body. 

The left and right cerebral hemispheres have a different morphology and, 

concomitantly, different functional specializations. In human behavior this is seen in 

hand-dominance that leads to different preferences and levels of skill in the dominant 

and non-dominant hands. People will use their preferred hand to write or to brush 

their teeth unless they are required to do otherwise. More subtle differences in 

functional specialization have been revealed in the kinematics of dominant and 

non-dominant performance in visually guided reaching tasks (Sainburg, 2005). 

Relatively hard constraints are also seen in bimanual coordination where it has been 

demonstrated that the two hands have a tendency for synchronization in both rhythmic 

but also non-rhythmic behaviors (Cohen, 1970; Kelso, Southard, & Goodman, 1979). 

Well-known examples for intrinsically preferred modes include the rhythmic 

coordination in inphase and antiphase between two oscillating limbs (Yamanishi, 

Kawato, & Suzuki, 1980; Kelso, 1984).  

A less obvious example for a soft constraints from the nervous system and 

information processing capabilities is the finding that when reaching from one target 

to another humans move in an almost straight line with a bell-shaped velocity of the 

endeffector trajectory (Morasso, 1981). Imposing visuo-motor transformations from 

joint angle trajectories to the perceived path Flanagan and Rao (1995) showed that 

visually guided reaching movements remain to be generated to produce a straight-line 

path in perceived space, even if the generated movement itself becomes nonlinear 

(Wolpert, Ghahramani & Jordan, 1995). The movement path obviously need not be 

straight but in the absence of other requirements humans tend to choose so.  

Another source of soft constraints that has been less recognized is presented by 

the stability properties of the task. Following Warren (2006) a task is defined over the 

agent and its environment that constitute a pair of dynamical systems that are coupled 

mechanically and informationally. Their interactions give rise to the task dynamics, “a 

182 



 
 

vector field with attractors that correspond to stable task solutions, repellers that 

correspond to avoided states, and bifurcations that correspond to behavioral 

transitions” (Warren, 2006; Saltzman & Kelso, 1987). Research on robot locomotion 

has highlighted the central role of such stability properties by demonstrating that, 

when properly tuned, the rigid-body system can walk in a dynamically stable manner 

even without actuators (McGeer, 1990; Collins et al., 2005). The human-like behavior 

of such simple purely passive machines has strongly suggested that similar principles 

underlie human walking. A similar strategy was taken by Jin and Zacksenhouse (2003) 

in their approach to the task of playing yo-yo. As the task was analyzed to be 

open-loop unstable, an oscillatory controller with a closed-loop strategy was 

developed to perform the task in a stable manner. These few examples demonstrate 

the important role of constraints and stability as defined by the task for understanding 

movement. Yet, to our knowledge there are not many studies that have attempted to 

understand how task constraints shape human motor control. 

7.1.1. Constraints and Stability in the Ball Bouncing Task 

In this wake, the objective of this thesis was to develop a quantitative approach to 

shed light on the control and coordination of humans in the context of a task. The 

strategy was to first model the dynamics of the task and then derive predictions about 

stability as the preferred solutions for humans. The focus was not on the limits of 

behavior but on the soft constraints as presented by the stability of the task. The 

hypothesis was that the task dynamics is a fundamental determinant that shapes the 

movement pattern and action strategies that are available to the actor. This proposition 

is consistent with the claim of Newell (1986) that coordinated movements are 

determined by three kinds of constraints emanating from the environment, the 

organism, and the task. Note that this proposition does not mean that movement 

solutions are “specified” but rather that some are less advantageous and less efficient. 

With this objective the first step was to develop a mathematical model of the task. 

In earlier work Sternad and colleagues had derived a simple model which captured the 

mechanical interactions between the ball and the oscillating surface (Sternad et al., 
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2001; Dijkstra et al., 2003). It is important to point out that the bouncing ball model 

does not include properties of the actor and the nervous system. In the model the 

racket movements follow an invariant sinusoidal waveform. However, it is assumed 

that the actor becomes part of the system by moving the racket and phasing it with 

respect to the ball trajectory. The question is then how the actor chooses to perform 

these racket movements when being part of this task system. Based on a stability 

analysis of the model the conditions for stable behavior were derived. The central 

hypothesis was that actors prefer modes of behavior that satisfy these conditions. In 

experiments that simulated the simplified assumptions of the model human behavior 

was compared with these predictions. In sum, the strategy in this line of research was 

to examine the extent to which the physics of the task shapes and constrains the 

selection of the actor’s behavior. 

The physical model of the bouncing ball is based on few assumptions: ballistic 

flight of the ball, instantaneous collision with the racket with loss of energy defined 

by the coefficient of restitution, sinusoidal movements of the racket, a mass of the 

racket that is significantly greater than the mass of the ball such that there is no 

rebound of the racket de to the impact (Sternad et al., 2001; Dijkstra et al., 2004). 

