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ABSTRACT 

Integral abutment (IA) bridge construction has become more common due to 

desirable performance, however, many design uncertainties still exist, particularly long-

term behavior prediction. In order to better understand these design uncertainties, a study 

of IA bridge behavior through long-term monitoring and numerical modeling has been 

undertaken. Monitoring and instrumentation consists of three prestressed concrete IA 

bridges located on I99 in central Pennsylvania. Evaluation of field data reveals hysteretic 

behavior of IA bridges that may be a significant influence on long-term behavior in 

addition to creep and shrinkage effects. On the basis of field data and two different 

problem types; geotechnical and structural, two major sources influencing long-term 

hysteretic behavior of IA bridges, including soil-structure interaction and yielding of 

structural connections, are identified. These two hysteretic sources were incorporated in 

finite element (FE) models using hysteresis elements derived from selected hysteresis 

models available in the literature for all three instrumented bridges. Also proposed is an 

alternative condensed hysteresis model in which two selected degrees of freedom at the 

pile head location are required. Similar types of hysteresis elements employed in the FE 

models were implemented in the condensed hysteresis models. Equivalent temperature 

loads to incorporate creep and shrinkage effects by using the AAEM method, ambient 

temperature loads, and earth pressures were applied to the FE and condensed hysteresis 

models. Predicted results from all models are compared against field data to evaluate 

model accuracy. Eight load cases were analyzed with a simulation period of 100 years to 

determine the relative magnitudes of hysteretic behavior and effects of creep and 
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shrinkage. It is determined from predicted response at the end of the simulation period 

that the ratios of condensed hysteresis model to 2-D predicted abutment displacements 

range from 0.81 to 1.08. The ratios of long-term to short-term predicted abutment 

displacements range from 1.5 to 2.3. The ratios of predicted abutment displacement 

influenced by hysteretic behavior to short-term predicted abutment displacement are from 

1.1 to 1.2 for an elevation near girders, and are from 1.3 to 1.6 for an elevation near 

abutment bases. These predicted ratios indicate the validity of the condensed hysteresis 

models and the importance of hysteretic behavior and effects of creep and shrinkage on 

long-term behavior of IA bridges. 
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Chapter 1 
 

Introduction 

1.1 Background and Motivation 

Conventional jointed bridge performance deficiencies due to wheel impact joint 

damage and water and deicing chemicals leaking through joints has motivated integral 

abutment (IA) bridge construction. IA bridges exhibit desirable performance with a 

longer service life and lower maintenance due to joint elimination [96 and 117]. 

Additional benefits of IA bridges include: 

• initial material and construction cost savings, 

• maintenance cost savings, 

• road riding improvement, and 

• additional structural redundancies. 

A significant number of IA bridges have been constructed and are performing 

satisfactorily. As design and construction experience has increased, the overall length of 

IA bridges has also increased. Increased bridge length has accelerated the demand for 

better understanding of IA bridge behavior and design methodologies. The design 

uncertainties of IA bridges are primarily a result of complex structural responses due to 

cyclic temperature changes and material time-dependence including: 

• partial longitudinal restraint by intermediate piers, 

• creep and shrinkage effects of concrete members, 
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• earth pressure behind backwalls and abutments, 

• nonlinear soil-pile interaction, 

• partial rotational rigidity of an abutment-backwall connection, 

• pile plastic hinge, 

• approach slab effect, 

• pile orientation, and 

• soil settlement. 

The combination of these several uncertainties leads to a very complex problem. 

In order to gain insight into these issues, a field study of IA bridge structures through 

long-term monitoring has been undertaken. Data obtained from a range of geometric IA 

bridge configurations over a period of several years is required to determine a behavior 

trend. In this study three bridges recently constructed for the I-99 extension in 

Pennsylvania were selected for testing. 

The three instrumented bridges are composite slab on 4-prestressed concrete I-

girders with a number of spans ranging from 1 to 3, lengths ranging from 18.9 m (62’) to 

52.4 m (172’), and abutment heights ranging from 2.56 m (8.4’) to 4.48 m (14.7’). The 

numbers of instruments vary from 48 to 64 on each bridge, consisting of: 

• extensometers to measure abutment longitudinal displacements, 

• tilt meters to measure abutment and girder rotations, 

• pressure cells to measure abutment earth pressures from backfill, 

• strain gages to measure bending and axial strain of girders and piles, and 

• sister bar gages to measure axial strain of approach slabs. 
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Specific data collection periods, number of spans, bridge length, and abutment heights 

are provided in Section 1.3.1. 

Preliminary evaluation of field data reveals nonlinear and path-dependent effects 

of IA bridge behavior and motivates this study. Ambient temperature taken at the weather 

station and extensometer data taken at bridge 203 are plotted on a horizontal and vertical 

scale shown in Figure 1-1. 

There are eight turning points identified in Figure 1-1: point 1 represents the initial bridge 

condition; even numbered points (2, 4, 6, and 8) represent winter peaks; and odd 

numbered points (3, 5, and 7) represent summer peaks. Nonlinear and path-dependent 
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Figure 1-1: Hysteresis Phenomenon of IA Bridges (Bridge 203) 
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behavior is observed through a comparison of path 1-2 (representing short-term abutment 

longitudinal displacements) and path 1-2-3-4-5-6-7-8 (representing accumulated 

longitudinal displacements after 4 winter cycles). It can be observed from Figure 1-1 that 

the time-history of abutment longitudinal displacements take the shape of an open 

hysteresis loop at the first spin. Subsequent spinning loops are formed so as to indicate an 

approaching, stable and closed loop, or steady-state condition. 

In addition to nonlinear and path-dependent behavior (hereafter referred to as 

hysteretic behavior), time-dependent effects due to creep, shrinkage, and strand 

relaxation are also important factors on IA bridge behavior. Time-dependent effects are 

non-hysteretic and significantly influence concrete bridge behavior during the first 

several months. Time-dependent effects are a negligible influence as the bridge matures. 

1.2 Problem Statement 

The complexity of IA behavior prediction due to the combination of several 

design uncertainties is, therefore, uncoupled and twofold: hysteretic and non-hysteretic 

behavior. Hysteretic behavior in IA bridges is primarily a result of nonlinear soil-

structure interaction and yielding of certain structural connections. Non-hysteretic 

behavior involves non-reversing time-dependent effects due to creep, shrinkage, and 

strand relaxation for prestressed concrete members. 

There are two general sources causing hysteresis phenomena in IA bridges: (1) 

interaction between the structure and soil, a non-recoverable and strongly hysteretic 

material, and (2) yielding of structurally detailed connections loaded beyond the elastic 
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range. Certain connections and elements for long IA bridges will be forced into the 

plastic region and, therefore, will not fully recover when unloaded. Both sources of 

hysteresis phenomenon generally cause bridge behavior to exhibit an open loop at the 

first spin and are expected to approach steady-state after subsequent spins. 

Due to structural continuity in IA bridges, time-dependent effects of creep, 

shrinkage, and relaxation become indeterminate. Superstructure and substructure 

components, including supporting abutments and piles, experience stress redistribution 

resulting from time-dependent effects. Time-dependent effects generally cause significant 

self-shortening of superstructure components and significant bending of substructure 

components during the first few years. Time-dependent effects are deemed insignificant 

after the initial time period of the first few years. 

It is evident from field data that the combined effect of hysteretic and non-

hysteretic behaviors grows on a logarithmic scale. Therefore, a long-term trend 

combining these two behaviors is anticipated to approach steady-state within some finite 

period of time. Because the design bridge life of 75 years is specified by AASHTO 

LRFD [3] and field data does not span a sufficient time period to reveal the combined 

long-term trend, a methodology to predict long-term behavior or steady-state, currently 

unavailable in the literature, is required and developed in this study. 

This study proposes a concept of steady-state prediction through the use of 

hysteresis models for hysteretic behavior and the age-adjusted effective modulus method 

(AAEM) for non-hysteretic behavior. Two levels of finite element analyses: two-

dimensional and three-dimensional, were developed. A procedure to develop a condensed 

hysteresis model was also devised to provide a simplified analysis methodology. All 
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three models developed for the three instrumented bridges have been calibrated against 

corresponding field data. After completion of calibration, a steady-state prediction was 

performed to evaluate long-term behavior of IA bridges. 

Methodologies of steady-state prediction are presented in a diagram of Figure 1-2. 
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Figure 1-2: Problem Solving Diagram 
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The development of the methodologies can be described by the following steps: 

• establish two approaches: hysteresis models and AAEM, for both 

hysteresis and non-hysteresis, 

• select appropriate hysteresis models to construct hysteresis elements for 

each of two modeling techniques: FE models and condensed hysteresis 

models, 

• develop FE models and condensed hysteresis models that incorporate: (i) 

hysteretic behavior by using hysteresis elements, and (ii) non-reversing 

time-dependent effects by using AAEM, 

• calibrate each modeling technique by using field data, and 

• predict steady-state from each modeling technique. 

1.3 Scope of Research 

The scope of this study is composed of three issues: (1) instrumentation, (2) finite 

element models, and (3) condensed hysteresis models. Instrumentation, descriptions of 

bridge type, general dimensions, and data collection for all three instrumented bridges are 

provided in Section 1.3.1. FE models, methods of applying hysteresis models and time-

dependent effects, levels of analysis, number of models, model calibration, and selected 

software for finite element analysis purpose are discussed in Section 1.3.2. Condensed 

hysteresis models, methods of applying hysteresis models and time-dependent effects, 

general development procedure, and number of models are presented in Section 1.3.3. 
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1.3.1 Scope of Instrumentation 

Three bridges located on the I-99 extension in Pennsylvania were selected for 

instrumentation and long-term monitoring. All three instrumented bridges are composite 

slab on 4-prestressed concrete I-girders with number of spans, bridge length, and 

abutment heights as summarized in Table 1-1. In addition, one weather station was 

installed prior to the beginning of bridge construction to collect data of ambient 

temperature, relative humidity, wind speed, wind direction, solar radiation, air pressure, 

and precipitation. 

The duration of data collection for the three instrumented bridges is also 

summarized in Table 1-1. Data has been continuously collected every 15 minutes with 

the corresponding duration as of January 2006. The data collection period at the weather 

station is 42 months as of January 2006. 

Each bridge is equipped with the following five instrument types: 

• extensometer to measure abutment longitudinal displacements, 

• tilt meter to measure abutment and girder rotations, 

Table 1-1: Selected Bridges for Monitoring and Analyses 

Bridge 
Number 

Number 
of 

Spans 

Span Length 
m (ft) 

Total Bridge 
Length, m (ft) 

Abutment 
Height, m 

(ft) 

Data 
Collection 

Duration as of 
Jan 06 (Month)

203 3 
14.3-26.8-11.3 

(47-88-37) 
52.4 (172) 4.48 (14.7) 39 

211 1 34.7 (114) 34.7 (114) 2.56 (8.4) 17 

222 1 18.9 (62) 18.9 (62) 2.82 (9.3) 27 
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• pressure cells to measure abutment earth pressures from backfill 

• strain gages to measure bending and axial strain of girders and piles, and 

• sister bar gages to measure axial strain of approach slabs. 

1.3.2 Scope of Finite Element Models 

Because an advanced analysis capability is required for hysteretic behavior, FE 

models were developed using ANSYS. Two levels of modeling were conducted. The first 

level is a two-dimensional model consisting primarily of beam elements. A more 

sophisticated model built in three-dimensional space consisting primarily of shell 

elements serves as the second modeling level. Two-dimensional ANSYS FE models were 

developed for each of the three instrumented bridges (203, 211, and 222). In addition, 

three-dimensional FE models were developed for bridges 203 and 222. A three-

dimensional FE model of bridge 211 developed by Laman et al [61] was also utilized for 

this study. 

Hysteretic behavior by means of nonlinear soil-structure interaction and effects of 

structural connections was considered by using a one-dimensional, nonlinear, ANSYS 

element. Nonlinear properties of soil behavior were taken from p-y curves and classical 

earth pressure theory. Moment-curvature relationship based on abutment construction 

joint details was integrated into the numerical models. Classical plasticity theory was 

utilized for element properties when unloaded. 

Also addressed in FE models are time-dependent effects. In this study a net time-

dependent strain after super- and sub-structure continuity is established was determined 
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using the age-adjusted effective modulus method (AAEM). This method is relatively 

simple but provides a reasonably good estimate. Then, a net time-dependent strain was 

imposed on the superstructure elements by means of an equivalent temperature loading. 

Finally, calibration of the numerical models was performed against available field 

data. Analyses of FE models through a design life of 100 years were carried out to 

determine steady-state and long-term bridge response. The difference between short-term 

and long-term responses was quantified in order to study the importance of the hysteretic 

effect on IA bridges. 

1.3.3 Scope of Condensed Hysteresis Model 

A condensed hysteresis model was developed to provide a simple but versatile 

approach to predict IA bridge response compared to the FE modeling approach. The 

development of condensed hysteresis models essentially borrows a concept from the FE 

method, however, only a few inputs and a few outputs are involved. This approach can be 

used at a practical analysis level with relative ease of implementation. 

Abutment movements at the pile head location are identified as the most useful 

outputs because analysis and design of structural and geotechnical components is 

typically separated at a convenient boundary. Movements at this location can be 

substantially used to determine abutment stresses through structural analysis and pile 

stresses through geotechnical analysis. Therefore, two degrees of freedom at the pile head 

location; translation and rotation with respect to the longitudinal direction, are selected as 

desirable outputs to develop a condensed hysteresis model. 
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The procedure to develop a condensed hysteresis model is demonstrated for a 

single-span IA bridge. Model assumptions of symmetrical geometry and perfectly rigid 

abutment and backwall components were applied to introduce constraint conditions and 

reduce the number of unknowns by using constraint and condensation techniques. 

Because the developed model was based on a single span bridge applicable to bridges 

211 and 222, modified bridge length parameters were proposed to determine model 

stiffness for the bridge 203 case. The end result appears in a mathematical expression that 

can be solved by numerical step-by-step integration. 

Techniques utilized in FE models such as inclusion of hysteresis behavior, 

equivalent temperature, and long-term behavior, can also be applied to a condensed 

hysteresis model. P-y curves, classical earth pressure theory, and moment-curvature 

relationships were utilized to derive condensed hysteresis model properties. Equivalent 

temperatures used for condensed hysteresis models were taken from the FE model 

equivalent temperatures. Analyses of condensed hysteresis models through a design life 

of 100 years were carried out to determine steady-state and long-term bridge response. 

1.4 Objectives 

The overall objective of this study is to establish the procedure to predict steady-

state and long-term IA bridge response due to the combination of hysteretic and non-

hysteretic behaviors. Calibrated FE and condensed hysteresis models are used as a crucial 

step in the procedure to obtain steady-state and long-term response predictions. This 

prediction procedure is accomplished by achieving the following specific objectives:  
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1. predict steady-state and long-term responses of all three instrumented 

integral abutment bridges, 

2. develop a condensed hysteresis model, 

3. quantify hysteretic effect on IA bridges through a comparison of short-

term and predicted long-term bridge responses, 

4. determine a correlation of the significant bridge parameters, i.e. length and 

abutment height, to the hysteretic effect, and 

5. recommend a methodology to predict a steady-state and long-term IA 

bridge response/behavior. 

1.5 Thesis Organization 

This thesis consists of seven chapters. Chapter 2 reviews hysteresis phenomena in 

IA bridges, a number of hysteresis models from a mathematics and physics perspective, 

and time-dependent effects on IA bridges. Chapter 3 discusses hysteresis elements 

derived from Chapter 2 hysteresis models to be applied to FE and condensed hysteresis 

models. Chapter 4 presents modeling techniques, applied loads, and analysis types for the 

FE models. Chapter 5 discusses a framework for condensed hysteresis model 

development and implementation. Chapter 6 presents field data and analysis results 

obtained from the FE and condensed hysteresis models along with result discussions. 

Finally, Chapter 7 provides summary, conclusions and recommendations of this study. 

 

 



 

 

Chapter 2 
 

Literature Review 

2.1 General 

In this chapter relevant past studies of hysteresis in IA bridges as well as a 

number of selected hysteresis models from a mathematical and physical perspective are 

reviewed to establish their application to hysteretic behavior of IA bridges. Past studies 

relating to four identified hysteretic behavior components: (1) soil-pile interaction; (2) 

soil-abutment interaction; (3) abutment-backwall connection; and (4) pile-abutment 

connection, are reviewed. The mathematics of hysteresis was primarily developed in an 

abstract way, intended to be applied to general and multi-dimensional applications. On 

the other hand, the physics of hysteresis was primarily developed in phenomenological 

way, intended to be applied to a physical model of limited dimensionality. Most 

hysteresis models from these two perspectives, however, are generally interconnected and 

frequently possess the same basic properties. On the basis of past studies and hysteresis 

model properties, appropriate hysteresis models are selected to represent hysteretic 

behavior of IA bridges in the ANSYS FE and the condensed hysteresis models. 

Time-dependent effects, composed of concrete creep, concrete shrinkage and 

prestressing steel relaxation, and relevant past studies are also reviewed. The presence of 

IA bridge structural continuity results in the superposition of time-dependent effects on 

thermal effects when determining pile and abutment movements. The effects of creep, 
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shrinkage, and steel relaxation are examined herein from a structural mechanics and 

practical design perspective. A selected analysis method to incorporate time-dependent 

effects into the FE and condensed hysteresis models is presented. Relevant past studies 

are also reviewed, particularly in connection with the selected time-dependent analysis 

method. 

This chapter begins with a review of studies relating to each of the hysteretic 

behavior components in IA bridges. A review of hysteresis models from a mathematical 

and physical perspective follows. Next, a review of studies relating to time-dependent 

effects on IA bridges is presented. Concrete creep, concrete shrinkage, and prestressing 

steel relaxation are described. Finally, an analysis method to incorporate time-dependent 

effects into the FE and condensed hysteresis models is provided. 

2.2 Hysteresis Phenomenon in Integral Abutment Bridges 

Past studies of the proposed four components influencing IA bridge hysteretic 

behavior: (1) soil-pile interaction; (2) soil-abutment interaction; (3) abutment-backwall 

connection; and (4) pile-abutment connection; are reviewed. The soil-pile and soil-

abutment interactions depend on soil-structure interaction behavior, however, the 

separation of these two components is required due to differences in geometric 

configurations and general soil resistance behaviors. The abutment-backwall and pile-

abutment connections involve yielding of two different types of structural connections 

loaded beyond their elastic ranges. 
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2.2.1 Soil-Pile Interaction 

Hysteresis phenomenon in IA bridges regarding soil-pile interaction was first 

discussed by Springman and Norrish [98]. Based on their preliminary test data, under 

controlled stress cyclic stresses and controlled cyclic strains, soil responses strongly 

exhibited hysteresis phenomenon as presented in Figure 2-1 [98]. 

In Springman and Norrish studies, a number of scale integral abutment bridge 

centrifuge tests subjected to cyclic displacements at the deck level were conducted to 

investigate soil-pile interaction behavior. Results were separated into two cases: small 

displacement behavior and large displacement behavior. All results consisting of bending 

moments, shears, and displacements along the length of the pile indicated that cyclic 

effects are insignificant for small displacement behavior. However, results obtained from 

large displacement behavior demonstrated strong cyclic effects resulting in larger 

bending moments and shears as the number of cycles increased. Springman and Norrish 

[98] also reported that increasing rates of bending moments and shears for large 

 

 
Figure 2-1: Hysteresis Loops of Soil Responses Under Controlled Cyclic Stresses and 

Controlled Cyclic Strains [98] 
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displacement behavior are significantly reduced when the number of cycles is increased. 

This implies that soil-pile interaction under cyclic loading is dynamic and the mechanism 

approaches a steady-state when the number of cycles is increased. 

Among many methods for predicting soil-structure interaction behavior, the p-y 

curve technique is the most practical due to relative ease of use [100 and 114]. This 

method was developed in the 1970s, well documented in Reese [92], and implemented as 

a microcomputer program by Wang and Reese [112]. 

In addition to the experimental study conducted by Springman and Norrish [98], 

there are several analytical studies concerning IA bridge soil-pile interaction. Although 

some studies employ a continuum FE model approach (e.g. hyperpolic material model 

with 2D plain strain elements [12] and Mohr-Coloumb failure criterion with 3D solid 

elements [56]), nonlinear p-y curves have been more commonly used because these 

curves are simpler and easily modified. Dicleli and Albhaisi [35 and 36] performed a 

push-over analysis and adopted an elasto-plastic stress-strain curve to simplify a p-y 

curve. Faraji et al [41] carried out a nonlinear analysis with the same simplification as 

Dicleli’s study. Laman et al [60], Fenemma [43], Fenemma et al [44], Paul [85], and Paul 

et al [86] applied a multi-linear spring to obtain a better approximated p-y curve. 

However, due to limited software capability of the particular elements used in these 

studies (SAP2000 [94] and STAAD [99]), only an initial loading case was evaluated. 

Thus, no hysteretic behavior was considered. 

An unrecoverable property needs to be considered when soil is subjected to cyclic 

loading. A reduction of soil strength in the classical p-y curves to account for cyclic 

effects was normally utilized [64 and 112]. However, this approach cannot be used to 
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capture the transition between initial and final pile behaviors after many loading cycles. 

In order to bridge this gap, modifications to the classical p-y curve were performed by 

several researchers [18, 64, and 100]. Among these modifications, an elasto-plastic p-y 

curve, proposed and numerically proved by Taciroglu et al [100], appears to be the most 

useful hysteresis model for this study because the desirable characteristics of this model 

are available in ANSYS. Figure 2-2 presents a qualitative diagram of the elasto-plastic p-

y curve. 

 

2.2.2 Soil-Abutment Interaction 

The difference between soil-abutment interaction and soil-pile interaction depends 

upon several factors. The most apparent factor is that, regardless of whether temperature 

rises or falls, abutments receive pressure by backfill in only one direction as a result of 

the wedged-type failure mode [112]. Piles are prevented from moving in any direction by 
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Figure 2-2: Qualitative Diagram of Elasto-Plastic p-y Curve 
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either of two soil failure modes: wedged-type and local shear around the pile body [112]. 

Other important factors include structural stiffness and soil properties. 

From a practical perspective, classical earth pressure theory is commonly 

employed to construct a diagram as presented in Figure 2-3 to simulate soil-wall 

interaction [32, 33, and 39]. A lateral modulus of subgrade reaction, kh [103], is used to 

linearly connect the three earth pressure limit states (active, at rest, and passive). 

The diagram presented in Figure 2-3 was adopted by Koskinen [57] to represent backfill 

behaviors using FE analysis by neglecting the active earth pressure limit state and 

connecting the lateral soil stiffness slope from the origin to the passive earth pressure 

limit state. Paul [85] and Paul et al [86] employed the same approach as performed by 

Koskinen [57] to conduct a parametric study on IA bridges. This approach was also 

adopted by Dicleli [34] to develop computer-aided analysis of IA bridges with several 

simplified assumptions (e.g. identical abutments and soil configuration on both sides, 

neglecting contribution of substructure resistances, and neglecting an eccentricity of earth 
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Figure 2-3: Typical Soil-Abutment Interaction Diagram 
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pressure resultant forces to the superstructure neutral axis). Only initial loading was 

evaluated in the above discussed studies, thus, no hysteretic behavior due to 

unrecoverable soil properties was considered. 

Evidence showing that hysteretic behavior exists in soil-abutment interaction of 

IA bridges is presented in England et al [40] and Neil et al [77]. A number of tests of a 

scale semi-integral abutment bridge subjected to cyclic displacement at the deck level 

were conducted to study soil-wall interaction, settlement, and heave behavior. From 

experimental data, many hysteresis loops related to soil response were obtained, 

particularly the relationship between shear/axial strain and a ratio of two principal 

stresses. However, England and Neil primary focus was to determine recommendations 

for the design of IA bridges in the UK, therefore, only the extreme values of each loop 

were extracted and studied. 

2.2.3 Abutment-Backwall Connection 

Connection joints between abutment and backwall are unavoidable in concrete I-

girder IA bridge construction. Reinforcement details for these construction joints vary 

from state to state. Examples of DOT standard joint details are provided for discussion in 

Figure 2-4 through Figure 2-7. Pennsylvania Department of Transportation (PennDOT) 

specifies, presented in Figure 2-4, Ø16 mm @ 250 mm (#5 @ 10˝) U-shape rebar as a 

standard reinforcement detail [17]. As can be observed, the vertical reinforcement across 

the joint is placed at each face of the wall. Massachusetts Highway Department standard 

joint detail [21] presented in Figure 2-5 has a similar rebar arrangement. 
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Figure 2-4: PennDOT Standard Integral Abutment Details [17] 
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Figure 2-5: MassDOT Standard Integral Abutment Details [21] 



21 

 

Standard joint details for the New Jersey DOT [22] and New York State DOT [20], 

presented in Figures 2-6 and 2-7, share a common reinforcement arrangement. The 

apparent difference of the NJDOT and NYSDOT standard details from the PennDOT and 

MassDOT standard details is that the vertical joint reinforcement has a much shorter 

moment arm to induce a moment at the joint. However, the use of much larger bar sizes 

(Ø50 mm @ 300 mm for NJDOT and Ø60 mm @ 300 mm for NYSDOT) compensates 

for the larger induced moment. 
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Figure 2-6: NJDOT Standard Integral Abutment Details [22] 
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In practical IA bridge design, horizontal construction joints are intended to behave 

as a rigid connection. However, rotational stiffness of the construction joints is relatively 

small compared to the stiffness of the abutment and backwall. This is because the joint 

stiffness relies entirely on reinforcement without contribution from the concrete’s 

modulus of rupture. Based on the PennDOT standard detail, Paul [85] demonstrated that 

moment strength and initial rotational stiffness of the joint derived from calculated 

moment curvature are much smaller than those of the abutment derived from calculated 

abutment moment curvature. An elasto-plastic model was also proposed by Paul [85] to 

represent the abutment-backwall joint behavior in numerical models. 
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Figure 2-7: NYSDOT Standard Integral Abutment Details [20] 
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Due to relatively small rotational stiffness and strength of common abutment and 

backwall horizontal construction joints, it is expected that medium to long IA bridges will 

experience movement sufficient to cause yielding in reinforcement. This yielding results 

in a hysteresis phenomenon. 

2.2.4 Pile-Abutment Connection 

It is known that steel H-piles in an IA bridge may reach full plastic moment 

capacity, particularly at the pile-to-abutment connection, when the bridge undergoes 

sufficient thermal movements. Yielding of steel H-piles at this connection may result in a 

hysteresis phenomenon similar to yielding of abutment-backwall connection. Therefore, a 

similar technique used for abutment-backwall connections, i.e. elasto-plastic hysteresis 

model, can be employed to pile-abutment connections. An elasto plastic elements and 

static push-over analysis was used and studied by Dicleli and Albhaisi [35] to simulate 

yielding behavior of IA steel H-piles. However, only initial loading was evaluated, thus, 

no hysteretic behavior was considered. 

2.3 Hysteresis Models 

2.3.1 Historical Perspective 

Hysteresis phenomenon was initially discovered in ferromagnetic materials. 

According to Visintin [109], Weber, Maxwell, and Wiedemann are pioneers who 

ascribed this phenomenon to frictional resistance in the late 1800s. However, it was 
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Ewing in 1882 who was the first to refer to as hysteresis. Hysteresis in plasticity dated 

back to 1924 by Prandtl [109] who proposed a general scalar model of elasto-plasticity. 

This model was extended to a tensor framework by Reuss in 1930 [109], which 

mathematicians labeled a linear Stop Model. Hysteresis phenomenon is also found in 

many other areas, such as phase transitions, hydrology, chemistry, biology, economics, 

and many more [89 and 109]. The most recent improvement to hysteresis phenomenon is 

shape memory alloys. 

Although hysteresis phenomenon has existed for more than a century, the 

mathematics of hysteresis was developed in 1970 by Krasnosel’skiĭ and his co-workers. 

A monograph written by Krasnosel’skiĭ and Pokrovskiĭ [58] was published in 1983 and 

translated into English in 1989. The mathematics of hysteresis was then expanded to a 

partial differential equation framework by Visintin [109]. Their studies covered 

hysteresis phenomena of many research areas, mainly ferromagnetism and continuum 

mechanics. Besides the major contribution by Krasnosel’skiĭ, Pokrovskiĭ and Visintin, 

Mayergoyz [70] published his monographs in 1991 and 2003, devoted entirely to 

ferromagnetism. Brokate and Sprekels [24] published their monographs in 1995, devoted 

to an application of thermodynamic phase transitions. Since the 1980s, the number of 

researchers who study hysteresis has been increasing. 

2.3.2 Mathematics of Hysteresis 

Mathematics of hysteresis is one of the advanced topics in applied mathematical 

sciences. As mentioned in Section 2.3.1, there are several textbooks dedicated entirely to 
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the description of the mathematical aspects of hysteresis. The present will not attempt to 

review all sources but will focus on necessary topics. 

Definitions of the basic hysteresis parameters are as follows: 

• Input, )(tx : A variable that is a function of time, t, and acts as an external 

effect on a system, 

• Output, )(ty : A variable that is a function of time, t, and is the response of a 

system to the variable )(tx  at the same instant of time, 

• Hysteresis transducer, Ĥ : A mathematical operator that converts a variable 

input, )(tx , to a variable output, )(ty . 

The basic relationship between these variables is written in Equation 2-1: 

Equation 2-1 can also be understood graphically as in Figure 2-8: 

Prior to discussing the mathematical aspects of hysteresis, it is necessary to 

present the important hysteresis property of rate-independence. This property implies that 

rates of input with respect to a time scale, )(tx& , do not affect a hysteresis transducer Ĥ , 

rates of output )(ty& , or output )(ty . Rate-dependent hysteresis is discussed in detail by 

Brokate [24] and will not be considered here because the relationship of input and output 

)(ˆ)( txHty ⋅=  (2-1)

 

Ĥ
)(tx )(ty

 
 

Figure 2-8: Hysteresis Transducer 
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of the present study (temperature and bridge movements) is rate-independent. Further 

discussion herein is limited to a rate-independent hysteresis model. 

In order to demonstrate the mathematical concept of hysteresis, the simplest 

model of hysteresis, Non-Ideal Relay [58 and 89], is presented in Figure 2-9. 

The model in Figure 2-9 allows an output, )(ty , to switch only between two specified 

values, m and n. There are two threshold points: switch-on point (β) and switch-off point 

(α) that allow one-way switching from n to m and m to n, respectively. For any input 

values not equal to those threshold points, output will remain constant as either m or n, 

regardless of input, )(tx . The hysteresis transducer Ĥ  of this model is defined as: 
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Figure 2-9: Non-Ideal Relay Hysteresis Model 
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where to is an initial time and yo is a value of an output at time to (either m or n). 

Although Equation 2-2 appears awkward, it provides an explicit expression. The 

hysteresis transducer in Equation 2-2 as well as every mathematical hysteresis model 

discussed hereafter can be expressed in a complex notation of functional spaces to 

describe a framework of partial differential equations for multi-dimensional hysteresis 

models [109]. However, only a one dimensional hysteresis model will be adopted herein 

so that the use of functional space notation is not required. 

There are several available hysteresis models developed by many applied 

mathematicians. The most widely used hysteresis models include: Preisach Model; 

Discontinuous Hysteresis Model; Play Model; Stop Model; Prandtl-Ishlinskiĭ Model; and 

Duhem Model [109]. 

The Preisach Model is one of the most widely used hysteresis models, however, it 

is applicable to ferromagnetism and electromagnetism, not mechanics. This is because 

the model contains a mathematical property, referred to as Wiping-out. Wiping-out 

agrees with a physical property, referred to as reduced memory sequence, in 

ferromagnetism [109]. However, there have been attempts in other disciplines to adopt 

and apply this model to soil-moisture, smart materials, and structural control problems 

[45, 48, and 93]. 

The Non-Ideal Relay is commonly classified as a discontinuous hysteresis model. 

According to Visintin [109], the use of the discontinuous hysteresis model occurs in 

thermodynamics and phase transitions. Due to the loss of continuity, this model is not 

suitable for continuum mechanics. 
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Useful models for a mechanical application; particularly for elasto-plastic, 

viscoelastic, and elasto-visco-plastic constitutive laws, requires the property of 

continuity. According to Visintin [109], hysteresis models satisfying the continuity 

include: Play Model, Stop Model, Prandtl-Ishlinskiĭ Model, and Duhem Model. The 

following presents the basic concept along with mathematical properties of these 

hysteresis models. 

Play Model 

According to Visintin [109], there are two forms of Play Models: (1) linear Play 

and (2) generalized Play. The linear Play is discussed herein. Figure 2-10 presents a 

diagram of the Play Model as well as its physical system through a mechanism of a piston 

and cylinder. 

It is observed from Figure 2-10 that the system represents the action of a piston 

and cylinder as a driving and driven element. A horizontal displacement is applied to the 

piston as an input variable x(t) while the cylinder displacement represents an output 
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Figure 2-10: Linear Play Model 



29 

 

variable y(t). The general equation of an output variable (t ≥ to) corresponding to a 

monotonic input is given as [58]: 

An alternate form of Equation 2-3 is written as: 

The domain of the model is given as: 

In order to allow piecewise monotonic inputs, the hysteresis transducer is 

assumed to be deterministic [58]. A mathematical property, called the semi-group 

property or semi-group identity, is required such that [58]: 

For generalized Play, Krasnosel’skiǐ and Pokrovskiǐ [58] discussed and provided 

proofs that the model satisfies the Lipschitz condition and monotonicity property. These 

two basic properties are required to ensure that an output variable is bounded and a 

change in input and output variables conforms correspondingly. Other mathematical 

properties, such as continuity and proofs, that allow an extension from piecewise 

monotonic inputs to an arbitrary continuous input, can be found in Krasnosel’skiǐ and 

Pokrovskiǐ [58] and Macki et al [69]. 
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Stop Model 

The Stop Model [58 and 109] is a simple but versatile hysteresis model that can 

represent a hysteresis phenomenon of elasto-plasticity without strain-hardening. Figure 2-

11 presents a simple system having a spring connected to a mass on a rough surface 

where an external force is applied to the right end of the spring and transmitted to the 

mass at the left end of the spring. The system maintains its equilibrium by friction 

between the mass and the surface. The displacement at the right end of the spring and the 

spring force serves as input and output variables of the system respectively. 

Assuming that a threshold value of the friction force is C and spring stiffness is k, an 

output variable (t ≥ to) is expressed as [58]: 

The domain of the model is defined as: 
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Figure 2-11: Stop Model 
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As with the Play Model, the semi-group property is required for the Stop Model 

when piecewise monotonic inputs are used. The Stop Model must also satisfy the 

Lipschitz condition, monotonicity, and continuity, as determined by Krasnosel’skiǐ and 

Pokrovskiǐ [58]. 

Prandtl-Ishlinskiĭ Model 

The Prandtl-Ishlinskiĭ Model is a hysteresis model obtained by combining Play 

and Stop models. Visintin [109] described this hysteresis model as a model of elasto-

plasticity with strain-hardening. There are two major forms of the Prandtl-Ishlinskiĭ that 

can be derived in the following manner [109]: 

• Prandtl-Ishlinskiĭ Model, Play-Type: Combination of a Play model and a Stop 

model in series. 

• Prandtl-Ishlinskiĭ Model, Stop-Type: Combination of a Play model and a Stop 

model in parallel. 

Mathematical expressions of these models are of a very complex format, 

generally expressed in a framework of variational inequalities. The present study 

primarily addresses a structure subjected to service loading. Yielding of certain structural 

connections can be sufficiently described using the Stop Model to represent a zero-

stiffness plastic region. Therefore, a state beyond the plastic region (strain hardening and 

necking), which is the primary capability of the Prandtl-Ishlinskiĭ Model, is not a 

required characteristic for the present study. 
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Duhem Model 

The Duhem Model is primarily constructed from a solution of two families of a 

smooth function. These two functions, defined as increasing slope If  and decreasing 

slope Df , are defined through the following form of differential equations [58]: 

These two functions must satisfy the Lipschitz condition such that: 

where )(xλ  is a continuous non-negative function. Figure 2-12 presents a typical graphic 

representation of the Duhem Model. 
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Figure 2-12: Duhem Model 
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The two slopes, If  and Df , are used to construct two trajectory interior C1 curves 

bounded inside the hysteresis domain: 

where Iγ  and Dγ  are a C2 boundary curve [8] with the following properties: 

The relation between the two slopes and the two boundary curves is given as [69]: 

The hysteresis transducer, [ ] ooo tttxytHty ≥= for   )(,ˆ)( , is a solution of the following 

Cauchy problem (initial boundary value problem) [58, 69, and 109]: 

As opposed to the Play and Stop Models, an interior hysteresis loop bounded inside the 

hysteresis domain, Ω , can be generated every time the sign of )(tx&  is reversed in the 

Duhem Model. This is because the existence of two curves leads to the loss of the vibro-

correctness mathematical property [58 and 69]. 
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2.3.3 Physics of Hysteresis 

In this section, hysteresis models developed under a framework of physics are 

reviewed. As opposed to the mathematics of hysteresis presented in Section 2.3.2, 

hysteresis models developed in a physics framework are phenomenological, intuitive, and 

experimental-based. Mathematical properties that play a major role in the mathematics of 

hysteresis, such as the monotonicity, continuity, semi-group identity, vibro-correctness, 

and mathematical proofs, are granted less significance in the physics of hysteresis.  

In the physics of hysteresis, two model types are generally distinguished: (1) 

piecewise linear hysteresis and (2) curvilinear hysteresis models [105]. Both model types 

are discussed in detail below. A hysteresis model requiring a set of obtainable parameters 

as well as possessing pertinent mathematical properties is the most suitable tool for 

further use. The pertinent mathematical properties, as generally described in Section 

2.3.2, are required to ensure uniqueness and existence of output and to overcome 

convergence difficulty when approximate method is applied. 

Piecewise Linear Hysteresis Model 

A piecewise linear hysteresis model is composed of at least two linear segments 

and, therefore, an abrupt change in each segment connection exists. The most well-

known piecewise linear model includes elasto-plastic, bi-linear, and multi-linear 

hysteresis models. 
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Elasto-Plastic and Bi-Linear Hysteresis Models 

The elasto-plastic and bi-linear hysteresis models are known as one of the 

simplest and the most widely-used hysteresis models in structural mechanics. The Stop 

Model is essentially identical to the elasto-plastic hysteresis model. Visualization of the 

model as a series of spring and friction elements is also similar. In the case of a bi-linear 

hysteresis model as depicted in Figure 2-13, an additional spring is added and a Coulomb 

slip element is represented instead of a mass on a rough surface. 

By using Stop Model notation, an equation for the restoring force, y, and the 

displacement, x, for a bi-linear hysteresis model is written as [73, 105]: 

where u is a relative deformation of a k)1( α−  spring, which is a solution of Equation 2-

17  

with the use of the following Heaviside’s unit step functions [73]: 
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Figure 2-13: Schematic Representation of Bi-Linear Hysteresis Model 
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Note that x&  is positive when x is increasing and u&  is equal to either zero or x&  when the 

system is in a sliding mode or a non-sliding mode, respectively. Figure 2-14 presents the 

typical shape of a bi-linear hysteresis model. 

The elasto-plastic hysteresis model can be easily constructed from Equation 2-16 letting 

0=α . 
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Figure 2-14: Bi-Linear Hysteresis Model 
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Multi-Linear Hysteresis Model 

A multi-linear hysteresis model is an enhanced version of a bi-linear model that 

provides better correlation with the actual behavior of many applications. More than two 

sets of springs and Coulomb slip elements in series are added to configure this model. 

Figure 2-15 is a diagrammatic representation of a multi-linear hysteresis model, 

where N is the number of spring and Coulomb slip element sets. Because the connection 

is parallel, an equivalent spring, ke, is determined by Equation 2-22 [73, 105]: 

An equation for the restoring force, y, and a displacement, x, for this model also appears 

in the same form as in Equation 2-16. Instead, the relative deformation, u, of an 

equivalent spring is the solution of the following equations: 
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Figure 2-15: Schematic Representation of Multi-Linear Hysteresis Model 
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Figure 2-16 presents the typical shape of a multi-linear hysteresis model with three sets of 

springs and Coulomb slip elements. In this particular case, it is assumed that 

332211 yyy ukukuk << . 

The Prandtl-Ishlinskiĭ Model, Stop-Type, is identical to this model. The Prandtl-Ishlinskiĭ 

Model, Play-Type, can also be used to construct a multi-linear hysteresis model as 

performed by Valdman [107]. 

Curvilinear Hysteresis Model 

Hysteretic behavior, in most situations, does not present an abrupt change in 

slopes. Although a multi-linear hysteresis model is capable of creating a relatively 

smooth transition, many sets of springs and Coulomb slip elements are generally required 

to achieve a desirably smooth curve, resulting in an awkward mathematical operation. As 

a result, the curvilinear hysteresis models have gained wider acceptance when modeling 

accuracy is concerned. The most widely used curvilinear model includes Bouc-Wen and 
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Figure 2-16: Multi-Linear Hysteresis Model 
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modified Ramberg-Osgood hysteresis models. In geotechnical applications, a hyperbolic 

hysteresis model is widely used to represent hysteretic behavior of a soil continuum. 

Bouc-Wen Hysteresis Model 

The Bouc-Wen Hysteresis Model is the Bouc Model as modified by Wen [115] 

and discussed in detail by Spencer [97]. The model appears in the form of a first-order 

differential equation [115]: 

where nA  and , , , γβ  are shape factors. Figure 2-17 demonstrates the shape of a Bouc-

Wen hysteresis model with an at rest condition ( 0)0()0( == yx ), 1=n , 1=A , 8.0=β , 

and 5.0=γ . 

A numerical approach using a Newton scheme of the form )(/)(1 nnnn xfxfxx ′−=+ was 

discussed in Haukaas and Kiureghian [49] and the influence of a 4-parameter 

manipulation to the hysteresis loop shape was presented in Spencer [97]. If n approaches 

nn yxyyxxAy &&&& γβ −−= −1  (2-25)
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Figure 2-17: Bouc-Wen Hysteresis Model 
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infinity, the smooth transition is removed, yielding a shape similar to the elasto-plastic 

hysteresis model. Equation 2-25 can be rewritten in the form of Equation 2-26 if two 

conditions, 0 and 0 ≤≥ xx && , are expressed separately. 

Equation 2-26 implies that the Bouc-Wen model (Equation 2-17) is analogous to 

the Duhem Model such that nn
I yyyAf γβ −−= −1  and nn

D yyyAf γβ −+= −1 . An 

initial boundary condition, i.e. oo yyxx == )0( and )0( , is required to determine )(ty . 

The mathematical equivalence of the Bouc and Duhem models is also discussed in 

Visintin [109]. 

Over a period of nearly 30 years, a number of parameters have been added to the 

original 4-parameter Bouc-Wen model. The most recent version of the Bouc-Wen model 

contains an additional 8 parameters to include strength deterioration, stiffness 

degradation, and pinching effects [68]. However, these effects are not of particular 

interest to the present study. 

Modified Ramberg-Osgood Hysteresis Model 

The modified Ramberg-Osgood hysteresis model was developed by Desai and 

Wu to approximate nonlinear stress-strain soil behavior [cf. 4 and 7]. This hysteresis 

model has gained acceptance because of relative ease of use and a simple mathematical 
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form. For monotonic loading, the Modified Ramberg-Osgood hysteresis model is 

expressed as [4]: 

where x  is the displacement, y  is the soil resistance, n is a shape parameter, k is an 

initial soil stiffness, and uy  is an ultimate soil resistance. For cyclic loading, the modified 

Ramberg-Osgood hysteresis model is written as [4]: 

To account for path-dependent (memory) effects, cx  and cy  representing displacement 

and resistance of soil at the last load reversal are included. A Heaviside’s unit step 

function is used and defined as: 

Figure 2-18 demonstrates the typical shape of a modified Ramberg-Osgood hysteresis 

model with n = 3. As n approaches infinity the smooth transition is removed, yielding a 

similar shape to the elasto-plastic hysteresis model. It is observed in Figure 2-18 that soil 

resistances are always bounded by uy± . 
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Hyperbolic Hysteresis Model 

The hyperbolic hysteresis model is widely used in geotechnical practice, although 

it may not capture some fundamental aspects of actual soil behavior [90]. This hysteresis 

model essentially serves as the Mohr-Coulomb shear failure criteria, i.e. x and y 

representing shear strain and shear stress, respectively. The formulation for monotonic 

loading is similar in form to the modified Ramberg-Osgood hysteresis model [25]: 

where G is the initial shear modulus and ux  is the ultimate shear stress. For unloading 

and reloading, the Masing Rule, which generates the steady-state response curve based 

upon initial loading behavior [105], is used and also defines a form similar to the 

modified Ramberg-Osgood hysteresis model [25]: 
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Figure 2-18: Modified Ramberg-Osgood Hysteresis Model 
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where cx  and cy  represent shear strain and shear stress at the last load reversal. This 

model is more applicable to a continuum modeling technique, therefore, it may not be 

suitable for use in the present study because one-dimensional hysteresis model is applied. 

2.4 Time-Dependent Effects 

In this section time-dependent effects of concrete creep, concrete shrinkage, and 

prestressing steel relaxation on IA bridges as well as relevant past studies are reviewed to 

establish their application to non-hysteretic behavior. Past studies relating to time-

dependent effects of concrete creep, concrete shrinkage, and prestressing steel relaxation 

on IA bridges are discussed. A review of creep, shrinkage, and prestressing steel 

relaxation from a structural mechanics and practical design perspective is provided. 

Finally, a review of the selected time-dependent effect analysis method, age-adjusted 

effective modulus method (AAEM), is presented in detail to incorporate time-dependent 

effects into the FE models and the condensed hysteresis models. 

2.4.1 Time-Dependent Effects on IA Bridges 

Time-dependent effects of concrete creep, concrete shrinkage, and prestressing 

steel relaxation on IA bridges have long been realized and included in design 

specifications. However, few studies examining time-dependent effects of concrete creep, 
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concrete shrinkage, and prestressing steel relaxation on IA bridges have been conducted. 

O’Brien and Flanagan [81] employed the AAEM method in conjunction with the CEB-

FIP model code 1990 [27] as a creep and shrinkage model. An experimental test of a 

scale frame was conducted with data collection over a 27-day period. Results from the 

experiments demonstrated that the analytical model was conservative for early age but 

provided good prediction of results from day 7 to day 27. Huang et al [51] presented 7 

years of data collection through field-instrumentation of a 3-span prestressed concrete I-

girder bridge with a total length of 66 m (216΄-7˝). Strain data measured by a number of 

strain gages attached to 2 girders (1 interior and 1 exterior) reported time-dependent 

strains over a range of 175 to 500 micro-strain, leading to a conclusion that time-

dependent effects must be included in design. Arockiasamy and Sivakumar [11] also 

employed the AAEM method to incorporate time-dependent effects in IA bridges. Based 

on this approach, an equation of time-dependent restrained bending moments was 

developed for a 2-span continuous bridge with an assumption of fully fixed condition at 

both ends. An illustrative example of the proposed equation was also provided. 

2.4.2 Creep, Shrinkage, and Relaxation of Prestressing Steel 

Time-dependent phenomena in typical prestressed concrete structures are 

generally composed of concrete creep; concrete shrinkage; and relaxation of prestressing 

steel. These three time-dependent sources are discussed separately as follows: 
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Creep in Concrete 

Creep is a well-known phenomenon in concrete. There are three primary factors 

influencing this behavior; (1) magnitude and duration of applied stresses; (2) maturity of 

concrete at the time of loading; and (3) temperature of concrete. A typical creep curve 

representing concrete subjected to a sustained compressive load is presented in Figure 2-

19. 

 

Mechanics of Creep 

From a structural mechanics perspective, creep can be considered and modeled by 

using a nonlinear, viscoelastic, constitutive law. Nonlinear, viscoelastic material creep 

can be separated into three components [95]: 
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Figure 2-19: Time-Dependent Creep Strain 
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where )(tε  is total strain, eε  is an elastic strain component, )(tsε  is a steady creep strain 

component, and )(ttε  is a transient creep strain component. )(tsε and )(ttε  are a 

function of time, typically expressed by either a power law, exponential law, or 

hyperbolic sine law. 

Creep in concrete is strongly associated with maturity at the time of loading 

known as the aging effect. Creep strain of concrete loaded at a young age is greater than 

creep strain of concrete loaded at a late age. The aging effect occurs in a structurally 

unstable material like concrete at a molecular level where chemical reactions cause 

significant microscopic changes during creep. In addition, creep properties are also 

influenced by effects of varying stress and temperature. 

In order to consider the effects of aging and varying stress, a nonlinear 

viscoelastic constitutive law based on a time-hardening hypothesis is usually employed 

for a structurally unstable material. The time-hardening hypothesis postulates a creep 

strain rate as a function of instantaneous stress and time. The equations of steady creep 

strain rate and transient creep strain rate may be expressed as [95]: 

where C1, C2, C3, C4 are material constants, to is retardation time of strain, t is 

instantaneous time, and e is natural logarithm base. 
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The effect of temperature on creep strain was studied and a number of creep models were 

developed by many researchers. For example, one of several creep models based on the 

time-hardening hypothesis available in ANSYS is expressed as [9]: 

where C1 to C7 are material constants (different from Equations 2-33 and 2-34) and T is 

an absolute temperature. The steady and transient creep strain components of Equation 2-

35 are combined and expressed in a single component, denoted as total creep strain, 

)(tcε . An exponential law is used to formulate the equation and a temperature parameter 

appears on both creep strain components. 

Predicted Creep Using Design Specifications 

The separation of creep phenomenon into several components in most design 

specifications for predicting creep and shrinkage is somewhat different from the 

structural mechanics point of view. This is because creep equations from most design 

specifications have been exclusively developed for concrete, while creep equations from 

a mechanics perspective serve as general-purpose models for a wide range of materials. 

Two components of concrete creep; basic creep and drying creep, are normally 

distinguished [5]. Basic creep occurs in a condition where moisture is constantly 

controlled. An uncontrolled condition leads to drying creep that allows moisture in 

concrete to diffuse to the environment. 
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Most design specifications use a dimensionless term, called creep coefficient 

),( ottϕ , to conveniently characterize creep (basic and drying creep). The creep 

coefficient is defined as the ratio of creep strain at load duration ott −  to an initial elastic 

strain at time ot . Therefore, the total strain can be expressed as [47]: 

where )(tε  is total strain at time t, )( otσ is an initial stress at time ot , )( otE  is concrete 

modulus of elasticity at time ot , and ),( ottϕ  is creep coefficient at time t corresponding 

to the concrete age at loading ot . 

Numerous creep coefficient equations are available in many well-known design 

specifications, e.g. ACI Committee 209 [5], CEB-FIP MC 90 [27], and Model B3 [16]. 

Although Model B3 is not a design code, a number of researchers [31, 42, 46, and 55] 

concluded that this model appears to be the most accurate for predicting creep for a 

normal weight concrete. 

