

The Pennsylvania State University

The Graduate School

The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering

FLOW SHOP SCHEDULING WITH

SYNCHRONOUS AND ASYNCHRONOUS TRANSPORTATION TIMES

A Dissertation in

Industrial Engineering and Operations Research

by

Kwei-Long Huang

 2008 Kwei-Long Huang

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2008

ii

The dissertation of Kwei-Long Huang was reviewed and approved* by the following:

José A. Ventura

Professor of Industrial and Manufacturing Engineering

Dissertation Advisor

Chair of Committee

A. Ravi Ravindran

Professor of Industrial and Manufacturing Engineering

Tao Yao

Assistant Professor of Industrial and Manufacturing Engineering

Terry P. Harrison

Professor of Supply Chain and Information Systems

Richard J. Koubek

Professor of Industrial and Manufacturing Engineering

Head of the Department of Industrial and Manufacturing Engineering

*Signatures are on file in the Graduate School

iii

ABSTRACT

This research studies two flow shop scheduling problems which consider transportation

times between machines. The first problem considers a special case of a two-machine flow shop

scheduling problem with asynchronous transportation times and the second one consider an

application of flow shop scheduling to automated manufacturing cells with a synchronous

material transportation device. The objective of both problems is to find a job schedule which

minimizes the makespan – the completion time of the last job.

In the first problem, not only transportation times are explicitly provided but also the

availability of the transporter is considered. In the model, there is one transporter with a specific

capacity to transport jobs from the first machine to the second machine. The processing times on

the first machine are job-independent. A threshold value for the transporter’s capacity is derived.

When the capacity of the transporter is greater than or equal to the threshold value, a dynamic

programming algorithm is developed to obtain an optimal schedule. Given that n is the number

of jobs, the computational effort of the proposed dynamic programming algorithm is shown to be

O(n
3
), which is better than the best algorithm found in the literature.

This research also considers a new flow shop scheduling problem with synchronous

material movement. The automated machining center consists of a loading/unloading (L/U)

station, m processing machines, and a rotary table. The L/U station and the processing machines

surround the rotary table. In this machining center, a job is first loaded onto the rotary table at the

L/U station. Then, the table rotates to transfer the job to the first machine, and subsequently to

the second machine and so on. After being processed by the m machines, the job is transported

iv

back to the L/U station where it is unloaded from the machining center. A rotation of the table

occurs only when all stations are finished with their jobs, including the loading and unloading

operations at the L/U station. The mechanism of transferring all these jobs on the rotary table

simultaneously to their next stations is referred to as synchronous material movement.

Regarding the machining center with synchronous material movement, the simplest

model with a single machine is studied first. The problem is shown to be NP-hard in the strong

sense. A polynomial time algorithm is developed for a special case which assumes a constant

unloading or loading time for all jobs. Moreover, due to the systematic structure of the problem,

a dynamic programming algorithm is provided to obtain an optimal solution for a generalized

version of the problem with m machines. The computational effort of the dynamic programming

algorithm is also presented.

Two-phase heuristic algorithms are developed to solve the problems with one machine

and two machines. For each problem, two constructive heuristics and the modified neighborhood

search algorithm are proposed, and computational experiments are conducted to test the

performance of the proposed algorithms. The experimental results show that the two-phase

algorithms generate high quality solutions in a very short time. A tighter lower bound is also

developed for each case.

v

TABLE OF CONTENTS

LIST OF FIGURES ... vii

LIST OF TABLES ...ix

ACKNOWLEDGEMENTS... x

Chapter 1 Introduction and Overview .. 1

1.1 Introduction .. 1

1.2 Research Problems ... 3
1.3 Research Objectives and Contributions ... 5

1.4 Thesis Overview ... 7

Chapter 2 Literature Review.. 10

2.1 Scheduling ... 10
2.2 Flow Shop .. 13

2.3 Job Shop... 21
2.4 Flow Shop with Transfer Times and Transporters ... 24

2.5 Automated Manufacturing Cell .. 30
2.6 Computational Complexity Theory ... 34

Chapter 3 Two-machine Flow Shop with Transportation Considerations 38

3.1 Introduction .. 38

3.2 Dynamic Programming Algorithm for 2 1 1 max| , 1, |jTF p p v c u C   40

3.3 Complexity Analysis .. 47

3.4 Concluding Summary ... 50

Chapter 4 Flow Shop with Synchronous Material Movement .. 51

4.1 Introduction .. 51
4.2 T-line Machining Center with One CNC Machine .. 54

4.3 Special Case – Constant Unloading Time ... 65

4.4 Dynamic Programming Algorithm for 1 max| , |F synmv re LU C 72

4.5 Two-Phase Heuristic Algorithm for One CNC Machine ... 78

4.6 Computational Results .. 93
4.7 Concluding Summary ... 98

Chapter 5 Two-machine Flow Shop with Synchronous Material Movement 100

5.1 Introduction .. 100

5.2 Dynamic Programming Algorithm for 2 max| , |F synmv re LU C 102

5.3 Heuristic Algorithm for 2 max| , |F synmv re LU C .. 107

vi

5.4 Computational Results .. 116

5.5 Dynamic Programming Algorithm for max| , |mF synmv re LU C 121

5.6 Concluding Summary ... 132

Chapter 6 Summary and Future Study ... 133

6.1 Summary .. 133
6.2 Future Research .. 136

BIBLIOGRAPHY ... 140

APPENDIX Gilmore-Gomory Algorithm .. 147

vii

LIST OF FIGURES

Figure 1.1. A T-line machining center with m machines .. 5

Figure 2.1. Workflow in a general flow shop (Source: Baker, 1995) .. 14

Figure 2.2. Workflow in a job shop (Source: Baker, 1995) .. 22

Figure 2.3. Robot-centered cell layout (Logendran and Srisjandarajah 1996) 32

Figure 2.4. Mobile robot cell layout (Logendran and Srisjandarajah 1996) 32

Figure 2.5. In-line robot cell layout (Logendran and Srisjandarajah 1996) 32

Figure 2.6. Complexity hierarchies of deterministic scheduling problems:................................. 37

Figure 3.1. Batch i containing u+1 jobs transported to machine 2 at di 43

Figure 3.2. Batch i is split into two small batches .. 43

Figure 3.3. An example with k=20 and j=10 .. 49

Figure 4.1. Examples of Cincinnati Milacron T-line machining centers 52

Figure 4.2. A T-line machining center with two CNC machines .. 53

Figure 4.3. A T-line machining center with one CNC machine .. 55

Figure 4.4. Schedule of jobs at each station in a one-CNC T-line machining center 56

Figure 4.5. Schedule  on the L/U station and CNC machine ... 59

Figure 4.6. A Jb-type job is sequenced in the first position .. 61

Figure 4.7. A Jc-type job is sequenced in the first position .. 61

Figure 4.8. A Ja-type job is sequenced in the second position .. 62

Figure 4.9. A Jb-type job is sequenced in the second position .. 62

Figure 4.10. A Ja-type job is sequenced in the third position ... 62

Figure 4.11. A Jc-type job is sequenced in the third position ... 63

Figure 4.12. Idle time on the L/U station in the third cycle when [1] [1] [1]a b c  64

viii

Figure 4.13. Idle time on the CNC machine in the third cycle when [1] [1] [1]a b c  64

Figure 4.14. Schedule in a one-machine T-line machining center with constant unloading time . 65

Figure 4.15. Two-machine flow shop problem with blocking for []J j ,3 j n  66

Figure 4.16. The makespan Z’ for the modified problem ... 67

Figure 4.17. J0 is not sequenced in the first position for Problem G ... 68

Figure 4.18. J0 is sequenced in the first position for Problem G ... 68

Figure 4.19. Jn+1 is not sequenced in the last position for Problem G.. 69

Figure 4.20. Jn+1 is sequenced in the last position for Problem G ... 69

Figure 4.21. The makespan for the problem 1 max| , , |jF synmv re LU u c C  70

Figure 5.1. Schedule of jobs at each station in a two-CNC T-line machining center 101

Figure 5.2. Schedule of jobs at each station in an m-CNC T-line machining center 126

Figure 5.3. Schedule of jobs for the relaxed problem with 4 machines (h=6) 129

Figure 5.4. Schedule of jobs for the relaxed problem with 4 machines (h=7) 129

Figure 5.5. Schedule of jobs for the relaxed problem with 4 machines (h=8) 130

ix

LIST OF TABLES

Table 4.1: Number of operations required for each stage ... 73

Table 4.2: Job data for a one-machine T-line machining center ... 75

Table 4.3: Job data for the example of CAS... 82

Table 4.4: Job data for the example of CAI ... 86

Table 4.5: Experimental design and data generating rules for 1 max| , |F synmv re LU C 94

Table 4.6. Summary of the average makespans obtained by the DP, heuristics, and LB 95

Table 4.7: Summary of average relative errors from optimum and LB 96

Table 5.1. Number of operations required for each stage ... 103

Table 5.2. Job data for a two-CNC T-line machining center .. 105

Table 5.3: Job data for the example of CAGI ... 112

Table 5.4: Experimental design and data generating rules for 2 max| , |F synmv re LU C 117

Table 5.5: Summary of the average makespans obtained by the DP, heuristics, and LB 118

Table 5.6: Summary of average relative errors from optimum and LB 119

Table 5.7. Number of operations required for each stage ... 123

Table 5.8: Job data for the example of the algorithm to obtain RLB .. 128

Table 5.9: Job data for the example after sorting in descending order 128

Table A.1: Job data for the Gilmore-Gomory Algorithm .. 148

Table A.2: Sorted processing times and the cost for each edge ... 149

Table A.3: The optimal tour ... 150

x

ACKNOWLEDGEMENTS

I would like to express my enormous appreciation to my adviser and committee chair, Dr.

José A. Ventura, for his invaluable guidance, support, and encouragement throughout this

research. Without his constructive advice and criticism, this dissertation would not be well

shaped. His attitudes towards research and commitment to quality have greatly influenced me. I

would also like to thank my committee members, Dr. A. Ravi Ravindran, Dr. Terry P. Harrison,

and Dr. Tao Yao for their insightful suggestions and their time for this work.

I would like to thank my classmate, Zheng Jia, for working with me on the DP project

which is the basis of Chapter 3. I am also very grateful to my friend, Wenny Chandra, for

proofreading the final draft of my dissertation. As an international student, I would like to offer

my heartfelt gratitude to these people who have helped me during my studies at Penn State,

especially to my friends in BAOCP.

Most of all, I express my deepest thanks to my parents Mu-Syong Huang (黃木雄) and

Siou-Lian Peng (彭秀連). Without their unreserved support and consistent encouragement, I

would not have been able to pursue my dream and accomplish the achievement. To them this

thesis is dedicated.

Chapter 1

Introduction and Overview

1.1 Introduction

Due to the rapid advance in technology and the prevalence of e-commerce, global

competition is not only a trend but a pressure situation for a company. In order to maintain a

competitive advantage, companies attempt to optimize not only plant operations but also the

interplant activities between facilities. For plant operations, accurate scheduling plays an

important role in a manufacturing environment and is fundamental in the execution of a

production plan. Consequently, better coordination and scheduling of production and logistics

activities on the shop floor are necessary to survive in the highly competitive environment which

requires short lead-time deliveries and low-cost products.

During the past five decades, shop floor scheduling has been a topic intensively

addressed in operations research. Although there are numerous methodologies and research

studies published in the field of machine scheduling, most of the literature assumes that there is

an unlimited number of transporters for delivery of jobs or that transportation times between

machines can be neglected, which means that jobs are transported to the next machine

immediately. This ideal assumption is not applicable for generating an accurate scheduling on

the shop floor. Furthermore, even though transportation times are considered and separated from

processing times, most models still assume there are unlimited transporters to move jobs.

Integrated scheduling of material handling and manufacturing will involve two types of

2

resources: machines and material handling devices. Either resource could become a bottleneck if

not properly scheduled. Thus, considering the transportation issue in the classical machine

scheduling will lead to more realistic and practical models. This, in turn, may yield more feasible

and accurate production plans for a shop floor. To incorporate these more realistic constraints in

this research, not only transportation times are explicitly taken into account but also the

availability of transporters is considered.

In Han and McGinnis’s study (1989), they estimate that a job spends only 5% of its total

cycle time being processed on machines - the job either waits in a queue or is being transported

between machines for the remaining flow time. In the study, they conclude that assuming

negligible transportation times is not practical for most production systems. Additionally,

material handling devices (e.g., robots, automated guided vehicles (AGVs), conveyors,

transporters, etc.) are an expensive investment and take a significant portion of the equipment

cost in many manufacturing environments. Tompkins and White (1984) indicate the cost of

material handling cumulates as high as 80% of the total manufacturing cost of a product. The

capital invested on the material handling equipment returns by reducing labor, material or

overhead costs, and Meyers and Stephens (2005) indicate the investment should be recovered in

two years or less (50 percent return on investment or higher).

In order to reduce the cost and increase the utilization of these automated facilities, the

interaction between processing machines and the material handling equipment should be planned

carefully. Generally, it is clear that operations in manufacturing and transportation systems must

be coordinated carefully in order to achieve ideal overall system performance. To achieve this

3

goal, the following issues regarding transportation scheduling must be addressed simultaneously

as suggested by Lee at el. (1997):

1. Determine a sequence that specifies the order in which jobs are processed at

machining centers;

2. Generate a schedule that makes time-phased routing and dispatching of transporters

for job pick-up and delivery; and

3. Design a facility layout and flow paths that make efficient operations possible.

A problem to address the three issues mentioned above at the same time is a

combinatorial problem, and it is very difficult to find an optimal solution. Most studies reported

in the literature consider at most two of these issues. For example, giving a set of jobs and

transporters, the problem is to determine the sequence of jobs processed on the machines and

how to transport jobs between machines to minimize the makespan, which is the completion time

of the last job on the final machine. In this research, the first two issues, scheduling the job

sequence on machines and the transportation plan for jobs, are investigated.

1.2 Research Problems

Two types of flow shop manufacturing environments involving transportation are

considered in this research. In the first part of the research, we are interested in a two-machine

flow shop scheduling problem with the objective of minimizing makespan. In this flow shop,

there are two machines, M1 and M2, that are continuously available from time zero for processing

n independent jobs j (1, ,j n ) which should pass through M1 and M2. All jobs are available at

time zero and each machine can handle no more than one job at a time without preemption. In

4

addition, there is a single transporter or material handling device with a given capacity to

transport jobs from M1 to M2. Transportation times between these two machines are explicitly

considered. The problem is to determine the optimal schedule of transporting these jobs to the

second machine such that the completion time of the last job finished on the second machine is

minimized.

In the second part of the research, a new scheduling problem in an automated

manufacturing cell is investigated. The automated manufacturing cell commonly integrates

material handling and processing devices to process jobs efficiently. This part considers an

application to the manufacturing cell which consists of one loading and unloading station, m

processing machines, and a rotary table. The loading/unloading station and the processing

machines surround the rotary table. The rotary table is a platform used to carry jobs currently

being processed and to transport these jobs to the next processing stations once all jobs on the

table complete their current operations. This is shown in Figure 1.1. Jobs have to be loaded on

the rotary table at the loading/unloading station, be transported to the processing machines

subsequently, and finally be unloaded from the rotary table at the loading/unloading station.

The problem is similar to a flow shop without buffers between machines such that jobs in

this flow shop are transported to next machines simultaneously. In addition, unlike the traditional

flow shop, jobs will be transported back to the same loading/unloading station for the unloading

operation. The characteristic of the re-entrance of jobs increases the complexity of scheduling in

this machining center. The objective of the scheduling problem is to determine an optimal job

sequence which minimizes the makespan. The manufacturing cell with a single processing

5

machine will be investigated first. Furthermore, an extension which is to increase the number of

processing machines in the machining center to two is also considered.

Figure 1.1. A T-line machining center with m machines

1.3 Research Objectives and Contributions

For the scheduling problem in a two-machine flow shop with a single transporter, the

objective is to develop an improved algorithm to obtain the optimal solution efficiently. The

research also explores a new flow shop scheduling problem with two special characteristics: the

synchronous job transfer and job re-entrance. For the application in a flow shop, one of the

focuses of this research is to identify the complexity and some properties of the problem. In

addition, developing algorithms to obtain optimal or near-optimal solutions in a reasonable time

is another objective of the research.

CNC1

L/U Station

pallet

CNC2

CNCm

CNCi

pallet

Rotary Table

6

Contributions of this study are summarized as follows:

1. For the special case in a two-machine flow shop with transportation considerations, a

dynamic programming algorithm is proposed to solve the problem in polynomial time when

the transporter’s capacity is greater than or equal to a derived threshold value. In an optimal

schedule, the maximum number of jobs be transported in every batch is always not greater

than the threshold value. The complexity of the algorithm is shown to be O(n
3
), where n is

the number of jobs.

2. A new flow shop scheduling problem in an automated manufacturing cell with synchronous

material movement and job re-entrance is investigated. The complexity of the problem with a

single machine is proven to be strongly NP-hard by showing that the problem is equivalent to

the numerical matching problem with target sums, which known to be strongly NP-hard.

3. A dynamic programming algorithm is provided to obtain an optimal schedule for the

machining center with one machine. The computational effort of the algorithm also shows

the exponential time complexity of the problem. However, the dynamic programming

algorithm can still obtain an optimal solution efficiently for small and medium size problems.

In addition, the dynamic programming algorithm is extended to a two-machine case and a

generalized model with m machines.

4. Two-phase heuristic algorithms are developed to obtain an optimal or near-optimal solution

for the scheduling problem in a T-line machining center with one machine as well as for the

problem with two machines. Two constructive heuristics are proposed to generate an initial

sequence for both problems. For the improvement phase, a modified neighborhood search is

suggested which integrates the pairwise interchange scheme and a mechanism for avoiding

trapping in a local optimum. A sets of computational experiments are conducted including

7

small, medium, and large-size problems combining three different settings on the loading,

processing, and unloading times. The results show that the proposed two-phase algorithms

rapidly generate a solution within 1% from the optimum or 3% from the lower bound for the

one-machine problem, and 2.3% from the optimum or 6.25% from the lower bound for the

two-machine problem.

5. Lower bounds are derived for the one-machine and two-machine problems. The experimental

results show that on average the lower bounds from the optimal makespans are at most 2.1%

and 4.6% for the small and medium size problems, respectively. Therefore, the proposed

lower bounds provide an insightful reference for the optimal value when the optimum is

unlikely to be obtained. Furthermore, a method to derive a lower bound is also provided for a

generalized model with m machines.

6. For the one-machine problem with synchronous material movement, a polynomial time

algorithm, O(n
3
log n) , is provided to obtain an optimal sequence when the unloading or the

loading times for all jobs are common.

1.4 Thesis Overview

The remainder of this thesis is organized into five additional chapters as follows. Chapter

2 reviews the relevant literature on scheduling, flow shops, job shops, automated manufacturing

cells, and complexity theories as well as the research which considers transportation times and

transporters.

In Chapter 3, a special case of the two-machine flow shop problem with transportation

times is introduced. The problem assumes the processing times on the first machine are common

8

and the capacity of the transporter is greater than or equal to a threshold value. A dynamic

programming algorithm is developed to solve the problem. The complexity of the proposed

algorithm is analyzed and compared to that of the algorithm developed by Lee and Chen (2001).

Chapter 4 studies the scheduling problem of an automated manufacturing cell consisting

of one loading and unloading station, one machine, and one material handling device (a rotary

table). There are six main sections in this chapter. First, the problem of sequencing jobs in this

manufacturing cell regarding the makespan objective is shown to be strongly NP-hard. Second, a

polynomial algorithm is proposed to solve a special case with a constant loading time or

unloading time. Third, a dynamic programming algorithm is formulated for this problem and the

computational effort of the algorithm is analyzed. Fourth, two constructive heuristics

respectively combined with a modified neighborhood search are developed to obtain a high

quality solution efficiently for the problem in a large scale. In the last two sections, the

experimental designs to evaluate the performance of the heuristic algorithms and the results are

presented.

In Chapter 5, an extension of the scheduling problem in the automated manufacturing cell

is considered. In this extension, the manufacturing cell also consists of one loading and

unloading station and one rotary table, but two machines. The dynamic programming algorithm

developed in Chapter 4 is modified for the problem with two machines. Additionally, two

heuristic algorithms in the constructive stage are provided to form a sequence as the initial seed

for the improvement stage. Similar to the experimental designs for the one-machine problem, the

computational evaluation and results for the proposed algorithms are presented. Furthermore, a

9

generalized dynamic programming algorithm and the analysis of its computational effort are

presented for the general problem with m machines. To obtain a lower bound value for the

generalized problem is also presented.

Lastly, conclusion of the study and future research are outlined in Chapter 6.

Chapter 2

Literature Review

2.1 Scheduling

Scheduling is to allocate limited resources to tasks over time such that certain objectives

or goals can be achieved or optimized. Leung (2004) states that “Scheduling is a form of

decision-making that plays an important role in many disciplines. It is concerned with allocation

of scarce resources to activities with the objective of optimizing one or more performance

measures”. The resources may take many forms such as number of machines, work force, service

points, raw materials, crews and airplanes. The tasks can be manufacturing operations, serving

customers, flights of the airplanes, and delivery of goods. The objectives could be the

minimization of the completion time of jobs, maximization the number of orders that meet the

due dates, or minimization the average service time. Pinedo (1995) also defines scheduling as a

decision-making process that exists in most manufacturing and production environments as well

as in most information-processing systems. Other examples of scheduling can also be found in

transportation and distribution settings as well as in other types of service industries.

In the field of scheduling, there exists a vast amount of research and literature conducted

in the past five decades. Many review papers and books in this research area have been published

and extensive bibliographies are also available such as Panwalker and Iskander (1977), Graves

(1981), Pinedo (1995), Baker (1995), Lee et al.(1997), and Framinan et al. (2004). Graves

(1981) classifies production scheduling problems into three dimensions based on the general

11

characteristics of both scheduling theory and practice: (1) Requirements generation, (2)

Processing complexity, and (3) Scheduling criteria. Processing complexity is concerned

primarily with the number of processing steps associated with each production task or time.

Based on this dimension, production scheduling is commonly categorized as follows:

 One-stage, one-processor (facility)

 One-stage, parallel processors (facilities)

 Multistage, flow shop

 Multistage, job shop

Graves further comments that theoretical insight from simpler problems is often the first step in

tackling more complex problems. Hence, one part of this research will consider one-machine

case to explore the properties of the problem, and then extend the problem to two machines

followed by the generalized problem with m machines. Literature regarding flow shop and job

shop problems is reviewed in the following sections. Section 2.4 provides a review of literature

which considers the transportation times. Section 2.5 reviews the research in the field of

scheduling in automated manufacturing cells. In Section 2.6, the complexity theory is presented.

Typically, a scheduling problem is described by a three-field notation α | β | γ introduced

by Graham et al. (1979). The α field describes the machine environment and contains a single

entry. Common notations used in the field are summarized as follows:

 mF : a flow shop with m machines.

 mJ : a job shop with m machines.

 mO : an open shop with m machines.

 mP : m identical machines in parallel.

12

The β field provides details of processing characteristics and constraints and may contain

no entries, a single entry, or multiple entries. The entries in this field could be preemptions,

precedence constraints, machines breakdown, permutation, blocking, recirculation, and particular

processing times described as follows:

 Preemptions (prmp): Preemptions imply that a job is allowed to interrupt during its

processing on a machine at any time.

 Precedence constraints (prec): one or more jobs may have to be completed before

another job is allowed to start its processing.

 Breakdowns (brkdwn): a machine is not available when breakdown occurs.

 Permutation (prmu): A constraint that appears in a flow shop requires all machines

process the jobs according to the same order.

 Blocking (block): Due to a limited buffer in between two successive machines, a job

cannot be released to the downstream machine if the buffer is full.

 Recirculation (recre): a job may visit a machine more than once.

Because of the new characteristics studied in this research, two notations are introduced in the β

field as follows:

 Synchronous material movement (synmv): Synchronous material movement implies

that jobs are transferred to the next machines simultaneously.

 Reentrance (re-LU): a job has to visit the loading/unloading station two times: to be

loaded before being processed and be unloaded after completing processes.

13

The γ field contains the objective to be achieved and usually contains a single entry. The

possible objectives could be the makespan, the maximum lateness, the total weight completion

time, the total weighted tardiness as well as the weighted number of tardy jobs.

 Makespan (maxC): the makespan is the completion time of the last job to leave the

system.

 Maximum lateness (maxL): the maximum lateness is the worst violation of the due

dates among all jobs.

 Total weighted completion time (j jw C): the sum of the weighted completion

times of n jobs where jw is the given weight and jC is the completion time of job j.

 Total weighted tardiness (j jw T): the sum of the weighted tardiness of n jobs

where jT is defined as max(0, jC - due date of job j).

 Weighted number of tardy jobs (j jw U): the sum of the weighted number of tardy

jobs where jU is equal to 1 when 0jT  ; otherwise jU is zero.

2.2 Flow Shop

Jobs have to be processed on a sequence of machines in the same order, which implies all

jobs have identical processing flow. This setting of the manufacturing environment is referred to

as a flow shop. In the practical industrial environment, this type of manufacturing is employed

due to many advantages it brings for the planning and management of production activities

which are enabled by technological developments such as general purpose machines and flexible

manufacturing systems (Zegordi et al. 1995). In a pure flow shop, there are m machines and each

14

job contains m operations, each operation requires to be processed by different machines. All

jobs are to be processed on every machine in the same flow. As shown in Figure 2.1, based on

the definition by Baker (1995), jobs in a general flow shop may require fewer than m operations,

their operations may not always require adjacent machines in the numbered order. The initial and

final operations may not always occur at machine 1 and m, but the flow of work is still

unidirectional.

Figure 2.1. Workflow in a general flow shop (Source: Baker, 1995)

The flow shop problem is one of the best known production scheduling problems and the

simplest multistage scheduling problem, but it is unfortunately a difficult combinatorial problem.

The problem is to determine how to sequence the processing orders on each machine with

respect to given criteria. A nonpreemptive schedule with the criterion of minimizing the

maximum flow time has raised the most interest in research. The permutation flow shop problem

with n jobs and m machines is commonly defined as follows. Each of n jobs is to be sequentially

processed on machine 1 to machine m. The processing time pji of job j on machine i is given. At

any time, each machine can process at most one job and each job can be processed on one

Machine

1

Output

Input

Machine

2

Output

Input

Machine

3

Output

Input

Machine

m

Output

Input

15

machine at a time. The sequence in which the jobs are to be processed is the same for each

machine. The objective is to find a permutation of jobs that minimizes the makespan. It is well

known that for both problems, 2 max||F C and 3 max||F C , there exist optimal solutions that are

permutation schedules in which all machines process the jobs according to the same sequence

(Conway et al. 1967).

The objective of minimizing makespan in a two-machine flow shop problem (2 max||F C)

can be solved in polynomial time by the well-known Johnson’s rule (Johnson 1954): the jobs for

which 1 2j jp p are sorted in nondecreasing order of 1jp and sequenced first, followed by the

remaining jobs sorted in nonincreasing order of 2jp . The Johnson’s rule has significantly

influence on the later research and developments regarding to the flow shop scheduling. Gupta

and Stafford (2006) review the major developments in the field of flow shop scheduling in the

past five decades since the publication of Johnson’s paper. The 3 max||F C problem has been

shown to be NP-Complete for nonpreemptive schedules by Garey et al. (1976). That implies that

it is unlikely to find an optimal solution for the problem with 3m  in polynomial time. One

category of research aims to obtain lower bounds for this type of problems. Lai (1996) presents

an ()O mn two-group heuristic algorithm for the n-jobs, m-machines flow shop permutation

scheduling problems, and shows that the algorithm provides (1) 2m times of the optimal

makespan at the worst case. For the problem 3 max||F C , Chen et al. (1996) proposes an (log)O n n

heuristic algorithm based on the Johnson’s rule to generate a schedule with makespan at most 5/3

times that of an optimal schedule. On the other hand, a large amount of heuristic algorithms have

been developed to yield good approximate solutions to this type of scheduling problems, such as

16

tabu search, simulated annealing, genetic algorithms, ant colony optimization. These heuristics

are reviewed and classified in the study by Framinan et al. (2004), Hejazi and Saghafian (2005),

and Ruiz and Maroto (2005). These studies not only provide an extensive review and evaluation

of many heuristics for the permutation flow shop scheduling problem, but also program and test

a total of 25 algorithms solving Taillard’s (1993) famous 120 instances benchmark.