There is no coupling from the ball trajectory to the racket movement, nor any other 

neuromuscular aspects of how the racket movements are generated. Hence, the model 

is entirely open-loop or “passive”. However, this “lifeless” system exhibits a stable 

period-1 attractor in which the ball is bounced with invariant ball amplitudes, i.e. 

rhythmically. This stable attractor is obtained if the racket trajectory impacts the ball 

at a moment where the racket is in its upward decelerating phase. The stability 

analyses have derived quantitative predictions about the range of the racket 

accelerations for which the system is stable. Stable behavior in accordance with 

passive dynamics means that small perturbations of the ball trajectory converge back 

to the steady state without explicit error corrections of the racket. This stability was 

termed “passive stability” as no active control of the racket trajectory was included. 

The importance of the presence of such a stable attractor is that small fluctuations in 
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performance dissipate without having to explicitly correct for these errors by 

changing the racket movements (Dijkstra et al., 2004; Schaal et al., 1996; Sternad et 

al., 2000, 2001). This strategy is advantageous in terms of control effort as 

theoretically there is no need to correct for small errors and an invariant racket 

movement suffices for producing stable ball amplitudes. 

7.1.2. Evidence of Sensitivity to Passive Dynamics of the Task 

A series of empirical studies on ball bouncing verified that experienced 

performers are indeed sensitive to the stable solutions and bounce the ball with 

negative racket accelerations. The series of four experiments in this thesis continued 

to provide more fine-grained support for the central role of passive stability in this 

simple model task. Previously, the experimental support was obtained using a real 

racket and ball in three different variations in 1D and 3D. Given that the four 

experiments were conducted in a newly designed virtual set-up it was important to 

first replicate that actors performed the task with negative acceleration, i.e., in line 

with the stability predictions from the model.  

All experiments provided such replication for a range of different coefficients of 

restitution. In Experiment 1 when no perturbations were applied, experienced 

participants consistently bounced the ball with negative racket accelerations. More 

fine-grained support was seen in the data when the ball was perturbed to either 

overshoot or undershoot the target: the racket accelerations at successive impacts 

remained largely unchanged at negative values. This was in contrast to the significant 

changes in other kinematic variables of the racket that deviated from the stationary 

values over bounces immediately following the perturbations. This indicated that 

actors changed their racket trajectory to accommodate for the perturbations but 

simultaneously maintained the ball-racket impacts at negative accelerations to provide 

conditions for stability and thereby facilitate return to steady state performance.  

In Experiment 2, the stability characteristics of the task were changed 

parametrically by setting the coefficients of restitution α to seven different values 

(from 0.3 to 0.9). While the conditions for the period-1 stable attractor remained the 
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same - racket accelerations were negative -, its basin of attraction changed across α 

conditions. Irrespective of α, participants hit the ball at a phase with negative 

acceleration. Evidence that also more subtle stability characteristics mattered was 

seen in the fact that performance variability changed. Concomitantly, covariation 

among execution variables also changed. The less stable the solution (as indicated by 

higher values of the largest engenvalue), the more covariation - or control - was 

exerted. These results demonstrated that participants were sensitive to very subtle 

aspects of the task dynamics. 

Experiment 3 provided support for the passive stability hypothesis by showing 

that during practice novice performers changed their strategy from an unstable 

solution characterized by positive accelerations to a stable one with consistently more 

negative accelerations. This exponential change was accompanied by a similar 

decrease in the variability of performance, confirming that this change in strategy was 

consistent with improvements in performance, although causality cannot be attributed 

to this correlation. It may be worth pointing out that actors were not aware of these 

changes in their strategy and only strove for decreasing the deviations in ball height 

and thereby variability in their performance. Another interesting observation was that 

after introducing the distortion to the execution space the impact characteristics 

changed in a systematic manner. The majority of actors exhibited large negative 

accelerations that gradually returned to the smaller pre-distortion values.  

Experiment 4 strengthened these observations. Using a similar scenario with a 

practice session of 40 trials, a group of different actors replicated the findings of 

Experiment 3. Further, this behavior was observed regardless of whether the dominant 

or non-dominant hand performed the task. The central result of this experiment was 

that this strategy was not learnt and specific to the performing limb but rather was 

more abstract in nature as it transferred to the other hand, almost seamlessly. 

Taken together, the findings of the four experiments consolidated previous 

support for the central role of passive stability in a task. It can be safely stated now 

that actors are sensitive to stability properties and organize their movements 

186 



 
 

accordingly to utilize the passive stability offered by the task dynamics. 

7.1.3. Essential and Non-Essential Variables 

In a broader and more historical context, this thesis provides experimental 

contributions that conform with the requirements for a theory of skilled actions as laid 

out by Fowler and Turvey as early as 1978. In this programmatic article the authors 

integrated propositions by Gel’fand and Tsetlin (1962, 1971), Bernstein (1967), 

Greene (1969, 1972), and Gibson (1966, 1977), and provided a framework which has 

since influenced, implicitly or explicitly, a wide spectrum of experimental research. 

