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ABSTRACT 

This research studies two flow shop scheduling problems which consider transportation 

times between machines. The first problem considers a special case of a two-machine flow shop 

scheduling problem with asynchronous transportation times and the second one consider an 

application of flow shop scheduling to automated manufacturing cells with a synchronous 

material transportation device. The objective of both problems is to find a job schedule which 

minimizes the makespan – the completion time of the last job. 

 

In the first problem, not only transportation times are explicitly provided but also the 

availability of the transporter is considered. In the model, there is one transporter with a specific 

capacity to transport jobs from the first machine to the second machine. The processing times on 

the first machine are job-independent. A threshold value for the transporter’s capacity is derived. 

When the capacity of the transporter is greater than or equal to the threshold value, a dynamic 

programming algorithm is developed to obtain an optimal schedule. Given that n is the number 

of jobs, the computational effort of the proposed dynamic programming algorithm is shown to be 

O(n
3
), which is better than the best algorithm found in the literature.  

 

This research also considers a new flow shop scheduling problem with synchronous 

material movement. The automated machining center consists of a loading/unloading (L/U) 

station, m processing machines, and a rotary table. The L/U station and the processing machines 

surround the rotary table. In this machining center, a job is first loaded onto the rotary table at the 

L/U station. Then, the table rotates to transfer the job to the first machine, and subsequently to 

the second machine and so on. After being processed by the m machines, the job is transported 
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back to the L/U station where it is unloaded from the machining center. A rotation of the table 

occurs only when all stations are finished with their jobs, including the loading and unloading 

operations at the L/U station. The mechanism of transferring all these jobs on the rotary table 

simultaneously to their next stations is referred to as synchronous material movement.  

 

Regarding the machining center with synchronous material movement, the simplest 

model with a single machine is studied first. The problem is shown to be NP-hard in the strong 

sense. A polynomial time algorithm is developed for a special case which assumes a constant 

unloading or loading time for all jobs. Moreover, due to the systematic structure of the problem, 

a dynamic programming algorithm is provided to obtain an optimal solution for a generalized 

version of the problem with m machines. The computational effort of the dynamic programming 

algorithm is also presented.  

 

Two-phase heuristic algorithms are developed to solve the problems with one machine 

and two machines. For each problem, two constructive heuristics and the modified neighborhood 

search algorithm are proposed, and computational experiments are conducted to test the 

performance of the proposed algorithms. The experimental results show that the two-phase 

algorithms generate high quality solutions in a very short time. A tighter lower bound is also 

developed for each case. 
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Chapter 1 

 

Introduction and Overview 

1.1 Introduction 

Due to the rapid advance in technology and the prevalence of e-commerce, global 

competition is not only a trend but a pressure situation for a company. In order to maintain a 

competitive advantage, companies attempt to optimize not only plant operations but also the 

interplant activities between facilities. For plant operations, accurate scheduling plays an 

important role in a manufacturing environment and is fundamental in the execution of a 

production plan. Consequently, better coordination and scheduling of production and logistics 

activities on the shop floor are necessary to survive in the highly competitive environment which 

requires short lead-time deliveries and low-cost products. 

 

During the past five decades, shop floor scheduling has been a topic intensively 

addressed in operations research. Although there are numerous methodologies and research 

studies published in the field of machine scheduling, most of the literature assumes that there is 

an unlimited number of transporters for delivery of jobs or that transportation times between 

machines can be neglected, which means that jobs are transported to the next machine 

immediately. This ideal assumption is not applicable for generating an accurate scheduling on 

the shop floor. Furthermore, even though transportation times are considered and separated from 

processing times, most models still assume there are unlimited transporters to move jobs. 

Integrated scheduling of material handling and manufacturing will involve two types of 
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resources: machines and material handling devices. Either resource could become a bottleneck if 

not properly scheduled. Thus, considering the transportation issue in the classical machine 

scheduling will lead to more realistic and practical models. This, in turn, may yield more feasible 

and accurate production plans for a shop floor. To incorporate these more realistic constraints in 

this research, not only transportation times are explicitly taken into account but also the 

availability of transporters is considered. 

 

In Han and McGinnis’s study (1989), they estimate that a job spends only 5% of its total 

cycle time being processed on machines - the job either waits in a queue or is being transported 

between machines for the remaining flow time. In the study, they conclude that assuming 

negligible transportation times is not practical for most production systems. Additionally, 

material handling devices (e.g., robots, automated guided vehicles (AGVs), conveyors, 

transporters, etc.) are an expensive investment and take a significant portion of the equipment 

cost in many manufacturing environments. Tompkins and White (1984) indicate the cost of 

material handling cumulates as high as 80% of the total manufacturing cost of a product. The 

capital invested on the material handling equipment returns by reducing labor, material or 

overhead costs, and Meyers and Stephens (2005) indicate the investment should be recovered in 

two years or less (50 percent return on investment or higher). 

 

In order to reduce the cost and increase the utilization of these automated facilities, the 

interaction between processing machines and the material handling equipment should be planned 

carefully. Generally, it is clear that operations in manufacturing and transportation systems must 

be coordinated carefully in order to achieve ideal overall system performance. To achieve this 
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goal, the following issues regarding transportation scheduling must be addressed simultaneously 

as suggested by Lee at el. (1997): 

1. Determine a sequence that specifies the order in which jobs are processed at 

machining centers; 

2. Generate a schedule that makes time-phased routing and dispatching of transporters 

for job pick-up and delivery; and 

3. Design a facility layout and flow paths that make efficient operations possible. 

 

A problem to address the three issues mentioned above at the same time is a 

combinatorial problem, and it is very difficult to find an optimal solution. Most studies reported 

in the literature consider at most two of these issues. For example, giving a set of jobs and 

transporters, the problem is to determine the sequence of jobs processed on the machines and 

how to transport jobs between machines to minimize the makespan, which is the completion time 

of the last job on the final machine. In this research, the first two issues, scheduling the job 

sequence on machines and the transportation plan for jobs, are investigated. 

1.2 Research Problems 

Two types of flow shop manufacturing environments involving transportation are 

considered in this research. In the first part of the research, we are interested in a two-machine 

flow shop scheduling problem with the objective of minimizing makespan. In this flow shop, 

there are two machines, M1 and M2, that are continuously available from time zero for processing 

n independent jobs j ( 1, ,j n  ) which should pass through M1 and M2. All jobs are available at 

time zero and each machine can handle no more than one job at a time without preemption. In 
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addition, there is a single transporter or material handling device with a given capacity to 

transport jobs from M1 to M2. Transportation times between these two machines are explicitly 

considered. The problem is to determine the optimal schedule of transporting these jobs to the 

second machine such that the completion time of the last job finished on the second machine is 

minimized. 

 

In the second part of the research, a new scheduling problem in an automated 

manufacturing cell is investigated. The automated manufacturing cell commonly integrates 

material handling and processing devices to process jobs efficiently. This part considers an 

application to the manufacturing cell which consists of one loading and unloading station, m 

processing machines, and a rotary table. The loading/unloading station and the processing 

machines surround the rotary table. The rotary table is a platform used to carry jobs currently 

being processed and to transport these jobs to the next processing stations once all jobs on the 

table complete their current operations. This is shown in Figure 1.1. Jobs have to be loaded on 

the rotary table at the loading/unloading station, be transported to the processing machines 

subsequently, and finally be unloaded from the rotary table at the loading/unloading station.  

 

The problem is similar to a flow shop without buffers between machines such that jobs in 

this flow shop are transported to next machines simultaneously. In addition, unlike the traditional 

flow shop, jobs will be transported back to the same loading/unloading station for the unloading 

operation. The characteristic of the re-entrance of jobs increases the complexity of scheduling in 

this machining center. The objective of the scheduling problem is to determine an optimal job 

sequence which minimizes the makespan. The manufacturing cell with a single processing 
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machine will be investigated first. Furthermore, an extension which is to increase the number of 

processing machines in the machining center to two is also considered. 

 

 
Figure 1.1. A T-line machining center with m machines 

1.3 Research Objectives and Contributions 

For the scheduling problem in a two-machine flow shop with a single transporter, the 

objective is to develop an improved algorithm to obtain the optimal solution efficiently. The 

research also explores a new flow shop scheduling problem with two special characteristics: the 

synchronous job transfer and job re-entrance. For the application in a flow shop, one of the 

focuses of this research is to identify the complexity and some properties of the problem. In 

addition, developing algorithms to obtain optimal or near-optimal solutions in a reasonable time 

is another objective of the research. 
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Contributions of this study are summarized as follows: 

1. For the special case in a two-machine flow shop with transportation considerations, a 

dynamic programming algorithm is proposed to solve the problem in polynomial time when 

the transporter’s capacity is greater than or equal to a derived threshold value. In an optimal 

schedule, the maximum number of jobs be transported in every batch is always not greater 

than the threshold value. The complexity of the algorithm is shown to be O(n
3
), where n is 

the number of jobs.  

2. A new flow shop scheduling problem in an automated manufacturing cell with synchronous 

material movement and job re-entrance is investigated. The complexity of the problem with a 

single machine is proven to be strongly NP-hard by showing that the problem is equivalent to 

the numerical matching problem with target sums, which known to be strongly NP-hard. 

3. A dynamic programming algorithm is provided to obtain an optimal schedule for the 

machining center with one machine. The computational effort of the algorithm also shows 

the exponential time complexity of the problem. However, the dynamic programming 

algorithm can still obtain an optimal solution efficiently for small and medium size problems. 

In addition, the dynamic programming algorithm is extended to a two-machine case and a 

generalized model with m machines. 

4. Two-phase heuristic algorithms are developed to obtain an optimal or near-optimal solution 

for the scheduling problem in a T-line machining center with one machine as well as for the 

problem with two machines. Two constructive heuristics are proposed to generate an initial 

sequence for both problems. For the improvement phase, a modified neighborhood search is 

suggested which integrates the pairwise interchange scheme and a mechanism for avoiding 

trapping in a local optimum. A sets of computational experiments are conducted including 



7 

small, medium, and large-size problems combining three different settings on the loading, 

processing, and unloading times. The results show that the proposed two-phase algorithms 

rapidly generate a solution within 1% from the optimum or 3% from the lower bound for the 

one-machine problem, and 2.3% from the optimum or 6.25% from the lower bound for the 

two-machine problem. 

5. Lower bounds are derived for the one-machine and two-machine problems. The experimental 

results show that on average the lower bounds from the optimal makespans are at most 2.1% 

and 4.6% for the small and medium size problems, respectively. Therefore, the proposed 

lower bounds provide an insightful reference for the optimal value when the optimum is 

unlikely to be obtained. Furthermore, a method to derive a lower bound is also provided for a 

generalized model with m machines. 

6. For the one-machine problem with synchronous material movement, a polynomial time 

algorithm, O(n
3
log n) , is provided to obtain an optimal sequence when the unloading or the 

loading times for all jobs are common. 

1.4 Thesis Overview 

The remainder of this thesis is organized into five additional chapters as follows. Chapter 

2 reviews the relevant literature on scheduling, flow shops, job shops, automated manufacturing 

cells, and complexity theories as well as the research which considers transportation times and 

transporters. 

 

In Chapter 3, a special case of the two-machine flow shop problem with transportation 

times is introduced. The problem assumes the processing times on the first machine are common 
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and the capacity of the transporter is greater than or equal to a threshold value. A dynamic 

programming algorithm is developed to solve the problem. The complexity of the proposed 

algorithm is analyzed and compared to that of the algorithm developed by Lee and Chen (2001). 

 

Chapter 4 studies the scheduling problem of an automated manufacturing cell consisting 

of one loading and unloading station, one machine, and one material handling device (a rotary 

table). There are six main sections in this chapter. First, the problem of sequencing jobs in this 

manufacturing cell regarding the makespan objective is shown to be strongly NP-hard. Second, a 

polynomial algorithm is proposed to solve a special case with a constant loading time or 

unloading time. Third, a dynamic programming algorithm is formulated for this problem and the 

computational effort of the algorithm is analyzed. Fourth, two constructive heuristics 

respectively combined with a modified neighborhood search are developed to obtain a high 

quality solution efficiently for the problem in a large scale. In the last two sections, the 

experimental designs to evaluate the performance of the heuristic algorithms and the results are 

presented. 

 

In Chapter 5, an extension of the scheduling problem in the automated manufacturing cell 

is considered. In this extension, the manufacturing cell also consists of one loading and 

unloading station and one rotary table, but two machines. The dynamic programming algorithm 

developed in Chapter 4 is modified for the problem with two machines. Additionally, two 

heuristic algorithms in the constructive stage are provided to form a sequence as the initial seed 

for the improvement stage. Similar to the experimental designs for the one-machine problem, the 

computational evaluation and results for the proposed algorithms are presented. Furthermore, a 
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generalized dynamic programming algorithm and the analysis of its computational effort are 

presented for the general problem with m machines. To obtain a lower bound value for the 

generalized problem is also presented. 

 

Lastly, conclusion of the study and future research are outlined in Chapter 6. 

 



 

Chapter 2 

 

Literature Review 

2.1 Scheduling 

Scheduling is to allocate limited resources to tasks over time such that certain objectives 

or goals can be achieved or optimized. Leung (2004) states that “Scheduling is a form of 

decision-making that plays an important role in many disciplines. It is concerned with allocation 

of scarce resources to activities with the objective of optimizing one or more performance 

measures”. The resources may take many forms such as number of machines, work force, service 

points, raw materials, crews and airplanes. The tasks can be manufacturing operations, serving 

customers, flights of the airplanes, and delivery of goods. The objectives could be the 

minimization of the completion time of jobs, maximization the number of orders that meet the 

due dates, or minimization the average service time. Pinedo (1995) also defines scheduling as a 

decision-making process that exists in most manufacturing and production environments as well 

as in most information-processing systems. Other examples of scheduling can also be found in 

transportation and distribution settings as well as in other types of service industries. 

 

In the field of scheduling, there exists a vast amount of research and literature conducted 

in the past five decades. Many review papers and books in this research area have been published 

and extensive bibliographies are also available such as Panwalker and Iskander (1977), Graves 

(1981), Pinedo (1995), Baker (1995), Lee et al.(1997), and Framinan et al. (2004). Graves 

(1981) classifies production scheduling problems into three dimensions based on the general 
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characteristics of both scheduling theory and practice: (1) Requirements generation, (2) 

Processing complexity, and (3) Scheduling criteria. Processing complexity is concerned 

primarily with the number of processing steps associated with each production task or time. 

Based on this dimension, production scheduling is commonly categorized as follows: 

 One-stage, one-processor (facility) 

 One-stage, parallel processors (facilities) 

 Multistage, flow shop 

 Multistage, job shop 

Graves further comments that theoretical insight from simpler problems is often the first step in 

tackling more complex problems. Hence, one part of this research will consider one-machine 

case to explore the properties of the problem, and then extend the problem to two machines 

followed by the generalized problem with m machines. Literature regarding flow shop and job 

shop problems is reviewed in the following sections. Section 2.4 provides a review of literature 

which considers the transportation times. Section 2.5 reviews the research in the field of 

scheduling in automated manufacturing cells. In Section 2.6, the complexity theory is presented. 

 

Typically, a scheduling problem is described by a three-field notation α | β | γ introduced 

by Graham et al. (1979). The α field describes the machine environment and contains a single 

entry. Common notations used in the field are summarized as follows:  

 mF : a flow shop with m machines. 

 mJ : a job shop with m machines. 

 mO : an open shop with m machines.  

 mP : m identical machines in parallel.  
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The β field provides details of processing characteristics and constraints and may contain 

no entries, a single entry, or multiple entries. The entries in this field could be preemptions, 

precedence constraints, machines breakdown, permutation, blocking, recirculation, and particular 

processing times described as follows:  

 Preemptions ( prmp ): Preemptions imply that a job is allowed to interrupt during its 

processing on a machine at any time. 

 Precedence constraints (prec): one or more jobs may have to be completed before 

another job is allowed to start its processing. 

 Breakdowns (brkdwn): a machine is not available when breakdown occurs. 

 Permutation (prmu): A constraint that appears in a flow shop requires all machines 

process the jobs according to the same order. 

 Blocking (block): Due to a limited buffer in between two successive machines, a job 

cannot be released to the downstream machine if the buffer is full. 

 Recirculation (recre): a job may visit a machine more than once. 

Because of the new characteristics studied in this research, two notations are introduced in the β 

field as follows: 

 Synchronous material movement ( synmv ): Synchronous material movement implies 

that jobs are transferred to the next machines simultaneously. 

 Reentrance (re-LU): a job has to visit the loading/unloading station two times: to be 

loaded before being processed and be unloaded after completing processes. 
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The γ field contains the objective to be achieved and usually contains a single entry. The 

possible objectives could be the makespan, the maximum lateness, the total weight completion 

time, the total weighted tardiness as well as the weighted number of tardy jobs. 

 Makespan ( maxC ): the makespan is the completion time of the last job to leave the 

system. 

 Maximum lateness ( maxL ): the maximum lateness is the worst violation of the due 

dates among all jobs. 

 Total weighted completion time ( j jw C ): the sum of the weighted completion 

times of n jobs where jw  is the given weight and jC  is the completion time of job j. 

 Total weighted tardiness ( j jw T ): the sum of the weighted tardiness of n jobs 

where jT  is defined as max(0, jC - due date of job j). 

 Weighted number of tardy jobs ( j jw U ): the sum of the weighted number of tardy 

jobs where jU  is equal to 1 when 0jT  ; otherwise jU  is zero. 

2.2 Flow Shop 

Jobs have to be processed on a sequence of machines in the same order, which implies all 

jobs have identical processing flow. This setting of the manufacturing environment is referred to 

as a flow shop. In the practical industrial environment, this type of manufacturing is employed 

due to many advantages it brings for the planning and management of production activities 

which are enabled by technological developments such as general purpose machines and flexible 

manufacturing systems (Zegordi et al. 1995). In a pure flow shop, there are m machines and each 
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job contains m operations, each operation requires to be processed by different machines. All 

jobs are to be processed on every machine in the same flow. As shown in Figure 2.1, based on 

the definition by Baker (1995), jobs in a general flow shop may require fewer than m operations, 

their operations may not always require adjacent machines in the numbered order. The initial and 

final operations may not always occur at machine 1 and m, but the flow of work is still 

unidirectional.  

 

 

Figure 2.1. Workflow in a general flow shop (Source: Baker, 1995) 

 

The flow shop problem is one of the best known production scheduling problems and the 

simplest multistage scheduling problem, but it is unfortunately a difficult combinatorial problem. 

The problem is to determine how to sequence the processing orders on each machine with 

respect to given criteria. A nonpreemptive schedule with the criterion of minimizing the 

maximum flow time has raised the most interest in research. The permutation flow shop problem 

with n jobs and m machines is commonly defined as follows. Each of n jobs is to be sequentially 

processed on machine 1 to machine m. The processing time pji of job j on machine i is given. At 

any time, each machine can process at most one job and each job can be processed on one 
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machine at a time. The sequence in which the jobs are to be processed is the same for each 

machine. The objective is to find a permutation of jobs that minimizes the makespan. It is well 

known that for both problems, 2 max||F C  and 3 max||F C , there exist optimal solutions that are 

permutation schedules in which all machines process the jobs according to the same sequence 

(Conway et al. 1967). 

 

The objective of minimizing makespan in a two-machine flow shop problem ( 2 max||F C ) 

can be solved in polynomial time by the well-known Johnson’s rule (Johnson 1954): the jobs for 

which 1 2j jp p  are sorted in nondecreasing order of 1jp and sequenced first, followed by the 

remaining jobs sorted in nonincreasing order of 2jp . The Johnson’s rule has significantly 

influence on the later research and developments regarding to the flow shop scheduling. Gupta 

and Stafford (2006) review the major developments in the field of flow shop scheduling in the 

past five decades since the publication of Johnson’s paper. The 3 max||F C  problem has been 

shown to be NP-Complete for nonpreemptive schedules by Garey et al. (1976). That implies that 

it is unlikely to find an optimal solution for the problem with 3m  in polynomial time. One 

category of research aims to obtain lower bounds for this type of problems. Lai (1996) presents 

an ( )O mn two-group heuristic algorithm for the n-jobs, m-machines flow shop permutation 

scheduling problems, and shows that the algorithm provides ( 1) 2m  times of the optimal 

makespan at the worst case. For the problem 3 max||F C , Chen et al. (1996) proposes an ( log )O n n  

heuristic algorithm based on the Johnson’s rule to generate a schedule with makespan at most 5/3 

times that of an optimal schedule. On the other hand, a large amount of heuristic algorithms have 

been developed to yield good approximate solutions to this type of scheduling problems, such as 
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tabu search, simulated annealing, genetic algorithms, ant colony optimization. These heuristics 

are reviewed and classified in the study by Framinan et al. (2004), Hejazi and Saghafian (2005), 

and Ruiz and Maroto (2005). These studies not only provide an extensive review and evaluation 

of many heuristics for the permutation flow shop scheduling problem, but also program and test 

a total of 25 algorithms solving Taillard’s (1993) famous 120 instances benchmark. 

Metaheuristics 

Metaheuristics like Tabu Search, Genetic Algorithms, and Simulated Annealing become 

common methodologies to solve more complicated and practical flow shop scheduling problems 

to obtain approximately solution effectively since the prevalence of computer technology. The 

major literature related to these metaheuristics is discussed below. 

 

Tabu search is particularly designed for escaping from local optimums. This method 

starts with an initial solution and then applies a move mechanism to search the neighborhood of 

the current solution to choose the most appropriate one. Ben-Daya and Al-Fawzan (1998) 

develop a tabu search algorithm, for a flow shop problem with makespan criterion, which 

generates neighborhoods by the proposed technique and combines a scheme for intensification 

and diversification that has not been considered before. One of the three methods (swapping, 

insertion, and block insertion) is randomly selected to generate the next neighbor of the current 

sequence. Armentano and Ronconi (1999) investigate the application of tabu search to the flow 

shop scheduling problem for minimizing total tardiness. Grabowski and Wodecki (2004) propose 

a new very fast local search procedure based on a tabu search approach. In this algorithm, a 
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lower bound on makespan instead of computing the makespan explicitly is used for choosing the 

best solution to reduce calculations. 

 

Simulated Annealing (SA) is a neighborhood search technique that produces good 

solutions for combinatorial optimization problems. SA employs certain probability to escape 

from local optima and the search process can be controlled by the cooling schedule (Hajek 

1988). For a flow shop scheduling problem, Zegordi et al. (1995) propose an approach which 

combines the simulated annealing methodology with given specific sequencing information and 

a tabu search feature. Tina et al. (1999) focus on the generation mechanism of the simulated 

annealing algorithm, and six types of perturbation schemes for generating random permutation 

solutions are introduced. They demonstrate that the SA algorithm can produce very efficient 

solutions to different combinatorial optimization problems by adopting a proper perturbation 

scheme. In order to enhance the performance of the genetic search and to avoid premature 

convergence, Wang and Zheng (2003) propose a hybrid heuristic which replaces the mutation 

operator by the SA’s metropolis sample process. The metropolis sample process replaces the 

mutation operator with a mutation rate adjusted by the controlled temperature to control the 

search behavior. Low (2005) addresses a flow shop scheduling problem with unrelated parallel 

machines by a simulated annealing-based heuristic. This problem considers independent setup 

times as well as dependent unloading times, and the objective is to minimize the total flow time. 

 

Genetic algorithms (GAs) are powerful search techniques which have been widely 

applied to many optimization fields. The concepts of genetic algorithms are based on the 

mechanics of natural selection and natural genetics. The paper by Reeves (1995) attempts to 
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apply GAs to the flow shop sequencing problem. This research shows that GA will perform 

relatively better for large-size problems, reach a near-optimal solution rather more quickly, 

compared to simulated annealing algorithms. Ponnambalam et al. (2001) develop a genetic 

algorithm and compare it with five heuristics for the makespan objective to solve the flow shop 

problems. The proposed genetic algorithm is found to yield much better quality solutions and 

computationally efficient as well. Wang et al. (2003) propose an order-based genetic algorithm 

which is inspired by ordinal optimization to ensure the quality of the solution found. They show 

that a good enough solution can be guaranteed with a high confidence level and reduced 

computation effort by numerical simulation results. 

 

The ant colony system (ACS) first proposed by Dorigo and Gambardella (1997) is one of 

the most recent and promising metaheuristics for combinatorial optimization problems. Ant 

colony optimization (ACO) simulates the collective foraging habits of ants, venturing out for 

food and bringing it back to the nest (Hejazi and Saghafian 2005). Ying and Liao (2004) develop 

an ACS algorithm for a permutation flow shop scheduling problem with minimizing makespan 

as the objective. The proposed algorithm is compared with other metaheuristics such as genetic 

algorithm, simulated annealing, and neighborhood search from the literature. The computational 

results show that the ACS algorithm is a more effective metaheuristic. Rajendran and Ziegler 

(2004) consider the objective of minimizing total flowtime in a flow shop scheduling problem 

and propose ACS algorithms.  The proposed algorithms have been applied to 90 benchmark 

problems taken from Taillard and yield better solutions compared with the other heuristics. 
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Stochastic Flow Shop Scheduling 

Most of the scheduling models that have been developed assume that parameters of 

problems are deterministic. Regarding the development of stochastic models in flow shop 

problems, Gupta and Stafford (2006) indicate research that includes stochastic assumptions is not 

prevalent. However, stochastic scheduling problems still attract a substantial number of 

researchers to work on them. 

 

In a two-machine flow shop, when the processing times on both machines are 

independent and exponential random variables, Talwar (1967) developed a rule to sequence jobs 

so that the sequence minimizes the expected makespan. Pinedo (1983) consider one-machine 

scheduling problem in which the job processing times are independent exponentially distributed 

random variables. They show that simple policies often minimize such criteria as the expected 

weighted sum of completion times and weighted number of late jobs. A flow shop scheduling 

problem with m identical machines in which the job processing times are random variables is 

investigated in the paper by Pinedo (1985). Sequencing jobs in the descending order of expected 

amount of processing times stochastically minimizes the makespan. Kijima et al. (1990) also 

study a stochastic flow shop scheduling problem with m identical machines. In this flow shop, 

however, the buffer sizes between machines are not unlimited. They provide a schedule policy 

which generates the minimum expected makespan. 

 

Allahverdi and Mittenthal (1995) consider a two-machine flow shop problem with 

stochastic machine breakdowns. Under certain conditions on the distributions of the machine 

breakdowns, the Johnson's rule minimizes the makespan stochastically. Kamburowski (1999) 
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consider a two-machine stochastic flow shop with an unlimited storage between machines. They 

present a sufficient condition which has less restrictive assumptions on the job processing time 

distributions for the optimal schedule when the objective is to minimize the makespan. 

 

Balasubramanian and Grossmann (2002) consider a flow shop scheduling problem with 

uncertain processing times described by discrete probability distributions. They propose a 

branch-and-bound algorithm based on a probability disaggregation scheme. The value obtained 

by letting the uncertain processing times be replaced with their mean values is the lower bound 

on the expected makespan for a given sequence. They also show the algorithm provides excellent 

approximations to the expected makespan of a given sequence for the case of continuous 

probability distributions of certain forms by using a discretization scheme. 

 

Gourgand et al. (2003) develop a recursive algorithm to evaluate the performance of the 

m-machine flow shop scheduling problem with exponentially distributed job processing times. 

The algorithm is based on Markov chains to compute the expected makespan and a discrete 

event simulation model to evaluate the expected makespan. Several heuristics (e.g., Rapid Acess) 

and metaheuristics (e.g., simulated annealing) are integrated with the recursive algorithm to 

obtain near-optimal solutions in a short time for two-machine problems. Wang and Zhang (2006) 

propose a simulated annealing approach combined with hypothesis test for an m-machine flow 

shop scheduling problem. In this flow shop setting, the job processing time is a random variable 

with uniform distribution. By using hypothesis test, solution performance can be reasonably 

estimated so that the searching efficiency can be improved.  
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Kalczynski and Kamburowski (2006) assume job processing times are independently and 

Weibull distributed random variables with a common coefficient of variation. They propose a 

sequencing rule for the expected makespan minimization. The simulation experiments indicated 

that the rule might find a schedule with the minimum expected makespan, but its optimality 

cannot be proven analytically. 