Metaheuristics

Metaheuristics like Tabu Search, Genetic Algorithms, and Simulated Annealing become

common methodologies to solve more complicated and practical flow shop scheduling problems

to obtain approximately solution effectively since the prevalence of computer technology. The

major literature related to these metaheuristics is discussed below.

Tabu search is particularly designed for escaping from local optimums. This method

starts with an initial solution and then applies a move mechanism to search the neighborhood of

the current solution to choose the most appropriate one. Ben-Daya and Al-Fawzan (1998)

develop a tabu search algorithm, for a flow shop problem with makespan criterion, which

generates neighborhoods by the proposed technique and combines a scheme for intensification

and diversification that has not been considered before. One of the three methods (swapping,

insertion, and block insertion) is randomly selected to generate the next neighbor of the current

sequence. Armentano and Ronconi (1999) investigate the application of tabu search to the flow

shop scheduling problem for minimizing total tardiness. Grabowski and Wodecki (2004) propose

a new very fast local search procedure based on a tabu search approach. In this algorithm, a

17

lower bound on makespan instead of computing the makespan explicitly is used for choosing the

best solution to reduce calculations.

Simulated Annealing (SA) is a neighborhood search technique that produces good

solutions for combinatorial optimization problems. SA employs certain probability to escape

from local optima and the search process can be controlled by the cooling schedule (Hajek

1988). For a flow shop scheduling problem, Zegordi et al. (1995) propose an approach which

combines the simulated annealing methodology with given specific sequencing information and

a tabu search feature. Tina et al. (1999) focus on the generation mechanism of the simulated

annealing algorithm, and six types of perturbation schemes for generating random permutation

solutions are introduced. They demonstrate that the SA algorithm can produce very efficient

solutions to different combinatorial optimization problems by adopting a proper perturbation

scheme. In order to enhance the performance of the genetic search and to avoid premature

convergence, Wang and Zheng (2003) propose a hybrid heuristic which replaces the mutation

operator by the SA’s metropolis sample process. The metropolis sample process replaces the

mutation operator with a mutation rate adjusted by the controlled temperature to control the

search behavior. Low (2005) addresses a flow shop scheduling problem with unrelated parallel

machines by a simulated annealing-based heuristic. This problem considers independent setup

times as well as dependent unloading times, and the objective is to minimize the total flow time.

Genetic algorithms (GAs) are powerful search techniques which have been widely

applied to many optimization fields. The concepts of genetic algorithms are based on the

mechanics of natural selection and natural genetics. The paper by Reeves (1995) attempts to

18

apply GAs to the flow shop sequencing problem. This research shows that GA will perform

relatively better for large-size problems, reach a near-optimal solution rather more quickly,

compared to simulated annealing algorithms. Ponnambalam et al. (2001) develop a genetic

algorithm and compare it with five heuristics for the makespan objective to solve the flow shop

problems. The proposed genetic algorithm is found to yield much better quality solutions and

computationally efficient as well. Wang et al. (2003) propose an order-based genetic algorithm

which is inspired by ordinal optimization to ensure the quality of the solution found. They show

that a good enough solution can be guaranteed with a high confidence level and reduced

computation effort by numerical simulation results.

The ant colony system (ACS) first proposed by Dorigo and Gambardella (1997) is one of

the most recent and promising metaheuristics for combinatorial optimization problems. Ant

colony optimization (ACO) simulates the collective foraging habits of ants, venturing out for

food and bringing it back to the nest (Hejazi and Saghafian 2005). Ying and Liao (2004) develop

an ACS algorithm for a permutation flow shop scheduling problem with minimizing makespan

as the objective. The proposed algorithm is compared with other metaheuristics such as genetic

algorithm, simulated annealing, and neighborhood search from the literature. The computational

results show that the ACS algorithm is a more effective metaheuristic. Rajendran and Ziegler

(2004) consider the objective of minimizing total flowtime in a flow shop scheduling problem

and propose ACS algorithms. The proposed algorithms have been applied to 90 benchmark

problems taken from Taillard and yield better solutions compared with the other heuristics.

19

Stochastic Flow Shop Scheduling

Most of the scheduling models that have been developed assume that parameters of

problems are deterministic. Regarding the development of stochastic models in flow shop

problems, Gupta and Stafford (2006) indicate research that includes stochastic assumptions is not

prevalent. However, stochastic scheduling problems still attract a substantial number of

researchers to work on them.

In a two-machine flow shop, when the processing times on both machines are

independent and exponential random variables, Talwar (1967) developed a rule to sequence jobs

so that the sequence minimizes the expected makespan. Pinedo (1983) consider one-machine

scheduling problem in which the job processing times are independent exponentially distributed

random variables. They show that simple policies often minimize such criteria as the expected

weighted sum of completion times and weighted number of late jobs. A flow shop scheduling

problem with m identical machines in which the job processing times are random variables is

investigated in the paper by Pinedo (1985). Sequencing jobs in the descending order of expected

amount of processing times stochastically minimizes the makespan. Kijima et al. (1990) also

study a stochastic flow shop scheduling problem with m identical machines. In this flow shop,

however, the buffer sizes between machines are not unlimited. They provide a schedule policy

which generates the minimum expected makespan.

Allahverdi and Mittenthal (1995) consider a two-machine flow shop problem with

stochastic machine breakdowns. Under certain conditions on the distributions of the machine

breakdowns, the Johnson's rule minimizes the makespan stochastically. Kamburowski (1999)

20

consider a two-machine stochastic flow shop with an unlimited storage between machines. They

present a sufficient condition which has less restrictive assumptions on the job processing time

distributions for the optimal schedule when the objective is to minimize the makespan.

Balasubramanian and Grossmann (2002) consider a flow shop scheduling problem with

uncertain processing times described by discrete probability distributions. They propose a

branch-and-bound algorithm based on a probability disaggregation scheme. The value obtained

by letting the uncertain processing times be replaced with their mean values is the lower bound

on the expected makespan for a given sequence. They also show the algorithm provides excellent

approximations to the expected makespan of a given sequence for the case of continuous

probability distributions of certain forms by using a discretization scheme.

Gourgand et al. (2003) develop a recursive algorithm to evaluate the performance of the

m-machine flow shop scheduling problem with exponentially distributed job processing times.

The algorithm is based on Markov chains to compute the expected makespan and a discrete

event simulation model to evaluate the expected makespan. Several heuristics (e.g., Rapid Acess)

and metaheuristics (e.g., simulated annealing) are integrated with the recursive algorithm to

obtain near-optimal solutions in a short time for two-machine problems. Wang and Zhang (2006)

propose a simulated annealing approach combined with hypothesis test for an m-machine flow

shop scheduling problem. In this flow shop setting, the job processing time is a random variable

with uniform distribution. By using hypothesis test, solution performance can be reasonably

estimated so that the searching efficiency can be improved.

21

Kalczynski and Kamburowski (2006) assume job processing times are independently and

Weibull distributed random variables with a common coefficient of variation. They propose a

sequencing rule for the expected makespan minimization. The simulation experiments indicated

that the rule might find a schedule with the minimum expected makespan, but its optimality

cannot be proven analytically.

2.3 Job Shop

In a job shop, each job can have its own routing which is the sequence of being processed

on machines, but these routings are predefined and fixed. In a flow shop, there is a single

routing; that is all jobs are sequentially processed by machines. In a job shop, however, each type

of jobs could pass through a set of machines in different sequences as shown in Figure 2.2. Job

shop scheduling is to find the job sequences on each machine based on an objective while a job’s

routing is given. It is the most general production scheduling problem and it seems to be capable

of capturing the nature of most production environments. In the two-machine problem, for

example, some of the jobs are processed from machine 1 through machine 2, but the others go

through machine 2 first and then machine 1. Additionally, there could be some jobs only

requiring one of the machines. The problem 2 max||J C can be reduced to or equivalent to

2 max||F C and be solved by the Jackson’s rule.

22

Figure 2.2. Workflow in a job shop (Source: Baker, 1995)

Although the job shop is more flexible and has less restriction on jobs, it is the most

difficult production scheduling problem to solve from the perspective of optimization. It is well

known that most of job shop scheduling problems are NP-hard (Lenstra and Rinnooy 1979).

Hence, nonpreemption of jobs and minimizing makespan are the most common assumptions.

Graves (1981) indicates that branch and bound is the most common optimization approach to

address the job shop problem where various procedures differ primarily with respect to the

branching rules, the bound mechanism, and the generation of bounds. In addition, the problem

consisting of ten jobs and ten machines is the well-known benchmark introduced by Fisher and

Thompson in 1963. Even for a small-size problem, it is difficult to find optimal scheduling

efficiently, not to mention a large-scale problem. In the paper by Jain and Meeran (1999), a

broad review on the state-of-the-art job shop scheduling techniques are provided.

Pezzella and Merelli (2000) propose a heuristic method for solving the minimum

makespan problem of job shop scheduling. The proposed local search method is based on a tabu

Machine K

Leaving Jobs

Arriving Jobs

In-process

jobs

In-process

jobs

23

search technique and a shifting bottleneck procedure to generate the initial solution and refine the

next current solutions. Ponnambalam et al. (2000) develop a tabu search algorithm for job shop

scheduling problems and adopt an adjacent pairwise interchange method to generate the

neighborhoods. Hurink and Knust (2002) consider a single transporter scheduling in a job shop

environment. The objective is to determine a sequence to minimize the sum of all traveling and

waiting times of the transporter. They present a tabu search algorithm for this problem and show

that the algorithm yields a good upper bound in a short amount of time. Nowicki and Smutnicki

(2005) provide a tabu search-based algorithm which adopts some elements of path relinking

techniques to generate initial solutions. The computational results show that the proposed

algorithm offers a very accurate solution to solve the job shop problem with the makespan

criterion in a short time.

Wang and Zheng (2001) develop a general, parallel, and easily implemented hybrid

optimization framework, and apply it to job shop scheduling problems by combining two global

probabilistic search algorithms: GA and SA. During the hybrid search process, GA provides a set

of initial solutions for SA at each temperature to generate neighbor solutions, and GA uses the

solutions found by SA to continue parallel evolution. Dai and Weiss (2002) propose a heuristic

algorithm which uses safety stock and keeps the bottleneck machine busy at most of the time,

while the other machines are constrained by the bottleneck machine. Kis (2003) develops two

heuristic algorithms: a tabu search and a genetic algorithm for a job shop scheduling with

alternative routings. They demonstrate that the tabu search is superior to the GA both in terms of

solution quality and computation time. Mattfeld and Bierwirth (2004) consider job shop

scheduling problems with release and due-dates, and with various tardiness objectives. They

24

employ the GA with a heuristic reduction of the search space which helps the algorithm to find

better solutions in a shorter computation time. Two ways of reducing a search space are

investigated by considering decisions made at machine and shop floor level. Gonçalves et al.

(2005) propose a hybrid genetic algorithm for the job shop scheduling problem. The schedules

are constructed using a priority rule in which the priorities are defined by the genetic algorithm.

After a schedule is obtained, a local search heuristic is applied to improve the solution. The

algorithm produces solutions with an average relative deviation of 0.39% to the best known

solution on a set of 43 testing problems.

2.4 Flow Shop with Transfer Times and Transporters

Extensive literature can be found in machine scheduling involving time lag which is the

time between the completion of an operation and the beginning of the next operation of a job in a

production system. It can be referred to as the transportation, cooling, or heating time. In our

research, the time lag is considered as the transportation time which is attributed to the actual

transportation of a job between the processing machines by transporters or AGVs. In the

classical models, it is assumed that jobs can be transported between machines instantaneously.

The ideal assumption would not be applicable to most practical production environments. There

are two types of transportation time consideration in the literature: one considers only the time

lag, which implies transporters are always available such as Szwarc (1983), Dell’Aimco (1996),

Schutten (1998), Strusevich (1999), Rebainel and Strusevich (1999), and Karuno and Nagamochi

(2003); the other explicitly takes both transportation time and availability of transporters into

consideration such as Levner et al. (1995), Hurink and Knust (2001), Oulamara and Soukhal

25

(2001), Lee and Chen (2001), Lee and Strusevich (2005), and Soukhal et al. (2005). The details

of these papers are described later in this section.

In these models, several attributes can be configured according to real manufacturing

systems: (1) processing times on machines, (2) transportation times between machines, (3)

number of transporters, and (4) capacity of a transporter. Both processing times and

transportation times for jobs can be characterized as job-independent and job-dependent. The

number of transporters and its capacity could be greater than one to increase the complexity and

practicality of a model.

The job-dependent processing times can be found in production lines with mix jobs or

products where different types of jobs require different processing times. The two-machine flow

shop problem with constant transportation times but job-dependent processing times has been

shown to be NP-hard in the strong sense by Hurink and Knust (2001). The job-independent

transportation times can be found in the production processes when the transportation times

depend on the distance between the machines, rather than on the weight or size of a job to be

transported. The job-dependent transportation times, on the other hand, would consider attributes

of jobs such that each job has different transportation times. Most research assumes job-

independent transportation times because the problem with job-dependent transportation times is

proven to be strongly NP-hard (Yu 1996; Hurink and Knust 2001). Moreover, the times of a

transporter to travel back and forth between two machines can be another variable of the model.

If these two travel times are job-independent but not equal, the problem has also been shown as

strongly NP-hard (Yu 1996; Yu et al. 2004).

26

When physical transporters or AGVs are considered in transportation models, only one

transporting device is assumed in most studies. Lee and Chen (2001) not only consider multi-

transporters in the two-machine flow shop problem but also develop a dynamic programming

algorithm to tackle the problem in a special case where identical processing times on one of the

two machines is assumed. Furthermore, the question regarding to capacity of a transporting

device will arise if the device is physically incorporated in the model. Carrying one job at a time

is the most common assumption and simpler to address. In these study (Lee and Chen 2001;

Oulamara and Soukhal 2001; Lee and Strusevich 2005; Soukhal et al. 2005), several cases of the

capacity of a transporter greater than one are studied. In our study, the capacity of a transporter

will also be considered.

In the following paragraphs, the literature which is relevant to our research is elaborated:

Szwarc (1983) considers two models for flow shop problems: one with time lags between

machines and another one with distinct setup, processing, and release times. Lower bounds of the

completion time for both cases are developed by solving some classical two-machine flow shop

problems, and choosing the best permutation as an approximate solution. Levner et al. (1995)

consider a flexible manufacturing cell consisting of two machines, automated storage/retrieval

stations, and one transporting robot. Transportation between the input/output stations and

machines, and between two machines is performed by a mobile transporting robot. Loading and

unloading operations are also performed by the same robot. The transporting robot can carry

only one job at a time, and there is no buffer storage for work-in-process (WIP). They solve the

27

problem in polynomial time by using a graph-based approach for a small-scale flexible

manufacturing cell with job-dependent processing and material-handling operations.

Lee et al. (1997) review several articles which consider transportation time. The general

model of the problem assumes all jobs are ready at the time zero and each job has its own routing

and processing time. There are identical transporters to deliver jobs between machines, and these

transporters travel on a shared network where no traffic collision can occur. All the operations by

the transporters are non-instantaneous and non-preemptive. Neither a machine nor a transporter

can hold more than one job at any time. The problem is to find a schedule for job sequencing and

time-phased dispatching and routing of transporters so that a given objective is optimized. They

divide recent work related to this model into three categories:

(1) Robotic cell scheduling;

(2) Scheduling of automated guided vehicles; and

(3) Cyclic scheduling of hoists subject to time-window constraints.

In the paper, they also review some of recent developed methodologies for scheduling problems

on these topics. The general versions of these problems are all NP-hard in the strong sense. Most

of these problems, especially those encountered in real systems, are so complicated that a formal

mathematical formulation can’t be obtained.

Anwar and Nagi (1998) indicate the basic elements of AGV system design: (1) guide

path network design (2) optimal number of AGVs, (3) vehicle dispatching, (4) vehicle routing

and (5) traffic control. They consider simultaneous scheduling of material handling transporters

and manufacturing equipments (such as machines and workcenters) in the production of complex

28

assembled products and propose an effective heuristic algorithm which employs a critical-path-

based scheduling approach and a just-in-time methodology to minimize the production makespan

of large and complex assemblies as well as WIP costs.

In the paper by Schutten (1998), transportation times are taken into consideration by

extending the Shifting Bottleneck (SB) procedure for the classical job shop to deal with practical

features. The SB procedure decomposes the problem of scheduling a classical job shop into a

series of single-machine scheduling subproblems such that these practical features can be easily

applied. In addition, the SB procedure generally produces good solutions for job shop problems

in relatively short computation time compared to tabu search and simulated annealing

algorithms.

Strusevich (1999) proposes a heuristic algorithm to solve two-machine open-shop

scheduling problem with arbitrary transportation times in polynomial time. In an open shop

problem, the processing routings of jobs are not given in advance, but have to be determined

with respect to the objective criteria. The algorithm is an extension from the Gonzalez-Sahni

algorithm which partitions the set of jobs into two subsets and finds the permutation that defines

a certain flow shop schedule for each subset. The analysis of the algorithm shows that the

resulting makespan is at most 3/2 times the optimal value at any worse case. Rebainel and

Strusevich (1999) consider the problem with special transportation times. If the largest

transportation time does not exceed the smallest processing time, the optimal schedule can be

obtained by the proposed linear time algorithm. They also present an algorithm that creates a

heuristic solution to the problem with job-independent transportation times and show that the

29

algorithm provides a worst-case performance ratio of 8/5 if the transportation time of a job

depends on the assigned processing route. The ratio reduces to 3/2 if all transportation times are

equal. Given that n is the number of jobs, Karuno and Nagamochi (2003) prove that the bound

can be improved by designing an algorithm that delivers a (11/6)-approximation solution in

(log) O n n time.

Another type of problem consists of two machines and one transporting robot. Processing

times of jobs are arbitrary, but transportation times are constant for all jobs. The problem was

shown to be NP-hard in the strong sense by Hurink and Knust (2001). Jobs have to be

transported by the robot between machines, and only one job can be carried at a time. Unlimited

buffer space is assumed. Additionally, they also show the problem with constant processing

times on both machines, but arbitrary transportation times between machines for each job is

strongly NP-hard. The similar proof can also be found in Yu’s research (1996; Yu et al. 2004)

which assumes the constant processing time equal to one. In a special case, a polynomial

algorithm is proposed to solve the multi-machines flow shop problem with all processing times

equal to one and transportation times between two adjacent machines are constant.

In the paper (Lee and Chen 2001), transportation time is explicitly considered. In

addition, multiple transporters and capacity are also considered. They study two types of

transportation problems. The first one, denoted as “Type-1”, considers intermediate

transportation in a flow shop between two machines. The second one, denoted as “Type-2”, is to

analyze the delivery of finished jobs to customers. The computational complexity of different

scenarios is shown and open problems are also underlined. One of these problems with two

30

machines, one transporter, and the capacity of the transporter greater than three, is shown to be

strongly NP-hard even if the transportation times are all equal. If processing times of all jobs on

first machine or on the second machine are equal, the problem is solvable by a dynamic

programming algorithm proposed in this paper even when there are multiple transporters with

capacity greater than 1. Lee and Strusevich (2005) present the best possible (3/2)-approximation

algorithm with at most two shipments for the two-machine flow shop problem with one

unlimited capacity transporter.

The paper (Oulamara and Soukhal 2001) investigates flow shop scheduling models that

explicitly consider constraints on both transportation times and buffer capacities with the

objective function of minimizing the makespan. Finished jobs also need to be delivered to a

customer or a warehouse by one vehicle which is assumed to have capacity of two jobs. The

problem could be regarded as the “Type-2” problem according to Lee and Chen (2001). Based

on these assumptions, they show the problem with unlimited buffer between machines is strongly

NP-hard as well as the problem with no buffer storage between machines. Due to the complexity

of the problems, they propose four greedy algorithms to solve the problems and compare the

performance of these methods. Furthermore, Soukhal et al. (2005) prove that the Type-2

problems with the vehicle’s capacity equal to three are NP-hard in the strong sense.

2.5 Automated Manufacturing Cell

Most of the literature regarding automated machining centers or robotic cells considers

the scheduling of jobs and robot moves between machines. In these manufacturing cells, parts

are usually loaded and unloaded in different locations and material movement between stations is

31

asynchronous. Sethi et al. (1992) study the problem of sequencing jobs and robot moves in a

robotic cell where a single robot is used to transport jobs between stations. The cell is a flow

shop system where jobs pass sequentially through the input station, machine stations, and the

output station. They show that only two possible optimal policies of robot moves exist for the

two-machine robotic cell scheduling problem with a single part type. For the problem with

multiple part-types, a polynomial time algorithm is derived to minimize cycle time for a given

fixed sequence of robot moves.

Levner et al. (1995) propose a polynomial-time algorithm to obtain the minimum

makespan for a two-machine robotic cell. In this robotic cell, there are two robots dedicated to

load and unload jobs in each machine, and the loading and unloading times are job-dependent.

There is also a transporting robot to move jobs from the first machine to the second machine. In

addition, a job completed on the first machine should be transported to a storage buffer which is

located in the range of the robot dedicated for the second machine.

Logendran and Srisjandarajah (1996) develop analytical methods for determining an

optimal sequence of jobs and robot moves with minimum cycle time in three different types of

two-machine robotic cells: a robot-centered cell, a mobile robot cell, and an in-line robot cell as

shown in Figure 2.3, Figure 2.4, and Figure 2.5. They consider the scheduling of single part-type

and multiple part-types problems in these three cellular layouts, respectively.

32

Figure 2.3. Robot-centered cell layout (Logendran and Srisjandarajah 1996)

Figure 2.4. Mobile robot cell layout (Logendran and Srisjandarajah 1996)

Figure 2.5. In-line robot cell layout (Logendran and Srisjandarajah 1996)

InputOutput
Robot

Machine 1Machine 2

InputOutput

Robot

Machine 1Machine 2

Mobile base

Robot 1Robot 2

Conveyor

33

Given that n is the number of jobs, Hall et al. (1997) provide a O(n
4
) time algorithm to

obtain an optimal part sequence and robot moves in a two-machine robotic cell with multiple

part-types. Aneja and Kamoun (1999) formulate this problem as a traveling salesman problem

with a special cost structure, and improve the complexity of the algorithm from O(n
4
) to

(log)O n n . Dawande at el. (2005) present a survey and summary of the recent developments

regarding scheduling in robotic cells. They provide a classification scheme for the scheduling

problems of robotic cells based on the characteristics of the manufacturing cells such as robot

devices, machine environments, and processing restrictions. They also discuss implementation

issues and the use of optimal policies for different system settings.

Synchronous transportation of jobs between stations is a particular characteristic of the

machining center addressed in this study. Without considering the L/U station, if there are only

two machines or stations in the machining center with the mechanism of synchronous material

movement, the problem is equivalent to a two-machine flow shop problem with blocking which

can be solved in polynomial time by Gilmore-Gomory algorithm (Gilmore and Gomory 1964).

Hall and Sriskandarajah (1996) prove a three-machine flow shop problem with blocking is

strongly NP-complete. However, a three-machine flow shop with synchronous material

movement is not reducible to the problem with blocking, because the constraint of blocking only

restricts transfer of a job between two successive machines. In the problem with blocking, for

example, a job completed on the second machine can be released to the third machine while it

becomes idle. In the case of synchronous transfer, however, the job processed by the second

machine can only be released to the downstream machine while both of the first and third

machines finish their current operations.

34

Soylu et al. (2007) consider a flow shop scheduling problem with synchronous transfer

between stations. They develop a brand-and-bound algorithm with several lower and upper

bounds to efficiently obtain the minimum makespan for a moderate-sized problem. They indicate

this type of manufacturing system with synchronous transfer is advantageous when set-ups for a

transporter are timely or costly, or when buffer spaces are limited between stations or jobs are

physically large.

2.6 Computational Complexity Theory

The notion of complexity refers to the computing effort required by an algorithm to solve

a problem. The computing effort could be measured by time and space required by a computer.

Running time of an algorithm can also be measured by the number of steps or elementary

operations required. The goal of the complexity theory is to classify problems and algorithms

according to the computing effort required. Before developing or constructing the solution to a

given problem, the knowledge about the complexity of the problem will provide valuable

information to decide what approaches are more suitable to be employed.

There are two classes to categorize a problem: the class P and NP. A problem belongs to

the class P is that there exists an algorithm to solve the problem in polynomial time. A

polynomially solvable problem requires computing effort bounded by a polynomial in the length

of the problem encoding. The class NP is essentially the set of problems which do not have

polynomial time algorithms. A problem is called NP-hard if every problem in the class NP

polynomially reduces to that problem. Not all problems within NP-hard class are equally

35

difficulty. A problem, referred to as strongly NP-hard, can not be solved in a polynomial time

even as a function of the size of the problem in unary encoding. Otherwise, the problem is

referred to as NP-hard in the ordinary sense or simply NP-hard. Furthermore, if an optimization

problem is NP-hard, the associated decision problem is referred to as NP-complete.

According to the paper by Garey and Johnson (1979), two properties of the NP-complete

problems can be concluded as follows:

(1)No NP-complete problem is known to be solvable by a polynomial time algorithm.

(2)If a polynomial time algorithm for one of the NP-complete problems exists,

polynomial time algorithms will be obtained for all the NP-complete problems.

As a result, once a problem can be proven to be NP-complete, it is wise to adopt heuristic

approaches to obtain an approximate solution because the existence of a polynomial time

algorithm to obtain the optimal solution is unlikely. During the past several decades, many

problems have been shown to be NP-complete. The principal technique to demonstrate NP-

completeness of a given problem is to transform any instances to a known NP-complete problem.

If any instance of the given problem is polynomially reducible to a NP-complete problem and the

transformation also holds in the opposite direction, then the given problem can be categorized as

NP-complete. One of the well-known problems is the 3-partition (Garey and Johnson 1979),

which is commonly adopted to prove a given problem as NP-complete in the strong sense. Yu

(1996), Lee and Chen (2001), and Hurink and Knust (2001) prove different configurations of

flow shop problems with transportation times as NP-complete by transforming them as 3-

Partition problem presented as follows.

36

3-Partition Problem

Instance: Given a set of A which includes 3m elements: 1 2 3{ , ,..., }mA a a a .Each element

in A is an integer number satisfying ; 1,...,3
4 2

i

B B
a i m   and such that

3

1

m

ii
a mB


 for

some integer B.

Question: Does there exist a partition of the set A into m disjoint subsets with 3 elements

1 2, ,..., mA A A such that
ii Aj

a B


 for 1,...,j m ?

In scheduling problems, the complexity of problems with different settings has been

investigated and studied intensively. Garey and Johnson (1979) provide an extensive list of

known NP-complete or NP-hard problems for reference. Furthermore, a hierarchy of problems

that describes the relationships between hundreds of scheduling problems is established due to

considerable devotion of researchers. The hierarchy could provide information on how the

complexity of a problem will be affected when one of settings or objectives is changed. Figure

2.6 shows the complexity hierarchies of deterministic scheduling problems associated with

machine environments and objective functions.