The fundamental conceptual claims for a theory of acquisition and performance of 

skilled activity are threefold: 1) The minimal system of analysis should be an event, 

encompassing both the actor and the environment as the necessary support for 

movements. 2) The level of description should be coarse-grained and compatible with 

the actor’s self-description and the environment. 3) In forming a controllable system, 

or a coordinative structure, the actor identifies an “organizational invariant” by which 

the many degrees of freedom of the task are constrained. Gel’fand and Tsetlin (1971) 

proposed that, as such, the problem of coordination is “well-organized”: the variables 

indigenous to the specific task can be partitioned into essential and non-essential ones. 

Actors need to first identify essential variables as they determine the topology of the 

solution and then tune the non-essential variables as they parameterize the space. With 

a view to the three requirements, we argue that the critical variable racket acceleration 

has the status of an essential variable in the sense of Gel’fand and Tsetlin (see also 

Sternad et al., 2001). 1) The task is extremely simple and centered around the event of 

racket-ball interactions. 2) The level of description is course-grained at 

spatio-temporal scale that matter for the agent. As stated before, more microscopic 

neurophysiological detailed are not included in this analysis. 3) The actors have 

exhibited a strategy that seems to concentrate on an organizational invariant. 

7.1.4. Evidence of Passive Dynamics Combined Active control 

Importantly, the passive stability arising from the task dynamics does neither 

prescribe behavior nor does it describe all aspects of behavior. As introduced above, 
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passive stability poses a soft constraint such that other solutions are realizable but will 

have a cost. Active control on the basis of perceptual information is evidently possible 

for human actors. Taking a look at the literature on dynamic walking again, a rich 

array of studies have extended the original pioneering work of McGeer. These include 

passive walkers in two and three dimensions without, but also with additional 

powering (Coleman & Ruina, 1998; Collins, Wisse & Ruina, 2001; Collins et al., 

2005; Tedrake et al., 2004). While these walkers differ much in their morphology and 

actuation, they all exploit passive stability and, probably as a consequence, exhibit 

stable human-like walking pattern. For instance, the passive dynamic walking models 

can take on a variety of physical configurations and still maintain the feature of being 

passively stable. But actuators have added advantages: passive walkers can walk on 

level ground as energy loss is offset by simple means of energy input, and 

three-dimensional walkers can be built with lateral stability using sensory feedback to 

correct for destabilizing deviations (Bauby & Kuo, 2000; Donelan et al., 2004). 

In a similar fashion it can be expected that performance with passive stability 

does not fully account for the bouncing action. Not only does passive stability not 

afford a lot of flexible behaviors, it is also unlikely that actors do not utilize visual and 

haptic information available to them. Evidence for the presence of active control was 

supplied in Experiments 1 and 2. In Experiment 1, the quantitative predictions about 

the response to perturbations were not matched. Actors reestablished steady-state 

performance generally much faster than the model predicted. This held for both large 

perturbations but also for very small perturbations. In principle if only open-loop 

stability were present the large perturbations should have destabilized performance 

and actors should have lost the pattern or established solutions other than period-1. 

This, however, was never observed and spoke to the fact that subjects perceived the 

unexpected deviations of the ball trajectory and modulated their racket movements 

accordingly. Importantly, analysis of the racket trajectories following even small 

perturbations also invoked some immediate changes in the racket trajectory. 

Theoretically, such small perturbations within the basin of attraction could have 
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converged to steady state due to passive stability without requiring changes in the 

racket movement. However, this would have taken many more bounces than was 

observed.  

Analysis of the racket trajectory showed that the periods and amplitudes scaled 

with the perturbation magnitudes. One important finding worth highlighting is that the 

active adjustments of the racket kinematics also assisted the re-establishing of the 

necessary condition for exploiting passive stability. The adjustments in racket period 

and racket amplitude effectively changed the racket waveform. However, the impact 

accelerations remained unchanged at the same negative values as in the bounces 

leading up to the perturbations. In other words, the actor actively corrected the 

perturbation effect by making necessary changes and simultaneously keeps attuned to 

the passively stable regime. These findings suggest that instead of solely relying on 

the passive stability to automatically correct for errors the actor perceived the 

disturbance to the system and made quick adaptations that scaled to the magnitude 

and direction of the disturbance. This shows that the actor is not “locked” onto the 

attractor of the task dynamics but he/she can make quick adaptations according to 

task-relevant information. 

Experiment 2 pursued a different strategy to scrutinize behavior for the signatures 

of passive stability and active control. The rationale for the experiment is that even 

when no explicit perturbations are applied and the system is at steady state, both the 

ball and the racket trajectory exhibit a certain level of fluctuations arising from either 

the intrinsic performance or externally from the environment. These small 

fluctuations are like very small perturbations and, assuming purely open-loop 

behavior, they die out due to the passive stability of the task system. To test whether 

these small fluctuations die out in a manner consistent with the model, the ball 

bouncing map was extended with a stochastic component of small amplitude. The 

time course of these small perturbations at multiple time scales was then examined in 

simulations and quantified in the covariance structure. In addition, stability analysis of 

the model revealed that the largest eigenvalues are different for the different 
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coefficients of restitution, with larger α having less stability than smaller α. 