2.3 Job Shop 

In a job shop, each job can have its own routing which is the sequence of being processed 

on machines, but these routings are predefined and fixed. In a flow shop, there is a single 

routing; that is all jobs are sequentially processed by machines. In a job shop, however, each type 

of jobs could pass through a set of machines in different sequences as shown in Figure 2.2. Job 

shop scheduling is to find the job sequences on each machine based on an objective while a job’s 

routing is given. It is the most general production scheduling problem and it seems to be capable 

of capturing the nature of most production environments. In the two-machine problem, for 

example, some of the jobs are processed from machine 1 through machine 2, but the others go 

through machine 2 first and then machine 1. Additionally, there could be some jobs only 

requiring one of the machines. The problem 2 max||J C  can be reduced to or equivalent to

2 max||F C  and be solved by the Jackson’s rule. 
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Figure 2.2. Workflow in a job shop (Source: Baker, 1995) 

 

Although the job shop is more flexible and has less restriction on jobs, it is the most 

difficult production scheduling problem to solve from the perspective of optimization. It is well 

known that most of job shop scheduling problems are NP-hard (Lenstra and Rinnooy 1979). 

Hence, nonpreemption of jobs and minimizing makespan are the most common assumptions. 

Graves (1981) indicates that branch and bound is the most common optimization approach to 

address the job shop problem where various procedures differ primarily with respect to the 

branching rules, the bound mechanism, and the generation of bounds. In addition, the problem 

consisting of ten jobs and ten machines is the well-known benchmark introduced by Fisher and 

Thompson in 1963. Even for a small-size problem, it is difficult to find optimal scheduling 

efficiently, not to mention a large-scale problem. In the paper by Jain and Meeran (1999), a 

broad review on the state-of-the-art job shop scheduling techniques are provided. 

 

Pezzella and Merelli (2000) propose a heuristic method for solving the minimum 
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search technique and a shifting bottleneck procedure to generate the initial solution and refine the 

next current solutions. Ponnambalam et al. (2000) develop a tabu search algorithm for job shop 

scheduling problems and adopt an adjacent pairwise interchange method to generate the 

neighborhoods. Hurink and Knust (2002) consider a single transporter scheduling in a job shop 

environment. The objective is to determine a sequence to minimize the sum of all traveling and 

waiting times of the transporter. They present a tabu search algorithm for this problem and show 

that the algorithm yields a good upper bound in a short amount of time. Nowicki and Smutnicki 

(2005) provide a tabu search-based algorithm which adopts some elements of path relinking 

techniques to generate initial solutions. The computational results show that the proposed 

algorithm offers a very accurate solution to solve the job shop problem with the makespan 

criterion in a short time. 

 

Wang and Zheng (2001) develop a general, parallel, and easily implemented hybrid 

optimization framework, and apply it to job shop scheduling problems by combining two global 

probabilistic search algorithms: GA and SA. During the hybrid search process, GA provides a set 

of initial solutions for SA at each temperature to generate neighbor solutions, and GA uses the 

solutions found by SA to continue parallel evolution. Dai and Weiss (2002) propose a heuristic 

algorithm which uses safety stock and keeps the bottleneck machine busy at most of the time, 

while the other machines are constrained by the bottleneck machine. Kis (2003) develops two 

heuristic algorithms: a tabu search and a genetic algorithm for a job shop scheduling with 

alternative routings. They demonstrate that the tabu search is superior to the GA both in terms of 

solution quality and computation time. Mattfeld and Bierwirth (2004) consider job shop 

scheduling problems with release and due-dates, and with various tardiness objectives. They 
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employ the GA with a heuristic reduction of the search space which helps the algorithm to find 

better solutions in a shorter computation time. Two ways of reducing a search space are 

investigated by considering decisions made at machine and shop floor level. Gonçalves et al. 

(2005) propose a hybrid genetic algorithm for the job shop scheduling problem. The schedules 

are constructed using a priority rule in which the priorities are defined by the genetic algorithm. 

After a schedule is obtained, a local search heuristic is applied to improve the solution. The 

algorithm produces solutions with an average relative deviation of 0.39% to the best known 

solution on a set of 43 testing problems. 

2.4 Flow Shop with Transfer Times and Transporters 

Extensive literature can be found in machine scheduling involving time lag which is the 

time between the completion of an operation and the beginning of the next operation of a job in a 

production system. It can be referred to as the transportation, cooling, or heating time. In our 

research, the time lag is considered as the transportation time which is attributed to the actual 

transportation of a job between the processing machines by transporters or AGVs. In the 

classical models, it is assumed that jobs can be transported between machines instantaneously. 

The ideal assumption would not be applicable to most practical production environments. There 

are two types of transportation time consideration in the literature: one considers only the time 

lag, which implies transporters are always available such as Szwarc (1983), Dell’Aimco (1996), 

Schutten (1998), Strusevich (1999), Rebainel and Strusevich (1999), and Karuno and Nagamochi 

(2003); the other explicitly takes both transportation time and availability of transporters into 

consideration such as Levner et al. (1995), Hurink and Knust (2001), Oulamara and Soukhal 
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(2001), Lee and Chen (2001), Lee and Strusevich (2005), and Soukhal et al. (2005). The details 

of these papers are described later in this section. 

 

In these models, several attributes can be configured according to real manufacturing 

systems: (1) processing times on machines, (2) transportation times between machines, (3) 

number of transporters, and (4) capacity of a transporter. Both processing times and 

transportation times for jobs can be characterized as job-independent and job-dependent. The 

number of transporters and its capacity could be greater than one to increase the complexity and 

practicality of a model. 

 

The job-dependent processing times can be found in production lines with mix jobs or 

products where different types of jobs require different processing times. The two-machine flow 

shop problem with constant transportation times but job-dependent processing times has been 

shown to be NP-hard in the strong sense by Hurink and Knust (2001). The job-independent 

transportation times can be found in the production processes when the transportation times 

depend on the distance between the machines, rather than on the weight or size of a job to be 

transported. The job-dependent transportation times, on the other hand, would consider attributes 

of jobs such that each job has different transportation times. Most research assumes job-

independent transportation times because the problem with job-dependent transportation times is 

proven to be strongly NP-hard (Yu 1996; Hurink and Knust 2001). Moreover, the times of a 

transporter to travel back and forth between two machines can be another variable of the model. 

If these two travel times are job-independent but not equal, the problem has also been shown as 

strongly NP-hard (Yu 1996; Yu et al. 2004). 



26 

 

When physical transporters or AGVs are considered in transportation models, only one 

transporting device is assumed in most studies. Lee and Chen (2001) not only consider multi-

transporters in the two-machine flow shop problem but also develop a dynamic programming 

algorithm to tackle the problem in a special case where identical processing times on one of the 

two machines is assumed. Furthermore, the question regarding to capacity of a transporting 

device will arise if the device is physically incorporated in the model. Carrying one job at a time 

is the most common assumption and simpler to address. In these study (Lee and Chen 2001; 

Oulamara and Soukhal 2001; Lee and Strusevich 2005; Soukhal et al. 2005), several cases of the 

capacity of a transporter greater than one are studied. In our study, the capacity of a transporter 

will also be considered.  

 

In the following paragraphs, the literature which is relevant to our research is elaborated: 

Szwarc (1983) considers two models for flow shop problems: one with time lags between 

machines and another one with distinct setup, processing, and release times. Lower bounds of the 

completion time for both cases are developed by solving some classical two-machine flow shop 

problems, and choosing the best permutation as an approximate solution. Levner et al. (1995) 

consider a flexible manufacturing cell consisting of two machines, automated storage/retrieval 

stations, and one transporting robot. Transportation between the input/output stations and 

machines, and between two machines is performed by a mobile transporting robot. Loading and 

unloading operations are also performed by the same robot. The transporting robot can carry 

only one job at a time, and there is no buffer storage for work-in-process (WIP). They solve the 
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problem in polynomial time by using a graph-based approach for a small-scale flexible 

manufacturing cell with job-dependent processing and material-handling operations.   

 

Lee et al. (1997) review several articles which consider transportation time. The general 

model of the problem assumes all jobs are ready at the time zero and each job has its own routing 

and processing time. There are identical transporters to deliver jobs between machines, and these 

transporters travel on a shared network where no traffic collision can occur. All the operations by 

the transporters are non-instantaneous and non-preemptive. Neither a machine nor a transporter 

can hold more than one job at any time. The problem is to find a schedule for job sequencing and 

time-phased dispatching and routing of transporters so that a given objective is optimized. They 

divide recent work related to this model into three categories: 

(1) Robotic cell scheduling; 

(2) Scheduling of automated guided vehicles; and 

(3) Cyclic scheduling of hoists subject to time-window constraints. 

In the paper, they also review some of recent developed methodologies for scheduling problems 

on these topics. The general versions of these problems are all NP-hard in the strong sense. Most 

of these problems, especially those encountered in real systems, are so complicated that a formal 

mathematical formulation can’t be obtained. 

 

Anwar and Nagi (1998) indicate the basic elements of AGV system design: (1) guide 

path network design (2) optimal number of AGVs, (3) vehicle dispatching, (4) vehicle routing 

and (5) traffic control. They consider simultaneous scheduling of material handling transporters 

and manufacturing equipments (such as machines and workcenters) in the production of complex 
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assembled products and propose an effective heuristic algorithm which employs a critical-path-

based scheduling approach and a just-in-time methodology to minimize the production makespan 

of large and complex assemblies as well as WIP costs. 

 

In the paper by Schutten (1998), transportation times are taken into consideration by 

extending the Shifting Bottleneck (SB) procedure for the classical job shop to deal with practical 

features. The SB procedure decomposes the problem of scheduling a classical job shop into a 

series of single-machine scheduling subproblems such that these practical features can be easily 

applied. In addition, the SB procedure generally produces good solutions for job shop problems 

in relatively short computation time compared to tabu search and simulated annealing 

algorithms. 

 

Strusevich (1999) proposes a heuristic algorithm to solve two-machine open-shop 

scheduling problem with arbitrary transportation times in polynomial time. In an open shop 

problem, the processing routings of jobs are not given in advance, but have to be determined 

with respect to the objective criteria. The algorithm is an extension from the Gonzalez-Sahni 

algorithm which partitions the set of jobs into two subsets and finds the permutation that defines 

a certain flow shop schedule for each subset. The analysis of the algorithm shows that the 

resulting makespan is at most 3/2 times the optimal value at any worse case. Rebainel and 

Strusevich (1999) consider the problem with special transportation times. If the largest 

transportation time does not exceed the smallest processing time, the optimal schedule can be 

obtained by the proposed linear time algorithm. They also present an algorithm that creates a 

heuristic solution to the problem with job-independent transportation times and show that the 
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algorithm provides a worst-case performance ratio of 8/5 if the transportation time of a job 

depends on the assigned processing route. The ratio reduces to 3/2 if all transportation times are 

equal. Given that n is the number of jobs, Karuno and Nagamochi (2003) prove that the bound 

can be improved by designing an algorithm that delivers a (11/6)-approximation solution in 

( log ) O n n time. 

 

Another type of problem consists of two machines and one transporting robot. Processing 

times of jobs are arbitrary, but transportation times are constant for all jobs. The problem was 

shown to be NP-hard in the strong sense by Hurink and Knust (2001). Jobs have to be 

transported by the robot between machines, and only one job can be carried at a time. Unlimited 

buffer space is assumed. Additionally, they also show the problem with constant processing 

times on both machines, but arbitrary transportation times between machines for each job is 

strongly NP-hard. The similar proof can also be found in Yu’s research (1996; Yu et al. 2004) 

which assumes the constant processing time equal to one. In a special case, a polynomial 

algorithm is proposed to solve the multi-machines flow shop problem with all processing times 

equal to one and transportation times between two adjacent machines are constant. 

 

In the paper (Lee and Chen 2001), transportation time is explicitly considered. In 

addition, multiple transporters and capacity are also considered. They study two types of 

transportation problems. The first one, denoted as “Type-1”, considers intermediate 

transportation in a flow shop between two machines. The second one, denoted as “Type-2”, is to 

analyze the delivery of finished jobs to customers. The computational complexity of different 

scenarios is shown and open problems are also underlined. One of these problems with two 



30 

machines, one transporter, and the capacity of the transporter greater than three, is shown to be 

strongly NP-hard even if the transportation times are all equal. If processing times of all jobs on 

first machine or on the second machine are equal, the problem is solvable by a dynamic 

programming algorithm proposed in this paper even when there are multiple transporters with 

capacity greater than 1. Lee and Strusevich (2005) present the best possible (3/2)-approximation 

algorithm with at most two shipments for the two-machine flow shop problem with one 

unlimited capacity transporter. 

 

The paper (Oulamara and Soukhal 2001) investigates flow shop scheduling models that 

explicitly consider constraints on both transportation times and buffer capacities with the 

objective function of minimizing the makespan. Finished jobs also need to be delivered to a 

customer or a warehouse by one vehicle which is assumed to have capacity of two jobs. The 

problem could be regarded as the “Type-2” problem according to Lee and Chen (2001). Based 

on these assumptions, they show the problem with unlimited buffer between machines is strongly 

NP-hard as well as the problem with no buffer storage between machines. Due to the complexity 

of the problems, they propose four greedy algorithms to solve the problems and compare the 

performance of these methods. Furthermore, Soukhal et al. (2005) prove that the Type-2 

problems with the vehicle’s capacity equal to three are NP-hard in the strong sense. 

2.5 Automated Manufacturing Cell 

Most of the literature regarding automated machining centers or robotic cells considers 

the scheduling of jobs and robot moves between machines. In these manufacturing cells, parts 

are usually loaded and unloaded in different locations and material movement between stations is 
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asynchronous. Sethi et al. (1992) study the problem of sequencing jobs and robot moves in a 

robotic cell where a single robot is used to transport jobs between stations. The cell is a flow 

shop system where jobs pass sequentially through the input station, machine stations, and the 

output station. They show that only two possible optimal policies of robot moves exist for the 

two-machine robotic cell scheduling problem with a single part type. For the problem with 

multiple part-types, a polynomial time algorithm is derived to minimize cycle time for a given 

fixed sequence of robot moves. 

 

Levner et al. (1995) propose a polynomial-time algorithm to obtain the minimum 

makespan for a two-machine robotic cell. In this robotic cell, there are two robots dedicated to 

load and unload jobs in each machine, and the loading and unloading times are job-dependent. 

There is also a transporting robot to move jobs from the first machine to the second machine. In 

addition, a job completed on the first machine should be transported to a storage buffer which is 

located in the range of the robot dedicated for the second machine. 

 

Logendran and Srisjandarajah (1996) develop analytical methods for determining an 

optimal sequence of jobs and robot moves with minimum cycle time in three different types of 

two-machine robotic cells: a robot-centered cell, a mobile robot cell, and an in-line robot cell as 

shown in Figure 2.3, Figure 2.4, and Figure 2.5. They consider the scheduling of single part-type 

and multiple part-types problems in these three cellular layouts, respectively.  
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Figure 2.3. Robot-centered cell layout (Logendran and Srisjandarajah 1996) 

 

 

Figure 2.4. Mobile robot cell layout (Logendran and Srisjandarajah 1996) 

 

 

Figure 2.5. In-line robot cell layout (Logendran and Srisjandarajah 1996) 
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Given that n is the number of jobs, Hall et al. (1997) provide a O(n
4
) time algorithm to 

obtain an optimal part sequence and robot moves in a two-machine robotic cell with multiple 

part-types. Aneja and Kamoun (1999) formulate this problem as a traveling salesman problem 

with a special cost structure, and improve the complexity of the algorithm from O(n
4
) to 

( log )O n n . Dawande at el. (2005) present a survey and summary of the recent developments 

regarding scheduling in robotic cells. They provide a classification scheme for the scheduling 

problems of robotic cells based on the characteristics of the manufacturing cells such as robot 

devices, machine environments, and processing restrictions. They also discuss implementation 

issues and the use of optimal policies for different system settings. 

 

Synchronous transportation of jobs between stations is a particular characteristic of the 

machining center addressed in this study. Without considering the L/U station, if there are only 

two machines or stations in the machining center with the mechanism of synchronous material 

movement, the problem is equivalent to a two-machine flow shop problem with blocking which 

can be solved in polynomial time by Gilmore-Gomory algorithm (Gilmore and Gomory 1964). 

Hall and Sriskandarajah (1996) prove a three-machine flow shop problem with blocking is 

strongly NP-complete. However, a three-machine flow shop with synchronous material 

movement is not reducible to the problem with blocking, because the constraint of blocking only 

restricts transfer of a job between two successive machines. In the problem with blocking, for 

example, a job completed on the second machine can be released to the third machine while it 

becomes idle. In the case of synchronous transfer, however, the job processed by the second 

machine can only be released to the downstream machine while both of the first and third 

machines finish their current operations.  
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Soylu et al. (2007) consider a flow shop scheduling problem with synchronous transfer 

between stations. They develop a brand-and-bound algorithm with several lower and upper 

bounds to efficiently obtain the minimum makespan for a moderate-sized problem. They indicate 

this type of manufacturing system with synchronous transfer is advantageous when set-ups for a 

transporter are timely or costly, or when buffer spaces are limited between stations or jobs are 

physically large. 

2.6 Computational Complexity Theory 

The notion of complexity refers to the computing effort required by an algorithm to solve 

a problem. The computing effort could be measured by time and space required by a computer. 

Running time of an algorithm can also be measured by the number of steps or elementary 

operations required. The goal of the complexity theory is to classify problems and algorithms 

according to the computing effort required. Before developing or constructing the solution to a 

given problem, the knowledge about the complexity of the problem will provide valuable 

information to decide what approaches are more suitable to be employed. 

 

There are two classes to categorize a problem: the class P and NP. A problem belongs to 

the class P is that there exists an algorithm to solve the problem in polynomial time. A 

polynomially solvable problem requires computing effort bounded by a polynomial in the length 

of the problem encoding. The class NP is essentially the set of problems which do not have 

polynomial time algorithms. A problem is called NP-hard if every problem in the class NP 

polynomially reduces to that problem. Not all problems within NP-hard class are equally 
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difficulty. A problem, referred to as strongly NP-hard, can not be solved in a polynomial time 

even as a function of the size of the problem in unary encoding. Otherwise, the problem is 

referred to as NP-hard in the ordinary sense or simply NP-hard. Furthermore, if an optimization 

problem is NP-hard, the associated decision problem is referred to as NP-complete. 

 

According to the paper by Garey and Johnson (1979), two properties of the NP-complete 

problems can be concluded as follows: 

(1)No NP-complete problem is known to be solvable by a polynomial time algorithm. 

(2)If a polynomial time algorithm for one of the NP-complete problems exists, 

polynomial time algorithms will be obtained for all the NP-complete problems. 

 

As a result, once a problem can be proven to be NP-complete, it is wise to adopt heuristic 

approaches to obtain an approximate solution because the existence of a polynomial time 

algorithm to obtain the optimal solution is unlikely. During the past several decades, many 

problems have been shown to be NP-complete. The principal technique to demonstrate NP-

completeness of a given problem is to transform any instances to a known NP-complete problem. 

If any instance of the given problem is polynomially reducible to a NP-complete problem and the 

transformation also holds in the opposite direction, then the given problem can be categorized as 

NP-complete. One of the well-known problems is the 3-partition (Garey and Johnson 1979), 

which is commonly adopted to prove a given problem as NP-complete in the strong sense. Yu 

(1996), Lee and Chen (2001), and Hurink and Knust (2001) prove different configurations of 

flow shop problems with transportation times as NP-complete by transforming them as 3-

Partition problem presented as follows. 
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3-Partition Problem 

Instance: Given a set of A which includes 3m elements: 1 2 3{ , ,..., }mA a a a .Each element 

in A is an integer number satisfying   ; 1,...,3
4 2

i

B B
a i m    and such that 

3

1

m

ii
a mB


 for 

some integer B. 

Question: Does there exist a partition of the set A into m disjoint subsets with 3 elements 

1 2, ,..., mA A A such that 
ii Aj

a B


  for 1,...,j m ? 

 

In scheduling problems, the complexity of problems with different settings has been 

investigated and studied intensively. Garey and Johnson (1979) provide an extensive list of 

known NP-complete or NP-hard problems for reference. Furthermore, a hierarchy of problems 

that describes the relationships between hundreds of scheduling problems is established due to 

considerable devotion of researchers. The hierarchy could provide information on how the 

complexity of a problem will be affected when one of settings or objectives is changed. Figure 

2.6 shows the complexity hierarchies of deterministic scheduling problems associated with 

machine environments and objective functions. 
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Figure 2.6. Complexity hierarchies of deterministic scheduling problems: 

(a)machine environment, (b) objective functions (Source: Pinedo, 1995)  
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Chapter 3 

 

Two-machine Flow Shop with Transportation Considerations 

3.1 Introduction 

In a flow shop manufacturing system, semi-finished jobs are transferred from one 

machine to another by transporters. Each job has to be sequentially processed on machine 1 first, 

then machine 2, and until the last machine m. Typically, transportation times between machines 

are neglected or the availability of transporters are ignored. In this study, however, not only the 

transportation times but also the availability of transporters are explicitly incorporated into the 

model. As this production system, a two-machine flow shop model is considered. 

 

In the two-machine flow shop, all jobs start on machine 1 and finish operations on 

machine 2. Each machine can only process one job at a time, and preemption is not allowed. All 

jobs are available at time zero and wait for processing in the input buffer of machine 1. The 

processing time on machine l for job j is denoted as 1jp and on machine 2 as 2jp . After the 

operation on machine 1 is completed, jobs are stored at the output buffer of machine 1 and wait 

to be transported to machine 2. Jobs transported together in one shipment from machine 1 to 

machine 2 by a transporter are defined as a batch. After being transported to machine 2, these 

jobs wait to be processed in the input buffer of machine 2. The buffer sizes are assumed to be 

unlimited. The transporter takes 1t  to travel from machine 1 to machine 2, and 2t  to return to 

machine 1. The departure time of thk batch on machine 1 is denoted as kd . We also assume that 
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there is one transporter in the system and its capacity is denoted as c. Loading and unloading 

times of jobs on machines are negligible or they are assumed to be included in processing times. 

Similarly, times to load and unload jobs on the transporter are neglected or they are assumed to 

be included in the transportation times. 

 

The performance measure is makespan, Cmax, which is widely adopted as an objective 

criterion because of its simplicity for mathematical formulation and theoretical analysis. In the 

study, we also set the minimum makespan as the objective and follow the commonly used three-

field notation | |    to represent a machine scheduling problem. In the   field, 2TF denotes 

the two-machine flow shop scheduling problem with transportation times between machines 

which is used in the paper by Lee and Chen (2001). In the   field, v denotes the number of 

transporters, and c denotes the capacity of the transporter. In the r  field, Cmax is the objective of 

the problem. Hence, the scheduling problem to minimize makespan in a two-machine flow shop 

with x transporters and the capacity of each transporter equal to y is represented as 

2 max| , |TF v x c y C  . The notations for the problem are summarized as follows: 

 n: total number of jobs need to be scheduled, 

 j: index of a job, j=1, 2, …, n, 

 i: index of a machine, i=1, 2 , 

 pji: processing time of job j on machine i, 

 v: number of transporters, 

 c: capacity of a transporter (number of jobs that can be carried at a time) , 

 u: maximum number of jobs to be transported in each batch ( u c ), 

 Cmax: the completion time of last job, 
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 t1:busy transportation time from machine 1 to machine 2, 

 t2: empty transportation time from machine 2 to machine 1, 

 kd : the departure time of thk batch on machine 1. 

3.2 Dynamic Programming Algorithm for 2 1 1 max| , 1, |jTF p p v c u C    

In general, the two-machine flow shop problem could be decomposed as two 

subproblems. The first subproblem is to determine a sequence of jobs on machine 1. The second 

subproblem is to develop a schedule of departure time points for transporters on machine 1. 

According to the paper by Hurink and Knust (2001), the two-machine flow shop problem with 

one transporter and its capacity is one ( 2 max| 1, 1|TF v c C  ) is strongly NP-hard. However, Lee 

and Chen (2001) have shown that if the following assumption 3.1 is added, then the sequence of 

jobs on machines can be predetermined, thus the problem becomes polynomially solvable. 

 

Assumption 3.1. The processing times on machine 1 for all jobs are job-independent, namely, the 

processing times are equal to a constant denoted as 1 1  for all jp p j .  

 

Under Assumption 3.1, the jobs are sequenced in the non-increasing order of 2jp  (the 

longest processing time first) on both machines such that there exists an optimal permutation 

sequence. Furthermore, if the processing times on machine 2 for all jobs are constant, the jobs 

will be sequenced in the non-decreasing order of 1jp  (the shortest processing time first) on both 

machines. In both cases, the scheduling problem is simplified and only a departure schedule of 

jobs has to be determined given the optimal job sequence. Therefore, Lee and Chen (2001) 
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propose a dynamic programming algorithm to solve the problem 2 1 1 max| , 1, 1|jTF p p v c C  
 

optimally in polynomial time. In this research, an improved dynamic programming algorithm is 

proposed when there is one transporter and the capacity of the transporter is greater or equal to a 

threshold value. In this special case, the number of jobs in a batch transported to machine 2 is 

always less than or equal to this threshold value in an optimal schedule. The threshold value will 

be derived later. 

 

Lee and Chen (2001) have proven several properties that hold for two-machine flow shop 

problems with transportation. Those properties are also necessary conditions for deriving our 

algorithm.  

 

Property 3.1.(Lee and Chen 2001) There exists an optimal schedule for the problem

2 max| 1, 1|TF v c C   problem that satisfies the following conditions. 

(i) Jobs are processed on machine 1 without idle time. 

(ii) Jobs transported in the same batch are processed consecutively without idle time on 

both machines. 

(iii) Jobs finished earlier on machine 1 are delivered earlier to machine 2. Furthermore, 

the sequence of jobs on machine 1 is the same as that on machine 2. Namely, it is a 

permutation schedule. 

(iv) The departure times of two consecutive batches delivered satisfy that either

1k kd d t    or 1kd  is the completion time of the last job in the 1thk  batch on 

machine 1, where 1 2t t t   is the transportation time of a round trip to travel 

between machine 1 and machine 2. When 1kd  is equal to the completion time of the 
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last job in the 1thk  batch on machine 1, 1kd  is referred to as an integer departure 

point; otherwise, it is called as the immediate departure point. 

 

In addition, a property regarding the threshold value of the transporter’s capacity can be 

derived, while the processing times for all jobs on machine 1 are identical (Assumption 3.1).  

 

Property 3.2. The threshold of the transporter’s capacity (u) is 1 2

1

2( )
1

t t

p

 
 

 
 given 1 1jp p . 

Proof. Assume the transporter’s capacity is greater than u, and there is a batch, say batch i, 

containing u+1 jobs. Batch i is transported to machine 2 by the transporter at the departure point 

di, which is the time for the transporter leaving from machine 1. Thus, the arrival time at 

machine 2 of the transport is 1id t . The total processing time for batch i on machine 1 is equal 

to 1( 1)*u p  or 1 2
1

1

2( )
*

t t
p

p

 
 
 

 which is greater than or equal to the travel time of two round 

trips ( 1 22( )t t ). Hence, batch i can be split into two small batches: 1 2

1

t t

p

 
 
 

and 1 2

1

t t

p

 
 
 

. 

