A GPU BASED IMPLEMENTATION OF
CENTER SURROUND DISTRIBUTION DISTANCE ALGORITHM
FOR FEATURE RECOGNITION

A Thesis in
Electrical Engineering
by
Aditi Rathi

© 2009 Aditi Rathi

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science

December 2009
The thesis of Aditi Rathi was reviewed and approved* by the following:

Vijaykrishnan Narayanan
Professor of Computer Science and Engineering and Electrical Engineering
Thesis Advisor

Kenneth Jenkins
Professor of the Department of Electrical Engineering
Head of the Department of Electrical Engineering

Kultegin Aydin
Professor of the Department of Electrical Engineering
Graduate Program Coordinator of the Department of Electrical Engineering

*Signatures are on file in the Graduate School
ABSTRACT

General purpose GPU programming environments like NVIDIA CUDA provide universal access to computing performance that was once only available to super-computers. The availability of such computational power has fostered the creation and re-deployment of algorithms, new and old, creating entirely new classes of applications. In this thesis, a GPU implementation of the Center-Surround Distribution Distance (CSDD) algorithm for feature recognition within images and video frames is presented. While an optimized CPU implementation requires anywhere from several seconds to tens of minutes to perform analysis of an image, the GPU based approach has the potential to improve upon this by up to 28X within acceptable accuracy. This thesis presents a scalable parallel computing model for the CSDD application and quantifies the impact of different CUDA optimizations on it. The experiments involved in the course of this implementation unleash almost all the capabilities and limitations of GPU for the application for a non-traditional problem like CSDD. The implementation shows promise of achieving real-time speeds with enhanced CUDA provisions for synchronization (the design bottleneck for CSDD), faster accesses of GPU memories (the performance bottleneck for CSDD) and, faster double precision computations (the computational speed bottleneck for CSDD because of limited double precision units per SM). Thus this work also establishes the suitability of GPU for similar data-intensive and data-dependent problems.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>Chapter 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Motivation</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Related Work</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Thesis Overview</td>
<td>5</td>
</tr>
<tr>
<td>Chapter 2 CENTER SURROUND DISTRIBUTION DISTANCE ALGORITHM</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Algorithm Overview</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Analysis for Acceleration</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 3 GPU AND CUDA BASICS</td>
<td>14</td>
</tr>
<tr>
<td>Chapter 4 IMPLEMENTATION OF CSDD ON GPU</td>
<td>21</td>
</tr>
<tr>
<td>4.1 CSDD Mapping on CUDA</td>
<td>21</td>
</tr>
<tr>
<td>4.2 Execution Configuration</td>
<td>27</td>
</tr>
<tr>
<td>4.3 Optimizations and their Impacts</td>
<td>34</td>
</tr>
<tr>
<td>4.4 Accuracy</td>
<td>41</td>
</tr>
<tr>
<td>4.5 Parameterization for Scalability on Future Hardware</td>
<td>43</td>
</tr>
<tr>
<td>Chapter 5 RESULTS</td>
<td>48</td>
</tr>
<tr>
<td>Chapter 6 CONCLUSION</td>
<td>52</td>
</tr>
<tr>
<td>Appendix TIPS ON TOOLS AND ENVIRONMENT SET-UP</td>
<td>53</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2-1: Profiling results for CSDD on a CPU. ... 8
Figure 2-2: A high level partitioning of CSDD on a CPU/GPU ... 9
Figure 2-3: Outline of LoG filter executed serially on a CPU ... 10
Figure 2-4: Inherent parallelism in LoG filtering per bin. ... 12
Figure 3-1: Host invoked CUDA mapping on GPU hardware. .. 20
Figure 4-1: CSDD mapping on GPU (per bin) in 3 kernels ... 22
Figure 4-2: Outline of serial execution within 3 GPU kernels .. 23
Figure 4-3: Mapping of 3 CUDA kernels as grids of thread-blocks 24
Figure 4-4: Relation between Resources required per block and Occupancy 28
Figure 4-5: Relative performance with block-sizes multiples and non-multiples of 64 31
Figure 4-6: Profiler counters for optimized GPU execution ... 37
Figure 4-7: Break-up of overall execution time on the GPU ... 37
Figure 5-1: Execution times of overall CSDD application on CPU and GPU 48
Figure 5-2: CSDD application speed-up using GPU ... 49
Figure 5-3: LoG filtering speed-up using GPU ... 49
Figure 5-4: Break-up of time spent by different kernels on the CPU 51
Figure 5-5: Break-up of time spent by different kernels on the GPU 51
LIST OF TABLES

Table 3-1: Compute specifications for compute capability 1.3 (GTX 280) 17
Table 3-2: CUDA controllable memory heirarchy for GTX 280. 18
Table 4-1: Considerations in selection of right block-size. ... 33
Table 4-2: Image padding for various image sizes. ... 34
Table 4-3: Comparison of saliency detection by CPU and GPU 42
Table 4-4: Current parameter values for automatic selection of execution configuration 47
ACKNOWLEDGEMENTS

First and foremost, I offer my sincerest gratitude to my advisor, Dr. Vijaykrishnan Narayanan, who supported me with his guidance, encouragement and patience during the course of my research. I am grateful to him to have allowed me to pursue my interest and giving me such an intriguing topic to work on. I am thankful to him for having steered me in the right direction and enriching my learning from this work. Without him, this thesis wouldn’t have been possible.

I would like to thank Dr. Kenneth Jenkins to have agreed to chair my committee and support my thesis. I would also like to thank Dr. Yuan Xie for supporting me with the hardware and Dr. Michael Pusateri for his constant encouragement and interest in my research topic.

Finally I would like to thank my parents and my brother, Akash, for their strong support in whatever I do. I very sincerely thank my fiancé, Rutvik, for his constant motivation, support, patience and faith in me. I also thank my friends, professors and L&T superiors in India who always boosted my confidence and supported me in my ambition to pursue my higher studies. I would also like to thank my friends and lab-mates at Penn State for their help and company, without which it would not have been possible for me to work with my best energy.
Chapter 1

INTRODUCTION

The advent of parallel computing architectures on mainstream chips like multi-core CPUs, GPU, IBM Cell, FPGA, et al. have opened avenues for ubiquitous high performance computing. However, applications will not experience real performance gains until they can harness this computational power. Application developers may necessarily not have all the expertise or affordance for high engineering costs to harness this power on platforms like FPGAs. Moreover, FPGAs better support logic-intensive tasks that do not require floating point calculations. Also, the parallel computing model for any such application needs to be scalable over any number of processing elements. Platforms like multi-core CPUs, GPU, IBM Cell, etc. contend better because they require only the application to be modified which the application developers certainly have a better control over. The release of general purpose and higher level programming environments has made the task even more achievable. Most of the times, the knowledge of the platform alone suffices for accelerating a variety of applications coming from a variety of domains.

1.1 Motivation

Many vision and image processing applications like feature detection are increasingly being used for or as parts of various real-time and embedded purposes like surveillance, tracking, media mining, camera processing, etc. The Center Surround Distribution Distance (CSDD) [1] algorithm is one such feature detector algorithm which attempts to detect blobs of different sizes on an image that perceptually stand out with respect to the background. Like most of these applications, CSDD also fails to reach real-time speeds due to limited concurrent computational
power available even from state-of-art multi-core CPUs. An optimized implementation on CPU can take up to tens of minutes per frame. Further, the algorithm isn’t massively parallelizable and suffers from lot of serialization due to data dependencies. This makes CSDD as one of the very good and challenging problems to benchmark the capabilities of a parallel architecture.

Both GPU and IBM Cell with their SIMD architectures, high speed FLOPs and, now support for double precision, seemed close contenders for CSDD acceleration. Traditionally, Cell is considered more general purpose over GPUs. On the other hand, GPUs are considered more suitable for usually massively parallel image processing applications. GPUs are also known to make possible, scalable parallel programming models for such applications. GPUs formed a better solution for CSDD acceleration due to the following reasons:

1. CSDD is a non-traditional image processing problem owing to large amount of data dependencies. An attempt to parallelize such a problem on GPUs would give a better understanding of GPU capabilities and would seemingly be less trivial.

2. Added performance benefits could be expected if the underlying graphics hardware and API of the GPU were exploited for an image processing problem. A possibility of a hybrid solution couldn’t be ruled out with the use of textures as well. However, as is described later, CSDD eventually did not allow any scope for that.

3. GPU could give a more scalable parallelization of the problem than Cell owing to hundreds of SIMD cores increasing manifolds with every generation.
4. GPU programming seemed more general purpose and achievable with a framework like CUDA. This is an important selling point for GPUs for use in embedded systems across a wide range of applications.

5. GPUs are available on even Desktop computers today. They make a better and multi-purpose investment.

Traditionally, general-purpose GPU programming was accomplished by using a shader-based framework. This framework has a steep learning curve that requires in-depth knowledge of graphics programming. Algorithms have to be mapped into vertex transformations or pixel illuminations. Data has to be casted into texture maps on the two-dimensional native memory layout and operated on like it is texture data. And because shader-based programming was originally intended for graphics processing, there is little control over data flow. Unlike a CPU program, a shader-based program cannot have random memory access for writing data. In addition, there are limitations on the number of branches and loops a program can have. All of these limitations hindered the use of the GPU for general-purpose high performance computing. Thus CUDA became a natural choice for GPU programming in this research.