Predictions were tested by comparing the simulated or analytically determined 

covariance functions with the data. Results showed that for small coefficients of 

restitutions a good match was obtained; larger α values, on the other hand, led to 

significant deviations from these model predictions. As these mismatches generally 

implied that the fluctuations equilibrated faster, it was inferred that this behavior 

could only be brought about by active control. This finding suggested that also during 

steady state behavior, for higher α conditions, the small fluctuations were actively 

compensated for.  

To further evaluate the presence of active control for higher α conditions, the 

measure of covariation was introduced. It has long been recognized that for a task 

with redundant degrees of freedom variations between variables can compensate for 

each other to yield relative constancy in the result (Bernstein, 1967; Müller, 2001; 

Stimpel, 1933; Turvey & Carello, 1995). This compensation was captured by 

quantifying covariation between the variables in the execution space. Covariation 

between the three execution variables was calculated by the permutation method 

introduced by Müller and Sternad (2003), a method that could also capture potential 

nonlinear relations. In a previous study it was shown that covariation increased with 

improving skill level and it was argued that this measure is a signature of movement 

control (Müller & Sternad, 2003; Scholz, Schöner, & Latash, 2000). Based on this 

interpretation the present study showed that covariation indeed increased for higher α 

conditions where task stability decreased. These changes across α conditions were 

complemented by a declining variability in the outcome variables. This result supports 

the interpretation that the racket movement was controlled more consistently and 

more effectively when the stability of the task was reduced by increasing α. Taken 

together, these adaptations, shown as increase in covariation and reduction in 

variability of movements, demonstrate the flexibility of the perceptual-motor system 

under changing task conditions.  

7.1.5. The Strategy: Modeling Hard Constraints to Reveal Soft Constraints for 
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Control 

Studies on passive dynamics in the task have been rare in the research on human 

motor control. Instead, the common focus has been on human performance 

specifically the biomechanics and neurophysiology of the moving limbs without much 

consideration of the task constraints within which the human is operating in. The 

present thesis aimed to demonstrate the potential of this task-focused research strategy 

to provide insights into the fundamental problems of human behavior. 

While few, there do exist other studies that can be viewed in this light. As already 

referenced several times, research on passive dynamic walking has attracted some 

attention, mostly because these simple walking robots appear so human-like. Note 

though that the passive biped robot that walks downhill without any actuators or 

feedback controllers is dependent on the meticulous parameterization of the physical 

linkages. This is similar to the parameterization of the ball bouncing model, which 

requires a periodic racket waveform with certain amplitudes and impact accelerations 

within a certain negative range. Another interesting parallel in both tasks is that both 

the walking robot and the bouncing ball system involve intermittent contacts that are 

the critical moments for controlling the movement pattern: the racket-ball contact is 

the only moment the actor can exert influence on the ballistic flight of the ball; the 

foot-ground contact is essential for adjustments between steps since the movement of 

the leg in the swing phase is largely passive as a free pendulum (Mochon & 

McMahon, 1980).  

 The passive dynamic walking studies also provide insights into the human control 

of locomotion. For instance, the original 2D passive dynamic walking biped 

developed by McGeer (1990) has rigid legs only and the common understanding was 

that an additional upper body will only make the control more complicated. Wisse and 

his colleagues added an upper body to investigate passive walking in 3D. Surprisingly 

it was shown that the upper body actually increased the fore-aft stability (Wisse, 

Schwab, & van der Helm, 2004). Similarly when adding two arms swinging in 

anti-phase the destabilizing yaw motion around the vertical axis of the body was 
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reduced (Collins et al., 2001). These studies show that the physical properties of the 

human body can actually facilitate the control of locomotion and the whole body 

dynamics has to be taken into consideration in order to understand the control of 

human walking. 

Another task similar to the ball bouncing task that involves a dynamic model of 

the task is cascade juggling. The juggling of three or more balls is a highly 

constrained task where the cyclic movements of the hands and the objects are tightly 

coupled. It requires the juggler to throw and catch N balls rhythmically while the 

hands’ movements are coordinated to the flight cycles of the ball with some 

constrained phase relationship. Based on the work by Claude Shannon (Horgan, 1990; 

Raibert, 1986), Beek and colleagues proposed that the ratio of the duration of the ball 

loaded on the hand divided by the complete hand movement cycle (k) was a key 

variable for temporal organization of juggling (Beek, 1988; Beek & Turvey, 1992; 

Beek & Santvoord, 1992, 1996; van Santvoord & Beek, 1996). This variable can be 

freely manipulated by the juggler to vary between 0 and 1. Following the principle of 

frequency locking and “tiling of time”, the authors argued that k = 0.75 characterizes a 

stable solution for juggling (Beek, 1988, 1989; Beek and Turvey, 1992). This stable 

regime is offered by the task dynamics of juggling and is independent from the 

number of hands and balls involved. In real tasks, however, the opportunity to choose 

k for increasing N might decline due to the timing and spatial constraints. But k 

remains to converge to 0.75 regardless of the juggling frequency.  