Assume that these two batches will be transported to machine 2 as two shipments and the second 

batch will also be transported at the departure point di. In order to ensure the second batch 

transported at di, the transporter has to deliver the first batch at the departure point 1

id  which 

cannot be later than di minuses the time of one round trip ( 1

1 2( )i id d t t   ) as shown in Figure 

3.1.  
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Figure 3.1. Batch i containing u+1 jobs transported to machine 2 at di 

 

 Let 1

1 2( )i id d t t   . Because the total processing time for jobs in the first batch, 

1 2
1

1

t t
p

p

 
 
 

, is less than or equal to 1 2t t , the first batch are ready for shipping before 1

id . In 

additional, the returning time of the transporter is also prior to 1

id  since 1 1 2( 1) 2( )u p t t   . 

Hence, the transporter can return back to machine 1 prior to id  after transferring the first batch to 

machine 2. Thus, the arrival time of the second batch on machine 2 is identical as the arrival time 

of transporting these jobs in one batch. Figure 3.2 illustrates the delivery of these two batches.  

 

 

Figure 3.2. Batch i is split into two small batches 

 

Therefore, the makespan yielded by the case of transporting u+1 jobs with two batches is 

never greater than the makespan yielded by the case of transporting these jobs in one batch, 
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because jobs transported in the first batch could be processed on machine 2 earlier than those 

shipped in one batch. Hence, the batch size in one shipment is always less than or equal to the 

threshold value u, and the capacity of the transporter is not necessarily greater than u.  □ 

 

Assumption 3.2. The capacity of the transporter is greater than or equal to 1 2

1

2( )
1

t t

p

 
 

 
. 

 

Based on Assumption 3.1 and 3.2, a forward dynamic programming algorithm is 

proposed to solve the problem 2 1 1 max| , 1, |jTF p p v c u C   . According to Property 3.2, the size 

of the batch (denoted as B) which is greater than the threshold value u can always be divided into 

two small batches 1 2

1

t t

p

 
 
 

 and 1 2

1

t t
B

p

 
  
 

, and yields a smaller makespan. If the number of 

jobs in the second batch ( 1 2

1

t t
B

p

 
  
 

) is still greater than u, this batch can be further split into 

two small batches 1 2

1

t t

p

 
 
 

 and 1 2

1

2
t t

B
p

 
  

 
 until the size of all these small batches is not 

greater than u. Inspired by this idea, a dynamic programming (DP) algorithm can be formulated 

as follows. 

DP Algorithm for 2 1 1 max| , 1, |jTF p p v c u C    

 Optimal value function (OVF): F(k) = minimum completion time of a partial schedule 

containing the first k jobs, given that the completion time of job k is an integer departure 

point.  (3.1) 
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 Arguments (ARG): k = index of a job such that the completion time of the job is an integer 

departure point.  (3.2) 

 Optimal policy function (OPF): j = number of jobs from integer departure point k to the 

previous integer departure point. 

 Recurrence relation (RR): 

 
1 2 1

1 1 2 1 2 11

( ) 1

,                   if ( )
( ) min , 1,2,...,

min ( ) ( 1, ) ,  o.w.

k

ii

t t p j k

kp t p k t t p
F k k n

F k j C k j k



     

       
  

     


 (3.3) 

where C( 1k j  , k) is the minimum increase of the makespan due to jobs 1k j  to k . It 

can be calculated by the following procedures: 

Step 1.Let 0 0 1 01,  1,  ,  ( ) and ( )g x k j x k j t p k j C F k j          . 

Step 2.
1 2

0
1

( )

1 0 1 2 1 2max{ , ( ) }

g t t
x

p

g g ii x
C C t g t t t p

 
 
 

 
     .

 

Step 3. 1 2

1

( )
,  1

g t t
x x g g

p

 
    

 
. 

Step 4.If 1

1 2

jp
g

t t

 
  

 
 then stop, and go to Step 5. Otherwise, go to Step 2. 

Step 5. 1 1 1 2 0( 1, ) max{ , }
k

g ii x
C k j k C kp t p C 

      . 

 Boundary Condition (BC): the BC has been included in RR. 

 Answer (ANS): 

 
1 2 1 1

ˆmin ( ) ( 1, )
ˆ ( ) min

( )

t t p j n
F n j C n j n

F n
F n

     

     
  

  

 (3.4) 

where the calculation of ˆ ( , )C x y is similar to that of C(x, y), but it requires modifications on 

Step 2, 3, 4 and 5 as follows: 
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Step 2.
1 2

0
1

( )
min{ , }

1 0 1 2 1 2max{ , ( ) }

g t t
n x

p

g g ii x
C C t g t t t p

 
 
 

 
     . 

Step 3. 1 2

1

( )
min{ , },  1

g t t
x n x g g

p

 
    

 
. 

Step 4.If 1 2 1( 1)( )g t t jp    then stop, and go to Step 5. Otherwise, go to Step 2. 

Step 5. 1 0
ˆ( 1, ) gC n j n C C    . 

 

The method to calculate C(x, y) is a deterministic procedure, because the departure points 

between stages (integer departure points) are all immediate departure points. It can be stated as 

the following property. 

 

Property 3.3. Given two consecutive integer departure points jd  and 
kd , and let jd  and 

kd  be 

the completion times of job j and job k on machine 1, respectively. Between these two integer 

departure points, once the transporter returns back to machine 1, it will transport the completed 

jobs immediately to machine 2 until its returning time to machine 1 is greater than 1 2( )kd t t  . 

Proof: The number of jobs between these two integer departure points is k j . According to 

Property 3.2, when the number of jobs in one batch is greater than u, this batch can be split into 

two small batches. Assume k j is greater than u. Then, these jobs can be divided into two 

batches 1 2

1

t t

p

 
 
 

 and 1 2

1

( )
t t

k j
p

 
   

 
. Because the returning time of the transporter to machine 

1 is 1 2( )jd t t  which is greater than the completion time of the first batch 1 2
1

1

j

t t
d p

p

 
  

 
, the 

transporter will transport the first batch immediately to machine 2 so that this partition yields a 
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smaller makespan. Similarly, the second batch can further divided into two batches if 

1 2

1

( )
t t

k j
p

 
   

 
 is greater than u. This procedure is repeated until the last batch is less than or 

equal to u. Thus, between these two integer departure points, the transporter transport jobs from 

machine 1 to machine 2 immediately. □ 

 

Consequently, given two stages (integer departure points) j and k, the increase makespan 

C( 1k j  , k) is determined. Also note that the formulation for the answer in Equation (3.4) is 

ˆ ( )F n  not ( )F n  because it cannot be guaranteed that the completion time of the last job is an 

integer departure point. Therefore, this situation requires extra calculation in ˆ ( )F n  when the 

returning of the transporter to machine 1 is after the completion time of the last job on the first 

machine. Since the number of stages in this proposed algorithm is much less than that of the Lee 

and Chen’s algorithm, this procedure is expected to be more efficient. A computational analysis 

and comparison on the computational efforts of the improved algorithms with Lee and Chen’s 

(2001) are conducted in next section. 

3.3 Complexity Analysis 

According to Lee and Chen (2001), the time complexity of their algorithm is 
3(( ) )O cn , 

where c is the capacity of the transporter and n is the number of jobs. To obtain the complexity 

of the proposed algorithm, the worst case ( 1, ,k n  ) is considered such that there are a total of 

n possibilities of k. For a given k, there are k possibilities of j since 1, ,j k  . Given k and j, 

there are at most j immediate departure points. In addition, in Boundary Condition (BC) we have 
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1, ,j n   and there are at most j immediate departure points for a given j. Hence the overall 

complexity can be calculated as follows: 

1 1 1

2

1

( 1)

2

           ( )
2 2

1 ( 1)(2 1) 1 ( 1)
           

2 6 2 2

n k n

k j k

n

k

k k
j

k k

n n n n n

  






 

  
 

 



 
 

( 1)( 2)
           

6

n n n 
 . 

Thus, the complexity of the proposed algorithm is 
3( )O n which is better than 

3 3( )O c n . 

 

To illustrate the algorithm by an example, assume 20k   and 
1 2

1

4
t t

p

 
 

 
, the minimum 

makespan of these jobs from 1 to 20 can be calculated as 

4 19
(20) min{ (20 ) (20 1,20)}

j
F F j C j

 
     . The makespans of all states for j ( 4 19j  ) should 

be calculated and the one with minimum value will be chosen. As an example, for j=10, the 

makespan is represented as (20 10) (20 10 1,20) (10) (11,20)F C F C       where (10)F is the 

minimum makespan for job 1 to 10 and has been obtained in previous stage. (11,20)C  is the 

minimum increase on the makespan due to jobs 11 to 20. 
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Figure 3.3. An example with k=20 and j=10 

 

Suppose that the transporter returns to machine 1 at 1T . At this time point, because 

1 2

1

t t

p

 
 
 

 is equal to 3, job 11, 12, and 13 are finished on machine 1 and ready for delivery to 

machine 2. The transporter delivers these jobs and departs from machine 1 immediately. The 

shipment will arrive at machine 2 at 1 1T t . The jobs in this batch will be processed when 

machine 2 becomes available. Hence, the possible starting time (denoted by 1S ) is either the 

arrival time of the batch or the completion time of the previous batch which is (10)F . As a 

result, the completion time of this batch is the starting processing time 1S  plus the total 

processing time of this batch on machine 2. Similarly, the second batch includes job 14, 15 and 

16 which is delivered at 2T  ( 2 1 1 2T T t t   ) and arrives machine 2 at 2 1T t . The completion 

time of the second batch is the 2S  plus the total processing time of the batch on machine 2. 

10 11 12 13 14 15 16 17 18 19 20 21

S1=Max(t0 + 2t1 + t2, F(10))

The batch includes 11,12,13

C1= S1 + P11,2+ P12,2 +P13,2

S2=Max(t0 + 3t1 + 2t2, C1)

The batch includes 14,15,16

C2 = S2 + P14,2+ P15,2 +P16,2

S3=Max(T20, C2)

The batch includes 17,18,19,20

C3 =S3+ P17,2+ P18,2 +P19,2 + P20,2

M2

M1

Transporter

t0=10*P1 T1=t0+t1+t2 T2=t0+2t1+2t2 T3=20*P1

t1 t2 t1 t2 t1 t2 t1 t2
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Finally when the transporter returns to machine 1, job 20 is still under processing. Because the 

completion time of job 20 on machine 1 is the integer departure point, the transporter cannot 

depart until job 20 is finished. Hence, the last batch includes job 17, 18, 19, and 20 which arrives 

at machine 2 at 3 1T t . The completion time of the last batch can be obtained as above and the 

procedure to calculate (11,20)C  is shown in Figure 3.3. 

3.4 Concluding Summary 

A special case for the n-job, two-machine, one transporter with a specific capacity flow 

shop problem with minimum makespan has been studied in this chapter. When processing times 

for all jobs on machine 1 are identical, a threshold value u of the transporter’s capacity can be 

derived as Property 3.2. Under the assumptions of the identical processing time and the capacity 

of transporter is greater than or equal to u, the problem 2 1 1 max| , 1, |jTF p p v c u C    can be 

solved in polynomial time by the proposed dynamic programming algorithm. The computational 

complexity of the algorithm has been shown as 
3( )O n  which is better than the algorithm 

proposed by Lee and Chen (2001). Therefore, when the capacity of the transporter is not less 

than u ( c u ), the problem will be solved more efficiently by using the proposed algorithm.  

 



 

Chapter 4 

 

Flow Shop with Synchronous Material Movement 

4.1 Introduction 

Automated manufacturing systems which integrate material handling and processing 

devices are commonly employed in manufacturing industries to gain a competitive advantage. 

Typically, an integrated cell or machining center consists of an input/output station, one or more 

processing machines, and material handling devices to efficiently process and move a group of 

similar parts. The material handling devices can be robots, conveyors, automated guided 

vehicles, cranes and transporters. One type of material handling devices is called rotary table. 

The rotary table is surrounded by the loading/unloading station and processing machines. Jobs 

should be loaded on the table before being processed. Loaded jobs are transported to each 

processing machine sequentially by the rotary table. Once all these jobs complete their current 

operations, the rotary table rotates in a clockwise or counterclockwise direction to move these 

jobs simultaneously to their next processing machines. Examples of manufacturing cells 

integrated rotary tables are the T-line machining centers developed by Cincinnati Milacron 

(Milacron 1989). Figure 4.1 shows two models of these T-line machining centers. 
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(a) T-40 Machining Center 

 
(b) T-20 Machining Center 

Figure 4.1. Examples of Cincinnati Milacron T-line machining centers 

(Sources: (a) Milacron 1989 (b) www.locatoronline.com/machinery/detail.cfm?adid=321905) 

 

In a T-line machining center, there are one loading/unloading (L/U) station and a number 

of computer numerical control (CNC) machines which surrounds a rotary table. Fixtures are 

installed on the rotary table called pallets which are used to carry and stabilize jobs. Before being 

processed, a job is loaded onto one of pallets at the L/U station. It is processed sequentially 

through a number of CNC machines and finally unloaded from the machining center at the L/U 

station. Jobs on the rotary table are transported to the L/U station and machines simultaneously. 

Figure 4.2 below shows a T-line machining center with two CNC machines and a rotary table 

with three pallets.  
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CNC 1 CNC 2 

L / U station 

pallet 

Rotary table 

 

Figure 4.2. A T-line machining center with two CNC machines 

 

In this setting, while two jobs, say A and B, loaded in two pallets are being processed by 

CNC2 and CNC1, respectively, another job, say C, is concurrently being loaded onto the third 

pallet at the L/U station. After the processing operations on both machines and loading operation 

are completed, the table rotates 120 degrees counterclockwise such that job C is transported to 

CNC1, and job B to CNC2.  Finished job A will be unloaded from the pallet at the L/U station 

and a new job, say D, can be loaded on the pallet. 

 

Transporting jobs simultaneously is referred to as synchronous material movement in this 

study. This study focuses on sequencing jobs in this particular type of machining centers. 

Efficiency is one of the desirable characteristics of these machining centers, and minimizing the 

makespan is equivalent to maximizing utilization of a machining center. Thus, the objective of 

this study is to find a job sequence that minimizes the makespan. The three-field notation 

introduction by Graham et al. (1979) is adopted to represent the problem. As mentioned in 

Chapter 2, synmv represents the characteristic of synchronous material movement and re-LU 

indicates that a job has to be loaded and unloaded at the same L/U station. Hence, the scheduling 
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problem with makespan objective for a T-line machining center with m machines can be denoted 

as max| , |mF synmv re LU C . In this chapter, the scheduling problem with one CNC machine in a 

T-line machining center will be investigated. 

 

This chapter is divided into six sections. In Section 2, the setting of the machining center 

with one machine is described and the scheduling problem of the machining center is shown to 

be NP-hard in the strong sense. Section 3 provides a polynomial algorithm for a special case of 

the problem with a constant loading time or unloading time. Section 4 includes a proposed 

dynamic programming algorithm for the problem, the analysis of its computational effort and a 

numerical example to demonstrate the algorithm. In Section 5, two heuristic algorithms are 

developed to construct near optimal solutions for large-scale versions of this problem. Section 6 

examines the performance of the proposed algorithms on several settings. 

4.2 T-line Machining Center with One CNC Machine 

The T-line machining center consists of one CNC machine, a loading/unloading station, 

denoted as L/U, and a rotary table with two pallets. This setting is illustrated in Figure 4.3. First, 

a job has to be loaded onto a pallet before processing. After it is loaded, the job is transported to 

the CNC machine by the rotary table. The job will finally return back to the L/U station and be 

unloaded from the machining center. One pallet can only contain one job and the CNC machine 

can only process one job at a time. No preemption is allowed. Assume there are n jobs that have 

to be processed by the machining center. All jobs are available at time zero and wait in the input 

buffer of the L/U station. For the makespan criterion, the optimal sequence is independent of the 

rotation time of the rotary table; thus, the rotation time can be neglected. The loading, 
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processing, and unloading times for job j are denoted as lj, pj, and uj, respectively. The problem is 

to determine a job sequence that yields the minimum makespan. Thus, the notation for this 

scheduling problem is represented as 1 max| , |F synmv re LU C . 

 

 
Figure 4.3. A T-line machining center with one CNC machine 

 

Figure 4.4 illustrates a schedule of jobs at each station. A time period between two 

successive rotations of the rotary table is defined as a cycle time, called Ci where 1, , 2i n  . 

In the first two cycles, there are only loading operations performed at the L/U station. Similarly, 

only unloading operations are required in the last two cycles. From cycle 3 to cycle n, a job 

should be unloaded from the rotary table first before a new job can be loaded. Because the rotary 

table does not rotate until the completions of all operations are performed at each station, a cycle 

time is equal to the largest operation time among the corresponding operations currently 

performed at each station. Thus, each cycle time can be represented as follows given a job 

sequence J[1], J[2], …, J[n] where the notation J[i]  represents the job is sequenced in position i:  

 C1 = l[1]; C2 = [1] [2]max{ ,  }p l , (4.1) 

 Ci = [ 1] [ 2] [ ]max{ ,  }i i ip u l   , i = 3,…, n,  (4.2) 

 Cn+1 = [ ] [ 1]max{ ,  }n np u  ; Cn+2 = u[n] .  (4.3) 

CNCL/U Station

pallet pallet
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where l[i], p[i] and u[i] are the loading, processing and unloading times of the job 

sequenced in position i, respectively. 

 

Therefore, the makespan of the sequence is the summation of all cycle times formulated 

as
2

1

n

ii
C



 . The objective of the problem is to find a sequence which minimizes this value. 

 

 

Figure 4.4. Schedule of jobs at each station in a one-CNC T-line machining center 

Computational Complexity 

Discovering the computational complexity of a problem is the first step in working on a 

problem. This knowledge can help direct the problem-solving process towards the development 

of more useful algorithms. As a result, the complexity of the problem with one CNC machine is 

explored first. Logendran and Sriskandarajah (1993) consider a two-machine flow shop 

scheduling problem with blocking and anticipatory setup. Setup on these two machines can be 

performed in anticipation of arriving jobs when the machines are idle. They show the problem is 

strongly NP-hard by reducing it to an existing NP-hard problem – “Numerical Matching Problem 

with Target Sums.” Inspired by their research, the problem 1 max| , |F synmv re LU C is also 

L/U Station

CNC
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l[2] l[3]

p[2]

u[1] l[n]

p[n-1]

…...

…... p[n]

u[n-1] u[n]
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Cycle 1 Cycle n+2
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Cycle 3

u[n-2]

Cycle n



57 

proven to be NP-hard in the strong sense by showing the equivalence to the numerical matching 

problem with target sums. 

 

Numerical matching problem with target sums (Garey and Johnson 1979) 

Given two disjoint sets of positive integers 1 2{ , , , }nA a a a   and 1 2{ , , , }nB b b b  , and 

a target set with positive integers 1 2{ , , , }nC c c c  , the numerical matching problem with target 

sums is to answer the following question: 

Question: Can A B  be partitioned into n disjoint sets Dk, each containing exactly one element 

from set A and one element from set B, such that, [ ] [ ] [ ] [ ],  ,  for 1, ,k k k k k kc a b a b D k n     ? 

 

Below, the problem 1 max| , |F synmv re LU C
 
is shown to be NP-hard by reducing it to 

the numerical matching problem with target sums in polynomial time and also by showing the 

equivalence of these two problems in opposite direction. First, the problem 

1 max| , |F synmv re LU C  is restated as a decision problem as follows: 

Decision problem (P). Given a number of jobs with loading, processing and unloading times that 

have to be processed in a one-CNC T-line machining center, does there exist a schedule, say σ, 

with makespan Cmax(σ) which is less than or equal to a given value Z ? 

 

Given an arbitrary instance of the numerical matching problem with target sums defined 

by positive integers ,   and ,  1, ,i i ia b c i n  , construct an instance (denoted as Instance P1) of 

Problem P with 3n jobs as follows: 
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{ Ja ,  Jb ,  Jc | 1, , }i i iJ i n   , J is a set containing three types of jobs  Ja,  Jb and Jc  and 

the number of jobs for each type is n. The loading time (l), processing time (p), and unloading 

time (u) of each job in each type are defined as: 

Ja-type: (Ja ) 1,  (Ja ) 3,  (Ja ) 2 3 ,  1 ,i i i il p u a i n        

Jb-type: (Jb ) 3 ,  (Jb ) 1,  (Jb ) 1,  1 ,i i i il b p u i n         

Jc-type: (Jc ) 2,  (Jc ) 3 3 ,  (Jc ) ,  1 ,i i i il p c u i n       where 3max{ |1 }.ic i n     

In addition, the target value Z is defined as: 

02 4 4 3Z n n C   
 
where 0

1

n

i

i

C c


 . 

 

Lemma 4.1. If there exists a solution for the numerical matching problem with target sums, then 

the makespan of schedule   for Instance P1 constructed as shown in Figure 4.5, is equal to the 

target value Z. 

Proof. By assumption, a solution to the numerical matching problem with target sums exists so 

that [ ] [ ] [ ]k k kc a b   where [ ] [ ] [ ],  and k k ka b c  are the elements in kD , 1, ,k n  . Since each 

[ ] [ ] [ ],  and k k ka b c
 
correspond to a job of type Ja, type Jb, and type Jc, respectively, a set (denoted 

as kB ) containing three jobs can be formed based on each kD . Consider the following schedule 

(see Figure 4.5): 

1 2 [ ] [ ] [ ][ , , , ] where jobs in  are sequenced as [Ja ,  Jc ,  Jb ]n k k k kB B B B   . 

The idle time of the CNC machine only occurs at the first and last cycle and the summation of 

the idle time is 2 units of time. Hence, the makespan of schedule   can be calculated by adding 

idle times and busy times of the CNC machine: 
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max 01
2 3 3 3 2 4 4 3

n

ii
C n n c n n n n C Z  


           . □ 

 

 

Figure 4.5. Schedule   on the L/U station and CNC machine 

 

Lemma 4.2. If there is an optimal sequence   for Instance P1 with the makespan max ( )C Z  , 

then the CNC machine is busy on processing jobs except one unit of idle time at the first and last 

cycles. 

Proof. The total processing time on the CNC machine is 2Z   which can be calculated as: 

 1 1
( )  ( ) ( ) 3 ( 1) 3 3

n n

i i i ii i
p Ja p Jb p Jc n n c 

 
         

 01
4 4 3 4 4 3 2

n

ii
n n c n n C Z 


         

Because of the makespan max ( )C Z  , the idle time on the CNC machine is 2 units of time at 

most. In addition, there is no operation on the CNC machine when the first job is loaded and the 

last job is unloaded on the L/U station. Since the smallest loading and unloading times are equal 

to 1 respectively, the idle time can only occur at the first and last cycles on the CNC machine. □ 
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Lemma 4.3. If there is an optimal sequence   for Instance P1 with the makespan max ( )C Z  , 

then the L/U station is busy processing jobs except one unit of idle time at the second and second 

last cycles. 

Proof. The total operation time on the L/U station is 2Z   which can be calculated as: 

 1
[ ( )  ( ) ( ) ( ) ( ) ( )]

n

i i i i i ii
l Ja l Jb l Jc u Ja u Jb u Jc


      

 
1 1
( 3 ) 2 (2 3 )

n n

i ii i
n b n a n n  

 
          

 01
4 4 3 ( ) 4 4 3 2

n

i ii
n n a b n n C Z 


          

Because of the makespan max ( )C Z  , the idle time on the L/U station is 2 units of time at most. 

In the second cycle, there is no job required to be unloaded. Therefore, there is only one job 

being loaded at the L/U station, and one job being processed on the CNC machine. Since the 

CNC machine cannot be idle except for in the first and last cycles, the processing time should be 

greater than or equal to the loading time in the second cycle. By considering all combinations of 

processing and loading times, the minimum idle time at the L/U station can only be 1 in the 

second cycle. Likewise, no job will be loaded in the second last cycle. There is only one job 

being unloaded on the L/U station and one job being processed on the CNC machine. The 

minimum idle time at the L/U station is also equal to 1. Thus, one unit of idle time can only 

occur at the second and second last cycles at the L/U station. □ 

 

Lemma 4.4. If there is an optimal sequence   for Instance P1 with the makespan max ( )C Z   

and the jobs in sequence   are partitioned into n disjoint blocks Bk where 

[3 2] [3 1] [3 ]{ , , },  1, ,k k k kB J J J k n    , then jobs [3 2] [3 1] [3 ], ,  and k k kJ J J   in Bk are Ja-type, Jc-type 

and Jb-type, respectively. 
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Proof. First, we show that the first three jobs [1] [2] [3], ,  and J J J
 
in B1 are Ja-type, Jc-type and Jb-

type. Three cases should be considered: 

 Case 1: [1]J is not Ja-type. 

If [1]J  is Jb-type, the idle time on the CNC machine is greater than 1, which contradicts 

Lemma 4.2 as shown in Figure 4.6. 

 

 

Figure 4.6. A Jb-type job is sequenced in the first position 

 

If [1]J
 
is Jc-type, the idle time on the CNC machine is also greater than 1, which contradicts 

Lemma 4.2 as shown in Figure 4.7. 

 

 

Figure 4.7. A Jc-type job is sequenced in the first position 

 

Thus, the job sequenced in the first position has to be Ja-type. 

 Case 2: [2]J  is Jc-type. 

If [2]J  is Ja-type, the idle time on the L/U station is 2, which contradicts Lemma 4.3 as 

shown in Figure 4.8. 

β+3bi

β+1

L/U station

CNC

idle time is β+3bi
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3β+3ci

L/U station

CNC
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Figure 4.8. A Ja-type job is sequenced in the second position 

 

If [2]J  is Jb-type, the idle time on the CNC machine in the second cycle is greater than 0, 

which contradicts Lemma 4.2 as shown in Figure 4.9. 

 

 

Figure 4.9. A Jb-type job is sequenced in the second position 

 

Thus, the job sequenced in the second position has to be Jc-type. 

 Case 3: [3]J  is Jb-type. 

If [3]J  is Ja-type, the idle time on the L/U station in the third cycle is greater than 0, which 

contradicts Lemma 4.3 as shown in Figure 4.10. 

 

 

Figure 4.10. A Ja-type job is sequenced in the third position 
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If [3]J  is Jc-type, the idle time on the L/U station in the third cycle is greater than 0, which 

contradicts Lemma 4.3 as shown in Figure 4.11. 

 

 

Figure 4.11. A Jc-type job is sequenced in the third position 

 

 Thus, the job sequenced in the third position has to be Jb-type. Analogously, for 

2, ,k n  , we can also show that jobs [3 2] [3 1] [3 ], ,  and k k kJ J J   in Bk are Ja-type, Jc-type and Jb-

type, respectively. □ 

 

 Since jobs [3 2] [3 1] [3 ], ,  and k k kJ J J   in each Bk correspond to jobs of type Ja, Jc and Jb, 

schedule   can be represented as in the following form: 

[1] [1] [1] [2] [2] [2] [ ] [ ] [ ][Ja ,  Jc ,  Jb , Ja ,  Jc ,  Jb , , Ja ,  Jc ,  Jb ]n n n  

 

Lemma 4.5. If there is an optimal sequence   for Instance P1 with the makespan max ( )C Z   

and jobs in optimal schedule   are partitioned into n blocks Bk where jobs in Bk are sequenced 

as [ ] [ ] [ ][Ja ,  Jc ,  Jb ]k k k , then [ ] [ ] [ ] ,  1, ,k k ka b c k n    . 

Proof. First, we show that for the first three jobs in B1, the processing time of [1]Jc  is equal to the 

sum of the unloading time of [1]Ja  and the loading time of [1]Jb . That is [1] [1] [1]a b c  . Two cases 

should be considered: 

1
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 Case 1: assume [1] [1] [1]a b c  . Then, the idle time on the L/U station in the third cycle is 

greater than 0 as shown in Figure 4.12, which contradicts Lemma 4.3. 