1.2 Related Work

With the introduction of NVIDIA’s Compute Unified Device Architecture (CUDA) there has been an extensive mapping of a variety of algorithms on to the GPU. In [4] the authors use GpuCV, an open source framework for acceleration image processing and computer vision applications to program the GPU. A comparison is made between Deriche filter implementations
on GPU using GpuCV and on CPU using Cimg (openCV based image processing library). By using the GpuCV library, the authors were able to obtain 2.5X~101X speed-ups depending on the image size. While the GPU used is the same as in this thesis, there are two distinct differences. The first is that with the GpuCV framework the authors limit themselves to a single image instead of having to consider a situation where many LoG filtering operations must occur on a large set of data for the same image. The second is that only single-precision floating point computations are made. Moreover, GpuCV being domain special, it is recommended more for computer vision scientists who may or may not have the knowledge of GPU architecture or CUDA. One the other hand, CUDA can be used to accelerate any algorithm by any embedded software developer with some in Computer Architecture and Operating Systems. [5] implements non-rigid registration for 3D volumes using Gaussian recursive filtering and compares implementation on a CPU with that using openVidia on a GPU. With openVidia and GPU the authors were able to obtain a speedup of 10X for a 128³ volume. This work differs in using a non-CUDA enabled GPU which exclusively supports single-precision computation. As with [4], the authors in [5] also only consider a single volume rather than having to consider a GPU implementation consisting of performing filtering over multiple images. Also, the model presented by the authors is not scalable and can handle only 128³ volumes, though the possibility is not ruled out. In [6] a number of filtering operations, including Deriche filtering, are implemented and compared for speedup between a CUDA enabled GPU and a CPU. It uses a higher-end GPU but a slower and lower-end CPU than this thesis. Also, the authors again rely on single-precision and only consider single filtering operation on the image. The authors in [7] study performance of a variety of parallel computing problems using CUDA. [7] uses a comparable GPU as in this thesis, but considers only single precision and does not cover any problem close to the nature of Deriche or LoG filtering. In this paper all parallel computing problems except the embarrassingly parallel ones (DES and Data-mining) have achieved a maximum speed-up of 10X to 12X. [8], [9], [10]
and [11] present different models of Deriche Filtering, implemented on FPGA or ASIC, that achieve real-time speeds. However, all these models are highly simplified because the complexity of the original Deriche filter leads to very expensive engineering solutions on FPGA. Moreover, they perform the Deriche filtering only once per image and deal in integer computations.

1.3 Thesis Overview

This thesis is organized as follows: Chapter-2 introduces the CSDD algorithm and analyzes it for parallel computing on any accelerator platform including GPU. Chapter-3 touches on the basics of GPU and CUDA in brief. Chapter-4 comprises of a detailed explanation of CSDD implementation on the GPU and a detailed qualitative analysis of various CUDA provisions involved in the implementation. It also elaborates on the parameterized scalability of the model. Chapter-5 presents the results of CSDD implementation on GPU compared with those on the CPU. Appendix lists some details on the various tools used and various nuances of the programming environment set-up, et al. These details are not available from any standard documents but were gathered with experience and experimentations over the course of work on this thesis. The section on references lists the main works referred to over the course of this research. The report ends with a brief professional vita of the author.

This work used a system which had a dual core Intel Xeon processor (3.59 GHz) with 3GB RAM and a NVIDIA GeForce GTX 280 GPU (Compute Capability 1.3). The runtime API of CUDA 2.0 was used for programming the GPU. The implementation was done using 32-bit Windows XP with MATLAB R2008a and Microsoft Visual Studio 2005.
Chapter 2

CENTER SURROUND DISTRIBUTION DISTANCE ALGORITHM

The Center Surround Distribution Distance (CSDD) algorithm [1] is a feature detection algorithm that detects blobs of different sizes on an image that stand out perceptually with respect to the background. To do so, the CSDD operator compares feature distributions between a foreground region (the center region), and an immediate background region (the surrounding region). CSDD is a very compute intensive, data dependent as well as memory intensive algorithm and requires double precision computation.

2.1 Algorithm Overview

The central operation towards performing feature extraction using CSDD is performing a number of comparisons using Mallow’s distance [12] for center surround distributions, extracted at each pixel, over a scale space formed by a discrete number of scales. These distributions can be made as joint RGB distributions; however to reduce computational complexity the joint RGB distribution can be approximated as three 1D marginals. This is done by first transforming the RGB color space to the Ohta color space [13] yielding a set of color planes which are approximately uncorrelated for natural images. The images along all the three spaces are binned into a fine-grained histogram for robust measure of color intensity in the feature space. It is then possible to form a CSDD measure at every pixel by extracting cumulative distributions over the finely sampled histogram along each of the marginal color axes, corresponding to the center region \(F(v) \), and those corresponding to the outer region \(G(v) \). The operation involves performing convolution with the binary indicator function \(\delta(l(x) \leq v) \) with a Laplacian of Gaussian (LoG) filter at scale \(\sigma \):
The larger the CSDD value, the more dissimilar the center region is from its surrounding neighborhood [1]. Interest regions (blobs) achieve a local maximum across spatial domain and scales. This method finds rotationally invariant and scale covariant interest regions.

Computationally, the most important aspect of computing the CSDD is performing the LoG filtering. This is of particular importance for this algorithm because LoG filtering has to be performed once for each set of finely sampled values along all channels and across all scales. Separability is one of the most attractive features of the Gaussian filtering. 2D Gaussian filter decomposed into two 1D filters applied successively in first the X and then the Y direction further controls the compute intensity. To reduce LoG filtering to constant time, the implementation used in this work is based on a set of recursive IIR filters proposed by Deriche [2] and later improved by Farneback and Westin [3]. These filters keep constant the number of floating point operations (8 multiplies, 7 additions) per pixel, regardless of the spatial size of the operator (based on the standard deviation of the Gaussian filter), σ. This is done by using a fixed-term recurrence relation to define what would typically be a convolution of a spatial filter at different sizes. As shown later, the data dependence of a recurrence relation will ultimately impose some operations to be performed sequentially on the GPU.

2.2 Analysis for Acceleration

An optimized CPU code for CSDD was profiled for various image sizes to identify the portions that need to be accelerated. The results of profiling are shown in the Figure 2-1. As
expected, the most time consuming portions are those which finely sample the color axes, create CDF images from the binary indicator functions, and then perform LoG filtering on all of these cdf images for all axes and all scales.

![CSDD CPU Profiling Results (768x768)](image)

Figure 2-1: Profiling results for CSDD on a CPU

A high-level CPU/GPU (accelerator) partitioning of the CSDD algorithm is shown in Figure 2-2. After reading the input image, the first operation is to convert the color space from RGB to Ohta. These pixel operations are retained on the CPU because they contribute a small percentage to the overall execution time. This pre-processing is followed by the most time consuming part (accelerated in this project): per scale generation of filter co-efficients (Gaussian and 2nd Derivative of Gaussian), per scale and per channel LoG filtering (generation of the CDF images and Deriche filtering operations i.e. 4th order IIR filters convolved with each CDF image) and accumulation into a final filtered output image.
Figure 2-2: A high level partitioning of CSDD on CPU/GPU
The resultant filtered output image is moved back to the CPU to perform post-processing. It comprises of per-scale combining of the outputs of the 3 channels, non-maximal suppression and elimination of weak responses, and drawing the detected blobs on the given image.

In this particular application each axis has been quantized into 128 values resulting in 128 images per channel per scale. An additional requirement is, double precision computations be employed for LoG filtering results in order to maintain the accuracy requirements necessary for post-processing non-maximal suppression.

<table>
<thead>
<tr>
<th>For every Bin (of every channel and every scale):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gau\textsubscript{x}-Deriv\textsubscript{y}</td>
</tr>
<tr>
<td>Loop 1: Gaussian: Forward pass along rows (causal)</td>
</tr>
<tr>
<td>Loop 2: Gaussian: Backward pass along rows (anti-causal)</td>
</tr>
<tr>
<td>Loop 3: 2nd Derivative of Gaussian: Forward pass along columns (causal)</td>
</tr>
<tr>
<td>Loop 4: 2nd Derivative of Gaussian: Backward pass along columns (anti-causal)</td>
</tr>
</tbody>
</table>

| **Deriv\textsubscript{x}-Gau\textsubscript{y}** |
| Loop 5: *2nd Derivative of Gaussian: Forward pass along rows (causal)* |
| Loop 6: *2nd Derivative of Gaussian: Backward pass along rows (anti-causal)* |
| Loop 7: *Gaussian: Forward pass along columns (causal)* |
| Loop 8: *Gaussian: Backward pass along columns (anti-causal)* |

| **Accumulation** |
| Loop 9: *Addition of results of \(Gau\textsubscript{x}-Deriv\textsubscript{y} + Deriv\textsubscript{x}-Gau\textsubscript{y}\) to the output image (Results from ALL Bins (CDF images) are added One-by-One)* |

Figure 2-3: Outline of LoG filter executed serially on a CPU
The LoG filtering, from pixel binning is implemented as a set of 4th order IIR filters arranged over nine loops. Figure 2-3 outlines the LoG filter when executed sequentially on a CPU. The first eight loops can be arranged into two independent sections, loops 1 to 4, denoted G_{aux}-$Deriv_y$ (2-ways Gaussian in the X-direction, 2-ways 2nd derivative of Gaussian in Y-direction) and loops 5 to 8, denoted $Deriv_x$-Gau_y (2-ways Gaussian in the Y-direction, 2-ways 2nd derivative in the X-direction). 2-ways mean once along axis (the causal component) and once opposite to the axis (the anti-causal component). Both G_{aux}-$Deriv_y$ and $Deriv_x$-Gau_y independently operate on the CDF images and their combined outputs produce a resulting LoG filtered image. This is repeated for each CDF image and loop 9 is responsible for accumulating all these LoG filtered images into a single filtered output image. This process is then repeated for each channel, I1I2I3, and for all scales making CSDD a highly compute intensive algorithm.