Most design specifications treat aging effects in prestressed concrete members as 

an important factor in developing creep equations. Aging effects are simplified and 

incorporated by the use of an aging coefficient, χ. An aging coefficient is taken as a 

multiplier to a creep coefficient to account for aging effects. An example of the aging and 

creep coefficients using four well-known design specifications (AASHTO LRFD [3], 

ACI Committee 209 [5], CEB-FIP MC 90 [27], and Model B3 [16]) for Bridge 222 is 

provided in Chapter 4. The aging and creep coefficients for all instrumented bridges 

(Bridges 203, 211, and 222) are presented in Appendix B. 
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Shrinkage in Concrete 

Total shrinkage strain in concrete consists of carbonation shrinkage, plastic 

shrinkage, autogenous shrinkage, and drying shrinkage. Carbonation shrinkage occurs as 

a result of chemical reaction of calcium hydroxide from cement paste with atmospheric 

carbon-dioxide. Carbonation shrinkage is relatively small compared to the total shrinkage 

and can be neglected. Plastic shrinkage results from loss of water through the surface of 

fresh concrete during its young age. Plastic shrinkage is also small and can also be 

neglected. Autogenous shrinkage is caused by chemical reactions during cement 

hydration. Autogenous shrinkage is normally small but can become significant where 

high strength concrete with a very low water-cement ratio (0.35 or less) is used [55]. 

Drying shrinkage occurs after concrete has hardened with ambient humidity as the main 

influence. Autogenous and drying shrinkages are commonly incorporated into most 

design specifications. 

Figure 2-20 presents a qualitative curve of drying shrinkage strain relative to 

drying and rewetting ambient conditions. A similar trend of shrinkage strain curves to 

creep curves can be observed. An example of the shrinkage strain curves based on 

AASHTO LRFD [3], ACI Committee 209 [5], CEB-FIP MC 90 [27], and Model B3 [16] 

for Bridge 222 is provided in Chapter 4. The shrinkage strain curves for all instrumented 

bridges (Bridges 203, 211, and 222) are presented in Appendix B. 
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Relaxation of Prestressing Steel 

Compared to creep and shrinkage, relaxation of prestressing steel can be predicted 

more accurately due to a small coefficient of variation. Intrinsic relaxation (relaxation of 

a constant length subjected to a constant strain) taken from AASHTO LRFD [3] for low-

relaxation prestressing strand is expressed as: 

where REfΔ  is an intrinsic relaxation of prestressing steel, t is time at the end of a time 

interval (day), ot  is time at the beginning of a time interval (day), pjf  is stress in the 

 

 
Figure 2-20: Drying Shrinkage Strain 
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prestressing steel at jacking (ksi), and pyf  is a specified yield strength of the prestressing 

steel = 0.90 puf  (ksi). 

Intrinsic relaxation occurs where constant strain is imposed on the strand. 

However, effects of creep and shrinkage immediately after transfer alter the condition 

where strain and member length are no longer constant. As a result, reduction of intrinsic 

relaxation is determined by using a dimensionless coefficient of reduced relaxation, rχ  

[47 and 77]. The reduced relaxation RfΔ  is given as [47]: 

The coefficient of reduced relaxation is discussed extensively by Ghali et al [47] and 

Neville et al [77]. An approximation of rχ  by Ghali et al [47] is adopted here as: 

where λ  = 
strand ngprestressi of stress yield

sferafter trany immediatel stress steel , and 

Ω  = 
sferafter trany immediatel stress steel

relaxation intrinsic - change prestress total . 

It can be observed from Equation 2-39 that the total prestress change is required, but, this 

is not known a priori. Therefore, it is necessary to employ an iterative procedure to 

determine the coefficient of reduced relaxation. 

RErR ff Δ=Δ χ  (2-38)

( )[ ]Ω+−=  3.57.6exp λχ r  (2-39)
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2.4.3 Age-Adjusted Effective Modulus Method (AAEM) 

There are several analysis methods available to determine time-dependent effects 

including: the effective modulus method, the rate of creep method, the rate of flow 

method, the improved Dischinger method, and the age-adjusted effective modulus 

method (AAEM). The advantages and disadvantages of these methods are discussed in 

detail by Neville et al [77]. Among these methods, the AAEM has gained the widest 

acceptance because it is capable of solving time-dependent effect problems with relative 

ease and is in excellent agreement with step-by-step solution methods [55 and 77]. 

The AAEM method allows an elastic modulus of concrete to vary with time by 

using creep and aging coefficients. The basic equation of the AAEM method from Jirásek 

and Bažant [55] is presented in Equation 2-40: 

where ( )tσ  is the total applied stress at time t, χ  is the aging coefficient at time t 

corresponding to the concrete age at loading ot , and ( )oshsh tt ,,ε  is the total shrinkage 

strain at time t. Notations used are substantially consistent with that of Equation 2-36. 

Normally, ( )ottE ,  is used to represent the AAEM of concrete written as: 

Substituting Equation 2-41 into Equation 2-40 leads to Equation 2-42: 
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In the present study the basic equation of the AAEM method (Equation 2-40 or 

Equation 2-42) is used to determine time-dependent strains at any fiber of a section and at 

any location of a superstructure member. 

Uncracked Section Analysis of Superstructure Member 

An uncracked section analysis method is required to determine time-dependent 

strains at a section of a superstructure member under an unrestrained end condition. 

Analysis method for a superstructure member under a restrained end condition is 

discussed in the next section. The sign convention and section analysis equations referred 

to in Ghali et al [47] are presented herein. Positive in Figure 2-21 represents tension and 

a bending moment that produces a tensile strain at the bottom fiber of the superstructure 

member. The right hand rule is also applied. 
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Derivation of a linear-elastic constitutive law based on classical thin beam theory leading 

to a strain-force relationship was performed by Ghali et al [47]. The strain-force 

relationship in matrix form for a composite section can be written in either Equation 2-43 

or Equation 2-44 [47]: 

where N = Axial force, 

M = Bending moment, 

refE  = Modulus of elasticity of the reference material, 

A = Area of the transformed section = ∑
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If the axis through the reference O coincides with the elastic neutral axis of a transformed 

section, the first moment of area B becomes zero, resulting in the classical beam 

equations as: 

Strain at any fiber of the section can be calculated from [47]: 

Section analysis to determine time-dependent strains can be established in the familiar 

displacement method format. According to Ghali et al [47], the superstructure member is 

artificially restrained and its reaction forces are determined by using Equation 2-43. 

Based on an initial strain and curvature at time to, the increment of restraining force due 

to creep is expressed in Equation 2-48 [47]: 

The subscript, c, in Equation 2-48 represents concrete section properties. Equation 2-48 

indicates that creep occurs only in the concrete. Similar to creep, the increment of 

restraining force for shrinkage is [47]: 

The increment of restraining force for reduced relaxation of prestressing steel is [47]: 
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where psA  is the prestressing strand area and psy  is the distance between the axis through 

the reference O to the prestressing strand centroid. The total increment of restraining 

force is calculated by summing the increments of creep, shrinkage, and prestressing 

strand relaxation restraining force components [47]: 

By substituting ( )ottE ,  and the properties of a transformed section ( A , B , and I ) into 

Equation 2-44, the increment time-dependent strain and curvature due to the total 

increment of all time-dependent effects is computed from Equation 2-52 [47]: 

After time-dependent strain and curvature are known, the time-dependent concrete stress 

at any fiber to prevent creep, shrinkage, and prestressing strand relaxation is [47]: 

The increment of concrete stress at any fiber for the time duration ott −  can be calculated 

as [47]: 
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Analysis Method for Indeterminate IA Bridge Superstructures 

IA bridge superstructure end restraint in the longitudinal direction prevents free 

expansion and contraction due to time-dependent effects. The end restraints cause time-

dependent stresses to develop, creating additional redundancies in an indeterminate 

structure. In the present study the displacement method is used to evaluate the statically 

indeterminate structure due to wide acceptance. 

Differences in creep properties of composite section superstructure elments will 

shift the neutral axis over time. According to Ghali et al [47], a convenient way to 

address this problem is to set a stationary reference axis and introduce a first moment of 

area B (Equations 2-43 and 2-44). For a 2-D frame element, Ghali et al [47] introduced a 

local stiffness matrix of a member in which the neutral axis of a transformed section does 

not coincide with the reference axis as presented in Equation 2-55. 

If the neutral axis of a transformed section coincides with the reference axis (through 

point O), Equation 2-55 reduces to a conventional stiffness matrix. 

The presence of time-dependent load effects in the analysis is introduced as a 

force vector { }F . Ghali et al [47] outlined the procedure as follows: 
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1. Solve for oεΔ  and ψΔ , for at least 3 sections (2 sections at ends and 1 section at 

the mid-span), under an unrestrained end condition using Equation 2-52. 

2. Assume a parabolic (or straight line) variation over the span length through the 3 

sets of oεΔ  and ψΔ , and solve for the corresponding rotation increment at each 

end φΔ  and axial deformation increment uΔ  using the following equations: 

The development of Equations 2-56 and 2-57 was based on the method of elastic 

weights that applies a variation over the 3 sets of oεΔ  and ψΔ  as a pseudo 

distributed load on a conjugate beam. The notation is presented in Figure 2-22. 
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Figure 2-22: Notations for Rotations and Axial Deformation 
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3. Calculate a force vector { }fΔ  using Equation 2-58: 

4. Arrange the force vector obtained from Equation 2-58 (3x1) into a standard force 

vector (6x1), transform, and assemble it using the conventional transformation 

matrix. 

To solve for the global (incremental) displacement vector and element forces, a standard 

procedure of linear or nonlinear analysis is used. For this particular method of forming a 

force vector, algebraically summing with a reverse sign of { }fΔ  is required to obtain final 

element force results. 

Alternatively, a method employing an equivalent temperature has been devised in 

the present study: 

1. Solve for oεΔ  and ψΔ  as many sections as to ensure that results nearly approach 

an exact solution. 

2. Transform each set of oεΔ  and ψΔ  to a set of equivalent temperature changes, 

TΔ , and equivalent temperature gradients, yT ΔΔ , by dividing each by a 

coefficient of thermal expansion α . 

3. Apply a set of equivalent temperatures as an input to ANSYS to the 

corresponding sub-element. A force vector can be generated internally in ANSYS. 
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For simplicity and efficiency, the equivalent temperature approach is adopted for the FE 

and condensed hysteresis models. A profile plot of time-dependent strains for all three 

bridges (203, 211, and 222) at the top and bottom fibers is provided in Appendix B. 

2.5 Summary 

A review of hysteresis phenomena in IA bridges was presented with respect to 

four identified components influencing hysteretic behavior in IA bridges: soil-pile 

interaction, soil-abutment interaction, abutment-backwall connection, and pile-abutment 

connection. Hysteresis models from a mathematical and physical perspective were 

reviewed to establish an application to each of the four hysteretic components. The 

similarity and interconnection between mathematical and physical hysteresis models was 

also discussed. Detailed development of hysteresis elements to represent hysteretic 

behavior in the FE and condensed hysteresis models by using the present hysteresis 

models are deferred to Chapter 3. Concrete creep, concrete shrinkage, prestressing steel 

relaxation, and the AAEM method were described and used to determine time-dependent 

strains for IA bridge superstructure members. Time-dependent strain calculations and 

detailed discussions of applying time-dependent strains as a FE and condensed hysteresis 

model equivalent temperature are provided in Appendix B and Chapter 4, respectively. 

 



 

 

Chapter 3 
 

Hysteresis Elements for FE Models and Condensed Hysteresis Models 

3.1 General 

This chapter presents hysteresis elements derived from hysteresis models 

discussed in Chapter 2. These hysteresis elements are used as one of many members in 

the FE and condensed hysteresis models to represent hysteretic behaviors in IA bridges. 

A basic property of each hysteresis element is nonlinearity and path-dependency in which 

different element characteristics are defined for loading and unloading behaviors. 

A combination of: (1) soil-pile interaction; (2) soil-abutment interaction; (3) 

abutment-backwall connection; and (4) pile-abutment connection is a basic component 

leading to hysteretic behavior as presented in Figure 3-1. 

 

~

Soil-Abutment Interaction

Soil-Pile Interaction

~

Thermal-Induced Movement

Abutment-Backwall Connection
Pile-Abutment Connection

 
Figure 3-1: Components of Hysteretic Behavior 
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Soil-pile and soil-abutment interactions, known as soil-structure interaction, are related to 

geotechnical behavior, while abutment-backwall and pile-abutment connections are 

related to the yielding of structural connections. Soil-structure interaction generally has 

more influential parameter than the yielding of structural connections, because soil 

exhibits nonlinear and hysteretic behavior even over a small range of deformations. Also, 

the yielding of structural connections may never occur in a lifetime of bridge structures, 

if properly designed. 

This chapter is divided into two parts. The first part discusses various hysteresis 

elements for the FE models, including hysteresis elements representing soil-pile 

interaction, soil-abutment interaction, and structural connections presented in Sections 

3.2, 3.3, and 3.4, respectively. The second part covers hysteresis elements for the 

condensed hysteresis models presented in Section 3.5. The detailed discussions of the FE 

and condensed hysteresis models are deferred to Chapters 4 and 5, respectively. 

3.2 Soil-Pile Interaction Hysteresis Element for FE Models 

A hysteresis element for soil-pile interaction hysteretic behavior is presented in 

this section. The classical p-y curve method is adopted to provide a load-deformation 

curve of laterally loaded soil-pile interaction behaviors. In this study, p-y curves will be 

generated using the COM624P program developed by Wang and Reese [112]. All p-y 

curves are considered an input as a multi-linear load-deformation curve in ANSYS that 

also serves as a loading curve for a soil-pile interaction hysteresis element. Therefore, a 

validation of an ANSYS pile model against COM624P needs to be performed to ensure 
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model accuracy. Then, a branch of unloading curves in a hysteresis element is 

constructed using classical plasticity theory. Finally, a convergence study of ANSYS pile 

model results subjected to cyclic loadings is performed to ensure that this model does not 

produce divergent results. 

This section begins with the discussion of the p-y curve method in Section 3.2.1. 

Validation of the ANSYS pile model results against COM624P results is conducted in 

Section 3.2.2. An application of classical plasticity theory to construct an unloading 

branch of p-y curves is described in Section 3.2.3. Finally, a convergence study of the 

proposed hysteresis element is presented in Section 3.2.4. 

3.2.1 p-y Curve Method 

The p-y curve method is one of the soil-structure interaction analysis methods 

based on the modulus of subgrade reaction approach [103]. The p-y curve method was 

originally developed using finite difference techniques to solve an approximate solution 

of the 4th order governing equation. The substitution of nonlinear p-y curve springs on the 

governing equation was performed instead of using a traditional linear Winkler spring. 

An iterative solver was implemented to achieve a numerical solution in this transition.  

The p-y curve method is one of the most widely accepted methods for soil-

structure interaction application in practical use [114]. Although a nonlinear spring 

generated from the p-y curve method is considered uncoupled, validation of this method 

was performed against full-scale experiments explicitly to include a continuum effect 
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[112]. Consistent use by many engineers and researchers for many decades has also 

proven its validity. 

The p-y curve method will be used in the present study as a loading curve for a 

soil-pile interaction hysteresis element. A family of p-y curves along the pile length 

generated by the COM624P program will be taken as a family of multi-linear springs in 

ANSYS. Validation of results produced by ANSYS against results produced by 

COM624P will be presented below. 

3.2.2 Validation of ANSYS Pile Model 

In this section an ANSYS pile model is described and the validation of this 

ANSYS pile model is performed through result comparisons with COM624P. Samples of 

p-y curves (in dashed lines) generated by COM624P are presented in Figures 3-2 and 3-3. 
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Figure 3-2: p-y curve at pile head - clay above water table (Bridge 222) 
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Soil parameters were taken from a bridge 222 soil profile for clay above the water table 

and sand, respectively (see Figure 4-8 in Chapter 4 for bridge 222 soil profile). The 

multi-linear curves (in solid lines) represent a nonlinear soil spring in ANSYS. The 

COMBIN39 element type was adopted as the most appropriate nonlinear one-

dimensional element available in ANSYS. A lateral force of 44.5 KN (10 kips), which 

produces a working range of the actual pile movements of bridge 222 and a free end 

boundary condition, was applied at the pile head. An analysis test case of the ANSYS 

pile model was performed and validated against COM624P. Prediction of lateral 

displacements versus depth, bending moments versus depth, and shear forces versus 

depth using COM624P and ANSYS are presented in Figures 3-4 to 3-6. 
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Figure 3-3: p-y curve at 3.5 m (11.5’) depth - sand (Bridge 222) 



66 

 

 

 

0

1

2

3

4

5

6

7

-0.5 0 0.5 1 1.5 2 2.5 3

Lateral Displacement (mm)
Pi

le
 P

en
et

ra
tio

n 
(m

) .

COM624P
ANSYS

Figure 3-4: Lateral displacement due to 44.5 KN load at pile head (Bridge 222) 
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Figure 3-5: Pile bending moment due to 44.5 KN load at pile head (Bridge 222) 
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ANSYS predictions of pile behavior are similar to COM624P with percent differences of 

1.4, 1.4, and 2.8 for maximum displacement, maximum moment, and maximum shear, 

respectively. An element length in the ANSYS pile model is relatively coarse (150 mm – 

6˝) compared to the length used in COM624P (30 mm – 1.2˝). Therefore, some small 

differences in moments and shears at a depth of approximately 3 m (10΄-0˝) are expected 

to appear, where a short distance of two adjacent inflection points occurs. The selection 

of mesh size based on computation time and accuracy trade-off is considered and 

predetermined here to further this scheme to a large number of elements used in the 3-D 

FE models. 
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Figure 3-6: Pile shear force due to 44.5 KN load at pile head (Bridge 222) 
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3.2.3 Hysteresis Element 

In this section a complete hysteresis element for soil-pile interaction hysteretic 

behavior will be described. Under thermally-induced cyclic loading, soil initially 

experiences a loading condition following with cycles of unloading and reloading 

conditions. A non-recoverable property of soil leads to a different response when the 

direction of loading is reversed. A p-y curve is used for the initial loading curve 

characteristic of this particular hysteresis element. Classical plasticity theory [100] is 

utilized for the unloading and reloading curve characteristics. Figure 3-7 presents a 

sample of the loading and unloading curves obtained from the bridge 222 ANSYS pile 

model for both contraction and expansion cases. 
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Figure 3-7: Asymmetrical p-y curves at pile head (Bridge 222) 
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Differences in soil resistance magnitudes under bridge expansion and contraction 

conditions are a result of asymmetrical soil embankment geometry. Resistance magnitude 

under a bridge contraction condition is much lower due to effects of a shallow soil 

overburden and downhill slope. Asymmetrical soil embankment geometry, including a 

shallow soil overburden and downhill slope, is demonstrated in Figure 3-1. Asymmetrical 

p-y curves are also illustrated in Figure 3-7. 

Effects of asymmetrical p-y curves on lateral displacements at the pile head can 

be observed and studied. Referring to Figure 3-4, a lateral displacement of 2.4 mm 

(0.095˝) at the pile head was obtained from an analysis case representing bridge 

contraction. With respect to the same magnitude of an applied force (44.5 KN), a lateral 

displacement of 0.56 mm (0.022˝) was obtained from an analysis case representing bridge 

expansion. These two displacement magnitudes indicate that the effect of a downhill 

slope and the uneven height of soil overburden can produce a significant difference of 

soil stiffness as high as four times in the bridge 222 pile case. 

An unloading branch of the soil-pile interaction hysteresis element for FE models 

can be defined and constructed internally by COMBIN39. Based on the classical 

plasticity theory, COMBIN39 provides a capability, called a non-conservative unloading, 

to define the stiffness of the unloading path. This stiffness, hereafter referred to as an 

elasto-plastic stiffness epk , appears in the form of: 
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where ki is the initial stiffness of the loading path, )(ykt  is a tangent stiffness (function 

of deformation), and F is a yield function. The tangent stiffness is taken as the classical p-

y curve. This parameter for stiff clay above the water table may be written as: 

For a detailed explanation of pu (ultimate soil resistance) and y50 (deformation at one-half 

pu), the reader is referred to Wang and Reese [112]. It is observed that pu and y50 are 

material and geometry dependent and are unchanged in any iterative solution, indicating 

that displacement y is the only variable. The yield function, F, is defined as: 

where α  is the hardening variable and Yp  is the yield resistance obtained from solving 

the equation xkxp i=)(  for x such that: 

The hardening variable, α , is initially zero, representing coexistence of the Cartesian 

coordinate system origin and the p-y curve origin. When the soil resistance p sign is 

reversed, α  is updated so as to shift the initial origin of the p-y curve to the new origin, 

revealing an isotropic hardening rule. The only available option of origin transformation 

is the ANSYS COMBIN39 limitation that does not support a kinematic hardening rule. 
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The hysteresis element constructed using COMBIN39 is similar to the multi-

linear hysteresis model as presented in Chapter 2. This is because p-y curves are defined 

by a number of discrete points in COMBIN39, not by a function. 

3.2.4 Convergence Study 

There is a necessity to ensure that a hysteresis model shows no trend of 

divergence and appears to approach a steady-state condition after several cycles. In this 

section, an analysis using an ANSYS pile model will be performed to investigate 

numerical convergence of the proposed soil-pile interaction hysteresis element. 

With respect to the initial loading and boundary conditions, four general cases are 

to be investigated: (1) contraction as an initial loading condition with a free head; (2) 

contraction as an initial loading condition with a fixed head; (3) expansion as an initial 

loading condition with a free head; and (4) expansion as an initial loading condition with 

a fixed head. A 50-cycle sinusoidal force function with amplitude of 44.5 KN (10 kips) 

that produces a working displacement range of 2.4 mm (0.095˝) was applied at the pile 

head for all four cases. The four case analysis results are discussed below and also 

presented in Figures 3-8 and 3-9. In both figures, the vertical and horizontal scales 

represent lateral displacements at the pile head and number of cycles, respectively. 
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Figure 3-8: Time-History Lateral Displacement for Contraction Case 
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Figure 3-9: Time-History Lateral Displacement for Expansion Case 
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It is observed that there is strong similarity in terms of trends and magnitudes between 

contraction and expansion cases for both types of boundary conditions. Therefore, the 

influence of an initial loading condition can be disregarded. The subsequent investigation 

will be performed on contraction cases only (cases 1 and 2). 

In order to investigate convergence of the analysis results, it is necessary to check 

whether a sequence of peak-to-peak distances ( )nm aad ,  is a Cauchy sequence. A 

mathematical definition of Cauchy sequence is written as: 

A peak-to-peak distance, in this sense, is the difference in adjacent peak magnitudes of 

lateral displacement. Figure 3-10 presents a plot of this investigation, taking the 

difference in adjacent magnitudes of lateral displacements and number of cycles as a 

vertical and horizontal scale, respectively. 

( )
( ) 0,lim

,min
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Figure 3-10: Convergence Check using Cauchy Sequence 
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There is a convergence fluctuation demonstrated in Figure 3-10 for both cases. This 

numerical fluctuation, known as spurious oscillations or noise [30], is anticipated to occur 

as a result of the numerical residuals allowed by convergence tolerances and the use of an 

approximate analysis algorithm. However, there is a convergence tendency observed in 

both responses presented in Figure 3-10. 

It is demonstrated that the convergence fluctuation is significantly improved when 

the magnitude of loading is reduced. Using 10 percent of the applied load from the 

previous investigation (4.45 KN), a better convergence tendency is obtained, which can 

be observed in Figure 3-11. 

Pile heads in an actual IA bridge experience cyclic displacement rather than cyclic 

force. Therefore, a 50-cycle sinusoidal displacement function with amplitude of 2.4 mm 

(0.095”), representing a working displacement range, is more realistic to apply at the pile 

head. Two additional analysis cases were performed and investigated. A convergence 
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Figure 3-11: Convergence Check Due to Cyclic Load Magnitude of 4.45 KN 
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check for these two cases is presented in Figure 3-12. It is observed that the numerical 

noises fluctuate about zero in value of the horizontal axis. The vertical scale for these two 

cases represents soil reaction at the pile head (summation of all p-y spring resistance 

magnitudes). 

It is demonstrated that numerical noises are smaller when the magnitude of displacements 

is reduced. Figure 3-13 presents a similar plot obtained from the case where the applied 

displacement is 10 percent of the previous investigation (0.24 mm – 0.0095˝). The 

fluctuation amplitude obtained from this case is almost 10 times smaller. A hysteresis 

loop obtained from the results of this case, where cyclic displacement magnitude is 0.24 

mm, is also presented in Figure 3-14. The vertical and horizontal scales in Figure 3-14 

represent soil resistances at the pile head and lateral displacements, respectively. A nearly 

closed loop is observed, which represents the steady state of predicted pile responses. In 

addition, no tendency for numerical divergence is observed. 
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Figure 3-12: Convergence Check Due to Cyclic Displacement Magnitude of 2.4 mm 
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Figure 3-13: Convergence Check Due to Cyclic Displacement Magnitude of 0.24 mm 
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Figure 3-14: Hysteresis Loops of Soil Spring Resistance at Pile Head 
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3.3 Soil-Abutment Interaction Hysteresis Element for FE Models 

Due to wide acceptance and simplicity, the soil model presented in Figure 2-3 will 

be used as a load response curve for the soil-abutment interaction hysteresis element. The 

unloading branch is defined as a trajectory parallel to the initial stiffness, kh, similar to the 

soil-pile interaction hysteresis element. This hysteresis element for soil-abutment 

interaction is identical to the Stop and elasto-plastic hysteresis models described in 

Chapter 2. 

The classical elasto-plastic hysteresis model consists of upper and lower bounds 

that typically appear as opposite signs. However, this characteristic no longer holds for 

this particular interaction. Passive and active earth pressures are the same sign that 

impairs the use of ANSYS COMBIN39 elements. This is because only Quadrants 1 and 3 

are permitted to have a load-deformation curve defined by the user. Two separated 

analysis steps in ANSYS are, therefore, required to obtain the desired element 

characteristics by maintaining the use of COMBIN39. These two steps are hereafter 

defined as supplementary analysis step and remaining analysis step presented in Sections 

3.3.1 and 3.3.2, respectively. 

3.3.1 Supplementary Analysis Step 

The supplementary step is the first and single analysis step that represents 

structural behavior immediately after backfilling. At this stage, an at-rest earth pressure 

Po is applied to a structural system on the left diagram in Figure 3-15. 
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The COMBIN39 representing the soil-abutment interaction hysteresis element is 

simultaneously imposed by a prescribed nodal displacement, Δo, at the right member end. 

This prescribed displacement has the same displacement magnitude and direction as the 

structural system deformation loaded by Po. After the prescribed displacement is applied, 

the COMBIN39 is enforced to behave as a rigid body. The net effect of this step is, 

therefore, due only to the at-rest earth pressure. 

Because of element restriction, a load-deformation curve of COMBIN39 

presented on the right diagram of Figure 3-15 is required to span from Quadrant 3 to 1. 

Quadrant 1 represents compression and Quadrant 3 represents tension. The limits of 

pressure Pp – Po on Quadrant 1 and pressure Pa – Po on Quadrant 3 along with a modulus 

of lateral subgrade reaction, kh, will be input into ANSYS as upper bound, lower bound, 

and initial slope parameters. The analysis results for this step will be carried over to the 

remaining analysis steps through a typical time-history nonlinear analysis procedure. 
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Figure 3-15: Schematic Representation of Supplementary Analysis Step 
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3.3.2 Remaining Analysis Step 

The remaining steps are complete time-history analyses that represent structural 

behavior immediately after the supplementary step is completed. All pertinent time-

history loads, including temperature and time-dependent loads, as well as at-rest earth 

pressures carried over from the supplementary step, are applied to the structural system as 

presented on the left diagram in Figure 3-16. 

The left diagram in Figure 3-16 presents that time-history deformation, Δ(t), 

occurs corresponding to time-history loadings. When the structure is lengthened (or 

shortened), an additional compressive (or tensile) pressure is reacted by the COMBIN39 

element. The relationship of time-history deformation Δ(t) and the net pressure on the 

structural system (at-rest pressure plus COMBIN39 reaction) will follow the load-

deformation path presented on the right diagram in Figure 3-16. 

For cases where the structure has been loaded greater than the deformation limits (Δ(t) > 

Δp or Δ(t) < Δa), the net compressive or tensile pressures on the structural system become 
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Figure 3-16: Schematic Representation of Remaining Analysis Step 
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the desired limiting values, i.e. ( ) popo PPPP =−+  and ( ) aaoo PPPP =−− . When 

unloaded, a path parallel to the initial slope kh will be traced at the load reversal point. 

The hysteresis element used for the soil-abutment interaction has certain upper 

and lower bounds; therefore, a divergence problem will not occur. 

3.4 Structural Connection Hysteresis Elements for FE Models 

The possibility of abutment-backwall and pile-abutment connections being loaded 

beyond their elastic ranges along a moment-rotation relationship depends on several 

factors. Length and abutment height are the most important factors, while connection 

details are considered as a constant parameter, because these connections are typically 

specified by DOTs. Hysteretic behavior due to the yielding of structural connections for 

short bridges may never occur during their service lives. Based on analysis results from 

the FE models, the abutment-backwall connection of the longest instrumented bridge 

(bridge 203) experienced reinforcement stresses beyond the elastic range. However, the 

other connections, including the abutment-backwall connections of bridges 211 and 222 

and the pile-abutment connections of all instrumented bridges behaved elastically. 

The bi-linear hysteresis model as described in Chapter 2 will be used as an 

abutment-backwall connection hysteresis element. No hysteresis elements will be used 

for pile-abutment connections, because all predicted moments from the FE models were 

much smaller than pile moment capacities. Element properties for all hysteresis elements 

are provided in Chapter 4. 



81 

 

3.5 Hysteresis Elements for Condensed Hysteresis Models 

In this section, hysteresis elements for soil-pile interaction, soil-abutment 

interaction, and abutment-backwall connection for the condensed hysteresis models will 

be described. All of these hysteresis elements are to be combined to become a single 

hysteresis operator. Time-history temperatures and two degrees of freedoms (translation 

and rotation) at the abutment-pile connection location serve as the input and output for 

the operator, respectively. This particular location is selected based on a practical design 

perspective in which structural and geotechnical component analysis and design are 

usually separated at this boundary. 

This section begins with outlining the development procedure of a hysteresis 

element that represents a load-deformation curve of soil-pile interaction at the pile head. 

A description of hysteresis elements for soil-abutment interaction and abutment-backwall 

connection follows. A detailed procedure to assemble and condense all hysteresis 

elements into a single hysteresis operator will be presented in Chapter 5. 

3.5.1 Soil-Pile Interaction Hysteresis Element for Condensed Hysteresis Models 

This section deals with outlining the development procedure for a soil-pile 

interaction hysteresis element, using the framework of the Duhem Model as described in 

Chapter 2. The procedure begins with transformation of a two-dimensional ANSYS pile 

model to a coupled spring as presented in Figure 3-17. 
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The nonlinear coupled spring is one of the practical soil-structure interaction analysis 

methods and is available in the LPILE program [66], known as a foundation stiffness. A 

method of generating this foundation stiffness essentially involves: 

• applying an incremental displacement/rotation to the pile head (node A in 

Figure 3-17), 

• performing a nonlinear analysis, and 

• determining a tangent stiffness from the ratio of incremental resulting reaction 

(force/moment) to incremental displacement/rotation. 

A number of incremental analyses is required in this method to determine a continuous 

curve of nonlinear tangential stiffness. 

The nonlinear coupled foundation stiffness, hereafter called nonlinear hysteresis 

spring Hp, is written in a matrix form as: 

 

A

X

Y

Nonlinear p-y  springs

Pile elements

Two-Dimensional Model

One-Dimensional Model

A

Nonlinear hysteresis spring

Force or
Displacement
At Pile Head

Force or
Displacement
At Pile Head

Figure 3-17: Hysteresis Model Representing Pile for One-Dimensional Problem 
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The following assumptions are required to simplify further development: 

• The pile axial deformation is insignificant and, therefore, can be neglected. 11K  is 

to be replaced by a roller boundary condition. 

• The coupled spring stiffness: 23K  and 32K  are insignificant and can be ignored. 

The other stiffness components ( 22K  and 33K ) can be viewed as a single hysteresis 

element. Using the concept of the Duhem Model (Equations 2-9 and 2-15), each of the 

stiffness terms can be determined from a solution of the following initial boundary value 

problem (IBVP): 

where 
dx

dyC

 is a tangent slope of load-deformation curve at the pile head (contraction 

case), 
dx

dyE

is a tangent slope of load-deformation curve at the pile head (expansion case), 

x is a deformation, and y is a restoring force at the pile head. Detailed development of this 

hysteresis element will be presented in Chapter 5. 
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3.5.2 Soil-Abutment Interaction Hysteresis Element for Condensed Hysteresis 
Models 

Similar to the hysteresis model used in the FE models (Section 3.3), the elasto-

plastic hysteresis model will be adopted for a soil-abutment interaction hysteresis 

element. Because the classical elasto-plastic hysteresis model creates a similar problem as 

discussed in Section 3.3, a coordinate transformation is required to obtain the desired 

element characteristics. Referring to Equation 2-16 through Equation 2-21, a relative 

deformation, u, prior to a coordinate transformation is a solution of: 

Equation 3-8 can be represented by a diagram presented in Figure 3-18(a) in which 

variables (x and y) are defined as a small capital letter (before transformation). Figure 3-

18(b) presents the desired hysteresis element characteristics in which variables are 

defined as a big capital letter (after transformation): 
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Figure 3-18: Elasto-Plastic Hysteresis Models Before and After Coordinate 
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The relationship between deformations x and X can be written as: 

Similarly, the relationship between restoring forces y and Y is: 

Because both coordinate systems are of the same scale, rates of deformation increments 

x&  and X&  are identical, i.e. Xx && = . However, an initial value used in conjunction with 

Equation 3-8 needs to be transformed: 

A numerical scheme can be applied to Equation 3-8 with an initial value in Equation 3-11 

to determine a solution, u. Restoring force, Y, obtained from substituting Equation 3-10 

into Equation 2-16 ( 0=α ) is: 

 

3.5.3 Abutment-Backwall Connection Hysteresis Element for Condensed Hysteresis 
Models 

The elasto-plastic hysteresis model for abutment-backwall connection will be 

used to construct a hysteresis element. In order to simplify derivatives of the condensed 

hysteresis models, the ultimate moment capacity of abutment-backwall connections is 
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assumed to be similar to its yielding moment. Also, differences in yielding moments 

between contraction and expansion cases are found to be small; therefore, an average 

yielding moment and rotation can be used. Coordinate transformation is not required for 

this hysteresis element. All variables are presented with a small capital letter. A relative 

rotation u is expressed as: 

Parameters appearing in Equation 3-13 are presented graphically as a simplified moment-

rotation shown in Figure 3-19, where YM  is a yielding moment, Yθ  is a rotation at 

yielding, x is a rotation, and y is a restoring moment. 

Referring to Equation 2-16 ( 0=α ), a restoring moment y is written as: 
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Figure 3-19: Elasto-Plastic Hysteresis Model for Abutment-Backwall Connection 
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Chapter 4 
 

Finite Element Models 

4.1 General 

Hysteretic behavior in IA bridges transforms a linear static problem into a 

nonlinear time-history problem. A sophisticated analysis software package is required to 

achieve this transition. In this study ANSYS is adopted because the program provides an 

option of many advanced analysis levels and also possesses robust algorithms to 

overcome convergence difficulties. 

Two analysis levels were conducted: two-dimensional and three-dimensional 

models. A 2-D model is a level 1 analysis, representing a relatively simple analysis level 

for predictions of extensively long simulation time bridge responses. A 3-D model is a 

level 2 analysis, representing a sophisticated analysis level for predictions of more 

accurate bridge responses. The FE models of all three instrumented bridges (203, 211, 

and 222) were developed using ANSYS for both analysis levels, except for the 3-D 

model of bridge 211, which was taken from Laman et al [61]. 

Model descriptions in this chapter, including element types, mesh sizes, section 

properties, and material properties for hysteresis and non-hysteresis elements, are 

discussed in detail. Loads for the FE models, including earth pressures, temperatures, and 

time-dependent loads, are described. Finally, an explanation of the analysis method, 

solution method, and convergence criteria is provided. 
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4.2 Model Description 

In this section descriptions of the FE models for the three-instrumented IA 

bridges, element types used, and material properties are given. Instrumentation plans and 

construction details for each bridge are referred to in Appendix A and Laman et al [60], 

respectively. Two major bridge components, including superstructures and substructures, 

are described separately due to differences in modeling details. 

4.2.1 Superstructures 

Two-Dimensional Models 

Properties of the 2-D models for the superstructure components are described 

here. A composite slab and 4-girder section for each instrumented bridge was combined 

and modeled using an ANSYS BEAM3 element. This beam member was subdivided into 

10 pieces, all located on a composite elastic neutral axis. An elastic modulus of girders 

was used as a reference modulus, so that slab and parapet widths were transformed using 

corresponding modulus ratios. AASHTO LRFD [3] was used to determine a concrete 

modulus of elasticity based on a girder concrete strength of 55.2 MPa (8 ksi). Table 4-1 

summarizes material and section properties for the three bridges. 
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Three-Dimensional Models 

Properties of the 3-D models for the superstructure components are described 

here. All girders, deck slabs, and parapets were modeled using ANSYS SHELL63 

elements. A gap between the top flanges of I-girders and slabs that lie in a different plane 

was connected by a set of rigid links using ANSYS BEAM4 elements. A typical mesh 

size of shell elements was 0.45 m (18˝) for bridge 203 and 0.3 m (12˝) for bridges 211 

and 222. Aspect ratios and corner angles for shell elements were generally kept to near 

unity and the right angle, respectively. Figure 4-1 presents two section modeling samples 

of bridge 203 and bridge 222 superstructures. 

Because a bilinear shape function was used in SHELL63, shear locking is 

susceptible where a membrane action is modeled for bending. In order to avoid model 

inaccuracy due to shear locking, analyses of a single girder subjected to its own weight 

were performed under a simple span boundary condition for comparisons with hand 

calculations. A representative girder deflection of bridge 222 is presented in Figure 4-2. 

Table 4-1: Material and Section Properties for 2-D Superstructure Models 

Eref Area Moment of Inertia yb Bridge 
MPa (ksi) m2 (in2) m4 (in4) m (in) 

Remark 

203 35,536 
(5,154) 

5.03 
(7,802) 2.378 (5,713,283) 1.308 

(51.51) 
Apply for all 
three spans 

211 35,536 
(5,154) 

5.34 
(8,282) 3.548 (8,525,124) 1.557 

(60.60) 
  

222 35,536 
(5,154) 

4.37 
(6,775) 1.432 (3,440,291) 1.098 

(43.22) 
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Figure 4-1: Cross Sections of 3-D Superstructure Models 

 

 
 

Figure 4-2: Representative Girder Deflection of Bridge 222 Girder Due to Self Weight 
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Analysis results for all representative girder deflections and comparisons with hand 

calculations are summarized in Table 4-2. 

It is observed that ANSYS results show slightly larger values because shear deformation 

was included. Material and section properties for three bridges are presented in Table 4-3. 

The thermal expansion coefficient was set at 0.000009 mm/mm/oC (0.000005 in/in/oF) 

based upon the studies by Ndon and Bergeson [75] and Paul [86]. Rigid link properties 

Table 4-2: Comparisons of ANSYS and Hand Calculation for Girder Deflection 

Girder Deflection, mm (in) Span Bridge 
ANSYS Hand Calculation m (ft) 

Remark 

203 0.43 (0.017) 0.36 (0.014) 10.8 (35.5) Integral span 
211 25.27 (0.995) 24.59 (0.968) 34.8 (114)   
222 7.06 (0.278) 6.88 (0.271) 18.8 (61.7)    

 

Table 4-3: Material Properties for 3-D Superstructure Models 

Component 

Elastic 
Modulus 

MPa 
(ksi) 

Poisson's 
Ratio 

Coefficient of 
Thermal 

Expansion 
mm/mm/oC 
(in/in/oF) 

Area 
mm2 
(in2) 

Inertia 
mm4 
(in4) 

Element 
Type 

Girder 35,536 
(5,154) 0.2 9.0E-6 (5.0E-6) - - SHELL63 

Slab 25,124 
(3,644) 0.2 9.0E-6 (5.0E-6) - - SHELL63 

Rigid Link 6.9E7 
(1E7) - - 6.4E9 

(1E7) 
4.2E12 
(1E7) BEAM4 

Parapet 23,504 
(3,409) 0.2 9.0E-6 (5.0E-6) - - SHELL63 

Diaphragm 23,504 
(3,409) 0.2 9.0E-6 (5.0E-6) - - SHELL63 
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were assigned to be much higher than the stiffness of all surrounding elements, but no 

more than a computer numeric round-off limit to avoid ill-condition [30]. 

4.2.2 Substructures 

Two-Dimensional Models 

Properties of the 2-D models for the substructure components are described here. 

The abutment, backwall, and piles for each instrumented bridge were modeled using an 

ANSYS BEAM3 element. Four types of hysteresis elements, discussed in Chapter 3, 

were applied on these bridge components, defined as H1, H2, H3, and H4 for soil-pile 

interaction, soil-abutment interaction, abutment-backwall connection, and pile-abutment 

connection, respectively. An ANSYS COMBIN39 element was used for each hysteresis 

element. 

As presented in Figure 4-3, each H1 hysteresis element was connected to two 

adjacent pile elements through a single node to represent soil-pile interaction. One degree 

of freedom, UX, was utilized for these elements because only longitudinal movement is 

of particular interest. For the first 3-m (10΄) pile depth measured downwards, H1 

elements were typically placed at a spacing of 0.15 m (6˝) for all three bridge models, 

indicating a pile element length. The spacing for a greater depth (and pile element length) 

was lengthened appropriately, but no more than 0.9 m (3΄). 
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Similar to the H1 case, each H2 hysteresis element was connected to two adjacent 

abutment elements laid inside the line segment C-D (and two backwall elements laid 

inside the segment A-B) through a single node to represent soil-abutment interaction. 

One degree of freedom, UX, was enabled for each H2 element. An element spacing of 

approximately 0.3 m (1΄), also indicating an abutment and backwall element length, was 

used for all three-bridge models. 

Unlike the H1 and H2 cases, a single H3 hysteresis element was used to connect 

the bottom of the backwall component (Node B) to the top of the abutment component 

(Node C). One degree of freedom, RotZ, was utilized for this case to represent hysteretic 

behavior of the abutment-backwall connection. For the other degrees of freedom, UX and 

UY, a coupling of nodes B and C was employed. It is noted that nodes B and C 

essentially coincide. 

 

H1

H2

H2

H4 (COMBIN39) for RotZ
+ Coupling Ux and UyE

D

Pile (BEAM3)
X

Y

Abutment (BEAM3)

Backwall (BEAM3)
Superstructure (BEAM3)

A

H3 (COMBIN39) for RotZ
+ Coupling Ux and UyC

B
Soil-Abutment

Interaction
(COMBIN39)

Soil-Pile
Interaction

(COMBIN39)

Figure 4-3: Schematic Representation of Substructure Modeling 
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In case of very long overall bridge length, a H4 hysteresis element needs to be 

considered similar to the H3 case. However, the maximum overall bridge length used in 

this study is not long enough to produce a rotational plastic hinge to the pile-abutment 

connections. Therefore, this hysteresis element is not considered in this study. 

H1 Properties 

Properties of H1 hysteresis elements were obtained primarily from p-y curves, 

generated by using COM624P [112]. These properties depend on depth, embankment 

slope, soil overburden, pile stiffness, and soil properties. Figures 4-4 to 4-8 present 

diagrams of soil profiles and properties for all three bridges. 
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Figure 4-4: Soil Properties for Bridge 203 at Abutment 2 
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Figure 4-5: Soil Properties for Bridge 211 at Abutment 1 
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Figure 4-6: Soil Properties for Bridge 211 at Abutment 2 
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Figure 4-7: Soil Properties for Bridge 222 at Abutment 1 
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Figure 4-8: Soil Properties for Bridge 222 at Abutment 2 
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Sample loading curves for H1 elements at 0 and 3 m (0΄ and 10΄) pile depth are 

presented in Figure 4-9. Unloading curves are not shown and only curves generated for 

abutment 2 of each bridge are presented. 

As can be observed in Figure 4-9, due to the effects of downhill slopes and shallow soil 

overburden, soil stiffness and strength of the contraction case are smaller than those of 

the expansion case. This difference becomes less pronounced at a greater depth. At zero 

depth (at pile-abutment connection), the stiffness and strength of bridge 203 is the highest 

due to the largest soil overburden on both sides of the abutment. However, at the greater 

depth, the stiffness and strength of bridge 222 are the largest due to the smallest clay 

layer thickness. The stiffness and strength of bridge 211 are the weakest in any case, 

because its soil profile has a relatively shallow overburden and a thick clay layer. 
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Figure 4-9: Sample of Loading Curves for H1 Elements 
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H2 Properties 

Properties of H2 hysteresis elements were determined from a limit state of active, 

passive, and at-rest earth pressures. A lateral soil stiffness kh, i.e. a slope of the line 

connecting the three limit states, was obtained from a linear fit of field collected data 

presented in Figures 4-10 to 4-12, where the pressure and displacement magnitudes, 

which appear as vertical and horizontal scales, were taken from pressure cells and 

extensometers, respectively. Because pressure cells and extensometers were not installed 

at the same elevation, linear interpolation between two sets of extensometer data was 

performed to meet the pressure cell elevations. 
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Figure 4-10: Lateral Soil Stiffness for Bridge 203 
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Figure 4-11: Lateral Soil Stiffness for Bridge 211 
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Figure 4-12: Lateral Soil Stiffness for Bridge 222 
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The lateral soil stiffness, kh, of each bridge from the best linear fits was slightly 

modified in order to gain a better correlation between the analysis results of the FE 

models and the field data (model calibration). 

The difference in the lateral soil stiffness is observed, even though the pressure 

cell of each bridge is not comparably located at the same elevation. This difference 

reveals that lateral soil stiffness is inversely proportional to the bridge length. The 

explanation for this observation is that lateral soil stiffness is essentially a secant stiffness 

of a nonlinear stress-strain relation, which is generally smaller when deformation gets 

larger. 

The lateral soil stiffness, kh, as determined from the linear fit was used as a 

reference property of H2 elements at the pressure cell elevation (hereafter defined as kref). 

In order to obtain lateral soil stiffness of H2 elements at other elevations, kh(z), a 

polynomial interpolation (and extrapolation) between the pressure cell elevation (kh(z) = 

kref) and soil surface elevation (kh(z) = 0) was carried out and written as: 

where href is a reference depth measured from the soil surface to the pressure cell 

elevations and z is the depth of the interest. It is noted that a linear relationship, i.e. 

( )refrefh hzkzk =)( , is not appropriate, because stiffness of gravel soil material is 

generally proportional to the square root of confinement [18]. 

5.0

)( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

ref
refh h

zkzk  (4-1)
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H3 Properties 

A property of H3 element was based upon the moment-curvature relationship for 

abutment-backwall connection details. From Figure 2-4 in Chapter 2, a typical Ø16 mm 

@ 250 mm U-shape rebar is specified in the PennDOT standard IA joint detail [17]. This 

standard detail was used for bridge 222. However, some slight modification of a rebar 

spacing to 225 mm was employed for bridges 203 and 211. Figure 4-13 presents 

moment-curvature plots of the three bridges, using a strain compatibility approach and 

Whitney’s equivalent stress block for computing ultimate moment capacities. 

Due to the unequal reinforcement arrangement and an effective concrete width of the 

abutment-backwall connections, calculated strength and its initial stiffness of these 
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Figure 4-13: Moment-Curvatures of Abutment-Backwall Connection 



102 

 

connections subjected to expansion movements are different from those subjected to 

contraction movements by a factor of approximately 1.2. In addition, the calculated initial 

rotational stiffness for abutments are 16 to 20 times higher than those of abutment-

backwall connections, clearly indicating the connection weakness. 

Conversion from moment curvature relationship, φ−M , to moment-rotation 

relationship, θ−M , is required to determine H3 element properties. Based on the 

assumption of small deformation and constant moment over a joint length (L), this 

conversion can be written as [76 and 85]: 

According to Paul [85], the joint length, L, is associated with the development length of 

an epoxy-coated reinforcement, which is equal to 0.4 m (16˝) based on AASHTO [3]. By 

assuming a linear variation of rebar stresses over the development length, with a fully 

mobilized stress at the one end and zero stress at the other end, one half the development 

length was used as the joint length, L = 0.2 m (8˝). 

Properties of Other Substructure Components 

The stiffness and strength of other substructure components, including abutment, 

backwall, pier, and piles, are significantly stronger than those of hysteresis elements. As a 

result, these components are expected to perform without cracking in a service condition. 

Section properties based on gross section assumptions can be used. Material and section 

properties of these components, as well as those of bearings, are shown in Table 4-4. 

LL
EI
Mdx

EI
ML

φθ === ∫
0

 (4-2)
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Table 4-4: Material and Section Properties of Various Substructure Components 

Modulus Area Moment of 
Inertia Bridge Component 

MPa (ksi) m2 (in2) m4 (in4) 

Abutment 21,760 (3,156) 16.80 (26,040) 2.081 
(4,999,680) 

Backwall 25,124 (3,644) 16.80 (26,040) 2.081 
(4,999,680) 

Continuity 
Diaphragm 25,124 (3,644) 5.03 (7,802) 2.378 

(5,713,283) 

Pier 21,760 (3,156) 4.512 (6,994) 0.523 
(1,255,904) 

Pile 200,000 
(29,000) 0.112 (174.4) 6.19E-4 (1,488)

Dowels at 
abutment 1 

200,000 
(29,000) 9.7E-4 (1.507) 2.17E-6 (5.22) 

Bearing at pier 1 
span 1 2.7 (0.39) 108.7 (168,431) 1.17E-4 (281.5)

Bearing at pier 1 
span 2 2.7 (0.39) 108.7 (168,431) 1.17E-4 (281.5)

Bearing at pier 2 
span 2 2.7 (0.39) 108.7 (168,431) 1.17E-4 (281.5)

203 

Bearing at pier 2 
span 3 2.7 (0.39) 72.4 (112,183) 1.41E-4 (338.4)

Abutment 21,760 (3,156) 16.80 (26,040) 2.081 
(4,999,680) 

Backwall 25,124 (3,644) 16.80 (26,040) 2.081 
(4,999,680) 211 

Pile (abutment 1 
and 2) 

200,000 
(29,000) 0.155 (239.8) 8.52E-4 (2,046)

Abutment 21,760 (3,156) 16.80 (26,040) 2.081 
(4,999,680) 

Backwall 25,124 (3,644) 16.80 (26,040) 2.081 
(4,999,680) 

Pile (Abutment 1) 200,000 
(29,000) 0.155 (239.8) 8.52E-4 (2,046)

222 

Pile (Abutment 2) 200,000 
(29,000) 0.127 (196.2) 6.97E-4 (1,674)
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For bridge 203 only, continuity diaphragms and elastomeric bearing pads were 

used to make a continuous structure. Figure 4-14 presents a typical modeling detail for 

the superstructure and substructure connectivity over the piers. 

An ANSYS BEAM3 element was typically used for all members shown above. 

For bearing members (segments C-E and D-G), the modulus of elasticity along the Y axis 

needs to be increased due to bulging restraint caused by the use of embedded steel shims, 

known as an effective compressive modulus of elasticity (Ec). According to AASHTO 

[3], this parameter can be calculated as: 

where G is the shear modulus of elasticity of bearings and S is a shape factor, written as: 
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Figure 4-14: Typical Model at Super- and Sub-Structure Connection over Pier 

26GSEc =  (4-3)

shims steeladjacent between  distanceclear bearings ofperimeter 
bearings of areashear 

×
=S  (4-4)
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Modification of the input data in the FE models was applied to areas and moment 

of inertia, instead of elastic modulus, to account for bulging restraint effects. An 

equivalent area, Ae, is expressed as: 

where Abearing is the total actual bearing area and E is a nominal elastic modulus of 

bearings. An equivalent moment of inertia, determined from the equivalence of the lateral 

stiffness of bearings ( HGAbearing ) [120] and the lateral stiffness of classical beam 

( 312 HEI ) can be written as: 

where H is a bearing thickness. Note that values presented in Table 4-4 have appeared as 

equivalent properties (Ae and Ie). 