These predictions were confirmed by empirical studies. In a learning experiment 

novice participants showed a trend towards k = 0.75 over successive training sessions 

(Beek & Santvoord, 1992). However, for skilled jugglers, k was found to range 

between 0.54 and 0.83 with a mean of 0.71 (Beek, 1989). This result was interpreted 

as evidence for multiple possible mode locks other than k = 0.75 in the work space of 

juggling. As k = 0.75 characterizes the most stable mode, the ability to operate at 

values other than 0.75 was interpreted as a high degree of flexibility. Indeed, when 

severe task demands were imposed in five- and seven-ball juggling, even skilled 
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jugglers demonstrated the predominance of k = 0.75 (Beek & Turvey 1992). 

Finally, also some studies on the control of posture have taken an analysis of the 

task as their entry into understanding control. Anticipatory activity of postural 

muscles just prior and during voluntary movement has been studied for several 

decades since Belenkii and colleagues (1967) reported that activation of postural 

muscles preceded the activation of muscles for a voluntary arm movement. However, 

the functional role of this anticipatory muscle action was unclear with two possible 

mechanisms under debate: postural muscle activation stabilizes the body’s center of 

mass (COM) or, alternatively, it stabilizes the individual joints affected by the 

interaction torques arising from the incoming voluntary movement. Patla, Ishac, & 

Winter (2002) investigated voluntary arm movements during a standing posture. To 

assess the functional role of anticipatory activity, they based their reasoning on 

modeling upright posture as an inverted pendulum and taking the joint reactive 

moments as input and the COM trajectory as the output. They found that the 

simulated and the measured COM profiles were identical until about 200 ms after the 

arm movement’s onset. This indicated that a mechanical model without muscle 

control could account for COM migration 200 ms after the voluntary arm movement 

was initiated. Thus, the anticipatory trunk muscle activation did not stabilize the COM. 

Therefore, they concluded that the COM excursion at the early stage of the voluntary 

movement was passive in nature and the anticipatory muscle activations at the joints 

were mainly for joint stabilization and not for the control of the COM. 

 The approach of studying the passive dynamics of the task opens a window to 

reveal the fundamental aspects in movement control. The rationale common to all 

these studies is that task dynamics is a central determinant that shapes the movement 

pattern and the strategy that are available to the actor. As elaborated above, the 

complex and ordered behavior of actors is constrained by the dynamics, both through 

its hard and soft constraints. Our study on the ball bouncing task has modeled the hard 

constraints, the physics of the racket-ball system, stability analyses have revealed the 

soft constraints that the nervous can or cannot obey. This proposition is similar in 
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spirit to Newell’s tenet that coordinated movements are determined by the confluence 

of constraints from the environment, the organism, and the task. It is also consistent 

with the concept of synergy as a task-specific device assembled out of the many 

degrees of freedom of the human action system (Fowler & Turvey, 1978). 

The strategy of passive dynamics has taken these tenets into a research strategy 

that quantifies the physics of the task or the event (Fowler & Turvey, 1978). While 

simplicity is warranted for practical reasons, the event should be modeled including 

the hard constraints from the basic morphology of the actor and the object 

manipulated, the environment the actor interacts with, and the essential physical 

interactions. Neural control involving properties of the neuromuscular substrate, 

feedback control mechanism and perception, all essential to biological systems, lives 

within these constraints. 

 

7.2. Learning and Transfer of the Passive Strategy  

The major goal of Experiments 3 and 4 was to study the acquisition, adaptation, 

and transfer of the skill of bouncing a ball on the background of the findings on 

passive stability and control in Experiments 1 and 2. Special emphasis was given to 

the process of tuning to the passively stable regime with practice by analyzing the 

essential variable racket acceleration at ball impact. In addition, changes in variability 

during practice, adaptation, and transfer were evaluated to complement and further 

understanding of the underlying processes. Importantly, while it has been common to 

evaluate stability as the inverse of variability, our approach presents two independent 

routes of evaluation of stability and variability. Changes in variability were 

scrutinized by decomposing it into three distinct functional components by using the 

TNC method (Müller & Sternad, 2003, 2004a, b; Müller, Frank, & Sternad, 2007). 

This decomposition relies on a parsing of the task into the redundant space of 

execution variables and the associated result variables. It thereby creates a novel 

space or reference frame in which performance of the task can be evaluated.  
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7.2.1. Evidence for Attunement to Passive Stability with Practice 

Both Experiments 3 and 4 found that novice participants started their 

performance with positive impact accelerations that gradually decreased to negative 

values, indicating that they gradually became sensitive to passive stability. At the 

same time, primary measures of performance variability, standard deviations in ball 

height and the absolute error from the target line, decreased along with this tuning 

process. Hence, this correlation supports the interpretation that exploiting passive 

stability is beneficial and indeed facilitates stable rhythmic bouncing. Further, the fact 

that all participants showed positive acceleration values at the initial stage of practice 

suggests that utilizing negative impact acceleration is an acquired and not 

immediately intuitive strategy through learning. These results were consistent with 

previous findings although this experiment was conducted in a real set-up where 

participants manipulated a real ball instead of a virtual ball as in the current virtual 

setup (Dijkstra et al., 2004). 