 

 

Figure 4.12. Idle time on the L/U station in the third cycle when [1] [1] [1]a b c   

 

 Case 2: assume [1] [1] [1]a b c  . Then, the idle time on the CNC machine in the third cycle is 

greater than 0 as shown in Figure 4.13, which contradicts Lemma 4.2, and the claim is 

justified. 

 

 

Figure 4.13. Idle time on the CNC machine in the third cycle when [1] [1] [1]a b c   

 

Similarly, the equality [ ] [ ] [ ]k k ka b c   can be concluded for Bk ,  2, ,k n  .  □ 

 

Theorem 4.1. The scheduling problem with the makespan objective in a T-line machining center 

with one CNC machine is NP-hard in the strong sense. 

Proof. To complete the proof, we have to show that there exists a schedule  for Problem P if 

and only if there is a solution to the numerical matching problem with target sums. For the if 
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part, the numerical matching problem with target sums is equivalent to Problem P based on 

lemma 4.1. For the only if part, Problem P can be also converted to the numerical matching 

problem with target sums from Lemmas 4.2 to 4.5. Furthermore, it only takes polynomial time to 

construct Instance P1 from an instance of the numerical matching problem with target sums.  □ 

4.3 Special Case – Constant Unloading Time 

Typically, the operation of removing or unloading a job from a machining center is 

simple. Therefore, it is reasonable to consider a scenario with a common unloading time 

(denoted as c) in a T-line machining center. In this case, the operation time at the L/U station can 

be regarded as a longer loading time without unloading time from cycle 3 to cycle n given n is 

the number of jobs as shown in Figure 4.14. Without considering the first two loading operations 

and the last two unloading operations for a given sequence, this problem becomes a two-machine 

flow shop problem with blocking, which is polynomial solvable by the Gilmore-Gomory 

algorithm (Gilmore and Gomory 1964). In this section, the scheduling problem of a one-machine 

T-line machining center with constant unloading time (denoted as 

1 max| , , |jF synmv re LU u c C  ) will be shown to be polynomial solvable, and an algorithm to 

solve the problem will provided. 

 

 

Figure 4.14. Schedule in a one-machine T-line machining center with constant unloading time 
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Assume an optimal sequence for the problem 1 max| , , |jF synmv re LU u c C  is J[1], J[2], 

…, J[n], and the optimal makespan is Z. From Figure 4.14, we observe that the operation time at 

the L/U station for each cycle is the sum of the loading time and constant c from the 3
rd

 cycle to 

n
th
 cycle. Therefore, we consider J[3] to J[n] and add constant c to the loading times of these jobs 

as the operation times on the L/U station. Alternatively, [ ]jl c can be regarded as a new loading 

times for [ ]J j ,3 j n  , and no unloading operations is required. Then, this problem becomes a 

two-machine flow shop problem with blocking as shown in Figure 4.15, and the problem can be 

solved by the Gilmore-Gomory algorithm. Since the Gilmore-Gomory algorithm will be 

frequently applied in this research, the procedures of this algorithm and a numerical example are 

presented in the Appendix. 

 

 

Figure 4.15. Two-machine flow shop problem with blocking for [ ]J j ,3 j n   

 

However, in order to maintain the optimal sequence in the two-machine flow shop 

problem with blocking problem as the same as the optimal sequence in the original problem, two 

jobs should be added. One job is denoted as J0 and the other denoted as Jn+1. The loading times of 

J0 and Jn+1 are set to be 0 and c, respectively. The processing time of J0 and Jn+1 are set to be p[2] 

and 0, respectively. In addition, J0 must be sequenced in the first position of the optimal 

sequence and Jn+1 must be sequenced in the last position. Assume the optimal makespan for the 

modified problem is Z
G
 as shown in Figure 4.16. Then, the optimal makespan for the problem 
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1 max| , , |jF synmv re LU u c C   has to be shown that it is equal to 
[1] [2] [1]max( ,  )GZ l l p c   . 

Namely, given the first two jobs in an optimal sequence, the remaining sequence can be 

generated by applying the Gilmore-Gomory algorithm to the modified problem. 

 

 

Figure 4.16. The makespan Z’ for the modified problem 

Two-machine flow shop problem with blocking ( 2 max| blocking |F C ) 

Define the modified problem (denoted as Problem G) as follows:  

 Given the first two jobs in an optimal sequence of the scheduling problem in a one-CNC 

T-line machining center, let the loading time of J[j] be [ ]  ;  3, ,jl c j n   . Add two additional 

jobs J0 and Jn+1 and their loading times and processing times are defined as 

0 0 [2] 1 10,  ,   and 0n nl p p l c p     . Problem G is to find an optimal sequence of these jobs (

[ ]J , 3, ,j j n  ) and J0 and Jn+1. The optimal makespan obtained by applying the Gilmore-

Gomory algorithm to Problem G is denoted as Z
G
. 

 

Lemma 4.6. J0 must be in the first position of the optimal sequence for Problem G. 

Proof: Assume J0 is not in the first position of the optimal sequence, and the optimal makespan 

is Z
1
. The jobs sequenced before J0 form Block 1 and the remaining jobs including J0 form Block 

2, as shown in Figure 4.17. In addition, the loading time of the job in the first position is denoted 
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as al  and the processing time of the job right before J0 and of the job in the last position are 

denoted as bp
 
and cp , respectively. 

 

 

Figure 4.17. J0 is not sequenced in the first position for Problem G 

 

The sequence of jobs in Block 1 is exchanged with that in Block 2 as shown in Figure 4.18. Let 

the makespan of the new sequence be Z
2
. 

 

 

Figure 4.18. J0 is sequenced in the first position for Problem G 

 

The difference of the makespans between these two sequences is: 

1 2 max( ,  ) max( ,  ) 0a b c a c b a c a cZ Z l p p l p p l p l p          . 

Z
2
 is strictly less than Z

1
 which contradicts the assumption that Z

1
 is the optimal makespan. 

Hence, J0 must be sequenced in the first position of the optimal sequence.  □ 

 

Lemma 4.7. Jn+1 must be in the last position of the optimal sequence for Problem G. 
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L/U station

CNC

...

p0 ... pc

Block 2

...

la ...

pb

Block 1
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Block 1, as shown in Figure 4.19. In addition, the loading time of the job in the first position and 

of the job right behind Jn+1 are denoted as al  and cl , respectively. The processing time of the job 

right before Jn+1 and of the job in the last position are denoted as bp
 
and dp , respectively. 

 

 

Figure 4.19. Jn+1 is not sequenced in the last position for Problem G 

 

The sequence of jobs in Block 1 is exchanged with that in Block 2 as shown in Figure 4.20. Let 

the makespan of the new sequence be Z
2
. 

 

 

Figure 4.20. Jn+1 is sequenced in the last position for Problem G 

 

The difference of the makespans between these two sequences is: 

1 2 max( ,  ) max( ,  ) max( ,  )a b c d c a d bZ Z l c p l p l l p c p       

 

max( ,  ) 0a d a dl p l p    . 

Z
2
 is strictly less than Z

1
 which contradicts the assumption of Z

1
 is the optimal makespan. Hence, 

Jn+1 must be sequenced in the last position of the optimal sequence.  □ 

 

...

la ... c ...L/U station

CNC

lc

pb ...

Block 1 Block 2

pd

...L/U station

CNC

lc

...

Block 2

pd ...

la ... c

pb

Block 1
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Theorem 4.2. The optimal makespan of the problem 1 max| , , |jF synmv re LU u c C 
 
is 

[1] [2] [1]max( ,  )GZ l l p c   given the first two jobs in the optimal sequence where Z
G
 is the 

optimal makespan of Problem G. 

Proof: Based on Lemma 4.6 and Lemma 4.7, J0 must be sequenced in the first position and Jn+1 

must be sequenced in the last position of the optimal sequence. Suppose the optimal makespan 

(Z) for the original problem 1 max| , , |jF synmv re LU u c C   is less than 

[1] [2] [1]max( ,  )GZ l l p c   . Remove the time period [1] [2] [1]max( ,  )l l p  at the beginning of the 

optimal sequence and time period c at the end from Z as illustrated in Figure 4.21. Then, the 

value [1] [2] [1]max( ,  )Z l l p c   is less than Z
G
 which contradicts that Z

G
 is the optimal makespan 

obtained by the Gilmore-Gomory algorithm. Conversely, if Z is greater than 

[1] [2] [1]max( ,  )GZ l l p c   , the value of Z can obviously be improved by replacing the sequence 

with the one obtained by the Gilmore-Gomory algorithm. Hence, the optimal makespan, Z, 

should be equal to 
[1] [2] [1]max( ,  )GZ l l p c   , and Theorem 4.2 is proven.  □ 

 

 

Figure 4.21. The makespan for the problem 1 max| , , |jF synmv re LU u c C   

 

Based on Theorem 4.2, an algorithm can be developed to solve the problem with a 

common unloading time. Because no unloading operations are required at the first two cycles, 

the problem can’t be solved just by applying the Gilmore-Gomory algorithm. This is the reason 

l[1]

p[1]

l[2] l[3]

p[2]

c

p[3]

l[4] ...

... p[n]

c c cL/U station

CNC

A time period

ZG

A time period
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that the first two jobs in the optimal sequence are required as Theorem 4.2. Since the first two 

jobs in the optimal sequence are unknown, all possible combinations of the first two jobs have to 

be considered. For each combination of the first two jobs in the sequence, the Gilmore-Gomory 

algorithm is applied to obtain the optimal sequence for the rest of jobs, and the best makespan is 

recorded. Until all combinations are performed, the best makespan recorded will be the optimal 

makespan for the problem.  

Algorithm for 1 max| , , |jF synmv re LU u c C    

Step 1. Initialize the best makespan as infinite. 

Step 2. For 1 to j n  and let Jj be in the first position of the sequence. 

 Step 2.1. For 1 to  and k n k j  , and let Jk be in the second position of the sequence.  

Step 2.1.1.Let 1i ip l c   and 2 ;  1, , ;  ;  i ip p i n i j i k    . 

Step 2.1.2.Let the processing times of job Jk as 1 20 and k k kp p p  . Add job Jn+1 with the 

processing times as 1,1 1,2 and 0n np c p   . 

Step 2.1.3.Solve the problem as a two-machine flow shop problem with blocking by the 

Gilmore-Gomory algorithm, and obtain the optimal sequence and the makespan Z
G
. 

Step 2.1.4.The makespan for the original problem is max( ,  )G

j k jZ l l p c   . 

Step 2.1.5.If the current makespan is less than the best makespan, then set the best 

makespan as the current makespan, and append Jj at the beginning of the current 

sequence as the best sequence. 

Step 3. Output the best makespan and the best sequence. 
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Since the number of combinations of the first and second jobs in a sequence are ( 1)n n  

given n is the number of jobs and the complexity of the Gilmore-Gomory algorithm is ( log )O n n , 

the complexity of the proposed algorithm is 
3( log )O n n . The algorithm also can be applied to 

the problem with constant loading time. 

4.4 Dynamic Programming Algorithm for 1 max| , |F synmv re LU C  

Dynamic programming is an efficient approach to obtain an optimal solution when the 

problem requires a sequence of interrelated decisions (Dreyfus and Law 1997). Obtaining the 

minimum makespan for the scheduling problem of a T-line machining center has the 

characteristic of requiring a sequence of interrelated decisions as Equations (4.1) to (4.3). Thus, a 

forward dynamic programming procedure is formulated to solve this problem. Given n jobs 

which have to be processed by the machining center and these jobs are numbered from 1 to n. 

Let {1,2, , }N n  be a set of jobs and let S be a subset of N containing the jobs that have already 

been processed in the machining center. Let g represent the job concurrently being processed on 

the CNC, and j be the job being loaded at the L/U station. Then the dynamic programming 

formulation is as follows. 

DP Algorithm for 1 max| , |F synmv re LU C  

 Optimal value function (OVF): fi(S, g, j) = minimum completion time for processing job g on 

CNC, unloading the last job in S and loading job j at the L/U station, given that the i jobs in S 

have already been completed.  (4.4) 
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 Optimal policy function (OPF): pi(S, g, j) = last job unloaded at the L/U station. Equivalently, 

this is also the last job added to set S.  (4.5) 

 Recurrence relation (RR): 

1( , , ) min{ ( \{ }, , ) max{ , }};  1,..., 2i i g k j
k S

f S g j f S k k g p u l i n


     ; { , }g j N ; 

\{ , }S N g j , | S | =  i.  (4.6) 

 Boundary condition (BC): 0 ( , , ) max{ , };  { , }g g jf g j l p l g j N    . (4.7) 

 Answer (ANS): 

1min{ ( , , )}n
g N

f S g


   (4.8) 

where
1 2( , , ) min{ ( \{ }, , ) max{ , }}n n g k g

k S
f S g f S k k g p u u 


    ; g N ; \{ }S N g , 

| | 1S n  . (4.9) 

Computational Effort Analysis 

The computational effort of the dynamic programming algorithm is evaluated by the 

number of operations performed: “Addition” and “Comparison.” The number of operations 

required for each stage of the algorithm is summarized in Table 4.1. 

 

Table 4.1: Number of operations required for each stage 

Stage Number of combinations Addition Comparison 

Boundary condition ( i = 0 ) ( 1)n n  1 1 

Recurrence relation (1 2i n   ) 
2( 1) n

in n C   2i i + (i – 1) 

Answer  1nf   ( i = n – 1 ) n n n – 1+ n – 2 

Minimum makespan 1 0 n – 1 
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In boundary condition, there are n(n – 1) combinations for job g and j. Each combination 

requires one addition and one comparison to obtain the value for f0. In recurrence relation, for 

each i, there are n(n – 1) choices for jobs g and j, and 2n

iC   combinations of jobs in set S. Each 

combination of (S, g, j) has i candidates in set S for k. To obtain the minimum value among these 

i candidates, it requires extra i – 1 comparisons. In the answer formulation, there are n choices of 

g for 1nf  , and each choice has n – 1 candidates for k. Moreover, among these n – 1 candidates,   

n – 2 comparisons are performed to acquire the minimum value for each 1nf  . To obtain the 

minimum makespan among these 1nf   needs (n – 1) comparisons. Therefore, the total number of 

additions required is:  

= 
2

2 2

1

2 ( 1) ( 1)
n

n

i

i

n n i C n n n






      

= 
3 3 2

0
2 ( 1)( 2) ) 2

n n

jj
n n n C n n

 


     

= 
3 22 ( 1)( 2)2 2nn n n n n     

2( 1)( 2)2nn n n    . 

The total number of comparisons required is: 

= 
2 22 2

1 1
( 1)(2 ) ( 1) (2 3) 1

n nn n

i ii i
n n i C C n n n n n

  

 
           

= 
3 2 2( 1)(2( 2)2 2 1) 3 3 1n nn n n n n         

= 
3 2 22 ( 1)( 2)2 ( 1)(2 ) 4 4 1n nn n n n n n n         

2( 1)( 2)2nn n n    . 
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Thus, the computational effort for this dynamic programming algorithm is 
3 2( 2 )nO n 

. 

This analysis of computational effort shows the exponential time complexity of the algorithm, 

which confirms with NP-hardness of the problem proven in Section 4.2. When computing a 

value of the optimal value function fi , it is necessary to store several values of the function 1if  in 

the previous stage. Given n is 15, for example, to calculate the values of 10f  in stage 10, the total 

number of 9f   has to be computed and stored in the prior stage is 150,150 ( 2( 1) n

in n C  ). Hence, 

the storage space required for the algorithm would be the practical restriction for solving the 

problem in a large scale. 

A Numerical Example 

A numerical example is presented to illustrate the proposed dynamic programming 

algorithm. In this example, 4 jobs need to be processed in a T-line machining center with one 

CNC machine, and one L/U station. Table 4.2 shows the loading, processing, and unloading 

times for these jobs. 

 

Table 4.2: Job data for a one-machine T-line machining center 

Job lj pj uj 

1 3 7 2 

2 4 6 3 

3 6 10 4 

4 1 3 3 
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 Boundary Condition: 

0

0

0

( , 2,1) 4 max{6,3} 10.

( ,3,1) 6 max{10,3} 16.

( ,4,1) 1 max{3,3} 4.

f

f

f

   

   

   

 

0

0

0

( ,1,2) 3 max{7,4} 10.

( ,3,2) 6 max{10,4} 16.

( ,4,2) 1 max{3,4} 5.

f

f

f

   

   

   

 

0

0

0

( ,1,3) 3 max{7,6} 10.

( , 2,3) 4 max{6,6} 10.

( , 4,3) 1 max{3,6} 7.

f

f

f

   

   

   

 

0

0

0

( ,1,4) 3 max{7,1} 10.

( ,2,4) 4 max{6,1} 10.

( ,3,4) 6 max{10,1} 16.

f

f

f

   

   

   

 

 i = 1: 

1 0

1 0

1 0

1 0

1 0

1

(2,3,1) ( , 2,3) max{10,3 3} 10 10 20.

(2,4,1) ( , 2, 4) max{3,3 3} 10 6 16.

(3,2,1) ( ,3, 2) max{6,3 4} 16 7 23.

(3,4,1) ( ,3, 4) max{3,3 4} 16 7 23.

(4,2,1) ( , 4, 2) max{6,3 3} 5 6 11.

(4

f f

f f

f f

f f

f f

f

      

      

      

      

      

0,3,1) ( , 4,3) max{10,3 3} 7 10 17.f      

 

1 0

1 0

1 0

1 0

1 0

1

(1,3, 2) ( ,1,3) max{10, 4 2} 10 10 20.

(1,4,2) ( ,1, 4) max{3, 4 2} 10 6 16.

(3,1,2) ( ,3,1) max{7, 4 4} 16 8 24.

(3,4, 2) ( ,3, 4) max{3,4 4} 16 8 24.

(4,1,2) ( , 4,1) max{7, 4 3} 4 7 11.

(4

f f

f f

f f

f f

f f

f

      

      

      

      

      

0,3, 2) ( , 4,3) max{10, 4 3} 7 10 17.f      
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1 0

1 0

1 0

1 0

1 0

1

(1, 2,3) ( ,1, 2) max{6,6 2} 10 8 18.

(1,4,3) ( ,1, 4) max{3,6 2} 10 8 18.

(2,1,3) ( , 2,1) max{7,6 3} 10 9 19.

(2,4,3) ( , 2, 4) max{3,6 3} 10 9 19.

(4,1,3) ( , 4,1) max{7,6 3} 4 9 13.

(4,2

f f

f f

f f

f f

f f

f

      

      

      

      

      

0,3) ( , 4, 2) max{6,6 3} 5 9 14.f      

 

1 0

1 0

1 0

1 0

1 0

(1, 2, 4) ( ,1, 2) max{6,1 2} 10 6 16.

(1,3,4) ( ,1,3) max{10,1 2} 10 10 20.

(2,1,4) ( , 2,1) max{7,1 3} 10 7 17.

(2,3,4) ( , 2,3) max{10,1 3} 10 10 20.

(3,1,4) ( ,3,1) max{7,1 4} 16 7 23.

f f

f f

f f

f f

f f

f

      

      

      

      

      

1 0(3, 2, 4) ( ,3, 2) max{6,1 4} 16 6 22.f      

 

 i = 2: 

2 1 1

2 1 1

2 1 1

({2,3},4,1) min{ (2,3,4) max{3,3 4}, (3,2,4) max{3,3 3}} 27.

({2,4},3,1) min{ (2,4,3) max{10,3 3}, (4,2,3) max{10,3 3}} 24.

({3,4},2,1) min{ (3,4,2) max{6,3 3}, (4,3,2) max{6,3 4}} 24.

f f f

f f f

f f f

     

     

     

 

2 1 1

2 1 1

2 1 1

({1,3},4,2) min{ (1,3,4) max{3,4 4}, (3,1,4) max{3,4 2}} 28.

({1,4},3,2) min{ (1,4,3) max{10,4 3}, (4,1,3) max{10,4 2}} 23.

({3,4},1,2) min{ (3,4,1) max{7,4 3}, (4,3,1) max{7,4 4}} 25.

f f f

f f f

f f f

     

     

     

 

2 1 1

2 1 1

2 1 1

({1,2},4,3) min{ (1,2,4) max{3,6 4}, (2,1,4) max{3,6 2}} 25.

({1,4},2,3) min{ (1,4,2) max{6,6 3}, (4,1,2) max{6,6 2}} 19.

({2,4},1,3) min{ (2,4,1) max{7,6 3}, (4,2,1) max{7,6 3}} 20.

f f f

f f f

f f f

     

     

     

 

2 1 1

2 1 1

2 1 1

({1,2},3,4) min{ (1,2,3) max{10,1 3}, (2,1,3) max{10,1 2}} 28.

({1,3},2,4) min{ (1,3,2) max{6,1 4}, (3,1,2) max{6,1 2}} 26.

({2,3},1,4) min{ (2,3,1) max{7,1 4}, (3,2,1) max{7,1 3}} 27.

f f f

f f f

f f f

     

     

     

 

 Answer: 

3 3 3 3min{ ({1,2,3},4, ), ({1,2,4},3, ), ({1,3,4},2, ), ({2,3,4},1, )} max{32,33,32,33} 32f f f f       
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where

3 2 2 2({1,2,3},4, ) min{ ({1,2},3,4) max{3,4}, ({1,3},2,4) max{3,3}, ({2,3},1,4) max{3,2}} 3

                         max{28 4,26 3,27 3} 3 32.

f f f f     

     

3 2 2 2({1,2,4},3, ) min{ ({1,2},4,3) max{10,3}, ({1,4},2,3) max{10,3}, ({2,4},1,3) max{10,2}} 4

                         max{25 10,19 10,20 10} 4 33.

f f f f     

     

3 2 2 2({1,3,4},2, ) min{ ({1,3},4,2) max{6,3}, ({1,4},3,2) max{6,4}, ({3,4},1,2) max{6,2}} 3

                         max{28 6,23 6,25 6} 3 32.

f f f f     

     

3 2 2 2({2,3,4},1, ) min{ ({2,3},4,1) max{7,3}, ({2,4},3,1) max{7,4}, ({3,4},2,1) max{7,3}} 2

                         max{27 7,24 7,24 7} 2 33.

f f f f     

       

Thus, the minimum makespan is 32, and the optimal sequence is 1 3 2 4    or 4 1 3 2   . 

4.5 Two-Phase Heuristic Algorithm for One CNC Machine 

Although the problem can be solved by the proposed dynamic programming algorithm, 

the computational effort of the algorithm is not polynomial. In addition, since the complexity of 

the problem is proven as NP-hard in the strong sense, it is not likely to develop polynomial time 

algorithms for this type of problems. Thus, developing a heuristic algorithm is a feasible method 

to address the problem in a large scale. 

 

Heuristic algorithms have been developed to provide good or near-optimal solutions in a 

reasonable CPU time. They are typically applied to large-size problems with limited 

computational effort. The heuristic algorithms for the scheduling problems are categorized into 

two types: constructive heuristics and improvement heuristics. The constructive heuristics help to 

build a feasible schedule from scratch, and the improvement heuristics attempt to improve the 

quality of the solution iteratively from the given schedule. Framinan et al. (2004) define a 

constructive heuristic as building a solution in a recursive manner by trying to insert one or more 

unscheduled job into one or more positions of a partial schedule until all jobs are sequenced. 
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Contrary to constructive heuristics, an improvement heuristic starts from an initial sequence and 

tries to improve the solution through modifications to that sequence. The improvement procedure 

is repeatedly applied while improvements are gained. Local searches and metaheuristics such as 

Tabu search, simulated annealing, genetic algorithms, and ant colony optimization are 

categorized as improvement heuristics (Framinan et al. 2004; Hejazi and Saghafian 2005). 

Nowadays, most of the heuristic algorithms proposed in the literature regarding job scheduling 

are to combine constructive and improvement heuristics as two-phase algorithms. 

 

The proposed heuristics algorithm in this research also contains two following stages: (1) 

the constructive stage – in this phase an initial sequence is formed and an initial makespan is 

determined, and (2) the improvement stage, a search for a better solution based on the initial 

seed. Two heuristic algorithms in the constructive stage are proposed to generate an initial seed. 

In the improvement stage, a modified neighborhood search algorithm is developed to explore 

solution spaces and to find improvements in the makespan. These algorithms are presented and 

discussed in the following section. 

Constructive Stage 

Two constructive heuristics are proposed to form an initial sequence for the one-machine 

problem. One heuristic algorithm is to choose a suitable job based on a given processing time 

and to append it to the current sequence. The other is to insert a given job in every position of the 

current sequence to find a best position for that job. The details of these two algorithms are 

discussed as below. 
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Constructive Algorithm – Selection (CAS) 

Recall that the makespan for the problem 1 max| , |F synmv re LU C
 
is to sum up time of 

each cycle, 
2

1

n

ii
C



 . The time period of each cycle is equal to the maximum operation time 

among these times at the L/U station and on the CNC machine. If the summation of processing 

times on the CNC machine is greater than the summation of loading and unloading times at the 

L/U station, then the summation of processing times can be regarded as a lower bound of the 

solution. This property can be shown as in Lemma 1.  

 

Lemma 4.1. The value, 
11,..., 1,...,

min min
n

i j iji n i n
l p u

 
  , provides a lower bound for the makespan 

problem in a T-line machining center with one CNC machine. 

Proof: According to Equations (4.1) to (4.3), the makespan of a given sequence, say σ, is 

represented as MSσ = [1]l + [1] [2]max{ ,  }p l + [2] [1] [3]max{ ,  }p u l + … + [ 1] [ 2] [ ]max{ ,   }n n np u l   +

[ ] [ 1]max{ ,  }n np u  + [ ]nu . 
1,...,

min i
i n

l


and 
1,...,

min i
i n

u


are the lower bounds for [1]l  and [ ]nu , respectively. In 

addition, by neglecting the loading and unloading from cycles 2 to n+1. Thus, 

 MSσ [1] [1] [2] [ ] [ ] 11,..., 1,...,
min min

n

n n i j iji n i n
l p p p u l p u

 
        

 
 □ 

 

 Furthermore, from the above lemma we can conclude that if the minimum processing 

time on the CNC machine is greater than the sum of the largest loading and unloading time, the 

optimal solution is equal to the lower bound. The property can be represented as follows: 

 11,..., 1,..., 1,...,1,..., 1,...,
min max max the optimal makespan: min min

n

j i i i j ijj n i n i ni n i n
p l u l p u

   
     .
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 In other words, the processing times can serve as the basic elements of comparison with 

different possible combinations of loading and unloading times at the L/U station. Therefore, the 

main idea of constructing the initial job sequence is to find the summation of a pair of loading 

and unloading times that is closest to a selected processing time. The heuristic is named as 

Constructive Algorithm – Selection (CAS), and the steps associated with the algorithm are stated 

below. 

CAS Algorithm 

 N is a set containing all jobs; N = {1, 2, … , n}. S is a set containing jobs which have 

been already sequenced. R is a set containing jobs which have not been sequenced yet. MS is a 

variable to record the current makespan. 

Step 1. Let R = N and S = ∅. 

Step 2. Select a job which has the largest processing time from set R; name the job as j; 

 max{ : }j ij arg p p i R   . Next, find a pair of jobs (f, b) where { , } \{ }f b R j . The 

summation of loading and unloading times of these two jobs should be closest to the processing 

time of job j; ( , )  min{| ( ) |: ( , ) \{ }}j b ff b arg p l u f b R j    . The tie break rule is to select 

the pair with negative value of ( )j b fp l u  . Then, job f is sequenced prior to job j, and job b is 

sequenced after job j. The makespan of the current sequence can be calculated as 

max{ , } max{ , } max{ , }f f j j f b b j bMS l p l p u l p u u      . Let the index k = j, { , , }S f j b , 

and \R N S .  

Step 3. Select a job with a larger processing time between job f and b. 
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 Step 3.1. If f bp p , then select a job, say i, from set R with the unloading time which is 

closest to max{ ,0}f jp l ; i R . The tie break rule is min{ max{ ,0}}i f ju p l  . 