Strict data dependence propagates from Gaussian to 2nd derivative of Gaussian in G_{aux}-$Deriv_y$ and from 2nd derivative of Gaussian to Gaussian in $Deriv_x$-Gau_y. Thus loops 3-4(7-8) can be executed only after loops 1-2(5-6). This requires the intermediate outputs of loops 1-2(5-6) to be stored in the memory. Similarly the combined output of loops 3-4-7-8 need to be stored for inputs to loop-9. This is a lot of memory requirement considering the multiple bins, scales and axes. Another major constraint for parallelizing the LoG filter is introduced due to the recurrence relation along rows and columns. The Deriche filter requires that during each pass, either a 5x1 (rows) or 1x5 mask (columns), operate on the current pixel and the previous four results from the mask (eg. $a_n = p_n m_0 + a_{n,1} m_1 + a_{n,2} m_2 + a_{n,3} m_3 + a_{n,4} m_4$). This requires additional information to be stored per pixel (m_1, m_2, m_3, m_4) in addition to the final output of the pass per pixel. Also thus, the pixels in a row and column cannot be computed upon independently. The inherent independence is limited to between rows and between columns only.
Figure 2-4: Inherent parallelism in LoG filtering per bin. (Every bin is also independent)
Figure 2-4 illustrates the inherent parallelism in the LoG filtering. Rows and columns are shown vertical and horizontal respectively because of column-major data storage. With the amount of data dependency (from loops 1-2(5-6) to 3-4(7-8), along rows in loops 1-2(5-6), and along columns in loops 3-4(7-8)), CSDD is essentially not a massively parallel algorithm and is a challenge to parallelize it on SIMD architectures with limited memory.
A Graphics Processing Unit (GPU) [14] is a highly parallel, multi-threaded, multi-core processor with large computational horsepower and high memory bandwidth. The NVIDIA tesla architecture in GeForce GTX 280 is a collection of 30 Streaming Multiprocessors (SMs). Each of these SMs has 8 SIMD processing cores called Stream Processors (SPs). These 8 SPs operate in SIMD fashion under the control of a single instruction sequencer. Multithreading is achieved through a hardware thread scheduler in each SM. Since there is only one double-precision unit per SM, double precision computations are over a magnitude slower than single precision computations. Each SM also consists of two special function units for transcendental, a multithreaded instruction unit, and some memory explained later.

Compute Unified Device Architecture (CUDA) by NVIDIA [14], significantly extends the GPU beyond graphics. As the name suggests, it makes available the GPU’s massively multi-threaded processor array as a unified platform for both graphics and general-purpose parallel computing applications. The CUDA programming interface consists of a set of C language library functions, and the CUDA-specific compiler generates the executable code for the GPU. Because CUDA is an extension of C, there is no longer a need to understand shader-based graphics APIs resulting in a relatively smaller learning curve. The CUDA programming framework also supports the use of memory pointers that enable random memory-read and write-access ability, flexibility in data structures and use of general manipulation schemes in higher level languages like C and FORTRAN. Moreover, well documented development platform, including a compiler, scientific libraries, debugger and profiler utilities are fast evolving for CUDA.
The CUDA core consists of three abstractions [14]: a hierarchical model of threads, a controllable memory hierarchy, and barrier synchronization.

CUDA [14] employs a hierarchical model to organize and support a high level of parallelism i.e. a high volume of threads running in parallel on the GPU. A thread, the finest granularity of parallelism on the GPU, is simply a sequence of instructions that can be executed on different data units in parallel. CUDA organizes threads into logical blocks. Because there are a limited number of threads that a block can contain, these blocks are then organized into grids allowing for a larger number of threads to run concurrently. A grid is usually 2D with its dimensions specified in terms of number of blocks. Thus block ID is a 2-component vector with each block uniquely identified within a grid using a one-dimensional or two-dimensional index. Block dimensions are specified in terms of number of threads. Thread ID is a 3-component vector, so that threads can be uniquely identified within a block using a one-dimensional, two-dimensional, or three-dimensional index. All the threads in a grid are organized in identical blocks and run the same GPU code called the Kernel (though conditional branching is possible using unique thread and block IDs). The total number of threads is equal to the number of threads per block times the number of blocks. Only one kernel can execute on the GPU at a time. Execution configuration determines the number of blocks and number of threads per block executing the kernel on the GPU. It is explicitly managed by the programmer and is specified at the time of kernel launch. This block organization allows the algorithm to scale with future generations of the GPU.

Each SM scheduler employs SIMT architecture to create, manage, and execute concurrent threads in hardware with zero scheduling overhead. Thread blocks are required to execute independently. It must be possible to execute them in any order, in parallel or in series.
This independence requirement allows thread blocks to be scheduled in any order across any number of cores, enabling programmers to write scalable code. Thus all the blocks in a grid are distributed over the SMs, with one block executing on an SM at a time. As thread blocks terminate, new blocks are launched on the vacated multiprocessors. The threads of a thread block execute concurrently on an SM and are time-sliced over its SPs in groups of 32 threads called a **warp**. The way a block is split into warps is always the same; each warp contains threads of consecutive, increasing thread IDs with the first warp containing thread 0. Each warp executes in lock step and thus each SP operates on 4 threads. Every 4 cycles, the scheduler selects a warp that is ready to execute and issues the next instruction to the active threads of the warp. A warp executes one common instruction at a time, so full efficiency is realized when all 32 threads of a warp agree on their execution path. If threads of a warp diverge via a data dependent conditional branch, the warp serially executes each branch path taken; disabling (hardware masking) threads that are not on that path, and when all paths complete, the threads converge back to the same execution path. Branch divergence occurs only within a warp; different warps in a thread block execute independently regardless of whether they are executing common or disjointed code paths. Latencies are simply tolerated by switching warps. Table 3-1 lists the hardware specifications for GTX 280. Though a very large number of threads may theoretically be possible for a GPU (*maximum number of blocks per grid x maximum number of threads per block*), the hardware limits their concurrent availability to the developer, as clipped by the maximum number of active threads (warps or blocks) per SM.

The Tesla architecture is supports workloads with relatively small temporal data locality and only much localized data reuse. As a consequence, it does not provide large hardware caches shared among multiple cores, as is the case on modern CPUs. The GPU comes with a hierarchical memory structure. Memory access times do vary for different memory levels. CUDA framework
provides an almost explicit control for each of these levels. This enables the fine-tuning of the code’s data access patterns to optimize the performance. Table 3-2 lists the details on these different memories and the issues involved if not accessed correctly.

Table 3-1 Compute specifications for compute capability 1.3 (GTX 280)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Multiprocessors (SMs)</td>
<td>30</td>
</tr>
<tr>
<td>Number of Streaming (scalar) Processors (SPs)</td>
<td>8</td>
</tr>
<tr>
<td>Warp-size (Number of Threads per Warp)</td>
<td>32</td>
</tr>
<tr>
<td>Maximum sizes of each dimension of a Grid</td>
<td>65535 x 65535 x 1</td>
</tr>
<tr>
<td>Maximum sizes of each dimension of a Block</td>
<td>512 x 512 x 64</td>
</tr>
<tr>
<td>Texture alignment</td>
<td>256 Bytes</td>
</tr>
<tr>
<td>Maximum number of Active Blocks per SM</td>
<td>8</td>
</tr>
<tr>
<td>Maximum number of Active Warps per SM</td>
<td>32</td>
</tr>
<tr>
<td>Maximum number of Active Threads per SM</td>
<td>1024</td>
</tr>
<tr>
<td>Support for Double Precision</td>
<td>Yes</td>
</tr>
<tr>
<td>Memory</td>
<td>Location</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Global</td>
<td>Off – Chip, On-card</td>
</tr>
<tr>
<td>Local</td>
<td>Off – Chip, On-card</td>
</tr>
<tr>
<td>Texture</td>
<td>Off – Chip, On-card</td>
</tr>
<tr>
<td>Constant</td>
<td>Off – Chip, On-card</td>
</tr>
<tr>
<td>Texture Cache</td>
<td>On – Chip Cache</td>
</tr>
<tr>
<td>Constant Cache</td>
<td>On – Chip Cache</td>
</tr>
<tr>
<td>Shared</td>
<td>On – Chip</td>
</tr>
<tr>
<td>Registers</td>
<td>On – Chip</td>
</tr>
</tbody>
</table>

Table 3.2: CUDA controllable memory hierarchy for GTX 280
GPU is employed as a co-processor. CUDA kernels are offloaded by the CPU (Host) to execute on the GPU (Device). The CUDA software stack [14] is composed of several layers: a compiler device driver (nvcc), an application programming interface (API) (driver and runtime), and two higher-level mathematical libraries of common usage, CUFFT and CUBLAS, with CUDA runtime API. CUDA runtime library is split into a host component that runs on the host and provides functions to control and access one or more compute devices from the host; a device component that runs on the device and provides device specific functions; and a common component that provides a subset of the standard C library and some more built-in features that are supported in both host and device code. CUDA assumes that both the host and the device maintain their own DRAM, referred to as host memory and device memory, respectively. The host component of the CUDA program manages the global, constant, and texture memory spaces (visible to kernel) as input preparation for the kernel. This includes device memory allocation and de-allocation, as well as data transfer between host and device memory. The shared memory and register spaces are managed inside the CUDA kernel by the device component.

Figure 3-1 shows the host invoked mapping of CUDA onto the GPU hardware. The host launches Kernels as grids of identical thread blocks. Different kernels are executed one after the other. The blocks are scheduled on the SM and the threads are executed on the SPs. The figure pictorially represents how the memory resources are distributed over the SM and how different grids, blocks and threads communicate through different memories.
Figure 3-1: Host invoked CUDA mapping on GPU hardware
Chapter 4

IMPLEMENTATION OF CSDD ON GPU

This thesis exploits GPU capabilities for acceleration of CSDD. As shown in Figure 2-2, only the most time consuming part, the LoG filtering, was mapped to and accelerated on the GPU using CUDA. The GPU hardware and CUDA details are as provided in chapter 3.

4.1 CSDD Mapping on CUDA

The LoG filter is mapped on to the GPU in 3 CUDA kernels as shown in Figure 4-1. However, as shown in Figure 4-2, the independent paths in every kernel are not executed concurrently. Kernel-1 performs the first halves of Gau_x-Deriv_y and Deriv_x-Gau_y in series in the order of loops 1, 5, 2 and 6. Kernel-2 performs the second halves of Gau_x-Deriv_y and Deriv_x-Gau_y in series in the order of loops 3, 7, 4, and 8. Kernel-3 performs loop-9 by adding the outputs $(\text{Gau}_x$-$\text{Deriv}_y + \text{Deriv}_x$-$\text{Gau}_y)$ of all bins in series (one-by-one).