Three-Dimensional Models 

Properties of the 3-D models for substructures components are described here. 

Most beam and hysteresis element properties of the 3-D models can be taken from the 2-

D models using additional consideration of the third dimension. An abutment and 

backwall for the 3-D models was constructed using ANSYS SHELL63 elements with a 

typical mesh size ranging from 300 to 450 mm (12˝ to 18˝). A sample mesh taken from 

bridge 222 at abutment 2 is presented in Figure 4-15. 
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A dotted thick line drawn through the mesh in Figure 4-15 represents a 

construction joint where there are two sets of coincided nodal points: one attached to the 

abutment component and the other one attached to the backwall. Along this line, a set of 

H3 hysteresis elements and a coupling of every degree of freedom, except for rotation 

about the Z-axis, were applied to each pair of coincided nodal points. A property of H3 

hysteresis elements was calculated from the moment curvature relationship of the 

abutment-backwall connections similar to the 2-D models; however, the ratio of the 

distance between adjacent nodal points along the construction joint to the total joint 

length was used as a multiplier for each H3 property of the 3-D models. Material 

properties of other substructure components for the 3-D models of all three instrumented 

bridges are summarized in Table 4-5. 
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Figure 4-15: Sample Mesh of Bridge 222 Abutment and Backwall 
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Table 4-5: Material Properties for 3-D Substructure Models 

Struc-
ture Component 

Elastic 
Modulus 

MPa 
(ksi) 

Poisson's 
Ratio 

Thermal 
Expansion 
Coefficient 
mm/mm/oC 
(in/in/oF) 

Area 
mm2 
(in2) 

Inertia 
mm4 
(in4) 

Element 
Type 

Abutment 21,760 
(3,156) 0.2 9.0E-6 

(5.0E-6) - - SHELL63 

Backwall 25,124 
(3,644) 0.2 9.0E-6 

(5.0E-6) - - SHELL63 

Continuity 
Diaphragm 

25,124 
(3,644) 0.2 9.0E-6 

(5.0E-6) - - SHELL63 

Pier 21,760 
(3,156) 0.2 9.0E-6 

(5.0E-6) - - SHELL63 

Pile 200,000 
(29,000) 0.3 - 1.41E-2 

(21.8) 
7.74E-5 

(186) BEAM4 

Dowels at 
abutment 1 

200,000 
(29,000) 0.3 - 1.14E-3 

(1.767) 
1.03E-7 
(0.25) BEAM4 

Bearing at 
abutment 1 

2.7 
(0.39) 0.4985 - 18.1 

(28,046) 
2.38E-5 
(57.1) BEAM4 

Bearing at 
pier 1 span 1 

2.7 
(0.39) 0.4985 - 27.2 

(42,108) 
2.93E-5 
(70.4) BEAM4 

Bearing at 
pier 1 span 2 

2.7 
(0.39) 0.4985 - 27.2 

(42,108) 
2.93E-5 
(70.4) BEAM4 

Bearing at 
pier 2 span 2 

2.7 
(0.39) 0.4985 - 27.2 

(42,108) 
2.93E-5 
(70.4) BEAM4 

Bearing at 
pier 2 span 3 

2.7 
(0.39) 0.4985 - 18.1 

(28,046) 
3.52E-5 
(84.6) BEAM4 

Pier Cap 21,760 
(3,156) 0.2 9.0E-6 

(5.0E-6) - - SHELL63 

203 

Pedestal 21,760 
(3,156) 0.2 9.0E-6 

(5.0E-6) - - SHELL63 

Abutment 21,760 
(3,156) 0.2 9.0E-6 

(5.0E-6) - - SHELL63 

Backwall 25,124 
(3,644) 0.2 9.0E-6 

(5.0E-6) - - SHELL63 
211 
and 
222 

Pile 200,000 
(29,000) 0.3 - 1.41E-2 

(21.8) 
7.74E-5 

(186) BEAM4 
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4.2.3 ANSYS Model Summary 

Two-Dimensional Models 

A number of nodes, elements, and active equations used in the three models are 

summarized in Table 4-6. ANSYS model plots of bridges 203, 211, and 222 are 

presented in Figures 4-16 to 4-18, respectively. 

 

 

Table 4-6: Summary of 2-D Model Status 

Bridge No. of Nodes No. of Elements No. of Active Equations 
203 225 225 397 
211 255 254 405 
222 215 214 333  
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Figure 4-16: 2-D ANSYS Model for Bridge 203 
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Figure 4-17: 2-D ANSYS Model for Bridge 211 
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Figure 4-18: 2-D ANSYS Model for Bridge 222 
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Three-Dimensional Models 

A number of nodes, elements, and active equations used in the three models are 

summarized in Table 4-7. ANSYS model plots of bridges 203, 211, and 222 are 

presented in Figures 4-19 to 4-21, respectively. 

 

 

Table 4-7: Summary of 3-D Model Status 

Bridge No. of Nodes No. of Elements No. of Active Equations 
203 15,374 16,062 82,004 
211 22,566 21,865 109,859 
222 11,215 11,583 51,537  

 

 

Figure 4-19: 3-D ANSYS Model for Bridge 203 
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Figure 4-20: 3-D ANSYS Model for Bridge 211 

 

 
Figure 4-21: 3-D ANSYS Model of Bridge 222 
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4.3 Loadings 

In this study there are three major loads to be considered: (1) earth pressures, (2) 

temperature, and (3) time-dependent loads. Because a starting analysis time of each 

model was set at the moment when a concrete abutment and backwall connection is cured 

(frame action begins), most self-weights occurred beforehand and no longer affected 

frame action behavior. As a result, self-weights were disregarded. 

4.3.1 Earth Pressures 

Earth pressures were applied to the supplementary step of the ANSYS analysis 

(See Chapter 3). At this first step, all H2 hysteresis elements were artificially inactive by 

means of rigid body motion. An at-rest earth pressure, calculated by using the Jaky at-rest 

coefficient, i.e. φsin1−=oK , was applied to abutment and backwall elements. Figures 4-

22 and 4-23 present a sample of bridge 222 earth pressures in the ANSYS 2-D and 3-D 

models. 

 

 
Figure 4-22: Earth Pressures of Bridge 222 (2-D Model) 
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After completion of the supplementary analysis step, the remaining time-history 

analysis steps followed. Earth pressures in the remaining steps were fully interacted with 

temperature and time-dependent loads, according to the characteristics of H2 elements. 

4.3.2 Temperature Loads 

A record of ambient temperature has been taken from the weather station located 

in the vicinity of all three bridges. Figure 4-24 presents ambient temperature data from 

September 2002 to January 2006. The temperature time-history load and initial analysis 

time for each bridge are also presented in Figure 4-24. 

 

 
 

Figure 4-23: Earth Pressures of Bridge 222 (3-D Model) 
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A sinusoidal function representing the temperature load is defined from the best fit to the 

average ambient temperature data in order to produce average bridge responses. This 

function is expressed as: 

where Tm = Mean Temperature = 7 oC, 

A = Amplitude of Temperature Fluctuation = 16 oC, 

ω  = Frequency = 25.365
2π  = 0.017202 radian/day, 

t = Analysis Time (day), and 

φ  = Phase lag (radian) 

 = {2.516, 1.561, 1.48} for bridges 203, 211, and 222, respectively. 
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( )φω ++= tATtT m sin)(  (4-7)
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The initial analysis time (t = 0) represents the condition when structural continuity has 

begun. The reference bridge temperatures for each bridge was determined from 

Equation 4-7 when t = 0. Therefore, it can be observed from Figure 4-24 that contraction 

movements are dominated for all three bridges. 

4.3.3 Time-Dependent Loads 

Prior to super- and sub-structure connection, time-dependent effects of creep, 

shrinkage, and steel relaxation on prestressed concrete girders have no influences on the 

overall IA bridge behavior, because girders are of an unrestraint condition. However, 

after this structural connection occurs, the remaining time-dependent strains need to be 

considered for the FE models. Each source of time-dependent effects is discussed and 

demonstrated using parameters from bridge 222. A preliminary investigation on the time-

dependent effect sources obtained from several design recommendations is conducted 

and presented. Based on the AAEM method, the net time-dependent strains are 

determined and used as time-dependent loads for the FE models by means of equivalent 

temperatures. The net time-dependent strains for bridges 203 and 211, as well as their 

calculations using the AAEM method, are available in Appendix B. 

Samples of creep coefficients, aging coefficients, and shrinkage strains from the 

design recommendations: AASHTO LRFD [3], ACI Committee 209 [5], CEB-FIP MC 

90 [27], and Model B3 [16], are presented in Figures 4-25 to 4-27, respectively. Result 

comparisons between these design recommendations were intentionally conducted to 

cross-verify and select the most desirable design recommendation for detailed analyses. 
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Parameters used for determining these curves were taken from bridge 222 as an example. 

As can be observed in Figure 4-25, the creep coefficients using AASHTO and ACI 

appear to correlate well, because these two recommendations are based on a similar form 

of creep equation. Higher creep coefficients are observed from CEB-FIP and B3. The 

differences are made acceptable due to the fact that creep is a highly variable 

phenomenon with a coefficient of variation on the order of 15 to 20 percent [5]. Day 171, 

specified in Figure 4-25, represents the boundary event when changes in creep strains 

initiate to affect IA bridge behavior. 

As can be observed in Figure 4-26, the aging coefficients from ACI, CEB-FIP, and B3 

appear as the same trend in which the aging coefficient from CEB-FIP is the smallest and 

the aging coefficient from B3 is the greatest. There is no aging coefficient available in 

AASHTO. 
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Figure 4-25: Creep Coefficients from Several Design Recommendations (Bridge 222) 
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As can be observed in Figure 4-27, shrinkage strains from AASHTO and ACI appear to 

correlate well, while shrinkage strains from CEB-FIP and B3 are relatively higher. 

Similar to creep phenomenon, shrinkage is also a highly variable phenomenon. 
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Figure 4-26: Aging Coefficients from Several Design Recommendations (Bridge 222) 
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Figure 4-27: Shrinkage Strains from Several Design Recommendations (Bridge 222) 
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( )ottE ,  is a function of time in which magnitudes decrease logarithmically. Based 

on Equation 2-41 in Chapter 2, and using parameters from bridge 222, the ( )ottE ,  for the 

girder at age of three days ( ( )3,tEgirder ), the girder at age of 171 days ( ( )171,tEgirder ), and 

the concrete slab at age of three days ( ( )3,tEslab ) are presented in Figure 4-28. These 

three sets of ( )ottE ,  serve as input parameters to determine time-dependent strains by 

using the AAEM method. 

The selection of a design recommendation for detailed computation needs to be 

made. The AAEM method was applied to bridges 203, 211, and 222 and presented as a 

design calculation in Appendix B. Creep coefficients, aging coefficients, and shrinkage 

strains were determined using ACI, CEB-FIP, and B3, and are included in Appendix B. 

In general, results determined from these three design recommendations showed 

 

0

10

20

30

40

0 1000 2000 3000 4000

Day

Ef
fe

ct
iv

e 
M

od
ul

us
of

 E
la

sti
ci

ty
 (M

Pa
) .

0

1000

2000

3000

4000

5000

(k
si)

Super- and Sub-structure connection has begun.
(Day 171)

Ē girde r(t ,3)

Ē girder (t ,171)

Ē slab (t ,3)

 
Figure 4-28: Age-Adjusted Effective Modulus (Bridge 222) 
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insignificant differences in outcomes. Therefore, given its relative ease of use, the ACI 

approach was selected for detailed computation. 

Time-dependent strain results using ACI are summarized. The initial girder age of 

time-dependent strain computations corresponds to the age when superstructure and 

substructure were connected (Day 171 for bridge 222). Based on the AAEM method, 

time-dependent strains at the top and bottom fibers for the bridge 222 girder are presented 

in Figures 4-29 and 4-30, respectively. 

Three samples days after the superstructure and substructure were connected (Days 174, 

365, and 36500) are also presented in Figures 4-28 and 4-29. Only the half-length of a 

girder is plotted to take advantage of symmetry. An unrestrained condition was applied to 

obtain these time-dependent strains. Detailed calculations to consider the effects of force 

redistribution due to structural continuity are provided in Appendix B. 
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Figure 4-29: Time-Dependent Strain at Top Fiber of Girder (Bridge 222) 
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Time-dependent strains, determined by using the AAEM method, were imposed 

to a superstructure component by means of equivalent temperatures. Detailed calculations 

for equivalent temperatures are presented in Appendix B for all three instrumented 

bridges. The equivalent temperature is a function of the following parameters: 

• Time: Absolute value of equivalent temperatures is increased when time is 

increased. The equivalent temperature sign is typically negative, 

representing a self-shortening deformation of superstructures. 

• Longitudinal position: Magnitudes of equivalent temperatures are varied 

over a bridge span due to stress variations from self weight and de-

bonding effects of prestressing strands. 

• Girder depth: Similar to the longitudinal position parameter, equivalent 

temperatures are also varied through a girder depth. 

Figure 4-31 presents a bridge 222 sample diagram for typical equivalent temperature 

distribution over a half superstructure element of the 2-D model. 
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Figure 4-30: Time-Dependent Strain at Bottom Fiber of Girder (Bridge 222) 
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Equivalent temperatures for the 3-D models are varied from element to element. 

Figure 4-32 presents a sample contour plot of the equivalent temperatures on the full 

length of the bridge 222 interior girder and slab. 

Calculated equivalent temperatures for interior and exterior girders in each 3-D FE model 

are different due to unequal effective slab widths. Detailed calculations for both girder 

types are also presented in Appendix B. 

 
Midspan  CL

Element tureSuperstruc of E.N.A.
X

Y

Z

Fiber Topat  Profile eTemperatur Equivalent

Fiber Bottomat  Profile eTemperatur EquivalentElement
Backwall

 
Figure 4-31: Equivalent Temperatures on 2-D Model 

 

 
Figure 4-32: Equivalent Temperatures on 3-D Model (Bridge 222) 
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4.4 Types of Analysis and Convergence Criteria 

4.4.1 Type of Analysis 

Due to a significant simulation period for temperature cyclic loadings, a quasi-

static analysis is adequate and acceptable for a time-history problem in the present study. 

In general, there are two widely accepted analysis methods for this time-history problem: 

explicit and implicit direct integration. 

The choice of methods strongly depends upon a problem type [30]. In the explicit 

direct integration method, a small time-step size is required to ensure numerical stability, 

known as conditionally stable; thus, this method is generally appropriate for a high 

velocity problem. On the contrary, for the implicit method, there is no restriction for 

time-step size regarding numerical stability, known as unconditionally stable. Therefore, 

accuracy and convergence are the only main factors in selecting a time-step size, which is 

ideal for a low velocity problem. In this study the implicit method was adopted because a 

prolonged time-step size is required to cover a significantly long simulation time. 

ANSYS [9] provides two alternate algorithms for the implicit direct integration: 

Newmark and Hilber-Hughes-Taylor (HHT). The HHT algorithm is essentially an 

improved Newmark version that yields more accurate results for high frequency modes. 

Because this improvement did not offer any advantage to the present problem, the 

Newmark algorithm was deemed sufficient. 

There are several well-known solution methods available in ANSYS, including 

Newton-Raphson, modified Newton-Raphson, and initial stiffness for material 

nonlinearity analyses. Each method has both advantages and disadvantages concerning a 
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computation time trade-off. ANSYS provides an option to select the most efficient 

method automatically, which was adopted in this study. A convergence accelerator 

available in ANSYS, known as line search [122], was also used to reduce computation 

time. 

4.4.2 Convergence Criteria 

Iterative processes are always encountered for all types of material nonlinearity 

solution methods. Convergence criteria are necessary to set a standard to terminate an 

iterative step for advancing to the next step. In a structural problem, a L2-norm is 

commonly implemented to compute a scalar number that represents residual quantities 

that could be force, moment, displacement, or rotation vectors. When a ratio of residual 

L2-norm to the reference L2-norm, i.e. { } refFFΔ  [9, 30, and 122], falls below a 

predefined tolerance, an analysis of the current iterative is said to converge, which allows 

the solver to progress to the next iterative step. In this study force and displacement 

quantities were monitored and set as convergence criteria. A tolerance of 0.001, 

suggested by Cook et al [30] for the 32-bit computer architecture and established as an 

ANSYS default, was used for both force and displacement convergence criteria. 

 



 

 

Chapter 5 
 

Condensed Hysteresis Model 

5.1 General 

A condensed hysteresis model is proposed to provide an alternative and simple IA 

bridge model that can be easily implemented. Only two unknowns within a condensed 

hysteresis model must be defined in order to reduce the significant computation time 

typically required for FE model analyses. Although condensed hysteresis models are 

intended to be simple, the complexity of influencing parameters: hysteretic and non-

hysteretic (time-dependent) behaviors, are fully incorporated, using hysteresis elements 

and equivalent temperatures similar to what was employed in the FE models. 

The outlined procedure and all hysteresis elements discussed in Chapter 3 are 

presented in more detail in this chapter. The Duhem hysteresis model is used for 

development of a soil-pile interaction hysteresis element, and the elasto-plastic hysteresis 

model is used for representing soil-abutment interaction and abutment-backwall 

connection hysteresis elements. In addition, the application of numerical schemes to 

solve a differential equation of each hysteresis element is provided. All hysteresis 

elements serve as a nonlinear hysteresis spring for a condensed hysteresis model. 

A procedure to condense degrees of freedom by applying appropriate model 

assumptions, boundary conditions, and constraint equations is presented to construct a 

condensed hysteresis model. This procedure is initially carried out using linear spring 
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elements to simplify the development procedure. Subsequently, replacement of linear 

springs by nonlinear hysteresis elements can be conveniently performed. Finally, a 

similar numerical solution method, commonly used in the FE approach, is discussed and 

applied to obtain a solution for a condensed hysteresis model. Implementation using 

MATLAB is also conducted and provided in Appendix C. 

This chapter consists of five subsections. Section 5.2 describes the development 

procedure of a soil-pile interaction hysteresis element and the application of numerical 

schemes. Section 5.3 demonstrates the application of numerical schemes to the soil-

abutment interaction and abutment-backwall connection hysteresis elements presented in 

Chapter 3. Section 5.4 presents the development procedure of a condensed hysteresis 

model. Model assumptions, boundary conditions, and constraint equations are provided 

in this section. Finally, Section 5.5 covers time-dependent effect consideration for 

condensed hysteresis models. 

5.2 Development of a Soil-Pile Interaction Hysteresis Element 

In this section a soil-pile interaction hysteresis element is developed. As outlined 

in Section 3.5.1, a transformation of a two-dimensional pile model into hysteresis 

elements, 22K  and 33K , at the pile head is required. The Duhem Model is used to provide 

a framework for hysteresis element development. The advantages of using the Duhem 

Model as opposed to other hysteresis models are to: 

• provide capability to generate interior hysteresis loops and 

• use an initial boundary value problem as a starting point. 
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which are necessary for the physical problem presented in this study. After differential 

equations are obtained, a numerical scheme can be applied. 

In order to develop a soil-pile interaction hysteresis element at the pile head using 

the Duhem Model, the following four steps must be completed: (1) determine load-

deformation curves at pile head; (2) develop tangent slope equations from load-

deformation curves; (3) assign tangent slope equations to the Duhem equation to obtain 

differential equations that represent soil-pile interaction hysteresis model; and (4) apply a 

numerical solution scheme to the resulting differential equations to obtain results. All 

four steps are described in Sections 5.2.1 to 5.2.4, respectively. 

5.2.1 Load-Deformation Curves at Pile Head 

Load-deformation curves at the pile head are typically used to determine 

foundation stiffness at a convenient interactive boundary between structural and 

geotechnical tasks. Foundation stiffness may be generated by using LPILE [66] - a 

geotechnical program based on the p-y curve method. Although load-deformation curves 

and foundation stiffness may be determined from any other nonlinear soil-pile interaction 

approach, ANSYS pile models (also based on the p-y curve method) as described in 

Section 3.2.1, are consistently used to generate all load-deformation curves in this study. 

Two types of load-deformation curves for condensed hysteresis models are 

required to determine nonlinear hysteresis elements, 22K  and 33K . The first type of load-

deformation curve ( 22K ) is a relationship between displacement and force reaction at the 
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pile head. The second type of load-deformation curves is a relationship between rotation 

and moment reaction at the pile head ( 33K ). 

In order to generate load-deformation curves for both types, certain boundary 

conditions need to be specified at the pile head. For a displacement and force reaction 

curve, the rotational degree of freedom at the pile head needs to be restrained, while 

displacements are incrementally enforced to obtain corresponding incremental force 

reactions. Likewise, for a rotation and moment reaction curve, a translational degree of 

freedom at the pile head needs to be locked, while rotations are incrementally applied to 

obtain corresponding incremental moment reactions. 

In this section, all load-deformation curves obtained from ANSYS pile models 

(see also Section 3.2 for ANSYS pile models) are presented and discussed. For each 

graph presented in Figures 5-1 to 5-4, there are five curves, representing the ANSYS pile 

models for bridge 203, abutment 1 of bridge 211, abutment 2 of bridge 211, abutment 1 

of bridge 222, and abutment 2 of bridge 222, respectively. The notations A1 and A2 stand 

for abutment 1 and abutment 2, respectively. Differences in displacement/rotation ranges 

on each graph are due to differences in corresponding free thermal expansion determined 

from each bridge length. Therefore, the displacement/rotation range for bridge 203 is the 

longest, while the displacement/rotation range for bridge 222 is the shortest. For 

contraction and expansion cases of all three instrumented bridges, displacement and force 

reaction curves are presented in Figures 5-1 and 5-2, respectively. 
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Figure 5-1: Displacement-Force Reaction Curve for Contraction Case 
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Figure 5-2: Displacement-Force Reaction Curve for Expansion Case 
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Similarly, for contraction and expansion cases of all three bridges, rotation and moment 

reaction curves are presented in Figures 5-3 and 5-4, respectively. 
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Figure 5-3: Rotation-Moment Reaction Curve for Contraction Case 
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Figure 5-4: Rotation-Moment Reaction Curve for Expansion Case 
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It can be observed from Figures 5-1 to 5-4 that all load-deformation curves are to 

some degree nonlinear with softening as deformation increases. In terms of both strength 

and stiffness, bridge 203 piles are the strongest and bridge 211 piles are the weakest. The 

reaction magnitudes of bridge 211 (and 222) of two integral abutment piles are 

comparatively the same. All curves presented in this section are used to construct 

equations of load-deformation tangent slopes discussed in Section 5.2.2. 

5.2.2 Equations for Load-Deformation Tangent Slopes 

In this section a procedure to obtain equations of load-deformation tangent slopes 

is developed to construct a hysteresis element based on the Duhem Model. The load-

deformation curves that are generated, using the ANSYS pile models as presented in 

Section 5.2.1, are used. Taking x as deformation (displacement/rotation) and y as load 

(force/moment reaction), a load-deformation tangent slope at any point of each load-

deformation curve can be obtained from the ratio of incremental load (dy) to incremental 

deformation (dx). To determine an equation for load-deformation tangent slopes, 

deformations (x) versus load-deformation tangent slopes (y' = dy/dx) are plotted in 

Figures 5-5 to 5-8. Displacements versus displacement-force reaction tangent slopes for 

contraction and expansion cases are presented in Figures 5-5 and 5-6, respectively. 

Similarly, rotations versus rotation-moment reaction tangent slopes for contraction and 

expansion cases are presented in Figures 5-7 and 5-8, respectively. It is noted that natural 

logarithms are used for both axes to demonstrate a nearly straight line, which offers a 

better visualization for curve fittings. 
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Figure 5-5: Displacement Versus Displacement-Force Reaction Tangent Slope in Natural 

Logarithm for Contraction Case 
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Figure 5-6: Displacement Versus Displacement-Force Reaction Tangent Slope in Natural 

Logarithm for Expansion Case 
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Figure 5-7: Rotation Versus Rotation-Moment Reaction Tangent Slope in Natural 

Logarithm for Contraction Case 
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Figure 5-8: Rotation Versus Rotation-Moment Reaction Tangent Slope in Natural 

Logarithm for Expansion Case 



133 

 

After plotting deformations (x) versus load-deformation tangent slopes (y') on ln-ln scale, 

the results approximate a straight line. Therefore, linear regression can be employed to 

obtain the best fit equation in the form: 

where m is a slope of the linear regression equation (not a load-deformation tangent 

slope) and C is a coefficient value. Equation 5-1 can be rewritten as: 

Table 5-1 presents linear regression equations for displacement-force reaction tangent 

slopes in both forms along with R2 values for all three bridges. 

The parameters m obtained from the best fit varied from -0.56 to -0.456 with an average 

value of -0.523 with R2 values ranging from 0.896 to 0.988. Therefore, to simplify further 

equation derivative/integration, it was accepted that m = -0.5 = -1/2 is taken for all 

equations with the corresponding R2 values presented in Table 5-1. The maximum and 

average percent decreases of R2 values between the cases before and after taking m = -0.5 

Cxmy +=′ )ln()ln(  (5-1)

C)xln(m)yln( ee +′ =  (5-2)

mC xey =′  (5-3)

Table 5-1: Equations for Displacement-Force Reaction Tangent Slopes 

Case Bridge ln(y') = mln(x) + C y' = eCxm R2 

203 ln(y') = -0.5 ln(x) + 3.653 y' = 38.572 x-1/2 0.984 

211 ln(y') = -0.5 ln(x) + 3.092 y' = 22.027 x-1/2 0.914 Contraction 

222 ln(y') = -0.5 ln(x) + 3.315 y' = 27.534 x-1/2 0.954 

203 ln(y') = -0.5 ln(x) + 3.917 y' = 50.263 x-1/2 0.957 

211 ln(y') = -0.5 ln(x) + 3.703 y' = 40.561 x-1/2 0.895 Expansion 

222 ln(y') = -0.5 ln(x) + 3.809 y' = 45.124 x-1/2 0.970  
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are 2.54 and 0.13, respectively, indicating insensitivity to this change. A sample of linear 

regression lines overlaid onto Figure 5-5 is presented in Figure 5-9. 

Analytical integration with initial values of 0)0()0( == yx  to an equation for 

load-deformation tangent slopes can be performed to verify the load-deformation curve 

from ANSYS. For demonstration purposes, the first equation in Table 5-1 is integrated 

such that: 
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Figure 5-9: Linear Regression Equations of the Case Presented in Figure 5-5 
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A sample of the integrated slope equations overlaid onto Figure 5-1 is presented in 

Figure 5-10. The average R2 value for the comparison between the load-deformation 

curves from ANSYS and the integrated tangent slope equations is 0.975. 

 

The same procedure is also applied to linear regression equations for rotation-

moment reaction tangent slopes. Table 5-2 presents these equations in both forms for all 

three bridges. 
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Figure 5-10: Integrated Slope Equations of the Case Presented in Figure 5-1 
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In this case the parameters m obtained from the best fit varied from -0.2291 to -0.1983 

with an average value of -0.1929. Therefore, it was accepted that m = -0.2 = -1/5 is taken 

for all equations to simplify further equation derivative/integration. In addition, R2 values 

obtained from the case after taking m = -0.2 as presented in Table 5-2 are almost 1.0, 

indicating insensitivity to this change. An equation for rotation-moment reaction tangent 

slopes, after taking integration and incorporating initial values of 0)0()0( == yx , is in 

the form: 

It can be observed that all slope equations in Tables 5-1 and 5-2 are a C-Infinity 

function because their derivatives are not continuous at x = 0. However, all these slope 

equations are consistent with the p-y curve equation that appears in the form, 

[ ] 4
1

xcoeffy ⋅=  (See Equation 3-2). In addition, an absolute value of x is applied to the 

equations for displacement-force reaction tangent slopes to accommodate the negative 

sign of x for the unloading case. The general form of Equation 5-4 can be rewritten as: 

Table 5-2: Equations for Rotation-Moment Reaction Tangent Slopes 

Case Bridge ln( y') = mln(x) + C y' = eCxm R2 

203 ln(y') = -0.2 ln(x) + 9.115 y' = 9091.4 x-1/5 0.9998 

211 ln(y') = -0.2 ln(x) + 8.883 y' = 7206.2 x-1/5 0.9979 Contraction 

222 ln(y') = -0.2 ln(x) + 8.972 y' = 7882.7 x-1/5 0.9987 

203 ln(y') = -0.2 ln(x) + 9.214 y' = 10041.1 x-1/5 0.9991 

211 ln(y') = -0.2 ln(x) + 9.094 y' = 8898.4 x-1/5 0.9984 Expansion 

222 ln(y') = -0.2 ln(x) + 9.149 y' = 9406.1 x-1/5 0.9987  
 

5
4C xe

4
5y =  (5-5)
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where x&  is a displacement rate 
dt
dx

= , 

 )xsgn( &  is a signum function 
⎪
⎩

⎪
⎨

⎧

>
=
<−

=
0x ,
0x ,
0x ,

 
1
0

1

&

&

&

, and 

coeff is a real number coefficient obtainable from curve fittings. 

5.2.3 Equations for Soil-Pile Interaction Hysteresis Model 

In this section the equations of load-deformation tangent slopes developed in 

Section 5.2.2 are applied to Equation 3-7. It is recalled from Section 3.5.1 in Chapter 3 

that two nonlinear hysteresis springs need to be determined: 22K  and 33K . Because the 

procedure for determining nonlinear hysteresis spring stiffness is identical, only 22K  is 

demonstrated in detail. The displacement-force reaction tangent slope relationship for the 

contraction case of 22K  is presented as: 

where x is a displacement, y is a force reaction, and C1 is a coefficient value obtained 

from regression. Similarly, for the expansion case, the relationship for displacement-force 

reaction tangent slopes is written as: 

[ ] 2
1

x)xsgn(coeffy &=  (5-6)

2
1

1C
−

= x
dx

dyC

 (5-7)

2
1

2C
−

= x
dx

dyE

 (5-8)
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where C2 is a coefficient value obtained from the regression method. Substituting 

Equation 5-7 and Equation 5-8 into Equation 3-7 yields an initial boundary value 

problem as presented below: 

where xo and yo are initial values for x and y respectively. 

In order to ensure that the proposed equation for displacement-force reaction 

tangent slopes is bounded to an arbitrary positive constant λ , the Lipschitz condition 

needs to be satisfied. Referring to Equation 2-10, 

 [ ] ( )
[ ] ( )2

212121

2
212121

)(),(),()(
)(),(),()(

yyxxyfxyfyy
yyxxyfxyfyy

DD

II

−−≥−−
−≤−−

λ
λ , 

as a starting point, substituting an increasing slope 2
1

1C
−

== x
dx

dyf
C

I  and its integral 

equation 2
1

1C2 xy =  into the first expression in Equation 2-10 leads to the following 

inequality: 

where If  is an increasing slope = a displacement-force reaction tangent slope for the 

contraction case, Df  is a decreasing slope = a displacement-force reaction tangent slope 

for the expansion case, and the subscripts 1 and 2 are used to distinguish 2 arbitrary sets 
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of adjacent x and y values. By rearranging Equation 5-10, the positive coefficient C1 is 

cancelled out: 

The left-hand-side term in Equation 5-11 is rearranged such that: 

since x1 and x2 must be positive (absolute values are required as expressed in Equation 5-

6), the term 
2

2
1

2
2

1

1 ⎟
⎠
⎞⎜

⎝
⎛ − xx  exists and is also positive: 

which satisfies the Lipschitz condition because ( ) 2
1

21xx  is positive. Similarly, another 

proof for a decreasing curve (expansion case) can be performed, which yields the same 

result as in Equation 5-13. 

An initial boundary value problem for 33K  is constructed from the equations for 

rotation-moment reaction tangent slopes as written below: 
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where x is a rotation, y is a moment reaction, C3 and C4 are coefficient values obtained 

from regression. A procedure to satisfy the Lipschitz condition is similar to the step 

presented from Equations 5-10 to 5-13. The finial results for increasing and decreasing 

curves are identical and written below: 

which also satisfies the Lipschitz condition because ⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ − 5

4

2
5

4

1
5

1

2
5

1

1 xxxx  and 

( ) 5
1

21xx  are positive regardless of 21 xx >  or 21 xx < . 

5.2.4 Numerical Scheme 

In order to solve Equations 5-9 and 5-14, a numerical scheme is required. In this 

study the Euler forward method, one of the simply implemented numerical algorithms, is 

adopted. With respect to time, a standard equation of this method is expressed as [62]: 

where y is a force reaction, y&  is a force reaction rate, and h is a time step. 

In case of a monotonic increasing displacement, x, Equation 5-16 is substituted by 

the expression in Equation 5-9 for the contraction case ( xx
dt
dy

&2
1

1C
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= ), leading to: 
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where a time step h on the right-hand-side term is cancelled out. It is observed that all 

variables on the right-hand-side term are known a priori, thus, y(t+h) can be computed 

from each iterative step and then becomes y(t) for subsequent iterative steps. The initial 

values in Equation 5-9 ( oyy =)0(  and oxx =)0( ) serve as the initial iterative step. 

In case of unloading, the semi-group identity (Equation 2-6 in Chapter 2) is 

applied. This mathematical property has also been applied to the modified Ramberg-

Osgood and hyperbolic hysteresis models, as can be observed in Equations 2-27, 2-28, 2-

30, and 2-31. When the )(tx&  sign is reversed, the expression in Equation 5-9 for the 

expansion case ( xx
dt
dy

&2
1

2C
−

= ) is taken. Additional parameters, )( 1txc  and )( 1tyc  

representing magnitudes of )(tx  and )(ty  at the time reversal 1t , are required to account 

for memory effects. The numerical solution for an unloading case is written as: 

Because the load-deformation equations are also taken as a hysteresis boundary, 

)( 1tyc  cannot be smaller than zero for an unloading case ( 0)( <tx& ). In any case, if 

)( 1tyc  appears to be smaller than zero, magnitudes of )( 1txc  and )( 1tyc  need to be 

shifted, so as to enforce an unloading curve bounded by a hysteresis boundary as the 

following expressions: 
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A step function is required to present a general form of a numerical scheme that 

can accommodate both unloading and reloading cases. Such a step function is written as: 

and the general form of the numerical scheme is written as: 

where nt  is current time at the displacement reversal. Sample hysteresis loops in which 

applied displacements and model properties are taken from the last convergence case 

study in Section 3.2.4 is presented in Figure 5-11. The dotted line represents a hysteresis 

loop determined analytically from Equation 5-6 and the continuous line represents a 

hysteresis loop determined numerically from Equation 5-21. The maximum difference 

between these two methods is approximately 6 percent. In addition, a steady-state 

hysteresis loop can be observed. 

A tangent slope that indicates the magnitude of the nonlinear spring, 22K , can be 

obtained from: 
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The same procedure can be used for numerical scheme of the nonlinear spring, 

33K . Therefore, the general form of this particular case is written as: 
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Figure 5-11: Displacement and Pile Head Resistance Hysteresis Loops 
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where x and y stand for rotation and moment reaction, respectively. A step function used 

in Equation 5-23 is expressed as: 

A tangent slope that indicates the magnitude of the nonlinear spring, 33K , can be 

obtained from: 

The Euler forward method requires a small time step size to ensure accuracy and 

numerical stability. In this study, due to a few degrees of freedom being involved, 

analysis per iteration is very inexpensive, therefore, a considerably small time step can be 

assigned in order to avoid numerical instability. 

5.3 Soil-Abutment Interaction and Abutment-Backwall Connection Hysteresis 
Elements 

Similar to the numerical procedure for the soil-pile interaction hysteresis 

elements, the Euler forward method can be applied to soil-abutment interaction and 

abutment-backwall connection hysteresis elements. Differential equations for soil-

abutment interaction and abutment-backwall connection hysteresis elements are referred 
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to in Sections 3.5.2 and 3.5.3, respectively. In this section a similar procedure to obtain a 

general form of the numerical scheme presented in Section 5.2.4 is adopted in which a 

soil-abutment hysteresis element is used for demonstration. A numerical form for this 

hysteresis element derived from the differential equation (Equation 3-8) is written as: 

where x is a displacement, u is a relative displacement of a spring attached to a Coulomb 

slip element, Pp is a passive force, Pa is an active force, and Ka is a linear spring derived 

from a lateral soil stiffness. The initial values, x(0), are taken from Equation 3-11 and 

force reaction, y, is determined from Equation 3-12, written in a numerical form as: 

Finally, a tangent slope that indicates the magnitude of the nonlinear spring for a soil-

abutment interaction, aK , can be obtained from: 

which also appears in a similar form as the tangent slopes for the soil-pile interaction, 

22K  and 33K  (Equation 5-22 and Equation 5-25). 
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5.4 Constraint and Condensation Techniques 

Constraint and condensation techniques are used as tools to transform a two-

dimensional model to a condensed hysteresis model. A concept of these two techniques is 

extensively documented in many finite element textbooks [e.g. 30 and 122]. As 

mentioned in Chapter 3, the desired end results of condensed hysteresis models are 

translational and rotational degrees of freedom at the pile-abutment connection. This 

location represents a point where structural and geotechnical designs are typically 

separated. In this study constraint and condensation techniques are used to eliminate all 

degrees of freedom, except for the translational and rotational degrees of freedoms at the 

pile head. 

In order to make the explanation simpler, linear springs are initially used to 

present the procedure of constraints and condensations. This initial step along with model 

assumptions is presented in Section 5.4.1. Discussed in Section 5.4.2, a condensed 

hysteresis model is constructed by replacing linear springs with nonlinear hysteresis 

springs. Numerical techniques to obtain a solution for the condensed hysteresis model are 

presented in Section 5.4.3. 

5.4.1 Linear Springs 

This section proposes a procedure to reduce degrees of freedom of a simplified 2-

D model using constraint and condensation techniques. A set of linear springs is used to 

construct this 2-D model for this initial step. Figure 5-12 presents the 2-D model 

representing a single span IA bridge consisting of four translation springs, two rotational 
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springs, five nodes, and three line elements. Detailed descriptions of this 2-D model and 

the procedure of constraints and condensations are presented in six subsections: (1) 

general 2-D model description; (2) 2-D model assumptions; (3) 2-D model boundary 

conditions; (4) constraint transformation matrix; (5) condensed stiffness matrix; and (6) 

condensed force vector. 

General 2-D Model Description 

General model descriptions and notations are referenced to Figure 5-12 and 

summarized in Table 5-3. 
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Figure 5-12: Schematic Representation of 2-D Model Prior to Condensation 
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A standard finite element notation is adopted to define unknowns (degrees of freedom) of 

the 2-D model as presented in Table 5-4. 

Table 5-3: 2-D Model Description and Notation 

Notation Description 

L Half the actual bridge length 

ha Abutment height 

hb 
Vertical dimension on backwall measured from the abutment-
backwall connection to the elastic neutral axis of the 
superstructure 

N1 to N5 Nodes of the 2-D model 

E1 to E3 
Elements of the 2-D model, representing abutment, backwall, and 
superstructure, respectively 

Ka, Kb, and Kc 
Linear springs, representing lateral stiffness of soil-abutment 
interaction 

K22 and K33 
Linear springs, representing lateral and rotational stiffness of soil-
pile interaction at the pile head 

Kd 
Linear spring, representing rotational stiffness of abutment-
backwall connection  

 

Table 5-4: Degrees of Freedom for 2-D Model 

Notation Description 

u1 to u5 Lateral degrees of freedom for nodes 1 to 5 

v1 to v5 Vertical degrees of freedom for nodes 1 to 5 

1θ  to 5θ  Rotational degrees of freedom for nodes 1 to 5 
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2-D Model Assumptions 

The following assumptions are applied to the 2-D model to establish criteria for 

elimination of dependent degrees of freedom: 

• The bridge is symmetrical about the superstructure mid-span, half of the 

structure is modeled. 

• The axial deformation of steel H-piles is insignificant, a roller is placed at 

node 1. 

• The coupled stiffness of soil-pile interaction, i.e. K23 and K32, is insignificant, 

therefore, this two-coupled stiffness is ignored. 

• The abutment and backwall components are sufficiently rigid relative to other 

elements for bending and axial deformation to be modeled as a rigid. 

2-D Model Boundary Conditions 

Based on the assumption of bridge symmetry, the boundary conditions at node 5 

are 055 == θu . By neglecting pile axial deformation, the boundary condition at node 1 is 

01 =v . Therefore, three degrees of freedom of the total 15x3 = 15 are eliminated after 

incorporating these three boundary conditions. 
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Constraint Transformation Matrix 

Based on the assumption that the abutment and backwall are sufficiently rigid 

relative to other elements for axial deformation, the zero constraints at nodes 1 to 4 are 

04321 ==== vvvv . After incorporating these zero constraints, additional three degrees 

of freedom are eliminated, reducing a stiffness matrix size to nine. 

Based on the assumption that the abutment and backwall are sufficiently rigid 

relative to other elements for bending, the non-zero constraints are 221 θahuu += , 

21 θθ = , 443 θbhuu += , and 43 θθ = . In addition, nodes 2 and 3 coincide, providing an 

additional non-zero constraint, 32 uu = . These non-zero constraints serve to construct the 

so-called constraint transformation matrix, Crc. The reader is referred to Cook et al [30] 

for the detailed procedure to obtain Crc. In this step, four degrees of freedom ( 1u , 1θ , 4θ , 

and 5v ) are kept and five degrees of freedom ( 2u , 2θ , 3u , 3θ , and 4u ) are eliminated. 

The constraint transformation matrix is written as: 

The constraint transformation matrix is used for reducing a stiffness matrix size from 

nine to four. This procedure to apply this constraint transformation matrix will be 

presented in the condensed stiffness matrix and condensed force vector subsections. 
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Condensed Stiffness Matrix 

A condensed stiffness matrix is derived from the global stiffness matrix of the 2-

D model after incorporating the boundary conditions, constraints, and condensation to 

reduce a matrix size to two desirable unknowns, 1u  and 1θ . After the above defined 

boundary conditions and zero constraints are employed, the 2-D model stiffness matrix 

size is reduced to nine, defined as K in Equation 5-30. To apply the constraint 

transformation matrix, Crc, to eliminate 5 additional degrees of freedom ( 1u , 2θ , 3u , 3θ , 

and 4u ), partitioning on K needs to be performed such that: 
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E = Reference elastic modulus of the superstructure, 
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I = Moment of inertia of the superstructure (composite), 
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Kcr = [0]5x4. 

According to Cook et al [30], the stiffness matrix, after applying the constraint 

transformation matrix, K′ , is: 

At this point, the condensation technique can be employed. The first 2x2 of K′  

corresponding to 1u  and 1θ  are intended to be kept, while the last 2x2 of K′  

corresponding to 4θ  and 5v  are to be eliminated. Partitioning on K′  needs to be 

performed such that: 
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According to Cook et al [30], a stiffness matrix, after applying matrix condensation 

representing a condensed stiffness matrix, K ′′ , is determined from: 

The condensed stiffness matrix, K ′′ , appears in an awkward format. Thus, it is suggested 

that the condensation procedure is performed numerically by using Equation 5-31 as a 

starting point. Only 2x2 matrix operations are involved, making implementation easier. 

The linear stiffness of three soil-abutment interaction springs (Ka, Kb, and Kc) is 

interconnected according to the relationship presented in Equation 4-1. This 

interconnection can be written in the following equations: 

where )(zkh  is a lateral soil stiffness at depth z (Equation 4-1) and B is a abutment or 

backwall width. 
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Condensed Force Vector 

The same approach used for reducing the stiffness matrix size is also applied to a 

global force vector of the 2-D model to obtain a condensed force vector. After the above 

defined boundary conditions and zero constraints are employed, the 2-D model force 

vector size is reduced to nine, defined as F in Equation 5-35. Partitioning on F needs to 

be performed such that: 

where Fr = [ ] 140 × , 

Fc = [ ]TcAE-0000 TΔα , 

cα  = Coefficient of thermal expansion, and 

TΔ  = Change in temperatures. 

A force vector after applying the constraint transformation matrix, F′ , is determined from 

[30]: 

To obtain a condensed force vector, partitioning on F′  needs to be performed such that: 
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The condensed force vector, F ′′ , is written as: 

It is also suggested that the condensation procedure for the condensed force vector is 

performed numerically by using Equation 5-36 as a starting point. Only 2x1 vector 

operations are involved. 

Although the proposed 2-D model is ideal for bridges 211 and 222, extension to 

bridge 203 can be performed by subdividing a superstructure component into three 

elements and imposing two rollers to the two new inner nodes. However, additional 

assumptions are provided to make use of the condensed matrix and force vector 

developed for a single span bridge. Such assumptions are listed as follows: 

• The longitudinal displacement at abutment 1 (non-integral abutment) is 

insignificant due to foundations on the bedrock, the total bridge overall 

length is used as a length parameter, L1, to the axial stiffness, LAE , for 

the condensed stiffness matrix in Equation 5-31. 

• The zero rotation point is located about mid-way of span 3 (bridge span 

adjacent to the integral abutment). Half the magnitude of span 3 is used as 

a length parameter, L2, to the bending stiffness, 312EI L  and 26EI L , for 

the condensed stiffness matrix in Equation 5-31. 

Figure 5-13 presents the two length parameters, L1 and L2, on a schematic elevation of 

bridge 203. These length parameters serve as the input for numerical computation. 

c
1

ccrcr FKKFF ′′′−′=′′ −  (5-38)
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5.4.2 Nonlinear Hysteresis Elements 

All linear springs (K22, K33, Ka, Kb, Kc, and Kd) presented in Section 5.4.1 needs to 

be substituted by corresponding nonlinear hysteresis elements ( 22K , 33K , aK , bK , cK , 

and dK ) to construct a condensed hysteresis model. The numerical forms for soil-pile 

interaction hysteresis elements ( 22K  and 33K ) are presented in Equations 5-22 and 5-25, 

respectively. The differential equations for soil-abutment interaction hysteresis elements 

( aK , bK , and cK ) and the abutment-backwall connection hysteresis element ( dK ) are 

provided in Sections 3.5.2 and 3.5.3. The procedure of incorporating the Euler forward 

method to obtain the numerical forms is demonstrated for aK  in Section 5.3. As a result, 

Equation 5-31 derived from the linear springs can be rewritten in Equation 5-39 for 

nonlinear hysteresis elements as:  
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Figure 5-13: Modified Length Parameter for Condensed Hysteresis Model (Bridge 203)
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Note that substituting nonlinear hysteresis elements into linear springs does not affect the 

condensed force vector in Equation 5-36. 

5.4.3 Numerical Solution 

Material nonlinearity is involved in condensed hysteresis models, thus, an 

iterative numerical solution method is required. The Euler forward method as described 

in Section 5.2.4 is applicable for a local level, that is, the method is employed to 

determine a tangent stiffness for each hysteresis element. For a global level, however, an 

iterative analysis of each time step is necessary to reduce numerical residuals or errors to 

a prescribed tolerance. With regard to a few degrees of freedom used, the Newton-

Raphson method becomes one of the efficient solution methods because this method 

offers an exceptional convergence rate. 
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The procedure to obtain a solution for condensed hysteresis models using the 

Newton-Raphson method is described as follows: 

1. load all input data, consisting of: 

o bridge dimension (ha, hb, L1, and L2), 

o bridge section properties (A, E, I, and B), 

o backfill properties (φ , γ , and kref), 

o coefficients for soil-pile interaction hysteresis elements (C1, C2, C3, 

and C4), and 

o connection properties (MY and Yθ ). 

2. define a time step size and initial values (index number, i = 1), typically 

at-rest condition and initial spring stiffness are assigned, 

3. begin the first computation cycle (i = 2), formation of stiffness matrices 

( rrK ′ , rcK ′ , crK ′ , and ccK ′ ), and incremental force vectors ( rFd ′  and cFd ′ ) 

are based on the initial values, and solve for incremental displacement 

vector 2=idU  using Equation 5-39 and Equation 5-36, 

4. update stiffness matrices and incremental force vectors using a solution of 

the previous step; all nonlinear hysteresis elements ( 22K , 33K , aK , bK , 

cK , and dK ) are also updated using the Euler forward method during this 

step, 

5. compute Euclidean norm using a new (current) and old (previous) 

incremental displacement vectors, defined as iii UdUdU oldnew −  [30], if 
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the magnitude of this norm is smaller than a prescribed tolerance (tol = 

0.001), skip step 6, 

6. repeat steps 4 and 5, 

7. compute a displacement vector using an incremental displacement solution 

obtained from the previous step, and 

8. increase the index number i by 1, if i is smaller than prescribed number of 

steps, go back to step 4; otherwise, computation is complete. 

The procedure described above is also illustrated in flowcharts presented in Figures 5-14 

and 5-15. 

Based on the procedure presented in Figures 5-14 and 5-15, an MATLAB code 

was implemented and provided in Appendix C. Additional consideration for the time-

dependent effects described in Section 5.5 has been incorporated in the MATLAB 

implementation. Analysis results obtained from the condensed hysteresis models of all 

three instrumented bridges will be presented in Chapter 6, along with corresponding field 

collected data and analysis results from the FE models. 
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Figure 5-14: Numerical Solution Flowchart (1 of 2) 
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5.5 Consideration of Time-Dependent Effects on Condensed Hysteresis Model 

In order to incorporate time-dependent effects into the condensed hysteresis 

models, additional implementation to the stiffness matrix (Equation 5-39) and force 

vector (Equation 5-36) need to be considered. The AAEM method, previously applied to 

the FE models, is also used for the condensed hysteresis models. There are two issues 

that need to be incorporated: superstructure modulus and equivalent temperature loads. 

These two issues are essentially the same as employed in the 2-D FE models. 

 

 
 

Figure 5-15: Numerical Solution Flowchart (2 of 2) 
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The modulus of elasticity, E, appearing in the stiffness matrix (Equation 5-39) and 

force vector (Equation 5-36) is no longer constant, however, an age-adjusted effective 

modulus, ( )oc ttE , , determined by using the AAEM method, is replaced. This substitution 

can be easily incorporated into the Newton-Raphson method presented in Section 5.4.3 

without any addition treatment. 

Equivalent temperature loads based on the AAEM method (See also Section 

4.3.3) can be incorporated into the total incremental temperature to form an incremental 

force vector. Therefore, the total incremental temperature is expressed as: 

which is used in an incremental force vector formation. This modification does not affect 

the Newton-Raphson method. It is noted that equivalent temperature loads due to time-

dependent curvatures are neglected to simplify a force vector formation. 

 

 

 

 

equivalentambienttotal TTT Δ+Δ=Δ  (5-40)



 

 

Chapter 6 
 

Measured and Predicted Responses 

6.1 General 

Measured response at bridges 203, 211, and 222 was initiated in November 2002, 

September 2004, and November 2003, respectively. Measured response, including 7-day 

averages and envelopes, are presented to convey the overall tendency and daily variation. 

Pressure cell and extensometer measurements, providing earth pressure and longitudinal 

abutment displacement data, are presented here. Predicted response is taken directly from 

FE and condensed hysteresis model nodes and elements that were placed at critical 

locations. 

Comparison of predicted to measured behavior is performed to quantify accuracy 

of the FE and condensed hysteresis models. A 100-year simulation has been completed to 

study long-term IA bridge behavior. Eight load cases were established and analyzed to 

identify the relative magnitudes of hysteretic and non-hysteretic behaviors. 