Append job i at the beginning of the current sequence, and the makespan becomes

max{ ,0} (max{ ,0}| ) ( | )i i f i j f f j i f jMS l p l u l p p l u p l         . Set j = f and f = i. 

 Step 3.2. If f bp p , then select a job, say i, from set R with loading time which is 

closest to max{ ,0}b kp u ; i R . The tie break rule is min{ max{ ,0}}i b kl p u  . Add 

job i at the end of the current sequence, and the makespan becomes 

max{ ,0} (max{ ,0}| ) ( | )i i u k i b b k i b kMS MS u p b u l p p u l p u          . Set k= b 

and b= i.  

 Step 3.3. Let { }S S i  , and \{ }R R i . If R  , go to step 3. Otherwise, go to step 4. 

Step 4. Output the job sequence and the makespan. 

A Numerical Example 

A numerical example is presented to demonstrate the procedure of CAS. Assume there 

are five jobs. Table 4.3 shows the job data for the example. 

 

Table 4.3: Job data for the example of CAS 

Job lj pj uj 

1 4 7 4 

2 3 9 3 

3 5 3 3 

4 2 5 1 

5 2 7 5 
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Iteration 1: 

Step 2. The largest processing time is 9, and the corresponding job is 2. Find a pair of jobs 

(f, b) where the summation of loading and unloading times of the two jobs is closest to 9. 

The pair of jobs selected is job 1 and job 3. The current job sequence is 1 2 3  . 

Step 3. Job 1 has a larger processing time than job 3. 

 Step 3.1 Select job i with an unloading time close to max{ ,0} max{7 3,0} 4f jp l    . 

Job 5 is selected. The current job sequence is 5 1 2 3   . 

Iteration 2: 

Step 3. Job 5 has a larger processing time than job 3. 

 Step 3.1 Sequence the remaining job 4 in the front of the sequence. 

Step 4. The job sequence is 4 5 1 2 3    , and the makespan is 37. (It is also optimal.) 

Constructive Algorithm – Insertion (CAI) 

 Similar to the idea of the first constructive algorithm, if the cycle times for cycle 2 to 

cycle n+1 are identified by loading and unloading times, the summation of these loading and 

unloading times will provide a lower bound to a makespan of any sequence. This property is 

stated as in Lemma 4.2.  

 

Lemma 4.2. The value, 
1
( )

n

j jj
l u


 , provides a lower bound for the makespan problem in a T-

line machining center with one CNC machine. 
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Proof: According to Equations (4.1) to (4.3), the makespan of a given sequence, say σ, is 

represented as MSσ = [1]l + [1] [2]max{ ,  }p l + [2] [1] [3]max{ ,  }p u l + … + [ 1] [ 2] [ ]max{ ,  }n n np u l   +

[ ] [ 1]max{ ,  }n np u  + [ ]nu . Neglect the processing times in these cycles 2 to n+1. Thus,  

 MSσ [1] [2] [3] [1] [ ] [ 2] [ 1] [ ] 1
( ) ( ) ( )

n

n n n n j jj
l l l u l u u u l u  

         
 
 □ 

 

 Furthermore, from the above lemma we can derive that if the maximum processing time 

on the CNC machine is less than the smallest loading and unloading time, the optimal solution is 

equal to the lower bound. The property can be represented as follows:  

 11,..., 1,...,1,..., 1,...,
max min  and max min the optimal makespan: ( ).

n

j i j i j jji n i nj n j n
p l p u l u

  
     

 

 In addition, a new lower bound, which provides a tighter bound for any sequence, can be 

derived from Lemma 4.1 and Lemma 4.2. 

Theorem 4.3. The value, 
1 11,..., 1,...,

max{min min ,  ( )}
n n

i j i j jj ji n i n
l p u l u

  
    , provides a lower 

bound for the makespan problem in a T-line machining center with one CNC machine. 

Proof: Derived from Lemmas 4.1 and 4.2 directly. □ 

 

Therefore, the main idea of the constructive algorithm is to sequence a job based on its 

loading and unloading time. Each job is assigned two weights: one weight is determined by its 

loading time, the other weight is determined by its unloading time. A job with larger loading or 

unloading times is assigned larger weights, and a job with the large sum of these two weights 

will be sequenced first. When a job is selected to be inserted into the current sequence, this job 

will be inserted in every position of the sequence to obtain a corresponding makespan. For a 
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given subsequence with k jobs, there are k+1 inserting positions: the beginning and the end 

positions of the subsequence and the positions between two consecutive jobs in the subsequence. 

After all attempts in each position, the job will be sequenced in the position where the minimum 

makespan is obtained. The processes are repeated until all jobs are sequenced. The procedure of 

this algorithm, Constructive Algorithm – Insertion (CAI), is stated as follows. 

CAI Algorithm  

 N is a set containing all jobs; N = {1, 2, …, n}. S is a set containing jobs which have been 

sequenced, and R is a set containing jobs which are not sequenced. Each job has two weights 

which are assigned according to its loading and unloading times. The weights corresponding to 

loading and unloading times of job j are wlj and wuj, respectively. MS is a variable to record the 

current makespan. 

Step 1. Let MS = 0, R = N and S = ∅. 

Step 2. Sort jobs based on loading times in ascending order, and assign a weight value to each 

job.  The weight value for the first job is 1, for the second job is 2 and for the last job is n. If jobs 

have the same loading times, the weights assigned to these jobs are the same. For example, k jobs 

have the same loading time, and the weight value assigned to these jobs is w. However, the 

weight assigned to next job will be w+k. Similarly, the job with the smallest unloading time has a 

weight value equal to 1, and the job with largest unloading time has a weight value equal to n. 

Step 3. Select a job (denoted as j) from set R with the largest value of lj ujw w . 

Step 4. Insert job j in position i of the current sequence where 1, ,| | 1i S  . The 

corresponding makespan of inserting job j in position i (denoted as MSij) can be calculated as 

follows: 
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 Step 4.1. [ 1] [ 2] [ 1] [ ] [ ] [ 1]max{ , } max{ , } max{ , }ij i i j j i i i j iMS MS p u l p u l p u l         
 

   [ 1] [ 2] [ ] [ ] [ 1] [ 1]max{ , } max{ , }i i i i i ip u l p u l        

   where [| | 1] [| | 2] [0] [| | 1] [ 1] [0] 0S S Sl l p p u u         . 

 Step 4.2. Select position i with the minimum makespan, and insert job j in that position. 

Let min{ }ijMS MS , { }S S j   and \{ }R R j . If R  , go to step 3. Otherwise, go 

to step 5. 

Step 5. Output the job sequence and the makespan. 

A Numerical Example 

A numerical example is presented to demonstrate the procedure of CAI. Table 4.4 shows 

the job data for the example. 

 

Table 4.4: Job data for the example of CAI 

Job lj wlj pj uj wuj wlj + wuj 

1 4 4 7 4 4 8 

2 3 3 9 3 2 5 

3 5 5 3 3 2 7 

4 2 1 5 1 1 2 

5 2 1 7 5 5 6 

 

Iteration 1: 

 Step 3. R = {1, 3, 5, 2, 4}. Job 1 is selected. 

 Step 4. Insert job 1 to the current sequence, and the current makespan is 15. S = {1}. 

Iteration 2: 

 Step 3.  R = {3, 5, 2, 4}. Job 3 is selected. 



87 

 Step 4. Insert job 3 to the current sequence. 

  Step 4.1. i = 1, MS = 20. 

   i = 2, MS = 18. 

  Step 4.2. Insert job 3 in position 2. S = {1, 3} and MS = 19. 

Iteration 3: 

 Step 3. R = {5, 2, 4}. Job 5 is selected. 

 Step 4. Insert job 5 to the current sequence. 

  Step 4.1. i = 1, MS = 26. 

    i = 2, MS = 28. 

    i = 3, MS = 29. 

  Step 4.2. Insert job 3 in position 1. S = {5, 1, 3} and MS = 26. 

Iteration 4: 

 Step 3. R = {2, 4}. Job 2 is selected. 

 Step 4. Insert job 2 to the current sequence. 

  Step 4.1. i = 1, MS = 36. 

    i = 2, MS = 33. 

    i = 3, MS = 32. 

    i = 4, MS = 38. 

  Step 4.2. Insert job 3 in position 1. S = {5, 1, 2, 3} and MS = 32. 

Iteration 5: 

 Step 3. R = {4}. Job 4 is selected. 

 Step 4. Insert job 4 to the current sequence. 

  Step 4.1. i = 1, MS = 37. 
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    i = 2, MS = 40. 

    i = 3, MS = 38. 

    i = 4, MS = 40. 

    i = 5, MS = 37. 

Step 4.2. Insert job 4 in position 1 or 5. S = {4, 5, 1, 2, 3} or {5, 1, 2, 3, 4} and MS 

= 37. 

 Step 5. The job sequence is 4 5 1 2 3    or 5 1 2 3 4    , and the makespan is 37. (It 

is also optimal.) 

Improvement Stage 

 After generating a seed, a better solution or sequence will be searched for improving the 

current makespan. Typically, neighborhood solutions of the seed are generated and explored. 

Then the sequence with the smallest makespan among these neighborhood sequences is selected 

as the seed for next iteration of the improvement stage. The procedure does not terminate until a 

further improved sequence cannot be found. The technique of the search algorithm is referred to 

as Neighborhood Search. It is important to determine the method of generating neighborhood 

solutions in the search algorithm, because the more possible candidate solutions are explored, the 

better improvements can be obtained. One of mechanisms to generate neighborhood sequences is 

known as adjacent pairwise interchange, which is to switch two adjacent jobs. In the proposed 

algorithm, not only the adjacent pairwise interchange is adopted, but also pairwise interchange of 

any two jobs is considered. 
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 One of the weaknesses of the neighborhood search algorithm is that the current solution 

may be trapped in a local optimum so that no better neighbor can be found with respect to the 

current seed. In order to escape from a local optimum, a mechanism to increase the 

diversification of the search region is incorporated into the neighborhood search algorithm. If no 

more improvements can be found in the neighborhood region of the current seed, a neighborhood 

sequence with the identical makespan as the current seed is selected as a new seed. If there are 

more than one neighborhood sequences with the same makespan as the current seed, one 

sequence is randomly chosen from them. In the next iteration, the unexplored region of the new 

seed can be searched for further improvement. Therefore, these two mechanisms, the pairwise 

interchange and the escape from a local optimum, comprise the basic structure of the algorithm 

in the improvement stage. The modified neighborhood search algorithm is explained in detail in 

the rest of this section. 

Algorithm of Modified Neighborhood Search 

Notations: 

B: the current best sequence. 

MS(B): the makespan of the sequence B. 

MS(S): the makespan of the sequence S. 

MS(S’): the makespan of the sequence S’. 

R: the set containing the sequences with identical makespan as the seed. 

Counter: a counter to record the number of iterations that has been performed. 

 

Step 1. Let the sequence obtained from the constructed stage be the initial seed S. 
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Step 2. Initialize MS(B) as a very large value, and perform adjacent pairwise interchange  i = 1. 

 Step 2.1. Generate S’ by swapping the positions of job i and job i+1 in S. The makespan 

can be obtained as the following formulation. 

  MS(S’) = 
3

[ 1] [ 2] [ ] [ 1] [ 2] [ 1]( ) max{ , } max{ , }
i

j j j i i ij i
MS S p u l p u l



    
     

                  [ 1] [ 1] [ ] [ ] [ 1] [ 2] [ 2] [ ] [ 3]max{ , } max{ , } max{ , }i i i i i i i i ip u l p u l p u l            

  where [ 1] [ 2] [0] [ 1] [ 1] [0] 0n n nl l p p u u         . 

 Step 2.2. If MS(S’) < MS(B), then B S’ and MS(B) = MS(S’).  

 Step 2.3. If MS(S’) = MS(S), then 'R R S  .  

 Step 2.4. i = i+1 and go to Step 2.1 until 1i n  . 

Step 3. If MS(B) < MS(S) then SB, R  , 1Counter  , and go to Step 2. Otherwise go to 

step 4. 

Step 4. Initialize MS(B) as a very large value, and perform pairwise interchange from i = 1. 

 Step 4.1. Generate S’ by swapping the job positions of job i and job j where   2 j i  in 

S, and the makespan can be obtained as the following formulation. 

 If j = i+2, the makespan can be calculated as below: 

 MS(S’) = 
4

[ 1] [ 2] [ ]( ) max{ , }
i

j j jj i
MS S p u l



 
 

 

  [ 1] [ 2] [ ] [ ] [ 1] [ 1] [ 1] [ ] [ ]max{ , } max{ , } max{ , }i i j j i i i j ip u l p u l p u l         
 

  [ ] [ 1] [ 1] [ 1] [ ] [ 2]max{ , } max{ , }i j j j i jp u l p u l      
 

  
where [ 1] [ 2] [0] [ 1] [ 1] [0] 0n n nl l p p u u         . 

 Else 

 MS(S’) = 
2 2

[ 1] [ 2] [ ] [ 1] [ 2] [ ]( ) max{ , } max{ , }
i j

k k k k k kk i k j
MS S p u l p u l

 

    
      
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[ 1] [ 2] [ ] [ ] [ 1] [ 1] [ 1] [ ] [ 2]max{ , } max{ , } max{ , }i i j j i i i j ip u l p u l p u l          
 

[ 1] [ 2] [ ] [ ] [ 1] [ 1] [ 1] [ ] [ 2]max{ , } max{ , } max{ , }j j i i j j j i jp u l p u l p u l            

where [ 1] [ 2] [0] [ 1] [ 1] [0] 0n n nl l p p u u         . 

 Step 4.2. If MS(S’) < MS(B), then B S’ , MS(B) = MS(S’) . 

 Step 4.3. If MS(S’) = MS(S), then 'R R S  .  

 Step 4.4. j = j+1 and go to Step 4.1 until j = n. 

Step 5. If MS(B) < MS(S), then SB, R  , 1Counter  , and go to Step 2. Otherwise i = i+1 

and go to step 4 until 2i n  . 

Step 6. If Counter < 10000, then randomly select a sequence from R as a new seed S. R  ,

1Counter Counter  , and go to Step 2. Otherwise go to step 7. 

Step 7. Output the final sequence and the makespan. 

 

Starting the neighborhood search requires an initial sequence as seed S. This seed is 

generated from the algorithm in the constructive stage. First, a series of adjacent pairwise 

interchanges is performed on the seed to generate a list of new sequences. The adjacent pairwise 

interchange is to swap the positions of two adjacent jobs in a sequence. The interchange starts 

from the first job in a sequence and continues until the last job. After swapping the positions of 

the first two jobs, a new sequence S’ is generated, and the makespan MS(S’) of the sequence is 

computed.  

 

A second new sequence is generated by exchanging the positions of the second and third 

jobs. If the makespan of the second sequence is smaller than the makespan of the first one, the 

second sequence will serve as the current best sequence. The procedure will be repeated until the 
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1thn  sequence is generated and compared with the current best sequence. Hence, the current 

best sequence is the one among the seed’s neighbors with the smallest makespan. The current 

best sequence will become a new seed for the next iteration. 

 

If no better sequence could be obtained, another pairwise interchange mechanism will be 

applied. This mechanism will swap the job in position i and the job in position j where i is from 1 

to 2n , and j is from i+2 to n. The procedure is similar to the procedure of the adjacent pairwise 

interchange. When i is equal to 1, for example, 2n sequences are generated and the sequence 

with the minimum makespan will serve as a seed for next iteration. If no better sequence is 

obtained, then i increases by 1 and 1n i  sequences are generated. The procedure isn’t 

terminated until either a better solution is found or 1i n  . The total number of possible 

solutions in the neighborhood region of the seed explored is 
( 1)

2

n n
. 

 

If no sequence with an improved makespan can be obtained after performing these two 

interchange schemes, the current seed could be considered as a local optimum in terms of the 

scheme of the pairwise interchange. Therefore, a remedial method should be adopted to increase 

the diversification of the search algorithm and avoid the solution trapping in a local optimum. 

The method incorporated in the algorithm of the improvement stage is to randomly select a 

sequence which has the identical makespan as the current solution as a new seed. Then the 

neighborhood search is applied to the new seed to search a better sequence. There is a counter to 

record the number of the random selections is performed. However, once a neighbor sequence 

with a better makespan is obtained, the counter is reset to 1. The procedure of random selection 

is executed repeatedly until the counter reaches a predefined value (i.e., 10000). In this 
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condition, the whole improvement stage is terminated, and the current sequence and the 

makespan are reported.  

4.6 Computational Results 

In order to evaluate the performance of the proposed heuristic algorithms, a series of 

experiments is conducted. The solutions generated by the two developed algorithms are 

compared with the optimal solutions obtained by the dynamic programming algorithm in Section 

4.4. Since no sample problems have been found in the literature and no real data from the 

machining center is available, all of the testing data are randomly created in this research. 

 

In order to assure the robustness of the experiments, three testing scenarios are 

performed: (1) the expected value of processing times is equal to the expected value of the sum 

of loading and unloading times, (2) the expected value of processing times is greater than the 

expected value of the sum of loading and unloading times, and (3) the expected value of the sum 

of loading and unloading times is greater than the expected value of processing times. Typically, 

the operation of loading (i.e., loading jobs and adjust fixtures) is more complicated than the 

operation of unloading. Therefore, the expected value of loading times is set to be larger than the 

expected value of unloading times. In addition, for each case the small, medium and large size 

problems are also considered. The makespan values and CPU times are recorded for all 

experiments. The rules to generate the testing data are summarized in Table 4.5. 
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Table 4.5: Experimental design and data generating rules for 1 max| , |F synmv re LU C  

 Small size Medium size Large size 

Number of jobs (n) 10/15 19 40 

Scenario I (7, 11, 3) (lj, pj, uj) = (U(1,7), U(1, 11), U(1, 3)) 

Scenario II (7, 15, 3) (lj, pj, uj) = (U(1,7), U(1, 15), U(1, 3)) 

Scenario III (10, 11, 4) (lj, pj, uj) = (U(1,10), U(1, 11), U(1, 4)) 

*U denotes the discrete distribution and all operation times are integer. 

 

Two constructive algorithms, CAS and CAI, are developed and each of them is integrated 

with the modified neighborhood search algorithm as one two-phase algorithm. Thus, two two-

phase algorithms are implemented and they are named as CAS_M and CAI_M, respectively. 

These two heuristic algorithms are coded by using Borland C++ 5.5 as well as the dynamic 

programming algorithm. Ten runs are executed for each scenario. These tests are run on a 

Pentium 1.40GHz PC with 1 GB RAM. For small-size problems, 10 and 15 jobs are tested. 

According to the computational analysis of the dynamic programming algorithm in Section 4.4, 

the maximum number of jobs in the problem that can be solved optimally by the dynamic 

programming algorithm is 19, due to the restriction of RAM size. Even increasing the memory 

size or the virtual memory size can’t address the issue. That is the reason that the number of jobs 

in the medium size is set to 19. 

Results 

There are three scenarios in the four different size problems and 10 runs are executed for 

each case. Hence, 120 instances are tested for these two proposed heuristics. For the small and 

medium size problems, the optimal solutions can be obtained. In a large-size problem, however, 
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it is impractical to obtain an optimal solution because the problem is strongly NP-hard. As a 

result, only a lower bound value is derived from Theorem 4.3 as a reference value to be 

compared with the solution obtained by heuristic algorithms. The average makespan on 10 runs 

for each case is summarized in Table 4.6. In addition, the percentage of the makespan generated 

by heuristics from the optimum and lower bound is measured by the relative error. Table 4.7 

illustrates the average relative error from the optimum and lower bound. 

 

Table 4.6. Summary of the average makespans obtained by the DP, heuristics, and LB 

Scenario n DP CAS_M CAI_M LB 

Optimum Time S1 S2 Time S1 S2 Time 

I 

(7, 11, 3) 

10 68.9 0.06 74.4 69.3 0.08 71.1 69.5 0.08 68.2 

15 95.1 4.39 103.3 95.7 0.21 98.3 95.8 0.20 93.1 

19 121.8 344.8 136.0 122.6 0.26 126.0 123.1 0.29 119.6 

40 – – 280.7 253.2 0.92 261.3 252.7 1.12 247.1 

II 

(7, 15, 3) 

10 82.2 0.06 86.8 82.4 0.08 83.4 82.6 0.08 80.7 

15 131.3 4.37 137.6 131.5 0.20 134.1 131.5 0.21 129.4 

19 163.1 356.1 171.4 163.2 0.26 165.5 163.4 0.25 160.3 

40 – – 333.1 314.7 1.03 321.7 314.8 1.02 310.4 

III 

(10, 11, 4) 

10 80.2 0.07 85.2 80.9 0.09 81.8 80.9 0.08 79.5 

15 124.0 4.41 131.8 124.6 0.21 126.6 124.4 0.20 123.5 

19 155.2 354.4 162.0 155.6 0.27 157.6 155.8 0.26 155.2 

40 – – 335.9 323.0 0.86 323.2 323.0 0.83 322.1 

(S1: the constructive stage; S2: the improvement stage) 
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Table 4.7: Summary of average relative errors from optimum and LB 

 

Scenario 

n

n 

RE from optimum (%) RE from LB (%) 

CAS_M CAI_M CAS_M CAI_M 

S1 S2 S1 S2 S1 S2 S1 S2 

I 

(7, 11, 3) 

10 8.12 0.64 3.30 0.97 9.27 1.72 4.41 2.05 

15 8.68 0.63 3.33 0.74 11.02 2.79 5.55 2.90 

19 11.73 0.66 3.51 1.09 13.89 2.56 5.48 3.00 

40 – – – – 13.82 2.50 5.80 2.29 

II 

(7, 15, 3) 

10 5.73 0.25 1.49 0.48 7.75 2.17 3.44 2.41 

15 5.10 0.18 2.25 0.17 6.88 1.85 3.98 1.85 

19 5.37 0.09 1.65 0.24 7.63 2.20 3.83 2.37 

40 – – – – 7.45 1.43 3.71 1.46 

III 

(10, 11, 4) 

10 6.17 0.93 2.07 0.89 7.19 1.91 3.09 1.86 

15 6.38 0.53 2.18 0.35 6.86 0.99 2.65 0.81 

19 4.51 0.28 1.62 0.41 4.51 0.28 1.62 0.41 

40 – – – – 4.29 0.29 0.36 0.29 

 

 For the small-size problems, optimal solutions can be obtained by the dynamic 

programming algorithm within 0.07 and 4.4 seconds for 10-job and 15-job cases, respectively. 

The execution times of these two heuristic algorithms are less than 0.2 seconds for all runs. The 

average relative errors from the optimal makespans are less than 1% for both CAS_M and 

CAI_M. However, the relative error for CAS in the constructive stage is up to 8.68% which is 

almost 3 times more than CAI.  

 

 When the number of jobs increases to 19, it requires 350 seconds for the dynamic 

programming algorithm to solve the problem on average. However, these two heuristics only 

require 0.3 seconds to obtain a solution, which are faster than the dynamic programming 

algorithm. Moreover, the relative errors from the optimal makespan are less than 1% for all 

scenarios, especially in the case of Scenario II and III.  
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For the large-size problems, because optimal solutions are unlikely to be obtained, the 

makespans generated by the heuristic algorithms are compared with the lower bound values. By 

observing the results in the small and medium size problems, the relative errors for the two 

heuristic algorithms from the lower bounds are within 3%. Hence, the lower bound provides a 

good reference compared with the optimal solution while the optimal solution is not available. In 

the worst case, the average relative errors from the lower bounds for CAS_M and CAI_M are 

2.5% and 2.29%, respectively. This implies that the average relative error from the optimal 

makespan will be less than 2.5%. In addition, the CPU times required by these two algorithms 

are around 1 second. Hence, the time constraint is not an issue for executing the proposed 

algorithms. 

Conclusions 

 Through these testing scenarios, the relative errors of the makespans obtained by these 

two proposed algorithms (CAS_M and CAI_M) compared with the optimal solutions or lower 

bound values are within 3% on average, with the worse case being 5%. Moreover, optimal 

sequences can be found in most cases when processing times are greater or less than the sum of 

the loading and unloading times, especially when the number of jobs is large. With respect to the 

constructive stage, solutions constructed by CAI are much better than those by CAS. In addition, 

the modified neighborhood search algorithm indeed provides significant improvements on the 

initial sequence. Regarding the computational effort, even for the large-sized problem, the 

average CPU time required by the proposed algorithms is no more than 2 seconds. Overall, 

because both of the proposed algorithms determine optimal or near-optimal solutions rapidly, we 
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can conclude that the proposed two-phase heuristics are very suitable for solving the scheduling 

problem of a T-line machining center with one CNC machine. 

 

 Furthermore, the lower bound derived from Theorem 4.3 is a tight bound for the optimal 

solution, and provides an insightful reference when the optimum is unavailable. Observing the 

results of scenario II in the large-size problems, when the summation of processing times (

1

n

jj
p

 ) dominates the summation of loading and unloading time (
1
( )

n

j jj
l u


 ), the lower 

bound value (
11,..., 1,...,

min min
n

i j iji n i n
l p u

 
  ) is closer to the optimal makespan. On the other hand, in 

the scenario III, if 
1
( )

n

j jj
l u


 is much greater than 

1

n

jj
p

 , then the difference between the 

lower bound 
1

 ( )
n

j jj
l u


  and the optimal value becomes smaller. 

4.7 Concluding Summary 

 In summary, the scheduling problem in a one-machine T-line machining center has been 

studied and several contributions have been presented in this chapter. First, the complexity of 

problem max| , |mF synmv re LU C
 
is shown to be strongly NP-hard even with only one machine. 

For a special case, a polynomial-time algorithm which integrates the Gilmore-Gomory algorithm 

is proposed to solve the problem with constant loading time or unloading time (

1 max| , ,  or |j jF synmv re LU l c u c C   ). Second, a dynamic programming algorithm is 

formulated to effectively solve the problem in a small or medium scale. Third, two two-phase 

heuristic algorithms are proposed to obtain an optimal or near-optimal makespan in a reasonable 

CPU time. Regarding the constructive phase, two heuristics are developed: CAS and CAI. A 
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modified neighborhood search is suggested for the improvement phase. Moreover, in order to 

evaluate the performance of the algorithms, a lower bound value is derived. 

 

 The experimental results show that these two-phase heuristic algorithms not only 

generate the makespans, which are averagely within 1% from the optimal values or 3% from the 

lower bounds, but also obtain solutions in a very short time. An extension to increase the number 

of machines in the machining center to two will be further investigated in Chapter 5.  

 



 

Chapter 5 

 

Two-machine Flow Shop with Synchronous Material Movement 

5.1 Introduction 

In Chapter 4, a scheduling problem with application to a T-line machining center with 

one CNC machine has been explored and discussed. This scheduling problem with makespan 

objective has been shown to be NP-hard in the strong sense. In this chapter, an extension of the 

T-line machining center problem with two CNC machines is considered. In Chapter 4, Figure 4.2 

shows an example of this manufacturing setting with one L/U station, two CNC machine stations 

and a rotary table with three pallets that simultaneously moves jobs between stations in a 

synchronized manner. In this machining center, a job is loaded at the L/U station, processed by 

these two CNC machines sequentially, and finally unloaded from the machining center at the 

L/U station. Similar to the problem with one CNC machine, the scheduling problem of 

minimizing the makespan with two CNC machines can be presented in a three-field notation as 

2 max| , |F synmv re LU C . 