Considering the nature of the LoG Filtering [section 2.2], the following factors were considered in deciding this mapping:

4.1.1. Memory requirement

The net LoG filtering in this implementation requires 128 binary images as inputs. As shown in Figure 4-1, instead of storing 128 binary images, the threshold operation for generation of binary value for any pixel for any bin is carried out each time it is required. Also, as shown in Figure 4-1, the outputs per bin of loops 1 and 2 (5 and 6) are stored in the same location.
Similarly per bin outputs of loops 3, 4, 7 and 8 are all stored in the same location to increase re-use of memory. These output locations form the intermediate data structures per bin.
that keep occupying memory across kernels. Depending on the available global memory after storing the input image and filter co-efficients, as many bins (with the intermediate data structures) as can be accommodated are included into a single stream of kernels and the entire histogram is completed in multiple streams. The global memory is never filled beyond 80%. LoG filtering for each channel and each scale is always executed by a new stream (or bunch of streams) of these 3 kernels.

For every Bin (of every channel and every scale):

KERNEL-1

Loop 1:
Gaussian: Forward pass along rows (causal)

Loop 5:
2nd Derivative of Gaussian: Forward pass along rows (causal)

Loop 2:
Gaussian: Backward pass along rows (anti-causal)

Loop 6:
2nd Derivative of Gaussian: Backward pass along rows (anti-causal)

KERNEL-2

Loop 3:
2nd Derivative of Gaussian: Forward pass along columns (causal)

Loop 7:
Gaussian: Forward pass along columns (causal)

Loop 4:
2nd Derivative of Gaussian: Backward pass along columns (anti-causal)

Loop 8:
Gaussian: Backward pass along columns (anti-causal)

KERNEL-3

Loop 9:
Addition of results of ‘Gaux-Deriv, + Derivx-Gau,’ to the output image
(Results from ALL Bins (CDF images) are added One-by-One)

Figure 4-2: Outline of serial execution within 3 GPU kernels
4.1.2. Computational requirement and Scalability with future hardware

Figure 4-3 shows the mapping of the 3 CUDA kernels as grids of thread-blocks. Since LoG requires the input image to be computed upon over and over again for different bins of the histogram, the number of blocks is as high as number of tiles x number of bins. Each block computes one tile of the input image for any one of the bins. Since there are at least two concurrent paths in LoG (Gau_x-Deriv_y and Deriv_x-Gau_y, and computation of causal and anti-
causal components), different blocks could be branched to perform on different independent steps making the number of blocks equal to \textit{number of tiles} \times \textit{number of bins} \times \textit{number of concurrent steps}. However, this approach could not be followed due to reasons discussed ahead.

The scheme of tiling and availability of at least 128 blocks (over 4 blocks per SM for GTX 280) make the model scalable with future hardware. The concurrency will further increase with the number of processing cores.

4.1.3. Bandwidth

The host to device bandwidth being limited, only the inputs and the LoG filtered output image is transferred between the two. All intermediate data structures are created on device, retained and computed upon across kernels, and destroyed on device without ever being mapped by the host or copied to host memory. This may be even at the cost of increased memory usage leading to reduced computation per kernel or low parallelism in a kernel, as in kernel-3.

4.1.4. Data dependency

Individual pixels cannot be computed upon due to row-wise and column-wise data dependencies. The image is therefore broken down into tiles along rows or columns and assigned to blocks with the number of threads equal to the number of rows or columns in the tile and every thread performing serial computations along the entire row or column, respectively. Thus, the number of tiles and threads may be different for filtering along X and Y directions. If this happens within a kernel, it may lead to branching and resource wastage due to idling of certain threads. Hence, as shown in Figure 4-1, operations along X direction, 1-2(5-6), are clubbed in kernel-1 while the operations along Y direction, 3-4(7-8), are clubbed in kernel-2.
4.1.5. Re-use of data

The more is the re-use of the input or output data, the higher is the scope of benefiting from cached memories or shared memory. In kernels -1 and -2, first both the causal components, loops 1-5(3-7), are calculated followed by both anti-causals, 2-6(4-8). This is shown in Figure 4-2. Since the input image is accessed in the same direction in loops 1-5(3-7) and in the same direction in loops 2-6(4-8), this increases the scope of re-use of inputs.

4.1.6. Synchronization

Killing the kernel being the only reliable way of global synchronization between threads across different blocks, steps with producer-consumer pattern (reads-after-writes) could not be placed in a single kernel. Hence loops 1-2(5-6) are placed in kernel-1 while the following loops 3-4(7-8) are placed in kernel-2.

As shown in Figure 4-1, all the four loops in kernels -1 and -2 can logically be executed in parallel and then their outputs can be added to the same location to increase memory re-use. But this is not as trivial as it seems because of the synchronization limitations. In Kernel-1, loops 1 and 2(5 and 6) cannot be executed concurrently since synchronized writes to the same location by threads of different blocks is not possible. Loops 1 and 5(2 and 6) also are not advisable to be executed concurrently due to multiple reasons. Firstly, by executing these causal (anti-casual) loops concurrently, there is a loss of substantial performance gain from the use of shared memory (as we shall see ahead). Secondly, because of the fine-grained histogram, there will always be ample blocks to keep the processors busy at any step. Hence any further increase in concurrency doesn’t add to performance. Thus whether the serialization occurs intentionally or due to ample number of threads running at any time to occupy all resources, it doesn’t affect the performance.
Intentional serialization within a kernel rather helps in packing more computation between two kernel launches. This helps in offsetting the overhead associated with launching three kernels per stream, especially for smaller images. Loops 1 and 6 (5 and 2) though staggered in time to write to the same location, will give inaccurate results upon concurrent execution. This is because different blocks are scheduled randomly. Hence, as shown in Figure 4-2, all the four loops are performed in series within kernel-1. Same is shown for kernel-2 because all loops have to be serialized to be able to write to the same output location.

For the same reason, addition of outputs from different bins is carried out in series in kernel-3. Thus, as shown in Figure 4-3, the number of blocks in kernel-3 is equal to the number of tiles and is independent of the number of bins.

4.2 Execution Configuration

Execution parameters are the number of blocks per grid and the number of threads per block executing a kernel and are explicitly managed by the programmer. Choosing execution parameters is a matter of striking a balance between occupancy and number of active blocks per SM for a given resource utilization per block decided by the application. Note that concurrency is never a question for GPU as long as there are as many warps launched as the number of SMs (a total of 30 warps = 960 threads for GTX 280, a very small number for most applications.

Occupancy is the ratio of the number of active warps per SM to the maximum number of possible active warps per SM. Only one warp is scheduled at a time on an SM. Memory access and instruction latencies are hidden by switching active warps and thus higher occupancy is desired. Number of active warps (threads and blocks) means the number of warps that can be
accommodated within the resources available per SM, viz. registers and shared memory. Register and shared memory usage are functions of algorithm design and input size. The number of registers (and shared memory) needed per thread (and per block) decides the number of active warps available, and in turn the occupancy. Figure 4-4 summarizes this relation between the resources and the occupancy. The execution configuration needs to be chosen such that enough thread blocks are created to occupy all the processing units of the GPU with maximum achievable occupancy. However, the active threads/warps/blocks should remain below hardware limitations specified in Table 3-1. The following discussion justifies the selection of execution configuration (operating point) for CSDD in the region shown in Figure 4-4.

Figure 4-4: Relation between Resources required per block and Occupancy
4.2.1. Selecting the right occupancy

Higher occupancy does not always equate to higher performance. In fact, once occupancy of 50% is reached, additional increases in occupancy do not translate into improved performance. However, low occupancy always interferes with the ability to hide memory latency, resulting in performance degradation. As shown in Figures 4-6 and 4-7, LoG filtering in CSDD is a very memory-access intensive problem. Thus it suffers from high memory access latencies. Hence a higher occupancy (50% or more as shown in Figure 4-4) has been maintained in all the three kernels. This will also ensure high occupancy in future hardware with increased registers, shared memory resources and permissible threads per block.

4.2.2. Selecting the right number of active blocks per SM

A thread block is entirely executed on an SM (and not distributed across SMs). The number of blocks in a grid should be larger than the number of SMs so that all SMs have at least one block to execute. But only one block per SM will force the SM to idle when the block is waiting for thread synchronization at the __syncthreads() barrier and also during global memory reads if there are not enough threads per block to cover the load latency. Thus there should be multiple active blocks per SM. More thread blocks stream in pipeline fashion through the device and amortize overhead even more. It was observed that anything below 3 active blocks per SM caused a reduction in the CSDD performance.

4.2.3. Selecting the right number of blocks per grid

To scale to future devices, the number of blocks per kernel launch should be in hundreds. The number of blocks for both kernels -1 and -2 is number of tiles x number of bins. As mentioned in the CSDD mapping on CUDA [section 4.1], the fine grained histogram ensures at
least 128 bins at any time for both kernels -1 and -2. This ensures at least 4 blocks per SM for GTX 280 which is highly scalable for next few generations of hardware.

4.2.4. Selecting the right number of threads per blocks

When choosing the number of threads per block (block-size), it is important to remember that multiple active blocks can reside on an SM and so occupancy is not decided by the block-size alone. Allocating more threads per block is better for efficient time slicing, but the more threads per block, the fewer registers are available per thread. Thus, larger block-size does not necessarily imply a higher occupancy. On the other hand, having less number of threads per block increases the number of blocks. But this will aid the occupancy only till the upper limit on either the number of active warps or the number of active blocks per SM (Table 3-1) is not reached. Thus, achieving the right number of active threads with given per SM resources will also decide the best execution configuration. This required a lot of experimentations explained ahead.

The number of threads per block is recommended to be a multiple of warp-size (32 threads) to avoid wasting compute resources on under populated warps and to facilitate coalesced memory accesses. But the only way to avoid register memory bank conflicts is to have the number of threads per block a multiple of 64, which is the warp allocation granularity for registers. The latency of register read-after-write dependencies is approximately 24 cycles and is completely hidden on SMs that have at least 192 active threads (i.e., 6 warps). This equates to 6/32 = 18.75% occupancy and hence is taken care of in any grid size for all the kernels except for kernel-3 if the image dimensions are less than 192x192. Thus 64, 128, 192, 256, 320 and so on seem to be good numbers for threads per block provided enough registers and shared memory resources are available. Figure 4-5 shows the effect on performance when the block-size is not a
multiple of 32 or 64. The execution times with multiple of 64 block-sizes have been normalized to 1 to be able to cover a range of times.