This chapter consists of four sections: Section 6.2 covers measured abutment soil 

pressure, predicted soil pressure, comparison of measured and predicted soil pressures, 

and FE model calibration for all three instrumented bridges. Section 6.3 presents 

measured abutment displacements, predicted abutment displacements, and comparison of 

measured and predicted abutment displacements. Analyses of the FE and condensed 

hysteresis models were also conducted and discussed in Section 6.3. Finally, Section 6.4 
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summarizes comparisons of measured and predicted responses and FE model accuracy 

for all three instrumented bridges. 

6.2 Measured and Predicted Abutment Soil Pressures 

Measured abutment soil pressure represents soil-abutment interaction behavior 

over the period of 39, 17, and 27 months for bridges 203, 211, and 222, respectively. 

Response at top and bottom pressure cell locations is presented. Graphs of measured and 

predicted abutment soil pressures are superimposed so as to facilitate comparison. 

6.2.1 Bridge 203 

Abutment 2 of bridge 203 is constructed as an integral abutment, therefore, the 

measured response at only abutment 2 is presented. Measured soil pressures from top and 

bottom pressure cells corresponding to channels 3-7 and 3-8 are compared with FE model 

predicted soil pressures. Lateral soil stiffness, kh, for the FE and condensed hysteresis 

models has been altered from the magnitude obtained from the best fit of measured data 

to obtain better correlation between measured and predicted soil pressures (see Section 

4.2.2, H2 properties). Lateral soil stiffness is the only parameter calibrated against 

measured data. 

Measured and predicted soil pressures at the top and bottom abutment positions 

are presented in Figures 6-1 and 6-2. It is observed in Figure 6-1 that the maximum 

percent difference between 2-D and 3-D predicted soil pressures is 3.5 and the average 
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percent difference is 1.5. The correlation between average measured soil pressure and 2-

D predicted soil pressure is 0.913, while the correlation between the average measured 

soil pressure and 3-D predicted soil pressure is 0.914. In addition, measured, 2-D 

predicted, and 3-D predicted soil pressures demonstrate the same trend. 

It is observed in Figure 6-2 that the maximum percent difference between 2-D and 3-D 

predicted soil pressures is 2.8 and the average percent difference is 1.6. The correlation 

between average measured soil pressure and 2-D predicted soil pressure is 0.901, while 

the correlation between average measured soil pressure and 3-D predicted soil pressure is 
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Figure 6-1: Top Elevation Pressure Cell Data and Predicted Results from FE Models 

(* Ref: Channel 3-7 in Figure A-3 for Instrumentation Location Detail) 
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0.901. In addition, measured, 2-D predicted, and 3-D predicted soil pressures demonstrate 

the same trend. 

Based on the percent differences and correlations between measured and predicted soil 

pressures presented above, it was determined that the elasto-plastic hysteresis model 

satisfactorily captures soil-abutment interaction behavior over the period of 39 months. 
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Figure 6-2: Bottom Elevation Pressure Cell Data and Predicted Results from FE Models

(* Ref: Channel 3-8 in Figure A-3 for Instrumentation Location Detail) 
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6.2.2 Bridge 211 

Both abutments of bridge 211 are constructed as integral, therefore, the measured 

response at both abutments is presented. Measured soil pressures from top and bottom 

pressure cells, corresponding to channels 4-7 and 4-8 for abutment 1 and channels 2-7 

and 2-8 for abutment 2, are compared with FE model predicted soil pressures. Lateral soil 

stiffness for the FE and condensed hysteresis models has been altered from the magnitude 

obtained from the best fit of measured data to obtain better correlation between measured 

and predicted soil pressures. 

Measured and predicted soil pressures at the top and bottom abutment positions 

for abutment 1 are presented in Figures 6-3 and 6-4. It is observed in Figure 6-3 that the 

maximum percent difference between 2-D and 3-D predicted soil pressures 72.6 and the 

average percent difference is 30. The correlation between average measured soil pressure 

and 2-D predicted soil pressure is 0.601, while the correlation between average measured 

soil pressure and 3-D predicted soil pressure is 0.516. The predicted soil pressure during 

September 2004 to December 2004 and May 2005 to November 2005 are inconsistent to 

the measured soil pressure due to the limits of active and passive earth pressure. These 

limits based on classical earth pressure theory do not incorporate effects of soil 

densification as a result of daily thermal abutment movements. In addition, the 

assumption of using an at-rest earth pressure as the initial loading condition may not be 

appropriate for bridge 211. 
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It is observed in Figure 6-4 that the maximum percent difference between 2-D and 3-D 

predicted soil pressures is 13.1 and the average percent difference is 3. The correlation 

between average measured soil pressure and 2-D predicted soil pressure is 0.574, while 

the correlation between average measured soil pressure and 3-D predicted soil pressure is 

0.556. The same explanation for the inconsistency of measured and predicted response 

comparison, as described for the top pressure cell at abutment 1, is also applied here. 
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Figure 6-3: Top Elevation Pressure Cell Data and Predicted Results from FE Models 

(* Ref: Channel 4-7 in Figure A-7 for Instrumentation Location Detail at Abutment 1) 
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Measured and predicted soil pressures at the top and bottom abutment positions 

for abutment 2 are presented in Figures 6-5 and 6-6. It is observed in Figure 6-5 that the 

maximum percent difference between 2-D and 3-D predicted soil pressures is 58 and the 

average percent difference is 14.5. The correlation between average measured soil 

pressure and 2-D predicted soil pressure is 0.623, while the correlation between average 

measured soil pressure and 3-D predicted soil pressure is 0.563. The same explanation for 

the inconsistency of measured and predicted response comparison, as described for the 

top pressure cell at abutment 1, is also applied here. 
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Figure 6-4: Bottom Elevation Pressure Cell Data and Predicted Results from FE Models

(* Ref: Channel 4-8 in Figure A-7 for Instrumentation Location Detail at Abutment 1) 
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It is observed in Figure 6-6 that the maximum percent difference between 2-D and 3-D 

predicted soil pressures is 85 and the average percent difference is 44. The correlation 

between average measured soil pressure and 2-D predicted soil pressure is 0.739, while 

the correlation between average measured soil pressure and 3-D predicted soil pressure is 

0.748. The same explanation for the inconsistency of measured and predicted response 

comparison, as described for the top pressure cell at abutment 1, is also applied here. 
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Figure 6-5: Top Elevation Pressure Cell Data and Predicted Results from FE Models 
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Based on the percent differences and correlations between measured and 

predicted soil pressures presented above, it was determined that the assumption of an at-

rest earth pressure as the initial loading condition may not be appropriate. The elasto-

plastic hysteresis model used in the bridge 211 FE models does not satisfactorily capture 

soil-abutment interaction behavior, as compared to the bridge 203 soil pressure 

prediction. 
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Figure 6-6: Bottom Elevation Pressure Cell Data and Predicted Results from FE Models

(* Ref: Channel 2-8 in Figure A-6 for Instrumentation Location Detail at Abutment 2) 
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6.2.3 Bridge 222 

Both abutments of bridge 211 is constructed as integral, therefore, the measured 

response at two abutments are presented. Measured soil pressures from top and bottom 

pressure cells, corresponding to channels 3-7 and 3-8 for abutment 1 and channels 2-3 

and 2-4 for abutment 2, are compared with FE model predicted soil pressures. 

Measured and predicted soil pressures at the top and bottom abutment positions 

for abutment 1 are presented in Figures 6-7 and 6-8. 
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It is observed in Figure 6-7 that the maximum percent difference between 2-D and 3-D 

predicted soil pressures is 20 and the average percent difference is 2.7. The correlation 

between average measured soil pressure and 2-D predicted soil pressure is 0.820, while 

the correlation between average measured soil pressure and 3-D predicted soil pressure is 

0.832. In addition, measured, 2-D predicted, and 3-D predicted soil pressures demonstrate 

the same trend. 

It is observed in Figure 6-8 that the maximum percent difference between 2-D and 3-D 

predicted soil pressures is 7.5 and the average percent difference is 2.3. The correlation 

between average measured soil pressure and 2-D predicted soil pressure is 0.929, while 
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Figure 6-8: Bottom Elevation Pressure Cell Data and Predicted Results from FE Models

(* Ref: Channel 3-8 in Figure A-12 for Instrumentation Location Detail at Abutment 1) 
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the correlation between average measured soil pressure and 3-D predicted soil pressure is 

0.929. In addition, measured, 2-D predicted, and 3-D predicted soil pressures demonstrate 

the same trend. 

Measured and predicted soil pressures at the top and bottom abutment positions 

for abutment 2 are presented in Figures 6-9 and 6-10. 

It is observed in Figure 6-9 that the maximum percent difference between 2-D and 3-D 

predicted soil pressures is 62 and the average percent difference is 10.9. The correlation 

between average measured soil pressure and 2-D predicted soil pressure is 0.846, while 

the correlation between average measured soil pressure and 3-D predicted soil pressure is 
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Figure 6-9: Top Elevation Pressure Cell Data and Predicted Results from FE Models 

(* Ref: Channel 2-3 in Figure A-11 for Instrumentation Location Detail at Abutment 2) 
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0.829. In addition, measured, 2-D predicted, and 3-D predicted soil pressures demonstrate 

the same trend. 

It is observed in Figure 6-10 that the maximum percent difference between 2-D and 3-D 

predicted soil pressures is 11.9 and the average percent difference is 4.3. The correlation 

between average measured soil pressure and 2-D predicted soil pressure is 0.916, while 

the correlation between average measured soil pressure and 3-D predicted soil pressure is 

0.915. In addition, measured, 2-D predicted, and 3-D predicted soil pressures demonstrate 

the same trend. 
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Figure 6-10: Bottom Elevation Pressure Cell Data and Predicted Results from FE Models

(* Ref: Channel 2-4 in Figure A-11 for Instrumentation Location Detail at Abutment 2) 
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Based on the percent differences and correlations between measured and 

predicted soil pressures presented above, it was determined that the elasto-plastic 

hysteresis model satisfactorily captures soil-abutment interaction behavior over the 

period of 27 months. 

6.3 Measured and Predicted Abutment Displacements 

Longitudinal abutment displacements represent the critical behavior for IA 

bridges subjected to temperature changes. Magnitudes of pile stresses, abutment 

moments, and redistributed superstructure moments depend directly on the magnitude of 

longitudinal abutment displacements. Measured and predicted abutment displacements at 

top and bottom extensometer locations are presented. Graphs of measured and predicted 

abutment displacements are superimposed so as to facilitate comparison. For the purposes 

of accurate comparison, the values of measured and predicted abutment displacements 

have been initialized with identical starting point established. This adjustment is required 

due to constraints on field instrumentation imposed by construction sequences that did 

not allow the measured data to have the same zero starting point as the FE models. 

Extended simulation period for the FE and condensed hysteresis models have 

been carried out to study long-term IA bridge behavior. A 10-year simulation period is 

deemed sufficient to perform a comparison between 2-D and 3-D predicted abutment 

displacements. Next, a 100-year simulation period, indicating the PennDOT IA bridge 

design life, is conducted in the 2-D FE models to evaluate the relative magnitudes of 
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hysteretic and non-hysteretic behaviors. The following 2-D FE model load cases are 

established and analyzed: 

1. all hysteretic and non-hysteretic behaviors included, 

2. all hysteretic and non-hysteretic behaviors excluded, 

3. only hysteretic behavior included, 

4. only non-hysteretic behavior included, 

5. only soil-structure interaction hysteretic behavior included, 

6. only abutment-backwall connection hysteretic behavior included, 

7. only soil-abutment interaction hysteretic behavior included, and 

8. only soil-structure interaction hysteretic behavior excluded. 

Predicted condensed hysteresis model abutment displacements are also presented 

and compared with predicted 2-D and 3-D abutment displacements. Because 

displacement 1u  and rotation 1θ  at the pile head are available from the condensed 

hysteresis models, a comparison can be performed only at the bottom extensometer 

locations. The relationship, 11 θ⋅−= buuE , is used to transform predicted abutment 

displacements at the pile head locations to the bottom extensometer locations, where Eu  

is the predicted abutment displacement at the bottom extensometer locations, and b is the 

distance between the bottom extensometer and pile head locations (b = 1219 mm for all 

three instrumented bridges). 
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6.3.1 Bridge 203 

Measured abutment displacements from top and bottom extensometers 

corresponding to channels 3-4 and 3-5 are compared with FE and condensed hysteresis 

model predicted abutment displacements. The positive magnitude of incremental 

abutment displacements means the abutment moving away from the backfill (bridge 

contraction) and the negative magnitude of incremental abutment displacements means 

the abutment moving toward the backfill (bridge expansion). 

Measured and predicted abutment displacements at the top and bottom abutment 

positions over the period of 39 months are presented in Figures 6-11 and 6-12. It is 

observed in Figure 6-11 that the maximum percent difference between 2-D and 3-D 

predicted abutment displacements is 2.6 and the average percent difference is 2.3. The 

correlation between average measured abutment displacement and 2-D predicted 

abutment displacement is 0.679, while the correlation between average measured 

abutment displacement and 3-D predicted abutment displacement is 0.679. 2-D and 3-D 

predicted abutment displacement amplitudes are approximately 1.6 times greater than the 

measured abutment displacement amplitudes. A different trend between measured and 

predicted abutment displacements is observed. The measured abutment displacement 

revealed the overall expansion trend, while the predicted abutment displacement showed 

the overall contraction trend. 
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It is observed in Figure 6-12 that the maximum percent difference between 2-D and 3-D 

predicted abutment displacements is 15.4 and the average percent difference is 12.1. The 

maximum percent difference between 3-D and condensed hysteresis model predicted 

abutment displacements is 42.4 and the average percent difference is 31.3. The 

correlation between average measured abutment displacement and 2-D predicted 

abutment displacement is 0.882, the correlation between average measured abutment 

displacement and 3-D predicted abutment displacement is 0.899, and the correlation 

between average measured abutment displacement and condensed hysteresis model 

predicted abutment displacement is 0.107. Measured, 2-D predicted, 3-D predicted, and 
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Figure 6-11: Top Elevation Extensometer Data and Predicted Results from FE Models 

(* Ref: Channel 3-4 in Figure A-3 for Instrumentation Location Detail) 
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condensed hysteresis model predicted abutment displacements revealed the overall 

contraction trend. The 2-D, 3-D and condensed hysteresis model predicted abutment 

displacement amplitudes are approximately 1.05, 1.05, and 1.9 times greater than 

measured abutment displacement amplitude. 

2-D and 3-D predicted abutment displacements at the top and bottom 

extensometer positions over the simulation period of 10 years are presented in Figures 6-

13 and 6-14. A comparison between 2-D and 3-D predicted abutment displacements is 

conducted to present the validity of 2-D predicted abutment displacements for longer 

simulation period. It is observed in Figure 6-13 that the maximum percent difference 

 

No

No

Ja

Ja

Ja

Ja

Ja

Ja

Ja

Ja

Ap

Ap

Jl

Jl

Oc

Oc

Ap

Ap

Jl

Jl

Ap

Ap

Oc

Oc

Jl

Jl

Oc

Oc

2

4

6

8

10

12

14

16

18
Day

D
isp

la
ce

m
en

t (
m

m
) .

Envelope

Actual Field DataField Data Average

3-D Model

2-D Model

Condensed 
Hysteresis 

Model*

Figure 6-12: Bottom Extensometer Data and Results from FE and Condensed Models 

(* Ref: Channel 3-5 in Figure A-3 for Instrumentation Location Detail) 



181 

 

between 2-D and 3-D predicted abutment displacements is 2.6 and the average percent 

difference is 1.7. The 2-D and 3-D predicted abutment displacements demonstrate the 

same trend, indicating the abutment moving away from the backfill. The logarithmic 

increase in adjacent displacement peaks is observed from 2-D and 3-D predicted 

abutment displacements as the number of years is increased. 

It is observed in Figure 6-14 that the maximum percent difference between 2-D and 3-D 

predicted abutment displacements is 15.6 and the average percent difference is 11.9. The 

maximum percent difference between 3-D and condensed hysteresis model predicted 

displacements is 42.4 and the average percent difference is 24.8. The condensed 
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hysteresis model predicted abutment displacement at the third cycle peak yields the 

highest magnitude of approximately 1.4 times greater than the 3-D predicted abutment 

displacement. The logarithmic increase in adjacent displacement peaks is observed from 

2-D, 3-D, and condensed hysteresis model predicted abutment displacements as the 

number of years is increased. 

Analysis case 1 and analysis case 2 predicted abutment displacements at the top 

and bottom extensometer positions over the simulation period of 100 years are studied 

and presented in Figures 6-15 and 6-16 to quantify long-term effects of IA bridge 
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behavior. The detailed descriptions of analysis case 1 and analysis case 2 are given 

below: 

• case 1 - all hysteretic and non-hysteretic behaviors included and 

• case 2 – all hysteretic and non-hysteretic behaviors excluded. 

Analysis case 1 predicted abutment displacements represent bridge behaviors influenced 

by all pertinent long-term effects. Analysis case 2 predicted abutment displacements 

represent bridge behavior in which long-term effects are omitted. Therefore, the 

differences between these two analyses indicate the net quantity of long-term effects on 

bridge 203. 
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It is observed in Figure 6-15 that analysis case 1 predicted abutment displacement rate is 

relatively high at about the first 30 years. This predicted displacement rate gets smaller as 

the number of years is increased. However, analysis case 2 predicted abutment 

displacement rate is constant over the simulation period of 100 years. The maximum 

analysis case 1 and maximum analysis case 2 predicted abutment displacements at the 

end of the simulation period are 20.3 and 10.2 mm, indicating the ratio of long-term to 

short-term predicted abutment displacements of 2.0. 
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It is observed in Figure 6-16 that analysis case 1 predicted abutment displacement rate is 

relatively high at about the first 30 years and gets smaller as the number of years is 

increased. However, analysis case 2 predicted abutment displacement rate is constant 

over the simulation period of 100 years. The maximum analysis case 1 and maximum 

analysis case 2 predicted abutment displacements at the end of the simulation period are 

15.9 and 6.8 mm, indicating the ratio of long-term to short-term predicted abutment 

displacements of 2.3. In addition, condensed hysteresis model predicted abutment 

displacements at the bottom extensometer position are also presented in Figure 6-16. The 

initial condensed hysteresis model predicted abutment displacement rate is significantly 

high at about the first 3 years. This predicted displacement rate becomes a nearly constant 

rate afterwards. The condensed hysteresis model predicted abutment displacement 

amplitude is approximately 1.7 times greater than the 2-D predicted abutment 

displacement amplitude. The ratio of condensed hysteresis model to 2-D predicted 

abutment displacements is 1.08. 

Analysis case 3 and analysis case 4 predicted abutment displacements at the top 

and bottom extensometer positions are studied and presented in Figures 6-17 and 6-18 to 

evaluate the significance of hysteretic and non-hysteretic behaviors. The detailed 

description of analysis case 3 and analysis case 4 are given below: 

• case 3 - only hysteretic behavior included and 

• case 4 – only non-hysteretic behavior included. 

Analysis case 3 predicted abutment displacements represent bridge behavior influenced 

by the combination of soil-structure interaction and abutment-backwall connection 

hysteretic components. Analysis case 4 predicted abutment displacements represent 
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bridge behavior influenced by time-dependent effects. These predicted abutment 

displacements are compared with the analysis case 1 predicted abutment displacements to 

determine the relative magnitudes of hysteretic and non-hysteretic behaviors to the total 

long-term bridge behavior. 

It is observed in Figure 6-17 that the maximum analysis case 3 and maximum analysis 

case 4 predicted abutment displacements at the end of the simulation period are 11.2 and 

18.8 mm. Recalling that the maximum analysis case 1 predicted abutment displacement is 

20.3 mm, it can be derived that the hysteretic and non-hysteretic behaviors are 55 and 93 

percents proportional to the total long-term bridge behavior. Therefore, it is determined 
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that predicted long-term abutment displacements near the girder elevation are strongly 

influenced by the non-hysteretic behavior. 

It is observed in Figure 6-18 that the maximum analysis case 3 and maximum analysis 

case 4 predicted abutment displacements at the end of the simulation period are 10.7 and 

10.8 mm. Recalling that the maximum analysis case 1 predicted abutment displacement is 

15.9 mm, it can be derived that the hysteretic and non-hysteretic behaviors are 67 and 68 

percents proportional to the total long-term bridge behavior. Therefore, it is determined 

that predicted long-term abutment displacements near the abutment base elevation are 

equally influenced by both hysteretic and non-hysteretic behaviors. 
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Analysis case 5 and analysis case 6 predicted abutment displacements at the top 

and bottom extensometer positions are studied presented in Figures 6-19 and 6-20 to 

evaluate the significance of soil-structure interaction and abutment-backwall connection 

hysteretic behaviors. The detailed descriptions of analysis case 5 and analysis case 6 are 

given below: 

• case 5 - only soil-structure interaction hysteretic behavior included and 

• case 6 – only abutment-backwall connection hysteretic behavior included. 

Analysis case 5 predicted abutment displacements represent bridge behavior influenced 

by soil-structure interaction hysteretic component. Analysis case 6 predicted abutment 

displacements represent bridge behavior influenced by abutment-backwall connection 

hysteretic component. These predicted abutment displacements are compared with the 

analysis case 2 and analysis case 3 predicted abutment displacements to determine the 

relative magnitudes of soil-structure interaction and abutment-backwall connection 

hysteretic behaviors to the total hysteretic behavior. 

It is observed in Figure 6-19 that the maximum analysis case 5 and maximum 

analysis case 6 predicted abutment displacements at the end of the simulation period are 

11.2 and 10.2 mm. Recalling that the maximum analysis case 2 and maximum analysis 

case 3 predicted abutment displacement are 10.2 and 11.2 mm, it can be derived that the 

total hysteretic behavior is fully dominated by the soil-structure interaction hysteretic 

component. However, it will be observed subsequently in the analysis case 8 that the 

abutment-backwall connection hysteretic component is capable of producing long-term 

effects when maximum resulting abutment displacements are high enough to make the 

structural connection yielded. 
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It is observed in Figure 6-20 that the maximum analysis case 5 and maximum analysis 

case 6 predicted abutment displacements at the end of the simulation period are 10.0 and 

6.9 mm. Recalling that the maximum analysis case 2 and maximum analysis case 3 

predicted abutment displacement are 6.8 and 10.7 mm, it can be derived that the total 

hysteretic behavior are strongly dominated by the soil-structure interaction hysteretic 

component. Similar to the implication given for the top elevation extensometer case, the 

abutment-backwall connection hysteretic component is capable of producing long-term 

effects when maximum resulting abutment displacements are high enough to make the 

structural connection yielded. 
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Analysis case 7 predicted abutment displacement at the top and bottom 

extensometer positions is studied and presented in Figures 6-21 and 6-22 to evaluate the 

significance of soil-pile interaction and soil-abutment interaction hysteretic behaviors. 

Analysis case 7 predicted abutment displacement represents bridge behavior influenced 

by soil-abutment interaction hysteretic component. This predicted abutment displacement 

is compared with the analysis case 2 predicted abutment displacement to determine the 

relative magnitudes of soil-pile interaction and soil-abutment interaction hysteretic 

behaviors to the soil-structure hysteretic behavior. 

 

-2

0

2

4

6

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70 80 90 100

Year
D

isp
la

ce
m

en
t (

m
m

) .

Only Soil-Structure Interaction Hysteretic Behavior Included

Only Abutment-Backwall Connection 
Hysteretic Behavior Included

Figure 6-20: Predicted 100-Y Simulation Results from FE Model for Analysis Cases 5 
and 6 at Bottom Extensometer 



191 

 

It is observed in Figure 6-21 that the maximum analysis case 7 predicted abutment 

displacement at the end of the simulation period is the same as the maximum analysis 

case 2 predicted abutment displacement. However, the minimum analysis case 7 

predicted abutment displacement is 1.6 mm different from the minimum analysis case 2 

predicted abutment displacement. This difference indicates that abutment displacement 

amplitude is reduced due to the soil-abutment interaction hysteretic behavior, however, 

the soil-abutment interaction hysteretic behavior does not produce an adverse long-term 

displacement. The adverse long-term displacement is solely influenced by the soil-pile 

interaction hysteretic behavior. 
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It is observed in Figure 6-22 that the maximum analysis case 7 predicted abutment 

displacement at the end of the simulation period is the same as the maximum analysis 

case 2 predicted abutment displacement. However, the minimum analysis case 7 

predicted abutment displacement is 2 mm different from the minimum analysis case 2 

predicted abutment displacement. The same implication drawn from the top extensometer 

case is also applied to the bottom extensometer case. 

Finally, analysis case 8 predicted abutment displacement at the top and bottom 

extensometer positions is studied and presented in Figures 6-23 and 6-24 to determine the 

influence of the abutment-backwall connection hysteretic behavior. Time-dependent 
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effects are included here to produce additional abutment displacement to enforce a higher 

resulting rotation at the abutment-backwall connection, as compared to a resulting 

rotation produced by the analysis case 6 alone. When a resulting rotation is greater than 

the yielding capacity of the abutment-backwall connection, the influence of the abutment-

backwall connection hysteretic behavior is initiated. 

It is observed in Figure 6-23 that the maximum analysis case 8 predicted abutment 

displacement at the end of the simulation period is 19.0 mm, which is nearly equal to the 

maximum analysis case 4 predicted abutment displacement. However, the minimum 

predicted analysis case 8 abutment displacement is 18 percent greater than the minimum 
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analysis case 4 predicted abutment displacement. It is expected that this percent 

difference is greater for longer bridges. 

It is observed in Figure 6-24 that the maximum analysis case 8 predicted abutment 

displacement at the end of the simulation period is 10.9 mm, which is nearly equal to the 

maximum analysis case 4 predicted abutment displacement. However, the minimum 

analysis case 8 predicted abutment displacement is 27 percent smaller than the minimum 

analysis case 4 predicted abutment displacement. It is expected that this percent 

difference is greater for longer bridges. On the other hand, the influence of the abutment-

backwall connection hysteretic behavior for shorter bridges is negligible, which will be 
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observed from predicted abutment displacements of the bridge 211 and bridge 222 FE 

models. 

6.3.2 Bridge 211 

Measured abutment displacements from top and bottom extensometers, 

corresponding to channels 4-5 and 4-6 for abutment 1 and channels 2-6 and 2-5 for 

abutment 2, are compared with FE and condensed hysteresis model predicted abutment 

displacements. The same sign convention used for bridge 203 displacements is also 

applied to the sign convention for bridge 211 displacements at abutment 1. However, the 

opposite sign convention is used for bridge 211 displacements at abutment 2. 

Measured and predicted abutment displacements at the top and bottom 

extensometer positions of abutment 1 over the period of 17 months are presented in 

Figures 6-25 and 6-26. It is observed in Figure 6-25 that the maximum percent difference 

between 2-D and 3-D predicted abutment displacements is 47 and the average percent 

difference is 27. The correlation between average measured abutment displacement and 

2-D predicted abutment displacement is 0.845, while the correlation between average 

measured abutment displacement and 3-D predicted abutment displacement is 0.81. 

Measured, 2-D predicted, and 3-D predicted abutment displacements revealed the overall 

contraction trend. The 2-D and 3-D predicted abutment displacement amplitudes, 

between two adjacent peaks at the winter 2004 and summer 2004, are nearly equal to the 

measured abutment displacement amplitude. 
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It is observed in Figure 6-26 that the maximum percent difference between 2-D and 3-D 

predicted abutment displacements is 47 and the average percent difference is 33. The 

maximum percent difference between 3-D and condensed hysteresis model predicted 

abutment displacement is 78 and the average percent difference is 50. The correlation 

between average measured abutment displacement and 2-D predicted abutment 

displacement is 0.806, the correlation between average measured abutment displacement 

and 3-D predicted abutment displacement is 0.913, and the correlation between average 

measured abutment displacement and condensed hysteresis model predicted abutment 

displacement is 0.735. Measured, 2-D predicted, 3-D predicted, and condensed hysteresis 
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Figure 6-25: Top Elevation Extensometer Data and Predicted Results from FE Models 

(* Ref: Channel 4-5 in Figure A-7 for Instrumentation Location Detail at Abutment 1) 
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model predicted abutment displacements revealed the overall contraction trend. However, 

the measured abutment displacement rate is the greatest. The 2-D, 3-D, and condensed 

hysteresis model predicted abutment displacement amplitudes, between two adjacent 

peaks at the winter 2004 and summer 2004, are nearly equal to the measured abutment 

displacement amplitude. 

Measured and predicted abutment displacements at the top and bottom 

extensometer positions of abutment 2 over the period of 17 months are presented in 

Figures 6-27 and 6-28. It is observed in Figure 6-27 that the maximum percent difference 

between 2-D and 3-D predicted abutment displacements is 22 and the average percent 
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Figure 6-26: Bottom Extensometer Data and Results from FE and Condensed Models 

(* Ref: Channel 4-6 in Figure A-7 for Instrumentation Location Detail at Abutment 1) 
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difference is 7. The correlation between average measured abutment displacement and 2-

D predicted abutment displacement is 0.594, while the correlation between average 

measured abutment displacement and 3-D predicted abutment displacement is 0.629. The 

2-D and 3-D predicted abutment displacements revealed the overall contraction trend, 

while the overall expansion trend is observed from measured abutment displacement. The 

2-D and 3-D predicted abutment displacement amplitudes, between two adjacent peaks at 

the winter 2004 and summer 2004, are approximately 1.1 times greater than the measured 

abutment displacement amplitude. 
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Figure 6-27: Top Elevation Extensometer Data and Predicted Results from FE Models 

(* Ref: Channel 2-6 in Figure A-6 for Instrumentation Location Detail at Abutment 2) 
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It is observed in Figure 6-28 that the maximum percent difference between 2-D and 3-D 

predicted abutment displacements is 20 and the average percent difference is 3.5. The 

maximum percent difference between 3-D and condensed hysteresis model predicted 

abutment displacement is 76 and the average percent difference is 41. 

The correlation between average measured abutment displacement and 2-D predicted 

abutment displacement is 0.712, the correlation between average measured abutment 

displacement and 3-D predicted abutment displacement is 0.641, and the correlation 

between average measured abutment displacement and condensed hysteresis model 

predicted abutment displacement is 0.818. Measured, 2-D predicted, 3-D predicted, and 
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Figure 6-28: Bottom Extensometer Data and Results from FE and Condensed Models 

(* Ref: Channel 2-5 in Figure A-6 for Instrumentation Location Detail at Abutment 2) 



200 

 

condensed hysteresis model predicted abutment displacements revealed the overall 

contraction trend. The 2-D, 3-D, and condensed hysteresis model predicted abutment 

displacement amplitudes, between two adjacent peaks at the winter 2004 and summer 

2004, are approximately 0.6 times smaller than the measured abutment displacement 

amplitude. 

2-D and 3-D predicted abutment displacements at the top and bottom 

extensometer positions over the simulation period of 10 years are presented in Figures 6-

29 and 6-30. Note that A1 and A2 represent abutment 1 and abutment 2, respectively. 
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Figure 6-29: Predicted 10-Y Simulation Results from FE Models at Top Extensometer 
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It is observed in Figure 6-29 that the maximum percent differences between 2-D and 3-D 

predicted abutment displacements are 47 for abutment 1 and 21.5 for abutment 2. The 

average percent differences are 28 for abutment 1 and 5.5 for abutment 2. 2-D and 3-D 

predicted abutment displacements demonstrate the same trend, indicating that the 

abutments moving away from the backfill. The logarithmic increase in adjacent abutment 

displacement peaks is observed as the number of years is increased. 

It is observed in Figure 6-30 that the maximum percent differences between 2-D and 3-D 

predicted abutment displacements are 51 for abutment 1 and 20 for abutment 2, while the 

average percent differences are 38 for abutment 1 and 6.3 for abutment 2. The maximum 
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percent differences between 3-D and condensed hysteresis model predicted abutment 

displacements are 78 for abutment 1 and 76 for abutment 2, while the average percent 

differences are 37 for abutment 1 and 25 for abutment 2. The logarithmic increase in 

adjacent abutment displacement peaks is observed as the number of years is increased. 

Analysis case 1 and analysis case 2 predicted abutment displacements at the top 

and bottom extensometer positions over the simulation period of 100 years are studied 

and presented in Figures 6-31 and 6-32 to determine long-term effects of IA bridge 

behavior. 
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It is observed in Figure 6-31 that the analysis case 1 predicted abutment displacement rate 

is relatively high at about the first 30 years and gets smaller as the number of years is 

increased. However, the analysis case 2 predicted abutment displacement rate is constant 

over the simulation period of 100 years. The maximum analysis case 1 and maximum 

analysis case 2 predicted abutment displacements at the end of the simulation period are 

6.4 and 3.9 mm for abutment 1 (7.0 and 4.6 mm for abutment 2). These predicted 

abutment displacements indicate the ratios of long-term to short-term predicted abutment 

displacements of 1.6 and 1.5 for abutment 1 and abutment 2, respectively. 
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It is observed in Figure 6-32 that the analysis case 1 predicted abutment displacement rate 

is relatively high at about the first 30 years and gets smaller as the number of years is 

increased. However, the analysis case 2 predicted abutment displacement rate is constant 

over the simulation period of 100 years. The maximum analysis case 1 and maximum 

analysis case 2 predicted abutment displacements at the end of the simulation period are 

5.7 and 3.4 mm for abutment 1 (6.4 and 4.0 mm for abutment 2). These predicted 

abutment displacements indicate the ratios of long-term to short-term predicted abutment 

displacements of 1.7 and 1.6 for abutment 1 and abutment 2, respectively. In addition, 

condensed hysteresis model predicted abutment displacement at the bottom extensometer 

position is also presented. The percent differences between 2-D and condensed hysteresis 

model predicted abutment displacement amplitudes are 12.5 for abutment 1 and 19.4 for 

abutment 2. The percent differences between 2-D and condensed hysteresis model 

predicted abutment displacements are 9.2 for abutment 1 and 20.7 for abutment 2. 

Analysis case 3 and analysis case 4 predicted abutment displacements at the top 

and bottom extensometer positions are studied and presented in Figures 6-33 and 6-34 to 

determine the relative magnitudes of hysteretic and non-hysteretic behavior. It is 

observed in Figure 6-33 that the maximum analysis case 3 and maximum analysis case 4 

predicted abutment displacements at the end of the simulation period are 4.4 and 5.4 mm 

for abutment 1 (5.6 and 5.9 mm for abutment 2). Recalling that the maximum analysis 

case 1 predicted abutment displacement is 6.4 mm for abutment 1 and 7 mm for abutment 

2, it can be derived that the hysteretic and non-hysteretic behaviors are 69 and 84 percent 

proportional to the total long-term behavior for abutment 1 (80 and 84 percents for 

abutment 2). Unlike the implication for bridge 203, predicted abutment displacements for 
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bridge 211 indicate that hysteretic behavior has the influence on the total long-term 

abutment displacements near the girder elevation as significant as non-hysteretic 

behavior. This is because the girder age at erection for bridge 211 was 268 days, while 

the girder age at erection for bridge 203 was 115 days. 

It is observed in Figure 6-34 that the maximum analysis case 3 and maximum analysis 

case 4 predicted abutment displacements at the end of the simulation period are 4.3 and 

4.1 mm for abutment 1 (5.5 and 4.5 mm for abutment 2). Recalling that the maximum 

analysis case 1 predicted abutment displacement is 5.7 mm for abutment 1 and 6.4 mm 

for abutment 2, it can be derived that the hysteretic and non-hysteretic behaviors are 79 
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and 72 percent proportional to the total long-term behavior for abutment 1 (86 and 70 

percents for abutment 2). Therefore, it is determined that predicted long-term abutment 

displacements near the abutment base elevation are equally influenced by both hysteretic 

and non-hysteretic behaviors. 

Analysis case 5 and analysis case 6 predicted abutment displacements are studied 

and presented in Figures 6-35 and 6-36 to determine the relative magnitudes of soil-

structure interaction and abutment-backwall connection hysteretic behaviors. It is 

observed in Figure 6-35 that the maximum analysis case 5 and maximum analysis case 6 

predicted abutment displacements at the end of the simulation period are 4.4 and 3.9 mm 
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for abutment 1 (5.6 and 4.6 mm for abutment 2). Recalling that the maximum analysis 

case 2 and maximum analysis case 3 predicted abutment displacement are 3.9 and 4.4 

mm for abutment 1 (4.6 and 5.6 mm for abutment 2), it can be derived that the total 

hysteretic behavior is fully dominated by the soil-structure interaction hysteretic 

behavior. 

It is observed in Figure 6-36 that the maximum analysis case 5 and maximum analysis 

case 6 predicted abutment displacements at the end of the simulation period are 4.3 and 

3.4 mm for abutment 1 (5.5 and 4.0 mm for abutment 2). Recalling that the maximum 

analysis case 2 and maximum analysis case 3 predicted abutment displacement are 3.4 
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and 4.3 mm for abutment 1 (4.0 and 5.5 mm for abutment 2), it can be derived that the 

total hysteretic behavior is fully dominated by the soil-structure interaction hysteretic 

behavior. 

Analysis case 7 predicted abutment displacement for bridge 211 indicate the same 

implication as for bridge 203. It is determined that soil-abutment interaction hysteretic 

behavior affects only the minimum predicted abutment displacement envelope, while the 

adverse long-term abutment displacement is solely influenced by the soil-pile interaction 

hysteretic behavior. 
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Finally, analysis case 8 predicted abutment displacements at the top and bottom 

extensometer positions are studied and presented in Figures 6-37 and 6-38 to investigate 

the influence of the abutment-backwall connection hysteretic behavior. 

It is observed in Figure 6-37 that the maximum analysis case 8 predicted abutment 

displacements at the end of the simulation period are 5.4 mm for abutment 1 and 5.9 mm 

for abutment 2, which are identical to the maximum analysis case 4 predicted abutment 

displacements. The minimum analysis case 7 predicted abutment displacements at the 

end of the simulation period are approximately 5 percent different from the minimum 

analysis case 4 predicted abutment displacements. These predicted abutment 
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displacements indicate that the influence from the abutment-backwall connection 

hysteretic behavior is negligible. 

It is observed in Figure 6-38 that the maximum analysis case 8 predicted abutment 

displacements at the end of the simulation period are 4.1 mm for abutment 1 and 4.5 mm 

for abutment 2, which are identical to the maximum analysis case 4 predicted abutment 

displacements. The minimum analysis case 8 predicted abutment displacements at the 

end of the simulation period are approximately 7 percent different from the minimum 

analysis case 4 predicted abutment displacements. Therefore, the same implication as 

described for the top extensometer is also applied here. 
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6.3.3 Bridge 222 

Measured abutment displacements from top and bottom extensometers, 

corresponding to channels 3-5 and 3-6 for abutment 1 and channels 2-1 and 2-2 for 

abutment 2, are compared with FE and condensed hysteresis model predicted abutment 

displacements. The same sign convention used for bridge 211 displacements is also 

applied to the sign convention for bridge 222 displacements. 

Measured and predicted abutment displacements at the top and bottom 

extensometer positions of abutment 1 over the period of 27 months are presented in 

Figures 6-39 and 6-40. It is observed in Figure 6-39 that the maximum percent difference 

between 2-D and 3-D predicted abutment displacements is 13.5 and the average percent 

difference is 7.4. The correlation between average measured abutment displacement and 

2-D predicted abutment displacement is 0.645, while the correlation between average 

measured abutment displacement and 3-D predicted abutment displacement is 0.651. The 

2-D and 3-D predicted abutment displacement amplitudes are approximately 1.15 times 

greater than the measured abutment displacement amplitude. A different trend between 

measured and predicted abutment displacements is observed. The measured abutment 

displacement revealed the overall expansion trend, while the predicted abutment 

displacement demonstrated the overall contraction trend. 
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It is observed in Figure 6-40 that the maximum percent difference between 2-D and 3-D 

predicted abutment displacements is 5.4 and the average percent difference is 3.1. The 

maximum percent difference between 3-D and condensed hysteresis model predicted 

abutment displacements is 5.3 and the average percent difference is 2.8. The correlation 

between average measured abutment displacement and 2-D predicted abutment 

displacement is 0.241, the correlation between average measured abutment displacement 

and 3-D predicted abutment displacement is 0.255, and the correlation between average 

measured abutment displacement and condensed hysteresis model predicted abutment 

displacement is 0.202. Measured, 2-D predicted, 3-D predicted, and condensed hysteresis 
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Figure 6-39: Top Elevation Extensometer Data and Predicted Results from FE Models 

(* Ref: Channel 3-5 in Figure A-12 for Instrumentation Location Detail at Abutment 1) 
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model predicted abutment displacements revealed the overall contraction trend. However, 

the measured abutment displacement rate is the greatest. The 2-D predicted, 3-D 

predicted, and condensed hysteresis model predicted abutment displacement amplitudes 

are approximately 1.1 times greater than the measured abutment displacement amplitude. 

Measured and predicted abutment displacements at the top and bottom 

extensometer positions of abutment 2 over the period of 27 months are presented in 

Figures 6-41 and 6-42. It is observed in Figure 6-41 that the maximum percent difference 

between 2-D and 3-D predicted abutment displacements is 3.6 and the average percent 

difference is 1.4. The correlation between average measured abutment displacement and 
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Figure 6-40: Bottom Extensometer Data and Results from FE and Condensed Models 

(* Ref: Channel 3-6 in Figure A-12 for Instrumentation Location Detail at Abutment 1) 
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2-D predicted abutment displacement is 0.312, while the correlation between average 

measured abutment displacement and 3-D predicted abutment displacement is 0.282. A 

different trend between measured and predicted abutment displacements is observed. The 

measured abutment displacement revealed the overall expansion trend, while the 

predicted abutment displacement demonstrated the overall contraction trend. Lag in 

measured abutment displacement peaks of approximately two months is observed, which 

leads to the poor correlations between measured and predicted abutment displacements. 
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Figure 6-41: Top Elevation Extensometer Data and Predicted Results from FE Models 

(* Ref: Channel 2-1 in Figure A-11 for Instrumentation Location Detail at Abutment 2) 
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It is observed in Figure 6-42 that the maximum percent difference between 2-D and 3-D 

predicted abutment displacements is 7.4 and the average percent difference is 3.3. The 

maximum percent difference between 3-D and condensed hysteresis model predicted 

abutment displacements is 76 and the average percent difference is 46. 

The correlation between average measured abutment displacement and 2-D predicted 

abutment displacement is 0.041, the correlation between average measured abutment 

displacement and 3-D predicted abutment displacement is 0.018, and the correlation 

between average measured abutment displacement and condensed hysteresis model 

predicted abutment displacement is 0.116. Lag in measured abutment displacement peaks 
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Figure 6-42: Bottom Extensometer Data and Results from FE and Condensed Models 

(* Ref: Channel 2-2 in Figure A-11 for Instrumentation Location Detail at Abutment 2) 



216 

 

of approximately two months is observed, which leads to the poor correlations between 

measured and predicted abutment displacements. The 2-D predicted, 3-D predicted, and 

condensed hysteresis model predicted abutment displacement amplitudes are nearly equal 

to the measured abutment displacement amplitude. 

2-D and 3-D predicted abutment displacements at the top and bottom 

extensometer positions over the simulation period of 10 years are presented in Figures 6-

43 and 6-44. 

It is observed in Figure 6-43 that the maximum percent differences between 2-D and 3-D 

predicted abutment displacements are 27.5 for abutment 1 and 7.8 for abutment 2, while 
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the average percent differences are 12.1 for abutment 1 and 3.5 for abutment 2. The 2-D 

and 3-D predicted abutment displacements demonstrate the same trend, indicating the 

abutments moving away from the backfill. The logarithmic increase in adjacent abutment 

displacement peaks is observed as the number of years is increased. 

It is observed in Figure 6-44 that the maximum percent differences between 2-D and 3-D 

predicted abutment displacements are 13.5 for abutment 1 and 14.1 for abutment 2, while 

the average percent differences are 7.4 for abutment 1 and 7.7 for abutment 2. The 

maximum percent differences between 3-D and condensed hysteresis model predicted 

abutment displacements are 15.7 for abutment 1 and 83 for abutment 2, while the average 
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percent differences are 4.4 for abutment 1 and 56 for abutment 2. Abutment 1 and 

abutment 2 of bridge 222 are supported by 11 and 9 piles, respectively. An average value 

of 10 piles was used as a parameter in the condensed hysteresis model. Although the 2-D 

and 3-D predicted abutment displacements of abutment 2 are greater than those of 

abutment 1 as determined from corresponding pile stiffness, the measured abutment 

displacement demonstrates the opposite behavior. This inconsistency is a result of 

uncertainties of actual soil properties and imperfect bridge configurations that easily 

degrade a small abutment displacement range predicted by the bridge 222 model based 

on estimated soil properties and perfect bridge configurations. 

Analysis case 1 and analysis case 2 predicted abutment displacements at the top 

and bottom extensometer positions over the simulation period of 100 years are studied 

are presented Figures 6-45 and 6-46 to determine long-term effects of IA bridge behavior. 

It is observed in Figure 6-45 that the analysis case 1 predicted abutment displacement rate 

is relatively high at about the first 30 years and gets smaller as the number of years is 

increased. However, the analysis case 2 predicted abutment displacement rate is constant 

over the simulation period of 100 years. The maximum analysis case 1 and maximum 

analysis case 2 predicted abutment displacements at the end of the simulation period are 

3.6 and 2.0 mm for abutment 1 (4.5 and 2.6 mm for abutment 2). These predicted 

abutment displacements indicate the ratios of long-term to short-term predicted abutment 

displacements of 1.8 and 1.7 for abutment 1 and abutment 2, respectively. 
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It is observed in Figure 6-46 that the analysis case 1 predicted abutment displacement rate 

is relatively high at about the first 30 years and gets smaller as the number of years is 

increased. However, the analysis case 2 predicted abutment displacement rate is constant 

over the simulation period of 100 years. The maximum analysis case 1 and maximum 

analysis case 2 predicted abutment displacements at the end of the simulation period are 

3.2 and 1.4 mm for abutment 1 (4.0 and 2.0 mm for abutment 2). These predicted 

abutment displacements indicate the ratios of long-term to short-term predicted abutment 

displacements of 2.3 and 2.0 for abutment 1 and abutment 2, respectively. In addition, the 

maximum percent differences between 2-D and condensed hysteresis model predicted 
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abutment displacement amplitudes are 0.0 for abutment 1 and 22 for abutment 2. The 

maximum percent differences between 2-D and condensed hysteresis model predicted 

abutment displacements are 12 for abutment 1 and 13 for abutment 2. 

Analysis case 3 and analysis case 4 predicted abutment displacements at the top 

and bottom extensometer positions are studied and presented in Figures 6-47 and 6-48 to 

determine the relative magnitudes of hysteretic and non-hysteretic behaviors. It is 

observed in Figure 6-47 that the maximum analysis case 3 and maximum analysis case 4 

predicted abutment displacements at the end of the simulation period are 2.2 and 3.3 mm 

for abutment 1 (3.0 and 3.8 for abutment 2). Recalling that the maximum analysis case 1 
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predicted displacement is 3.6 mm for abutment 1 and 4.5 mm for abutment 2, it can be 

derived that the hysteretic and non-hysteretic behaviors are 61 and 92 percents 

proportional to the total long-term behavior for abutment 1 (67 and 84 percents for 

abutment 2). Similar to the implication for bridge 203, it is determined that predicted 

long-term abutment displacements near the girder elevation are strongly influenced by 

the non-hysteretic behavior. 

It is observed in Figure 6-48 that the maximum analysis case 3 and maximum analysis 

case 4 predicted abutment displacements at the end of simulation period are 2.2 and 2.2 

mm for abutment 1 (2.9 and 2.8 mm for abutment 2). Recalling that the maximum 
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analysis case 1 predicted abutment displacement is 3.2 mm for abutment 1 and 4.0 mm 

for abutment 2, it can be derived that the hysteretic and non-hysteretic behaviors are 69 

and 69 percents proportional to the total long-term behavior for abutment 1 (73 and 70 

percents for abutment 2). Similar to the implication for bridge 203, it is determined that 

predicted long-term abutment displacements near the abutment base elevation are equally 

influenced by both hysteretic and non-hysteretic behaviors. 

Analysis case 5 and analysis case 6 predicted abutment displacements at the top 

and bottom extensometer positions are studied and presented in Figures 6-49 and 6-50 to 

determine the relative magnitudes of soil-structure interaction and abutment-backwall 
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connection hysteretic behaviors. It is observed in Figure 6-49 that the maximum analysis 

case 5 and maximum analysis case 6 predicted abutment displacements at the end of 

simulation period are 2.2 and 2.0 mm for abutment 1 (3.0 and 2.6 mm for abutment 2). 

Recalling that the maximum analysis case 2 and maximum analysis case 3 predicted 

abutment displacements are 2.0 and 2.2 mm for abutment 1 (2.6 and 3.0 for abutment 2), 

it can be derived that the total hysteretic behavior is fully dominated by the soil-structure 

interaction hysteretic behavior. 
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It is observed in Figure 6-50 that the maximum analysis case 5 and maximum analysis 

case 6 predicted abutment displacements at the end of the simulation period are 2.2 and 

1.4 mm for abutment 1 (2.9 and 2.0 mm for abutment 2). Recalling that the maximum 

analysis case 2 and maximum analysis case 3 predicted abutment displacements are 1.4 

and 2.2 mm for abutment 1 (2.0 and 3.0 mm for abutment 2), it can be derived that the 

total hysteretic behavior is fully dominated by the soil-structure interaction hysteretic 

behavior. 
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The analysis cases 7 and 8 are not provided here because the predicted abutment 

displacements are the same as those from the analysis case 4. This indicates that the 

abutment-backwall connection hysteretic behavior has no influence on the long-term 

behavior of bridge 222. 

6.4 Summary 

This section summarizes FE and condensed hysteresis model accuracy and 

predicted response. The correlation between measured and FE model predicted soil 

pressures of bridges 203 and 222 ranges from 0.82 to 0.916. The correlation between 

measured and FE model predicted soil pressures of bridge 211 are relatively inconsistent 

with the values ranging from 0.516 to 0.748. This inconsistency, particularly during the 

abutments moving away from the backfill, is a result from the assumption of an at-rest 

earth pressure as the initial loading condition. The correlation between measured and FE 

model predicted abutment displacements of bridges 203 and 211 ranges from 0.594 to 

0.913. The correlation between measured and FE model predicted abutment 

displacements of bridge 222 are inconsistent due to a significant lag in abutment 

displacement peaks of approximately 2 months. The major predicted abutment 

displacements at the end of the simulation period are presented as follows: 

• The ratios of the long-term to short-term predicted abutment displacements (the ratios 

of the analysis case 1 to analysis case 2 predicted abutment displacements) are 

presented in Table 6-1. 
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• The ratios of the condensed hysteresis model to 2-D FE predicted abutment 

displacements are presented in Table 6-2. 

• The ratios of the analysis case 3 predicted abutment displacement (only hysteretic 

behavior included) to analysis case 2 predicted abutment displacement (short-term) 

are presented in Table 6-3. 