 

The problem that is analyzed in this chapter consists of n jobs that have to be processed 

by the machining center. The loading and unloading times for job j are denoted as lj and uj, and 

the processing times on the first CNC machine (CNC1) and on the second CNC machine (CNC2) 

are denoted as pj1 and pj2, respectively. A time period between two successive rotations of the 

rotary table is defined as a cycle time denoted as Ci where 1, , 3i n  . Given a job sequence 
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J[1], J[2], …, J[n], each cycle time can be represented as follows where the notation J[i]  represents 

the job is sequenced in position i:  

 C1 = l[1]; C2 = max{p[1]1, l[2]}; C3 = max{p[2]1, p[1]2, l[3]}, (5.1) 

 Ci = max{p[i–1]1, p[i–2]2, l[i] + u[i-3]}, i = 4,…, n,  (5.2) 

 Cn+1 = max{p[n]1, p[n–1]2, u[n–2]}; Cn+2 = max{p[n]2, u[n–1]}; Cn+3 = u[n].  (5.3) 

where l[i], p[i]1, p[i]2 and u[i] represent the loading time, processing time on CNC1, 

processing time on CNC2 and unloading time of the job sequenced in position i, 

respectively. 

 

 In the first three cycles, there are no unloading operations required. Similarly, there are 

no loading operations performed in the last three cycles. The time duration of each cycle is equal 

to the maximum time required among these three stations. Figure 5.1 illustrates a schedule of 

jobs at each station. The problem is to determine a sequence which minimizes the summation of 

these cycles (
3

1

n

ii
C



 ). 

 

 
Figure 5.1. Schedule of jobs at each station in a two-CNC T-line machining center 
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…...
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Time
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 In Section 5.2, the dynamic programming algorithm proposed in Chapter 4 is extended to 

this problem and a computational analysis for the algorithm is presented. Section 5.3 proposes 

two constructive heuristics combined with the modified neighborhood search to solve the 

problem in a large scale. The experimental designs and results for evaluating the heuristic 

algorithms are illustrated in Section 5.4. Finally, a generalized dynamic programming 

formulation and its computational analysis are presented for the problem with m machines as 

well as a lower bound for the problem. 

5.2 Dynamic Programming Algorithm for 2 max| , |F synmv re LU C  

A forward dynamic programming procedure is formulated to find the minimum 

makespan. Given n jobs which have to be processed by the machining center and these jobs are 

numbered from 1 to n. Let {1,2, , }N n  be a set of jobs and let S be a subset of N containing 

the jobs that have already been processed in the machining center. Let g and h represent the jobs 

concurrently being processed on the CNC2 and CNC1 respectively, and j be the job being loaded 

at the L/U station. Then the dynamic programming formulation is as follows: 

DP Algorithm for 2 max| , |F synmv re LU C  

 Optimal value function (OVF): fi(S, g, h, j) = minimum completion time for processing job g 

on CNC2, processing job h on CNC1, unloading the last job in S and loading job j at the L/U 

station, given that the i jobs in S have already been completed.  (5.4) 

 Optimal policy function (OPF): pi(S, g, h, j) = last job unloaded at the L/U station. 

Equivalently, this is also the last job added to set S.  (5.5) 
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 Recurrence relation (RR): 

1 1 2( , , , ) min{ ( \{ }, , , ) max{ , , }};  1,..., 3i i h g k j
k S

f S g h j f S k k g h p p u l i n


     ; 

{ , , }g h j N ; \{ , , }S N g h j , | S | =  i.  (5.6) 

 Boundary condition (BC): 

0 1 1 2( , , , ) max{ , } max{ , , };  { , , }g g h h g jf g h j l p l p p l g h j N     . (5.7) 

 Answer (ANS): 2
{ , }
min { ( , , , )}n
g h N

f S g h


   (5.8) 

where 
2 3 1 2 2( , , , ) min{ ( \{ }, , , ) max{ , , }} max{ , }n n h g k h g h

k S
f S g h f S k k g h p p u p u u 


     ; 

{ , }g h N ; \{ , }S N g h , | S | = n – 2.  (5.9) 

Computational Effort Analysis 

The computational effort of the dynamic programming algorithm is evaluated by the 

number of operations performed as “Addition” and “Comparison.” The number of operations 

required for each stage of the algorithm is summarized as shown in Table 5.1. 

 

Table 5.1. Number of operations required for each stage 

Stage Number of combinations Addition Comparison 

Boundary condition ( i = 0 ) ( 1)( 2)n n n   2 3 

Recurrence relation (1 3i n   ) 
3( 1)( 2) n

in n n C    2i 2i + (i – 1) 

Answer  
2nf   ( i = n – 2 ) ( 1)n n  n 2( 2) ( 3) 1n n      

Minimum makespan 1 0 ( 1) 1n n   

 

In the boundary condition, there are n(n – 1)(n – 2) combinations for job g, h, and j, and 

each combination requires two additions and three comparisons to obtain the value for f0. In the 

recurrence relation, for each i, there are n(n – 1)(n – 2) choices for job g, h, and j, and 3n

iC   
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combinations of jobs in set S. Each combination of (S, g, h, j) has i candidates in set S for k, and 

to obtain the minimum value among these i candidates requires extra i – 1 comparisons. In the 

answer formulation, there are n(n – 1) different (g, h) pairs for 2nf  , and each pair has n – 2 

candidates for k. Moreover, among these n – 2 candidates n – 3 comparisons are performed to 

acquire the minimum value for each 2nf  . To obtain the minimum makespan among these 2nf   

needs n(n – 1) –1 comparisons. Therefore, the total number of additions required is:  

=
3

3

1

2 ( 1)( 2)(1 ) ( 1)( )
n

n

i

i

n n n i C n n n






       

=
4 4 2

0
2 ( 1)( 2)(1 ( 3) ) ( 1)

n n

jj
n n n n C n n

 


       

=
4 32 ( 1)( 2)( 3)2 ( 1)(3 4) ( 1)( 2)( 3)2n nn n n n n n n n n n n           . 

The total number of comparisons required is: 

=
3 33 3

1 1
( 1)( 2)(3 ) 6 ( 1)( 2) ( 1) 1

n nn n

i ii i
n n n i C C n n n n n

  

 
            

=
4 3( 1)( 2)(3( 3)2 2 1) 6 ( 1)( 2) ( 1) 1n nn n n n n n n n n             

=
4 33 ( 1)( 2)( 3)2 ( 1)( 2)(7 2 ) ( 1) 1n nn n n n n n n n n            

43 ( 1)( 2)( 3)2nn n n n     . 

 

 Thus, the computational effort for this dynamic programming algorithm is 
4 3( 2 )nO n 

. 

Consider an example for this machining center with 15 jobs. The total number of operations 

required for the algorithm is approximately 335 million. Furthermore, to compute a value of the 

optimal value function fi, it is necessary to know and store several values of the function fi–1 in 

the previous stage. For example, in order to calculate the values of f10 in stage 10, we need to 

compute 600,600 values of f9 in the prior stage. Therefore, the storage spaces for the algorithm 
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would become a practical restriction for solving the problem in a large scale. Hence, it is more 

feasible to develop a heuristic algorithm to solve the problem in a large size. 

A Numerical Example 

A numerical example is presented to illustrate the proposed dynamic programming 

algorithm. In this example, five jobs need to be processed in a T-line machining center with two 

CNC machines, and one L/U station. Table 5.2 shows the loading, processing, and unloading 

times for these jobs. 

 

Table 5.2. Job data for a two-CNC T-line machining center 

Job lj pj1 pj2 uj 

1 4 7 5 4 

2 3 9 8 3 

3 5 3 10 3 

4 2 5 6 1 

5 2 7 4 5 

 

Since the process used to calculate all the values of the optimal value function is similar, 

only the calculations directly related to obtaining the optimal solution are shown below. 

 Boundary conditions: 

0 2 21 3 31 22 5( ,2,3,5) max{ , } max{ , , } 3 max{9,5} max{3,8,2} 20.f l p l p p l         

0 3 31 2 21 32 5( ,3,2,5) max{ , } max{ , , } 5 max{3,3} max{9,10,3} 18.f l p l p p l         

0 2 21 5 51 22 3( ,2,5,3) max{ , } max{ , , } 3 max{9,2} max{7,8,5} 20.f l p l p p l         

0 5 51 2 21 52 3( ,5,2,3) max{ , } max{ , , } 2 max{7,3} max{9,4,5} 18.f l p l p p l         
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0 3 31 5 51 32 2( ,3,5,2) max{ , } max{ , , } 5 max{3,2} max{7,10,3} 18.f l p l p p l         

0 5 51 3 31 52 2( ,5,3,2) max{ , } max{ , , } 2 max{7,5} max{3,4,3} 13.f l p l p p l         

 i =1: 

1 0 51 32 2 1(2,3,5,1) ( ,2,3,5) max{ , , } 20 max{7,10,3 4} 30.f f p p u l         

1 0 51 22 3 1(3,2,5,1) ( ,3,2,5) max{ , , } 18 max{7,8,3 4} 26.f f p p u l         

1 0 31 52 2 1(2,5,3,1) ( ,2,5,3) max{ , , } 20 max{3,4,3 4} 27.f f p p u l         

1 0 31 22 5 1(5,2,3,1) ( ,5,2,3) max{ , , } 18 max{3,8,5 4} 27.f f p p u l         

1 0 21 52 3 1(3,5,2,1) ( ,3,5,2) max{ , , } 18 max{9,4,3 4} 27.f f p p u l         

1 0 21 32 5 1(5,3,2,1) ( ,5,3,2) max{ , , } 13 max{9,10,5 4} 23.f f p p u l         

 i =2: 

2 1 11 52 3 4 1 11 52 2 4({2,3},5,1,4) min{ (2,3,5,1) max{ , , },   (3,2,5,1) max{ , , }}f f p p u l f p p u l    

 min{30 max{7,4,3 2},  26 max{7,4,3 2}} 33      ; 2 ({2,3},5,1,4) 2.p   

2 1 11 32 5 4 1 11 32 2 4({2,5},3,1,4) min{ (2,5,3,1) max{ , , },   (5,2,3,1) max{ , , }}f f p p u l f p p u l    

 min{27 max{7,10,5 2},  27 max{7,10,3 2}} 37      ; 2 ({2,5},3,1,4) 2 or 5.p   

2 1 11 22 5 4 1 11 22 3 4({3,5},2,1,4) min{ (3,5,2,1) max{ , , },   (5,3,2,1) max{ , , }}f f p p u l f p p u l    

 min{27 max{7,8,5 2},  23 max{7,8,3 2}} 31      ; 2 ({3,5},2,1,4) 3.p   

 Answer: 

3 3 3min{ ({3,4,5},1,2, ),  ({2,4,5},1,3, ), ,  ({1,2,3},5,4, )} min{49,49, ,45} 43f f f       

3 2 41 12 5

2 41 12 3

2

where ({2,3,5},1,4, ) min{ ({2,3},5,1,4) max{ , , },

                                                   ({2,5},3,1,4) max{ , , },

                                                   ({3,

f f p p u

f p p u

f

  



41 12 2 42 1 45},2,1,4) max{ , , }} max{ , }p p u p u u  

min{33 max{5,5,5},37 max{5,5,3},31 max{5,5,3}} max{6,4} 1 43       ; 

3({2,3,5},1,4, ) 2.p    
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Hence, the minimum makespan of the problem is 43 and the optimal job sequence is

5 3 2 1 4    . 

5.3 Heuristic Algorithm for 2 max| , |F synmv re LU C  

 Since the three-station flow shop scheduling problem is NP-hard, it is unlikely that a 

polynomial-time algorithm can be developed to find an optimal solution. The computational 

results in Chapter 4 show that the proposed two-phase heuristic algorithm performs very well for 

the scheduling problem with one CNC machine. As a result, the two-phase algorithm is extended 

to solve the problem with two CNC machines. 

 

 The proposed algorithm also consists of two stages: the constructive stage and the 

improvement stage. In the constructive stage, two constructive heuristics are developed. One 

forms an initial sequence by applying the Gilmore-Gomory algorithm (Gilmore and Gomory 

1964) to the problem while neglecting the loading and unloading times. The other forms an 

initial sequence by inserting a job in the position of a given sequence that yields the minimum 

makespan. In the improvement stage, a similar algorithm to the modified neighborhood search 

algorithm that is proposed in Chapter 4 is employed. Furthermore, a formulation to derive a 

lower bound value is also presented. 

Constructive Algorithm – Gilmore-Gomory Algorithm (CAGG) 

 When the loading and unloading times are dominated by the processing times, we only 

have to consider the processing times on CNC1 and CNC2. In this case, the problem can be 
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regarded as a two-machine flow shop problem with blocking, which can be solved optimally by 

the Gilmore-Gomory algorithm. As a result, the sequence generated by the Gilmore-Gomory 

algorithm will be the initial seed for the improvement stage while neglecting the loading and 

unloading times. The makespan of the initial seed, including the loading and unloading times, 

will be calculated based on this sequence.  

 

Furthermore, a lower bound value can be derived based on the assumption of neglecting 

the loading and unloading times.  In Figure 5.1, if the cycle time of cycle i ( 2, , 2i n  ) is 

identified by the processing time of CNC1 or CNC2, the minimum value of the summation of 

these cycles can be obtained by applying the Gilmore-Gomory algorithm to the problem which 

only considers the processing times on CNC1 or CNC2. This minimum value plus the cycle times 

of the first cycle and the last cycle, which are equivalent to the smallest loading and unloading 

times, will be a lower bound to the original problem. 

 

Lemma 5.1. The value, 
1,..., 1,...,

min mini GG i
i n i n

l MS u
 

  , is a lower bound for the makespan problem in a 

T-line machining center with two CNC machines, where GGMS  is the optimal makespan 

obtained by the Gilmore-Gomory algorithm while neglecting loading and unloading times. 

Proof: According to Equations (5.1) to (5.3), the makespan of a given sequence, say σ, is 

represented as MSσ  = [1]l + [1]1 [2]max{ ,  }p l + [2]1 [1]2 [3]max{ , , }p p l + [3]1 [2]2 [1] [4]max{ , , }p p u l + … +

[ 1]1 [ 2]2 [ 3] [ ]max{ , , }n n n np p u l    + [ ]1 [ 1]2 [ 2]max{ ,  , }n n np p u  + [ ]2 [ 1]max{ ,  }n np u  + [ ]nu . When the 

loading and unloading times are neglected from cycles 2 to n+2, cycle times of these cycles only 
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considering processing times are the lower bounds to original cycle times (e.g.,
 [1]1 [2]max{ ,  }p l

[1]1p , [2]1 [1]2 [3]max{ , , }p p l [2]1 [1]2max{ , }p p  and so on). Thus, 

 MSσ [1] [1]1 [2]1 [1]2 [ ]1 [ 1]2 [ ]2 [ ]max{ , } max{ , }n n n nl p p p p p p u       

         [1]l + [1]1p +
1

[ 1]1 [ ]21
max{ , }

n

i ii
p p



 + [ ]2np + [ ].nu
 

In addition,
1,...,

min i
i n

l


and 
1,...,

min i
i n

u


are the lower bounds for [1]l  and [ ]nu , respectively, and GGMS
 
is the 

lower bound to [1]1p +
1

[ 1]1 [ ]21
max{ , }

n

i ii
p p



 + [ ]2np . Therefore, 

 
1,..., 1,...,

min mini GG i
i n i n

MS l MS u
 

   . □ 

 

When the loading and unloading times on the L/U station are dominated by the 

processing times on CNC machines, the makespan yielded by the Gilmore-Gomory algorithm 

will approximate to the optimal makespan. As a result, apply the Gilmore-Gomory algorithm to 

generate the initial seed for the improvement stage is one of constructive heuristics proposed in 

this research. The heuristic algorithm is named CAGG and its procedure is described below. 

CAGG Algorithm  

Step 1. Apply the Gilmore-Gomory algorithm to the problem which only considers 1 2 and j jp p . 

Assume the optimal sequence obtained by the Gilmore-Gomory algorithm is G . 

Step 2. Let G  be the initial sequence for the improvement algorithm. Calculate the makespan of 

sequence G  including the loading and unloading times. 
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Constructive Algorithm – Greedy Insertion (CAGI) 

 The computational results in Chapter 4 show that the insertion heuristic (CAI) yields a 

better makespan value than the selection heuristic (CAS). The makespan of the initial sequence 

constructed by CAI is less than 5.8% from the lower bound. Therefore, the insertion heuristic is 

also adopted as a constructive algorithm for the two-machine case. The insertion heuristic 

adopted in this chapter is called Greedy Insertion (CAGI) because only the combination of a job 

and an inserted position which yields the minimum makespan will be selected. When one job has 

to be added to the current sequence, every unscheduled job will be inserted in every position of 

the current sequence and the combination of the job and the position with the minimum 

makespan is chosen.  

 

 For example, there are 10 jobs in a problem and 4 jobs have formed a sequence. When 

one job is added to the current sequence, each unscheduled job (6 jobs) has to be inserted in 

every position of the current sequence (there are 5 positions). Thus, each unscheduled job will 

have five makespans corresponding to these positions. Thirty makespans will be generated and 

the one with the minimum value will be chosen. Therefore, given n is the number of jobs, the 

computational effort of the CAGI is 
3( )O n which can be calculated as follows: 

 

2

1 1 1

( 1)( 2)
( 1) ( 1)

6

n n n

j j j

n n n
j n j n j j

  

 
       

.
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CAGI Algorithm  

 N is a set containing all jobs; N = {1, 2, …, n}. S is a set containing jobs which have been 

sequenced, and R is a set containing jobs which have not been sequenced. MS is a variable to 

record the current makespan. 

Step 1. Let R = N and  S = ∅. 

Step 2. Select the job with the minimum makespan which is 1 2
1, ,

arg min { }j j j j
j n

k l p p u


   


. 

Let S = {𝑘} and R = N\{k}. 

Step 3. For every job j in R, insert it in front of job k and behind job k to obtain two makespans 

MSfj and MSbj, respectively. 

 MS = min{ , }f j b j
j R

MS MS


, assume the inserted job with the minimum makespan is g and 

MS is equal to MSfg. Then job g is sequenced before job k and S = {g, k}. Otherwise, job g is 

sequenced after job k and S = {k, g}. R=R\{k}. 

Step 4. For every job j in R, insert it in every position in the current sequence to obtain |S|+1 

makespans. The makespan of inserting job j in position i in the current sequence is represented as 

i jMS  where 1, ,| | 1i S  . 

 Step 4.1. [ 1]1 [ 2]2 [ 3] 2 [ 1]2 [ 2] [ ]max{ , , } max{ , , }ij i i i j j i i iMS MS p p u l p p u l          

  [ ]1 2 [ 1] [ 1] [ 1]1 [ ]2 [ 2]max{ , , } max{ , , }i j i i i i j ip p u l p p u l      

 

  

[ 1]1 [ 2]2 [ 3] [ ] [ ]1 [ 1]2 [ 2] [ 1]max{ , , } max{ , , }i i i i i i i ip p u l p p u l        

 

  

[ 1]1 [ ]2 [ 1] [ 2] [ 2]1 [ 1]2 [ ] [ 3]max{ , , } max{ , , }i i i i i i i ip p u l p p u l        
 

  where [| | 1] [| | 2] [| | 3] [0]1 [| | 1]1 [| | 2]1 [ 1]2 [0]2  S S S S Sl l l p p p p p           

 

  [| | 1]2 [ 2] [ 1] [0] 0Sp u u u       .
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 Step 4.2. Select job j in position i with the minimum makespan, and insert job j in that 

position. MS = 
, 1, ,| | 1
min { }i j

j R i S
MS

  
 and let { }S S j  , and \{ }R R j . If R  , go to 

step 4. Otherwise, go to step 5. 

Step 5. Output the job sequence and the makespan. 

A Numerical Example 

A numerical example is presented to demonstrate the procedure of CAGI. Assume there 

are five jobs. Table 5.3 shows the job data for the example. 

 

Table 5.3: Job data for the example of CAGI 

Job lj pj1 pj2 uj 

1 4 7 5 4 

2 3 9 8 3 

3 5 3 10 3 

4 2 5 6 1 

5 2 7 4 5 

 

Iteration 1: 

 Step 1. R = {1, 2, 3, 4, 5}. 

 Step 2 Job 4 is selected MS = 14. S = {4}. 

Iteration 2: 

 Step 3. R = {1, 2, 3, 5}. 

  Job 1: MS = min{23, 23} = 23. 

  Job 2: MS = min{27, 27} = 27. 

  Job 3: MS = min{25, 26} = 25. 
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  Job 5: MS = min{21, 23} = 21. 

  Job 5 is selected and is inserted in front of job 4. MS = 21 and S = {5, 4}. 

Iteration 3: 

 Step 4. R = {1, 2, 3}. 

 Step 4.1. Calculate the makespan for all jobs in R in every position of current sequence. 

  Job 1: MS = min{30, 28, 30} = 28. 

  Job 2: MS = min{32, 33, 34} = 32. 

  Job 3: MS = min{30, 30, 33} = 30. 

 Step 4.2. Job 1 is selected and is inserted in front of job 4. MS = 28 and S = {5, 1, 4}. 

Iteration 4: 

 Step 4. R = {2, 3}. 

 Step 4.1. Calculate the makespan for all jobs in R in every position of current sequence. 

  Job 2: MS = min{39, 38, 40, 44} = 38. 

  Job 3: MS = min{37, 35, 40, 45} = 35. 

 Step 4.2. Job 3 is selected and is inserted in front of job 1. MS = 28 and S = {5, 3, 1, 4}. 

Iteration 5: 

 Step 4. R = {2}. 

 Step 4.1. Calculate the makespan for all jobs in R in every position of current sequence. 

  Job 2: MS = min{49, 49, 43, 47, 49} = 43. 

 Step 4.2. Job 2 is selected and is inserted in front of job 1. MS = 28 and S = {5, 3, 2, 1, 

4}. 

 Step 5. The job sequence is 5 3 2 1 4     and the makespan is 43. (It is also optimal.) 
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Lower Bound for 2 max| , |F synmv re LU C  

 Similar to Lemma 5.1, if the cycle times from cycles 2 to n+2 are determined by the 

loading and unloading times, the summation of the loading and unloading times will provide a 

lower bound to an optimal makespan. This property is shown in the following lemma.  

 

Lemma 5.2. The value, 
1
( )

n

j jj
l u


 , is a lower bound for the makespan problem in a T-line 

machining center with two CNC machines. 

Proof: According to Equations (5.1) to (5.3), the makespan of a given sequence, say σ, is 

represented as MSσ = [1]l + [1]1 [2]max{ ,  }p l + [2]1 [1]2 [3]max{ , , }p p l + [3]1 [2]2 [1] [4]max{ , , }p p u l + … +

[ 1]1 [ 2]2 [ 3] [ ]max{ , , }n n n np p u l    + [ ]1 [ 1]2 [ 2]max{ ,  , }n n np p u  + [ ]2 [ 1]max{ ,  }n np u  + [ ]nu . Neglect the 

processing times in cycles 2 to n+2. Thus,  

 [1] [2] [3] [4] [1] [ ] [ 3] [ 2] [ 1] [ ]( ) ( )n n n n nMS l l l l u l u u u u            
  

          
1
( )

n

j jj
l u


  . □ 

 

 In addition, a new lower bound which provides a tighter bound for any sequence can be 

derived from Lemma 5.1 and Lemma 5.2. 

 

Theorem 5.1. The value, 
11,..., 1,...,

max{min min ,  ( )}
n

i GG i j jji n i n
l MS u l u

 
   , is a lower bound for the 

makespan problem in a T-line machining center with two CNC machines.  

Proof: Derived from Lemmas 5.1 and 5.2 directly.  □ 
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Improvement Stage 

 According to the computational results in Section 4.6, given an initial seed, the modified 

neighborhood search algorithm improves a makespan value significantly to within 3% from its 

corresponding lower bound. Moreover, the modified neighborhood search algorithm can 

generate a sequence for a problem in one second even when the number of jobs is 40. Therefore, 

the modified neighborhood search algorithm proposed in Chapter 4 is also adopted in this 

chapter. Only Step 2.1 and Step 4.1 in the procedure of the modified neighborhood search 

algorithm in Section 4.5 should be modified due to the two CNC machines in the problem. Step 

2.1 regards the procedure of computing the new makespan after performing the adjacent pairwise 

interchange. Likewise, the formulation of obtaining the new makespan after performing the 

pairwise interchange is shown in Step 4.1. The revised procedures of these two steps are 

illustrated as below. 

 

Step 2.1. Generate S’ by swapping the positions of job i and job i+1 in S. The makespan can be 

obtained as the following formulation. 

 MS(S’) = 
4

[ 1]1 [ 2]2 [ 3] [ ] [ 1]1 [ 2]2 [ 3] [ 1]MS( ) max{ , , } max{ , , }
i

j j j j i i i ij i
S p p u l p p u l



      
     

  
    [ 1]1 [ 1]2 [ 2] [ ] [ ]1 [ 1]2 [ 1] [ 2]max{ , , } max{ , , }i i i i i i i ip p u l p p u l        

 

      [ 2]1 [ ]2 [ 1] [ 3] [ 3]1 [ 2]2 [ ] [ 4]max{ , , } max{ , , }i i i i i i i ip p u l p p u l          

 where [ 1] [ 2] [ 3] [0]1 [ 1]1 [ 2]1 [ 1]2 [0]2  n n n n nl l l p p p p p           

 

 [ 1]2 [ 2] [ 1] [0] 0np u u u       . 

Step 4.1. Generate S’ by swapping the job positions of job i and job j where   2 j i  in S. The 

makespan can be obtained as the following formulation. 
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 MS(S’) = 
3

[ 1]1 [ 2]2 [ 3] [ ]MS( ) max{ , , }
i

k k k kk i
S p p u l Q



  
  

 

    [ 1]1 [ 2]2 [ 3] [ ] [ ]1 [ 1]2 [ 2] [ 1]max{ , , } max{ , , }i i i j j i i ip p u l p p u l        
 

   [ 1]1 [ ]2 [ 1] [ 2] [ 2]1 [ 1]2 [ ] [ 3]max{ , , } max{ , , }j i j j j j i jp p u l p p u l V           

 where [ 1] [ 2] [ 3] [0]1 [ 1]1 [ 2]1 [ 1]2 [0]2  n n n n nl l l p p p p p           

 

 [ 1]2 [ 2] [ 1] [0] 0np u u u       , and Q and V are computed as follows. 

 If j = i+2  

 
3

[ 1]1 [ 2]2 [ 3] [ ]2
max{ , , }

j

k k k kk j
Q p p u l



   
  . 

 [ 1]1 [ ]2 [ 1] [ ] [ ]1 [ 1]2 [ ] [ 3]max{ , , } max{ , , }i j i i i i j iV p p u l p p u l       . 

 Else If (j = i+3)  

  

3

[ 1]1 [ 2]2 [ 3] [ ]1
max{ , , }

j

k k k kk j
Q p p u l



   
  .

 

  [ 1]1 [ ]2 [ 1] [ 2] [ 2]1 [ 1]2 [ ] [ ]max{ , , } max{ , , }i j i i i i j iV p p u l p p u l         

         [ ]1 [ 1]2 [ 2] [ 1]max{ , , }i j j jp p u l    . 

 Else  

  
3

[ 1]1 [ 2]2 [ 3] [ ]max{ , , }
j

k k k kk j
Q p p u l



  
  .

 

  [ 1]1 [ ]2 [ 1] [ 2] [ 2]1 [ 1]2 [ ] [ 3]max{ , , } max{ , , }i j i i i i j iV p p u l p p u l          

         [ 1]1 [ 2]2 [ 3] [ ] [ ]1 [ 1]2 [ 2] [ 1]max{ , , } max{ , , }j j j i i j j jp p u l p p u l         . 

5.4 Computational Results 

In order to evaluate the performance of the proposed heuristic algorithms, a series of the 

experiments is conducted. The solutions generated by the two developed algorithms are 
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compared with the optimal solutions obtained by the dynamic programming algorithm in Section 

5.2. All of the data for the experiments are randomly generated in this research. Similar to the 

experiments in Chapter 4, three different scenarios are examined with respect to the loading, 

processing and unloading times. In addition, for each scenario, three sizes of the problems are 

considered where small-size problems with 10-job and 15-job are examined. The makespan 

values and CPU times are recorded for all experiments. The experimental design and the rules to 

generate the testing data are summarized in Table 5.4. 