37

Figure 2.6. Complexity hierarchies of deterministic scheduling problems:

(a)machine environment, (b) objective functions (Source: Pinedo, 1995)

Rm

Qm FFs Jm

Pm Fm Qm

1

∑wjCj ∑Tj ∑Uj

∑Cj Lmax

∑wjTj ∑wjUj

Cmax

(a)

(b)

Chapter 3

Two-machine Flow Shop with Transportation Considerations

3.1 Introduction

In a flow shop manufacturing system, semi-finished jobs are transferred from one

machine to another by transporters. Each job has to be sequentially processed on machine 1 first,

then machine 2, and until the last machine m. Typically, transportation times between machines

are neglected or the availability of transporters are ignored. In this study, however, not only the

transportation times but also the availability of transporters are explicitly incorporated into the

model. As this production system, a two-machine flow shop model is considered.

In the two-machine flow shop, all jobs start on machine 1 and finish operations on

machine 2. Each machine can only process one job at a time, and preemption is not allowed. All

jobs are available at time zero and wait for processing in the input buffer of machine 1. The

processing time on machine l for job j is denoted as 1jp and on machine 2 as 2jp . After the

operation on machine 1 is completed, jobs are stored at the output buffer of machine 1 and wait

to be transported to machine 2. Jobs transported together in one shipment from machine 1 to

machine 2 by a transporter are defined as a batch. After being transported to machine 2, these

jobs wait to be processed in the input buffer of machine 2. The buffer sizes are assumed to be

unlimited. The transporter takes 1t to travel from machine 1 to machine 2, and 2t to return to

machine 1. The departure time of thk batch on machine 1 is denoted as kd . We also assume that

39

there is one transporter in the system and its capacity is denoted as c. Loading and unloading

times of jobs on machines are negligible or they are assumed to be included in processing times.

Similarly, times to load and unload jobs on the transporter are neglected or they are assumed to

be included in the transportation times.

The performance measure is makespan, Cmax, which is widely adopted as an objective

criterion because of its simplicity for mathematical formulation and theoretical analysis. In the

study, we also set the minimum makespan as the objective and follow the commonly used three-

field notation | |   to represent a machine scheduling problem. In the  field, 2TF denotes

the two-machine flow shop scheduling problem with transportation times between machines

which is used in the paper by Lee and Chen (2001). In the  field, v denotes the number of

transporters, and c denotes the capacity of the transporter. In the r field, Cmax is the objective of

the problem. Hence, the scheduling problem to minimize makespan in a two-machine flow shop

with x transporters and the capacity of each transporter equal to y is represented as

2 max| , |TF v x c y C  . The notations for the problem are summarized as follows:

 n: total number of jobs need to be scheduled,

 j: index of a job, j=1, 2, …, n,

 i: index of a machine, i=1, 2 ,

 pji: processing time of job j on machine i,

 v: number of transporters,

 c: capacity of a transporter (number of jobs that can be carried at a time) ,

 u: maximum number of jobs to be transported in each batch (u c),

 Cmax: the completion time of last job,

40

 t1:busy transportation time from machine 1 to machine 2,

 t2: empty transportation time from machine 2 to machine 1,

 kd : the departure time of thk batch on machine 1.

3.2 Dynamic Programming Algorithm for 2 1 1 max| , 1, |jTF p p v c u C  

In general, the two-machine flow shop problem could be decomposed as two

subproblems. The first subproblem is to determine a sequence of jobs on machine 1. The second

subproblem is to develop a schedule of departure time points for transporters on machine 1.

According to the paper by Hurink and Knust (2001), the two-machine flow shop problem with

one transporter and its capacity is one (2 max| 1, 1|TF v c C ) is strongly NP-hard. However, Lee

and Chen (2001) have shown that if the following assumption 3.1 is added, then the sequence of

jobs on machines can be predetermined, thus the problem becomes polynomially solvable.

Assumption 3.1. The processing times on machine 1 for all jobs are job-independent, namely, the

processing times are equal to a constant denoted as 1 1 for all jp p j .

Under Assumption 3.1, the jobs are sequenced in the non-increasing order of 2jp (the

longest processing time first) on both machines such that there exists an optimal permutation

sequence. Furthermore, if the processing times on machine 2 for all jobs are constant, the jobs

will be sequenced in the non-decreasing order of 1jp (the shortest processing time first) on both

machines. In both cases, the scheduling problem is simplified and only a departure schedule of

jobs has to be determined given the optimal job sequence. Therefore, Lee and Chen (2001)

41

propose a dynamic programming algorithm to solve the problem 2 1 1 max| , 1, 1|jTF p p v c C  

optimally in polynomial time. In this research, an improved dynamic programming algorithm is

proposed when there is one transporter and the capacity of the transporter is greater or equal to a

threshold value. In this special case, the number of jobs in a batch transported to machine 2 is

always less than or equal to this threshold value in an optimal schedule. The threshold value will

be derived later.

Lee and Chen (2001) have proven several properties that hold for two-machine flow shop

problems with transportation. Those properties are also necessary conditions for deriving our

algorithm.

Property 3.1.(Lee and Chen 2001) There exists an optimal schedule for the problem

2 max| 1, 1|TF v c C  problem that satisfies the following conditions.

(i) Jobs are processed on machine 1 without idle time.

(ii) Jobs transported in the same batch are processed consecutively without idle time on

both machines.

(iii) Jobs finished earlier on machine 1 are delivered earlier to machine 2. Furthermore,

the sequence of jobs on machine 1 is the same as that on machine 2. Namely, it is a

permutation schedule.

(iv) The departure times of two consecutive batches delivered satisfy that either

1k kd d t   or 1kd  is the completion time of the last job in the 1thk  batch on

machine 1, where 1 2t t t  is the transportation time of a round trip to travel

between machine 1 and machine 2. When 1kd  is equal to the completion time of the

42

last job in the 1thk  batch on machine 1, 1kd  is referred to as an integer departure

point; otherwise, it is called as the immediate departure point.

In addition, a property regarding the threshold value of the transporter’s capacity can be

derived, while the processing times for all jobs on machine 1 are identical (Assumption 3.1).

Property 3.2. The threshold of the transporter’s capacity (u) is 1 2

1

2()
1

t t

p

 
 

 
 given 1 1jp p .

Proof. Assume the transporter’s capacity is greater than u, and there is a batch, say batch i,

containing u+1 jobs. Batch i is transported to machine 2 by the transporter at the departure point

di, which is the time for the transporter leaving from machine 1. Thus, the arrival time at

machine 2 of the transport is 1id t . The total processing time for batch i on machine 1 is equal

to 1(1)*u p or 1 2
1

1

2()
*

t t
p

p

 
 
 

 which is greater than or equal to the travel time of two round

trips (1 22()t t). Hence, batch i can be split into two small batches: 1 2

1

t t

p

 
 
 

and 1 2

1

t t

p

 
 
 

.

Assume that these two batches will be transported to machine 2 as two shipments and the second

batch will also be transported at the departure point di. In order to ensure the second batch

transported at di, the transporter has to deliver the first batch at the departure point 1

id which

cannot be later than di minuses the time of one round trip (1

1 2()i id d t t  ) as shown in Figure

3.1.

43

Figure 3.1. Batch i containing u+1 jobs transported to machine 2 at di

 Let 1

1 2()i id d t t   . Because the total processing time for jobs in the first batch,

1 2
1

1

t t
p

p

 
 
 

, is less than or equal to 1 2t t , the first batch are ready for shipping before 1

id . In

additional, the returning time of the transporter is also prior to 1

id since 1 1 2(1) 2()u p t t   .

Hence, the transporter can return back to machine 1 prior to id after transferring the first batch to

machine 2. Thus, the arrival time of the second batch on machine 2 is identical as the arrival time

of transporting these jobs in one batch. Figure 3.2 illustrates the delivery of these two batches.

Figure 3.2. Batch i is split into two small batches

Therefore, the makespan yielded by the case of transporting u+1 jobs with two batches is

never greater than the makespan yielded by the case of transporting these jobs in one batch,

…... Batch i …...

M2

M1

Transporter

(u+1)*p1

Batch i

t1 t2 t1

did1
i

2nd batch of Batch i
 1st batch of

Batch i

…... …...

M2

M1

Transporter

(u+1)*p1

t1 t2 t1

did1
i

≥ t1+t2

 1st batch of

Batch i
2nd batch of

Batch i

44

because jobs transported in the first batch could be processed on machine 2 earlier than those

shipped in one batch. Hence, the batch size in one shipment is always less than or equal to the

threshold value u, and the capacity of the transporter is not necessarily greater than u. □

Assumption 3.2. The capacity of the transporter is greater than or equal to 1 2

1

2()
1

t t

p

 
 

 
.

Based on Assumption 3.1 and 3.2, a forward dynamic programming algorithm is

proposed to solve the problem 2 1 1 max| , 1, |jTF p p v c u C   . According to Property 3.2, the size

of the batch (denoted as B) which is greater than the threshold value u can always be divided into

two small batches 1 2

1

t t

p

 
 
 

 and 1 2

1

t t
B

p

 
  
 

, and yields a smaller makespan. If the number of

jobs in the second batch (1 2

1

t t
B

p

 
  
 

) is still greater than u, this batch can be further split into

two small batches 1 2

1

t t

p

 
 
 

 and 1 2

1

2
t t

B
p

 
  

 
 until the size of all these small batches is not

greater than u. Inspired by this idea, a dynamic programming (DP) algorithm can be formulated

as follows.

DP Algorithm for 2 1 1 max| , 1, |jTF p p v c u C  

 Optimal value function (OVF): F(k) = minimum completion time of a partial schedule

containing the first k jobs, given that the completion time of job k is an integer departure

point. (3.1)

45

 Arguments (ARG): k = index of a job such that the completion time of the job is an integer

departure point. (3.2)

 Optimal policy function (OPF): j = number of jobs from integer departure point k to the

previous integer departure point.

 Recurrence relation (RR):

 
1 2 1

1 1 2 1 2 11

() 1

, if ()
() min , 1,2,...,

min () (1,) , o.w.

k

ii

t t p j k

kp t p k t t p
F k k n

F k j C k j k



     

       
  

     


 (3.3)

where C(1k j  , k) is the minimum increase of the makespan due to jobs 1k j  to k . It

can be calculated by the following procedures:

Step 1.Let 0 0 1 01, 1, , () and ()g x k j x k j t p k j C F k j          .

Step 2.
1 2

0
1

()

1 0 1 2 1 2max{ , () }

g t t
x

p

g g ii x
C C t g t t t p

 
 
 

 
     .

Step 3. 1 2

1

()
, 1

g t t
x x g g

p

 
    

 
.

Step 4.If 1

1 2

jp
g

t t

 
  

 
 then stop, and go to Step 5. Otherwise, go to Step 2.

Step 5. 1 1 1 2 0(1,) max{ , }
k

g ii x
C k j k C kp t p C 

      .

 Boundary Condition (BC): the BC has been included in RR.

 Answer (ANS):

 
1 2 1 1

ˆmin () (1,)
ˆ () min

()

t t p j n
F n j C n j n

F n
F n

     

     
  

  

 (3.4)

where the calculation of ˆ (,)C x y is similar to that of C(x, y), but it requires modifications on

Step 2, 3, 4 and 5 as follows:

46

Step 2.
1 2

0
1

()
min{ , }

1 0 1 2 1 2max{ , () }

g t t
n x

p

g g ii x
C C t g t t t p

 
 
 

 
     .

Step 3. 1 2

1

()
min{ , }, 1

g t t
x n x g g

p

 
    

 
.

Step 4.If 1 2 1(1)()g t t jp   then stop, and go to Step 5. Otherwise, go to Step 2.

Step 5. 1 0
ˆ(1,) gC n j n C C    .

The method to calculate C(x, y) is a deterministic procedure, because the departure points

between stages (integer departure points) are all immediate departure points. It can be stated as

the following property.

Property 3.3. Given two consecutive integer departure points jd and
kd , and let jd and

kd be

the completion times of job j and job k on machine 1, respectively. Between these two integer

departure points, once the transporter returns back to machine 1, it will transport the completed

jobs immediately to machine 2 until its returning time to machine 1 is greater than 1 2()kd t t  .

Proof: The number of jobs between these two integer departure points is k j . According to

Property 3.2, when the number of jobs in one batch is greater than u, this batch can be split into

two small batches. Assume k j is greater than u. Then, these jobs can be divided into two

batches 1 2

1

t t

p

 
 
 

 and 1 2

1

()
t t

k j
p

 
   

 
. Because the returning time of the transporter to machine

1 is 1 2()jd t t  which is greater than the completion time of the first batch 1 2
1

1

j

t t
d p

p

 
  

 
, the

transporter will transport the first batch immediately to machine 2 so that this partition yields a

47

smaller makespan. Similarly, the second batch can further divided into two batches if

1 2

1

()
t t

k j
p

 
   

 
 is greater than u. This procedure is repeated until the last batch is less than or

equal to u. Thus, between these two integer departure points, the transporter transport jobs from

machine 1 to machine 2 immediately. □

Consequently, given two stages (integer departure points) j and k, the increase makespan

C(1k j  , k) is determined. Also note that the formulation for the answer in Equation (3.4) is

ˆ ()F n not ()F n because it cannot be guaranteed that the completion time of the last job is an

integer departure point. Therefore, this situation requires extra calculation in ˆ ()F n when the

returning of the transporter to machine 1 is after the completion time of the last job on the first

machine. Since the number of stages in this proposed algorithm is much less than that of the Lee

and Chen’s algorithm, this procedure is expected to be more efficient. A computational analysis

and comparison on the computational efforts of the improved algorithms with Lee and Chen’s

(2001) are conducted in next section.

3.3 Complexity Analysis

According to Lee and Chen (2001), the time complexity of their algorithm is
3(())O cn ,

where c is the capacity of the transporter and n is the number of jobs. To obtain the complexity

of the proposed algorithm, the worst case (1, ,k n ) is considered such that there are a total of

n possibilities of k. For a given k, there are k possibilities of j since 1, ,j k  . Given k and j,

there are at most j immediate departure points. In addition, in Boundary Condition (BC) we have

48

1, ,j n  and there are at most j immediate departure points for a given j. Hence the overall

complexity can be calculated as follows:

1 1 1

2

1

(1)

2

 ()
2 2

1 (1)(2 1) 1 (1)

2 6 2 2

n k n

k j k

n

k

k k
j

k k

n n n n n

  






 

  
 

 



(1)(2)

6

n n n 
 .

Thus, the complexity of the proposed algorithm is
3()O n which is better than

3 3()O c n .

To illustrate the algorithm by an example, assume 20k  and
1 2

1

4
t t

p

 
 

 
, the minimum

makespan of these jobs from 1 to 20 can be calculated as

4 19
(20) min{ (20) (20 1,20)}

j
F F j C j

 
     . The makespans of all states for j (4 19j ) should

be calculated and the one with minimum value will be chosen. As an example, for j=10, the

makespan is represented as (20 10) (20 10 1,20) (10) (11,20)F C F C      where (10)F is the

minimum makespan for job 1 to 10 and has been obtained in previous stage. (11,20)C is the

minimum increase on the makespan due to jobs 11 to 20.

49

Figure 3.3. An example with k=20 and j=10

Suppose that the transporter returns to machine 1 at 1T . At this time point, because

1 2

1

t t

p

 
 
 

 is equal to 3, job 11, 12, and 13 are finished on machine 1 and ready for delivery to

machine 2. The transporter delivers these jobs and departs from machine 1 immediately. The

shipment will arrive at machine 2 at 1 1T t . The jobs in this batch will be processed when

machine 2 becomes available. Hence, the possible starting time (denoted by 1S) is either the

arrival time of the batch or the completion time of the previous batch which is (10)F . As a

result, the completion time of this batch is the starting processing time 1S plus the total

processing time of this batch on machine 2. Similarly, the second batch includes job 14, 15 and

16 which is delivered at 2T (2 1 1 2T T t t  ) and arrives machine 2 at 2 1T t . The completion

time of the second batch is the 2S plus the total processing time of the batch on machine 2.

10 11 12 13 14 15 16 17 18 19 20 21

S1=Max(t0 + 2t1 + t2, F(10))

The batch includes 11,12,13

C1= S1 + P11,2+ P12,2 +P13,2

S2=Max(t0 + 3t1 + 2t2, C1)

The batch includes 14,15,16

C2 = S2 + P14,2+ P15,2 +P16,2

S3=Max(T20, C2)

The batch includes 17,18,19,20

C3 =S3+ P17,2+ P18,2 +P19,2 + P20,2

M2

M1

Transporter

t0=10*P1 T1=t0+t1+t2 T2=t0+2t1+2t2 T3=20*P1

t1 t2 t1 t2 t1 t2 t1 t2

50

Finally when the transporter returns to machine 1, job 20 is still under processing. Because the

completion time of job 20 on machine 1 is the integer departure point, the transporter cannot

depart until job 20 is finished. Hence, the last batch includes job 17, 18, 19, and 20 which arrives

at machine 2 at 3 1T t . The completion time of the last batch can be obtained as above and the

procedure to calculate (11,20)C is shown in Figure 3.3.

3.4 Concluding Summary

A special case for the n-job, two-machine, one transporter with a specific capacity flow

shop problem with minimum makespan has been studied in this chapter. When processing times

for all jobs on machine 1 are identical, a threshold value u of the transporter’s capacity can be

derived as Property 3.2. Under the assumptions of the identical processing time and the capacity

of transporter is greater than or equal to u, the problem 2 1 1 max| , 1, |jTF p p v c u C   can be

solved in polynomial time by the proposed dynamic programming algorithm. The computational

complexity of the algorithm has been shown as
3()O n which is better than the algorithm

proposed by Lee and Chen (2001). Therefore, when the capacity of the transporter is not less

than u (c u), the problem will be solved more efficiently by using the proposed algorithm.

Chapter 4

Flow Shop with Synchronous Material Movement

4.1 Introduction

Automated manufacturing systems which integrate material handling and processing

devices are commonly employed in manufacturing industries to gain a competitive advantage.

Typically, an integrated cell or machining center consists of an input/output station, one or more

processing machines, and material handling devices to efficiently process and move a group of

similar parts. The material handling devices can be robots, conveyors, automated guided

vehicles, cranes and transporters. One type of material handling devices is called rotary table.

The rotary table is surrounded by the loading/unloading station and processing machines. Jobs

should be loaded on the table before being processed. Loaded jobs are transported to each

processing machine sequentially by the rotary table. Once all these jobs complete their current

operations, the rotary table rotates in a clockwise or counterclockwise direction to move these

jobs simultaneously to their next processing machines. Examples of manufacturing cells

integrated rotary tables are the T-line machining centers developed by Cincinnati Milacron

(Milacron 1989). Figure 4.1 shows two models of these T-line machining centers.

52

(a) T-40 Machining Center

(b) T-20 Machining Center

Figure 4.1. Examples of Cincinnati Milacron T-line machining centers

(Sources: (a) Milacron 1989 (b) www.locatoronline.com/machinery/detail.cfm?adid=321905)

In a T-line machining center, there are one loading/unloading (L/U) station and a number

of computer numerical control (CNC) machines which surrounds a rotary table. Fixtures are

installed on the rotary table called pallets which are used to carry and stabilize jobs. Before being

processed, a job is loaded onto one of pallets at the L/U station. It is processed sequentially

through a number of CNC machines and finally unloaded from the machining center at the L/U

station. Jobs on the rotary table are transported to the L/U station and machines simultaneously.

Figure 4.2 below shows a T-line machining center with two CNC machines and a rotary table

with three pallets.

53

CNC 1 CNC 2

L / U station

pallet

Rotary table

Figure 4.2. A T-line machining center with two CNC machines

In this setting, while two jobs, say A and B, loaded in two pallets are being processed by

CNC2 and CNC1, respectively, another job, say C, is concurrently being loaded onto the third

pallet at the L/U station. After the processing operations on both machines and loading operation

are completed, the table rotates 120 degrees counterclockwise such that job C is transported to

CNC1, and job B to CNC2. Finished job A will be unloaded from the pallet at the L/U station

and a new job, say D, can be loaded on the pallet.

Transporting jobs simultaneously is referred to as synchronous material movement in this

study. This study focuses on sequencing jobs in this particular type of machining centers.

Efficiency is one of the desirable characteristics of these machining centers, and minimizing the

makespan is equivalent to maximizing utilization of a machining center. Thus, the objective of

this study is to find a job sequence that minimizes the makespan. The three-field notation

introduction by Graham et al. (1979) is adopted to represent the problem. As mentioned in

Chapter 2, synmv represents the characteristic of synchronous material movement and re-LU

indicates that a job has to be loaded and unloaded at the same L/U station. Hence, the scheduling

54

problem with makespan objective for a T-line machining center with m machines can be denoted

as max| , |mF synmv re LU C . In this chapter, the scheduling problem with one CNC machine in a

T-line machining center will be investigated.

This chapter is divided into six sections. In Section 2, the setting of the machining center

with one machine is described and the scheduling problem of the machining center is shown to

be NP-hard in the strong sense. Section 3 provides a polynomial algorithm for a special case of

the problem with a constant loading time or unloading time. Section 4 includes a proposed

dynamic programming algorithm for the problem, the analysis of its computational effort and a

numerical example to demonstrate the algorithm. In Section 5, two heuristic algorithms are

developed to construct near optimal solutions for large-scale versions of this problem. Section 6

examines the performance of the proposed algorithms on several settings.

4.2 T-line Machining Center with One CNC Machine

The T-line machining center consists of one CNC machine, a loading/unloading station,

denoted as L/U, and a rotary table with two pallets. This setting is illustrated in Figure 4.3. First,

a job has to be loaded onto a pallet before processing. After it is loaded, the job is transported to

the CNC machine by the rotary table. The job will finally return back to the L/U station and be

unloaded from the machining center. One pallet can only contain one job and the CNC machine

can only process one job at a time. No preemption is allowed. Assume there are n jobs that have

to be processed by the machining center. All jobs are available at time zero and wait in the input

buffer of the L/U station. For the makespan criterion, the optimal sequence is independent of the

rotation time of the rotary table; thus, the rotation time can be neglected. The loading,

55

processing, and unloading times for job j are denoted as lj, pj, and uj, respectively. The problem is

to determine a job sequence that yields the minimum makespan. Thus, the notation for this

scheduling problem is represented as 1 max| , |F synmv re LU C .

Figure 4.3. A T-line machining center with one CNC machine

Figure 4.4 illustrates a schedule of jobs at each station. A time period between two

successive rotations of the rotary table is defined as a cycle time, called Ci where 1, , 2i n  .

In the first two cycles, there are only loading operations performed at the L/U station. Similarly,

only unloading operations are required in the last two cycles. From cycle 3 to cycle n, a job

should be unloaded from the rotary table first before a new job can be loaded. Because the rotary

table does not rotate until the completions of all operations are performed at each station, a cycle

time is equal to the largest operation time among the corresponding operations currently

performed at each station. Thus, each cycle time can be represented as follows given a job

sequence J[1], J[2], …, J[n] where the notation J[i] represents the job is sequenced in position i:

 C1 = l[1]; C2 = [1] [2]max{ , }p l , (4.1)

 Ci = [1] [2] []max{ , }i i ip u l   , i = 3,…, n, (4.2)

 Cn+1 = [] [1]max{ , }n np u  ; Cn+2 = u[n] . (4.3)

CNCL/U Station

pallet pallet

56

where l[i], p[i] and u[i] are the loading, processing and unloading times of the job

sequenced in position i, respectively.

Therefore, the makespan of the sequence is the summation of all cycle times formulated

as
2

1

n

ii
C



 . The objective of the problem is to find a sequence which minimizes this value.

Figure 4.4. Schedule of jobs at each station in a one-CNC T-line machining center

Computational Complexity

Discovering the computational complexity of a problem is the first step in working on a

problem. This knowledge can help direct the problem-solving process towards the development

of more useful algorithms. As a result, the complexity of the problem with one CNC machine is

explored first. Logendran and Sriskandarajah (1993) consider a two-machine flow shop

scheduling problem with blocking and anticipatory setup. Setup on these two machines can be

performed in anticipation of arriving jobs when the machines are idle. They show the problem is

strongly NP-hard by reducing it to an existing NP-hard problem – “Numerical Matching Problem

with Target Sums.” Inspired by their research, the problem 1 max| , |F synmv re LU C is also

L/U Station

CNC

l[1]

p[1]

l[2] l[3]

p[2]

u[1] l[n]

p[n-1]

…...

…... p[n]

u[n-1] u[n]

Time

Cycle 1 Cycle n+2
…...

Cycle 3

u[n-2]

Cycle n

57

proven to be NP-hard in the strong sense by showing the equivalence to the numerical matching

problem with target sums.

Numerical matching problem with target sums (Garey and Johnson 1979)

Given two disjoint sets of positive integers 1 2{ , , , }nA a a a  and 1 2{ , , , }nB b b b  , and

a target set with positive integers 1 2{ , , , }nC c c c  , the numerical matching problem with target

sums is to answer the following question:

Question: Can A B be partitioned into n disjoint sets Dk, each containing exactly one element

from set A and one element from set B, such that, [] [] [] [], , for 1, ,k k k k k kc a b a b D k n     ?

Below, the problem 1 max| , |F synmv re LU C

is shown to be NP-hard by reducing it to

the numerical matching problem with target sums in polynomial time and also by showing the

equivalence of these two problems in opposite direction. First, the problem

1 max| , |F synmv re LU C is restated as a decision problem as follows:

Decision problem (P). Given a number of jobs with loading, processing and unloading times that

have to be processed in a one-CNC T-line machining center, does there exist a schedule, say σ,

with makespan Cmax(σ) which is less than or equal to a given value Z ?

Given an arbitrary instance of the numerical matching problem with target sums defined

by positive integers , and , 1, ,i i ia b c i n  , construct an instance (denoted as Instance P1) of

Problem P with 3n jobs as follows:

58

{ Ja , Jb , Jc | 1, , }i i iJ i n   , J is a set containing three types of jobs Ja, Jb and Jc and

the number of jobs for each type is n. The loading time (l), processing time (p), and unloading

time (u) of each job in each type are defined as:

Ja-type: (Ja) 1, (Ja) 3, (Ja) 2 3 , 1 ,i i i il p u a i n     

Jb-type: (Jb) 3 , (Jb) 1, (Jb) 1, 1 ,i i i il b p u i n       

Jc-type: (Jc) 2, (Jc) 3 3 , (Jc) , 1 ,i i i il p c u i n       where 3max{ |1 }.ic i n   

In addition, the target value Z is defined as:

02 4 4 3Z n n C   

where 0

1

n

i

i

C c


 .

Lemma 4.1. If there exists a solution for the numerical matching problem with target sums, then

the makespan of schedule  for Instance P1 constructed as shown in Figure 4.5, is equal to the

target value Z.

Proof. By assumption, a solution to the numerical matching problem with target sums exists so

that [] [] []k k kc a b  where [] [] [], and k k ka b c are the elements in kD , 1, ,k n  . Since each

[] [] [], and k k ka b c

correspond to a job of type Ja, type Jb, and type Jc, respectively, a set (denoted

as kB) containing three jobs can be formed based on each kD . Consider the following schedule 

(see Figure 4.5):

1 2 [] [] [][, , ,] where jobs in are sequenced as [Ja , Jc , Jb]n k k k kB B B B   .

The idle time of the CNC machine only occurs at the first and last cycle and the summation of

the idle time is 2 units of time. Hence, the makespan of schedule  can be calculated by adding

idle times and busy times of the CNC machine:

59

max 01
2 3 3 3 2 4 4 3

n

ii
C n n c n n n n C Z  


           . □

Figure 4.5. Schedule  on the L/U station and CNC machine

Lemma 4.2. If there is an optimal sequence  for Instance P1 with the makespan max ()C Z  ,

then the CNC machine is busy on processing jobs except one unit of idle time at the first and last

cycles.