According to the predicted ratios presented in Tables 6-1 and 6-3, it can be observed that 

long-term behavior of bridge 203, the longest bridge with the tallest abutment, is as 

significant as long-term behavior of bridge 222, the shortest bridge with a moderate 

Table 6-1: Ratios of Long-Term to Short-Term Displacements 

Bridge 
211 222 Displacement 

Location 203 
Abutment 1 Abutment 2 Abutment 1 Abutment 2 

Top Elevation 2 1.6 1.5 1.8 1.7 
Bottom Elevation 2.3 1.7 1.6 2.3 2  

 

Table 6-2: Ratios of Displacements Results Predicted by 2-D FE and Condensed Models 

Bridge 
211 222 Displacement 

Location 203 
Abutment 1 Abutment 2 Abutment 1 Abutment 2 

Bottom Elevation 1.08 0.93 0.81 1.03 0.83  
 

Table 6-3: Ratios of Predicted Hysteretic Displacements to Short-Term Displacements 

Bridge 
211 222 Displacement 

Location 203 
Abutment 1 Abutment 2 Abutment 1 Abutment 2 

Top Elevation 1.1 1.1 1.2 1.1 1.15 
Bottom Elevation 1.6 1.3 1.4 1.6 1.45  
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abutment height. However, these predicted ratios indicate the smallest influence on long-

term behavior of bridge 211 due to its girder age at erection of 268 days, as compared to 

the bridge 203 and bridge 222 girder ages of 115 and 171 days. Therefore, bridge 211 has 

relatively less amount of remaining time dependent effects. Higher predicted ratios for 

bridge 211 are expected, if its girder age at erection is similar to those of bridges 203 and 

222. On the basis of similarity in bridge 203 and bridge 222 predicted ratios and 

difference in remaining time-dependent effects, no certain pattern to identify the 

relationship between long-term behavior and bridge geometry is observed. 

 

 

 

 

 

 

 

 

 



 

 

Chapter 7 
 

Summary, Conclusions and Recommendations 

7.1 Summary 

The significance of hysteretic behavior on long-term IA bridge behavior was 

evaluated using hysteresis elements derived from available mathematical and physical 

hysteresis models. In addition, the non-hysteresis, time-dependent effects of concrete 

creep, concrete shrinkage, and prestressing steel relaxation, on IA bridges were 

incorporated to this study. The two major sources influencing long-term behavior of IA 

bridges are soil-structure interaction and yielding of abutment reinforcing at joints. These 

influences were identified on the basis of measured bridge response at the three 

instrumented bridges. Three hysteresis element types were used in the FE and condensed 

hysteresis models for all three bridges to represent soil-pile interaction, soil-abutment 

interaction, and abutment-backwall connection hysteretic behaviors. The AAEM method 

was used to represent non-hysteretic behavior by means by equivalent temperatures. 2-D 

and 3-D FE models were constructed for efficiency and accuracy purposes. The 

development procedure of condensed hysteresis models was established and the 

condensed hysteresis models for the three instrumented bridges were constructed to 

provide an alternate and efficient approach. Predicted FE model response was compared 

against the measured bridge response to evaluate FE model accuracy. Eight different load 

cases, varying from the load case that all hysteretic and non-hysteretic behaviors are 
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included (long-term behavior) through the load case that all hysteretic and non-hysteretic 

behaviors are excluded (short-term behavior), were established. The FE models 

incorporating each of these eight different cases were analyzed under a 100 year 

simulation to evaluate the individual influence of the hysteretic and non-hysteretic 

behavior on IA bridge long-term abutment displacements. 

7.2 Conclusions 

The study objectives are to: predict steady-state and long-term IA bridge 

behavior, develop condensed hysteresis models, quantify the significance of hysteretic 

behavior, correlate hysteretic behavior with bridge lengths and abutment heights, and 

recommend a methodology to predict steady-state and long-term IA bridge behavior. The 

ultimate goal of this research is to demonstrate the importance of long-term IA bridge 

responses influenced by hysteretic behavior in addition to time-dependent effects of creep 

and shrinkage on IA bridges. The following conclusions are drawn from the present 

study: 

• After model calibration, correlations between measured and predicted soil pressures 

are from 0.82 to 0.916. The correlations between measured and predicted abutment 

displacements ranging from 0.516 to 0.913 for bridges 203 and 211 are observed, 

while the maximum correlation between measured and predicted abutment 

displacements for bridge 222 is 0.651 due to 2 month lag in measured abutment 

displacement peaks. 
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• Measured and 2-D predicted, 3-D predicted, and condensed hysteresis model 

predicted response revealed that increasing rate of long-term abutment displacements 

after 100 year simulation approaches, but not reaches, steady-state. The ratios of the 

long-term to short-term abutment displacements after 100-year simulation are from 

1.5 to 2.3 times, indicating the significance of hysteretic and non-hysteretic behavior. 

• The development procedure of condensed hysteresis models was established. The 

ratios of the condensed hysteresis model to 2-D predicted abutment displacements 

after 100-year simulation are from 0.81 to 1.08. These predicted ratios indicate that 

condensed hysteresis models are a valid approach with respect to its relative 

simplicity and efficiency, as compared to the FE models. 

• The ratios of the predicted abutment displacements from the load case that only 

hysteretic behavior component is included to the predicted short-term abutment 

displacements are 1.6 and 1.2 at the top and bottom extensometers. These predicted 

ratios indicate that the influence of hysteretic behavior on abutment displacements is 

greater at a location near an abutment base. 

• The ratios of the predicted abutment displacements from the load case that only 

hysteretic behavior is included to the predicted short-term abutment displacements 

from the three instrumented bridges reveal no apparent correlation between hysteretic 

behavior to bridge geometry. It is recommended that a parametric study be conducted 

to establish a general correlation between these parameters. 

• A condensed hysteresis model is recommended as an alternative approach to predict a 

long-term abutment displacement and rotation at the pile head due to simpler 
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development procedure, more efficient computation time, and relatively accurate 

response prediction. 

7.3 Recommendations for Further Research 

The following studies that would provide additional useful information to better 

predict long-term bridge behavior through a hysteresis model approach are: 

• a nonlinear soil-abutment interaction hysteresis model, 

• a step-by-step based approach with a nonlinear viscoelastic constitutive law for 

predicting time-dependent effects, 

• a parametric study to determine a general correlation between bridge geometry and 

hysteretic behavior, and a general correlation between soil-pile properties and 

condensed model hysteresis elements, and 

• a statistical based approach to determine load and resistance coefficients of variation 

to develop load and resistance factors for IA bridge design. 
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Appendix A 
 

Bridge Description and Instrumentation Plan 

This appendix provides pertinent information of three instrumented IA bridges 

used in this study. Lengths and number of spans for each bridge are described. Number of 

instruments, types, and locations are discussed. All these information are also provided 

graphically in a drawing and symbol format. Gage designations, labeled as a CHx-xx 

series, are presented in the drawings along with their descriptions. The following sections 

are arranged in an arithmetic order, i.e. bridge 203, bridge 211, and bridge 222. 

A.1 Bridge 203 

Bridge 203 is a 3-span composite slab on 4 prestressed concrete I-girders with 

spans of 14.3, 26.8, and 11.3 m (47, 88, and 37 ft). As presented in Figures A-1 to A-3, 

the instrumentation consists of 16 strain gages on 4 girders, 30 strain gages on 2 piles, 4 

tilt meters on 4 girders, 4 tilt meters on 1 abutment, 3 extensometers on 1 abutment, 3 

pressure cells on 1 abutment, and 4 sister bar gages embedded in 1 approach slab. The 

total instruments for this bridge are 64 gages. It should be noted that the abutment on the 

south side is stub and rest on the bed rock, therefore, it is considered as a rigid 

foundation. With this respect, no instrumentation was planned for this abutment. 
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Figure A-1: Bridge 203 – Instrumentation Plan View 
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Figure A-3: Bridge 203 – Section B 
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A.2 Bridge 211 

Bridge 211 is a single span composite slab on 4 prestressed concrete I-girders 

with a span length of 34.7 m (114 ft). As presented in Figures A-4 to A-8, the 

instrumentation consists of 16 strain gages on 4 girders, 24 strain gages on 4 piles, 4 tilt 

meters on 2 girders, 4 tilt meters on 2 abutments, 4 extensometers on 2 abutments, 4 

pressure cells on 2 abutments, and 8 sister bar gages embedded in 2 approach slabs. The 

total instruments for this bridge are 64 gages. 

 

 

 

57'-0" (17.35 m)

114'-0" (34.7 m)

C
L 

B
R

G
 A

B
U

T 
1

C
L 

B
R

G
 A

B
U

T 
2

C
L 

IN
TE

R
M

E
D

IA
TE

D
IA

P
H

R
A

G
M

B

B

AA

25'-0" (7.6 m)

APPROACH
SLAB

SISTER BAR
GAGE, TYP

3'
-0

" (
0.

9 
m

)
3'

-0
" (

0.
9 

m
)

3'-0"
(0.9 m)

3'-0"
(0.9 m)

STRAIN GAGE ON
TOP & BOTTOM

OF GIRDER, TYP

57'-0" (17.35 m)

C

D

C

D

25'-0" (7.6 m)

CH 3-13
CH 3-14

CH 3-16
CH 3-15

CH 4-3
CH 4-4

CH 4-2
CH 4-1

CH 1-15
CH 1-16

CH 1-14
CH 1-13

CH 2-1
CH 2-2
CH 2-3
CH 2-4

CH 2-14 CH 2-13

CH 2-15CH 2-16

CH 4-13 CH 4-14

CH 4-15 CH 4-16

VW STRAIN GAGE

Figure A-4: Bridge 211 – Instrumentation Plan View 



246 

 

 
25'-0" (7.6 m) 3'-6" (1.1 m)

SLEEPER SLAB

APPROACH SLAB

ROADWAY

OGS (TYP)

CLAY

1.5
1

C
L 

AB
U

TM
E

N
T

FINISHED
GROUND LINE

CONCRETE
BEAM

HP12x74

6'-111
2"

(2.1 m)

(TYP)

1" (25 mm) THICK
STYROFOAM SHEET

3'
-6

"
(1

.1
 m

)

VW STRAIN GAGE

PRESSURE TRANSDUCER

EXTENSOMETER

VW TILTMETER

 
Figure A-5: Bridge 211 – Section A 
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Figure A-7: Bridge 211 – Section C 
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Figure A-8: Bridge 211 – Section D 
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A.3 Bridge 222 

Bridge 222 is a single span composite slab on 4 prestressed concrete I-girders 

with a span length of 18.7 m (61.5 ft) at the centerline of the bridge. As presented in 

Figures A-9 to A-13, the instrumentation consists of 8 strain gages on 2 girders, 24 strain 

gages on 4 piles, 2 tilt meters on 2 girders, 2 tilt meters on 1 abutment, 4 extensometers 

on 2 abutments, 4 pressure cells on 2 abutments, and 4 sister bar gages embedded in 1 

approach slab. The total instruments for this bridge are 48 gages. 
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Figure A-12: Bridge 222 – Section C 
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All gages used in this study are a vibrating wire based. This gage type possesses 

an important characteristic as required for long-term monitoring, including repeatability 

and stability. Detailed description for gage types, installation procedure, bridge locations, 

and bridge reinforcement details are excluded from the scope of this study. However, this 

information can be found in Laman et al [60]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix B 
 

Calculation of Time-Dependent Strains 

This appendix provides time-dependent strain design calculations of all three 

instrumented bridges based on the age-adjusted effective modulus method (AAEM). The 

design calculation spreadsheet consists of 9 pages. The first page deals with section 

properties, pages 2 to 3 present curves of creep, shrinkage, and aging coefficients for a 

girder member, page 4 provides results of time-dependent strains under an unrestrained 

boundary condition, pages 5 to 7 presents curves of creep, shrinkage, and aging 

coefficient for aging girder and slab members, and finally pages 8 to 9 provides results of 

time-dependent strains under a restrained boundary condition. It is noted that the design 

calculations are also presented in an arithmetic order.  

B.1 Bridge 203 

Bridge 203 consists of three spans. Referring to Appendix A, span 1 is placed 

between abutment 1 and pier 1, span 2 is placed between pier 1 and pier 2, and span 3 

(integral abutment span) is placed between pier 2 and abutment 2. 

B.1.1 Span 1 

Interior Girder 
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141.5

8.5 + 0.5
(for wt. calc)

40.893 35.19
31.043

E.N.A. (Girder)

23.667
31.957

Span = 546 in
8.29

Concrete properties: Prestress strand properties:
Girder:

A = 1013 in2 A = 0.153 in2

I = 521162.6 in4 No. = 28
Ec(3) = 4628.4 ksi Jacking = 30.982 k/strand
Ec(28) = 5098.2 ksi Eps = 28500 ksi

Slab:
Ec(3) = 3272.8 ksi As-slab = 9.412 in2

Ec(28) = 3605.0 ksi Es = 29000 ksi

Section Properties at t = 3 days (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.284 101.4 2399.6 26.4 624.3 14775.8

1039.4 624.3 535938.4

Relaxation loss from t = 0 to 3 days:
ΔfRE = -2.664 ksi
fpi = 199.833 ksi

Applied forces at transfer:
x/L e No. of A B I N M

(in) strands (kips) (kips-in)
0.000 0.000 0 1013.0 0.0 521162.6 0.0 0.0
0.100 22.777 22 1033.7 472.1 531915.4 -672.6 -14141.0
0.176 22.777 22 1033.7 472.1 531915.4 -672.6 -13421.3
0.200 23.667 28 1039.4 624.3 535938.4 -856.1 -18163.8
0.300 23.667 28 1039.4 624.3 535938.4 -856.1 -17508.4
0.400 23.667 28 1039.4 624.3 535938.4 -856.1 -17115.2
0.500 23.667 28 1039.4 624.3 535938.4 -856.1 -16984.1

Properties of area Properties of transformed area
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Strains and curvatures at transfer:
x/L εo ψ

in/inx106 1/inx106

0.000 0.0 0.0
0.100 -138.0 -5.6
0.176 -138.2 -5.3 Strain at the strand level (midspan) = -331.2 in/inx106

0.200 -173.7 -7.1 Elastic shortening loss = -9.440 ksi
0.300 -173.8 -6.9 Stress of prestress strand = 190.393 ksi
0.400 -173.9 -6.7 % initial loss = 5.98 %
0.500 -174.0 -6.6

Creep coefficients, Ф(t, 3):
Model

3.01 4 7 28 124 365 10950 36500
AASHTO 0.003 0.050 0.107 0.284 0.638 0.959 1.425 1.460

ACI 0.009 0.126 0.259 0.565 0.886 1.072 1.334 1.359
CEB-FIP 0.070 0.280 0.423 0.725 1.110 1.405 1.820 1.839

B3 0.000 0.362 0.505 0.728 0.961 1.131 1.722 1.967

Shrinkage, εsh(t):
Model

3.01 4 7 28 124 365 10950 36500
AASHTO 0.000007 0.000010 0.000017 0.000062 0.000182 0.000283 0.000388 0.000391

ACI 0.000000 0.000007 0.000026 0.000120 0.000264 0.000334 0.000383 0.000384
CEB-FIP 0.000034 0.000047 0.000066 0.000123 0.000207 0.000283 0.000503 0.000523

B3 0.000000 0.000004 0.000014 0.000087 0.000326 0.000430 0.000432 0.000432
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Aging coefficients, χ(t, 3):
Model

3.01 4 7 28 124 365 10950 36500
AASHTO N/A N/A N/A N/A N/A N/A N/A N/A

ACI 0.710 0.658 0.642 0.621 0.604 0.594 0.567 0.558
CEB-FIP 0.808 0.777 0.769 0.648 0.568 0.536 0.478 0.475

B3 0.731 0.702 0.693 0.682 0.671 0.660 0.614 0.597

Use engineering recommendation model: ACI

Time-dependent restrained forces at t = 124 days (ΔN and ΔM):
Ф(124,3)  = 0.886 χ(124,3)  = 0.604
Ec(124,3)  = 3015.9 ksi (Age-adjusted elastic modulus)
εsh(124)  = 0.000264 λ = 0.705
Ω = 0.064 χr = 0.827
A (mid) = 1053.5 in2 B (mid) = 958.1 in3

I (mid) = 543838 in4

x/L
ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM

0.000 0.0 0.0 808.0 0.0 0.0 0.0 808.0 0.0
0.100 373.4 7825.1 808.0 0.0 -6.5 -147.0 1175.0 7678.1
0.176 373.8 7418.0 808.0 0.0 -6.5 -147.0 1175.4 7271.0
0.200 469.9 9911.4 808.0 0.0 -8.2 -194.4 1269.7 9717.0
0.300 470.4 9543.4 808.0 0.0 -8.2 -194.4 1270.1 9349.0
0.400 470.6 9322.6 808.0 0.0 -8.2 -194.4 1270.4 9128.2
0.500 470.7 9248.9 808.0 0.0 -8.2 -194.4 1270.5 9054.6

Strains and curvatures at t = 124 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -264.5 0.0
0.100 -370.0 -4.2
0.176 -370.2 -4.0 Strain inc. at the strand level (mid) = -509.7 in/inx106

0.200 -394.9 -5.2 Time-dependent inc. losses = -14.525 ksi
0.300 -395.2 -5.0 Stress of prestress strand = 175.868 ksi
0.400 -395.4 -4.9 % losses = 13.15 %
0.500 -395.5 -4.8

Relaxation TotalCreep

Day

Shrinkage
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 124 365 10950 36500
-174.0 -175.5 -201.3 -241.3 -381.0 -569.5 -664.1 -748.5 -752.9
-171.7 -216.4 -262.7 -303.6 -405.3 -544.5 -662.1 -933.3 -955.0
-174.0 -174.0 -236.5 -269.4 -373.8 -639.2 -763.7 -850.9 -885.8

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 124 365 10950 36500
-6.6 -6.7 -7.4 -8.2 -9.9 -11.5 -12.4 -13.7 -13.8
-6.6 -7.0 -8.2 -9.0 -10.7 -12.7 -14.2 -16.0 -16.1
-6.6 -6.6 -8.9 -9.7 -10.9 -11.7 -12.5 -15.6 -16.8

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 124 365 10950 36500
190.4 190.3 189.1 187.4 182.3 175.9 172.6 169.3 169.1
190.5 189.0 186.8 185.1 181.1 175.7 171.4 162.4 161.8
190.4 190.4 187.1 185.6 181.9 173.7 169.7 165.1 163.2

% prestress losses using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 124 365 10950 36500
6.0 6.0 6.6 7.4 10.0 13.2 14.8 16.4 16.5
5.9 6.7 7.7 8.6 10.6 13.2 15.4 19.8 20.1
6.0 6.0 7.6 8.3 10.2 14.2 16.2 18.5 19.4

Day

Day

Day

Day

-1200
-1000
-800
-600
-400
-200

0
0 50 100 150 200 250 300 350 400

S
tra

in
 (x

1e
-6

 in
/in

)

ACI
CEB-FIP
B3

-20

-15

-10

-5

0
0 50 100 150 200 250 300 350 400

C
ur

va
tu

re
 (x

1e
-6

 1
/in

)

ACI
CEB-FIP
B3

140

160

180

200

220
0 50 100 150 200 250 300 350 400

St
ra

nd
 s

tre
ss

 (k
si

)

ACI
CEB-FIP
B3

 

 



257 

 

Effect of concrete deck placed at t = 124 days

Section Properties at t = 124 days when deck is not hardened yet (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.284 101.4 2399.6 23.9 566.8 13414.1

1036.9 566.8 534576.7

Applied forces due to concrete deck placement:
x/L A B I ΔN ΔM

(kips) (kips-in)
0.000 1013.0 0.0 521162.6 0.0 0.0
0.100 1031.8 428.6 530924.5 0.0 1483.0
0.176 1031.8 428.6 530924.5 0.0 2387.8
0.200 1036.9 566.8 534576.7 0.0 2636.5
0.300 1036.9 566.8 534576.7 0.0 3460.4
0.400 1036.9 566.8 534576.7 0.0 3954.7
0.500 1036.9 566.8 534576.7 0.0 4119.5

Strains and curvatures at deck placement:
x/L Δεo Δψ

in/inx106 1/inx106

0.000 0.0 0.0
0.100 -0.2 0.5
0.176 -0.4 0.9 Strain at the strand level (midspan) = 35.0 in/inx106

0.200 -0.5 1.0 Elastic stress gain = 0.997 ksi
0.300 -0.7 1.3 Stress of prestress strand = 176.865 ksi
0.400 -0.8 1.5 % losses = 12.66 %
0.500 -0.8 1.5

Creep coefficients of girder, Ф(t, 124):
Model

124.01 125 127 131 152 365 10950 36500
ACI 0.006 0.087 0.155 0.232 0.406 0.696 0.920 0.938

CEB-FIP 0.033 0.131 0.181 0.233 0.350 0.613 0.883 0.894
B3 0.000 0.148 0.198 0.243 0.331 0.505 0.806 0.925

Day
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Aging coefficients of girder, χ(t, 124):
Model

124.01 125 127 131 152 365 10950 36500
ACI 0.545 0.725 0.767 0.800 0.854 0.914 0.921 0.915

CEB-FIP 0.812 0.860 0.899 0.909 0.909 0.883 0.820 0.817
B3 0.548 0.737 0.781 0.816 0.873 0.935 0.932 0.923

Creep coefficients of concrete deck slab, Ф(t, 3):
Model

3.01 4 6 10 31 244 10829 36379
ACI 0.008 0.115 0.205 0.308 0.538 0.923 1.220 1.243

CEB-FIP 0.092 0.367 0.510 0.656 0.989 1.779 2.809 2.860
B3 0.000 0.360 0.470 0.563 0.731 1.043 1.703 1.950

Aging coefficients of concrete deck slab, χ(t, 3):
Model

3.01 4 6 10 31 244 10829 36379
ACI 0.695 0.630 0.615 0.603 0.583 0.558 0.530 0.522

CEB-FIP 0.809 0.794 0.809 0.781 0.699 0.574 0.644 0.650
B3 0.731 0.701 0.694 0.688 0.679 0.662 0.612 0.595

Day

Day

Day

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000

A
gi

ng
 c

oe
ffi

ci
en

t

ACI
CEB-FIP
B3

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0 1000 2000 3000 4000

C
re

ep
 c

oe
ffi

ci
en

t

ACI
CEB-FIP
B3

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000

A
gi

ng
 c

oe
ffi

ci
en

t

ACI
CEB-FIP
B3

 

 



259 

 

Shrinkage of concrete deck slab, εsh(t):
Model

3.01 4 6 10 31 244 10829 36379
ACI 0.000000 0.000004 0.000012 0.000025 0.000075 0.000181 0.000221 0.000222

CEB-FIP 0.000016 0.000024 0.000031 0.000042 0.000070 0.000153 0.000502 0.000584
B3 0.000000 0.000001 0.000004 0.000009 0.000037 0.000273 0.000432 0.000432

Time-dependent effect at t = 36500 days:
Girder: Slab:
ΔФ(36500,3)  = 0.474 Ф(36379,3)  = 1.243
Δεsh(36500)  = 0.00012 χ(36379,3)  = 0.522
Ф(36500,124)  = 0.938 Ec(36379,3)  = 1985.0 ksi
χ(36500,124)  = 0.915 εsh(36379)  = 0.000222
Ec(36500,124)  = 2742.7 ksi

Strand:
λ = 0.705 Ω = 0.069
χr = 0.814

Stresses and curvatures prior to composite action
x/L

σtop σbot σtop σbot Δσtop Δσbot Δσ Δψ
0.000 0.798 0.798 -0.798 -0.798 0.000 0.000 0.000 0.000
0.100 0.700 1.646 -0.719 -1.524 -0.019 0.122 0.051 0.002
0.176 0.725 1.621 -0.744 -1.501 -0.019 0.121 0.050 0.002
0.200 0.671 1.869 -0.701 -1.695 -0.030 0.174 0.071 0.003
0.300 0.694 1.847 -0.723 -1.674 -0.030 0.173 0.070 0.003
0.400 0.707 1.834 -0.737 -1.662 -0.030 0.172 0.070 0.003
0.500 0.711 1.829 -0.741 -1.658 -0.030 0.172 0.070 0.003

Section Properties at t = 36500 days when composite action starts (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.284 101.4 2399.6 44.5 1053.5 24934.4
Deck 1203 -44072 1622185 870 -31896 1174002

Rebars 9.41 -331.2 11655.9 99.5 -3502.1 123242.5
2027 -34344 1843342

Note : neglected the duration of 3-day concrete deck hardening
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Time-dependent restrained forces at t = 36500 days (ΔN and ΔM):
x/L

ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM
0.000 0.0 0.0 862.8 -19435.6 0.0 0.0 862.8 -19435.6
0.100 167.8 2742.6 862.8 -19435.6 -9.7 -221.1 1020.9 -16914.0
0.176 168.5 2099.6 862.8 -19435.6 -9.7 -221.1 1021.6 -17557.1
0.200 209.8 3046.2 862.8 -19435.6 -12.4 -292.4 1060.2 -16681.7
0.300 210.6 2465.6 862.8 -19435.6 -12.4 -292.4 1061.1 -17262.3
0.400 211.1 2117.3 862.8 -19435.6 -12.4 -292.4 1061.5 -17610.6
0.500 211.3 2001.2 862.8 -19435.6 -12.4 -292.4 1061.7 -17726.7

Strains and curvatures at t = 36500 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -136.5 1.2
0.100 -187.4 -0.2
0.176 -184.4 0.0 Strain inc. at the strand level (mid) = -194.0 in/inx106

0.200 -196.9 -0.4 Time-dependent inc. losses = -5.528 ksi
0.300 -194.3 -0.2 Stress of prestress strand = 171.337 ksi
0.400 -192.7 -0.1 % losses = 15.39 %
0.500 -192.2 -0.1

Time-dependent strain at top fiber along the length of the girder:
x/L

124.01 125 127 131 152 365 10950 36500
0.000 0.0 -3.0 -8.8 -19.2 -57.9 -148.3 -186.3 -187.2
0.100 -0.1 -3.6 -9.7 -20.5 -59.6 -147.3 -179.9 -180.3
0.176 -0.1 -3.9 -10.3 -21.4 -61.2 -150.3 -184.3 -184.9
0.200 -0.1 -4.0 -10.4 -21.5 -61.3 -149.3 -181.4 -181.8
0.300 -0.1 -4.3 -10.9 -22.3 -62.7 -152.0 -185.3 -185.9
0.400 -0.1 -4.4 -11.3 -22.8 -63.6 -153.6 -187.7 -188.3
0.500 -0.1 -4.5 -11.4 -23.0 -63.8 -154.1 -188.5 -189.1

Time-dependent strain at bottom fiber along the length of the girder:
x/L

124.01 125 127 131 152 365 10950 36500
0.000 0.0 0.6 1.7 3.6 8.2 -43.4 -95.4 -96.9
0.100 0.1 1.4 2.9 4.9 7.4 -78.9 -187.0 -193.0
0.176 0.1 2.0 4.0 6.5 10.3 -73.1 -178.3 -184.0
0.200 0.1 2.1 4.0 6.5 9.4 -82.9 -201.9 -208.7
0.300 0.2 2.6 5.0 7.9 12.0 -77.8 -194.3 -200.9
0.400 0.2 3.0 5.6 8.8 13.6 -74.7 -189.7 -196.1
0.500 0.2 3.1 5.8 9.1 14.1 -73.7 -188.2 -194.6

Creep Shrinkage Relaxation Total

Day

Day
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

124 124.01 125 127 131 152 365 10950 36500
0.0 0.0 -0.3 -1.7 -5.0 -20.1 -109.0 -188.3 -192.2
0.0 -2.8 -3.8 -5.7 -8.8 -22.1 -126.6 -411.6 -442.5
0.0 0.0 0.7 -0.2 -2.5 -16.0 -150.2 -265.6 -300.4

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

124 124.01 125 127 131 152 365 10950 36500
0.0 0.0 0.1 0.2 0.4 1.1 1.1 0.0 -0.1
0.0 0.2 0.4 0.5 0.6 0.8 -0.1 -0.5 0.1
0.0 0.0 0.1 0.2 0.2 0.5 1.7 1.2 0.1

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

124 124.01 125 127 131 152 365 10950 36500
176.9 176.9 176.9 177.0 177.0 177.0 174.5 171.5 171.3
176.6 176.7 176.8 176.8 176.8 176.6 173.0 164.6 164.1
174.7 174.7 174.8 174.8 174.8 174.5 171.6 167.9 166.2

% prestress losses using ACI, CEB-FIP, and B3 respectively

124 124.01 125 127 131 152 365 10950 36500
12.7 12.7 12.6 12.6 12.6 12.6 13.8 15.3 15.4
12.8 12.7 12.7 12.7 12.7 12.8 14.6 18.7 19.0
13.7 13.7 13.7 13.7 13.7 13.8 15.3 17.1 17.9

Day

Day
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Day
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Three samples of time-dependent strains with respect to the time-line (127, 365, 

and 36,500 days) at the top fiber of interior girders are shown in Figure B-1. 

Three samples of time-dependent strains with respect to the time-line (127, 365, and 

36,500 days) at the bottom fiber of interior girders are shown in Figure B-2. 
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Figure B-1: Time-Dependent Strains at Top Fiber (Bridge 203 – Span 1 – Int. Girder) 
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Figure B-2: Time-Dependent Strains at Bottom Fiber (Bridge 203 – Span 1 – Int. Girder)
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Exterior Girder 

115.75

8.5 + 0.5
(for wt. calc)

40.893 35.19
31.043

E.N.A. (Girder)

23.667
31.957

Span = 546 in
8.29

Concrete properties: Prestress strand properties:
Girder:

A = 1013 in2 A = 0.153 in2

I = 521162.6 in4 No. = 28
Ec(3) = 4628.4 ksi Jacking = 30.982 k/strand
Ec(28) = 5098.2 ksi Eps = 28500 ksi

Slab:
Ec(3) = 3272.8 ksi As-slab = 9.412 in2

Ec(28) = 3605.0 ksi Es = 29000 ksi

Section Properties at t = 3 days (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.284 101.4 2399.6 26.4 624.3 14775.8

1039.4 624.3 535938.4

Relaxation loss from t = 0 to 3 days:
ΔfRE = -2.664 ksi
fpi = 199.833 ksi

Applied forces at transfer:
x/L e No. of A B I N M

(in) strands (kips) (kips-in)
0.000 0.000 0 1013.0 0.0 521162.6 0.0 0.0
0.100 22.777 22 1033.7 472.1 531915.4 -672.6 -14141.0
0.176 22.777 22 1033.7 472.1 531915.4 -672.6 -13421.3
0.200 23.667 28 1039.4 624.3 535938.4 -856.1 -18163.8
0.300 23.667 28 1039.4 624.3 535938.4 -856.1 -17508.4
0.400 23.667 28 1039.4 624.3 535938.4 -856.1 -17115.2
0.500 23.667 28 1039.4 624.3 535938.4 -856.1 -16984.1

Properties of area Properties of transformed area
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Strains and curvatures at transfer:
x/L εo ψ

in/inx106 1/inx106

0.000 0.0 0.0
0.100 -138.0 -5.6
0.176 -138.2 -5.3 Strain at the strand level (midspan) = -331.2 in/inx106

0.200 -173.7 -7.1 Elastic shortening loss = -9.440 ksi
0.300 -173.8 -6.9 Stress of prestress strand = 190.393 ksi
0.400 -173.9 -6.7 % initial loss = 5.98 %
0.500 -174.0 -6.6

Creep coefficients, Ф(t, 3):
Model

3.01 4 7 28 124 365 10950 36500
AASHTO 0.003 0.050 0.107 0.284 0.638 0.959 1.425 1.460

ACI 0.009 0.126 0.259 0.565 0.886 1.072 1.334 1.359
CEB-FIP 0.070 0.280 0.423 0.725 1.110 1.405 1.820 1.839

B3 0.000 0.362 0.505 0.728 0.961 1.131 1.722 1.967

Shrinkage, εsh(t):
Model

3.01 4 7 28 124 365 10950 36500
AASHTO 0.000007 0.000010 0.000017 0.000062 0.000182 0.000283 0.000388 0.000391

ACI 0.000000 0.000007 0.000026 0.000120 0.000264 0.000334 0.000383 0.000384
CEB-FIP 0.000034 0.000047 0.000066 0.000123 0.000207 0.000283 0.000503 0.000523

B3 0.000000 0.000004 0.000014 0.000087 0.000326 0.000430 0.000432 0.000432

Day

Day

0.0

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400

Day

C
re

ep
 c

oe
ffi

ci
en

t

AASHTO
ACI
CEB-FIP
B3

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0 100 200 300 400

Day

S
hr

in
ka

ge
 s

tra
in

AASHTO
ACI
CEB-FIP
B3

 



265 

 

Aging coefficients, χ(t, 3):
Model

3.01 4 7 28 124 365 10950 36500
AASHTO N/A N/A N/A N/A N/A N/A N/A N/A

ACI 0.710 0.658 0.642 0.621 0.604 0.594 0.567 0.558
CEB-FIP 0.808 0.777 0.769 0.648 0.568 0.536 0.478 0.475

B3 0.731 0.702 0.693 0.682 0.671 0.660 0.614 0.597

Use engineering recommendation model: ACI

Time-dependent restrained forces at t = 124 days (ΔN and ΔM):
Ф(124,3)  = 0.886 χ(124,3)  = 0.604
Ec(124,3)  = 3015.9 ksi (Age-adjusted elastic modulus)
εsh(124)  = 0.000264 λ = 0.705
Ω = 0.064 χr = 0.827
A (mid) = 1053.5 in2 B (mid) = 958.1 in3

I (mid) = 543838 in4

x/L
ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM

0.000 0.0 0.0 808.0 0.0 0.0 0.0 808.0 0.0
0.100 373.4 7825.1 808.0 0.0 -6.5 -147.0 1175.0 7678.1
0.176 373.8 7418.0 808.0 0.0 -6.5 -147.0 1175.4 7271.0
0.200 469.9 9911.4 808.0 0.0 -8.2 -194.4 1269.7 9717.0
0.300 470.4 9543.4 808.0 0.0 -8.2 -194.4 1270.1 9349.0
0.400 470.6 9322.6 808.0 0.0 -8.2 -194.4 1270.4 9128.2
0.500 470.7 9248.9 808.0 0.0 -8.2 -194.4 1270.5 9054.6

Strains and curvatures at t = 124 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -264.5 0.0
0.100 -370.0 -4.2
0.176 -370.2 -4.0 Strain inc. at the strand level (mid) = -509.7 in/inx106

0.200 -394.9 -5.2 Time-dependent inc. losses = -14.525 ksi
0.300 -395.2 -5.0 Stress of prestress strand = 175.868 ksi
0.400 -395.4 -4.9 % losses = 13.15 %
0.500 -395.5 -4.8

Creep

Day
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 124 365 10950 36500
-174.0 -175.5 -201.3 -241.3 -381.0 -569.5 -664.1 -748.5 -752.9
-171.7 -216.4 -262.7 -303.6 -405.3 -544.5 -662.1 -933.3 -955.0
-174.0 -174.0 -236.5 -269.4 -373.8 -639.2 -763.7 -850.9 -885.8

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 124 365 10950 36500
-6.6 -6.7 -7.4 -8.2 -9.9 -11.5 -12.4 -13.7 -13.8
-6.6 -7.0 -8.2 -9.0 -10.7 -12.7 -14.2 -16.0 -16.1
-6.6 -6.6 -8.9 -9.7 -10.9 -11.7 -12.5 -15.6 -16.8

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 124 365 10950 36500
190.4 190.3 189.1 187.4 182.3 175.9 172.6 169.3 169.1
190.5 189.0 186.8 185.1 181.1 175.7 171.4 162.4 161.8
190.4 190.4 187.1 185.6 181.9 173.7 169.7 165.1 163.2

% prestress losses using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 124 365 10950 36500
6.0 6.0 6.6 7.4 10.0 13.2 14.8 16.4 16.5
5.9 6.7 7.7 8.6 10.6 13.2 15.4 19.8 20.1
6.0 6.0 7.6 8.3 10.2 14.2 16.2 18.5 19.4

Day

Day

Day

Day

-1200
-1000
-800
-600
-400
-200

0
0 50 100 150 200 250 300 350 400

S
tra

in
 (x

1e
-6

 in
/in

)

ACI
CEB-FIP
B3

-20

-15

-10

-5

0
0 50 100 150 200 250 300 350 400

C
ur

va
tu

re
 (x

1e
-6

 1
/in

)

ACI
CEB-FIP
B3

140

160

180

200

220
0 50 100 150 200 250 300 350 400

St
ra

nd
 s

tre
ss

 (k
si

)

ACI
CEB-FIP
B3

 

 



267 

 

Effect of concrete deck placed at t = 124 days

Section Properties at t = 124 days when deck is not hardened yet (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.284 101.4 2399.6 23.9 566.8 13414.1

1036.9 566.8 534576.7

Applied forces due to concrete deck placement:
x/L A B I ΔN ΔM

(kips) (kips-in)
0.000 1013.0 0.0 521162.6 0.0 0.0
0.100 1031.8 428.6 530924.5 0.0 1213.1
0.176 1031.8 428.6 530924.5 0.0 1953.3
0.200 1036.9 566.8 534576.7 0.0 2156.7
0.300 1036.9 566.8 534576.7 0.0 2830.6
0.400 1036.9 566.8 534576.7 0.0 3235.0
0.500 1036.9 566.8 534576.7 0.0 3369.8

Strains and curvatures at deck placement:
x/L Δεo Δψ

in/inx106 1/inx106

0.000 0.0 0.0
0.100 -0.2 0.4
0.176 -0.3 0.7 Strain at the strand level (midspan) = 28.6 in/inx106

0.200 -0.4 0.8 Elastic stress gain = 0.815 ksi
0.300 -0.6 1.0 Stress of prestress strand = 176.683 ksi
0.400 -0.6 1.2 % losses = 12.75 %
0.500 -0.7 1.2

Creep coefficients of girder, Ф(t, 124):
Model

124.01 125 127 131 152 365 10950 36500
ACI 0.006 0.087 0.155 0.232 0.406 0.696 0.920 0.938

CEB-FIP 0.033 0.131 0.181 0.233 0.350 0.613 0.883 0.894
B3 0.000 0.148 0.198 0.243 0.331 0.505 0.806 0.925

Day

Properties of area Properties of transformed area
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Aging coefficients of girder, χ(t, 124):
Model

124.01 125 127 131 152 365 10950 36500
ACI 0.545 0.725 0.767 0.800 0.854 0.914 0.921 0.915

CEB-FIP 0.812 0.860 0.899 0.909 0.909 0.883 0.820 0.817
B3 0.548 0.737 0.781 0.816 0.873 0.935 0.932 0.923

Creep coefficients of concrete deck slab, Ф(t, 3):
Model

3.01 4 6 10 31 244 10829 36379
ACI 0.008 0.115 0.205 0.308 0.538 0.923 1.220 1.243

CEB-FIP 0.092 0.367 0.510 0.656 0.989 1.779 2.809 2.860
B3 0.000 0.360 0.470 0.563 0.731 1.043 1.703 1.950

Aging coefficients of concrete deck slab, χ(t, 3):
Model

3.01 4 6 10 31 244 10829 36379
ACI 0.695 0.630 0.615 0.603 0.583 0.558 0.530 0.522

CEB-FIP 0.809 0.794 0.809 0.781 0.699 0.574 0.644 0.650
B3 0.731 0.701 0.694 0.688 0.679 0.662 0.612 0.595
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Shrinkage of concrete deck slab, εsh(t):
Model

3.01 4 6 10 31 244 10829 36379
ACI 0.000000 0.000004 0.000012 0.000025 0.000075 0.000181 0.000221 0.000222

CEB-FIP 0.000016 0.000024 0.000031 0.000042 0.000070 0.000153 0.000502 0.000584
B3 0.000000 0.000001 0.000004 0.000009 0.000037 0.000273 0.000432 0.000432

Time-dependent effect at t = 36500 days:
Girder: Slab:
ΔФ(36500,3)  = 0.474 Ф(36379,3)  = 1.243
Δεsh(36500)  = 0.00012 χ(36379,3)  = 0.522
Ф(36500,124)  = 0.938 Ec(36379,3)  = 1985.0 ksi
χ(36500,124)  = 0.915 εsh(36379)  = 0.000222
Ec(36500,124)  = 2742.7 ksi

Strand:
λ = 0.705 Ω = 0.071
χr = 0.810

Stresses and curvatures prior to composite action
x/L

σtop σbot σtop σbot Δσtop Δσbot Δσ Δψ
0.000 0.798 0.798 -0.798 -0.798 0.000 0.000 0.000 0.000
0.100 0.700 1.646 -0.719 -1.524 -0.019 0.122 0.051 0.002
0.176 0.725 1.621 -0.744 -1.501 -0.019 0.121 0.050 0.002
0.200 0.671 1.869 -0.701 -1.695 -0.030 0.174 0.071 0.003
0.300 0.694 1.847 -0.723 -1.674 -0.030 0.173 0.070 0.003
0.400 0.707 1.834 -0.737 -1.662 -0.030 0.172 0.070 0.003
0.500 0.711 1.829 -0.741 -1.658 -0.030 0.172 0.070 0.003

Section Properties at t = 36500 days when composite action starts (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.284 101.4 2399.6 44.5 1053.5 24934.4
Deck 984 -36052 1326982 712 -26092 960359

Rebars 9.41 -331.2 11655.9 99.5 -3502.1 123242.5
1869 -28540 1629698

Note : neglected the duration of 3-day concrete deck hardening
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Time-dependent restrained forces at t = 36500 days (ΔN and ΔM):
x/L

ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM
0.000 0.0 0.0 766.3 -15898.7 0.0 0.0 766.3 -15898.7
0.100 167.7 2876.4 766.3 -15898.7 -9.7 -220.0 924.3 -13242.3
0.176 168.3 2314.9 766.3 -15898.7 -9.7 -220.0 924.9 -13803.7
0.200 209.5 3282.4 766.3 -15898.7 -12.3 -290.9 963.5 -12907.2
0.300 210.3 2775.7 766.3 -15898.7 -12.3 -290.9 964.3 -13413.9
0.400 210.7 2471.6 766.3 -15898.7 -12.3 -290.9 964.7 -13718.0
0.500 210.9 2370.3 766.3 -15898.7 -12.3 -290.9 964.9 -13819.3

Strains and curvatures at t = 36500 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -134.9 1.1
0.100 -186.4 -0.3
0.176 -183.8 -0.2 Strain inc. at the strand level (mid) = -199.1 in/inx106

0.200 -196.4 -0.6 Time-dependent inc. losses = -5.674 ksi
0.300 -194.2 -0.4 Stress of prestress strand = 171.010 ksi
0.400 -192.9 -0.3 % losses = 15.55 %
0.500 -192.5 -0.3

Time-dependent strain at top fiber along the length of the girder:
x/L

124.01 125 127 131 152 365 10950 36500
0.000 0.0 -2.9 -8.3 -18.1 -54.6 -142.3 -180.0 -180.9
0.100 -0.1 -3.3 -9.1 -19.3 -56.1 -140.6 -172.4 -172.8
0.176 -0.1 -3.6 -9.6 -20.1 -57.6 -143.5 -176.7 -177.3
0.200 -0.1 -3.7 -9.8 -20.2 -57.7 -142.3 -173.4 -173.8
0.300 -0.1 -4.0 -10.3 -21.0 -59.0 -144.8 -177.3 -177.8
0.400 -0.1 -4.2 -10.5 -21.4 -59.8 -146.4 -179.7 -180.3
0.500 -0.1 -4.2 -10.6 -21.5 -60.0 -146.9 -180.5 -181.1

Time-dependent strain at bottom fiber along the length of the girder:
x/L

124.01 125 127 131 152 365 10950 36500
0.000 0.0 0.6 1.6 3.3 7.2 -45.3 -97.4 -98.9
0.100 0.1 1.2 2.4 4.1 5.6 -82.2 -190.9 -197.0
0.176 0.1 1.7 3.4 5.5 8.1 -77.1 -183.2 -189.0
0.200 0.1 1.8 3.4 5.4 7.1 -87.1 -207.1 -214.0
0.300 0.1 2.2 4.2 6.6 9.3 -82.7 -200.3 -207.0
0.400 0.2 2.5 4.7 7.3 10.6 -80.0 -196.2 -202.8
0.500 0.2 2.6 4.9 7.6 11.0 -79.1 -194.9 -201.4

Day

Day

Creep Shrinkage Relaxation Total
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

124 124.01 125 127 131 152 365 10950 36500
0.0 0.0 -0.4 -1.9 -5.2 -20.1 -108.9 -188.6 -192.5
0.0 -2.7 -3.8 -5.6 -8.8 -21.9 -126.5 -409.1 -439.1
0.0 0.0 0.4 -0.6 -2.9 -16.3 -148.6 -262.3 -297.2

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

124 124.01 125 127 131 152 365 10950 36500
0.0 0.0 0.1 0.2 0.4 1.0 0.9 -0.2 -0.3
0.0 0.2 0.4 0.4 0.6 0.7 -0.2 -0.9 -0.3
0.0 0.0 0.1 0.1 0.2 0.4 1.5 0.7 -0.3

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

124 124.01 125 127 131 152 365 10950 36500
176.7 176.7 176.7 176.8 176.8 176.8 174.2 171.2 171.0
176.5 176.5 176.6 176.6 176.6 176.3 172.7 164.2 163.7
174.5 174.5 174.6 174.6 174.6 174.3 171.3 167.5 165.8

% prestress losses using ACI, CEB-FIP, and B3 respectively

124 124.01 125 127 131 152 365 10950 36500
12.7 12.7 12.7 12.7 12.7 12.7 14.0 15.5 15.5
12.9 12.8 12.8 12.8 12.8 12.9 14.7 18.9 19.1
13.8 13.8 13.8 13.8 13.8 13.9 15.4 17.3 18.1
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End of Calculation 
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Three samples of time-dependent strains with respect to the time-line (127, 365, 

and 36,500 days) at the top fiber of interior girders are shown in Figure B-3. 