 

Table 5.4: Experimental design and data generating rules for 2 max| , |F synmv re LU C  

 Small size Medium size Large size 

Number of jobs (n) 10/15 17 40 

Scenario I (7, 11, 11, 3) (lj, pj1, pj2, uj) = (U(1,7), U(1, 11), U(1, 11), U(1, 3)) 

Scenario II (7, 15, 15, 3) (lj, pj1, pj2, uj) = (U(1,7), U(1, 15), U(1, 15),  U(1, 3)) 

Scenario III (10, 11, 11, 4) (lj, pj1, pj2, uj) = (U(1,10), U(1, 11), U(1, 11), U(1, 4)) 

*U denotes the discrete distribution and all operation times are integer. 

 

Two constructive algorithms, CAGG and CAGI, are developed and each of them is 

integrated with the modified neighborhood search algorithm as one two-phase algorithm. Thus, 

two two-phase algorithms are implemented and they are named as CAGG_M and CAGI_M, 

respectively. These two heuristic algorithms are implemented in Borland C++ 5.5 as well as the 

dynamic programming algorithm. Ten runs are executed for each scenario and these tests are run 

on a Pentium 1.40GHz PC with 1 GB RAM. The maximum number of jobs in the problem can 

be solved optimally by the dynamic programming algorithm is 17 even on an Intel Core 2 Duo 

1.6GHz PC with 3 GB RAM. Hence, the number of jobs in the medium-size problem is set to 17. 
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Results 

 Similar to the experiments conducted in Chapter 4, there are three scenarios with the four 

different numbers of jobs in problems. Ten runs are executed for each case. Hence, 120 instances 

are tested for these two proposed heuristics. For small and medium size problems, optimal 

solutions can be obtained by the dynamic programming algorithm presented in Section 5.2. In a 

large-size problem, however, only lower bound values derived from Theorem 5.1 will be bases 

to compare with makespans obtained by the heuristic algorithms. The average makespan on 10 

runs for each case is summarized in Table 5.5. Table 5.6 illustrates the average relative errors 

from the optimums and lower bounds. 

 

Table 5.5: Summary of the average makespans obtained by the DP, heuristics, and LB 

Scenario n DP CAGG_M CAGI_M LB 

Optimum Time S1 S2 Time S1 S2 Time 

I 

(7, 11, 11, 3) 

10 81.2 0.24 89.3 82 0.16 83 82.2 0.16 77.5 

15 105.5 30.46 118.1 107.5 0.34 110.2 107.3 0.31 101.4 

17 126.5 201.2 143.6 129.4 0.42 130.7 129.2 0.42 122.2 

40 – – 309.2 271.1 1.98 279.8 270.5 1.98 254.7 

II 

(7, 15, 15, 3) 

10 99.8 0.20 106.4 101.4 0.15 101.8 100.9 0.17 95.7 

15 142.3 30.46 154.4 145.4 0.30 147.3 144.0 0.28 138.2 

17 161.7 200.6 170.9 164.2 0.39 166.4 163.2 0.33 158.2 

40 – – 378.9 355 1.89 361.5 354.2 1.94 344.6 

III 

(10, 11, 11, 4) 

10 84.8 0.19 95.3 86.6 0.20 86.1 85.4 0.15 81.7 

15 125.4 30.54 144 128.8 0.32 130.7 128.2 0.32 122.4 

17 142 202.0 161.9 143.6 0.40 146.4 142.9 0.38 141 

40 – – 374 325.4 1.74 331.9 324.2 1.69 321.7 

(S1: the constructive stage; S2: the improvement stage) 
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Table 5.6: Summary of average relative errors from optimum and LB 

 

Scenario 

n

n 

RE from optimum (%) RE from LB (%) 

CAGG_M CAGI_M CAGG_M CAGI_M 

S1 S2 S1 S2 S1 S2 S1 S2 

I 

(7, 11, 11, 3) 

10 10.14 1.05 2.27 1.25 15.49 5.93 7.24 6.16 

15 11.98 1.92 4.45 1.73 16.60 6.11 8.76 5.91 

17 13.69 2.33 3.37 2.18 17.79 6.00 7.08 5.86 

40 – – – – 21.50 6.47 9.93 6.25 

II 

(7, 15, 15, 3) 

10 6.66 1.63 2.07 1.15 11.30 6.04 6.50 5.53 

15 8.61 2.22 3.60 1.24 11.92 5.34 6.77 4.32 

17 5.89 1.64 3.00 0.97 8.41 4.04 5.46 3.36 

40 – – – – 10.06 3.07 4.93 2.82 

III 

(10, 11, 11, 4) 

10 12.41 2.22 1.56 0.72 16.89 6.30 5.60 4.71 

15 14.95 2.73 4.26 2.26 17.96 5.39 6.98 4.91 

17 14.11 1.23 3.17 0.70 15.08 2.09 4.04 1.54 

40 – – – – 16.40 1.21 3.25 0.82 

 

 In the small-size problems, the optimal solutions can be obtained by the dynamic 

programming algorithm within 0.24 and 30.5 seconds for 10-job and 15-job cases, respectively. 

The execution time of these two heuristic algorithms is less than 0.34 seconds for all runs. In 10-

job cases, for algorithm CAGG_M, the average relative error from the optimal makespan is less 

than 1.6%; for algorithm CAGI_M, this value is less than 1%. When the number of jobs 

increases to 15, the average relative errors from optimal makespans increase to 2.3% and 1.7%, 

respectively. The relative errors from optimal values of the initial seed constructed in the 

constructive stage by CAGG are averagely better than the values obtained by CACI by five 

times. 

 

 When the number of jobs increases to 17, it requires around 200 seconds on an Intel Core 

2 Duo 1.6GHz PC with 3 GB RAM for the dynamic programming algorithm to solve the 

problem. However, these two heuristics only require 0.4 seconds to obtain a solution, which is 

significantly faster than the dynamic programming algorithm. The relative error from the optimal 
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makespan is less than 2.3% for scenario I and less than 1.6% in the cases of Scenario II and III. 

Moreover, based on the measurement of relative errors, CAGI_M is outperformed by CAGG_M 

in both constructive and improvement stages. 

 

For large-size problems, because optimal solutions are unlikely to be obtained, the 

makespans generated by the heuristic algorithms are only compared with lower bound values. By 

observing the relative errors from the lower bounds, relative errors decrease as the number of 

jobs increases in the cases of Scenario II and III. The values are less than 3% when 40n  . For 

Scenario I, the relative errors from the lower bound values remain around 6% regardless of the 

number of jobs. In the small and medium size problems, the relative errors from the optimal 

values are less than 2.7%. As a result, this may imply that the relative errors from the optimal 

makespans when 40n   are also less than 2.7%. Furthermore, the CPU times required by these 

two algorithms are around two seconds. Hence, the proposed algorithms can reach solutions 

rapidly even when the number of jobs is large. 

Conclusions 

 The relative errors of the makespans obtained by these two proposed algorithms 

CAGG_M and CAGI_M compared with the optimal solutions are on average within 2.7% and 

compared with the lower bounds are 6.5% in the worse case. Moreover, optimal sequences can 

be found in most runs in the cases of Scenario II and III, especially when the number of jobs is 

large. With respect to the constructive stage, solutions formed by CAGI are much better than 

those by CAGG. The modified neighborhood search algorithm significantly improves the 

makespan value on the initial sequence. Regarding the computational effort, the CPU time is not 
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a concern to solve a large-size problem by the proposed algorithms. Computational results in this 

section and in Section 4.6 indicate that the two-phase algorithm, which combines the insertion 

heuristic in the constructive phase and the modified neighborhood search algorithm in the 

improvement phase, is applicable to solve the minimizing makespan problem of a T-line 

machining center.  

 

 Additionally, the lower bound derived from Theorem 5.1 provides a good insight about 

the optimal makespan when the optimum is unavailable. Observing the results of Scenario II in 

the large-size problems, when most processing times on CNC machines dominate the summation 

of most pairs of loading and unloading times, a lower bound can be obtained by applying the 

Gilmore-Gomory algorithm. Conversely, in Scenario III, if the sum of the loading and unloading 

times is much greater than the summation of processing times on both of machines, then the 

lower bound, 
1

 ( )
n

j jj
l u


 , will approximate to the optimal value. 

5.5 Dynamic Programming Algorithm for max| , |mF synmv re LU C  

In this section, the proposed dynamic programming algorithm for the scheduling problem 

in a T-line machining center with two machines is generalized to a T-line machining center with 

m machines. The scheduling problem of an m-machine T-line machining center is denoted as 

max| , |mF synmv re LU C . Given n jobs which have to be processed by the machining center and 

these jobs are numbered from 1 to n. Let {1,2, , }N n  be the set of jobs and let S be a subset of 

N containing the jobs that have already been processed in the machining center. Let Ψ be a 

subset of N containing the jobs currently being processed on these m machines, and j be the job 
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being loaded at the L/U station. In addition, the first job in Ψ denoted as Ψ(1) is the job being 

processed on the m
th
 machine, the second job Ψ(2) is the job being processed on the m–1

th
 

machine, and so on. Then, the generalized dynamic programming formulation is as follows. 

DP Algorithm for max| , |mF synmv re LU C  

 Optimal value function (OVF): fi(S, Ψ, j) = minimum completion time for processing jobs in 

Ψ on machines, unloading the last job in S and loading job j at the L/U station, given that the 

i jobs in S have already been completed.  (5.10) 

 Optimal policy function (OPF): pi(S, Ψ, j) = last job unloaded at the L/U station. 

Equivalently, this is also the last job added to set S.  (5.11) 

 Recurrence relation (RR): 

( ) 2( 1) (1)
1 ( ) ( ) 1( , , ) min{ ( \{ },{ } \ , ) max{ , , , , }};

m mm
i i m m k j

k S
f S j f S k k p p p u l

 
 


        

 1,..., 1i n m   ; { , }j N  ; \{ , }S N j  , | S | = i.  (5.12) 

 Boundary condition (BC): 

( 1) ( 2) ( ) ( )0 1 21
( , , ) max{ , , , , }

i i i m i

m

mi
f j p p p l

     
     

               
( ) ( 1) (1)1 2max{ , , , , };  { , }
m m m jp p p l j N

     . (5.13) 

 Answer (ANS): min{ ( , , )}n m
N

f S


   (5.14) 

where 
( ) (1)1 ( ) ( ) 1( , , ) min{ ( \{ },{ } \ , ) max{ , , , }}
mn m n m m m m k

k S
f S f S k k p p u    


       

 

     ( ) ( 1) ( 1) ( )1 21
max{ , , , , }

i m i m i i

m

mi
p p p u

      
  ; N ; \S N  , | S | = n – m.  (5.15) 
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Computational Effort Analysis 

The computational effort of this generalized dynamic programming algorithm is 

evaluated by the number of operations performed as “Addition” and “Comparison.” The number 

of operations required for each stage of the algorithm is summarized in Table 5.7. 

 

Table 5.7. Number of operations required for each stage 

Stage Number of 

combinations 

Addition Comparison 

BC ( i = 0 ) 1( 1)! n

mm C   m ( 1) / 2m m  

RR (1 1i n m    ) 
( 1)

1( 1)! n n m

m im C C  

  2i m× i + (i – 1) 

ANS  
n mf  ( i n m  ) ! n

mm C  n ( ) ( 1) ( 1) / 2m n m n m m m        

Min makespan 1 0 ! 1n

mm C   

 

In the boundary condition, there are 
1( 1)! n

mm C   
combinations for m jobs in Ψ and job j. 

Each combination requires m additions and ( 1) / 2m m  comparisons to obtain the value for f0. In 

the recurrence relation, for each i, there are also 
1( 1)! n

mm C   
choices for m jobs in Ψ and job j, 

and 1n m

iC    combinations of jobs in set S. Each combination of (S, Ψ, j) has i candidates in set S 

for k. Obtaining the minimum value among these i candidates requires extra i – 1 comparisons. 

In the answer formulation, there are ! n

mm C  different combinations in Ψ for 2nf  , and each 

combination has n m candidates for k. Moreover, among these n m candidates 1n m 

comparisons are performed to acquire the minimum value for each n mf  . To obtain the minimum 

makespan among these n mf   needs ! 1n

mm C  comparisons. Hence, the total number of additions 

required is:  
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=
1 1

1 1
( 1)! ( 2 ) !

n mn n m n

m i mi
m C m i C m nC

   

 
     

=
2 2

1 1
( 1)! ( 2( 1) )

n mn n m

m jj

n
m C m n m C

n m

   

 
    


  

= 2

1( 1)! ( 2( 1)2 )n n m

m

n
m C m n m

n m

 

    
  

1!
2

( 2)!

n mn

n m

 
  .

 

The total number of comparisons required is: 

=
1 11 1

1 1 1

( 1)
( 1)! ( ( 1) ) ! 1

2

n m n mn n m n m n

m i i mi i

m m
m C m i C C m C 

      

  


         

( ( )( 1) ( 1) / 2n m m m m      ) 

= 2 1

1

( 1)
( 1)! ( ( 1)( 1)2 2 1) ! 1

2

n n m n m n

m m

m m
m C m n m m C    




          

= 2 1

1

( 1)
( 1)! ( ( 1)( 1)2 2 1 ) 1

2

n n m n m

m

m m
m C m n m

n m

   




        


 

2!( 1)
2

( 2)!

n mn m

n m

 


  .
 

Hence, the computational effort for the generalized dynamic programming algorithm is 

2!
( 2 )
( 2)!

n mn m
O

n m

 

 
. 

Lower Bound for max| , |mF synmv re LU C  

According to the computational results in Sections 4.6 and 5.4, the derived lower bound 

value provides not only a useful insight about the optimal makespan but also a value for 

evaluating the quality of a solution obtained by a heuristic algorithm. When the summation of 
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loading and unloading times dominate the summation of the processing times, the value 

1
( )

n

j jj
l u


  is shown to be the lower bound for any sequence as Lemmas 4.2 and 5.2. It is also 

valid for the m machine case. 

 

On the other hand, if the cycle time except the first and last cycle is identified by 

processing times on the machines, the summation of processing times in one-machine problem 

and the makespan obtained by the Gilmore-Gomory algorithm in the two-machine problem are 

the lower bounds as shown in Lemmas 4.1 and 5.1, respectively. For a general case with m 

machines, a lower bound can be obtained by relaxing the constraint of the order of a job 

processed by the machines. It means that a job can be processed by machines in any order.  

 

Figure 5.2 illustrates a schedule of n jobs on the L/U stations and m machines when 

n m . Since the cycle times for cycles 2 to n+m are determined by the processing times, these 

cycles are partitioned into three blocks. The first block is from cycle 2 to cycle m, the second 

block is from cycle m+1 to cycle n+1, and the third block is from cycle n+2 to cycle n+m. With 

relaxing job orders and neglecting loading and unloading times, an algorithm is proposed to 

minimize the total cycle time of cycles in these three blocks. The value obtained by the proposed 

algorithm is the optimal makespan for the relaxed problem and will be a lower bound for the 

original problem. This relaxed problem has been discussed by Soylu et al. (2007). However, 

their procedure to obtain the solution can be further improved by the proposed algorithm in this 

research. 
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Figure 5.2. Schedule of jobs at each station in an m-CNC T-line machining center 

 

The idea of the algorithm is to assign 1n m 
 
largest processing times on each machine 

to the second block (cycle m+1 to cycle n+1). Then, the rest of 1m
 
smallest processing times 

on each machine are assigned to corresponding cycles in the first and third blocks. The principle 

to assign processing times to a cycle is based on the rankings of processing times. For example, 

all the largest processing times on each machine are assigned to the same cycle. An algorithm is 

proposed to assign processing times to each cycle so that the summation of the cycle times 

(cycles 2 to n+m) is minimized. The procedure to obtain the optimal makespan (denoted as RLB ) 

for the relaxed problem is described as below. 

Algorithm for RLB  

Let h

kp  be the h
th
 largest processing time on machine k where 1 h n   and 1 k m  . Let 

iC  be the time length of cycle i where 2 i n m   . Let set 
hR  consist of the h

th
 largest 

processing times on all machines, which is { |1 },  1h

h kR p k m h n     . 

Step 1. Let 0,  2, ,iC i n m    . 

l[1] l[2] l[3] l[m] l[m+1]

p[1]1 p[2]1 p[m]1p[m-1]1

p[1]2 p[m-2]2 p[m-1]2

p[1]m-1 p[2]m-1

p[1]m

…...

…...

…...

…
...

…
...

u[n+m+1]u[n+m]u[n+m-1]u[n+2]u[n+1] …...…...

…...

…...

…...

…... p[n]mp[n-1]mp[n-m]m p[n-m+1]m

p[n]m-1p[n-m]m-1P[n-m+1]m-1

p[n]2p[n-1]2

p[n]1

…...

…...

…
...

…
...

L/U Station

CNC1

CNC2

CNCm-1

CNCm

Cycle 1 Cycle m+1 Cycle n+1 Cycle n+m+1
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Step 2. For h=1 to n-m+1. 

Step 2.1. Select the largest processing time from set Rh, say h

kp . h

kp  is the h
th

 largest 

processing time on machine k. Let i h m  . 

Step 2.2. Assign h

kp to cycle i, and h

i kC p . Also, assign the rest of processing time from 

set Rh to corresponding machines in cycle i.  

Step 2.3. Let 1i i  . Go to Step 2.1. 

Step 3. For h= n-m+2 to n. Let r m  and 2s n  . Let 1u   and v m . 

Step 3.1. Assign h

kp
 
in set Rh to machine k in cycle g1 where 

1 ,  1, ,g r u k k u     . 

Let 1 1max{ ,  }h

g g kC C p  and \{ }h

h h kR R p . Also, Assign h

fp
 
in set Rh to machine f in 

cycle g2 where 
2 ( 1 ),  , , 1g s v m f f m m v        . Let 2 2max{ ,  }h

g g fC C p  

and \{ }h

h h fR R p . If h n , go to Step 4. 

Step 3.2. If r sC C , assign the rest of processing times in set Rh to corresponding 

machines in cycle r. Update the cycle time of cycle r as
1
max { }h

r k
k m v

C p
  

 . Let 1r r   

and 1v v  . 

Step 3.3. If r sC C , assign the rest of processing times in set Rh to corresponding 

machines in cycle s . Update the cycle time of cycle s as 
1

max { }h

s k
u k m

C p
  

 . Let 1s s   

and 1u u  . 

Step 3.4. Let 1h h  . Go to Step 3.1. 

Step 4. 
2

n m

R ii
LB C




 . 



128 

A Numerical Example 

A numerical example is presented to demonstrate the procedure of the algorithm to obtain 

the optimal value RLB . Assume there are eight jobs with four machines. Table 5.8 shows the job 

data for the example. 

 

Table 5.8: Job data for the example of the algorithm to obtain RLB  

Job pj1 pj2 pj3 pj4 

1 5 2 6 3 

2 11 8 7 15 

3 9 15 6 11 

4 7 4 13 2 

5 4 13 1 11 

6 8 14 9 10 

7 11 8 8 7 

8 14 15 8 1 

 

Initialization: without considering the job order processed by machines, processing times on each 

machine are sort in descending order as Table 5.9. 

 

Table 5.9: Job data for the example after sorting in descending order 

Set pj1 pj2 pj3 pj4 

R1 14 15 13 15 

R2 11 15 9 11 

R3 11 14 8 11 

R4 9 13 8 10 

R5 8 8 7 7 

R6 7 8 6 3 

R7 5 4 6 2 

R8 4 2 1 1 

 

Step 2: all processing times in sets R1 to R5 are assigned to cycles 5 to 9. Thus, C5 = 15, C6 = 15, 

C7 = 14 , C8 = 13 and C9 = 8. 
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Step 3: For h= 6 to 8. 

 Iteration 1 (h=6): assign 
6

1 7p  to cycle 4 and 
6

4 3p   to cycle 10 as shown in Figure 

5.3. Since 4 10C C , the rest of processing times in set R6 are assigned to cycle 4 and 

4 8C  . 

 

 
Figure 5.3. Schedule of jobs for the relaxed problem with 4 machines (h=6) 

 

 Iteration 1 (h=7): assign 
7

1 5p  to cycle 3, 
7

3 6p   to cycle 10 and 
7

4 2p   to cycle 11 

as shown in Figure 5.4. Since 3 10C C , the rest of processing times in set R7 are 

assigned to cycle 10 and 10 6C  . 

 

 
Figure 5.4. Schedule of jobs for the relaxed problem with 4 machines (h=7) 
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 Iteration 1 (h=8): assign the processing times in R8 
8

1 4p  , 
8

2 2p  , 
8

3 1p   and 
8

4 1p   

to cycles 1, 2, 11 and 12, respectively as shown in Figure 5.5. Since h=n, go to Step 4. 

 

 
Figure 5.5. Schedule of jobs for the relaxed problem with 4 machines (h=8) 

 

Step 4: the optimal makespan of the relaxed problem is 91. (
12

2
91R ii

LB C


  ) 

 

Lemma 5.3. The value RLB  is the optimal makespan for the relaxed problem without 

considering jobs orders processed by machines and loading and unloading times. 

Proof: For each machine, we will show that any interchange of two processing times will not 

decrease RLB . The similar proof can be found in the paper by Soyleu et al. (2007). Assume two 

processing times in cycles r and s on machine k are interchanged and r sC C . Let these two 

processing times in cycles r and s be  and r s

k kp p , respectively. Since r sC C , 
r

kp  is not greater 

than s

kp  according the proposed algorithm. After the interchange, the cycle times of cycles r and 

s are represented as 
' ' and r kC C . Four cases have to be considered as follows: 

 ,  r s

r k s kC p C p  . After the pairwise interchange, 
' s

r k sC p C   and 'r

r k sC p C  . Thus,

' '

r s r sC C C C   . 
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 ,  r s

r k s kC p C p  . After the pairwise interchange, 
' s

r r kC C p   and '

s sC C . Thus,

' '

r s r sC C C C    

 ,  r s

r k s kC p C p  . After the pairwise interchange, 
' s

r s kC C p  and 

' max{ ,  max{ }}r s

s k f
f k

C p p


 . 
s

kp
 
is the largest processing time in cycle s and r sC C , 

which implies that the cycle time of cycle s even excluding 
s

kp  is still greater than or 

equal to rC . Otherwise, 
s

kp  is assigned to cycle r rather than cycle s.  Thus, 

' max{ }s

s f r
f k

C p C


 
 
so that 

' '

r s r sC C C C    

 ,  r s

r k s kC p C p  . After the pairwise interchange, 
' max{ ,  }s

r r k rC C p C   and '

s sC C . 

Thus,
' '

r s r sC C C C     

In all cases, the cycle times cannot be improved by the pairwise interchange. The makespan 

generated by the proposed algorithm for the relaxed problem is optimal. □ 

 

Theorem 5.2. The value, 
1 1,..., 1,...,

max{ ( ),  min min }
n

j j i R ij i n i n
l u l LB u

  
   , provides a lower bound 

for the makespan scheduling problem of a T-line machining center with m CNC machines where 

RLB  is the optimal makespan for the relaxed problem without considering job orders processed 

by machines and loading and unloading times. 

Proof: The value 
1
( )

n

j jj
l u


  can be shown to be a lower bound using arguments similar to 

those in Lemmas 4.2 and 5.2. From Lemma 5.3, RLB  is the optimal makespan for the relaxed 

problem which only considers processing times on machines and relaxes jobs’ processing orders 

on machines. In addition,
1,...,

min i
i n

l


and 
1,...,

min i
i n

u


are the lower bounds for [1]l  and [ ]nu , respectively. 
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Thus, 
1,..., 1,...,

min mini R i
i n i n

l LB u
 

   is a lower bound for the problem max| , |mF synmv re LU C . 

Therefore, 
1 1,..., 1,...,

max{ ( ),  min min }
n

j j i R ij i n i n
l u l LB u

  
   is a lower bound.  □ 

5.6 Concluding Summary 

In conclusion, the scheduling problem with the makespan objective in a T-line machining 

center with two machines can be solve optimally by the proposed dynamic programming 

algorithm in 
4 3( 2 )nO n 

. Furthermore, the formulation of the dynamic programming algorithm 

has been extended to a general case with m machines and the analysis of its computational effort 

is also conducted. Two constructive heuristics and the modified neighborhood search are 

combined respectively as two two-phase algorithms to solve the scheduling problem with two 

machines. The computational results show that these two algorithms efficiently achieve optimal 

or near-optimal solutions for a wide range of test cases, especially algorithm CAGI_M. In a 

large-size problem ( 40n  ), CAGI_M only requires 2 seconds to obtain a solution. Additionally, 

the average relative error from the optimal makespan is 2.3% and from the lower bound is 6.3% 

for the worse case.  

 

Another contribution is that lower bound formulations has been developed for both two-

machine and m-machine cases. For the two-machine case according to the computational results, 

the suggested lower bound is within 4.6% from the optimal value in the case of Scenario I. This 

implies that the derived lower bound can be a reliable basis to measure the quality of a solution 

obtained by heuristics when the optimum is not available. For the m-machine case, a procedure 

to generate a lower bound value is also presented.  



 

Chapter 6 

 

Summary and Future Study 

6.1 Summary 

This dissertation has addressed two types of flow shop scheduling problems considering 

asynchronous and synchronous transportation times: (1) n-job, two-machine flow shop with a 

single transporter, and (2) n-job in a T-line machining center with one CNC machine. Additional 

extension of the T-line machining center with two CNC machines has also been discussed. The 

research has developed algorithms to obtain a job schedule that minimizes the makespan value 

for each problem. 

 

The first type of the problem, 2 1 1 max| , 1, |jTF p p v c u C   , is a special case of two-

machine flow shop scheduling problem. The problem assumes the processing times for all jobs 

on the first machine are identical and the capacity of the transporter is greater than or equal to a 

threshold value derived from Property 3.2. The methodology of dynamic programming is applied 

to the problem. In the dynamic programming formulation, only the integer departure points are 

considered. The algorithm can determine the optimal schedule of transporting jobs from the first 

machine to the second machine in polynomial time. The complexity of the proposed dynamic 

programming algorithm is shown as O(n
3
). This is better than the complexity of the algorithm, 

O(c
3
n

3
), developed by Lee and Chen (2001) given c is the capacity of the transporter and n is the 

number of jobs. 
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For the problem with synchronous transportation times max| , |mF synmv re LU C , 

sequencing jobs in a T-line machining center with a single machine (m=1) has been shown to be 

NP-hard in the strong sense. That is, the problem is inherently intractable and it is unlikely to 

develop a polynomial time algorithm to find an optimal solution. A polynomial time algorithm, 

O(n
3
log n), is proposed to solve a special case when the loading or unloading times are constant 

(denoted as 1 max| , , |jF synmv re LU u c C  ). The proposed algorithm incorporates the Gilmore-

Gomory algorithm which can optimally solve the two-machine flow shop problem with 

blocking. For the general setting of the one-machine problem in a small or medium scale, a 

dynamic programming algorithm is developed to obtain an optimal solution efficiently. Due to 

the complexity of the problem, however, the dynamic programming algorithm becomes 

impractical to solve a large- size problem – the algorithm would consume extremely amount of 

storage space. 