Proof. The total processing time on the CNC machine is 2Z  which can be calculated as:

 1 1
() () () 3 (1) 3 3

n n

i i i ii i
p Ja p Jb p Jc n n c 

 
       

 01
4 4 3 4 4 3 2

n

ii
n n c n n C Z 


       

Because of the makespan max ()C Z  , the idle time on the CNC machine is 2 units of time at

most. In addition, there is no operation on the CNC machine when the first job is loaded and the

last job is unloaded on the L/U station. Since the smallest loading and unloading times are equal

to 1 respectively, the idle time can only occur at the first and last cycles on the CNC machine. □

1

3

2 2β+3a[1]

3β+3c[1]

β+3b[1]

β+1

β 1

3

2 2β+3a[2]

3β+3c[2]

β+3b[2]

β+1

β1 1

3

2 2β+3a[n]

3β+3c[n]

β+3b[n]

β+1

β1 1

1st block (B1) 2nd block (B2)

n-th block (Bn)

L/U station

CNC

……

60

Lemma 4.3. If there is an optimal sequence  for Instance P1 with the makespan max ()C Z  ,

then the L/U station is busy processing jobs except one unit of idle time at the second and second

last cycles.

Proof. The total operation time on the L/U station is 2Z  which can be calculated as:

 1
[() () () () () ()]

n

i i i i i ii
l Ja l Jb l Jc u Ja u Jb u Jc


    

1 1
(3) 2 (2 3)

n n

i ii i
n b n a n n  

 
        

 01
4 4 3 () 4 4 3 2

n

i ii
n n a b n n C Z 


        

Because of the makespan max ()C Z  , the idle time on the L/U station is 2 units of time at most.

In the second cycle, there is no job required to be unloaded. Therefore, there is only one job

being loaded at the L/U station, and one job being processed on the CNC machine. Since the

CNC machine cannot be idle except for in the first and last cycles, the processing time should be

greater than or equal to the loading time in the second cycle. By considering all combinations of

processing and loading times, the minimum idle time at the L/U station can only be 1 in the

second cycle. Likewise, no job will be loaded in the second last cycle. There is only one job

being unloaded on the L/U station and one job being processed on the CNC machine. The

minimum idle time at the L/U station is also equal to 1. Thus, one unit of idle time can only

occur at the second and second last cycles at the L/U station. □

Lemma 4.4. If there is an optimal sequence  for Instance P1 with the makespan max ()C Z 

and the jobs in sequence  are partitioned into n disjoint blocks Bk where

[3 2] [3 1] [3]{ , , }, 1, ,k k k kB J J J k n    , then jobs [3 2] [3 1] [3], , and k k kJ J J  in Bk are Ja-type, Jc-type

and Jb-type, respectively.

61

Proof. First, we show that the first three jobs [1] [2] [3], , and J J J

in B1 are Ja-type, Jc-type and Jb-

type. Three cases should be considered:

 Case 1: [1]J is not Ja-type.

If [1]J is Jb-type, the idle time on the CNC machine is greater than 1, which contradicts

Lemma 4.2 as shown in Figure 4.6.

Figure 4.6. A Jb-type job is sequenced in the first position

If [1]J

is Jc-type, the idle time on the CNC machine is also greater than 1, which contradicts

Lemma 4.2 as shown in Figure 4.7.

Figure 4.7. A Jc-type job is sequenced in the first position

Thus, the job sequenced in the first position has to be Ja-type.

 Case 2: [2]J is Jc-type.

If [2]J is Ja-type, the idle time on the L/U station is 2, which contradicts Lemma 4.3 as

shown in Figure 4.8.

β+3bi

β+1

L/U station

CNC

idle time is β+3bi

2

3β+3ci

L/U station

CNC

idle time is 2

62

Figure 4.8. A Ja-type job is sequenced in the second position

If [2]J is Jb-type, the idle time on the CNC machine in the second cycle is greater than 0,

which contradicts Lemma 4.2 as shown in Figure 4.9.

Figure 4.9. A Jb-type job is sequenced in the second position

Thus, the job sequenced in the second position has to be Jc-type.

 Case 3: [3]J is Jb-type.

If [3]J is Ja-type, the idle time on the L/U station in the third cycle is greater than 0, which

contradicts Lemma 4.3 as shown in Figure 4.10.

Figure 4.10. A Ja-type job is sequenced in the third position

1

3

2β+3a[1]L/U station

CNC

1

3

idle time is 2

1

3

2β+3a[1]β+3bi

β+1

L/U station

CNC

idle time is β+3bi -3

1

3

2 2β+3a[1]

3β+3c[1]

2L/U station

CNC

1

3

idle time is β - 3a[1] + 3c[1] -1

63

If [3]J is Jc-type, the idle time on the L/U station in the third cycle is greater than 0, which

contradicts Lemma 4.3 as shown in Figure 4.11.

Figure 4.11. A Jc-type job is sequenced in the third position

 Thus, the job sequenced in the third position has to be Jb-type. Analogously, for

2, ,k n  , we can also show that jobs [3 2] [3 1] [3], , and k k kJ J J  in Bk are Ja-type, Jc-type and Jb-

type, respectively. □

 Since jobs [3 2] [3 1] [3], , and k k kJ J J  in each Bk correspond to jobs of type Ja, Jc and Jb,

schedule  can be represented as in the following form:

[1] [1] [1] [2] [2] [2] [] [] [][Ja , Jc , Jb , Ja , Jc , Jb , , Ja , Jc , Jb]n n n

Lemma 4.5. If there is an optimal sequence  for Instance P1 with the makespan max ()C Z 

and jobs in optimal schedule  are partitioned into n blocks Bk where jobs in Bk are sequenced

as [] [] [][Ja , Jc , Jb]k k k , then [] [] [] , 1, ,k k ka b c k n    .

Proof. First, we show that for the first three jobs in B1, the processing time of [1]Jc is equal to the

sum of the unloading time of [1]Ja and the loading time of [1]Jb . That is [1] [1] [1]a b c  . Two cases

should be considered:

1

3

2 2β+3a[1]

3β+3c[1]

2L/U station

CNC

2

3β+3ci

idle time is β - 3a[1] + 3c[1] -2

64

 Case 1: assume [1] [1] [1]a b c  . Then, the idle time on the L/U station in the third cycle is

greater than 0 as shown in Figure 4.12, which contradicts Lemma 4.3.

Figure 4.12. Idle time on the L/U station in the third cycle when [1] [1] [1]a b c 

 Case 2: assume [1] [1] [1]a b c  . Then, the idle time on the CNC machine in the third cycle is

greater than 0 as shown in Figure 4.13, which contradicts Lemma 4.2, and the claim is

justified.

Figure 4.13. Idle time on the CNC machine in the third cycle when [1] [1] [1]a b c 

Similarly, the equality [] [] []k k ka b c  can be concluded for Bk , 2, ,k n  . □

Theorem 4.1. The scheduling problem with the makespan objective in a T-line machining center

with one CNC machine is NP-hard in the strong sense.

Proof. To complete the proof, we have to show that there exists a schedule for Problem P if

and only if there is a solution to the numerical matching problem with target sums. For the if

1

3

2 2β+3a[1]

3β+3c[1]

β+3b[1]

β+1

β 1L/U station

CNC

idle time is 3(c[1] - a[1] - b[1])

1

3

2 2β+3a[1]

3β+3c[1]

β+3b[1]

β+1

β 1L/U station

CNC

idle time is 3(a[1] + b[1]–c[1])

65

part, the numerical matching problem with target sums is equivalent to Problem P based on

lemma 4.1. For the only if part, Problem P can be also converted to the numerical matching

problem with target sums from Lemmas 4.2 to 4.5. Furthermore, it only takes polynomial time to

construct Instance P1 from an instance of the numerical matching problem with target sums. □

4.3 Special Case – Constant Unloading Time

Typically, the operation of removing or unloading a job from a machining center is

simple. Therefore, it is reasonable to consider a scenario with a common unloading time

(denoted as c) in a T-line machining center. In this case, the operation time at the L/U station can

be regarded as a longer loading time without unloading time from cycle 3 to cycle n given n is

the number of jobs as shown in Figure 4.14. Without considering the first two loading operations

and the last two unloading operations for a given sequence, this problem becomes a two-machine

flow shop problem with blocking, which is polynomial solvable by the Gilmore-Gomory

algorithm (Gilmore and Gomory 1964). In this section, the scheduling problem of a one-machine

T-line machining center with constant unloading time (denoted as

1 max| , , |jF synmv re LU u c C ) will be shown to be polynomial solvable, and an algorithm to

solve the problem will provided.

Figure 4.14. Schedule in a one-machine T-line machining center with constant unloading time

l[1]

p[1]

l[2] l[3]

p[2]

c

p[3]

l[4] ...

... p[n]

c c c

Z

L/U station

CNC

1st

cycle

2nd

cycle

3rd

cycle
4th

cycle

(n+1)th

cycle

66

Assume an optimal sequence for the problem 1 max| , , |jF synmv re LU u c C  is J[1], J[2],

…, J[n], and the optimal makespan is Z. From Figure 4.14, we observe that the operation time at

the L/U station for each cycle is the sum of the loading time and constant c from the 3
rd

 cycle to

n
th
 cycle. Therefore, we consider J[3] to J[n] and add constant c to the loading times of these jobs

as the operation times on the L/U station. Alternatively, []jl c can be regarded as a new loading

times for []J j ,3 j n  , and no unloading operations is required. Then, this problem becomes a

two-machine flow shop problem with blocking as shown in Figure 4.15, and the problem can be

solved by the Gilmore-Gomory algorithm. Since the Gilmore-Gomory algorithm will be

frequently applied in this research, the procedures of this algorithm and a numerical example are

presented in the Appendix.

Figure 4.15. Two-machine flow shop problem with blocking for []J j ,3 j n 

However, in order to maintain the optimal sequence in the two-machine flow shop

problem with blocking problem as the same as the optimal sequence in the original problem, two

jobs should be added. One job is denoted as J0 and the other denoted as Jn+1. The loading times of

J0 and Jn+1 are set to be 0 and c, respectively. The processing time of J0 and Jn+1 are set to be p[2]

and 0, respectively. In addition, J0 must be sequenced in the first position of the optimal

sequence and Jn+1 must be sequenced in the last position. Assume the optimal makespan for the

modified problem is Z
G
 as shown in Figure 4.16. Then, the optimal makespan for the problem

l[3] c

p[3]

l[4] ...

... p[n]

cL/U station

CNC

67

1 max| , , |jF synmv re LU u c C  has to be shown that it is equal to
[1] [2] [1]max(,)GZ l l p c   .

Namely, given the first two jobs in an optimal sequence, the remaining sequence can be

generated by applying the Gilmore-Gomory algorithm to the modified problem.

Figure 4.16. The makespan Z’ for the modified problem

Two-machine flow shop problem with blocking (2 max| blocking |F C)

Define the modified problem (denoted as Problem G) as follows:

 Given the first two jobs in an optimal sequence of the scheduling problem in a one-CNC

T-line machining center, let the loading time of J[j] be [] ; 3, ,jl c j n   . Add two additional

jobs J0 and Jn+1 and their loading times and processing times are defined as

0 0 [2] 1 10, , and 0n nl p p l c p     . Problem G is to find an optimal sequence of these jobs (

[]J , 3, ,j j n ) and J0 and Jn+1. The optimal makespan obtained by applying the Gilmore-

Gomory algorithm to Problem G is denoted as Z
G
.

Lemma 4.6. J0 must be in the first position of the optimal sequence for Problem G.

Proof: Assume J0 is not in the first position of the optimal sequence, and the optimal makespan

is Z
1
. The jobs sequenced before J0 form Block 1 and the remaining jobs including J0 form Block

2, as shown in Figure 4.17. In addition, the loading time of the job in the first position is denoted

l[3]

p[2]

c

p[3]

l[4] ...

... p[n]

c c

ZG

L/U station

CNC

Jn+1

J0

68

as al and the processing time of the job right before J0 and of the job in the last position are

denoted as bp

and cp , respectively.

Figure 4.17. J0 is not sequenced in the first position for Problem G

The sequence of jobs in Block 1 is exchanged with that in Block 2 as shown in Figure 4.18. Let

the makespan of the new sequence be Z
2
.

Figure 4.18. J0 is sequenced in the first position for Problem G

The difference of the makespans between these two sequences is:

1 2 max(,) max(,) 0a b c a c b a c a cZ Z l p p l p p l p l p          .

Z
2
 is strictly less than Z

1
 which contradicts the assumption that Z

1
 is the optimal makespan.

Hence, J0 must be sequenced in the first position of the optimal sequence. □

Lemma 4.7. Jn+1 must be in the last position of the optimal sequence for Problem G.

Proof: Assume Jn+1 is not in the last position of the optimal sequence, and the optimal makespan

is Z
1
. The jobs sequenced after Jn+1 form Block 2, and the remaining jobs including Jn+1 form

...

la ...

pb

...L/U station

CNC p0 ... pc

Block 1 Block 2

L/U station

CNC

...

p0 ... pc

Block 2

...

la ...

pb

Block 1

69

Block 1, as shown in Figure 4.19. In addition, the loading time of the job in the first position and

of the job right behind Jn+1 are denoted as al and cl , respectively. The processing time of the job

right before Jn+1 and of the job in the last position are denoted as bp

and dp , respectively.

Figure 4.19. Jn+1 is not sequenced in the last position for Problem G

The sequence of jobs in Block 1 is exchanged with that in Block 2 as shown in Figure 4.20. Let

the makespan of the new sequence be Z
2
.

Figure 4.20. Jn+1 is sequenced in the last position for Problem G

The difference of the makespans between these two sequences is:

1 2 max(,) max(,) max(,)a b c d c a d bZ Z l c p l p l l p c p       

max(,) 0a d a dl p l p    .

Z
2
 is strictly less than Z

1
 which contradicts the assumption of Z

1
 is the optimal makespan. Hence,

Jn+1 must be sequenced in the last position of the optimal sequence. □

...

la ... c ...L/U station

CNC

lc

pb ...

Block 1 Block 2

pd

...L/U station

CNC

lc

...

Block 2

pd ...

la ... c

pb

Block 1

70

Theorem 4.2. The optimal makespan of the problem 1 max| , , |jF synmv re LU u c C 

is

[1] [2] [1]max(,)GZ l l p c   given the first two jobs in the optimal sequence where Z
G
 is the

optimal makespan of Problem G.

Proof: Based on Lemma 4.6 and Lemma 4.7, J0 must be sequenced in the first position and Jn+1

must be sequenced in the last position of the optimal sequence. Suppose the optimal makespan

(Z) for the original problem 1 max| , , |jF synmv re LU u c C  is less than

[1] [2] [1]max(,)GZ l l p c   . Remove the time period [1] [2] [1]max(,)l l p at the beginning of the

optimal sequence and time period c at the end from Z as illustrated in Figure 4.21. Then, the

value [1] [2] [1]max(,)Z l l p c   is less than Z
G
 which contradicts that Z

G
 is the optimal makespan

obtained by the Gilmore-Gomory algorithm. Conversely, if Z is greater than

[1] [2] [1]max(,)GZ l l p c   , the value of Z can obviously be improved by replacing the sequence

with the one obtained by the Gilmore-Gomory algorithm. Hence, the optimal makespan, Z,

should be equal to
[1] [2] [1]max(,)GZ l l p c   , and Theorem 4.2 is proven. □

Figure 4.21. The makespan for the problem 1 max| , , |jF synmv re LU u c C 

Based on Theorem 4.2, an algorithm can be developed to solve the problem with a

common unloading time. Because no unloading operations are required at the first two cycles,

the problem can’t be solved just by applying the Gilmore-Gomory algorithm. This is the reason

l[1]

p[1]

l[2] l[3]

p[2]

c

p[3]

l[4] ...

... p[n]

c c cL/U station

CNC

A time period

ZG

A time period

71

that the first two jobs in the optimal sequence are required as Theorem 4.2. Since the first two

jobs in the optimal sequence are unknown, all possible combinations of the first two jobs have to

be considered. For each combination of the first two jobs in the sequence, the Gilmore-Gomory

algorithm is applied to obtain the optimal sequence for the rest of jobs, and the best makespan is

recorded. Until all combinations are performed, the best makespan recorded will be the optimal

makespan for the problem.

Algorithm for 1 max| , , |jF synmv re LU u c C 

Step 1. Initialize the best makespan as infinite.

Step 2. For 1 to j n and let Jj be in the first position of the sequence.

 Step 2.1. For 1 to and k n k j  , and let Jk be in the second position of the sequence.

Step 2.1.1.Let 1i ip l c  and 2 ; 1, , ; ; i ip p i n i j i k    .

Step 2.1.2.Let the processing times of job Jk as 1 20 and k k kp p p  . Add job Jn+1 with the

processing times as 1,1 1,2 and 0n np c p   .

Step 2.1.3.Solve the problem as a two-machine flow shop problem with blocking by the

Gilmore-Gomory algorithm, and obtain the optimal sequence and the makespan Z
G
.

Step 2.1.4.The makespan for the original problem is max(,)G

j k jZ l l p c   .

Step 2.1.5.If the current makespan is less than the best makespan, then set the best

makespan as the current makespan, and append Jj at the beginning of the current

sequence as the best sequence.

Step 3. Output the best makespan and the best sequence.

72

Since the number of combinations of the first and second jobs in a sequence are (1)n n

given n is the number of jobs and the complexity of the Gilmore-Gomory algorithm is (log)O n n ,

the complexity of the proposed algorithm is
3(log)O n n . The algorithm also can be applied to

the problem with constant loading time.

4.4 Dynamic Programming Algorithm for 1 max| , |F synmv re LU C

Dynamic programming is an efficient approach to obtain an optimal solution when the

problem requires a sequence of interrelated decisions (Dreyfus and Law 1997). Obtaining the

minimum makespan for the scheduling problem of a T-line machining center has the

characteristic of requiring a sequence of interrelated decisions as Equations (4.1) to (4.3). Thus, a

forward dynamic programming procedure is formulated to solve this problem. Given n jobs

which have to be processed by the machining center and these jobs are numbered from 1 to n.

Let {1,2, , }N n  be a set of jobs and let S be a subset of N containing the jobs that have already

been processed in the machining center. Let g represent the job concurrently being processed on

the CNC, and j be the job being loaded at the L/U station. Then the dynamic programming

formulation is as follows.

DP Algorithm for 1 max| , |F synmv re LU C

 Optimal value function (OVF): fi(S, g, j) = minimum completion time for processing job g on

CNC, unloading the last job in S and loading job j at the L/U station, given that the i jobs in S

have already been completed. (4.4)

73

 Optimal policy function (OPF): pi(S, g, j) = last job unloaded at the L/U station. Equivalently,

this is also the last job added to set S. (4.5)

 Recurrence relation (RR):

1(, ,) min{ (\{ }, ,) max{ , }}; 1,..., 2i i g k j
k S

f S g j f S k k g p u l i n


     ; { , }g j N ;

\{ , }S N g j , | S | = i. (4.6)

 Boundary condition (BC): 0 (, ,) max{ , }; { , }g g jf g j l p l g j N    . (4.7)

 Answer (ANS):

1min{ (, ,)}n
g N

f S g


 (4.8)

where
1 2(, ,) min{ (\{ }, ,) max{ , }}n n g k g

k S
f S g f S k k g p u u 


    ; g N ; \{ }S N g ,

| | 1S n  . (4.9)

Computational Effort Analysis

The computational effort of the dynamic programming algorithm is evaluated by the

number of operations performed: “Addition” and “Comparison.” The number of operations

required for each stage of the algorithm is summarized in Table 4.1.

Table 4.1: Number of operations required for each stage

Stage Number of combinations Addition Comparison

Boundary condition (i = 0) (1)n n 1 1

Recurrence relation (1 2i n  )
2(1) n

in n C  2i i + (i – 1)

Answer 1nf  (i = n – 1) n n n – 1+ n – 2

Minimum makespan 1 0 n – 1

74

In boundary condition, there are n(n – 1) combinations for job g and j. Each combination

requires one addition and one comparison to obtain the value for f0. In recurrence relation, for

each i, there are n(n – 1) choices for jobs g and j, and 2n

iC  combinations of jobs in set S. Each

combination of (S, g, j) has i candidates in set S for k. To obtain the minimum value among these

i candidates, it requires extra i – 1 comparisons. In the answer formulation, there are n choices of

g for 1nf  , and each choice has n – 1 candidates for k. Moreover, among these n – 1 candidates,

n – 2 comparisons are performed to acquire the minimum value for each 1nf  . To obtain the

minimum makespan among these 1nf  needs (n – 1) comparisons. Therefore, the total number of

additions required is:

=
2

2 2

1

2 (1) (1)
n

n

i

i

n n i C n n n






    

=
3 3 2

0
2 (1)(2)) 2

n n

jj
n n n C n n

 


   

=
3 22 (1)(2)2 2nn n n n n   

2(1)(2)2nn n n    .

The total number of comparisons required is:

=
2 22 2

1 1
(1)(2) (1) (2 3) 1

n nn n

i ii i
n n i C C n n n n n

  

 
         

=
3 2 2(1)(2(2)2 2 1) 3 3 1n nn n n n n       

=
3 2 22 (1)(2)2 (1)(2) 4 4 1n nn n n n n n n       

2(1)(2)2nn n n    .

75

Thus, the computational effort for this dynamic programming algorithm is
3 2(2)nO n 

.

This analysis of computational effort shows the exponential time complexity of the algorithm,

which confirms with NP-hardness of the problem proven in Section 4.2. When computing a

value of the optimal value function fi , it is necessary to store several values of the function 1if  in

the previous stage. Given n is 15, for example, to calculate the values of 10f in stage 10, the total

number of 9f has to be computed and stored in the prior stage is 150,150 (2(1) n

in n C ). Hence,

the storage space required for the algorithm would be the practical restriction for solving the

problem in a large scale.

A Numerical Example

A numerical example is presented to illustrate the proposed dynamic programming

algorithm. In this example, 4 jobs need to be processed in a T-line machining center with one

CNC machine, and one L/U station. Table 4.2 shows the loading, processing, and unloading

times for these jobs.

Table 4.2: Job data for a one-machine T-line machining center

Job lj pj uj

1 3 7 2

2 4 6 3

3 6 10 4

4 1 3 3

76

 Boundary Condition:

0

0

0

(, 2,1) 4 max{6,3} 10.

(,3,1) 6 max{10,3} 16.

(,4,1) 1 max{3,3} 4.

f

f

f

   

   

   

0

0

0

(,1,2) 3 max{7,4} 10.

(,3,2) 6 max{10,4} 16.

(,4,2) 1 max{3,4} 5.

f

f

f

   

   

   

0

0

0

(,1,3) 3 max{7,6} 10.

(, 2,3) 4 max{6,6} 10.

(, 4,3) 1 max{3,6} 7.

f

f

f

   

   

   

0

0

0

(,1,4) 3 max{7,1} 10.

(,2,4) 4 max{6,1} 10.

(,3,4) 6 max{10,1} 16.

f

f

f

   

   

   

 i = 1:

1 0

1 0

1 0

1 0

1 0

1

(2,3,1) (, 2,3) max{10,3 3} 10 10 20.

(2,4,1) (, 2, 4) max{3,3 3} 10 6 16.

(3,2,1) (,3, 2) max{6,3 4} 16 7 23.

(3,4,1) (,3, 4) max{3,3 4} 16 7 23.

(4,2,1) (, 4, 2) max{6,3 3} 5 6 11.

(4

f f

f f

f f

f f

f f

f

      

      

      

      

      

0,3,1) (, 4,3) max{10,3 3} 7 10 17.f      

1 0

1 0

1 0

1 0

1 0

1

(1,3, 2) (,1,3) max{10, 4 2} 10 10 20.

(1,4,2) (,1, 4) max{3, 4 2} 10 6 16.

(3,1,2) (,3,1) max{7, 4 4} 16 8 24.

(3,4, 2) (,3, 4) max{3,4 4} 16 8 24.

(4,1,2) (, 4,1) max{7, 4 3} 4 7 11.

(4

f f

f f

f f

f f

f f

f

      

      

      

      

      

0,3, 2) (, 4,3) max{10, 4 3} 7 10 17.f      

77

1 0

1 0

1 0

1 0

1 0

1

(1, 2,3) (,1, 2) max{6,6 2} 10 8 18.

(1,4,3) (,1, 4) max{3,6 2} 10 8 18.

(2,1,3) (, 2,1) max{7,6 3} 10 9 19.

(2,4,3) (, 2, 4) max{3,6 3} 10 9 19.

(4,1,3) (, 4,1) max{7,6 3} 4 9 13.

(4,2

f f

f f

f f

f f

f f

f

      

      

      

      

      

0,3) (, 4, 2) max{6,6 3} 5 9 14.f      

1 0

1 0

1 0

1 0

1 0

(1, 2, 4) (,1, 2) max{6,1 2} 10 6 16.

(1,3,4) (,1,3) max{10,1 2} 10 10 20.

(2,1,4) (, 2,1) max{7,1 3} 10 7 17.

(2,3,4) (, 2,3) max{10,1 3} 10 10 20.

(3,1,4) (,3,1) max{7,1 4} 16 7 23.

f f

f f

f f

f f

f f

f

      

      

      

      

      

1 0(3, 2, 4) (,3, 2) max{6,1 4} 16 6 22.f      

 i = 2:

2 1 1

2 1 1

2 1 1

({2,3},4,1) min{ (2,3,4) max{3,3 4}, (3,2,4) max{3,3 3}} 27.

({2,4},3,1) min{ (2,4,3) max{10,3 3}, (4,2,3) max{10,3 3}} 24.

({3,4},2,1) min{ (3,4,2) max{6,3 3}, (4,3,2) max{6,3 4}} 24.

f f f

f f f

f f f

     

     

     

2 1 1

2 1 1

2 1 1

({1,3},4,2) min{ (1,3,4) max{3,4 4}, (3,1,4) max{3,4 2}} 28.

({1,4},3,2) min{ (1,4,3) max{10,4 3}, (4,1,3) max{10,4 2}} 23.

({3,4},1,2) min{ (3,4,1) max{7,4 3}, (4,3,1) max{7,4 4}} 25.

f f f

f f f

f f f

     

     

     

2 1 1

2 1 1

2 1 1

({1,2},4,3) min{ (1,2,4) max{3,6 4}, (2,1,4) max{3,6 2}} 25.

({1,4},2,3) min{ (1,4,2) max{6,6 3}, (4,1,2) max{6,6 2}} 19.

({2,4},1,3) min{ (2,4,1) max{7,6 3}, (4,2,1) max{7,6 3}} 20.

f f f

f f f

f f f

     

     

     

2 1 1

2 1 1

2 1 1

({1,2},3,4) min{ (1,2,3) max{10,1 3}, (2,1,3) max{10,1 2}} 28.

({1,3},2,4) min{ (1,3,2) max{6,1 4}, (3,1,2) max{6,1 2}} 26.

({2,3},1,4) min{ (2,3,1) max{7,1 4}, (3,2,1) max{7,1 3}} 27.

f f f

f f f

f f f

     

     

     

 Answer:

3 3 3 3min{ ({1,2,3},4,), ({1,2,4},3,), ({1,3,4},2,), ({2,3,4},1,)} max{32,33,32,33} 32f f f f     

78

where

3 2 2 2({1,2,3},4,) min{ ({1,2},3,4) max{3,4}, ({1,3},2,4) max{3,3}, ({2,3},1,4) max{3,2}} 3

 max{28 4,26 3,27 3} 3 32.

f f f f     

     

3 2 2 2({1,2,4},3,) min{ ({1,2},4,3) max{10,3}, ({1,4},2,3) max{10,3}, ({2,4},1,3) max{10,2}} 4

 max{25 10,19 10,20 10} 4 33.

f f f f     

     

3 2 2 2({1,3,4},2,) min{ ({1,3},4,2) max{6,3}, ({1,4},3,2) max{6,4}, ({3,4},1,2) max{6,2}} 3

 max{28 6,23 6,25 6} 3 32.

f f f f     

     

3 2 2 2({2,3,4},1,) min{ ({2,3},4,1) max{7,3}, ({2,4},3,1) max{7,4}, ({3,4},2,1) max{7,3}} 2

 max{27 7,24 7,24 7} 2 33.

f f f f     

     

Thus, the minimum makespan is 32, and the optimal sequence is 1 3 2 4   or 4 1 3 2   .