Experiment 3 went further and introduced a perturbation such that all bounces at 

the previously preferred region in the execution space were perturbed to examine the 

adaptive behavior of the actor. Using the virtual set-up it was possible to create 

systematic deviations to the previously preferred solutions of each individual such 

that the originally approximately planar solution manifold became distorted. After the 

expected initial deterioration in performance, all participants moved out of the 

distorted region and re-established stability in performance. More importantly, 

preference for continually utilizing passive stability was found in the abruptly 

changed task space. Four out of seven participants showed an abrupt drop in racket 

acceleration to more negative values upon the introduction of perturbation. Along 

with this adaptation they managed to make racket acceleration return to the 

pre-perturbation values that were in the optimal range as predicted by the model. The 

remaining three participants did not exhibit abrupt changes in their impact values, 

instead, their racket acceleration values remained in the negative range but with large 

variations. These results provide additional evidence that racket acceleration is indeed 
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an essential variable that the actor tries to control in a certain optimal range in order to 

exploit the passive stability. Applied perturbations can force the actor to abandon the 

originally preferred location in the task space. However, the actor re-organized the 

movement to displace to a new location in the task space while simultaneously 

re-establishing optimal impact characteristics. 

Experiment 4 required participants to practice first with one hand and then switch 

to the opposite hand. No matter with which hand they started their practice a similar 

tuning to the passively stable regime was found. Participants started off with positive 

values of racket acceleration which then gradually decreased to negative values with 

practice. The learning rate, the amount of change during one practice session, and the 

final value of racket acceleration were all similar in both hands. More importantly, 

once actors learnt to exploit passive stability with one hand, they continued to use this 

strategy when they switched to the other hand. The racket acceleration values right 

before and after switching hands did not show any significant difference. This result 

suggests that utilizing dynamic stability of the task is an acquired abstract skill and 

does not depend on which effectors execute the motor task.  

A second important finding in this experiment is that during the second day of 

practice, the performance measures did not show any further significant 

improvements. However, racket acceleration continued to show a decrease to more 

negative values. This observation documented that racket acceleration is a very 

sensitive variable, more sensitive to change than the traditionally used performance 

measures. This observation also highlights that with the continued practice the actor’s 

strategy continued to change even though overt statistical measures no longer 

indicated improvement and signaled that actors have reached an asymptote. This issue 

of performance plateau and continued reorganization of underlying processes has 

been a topic for discussion since the studies of Bryan and Harter (1897, 1899). These 

early studies on telegraph language reported plateaus in their learning curves and 

interpreted them as a time for reorganization of the underlying processes. While 

subsequent studies had problems in replicating these results, the phenomenon 
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remained alive in the discussion of skill learning (Adams, 1987). The present results 

add one piece of evidence to this discussion. 

7.2.2. Passive Stability and Automaticity 

Recalling the original argument that better attunement to the passively stable 

regime will alleviate the necessity for active corrections of small errors in 

performance, the evident conclusion is that the skill can be performed with less 

attention, or more automatically. Automaticity of movement has long been recognized 

as a signature of skilled performance characterizing later stages of the learning 

process (James, 1890; Fitts, 1964). Fitts has introduced his much discussed three 

stages of learning: The first cognitive stage denotes a phase where considerable 

cognitive activity is required to determine the appropriate strategy for the task at hand. 

This is followed by the associative stage, where the individual starts to make more 

subtle adjustments. The final stage is labeled autonomous, where performance has 

become automatic and is less subject to interference from other simultaneous activity 

and attention can be directed to secondary issues. The latter stage evidently matches 

with the definition of performance with passive stability, i.e., the strategy where 

attention is no longer required to focus on error correction. Even though Experiments 

3 and 4 did not investigate the automaticity of performance directly, the increasing 

tuning to the passively stable regime is consistent with the characterization of the 

third stage in Fitts’ theory of learning.  

7.2.3. Variability Decomposition Analysis in Execution Space  

Besides the analysis of passive stability Experiments 3 and 4 also employed a 

novel method to analyze variability to shed light on the process of learning, adaptation, 

and transfer. The TNC analysis focused on the distributional properties of a set of data 

in execution space and how it changes with practice. Three conceptual components of 

learning that have been discussed in the literature for many years are quantified by a 

novel method that parses the overall distributional properties into three components. 

The first component tolerance captures the essence of what researchers have 

described as the exploratory stage in learning. In many contexts exploration has been 

197 



 
 

discussed as one part of the observed variability. For example, in postural control the 

function of body sway has been interpreted as partly exploratory (Riccio, 1993). In 

developmental studies, the seemingly random flailing of infants’ limb movement has 

been interpreted as an exploration of their capabilities and work space. The amount of 

exploration is represented in the migration in execution space with respect to the 

solution manifold. The component tolerance quantifies exactly this. The second 

component covariation has already been introduced as the compensatory relationship 

between variables. The component C evaluates the effect of such covariation in terms 

of the result variable. Note covariation is not covariance and does not use the linear 

statistical method of calculation. Lastly, the decrease of stochastic noise is a 

commonly acknowledged factor in motor learning. Within the TNC method noise is 

calculated as the third component that account for the changes in the result. 