The LoG implementation requires a maximum of 26 registers per thread. The –maxrregcount cannot be set for individual kernels. After some experimentation with cost of local memory access (due to force reduction in number of registers) versus benefits of occupancy (in terms of performance), the flag “–maxrregcount” was set to 20 for all the 3 kernels. As explained in the following section on optimizations, the amount of dynamically allocated shared memory is directly proportional to the number of threads per block. Thus a higher number of threads per block may prohibit higher occupancy. Block sizes of 64, 128, 192 and 256 threads were arrived at after experimentation for occupancy (considering given registers and, statically allocated shared memory) and its impact on performance. The details are explained ahead with reference to Table 4-1.

Figure 4-5: Relative performance with block-sizes multiples and non-multiples of 64
For the blob-detection system to be able to handle images of all sizes, the dimensions need to be padded to the nearest multiple of the right block-size (64, 128, etc). MATLAB’s `identical paddarray` feature is used to pad the image dimensions with identical pixels as those at the corresponding edge (boundary). The most obvious approach is to launch the block sizes as per the padded image dimensions and then by-pass the padding during computation. But this would introduce branching in the logic and would also lead to idling of certain threads almost per block. On the other hand no branching would introduce errors. Hence experimentations on accuracy vs. different padding sizes were carried out. It was observed that padding of up to 64 rows and columns of pixels on any edge (i.e. a total of up to 127 rows or columns of padding) could be handled with adequate accuracy without introducing conditional branching. But this would mean a lot of extra work by the GPU as compared to the CPU. Experimentations on performance vs. different padding sizes were made. It was observed (Table 4-1) that even with as low as 64 threads per block; the occupancy remained above 50% without affecting the performance (acceleration). Hence the padding was limited to up to a total of 63 (i.e. 32 on any edge). This further justified the use of as low as 64 threads per block.

Most of the above experiments were aided by the CUDA Occupancy calculator. Table 4-1 shows the analysis of occupancy considerations in selection of the right block-size. Shared memory allocation details have been discussed ahead in the section 4.3 on optimizations. Beyond 256 threads per block, the number of active blocks per SM reduces to 2 or less. Also there is a marginal reduction in performance, perhaps due to reasons discussed in 4.2.2 above. Since CSDD is highly memory access intensive and since there is no performance benefit in having large block-size, the highest number of threads per block is clipped at 256. Figure 4-4 shows the execution configuration for CSDD lying in the region marked with occupancy ≥ 50%, the number of active blocks per SM > 2, and minimum 64 threads per block.
Table 4-1 Considerations in selection of right block-size

<table>
<thead>
<tr>
<th>Krnl</th>
<th># Threads per Block</th>
<th># Registers per thread</th>
<th>Imem access (Bytes) per thread</th>
<th>Static shared memory (Bytes) per block</th>
<th>Dynamic shared memory (Bytes) per block</th>
<th>% Occupancy</th>
<th># Active Warps (Blocks) per SM</th>
<th>Limited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
<td>20</td>
<td>16</td>
<td>368</td>
<td>256</td>
<td>50</td>
<td>16 (8)</td>
<td>Max warps per SM</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>20</td>
<td>80</td>
<td>368</td>
<td>256</td>
<td>50</td>
<td>16 (8)</td>
<td>Max warps per SM</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>8</td>
<td>0</td>
<td>64</td>
<td>256</td>
<td>50</td>
<td>16 (8)</td>
<td>Max warps per SM</td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td>20</td>
<td>16</td>
<td>368</td>
<td>512</td>
<td>75</td>
<td>24 (6)</td>
<td>Registers per SM</td>
</tr>
<tr>
<td>2</td>
<td>128</td>
<td>20</td>
<td>80</td>
<td>368</td>
<td>512</td>
<td>75</td>
<td>24 (6)</td>
<td>Registers per SM</td>
</tr>
<tr>
<td>3</td>
<td>128</td>
<td>8</td>
<td>0</td>
<td>64</td>
<td>512</td>
<td>100</td>
<td>32 (8)</td>
<td>Max warps per SM</td>
</tr>
<tr>
<td>1</td>
<td>192</td>
<td>20</td>
<td>16</td>
<td>368</td>
<td>768</td>
<td>75</td>
<td>24 (4)</td>
<td>Registers per SM</td>
</tr>
<tr>
<td>2</td>
<td>192</td>
<td>20</td>
<td>80</td>
<td>368</td>
<td>768</td>
<td>75</td>
<td>24 (4)</td>
<td>Registers per SM</td>
</tr>
<tr>
<td>3</td>
<td>192</td>
<td>8</td>
<td>0</td>
<td>64</td>
<td>768</td>
<td>94</td>
<td>30 (5)</td>
<td>Max warps per SM</td>
</tr>
<tr>
<td>1</td>
<td>256</td>
<td>20</td>
<td>16</td>
<td>368</td>
<td>1024</td>
<td>75</td>
<td>24 (3)</td>
<td>Registers per SM</td>
</tr>
<tr>
<td>2</td>
<td>256</td>
<td>20</td>
<td>80</td>
<td>368</td>
<td>1024</td>
<td>75</td>
<td>24 (3)</td>
<td>Registers per SM</td>
</tr>
<tr>
<td>3</td>
<td>256</td>
<td>8</td>
<td>0</td>
<td>64</td>
<td>1024</td>
<td>100</td>
<td>32 (4)</td>
<td>Max warps per SM</td>
</tr>
<tr>
<td>1</td>
<td>320</td>
<td>20</td>
<td>16</td>
<td>368</td>
<td>1280</td>
<td>63</td>
<td>20 (2)</td>
<td>Registers per SM</td>
</tr>
<tr>
<td>2</td>
<td>320</td>
<td>20</td>
<td>80</td>
<td>368</td>
<td>1280</td>
<td>63</td>
<td>20 (2)</td>
<td>Registers per SM</td>
</tr>
<tr>
<td>3</td>
<td>320</td>
<td>8</td>
<td>0</td>
<td>64</td>
<td>1280</td>
<td>94</td>
<td>30 (3)</td>
<td>Max warps per SM</td>
</tr>
<tr>
<td>1</td>
<td>384</td>
<td>20</td>
<td>16</td>
<td>368</td>
<td>1536</td>
<td>75</td>
<td>24 (2)</td>
<td>Registers & Max Warps per SM</td>
</tr>
<tr>
<td>2</td>
<td>384</td>
<td>20</td>
<td>80</td>
<td>368</td>
<td>1536</td>
<td>75</td>
<td>24 (2)</td>
<td>Registers & Max Warps per SM</td>
</tr>
<tr>
<td>3</td>
<td>384</td>
<td>8</td>
<td>0</td>
<td>64</td>
<td>1536</td>
<td>75</td>
<td>24 (2)</td>
<td>Max warps per SM</td>
</tr>
<tr>
<td>1</td>
<td>512</td>
<td>20</td>
<td>16</td>
<td>368</td>
<td>2048</td>
<td>50</td>
<td>16 (1)</td>
<td>Registers per SM</td>
</tr>
<tr>
<td>2</td>
<td>512</td>
<td>20</td>
<td>80</td>
<td>368</td>
<td>2048</td>
<td>50</td>
<td>16 (1)</td>
<td>Registers per SM</td>
</tr>
<tr>
<td>3</td>
<td>512</td>
<td>8</td>
<td>0</td>
<td>64</td>
<td>2048</td>
<td>100</td>
<td>32 (2)</td>
<td>Max warps per SM</td>
</tr>
</tbody>
</table>

Note: Multiples of 64 have been chosen for block-size based on post-padding accuracy and performance considerations discussed before. Resource (registers and shared memory) usage comes from the code. Considerations of register pressure (-maxrregcount 20) have also been discussed before. As shown in Figure 4-4, Occupancy \(\geq 50\% \) and Active Blocks per SM > 2 are desired.
The implementation automatically picks up the right block size so as to limit the net amount of padding to 63 rows or/and columns of pixels with maximum (of 64, 128, 192 and 256) threads possible per block. Image dimension divided by the number of threads per block gives the number of tiles per bin perpendicular to that dimension. Table 4-2 shows the image padding for various image sizes.

Table 4-2 Image padding for various image sizes

<table>
<thead>
<tr>
<th>Image Size</th>
<th>Streams</th>
<th>Threads per Block along Rows</th>
<th>Threads per Block along Columns</th>
<th>Padding in height (#Rows)</th>
<th>Padding in width (#Cols)</th>
<th>Image Size on GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Rows</td>
<td>#Cols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>240</td>
<td>1</td>
<td>64</td>
<td>256</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>240</td>
<td>380</td>
<td>1</td>
<td>256</td>
<td>192</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
<td>1</td>
<td>256</td>
<td>256</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>576</td>
<td>512</td>
<td>2</td>
<td>192</td>
<td>256</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>480</td>
<td>640</td>
<td>2</td>
<td>256</td>
<td>128</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>768</td>
<td>2</td>
<td>256</td>
<td>256</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>800</td>
<td>600</td>
<td>2</td>
<td>64</td>
<td>128</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>768</td>
<td>768</td>
<td>4</td>
<td>256</td>
<td>256</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1280</td>
<td>1024</td>
<td>8</td>
<td>256</td>
<td>256</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1600</td>
<td>1200</td>
<td>8</td>
<td>64</td>
<td>64</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

4.3 Optimizations and their Impacts

After all the above considerations (in sections 4-1 and 4-2), the only major optimization left to be explicitly applied to the implementation is the use of low-access-latency memories. Since all the four steps in kernels -1 and -2 are being executed in series, there is no concurrent re-use of the input images by threads of different blocks and/or by threads of the same block. Thus use of read-only cached memories like texture and constant is futile. Moreover, these being read-only memories, they can be put to only specific use. As reflected from Table 4-1, shared memory
per SM is not a limiting factor for any block-size configuration. Thus even shared memory remains under-utilized owing to the nature of the algorithm.

In all the three kernels, the Gaussian and Derivation filter coefficients and other constants are pulled into the shared memory once per kernel and are re-used extensively. This reduces the time by up to 15% in spite of introducing divergence and warp serializations due to branching within warp (caused due to idling of the threads in the warp not used in this loading). However, no more than half a warp gets employed at any time to load these co-efficients and constants into shared memory. Thus the shared memory bank conflicts cannot happen in spite of many of these being double precision. The static shared memory allocation in Table 4-1 comes from these constants pulled into shared memory and arguments to __global__ functions (kernels) also stored in the shared memory.