4.5 Two-Phase Heuristic Algorithm for One CNC Machine

Although the problem can be solved by the proposed dynamic programming algorithm,

the computational effort of the algorithm is not polynomial. In addition, since the complexity of

the problem is proven as NP-hard in the strong sense, it is not likely to develop polynomial time

algorithms for this type of problems. Thus, developing a heuristic algorithm is a feasible method

to address the problem in a large scale.

Heuristic algorithms have been developed to provide good or near-optimal solutions in a

reasonable CPU time. They are typically applied to large-size problems with limited

computational effort. The heuristic algorithms for the scheduling problems are categorized into

two types: constructive heuristics and improvement heuristics. The constructive heuristics help to

build a feasible schedule from scratch, and the improvement heuristics attempt to improve the

quality of the solution iteratively from the given schedule. Framinan et al. (2004) define a

constructive heuristic as building a solution in a recursive manner by trying to insert one or more

unscheduled job into one or more positions of a partial schedule until all jobs are sequenced.

79

Contrary to constructive heuristics, an improvement heuristic starts from an initial sequence and

tries to improve the solution through modifications to that sequence. The improvement procedure

is repeatedly applied while improvements are gained. Local searches and metaheuristics such as

Tabu search, simulated annealing, genetic algorithms, and ant colony optimization are

categorized as improvement heuristics (Framinan et al. 2004; Hejazi and Saghafian 2005).

Nowadays, most of the heuristic algorithms proposed in the literature regarding job scheduling

are to combine constructive and improvement heuristics as two-phase algorithms.

The proposed heuristics algorithm in this research also contains two following stages: (1)

the constructive stage – in this phase an initial sequence is formed and an initial makespan is

determined, and (2) the improvement stage, a search for a better solution based on the initial

seed. Two heuristic algorithms in the constructive stage are proposed to generate an initial seed.

In the improvement stage, a modified neighborhood search algorithm is developed to explore

solution spaces and to find improvements in the makespan. These algorithms are presented and

discussed in the following section.

Constructive Stage

Two constructive heuristics are proposed to form an initial sequence for the one-machine

problem. One heuristic algorithm is to choose a suitable job based on a given processing time

and to append it to the current sequence. The other is to insert a given job in every position of the

current sequence to find a best position for that job. The details of these two algorithms are

discussed as below.

80

Constructive Algorithm – Selection (CAS)

Recall that the makespan for the problem 1 max| , |F synmv re LU C

is to sum up time of

each cycle,
2

1

n

ii
C



 . The time period of each cycle is equal to the maximum operation time

among these times at the L/U station and on the CNC machine. If the summation of processing

times on the CNC machine is greater than the summation of loading and unloading times at the

L/U station, then the summation of processing times can be regarded as a lower bound of the

solution. This property can be shown as in Lemma 1.

Lemma 4.1. The value,
11,..., 1,...,

min min
n

i j iji n i n
l p u

 
  , provides a lower bound for the makespan

problem in a T-line machining center with one CNC machine.

Proof: According to Equations (4.1) to (4.3), the makespan of a given sequence, say σ, is

represented as MSσ = [1]l + [1] [2]max{ , }p l + [2] [1] [3]max{ , }p u l + … + [1] [2] []max{ , }n n np u l   +

[] [1]max{ , }n np u  + []nu .
1,...,

min i
i n

l


and
1,...,

min i
i n

u


are the lower bounds for [1]l and []nu , respectively. In

addition, by neglecting the loading and unloading from cycles 2 to n+1. Thus,

 MSσ [1] [1] [2] [] [] 11,..., 1,...,
min min

n

n n i j iji n i n
l p p p u l p u

 
        

 □

 Furthermore, from the above lemma we can conclude that if the minimum processing

time on the CNC machine is greater than the sum of the largest loading and unloading time, the

optimal solution is equal to the lower bound. The property can be represented as follows:

 11,..., 1,..., 1,...,1,..., 1,...,
min max max the optimal makespan: min min

n

j i i i j ijj n i n i ni n i n
p l u l p u

   
     .

81

 In other words, the processing times can serve as the basic elements of comparison with

different possible combinations of loading and unloading times at the L/U station. Therefore, the

main idea of constructing the initial job sequence is to find the summation of a pair of loading

and unloading times that is closest to a selected processing time. The heuristic is named as

Constructive Algorithm – Selection (CAS), and the steps associated with the algorithm are stated

below.

CAS Algorithm

 N is a set containing all jobs; N = {1, 2, … , n}. S is a set containing jobs which have

been already sequenced. R is a set containing jobs which have not been sequenced yet. MS is a

variable to record the current makespan.

Step 1. Let R = N and S = ∅.

Step 2. Select a job which has the largest processing time from set R; name the job as j;

 max{ : }j ij arg p p i R   . Next, find a pair of jobs (f, b) where { , } \{ }f b R j . The

summation of loading and unloading times of these two jobs should be closest to the processing

time of job j; (,) min{| () |: (,) \{ }}j b ff b arg p l u f b R j    . The tie break rule is to select

the pair with negative value of ()j b fp l u  . Then, job f is sequenced prior to job j, and job b is

sequenced after job j. The makespan of the current sequence can be calculated as

max{ , } max{ , } max{ , }f f j j f b b j bMS l p l p u l p u u      . Let the index k = j, { , , }S f j b ,

and \R N S .

Step 3. Select a job with a larger processing time between job f and b.

82

 Step 3.1. If f bp p , then select a job, say i, from set R with the unloading time which is

closest to max{ ,0}f jp l ; i R . The tie break rule is min{ max{ ,0}}i f ju p l  .

Append job i at the beginning of the current sequence, and the makespan becomes

max{ ,0} (max{ ,0}|) (|)i i f i j f f j i f jMS l p l u l p p l u p l         . Set j = f and f = i.

 Step 3.2. If f bp p , then select a job, say i, from set R with loading time which is

closest to max{ ,0}b kp u ; i R . The tie break rule is min{ max{ ,0}}i b kl p u  . Add

job i at the end of the current sequence, and the makespan becomes

max{ ,0} (max{ ,0}|) (|)i i u k i b b k i b kMS MS u p b u l p p u l p u          . Set k= b

and b= i.

 Step 3.3. Let { }S S i  , and \{ }R R i . If R  , go to step 3. Otherwise, go to step 4.

Step 4. Output the job sequence and the makespan.

A Numerical Example

A numerical example is presented to demonstrate the procedure of CAS. Assume there

are five jobs. Table 4.3 shows the job data for the example.

Table 4.3: Job data for the example of CAS

Job lj pj uj

1 4 7 4

2 3 9 3

3 5 3 3

4 2 5 1

5 2 7 5

83

Iteration 1:

Step 2. The largest processing time is 9, and the corresponding job is 2. Find a pair of jobs

(f, b) where the summation of loading and unloading times of the two jobs is closest to 9.

The pair of jobs selected is job 1 and job 3. The current job sequence is 1 2 3  .

Step 3. Job 1 has a larger processing time than job 3.

 Step 3.1 Select job i with an unloading time close to max{ ,0} max{7 3,0} 4f jp l    .

Job 5 is selected. The current job sequence is 5 1 2 3   .

Iteration 2:

Step 3. Job 5 has a larger processing time than job 3.

 Step 3.1 Sequence the remaining job 4 in the front of the sequence.

Step 4. The job sequence is 4 5 1 2 3    , and the makespan is 37. (It is also optimal.)

Constructive Algorithm – Insertion (CAI)

 Similar to the idea of the first constructive algorithm, if the cycle times for cycle 2 to

cycle n+1 are identified by loading and unloading times, the summation of these loading and

unloading times will provide a lower bound to a makespan of any sequence. This property is

stated as in Lemma 4.2.

Lemma 4.2. The value,
1
()

n

j jj
l u


 , provides a lower bound for the makespan problem in a T-

line machining center with one CNC machine.

84

Proof: According to Equations (4.1) to (4.3), the makespan of a given sequence, say σ, is

represented as MSσ = [1]l + [1] [2]max{ , }p l + [2] [1] [3]max{ , }p u l + … + [1] [2] []max{ , }n n np u l   +

[] [1]max{ , }n np u  + []nu . Neglect the processing times in these cycles 2 to n+1. Thus,

 MSσ [1] [2] [3] [1] [] [2] [1] [] 1
() () ()

n

n n n n j jj
l l l u l u u u l u  

         

 □

 Furthermore, from the above lemma we can derive that if the maximum processing time

on the CNC machine is less than the smallest loading and unloading time, the optimal solution is

equal to the lower bound. The property can be represented as follows:

 11,..., 1,...,1,..., 1,...,
max min and max min the optimal makespan: ().

n

j i j i j jji n i nj n j n
p l p u l u

  
   

 In addition, a new lower bound, which provides a tighter bound for any sequence, can be

derived from Lemma 4.1 and Lemma 4.2.

Theorem 4.3. The value,
1 11,..., 1,...,

max{min min , ()}
n n

i j i j jj ji n i n
l p u l u

  
    , provides a lower

bound for the makespan problem in a T-line machining center with one CNC machine.

Proof: Derived from Lemmas 4.1 and 4.2 directly. □

Therefore, the main idea of the constructive algorithm is to sequence a job based on its

loading and unloading time. Each job is assigned two weights: one weight is determined by its

loading time, the other weight is determined by its unloading time. A job with larger loading or

unloading times is assigned larger weights, and a job with the large sum of these two weights

will be sequenced first. When a job is selected to be inserted into the current sequence, this job

will be inserted in every position of the sequence to obtain a corresponding makespan. For a

85

given subsequence with k jobs, there are k+1 inserting positions: the beginning and the end

positions of the subsequence and the positions between two consecutive jobs in the subsequence.

After all attempts in each position, the job will be sequenced in the position where the minimum

makespan is obtained. The processes are repeated until all jobs are sequenced. The procedure of

this algorithm, Constructive Algorithm – Insertion (CAI), is stated as follows.

CAI Algorithm

 N is a set containing all jobs; N = {1, 2, …, n}. S is a set containing jobs which have been

sequenced, and R is a set containing jobs which are not sequenced. Each job has two weights

which are assigned according to its loading and unloading times. The weights corresponding to

loading and unloading times of job j are wlj and wuj, respectively. MS is a variable to record the

current makespan.

Step 1. Let MS = 0, R = N and S = ∅.

Step 2. Sort jobs based on loading times in ascending order, and assign a weight value to each

job. The weight value for the first job is 1, for the second job is 2 and for the last job is n. If jobs

have the same loading times, the weights assigned to these jobs are the same. For example, k jobs

have the same loading time, and the weight value assigned to these jobs is w. However, the

weight assigned to next job will be w+k. Similarly, the job with the smallest unloading time has a

weight value equal to 1, and the job with largest unloading time has a weight value equal to n.

Step 3. Select a job (denoted as j) from set R with the largest value of lj ujw w .

Step 4. Insert job j in position i of the current sequence where 1, ,| | 1i S  . The

corresponding makespan of inserting job j in position i (denoted as MSij) can be calculated as

follows:

86

 Step 4.1. [1] [2] [1] [] [] [1]max{ , } max{ , } max{ , }ij i i j j i i i j iMS MS p u l p u l p u l         

 [1] [2] [] [] [1] [1]max{ , } max{ , }i i i i i ip u l p u l      

 where [| | 1] [| | 2] [0] [| | 1] [1] [0] 0S S Sl l p p u u         .

 Step 4.2. Select position i with the minimum makespan, and insert job j in that position.

Let min{ }ijMS MS , { }S S j  and \{ }R R j . If R  , go to step 3. Otherwise, go

to step 5.

Step 5. Output the job sequence and the makespan.

A Numerical Example

A numerical example is presented to demonstrate the procedure of CAI. Table 4.4 shows

the job data for the example.

Table 4.4: Job data for the example of CAI

Job lj wlj pj uj wuj wlj + wuj

1 4 4 7 4 4 8

2 3 3 9 3 2 5

3 5 5 3 3 2 7

4 2 1 5 1 1 2

5 2 1 7 5 5 6

Iteration 1:

 Step 3. R = {1, 3, 5, 2, 4}. Job 1 is selected.

 Step 4. Insert job 1 to the current sequence, and the current makespan is 15. S = {1}.

Iteration 2:

 Step 3. R = {3, 5, 2, 4}. Job 3 is selected.

87

 Step 4. Insert job 3 to the current sequence.

 Step 4.1. i = 1, MS = 20.

 i = 2, MS = 18.

 Step 4.2. Insert job 3 in position 2. S = {1, 3} and MS = 19.

Iteration 3:

 Step 3. R = {5, 2, 4}. Job 5 is selected.

 Step 4. Insert job 5 to the current sequence.

 Step 4.1. i = 1, MS = 26.

 i = 2, MS = 28.

 i = 3, MS = 29.

 Step 4.2. Insert job 3 in position 1. S = {5, 1, 3} and MS = 26.

Iteration 4:

 Step 3. R = {2, 4}. Job 2 is selected.

 Step 4. Insert job 2 to the current sequence.

 Step 4.1. i = 1, MS = 36.

 i = 2, MS = 33.

 i = 3, MS = 32.

 i = 4, MS = 38.

 Step 4.2. Insert job 3 in position 1. S = {5, 1, 2, 3} and MS = 32.

Iteration 5:

 Step 3. R = {4}. Job 4 is selected.

 Step 4. Insert job 4 to the current sequence.

 Step 4.1. i = 1, MS = 37.

88

 i = 2, MS = 40.

 i = 3, MS = 38.

 i = 4, MS = 40.

 i = 5, MS = 37.

Step 4.2. Insert job 4 in position 1 or 5. S = {4, 5, 1, 2, 3} or {5, 1, 2, 3, 4} and MS

= 37.

 Step 5. The job sequence is 4 5 1 2 3    or 5 1 2 3 4    , and the makespan is 37. (It

is also optimal.)

Improvement Stage

 After generating a seed, a better solution or sequence will be searched for improving the

current makespan. Typically, neighborhood solutions of the seed are generated and explored.

Then the sequence with the smallest makespan among these neighborhood sequences is selected

as the seed for next iteration of the improvement stage. The procedure does not terminate until a

further improved sequence cannot be found. The technique of the search algorithm is referred to

as Neighborhood Search. It is important to determine the method of generating neighborhood

solutions in the search algorithm, because the more possible candidate solutions are explored, the

better improvements can be obtained. One of mechanisms to generate neighborhood sequences is

known as adjacent pairwise interchange, which is to switch two adjacent jobs. In the proposed

algorithm, not only the adjacent pairwise interchange is adopted, but also pairwise interchange of

any two jobs is considered.

89

 One of the weaknesses of the neighborhood search algorithm is that the current solution

may be trapped in a local optimum so that no better neighbor can be found with respect to the

current seed. In order to escape from a local optimum, a mechanism to increase the

diversification of the search region is incorporated into the neighborhood search algorithm. If no

more improvements can be found in the neighborhood region of the current seed, a neighborhood

sequence with the identical makespan as the current seed is selected as a new seed. If there are

more than one neighborhood sequences with the same makespan as the current seed, one

sequence is randomly chosen from them. In the next iteration, the unexplored region of the new

seed can be searched for further improvement. Therefore, these two mechanisms, the pairwise

interchange and the escape from a local optimum, comprise the basic structure of the algorithm

in the improvement stage. The modified neighborhood search algorithm is explained in detail in

the rest of this section.

Algorithm of Modified Neighborhood Search

Notations:

B: the current best sequence.

MS(B): the makespan of the sequence B.

MS(S): the makespan of the sequence S.

MS(S’): the makespan of the sequence S’.

R: the set containing the sequences with identical makespan as the seed.

Counter: a counter to record the number of iterations that has been performed.

Step 1. Let the sequence obtained from the constructed stage be the initial seed S.

90

Step 2. Initialize MS(B) as a very large value, and perform adjacent pairwise interchange i = 1.

 Step 2.1. Generate S’ by swapping the positions of job i and job i+1 in S. The makespan

can be obtained as the following formulation.

 MS(S’) =
3

[1] [2] [] [1] [2] [1]() max{ , } max{ , }
i

j j j i i ij i
MS S p u l p u l



    
   

 [1] [1] [] [] [1] [2] [2] [] [3]max{ , } max{ , } max{ , }i i i i i i i i ip u l p u l p u l          

 where [1] [2] [0] [1] [1] [0] 0n n nl l p p u u         .

 Step 2.2. If MS(S’) < MS(B), then B S’ and MS(B) = MS(S’).

 Step 2.3. If MS(S’) = MS(S), then 'R R S  .

 Step 2.4. i = i+1 and go to Step 2.1 until 1i n  .

Step 3. If MS(B) < MS(S) then SB, R  , 1Counter  , and go to Step 2. Otherwise go to

step 4.

Step 4. Initialize MS(B) as a very large value, and perform pairwise interchange from i = 1.

 Step 4.1. Generate S’ by swapping the job positions of job i and job j where 2 j i  in

S, and the makespan can be obtained as the following formulation.

 If j = i+2, the makespan can be calculated as below:

 MS(S’) =
4

[1] [2] []() max{ , }
i

j j jj i
MS S p u l



 
 

 [1] [2] [] [] [1] [1] [1] [] []max{ , } max{ , } max{ , }i i j j i i i j ip u l p u l p u l         

 [] [1] [1] [1] [] [2]max{ , } max{ , }i j j j i jp u l p u l      

where [1] [2] [0] [1] [1] [0] 0n n nl l p p u u         .

 Else

 MS(S’) =
2 2

[1] [2] [] [1] [2] []() max{ , } max{ , }
i j

k k k k k kk i k j
MS S p u l p u l

 

    
    

91

[1] [2] [] [] [1] [1] [1] [] [2]max{ , } max{ , } max{ , }i i j j i i i j ip u l p u l p u l          

[1] [2] [] [] [1] [1] [1] [] [2]max{ , } max{ , } max{ , }j j i i j j j i jp u l p u l p u l          

where [1] [2] [0] [1] [1] [0] 0n n nl l p p u u         .

 Step 4.2. If MS(S’) < MS(B), then B S’ , MS(B) = MS(S’) .

 Step 4.3. If MS(S’) = MS(S), then 'R R S  .

 Step 4.4. j = j+1 and go to Step 4.1 until j = n.

Step 5. If MS(B) < MS(S), then SB, R  , 1Counter  , and go to Step 2. Otherwise i = i+1

and go to step 4 until 2i n  .

Step 6. If Counter < 10000, then randomly select a sequence from R as a new seed S. R  ,

1Counter Counter  , and go to Step 2. Otherwise go to step 7.

Step 7. Output the final sequence and the makespan.

Starting the neighborhood search requires an initial sequence as seed S. This seed is

generated from the algorithm in the constructive stage. First, a series of adjacent pairwise

interchanges is performed on the seed to generate a list of new sequences. The adjacent pairwise

interchange is to swap the positions of two adjacent jobs in a sequence. The interchange starts

from the first job in a sequence and continues until the last job. After swapping the positions of

the first two jobs, a new sequence S’ is generated, and the makespan MS(S’) of the sequence is

computed.

A second new sequence is generated by exchanging the positions of the second and third

jobs. If the makespan of the second sequence is smaller than the makespan of the first one, the

second sequence will serve as the current best sequence. The procedure will be repeated until the

92

1thn sequence is generated and compared with the current best sequence. Hence, the current

best sequence is the one among the seed’s neighbors with the smallest makespan. The current

best sequence will become a new seed for the next iteration.

If no better sequence could be obtained, another pairwise interchange mechanism will be

applied. This mechanism will swap the job in position i and the job in position j where i is from 1

to 2n , and j is from i+2 to n. The procedure is similar to the procedure of the adjacent pairwise

interchange. When i is equal to 1, for example, 2n sequences are generated and the sequence

with the minimum makespan will serve as a seed for next iteration. If no better sequence is

obtained, then i increases by 1 and 1n i  sequences are generated. The procedure isn’t

terminated until either a better solution is found or 1i n  . The total number of possible

solutions in the neighborhood region of the seed explored is
(1)

2

n n
.

If no sequence with an improved makespan can be obtained after performing these two

interchange schemes, the current seed could be considered as a local optimum in terms of the

scheme of the pairwise interchange. Therefore, a remedial method should be adopted to increase

the diversification of the search algorithm and avoid the solution trapping in a local optimum.

The method incorporated in the algorithm of the improvement stage is to randomly select a

sequence which has the identical makespan as the current solution as a new seed. Then the

neighborhood search is applied to the new seed to search a better sequence. There is a counter to

record the number of the random selections is performed. However, once a neighbor sequence

with a better makespan is obtained, the counter is reset to 1. The procedure of random selection

is executed repeatedly until the counter reaches a predefined value (i.e., 10000). In this

93

condition, the whole improvement stage is terminated, and the current sequence and the

makespan are reported.

4.6 Computational Results

In order to evaluate the performance of the proposed heuristic algorithms, a series of

experiments is conducted. The solutions generated by the two developed algorithms are

compared with the optimal solutions obtained by the dynamic programming algorithm in Section

4.4. Since no sample problems have been found in the literature and no real data from the

machining center is available, all of the testing data are randomly created in this research.

In order to assure the robustness of the experiments, three testing scenarios are

performed: (1) the expected value of processing times is equal to the expected value of the sum

of loading and unloading times, (2) the expected value of processing times is greater than the

expected value of the sum of loading and unloading times, and (3) the expected value of the sum

of loading and unloading times is greater than the expected value of processing times. Typically,

the operation of loading (i.e., loading jobs and adjust fixtures) is more complicated than the

operation of unloading. Therefore, the expected value of loading times is set to be larger than the

expected value of unloading times. In addition, for each case the small, medium and large size

problems are also considered. The makespan values and CPU times are recorded for all

experiments. The rules to generate the testing data are summarized in Table 4.5.

94

Table 4.5: Experimental design and data generating rules for 1 max| , |F synmv re LU C

 Small size Medium size Large size

Number of jobs (n) 10/15 19 40

Scenario I (7, 11, 3) (lj, pj, uj) = (U(1,7), U(1, 11), U(1, 3))

Scenario II (7, 15, 3) (lj, pj, uj) = (U(1,7), U(1, 15), U(1, 3))

Scenario III (10, 11, 4) (lj, pj, uj) = (U(1,10), U(1, 11), U(1, 4))

*U denotes the discrete distribution and all operation times are integer.

Two constructive algorithms, CAS and CAI, are developed and each of them is integrated

with the modified neighborhood search algorithm as one two-phase algorithm. Thus, two two-

phase algorithms are implemented and they are named as CAS_M and CAI_M, respectively.

These two heuristic algorithms are coded by using Borland C++ 5.5 as well as the dynamic

programming algorithm. Ten runs are executed for each scenario. These tests are run on a

Pentium 1.40GHz PC with 1 GB RAM. For small-size problems, 10 and 15 jobs are tested.

According to the computational analysis of the dynamic programming algorithm in Section 4.4,

the maximum number of jobs in the problem that can be solved optimally by the dynamic

programming algorithm is 19, due to the restriction of RAM size. Even increasing the memory

size or the virtual memory size can’t address the issue. That is the reason that the number of jobs

in the medium size is set to 19.

Results

There are three scenarios in the four different size problems and 10 runs are executed for

each case. Hence, 120 instances are tested for these two proposed heuristics. For the small and

medium size problems, the optimal solutions can be obtained. In a large-size problem, however,

95

it is impractical to obtain an optimal solution because the problem is strongly NP-hard. As a

result, only a lower bound value is derived from Theorem 4.3 as a reference value to be

compared with the solution obtained by heuristic algorithms. The average makespan on 10 runs

for each case is summarized in Table 4.6. In addition, the percentage of the makespan generated

by heuristics from the optimum and lower bound is measured by the relative error. Table 4.7

illustrates the average relative error from the optimum and lower bound.

Table 4.6. Summary of the average makespans obtained by the DP, heuristics, and LB

Scenario n DP CAS_M CAI_M LB

Optimum Time S1 S2 Time S1 S2 Time

I

(7, 11, 3)

10 68.9 0.06 74.4 69.3 0.08 71.1 69.5 0.08 68.2

15 95.1 4.39 103.3 95.7 0.21 98.3 95.8 0.20 93.1

19 121.8 344.8 136.0 122.6 0.26 126.0 123.1 0.29 119.6

40 – – 280.7 253.2 0.92 261.3 252.7 1.12 247.1

II

(7, 15, 3)

10 82.2 0.06 86.8 82.4 0.08 83.4 82.6 0.08 80.7

15 131.3 4.37 137.6 131.5 0.20 134.1 131.5 0.21 129.4

19 163.1 356.1 171.4 163.2 0.26 165.5 163.4 0.25 160.3

40 – – 333.1 314.7 1.03 321.7 314.8 1.02 310.4

III

(10, 11, 4)

10 80.2 0.07 85.2 80.9 0.09 81.8 80.9 0.08 79.5

15 124.0 4.41 131.8 124.6 0.21 126.6 124.4 0.20 123.5

19 155.2 354.4 162.0 155.6 0.27 157.6 155.8 0.26 155.2

40 – – 335.9 323.0 0.86 323.2 323.0 0.83 322.1

(S1: the constructive stage; S2: the improvement stage)

96

Table 4.7: Summary of average relative errors from optimum and LB

Scenario

n

n

RE from optimum (%) RE from LB (%)

CAS_M CAI_M CAS_M CAI_M

S1 S2 S1 S2 S1 S2 S1 S2

I

(7, 11, 3)

10 8.12 0.64 3.30 0.97 9.27 1.72 4.41 2.05

15 8.68 0.63 3.33 0.74 11.02 2.79 5.55 2.90

19 11.73 0.66 3.51 1.09 13.89 2.56 5.48 3.00

40 – – – – 13.82 2.50 5.80 2.29

II

(7, 15, 3)

10 5.73 0.25 1.49 0.48 7.75 2.17 3.44 2.41

15 5.10 0.18 2.25 0.17 6.88 1.85 3.98 1.85

19 5.37 0.09 1.65 0.24 7.63 2.20 3.83 2.37

40 – – – – 7.45 1.43 3.71 1.46

III

(10, 11, 4)

10 6.17 0.93 2.07 0.89 7.19 1.91 3.09 1.86

15 6.38 0.53 2.18 0.35 6.86 0.99 2.65 0.81

19 4.51 0.28 1.62 0.41 4.51 0.28 1.62 0.41

40 – – – – 4.29 0.29 0.36 0.29

 For the small-size problems, optimal solutions can be obtained by the dynamic

programming algorithm within 0.07 and 4.4 seconds for 10-job and 15-job cases, respectively.

The execution times of these two heuristic algorithms are less than 0.2 seconds for all runs. The

average relative errors from the optimal makespans are less than 1% for both CAS_M and

CAI_M. However, the relative error for CAS in the constructive stage is up to 8.68% which is

almost 3 times more than CAI.

 When the number of jobs increases to 19, it requires 350 seconds for the dynamic

programming algorithm to solve the problem on average. However, these two heuristics only

require 0.3 seconds to obtain a solution, which are faster than the dynamic programming

algorithm. Moreover, the relative errors from the optimal makespan are less than 1% for all

scenarios, especially in the case of Scenario II and III.

97

For the large-size problems, because optimal solutions are unlikely to be obtained, the

makespans generated by the heuristic algorithms are compared with the lower bound values. By

observing the results in the small and medium size problems, the relative errors for the two

heuristic algorithms from the lower bounds are within 3%. Hence, the lower bound provides a

good reference compared with the optimal solution while the optimal solution is not available. In

the worst case, the average relative errors from the lower bounds for CAS_M and CAI_M are

2.5% and 2.29%, respectively. This implies that the average relative error from the optimal

makespan will be less than 2.5%. In addition, the CPU times required by these two algorithms

are around 1 second. Hence, the time constraint is not an issue for executing the proposed

algorithms.