Three samples of time-dependent strains with respect to the time-line (127, 365, and 

36,500 days) at the bottom fiber of interior girders are shown in Figure B-4. 
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Figure B-3:  Time-Dependent Strains at Top Fiber (Bridge 203 – Span 1 – Ext. Girder) 
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Figure B-4: Type Caption Here 
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B.1.2 Span 2 

Interior Girder 

141.5

8.5 + 0.5
(for wt. calc)

40.893 35.19
31.043

E.N.A. (Girder)

22.627
31.957

Span = 1020 in
9.33

Concrete properties: Prestress strand properties:
Girder:

A = 1013 in2 A = 0.153 in2

I = 521162.6 in4 No. = 48
Ec(3) = 4628.4 ksi Jacking = 30.982 k/strand
Ec(28) = 5098.2 ksi Eps = 28500 ksi

Slab:
Ec(3) = 3272.8 ksi As-slab = 9.412 in2

Ec(28) = 3605.0 ksi Es = 29000 ksi

Section Properties at t = 3 days (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 7.344 166.2 3760.0 45.2 1023.2 23152.7

1058.2 1023.2 544315.3

Relaxation loss from t = 0 to 3 days:
ΔfRE = -2.664 ksi
fpi = 199.833 ksi

Applied forces at transfer:
x/L e No. of A B I N M

(in) strands (kips) (kips-in)
0.000 0.000 0 1013.0 0.0 521162.6 0.0 0.0
0.094 21.517 36 1046.9 729.8 536865.2 -1100.7 -19783.3
0.141 22.387 42 1052.6 885.8 540993.7 -1284.1 -23201.5
0.200 22.627 48 1058.2 1023.2 544315.3 -1467.6 -25887.8
0.300 22.627 48 1058.2 1023.2 544315.3 -1467.6 -23600.7
0.400 22.627 48 1058.2 1023.2 544315.3 -1467.6 -22228.4
0.500 22.627 48 1058.2 1023.2 544315.3 -1467.6 -21770.9

Properties of area Properties of transformed area
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Strains and curvatures at transfer:
x/L εo ψ

in/inx106 1/inx106

0.000 0.0 0.0
0.094 -221.8 -7.7
0.141 -256.1 -8.8 Strain at the strand level (midspan) = -474.9 in/inx106

0.200 -290.2 -9.7 Elastic shortening loss = -13.536 ksi
0.300 -291.1 -8.8 Stress of prestress strand = 186.297 ksi
0.400 -291.6 -8.3 % initial loss = 8.00 %
0.500 -291.8 -8.1

Creep coefficients, Ф(t, 3):
Model

3.01 4 7 28 136 365 10950 36500
AASHTO 0.003 0.050 0.107 0.284 0.666 0.959 1.425 1.460

ACI 0.009 0.126 0.259 0.565 0.904 1.072 1.334 1.359
CEB-FIP 0.070 0.280 0.423 0.725 1.136 1.405 1.820 1.839

B3 0.000 0.362 0.505 0.728 0.976 1.131 1.722 1.967

Shrinkage, εsh(t):
Model

3.01 4 7 28 136 365 10950 36500
AASHTO 0.000007 0.000010 0.000017 0.000062 0.000191 0.000283 0.000388 0.000391

ACI 0.000000 0.000007 0.000026 0.000120 0.000272 0.000334 0.000383 0.000384
CEB-FIP 0.000034 0.000047 0.000066 0.000123 0.000213 0.000283 0.000503 0.000523

B3 0.000000 0.000004 0.000014 0.000087 0.000343 0.000430 0.000432 0.000432
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Aging coefficients, χ(t, 3):
Model

3.01 4 7 28 136 365 10950 36500
AASHTO N/A N/A N/A N/A N/A N/A N/A N/A

ACI 0.710 0.658 0.642 0.621 0.603 0.594 0.567 0.558
CEB-FIP 0.808 0.777 0.769 0.648 0.562 0.535 0.477 0.474

B3 0.731 0.702 0.693 0.682 0.670 0.660 0.614 0.597

Use engineering recommendation model: ACI

Time-dependent restrained forces at t = 136 days (ΔN and ΔM):
Ф(136,3)  = 0.904 χ(136,3)  = 0.603
Ec(136,3)  = 2996.3 ksi (Age-adjusted elastic modulus)
εsh(136)  = 0.000272 λ = 0.690
Ω = 0.080 χr = 0.783
A (mid) = 1082.9 in2 B (mid) = 1580.6 in3

I (mid) = 556927 in4

x/L
ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM

0.000 0.0 0.0 826.0 0.0 0.0 0.0 826.0 0.0
0.094 608.3 10808.2 826.0 0.0 -10.2 -220.5 1424.1 10587.7
0.141 702.5 12482.3 826.0 0.0 -12.0 -267.6 1516.6 12214.7
0.200 796.0 13729.0 826.0 0.0 -13.7 -309.2 1608.3 13419.9
0.300 798.4 12445.7 826.0 0.0 -13.7 -309.2 1610.7 12136.6
0.400 799.8 11675.8 826.0 0.0 -13.7 -309.2 1612.2 11366.6
0.500 800.3 11419.1 826.0 0.0 -13.7 -309.2 1612.7 11110.0

Strains and curvatures at t = 136 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -272.1 0.0
0.094 -440.2 -5.6
0.141 -463.3 -6.2 Strain inc. at the strand level (mid) = -608.6 in/inx106

0.200 -486.0 -6.7 Time-dependent inc. losses = -17.344 ksi
0.300 -487.9 -5.9 Stress of prestress strand = 168.953 ksi
0.400 -489.0 -5.4 % losses = 16.57 %
0.500 -489.4 -5.3

Relaxation TotalCreep

Day
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 136 365 10950 36500
-291.8 -294.2 -332.2 -385.5 -553.7 -781.2 -879.7 -986.0 -992.4
-288.0 -339.6 -406.9 -461.6 -591.2 -777.0 -907.9 -1211.0 -1233.4
-291.8 -291.8 -391.8 -438.7 -562.9 -863.5 -981.3 -1119.9 -1175.8

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 136 365 10950 36500
-8.1 -8.2 -9.0 -9.8 -11.6 -13.4 -14.2 -15.5 -15.6
-8.0 -8.4 -9.8 -10.7 -12.5 -14.8 -16.2 -18.0 -18.0
-8.1 -8.1 -10.6 -11.5 -12.8 -13.5 -14.2 -17.3 -18.6

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 136 365 10950 36500
186.3 186.2 184.6 182.5 176.5 169.0 165.6 161.8 161.5
186.5 184.7 181.9 179.8 174.9 168.1 163.5 153.7 153.1
186.3 186.3 181.8 179.9 175.6 166.5 162.7 156.7 154.3

% prestress losses using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 136 365 10950 36500
8.0 8.1 8.8 9.9 12.8 16.6 18.2 20.1 20.2
7.9 8.8 10.2 11.2 13.6 17.0 19.3 24.1 24.4
8.0 8.0 10.2 11.2 13.3 17.8 19.6 22.6 23.8
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Effect of concrete deck placed at t = 136 days

Section Properties at t = 136 days when deck is not hardened yet (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 7.344 166.2 3760.0 41.1 928.9 21019.0

1054.1 928.9 542181.6

Applied forces due to concrete deck placement:
x/L A B I ΔN ΔM

(kips) (kips-in)
0.000 1013.0 0.0 521162.6 0.0 0.0
0.094 1043.8 662.5 535418.1 0.0 4903.0
0.141 1048.9 804.2 539166.1 0.0 6972.4
0.200 1054.1 928.9 542181.6 0.0 9201.0
0.300 1054.1 928.9 542181.6 0.0 12076.4
0.400 1054.1 928.9 542181.6 0.0 13801.6
0.500 1054.1 928.9 542181.6 0.0 14376.6

Strains and curvatures at deck placement:
x/L Δεo Δψ

in/inx106 1/inx106

0.000 0.0 0.0
0.094 -1.1 1.8
0.141 -1.9 2.5 Strain at the strand level (midspan) = 113.3 in/inx106

0.200 -2.9 3.3 Elastic stress gain = 3.228 ksi
0.300 -3.9 4.4 Stress of prestress strand = 172.181 ksi
0.400 -4.4 5.0 % losses = 14.97 %
0.500 -4.6 5.2

Creep coefficients of girder, Ф(t, 136):
Model

136.01 137 139 143 164 365 10950 36500
ACI 0.006 0.086 0.153 0.230 0.402 0.684 0.912 0.930

CEB-FIP 0.032 0.128 0.178 0.229 0.344 0.596 0.868 0.878
B3 0.000 0.143 0.192 0.235 0.321 0.485 0.780 0.895

Day
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Aging coefficients of girder, χ(t, 136):
Model

136.01 137 139 143 164 365 10950 36500
ACI 0.543 0.724 0.767 0.800 0.855 0.915 0.923 0.918

CEB-FIP 0.812 0.860 0.899 0.909 0.909 0.888 0.823 0.821
B3 0.546 0.736 0.781 0.816 0.873 0.935 0.934 0.924

Creep coefficients of concrete deck slab, Ф(t, 3):
Model

3.01 4 6 10 31 232 10817 36367
ACI 0.008 0.115 0.205 0.308 0.538 0.915 1.220 1.243

CEB-FIP 0.092 0.367 0.510 0.656 0.989 1.757 2.809 2.860
B3 0.000 0.360 0.470 0.563 0.731 1.035 1.703 1.949

Aging coefficients of concrete deck slab, χ(t, 3):
Model

3.01 4 6 10 31 232 10817 36367
ACI 0.695 0.630 0.615 0.603 0.583 0.559 0.530 0.522

CEB-FIP 0.809 0.794 0.809 0.781 0.699 0.577 0.644 0.650
B3 0.731 0.701 0.694 0.688 0.679 0.663 0.612 0.595

Day

Day

Day

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000

A
gi

ng
 c

oe
ffi

ci
en

t

ACI
CEB-FIP
B3

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0 1000 2000 3000 4000

C
re

ep
 c

oe
ffi

ci
en

t

ACI
CEB-FIP
B3

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000

A
gi

ng
 c

oe
ffi

ci
en

t

ACI
CEB-FIP
B3

 



279 

 

Shrinkage of concrete deck slab, εsh(t):
Model

3.01 4 6 10 31 232 10817 36367
ACI 0.000000 0.000004 0.000012 0.000025 0.000075 0.000179 0.000221 0.000222

CEB-FIP 0.000016 0.000024 0.000031 0.000042 0.000070 0.000150 0.000502 0.000584
B3 0.000000 0.000001 0.000004 0.000009 0.000037 0.000263 0.000432 0.000432

Time-dependent effect at t = 36500 days:
Girder: Slab:
ΔФ(36500,3)  = 0.456 Ф(36367,3)  = 1.243
Δεsh(36500)  = 0.000112 χ(36367,3)  = 0.522
Ф(36500,136)  = 0.930 Ec(36367,3)  = 1985.0 ksi
χ(36500,136)  = 0.918 εsh(36367)  = 0.000222
Ec(36500,136)  = 2750.1 ksi

Strand:
λ = 0.690 Ω = 0.070
χr = 0.808

Stresses and curvatures prior to composite action
x/L

σtop σbot σtop σbot Δσtop Δσbot Δσ Δψ
0.000 0.815 0.815 -0.815 -0.815 0.000 0.000 0.000 0.000
0.094 0.772 2.079 -0.801 -1.852 -0.029 0.226 0.097 0.004
0.141 0.765 2.274 -0.808 -1.986 -0.042 0.289 0.121 0.005
0.200 0.783 2.443 -0.836 -2.094 -0.053 0.349 0.145 0.006
0.300 0.862 2.367 -0.914 -2.026 -0.052 0.341 0.142 0.006
0.400 0.910 2.321 -0.961 -1.984 -0.051 0.336 0.140 0.006
0.500 0.925 2.306 -0.976 -1.971 -0.051 0.335 0.139 0.006

Section Properties at t = 36500 days when composite action starts (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 7.344 166.2 3760.0 76.1 1722.1 38965.5
Deck 1203 -44072 1622185 868 -31810 1170846

Rebars 9.41 -331.2 11655.9 99.2 -3492.7 122911.2
2056 -33581 1853885

Note : neglected the duration of 3-day concrete deck hardening

Properties of area Properties of transformed area
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Time-dependent restrained forces at t = 36500 days (ΔN and ΔM):
x/L

ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM
0.000 0.0 0.0 842.3 -19435.5 0.0 0.0 842.3 -19435.5
0.094 257.9 2033.7 842.3 -19435.5 -15.5 -333.4 1084.7 -17735.3
0.141 297.0 1649.6 842.3 -19435.5 -18.1 -404.7 1121.2 -18190.7
0.200 336.2 1009.3 842.3 -19435.5 -20.7 -467.5 1157.8 -18893.7
0.300 340.6 -953.2 842.3 -19435.5 -20.7 -467.5 1162.2 -20856.2
0.400 343.2 -2130.7 842.3 -19435.5 -20.7 -467.5 1164.9 -22033.8
0.500 344.1 -2523.3 842.3 -19435.5 -20.7 -467.5 1165.7 -22426.3

Strains and curvatures at t = 36500 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -130.5 1.4
0.094 -195.5 -0.1
0.141 -200.7 -0.1 Strain inc. at the strand level (mid) = -169.3 in/inx106

0.200 -204.8 0.0 Time-dependent inc. losses = -4.826 ksi
0.300 -197.0 0.5 Stress of prestress strand = 167.355 ksi
0.400 -192.3 0.8 % losses = 17.35 %
0.500 -190.7 0.9

Time-dependent strain at top fiber along the length of the girder:
x/L

136.01 137 139 143 164 365 10950 36500
0.000 0.0 -3.0 -8.8 -19.2 -57.7 -145.7 -185.1 -185.9
0.094 -0.2 -4.8 -11.8 -23.7 -65.0 -153.8 -190.1 -190.8
0.141 -0.2 -5.5 -13.1 -25.5 -68.1 -158.7 -196.1 -196.9
0.200 -0.3 -6.2 -14.5 -27.6 -71.6 -164.4 -203.7 -204.6
0.300 -0.3 -7.3 -16.3 -30.3 -76.3 -173.3 -217.0 -218.3
0.400 -0.4 -7.9 -17.4 -31.9 -79.2 -178.7 -225.1 -226.6
0.500 -0.4 -8.1 -17.7 -32.5 -80.1 -180.5 -227.7 -229.3

Time-dependent strain at bottom fiber along the length of the girder:
x/L

136.01 137 139 143 164 365 10950 36500
0.000 0.0 0.6 1.8 3.8 8.9 -34.1 -85.7 -87.2
0.094 0.2 3.5 6.6 10.2 15.9 -65.5 -191.9 -199.2
0.141 0.3 4.7 8.6 13.2 20.4 -63.1 -195.9 -203.7
0.200 0.4 5.9 10.8 16.3 25.4 -59.1 -196.8 -204.9
0.300 0.5 7.7 13.9 21.0 33.7 -43.2 -172.8 -180.2
0.400 0.6 8.8 15.8 23.9 38.8 -33.6 -158.4 -165.5
0.500 0.6 9.1 16.4 24.8 40.4 -30.5 -153.6 -160.5

Creep Shrinkage Relaxation Total

Day

Day
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

136 136.01 137 139 143 164 365 10950 36500
0.0 0.2 1.6 1.5 -0.3 -12.5 -96.3 -186.1 -190.7
0.0 -2.2 -1.5 -2.6 -5.2 -17.8 -125.2 -431.1 -462.4
0.0 0.0 3.7 3.7 2.2 -9.6 -133.1 -284.8 -333.5

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

136 136.01 137 139 143 164 365 10950 36500
0.0 0.0 0.2 0.5 0.8 1.7 2.1 1.0 0.9
0.0 0.3 0.6 0.7 0.9 1.3 0.6 0.4 1.0
0.0 0.0 0.3 0.5 0.6 1.0 2.4 1.8 0.6

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

136 136.01 137 139 143 164 365 10950 36500
172.2 172.2 172.4 172.5 172.7 172.9 170.8 167.5 167.4
171.0 171.1 171.3 171.4 171.5 171.3 167.9 159.0 158.5
169.7 169.7 170.0 170.1 170.2 170.1 167.5 162.7 160.6

% prestress losses using ACI, CEB-FIP, and B3 respectively

136 136.01 137 139 143 164 365 10950 36500
15.0 15.0 14.9 14.8 14.7 14.6 15.7 17.3 17.4
15.6 15.5 15.4 15.4 15.3 15.4 17.1 21.5 21.7
16.2 16.2 16.0 16.0 16.0 16.0 17.3 19.6 20.7
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Three samples of time-dependent strains with respect to the time-line (139, 365, 

and 36,500 days) at the top fiber of interior girders are shown in Figure B-5. 

Three samples of time-dependent strains with respect to the time-line (139, 365, and 

36,500 days) at the bottom fiber of interior girders are shown in Figure B-6. 
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Figure B-5: Time-Dependent Strains at Top Fiber (Bridge 203 – Span 2 – Int. Girder) 
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Figure B-6: Time-Dependent Strains at Bottom Fiber (Bridge 203 – Span 2 – Int. Girder)
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Exterior Girder 

115.75

8.5 + 0.5
(for wt. calc)

40.893 35.19
31.043

E.N.A. (Girder)

22.627
31.957

Span = 1020 in
9.33

Concrete properties: Prestress strand properties:
Girder:

A = 1013 in2 A = 0.153 in2

I = 521162.6 in4 No. = 48
Ec(3) = 4628.4 ksi Jacking = 30.982 k/strand
Ec(28) = 5098.2 ksi Eps = 28500 ksi

Slab:
Ec(3) = 3272.8 ksi As-slab = 9.412 in2

Ec(28) = 3605.0 ksi Es = 29000 ksi

Section Properties at t = 3 days (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 7.344 166.2 3760.0 45.2 1023.2 23152.7

1058.2 1023.2 544315.3

Relaxation loss from t = 0 to 3 days:
ΔfRE = -2.664 ksi
fpi = 199.833 ksi

Applied forces at transfer:
x/L e No. of A B I N M

(in) strands (kips) (kips-in)
0.000 0.000 0 1013.0 0.0 521162.6 0.0 0.0
0.094 21.517 36 1046.9 729.8 536865.2 -1100.7 -19783.3
0.141 22.387 42 1052.6 885.8 540993.7 -1284.1 -23201.5
0.200 22.627 48 1058.2 1023.2 544315.3 -1467.6 -25887.8
0.300 22.627 48 1058.2 1023.2 544315.3 -1467.6 -23600.7
0.400 22.627 48 1058.2 1023.2 544315.3 -1467.6 -22228.4
0.500 22.627 48 1058.2 1023.2 544315.3 -1467.6 -21770.9

Properties of area Properties of transformed area

 



284 

 

Strains and curvatures at transfer:
x/L εo ψ

in/inx106 1/inx106

0.000 0.0 0.0
0.094 -221.8 -7.7
0.141 -256.1 -8.8 Strain at the strand level (midspan) = -474.9 in/inx106

0.200 -290.2 -9.7 Elastic shortening loss = -13.536 ksi
0.300 -291.1 -8.8 Stress of prestress strand = 186.297 ksi
0.400 -291.6 -8.3 % initial loss = 8.00 %
0.500 -291.8 -8.1

Creep coefficients, Ф(t, 3):
Model

3.01 4 7 28 136 365 10950 36500
AASHTO 0.003 0.050 0.107 0.284 0.666 0.959 1.425 1.460

ACI 0.009 0.126 0.259 0.565 0.904 1.072 1.334 1.359
CEB-FIP 0.070 0.280 0.423 0.725 1.136 1.405 1.820 1.839

B3 0.000 0.362 0.505 0.728 0.976 1.131 1.722 1.967

Shrinkage, εsh(t):
Model

3.01 4 7 28 136 365 10950 36500
AASHTO 0.000007 0.000010 0.000017 0.000062 0.000191 0.000283 0.000388 0.000391

ACI 0.000000 0.000007 0.000026 0.000120 0.000272 0.000334 0.000383 0.000384
CEB-FIP 0.000034 0.000047 0.000066 0.000123 0.000213 0.000283 0.000503 0.000523

B3 0.000000 0.000004 0.000014 0.000087 0.000343 0.000430 0.000432 0.000432

Day

Day

0.0

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400

Day

C
re

ep
 c

oe
ffi

ci
en

t

AASHTO
ACI
CEB-FIP
B3

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0 100 200 300 400

Day

S
hr

in
ka

ge
 s

tra
in

AASHTO
ACI
CEB-FIP
B3

 



285 

 

Aging coefficients, χ(t, 3):
Model

3.01 4 7 28 136 365 10950 36500
AASHTO N/A N/A N/A N/A N/A N/A N/A N/A

ACI 0.710 0.658 0.642 0.621 0.603 0.594 0.567 0.558
CEB-FIP 0.808 0.777 0.769 0.648 0.562 0.535 0.477 0.474

B3 0.731 0.702 0.693 0.682 0.670 0.660 0.614 0.597

Use engineering recommendation model: ACI

Time-dependent restrained forces at t = 136 days (ΔN and ΔM):
Ф(136,3)  = 0.904 χ(136,3)  = 0.603
Ec(136,3)  = 2996.3 ksi (Age-adjusted elastic modulus)
εsh(136)  = 0.000272 λ = 0.690
Ω = 0.080 χr = 0.783
A (mid) = 1082.9 in2 B (mid) = 1580.6 in3

I (mid) = 556927 in4

x/L
ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM

0.000 0.0 0.0 826.0 0.0 0.0 0.0 826.0 0.0
0.094 608.3 10808.2 826.0 0.0 -10.2 -220.5 1424.1 10587.7
0.141 702.5 12482.3 826.0 0.0 -12.0 -267.6 1516.6 12214.7
0.200 796.0 13729.0 826.0 0.0 -13.7 -309.2 1608.3 13419.9
0.300 798.4 12445.7 826.0 0.0 -13.7 -309.2 1610.7 12136.6
0.400 799.8 11675.8 826.0 0.0 -13.7 -309.2 1612.2 11366.6
0.500 800.3 11419.1 826.0 0.0 -13.7 -309.2 1612.7 11110.0

Strains and curvatures at t = 136 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -272.1 0.0
0.094 -440.2 -5.6
0.141 -463.3 -6.2 Strain inc. at the strand level (mid) = -608.6 in/inx106

0.200 -486.0 -6.7 Time-dependent inc. losses = -17.344 ksi
0.300 -487.9 -5.9 Stress of prestress strand = 168.953 ksi
0.400 -489.0 -5.4 % losses = 16.57 %
0.500 -489.4 -5.3
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 136 365 10950 36500
-291.8 -294.2 -332.2 -385.5 -553.7 -781.2 -879.7 -986.0 -992.4
-288.0 -339.6 -406.9 -461.6 -591.2 -777.0 -907.9 -1211.0 -1233.4
-291.8 -291.8 -391.8 -438.7 -562.9 -863.5 -981.3 -1119.9 -1175.8

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 136 365 10950 36500
-8.1 -8.2 -9.0 -9.8 -11.6 -13.4 -14.2 -15.5 -15.6
-8.0 -8.4 -9.8 -10.7 -12.5 -14.8 -16.2 -18.0 -18.0
-8.1 -8.1 -10.6 -11.5 -12.8 -13.5 -14.2 -17.3 -18.6

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 136 365 10950 36500
186.3 186.2 184.6 182.5 176.5 169.0 165.6 161.8 161.5
186.5 184.7 181.9 179.8 174.9 168.1 163.5 153.7 153.1
186.3 186.3 181.8 179.9 175.6 166.5 162.7 156.7 154.3

% prestress losses using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 136 365 10950 36500
8.0 8.1 8.8 9.9 12.8 16.6 18.2 20.1 20.2
7.9 8.8 10.2 11.2 13.6 17.0 19.3 24.1 24.4
8.0 8.0 10.2 11.2 13.3 17.8 19.6 22.6 23.8
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Effect of concrete deck placed at t = 136 days

Section Properties at t = 136 days when deck is not hardened yet (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 7.344 166.2 3760.0 41.1 928.9 21019.0

1054.1 928.9 542181.6

Applied forces due to concrete deck placement:
x/L A B I ΔN ΔM

(kips) (kips-in)
0.000 1013.0 0.0 521162.6 0.0 0.0
0.094 1043.8 662.5 535418.1 0.0 4010.7
0.141 1048.9 804.2 539166.1 0.0 5703.6
0.200 1054.1 928.9 542181.6 0.0 7526.6
0.300 1054.1 928.9 542181.6 0.0 9878.7
0.400 1054.1 928.9 542181.6 0.0 11290.0
0.500 1054.1 928.9 542181.6 0.0 11760.4

Strains and curvatures at deck placement:
x/L Δεo Δψ

in/inx106 1/inx106

0.000 0.0 0.0
0.094 -0.9 1.5
0.141 -1.6 2.1 Strain at the strand level (midspan) = 92.7 in/inx106

0.200 -2.4 2.7 Elastic stress gain = 2.641 ksi
0.300 -3.2 3.6 Stress of prestress strand = 171.594 ksi
0.400 -3.6 4.1 % losses = 15.26 %
0.500 -3.8 4.3

Creep coefficients of girder, Ф(t, 136):
Model

136.01 137 139 143 164 365 10950 36500
ACI 0.006 0.086 0.153 0.230 0.402 0.684 0.912 0.930

CEB-FIP 0.032 0.128 0.178 0.229 0.344 0.596 0.868 0.878
B3 0.000 0.143 0.192 0.235 0.321 0.485 0.780 0.895

Day
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Aging coefficients of girder, χ(t, 136):
Model

136.01 137 139 143 164 365 10950 36500
ACI 0.543 0.724 0.767 0.800 0.855 0.915 0.923 0.918

CEB-FIP 0.812 0.860 0.899 0.909 0.909 0.888 0.823 0.821
B3 0.546 0.736 0.781 0.816 0.873 0.935 0.934 0.924

Creep coefficients of concrete deck slab, Ф(t, 3):
Model

3.01 4 6 10 31 232 10817 36367
ACI 0.008 0.115 0.205 0.308 0.538 0.915 1.220 1.243

CEB-FIP 0.092 0.367 0.510 0.656 0.989 1.757 2.809 2.860
B3 0.000 0.360 0.470 0.563 0.731 1.035 1.703 1.949

Aging coefficients of concrete deck slab, χ(t, 3):
Model

3.01 4 6 10 31 232 10817 36367
ACI 0.695 0.630 0.615 0.603 0.583 0.559 0.530 0.522

CEB-FIP 0.809 0.794 0.809 0.781 0.699 0.577 0.644 0.650
B3 0.731 0.701 0.694 0.688 0.679 0.663 0.612 0.595
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Shrinkage of concrete deck slab, εsh(t):
Model

3.01 4 6 10 31 232 10817 36367
ACI 0.000000 0.000004 0.000012 0.000025 0.000075 0.000179 0.000221 0.000222

CEB-FIP 0.000016 0.000024 0.000031 0.000042 0.000070 0.000150 0.000502 0.000584
B3 0.000000 0.000001 0.000004 0.000009 0.000037 0.000263 0.000432 0.000432

Time-dependent effect at t = 36500 days:
Girder: Slab:
ΔФ(36500,3)  = 0.456 Ф(36367,3)  = 1.243
Δεsh(36500)  = 0.000112 χ(36367,3)  = 0.522
Ф(36500,136)  = 0.930 Ec(36367,3)  = 1985.0 ksi
χ(36500,136)  = 0.918 εsh(36367)  = 0.000222
Ec(36500,136)  = 2750.1 ksi

Strand:
λ = 0.690 Ω = 0.075
χr = 0.795

Stresses and curvatures prior to composite action
x/L

σtop σbot σtop σbot Δσtop Δσbot Δσ Δψ
0.000 0.815 0.815 -0.815 -0.815 0.000 0.000 0.000 0.000
0.094 0.772 2.079 -0.801 -1.852 -0.029 0.226 0.097 0.004
0.141 0.765 2.274 -0.808 -1.986 -0.042 0.289 0.121 0.005
0.200 0.783 2.443 -0.836 -2.094 -0.053 0.349 0.145 0.006
0.300 0.862 2.367 -0.914 -2.026 -0.052 0.341 0.142 0.006
0.400 0.910 2.321 -0.961 -1.984 -0.051 0.336 0.140 0.006
0.500 0.925 2.306 -0.976 -1.971 -0.051 0.335 0.139 0.006

Section Properties at t = 36500 days when composite action starts (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 7.344 166.2 3760.0 76.1 1722.1 38965.5
Deck 984 -36052 1326982 710 -26021 957777

Rebars 9.41 -331.2 11655.9 99.2 -3492.7 122911.2
1898 -27792 1640816

Note : neglected the duration of 3-day concrete deck hardening
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Time-dependent restrained forces at t = 36500 days (ΔN and ΔM):
x/L

ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM
0.000 0.0 0.0 745.8 -15898.7 0.0 0.0 745.8 -15898.7
0.094 257.4 2469.7 745.8 -15898.7 -15.3 -328.2 987.9 -13757.2
0.141 296.1 2265.6 745.8 -15898.7 -17.8 -398.4 1024.1 -14031.5
0.200 334.8 1818.1 745.8 -15898.7 -20.3 -460.2 1060.3 -14540.8
0.300 338.7 108.2 745.8 -15898.7 -20.3 -460.2 1064.2 -16250.6
0.400 341.1 -917.7 745.8 -15898.7 -20.3 -460.2 1066.6 -17276.5
0.500 341.9 -1259.6 745.8 -15898.7 -20.3 -460.2 1067.4 -17618.5

Strains and curvatures at t = 36500 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -128.8 1.2
0.094 -196.2 -0.3
0.141 -202.3 -0.3 Strain inc. at the strand level (mid) = -182.5 in/inx106

0.200 -207.3 -0.3 Time-dependent inc. losses = -5.203 ksi
0.300 -200.9 0.2 Stress of prestress strand = 166.391 ksi
0.400 -197.1 0.5 % losses = 17.83 %
0.500 -195.8 0.6

Time-dependent strain at top fiber along the length of the girder:
x/L

136.01 137 139 143 164 365 10950 36500
0.000 0.0 -2.9 -8.3 -18.1 -54.4 -139.4 -178.4 -179.3
0.094 -0.1 -4.5 -11.1 -22.2 -61.1 -146.3 -181.8 -182.5
0.141 -0.2 -5.1 -12.2 -23.9 -64.0 -150.9 -187.4 -188.1
0.200 -0.2 -5.8 -13.5 -25.8 -67.2 -156.2 -194.6 -195.5
0.300 -0.3 -6.8 -15.2 -28.3 -71.6 -164.8 -207.7 -209.0
0.400 -0.3 -7.3 -16.2 -29.8 -74.3 -170.0 -215.6 -217.1
0.500 -0.4 -7.5 -16.5 -30.4 -75.2 -171.7 -218.3 -219.9

Time-dependent strain at bottom fiber along the length of the girder:
x/L

136.01 137 139 143 164 365 10950 36500
0.000 0.0 0.6 1.6 3.4 7.8 -36.1 -87.8 -89.3
0.094 0.2 2.9 5.5 8.5 12.5 -71.5 -199.4 -206.9
0.141 0.3 3.9 7.2 10.9 16.2 -70.5 -205.3 -213.3
0.200 0.3 5.0 9.0 13.5 20.2 -68.1 -208.2 -216.5
0.300 0.4 6.4 11.6 17.5 27.3 -54.2 -186.9 -194.6
0.400 0.5 7.3 13.2 19.9 31.5 -46.0 -174.2 -181.4
0.500 0.5 7.6 13.8 20.7 32.9 -43.2 -169.9 -177.1

Day

Day

Creep Shrinkage Relaxation Total
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

136 136.01 137 139 143 164 365 10950 36500
0.0 0.1 1.0 0.5 -1.7 -14.5 -99.6 -191.1 -195.8
0.0 -2.2 -2.0 -3.4 -6.1 -19.2 -127.7 -432.6 -463.1
0.0 0.0 2.6 2.4 0.7 -11.5 -133.9 -285.5 -335.0

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

136 136.01 137 139 143 164 365 10950 36500
0.0 0.0 0.2 0.4 0.7 1.5 1.8 0.7 0.6
0.0 0.3 0.5 0.7 0.8 1.1 0.4 -0.1 0.4
0.0 0.0 0.3 0.4 0.5 0.8 2.1 1.2 0.0

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

136 136.01 137 139 143 164 365 10950 36500
171.6 171.6 171.8 171.9 172.0 172.1 169.9 166.6 166.4
170.5 170.6 170.8 170.8 170.9 170.7 167.1 158.1 157.6
169.1 169.1 169.4 169.5 169.5 169.4 166.7 161.8 159.6

% prestress losses using ACI, CEB-FIP, and B3 respectively

136 136.01 137 139 143 164 365 10950 36500
15.3 15.3 15.2 15.1 15.1 15.0 16.1 17.7 17.8
15.8 15.8 15.7 15.6 15.6 15.7 17.5 21.9 22.2
16.5 16.5 16.3 16.3 16.3 16.4 17.7 20.1 21.2
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Three samples of time-dependent strains with respect to the time-line (139, 365, 

and 36,500 days) at the top fiber of interior girders are shown in Figure Figure B-7. 

Three samples of time-dependent strains with respect to the time-line (139, 365, and 

36,500 days) at the bottom fiber of interior girders are shown in Figure B-8. 
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Figure B-7: Time-Dependent Strains at Top Fiber (Bridge 203 – Span 2 – Ext. Girder) 
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Figure B-8: Time-Dependent Strains at Bottom Fiber (Bridge 203 – Span 2 – Ext. Girder)
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B.1.3 Span 3 

Interior Girder 

141.5

8.5 + 0.5
(for wt. calc)

40.893 35.92
31.043

E.N.A. (Girder)

23.227
31.957

Span = 426 in
8.73

Concrete properties: Prestress strand properties:
Girder:

A = 1013 in2 A = 0.153 in2

I = 521162.6 in4 No. = 30
Ec(3) = 4628.4 ksi Jacking = 30.982 k/strand
Ec(28) = 5098.2 ksi Eps = 28500 ksi

Slab:
Ec(3) = 3272.8 ksi As-slab = 20.764 in2

Ec(28) = 3605.0 ksi Es = 29000 ksi

Section Properties at t = 3 days (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.59 106.6 2476.3 28.3 656.5 15248.0

1041.3 656.5 536410.6

Relaxation loss from t = 0 to 3 days:
ΔfRE = -2.664 ksi
fpi = 199.833 ksi

Applied forces at transfer:
x/L e No. of A B I N M

(in) strands (kips) (kips-in)
0.000 0.000 0 1013.0 0.0 521162.6 0.0 0.0
0.100 22.287 24 1035.6 503.9 532393.7 -733.8 -15635.8
0.225 22.287 24 1035.6 503.9 532393.7 -733.8 -14961.0
0.275 23.227 30 1041.3 656.5 536410.6 -917.2 -19713.8
0.300 23.227 30 1041.3 656.5 536410.6 -917.2 -19629.0
0.400 23.227 30 1041.3 656.5 536410.6 -917.2 -19389.6
0.500 23.227 30 1041.3 656.5 536410.6 -917.2 -19309.8

Properties of area Properties of transformed area
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Strains and curvatures at transfer:
x/L εo ψ

in/inx106 1/inx106

0.000 0.0 0.0
0.100 -150.1 -6.2
0.225 -150.2 -5.9 Strain at the strand level (midspan) = -360.9 in/inx106

0.275 -185.5 -7.7 Elastic shortening loss = -10.287 ksi
0.300 -185.5 -7.7 Stress of prestress strand = 189.546 ksi
0.400 -185.5 -7.6 % initial loss = 6.40 %
0.500 -185.6 -7.6

Creep coefficients, Ф(t, 3):
Model

3.01 4 7 28 115 365 10950 36500
AASHTO 0.003 0.050 0.107 0.284 0.616 0.959 1.425 1.460

ACI 0.009 0.126 0.259 0.565 0.871 1.072 1.334 1.359
CEB-FIP 0.070 0.280 0.423 0.725 1.089 1.405 1.820 1.839

B3 0.000 0.362 0.505 0.728 0.949 1.131 1.722 1.967

Shrinkage, εsh(t):
Model

3.01 4 7 28 115 365 10950 36500
AASHTO 0.000007 0.000010 0.000017 0.000062 0.000174 0.000283 0.000388 0.000391

ACI 0.000000 0.000007 0.000026 0.000120 0.000258 0.000334 0.000383 0.000384
CEB-FIP 0.000034 0.000047 0.000066 0.000123 0.000202 0.000283 0.000503 0.000523

B3 0.000000 0.000004 0.000014 0.000087 0.000312 0.000430 0.000432 0.000432
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Aging coefficients, χ(t, 3):
Model

3.01 4 7 28 115 365 10950 36500
AASHTO N/A N/A N/A N/A N/A N/A N/A N/A

ACI 0.710 0.658 0.642 0.621 0.604 0.594 0.567 0.558
CEB-FIP 0.808 0.777 0.769 0.648 0.573 0.537 0.478 0.475

B3 0.731 0.702 0.693 0.682 0.672 0.660 0.614 0.597

Use engineering recommendation model: ACI

Time-dependent restrained forces at t = 115 days (ΔN and ΔM):
Ф(115,3)  = 0.871 χ(115,3)  = 0.604
Ec(115,3)  = 3032.5 ksi (Age-adjusted elastic modulus)
εsh(115)  = 0.000258 λ = 0.702
Ω = 0.066 χr = 0.821
A (mid) = 1056.1 in2 B (mid) = 1002.0 in3

I (mid) = 544435 in4

x/L
ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM

0.000 0.0 0.0 792.5 0.0 0.0 0.0 792.5 0.0
0.100 401.4 8536.5 792.5 0.0 -6.8 -152.5 1187.1 8384.0
0.225 401.8 8159.5 792.5 0.0 -6.8 -152.5 1187.5 8007.0
0.275 496.1 10614.6 792.5 0.0 -8.6 -198.7 1280.0 10415.9
0.300 496.1 10567.6 792.5 0.0 -8.6 -198.7 1280.1 10368.9
0.400 496.3 10434.8 792.5 0.0 -8.6 -198.7 1280.3 10236.1
0.500 496.3 10390.6 792.5 0.0 -8.6 -198.7 1280.3 10191.9

Strains and curvatures at t = 115 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -258.0 0.0
0.100 -370.3 -4.6
0.225 -370.6 -4.4 Strain inc. at the strand level (mid) = -521.1 in/inx106

0.275 -394.4 -5.6 Time-dependent inc. losses = -14.852 ksi
0.300 -394.4 -5.6 Stress of prestress strand = 174.694 ksi
0.400 -394.6 -5.5 % losses = 13.73 %
0.500 -394.6 -5.4

Relaxation TotalCreep
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 115 365 10950 36500
-185.6 -187.2 -214.1 -255.4 -397.8 -580.2 -684.8 -771.2 -775.8
-183.1 -228.5 -276.8 -319.0 -423.3 -557.8 -685.7 -959.7 -981.4
-185.6 -185.6 -251.7 -285.8 -392.1 -643.3 -784.6 -876.4 -913.2

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 115 365 10950 36500
-7.6 -7.6 -8.4 -9.3 -11.2 -13.0 -14.1 -15.6 -15.7
-7.5 -7.9 -9.3 -10.2 -12.1 -14.4 -16.2 -18.3 -18.4
-7.6 -7.6 -10.1 -11.0 -12.4 -13.4 -14.3 -17.8 -19.3

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 115 365 10950 36500
189.5 189.5 188.2 186.4 181.1 174.7 171.0 167.5 167.3
189.7 188.1 185.8 184.0 179.7 174.4 169.6 160.3 159.7
189.5 189.5 186.0 184.4 180.5 172.7 168.0 163.1 161.1

% prestress losses using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 115 365 10950 36500
6.4 6.4 7.1 8.0 10.6 13.7 15.6 17.3 17.4
6.3 7.1 8.3 9.2 11.2 13.9 16.3 20.8 21.1
6.4 6.4 8.2 8.9 10.9 14.7 17.0 19.5 20.5
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Effect of concrete deck placed at t = 115 days

Section Properties at t = 115 days when deck is not hardened yet (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.59 106.6 2476.3 25.7 596.0 13842.8

1038.7 596.0 535005.4

Applied forces due to concrete deck placement:
x/L A B I ΔN ΔM

(kips) (kips-in)
0.000 1013.0 0.0 521162.6 0.0 0.0
0.100 1033.5 457.5 531358.6 0.0 902.8
0.225 1033.5 457.5 531358.6 0.0 1751.1
0.275 1038.7 596.0 535005.4 0.0 1999.9
0.300 1038.7 596.0 535005.4 0.0 2106.5
0.400 1038.7 596.0 535005.4 0.0 2407.4
0.500 1038.7 596.0 535005.4 0.0 2507.7

Strains and curvatures at deck placement:
x/L Δεo Δψ

in/inx106 1/inx106

0.000 0.0 0.0
0.100 -0.1 0.3
0.225 -0.3 0.6 Strain at the strand level (midspan) = 20.8 in/inx106

0.275 -0.4 0.7 Elastic stress gain = 0.594 ksi
0.300 -0.4 0.8 Stress of prestress strand = 175.288 ksi
0.400 -0.5 0.9 % losses = 13.44 %
0.500 -0.5 0.9

Creep coefficients of girder, Ф(t, 115):
Model

115.01 116 118 122 143 365 10950 36500
ACI 0.006 0.087 0.156 0.234 0.409 0.705 0.927 0.945

CEB-FIP 0.033 0.132 0.184 0.237 0.355 0.627 0.896 0.907
B3 0.000 0.152 0.203 0.249 0.339 0.521 0.827 0.949

Day

Properties of area Properties of transformed area
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Aging coefficients of girder, χ(t, 115):
Model

115.01 116 118 122 143 365 10950 36500
ACI 0.547 0.725 0.768 0.801 0.854 0.914 0.919 0.913

CEB-FIP 0.812 0.860 0.899 0.908 0.908 0.878 0.816 0.814
B3 0.549 0.737 0.782 0.816 0.873 0.934 0.931 0.921

Creep coefficients of concrete deck slab, Ф(t, 3):
Model

3.01 4 6 10 31 253 10838 36388
ACI 0.008 0.115 0.205 0.308 0.538 0.928 1.220 1.243

CEB-FIP 0.092 0.367 0.510 0.656 0.989 1.794 2.809 2.860
B3 0.000 0.360 0.470 0.563 0.731 1.049 1.703 1.950

Aging coefficients of concrete deck slab, χ(t, 3):
Model

3.01 4 6 10 31 253 10838 36388
ACI 0.695 0.630 0.615 0.603 0.583 0.558 0.530 0.522

CEB-FIP 0.809 0.794 0.809 0.781 0.699 0.571 0.644 0.650
B3 0.731 0.701 0.694 0.688 0.679 0.662 0.612 0.595
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Shrinkage of concrete deck slab, εsh(t):
Model

3.01 4 6 10 31 253 10838 36388
ACI 0.000000 0.000004 0.000012 0.000025 0.000075 0.000182 0.000221 0.000222

CEB-FIP 0.000016 0.000024 0.000031 0.000042 0.000070 0.000155 0.000502 0.000584
B3 0.000000 0.000001 0.000004 0.000009 0.000037 0.000280 0.000432 0.000432

Time-dependent effect at t = 36500 days:
Girder: Slab:
ΔФ(36500,3)  = 0.488 Ф(36388,3)  = 1.243
Δεsh(36500)  = 0.000126 χ(36388,3)  = 0.522
Ф(36500,115)  = 0.945 Ec(36388,3)  = 1985.0 ksi
χ(36500,115)  = 0.913 εsh(36388)  = 0.000222
Ec(36500,115)  = 2736.7 ksi

Strand:
λ = 0.702 Ω = 0.078
χr = 0.792

Stresses and curvatures prior to composite action
x/L

σtop σbot σtop σbot Δσtop Δσbot Δσ Δψ
0.000 0.782 0.782 -0.782 -0.782 0.000 0.000 0.000 0.000
0.100 0.670 1.702 -0.689 -1.569 -0.019 0.133 0.056 0.002
0.225 0.693 1.679 -0.712 -1.548 -0.019 0.131 0.055 0.002
0.275 0.640 1.923 -0.670 -1.737 -0.031 0.186 0.076 0.003
0.300 0.643 1.920 -0.673 -1.734 -0.031 0.186 0.076 0.003
0.400 0.651 1.912 -0.681 -1.727 -0.030 0.185 0.076 0.003
0.500 0.653 1.909 -0.684 -1.724 -0.030 0.185 0.076 0.003

Section Properties at t = 36500 days when composite action starts (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.59 106.6 2476.3 47.8 1110.3 25788.1
Deck 1203 -44072 1622185 872 -31966 1176597

Rebars 20.76 -745.9 26793.7 220.0 -7904.0 283926.7
2153 -38760 2007474

Note : neglected the duration of 3-day concrete deck hardening

Properties of area Properties of transformed area
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Time-dependent restrained forces at t = 36500 days (ΔN and ΔM):
x/L

ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM
0.000 0.0 0.0 880.0 -19435.6 0.0 0.0 880.0 -19435.6
0.100 187.3 3509.2 880.0 -19435.6 -10.4 -232.5 1056.9 -16158.8
0.225 188.0 2899.5 880.0 -19435.6 -10.4 -232.5 1057.6 -16768.5
0.275 229.9 3867.1 880.0 -19435.6 -13.0 -302.8 1096.9 -15871.3
0.300 230.1 3791.2 880.0 -19435.6 -13.0 -302.8 1097.0 -15947.3
0.400 230.4 3576.7 880.0 -19435.6 -13.0 -302.8 1097.4 -16161.7
0.500 230.5 3505.2 880.0 -19435.6 -13.0 -302.8 1097.5 -16233.2

Strains and curvatures at t = 36500 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -137.1 0.8
0.100 -196.0 -0.9
0.225 -193.1 -0.7 Strain inc. at the strand level (mid) = -226.8 in/inx106

0.275 -205.6 -1.1 Time-dependent inc. losses = -6.463 ksi
0.300 -205.3 -1.1 Stress of prestress strand = 168.826 ksi
0.400 -204.3 -1.0 % losses = 16.63 %
0.500 -203.9 -1.0

Time-dependent strain at top fiber along the length of the girder:
x/L

115.01 116 118 122 143 365 10950 36500
0.000 0.0 -2.9 -8.3 -18.0 -53.8 -137.7 -170.1 -170.9
0.100 -0.1 -3.2 -8.8 -18.7 -54.5 -134.2 -160.1 -160.4
0.225 -0.1 -3.4 -9.3 -19.4 -55.9 -136.8 -164.0 -164.3
0.275 -0.1 -3.5 -9.4 -19.6 -56.0 -135.8 -161.2 -161.4
0.300 -0.1 -3.6 -9.5 -19.7 -56.2 -136.1 -161.7 -161.9
0.400 -0.1 -3.7 -9.6 -20.0 -56.7 -137.1 -163.0 -163.3
0.500 -0.1 -3.7 -9.7 -20.1 -56.8 -137.4 -163.5 -163.7

Time-dependent strain at bottom fiber along the length of the girder:
x/L

115.01 116 118 122 143 365 10950 36500
0.000 0.0 0.5 1.5 3.1 6.3 -55.4 -109.2 -110.7
0.100 0.0 0.9 1.9 3.1 3.0 -101.2 -217.3 -223.9
0.225 0.1 1.5 2.9 4.6 5.8 -95.8 -209.2 -215.5
0.275 0.1 1.6 3.0 4.6 4.9 -106.0 -232.8 -240.2
0.300 0.1 1.6 3.1 4.8 5.3 -105.3 -231.8 -239.1
0.400 0.1 1.8 3.5 5.3 6.2 -103.4 -229.0 -236.3
0.500 0.1 1.9 3.6 5.5 6.5 -102.8 -228.1 -235.3

Creep Shrinkage Relaxation Total

Day

Day
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

115 115.01 116 118 122 143 365 10950 36500
0.0 0.0 -0.6 -2.2 -5.7 -21.3 -118.0 -199.7 -203.9
0.0 -2.7 -4.0 -6.0 -9.2 -23.0 -136.7 -417.9 -447.3
0.0 0.0 0.2 -0.9 -3.5 -17.7 -162.8 -281.8 -319.6

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

115 115.01 116 118 122 143 365 10950 36500
0.0 0.0 0.1 0.2 0.4 0.9 0.5 -0.9 -1.0
0.0 0.2 0.3 0.4 0.5 0.7 -0.7 -2.0 -1.5
0.0 0.0 0.1 0.1 0.1 0.3 1.0 -0.2 -1.4

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

115 115.01 116 118 122 143 365 10950 36500
175.3 175.3 175.3 175.3 175.4 175.3 172.2 169.0 168.8
175.0 175.0 175.1 175.1 175.0 174.7 170.6 161.7 161.2
173.2 173.2 173.3 173.3 173.2 172.9 169.3 165.1 163.2

% prestress losses using ACI, CEB-FIP, and B3 respectively

115 115.01 116 118 122 143 365 10950 36500
13.4 13.4 13.4 13.4 13.4 13.5 14.9 16.5 16.6
13.6 13.6 13.5 13.5 13.6 13.7 15.7 20.1 20.4
14.4 14.4 14.4 14.4 14.4 14.6 16.4 18.5 19.4
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Three samples of time-dependent strains with respect to the time-line (118, 365, 

and 36,500 days) at the top fiber of interior girders are shown in Figure B-9. 

Three samples of time-dependent strains with respect to the time-line (118, 365, and 

36,500 days) at the bottom fiber of interior girders are shown in Figure B-10. 
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Figure B-9: Time-Dependent Strains at Top Fiber (Bridge 203 – Span 3 – Int. Girder) 
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Figure B-10: Time-Dependent Strains at Bottom Fiber 

(Bridge 203 – Span 3 – Int. Girder) 
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Exterior Girder 

115.75

8.5 + 0.5
(for wt. calc)

40.893 35.92
31.043

E.N.A. (Girder)

23.227
31.957

Span = 426 in
8.73

Concrete properties: Prestress strand properties:
Girder:

A = 1013 in2 A = 0.153 in2

I = 521162.6 in4 No. = 30
Ec(3) = 4628.4 ksi Jacking = 30.982 k/strand
Ec(28) = 5098.2 ksi Eps = 28500 ksi

Slab:
Ec(3) = 3272.8 ksi As-slab = 20.764 in2

Ec(28) = 3605.0 ksi Es = 29000 ksi

Section Properties at t = 3 days (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.59 106.6 2476.3 28.3 656.5 15248.0

1041.3 656.5 536410.6

Relaxation loss from t = 0 to 3 days:
ΔfRE = -2.664 ksi
fpi = 199.833 ksi

Applied forces at transfer:
x/L e No. of A B I N M

(in) strands (kips) (kips-in)
0.000 0.000 0 1013.0 0.0 521162.6 0.0 0.0
0.100 22.287 24 1035.6 503.9 532393.7 -733.8 -15635.8
0.225 22.287 24 1035.6 503.9 532393.7 -733.8 -14961.0
0.275 23.227 30 1041.3 656.5 536410.6 -917.2 -19713.8
0.300 23.227 30 1041.3 656.5 536410.6 -917.2 -19629.0
0.400 23.227 30 1041.3 656.5 536410.6 -917.2 -19389.6
0.500 23.227 30 1041.3 656.5 536410.6 -917.2 -19309.8

Properties of area Properties of transformed area
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Strains and curvatures at transfer:
x/L εo ψ

in/inx106 1/inx106

0.000 0.0 0.0
0.100 -150.1 -6.2
0.225 -150.2 -5.9 Strain at the strand level (midspan) = -360.9 in/inx106

0.275 -185.5 -7.7 Elastic shortening loss = -10.287 ksi
0.300 -185.5 -7.7 Stress of prestress strand = 189.546 ksi
0.400 -185.5 -7.6 % initial loss = 6.40 %
0.500 -185.6 -7.6

Creep coefficients, Ф(t, 3):
Model

3.01 4 7 28 115 365 10950 36500
AASHTO 0.003 0.050 0.107 0.284 0.616 0.959 1.425 1.460

ACI 0.009 0.126 0.259 0.565 0.871 1.072 1.334 1.359
CEB-FIP 0.070 0.280 0.423 0.725 1.089 1.405 1.820 1.839

B3 0.000 0.362 0.505 0.728 0.949 1.131 1.722 1.967

Shrinkage, εsh(t):
Model

3.01 4 7 28 115 365 10950 36500
AASHTO 0.000007 0.000010 0.000017 0.000062 0.000174 0.000283 0.000388 0.000391

ACI 0.000000 0.000007 0.000026 0.000120 0.000258 0.000334 0.000383 0.000384
CEB-FIP 0.000034 0.000047 0.000066 0.000123 0.000202 0.000283 0.000503 0.000523

B3 0.000000 0.000004 0.000014 0.000087 0.000312 0.000430 0.000432 0.000432
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Aging coefficients, χ(t, 3):
Model

3.01 4 7 28 115 365 10950 36500
AASHTO N/A N/A N/A N/A N/A N/A N/A N/A

ACI 0.710 0.658 0.642 0.621 0.604 0.594 0.567 0.558
CEB-FIP 0.808 0.777 0.769 0.648 0.573 0.537 0.478 0.475

B3 0.731 0.702 0.693 0.682 0.672 0.660 0.614 0.597

Use engineering recommendation model: ACI

Time-dependent restrained forces at t = 115 days (ΔN and ΔM):
Ф(115,3)  = 0.871 χ(115,3)  = 0.604
Ec(115,3)  = 3032.5 ksi (Age-adjusted elastic modulus)
εsh(115)  = 0.000258 λ = 0.702
Ω = 0.066 χr = 0.821
A (mid) = 1056.1 in2 B (mid) = 1002.0 in3

I (mid) = 544435 in4

x/L
ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM

0.000 0.0 0.0 792.5 0.0 0.0 0.0 792.5 0.0
0.100 401.4 8536.5 792.5 0.0 -6.8 -152.5 1187.1 8384.0
0.225 401.8 8159.5 792.5 0.0 -6.8 -152.5 1187.5 8007.0
0.275 496.1 10614.6 792.5 0.0 -8.6 -198.7 1280.0 10415.9
0.300 496.1 10567.6 792.5 0.0 -8.6 -198.7 1280.1 10368.9
0.400 496.3 10434.8 792.5 0.0 -8.6 -198.7 1280.3 10236.1
0.500 496.3 10390.6 792.5 0.0 -8.6 -198.7 1280.3 10191.9

Strains and curvatures at t = 115 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -258.0 0.0
0.100 -370.3 -4.6
0.225 -370.6 -4.4 Strain inc. at the strand level (mid) = -521.1 in/inx106

0.275 -394.4 -5.6 Time-dependent inc. losses = -14.852 ksi
0.300 -394.4 -5.6 Stress of prestress strand = 174.694 ksi
0.400 -394.6 -5.5 % losses = 13.73 %
0.500 -394.6 -5.4
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 115 365 10950 36500
-185.6 -187.2 -214.1 -255.4 -397.8 -580.2 -684.8 -771.2 -775.8
-183.1 -228.5 -276.8 -319.0 -423.3 -557.8 -685.7 -959.7 -981.4
-185.6 -185.6 -251.7 -285.8 -392.1 -643.3 -784.6 -876.4 -913.2

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 115 365 10950 36500
-7.6 -7.6 -8.4 -9.3 -11.2 -13.0 -14.1 -15.6 -15.7
-7.5 -7.9 -9.3 -10.2 -12.1 -14.4 -16.2 -18.3 -18.4
-7.6 -7.6 -10.1 -11.0 -12.4 -13.4 -14.3 -17.8 -19.3

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 115 365 10950 36500
189.5 189.5 188.2 186.4 181.1 174.7 171.0 167.5 167.3
189.7 188.1 185.8 184.0 179.7 174.4 169.6 160.3 159.7
189.5 189.5 186.0 184.4 180.5 172.7 168.0 163.1 161.1

% prestress losses using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 115 365 10950 36500
6.4 6.4 7.1 8.0 10.6 13.7 15.6 17.3 17.4
6.3 7.1 8.3 9.2 11.2 13.9 16.3 20.8 21.1
6.4 6.4 8.2 8.9 10.9 14.7 17.0 19.5 20.5
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Effect of concrete deck placed at t = 115 days

Section Properties at t = 115 days when deck is not hardened yet (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.59 106.6 2476.3 25.7 596.0 13842.8

1038.7 596.0 535005.4

Applied forces due to concrete deck placement:
x/L A B I ΔN ΔM

(kips) (kips-in)
0.000 1013.0 0.0 521162.6 0.0 0.0
0.100 1033.5 457.5 531358.6 0.0 738.5
0.225 1033.5 457.5 531358.6 0.0 1432.4
0.275 1038.7 596.0 535005.4 0.0 1636.0
0.300 1038.7 596.0 535005.4 0.0 1723.1
0.400 1038.7 596.0 535005.4 0.0 1969.3
0.500 1038.7 596.0 535005.4 0.0 2051.4

Strains and curvatures at deck placement:
x/L Δεo Δψ

in/inx106 1/inx106

0.000 0.0 0.0
0.100 -0.1 0.3
0.225 -0.2 0.5 Strain at the strand level (midspan) = 17.0 in/inx106

0.275 -0.3 0.6 Elastic stress gain = 0.486 ksi
0.300 -0.4 0.6 Stress of prestress strand = 175.180 ksi
0.400 -0.4 0.7 % losses = 13.49 %
0.500 -0.4 0.8