In kernel-1, first the starting row of the input image is pulled into the shared memory and is re-used twice (at the beginning of loops 1 and 5 for generating the first row of the binary CDF image). Then the last row of the input image is pulled into the shared memory and is re-used twice (at the beginning of loops 2 and 6 for generating the last row of the binary CDF image). This is because causal and anti-causal components start accessing the input image from the beginning and the end respectively. This causes an additional improvement of 35%. Every location in the output of kernel-2 is being written to four times, twice by Gau\textsubscript{xy}-Deriv\textsubscript{y} and twice by Deriv\textsubscript{x}-Gau\textsubscript{y}. First, every location of the output is pulled into the shared memory, and after it is written to twice (by causal components of Gau\textsubscript{xy}-Deriv\textsubscript{y} and Deriv\textsubscript{x}-Gau\textsubscript{y}), it is updated in the global memory. Thereafter, every location of the output is again pulled into the shared memory, and after it is written to twice (by anti-causal components of Gau\textsubscript{xy}-Deriv\textsubscript{y} and Deriv\textsubscript{x}-Gau\textsubscript{y}), it is updated in the global memory. Since all the 4 loops have to be performed in series and since
direction of computations change for loops 4 and 8, it is not possible that each location be pulled into shared memory once and re-used four times. This improves the performance of kernel-2 by another 25%. In kernel-3, every location of the output image is being written to once every bin. Hence every location of the output image is pulled into the shared memory, and only after the thread adds the corresponding location from all the bins into that shared memory location, it is updated in the global memory. This improves the performance of kernel-3 by around 25%. Kernels -2 and -3 see reduced performance gain compared to kernel-1. This is because kernels -2 and -3 use shared memory for writing to the output (unlike reading from the input as in kernel-1). Since this use of shared memory changes with the block-size, it is dynamically decided and allocated at the time of kernel-launch based on the block-size (listed under dynamic shared memory allocation column in Table 4-1).

The net improvement in the implementation performance due to use of shared memory is around 30% for most image sizes. Figures 5-2 and 5-3 show the improvement in the implementation and application speed-ups with use of shared memory. Though LoG filtering requires double precision due to non-maximal suppression, the input and output images and the shared memory computations (except constants and coefficients) are being handled with single precision accuracy. This prevents shared-memory bank-conflicts. Input image being used only for threshold comparisons (for generation of binary CDF images), it could be handled in single precision without loss in accuracy in kernel-1. Fortunately, adequate accuracy could be maintained till the final output in spite of the single precision computations for the outputs in kernels -2 and -3.
Figure 4-6: Profiler counters for optimized GPU execution

Figure 4-7: Break-up of overall execution time on the GPU
Figure 4-6 illustrates the performance profile for the final optimized versions of the 3 kernels. The profiling results are shown for a square image for a fair comparison between kernels -1 and -2. As is seen, kernel-2 takes the largest portion of the CSDD execution time on GPU largely contributed by memory accesses (global and local). As seen in Figure 4-7, all the three kernels spend a significant portion of their execution time on memory accesses. Thus memory access latencies are the major bottleneck for even the optimized implementation.

Since the kernel-2 takes the maximum time on GPU due to memory accesses, in case of rectangular images the preprocessing rotates the input image such that kernel-2 does lesser serial execution per thread than kernel-1. When the larger dimension is fed to Kernel-2 as the number of columns, there are more threads in kernel-2 than kernel-1 and they perform on lesser number of pixels per column (since number of rows = pixels per column < number of columns). The net LoG filtered output is again rotated, but in the opposite direction, so as to map to the original input image. This optimization exploits the rotational invariance property of the CSDD algorithm to give up to 14% performance improvement due to reduced memory accesses.

A basic strategy followed throughout the implementation is to avoid conditional branching as much as possible. This was achievable also because of the structured image access patterns at every loop in the LoG filtering. The indexing logic is devised such that any thread in any kernel will always access the same memory location when operating in a particular direction. The direction changes are taken care of by a number of ways: separating X and Y direction computations in kernels -1 and -2; serial execution of all 4 loops in both kernels -1 and -2; executing the causal components of both Gau_x-Deriv_y and Deriv_x-Gau_y first and followed by the anti-causal components of both Gau_x-Deriv_y and Deriv_x-Gau_y (allowing time for thread synchronization between direction changes); use of shared memory locations and __syncthreads()
barrier to ensure a series of writes to the same location by multiple threads and porting only the final result to the global memory. Thus there can neither be any conflict between threads while writing to the same location nor can there be any branching and serialization. This claim is reinforced by the profiler results in Figures 4-6 and 4-7. The contribution of branching, divergence and warp serialization to the execution time is negligible for all the three kernels. This negligible contribution comes from adding of constants in shared memory in all the three kernels by less than a warp of threads. Branching is relatively higher because of 9 different loops involved (manifesting as manifold nested loops in the code). It was measured upon profiling that, the dynamically allocated shared memory did not contribute towards any divergence and serialization due to bank conflicts. This reinforces the claim made earlier about use of single precision for computations involving shared memory.

Also, the indexing logic makes extensive use of modulo division and division. These being expensive operations, multiple occurrences of them are reduced to just once per thread by calculating the binID and tileID for every thread in the beginning of the kernel. These IDs thereafter remain constant across the kernel.

If a variable located in global or shared memory is declared as volatile, the compiler assumes that its value can be changed at any time by another thread and therefore any reference to this variable compiles to an actual memory read instruction. Thus, use of volatile __shared__ variables to limited extent leads to reduced use of register (or local memory) variables for temporary results. Using volatile __shared__ variables is as fast as using registers, assuming there are no shared memory bank conflicts. Unless the variable is declared as volatile, the compiler optimizes the reads and writes to shared memory (provided __syncthreads() is used to ensure writes). After some experimentation with different (read-only after being loaded once)
__shared__ variables declared as volatile, the local memory access was reduced by 8Bytes in kernel-1 giving an additional 1% improvement in performance.

A major trade-off was made by choosing considerations of scalability over 3-5% performance improvement. Looking at various GPU generations, we see that there has been a doubling in the number of registers per SM over generations while the amount of shared memory per SM has remained the same across all generations. Permissible number of active blocks per SM has also doubled over generations. As seen in Table 4-1, shared memory remains under-utilized while registers remain over-burdened for almost all configurations. Hence some of the register burden was offloaded to shared memory by creating 2-3 block-size length of shared memory arrays for 2-3 local variables. Any location of any array would store the corresponding local variable for the thread indexing to that location. This scheme gave 3-5% performance improvement when 3 4-bytes local variables from kernel-1 and 2 4-bytes local variables from kernel-2 were offloaded from registers to shared memory. 4-bytes variables were chosen to prevent shared memory bank conflicts. This improvement came from nearly 50% reduction in the total local memory accesses by kernels -1 and -2. This maintained the same occupancy on GTX 280 for all block-sizes listed in Table 4-1. However, for most block-sizes, the shared memory utilization reached saturation (i.e. number of active warps got limited by shared memory as well). This may inhibit scalability with future generations if the shared memory per SM doesn’t increase while. Hence this 3-5% performance improvement was foregone and not implemented in the final system.

Other minor recommendations have been followed all through the code. Example, all type-conversions are done explicitly (especially between float and double), etc. There was no scope of using fast math and many other optimizations recommended by NVIDIA. Loop
unrolling called for extra registers and did not add to any performance gain. There is hardly any branching for branch predication to be applied. Stream processing using asynchronous operations did not work in this scheme. Since LoG filtering for all bins needs to be carried out in multiple streams for bigger images due to lack of global memory, there was never enough memory to overlap kernel execution and memcpy of two different streams. The pyramid approach suggested in [7] for hot-spot computations was applied to kernel-3 to increase concurrency and reduce the extent of global synchronization required. However as observed in [7], it decreased the performance due to idling of resources (when reduction applied in the same kernel) and due to increased overhead of kernel launches (when reduction applied over a series of kernels). Also in either scheme, there being no scope of use of shared memory, the performance only reduced.

Another thought was to perform kernel-3 on the CPU and free the GPU to execute kernels -1 and -2 of the next stream simultaneously. However, kernel-3 execution on the CPU required moving the entire output of kernel-2 back to CPU in every stream costing 10% additional time. Hence there was no other option for kernel-3. As shown in figures 4-6 and 4-7, data transfer per stream between host and device is limited to less than 1%.

4.4 Accuracy

As mentioned before, non-maximal suppression in the post-processing requires higher accuracy than delivered by single precision computations on the GPU. Hence double precision GPU computations had to be employed. The only way to determine the “required” accuracy or rather permissible loss of precision by GPU was to compare the visual outputs of the GPU with respect to the CPU. During the course of the development of this implementation, the visual outputs of the two were compared with every new optimization or CUDA provision introduced.
Table 4-3 Comparison of saliency detection by CPU and GPU

| | CPU: 480x640 grey-scale image. Blobs detected for 1 channel and 19 scales, at an average of 15.3secs for net LoG filtering per channel per scale. | GPU: 512x640 (with padding) grey-scale image. Blobs detected for 1 channel and 19 scales, at an average of 1.3secs for net LoG filtering per channel per scale. The image was also rotated for computations on GPU. |
|---|---|
| | CPU: 517x725 grey-scale image. Blobs detected for 1 channel and 19 scales, at an average of 19.4secs for net LoG filtering per channel per scale. | GPU: 576x768 (with padding) grey-scale image. Blobs detected for 1 channel and 19 scales, at an average of 1.7secs for net LoG filtering per channel per scale. The image was also rotated for computations on GPU. |
| | CPU: 450x300 colored image. Blobs detected for 3 channels and 17 scales, at an average of 11.9secs for net LoG filtering per channel per scale. | GPU: 512x320 (with padding) colored image. Blobs detected for 3 channels and 17 scales, at an average of 0.78secs for net LoG filtering per channel per scale. |
The final implementation largely employs double precision computations with exceptions of most shared memory computations. The liberty of using single precision at intermediate steps was taken only till identical outputs were available from CPU and GPU for all images for all scales. Based on the visual results it was quantified that an accuracy of at least four places after decimal was required at the output of net LoG filtering by the GPU. Table 4-3 shows the visual outputs of saliency detection from CPU and GPU for a few sample images. Identical blobs are detected for all kinds of grayscale as well as colored images.