 

In order to solve the one-machine problem in a large scale, heuristic algorithms are 

developed to obtain near-optimal solutions in a reasonable CPU time. The methodology of the 

two-phase algorithm is adopted. Two constructive heuristics, CAS and CAI, are provided to 

build an initial sequence. In the improvement stage, a modified neighborhood search algorithm is 

developed to refine the solution obtained in the constructive stage. The pairwise interchange is 

applied to generate a list of neighborhood sequences. The mechanism of randomly selecting a 

sequence with the same makespan value as the current solution to become a new seed is 

incorporated in the algorithm when no improvement is gained. The purpose of the random 

selection is to prevent trapping the solution at a local optimum and to attempt to move the search 

direction to unexplored space.  
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In order to evaluate the performance of the heuristic algorithms, a series of experiments 

are conducted. These testing settings consist of different sizes of the problems (small, medium, 

and large) combined with three configurations on loading, processing, and unloading times. The 

computational results show that these two heuristics (CAS_M and CAI_M) not only obtain 

solutions within 1% from the optimal solutions, but also require no more than 2 seconds of CPU 

time. In addition, the constructive algorithm CAI forms the initial sequence with a better 

makespan than CAS. A lower bound, as shown in Theorem 4.3, provides a good insight of the 

optimal value especially for the cases when the sum of processing times is either much greater 

than or much less than the sum of loading and unloading times. 

 

An extension of a T-line machining center is studied where the number of CNC machines 

is increased to two. This problem can be denoted as 2 max| , |F synmv re LU C . A dynamic 

programming algorithm is also developed to obtain the optimal solution for the problem in a 

small or medium size. Two-phase heuristic algorithms (CAGG_M and CAGI_M) are proposed 

to obtain a good solution efficiently for a large-size problem. 

 

Similar to the experimental design for the one-machine problem, two constructive 

algorithms (CAGG and CAGI) are evaluated and the experimental results show that CAGI which 

employs the insertion scheme performances better than CAGG. The modified neighborhood 

search applied in the improvement stage also yields significant improvement on the makespan 

value for the two-machine problem. The makespan value generated by algorithm CAGI_M is on 

average within 2.3% from the optimal value. The algorithm with the two-phase structure is 



136 

applicable to a T-line machining center problem with one machine as well as with two machines. 

In addition, the lower bound derived from Theorem 5.1 is 4.6% from the optimal makespan for 

the worse case and 6.25% from the solution obtained by algorithm CAGI_M. Therefore, the 

suggested lower bound is useful when the optimum is not available.  

 

Last but not least, the generalized dynamic programming formulation is derived for the 

T-line machining scheduling problem with m machines. Moreover, the computational analysis 

for the generalized dynamic programming algorithm is also conducted and it shows that the 

complexity of the algorithm is 
2!

( 2 )
( 2)!

n mn m
O

n m

 

 
. For this generalized problem, an algorithm 

to generate a lower bound is provided, as shown in Theorem 5.2.  

 6.2 Future Research 

The makespan problem of scheduling a two-machine flow shop with one transporter is 

strongly NP-hard, even when the capacity of the transporter is equal to one and the travel time 

for the transporter from the first machine to the second machine is equal to the returning time. A 

heuristic algorithm could be developed to solve the problem with a general setting, such as more 

than one transporter and a predefined capacity of transporters. In addition, the loading time of a 

job on the transporter at the first machine and the unloading from the transporter at the second 

machine can be considered separate from the transportation times. This is because the number of 

jobs in each batch carried by the transporter may be different. Also, completed jobs can start to 

be loaded on the transporter when the transporter is waiting for more jobs at the first machine. 

Regarding the transportation times, non-constant or stochastic transportation times can be a 
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practical extension to the model when the two-machine model is regarded as a two-tier model in 

a supply chain, for example, a supplier to a manufacturer or a manufacturer to a distributor. In 

this two-tier model, jobs in the flow shop can be regarded as orders and these orders are 

delivered by transporters. 

 

In a T-line machining center with two CNC machines, a heuristic algorithm is developed 

for general configurations of this manufacturing cell. Therefore, to obtain optimality conditions 

or particular properties for special cases is one of promising research directions. For example, 

assume the unloading times to be zero, then the problem becomes three-machine flow shop 

problem with synchronous transfer which has been studied by Soyleu et al. (2007). The 

complexity of this problem can be further investigated. Moreover, a problem with constant 

loading and unloading times is also similar to the three-machine flow shop problem with 

synchronous transfer, but the first and last two cycles should be addressed with additional 

considerations. 

 

Another special case in a two-machine T-line machining center could assume that the 

processing times of one machine dominate the processing times of the other machine. The 

assumption means the minimum processing times of one machine is greater than or equal to the 

maximum processing times of the other machine. Due to the mechanism of synchronous material 

movement, only the maximum operation time constitutes the time period of each cycle. For 

example, if the processing times on machine 1 dominate the processing times on machine 2, then 

the operation on machine 2 can be always neglected except the second last cycle (cycle n+2) 

because its cycle time (Cn+2 ) is equal to max{p[n]2, u[n–1]}. Therefore, this special case is similar 
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to the problem with one CNC machine. Hence, the two-phase heuristic algorithm developed in 

Chapter 4 can be applied to this special case with minor modifications for cycle n+2. 

 

For the T-line machining center scheduling problem, a modified neighborhood search 

algorithm is applied in the improvement stage. The main advantage of this search algorithm is 

that it is easy to implement. Despite of its simplicity, the quality of solutions obtained by the 

proposed algorithm is satisfactory within 6.25% of a lower bound for the two-machine case. In 

future research, metaheuristic algorithms such as tabu search, simulated annealing and genetic 

algorithms can be adopted to solve these problems. Metaheuristic algorithms may further 

improve the quality of solutions but they are more difficult to implement. If the scheduling 

problem of the T-line machining center becomes more complicated, for example, with more than 

three machines, the metaheuristics could be more accurate. 

 

In this research, the scheduling problem in a T-line machining center does not consider 

the interaction between this manufacturing cell and other machines. In addition, all jobs are 

assumed to be available at time zero. In a practical setting, however, jobs could be processed first 

by upstream machines before they arrive to the T-line machining center and some jobs may not 

be available at the beginning of the planning horizon. If a T-line machining center is a bottleneck 

among these machines, both upstream and downstream machines will adjust their production 

plans based on the job schedule which can be obtained by the proposed algorithm. On the other 

hand, if a T-line machining center is not a bottleneck, the practical method to apply the proposed 

algorithm is to run the algorithm dynamically. For example, the scheduling in a T-line machining 

center will be triggered periodically and only jobs available at the beginning of each planning 
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period will be sequenced. Other scheduling problems for future research could consider different 

job arrival times and due dates and different objectives (e.g., minimization of maximum cycle 

time, total tardiness, etc.). 



 

BIBLIOGRAPHY 

Allahverdi, A. and J. Mittenthal (1995). "Scheduling on a Two-Machine Flowshop Subject to 

Random Breakdowns with a Makespan Objective Function," European Journal of Operational 

Research, 81, pp.376-387. 

  

Aneja, Y. P. and H. Kamoun (1999). "Scheduling of Parts and Robot Activities in a Two 

Machine Robotic Cell," Computers and Operations Research, 26, pp.297-312. 

  

Anwar, M. F. and R. Nagi (1998). "Integrated Scheduling of Material Handling and 

Manufacturing Activitiesfor Just-in-Time Production of Complex Assemblies," International 

Journal of Production Research, 36(3), pp.653-681. 

  

Armentano, V. A. and D. P. Ronconi (1999). "Tabu Search for Total Tardiness Minimization in 

Flowshop Scheduling Problems," Computers & Operations Research, 26, pp.219-235. 

  

Bagchi, T. P., J. N. D. Gupta and C. Sriskandarajah (2006). "A Review of Tsp Based Approaches 

for Flowshop Scheduling," European Journal of Operational Research, 169, pp.816-854. 

  

Baker, K. R. (1995). Elements of Sequencing and Scheduling, Kenneth Baker. 

  

Balasubramanian, J. and I. E. Grossmann (2002). "A Novel Branch and Bound Algorithm for 

Scheduling Flowshop Plants with Uncertain Processing Times," Computers and Chemical 

Engineering, 26, pp.41-57. 

  

Ben-Daya, M. and M. Al-Fawzan (1998). "A Tabu Search Approach for the Flow Shop 

Scheduling Problem," European Journal of Operational Research, 109, pp.88-95. 

  

Chen, B., C. A. Glass, C. N. Potts and V. A. Strusevich (1996). "A New Heuristic for Three-

Machine Flow Shop Scheduling," Operations Research, 44(6), pp.891-898. 

  

Conway, R. W., W. L. Maxwell and L. W. Miller (1967). Theory of Scheduling. MA, Addison-

Wesley: Reading. 

  

Dai, J. G. and G. Weiss (2002). "A Fluid Heuristic for Minimizing Makespan in Job Shops," 

Operations Research, 50(4), pp.692-707. 

  

Dawande, M., H. N. Geismar, S. P. Sethi and C. Sriskandarajah (2005). "Sequencing and 

Scheduling in Robotic Cells: Recent Developments," Journal of Scheduling, 8, pp.387-426. 

  

Dell'amico, M. (1996). "Shop Problems with Two Machines and Time Lags," Operation 

Research, 44(5), pp.777-787. 

  



141 

Dorigo, M. and L. M. Gambardella (1997). "Ant Colony System: A Cooperative Learning 

Approach to the Travelling Salesman Problem," IEEE Transactions on Evolutionary 

Computation, 1, pp.53-66. 

  

Dreyfus, S. E. and A. M. Law (1997). The Art and Theory of Dynamic Programming. New 

York, Academic Press. 

  

Framinan, J. M., J. N. D. Gupta and R. Leisten (2004). "A Review and Classification of 

Heuristics for Permutation Flow-Shop Scheduling with Makespan Objective," Journal of the 

Operational Research Society, 55, pp.1243-1255. 

  

Garey, M. R. and D. S. Johnson (1979). Computer and Intractability - a Guild to the Theroy of 

Np-Completeness. New York W. H. Freeman and Company. 

  

Garey, M. R., D. S. Johnson and R. Sethi (1976). "The Complexity of Flow-Shop and Job-Shop 

Scheduling," Math. Operation Research, 1, pp.117–129. 

  

Gilmore, P. C. and R. E. Gomory (1964). "Sequencing a One State-Variable Machine: A 

Solvable Case of the Traveling Salesman Problem," Operation Research, 12(5), pp.655-679. 

  

Gonçalves, J. F., J. J. Mendes and M. G. C. Resende (2005). "A Hybrid Genetic Algorithm for 

the Job Shop Scheduling Problem," European Journal of Operational Research, 167, pp.77-95. 

  

Gourgand, M., N. Grangeon and S. Norre (2003). "A Contribution to the Stochastic Flow Shop 

Scheduling Problem," European Journal of Operational Research, 151(415-433). 

  

Grabowskia, J. and M. Wodecki (2004). "A Very Fast Tabu Search Algorithm for the 

Permutation Flow Shop Problem with Makespan Criterion," Computers & Operations Research, 

31, pp.1891-1909. 

  

Graham, R. L., E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan (1979). "Optimization and 

Approximation in Deterministic Sequencing and Scheduling: A Survey," Annals of Discrete 

Mathematics, 5, pp.287-326. 

  

Graves, S. C. (1981). "A Review of Production Scheduling," Operation Research, 29(4), pp.646-

675. 

  

Gupta, J. N. D. and E. F. Stafford (2006). "Flowshop Scheduling Research after Five Decades," 

European Journal of Operational Research, 169, pp.699-711. 

  

Hajek, B. (1988). "Cooling Schedules for Optimal Annealing," Mathematics of Operations 

Research, 13, pp.311-329. 

  

Hall, N. G., H. Kamoun and C. Sriskandarajah (1997). "Scheduling in Robotic Cells: 

Classification, Two and Three Machine Cells," Operations Research, 45(3), pp.421-439. 

  



142 

Hall, N. G. and C. Sriskandarajah (1996). "A Survey of Machine Scheduling Problems with 

Blocking and No-Wait in Process," Operations Research, 44(3), pp.510-525. 

  

Han, M.-H. and L. F. Mcginnis (1989). "Control of Material Handling Transporter in Automated 

Manufacturing," IIE Transactions, 2, pp.184-190. 

  

Hejazi, S. R. and S. Saghafian (2005). "Flowshop-Scheduling Problems with Makespan 

Criterion: A Review," Journal of Production Research, 43(14), pp.2895-2929. 

  

Hurink, J. and S. Knust (2001). "Makespan Minimization for Flow-Shop Problems with 

Transportation Times and a Single Robot," Discrete Applied Mathematics, pp.199-216. 

  

Hurink, J. and S. Knust (2002). "A Tabu Search Algorithm for Scheduling a Single Robot in a 

Job-Shop Environment," Discrete Applied Mathematics, 119, pp.181-203. 

  

Jain, A. S. and S. Meeran (1999). "Deterministic Job-Shop Scheduling: Past, Present and 

Future," European Journal of Operational Research, 113, pp.390-434. 

  

Johnson, S. M. (1954). "Optimal Two- and Three-Stage Production Schedules with Setup Times 

Included," Naval Research Logistics Quarterly, 1, pp.61-68. 

  

Kalczynski, P. J. and J. Kamburowski (2006). "A Heuristic for Minimizing the Expected 

Makespan in Two-Machine Flow Shops with Consistent Coefficients of Variation," European 

Journal of Operational Research, 169, pp.742-750. 

  

Kamburowski, J. (1999). "Stochastically Minimizing the Makespan in Two-Machine Flow Shops 

without Blocking," European Journal of Operational Research, 112, pp.304-309. 

  

Karuno, Y. and H. Nagamochi (2003). A Better Approximation for the Two-Machine Flowshop 

Scheduling Problem with Time Lags. The 14th Annual International Symposium on Algorithms 

and Computation. Kyoto: 309-318. 

  

Kijima, M., N. Makimoto and H. Shirakawa (1990). "Stochastic Minimization of the Makespan 

in Flow Shops with Identical Machines and Buffers of Arbitrary Size," Operations Research, 

38(5), pp.924-928. 

  

Kis, T. (2003). "Jop-Shop Scheduling with Processing Alternatives," European Journal of 

Operational Research, 151, pp.307-332. 

  

Lai, T.-C. (1996). "A Note on Heuristics of Flow-Shop Scheduling," Operations Research, 

44(4), pp.648-652. 

  

Lee, C.-Y. and Z.-L. Chen (2001). "Machine Scheduling with Transportation Considerations," 

Journal of Scheduling, pp.3-24. 

  



143 

Lee, C.-Y., L. Lei and M. Pinedo (1997). "Current Trends in Deterministic Scheduling," Annals 

of Operation Research, 70, pp.1-41. 

  

Lee, C.-Y. and V. A. Strusevich (2005). "Two-Machine Shop Scheduling with an Uncapacitated 

Interstage Transporter," IIE Transactions, 37, pp.725-736. 

  

Lenstra, J. K. and K. Rinnooy (1979). "Computational Complexity of Discrete Optimization 

Problems," Annals of Discrete Mathematics, 4, pp.121-140. 

  

Leung, J. Y.-T. (2004). Handbook of Scheduling: Algorithms, Models, and Performance 

Analysis, CRC Press. 

  

Levner, E., K. Kogan and I. Levin (1995). "Scheduling a Two-Machine Robotic Cell: A Solvable 

Case," Annals of Operations Research, 5, pp.217-232. 

  

Levner, E., K. Kogan and O. Maimon (1995). "Flowshop Scheduling of Robotic Cells with Job-

Dependent Transportation and Set-up Effects," Journal of Operational Research Society,, 

46(12), pp.1447-1455. 

  

Logendran, R. and C. Srisjandarajah (1996). "Sequencing of Robot Activities and Parts in Two-

Machine Robotic Cells," International Journal of Production Research, 34(12), pp.3447-3463. 

  

Logendran, R. and C. Sriskandarajah (1993). "Two-Machine Group Scheduling Problem with 

Blocking and Anticipatory Setups," European Journal of Operational Research, 69(3), pp.467-

481. 

  

Low, C. (2005). "Simulated Annealing Heuristic for Flow Shop Scheduling Problems with 

Unrelated Parallel Machines," Computers & Operations Research, 32, pp.2013-2025. 

  

Mattfeld, D. C. and C. Bierwirth (2004). "An Efficient Genetic Algorithm for Job Shop 

Scheduling with Tardiness Objectives," European Journal of Operational Research, 155, 

pp.616-630. 

  

Meyers, F. E. and M. P. Stephens (2005). Manufactuing Facility Design and Material Handling. 

New Jersey, Pearson Prentice Hall. 

  

Milacron, C. (1989). "T-Line Machining Center Alternatives," Manufacturing Engineering, 

103(4), pp.14-15. 

  

Nowicki, E. and C. Smutnicki (2005). "An Advanced Tabu Search Algorithm for the Job Shop 

Problem," Journal of Scheduling, 8, pp.145-159. 

  

Oulamara, A. and A. Soukhal (2001). Flow Shop Scheduling Problems with Transportation and 

Capacities Constraints. IEEE International Conference on Systems, Man, and Cybernetics. 4: 

2540-2545. 

  



144 

Panwalkar, S. S. and W. Iskander (1977). "A Survery of Scheduling Rules," Operation Research, 

25(1), pp.45-61. 

  

Pezzella, F. and E. Merelli (2000). "A Tabu Search Method Guided by Shifting Bottleneck for 

the Job Shop Scheduling Problem," European Journal of Operational Research, 120, pp.297-

310. 

  

Pinedo, M. (1983). "Stochastic Scheduling with Release Dates and Due Dates," Operations 

Research, 31(3), pp.559-572. 

  

Pinedo, M. (1985). "A Note on Stochastic Shop Models in Which Jobs Have the Same 

Processing Requirements on Each Machine," Management Science, 31(7), pp.840-846. 

  

Pinedo, M. (1995). Scheduling : Theory, Algorithms, and Systems  Prentice Hall. 

  

Ponnambalam, S. G., P. Aravindan and S. Chandrasekaran (2001). "Constructive and 

Improvement Flow Shop Scheduling Heuristics: An Extensive Evaluation," Production Planning 

and Control, 12(4), pp.335-344. 

  

Ponnambalam, S. G., P. Aravindan and S. V. Rajesh (2000). "A Tabu Search Algorithm for Job 

Shop Scheduling," International Journal of Advanced Manufacturing Technology, 16, pp.765-

771. 

  

Rajendran, C. and H. Ziegler (2004). "Ant-Colony Algorithms for Permutation Flowshop 

Scheduling to Minimize Makespan/Total Flowtime of Jobs," European Journal of Operational 

Research, 155, pp.426-438. 

  

Rebaine, D. and V. A. Strusevich (1999). "Two-Machine Open Shop Scheduling with Special 

Transportation Times," Journal of the Operational Research Society, 50, pp.756-764. 

  

Reeves, C. R. (1995). "A Genetic Algorithm for Flowshop Sequencing," Comupters and 

Operations Research, 22(1), pp.5-13. 

  

Ruiz, R. and C. Maroto (2005). "A Comprehensive Review and Evaluation of Permutation 

Flowshop Heuristics," European Journal of Operational Research, 165, pp.479-494. 

  

Schutten, J. M. J. (1998). "Practical Job Shop Scheduling," Annals of Operation Research, 83, 

pp.161-177. 

  

Sethi, S. P., C. Srisjandarajah, G. Sorger, J. Blazewicz and W. Kubiak (1992). "Sequencing of 

Parts and Robot Moves in a Robotic Cell," International Journal of Flexible Manufacturing 

Systems, 4, pp.331-358. 

  

Soukhal, A., A. Oulamara and P. Martineau (2005). "Complexity of Flow Shop Scheduling 

Problems with Transportation Constraints," European Journal of Operational Research, 161, 

pp.32-41. 



145 

  

Soyleu, B.,  . Kirca and M. Azizoğlu (2007). "Flow Shop-Sequencing Problem with Synchronous 

Transfers and Makespan Minimization," Internationals Journal of Production Research, 45(15), 

pp.3311-3331. 

  

Strusevich, V. A. (1999). "A Heuristic for the Two-Machine Open-Shop Scheduling Problem 

with Transportation Times," Discrete Applied Mathematics, 93, pp.287-304. 

  

Szwarc, W. (1983). "Flow Shop Problems with Time Lags," Management Science, 29(4), 

pp.477-481. 

  

Taillard, E. (1993). "Benchmarks for Basic Scheduling Problems," European Journal of 

Operational Research, 64, pp.278–285. 

  

Talwar, P. P. (1967). "A Note on Sequencing Problems with Uncertain Job Times," Journal of 

Operations Research Society Japan 9, pp.93-97. 

  

Tian, P., J. Ma and D.-M. Zhang (1999). "Application of the Simulated Annealing Algorithm to 

the Combinatorial Optimisation Problem with Permutation Property: An Investigation of 

Generation Mechanism," European Journal of Operational Research, 118, pp.81-94. 

  

Tompkin, J. A. and J. A. White (1984). Facilities Planning. New York, Wiley. 

  

Wang, L. and L. Zhang (2006). "Stochastic Optimization Using Simulated Annealing with 

Hypothesis Test," Applied Mathematics and Computation, 174(2), pp.1329-1342. 

  

Wang, L., L. Zhang and D.-Z. Zheng (2003). "A Class of Order-Based Genetic Algorithm for 

Flow Shop Scheduling," International Journal of Advanced Manufacturing Technology, 22, 

pp.828-835. 

  

Wang, L. and D.-Z. Zheng (2001). "An Effective Hybrid Optimization Strategy for Job-Shop 

Scheduling Problems," Computers and Operations Research, 28, pp.585-596. 

  

Wang, L. and D.-Z. Zheng (2003). "An Effective Hybrid Heuristic for Flow Shop Scheduling," 

International Journal of Advanced Manufacturing Technology, 21, pp.38-44. 

  

Ying, K.-C. and C.-J. Liao (2004). "An Ant Colony System for Permutation &Ow-Shop 

Sequencing," Computers & Operations Research, 31, pp.791-801. 

  

Yu, W. (1996). "The Two-Machine Flow Shop Problem with Delays and the One-Machine Total 

Tardiness Problem", Thesis, Department of Mathematics and Computer Science, Technische 

Universiteit Eindhoven 

  

Yu, W., H. Hoogeveen and J. K. Lenstra (2004). "Minimizing Makespan in a Two-Machine 

Flow Shop with Delays and Uni-Time Operations Is Np-Hard," Journal of Scheduling, 7, 

pp.333-348. 



146 

  

Zegordi, S. H., K. Itoh and T. Enkawa (1995). "Minimizing Makespan for Flow Shop Scheduling 

by Combining Simulated Annealing with Sequencing Knowledge," European Journal of 

Operational Research, 85, pp.515-531. 

  

 



 

APPENDIX  

 

Gilmore-Gomory Algorithm 

 The Gilmore and Gomory algorithm is widely implemented in literature and its procedure 

can be found in these papers such as Gilmore and Gomory (1964), Hall and Sriskandarajah 

(1996) and Bagchi et al.(2006). 

Step 1. Sort 2{ }jp  in the non-decreasing order and renumber the jobs in the order such that 

2 1,2 , 1, , 1j jp p j n   . Initialize 1 2G G  . 

Step 2. Sort 1{ }jp  in the non-decreasing order and define a variable ( )j  for every job such that 

( )1 ( 1)2 , 1, , 1j jp p j n     . 

Step 3. Calculate the cost of an edge as  

, 1 1,2 ( 1)1 2 ( )1max{0,  (min{ ,  } max{ ,  })} for 1, , 1j j j j j jC p p p p j n        

Step 4. Construct the graph with undirected edges ( ,  ( ))j j  from 1 to j n . 

Step 4.1. Add the undirected edge ( ,  ( ))j j  which is not in the graph and ( )j j . Set 

1j j  . Repeat the step until j n . 

Step 5. If the current graph has only one connected component, go to Step 7. Otherwise, connect 

the graph to be one component as the following procedure: 

 Step 5.1. Sort , 1,  1, , 1j jC j n    in non-decreasing order.  

 Step 5.2. For 1 to 1j n  . If the edge ( ,  1)j j   with  and  1j j   in different 

components, add the edge to the graph. Otherwise go to Step 5.4. 

 Step 5.3. If 1, ( ) 2,j jp p  , set 1 1 {( ,  1)}G G j j   . Otherwise, set 2 2 {( ,  1)}G G j j   . 
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 Step 5.4. If all nodes are connected, go to Step 6. Otherwise, set 1j j  and go to 

Step5.2.1. 

Step 6. If 1G   , order the edges in 1G  as 1 1{( ,  1), , ( ,  1)}g gr r r r  , where 

1 1 and | |gr r g G   . 

Step 7. If 2G   , order the edges in 2G  as 1 1{( ,  1), , ( ,  1)}h hs s s s  , where 

1 2 and | |hs s h G   . 

Step 8. Form the tour with the minimum cost by finding the job follows job j. Define a function 

, ( )p q j  as follows: , ( )  if p q j q j p   , , ( )  if p q j p j q   , and , ( )  if ,p q j j j p q   where 

, , 1, ,j p q n  . 

Step 8.1. Define 
1 1 2 2 | | | | 1 1 2 2 | | | |1 1 2 2
, 1 , 1 , 1 , 1 , 1 , 1( ) ( ( ))

G G G Gr r r r r r s s s s s sj j               . For 

1, ,j n  , to obtain job ( )j  which follows job j. 

A Numerical Example 

 A numerical example is presented to illustrate the procedure of the algorithm. In this 

example, there are 8 jobs and its processing times are summarized in Table A.1: The objective is 

to find a tour with the minimum cost. 

Table A.1: Job data for the Gilmore-Gomory Algorithm 

Job 1 2 3 4 5 6 7 8 

1jp  7 3 15 8 10 12 13 17 

2jp  14 1 19 9 5 13 8 16 
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Step 1, Step 2 and Step 3 give Table A.2: 

Table A.2: Sorted processing times and the cost for each edge 

j  
2jp  ( )1jp  ( )j  

2 ( )1max{ , }j jp p  2 ( )1min{ , }j jp p  
, 1j jC   

1 1 3 1 3 1 2 

2 5 7 6 7 5 1 

3 8 8 4 8 8 1 

4 9 10 2 10 9 2 

5 13 12 5 13 12 0 

6 14 13 3 14 13 1 

7 16 15 8 16 15 1 

8 19 17 7 19 17 – 

 

Step 4. The graph with undirected edges ( ,  ( ))j j .  

 

 

Step 5. 

1 {(1, 2)}G 
 

2 {(5,6), (6,7)}G   

Step 6. 

1 1{(1,  2)},  1G r   

Step 7. 

2 {(5,6), (6,7)}G  , 1 2s s => 1 25, 6s s   

Step 8. 

1,2 5,6 6,7( ) ( ( ))j j    
 

1,2 5,6 6,7 1,2 5,6 1,21:  (1) ( (1)) ( (1)) ( (1)) (2) 6j                  

1 2 3 4 5 6 7 8
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1,2 5,6 6,7 1,2 5,6 1,22 :  (2) ( (2)) ( (2)) ( (2)) (1) 1j                  

1,2 5,6 6,7 1,2 5,6 1,23:  (3) ( (3)) ( (3)) ( (3)) (3) 4j                  

1,2 5,6 6,7 1,2 5,6 1,24 :  (4) ( (4)) ( (4)) ( (4)) (4) 2j                  

1,2 5,6 6,7 1,2 5,6 1,25 :  (5) ( (5)) ( (5)) ( (6)) (6) 3j                  

1,2 5,6 6,7 1,2 5,6 1,26 :  (6) ( (6)) ( (7)) ( (7)) (7) 8j                  

1,2 5,6 6,7 1,2 5,6 1,27 :  (7) ( (7)) ( (6)) ( (5)) (5) 5j                  

1,2 5,6 6,7 1,2 5,6 1,28 :  (8) ( (8)) ( (8)) ( (8)) (8) 7j                  

 

Thus, the optimal tour is 1 6 8 7 5 3 4 2        and the minimum cost is 94. Table A.3 is the 

summary of each job is followed by job ( )j . 

Table A.3: The optimal tour 

Job 1 2 3 4 5 6 7 8 

( )j  6 1 4 2 3 8 5 7 
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