Creep coefficients of girder, Ф(t, 115):
Model

115.01 116 118 122 143 365 10950 36500
ACI 0.006 0.087 0.156 0.234 0.409 0.705 0.927 0.945

CEB-FIP 0.033 0.132 0.184 0.237 0.355 0.627 0.896 0.907
B3 0.000 0.152 0.203 0.249 0.339 0.521 0.827 0.949

Day
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Aging coefficients of girder, χ(t, 115):
Model

115.01 116 118 122 143 365 10950 36500
ACI 0.547 0.725 0.768 0.801 0.854 0.914 0.919 0.913

CEB-FIP 0.812 0.860 0.899 0.908 0.908 0.878 0.816 0.814
B3 0.549 0.737 0.782 0.816 0.873 0.934 0.931 0.921

Creep coefficients of concrete deck slab, Ф(t, 3):
Model

3.01 4 6 10 31 253 10838 36388
ACI 0.008 0.115 0.205 0.308 0.538 0.928 1.220 1.243

CEB-FIP 0.092 0.367 0.510 0.656 0.989 1.794 2.809 2.860
B3 0.000 0.360 0.470 0.563 0.731 1.049 1.703 1.950

Aging coefficients of concrete deck slab, χ(t, 3):
Model

3.01 4 6 10 31 253 10838 36388
ACI 0.695 0.630 0.615 0.603 0.583 0.558 0.530 0.522

CEB-FIP 0.809 0.794 0.809 0.781 0.699 0.571 0.644 0.650
B3 0.731 0.701 0.694 0.688 0.679 0.662 0.612 0.595
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Shrinkage of concrete deck slab, εsh(t):
Model

3.01 4 6 10 31 253 10838 36388
ACI 0.000000 0.000004 0.000012 0.000025 0.000075 0.000182 0.000221 0.000222

CEB-FIP 0.000016 0.000024 0.000031 0.000042 0.000070 0.000155 0.000502 0.000584
B3 0.000000 0.000001 0.000004 0.000009 0.000037 0.000280 0.000432 0.000432

Time-dependent effect at t = 36500 days:
Girder: Slab:
ΔФ(36500,3)  = 0.488 Ф(36388,3)  = 1.243
Δεsh(36500)  = 0.000126 χ(36388,3)  = 0.522
Ф(36500,115)  = 0.945 Ec(36388,3)  = 1985.0 ksi
χ(36500,115)  = 0.913 εsh(36388)  = 0.000222
Ec(36500,115)  = 2736.7 ksi

Strand:
λ = 0.702 Ω = 0.080
χr = 0.789

Stresses and curvatures prior to composite action
x/L

σtop σbot σtop σbot Δσtop Δσbot Δσ Δψ
0.000 0.782 0.782 -0.782 -0.782 0.000 0.000 0.000 0.000
0.100 0.670 1.702 -0.689 -1.569 -0.019 0.133 0.056 0.002
0.225 0.693 1.679 -0.712 -1.548 -0.019 0.131 0.055 0.002
0.275 0.640 1.923 -0.670 -1.737 -0.031 0.186 0.076 0.003
0.300 0.643 1.920 -0.673 -1.734 -0.031 0.186 0.076 0.003
0.400 0.651 1.912 -0.681 -1.727 -0.030 0.185 0.076 0.003
0.500 0.653 1.909 -0.684 -1.724 -0.030 0.185 0.076 0.003

Section Properties at t = 36500 days when composite action starts (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1013 0 521162.6 1013 0 521162.6
Strand 4.59 106.6 2476.3 47.8 1110.3 25788.1
Deck 984 -36052 1326982 714 -26149 962481

Rebars 20.76 -745.9 26793.7 220.0 -7904.0 283926.7
1994 -32943 1793359

Note : neglected the duration of 3-day concrete deck hardening
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Time-dependent restrained forces at t = 36500 days (ΔN and ΔM):
x/L

ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM
0.000 0.0 0.0 783.5 -15898.7 0.0 0.0 783.5 -15898.7
0.100 187.2 3591.0 783.5 -15898.7 -10.4 -231.7 960.3 -12539.4
0.225 187.9 3058.1 783.5 -15898.7 -10.4 -231.7 961.0 -13072.3
0.275 229.7 4047.0 783.5 -15898.7 -13.0 -301.8 1000.3 -12153.5
0.300 229.8 3980.7 783.5 -15898.7 -13.0 -301.8 1000.4 -12219.9
0.400 230.1 3793.3 783.5 -15898.7 -13.0 -301.8 1000.6 -12407.2
0.500 230.2 3730.8 783.5 -15898.7 -13.0 -301.8 1000.7 -12469.7

Strains and curvatures at t = 36500 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -135.1 0.7
0.100 -194.3 -1.0
0.225 -191.8 -0.9 Strain inc. at the strand level (mid) = -230.5 in/inx106

0.275 -204.4 -1.3 Time-dependent inc. losses = -6.570 ksi
0.300 -204.1 -1.3 Stress of prestress strand = 168.610 ksi
0.400 -203.2 -1.2 % losses = 16.73 %
0.500 -203.0 -1.2

Time-dependent strain at top fiber along the length of the girder:
x/L

115.01 116 118 122 143 365 10950 36500
0.000 0.0 -2.7 -7.7 -16.8 -50.3 -130.7 -162.3 -163.1
0.100 0.0 -2.9 -8.2 -17.4 -50.8 -126.6 -151.3 -151.5
0.225 -0.1 -3.2 -8.6 -18.1 -52.1 -129.1 -155.1 -155.4
0.275 -0.1 -3.3 -8.7 -18.2 -52.1 -127.9 -152.0 -152.1
0.300 -0.1 -3.3 -8.8 -18.3 -52.3 -128.2 -152.4 -152.6
0.400 -0.1 -3.4 -9.0 -18.6 -52.8 -129.1 -153.7 -153.9
0.500 -0.1 -3.4 -9.0 -18.7 -52.9 -129.4 -154.2 -154.4

Time-dependent strain at bottom fiber along the length of the girder:
x/L

115.01 116 118 122 143 365 10950 36500
0.000 0.0 0.5 1.3 2.7 5.2 -57.6 -111.7 -113.3
0.100 0.0 0.8 1.5 2.5 1.4 -104.4 -221.1 -227.7
0.225 0.1 1.2 2.4 3.7 3.7 -99.6 -213.9 -220.3
0.275 0.1 1.3 2.4 3.7 2.8 -110.0 -237.7 -245.2
0.300 0.1 1.3 2.5 3.8 3.1 -109.4 -236.9 -244.3
0.400 0.1 1.5 2.8 4.3 3.9 -107.8 -234.4 -241.8
0.500 0.1 1.6 2.9 4.4 4.1 -107.2 -233.6 -240.9

Day

Day

Creep Shrinkage Relaxation Total
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

115 115.01 116 118 122 143 365 10950 36500
0.0 0.0 -0.6 -2.3 -5.7 -20.9 -117.0 -198.8 -203.0
0.0 -2.6 -3.8 -5.7 -9.0 -22.5 -135.8 -414.0 -442.4
0.0 0.0 0.0 -1.2 -3.7 -17.8 -160.5 -277.4 -315.1

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

115 115.01 116 118 122 143 365 10950 36500
0.0 0.0 0.1 0.2 0.3 0.8 0.3 -1.1 -1.2
0.0 0.2 0.3 0.4 0.5 0.6 -0.8 -2.4 -2.0
0.0 0.0 0.1 0.1 0.1 0.3 0.7 -0.6 -1.8

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

115 115.01 116 118 122 143 365 10950 36500
175.2 175.2 175.2 175.2 175.2 175.1 172.0 168.8 168.6
174.9 174.9 175.0 175.0 174.9 174.6 170.4 161.5 160.9
173.1 173.1 173.2 173.2 173.1 172.8 169.1 164.8 162.9

% prestress losses using ACI, CEB-FIP, and B3 respectively

115 115.01 116 118 122 143 365 10950 36500
13.5 13.5 13.5 13.5 13.5 13.5 15.0 16.6 16.7
13.6 13.6 13.6 13.6 13.6 13.8 15.8 20.3 20.5
14.5 14.5 14.5 14.5 14.5 14.7 16.5 18.6 19.5
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Three samples of time-dependent strains with respect to the time-line (118, 365, 

and 36,500 days) at the top fiber of interior girders are shown in Figure B-11. 

Three samples of time-dependent strains with respect to the time-line (118, 365, and 

36,500 days) at the bottom fiber of interior girders are shown in Figure B-12  
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Figure B-11: Time-Dependent Strains at Top Fiber (Bridge 203 – Span 3 – Ext. Girder)
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Figure B-12: Time-Dependent Strains at Bottom Fiber  

(Bridge 203 – Span 3 – Ext. Girder) 
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B.2 Bridge 211 

Interior Girder 

133.5

8.5 + 0.5
(for wt. calc)

49.6 44.31
38.66

E.N.A. (Girder)

26.45
39.34

Span = 1368 in
12.89

Concrete properties: Prestress strand properties:
Girder:

A = 1133 in2 A = 0.153 in2

I = 898985 in4 No. = 70
Ec(3) = 4628.4 ksi Jacking = 30.98 k/strand
Ec(28) = 5098.2 ksi Eps = 28500 ksi

Slab:
Ec(3) = 3272.8 ksi As-slab = 6.12 in2

Ec(28) = 3605.0 ksi Es = 29000 ksi

Section Properties at t = 3 days (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1133 0 898985 1133 0 898985
Strand 10.71 283.3 7492.7 65.9 1744.3 46137.7

1198.9 1744.3 945122.7

Relaxation loss from t = 0 to 3 days:
ΔfRE = -2.663 ksi
fpi = 199.820 ksi

Applied forces at transfer:
x/L e No. of A B I N M

(in) strands (kips) (kips-in)
0.000 0.000 0 1133.0 0.0 898985 0.0 0.0
0.044 29.273 54 1183.9 1489.2 942580 -1650.9 -44468.0
0.088 29.516 58 1187.6 1612.8 946590 -1773.2 -44973.5
0.132 30.024 64 1193.3 1810.3 953338 -1956.6 -48230.5
0.300 26.450 70 1198.9 1744.3 945123 -2140.1 -37279.2
0.400 26.450 70 1198.9 1744.3 945123 -2140.1 -34518.3
0.500 26.450 70 1198.9 1744.3 945123 -2140.1 -33598.0

Properties of area Properties of transformed area
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Strains and curvatures at transfer:
x/L εo ψ

in/inx106 1/inx106

0.000 0.0 0.0
0.044 -289.0 -9.7
0.088 -309.4 -9.7 Strain at the strand level (midspan) = -560.3 in/inx106

0.132 -338.7 -10.3 Elastic shortening loss = -15.969 ksi
0.300 -374.3 -7.8 Stress of prestress strand = 183.852 ksi
0.400 -375.2 -7.2 % initial loss = 9.20 %
0.500 -375.5 -7.0

Creep coefficients, Ф(t, 3):
Model

3.01 4 7 28 268 365 10950 36500
AASHTO 0.003 0.051 0.109 0.289 0.878 0.965 1.429 1.463

ACI 0.009 0.126 0.259 0.566 1.027 1.074 1.337 1.363
CEB-FIP 0.071 0.281 0.425 0.727 1.327 1.408 1.822 1.840

B3 0.000 0.362 0.505 0.728 1.084 1.132 1.722 1.967

Shrinkage, εsh(t):
Model

3.01 4 7 28 268 365 10950 36500
AASHTO 0.000008 0.000010 0.000017 0.000063 0.000261 0.000287 0.000391 0.000394

ACI 0.000000 0.000007 0.000026 0.000121 0.000321 0.000336 0.000385 0.000386
CEB-FIP 0.000034 0.000047 0.000067 0.000124 0.000261 0.000285 0.000503 0.000523

B3 0.000000 0.000004 0.000014 0.000089 0.000422 0.000430 0.000432 0.000432
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Aging coefficients, χ(t, 3):
Model

3.01 4 7 28 268 365 10950 36500
AASHTO N/A N/A N/A N/A N/A N/A N/A N/A

ACI 0.710 0.658 0.643 0.622 0.598 0.595 0.568 0.559
CEB-FIP 0.808 0.777 0.769 0.648 0.521 0.518 0.467 0.465

B3 0.731 0.702 0.693 0.682 0.663 0.660 0.614 0.597

Use engineering recommendation model: ACI

Time-dependent restrained forces at t = 268 days (ΔN and ΔM):
Ф(268,3)  = 1.027 χ(268,3)  = 0.598
Ec(268,3)  = 2868.2 ksi (Age-adjusted elastic modulus)
εsh(268)  = 0.000321 λ = 0.681
Ω = 0.101 χr = 0.732
A (mid) = 1239.4 in2 B (mid) = 2814.9 in3

I (mid) = 973438 in4

x/L
ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM

0.000 0.0 0.0 1041.6 0.0 0.0 0.0 1041.6 0.0
0.044 964.3 25773.5 1041.6 0.0 -16.9 -495.0 1989.0 25278.5
0.088 1032.1 25778.2 1041.6 0.0 -18.2 -536.1 2055.5 25242.1
0.132 1129.9 27232.8 1041.6 0.0 -20.0 -601.7 2151.4 26631.1
0.300 1248.6 20731.0 1041.6 0.0 -21.9 -579.8 2268.3 20151.2
0.400 1251.7 19055.7 1041.6 0.0 -21.9 -579.8 2271.4 18476.0
0.500 1252.7 18497.3 1041.6 0.0 -21.9 -579.8 2272.4 17917.6

Strains and curvatures at t = 268 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -320.5 0.0
0.044 -555.5 -7.7
0.088 -570.9 -7.5 Strain inc. at the strand level (mid) = -750.4 in/inx106

0.132 -591.5 -7.7 Time-dependent inc. losses = -21.388 ksi
0.300 -625.8 -5.4 Stress of prestress strand = 162.464 ksi
0.400 -628.0 -4.8 % losses = 19.76 %
0.500 -628.8 -4.6
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 268 365 10950 36500
-375.5 -378.6 -425.1 -487.7 -676.2 -1004.3 -1032.9 -1154.6 -1162.4
-370.7 -427.0 -509.2 -573.5 -722.8 -1036.7 -1082.5 -1405.9 -1428.5
-375.5 -375.5 -501.4 -558.0 -697.3 -1111.7 -1133.3 -1306.3 -1376.3

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 268 365 10950 36500
-7.0 -7.0 -7.7 -8.4 -9.8 -11.6 -11.8 -12.7 -12.8
-6.9 -7.3 -8.4 -9.1 -10.5 -13.2 -13.5 -14.7 -14.7
-7.0 -7.0 -9.1 -9.8 -10.7 -11.5 -11.7 -14.1 -15.1

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 268 365 10950 36500
183.9 183.7 181.9 179.6 173.1 162.5 161.5 157.3 157.0
184.1 182.2 179.0 176.6 171.3 160.4 158.8 148.7 148.0
183.9 183.9 178.7 176.5 171.9 159.5 158.7 152.0 149.2

% prestress losses using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 268 365 10950 36500
9.2 9.3 10.2 11.3 14.5 19.8 20.2 22.3 22.4
9.1 10.0 11.6 12.8 15.4 20.8 21.6 26.6 26.9
9.2 9.2 11.7 12.8 15.1 21.2 21.6 24.9 26.3
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Effect of concrete deck placed at t = 268 days

Section Properties at t = 268 days when deck is not hardened yet (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1133 0 898985 1133 0 898985
Strand 10.71 283.3 7492.7 59.9 1583.6 41885.7

1192.9 1583.6 940870.7

Applied forces due to concrete deck placement:
x/L A B I ΔN ΔM

(kips) (kips-in)
0.000 1133.0 0.0 898985.0 0.0 0.0
0.044 1179.2 1352.0 938562.2 0.0 4092.6
0.088 1182.6 1464.2 942202.5 0.0 7809.8
0.132 1187.7 1643.5 948328.9 0.0 11151.4
0.300 1192.9 1583.6 940870.7 0.0 20494.3
0.400 1192.9 1583.6 940870.7 0.0 23422.0
0.500 1192.9 1583.6 940870.7 0.0 24398.0

Strains and curvatures at deck placement:
x/L Δεo Δψ

in/inx106 1/inx106

0.000 0.0 0.0
0.044 -1.0 0.9
0.088 -2.0 1.6 Strain at the strand level (midspan) = 128.1 in/inx106

0.132 -3.2 2.3 Elastic stress gain = 3.650 ksi
0.300 -5.7 4.3 Stress of prestress strand = 166.114 ksi
0.400 -6.5 4.9 % losses = 17.96 %
0.500 -6.8 5.1

Creep coefficients of girder, Ф(t, 268):
Model

268.01 269 271 275 298 365 10950 36500
ACI 0.006 0.081 0.145 0.218 0.389 0.544 0.861 0.878

CEB-FIP 0.029 0.114 0.158 0.203 0.311 0.429 0.764 0.772
B3 0.000 0.093 0.123 0.148 0.197 0.244 0.480 0.560

Day
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Aging coefficients of girder, χ(t, 268):
Model

268.01 269 271 275 298 365 10950 36500
ACI 0.528 0.719 0.764 0.800 0.860 0.908 0.941 0.938

CEB-FIP 0.812 0.860 0.899 0.909 0.913 0.919 0.817 0.816
B3 0.533 0.731 0.778 0.815 0.877 0.928 0.945 0.936

Creep coefficients of concrete deck slab, Ф(t, 3):
Model

3.01 4 6 10 33 100 10685 36235
ACI 0.008 0.115 0.205 0.308 0.551 0.771 1.219 1.243

CEB-FIP 0.092 0.367 0.510 0.656 1.009 1.406 2.809 2.860
B3 0.000 0.360 0.470 0.563 0.740 0.902 1.701 1.949

Aging coefficients of concrete deck slab, χ(t, 3):
Model

3.01 4 6 10 33 100 10685 36235
ACI 0.695 0.630 0.615 0.603 0.582 0.566 0.530 0.522

CEB-FIP 0.809 0.794 0.809 0.781 0.694 0.634 0.644 0.650
B3 0.731 0.701 0.694 0.688 0.679 0.671 0.613 0.595
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Shrinkage of concrete deck slab, εsh(t):
Model

3.01 4 6 10 33 100 10685 36235
ACI 0.000000 0.000004 0.000012 0.000025 0.000079 0.000142 0.000221 0.000222

CEB-FIP 0.000016 0.000024 0.000031 0.000042 0.000072 0.000111 0.000501 0.000584
B3 0.000000 0.000001 0.000004 0.000009 0.000040 0.000126 0.000432 0.000432

Time-dependent effect at t = 36500 days:
Girder: Slab:
ΔФ(36500,3)  = 0.336 Ф(36235,3)  = 1.243
Δεsh(36500)  = 6.59E-05 χ(36235,3)  = 0.522
Ф(36500,268)  = 0.878 Ec(36235,3)  = 1984.9 ksi
χ(36500,268)  = 0.938 εsh(36235)  = 0.000222
Ec(36500,268)  = 2795.4 ksi

Strand:
λ = 0.681 Ω = 0.079
χr = 0.784

Stresses and curvatures prior to composite action
x/L

σtop σbot σtop σbot Δσtop Δσbot Δσ Δψ
0.000 0.919 0.919 -0.919 -0.919 0.000 0.000 0.000 0.000
0.044 0.662 2.898 -0.738 -2.464 -0.076 0.435 0.177 0.007
0.088 0.722 2.958 -0.806 -2.483 -0.084 0.475 0.193 0.007
0.132 0.745 3.108 -0.847 -2.561 -0.102 0.548 0.220 0.008
0.300 1.130 2.929 -1.195 -2.405 -0.065 0.523 0.226 0.008
0.400 1.205 2.858 -1.269 -2.343 -0.064 0.515 0.223 0.007
0.500 1.230 2.834 -1.293 -2.322 -0.064 0.512 0.222 0.007

Section Properties at t = 36500 days when composite action starts (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1133 0 898985 1133 0 898985
Strand 10.71 283.3 7492.7 109.2 2888.1 76390.0
Deck 1135 -51461 2340585 806 -36541 1661975

Rebars 6.12 -271.2 12015.9 63.5 -2813.2 124653.3
2111 -36466 2762003

Note : neglected the duration of 3-day concrete deck hardening

Properties of area Properties of transformed area
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Time-dependent restrained forces at t = 36500 days (ΔN and ΔM):
x/L

ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM
0.000 0.0 0.0 709.3 -22693.6 0.0 0.0 709.3 -22693.6
0.044 269.6 5137.6 709.3 -22693.6 -19.8 -580.4 959.0 -18136.4
0.088 290.5 3319.3 709.3 -22693.6 -21.3 -628.5 978.5 -20002.8
0.132 318.7 2065.7 709.3 -22693.6 -23.5 -705.5 1004.5 -21333.4
0.300 362.1 -4214.7 709.3 -22693.6 -25.7 -679.8 1045.6 -27588.1
0.400 366.1 -6076.5 709.3 -22693.6 -25.7 -679.8 1049.7 -29449.9
0.500 367.5 -6697.2 709.3 -22693.6 -25.7 -679.8 1051.1 -30070.6

Strains and curvatures at t = 36500 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -94.5 1.6
0.044 -160.9 0.2
0.088 -158.8 0.5 Strain inc. at the strand level (mid) = -90.7 in/inx106

0.132 -159.5 0.7 Time-dependent inc. losses = -2.584 ksi
0.300 -149.5 1.6 Stress of prestress strand = 163.530 ksi
0.400 -145.0 1.9 % losses = 19.24 %
0.500 -143.5 2.0

Time-dependent strain at top fiber along the length of the girder:
x/L

268.01 269 271 275 298 365 10950 36500
0.000 0.0 -2.9 -8.4 -18.2 -57.4 -105.7 -174.7 -175.8
0.044 -0.1 -3.9 -10.2 -20.9 -61.5 -110.0 -170.5 -170.8
0.088 -0.2 -4.9 -11.9 -23.5 -66.1 -116.4 -182.0 -182.7
0.132 -0.2 -5.8 -13.4 -25.7 -70.1 -122.0 -191.3 -192.3
0.300 -0.4 -8.3 -17.9 -32.5 -82.4 -139.8 -226.7 -228.8
0.400 -0.5 -9.0 -19.3 -34.6 -86.1 -145.2 -236.8 -239.2
0.500 -0.5 -9.3 -19.8 -35.3 -87.3 -146.9 -240.2 -242.7

Time-dependent strain at bottom fiber along the length of the girder:
x/L

268.01 269 271 275 298 365 10950 36500
0.000 0.0 0.7 2.1 4.4 12.3 13.9 -28.7 -30.1
0.044 0.1 2.2 4.3 7.2 12.8 2.4 -143.3 -153.0
0.088 0.2 3.7 7.0 11.1 19.7 11.6 -130.5 -139.9
0.132 0.3 5.0 9.2 14.4 25.1 18.5 -124.1 -133.6
0.300 0.6 8.9 16.3 24.9 44.1 45.3 -78.5 -86.6
0.400 0.7 10.1 18.4 28.2 49.9 53.7 -62.7 -70.3
0.500 0.7 10.5 19.1 29.3 51.8 56.5 -57.4 -64.9

Creep Shrinkage Relaxation Total

Day

Day
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

268 268.01 269 271 275 298 365 10950 36500
0.0 0.2 1.8 1.9 0.7 -9.7 -33.5 -138.2 -143.5
0.0 -2.1 -1.4 -2.4 -4.6 -16.4 -47.2 -373.2 -404.6
0.0 0.0 2.5 2.5 1.5 -7.0 -33.8 -236.6 -298.0

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

268 268.01 269 271 275 298 365 10950 36500
0.0 0.0 0.2 0.4 0.7 1.6 2.3 2.1 2.0
0.0 0.2 0.5 0.6 0.8 1.2 1.4 1.8 2.3
0.0 0.0 0.2 0.3 0.4 0.8 1.5 1.9 0.8

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

268 268.01 269 271 275 298 365 10950 36500
166.1 166.1 166.3 166.5 166.7 167.0 166.9 163.7 163.5
163.6 163.7 163.9 164.0 164.1 164.0 163.3 154.3 153.8
163.1 163.1 163.4 163.4 163.5 163.5 163.3 157.8 155.3

% prestress losses using ACI, CEB-FIP, and B3 respectively

268 268.01 269 271 275 298 365 10950 36500
18.0 18.0 17.9 17.8 17.7 17.5 17.6 19.1 19.2
19.2 19.1 19.0 19.0 19.0 19.0 19.3 23.8 24.0
19.4 19.4 19.3 19.3 19.3 19.2 19.4 22.1 23.3
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Three samples of time-dependent strains with respect to the time-line (271, 365, 

and 36,500 days) at the top fiber of interior girders are shown in Figure B-13. 

Three samples of time-dependent strains with respect to the time-line (271, 365, and 

36,500 days) at the bottom fiber of interior girders are shown in Figure B-14. 

 

 

 

-300

-250

-200

-150

-100

-50

0
0.00 0.10 0.20 0.30 0.40 0.50

x/L

St
ra

in
 (i

n/
in

)

271

365

36500

 
Figure B-13: Time-Dependent Strains at Top Fiber (Bridge 211 – Int. Girder) 
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Figure B-14: Time-Dependent Strains at Bottom Fiber (Bridge 211 – Int. Girder) 
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Exterior Girder 

123.75

8.5 + 0.5
(for wt. calc)

49.6 44.31
38.66

E.N.A. (Girder)

26.45
39.34

Span = 1368 in
12.89

Concrete properties: Prestress strand properties:
Girder:

A = 1133 in2 A = 0.153 in2

I = 898985 in4 No. = 70
Ec(3) = 4628.4 ksi Jacking = 30.98 k/strand
Ec(28) = 5098.2 ksi Eps = 28500 ksi

Slab:
Ec(3) = 3272.8 ksi As-slab = 6.12 in2

Ec(28) = 3605.0 ksi Es = 29000 ksi

Section Properties at t = 3 days (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1133 0 898985 1133 0 898985
Strand 10.71 283.3 7492.7 65.9 1744.3 46137.7

1198.9 1744.3 945122.7

Relaxation loss from t = 0 to 3 days:
ΔfRE = -2.663 ksi
fpi = 199.820 ksi

Applied forces at transfer:
x/L e No. of A B I N M

(in) strands (kips) (kips-in)
0.000 0.000 0 1133.0 0.0 898985 0.0 0.0
0.044 29.273 54 1183.9 1489.2 942580 -1650.9 -44468.0
0.088 29.516 58 1187.6 1612.8 946590 -1773.2 -44973.5
0.132 30.024 64 1193.3 1810.3 953338 -1956.6 -48230.5
0.300 26.450 70 1198.9 1744.3 945123 -2140.1 -37279.2
0.400 26.450 70 1198.9 1744.3 945123 -2140.1 -34518.3
0.500 26.450 70 1198.9 1744.3 945123 -2140.1 -33598.0

Properties of area Properties of transformed area
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Strains and curvatures at transfer:
x/L εo ψ

in/inx106 1/inx106

0.000 0.0 0.0
0.044 -289.0 -9.7
0.088 -309.4 -9.7 Strain at the strand level (midspan) = -560.3 in/inx106

0.132 -338.7 -10.3 Elastic shortening loss = -15.969 ksi
0.300 -374.3 -7.8 Stress of prestress strand = 183.852 ksi
0.400 -375.2 -7.2 % initial loss = 9.20 %
0.500 -375.5 -7.0

Creep coefficients, Ф(t, 3):
Model

3.01 4 7 28 268 365 10950 36500
AASHTO 0.003 0.051 0.109 0.289 0.878 0.965 1.429 1.463

ACI 0.009 0.126 0.259 0.566 1.027 1.074 1.337 1.363
CEB-FIP 0.071 0.281 0.425 0.727 1.327 1.408 1.822 1.840

B3 0.000 0.362 0.505 0.728 1.084 1.132 1.722 1.967

Shrinkage, εsh(t):
Model

3.01 4 7 28 268 365 10950 36500
AASHTO 0.000008 0.000010 0.000017 0.000063 0.000261 0.000287 0.000391 0.000394

ACI 0.000000 0.000007 0.000026 0.000121 0.000321 0.000336 0.000385 0.000386
CEB-FIP 0.000034 0.000047 0.000067 0.000124 0.000261 0.000285 0.000503 0.000523

B3 0.000000 0.000004 0.000014 0.000089 0.000422 0.000430 0.000432 0.000432
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Aging coefficients, χ(t, 3):
Model

3.01 4 7 28 268 365 10950 36500
AASHTO N/A N/A N/A N/A N/A N/A N/A N/A

ACI 0.710 0.658 0.643 0.622 0.598 0.595 0.568 0.559
CEB-FIP 0.808 0.777 0.769 0.648 0.521 0.518 0.467 0.465

B3 0.731 0.702 0.693 0.682 0.663 0.660 0.614 0.597

Use engineering recommendation model: ACI

Time-dependent restrained forces at t = 268 days (ΔN and ΔM):
Ф(268,3)  = 1.027 χ(268,3)  = 0.598
Ec(268,3)  = 2868.2 ksi (Age-adjusted elastic modulus)
εsh(268)  = 0.000321 λ = 0.681
Ω = 0.101 χr = 0.732
A (mid) = 1239.4 in2 B (mid) = 2814.9 in3

I (mid) = 973438 in4

x/L
ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM

0.000 0.0 0.0 1041.6 0.0 0.0 0.0 1041.6 0.0
0.044 964.3 25773.5 1041.6 0.0 -16.9 -495.0 1989.0 25278.5
0.088 1032.1 25778.2 1041.6 0.0 -18.2 -536.1 2055.5 25242.1
0.132 1129.9 27232.8 1041.6 0.0 -20.0 -601.7 2151.4 26631.1
0.300 1248.6 20731.0 1041.6 0.0 -21.9 -579.8 2268.3 20151.2
0.400 1251.7 19055.7 1041.6 0.0 -21.9 -579.8 2271.4 18476.0
0.500 1252.7 18497.3 1041.6 0.0 -21.9 -579.8 2272.4 17917.6

Strains and curvatures at t = 268 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -320.5 0.0
0.044 -555.5 -7.7
0.088 -570.9 -7.5 Strain inc. at the strand level (mid) = -750.4 in/inx106

0.132 -591.5 -7.7 Time-dependent inc. losses = -21.388 ksi
0.300 -625.8 -5.4 Stress of prestress strand = 162.464 ksi
0.400 -628.0 -4.8 % losses = 19.76 %
0.500 -628.8 -4.6
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 268 365 10950 36500
-375.5 -378.6 -425.1 -487.7 -676.2 -1004.3 -1032.9 -1154.6 -1162.4
-370.7 -427.0 -509.2 -573.5 -722.8 -1036.7 -1082.5 -1405.9 -1428.5
-375.5 -375.5 -501.4 -558.0 -697.3 -1111.7 -1133.3 -1306.3 -1376.3

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 268 365 10950 36500
-7.0 -7.0 -7.7 -8.4 -9.8 -11.6 -11.8 -12.7 -12.8
-6.9 -7.3 -8.4 -9.1 -10.5 -13.2 -13.5 -14.7 -14.7
-7.0 -7.0 -9.1 -9.8 -10.7 -11.5 -11.7 -14.1 -15.1

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 268 365 10950 36500
183.9 183.7 181.9 179.6 173.1 162.5 161.5 157.3 157.0
184.1 182.2 179.0 176.6 171.3 160.4 158.8 148.7 148.0
183.9 183.9 178.7 176.5 171.9 159.5 158.7 152.0 149.2

% prestress losses using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 268 365 10950 36500
9.2 9.3 10.2 11.3 14.5 19.8 20.2 22.3 22.4
9.1 10.0 11.6 12.8 15.4 20.8 21.6 26.6 26.9
9.2 9.2 11.7 12.8 15.1 21.2 21.6 24.9 26.3
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Effect of concrete deck placed at t = 268 days

Section Properties at t = 268 days when deck is not hardened yet (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1133 0 898985 1133 0 898985
Strand 10.71 283.3 7492.7 59.9 1583.6 41885.7

1192.9 1583.6 940870.7

Applied forces due to concrete deck placement:
x/L A B I ΔN ΔM

(kips) (kips-in)
0.000 1133.0 0.0 898985.0 0.0 0.0
0.044 1179.2 1352.0 938562.2 0.0 3793.7
0.088 1182.6 1464.2 942202.5 0.0 7239.4
0.132 1187.7 1643.5 948328.9 0.0 10337.0
0.300 1192.9 1583.6 940870.7 0.0 18997.5
0.400 1192.9 1583.6 940870.7 0.0 21711.4
0.500 1192.9 1583.6 940870.7 0.0 22616.1

Strains and curvatures at deck placement:
x/L Δεo Δψ

in/inx106 1/inx106

0.000 0.0 0.0
0.044 -0.9 0.8
0.088 -1.9 1.5 Strain at the strand level (midspan) = 118.7 in/inx106

0.132 -3.0 2.1 Elastic stress gain = 3.383 ksi
0.300 -5.3 4.0 Stress of prestress strand = 165.847 ksi
0.400 -6.0 4.5 % losses = 18.09 %
0.500 -6.3 4.7

Creep coefficients of girder, Ф(t, 268):
Model

268.01 269 271 275 298 365 10950 36500
ACI 0.006 0.081 0.145 0.218 0.389 0.544 0.861 0.878

CEB-FIP 0.029 0.114 0.158 0.203 0.311 0.429 0.764 0.772
B3 0.000 0.093 0.123 0.148 0.197 0.244 0.480 0.560

Day
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Aging coefficients of girder, χ(t, 268):
Model

268.01 269 271 275 298 365 10950 36500
ACI 0.528 0.719 0.764 0.800 0.860 0.908 0.941 0.938

CEB-FIP 0.812 0.860 0.899 0.909 0.913 0.919 0.817 0.816
B3 0.533 0.731 0.778 0.815 0.877 0.928 0.945 0.936

Creep coefficients of concrete deck slab, Ф(t, 3):
Model

3.01 4 6 10 33 100 10685 36235
ACI 0.008 0.115 0.205 0.308 0.551 0.771 1.219 1.243

CEB-FIP 0.092 0.367 0.510 0.656 1.009 1.406 2.809 2.860
B3 0.000 0.360 0.470 0.563 0.740 0.902 1.701 1.949

Aging coefficients of concrete deck slab, χ(t, 3):
Model

3.01 4 6 10 33 100 10685 36235
ACI 0.695 0.630 0.615 0.603 0.582 0.566 0.530 0.522

CEB-FIP 0.809 0.794 0.809 0.781 0.694 0.634 0.644 0.650
B3 0.731 0.701 0.694 0.688 0.679 0.671 0.613 0.595
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Shrinkage of concrete deck slab, εsh(t):
Model

3.01 4 6 10 33 100 10685 36235
ACI 0.000000 0.000004 0.000012 0.000025 0.000079 0.000142 0.000221 0.000222

CEB-FIP 0.000016 0.000024 0.000031 0.000042 0.000072 0.000111 0.000501 0.000584
B3 0.000000 0.000001 0.000004 0.000009 0.000040 0.000126 0.000432 0.000432

Time-dependent effect at t = 36500 days:
Girder: Slab:
ΔФ(36500,3)  = 0.336 Ф(36235,3)  = 1.243
Δεsh(36500)  = 6.59E-05 χ(36235,3)  = 0.522
Ф(36500,268)  = 0.878 Ec(36235,3)  = 1984.9 ksi
χ(36500,268)  = 0.938 εsh(36235)  = 0.000222
Ec(36500,268)  = 2795.4 ksi

Strand:
λ = 0.681 Ω = 0.081
χr = 0.779

Stresses and curvatures prior to composite action
x/L

σtop σbot σtop σbot Δσtop Δσbot Δσ Δψ
0.000 0.919 0.919 -0.919 -0.919 0.000 0.000 0.000 0.000
0.044 0.662 2.898 -0.738 -2.464 -0.076 0.435 0.177 0.007
0.088 0.722 2.958 -0.806 -2.483 -0.084 0.475 0.193 0.007
0.132 0.745 3.108 -0.847 -2.561 -0.102 0.548 0.220 0.008
0.300 1.130 2.929 -1.195 -2.405 -0.065 0.523 0.226 0.008
0.400 1.205 2.858 -1.269 -2.343 -0.064 0.515 0.223 0.007
0.500 1.230 2.834 -1.293 -2.322 -0.064 0.512 0.222 0.007

Section Properties at t = 36500 days when composite action starts (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 1133 0 898985 1133 0 898985
Strand 10.71 283.3 7492.7 109.2 2888.1 76390.0
Deck 1052 -47703 2169643 747 -33872 1540595

Rebars 6.12 -271.2 12015.9 63.5 -2813.2 124653.3
2053 -33797 2640623

Note : neglected the duration of 3-day concrete deck hardening
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Time-dependent restrained forces at t = 36500 days (ΔN and ΔM):
x/L

ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM
0.000 0.0 0.0 672.7 -21036.2 0.0 0.0 672.7 -21036.2
0.044 269.4 5275.7 672.7 -21036.2 -19.7 -576.2 922.4 -16336.7
0.088 290.1 3581.9 672.7 -21036.2 -21.1 -624.0 941.7 -18078.4
0.132 318.1 2438.4 672.7 -21036.2 -23.3 -700.4 967.5 -19298.3
0.300 360.9 -3524.5 672.7 -21036.2 -25.5 -674.9 1008.1 -25235.6
0.400 364.8 -5287.7 672.7 -21036.2 -25.5 -674.9 1012.0 -26998.9
0.500 366.1 -5875.5 672.7 -21036.2 -25.5 -674.9 1013.3 -27586.6

Strains and curvatures at t = 36500 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -93.7 1.6
0.044 -160.5 0.1
0.088 -158.9 0.4 Strain inc. at the strand level (mid) = -96.3 in/inx106

0.132 -160.0 0.6 Time-dependent inc. losses = -2.745 ksi
0.300 -151.3 1.5 Stress of prestress strand = 163.103 ksi
0.400 -147.2 1.8 % losses = 19.45 %
0.500 -145.8 1.9

Time-dependent strain at top fiber along the length of the girder:
x/L

268.01 269 271 275 298 365 10950 36500
0.000 0.0 -2.8 -8.1 -17.8 -56.0 -103.4 -171.7 -172.8
0.044 -0.1 -3.8 -9.9 -20.3 -60.0 -107.4 -166.8 -167.1
0.088 -0.2 -4.8 -11.6 -22.9 -64.5 -113.7 -178.2 -178.8
0.132 -0.2 -5.6 -13.1 -25.1 -68.4 -119.1 -187.3 -188.3
0.300 -0.4 -8.1 -17.4 -31.7 -80.3 -136.6 -222.7 -224.8
0.400 -0.4 -8.8 -18.8 -33.7 -84.0 -141.8 -232.7 -235.2
0.500 -0.5 -9.1 -19.2 -34.4 -85.2 -143.6 -236.0 -238.6

Time-dependent strain at bottom fiber along the length of the girder:
x/L

268.01 269 271 275 298 365 10950 36500
0.000 0.0 0.7 2.0 4.3 11.9 13.2 -29.6 -31.1
0.044 0.1 2.0 4.1 6.7 11.9 1.0 -145.5 -155.2
0.088 0.2 3.5 6.6 10.4 18.3 9.6 -133.6 -143.1
0.132 0.3 4.6 8.6 13.5 23.4 15.9 -128.0 -137.5
0.300 0.6 8.3 15.2 23.4 41.1 41.1 -84.7 -93.0
0.400 0.6 9.5 17.3 26.4 46.6 49.0 -69.6 -77.4
0.500 0.7 9.9 17.9 27.4 48.4 51.6 -64.6 -72.2

Day

Day

Creep Shrinkage Relaxation Total
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

268 268.01 269 271 275 298 365 10950 36500
0.0 0.2 1.5 1.5 0.1 -10.7 -34.7 -140.4 -145.8
0.0 -2.1 -1.6 -2.7 -5.0 -17.0 -48.0 -373.9 -405.0
0.0 0.0 2.2 2.2 1.1 -7.4 -34.0 -236.1 -297.9

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

268 268.01 269 271 275 298 365 10950 36500
0.0 0.0 0.2 0.4 0.7 1.5 2.2 1.9 1.9
0.0 0.2 0.5 0.6 0.8 1.1 1.3 1.6 2.1
0.0 0.0 0.2 0.3 0.4 0.7 1.4 1.7 0.7

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

268 268.01 269 271 275 298 365 10950 36500
165.8 165.9 166.1 166.2 166.4 166.7 166.5 163.3 163.1
163.4 163.5 163.7 163.8 163.8 163.8 163.0 154.0 153.4
162.9 162.9 163.1 163.2 163.2 163.2 163.0 157.4 154.9

% prestress losses using ACI, CEB-FIP, and B3 respectively

268 268.01 269 271 275 298 365 10950 36500
18.1 18.1 18.0 17.9 17.8 17.7 17.8 19.4 19.4
19.3 19.3 19.2 19.1 19.1 19.1 19.5 24.0 24.2
19.6 19.6 19.5 19.4 19.4 19.4 19.5 22.3 23.5
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Three samples of time-dependent strains with respect to the time-line (271, 365, 

and 36,500 days) at the top fiber of interior girders are shown in Figure B-15. 

Three samples of time-dependent strains with respect to the time-line (271, 365, and 

36,500 days) at the bottom fiber of interior girders are shown in Figure B-16. 
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Figure B-15: Time-Dependent Strains at Top Fiber (Bridge 211 – Ext. Girder) 
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Figure B-16: Time-Dependent Strains at Bottom Fiber (Bridge 211 – Ext. Girder) 
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B.3 Bridge 222 

Interior Girder 

141.5

9 + 0.5
(for wt. calc)

36.91 31.00
26.61

E.N.A. (Girder)

12.39
21.39

Span = 738.6 in
9

Concrete properties: Prestress strand properties:
Girder:

A = 708 in2 A = 0.153 in2

I = 172712.4 in4 No. = 40
Ec(3) = 4628.4 ksi Jacking = 33.82 k/strand
Ec(28) = 5098.2 ksi Eps = 28500 ksi

Slab:
Ec(3) = 3272.8 ksi As-slab = 7.878 in2

Ec(28) = 3605.0 ksi Es = 29000 ksi

Section Properties at t = 3 days (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 708 0 172712.4 708 0 172712.4
Strand 6.12 75.8 939.5 37.7 466.9 5785.1

745.7 466.9 178497.5

Relaxation loss from t = 0 to 3 days:
ΔfRE = -3.691 ksi
fpi = 217.354 ksi

Applied forces at transfer:
x/L e No. of A B I N M

(in) strands (kips) (kips-in)
0.000 0.000 0 708.0 0.0 172712.4 0.0 0.0
0.097 11.323 30 736.3 320.0 176336.1 -997.7 -9821.6
0.162 11.566 34 740.0 370.5 176997.4 -1130.7 -10796.3
0.195 12.074 38 743.8 432.3 177931.5 -1263.7 -12626.8
0.300 12.390 40 745.7 466.9 178497.5 -1330.2 -12960.9
0.400 12.390 40 745.7 466.9 178497.5 -1330.2 -12458.0
0.500 12.390 40 745.7 466.9 178497.5 -1330.2 -12290.4

Properties of area Properties of transformed area
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Strains and curvatures at transfer:
x/L εo ψ

in/inx106 1/inx106

0.000 0.0 0.0
0.097 -287.8 -11.5
0.162 -323.9 -12.5 Strain at the strand level (midspan) = -548.8 in/inx106

0.195 -358.7 -14.5 Elastic shortening loss = -15.642 ksi
0.300 -376.2 -14.7 Stress of prestress strand = 201.713 ksi
0.400 -376.6 -14.1 % initial loss = 8.75 %
0.500 -376.7 -13.9

Creep coefficients, Ф(t, 3):
Model

3.01 4 7 28 171 365 10950 36500
AASHTO 0.003 0.044 0.094 0.254 0.688 0.915 1.404 1.440

ACI 0.009 0.124 0.255 0.556 0.932 1.055 1.313 1.338
CEB-FIP 0.069 0.274 0.415 0.711 1.180 1.384 1.808 1.827

B3 0.000 0.362 0.505 0.727 1.011 1.131 1.722 1.967

Shrinkage, εsh(t):
Model

3.01 4 7 28 171 365 10950 36500
AASHTO 0.000006 0.000008 0.000014 0.000053 0.000193 0.000261 0.000368 0.000372

ACI 0.000000 0.000007 0.000025 0.000116 0.000278 0.000321 0.000368 0.000369
CEB-FIP 0.000034 0.000047 0.000065 0.000120 0.000220 0.000273 0.000498 0.000522

B3 0.000000 0.000003 0.000012 0.000075 0.000358 0.000427 0.000432 0.000432
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Aging coefficients, χ(t, 3):
Model

3.01 4 7 28 171 365 10950 36500
AASHTO N/A N/A N/A N/A N/A N/A N/A N/A

ACI 0.707 0.653 0.636 0.615 0.594 0.587 0.560 0.551
CEB-FIP 0.808 0.776 0.766 0.644 0.543 0.527 0.468 0.466

B3 0.731 0.702 0.693 0.682 0.668 0.660 0.614 0.597

Use engineering recommendation model: ACI

Time-dependent restrained forces at t = 171 days (ΔN and ΔM):
Ф(171,3)  = 0.932 χ(171,3)  = 0.594
Ec(171,3)  = 2979.8 ksi (Age-adjusted elastic modulus)
εsh(171)  = 0.000278 λ = 0.747
Ω = 0.079 χr = 0.804
A (mid) = 766.5 in2 B (mid) = 725.2 in3

I (mid) = 181698 in4

x/L
ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM

0.000 0.0 0.0 587.5 0.0 0.0 0.0 587.5 0.0
0.097 565.8 5521.9 587.5 0.0 -12.9 -145.9 1140.4 5376.0
0.162 636.8 5996.4 587.5 0.0 -14.6 -168.9 1209.7 5827.5
0.195 705.3 6936.5 587.5 0.0 -16.3 -197.1 1276.4 6739.5
0.300 739.8 7053.1 587.5 0.0 -17.2 -212.9 1310.1 6840.3
0.400 740.5 6760.6 587.5 0.0 -17.2 -212.9 1310.8 6547.8
0.500 740.8 6663.2 587.5 0.0 -17.2 -212.9 1311.1 6450.3

Strains and curvatures at t = 171 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -278.5 0.0
0.097 -503.2 -8.7
0.162 -528.8 -9.2 Strain inc. at the strand level (mid) = -684.5 in/inx106

0.195 -551.8 -10.5 Time-dependent inc. losses = -19.509 ksi
0.300 -563.7 -10.4 Stress of prestress strand = 182.203 ksi
0.400 -564.6 -9.8 % losses = 17.57 %
0.500 -564.9 -9.7
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 171 365 10950 36500
-376.7 -379.8 -425.6 -487.1 -671.0 -941.6 -1018.5 -1136.5 -1143.4
-371.9 -427.9 -508.6 -571.6 -717.8 -958.6 -1070.2 -1404.9 -1430.0
-376.7 -376.7 -503.4 -558.8 -688.0 -1036.8 -1136.3 -1313.1 -1383.4

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 171 365 10950 36500
-13.9 -14.0 -15.4 -16.9 -20.1 -23.6 -24.7 -26.9 -27.1
-13.7 -14.5 -16.9 -18.4 -21.5 -26.2 -28.2 -31.5 -31.5
-13.9 -13.9 -18.3 -19.9 -22.1 -24.0 -24.9 -30.5 -32.8

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 171 365 10950 36500
201.7 201.6 199.8 197.5 191.1 182.2 179.6 175.5 175.2
201.9 200.0 196.9 194.6 189.3 180.8 176.9 166.2 165.5
201.7 201.7 196.6 194.4 190.0 179.3 176.2 169.2 166.4

% prestress losses using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 171 365 10950 36500
8.7 8.8 9.6 10.6 13.5 17.6 18.7 20.6 20.7
8.7 9.5 10.9 12.0 14.4 18.2 20.0 24.8 25.1
8.7 8.7 11.1 12.1 14.1 18.9 20.3 23.5 24.7
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Effect of concrete deck placed at t = 171 days

Section Properties at t = 171 days when deck is not hardened yet (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 708 0 172712.4 708 0 172712.4
Strand 6.12 75.8 939.5 34.2 423.9 5251.9

742.2 423.9 177964.3

Applied forces due to concrete deck placement:
x/L A B I ΔN ΔM

(kips) (kips-in)
0.000 708.0 0.0 172712.4 0.0 0.0
0.097 733.7 290.5 176002.1 0.0 2800.2
0.162 737.1 336.3 176602.5 0.0 4331.0
0.195 740.5 392.4 177450.5 0.0 4995.6
0.300 742.2 423.9 177964.3 0.0 6684.0
0.400 742.2 423.9 177964.3 0.0 7638.8
0.500 742.2 423.9 177964.3 0.0 7957.1

Strains and curvatures at deck placement:
x/L Δεo Δψ

in/inx106 1/inx106

0.000 0.0 0.0
0.097 -1.2 3.1
0.162 -2.2 4.8 Strain at the strand level (midspan) = 103.8 in/inx106

0.195 -2.9 5.5 Elastic stress gain = 2.958 ksi
0.300 -4.2 7.4 Stress of prestress strand = 185.162 ksi
0.400 -4.8 8.4 % losses = 16.23 %
0.500 -5.0 8.8

Creep coefficients of girder, Ф(t, 171):
Model

171.01 172 174 178 199 365 10950 36500
ACI 0.006 0.084 0.150 0.226 0.394 0.651 0.893 0.910

CEB-FIP 0.031 0.123 0.171 0.219 0.329 0.550 0.830 0.840
B3 0.000 0.132 0.176 0.216 0.295 0.432 0.715 0.821

Day
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Aging coefficients of girder, χ(t, 171):
Model

171.01 172 174 178 199 365 10950 36500
ACI 0.538 0.722 0.766 0.800 0.855 0.915 0.929 0.925

CEB-FIP 0.812 0.860 0.899 0.909 0.911 0.900 0.829 0.827
B3 0.541 0.733 0.779 0.815 0.873 0.934 0.937 0.928

Creep coefficients of concrete deck slab, Ф(t, 3):
Model

3.01 4 6 10 31 197 10782 36332
ACI 0.008 0.115 0.205 0.307 0.537 0.887 1.217 1.241

CEB-FIP 0.091 0.361 0.501 0.645 0.972 1.661 2.792 2.845
B3 0.000 0.360 0.470 0.562 0.730 1.007 1.702 1.949

Aging coefficients of concrete deck slab, χ(t, 3):
Model

3.01 4 6 10 31 197 10782 36332
ACI 0.695 0.630 0.614 0.602 0.581 0.556 0.531 0.523

CEB-FIP 0.809 0.793 0.807 0.779 0.697 0.585 0.642 0.649
B3 0.731 0.701 0.694 0.688 0.679 0.661 0.615 0.599
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Shrinkage of concrete deck slab, εsh(t):
Model

3.01 4 6 10 31 197 10782 36332
ACI 0.000000 0.000004 0.000011 0.000024 0.000071 0.000163 0.000208 0.000209

CEB-FIP 0.000016 0.000023 0.000031 0.000041 0.000068 0.000137 0.000492 0.000579
B3 0.000000 0.000001 0.000004 0.000008 0.000033 0.000212 0.000432 0.000432

Time-dependent effect at t = 36500 days:
Girder: Slab:
ΔФ(36500,3)  = 0.406 Ф(36332,3)  = 1.241
Δεsh(36500)  = 9.06E-05 χ(36332,3)  = 0.523
Ф(36500,171)  = 0.910 Ec(36332,3)  = 1984.8 ksi
χ(36500,171)  = 0.925 εsh(36332)  = 0.000209
Ec(36500,171)  = 2768.0 ksi

Strand:
λ = 0.747 Ω = 0.065
χr = 0.837

Stresses and curvatures prior to composite action
x/L

σtop σbot σtop σbot Δσtop Δσbot Δσ Δψ
0.000 0.830 0.830 -0.830 -0.830 0.000 0.000 0.000 0.000
0.097 0.778 2.313 -0.809 -2.055 -0.030 0.258 0.129 0.006
0.162 0.805 2.472 -0.846 -2.162 -0.040 0.309 0.154 0.007
0.195 0.757 2.685 -0.815 -2.311 -0.058 0.374 0.182 0.009
0.300 0.788 2.748 -0.856 -2.342 -0.068 0.407 0.195 0.010
0.400 0.834 2.713 -0.902 -2.310 -0.068 0.403 0.193 0.010
0.500 0.849 2.701 -0.917 -2.299 -0.068 0.402 0.193 0.010

Section Properties at t = 36500 days when composite action starts (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 708 0 172712.4 708 0 172712.4
Strand 6.12 75.8 939.5 63.0 780.7 9673.2
Deck 1274 -41274 1346291 913 -29595 965353

Rebars 7.88 -244.2 7571.2 82.5 -2558.7 79322.3
1767 -31373 1227060

Note : neglected the duration of 3-day concrete deck hardening
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Time-dependent restrained forces at t = 36500 days (ΔN and ΔM):
x/L

ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM
0.000 0.0 0.0 706.4 -17140.2 0.0 0.0 706.4 -17140.2
0.097 209.1 624.5 706.4 -17140.2 -17.8 -201.3 897.7 -16717.0
0.162 235.3 26.7 706.4 -17140.2 -20.2 -233.1 921.6 -17346.6
0.195 259.5 24.8 706.4 -17140.2 -22.5 -271.9 943.4 -17387.3
0.300 273.5 -770.4 706.4 -17140.2 -23.7 -293.7 956.3 -18204.4
0.400 275.2 -1344.4 706.4 -17140.2 -23.7 -293.7 957.9 -18778.4
0.500 275.7 -1535.8 706.4 -17140.2 -23.7 -293.7 958.4 -18969.8

Strains and curvatures at t = 36500 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -107.3 2.3
0.097 -180.2 0.3
0.162 -181.5 0.4 Strain inc. at the strand level (mid) = -164.3 in/inx106

0.195 -187.7 0.3 Time-dependent inc. losses = -4.682 ksi
0.300 -183.8 0.7 Stress of prestress strand = 180.479 ksi
0.400 -178.9 1.0 % losses = 18.35 %
0.500 -177.3 1.1

Time-dependent strain at top fiber along the length of the girder:
x/L

171.01 172 174 178 199 365 10950 36500
0.000 0.0 -3.4 -9.9 -21.5 -64.1 -148.4 -189.7 -190.4
0.097 -0.1 -4.9 -12.4 -25.2 -70.1 -154.4 -190.1 -190.5
0.162 -0.2 -5.7 -13.8 -27.3 -73.6 -159.9 -197.4 -197.9
0.195 -0.2 -6.0 -14.4 -28.2 -75.0 -161.7 -198.7 -199.2
0.300 -0.3 -6.9 -16.0 -30.5 -79.0 -168.0 -207.5 -208.2
0.400 -0.3 -7.4 -16.8 -31.8 -81.3 -172.0 -213.3 -214.1
0.500 -0.3 -7.5 -17.1 -32.3 -82.0 -173.3 -215.2 -216.1

Time-dependent strain at bottom fiber along the length of the girder:
x/L

171.01 172 174 178 199 365 10950 36500
0.000 0.0 0.8 2.2 4.6 11.8 -9.4 -57.6 -59.1
0.097 0.2 3.3 6.3 10.2 17.4 -35.0 -166.8 -174.2
0.162 0.3 4.7 8.8 13.8 23.3 -28.6 -164.5 -172.0
0.195 0.3 5.2 9.6 15.0 24.9 -29.7 -173.1 -181.1
0.300 0.4 6.7 12.3 19.0 31.6 -19.9 -161.9 -169.7
0.400 0.5 7.6 13.9 21.4 35.8 -12.7 -151.0 -158.6
0.500 0.5 7.9 14.5 22.2 37.2 -10.2 -147.4 -154.8

Day

Day

Creep Shrinkage Relaxation Total
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

171 171.01 172 174 178 199 365 10950 36500
0.0 0.2 2.2 2.9 2.2 -6.6 -70.1 -172.3 -177.3
0.0 -1.5 -0.1 -0.7 -2.8 -14.5 -104.7 -440.1 -473.5
0.0 0.0 4.3 4.6 3.4 -7.2 -105.1 -300.7 -365.4

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

171 171.01 172 174 178 199 365 10950 36500
0.0 0.0 0.3 0.5 0.9 2.0 2.8 1.2 1.1
0.0 0.4 0.7 0.9 1.2 1.6 1.0 0.2 1.3
0.0 0.0 0.3 0.5 0.6 1.0 2.8 2.2 0.3

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

171 171.01 172 174 178 199 365 10950 36500
185.2 185.2 185.3 185.4 185.6 185.7 184.2 180.7 180.5
183.4 183.5 183.7 183.7 183.7 183.6 180.8 170.9 170.4
182.3 182.3 182.5 182.6 182.6 182.5 180.3 174.5 172.0

% prestress losses using ACI, CEB-FIP, and B3 respectively

171 171.01 172 174 178 199 365 10950 36500
16.2 16.2 16.2 16.1 16.1 16.0 16.7 18.3 18.4
17.0 17.0 16.9 16.9 16.9 17.0 18.2 22.7 22.9
17.5 17.5 17.4 17.4 17.4 17.5 18.4 21.1 22.2
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Three samples of time-dependent strains with respect to the time-line (174, 365, 

and 36,500 days) at the top fiber of interior girders are shown in Figure B-17. 