Novel to the TNC method is that the variability of a set of data points is evaluated 

in terms of the difference in the result variable. Therefore, unlike the UCM method 

for example, which has the same objective, the method can be applied to an execution 

space spanned by variables of different dimensions. Note that in ball bouncing the 

execution variables have position and velocity as dimensions rendering the space 

non-homogenous and distances in different directions cannot be evaluated. Further, it 

is not the covariance of the execution variables that is analyzed with the tools of linear 

algebra, but rather the distributional properties and their effect on the result variable. 

Hence, the components tolerance, covariation, and noise can be quantified regardless 

of whether the solution manifold is linear or nonlinear. This is not very important in 

the ball bouncing task as the solution manifold is an approximately planar surface; 

however this is not the case in other tasks, for example skittles or darts (Müller & 

Sternad, 2004; Müller & Loosch, 1999). 

7.2.4. Stages of Learning 

During practice in the first sessions of the two experiments, respectively, the 

decrease in noise N was the leading contributor to the improvement in performance. 

Following an initial significant increase N reached a plateau towards the end of the 
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practice phase. The contributions from both tolerance T and covariation C were 

modest. The observed leveling off of N may be interpreted as indicating that a first 

stage in the learning process has been completed. This interpretation is further 

supported by the fact that the performance measures, standard deviation and mean of 

the absolute error, exhibit the same qualitative time course. Hence, the measure N 

indeed corresponds to the stochastic noise processes that are also quantified by the 

standard variability measures. While not providing much additional information, it is 

informative that the other two components showed so little change. Previous research 

on different tasks, skittles and dart throwing, had identified more significant 

contributions of T and C (Müller & Sternad, 2004; Müller & Loosch, 1999). This 

difference is most likely attributable to the fact that the solution manifold of the ball 

bouncing task was approximately planar with similar sensitivity at all locations. With 

a view to the previous central result on passive stability, it is noteworthy that racket 

acceleration had a comparable approximately exponential time course as N with a 

similar time scale. 

With a view to extant formulations of stages in learning this profile may be 

correlated with the intermediate stage in the terminology of Turvey, Mitra, and 

colleagues (1997). In their proposition the intermediate stage is characterized by a 

reduction in active degrees of freedom as deduced from phase space embedding of an 

observed quantity. In this space the dimensionality of the attractor is estimated. Hence, 

somewhat akin to the TNC approach, the determination of active degrees of freedom 

also relies on an unpacking a space spanned by its embedded dimensions. The TNC 

approach begins with the overt result variables and spans the space of execution 

variables to examine control processes in a different representation. What is different 

between the two approaches is that Turvey’s approach aims to estimate the number of 

dimensions of the underlying attractor, whereas our more mechanically grounded 

representation simply spans another space to obtain underlying variability. Yet, the 

results may be correlated as both representations aim to reveal the complexity and its 

changes during learning. It may hence be conjectured that our observation of 

199 



 
 

gradually reducing noise processes may be related to the postulated decrease in 

dimensionality at the intermediate stage.  

7.2.5. Exploration in Adaptation and Transfer 

Another central finding in Experiment 3 is that the actor showed sensitivity to the 

variability of the execution variables. This was seen when a distortion in execution 

space was applied by systematically changing the physical relations between 

execution and result in the previously preferred region. As performance suffered 

noticeably actor’s execution migrated to a new location in execution space that was 

unperturbed and followed the original correct physical relations. This migration 

showed an interesting feature: the ellipsoid that included 95% of the variance within a 

given set of bounces moved completely out of the distorted region, but only until the 

ellipsoid no loner overlapped with the distorted ellipsoid. This illustrates that actors 

are aware of their variance. Further, instead of following random routes to move away 

from the perturbation ellipsoid, all participants showed a similar adaptation path. This 

constrained process of adaptation suggests that adaptation might be subject to task 

constraints such that performance within the novel solution manifold is still governed 

by the previously learned task dynamics. Additionally, the fact that actors just barely 

moved out of the perturbed region and not further, suggests that they not only change 

their performance (many other locations in execution space would have been 

possible), but they are also attracted by the previously preferred location in the task 

space. This resonates with the proposition that learning a new coordination pattern is 

governed by the interaction between initial coordination dynamics and the 

to-be-learned coordination pattern (Zanone & Kelso, 1992). The final location outside 

of the perturbation ellipsoid indicates the adaptation is an outcome of the compromise 

between the initial and the to-be-adapted patterns. 