Conclusions

 Through these testing scenarios, the relative errors of the makespans obtained by these

two proposed algorithms (CAS_M and CAI_M) compared with the optimal solutions or lower

bound values are within 3% on average, with the worse case being 5%. Moreover, optimal

sequences can be found in most cases when processing times are greater or less than the sum of

the loading and unloading times, especially when the number of jobs is large. With respect to the

constructive stage, solutions constructed by CAI are much better than those by CAS. In addition,

the modified neighborhood search algorithm indeed provides significant improvements on the

initial sequence. Regarding the computational effort, even for the large-sized problem, the

average CPU time required by the proposed algorithms is no more than 2 seconds. Overall,

because both of the proposed algorithms determine optimal or near-optimal solutions rapidly, we

98

can conclude that the proposed two-phase heuristics are very suitable for solving the scheduling

problem of a T-line machining center with one CNC machine.

 Furthermore, the lower bound derived from Theorem 4.3 is a tight bound for the optimal

solution, and provides an insightful reference when the optimum is unavailable. Observing the

results of scenario II in the large-size problems, when the summation of processing times (

1

n

jj
p

) dominates the summation of loading and unloading time (
1
()

n

j jj
l u


), the lower

bound value (
11,..., 1,...,

min min
n

i j iji n i n
l p u

 
 ) is closer to the optimal makespan. On the other hand, in

the scenario III, if
1
()

n

j jj
l u


 is much greater than

1

n

jj
p

 , then the difference between the

lower bound
1

 ()
n

j jj
l u


 and the optimal value becomes smaller.

4.7 Concluding Summary

 In summary, the scheduling problem in a one-machine T-line machining center has been

studied and several contributions have been presented in this chapter. First, the complexity of

problem max| , |mF synmv re LU C

is shown to be strongly NP-hard even with only one machine.

For a special case, a polynomial-time algorithm which integrates the Gilmore-Gomory algorithm

is proposed to solve the problem with constant loading time or unloading time (

1 max| , , or |j jF synmv re LU l c u c C  ). Second, a dynamic programming algorithm is

formulated to effectively solve the problem in a small or medium scale. Third, two two-phase

heuristic algorithms are proposed to obtain an optimal or near-optimal makespan in a reasonable

CPU time. Regarding the constructive phase, two heuristics are developed: CAS and CAI. A

99

modified neighborhood search is suggested for the improvement phase. Moreover, in order to

evaluate the performance of the algorithms, a lower bound value is derived.

 The experimental results show that these two-phase heuristic algorithms not only

generate the makespans, which are averagely within 1% from the optimal values or 3% from the

lower bounds, but also obtain solutions in a very short time. An extension to increase the number

of machines in the machining center to two will be further investigated in Chapter 5.

Chapter 5

Two-machine Flow Shop with Synchronous Material Movement

5.1 Introduction

In Chapter 4, a scheduling problem with application to a T-line machining center with

one CNC machine has been explored and discussed. This scheduling problem with makespan

objective has been shown to be NP-hard in the strong sense. In this chapter, an extension of the

T-line machining center problem with two CNC machines is considered. In Chapter 4, Figure 4.2

shows an example of this manufacturing setting with one L/U station, two CNC machine stations

and a rotary table with three pallets that simultaneously moves jobs between stations in a

synchronized manner. In this machining center, a job is loaded at the L/U station, processed by

these two CNC machines sequentially, and finally unloaded from the machining center at the

L/U station. Similar to the problem with one CNC machine, the scheduling problem of

minimizing the makespan with two CNC machines can be presented in a three-field notation as

2 max| , |F synmv re LU C .

The problem that is analyzed in this chapter consists of n jobs that have to be processed

by the machining center. The loading and unloading times for job j are denoted as lj and uj, and

the processing times on the first CNC machine (CNC1) and on the second CNC machine (CNC2)

are denoted as pj1 and pj2, respectively. A time period between two successive rotations of the

rotary table is defined as a cycle time denoted as Ci where 1, , 3i n  . Given a job sequence

101

J[1], J[2], …, J[n], each cycle time can be represented as follows where the notation J[i] represents

the job is sequenced in position i:

 C1 = l[1]; C2 = max{p[1]1, l[2]}; C3 = max{p[2]1, p[1]2, l[3]}, (5.1)

 Ci = max{p[i–1]1, p[i–2]2, l[i] + u[i-3]}, i = 4,…, n, (5.2)

 Cn+1 = max{p[n]1, p[n–1]2, u[n–2]}; Cn+2 = max{p[n]2, u[n–1]}; Cn+3 = u[n]. (5.3)

where l[i], p[i]1, p[i]2 and u[i] represent the loading time, processing time on CNC1,

processing time on CNC2 and unloading time of the job sequenced in position i,

respectively.

 In the first three cycles, there are no unloading operations required. Similarly, there are

no loading operations performed in the last three cycles. The time duration of each cycle is equal

to the maximum time required among these three stations. Figure 5.1 illustrates a schedule of

jobs at each station. The problem is to determine a sequence which minimizes the summation of

these cycles (
3

1

n

ii
C



).

Figure 5.1. Schedule of jobs at each station in a two-CNC T-line machining center

L/U Station

CNC1

CNC2

l[1]

p[1]1

l[2] l[3]

p[2]1

p[1]2

u[1] l[4]

p[3]1

p[2]2

…...

…...

…...

u[n-2]

p[n]1

p[n-1]2

u[n-1]

p[n]2

u[n]

Time

Cycle 1 Cycle n+3
…...

Cycle 4

102

 In Section 5.2, the dynamic programming algorithm proposed in Chapter 4 is extended to

this problem and a computational analysis for the algorithm is presented. Section 5.3 proposes

two constructive heuristics combined with the modified neighborhood search to solve the

problem in a large scale. The experimental designs and results for evaluating the heuristic

algorithms are illustrated in Section 5.4. Finally, a generalized dynamic programming

formulation and its computational analysis are presented for the problem with m machines as

well as a lower bound for the problem.

5.2 Dynamic Programming Algorithm for 2 max| , |F synmv re LU C

A forward dynamic programming procedure is formulated to find the minimum

makespan. Given n jobs which have to be processed by the machining center and these jobs are

numbered from 1 to n. Let {1,2, , }N n  be a set of jobs and let S be a subset of N containing

the jobs that have already been processed in the machining center. Let g and h represent the jobs

concurrently being processed on the CNC2 and CNC1 respectively, and j be the job being loaded

at the L/U station. Then the dynamic programming formulation is as follows:

DP Algorithm for 2 max| , |F synmv re LU C

 Optimal value function (OVF): fi(S, g, h, j) = minimum completion time for processing job g

on CNC2, processing job h on CNC1, unloading the last job in S and loading job j at the L/U

station, given that the i jobs in S have already been completed. (5.4)

 Optimal policy function (OPF): pi(S, g, h, j) = last job unloaded at the L/U station.

Equivalently, this is also the last job added to set S. (5.5)

103

 Recurrence relation (RR):

1 1 2(, , ,) min{ (\{ }, , ,) max{ , , }}; 1,..., 3i i h g k j
k S

f S g h j f S k k g h p p u l i n


     ;

{ , , }g h j N ; \{ , , }S N g h j , | S | = i. (5.6)

 Boundary condition (BC):

0 1 1 2(, , ,) max{ , } max{ , , }; { , , }g g h h g jf g h j l p l p p l g h j N     . (5.7)

 Answer (ANS): 2
{ , }
min { (, , ,)}n
g h N

f S g h


 (5.8)

where
2 3 1 2 2(, , ,) min{ (\{ }, , ,) max{ , , }} max{ , }n n h g k h g h

k S
f S g h f S k k g h p p u p u u 


     ;

{ , }g h N ; \{ , }S N g h , | S | = n – 2. (5.9)

Computational Effort Analysis

The computational effort of the dynamic programming algorithm is evaluated by the

number of operations performed as “Addition” and “Comparison.” The number of operations

required for each stage of the algorithm is summarized as shown in Table 5.1.

Table 5.1. Number of operations required for each stage

Stage Number of combinations Addition Comparison

Boundary condition (i = 0) (1)(2)n n n  2 3

Recurrence relation (1 3i n  )
3(1)(2) n

in n n C   2i 2i + (i – 1)

Answer
2nf  (i = n – 2) (1)n n n 2(2) (3) 1n n   

Minimum makespan 1 0 (1) 1n n 

In the boundary condition, there are n(n – 1)(n – 2) combinations for job g, h, and j, and

each combination requires two additions and three comparisons to obtain the value for f0. In the

recurrence relation, for each i, there are n(n – 1)(n – 2) choices for job g, h, and j, and 3n

iC 

104

combinations of jobs in set S. Each combination of (S, g, h, j) has i candidates in set S for k, and

to obtain the minimum value among these i candidates requires extra i – 1 comparisons. In the

answer formulation, there are n(n – 1) different (g, h) pairs for 2nf  , and each pair has n – 2

candidates for k. Moreover, among these n – 2 candidates n – 3 comparisons are performed to

acquire the minimum value for each 2nf  . To obtain the minimum makespan among these 2nf 

needs n(n – 1) –1 comparisons. Therefore, the total number of additions required is:

=
3

3

1

2 (1)(2)(1) (1)()
n

n

i

i

n n n i C n n n






     

=
4 4 2

0
2 (1)(2)(1 (3)) (1)

n n

jj
n n n n C n n

 


     

=
4 32 (1)(2)(3)2 (1)(3 4) (1)(2)(3)2n nn n n n n n n n n n n           .

The total number of comparisons required is:

=
3 33 3

1 1
(1)(2)(3) 6 (1)(2) (1) 1

n nn n

i ii i
n n n i C C n n n n n

  

 
          

=
4 3(1)(2)(3(3)2 2 1) 6 (1)(2) (1) 1n nn n n n n n n n n           

=
4 33 (1)(2)(3)2 (1)(2)(7 2) (1) 1n nn n n n n n n n n          

43 (1)(2)(3)2nn n n n     .

 Thus, the computational effort for this dynamic programming algorithm is
4 3(2)nO n 

.

Consider an example for this machining center with 15 jobs. The total number of operations

required for the algorithm is approximately 335 million. Furthermore, to compute a value of the

optimal value function fi, it is necessary to know and store several values of the function fi–1 in

the previous stage. For example, in order to calculate the values of f10 in stage 10, we need to

compute 600,600 values of f9 in the prior stage. Therefore, the storage spaces for the algorithm

105

would become a practical restriction for solving the problem in a large scale. Hence, it is more

feasible to develop a heuristic algorithm to solve the problem in a large size.

A Numerical Example

A numerical example is presented to illustrate the proposed dynamic programming

algorithm. In this example, five jobs need to be processed in a T-line machining center with two

CNC machines, and one L/U station. Table 5.2 shows the loading, processing, and unloading

times for these jobs.

Table 5.2. Job data for a two-CNC T-line machining center

Job lj pj1 pj2 uj

1 4 7 5 4

2 3 9 8 3

3 5 3 10 3

4 2 5 6 1

5 2 7 4 5

Since the process used to calculate all the values of the optimal value function is similar,

only the calculations directly related to obtaining the optimal solution are shown below.

 Boundary conditions:

0 2 21 3 31 22 5(,2,3,5) max{ , } max{ , , } 3 max{9,5} max{3,8,2} 20.f l p l p p l       

0 3 31 2 21 32 5(,3,2,5) max{ , } max{ , , } 5 max{3,3} max{9,10,3} 18.f l p l p p l       

0 2 21 5 51 22 3(,2,5,3) max{ , } max{ , , } 3 max{9,2} max{7,8,5} 20.f l p l p p l       

0 5 51 2 21 52 3(,5,2,3) max{ , } max{ , , } 2 max{7,3} max{9,4,5} 18.f l p l p p l       

106

0 3 31 5 51 32 2(,3,5,2) max{ , } max{ , , } 5 max{3,2} max{7,10,3} 18.f l p l p p l       

0 5 51 3 31 52 2(,5,3,2) max{ , } max{ , , } 2 max{7,5} max{3,4,3} 13.f l p l p p l       

 i =1:

1 0 51 32 2 1(2,3,5,1) (,2,3,5) max{ , , } 20 max{7,10,3 4} 30.f f p p u l       

1 0 51 22 3 1(3,2,5,1) (,3,2,5) max{ , , } 18 max{7,8,3 4} 26.f f p p u l       

1 0 31 52 2 1(2,5,3,1) (,2,5,3) max{ , , } 20 max{3,4,3 4} 27.f f p p u l       

1 0 31 22 5 1(5,2,3,1) (,5,2,3) max{ , , } 18 max{3,8,5 4} 27.f f p p u l       

1 0 21 52 3 1(3,5,2,1) (,3,5,2) max{ , , } 18 max{9,4,3 4} 27.f f p p u l       

1 0 21 32 5 1(5,3,2,1) (,5,3,2) max{ , , } 13 max{9,10,5 4} 23.f f p p u l       

 i =2:

2 1 11 52 3 4 1 11 52 2 4({2,3},5,1,4) min{ (2,3,5,1) max{ , , }, (3,2,5,1) max{ , , }}f f p p u l f p p u l    

 min{30 max{7,4,3 2}, 26 max{7,4,3 2}} 33      ; 2 ({2,3},5,1,4) 2.p 

2 1 11 32 5 4 1 11 32 2 4({2,5},3,1,4) min{ (2,5,3,1) max{ , , }, (5,2,3,1) max{ , , }}f f p p u l f p p u l    

 min{27 max{7,10,5 2}, 27 max{7,10,3 2}} 37      ; 2 ({2,5},3,1,4) 2 or 5.p 

2 1 11 22 5 4 1 11 22 3 4({3,5},2,1,4) min{ (3,5,2,1) max{ , , }, (5,3,2,1) max{ , , }}f f p p u l f p p u l    

 min{27 max{7,8,5 2}, 23 max{7,8,3 2}} 31      ; 2 ({3,5},2,1,4) 3.p 

 Answer:

3 3 3min{ ({3,4,5},1,2,), ({2,4,5},1,3,), , ({1,2,3},5,4,)} min{49,49, ,45} 43f f f     

3 2 41 12 5

2 41 12 3

2

where ({2,3,5},1,4,) min{ ({2,3},5,1,4) max{ , , },

 ({2,5},3,1,4) max{ , , },

 ({3,

f f p p u

f p p u

f

  



41 12 2 42 1 45},2,1,4) max{ , , }} max{ , }p p u p u u  

min{33 max{5,5,5},37 max{5,5,3},31 max{5,5,3}} max{6,4} 1 43       ;

3({2,3,5},1,4,) 2.p  

107

Hence, the minimum makespan of the problem is 43 and the optimal job sequence is

5 3 2 1 4    .

5.3 Heuristic Algorithm for 2 max| , |F synmv re LU C

 Since the three-station flow shop scheduling problem is NP-hard, it is unlikely that a

polynomial-time algorithm can be developed to find an optimal solution. The computational

results in Chapter 4 show that the proposed two-phase heuristic algorithm performs very well for

the scheduling problem with one CNC machine. As a result, the two-phase algorithm is extended

to solve the problem with two CNC machines.

 The proposed algorithm also consists of two stages: the constructive stage and the

improvement stage. In the constructive stage, two constructive heuristics are developed. One

forms an initial sequence by applying the Gilmore-Gomory algorithm (Gilmore and Gomory

1964) to the problem while neglecting the loading and unloading times. The other forms an

initial sequence by inserting a job in the position of a given sequence that yields the minimum

makespan. In the improvement stage, a similar algorithm to the modified neighborhood search

algorithm that is proposed in Chapter 4 is employed. Furthermore, a formulation to derive a

lower bound value is also presented.

Constructive Algorithm – Gilmore-Gomory Algorithm (CAGG)

 When the loading and unloading times are dominated by the processing times, we only

have to consider the processing times on CNC1 and CNC2. In this case, the problem can be

108

regarded as a two-machine flow shop problem with blocking, which can be solved optimally by

the Gilmore-Gomory algorithm. As a result, the sequence generated by the Gilmore-Gomory

algorithm will be the initial seed for the improvement stage while neglecting the loading and

unloading times. The makespan of the initial seed, including the loading and unloading times,

will be calculated based on this sequence.

Furthermore, a lower bound value can be derived based on the assumption of neglecting

the loading and unloading times. In Figure 5.1, if the cycle time of cycle i (2, , 2i n ) is

identified by the processing time of CNC1 or CNC2, the minimum value of the summation of

these cycles can be obtained by applying the Gilmore-Gomory algorithm to the problem which

only considers the processing times on CNC1 or CNC2. This minimum value plus the cycle times

of the first cycle and the last cycle, which are equivalent to the smallest loading and unloading

times, will be a lower bound to the original problem.

Lemma 5.1. The value,
1,..., 1,...,

min mini GG i
i n i n

l MS u
 

  , is a lower bound for the makespan problem in a

T-line machining center with two CNC machines, where GGMS is the optimal makespan

obtained by the Gilmore-Gomory algorithm while neglecting loading and unloading times.

Proof: According to Equations (5.1) to (5.3), the makespan of a given sequence, say σ, is

represented as MSσ = [1]l + [1]1 [2]max{ , }p l + [2]1 [1]2 [3]max{ , , }p p l + [3]1 [2]2 [1] [4]max{ , , }p p u l + … +

[1]1 [2]2 [3] []max{ , , }n n n np p u l    + []1 [1]2 [2]max{ , , }n n np p u  + []2 [1]max{ , }n np u  + []nu . When the

loading and unloading times are neglected from cycles 2 to n+2, cycle times of these cycles only

109

considering processing times are the lower bounds to original cycle times (e.g.,
 [1]1 [2]max{ , }p l

[1]1p , [2]1 [1]2 [3]max{ , , }p p l [2]1 [1]2max{ , }p p and so on). Thus,

 MSσ [1] [1]1 [2]1 [1]2 []1 [1]2 []2 []max{ , } max{ , }n n n nl p p p p p p u     

 [1]l + [1]1p +
1

[1]1 []21
max{ , }

n

i ii
p p



 + []2np + [].nu

In addition,
1,...,

min i
i n

l


and
1,...,

min i
i n

u


are the lower bounds for [1]l and []nu , respectively, and GGMS

is the

lower bound to [1]1p +
1

[1]1 []21
max{ , }

n

i ii
p p



 + []2np . Therefore,

1,..., 1,...,

min mini GG i
i n i n

MS l MS u
 

   . □

When the loading and unloading times on the L/U station are dominated by the

processing times on CNC machines, the makespan yielded by the Gilmore-Gomory algorithm

will approximate to the optimal makespan. As a result, apply the Gilmore-Gomory algorithm to

generate the initial seed for the improvement stage is one of constructive heuristics proposed in

this research. The heuristic algorithm is named CAGG and its procedure is described below.

CAGG Algorithm

Step 1. Apply the Gilmore-Gomory algorithm to the problem which only considers 1 2 and j jp p .

Assume the optimal sequence obtained by the Gilmore-Gomory algorithm is G .

Step 2. Let G be the initial sequence for the improvement algorithm. Calculate the makespan of

sequence G including the loading and unloading times.

110

Constructive Algorithm – Greedy Insertion (CAGI)

 The computational results in Chapter 4 show that the insertion heuristic (CAI) yields a

better makespan value than the selection heuristic (CAS). The makespan of the initial sequence

constructed by CAI is less than 5.8% from the lower bound. Therefore, the insertion heuristic is

also adopted as a constructive algorithm for the two-machine case. The insertion heuristic

adopted in this chapter is called Greedy Insertion (CAGI) because only the combination of a job

and an inserted position which yields the minimum makespan will be selected. When one job has

to be added to the current sequence, every unscheduled job will be inserted in every position of

the current sequence and the combination of the job and the position with the minimum

makespan is chosen.

 For example, there are 10 jobs in a problem and 4 jobs have formed a sequence. When

one job is added to the current sequence, each unscheduled job (6 jobs) has to be inserted in

every position of the current sequence (there are 5 positions). Thus, each unscheduled job will

have five makespans corresponding to these positions. Thirty makespans will be generated and

the one with the minimum value will be chosen. Therefore, given n is the number of jobs, the

computational effort of the CAGI is
3()O n which can be calculated as follows:

2

1 1 1

(1)(2)
(1) (1)

6

n n n

j j j

n n n
j n j n j j

  

 
       

.

111

CAGI Algorithm

 N is a set containing all jobs; N = {1, 2, …, n}. S is a set containing jobs which have been

sequenced, and R is a set containing jobs which have not been sequenced. MS is a variable to

record the current makespan.

Step 1. Let R = N and S = ∅.

Step 2. Select the job with the minimum makespan which is 1 2
1, ,

arg min { }j j j j
j n

k l p p u


   


.

Let S = {𝑘} and R = N\{k}.

Step 3. For every job j in R, insert it in front of job k and behind job k to obtain two makespans

MSfj and MSbj, respectively.

 MS = min{ , }f j b j
j R

MS MS


, assume the inserted job with the minimum makespan is g and

MS is equal to MSfg. Then job g is sequenced before job k and S = {g, k}. Otherwise, job g is

sequenced after job k and S = {k, g}. R=R\{k}.

Step 4. For every job j in R, insert it in every position in the current sequence to obtain |S|+1

makespans. The makespan of inserting job j in position i in the current sequence is represented as

i jMS where 1, ,| | 1i S  .

 Step 4.1. [1]1 [2]2 [3] 2 [1]2 [2] []max{ , , } max{ , , }ij i i i j j i i iMS MS p p u l p p u l        

 []1 2 [1] [1] [1]1 []2 [2]max{ , , } max{ , , }i j i i i i j ip p u l p p u l      

[1]1 [2]2 [3] [] []1 [1]2 [2] [1]max{ , , } max{ , , }i i i i i i i ip p u l p p u l        

[1]1 []2 [1] [2] [2]1 [1]2 [] [3]max{ , , } max{ , , }i i i i i i i ip p u l p p u l        

 where [| | 1] [| | 2] [| | 3] [0]1 [| | 1]1 [| | 2]1 [1]2 [0]2 S S S S Sl l l p p p p p           

 [| | 1]2 [2] [1] [0] 0Sp u u u       .

112

 Step 4.2. Select job j in position i with the minimum makespan, and insert job j in that

position. MS =
, 1, ,| | 1
min { }i j

j R i S
MS

  
 and let { }S S j  , and \{ }R R j . If R  , go to

step 4. Otherwise, go to step 5.

Step 5. Output the job sequence and the makespan.

A Numerical Example

A numerical example is presented to demonstrate the procedure of CAGI. Assume there

are five jobs. Table 5.3 shows the job data for the example.

Table 5.3: Job data for the example of CAGI

Job lj pj1 pj2 uj

1 4 7 5 4

2 3 9 8 3

3 5 3 10 3

4 2 5 6 1

5 2 7 4 5

Iteration 1:

 Step 1. R = {1, 2, 3, 4, 5}.

 Step 2 Job 4 is selected MS = 14. S = {4}.

Iteration 2:

 Step 3. R = {1, 2, 3, 5}.

 Job 1: MS = min{23, 23} = 23.

 Job 2: MS = min{27, 27} = 27.

 Job 3: MS = min{25, 26} = 25.

113

 Job 5: MS = min{21, 23} = 21.

 Job 5 is selected and is inserted in front of job 4. MS = 21 and S = {5, 4}.

Iteration 3:

 Step 4. R = {1, 2, 3}.

 Step 4.1. Calculate the makespan for all jobs in R in every position of current sequence.

 Job 1: MS = min{30, 28, 30} = 28.

 Job 2: MS = min{32, 33, 34} = 32.

 Job 3: MS = min{30, 30, 33} = 30.

 Step 4.2. Job 1 is selected and is inserted in front of job 4. MS = 28 and S = {5, 1, 4}.

Iteration 4:

 Step 4. R = {2, 3}.

 Step 4.1. Calculate the makespan for all jobs in R in every position of current sequence.

 Job 2: MS = min{39, 38, 40, 44} = 38.

 Job 3: MS = min{37, 35, 40, 45} = 35.

 Step 4.2. Job 3 is selected and is inserted in front of job 1. MS = 28 and S = {5, 3, 1, 4}.

Iteration 5:

 Step 4. R = {2}.

 Step 4.1. Calculate the makespan for all jobs in R in every position of current sequence.

 Job 2: MS = min{49, 49, 43, 47, 49} = 43.

 Step 4.2. Job 2 is selected and is inserted in front of job 1. MS = 28 and S = {5, 3, 2, 1,

4}.

 Step 5. The job sequence is 5 3 2 1 4    and the makespan is 43. (It is also optimal.)

114

Lower Bound for 2 max| , |F synmv re LU C

 Similar to Lemma 5.1, if the cycle times from cycles 2 to n+2 are determined by the

loading and unloading times, the summation of the loading and unloading times will provide a

lower bound to an optimal makespan. This property is shown in the following lemma.

Lemma 5.2. The value,
1
()

n

j jj
l u


 , is a lower bound for the makespan problem in a T-line

machining center with two CNC machines.

Proof: According to Equations (5.1) to (5.3), the makespan of a given sequence, say σ, is

represented as MSσ = [1]l + [1]1 [2]max{ , }p l + [2]1 [1]2 [3]max{ , , }p p l + [3]1 [2]2 [1] [4]max{ , , }p p u l + … +

[1]1 [2]2 [3] []max{ , , }n n n np p u l    + []1 [1]2 [2]max{ , , }n n np p u  + []2 [1]max{ , }n np u  + []nu . Neglect the

processing times in cycles 2 to n+2. Thus,

 [1] [2] [3] [4] [1] [] [3] [2] [1] []() ()n n n n nMS l l l l u l u u u u            

1
()

n

j jj
l u


  . □

 In addition, a new lower bound which provides a tighter bound for any sequence can be

derived from Lemma 5.1 and Lemma 5.2.

Theorem 5.1. The value,
11,..., 1,...,

max{min min , ()}
n

i GG i j jji n i n
l MS u l u

 
   , is a lower bound for the

makespan problem in a T-line machining center with two CNC machines.

Proof: Derived from Lemmas 5.1 and 5.2 directly. □

115

Improvement Stage

 According to the computational results in Section 4.6, given an initial seed, the modified

neighborhood search algorithm improves a makespan value significantly to within 3% from its

corresponding lower bound. Moreover, the modified neighborhood search algorithm can

generate a sequence for a problem in one second even when the number of jobs is 40. Therefore,

the modified neighborhood search algorithm proposed in Chapter 4 is also adopted in this

chapter. Only Step 2.1 and Step 4.1 in the procedure of the modified neighborhood search

algorithm in Section 4.5 should be modified due to the two CNC machines in the problem. Step

2.1 regards the procedure of computing the new makespan after performing the adjacent pairwise

interchange. Likewise, the formulation of obtaining the new makespan after performing the

pairwise interchange is shown in Step 4.1. The revised procedures of these two steps are

illustrated as below.

Step 2.1. Generate S’ by swapping the positions of job i and job i+1 in S. The makespan can be

obtained as the following formulation.

 MS(S’) =
4

[1]1 [2]2 [3] [] [1]1 [2]2 [3] [1]MS() max{ , , } max{ , , }
i

j j j j i i i ij i
S p p u l p p u l



      
   

 [1]1 [1]2 [2] [] []1 [1]2 [1] [2]max{ , , } max{ , , }i i i i i i i ip p u l p p u l        

 [2]1 []2 [1] [3] [3]1 [2]2 [] [4]max{ , , } max{ , , }i i i i i i i ip p u l p p u l        

 where [1] [2] [3] [0]1 [1]1 [2]1 [1]2 [0]2 n n n n nl l l p p p p p           

 [1]2 [2] [1] [0] 0np u u u       .

Step 4.1. Generate S’ by swapping the job positions of job i and job j where 2 j i  in S. The

makespan can be obtained as the following formulation.