4.5 Parameterization for Scalability on Future Hardware

The blob-detection system implemented and accelerated using GPU should be able to scale over future increases in hardware resources on the GPU without additional engineering costs. This requires the execution configuration and few other quantities to be parameterized based on few of the relevant GPU hardware parameters from Table 3-1.

4.5.1. Global Memory

Based on the parameter \textit{GLB_MEM} (to represent the available Global Memory), the preprocessing decides the number of streams (STREAM_QTY) and the histogram granularity per stream (BIN_QTY_PER_STREAM) required to execute the LoG implementation on the GPU for a given image. No more than 80% of the global memory is filled up.

4.5.2. Number of SMs and SPs

These do not affect the scalability of the model. As mentioned earlier, 128 bins ensure up to 4 Blocks per SM on GTX 280 and performance should remain relatively unhampered with up to double the number of SMs (i.e. up to 2 Blocks per SM) provided that there will be enough
memory to accommodate all the bins in a single stream. It seems obvious that the limits on maximum number of active warps and blocks per SM ($\text{LIMIT_ACTIVE_WARPS_PER_SM}$, and $\text{LIMIT_ACTIVE_BLOCKS_PER_SM}$) will also increase with increased number of processing cores causing a linear scale-up in the speed-up as long as enough occupancy is maintained to overcome latencies.

4.5.3. Warp-size

NVIDIA claims that the warp-size of 32 will not change for generations of GPU to come and hence this factor will not affect the scalability. Nevertheless, a parameter WARP_SIZE has been introduced such that it takes care of increase in warp-size till warp allocation granularities for registers and shared memory remain greater or equal to 1.

4.5.4. Execution Configuration (Grid and Block sizes)

The GRID_SIZE for each kernel has been parameterized as function of the histogram granularity per stream, and the input image size (BIN_QTY_PER_STREAM x TILE_QTY).

As explained earlier, for any dimension (height for kernel-1 and width for kernel-2) of an input image, the largest possible BLOCK_SIZE requiring minimum padding is selected from a range of block-sizes (64, 128, 192 and 256 for the current implementation on GTX 280). The range of these block-sizes is MIN_BLOCK_SIZE, 2 x MIN_BLOCK_SIZE, 3 x MIN_BLOCK_SIZE, till MAX_BLOCK_SIZE = n x MIN_BLOCK_SIZE.

As seen before, the CSDD implementation requires certain minimum OCCUPANCY, and minimum number of active blocks per SM (ACTIVE_BLOCKS_PER_SM). The current implementation also fixes the register requirement per thread ($\text{RGSTRS_USED_PER_THREAD}$),
and shared memory requirement per block (\texttt{SHRD_MEM_USED_PER_BLOCK}). Hence the only parameters that can change the \texttt{BLOCK_SIZE} with hardware generations are \texttt{LIMIT_RGSTRS_PER_SM}, \texttt{LIMIT_SHRD_MEM_PER_SM}, \texttt{LIMIT_ACTIVE_WARPS_PER_SM}, and \texttt{LIMIT_ACTIVE_BLOCKS_PER_SM}. Therefore, \texttt{MIN_BLOCK_SIZE} and \texttt{MAX_BLOCK_SIZE} are computed based on these parameters in the following way:

1. The limit on the minimum block-size (\texttt{MIN_BLOCK_SIZE}) is computed as the maximum of the warp allocation granularity for registers and for shared memory.

\[
\texttt{MIN_BLOCK_SIZE} = \max \{ \texttt{WARP_ALLOC_GRANULARITY_REGISTERS} , \texttt{WARP_ALLOC_GRANULARITY_SHARED_MEM} \} \times \texttt{WARP_SIZE}
\]

It is then checked for active blocks per SM and occupancy. Kernel-2 being the most compute and resource intensive, it is ok to check for kernel-2 alone. Occupancies of kernels -1 and -3 will always be either equal or more.

\[
\texttt{ACTIVE_BLOCKS_PER_SM} > 2
\]

\[
\text{OCCUPANCY} = \frac{\texttt{ACTIVE_BLOCKS_PER_SM} \times \texttt{MIN_BLOCK_SIZE}}{\texttt{LIMIT_ACTIVE_WARPS_PER_SM} \times \texttt{WARP_SIZE}} \geq 50\%
\]

If the above checks are not cleared, \texttt{MIN_BLOCK_SIZE} is fixed at 64.

2. The pre-processing continuously raises the upper limit on the block-size for this application (\texttt{MAX_BLOCK_SIZE}) to the next multiple of \texttt{MIN_BLOCK_SIZE} till the following are achieved for kernel-2:
\[\text{ACTIVE BLOCKS PER SM} > 2 \]

\[
\text{OCCUPANCY} = \frac{\text{ACTIVE BLOCKS PER SM} \times \text{MAX BLOCK SIZE}}{\text{LIMIT ACTIVE WARPS PER SM} \times \text{WARP SIZE}} \geq 50\%
\]

3. For reference, first let’s look at how the actual number of active blocks per SM is decided for a given block size:

a. Physical limit on the number of active Blocks per SM (Table 3-1):

\[
\text{LIMIT ACTIVE BLOCKS PER SM}
\]

b. Physical limit on the number of Warps per SM:

\[
\text{floor}\left\{ \frac{\text{LIMIT ACTIVE WARPS PER SM}}{\text{BLOCK SIZE} / \text{WARP SIZE}} \right\}
\]

c. Limited by registers available per SM (LIMIT RGSTRS PER SM):

\[
\text{floor}\left\{ \frac{\text{LIMIT RGSTRS PER SM}}{\text{RGSTRS USED PER THREAD} \times \text{BLOCK SIZE}} \right\}
\]

d. Limited by shared memory available per SM (LIMIT SHRD_MEM_PER_SM):

\[
\text{floor}\left\{ \frac{\text{LIMIT SHRD_MEM_PER_SM}}{\text{SHRD_MEM USED PER BLOCK}} \right\} = \text{floor}\left\{ \frac{\text{LIMIT SHRD_MEM_PER_SM}}{\text{STATIC_SHRD_MEM USED PER BLOCK} + 4 \times \text{BLOCK SIZE}} \right\}
\]

Hence the maximum number of active blocks with a given BLOCK_SIZE will be:

\[
\text{ACTIVE BLOCKS PER SM} = \min\{a, b, c, d\}
\]
The existing 1-D indexing in the implementation will not hinder scalability. This is because the limits on primary dimensions of grids and blocks are bound to increase with increase in hardware. Moreover, the current indexing is certainly good with as high as 512 threads per block, i.e. double the current maximum block-size.

Table 4-4 Current parameter values for automatic selection of execution configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIN_QTY</td>
<td>128</td>
</tr>
<tr>
<td>GLB_MEM</td>
<td>1024 MB</td>
</tr>
<tr>
<td>WARP_SIZE</td>
<td>32</td>
</tr>
<tr>
<td>LIMIT_RGSTRS_PER_SM</td>
<td>16384</td>
</tr>
<tr>
<td>LIMIT_SHRD_MEM_PER_SM</td>
<td>16384 Bytes</td>
</tr>
<tr>
<td>LIMIT_ACTIVE_BLOCKS_PER_SM</td>
<td>8</td>
</tr>
<tr>
<td>LIMIT_ACTIVE_WARPS_PER_SM</td>
<td>32</td>
</tr>
<tr>
<td>RGSTRS_USED_PER_THREAD</td>
<td>20</td>
</tr>
<tr>
<td>STATIC_SHRD_MEM_USED_PER_BLOCK</td>
<td>368 Bytes</td>
</tr>
<tr>
<td>WARP_ALLOC_GRANULARITY_REGISTERS</td>
<td>2</td>
</tr>
<tr>
<td>WARP_ALLOC_GRANULARITY_SHARED_MEM</td>
<td>1</td>
</tr>
</tbody>
</table>

All the above equations have been derived from the CUDA Occupancy Calculator. Table 4-4 lists the current values of different parameters. All these parameters must be revisited and if required, revised with any change in CSDD or its current implementation or compute capability of the hardware. It is recommended that for any revision, the user or programmer verifies all constraints and parameters using the CUDA Occupancy Calculator.
Chapter 5

RESULTS

This system takes in a variety of sizes of frames, square and rectangular, as inputs. It also takes in colored images. However the results here are limited to gray-scale images consisting of a single channel. The only implication of limiting this discussion to gray-scale is that the LoG filtering execution time for 3-channel images is three times as large (for both CPU and GPU). The overall speedup remains relatively unchanged.

![Figure 5-1: Execution times of Overall CSDD application on CPU and GPU](image)

Figure 5-1 depicts the overall application time of the CSDD implementation on both the CPU and GPU for selected image sizes. Even after using an optimized CPU code, the algorithm still requires anywhere from several seconds to a few minutes for a single frame. Considering 3-channels, the execution time can be anywhere from 7~10 minutes for a single frame of larger dimensions. The GPU however, improves upon this time significantly, consistently achieving
speedup of at least 10-14X depending on the image size. The overall execution time for the GPU ranges from a few hundred milliseconds up to a several seconds for single channel.

Figure 5-2: CSDD Application speed-up using GPU

Figure 5-3: LoG Filtering speed-up using GPU
Figure 5-2 shows the overall CSDD application speed-up using GPU. Figure 5-3 shows the LoG filtering speed-up using GPU. In a few instances the GPU is able to improve upon the CPU execution time by up to 30X. In particular this occurs with images with dimensions as multiples of 256. This increase in speedup is actually due to an increase in the CPUs execution time due to increased cache miss behavior when the data is being accessed column-wise and the cache-line spatiality benefit is not being harnessed. The data being stored in column-major fashion, loops 1-5-2-6 (kernel-1) access memory column-wise to access the image row-wise. Thus, as shown in Figure 5-4, these loops take the most time. 256 being the cache-line size and a power of 2, the problem is scaled taking around 3X more time. Upon profiling the CPU code for hardware counters using PAPI (Performance Application Programming Interface), it was seen that L1 cache misses increase by 1.5 times while L2 cache misses increase by around 9 times in loops 1-5-2-6 (kernel-1) when the image dimensions are multiples of 256. This issue on the CPU can be corrected by either storing a rotated input image as well or by padding the image by another row or/and column of pixel. However, the GPU being the central idea for this work, these corrections have not been implemented on the CPU. Also this could possibly be a general problem with most image processing algorithms. Thus it was useful to discover it along the course of this thesis.