Three samples of time-dependent strains with respect to the time-line (174, 365, and 

36,500 days) at the bottom fiber of interior girders are shown in Figure B-18. 
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Figure B-17: Time-Dependent Strains at Top Fiber (Bridge 222 – Int. Girder 
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Figure B-18: Time-Dependent Strains at Bottom Fiber (Bridge 222 – Int. Girder) 
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Exterior Girder 

115.75

9 + 0.5
(for wt. calc)

36.91 31.00
26.61

E.N.A. (Girder)

12.39
21.39

Span = 738.6 in
9

Concrete properties: Prestress strand properties:
Girder:

A = 708 in2 A = 0.153 in2

I = 172712.4 in4 No. = 40
Ec(3) = 4628.4 ksi Jacking = 33.82 k/strand
Ec(28) = 5098.2 ksi Eps = 28500 ksi

Slab:
Ec(3) = 3272.8 ksi As-slab = 7.878 in2

Ec(28) = 3605.0 ksi Es = 29000 ksi

Section Properties at t = 3 days (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 708 0 172712.4 708 0 172712.4
Strand 6.12 75.8 939.5 37.7 466.9 5785.1

745.7 466.9 178497.5

Relaxation loss from t = 0 to 3 days:
ΔfRE = -3.691 ksi
fpi = 217.354 ksi

Applied forces at transfer:
x/L e No. of A B I N M

(in) strands (kips) (kips-in)
0.000 0.000 0 708.0 0.0 172712.4 0.0 0.0
0.097 11.323 30 736.3 320.0 176336.1 -997.7 -9821.6
0.162 11.566 34 740.0 370.5 176997.4 -1130.7 -10796.3
0.195 12.074 38 743.8 432.3 177931.5 -1263.7 -12626.8
0.300 12.390 40 745.7 466.9 178497.5 -1330.2 -12960.9
0.400 12.390 40 745.7 466.9 178497.5 -1330.2 -12458.0
0.500 12.390 40 745.7 466.9 178497.5 -1330.2 -12290.4

Properties of area Properties of transformed area
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Strains and curvatures at transfer:
x/L εo ψ

in/inx106 1/inx106

0.000 0.0 0.0
0.097 -287.8 -11.5
0.162 -323.9 -12.5 Strain at the strand level (midspan) = -548.8 in/inx106

0.195 -358.7 -14.5 Elastic shortening loss = -15.642 ksi
0.300 -376.2 -14.7 Stress of prestress strand = 201.713 ksi
0.400 -376.6 -14.1 % initial loss = 8.75 %
0.500 -376.7 -13.9

Creep coefficients, Ф(t, 3):
Model

3.01 4 7 28 171 365 10950 36500
AASHTO 0.003 0.044 0.094 0.254 0.688 0.915 1.404 1.440

ACI 0.009 0.124 0.255 0.556 0.932 1.055 1.313 1.338
CEB-FIP 0.069 0.274 0.415 0.711 1.180 1.384 1.808 1.827

B3 0.000 0.362 0.505 0.727 1.011 1.131 1.722 1.967

Shrinkage, εsh(t):
Model

3.01 4 7 28 171 365 10950 36500
AASHTO 0.000006 0.000008 0.000014 0.000053 0.000193 0.000261 0.000368 0.000372

ACI 0.000000 0.000007 0.000025 0.000116 0.000278 0.000321 0.000368 0.000369
CEB-FIP 0.000034 0.000047 0.000065 0.000120 0.000220 0.000273 0.000498 0.000522

B3 0.000000 0.000003 0.000012 0.000075 0.000358 0.000427 0.000432 0.000432
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Aging coefficients, χ(t, 3):
Model

3.01 4 7 28 171 365 10950 36500
AASHTO N/A N/A N/A N/A N/A N/A N/A N/A

ACI 0.707 0.653 0.636 0.615 0.594 0.587 0.560 0.551
CEB-FIP 0.808 0.776 0.766 0.644 0.543 0.527 0.468 0.466

B3 0.731 0.702 0.693 0.682 0.668 0.660 0.614 0.597

Use engineering recommendation model: ACI

Time-dependent restrained forces at t = 171 days (ΔN and ΔM):
Ф(171,3)  = 0.932 χ(171,3)  = 0.594
Ec(171,3)  = 2979.8 ksi (Age-adjusted elastic modulus)
εsh(171)  = 0.000278 λ = 0.747
Ω = 0.079 χr = 0.804
A (mid) = 766.5 in2 B (mid) = 725.2 in3

I (mid) = 181698 in4

x/L
ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM

0.000 0.0 0.0 587.5 0.0 0.0 0.0 587.5 0.0
0.097 565.8 5521.9 587.5 0.0 -12.9 -145.9 1140.4 5376.0
0.162 636.8 5996.4 587.5 0.0 -14.6 -168.9 1209.7 5827.5
0.195 705.3 6936.5 587.5 0.0 -16.3 -197.1 1276.4 6739.5
0.300 739.8 7053.1 587.5 0.0 -17.2 -212.9 1310.1 6840.3
0.400 740.5 6760.6 587.5 0.0 -17.2 -212.9 1310.8 6547.8
0.500 740.8 6663.2 587.5 0.0 -17.2 -212.9 1311.1 6450.3

Strains and curvatures at t = 171 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -278.5 0.0
0.097 -503.2 -8.7
0.162 -528.8 -9.2 Strain inc. at the strand level (mid) = -684.5 in/inx106

0.195 -551.8 -10.5 Time-dependent inc. losses = -19.509 ksi
0.300 -563.7 -10.4 Stress of prestress strand = 182.203 ksi
0.400 -564.6 -9.8 % losses = 17.57 %
0.500 -564.9 -9.7

Creep
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Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 171 365 10950 36500
-376.7 -379.8 -425.6 -487.1 -671.0 -941.6 -1018.5 -1136.5 -1143.4
-371.9 -427.9 -508.6 -571.6 -717.8 -958.6 -1070.2 -1404.9 -1430.0
-376.7 -376.7 -503.4 -558.8 -688.0 -1036.8 -1136.3 -1313.1 -1383.4

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 171 365 10950 36500
-13.9 -14.0 -15.4 -16.9 -20.1 -23.6 -24.7 -26.9 -27.1
-13.7 -14.5 -16.9 -18.4 -21.5 -26.2 -28.2 -31.5 -31.5
-13.9 -13.9 -18.3 -19.9 -22.1 -24.0 -24.9 -30.5 -32.8

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 171 365 10950 36500
201.7 201.6 199.8 197.5 191.1 182.2 179.6 175.5 175.2
201.9 200.0 196.9 194.6 189.3 180.8 176.9 166.2 165.5
201.7 201.7 196.6 194.4 190.0 179.3 176.2 169.2 166.4

% prestress losses using ACI, CEB-FIP, and B3 respectively

3 3.01 4 7 28 171 365 10950 36500
8.7 8.8 9.6 10.6 13.5 17.6 18.7 20.6 20.7
8.7 9.5 10.9 12.0 14.4 18.2 20.0 24.8 25.1
8.7 8.7 11.1 12.1 14.1 18.9 20.3 23.5 24.7
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Effect of concrete deck placed at t = 171 days

Section Properties at t = 171 days when deck is not hardened yet (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 708 0 172712.4 708 0 172712.4
Strand 6.12 75.8 939.5 34.2 423.9 5251.9

742.2 423.9 177964.3

Applied forces due to concrete deck placement:
x/L A B I ΔN ΔM

(kips) (kips-in)
0.000 708.0 0.0 172712.4 0.0 0.0
0.097 733.7 290.5 176002.1 0.0 2290.7
0.162 737.1 336.3 176602.5 0.0 3542.9
0.195 740.5 392.4 177450.5 0.0 4086.5
0.300 742.2 423.9 177964.3 0.0 5467.6
0.400 742.2 423.9 177964.3 0.0 6248.7
0.500 742.2 423.9 177964.3 0.0 6509.1

Strains and curvatures at deck placement:
x/L Δεo Δψ

in/inx106 1/inx106

0.000 0.0 0.0
0.097 -1.0 2.6
0.162 -1.8 3.9 Strain at the strand level (midspan) = 84.9 in/inx106

0.195 -2.4 4.5 Elastic stress gain = 2.420 ksi
0.300 -3.4 6.0 Stress of prestress strand = 184.623 ksi
0.400 -3.9 6.9 % losses = 16.48 %
0.500 -4.1 7.2

Creep coefficients of girder, Ф(t, 171):
Model

171.01 172 174 178 199 365 10950 36500
ACI 0.006 0.084 0.150 0.226 0.394 0.651 0.893 0.910

CEB-FIP 0.031 0.123 0.171 0.219 0.329 0.550 0.830 0.840
B3 0.000 0.132 0.176 0.216 0.295 0.432 0.715 0.821

Day
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Aging coefficients of girder, χ(t, 171):
Model

171.01 172 174 178 199 365 10950 36500
ACI 0.538 0.722 0.766 0.800 0.855 0.915 0.929 0.925

CEB-FIP 0.812 0.860 0.899 0.909 0.911 0.900 0.829 0.827
B3 0.541 0.733 0.779 0.815 0.873 0.934 0.937 0.928

Creep coefficients of concrete deck slab, Ф(t, 3):
Model

3.01 4 6 10 31 197 10782 36332
ACI 0.008 0.115 0.205 0.307 0.537 0.887 1.217 1.241

CEB-FIP 0.091 0.361 0.501 0.645 0.972 1.661 2.792 2.845
B3 0.000 0.360 0.470 0.562 0.730 1.007 1.702 1.949

Aging coefficients of concrete deck slab, χ(t, 3):
Model

3.01 4 6 10 31 197 10782 36332
ACI 0.695 0.630 0.614 0.602 0.581 0.556 0.531 0.523

CEB-FIP 0.809 0.793 0.807 0.779 0.697 0.585 0.642 0.649
B3 0.731 0.701 0.694 0.688 0.679 0.661 0.615 0.599
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Shrinkage of concrete deck slab, εsh(t):
Model

3.01 4 6 10 31 197 10782 36332
ACI 0.000000 0.000004 0.000011 0.000024 0.000071 0.000163 0.000208 0.000209

CEB-FIP 0.000016 0.000023 0.000031 0.000041 0.000068 0.000137 0.000492 0.000579
B3 0.000000 0.000001 0.000004 0.000008 0.000033 0.000212 0.000432 0.000432

Time-dependent effect at t = 36500 days:
Girder: Slab:
ΔФ(36500,3)  = 0.406 Ф(36332,3)  = 1.241
Δεsh(36500)  = 9.06E-05 χ(36332,3)  = 0.523
Ф(36500,171)  = 0.910 Ec(36332,3)  = 1984.8 ksi
χ(36500,171)  = 0.925 εsh(36332)  = 0.000209
Ec(36500,171)  = 2768.0 ksi

Strand:
λ = 0.747 Ω = 0.069
χr = 0.827

Stresses and curvatures prior to composite action
x/L

σtop σbot σtop σbot Δσtop Δσbot Δσ Δψ
0.000 0.830 0.830 -0.830 -0.830 0.000 0.000 0.000 0.000
0.097 0.778 2.313 -0.809 -2.055 -0.030 0.258 0.129 0.006
0.162 0.805 2.472 -0.846 -2.162 -0.040 0.309 0.154 0.007
0.195 0.757 2.685 -0.815 -2.311 -0.058 0.374 0.182 0.009
0.300 0.788 2.748 -0.856 -2.342 -0.068 0.407 0.195 0.010
0.400 0.834 2.713 -0.902 -2.310 -0.068 0.403 0.193 0.010
0.500 0.849 2.701 -0.917 -2.299 -0.068 0.402 0.193 0.010

Section Properties at t = 36500 days when composite action starts (midspan):

A B I A*E/Eref B*E/Eref I*E/Eref

Girder 708 0 172712.4 708 0 172712.4
Strand 6.12 75.8 939.5 63.0 780.7 9673.2
Deck 1042 -33763 1101294 747 -24210 789679

Rebars 7.88 -244.2 7571.2 82.5 -2558.7 79322.3
1601 -25988 1051387

Note : neglected the duration of 3-day concrete deck hardening

Day

Properties of area Properties of transformed area
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Time-dependent restrained forces at t = 36500 days (ΔN and ΔM):
x/L

ΔN ΔM ΔN ΔM ΔN ΔM ΔN ΔM
0.000 0.0 0.0 610.2 -14021.1 0.0 0.0 610.2 -14021.1
0.097 208.7 871.9 610.2 -14021.1 -17.6 -199.0 801.3 -13348.2
0.162 234.6 408.0 610.2 -14021.1 -19.9 -230.4 824.9 -13843.5
0.195 258.6 462.7 610.2 -14021.1 -22.3 -268.8 846.5 -13827.2
0.300 272.2 -186.0 610.2 -14021.1 -23.4 -290.4 858.9 -14497.5
0.400 273.6 -676.6 610.2 -14021.1 -23.4 -290.4 860.4 -14988.1
0.500 274.1 -840.1 610.2 -14021.1 -23.4 -290.4 860.8 -15151.6

Strains and curvatures at t = 36500 days
x/L Δεo(t) Δψ(t)

in/inx106 1/inx106

0.000 -106.3 2.1
0.097 -181.8 0.0
0.162 -184.6 0.2 Strain inc. at the strand level (mid) = -175.0 in/inx106

0.195 -191.2 0.0 Time-dependent inc. losses = -4.988 ksi
0.300 -188.7 0.3 Stress of prestress strand = 179.635 ksi
0.400 -184.7 0.6 % losses = 18.73 %
0.500 -183.4 0.7

Time-dependent strain at top fiber along the length of the girder:
x/L

171.01 172 174 178 199 365 10950 36500
0.000 0.0 -3.3 -9.5 -20.7 -61.7 -143.6 -184.2 -185.0
0.097 -0.1 -4.7 -11.9 -24.2 -67.3 -148.7 -183.3 -183.7
0.162 -0.2 -5.4 -13.2 -26.2 -70.7 -154.0 -190.2 -190.7
0.195 -0.2 -5.7 -13.8 -27.0 -72.0 -155.6 -191.3 -191.7
0.300 -0.3 -6.5 -15.2 -29.2 -75.7 -161.6 -199.7 -200.4
0.400 -0.3 -7.0 -16.1 -30.4 -77.9 -165.4 -205.5 -206.3
0.500 -0.3 -7.2 -16.4 -30.8 -78.6 -166.7 -207.4 -208.2

Time-dependent strain at bottom fiber along the length of the girder:
x/L

171.01 172 174 178 199 365 10950 36500
0.000 0.0 0.7 2.1 4.4 11.2 -10.7 -59.2 -60.6
0.097 0.2 2.8 5.4 8.8 14.7 -39.8 -173.3 -180.8
0.162 0.2 4.0 7.5 11.8 19.5 -35.1 -173.2 -181.0
0.195 0.3 4.4 8.2 12.8 20.8 -36.8 -182.7 -190.9
0.300 0.4 5.7 10.4 16.1 26.3 -28.8 -173.9 -182.0
0.400 0.4 6.4 11.8 18.1 29.9 -22.6 -164.4 -172.2
0.500 0.4 6.7 12.2 18.8 31.1 -20.5 -161.2 -168.9

Day

Day

Creep Shrinkage Relaxation Total

 



351 

 

Strains and curvatures - Summary for simple span case at x/L = 0.500
Strain, ε o (t) using ACI, CEB-FIP, and B3 respectively

171 171.01 172 174 178 199 365 10950 36500
0.0 0.2 1.6 1.7 0.6 -9.2 -74.1 -178.2 -183.4
0.0 -1.6 -0.8 -1.7 -4.0 -16.3 -107.7 -443.2 -476.1
0.0 0.0 3.2 3.2 1.8 -9.3 -107.2 -303.2 -368.7

Curvature, ψ(t) using ACI, CEB-FIP, and B3 respectively

171 171.01 172 174 178 199 365 10950 36500
0.0 0.0 0.2 0.5 0.9 1.9 2.5 0.8 0.7
0.0 0.4 0.7 0.9 1.1 1.5 0.7 -0.4 0.6
0.0 0.0 0.3 0.4 0.5 0.9 2.5 1.6 -0.4

Stress of prestress strand using ACI, CEB-FIP, and B3 respectively

171 171.01 172 174 178 199 365 10950 36500
184.6 184.6 184.8 184.8 184.9 185.0 183.4 179.8 179.6
182.9 183.0 183.1 183.2 183.2 183.0 180.1 170.2 169.6
181.8 181.8 182.0 182.0 182.0 181.8 179.6 173.7 171.1

% prestress losses using ACI, CEB-FIP, and B3 respectively

171 171.01 172 174 178 199 365 10950 36500
16.5 16.5 16.4 16.4 16.3 16.3 17.0 18.6 18.7
17.2 17.2 17.1 17.1 17.1 17.2 18.5 23.0 23.3
17.8 17.8 17.7 17.7 17.7 17.7 18.8 21.4 22.6

Day

Day

Day

Day
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End of Calculation 



352 

 

Three samples of time-dependent strains with respect to the time-line (174, 365, 

and 36,500 days) at the top fiber of interior girders are shown in Figure B-19. 

Three samples of time-dependent strains with respect to the time-line (174, 365, and 

36,500 days) at the bottom fiber of interior girders are shown in Figure B-20. 
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Figure B-19: Time-Dependent Strains at Top Fiber (Bridge 222 – Ext. Girder) 
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Figure B-20: Time-Dependent Strains at Bottom Fiber (Bridge 222 – Ext. Girder) 



 

 

Appendix C 
 

MATLAB Code for Condensed Hysteresis Model 

Main Function 

function U = runmodel(h) 
% Main function 
% h is time step size 
 
mat = loadmat;  % load all material input data 
atemp = loadatemp;  % load all air temperature input parameters 
aaem = loadaaem;  % load time-dependent effect parameters 
step = round(atemp.t_end/h);  % number of iterative steps 
txt = sprintf('Total number of looping = %d', step); 
disp(txt); 
k = 1;  % for progress print out 
mat.h = h; 
U = zeros(step,2);  % for u1 and o1 
U2 = zeros(step,2);  % for o4 and v5 
dU = zeros(4,1); 
tol = 0.00075;  % tolerance for use with CNorm 
cntrl = 5000;  % max number of iterative analysis per each load step 
prntxt = 1000; 
Kn = setIntVal;  % initial values 
Kn = getSoilProp(mat, Kn);  % compute soil properties for Ka, Kb, and Kc 
for i = 2:step  % main looping 
    mat.i = i; 
    if i == 2  % first step, use initial slope 
        Kn.Ka = Kn.kha; 
        Kn.Kb = Kn.khb; 
        Kn.Kc = Kn.khc; 
        Kn.Kd = mat.Kd; 
        Kn.K22 = 1e12;  % theoretically this stiffness is infinity at x = 0 
        Kn.K33 = 1e12;  % theoretically this stiffness is infinity at x = 0 
        Krr = formKrr(mat, Kn);  % form first partition of condensed stiffness matrix 
        Kcr = formKcr(mat, Kn);  % form second and third partitions of condensed stiffness 
matrix 
        Kcc = formKcc(mat, Kn);  % form forth partition of condensed stiffness matrix 
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        Kcm = Krr - transpose(Kcr)*inv(Kcc)*Kcr;  % condense 4x4 matrix to 2x2 matrix 
        Kn = getDT(mat, Kn, atemp, aaem);  % compute total incremental temperature 
(ambient + time-dependence) 
        Fr = formFr(mat, atemp, Kn.T-Kn.Ti);  % form first partition of condensed RHS 
force vector 
        Fc = formFc(mat, atemp, Kn.T-Kn.Ti);  % form second partition of condensed RHS 
force vector 
        Fcm = Fr - transpose(Kcr)*inv(Kcc)*Fc;  % condense 4x1 vector to 2x1 vector 
        dU(1:2) = Kcm\Fcm;  % solve for displacements based on initial stiffness 
        U(i,1) = U(i-1,1) + dU(1); 
        U(i,2) = U(i-1,2) + dU(2); 
        % Back condesation to obtain dU2 = inv(Kcc)*(Fc - Kcr*transpose(U(mat.i,:))) 
        dU(3:4) = inv(Kcc)*(Fc - Kcr*dU(1:2));  % solve for o4 and v5 (only o4, the first 
term, is needed) 
        U2(i,1) = U2(i-1,1) + dU(3); 
        U2(i,2) = U2(i-1,2) + dU(4); 
        Kn.flagI = sign(U(i,1) - U(i-1,1));  % set switching flag for storing the most updated 
xc and yc 
        Kn.flagI2 = sign(U(i,2) - U(i-1,2)); 
        [dUi, Kn] = getNewResult(mat, Kn, atemp, aaem, U, U2);  % solve for 
displacements based on updated stiffness 
        j = 0; 
        % iterative analysis to reduce errors to prescribed tolerance 
        nrmref = max(norm(norm(U(i,:)),norm(U2(i,:))),1e-16); 
        while (norm(dU-dUi)/nrmref > tol) & (j < cntrl) 
            dU = dUi; 
            U(i,1) = U(i-1,1) + dU(1); 
            U(i,2) = U(i-1,2) + dU(2); 
            U2(i,1) = U2(i-1,1) + dU(3); 
            U2(i,2) = U2(i-1,2) + dU(4); 
            nrmref = max(norm(norm(U(i,:)),norm(U2(i,:))),1e-16); 
            [dUi, Kn] = getNewResult(mat, Kn, atemp, aaem, U, U2); 
            j = j + 1; 
            if j >= cntrl 
                txt = sprintf('Overflow at loop %d and time %0.5g with CNORM = %0.5g',... 
                    i, (i-1)*h, norm(dU-dUi)/max(norm(U(i,:)),1e-16)); 
                disp(txt); 
            end 
        end 
        dU = dUi; 
        Kn.Ti = Kn.T; 
    else 
        U(i,1) = U(i-1,1) + dU(1); 
        U(i,2) = U(i-1,2) + dU(2); 
        U2(i,1) = U2(i-1,1) + dU(3); 
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        U2(i,2) = U2(i-1,2) + dU(4); 
        %Kn.flagI = sign(U(i,1) - U(i-1,1)); 
        %Kn.flagI2 = sign(U(i,2) - U(i-1,2)); 
        [dUi, Kn] = getNewResult(mat, Kn, atemp, aaem, U, U2); 
        j = 0; 
        nrmref = max(norm(norm(U(i,:)),norm(U2(i,:))),1e-16); 
        while (norm(dU-dUi)/max(norm(U(i,:)),1e-16) > tol) & (j < cntrl) 
            dU = dUi; 
            U(i,1) = U(i-1,1) + dU(1); 
            U(i,2) = U(i-1,2) + dU(2); 
            U2(i,1) = U2(i-1,1) + dU(3); 
            U2(i,2) = U2(i-1,2) + dU(4); 
            nrmref = max(norm(norm(U(i,:)),norm(U2(i,:))),1e-16); 
            [dUi, Kn] = getNewResult(mat, Kn, atemp, aaem, U, U2); 
            j = j + 1; 
            if j >= cntrl 
                txt = sprintf('Overflow at loop %d and time %0.5g with CNORM = %0.5g',... 
                    i, (i-1)*h, norm(dU-dUi)/max(norm(U(i,:)),1e-16)); 
                disp(txt); 
            end             
        end 
        dU = dUi; 
        Kn.Ti = Kn.T; 
    end 
    if i == k*prntxt 
        txt = sprintf('  Looping # %d', i); 
        disp(txt); 
        k = k + 1; 
    end 
end 
abc = 1; 
% End of main function 

Function for solving iterative analysis step 

function [dUi, Kn] = getNewResult(mat, Kn, atemp, aaem, U, U2) 
% Function for solving iterative analysis step 
 
dUi = zeros(4,1); 
% Compute tangent stiffness of K22 
if mat.i == 2 
    yt = 0; 



356 

 

    Kn.yc = 0; 
    xth = U(2,1); 
    xt = U(1,1); 
    Kn.xc = 0; 
else 
    yt = Kn.yt; 
    xth = U(mat.i,1); 
    xt = U(mat.i-1,1); 
end 
Kn.flag = sign(xth - xt); 
if Kn.flag ~= Kn.flagI  % indicate point of displacement reversal 
    Kn.xc = xt; 
    Kn.yc = yt; 
    Kn.flagI = Kn.flag; 
end 
Kn.yt = duhemK22(yt, Kn.yc, xth, xt, Kn.xc, mat.C1, mat.C2); 
Kn.K22 = (Kn.yt - yt)/(xth - xt); 
% Compute tangent stiffness of K33 
if mat.i == 2 
    yt2 = 0; 
    Kn.yc2 = 0; 
    xth2 = U(2,2); 
    xt2 = U(1,2); 
    Kn.xc2 = 0; 
else 
    yt2 = Kn.yt2; 
    xth2 = U(mat.i,2); 
    xt2 = U(mat.i-1,2); 
end 
Kn.flag2 = sign(xth2 - xt2); 
if Kn.flag2 ~= Kn.flagI2  % indicate point of rotation reversal 
    Kn.xc2 = xt2; 
    Kn.yc2 = yt2; 
    Kn.flagI2 = Kn.flag2; 
end 
Kn.yt2 = duhemK33(yt2, Kn.yc2, xth2, xt2, Kn.xc2, mat.C3, mat.C4); 
Kn.K33 = (Kn.yt2 - yt2)/(xth2 - xt2); 
% Compute tangent stiffness of Ka 
if mat.i == 2 
    xt = -U(1,1) + (2*Kn.poa - Kn.paa - Kn.ppa)/2/Kn.kha;  % Note: sign of all 
displacement is flipped 
    xth = xt - U(2,1) + U(1,1); 
    ut = xt; 
    Kn.uta = ut; 
    yt = Kn.kha*ut + (Kn.paa + Kn.ppa)/2; 
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else 
    yt = Kn.yta; 
    ut = Kn.uta; 
    xt = -U(mat.i-1,1); 
    xth = xt - U(mat.i,1) + U(mat.i-1,1); 
end 
Kn.uta = elastoK(ut, xth, xt, Kn.kha, Kn.paa, Kn.ppa); 
Kn.yta = Kn.kha*Kn.uta + (Kn.paa + Kn.ppa)/2; 
Kn.Ka = (Kn.yta - yt)/(xth - xt); 
% Compute tangent stiffness of Kb 
if mat.i == 2 
    % apply constrint equation to obtain displacement at Kb elevation 
    uuth = U(2,1) - mat.ha*U(2,2); 
    uut = U(1,1) - mat.ha*U(1,2); 
    % u2 = u1 - ha*o1 
    xt = -uut + (2*Kn.pob - Kn.pab - Kn.ppb)/2/Kn.khb; 
    xth = xt - uuth + uut; 
    ut = xt; 
    Kn.utb = ut; 
    yt = Kn.khb*ut + (Kn.pab + Kn.ppb)/2; 
else 
    % aaply constraint equation 
    uuth = U(mat.i,1) - mat.ha*U(mat.i,2); 
    uut = U(mat.i-1,1) - mat.ha*U(mat.i-1,2); 
    % u2 = u1 - ha*o1 
    yt = Kn.ytb; 
    ut = Kn.utb; 
    xt = -uut; 
    xth = xt - uuth + uut; 
end 
Kn.utb = elastoK(ut, xth, xt, Kn.khb, Kn.pab, Kn.ppb); 
Kn.ytb = Kn.khb*Kn.utb + (Kn.pab + Kn.ppb)/2; 
Kn.Kb = (Kn.ytb - yt)/(xth - xt); 
% Compute tangent stiffness of Kc 
if mat.i == 2     
    % apply constraint equation to obtain displacement at Kc elevation 
    uut = uut - mat.hb*U2(1,1); 
    uuth = uuth - mat.hb*U2(2,1); 
    % u4 = u2 - hb*o4 
    xt = -uut + (2*Kn.poc - Kn.pac - Kn.ppc)/2/Kn.khc; 
    xth = xt - uuth + uut; 
    ut = xt; 
    Kn.utc = ut; 
    yt = Kn.khc*ut + (Kn.pac + Kn.ppc)/2; 
else 
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    uut = uut - mat.hb*U2(mat.i-1,1); 
    uuth = uuth - mat.hb*U2(mat.i,1); 
    % u1 = u2 + h2*o2 
    yt = Kn.ytc; 
    ut = Kn.utc; 
    xt = -uut; 
    xth = xt - uuth + uut; 
end 
Kn.utc = elastoK(ut, xth, xt, Kn.khc, Kn.pac, Kn.ppc); 
Kn.ytc = Kn.khc*Kn.utc + (Kn.pac + Kn.ppc)/2; 
Kn.Kc = (Kn.ytc - yt)/(xth - xt); 
% Compute tangent stiffness of Kd 
if mat.i == 2     
    xt = U(1,2) - U2(1,1); 
    xth = U(2,2) - U2(2,1); 
    ut = xt; 
    Kn.utd = ut; 
yt = mat.Kd*ut; 
else 
    yt = Kn.ytd; 
    ut = Kn.utd; 
    xt = U(mat.i-1,2) - U2(mat.i-1,1); 
    xth = U(mat.i,2) - U2(mat.i-1,1); 
end 
Kn.utd = elastoK(ut, xth, xt, mat.Kd, 0, 2*mat.Md); 
Kn.ytd = mat.Kd*Kn.utd; 
Kn.Kd = (Kn.ytd - yt)/(xth - xt); 
% iterative analysis 
if mat.i > 2 
    Kn = getDT(mat, Kn, atemp, aaem); 
end 
Krr = formKrr(mat, Kn); 
Kcr = formKcr(mat, Kn); 
Kcc = formKcc(mat, Kn); 
Kcm = Krr - transpose(Kcr)*inv(Kcc)*Kcr; 
Fr = formFr(mat, atemp, Kn.T-Kn.Ti); 
Fc = formFc(mat, atemp, Kn.T-Kn.Ti); 
Fcm = Fr - transpose(Kcr)*inv(Kcc)*Fc; 
dUi(1:2) = Kcm\Fcm; 
dUi(3:4) = inv(Kcc)*(Fc - Kcr*dUi(1:2)); 
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Function for setting initial values for all nonlinear hysteresis springs 

function Kn = setIntVal 
% Function for setting initial values for all nonlinear hysteresis springs (and total 
temperature) 
 
% initial values of K22 
Kn.xc = 0; 
Kn.yt = 0; 
Kn.yc = 0; 
% initial values of K33 
Kn.xc2 = 0; 
Kn.yt2 = 0; 
Kn.yc2 = 0; 
% initial values of Ka 
Kn.yta = 0; 
Kn.uta = 0; 
% initial values of Kb 
Kn.ytb = 0; 
Kn.utb = 0; 
% initial values of Kc 
Kn.ytc = 0; 
Kn.utc = 0; 
% initial values of Kd 
Kn.ytd = 0; 
Kn.utd = 0; 
Kn.xtd = 0; 
% initial values total temperature 
Kn.T = 0; 
Kn.Ti = 0; 

Function for loading material properties 

function mat = loadmat() 
% Function for loading material properties 
% The order of input data file should follow: 
% A = area of composite superstructure component 
% E = reference elastic modulus of composite superstructure component 
% I = moment of inertia of composite superstructure component 
% L1 = superstructure length to be used in stiffness term "AE/L" 
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% L2 = superstructure length to be used in stiffness terms "12EI/L^3" and "6EI/L^2" 
% ha = abutment height 
% hb = backwall height (distance from construction joint to E.N.A. of composite 
superstructure component 
% kref = lateral soil-abutment modulus of subgrade reaction at the pile head location 
% B = soil-abutment interaction width 
% phi = backfill interal friction angle (degree) 
% gamma = unit weight of backfill 
% C1 = coefficient for pile head displacement-force reaction tangential slope (K22) of 
contraction case 
% C2 = coefficient for pile head displacement-force reaction tangential slope (K22) of 
expansion case 
% C3 = coefficient for pile head rotation-moment reaction tangential slope (K33) of 
contraction case 
% C4 = coefficient for pile head rotation-moment reaction tangential slope (K33) of 
expansion case 
% Kd = stiffness of cold joint 
% Md = yielding moment of cold joint 
% Note 1: all input units need to be consistent. 
% Note 2: rotational mode of IA bridge movements during contraction is to be resisted by 
soil on backfill side, 
% thus, C4 should be used for contraction movement and C3 should be used for 
expansion movement. 
 
temp = load('mat.dat'); 
mat.A = temp(1); 
mat.E = temp(2); 
mat.I = temp(3); 
mat.L1 = temp(4); 
mat.L2 = temp(5); 
mat.ha = temp(6); 
mat.hb = temp(7); 
mat.kref = temp(8); 
mat.B = temp(9); 
mat.phi = temp(10); 
mat.gamma = temp(11); 
mat.C1 = temp(12); 
mat.C2 = temp(13); 
mat.C3 = temp(14); 
mat.C4 = temp(15); 
mat.Kd = temp(16); 
mat.Md = temp(17); 
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Function for loading air temperature parameters 

function atemp = loadatemp() 
% Function for loading air temperature parameters 
% t_end = duration of analysis time (initial time is always set to zero) 
% Tm = mean temperature (= 7 C for this thesis) 
% A = amplitude of temperature fluctuation (= 16 C for this thesis) 
% phase = phase lag, radian (= 2.51622, 1.561486, and 1.479774 for bridges 203, 211, 
and 222 respectively) 
% alfa = coefficient of thermal expansion (=9x10-6 /C for this thesis) 
% Note: Only air temperature is assigned for this function. Time unit is day. Temperature 
unit is celcius. 
 
temp = load('atemp.dat'); 
atemp.t_end = temp(1); 
atemp.Tm = temp(2); 
atemp.A = temp(3); 
atemp.phase = temp(4); 
atemp.alfa = temp(5); 

Function for loading days, time-dependent elastic modulus, and equivalent 

temperature 

function aaem = loadaaem() 
% Function for loading days, time-dependent elastic modulus, and equivalent temperature 
% day = day function 
% Ec = time-dependent elastic modulus based on the AAEM method 
% Eqtemp = equivalent temperature based on the AAEM method 
 
temp = load('aaem.dat'); 
aaem.day = temp(:,1); 
aaem.Ec = temp(:,2); 
aaem.Eqtemp = temp(:,3); 
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Function for computing soil properties for Ka, Kb, and Kc 

function Kn = getSoilProp(mat, Kn) 
% Function for computing soil properties for Ka, Kb, and Kc 
 
K_a = (1-sin(mat.phi*pi/180))/(1+sin(mat.phi*pi/180)); 
K_p = 1/K_a; 
K_o = 1 - sin(mat.phi*pi/180); 
% properties for Ka 
Kn.kha = getKh(mat, 1); 
Kn.poa = K_o*mat.gamma*mat.B*(mat.hb + 3/4*mat.ha)*mat.ha/2; 
Kn.paa = Kn.poa*K_a/K_o; 
Kn.ppa = Kn.poa*K_p/K_o; 
% properties for Kb 
Kn.khb = getKh(mat, 2); 
Kn.pob = K_o*mat.gamma*mat.B*((mat.hb + 1/4*mat.ha)*mat.ha/2 + 
3/4*mat.hb*mat.hb/2); 
Kn.pab = Kn.pob*K_a/K_o; 
Kn.ppb = Kn.pob*K_p/K_o; 
% properties for Kc 
Kn.khc = getKh(mat, 3); 
Kn.poc = K_o*mat.gamma*mat.B*1/2*mat.hb/2*mat.hb/2; 
Kn.pac = Kn.poc*K_a/K_o; 
Kn.ppc = Kn.poc*K_p/K_o; 

Function for computing initial stiffness of soil-abutment interaction springs 

function Kh = getKh(mat, flag) 
% Function for computing initial stiffness of soil-abutment interaction springs 
% flag = 1 means Ka (spring at pile head location) 
%      = 2 means Kb (spring at abutment-backwall connection) 
%      = 3 means Kc (spring at E.N.A. of superstructure componenet) 
 
switch flag 
case 1, 
    Kh = mat.kref*mat.B*(6*(mat.ha+mat.hb)^1.5 - 3*mat.ha*mat.hb^0.5 - 
6*mat.hb^1.5)/(12*(mat.ha + mat.hb)^0.5); 
case 2, 
    Kh = mat.kref*mat.B*(2*(mat.ha+mat.hb)^1.5 + 3*mat.ha*mat.hb^0.5 + 
4*mat.hb^1.5)/(12*(mat.ha + mat.hb)^0.5); 
case 3, 
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    Kh = mat.kref*mat.B*2*mat.hb^1.5/(12*(mat.ha + mat.hb)^0.5); 
end 

Function for computing incremental temperature 

function Kn = getDT(mat, Kn, atemp, aaem) 
% Function for computing incremental temperature 
 
t = (mat.i - 1)*mat.h; 
T1 = atemp.A*sin(2*pi/365.25*t + atemp.phase) - atemp.A*sin(atemp.phase); 
if t < aaem.day(1) 
    Kn.T = T1; 
    Kn.Ec = mat.E; 
elseif t < aaem.day(2) 
    Kn.T = T1 + aaem.Eqtemp(1) + (aaem.Eqtemp(2) - aaem.Eqtemp(1))*(t - 
aaem.day(1))/(aaem.day(2) - aaem.day(1)); 
    Kn.Ec = aaem.Ec(1) + (aaem.Ec(2) - aaem.Ec(1))*(t - aaem.day(1))/(aaem.day(2) - 
aaem.day(1)); 
elseif t < aaem.day(3) 
    Kn.T = T1 + aaem.Eqtemp(2) + (aaem.Eqtemp(3) - aaem.Eqtemp(2))*(t - 
aaem.day(2))/(aaem.day(3) - aaem.day(2)); 
    Kn.Ec = aaem.Ec(2) + (aaem.Ec(3) - aaem.Ec(2))*(t - aaem.day(2))/(aaem.day(3) - 
aaem.day(2)); 
elseif t < aaem.day(4) 
    Kn.T = T1 + aaem.Eqtemp(3) + (aaem.Eqtemp(4) - aaem.Eqtemp(3))*(t - 
aaem.day(3))/(aaem.day(4) - aaem.day(3)); 
    Kn.Ec = aaem.Ec(3) + (aaem.Ec(4) - aaem.Ec(3))*(t - aaem.day(3))/(aaem.day(4) - 
aaem.day(3)); 
elseif t < aaem.day(5) 
    Kn.T = T1 + aaem.Eqtemp(4) + (aaem.Eqtemp(5) - aaem.Eqtemp(4))*(t - 
aaem.day(4))/(aaem.day(5) - aaem.day(4)); 
    Kn.Ec = aaem.Ec(4) + (aaem.Ec(5) - aaem.Ec(4))*(t - aaem.day(4))/(aaem.day(5) - 
aaem.day(4)); 
elseif t < aaem.day(6) 
    Kn.T = T1 + aaem.Eqtemp(5) + (aaem.Eqtemp(6) - aaem.Eqtemp(5))*(t - 
aaem.day(5))/(aaem.day(6) - aaem.day(5)); 
    Kn.Ec = aaem.Ec(5) + (aaem.Ec(6) - aaem.Ec(5))*(t - aaem.day(5))/(aaem.day(6) - 
aaem.day(5)); 
elseif t < aaem.day(7) 
    Kn.T = T1 + aaem.Eqtemp(6) + (aaem.Eqtemp(7) - aaem.Eqtemp(6))*(t - 
aaem.day(6))/(aaem.day(7) - aaem.day(6)); 
    Kn.Ec = aaem.Ec(6) + (aaem.Ec(7) - aaem.Ec(6))*(t - aaem.day(6))/(aaem.day(7) - 
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aaem.day(6)); 
elseif t < aaem.day(8) 
    Kn.T = T1 + aaem.Eqtemp(7) + (aaem.Eqtemp(8) - aaem.Eqtemp(7))*(t - 
aaem.day(7))/(aaem.day(8) - aaem.day(7)); 
    Kn.Ec = aaem.Ec(7) + (aaem.Ec(8) - aaem.Ec(7))*(t - aaem.day(7))/(aaem.day(8) - 
aaem.day(7)); 
else 
    Kn.T = T1 + aaem.Eqtemp(8); 
    Kn.Ec = aaem.Ec(8); 
end 

Function for forming the first partition of 4x4 condensed stiffness matrix 

function Krr = formKrr(mat, Kn) 
% Function for forming the first partition of 4x4 condensed stiffness matrix 
% see function "loadmat" for all notations 
 
a11 = Kn.Ka + Kn.Kb + Kn.Kc + Kn.K22 + mat.A*mat.E/mat.L1; 
a12 = -mat.ha*(Kn.Kb + Kn.Kc + mat.A*mat.E/mat.L1); 
a22 = Kn.Kd + Kn.K33 + mat.ha^2*(Kn.Kb + Kn.Kc + mat.A*mat.E/mat.L1); 
Krr = [a11, a12; a12, a22]; 

Function for forming the second and the third partitions of 4x4 condensed stiffness 

matrix 

function Kcr = formKcr(mat, Kn) 
% Function for forming the second and the third partitions of 4x4 condensed stiffness 
matrix 
 
a11 = -mat.hb*(Kn.Kc + mat.A*mat.E/mat.L1); 
a12 = -Kn.Kd + mat.ha*mat.hb*(Kn.Kc + mat.A*mat.E/mat.L1); 
Kcr = [a11, a12; 0, 0]; 
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Function for forming the forth partition of 4x4 condensed stiffness matrix 

function Kcc = formKcc(mat, Kn) 
% Function for forming the forth partition of 4x4 condensed stiffness matrix 
 
a11 = Kn.Kd + mat.hb^2*(Kn.Kc + mat.A*mat.E/mat.L1) + 4*mat.E*mat.I/mat.L2; 
a12 = -6*mat.E*mat.I/mat.L2^2; 
a22 = 12*mat.E*mat.I/mat.L2^3; 
Kcc = [a11, a12; a12, a22]; 

Function for forming the first partition of 4x1 condense right-hand-side force vector 

function Fr = formFr(mat, atemp, dT) 
% Function for forming the first partition of 4x1 condense right-hand-side force vector 
 
a1 = -mat.A*mat.E*atemp.alfa*dT; 
a2 = mat.ha*mat.A*mat.E*atemp.alfa*dT; 
Fr = [a1; a2]; 

Function for forming the second partition of 4x1 condensed right-hand-side force 

vector 

function Fc = formFc(mat, atemp, dT) 
% Function for forming the second partition of 4x1 condensed right-hand-side force 
vector 
 
a1 = mat.hb*mat.A*mat.E*atemp.alfa*dT; 
a2 = 0; 
Fc = [a1; a2]; 
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Function for calculating load-deformation curve based on duhem model 

function yth = duhemK22(yt, yc, xth, xt, xc, c1, c2) 
% Function to calculate load-deformation curve based on duhem model 
%      yth = duhemK22(yt, yc, xth, xt, xc, c1, c2) 
% yth is to be solved of current iteration (load) 
% yt is load of previous iteration 
% yc is load at current reversal 
% xth is displacement of current iteration (known) 
% xt is displacement of previous iteration 
% xc is displacement at current reversal 
% c1 is coefficient of increasing curve (contraction case) 
% c2 is coefficient of decreasing curve (expansion case) 
 
if xth-xt >= 0  % increasing curve 
    c = c1; 
else  % decreasing curve 
    c = c2; 
end 
xc_add = max(sign(xth-xt)*sign(yc)*(abs(yc/2/c))^2,0);  % account for hysteresis 
boundary 
yth = yt + c*(xth-xt)*(abs(xth-xc-xc_add))^(-0.5); 

Function for calculating load-deformation curve based on duhem model 

function yth = duhemK33(yt, yc, xth, xt, xc, c3, c4) 
% Function to calculate load-deformation curve based on duhem model 
%      yth = duhemK33(yt, yc, xth, xt, xc, c3, c4) 
% yth is to be solved of current iteration (load) 
% yt is moment of previous iteration 
% yc is moment at current reversal 
% xth is rotation of current iteration (known) 
% xt is rotation of previous iteration 
% xc is rotation at current reversal 
% c3 is coefficient of decreasing curve (contraction case) 
% c4 is coefficient of increasing curve (expansion case) 
% Note: These two coefficients are opposite to the case K22 
 
if xth-xt >= 0  % increasing curve 
    c = c4; 
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else  % decreasing curve 
    c = c3; 
end 
xc_add = max(sign(xth-xt)*sign(yc)*(abs(4*yc/5/c))^(5/4),0);  % account for hysteresis 
boundary 
yth = yt + c*(xth-xt)*(abs(xth-xc-xc_add))^(-0.2); 

Function for calculating load-deformation curve based on duhem model 

function uth = elastoK(ut, xth, xt, kh, pa, pp) 
% Function to calculate load-deformation curve based on duhem model 
%      uth = elastoK(ut, xth, xt, kh, po, pa, pp) 
% uth is to be solved of current iteration (load) 
% ut is load of previous iteration 
% xth is displacement of current iteration (known) 
% xt is displacement of previous iteration 
% kh is initial slope 
% pa is active load 
% pp is passive load 
 
if (ut + (pp-pa)/2/kh) >= 0  % Heaviside's unit step function H1 
    H1 = 1; 
else 
    H1 = 0; 
end 
if (xth - xt) >= 0  % Heaviside's unit step function H2 
    H2 = 0; 
else 
    H2 = 1; 
end 
if (xth - xt) > 0  % Heaviside's unit step function H3 
    H3 = 1; 
else 
    H3 = 0; 
end 
if (ut - (pp-pa)/2/kh) > 0  % Heaviside's unit step function H4 
    H4 = 0; 
else 
    H4 = 1; 
end 
uth = ut + (xth - xt)*(H3*H4 + H2*H1); 
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