116

 MS(S’) =
3

[1]1 [2]2 [3] []MS() max{ , , }
i

k k k kk i
S p p u l Q



  
  

 [1]1 [2]2 [3] [] []1 [1]2 [2] [1]max{ , , } max{ , , }i i i j j i i ip p u l p p u l        

 [1]1 []2 [1] [2] [2]1 [1]2 [] [3]max{ , , } max{ , , }j i j j j j i jp p u l p p u l V         

 where [1] [2] [3] [0]1 [1]1 [2]1 [1]2 [0]2 n n n n nl l l p p p p p           

 [1]2 [2] [1] [0] 0np u u u       , and Q and V are computed as follows.

 If j = i+2

3

[1]1 [2]2 [3] []2
max{ , , }

j

k k k kk j
Q p p u l



   
  .

 [1]1 []2 [1] [] []1 [1]2 [] [3]max{ , , } max{ , , }i j i i i i j iV p p u l p p u l       .

 Else If (j = i+3)

3

[1]1 [2]2 [3] []1
max{ , , }

j

k k k kk j
Q p p u l



   
  .

 [1]1 []2 [1] [2] [2]1 [1]2 [] []max{ , , } max{ , , }i j i i i i j iV p p u l p p u l       

 []1 [1]2 [2] [1]max{ , , }i j j jp p u l    .

 Else

3

[1]1 [2]2 [3] []max{ , , }
j

k k k kk j
Q p p u l



  
  .

 [1]1 []2 [1] [2] [2]1 [1]2 [] [3]max{ , , } max{ , , }i j i i i i j iV p p u l p p u l        

 [1]1 [2]2 [3] [] []1 [1]2 [2] [1]max{ , , } max{ , , }j j j i i j j jp p u l p p u l         .

5.4 Computational Results

In order to evaluate the performance of the proposed heuristic algorithms, a series of the

experiments is conducted. The solutions generated by the two developed algorithms are

117

compared with the optimal solutions obtained by the dynamic programming algorithm in Section

5.2. All of the data for the experiments are randomly generated in this research. Similar to the

experiments in Chapter 4, three different scenarios are examined with respect to the loading,

processing and unloading times. In addition, for each scenario, three sizes of the problems are

considered where small-size problems with 10-job and 15-job are examined. The makespan

values and CPU times are recorded for all experiments. The experimental design and the rules to

generate the testing data are summarized in Table 5.4.

Table 5.4: Experimental design and data generating rules for 2 max| , |F synmv re LU C

 Small size Medium size Large size

Number of jobs (n) 10/15 17 40

Scenario I (7, 11, 11, 3) (lj, pj1, pj2, uj) = (U(1,7), U(1, 11), U(1, 11), U(1, 3))

Scenario II (7, 15, 15, 3) (lj, pj1, pj2, uj) = (U(1,7), U(1, 15), U(1, 15), U(1, 3))

Scenario III (10, 11, 11, 4) (lj, pj1, pj2, uj) = (U(1,10), U(1, 11), U(1, 11), U(1, 4))

*U denotes the discrete distribution and all operation times are integer.

Two constructive algorithms, CAGG and CAGI, are developed and each of them is

integrated with the modified neighborhood search algorithm as one two-phase algorithm. Thus,

two two-phase algorithms are implemented and they are named as CAGG_M and CAGI_M,

respectively. These two heuristic algorithms are implemented in Borland C++ 5.5 as well as the

dynamic programming algorithm. Ten runs are executed for each scenario and these tests are run

on a Pentium 1.40GHz PC with 1 GB RAM. The maximum number of jobs in the problem can

be solved optimally by the dynamic programming algorithm is 17 even on an Intel Core 2 Duo

1.6GHz PC with 3 GB RAM. Hence, the number of jobs in the medium-size problem is set to 17.

118

Results

 Similar to the experiments conducted in Chapter 4, there are three scenarios with the four

different numbers of jobs in problems. Ten runs are executed for each case. Hence, 120 instances

are tested for these two proposed heuristics. For small and medium size problems, optimal

solutions can be obtained by the dynamic programming algorithm presented in Section 5.2. In a

large-size problem, however, only lower bound values derived from Theorem 5.1 will be bases

to compare with makespans obtained by the heuristic algorithms. The average makespan on 10

runs for each case is summarized in Table 5.5. Table 5.6 illustrates the average relative errors

from the optimums and lower bounds.

Table 5.5: Summary of the average makespans obtained by the DP, heuristics, and LB

Scenario n DP CAGG_M CAGI_M LB

Optimum Time S1 S2 Time S1 S2 Time

I

(7, 11, 11, 3)

10 81.2 0.24 89.3 82 0.16 83 82.2 0.16 77.5

15 105.5 30.46 118.1 107.5 0.34 110.2 107.3 0.31 101.4

17 126.5 201.2 143.6 129.4 0.42 130.7 129.2 0.42 122.2

40 – – 309.2 271.1 1.98 279.8 270.5 1.98 254.7

II

(7, 15, 15, 3)

10 99.8 0.20 106.4 101.4 0.15 101.8 100.9 0.17 95.7

15 142.3 30.46 154.4 145.4 0.30 147.3 144.0 0.28 138.2

17 161.7 200.6 170.9 164.2 0.39 166.4 163.2 0.33 158.2

40 – – 378.9 355 1.89 361.5 354.2 1.94 344.6

III

(10, 11, 11, 4)

10 84.8 0.19 95.3 86.6 0.20 86.1 85.4 0.15 81.7

15 125.4 30.54 144 128.8 0.32 130.7 128.2 0.32 122.4

17 142 202.0 161.9 143.6 0.40 146.4 142.9 0.38 141

40 – – 374 325.4 1.74 331.9 324.2 1.69 321.7

(S1: the constructive stage; S2: the improvement stage)

119

Table 5.6: Summary of average relative errors from optimum and LB

Scenario

n

n

RE from optimum (%) RE from LB (%)

CAGG_M CAGI_M CAGG_M CAGI_M

S1 S2 S1 S2 S1 S2 S1 S2

I

(7, 11, 11, 3)

10 10.14 1.05 2.27 1.25 15.49 5.93 7.24 6.16

15 11.98 1.92 4.45 1.73 16.60 6.11 8.76 5.91

17 13.69 2.33 3.37 2.18 17.79 6.00 7.08 5.86

40 – – – – 21.50 6.47 9.93 6.25

II

(7, 15, 15, 3)

10 6.66 1.63 2.07 1.15 11.30 6.04 6.50 5.53

15 8.61 2.22 3.60 1.24 11.92 5.34 6.77 4.32

17 5.89 1.64 3.00 0.97 8.41 4.04 5.46 3.36

40 – – – – 10.06 3.07 4.93 2.82

III

(10, 11, 11, 4)

10 12.41 2.22 1.56 0.72 16.89 6.30 5.60 4.71

15 14.95 2.73 4.26 2.26 17.96 5.39 6.98 4.91

17 14.11 1.23 3.17 0.70 15.08 2.09 4.04 1.54

40 – – – – 16.40 1.21 3.25 0.82

 In the small-size problems, the optimal solutions can be obtained by the dynamic

programming algorithm within 0.24 and 30.5 seconds for 10-job and 15-job cases, respectively.

The execution time of these two heuristic algorithms is less than 0.34 seconds for all runs. In 10-

job cases, for algorithm CAGG_M, the average relative error from the optimal makespan is less

than 1.6%; for algorithm CAGI_M, this value is less than 1%. When the number of jobs

increases to 15, the average relative errors from optimal makespans increase to 2.3% and 1.7%,

respectively. The relative errors from optimal values of the initial seed constructed in the

constructive stage by CAGG are averagely better than the values obtained by CACI by five

times.

 When the number of jobs increases to 17, it requires around 200 seconds on an Intel Core

2 Duo 1.6GHz PC with 3 GB RAM for the dynamic programming algorithm to solve the

problem. However, these two heuristics only require 0.4 seconds to obtain a solution, which is

significantly faster than the dynamic programming algorithm. The relative error from the optimal

120

makespan is less than 2.3% for scenario I and less than 1.6% in the cases of Scenario II and III.

Moreover, based on the measurement of relative errors, CAGI_M is outperformed by CAGG_M

in both constructive and improvement stages.

For large-size problems, because optimal solutions are unlikely to be obtained, the

makespans generated by the heuristic algorithms are only compared with lower bound values. By

observing the relative errors from the lower bounds, relative errors decrease as the number of

jobs increases in the cases of Scenario II and III. The values are less than 3% when 40n  . For

Scenario I, the relative errors from the lower bound values remain around 6% regardless of the

number of jobs. In the small and medium size problems, the relative errors from the optimal

values are less than 2.7%. As a result, this may imply that the relative errors from the optimal

makespans when 40n  are also less than 2.7%. Furthermore, the CPU times required by these

two algorithms are around two seconds. Hence, the proposed algorithms can reach solutions

rapidly even when the number of jobs is large.

Conclusions

 The relative errors of the makespans obtained by these two proposed algorithms

CAGG_M and CAGI_M compared with the optimal solutions are on average within 2.7% and

compared with the lower bounds are 6.5% in the worse case. Moreover, optimal sequences can

be found in most runs in the cases of Scenario II and III, especially when the number of jobs is

large. With respect to the constructive stage, solutions formed by CAGI are much better than

those by CAGG. The modified neighborhood search algorithm significantly improves the

makespan value on the initial sequence. Regarding the computational effort, the CPU time is not

121

a concern to solve a large-size problem by the proposed algorithms. Computational results in this

section and in Section 4.6 indicate that the two-phase algorithm, which combines the insertion

heuristic in the constructive phase and the modified neighborhood search algorithm in the

improvement phase, is applicable to solve the minimizing makespan problem of a T-line

machining center.

 Additionally, the lower bound derived from Theorem 5.1 provides a good insight about

the optimal makespan when the optimum is unavailable. Observing the results of Scenario II in

the large-size problems, when most processing times on CNC machines dominate the summation

of most pairs of loading and unloading times, a lower bound can be obtained by applying the

Gilmore-Gomory algorithm. Conversely, in Scenario III, if the sum of the loading and unloading

times is much greater than the summation of processing times on both of machines, then the

lower bound,
1

 ()
n

j jj
l u


 , will approximate to the optimal value.

5.5 Dynamic Programming Algorithm for max| , |mF synmv re LU C

In this section, the proposed dynamic programming algorithm for the scheduling problem

in a T-line machining center with two machines is generalized to a T-line machining center with

m machines. The scheduling problem of an m-machine T-line machining center is denoted as

max| , |mF synmv re LU C . Given n jobs which have to be processed by the machining center and

these jobs are numbered from 1 to n. Let {1,2, , }N n  be the set of jobs and let S be a subset of

N containing the jobs that have already been processed in the machining center. Let Ψ be a

subset of N containing the jobs currently being processed on these m machines, and j be the job

122

being loaded at the L/U station. In addition, the first job in Ψ denoted as Ψ(1) is the job being

processed on the m
th
 machine, the second job Ψ(2) is the job being processed on the m–1

th

machine, and so on. Then, the generalized dynamic programming formulation is as follows.

DP Algorithm for max| , |mF synmv re LU C

 Optimal value function (OVF): fi(S, Ψ, j) = minimum completion time for processing jobs in

Ψ on machines, unloading the last job in S and loading job j at the L/U station, given that the

i jobs in S have already been completed. (5.10)

 Optimal policy function (OPF): pi(S, Ψ, j) = last job unloaded at the L/U station.

Equivalently, this is also the last job added to set S. (5.11)

 Recurrence relation (RR):

() 2(1) (1)
1 () () 1(, ,) min{ (\{ },{ } \ ,) max{ , , , , }};

m mm
i i m m k j

k S
f S j f S k k p p p u l

 
 


      

 1,..., 1i n m   ; { , }j N  ; \{ , }S N j  , | S | = i. (5.12)

 Boundary condition (BC):

(1) (2) () ()0 1 21
(, ,) max{ , , , , }

i i i m i

m

mi
f j p p p l

     
   

() (1) (1)1 2max{ , , , , }; { , }
m m m jp p p l j N

     . (5.13)

 Answer (ANS): min{ (, ,)}n m
N

f S


  (5.14)

where
() (1)1 () () 1(, ,) min{ (\{ },{ } \ ,) max{ , , , }}
mn m n m m m m k

k S
f S f S k k p p u    


       

 () (1) (1) ()1 21
max{ , , , , }

i m i m i i

m

mi
p p p u

      
  ; N ; \S N  , | S | = n – m. (5.15)

123

Computational Effort Analysis

The computational effort of this generalized dynamic programming algorithm is

evaluated by the number of operations performed as “Addition” and “Comparison.” The number

of operations required for each stage of the algorithm is summarized in Table 5.7.

Table 5.7. Number of operations required for each stage

Stage Number of

combinations

Addition Comparison

BC (i = 0) 1(1)! n

mm C  m (1) / 2m m

RR (1 1i n m   )
(1)

1(1)! n n m

m im C C  

 2i m× i + (i – 1)

ANS
n mf  (i n m ) ! n

mm C n () (1) (1) / 2m n m n m m m     

Min makespan 1 0 ! 1n

mm C 

In the boundary condition, there are
1(1)! n

mm C 
combinations for m jobs in Ψ and job j.

Each combination requires m additions and (1) / 2m m comparisons to obtain the value for f0. In

the recurrence relation, for each i, there are also
1(1)! n

mm C 
choices for m jobs in Ψ and job j,

and 1n m

iC   combinations of jobs in set S. Each combination of (S, Ψ, j) has i candidates in set S

for k. Obtaining the minimum value among these i candidates requires extra i – 1 comparisons.

In the answer formulation, there are ! n

mm C different combinations in Ψ for 2nf  , and each

combination has n m candidates for k. Moreover, among these n m candidates 1n m 

comparisons are performed to acquire the minimum value for each n mf  . To obtain the minimum

makespan among these n mf  needs ! 1n

mm C  comparisons. Hence, the total number of additions

required is:

124

=
1 1

1 1
(1)! (2) !

n mn n m n

m i mi
m C m i C m nC

   

 
   

=
2 2

1 1
(1)! (2(1))

n mn n m

m jj

n
m C m n m C

n m

   

 
    




= 2

1(1)! (2(1)2)n n m

m

n
m C m n m

n m

 

    


1!
2

(2)!

n mn

n m

 
  .

The total number of comparisons required is:

=
1 11 1

1 1 1

(1)
(1)! ((1)) ! 1

2

n m n mn n m n m n

m i i mi i

m m
m C m i C C m C 

      

  


       

(()(1) (1) / 2n m m m m     )

= 2 1

1

(1)
(1)! ((1)(1)2 2 1) ! 1

2

n n m n m n

m m

m m
m C m n m m C    




        

= 2 1

1

(1)
(1)! ((1)(1)2 2 1) 1

2

n n m n m

m

m m
m C m n m

n m

   




        



2!(1)
2

(2)!

n mn m

n m

 


  .

Hence, the computational effort for the generalized dynamic programming algorithm is

2!
(2)
(2)!

n mn m
O

n m

 

 
.

Lower Bound for max| , |mF synmv re LU C

According to the computational results in Sections 4.6 and 5.4, the derived lower bound

value provides not only a useful insight about the optimal makespan but also a value for

evaluating the quality of a solution obtained by a heuristic algorithm. When the summation of

125

loading and unloading times dominate the summation of the processing times, the value

1
()

n

j jj
l u


 is shown to be the lower bound for any sequence as Lemmas 4.2 and 5.2. It is also

valid for the m machine case.

On the other hand, if the cycle time except the first and last cycle is identified by

processing times on the machines, the summation of processing times in one-machine problem

and the makespan obtained by the Gilmore-Gomory algorithm in the two-machine problem are

the lower bounds as shown in Lemmas 4.1 and 5.1, respectively. For a general case with m

machines, a lower bound can be obtained by relaxing the constraint of the order of a job

processed by the machines. It means that a job can be processed by machines in any order.

Figure 5.2 illustrates a schedule of n jobs on the L/U stations and m machines when

n m . Since the cycle times for cycles 2 to n+m are determined by the processing times, these

cycles are partitioned into three blocks. The first block is from cycle 2 to cycle m, the second

block is from cycle m+1 to cycle n+1, and the third block is from cycle n+2 to cycle n+m. With

relaxing job orders and neglecting loading and unloading times, an algorithm is proposed to

minimize the total cycle time of cycles in these three blocks. The value obtained by the proposed

algorithm is the optimal makespan for the relaxed problem and will be a lower bound for the

original problem. This relaxed problem has been discussed by Soylu et al. (2007). However,

their procedure to obtain the solution can be further improved by the proposed algorithm in this

research.

126

Figure 5.2. Schedule of jobs at each station in an m-CNC T-line machining center

The idea of the algorithm is to assign 1n m 

largest processing times on each machine

to the second block (cycle m+1 to cycle n+1). Then, the rest of 1m

smallest processing times

on each machine are assigned to corresponding cycles in the first and third blocks. The principle

to assign processing times to a cycle is based on the rankings of processing times. For example,

all the largest processing times on each machine are assigned to the same cycle. An algorithm is

proposed to assign processing times to each cycle so that the summation of the cycle times

(cycles 2 to n+m) is minimized. The procedure to obtain the optimal makespan (denoted as RLB)

for the relaxed problem is described as below.

Algorithm for RLB

Let h

kp be the h
th
 largest processing time on machine k where 1 h n  and 1 k m  . Let

iC be the time length of cycle i where 2 i n m   . Let set
hR consist of the h

th
 largest

processing times on all machines, which is { |1 }, 1h

h kR p k m h n     .

Step 1. Let 0, 2, ,iC i n m   .

l[1] l[2] l[3] l[m] l[m+1]

p[1]1 p[2]1 p[m]1p[m-1]1

p[1]2 p[m-2]2 p[m-1]2

p[1]m-1 p[2]m-1

p[1]m

…...

…...

…...

…
...

…
...

u[n+m+1]u[n+m]u[n+m-1]u[n+2]u[n+1] …...…...

…...

…...

…...

…... p[n]mp[n-1]mp[n-m]m p[n-m+1]m

p[n]m-1p[n-m]m-1P[n-m+1]m-1

p[n]2p[n-1]2

p[n]1

…...

…...

…
...

…
...

L/U Station

CNC1

CNC2

CNCm-1

CNCm

Cycle 1 Cycle m+1 Cycle n+1 Cycle n+m+1

127

Step 2. For h=1 to n-m+1.

Step 2.1. Select the largest processing time from set Rh, say h

kp . h

kp is the h
th

 largest

processing time on machine k. Let i h m  .

Step 2.2. Assign h

kp to cycle i, and h

i kC p . Also, assign the rest of processing time from

set Rh to corresponding machines in cycle i.

Step 2.3. Let 1i i  . Go to Step 2.1.

Step 3. For h= n-m+2 to n. Let r m and 2s n  . Let 1u  and v m .

Step 3.1. Assign h

kp

in set Rh to machine k in cycle g1 where

1 , 1, ,g r u k k u     .

Let 1 1max{ , }h

g g kC C p and \{ }h

h h kR R p . Also, Assign h

fp

in set Rh to machine f in

cycle g2 where
2 (1), , , 1g s v m f f m m v        . Let 2 2max{ , }h

g g fC C p

and \{ }h

h h fR R p . If h n , go to Step 4.

Step 3.2. If r sC C , assign the rest of processing times in set Rh to corresponding

machines in cycle r. Update the cycle time of cycle r as
1
max { }h

r k
k m v

C p
  

 . Let 1r r 

and 1v v  .

Step 3.3. If r sC C , assign the rest of processing times in set Rh to corresponding

machines in cycle s . Update the cycle time of cycle s as
1

max { }h

s k
u k m

C p
  

 . Let 1s s 

and 1u u  .

Step 3.4. Let 1h h  . Go to Step 3.1.

Step 4.
2

n m

R ii
LB C




 .

128

A Numerical Example

A numerical example is presented to demonstrate the procedure of the algorithm to obtain

the optimal value RLB . Assume there are eight jobs with four machines. Table 5.8 shows the job

data for the example.

Table 5.8: Job data for the example of the algorithm to obtain RLB

Job pj1 pj2 pj3 pj4

1 5 2 6 3

2 11 8 7 15

3 9 15 6 11

4 7 4 13 2

5 4 13 1 11

6 8 14 9 10

7 11 8 8 7

8 14 15 8 1

Initialization: without considering the job order processed by machines, processing times on each

machine are sort in descending order as Table 5.9.

Table 5.9: Job data for the example after sorting in descending order

Set pj1 pj2 pj3 pj4

R1 14 15 13 15

R2 11 15 9 11

R3 11 14 8 11

R4 9 13 8 10

R5 8 8 7 7

R6 7 8 6 3

R7 5 4 6 2

R8 4 2 1 1

Step 2: all processing times in sets R1 to R5 are assigned to cycles 5 to 9. Thus, C5 = 15, C6 = 15,

C7 = 14 , C8 = 13 and C9 = 8.

129

Step 3: For h= 6 to 8.

 Iteration 1 (h=6): assign
6

1 7p  to cycle 4 and
6

4 3p  to cycle 10 as shown in Figure

5.3. Since 4 10C C , the rest of processing times in set R6 are assigned to cycle 4 and

4 8C  .

Figure 5.3. Schedule of jobs for the relaxed problem with 4 machines (h=6)

 Iteration 1 (h=7): assign
7

1 5p  to cycle 3,
7

3 6p  to cycle 10 and
7

4 2p  to cycle 11

as shown in Figure 5.4. Since 3 10C C , the rest of processing times in set R7 are

assigned to cycle 10 and 10 6C  .

Figure 5.4. Schedule of jobs for the relaxed problem with 4 machines (h=7)

l[1]

147

15

13

15

u[13]

7 3

7

8

8

L/U Station

CNC1

CNC2

CNC3

CNC4

Cycle 1

11

15

9

11

11

14

8

11

9

13

8

10

Cycle 5 Cycle 9 Cycle 13

l[1]

5 147

8 15

6 13

15

u[13]

27 3

67

8

8

L/U Station

CNC1

CNC2

CNC3

CNC4

Cycle 1

11

15

9

11

11

14

8

11

9

13

8

10

Cycle 5 Cycle 9 Cycle 13

130

 Iteration 1 (h=8): assign the processing times in R8
8

1 4p  ,
8

2 2p  ,
8

3 1p  and
8

4 1p 

to cycles 1, 2, 11 and 12, respectively as shown in Figure 5.5. Since h=n, go to Step 4.

Figure 5.5. Schedule of jobs for the relaxed problem with 4 machines (h=8)

Step 4: the optimal makespan of the relaxed problem is 91. (
12

2
91R ii

LB C


 )

Lemma 5.3. The value RLB is the optimal makespan for the relaxed problem without

considering jobs orders processed by machines and loading and unloading times.

Proof: For each machine, we will show that any interchange of two processing times will not

decrease RLB . The similar proof can be found in the paper by Soyleu et al. (2007). Assume two

processing times in cycles r and s on machine k are interchanged and r sC C . Let these two

processing times in cycles r and s be and r s

k kp p , respectively. Since r sC C ,
r

kp is not greater

than s

kp according the proposed algorithm. After the interchange, the cycle times of cycles r and

s are represented as
' ' and r kC C . Four cases have to be considered as follows:

 , r s

r k s kC p C p  . After the pairwise interchange,
' s

r k sC p C  and 'r

r k sC p C  . Thus,

' '

r s r sC C C C   .

l[1]

4 5 147

2 8 15

6 13

15

u[13]

127 3

167

48

8

L/U Station

CNC1

CNC2

CNC3

CNC4

Cycle 1

11

15

9

11

11

14

8

11

9

13

8

10

Cycle 5 Cycle 9 Cycle 13

131

 , r s

r k s kC p C p  . After the pairwise interchange,
' s

r r kC C p  and '

s sC C . Thus,

' '

r s r sC C C C  

 , r s

r k s kC p C p  . After the pairwise interchange,
' s

r s kC C p  and

' max{ , max{ }}r s

s k f
f k

C p p


 .
s

kp

is the largest processing time in cycle s and r sC C ,

which implies that the cycle time of cycle s even excluding
s

kp is still greater than or

equal to rC . Otherwise,
s

kp is assigned to cycle r rather than cycle s. Thus,

' max{ }s

s f r
f k

C p C


 

so that

' '

r s r sC C C C  

 , r s

r k s kC p C p  . After the pairwise interchange,
' max{ , }s

r r k rC C p C  and '

s sC C .

Thus,
' '

r s r sC C C C   

In all cases, the cycle times cannot be improved by the pairwise interchange. The makespan

generated by the proposed algorithm for the relaxed problem is optimal. □

Theorem 5.2. The value,
1 1,..., 1,...,

max{ (), min min }
n

j j i R ij i n i n
l u l LB u

  
   , provides a lower bound

for the makespan scheduling problem of a T-line machining center with m CNC machines where

RLB is the optimal makespan for the relaxed problem without considering job orders processed

by machines and loading and unloading times.

Proof: The value
1
()

n

j jj
l u


 can be shown to be a lower bound using arguments similar to

those in Lemmas 4.2 and 5.2. From Lemma 5.3, RLB is the optimal makespan for the relaxed

problem which only considers processing times on machines and relaxes jobs’ processing orders

on machines. In addition,
1,...,

min i
i n

l


and
1,...,

min i
i n

u


are the lower bounds for [1]l and []nu , respectively.

132

Thus,
1,..., 1,...,

min mini R i
i n i n

l LB u
 

  is a lower bound for the problem max| , |mF synmv re LU C .

Therefore,
1 1,..., 1,...,

max{ (), min min }
n

j j i R ij i n i n
l u l LB u

  
   is a lower bound. □

5.6 Concluding Summary

In conclusion, the scheduling problem with the makespan objective in a T-line machining

center with two machines can be solve optimally by the proposed dynamic programming

algorithm in
4 3(2)nO n 

. Furthermore, the formulation of the dynamic programming algorithm

has been extended to a general case with m machines and the analysis of its computational effort

is also conducted. Two constructive heuristics and the modified neighborhood search are

combined respectively as two two-phase algorithms to solve the scheduling problem with two

machines. The computational results show that these two algorithms efficiently achieve optimal

or near-optimal solutions for a wide range of test cases, especially algorithm CAGI_M. In a

large-size problem (40n ), CAGI_M only requires 2 seconds to obtain a solution. Additionally,

the average relative error from the optimal makespan is 2.3% and from the lower bound is 6.3%

for the worse case.

Another contribution is that lower bound formulations has been developed for both two-

machine and m-machine cases. For the two-machine case according to the computational results,

the suggested lower bound is within 4.6% from the optimal value in the case of Scenario I. This

implies that the derived lower bound can be a reliable basis to measure the quality of a solution

obtained by heuristics when the optimum is not available. For the m-machine case, a procedure

to generate a lower bound value is also presented.

Chapter 6

Summary and Future Study

6.1 Summary

This dissertation has addressed two types of flow shop scheduling problems considering

asynchronous and synchronous transportation times: (1) n-job, two-machine flow shop with a

single transporter, and (2) n-job in a T-line machining center with one CNC machine. Additional

extension of the T-line machining center with two CNC machines has also been discussed. The

research has developed algorithms to obtain a job schedule that minimizes the makespan value

for each problem.

The first type of the problem, 2 1 1 max| , 1, |jTF p p v c u C   , is a special case of two-

machine flow shop scheduling problem. The problem assumes the processing times for all jobs

on the first machine are identical and the capacity of the transporter is greater than or equal to a

threshold value derived from Property 3.2. The methodology of dynamic programming is applied

to the problem. In the dynamic programming formulation, only the integer departure points are

considered. The algorithm can determine the optimal schedule of transporting jobs from the first

machine to the second machine in polynomial time. The complexity of the proposed dynamic

programming algorithm is shown as O(n
3
). This is better than the complexity of the algorithm,

O(c
3
n

3
), developed by Lee and Chen (2001) given c is the capacity of the transporter and n is the

number of jobs.