Another interesting observation is that the dominant kernel changes from the CPU to GPU implementation. Figure 5-4 shows the break-up of the times spent on different kernels by the CPU. Kernel-1 takes the majority time on the CPU. Figure 5-5 shows the break-up of the times spent on different kernels by the GPU. Contrary to as shown in Figure 5-4, kernel-2 takes the majority time on the GPU. There being no caching, there are no caching related differences between kernels -1 and -2 on the GPU. As can be explained from Figures 4-6 and 4-7, kernel-2
has manifold global and local memory accesses than kernel-1 on the GPU causing it to take up the majority of the overall execution time.

Figure 5-4: Break-up of time spent by different kernels on the CPU

Figure 5-5: Break-up of time spent by different kernels on the GPU
Chapter 6

CONCLUSION

CSDD is a unique feature extraction and matching algorithm that works well on textured and natural images, and also performs very well under large changes of scale and in-plane rotation.

Most accelerators are SIMD in nature, suffer from memory access as bottleneck, and are best compared for massively parallel problems. Thus CSDD becomes a good candidate for comparison of these accelerators for not-so massively parallel problems. This thesis is pioneering in a way that it well exploits the capabilities and limitations of GPUs for a data-intensive as well as data-dependent problem like CSDD and presents a highly scalable parallel programming model for the application that can work efficiently and accurately on all image sizes. With better hardware resources (like faster memories and more double precision units) or with CUDA provision of Global Synchronization, the application shows promise to perform at real-time speeds.

With the current GPU and CUDA provisions falling short in achieving real-time speeds for the amount of data and computation involved in CSDD, benchmarking CSDD on IBM Cell may be a good proposition for future work.
Appendix

TIPS ON TOOLS AND ENVIRONMENT SET-UP

There are many tools used in the entire process of CSDD implementation on the GPU. Some of them are well documented and trivial to use but most are not because of lack of proper documentation. They are either poorly documented or not documented at all by even NVIDIA. Most information is scattered unstructured over multiple resources. This appendix compiles few tips and directions on all such tools under one chapter of this thesis. They have been gathered over the entire course of this research, either after lot of trials and errors or after extensive searching on the internet. Thus this appendix will be a good reference for future users.

1. **CUDA TOOLKIT** – Download this from the NVIDIA website for specific version of CUDA and install it. This sets up the basic environment for CUDA programming.

2. **CUDA API** – NVIDIA CUDA Programming Guide [14] for the specific CUDA version is the best resource to learn about using CUDA API. NVIDIA website also provides many other supporting documents and tutorials that prove very useful. NVIDIA CUDA Forums are the best place to look for information on programming practices and less developed or undocumented CUDA provisions. Developers are more than happy to discuss your issues and answer your queries.

3. **CUDA SDK** – CUDA SDK is the best demonstration of the use of CUDA API. The `deviceQuery.cu` sample program queries and gives the hardware specifications of the GPU(s) on the system. Other useful programs (for versions higher than CUDA 2.0) for querying additional hardware data are `cudaGetDeviceProperties.cu` and `canMapHostMemory.cu`.
4. **CUDA Occupancy Calculator** – Extensive use of CUDA Occupancy Calculator is explained in sections 4.2 and 4.5 of this thesis. This can be downloaded from the NVIDIA CUDA website.

5. **NVMEX** – NVMEX is the MATLAB plug-in for CUDA that helps in calling a CUDA function from MATLAB. The lone document available on NVMEX from NVIDIA doesn’t suffice for all the information required to be able to use it. This thesis uses MATLAB for image pre-processing, CUDA for the LoG implementation, C for non-maximal suppression and again MATLAB for the rest of the post-processing. Hence NVMEX was employed. The various aspects related to the use of NVMEX are listed as follows:

5.1 C function can be treated with either NVMEX as below or with standard MEX. This implementation uses NVMEX to compile both CUDA and C portions of the project.

5.2 Download the CUDA plug-in for MATLAB for the specific CUDA version from the NVIDIA website. Right now it comes as a collection of files in a folder. The README in there only describes how to run the test codes using NVMEX. To set up the environment for NVMEX, copy the files `nvmexopts.bat`, `nvmex.m` and `nvmex_helper.m` in the folder `Files\MATLAB\R2008a\bin\win32\mexopts`. `nvmexopts.bat` is the NVIDIA CUDA equivalent of `mexopts.bat` used for MEX.

5.3 Modify this copy of `nvmexopts.bat` to include all the compiler options required for LoG implementation. The changes need to be made in the compiler parameters only.
5.4 Compiler is already set to nvcc. Optimization flags can be set to whatever is required. This implementation had the optimization flag set to --O2. --gpu-name sm_13 is added to the existing list of compiler flags to activate double precision on 1.3 compute capability hardware. --maxregcount 20 was added to the existing list of compiler flags to force feed the number of registers per thread to 20.

5.5 To activate the --ptx flag, add PTXAS_FLAGS += -v to nvcc.profile in C:\CUDA\bin. This reports the use of registers, shared, local and constant memories.

5.6 Run mex --setup in MATLAB to select the right Visual Studio compiler to compile the C/CUDA functions. Do not choose the win32-Lcc compiler.

5.7 Compile the C/CUDA functions in MATLAB using nvmex compiler before running the MATLAB file. This requires including CUDA .h files and linking to CUDA libraries in the command line. The command line becomes something like:

```
nvmex -f nvmexoptsdouble.bat -g dericheCSDEMD.cu -IC:\cuda\include -LC:\cuda\lib -lcudart for CUDA functions

Or

nvmex -g dericheCSDEMD.cpp for C or C++ functions. In case of C++ function or API, use extern “C” before every kernel.
```

nvmexoptsdouble.bat is the modified version of nvmexopts.bat for LoG implementation that incorporates all the compiler options in 5.3 above.
6. **CUDA Emulator** – The CUDA function can be compiled in emulation mode by following all the above steps with only one difference. Create a copy of `nvmexoptsdouble.bat` as `nvmexoptsemuldouble.bat` with `-c -deviceemu` added at the beginning of the `DEBUGFLAGS` under compiler parameters. Use `nvmexoptsemuldouble.bat` in the command line instead of `nvmexoptsdouble.bat`. This allows using all features possible in the emulation mode including debugging using Visual Studio. However, emulation on windows is not possible beyond 30,000 threads since that is the limit on the number of POSIX threads that can be created on windows.

7. **Debugging using Visual Studio in Emulation Mode** – No CUDA documentation is available on this (one can find documentation on gdb and Linux though). Compile the CUDA portions of the project in MATLAB in emulation mode as described above. Open visual Studio and select Tools → Attach to Process → MATLAB.exe. Open the C/CUDA file and place break-points as needed. Run the MATLAB file for the project and the control will break at the break-point. However limited Visual Studio provisions are available during debugging, unlike debugging of general C/C++ program using Visual Studio. Debugging in MATLAB can happen irrespective of whether the C/CUDA function has been compiled in emulation or execution mode. This is because the MATLAB portion is anyways running on the CPU and not on the GPU.

8. **CUDA Visual Profiler** – NVIDIA CUDA Visual Profiler is a very useful tool for performance profiling of CUDA functions on the GPU. Version 1.1.08 was used for this implementation. The use of this profiler first requires setting the environment variables in the system. Go to Control Panel → System → Advanced → Environment Variables and set `CUDA_PROFILE` to 1 in both User variables and System variables. Now compile the CUDA
function in MATLAB using \textit{nvmex}. Then open the Visual Profiler and click on \textit{Session settings}. While running the profiler for a stand-alone CUDA program, the \textit{launch} path is expected to be a visual studio CUDA project executable. With NVMEX, set \textit{launch} to MATLAB i.e. \texttt{C:/Program Files/MATLAB/R2008a/bin/win32/MATLAB.exe}. \textit{Working directory} is the one in which the \textit{nvmex} compiled \texttt{.cu} file lies. Set the \textit{Arguments} to \texttt{–r <name of the \texttt{.m} file to run the project, without \texttt{.m} extension>} (e.g. \texttt{–r CSDD}). Set the \textit{Max. Execution Time} to a sufficiently large value, say 3000secs. In other tabs of \textit{Session settings}, you can check all profiler counters (instead of 4 at a time) and all options at once. The only difference will be, with more than 4 counters selected, the profiler will automatically perform multiple runs to sample the selected counters (instead of we running it multiple times to measure 4 different counters per run). With each run, the profiler will launch a MATLAB session. Keep manually closing each MATLAB session as it ends. With these instructions, the profiler is all set to be used. If command line profiler is to be used instead of visual profiler, \textit{CUDA_PROFILE_CSV} or \textit{CUDA_PROFILE_LOG} could be set to 1 in both \textit{User variables} and \textit{System variables}. Similarly, set \textit{CUDA_PROFILE_CONFIG} to \texttt{cuda_profiler.conf} in the working directory (e.g. \texttt{C:\CSDD\cuda_profiler.conf}) in both \textit{User variables} and \textit{System variables}. Place the \texttt{cuda_profiler.conf} file in the working directory and specify the counters to be measured. This would give the counters in the .csv or .log file respectively. How to use various visual profiler provisions and interpret the results is very well explained in the profiler README document. The environment variables can also be set from the \textit{CUDA Visual Profiler \rightarrow Options \rightarrow Environment Variable Settings}.

9. \textbf{Syntax Highlighting for \texttt{.cu} file in Visual Studio} – Use the resource in \texttt{C:\Program Files\NVIDIA Corporation\NVIDIA CUDA SDK\doc\syntax_highlighting}. The \texttt{readme} file there in has all the details on the needful.
REFERENCES