The adaptation and the transfer phases of the two experiments also provided more 

“opportunity” for the component tolerance to play a major role. In order to move 

outside the perturbed region, T increased substantially and became the most 

significant component. This is in accordance with the functional role of tolerance as 
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indicator of performance improvement due to moving to a better and more “tolerant” 

area in execution space (Müller, 2001; Müller & Sternad, 2004). While not unintuitive, 

the analysis highlighted this conception of exploration well acknowledged in the 

motor control literature. In Experiment 4, the component tolerance revealed a less 

obvious result: in the first session participants who performed the task with their 

dominant hand showed noticeably more changes in tolerance T than the group that 

used their non-dominant hand. Without any speculation this result signifies 

exploration. While many differences have been ascribed to dominant and 

non-dominant performance, the ability to explore has not yet been discussed. 

Taken together, these results on three variability components suggest that 

variability decomposition is a valuable method for capturing the learning and 

adaptation in the task space. 

 

7.3. Conclusions 

The present dissertation examined a ball bouncing task in a virtual reality 

environment. Using this toy task as an experimental vehicle, questions about human 

control strategies, their acquisition and transfer were investigated. Control and 

coordination was found to be constrained by the task dynamics as the human actor 

exploits the stability properties of the task. This statement was based on the 

quantitative analysis and testing of a mechanical model that captured the essence of 

the task. At the same time, the actor is able to flexibly utilize the behavioral 

information when perturbations were applied to the system or when the system 

stability was altered by varying parameter settings. This blend of control, 

simultaneously conforming to passive stability but also applying active control guided 

by perceptual information renders the actors’ movements stable and. Building a 

passive model without perceptual feedback has been proven to be a viable 

methodological window to unravel the contributions of passive dynamics and neural 

control. Experiments on learning and adaptation further supported that exploiting 

passive stability is indeed an acquired strategy. It is also suggested to be abstract 
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knowledge of the system dynamics as it is symmetrically transferable between two 

limb systems. Compared to the mere examination of result or outcome measures, 

variability decomposition method has been shown to provide more insights about 

processes of learning, adaptation, and transfer.  
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	Results 
	Racket Period and Amplitude. For a better characterization of the task performance the continuous racket trajectories during steady state were assessed by their mean period and amplitudes per trial. The same 4 () x 7 (participant) ANOVA performed on period yielded significant differences between different values, F(3, 84) = 8.91, p < 0.005, and between different participants, F(6, 84) = 20.56, p < 0.0001. The interaction between participants and  was also significant, F(18, 84) = 4.44, p < 0.0001. A small but clear trend can be seen: the racket periods slightly increased for larger  conditions (634(38, 642(44, 654(45, 679(44ms). The cause for this trend is that in the higher  conditions participants impact the ball at slightly lower positions although performance measured in HE was not affected. The equivalent ANOVA on amplitudes revealed a decreasing trend for higher  F(6, 84) = 173.22, p < 0.0001, indicating that subjects moved the racket less when the ball-racket contact was bouncier:0.067(0.007m, 0.049(0.005m, 0.036(0.003m and 0.025(0.005m for  conditions 0.5, 0.6, 0.7 and 0.8, respectively. The main effect for participant and the interaction were significant, F(6, 84) = 3.87, p < 0.05, F(18, 64) = 6.76, p < 0.0001. 
	Discussion 
	 Acknowledgements 

	Participants 
	Experimental Apparatus 
	In the virtual reality setup, participants manipulated a real table tennis racket in order to bounce a virtual ball that was projected on a screen in front of them (Figure 1). Participants stood about 0.5 m behind a back-projection screen with width 2.5 m and height of 1.8 m. A PC (2.4 GHz Pentium CPU, Windows XP) controlled the experiment and generated the visual stimuli with an ATI Radeon 9700 graphics card. It also acquired the data using a 16 bit DT322 A/D card (DataTranslation). The images were projected using a Toshiba TLP 680 TFT-LCD projector and consisted of 1024 by 768 pixels with a 60 Hz refresh rate. Accelerations were measured using a solid state piezoresistive accelerometer mounted on top of the racket (T45-10, Coulbourne). The mechanical brake on the rod attached to the racket was controlled by a solenoid (Magnet-Schultz type R 16x16 DC pull, subtype S-07447). A light rigid rod with three hinge joints was attached to the racket surface and ran through a wheel whose rotation was registered by an optical encoder with an accuracy of one pulse for 0.27 mm of racket movement. The pulses from the optical encoder were counted by an onboard counter (DT322). The racket could move and tilt with minimal friction in three dimensions but only the vertical displacement was measured. Images of racket and ball position were shown on-line using custom-made software. The delay between real and virtual racket movement was measured in a separate experiment and found to be 18 ms on average with a standard deviation of 4 ms. 
	Procedure and Experimental Conditions 
	 Figure 4:  The dispersion of three execution variables in the execution space. The center of the ellipsoid is the mean performance ( , , ), the radii are the 2 times standard deviation of each variable (2*SDIP, 2*SDBV, 2*SDRV). The bigger ellipsoid is from the 10th trial under normal condition in Part II, the smaller ellipsoid is from the last trial in Part II.  
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