134

For the problem with synchronous transportation times max| , |mF synmv re LU C ,

sequencing jobs in a T-line machining center with a single machine (m=1) has been shown to be

NP-hard in the strong sense. That is, the problem is inherently intractable and it is unlikely to

develop a polynomial time algorithm to find an optimal solution. A polynomial time algorithm,

O(n
3
log n), is proposed to solve a special case when the loading or unloading times are constant

(denoted as 1 max| , , |jF synmv re LU u c C ). The proposed algorithm incorporates the Gilmore-

Gomory algorithm which can optimally solve the two-machine flow shop problem with

blocking. For the general setting of the one-machine problem in a small or medium scale, a

dynamic programming algorithm is developed to obtain an optimal solution efficiently. Due to

the complexity of the problem, however, the dynamic programming algorithm becomes

impractical to solve a large- size problem – the algorithm would consume extremely amount of

storage space.

In order to solve the one-machine problem in a large scale, heuristic algorithms are

developed to obtain near-optimal solutions in a reasonable CPU time. The methodology of the

two-phase algorithm is adopted. Two constructive heuristics, CAS and CAI, are provided to

build an initial sequence. In the improvement stage, a modified neighborhood search algorithm is

developed to refine the solution obtained in the constructive stage. The pairwise interchange is

applied to generate a list of neighborhood sequences. The mechanism of randomly selecting a

sequence with the same makespan value as the current solution to become a new seed is

incorporated in the algorithm when no improvement is gained. The purpose of the random

selection is to prevent trapping the solution at a local optimum and to attempt to move the search

direction to unexplored space.

135

In order to evaluate the performance of the heuristic algorithms, a series of experiments

are conducted. These testing settings consist of different sizes of the problems (small, medium,

and large) combined with three configurations on loading, processing, and unloading times. The

computational results show that these two heuristics (CAS_M and CAI_M) not only obtain

solutions within 1% from the optimal solutions, but also require no more than 2 seconds of CPU

time. In addition, the constructive algorithm CAI forms the initial sequence with a better

makespan than CAS. A lower bound, as shown in Theorem 4.3, provides a good insight of the

optimal value especially for the cases when the sum of processing times is either much greater

than or much less than the sum of loading and unloading times.

An extension of a T-line machining center is studied where the number of CNC machines

is increased to two. This problem can be denoted as 2 max| , |F synmv re LU C . A dynamic

programming algorithm is also developed to obtain the optimal solution for the problem in a

small or medium size. Two-phase heuristic algorithms (CAGG_M and CAGI_M) are proposed

to obtain a good solution efficiently for a large-size problem.

Similar to the experimental design for the one-machine problem, two constructive

algorithms (CAGG and CAGI) are evaluated and the experimental results show that CAGI which

employs the insertion scheme performances better than CAGG. The modified neighborhood

search applied in the improvement stage also yields significant improvement on the makespan

value for the two-machine problem. The makespan value generated by algorithm CAGI_M is on

average within 2.3% from the optimal value. The algorithm with the two-phase structure is

136

applicable to a T-line machining center problem with one machine as well as with two machines.

In addition, the lower bound derived from Theorem 5.1 is 4.6% from the optimal makespan for

the worse case and 6.25% from the solution obtained by algorithm CAGI_M. Therefore, the

suggested lower bound is useful when the optimum is not available.

Last but not least, the generalized dynamic programming formulation is derived for the

T-line machining scheduling problem with m machines. Moreover, the computational analysis

for the generalized dynamic programming algorithm is also conducted and it shows that the

complexity of the algorithm is
2!

(2)
(2)!

n mn m
O

n m

 

 
. For this generalized problem, an algorithm

to generate a lower bound is provided, as shown in Theorem 5.2.

 6.2 Future Research

The makespan problem of scheduling a two-machine flow shop with one transporter is

strongly NP-hard, even when the capacity of the transporter is equal to one and the travel time

for the transporter from the first machine to the second machine is equal to the returning time. A

heuristic algorithm could be developed to solve the problem with a general setting, such as more

than one transporter and a predefined capacity of transporters. In addition, the loading time of a

job on the transporter at the first machine and the unloading from the transporter at the second

machine can be considered separate from the transportation times. This is because the number of

jobs in each batch carried by the transporter may be different. Also, completed jobs can start to

be loaded on the transporter when the transporter is waiting for more jobs at the first machine.

Regarding the transportation times, non-constant or stochastic transportation times can be a

137

practical extension to the model when the two-machine model is regarded as a two-tier model in

a supply chain, for example, a supplier to a manufacturer or a manufacturer to a distributor. In

this two-tier model, jobs in the flow shop can be regarded as orders and these orders are

delivered by transporters.

In a T-line machining center with two CNC machines, a heuristic algorithm is developed

for general configurations of this manufacturing cell. Therefore, to obtain optimality conditions

or particular properties for special cases is one of promising research directions. For example,

assume the unloading times to be zero, then the problem becomes three-machine flow shop

problem with synchronous transfer which has been studied by Soyleu et al. (2007). The

complexity of this problem can be further investigated. Moreover, a problem with constant

loading and unloading times is also similar to the three-machine flow shop problem with

synchronous transfer, but the first and last two cycles should be addressed with additional

considerations.

Another special case in a two-machine T-line machining center could assume that the

processing times of one machine dominate the processing times of the other machine. The

assumption means the minimum processing times of one machine is greater than or equal to the

maximum processing times of the other machine. Due to the mechanism of synchronous material

movement, only the maximum operation time constitutes the time period of each cycle. For

example, if the processing times on machine 1 dominate the processing times on machine 2, then

the operation on machine 2 can be always neglected except the second last cycle (cycle n+2)

because its cycle time (Cn+2) is equal to max{p[n]2, u[n–1]}. Therefore, this special case is similar

138

to the problem with one CNC machine. Hence, the two-phase heuristic algorithm developed in

Chapter 4 can be applied to this special case with minor modifications for cycle n+2.

For the T-line machining center scheduling problem, a modified neighborhood search

algorithm is applied in the improvement stage. The main advantage of this search algorithm is

that it is easy to implement. Despite of its simplicity, the quality of solutions obtained by the

proposed algorithm is satisfactory within 6.25% of a lower bound for the two-machine case. In

future research, metaheuristic algorithms such as tabu search, simulated annealing and genetic

algorithms can be adopted to solve these problems. Metaheuristic algorithms may further

improve the quality of solutions but they are more difficult to implement. If the scheduling

problem of the T-line machining center becomes more complicated, for example, with more than

three machines, the metaheuristics could be more accurate.

In this research, the scheduling problem in a T-line machining center does not consider

the interaction between this manufacturing cell and other machines. In addition, all jobs are

assumed to be available at time zero. In a practical setting, however, jobs could be processed first

by upstream machines before they arrive to the T-line machining center and some jobs may not

be available at the beginning of the planning horizon. If a T-line machining center is a bottleneck

among these machines, both upstream and downstream machines will adjust their production

plans based on the job schedule which can be obtained by the proposed algorithm. On the other

hand, if a T-line machining center is not a bottleneck, the practical method to apply the proposed

algorithm is to run the algorithm dynamically. For example, the scheduling in a T-line machining

center will be triggered periodically and only jobs available at the beginning of each planning

139

period will be sequenced. Other scheduling problems for future research could consider different

job arrival times and due dates and different objectives (e.g., minimization of maximum cycle

time, total tardiness, etc.).

BIBLIOGRAPHY

Allahverdi, A. and J. Mittenthal (1995). "Scheduling on a Two-Machine Flowshop Subject to

Random Breakdowns with a Makespan Objective Function," European Journal of Operational

Research, 81, pp.376-387.

Aneja, Y. P. and H. Kamoun (1999). "Scheduling of Parts and Robot Activities in a Two

Machine Robotic Cell," Computers and Operations Research, 26, pp.297-312.

Anwar, M. F. and R. Nagi (1998). "Integrated Scheduling of Material Handling and

Manufacturing Activitiesfor Just-in-Time Production of Complex Assemblies," International

Journal of Production Research, 36(3), pp.653-681.

Armentano, V. A. and D. P. Ronconi (1999). "Tabu Search for Total Tardiness Minimization in

Flowshop Scheduling Problems," Computers & Operations Research, 26, pp.219-235.

Bagchi, T. P., J. N. D. Gupta and C. Sriskandarajah (2006). "A Review of Tsp Based Approaches

for Flowshop Scheduling," European Journal of Operational Research, 169, pp.816-854.

Baker, K. R. (1995). Elements of Sequencing and Scheduling, Kenneth Baker.

Balasubramanian, J. and I. E. Grossmann (2002). "A Novel Branch and Bound Algorithm for

Scheduling Flowshop Plants with Uncertain Processing Times," Computers and Chemical

Engineering, 26, pp.41-57.

Ben-Daya, M. and M. Al-Fawzan (1998). "A Tabu Search Approach for the Flow Shop

Scheduling Problem," European Journal of Operational Research, 109, pp.88-95.

Chen, B., C. A. Glass, C. N. Potts and V. A. Strusevich (1996). "A New Heuristic for Three-

Machine Flow Shop Scheduling," Operations Research, 44(6), pp.891-898.

Conway, R. W., W. L. Maxwell and L. W. Miller (1967). Theory of Scheduling. MA, Addison-

Wesley: Reading.

Dai, J. G. and G. Weiss (2002). "A Fluid Heuristic for Minimizing Makespan in Job Shops,"

Operations Research, 50(4), pp.692-707.

Dawande, M., H. N. Geismar, S. P. Sethi and C. Sriskandarajah (2005). "Sequencing and

Scheduling in Robotic Cells: Recent Developments," Journal of Scheduling, 8, pp.387-426.

Dell'amico, M. (1996). "Shop Problems with Two Machines and Time Lags," Operation

Research, 44(5), pp.777-787.

141

Dorigo, M. and L. M. Gambardella (1997). "Ant Colony System: A Cooperative Learning

Approach to the Travelling Salesman Problem," IEEE Transactions on Evolutionary

Computation, 1, pp.53-66.

Dreyfus, S. E. and A. M. Law (1997). The Art and Theory of Dynamic Programming. New

York, Academic Press.

Framinan, J. M., J. N. D. Gupta and R. Leisten (2004). "A Review and Classification of

Heuristics for Permutation Flow-Shop Scheduling with Makespan Objective," Journal of the

Operational Research Society, 55, pp.1243-1255.

Garey, M. R. and D. S. Johnson (1979). Computer and Intractability - a Guild to the Theroy of

Np-Completeness. New York W. H. Freeman and Company.

Garey, M. R., D. S. Johnson and R. Sethi (1976). "The Complexity of Flow-Shop and Job-Shop

Scheduling," Math. Operation Research, 1, pp.117–129.

Gilmore, P. C. and R. E. Gomory (1964). "Sequencing a One State-Variable Machine: A

Solvable Case of the Traveling Salesman Problem," Operation Research, 12(5), pp.655-679.

Gonçalves, J. F., J. J. Mendes and M. G. C. Resende (2005). "A Hybrid Genetic Algorithm for

the Job Shop Scheduling Problem," European Journal of Operational Research, 167, pp.77-95.

Gourgand, M., N. Grangeon and S. Norre (2003). "A Contribution to the Stochastic Flow Shop

Scheduling Problem," European Journal of Operational Research, 151(415-433).

Grabowskia, J. and M. Wodecki (2004). "A Very Fast Tabu Search Algorithm for the

Permutation Flow Shop Problem with Makespan Criterion," Computers & Operations Research,

31, pp.1891-1909.

Graham, R. L., E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan (1979). "Optimization and

Approximation in Deterministic Sequencing and Scheduling: A Survey," Annals of Discrete

Mathematics, 5, pp.287-326.

Graves, S. C. (1981). "A Review of Production Scheduling," Operation Research, 29(4), pp.646-

675.

Gupta, J. N. D. and E. F. Stafford (2006). "Flowshop Scheduling Research after Five Decades,"

European Journal of Operational Research, 169, pp.699-711.

Hajek, B. (1988). "Cooling Schedules for Optimal Annealing," Mathematics of Operations

Research, 13, pp.311-329.

Hall, N. G., H. Kamoun and C. Sriskandarajah (1997). "Scheduling in Robotic Cells:

Classification, Two and Three Machine Cells," Operations Research, 45(3), pp.421-439.

142

Hall, N. G. and C. Sriskandarajah (1996). "A Survey of Machine Scheduling Problems with

Blocking and No-Wait in Process," Operations Research, 44(3), pp.510-525.

Han, M.-H. and L. F. Mcginnis (1989). "Control of Material Handling Transporter in Automated

Manufacturing," IIE Transactions, 2, pp.184-190.

Hejazi, S. R. and S. Saghafian (2005). "Flowshop-Scheduling Problems with Makespan

Criterion: A Review," Journal of Production Research, 43(14), pp.2895-2929.

Hurink, J. and S. Knust (2001). "Makespan Minimization for Flow-Shop Problems with

Transportation Times and a Single Robot," Discrete Applied Mathematics, pp.199-216.

Hurink, J. and S. Knust (2002). "A Tabu Search Algorithm for Scheduling a Single Robot in a

Job-Shop Environment," Discrete Applied Mathematics, 119, pp.181-203.

Jain, A. S. and S. Meeran (1999). "Deterministic Job-Shop Scheduling: Past, Present and

Future," European Journal of Operational Research, 113, pp.390-434.

Johnson, S. M. (1954). "Optimal Two- and Three-Stage Production Schedules with Setup Times

Included," Naval Research Logistics Quarterly, 1, pp.61-68.

Kalczynski, P. J. and J. Kamburowski (2006). "A Heuristic for Minimizing the Expected

Makespan in Two-Machine Flow Shops with Consistent Coefficients of Variation," European

Journal of Operational Research, 169, pp.742-750.

Kamburowski, J. (1999). "Stochastically Minimizing the Makespan in Two-Machine Flow Shops

without Blocking," European Journal of Operational Research, 112, pp.304-309.

Karuno, Y. and H. Nagamochi (2003). A Better Approximation for the Two-Machine Flowshop

Scheduling Problem with Time Lags. The 14th Annual International Symposium on Algorithms

and Computation. Kyoto: 309-318.

Kijima, M., N. Makimoto and H. Shirakawa (1990). "Stochastic Minimization of the Makespan

in Flow Shops with Identical Machines and Buffers of Arbitrary Size," Operations Research,

38(5), pp.924-928.

Kis, T. (2003). "Jop-Shop Scheduling with Processing Alternatives," European Journal of

Operational Research, 151, pp.307-332.

Lai, T.-C. (1996). "A Note on Heuristics of Flow-Shop Scheduling," Operations Research,

44(4), pp.648-652.

Lee, C.-Y. and Z.-L. Chen (2001). "Machine Scheduling with Transportation Considerations,"

Journal of Scheduling, pp.3-24.

143

Lee, C.-Y., L. Lei and M. Pinedo (1997). "Current Trends in Deterministic Scheduling," Annals

of Operation Research, 70, pp.1-41.

Lee, C.-Y. and V. A. Strusevich (2005). "Two-Machine Shop Scheduling with an Uncapacitated

Interstage Transporter," IIE Transactions, 37, pp.725-736.

Lenstra, J. K. and K. Rinnooy (1979). "Computational Complexity of Discrete Optimization

Problems," Annals of Discrete Mathematics, 4, pp.121-140.

Leung, J. Y.-T. (2004). Handbook of Scheduling: Algorithms, Models, and Performance

Analysis, CRC Press.

Levner, E., K. Kogan and I. Levin (1995). "Scheduling a Two-Machine Robotic Cell: A Solvable

Case," Annals of Operations Research, 5, pp.217-232.

Levner, E., K. Kogan and O. Maimon (1995). "Flowshop Scheduling of Robotic Cells with Job-

Dependent Transportation and Set-up Effects," Journal of Operational Research Society,,

46(12), pp.1447-1455.

Logendran, R. and C. Srisjandarajah (1996). "Sequencing of Robot Activities and Parts in Two-

Machine Robotic Cells," International Journal of Production Research, 34(12), pp.3447-3463.

Logendran, R. and C. Sriskandarajah (1993). "Two-Machine Group Scheduling Problem with

Blocking and Anticipatory Setups," European Journal of Operational Research, 69(3), pp.467-

481.

Low, C. (2005). "Simulated Annealing Heuristic for Flow Shop Scheduling Problems with

Unrelated Parallel Machines," Computers & Operations Research, 32, pp.2013-2025.

Mattfeld, D. C. and C. Bierwirth (2004). "An Efficient Genetic Algorithm for Job Shop

Scheduling with Tardiness Objectives," European Journal of Operational Research, 155,

pp.616-630.

Meyers, F. E. and M. P. Stephens (2005). Manufactuing Facility Design and Material Handling.

New Jersey, Pearson Prentice Hall.

Milacron, C. (1989). "T-Line Machining Center Alternatives," Manufacturing Engineering,

103(4), pp.14-15.

Nowicki, E. and C. Smutnicki (2005). "An Advanced Tabu Search Algorithm for the Job Shop

Problem," Journal of Scheduling, 8, pp.145-159.

Oulamara, A. and A. Soukhal (2001). Flow Shop Scheduling Problems with Transportation and

Capacities Constraints. IEEE International Conference on Systems, Man, and Cybernetics. 4:

2540-2545.

144

Panwalkar, S. S. and W. Iskander (1977). "A Survery of Scheduling Rules," Operation Research,

25(1), pp.45-61.

Pezzella, F. and E. Merelli (2000). "A Tabu Search Method Guided by Shifting Bottleneck for

the Job Shop Scheduling Problem," European Journal of Operational Research, 120, pp.297-

310.

Pinedo, M. (1983). "Stochastic Scheduling with Release Dates and Due Dates," Operations

Research, 31(3), pp.559-572.

Pinedo, M. (1985). "A Note on Stochastic Shop Models in Which Jobs Have the Same

Processing Requirements on Each Machine," Management Science, 31(7), pp.840-846.

Pinedo, M. (1995). Scheduling : Theory, Algorithms, and Systems Prentice Hall.

Ponnambalam, S. G., P. Aravindan and S. Chandrasekaran (2001). "Constructive and

Improvement Flow Shop Scheduling Heuristics: An Extensive Evaluation," Production Planning

and Control, 12(4), pp.335-344.

Ponnambalam, S. G., P. Aravindan and S. V. Rajesh (2000). "A Tabu Search Algorithm for Job

Shop Scheduling," International Journal of Advanced Manufacturing Technology, 16, pp.765-

771.

Rajendran, C. and H. Ziegler (2004). "Ant-Colony Algorithms for Permutation Flowshop

Scheduling to Minimize Makespan/Total Flowtime of Jobs," European Journal of Operational

Research, 155, pp.426-438.

Rebaine, D. and V. A. Strusevich (1999). "Two-Machine Open Shop Scheduling with Special

Transportation Times," Journal of the Operational Research Society, 50, pp.756-764.

Reeves, C. R. (1995). "A Genetic Algorithm for Flowshop Sequencing," Comupters and

Operations Research, 22(1), pp.5-13.

Ruiz, R. and C. Maroto (2005). "A Comprehensive Review and Evaluation of Permutation

Flowshop Heuristics," European Journal of Operational Research, 165, pp.479-494.

Schutten, J. M. J. (1998). "Practical Job Shop Scheduling," Annals of Operation Research, 83,

pp.161-177.

Sethi, S. P., C. Srisjandarajah, G. Sorger, J. Blazewicz and W. Kubiak (1992). "Sequencing of

Parts and Robot Moves in a Robotic Cell," International Journal of Flexible Manufacturing

Systems, 4, pp.331-358.

Soukhal, A., A. Oulamara and P. Martineau (2005). "Complexity of Flow Shop Scheduling

Problems with Transportation Constraints," European Journal of Operational Research, 161,

pp.32-41.

145

Soyleu, B., . Kirca and M. Azizoğlu (2007). "Flow Shop-Sequencing Problem with Synchronous

Transfers and Makespan Minimization," Internationals Journal of Production Research, 45(15),

pp.3311-3331.

Strusevich, V. A. (1999). "A Heuristic for the Two-Machine Open-Shop Scheduling Problem

with Transportation Times," Discrete Applied Mathematics, 93, pp.287-304.

Szwarc, W. (1983). "Flow Shop Problems with Time Lags," Management Science, 29(4),

pp.477-481.

Taillard, E. (1993). "Benchmarks for Basic Scheduling Problems," European Journal of

Operational Research, 64, pp.278–285.

Talwar, P. P. (1967). "A Note on Sequencing Problems with Uncertain Job Times," Journal of

Operations Research Society Japan 9, pp.93-97.

Tian, P., J. Ma and D.-M. Zhang (1999). "Application of the Simulated Annealing Algorithm to

the Combinatorial Optimisation Problem with Permutation Property: An Investigation of

Generation Mechanism," European Journal of Operational Research, 118, pp.81-94.

Tompkin, J. A. and J. A. White (1984). Facilities Planning. New York, Wiley.

Wang, L. and L. Zhang (2006). "Stochastic Optimization Using Simulated Annealing with

Hypothesis Test," Applied Mathematics and Computation, 174(2), pp.1329-1342.

Wang, L., L. Zhang and D.-Z. Zheng (2003). "A Class of Order-Based Genetic Algorithm for

Flow Shop Scheduling," International Journal of Advanced Manufacturing Technology, 22,

pp.828-835.

Wang, L. and D.-Z. Zheng (2001). "An Effective Hybrid Optimization Strategy for Job-Shop

Scheduling Problems," Computers and Operations Research, 28, pp.585-596.

Wang, L. and D.-Z. Zheng (2003). "An Effective Hybrid Heuristic for Flow Shop Scheduling,"

International Journal of Advanced Manufacturing Technology, 21, pp.38-44.

Ying, K.-C. and C.-J. Liao (2004). "An Ant Colony System for Permutation &Ow-Shop

Sequencing," Computers & Operations Research, 31, pp.791-801.

Yu, W. (1996). "The Two-Machine Flow Shop Problem with Delays and the One-Machine Total

Tardiness Problem", Thesis, Department of Mathematics and Computer Science, Technische

Universiteit Eindhoven

Yu, W., H. Hoogeveen and J. K. Lenstra (2004). "Minimizing Makespan in a Two-Machine

Flow Shop with Delays and Uni-Time Operations Is Np-Hard," Journal of Scheduling, 7,

pp.333-348.

146

Zegordi, S. H., K. Itoh and T. Enkawa (1995). "Minimizing Makespan for Flow Shop Scheduling

by Combining Simulated Annealing with Sequencing Knowledge," European Journal of

Operational Research, 85, pp.515-531.

APPENDIX

Gilmore-Gomory Algorithm

 The Gilmore and Gomory algorithm is widely implemented in literature and its procedure

can be found in these papers such as Gilmore and Gomory (1964), Hall and Sriskandarajah

(1996) and Bagchi et al.(2006).

Step 1. Sort 2{ }jp in the non-decreasing order and renumber the jobs in the order such that

2 1,2 , 1, , 1j jp p j n   . Initialize 1 2G G  .

Step 2. Sort 1{ }jp in the non-decreasing order and define a variable ()j for every job such that

()1 (1)2 , 1, , 1j jp p j n     .

Step 3. Calculate the cost of an edge as

, 1 1,2 (1)1 2 ()1max{0, (min{ , } max{ , })} for 1, , 1j j j j j jC p p p p j n      

Step 4. Construct the graph with undirected edges (, ())j j from 1 to j n .

Step 4.1. Add the undirected edge (, ())j j which is not in the graph and ()j j . Set

1j j  . Repeat the step until j n .

Step 5. If the current graph has only one connected component, go to Step 7. Otherwise, connect

the graph to be one component as the following procedure:

 Step 5.1. Sort , 1, 1, , 1j jC j n   in non-decreasing order.

 Step 5.2. For 1 to 1j n  . If the edge (, 1)j j  with and 1j j  in different

components, add the edge to the graph. Otherwise go to Step 5.4.

 Step 5.3. If 1, () 2,j jp p  , set 1 1 {(, 1)}G G j j   . Otherwise, set 2 2 {(, 1)}G G j j   .

148

 Step 5.4. If all nodes are connected, go to Step 6. Otherwise, set 1j j  and go to

Step5.2.1.

Step 6. If 1G   , order the edges in 1G as 1 1{(, 1), , (, 1)}g gr r r r  , where

1 1 and | |gr r g G   .

Step 7. If 2G   , order the edges in 2G as 1 1{(, 1), , (, 1)}h hs s s s  , where

1 2 and | |hs s h G   .

Step 8. Form the tour with the minimum cost by finding the job follows job j. Define a function

, ()p q j as follows: , () if p q j q j p   , , () if p q j p j q   , and , () if ,p q j j j p q   where

, , 1, ,j p q n  .

Step 8.1. Define
1 1 2 2 | | | | 1 1 2 2 | | | |1 1 2 2
, 1 , 1 , 1 , 1 , 1 , 1() (())

G G G Gr r r r r r s s s s s sj j               . For

1, ,j n  , to obtain job ()j which follows job j.

A Numerical Example

 A numerical example is presented to illustrate the procedure of the algorithm. In this

example, there are 8 jobs and its processing times are summarized in Table A.1: The objective is

to find a tour with the minimum cost.

Table A.1: Job data for the Gilmore-Gomory Algorithm

Job 1 2 3 4 5 6 7 8

1jp 7 3 15 8 10 12 13 17

2jp 14 1 19 9 5 13 8 16

149

Step 1, Step 2 and Step 3 give Table A.2:

Table A.2: Sorted processing times and the cost for each edge

j
2jp ()1jp ()j

2 ()1max{ , }j jp p 2 ()1min{ , }j jp p
, 1j jC 

1 1 3 1 3 1 2

2 5 7 6 7 5 1

3 8 8 4 8 8 1

4 9 10 2 10 9 2

5 13 12 5 13 12 0

6 14 13 3 14 13 1

7 16 15 8 16 15 1

8 19 17 7 19 17 –

Step 4. The graph with undirected edges (, ())j j .

Step 5.

1 {(1, 2)}G 

2 {(5,6), (6,7)}G 

Step 6.

1 1{(1, 2)}, 1G r 

Step 7.

2 {(5,6), (6,7)}G  , 1 2s s => 1 25, 6s s 

Step 8.

1,2 5,6 6,7() (())j j    

1,2 5,6 6,7 1,2 5,6 1,21: (1) ((1)) ((1)) ((1)) (2) 6j                

1 2 3 4 5 6 7 8

150

1,2 5,6 6,7 1,2 5,6 1,22 : (2) ((2)) ((2)) ((2)) (1) 1j                

1,2 5,6 6,7 1,2 5,6 1,23: (3) ((3)) ((3)) ((3)) (3) 4j                

1,2 5,6 6,7 1,2 5,6 1,24 : (4) ((4)) ((4)) ((4)) (4) 2j                

1,2 5,6 6,7 1,2 5,6 1,25 : (5) ((5)) ((5)) ((6)) (6) 3j                

1,2 5,6 6,7 1,2 5,6 1,26 : (6) ((6)) ((7)) ((7)) (7) 8j                

1,2 5,6 6,7 1,2 5,6 1,27 : (7) ((7)) ((6)) ((5)) (5) 5j                

1,2 5,6 6,7 1,2 5,6 1,28 : (8) ((8)) ((8)) ((8)) (8) 7j                

Thus, the optimal tour is 1 6 8 7 5 3 4 2       and the minimum cost is 94. Table A.3 is the

summary of each job is followed by job ()j .

Table A.3: The optimal tour

Job 1 2 3 4 5 6 7 8

()j 6 1 4 2 3 8 5 7

VITA

Kwei-Long Huang

Kwei-Long Huang was born in Nantou, Taiwan, on May 20, 1975. He received Bachelor and

Master of Business Administration (BBA and MBA) degrees in Information Management from

National Taiwan University in 1997 and 1999, respectively. After completing the military

service, he worked for AsiaTEK as a systems analyst to develop an Advanced Planning and

Scheduling (APS) system. In 2002, he transferred to Compal Electronics as a SAP engineer in

the Information Technology department. He joined the Ph.D. program in Industrial and

Manufacturing Engineering at the Pennsylvania State University in 2004. His research interests

are in the areas of production planning and scheduling, supply chain management, and

mathematical programming.

