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ABSTRACT

Researchemwishing to understand how processes occumidividuals identify relations

among variables across time to see how they relate both lagged and contemporarasusly.
represents a divergence from traditional resepachdigmsn the social sciences which

attempted to identify human processes by erang howvariables relate across people

one time pointTowards the goal of identifying processes as they occur within individuals,

data are increasingly being collected across time for each partidssptite acquisition of

such rich datathe currat standardor looking at data obtained across time is to aggregate
across individualsh some manner prior to analysishis aggregat@approach is particularly
problematic in the field of brain processing research which utilizes functional MRI data
becase the processes are highly heterogeneous and often cannot be explained by one model.
The present dissertation attends to this issue in 3 ways: 1) demonstrates the spurious relations
which occur when heterogeneous data are aggregated across individudls madel

selection; 2) introduces a novel estimation method, Group Iterative Multiple Model

Estimation (GIMME), for recovering reliable parameters at the group and individual levels;

and 3) tests GIMME under a variety of confounds and experimentalticorsdcommon in

fMRI data analysis. Findings suggest that GIMME far outperforms most other brain mapping
techniques in terms of reliability. GIMME offers an effective, novel, and timely solution to

the problem of making inferences from heterogeneous [meses
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Chapter lintroduction.

Research on varidiuman processes often seeks to identify relations among variables
of interest across time to establish temporal precedence and contemporaneous effects on the
outcomes. These processes may be contained within the individual, such as the relations
between Hect and sleep across time or the relations among brain regions of interest while
executing an experimental task. Increasingly, researchers are using intensive longitudinal
designs to obtain data on how these processes occur across time for indiviigals. T
represents a divergence from traditional research approaches in the social sciences which
look at how variables relate across pe@pid thus opens up the possibility of identifying
processes as they occur in individu&sll, the current standard wh looking at data
obtained across time for individuals is to aggregate the dateriea ;anner prior to analysis.

If the findings from the aggregated data do not apply to any individual comprising the group,
the utility of the findings may decreasmcethe objective is to identify human processes
Researchers are beginning to acknowledge persistent claims (e.g., Molenaar, 2004,
Molenaar, 2007) that relations existing on the group level may not always apply to the

individuals comprising the group.

It appears that human processes oftentimes do not meet the criteria for ergodicity. For
a process to be ergodic, the analysis of data pooled across participants must yield the same
results as analysis of data collected across time within individhassufficient conditios
exist for ergodicityto exist with Gaussian processsttionarity across time and
homogeneity of the populatiomhe first condition is met when parameters describing the

variables remain constant across time. While nonstationarity dgritafiliences aggregated



data and is a concern in in its own right, the second condition directly relates to issues of
aggregation and is the focus of the present dissertation. According to the second condition,
homogeneity of the populatioifi,eachparticipant obegthe same statistical model ahas

the same parameter estimates taegodicity exists. Nonergodic thus describes processes
which vary across individuals to the extent that one aggregate model that describes the

individuals may not be obtainéiolenaar & Campbell, 2009).

The potential for nonergodicity in human processes appears to be particularly relevant
to the field of neuroscience research. The present dissertation extends the general topic of
ergodicity in the social sciences to the tiynssues seen in applying current methods to
functional MRI (fMRI) data. While most fMRI researchers may acknowledge that the
aggregate data do not represent any one given person in particular, results from these types of
analysis are presented as evideg@ characteristic common to all (or at least the majority

of) individuals in that group. Each chapter in the dissertation attends to this problem.

Chapter twaliscusses the misleading results which may susédme heterogesous
data are applied to aadel arrived at frontlata aggregated across individudente Carlo
simulations presented thereshowthat spurious relationmay occuwhen data are
aggregated prior to application to dali@en approaches within the SEM frameworku$h
the current standard appears to bstiited for identifying true relations among variables in
the presence of heterogeneous data. This can |eéaf@tencesvhich arepotentially
erroneoushindering the state of science, and potential negativetetfearecommendations
in the clinical sectorBrain imaging research in particular necessitates methods for
accommodating nonergodic processes. Preliminary evidence from fMRI studies suggests that
individuals in a given sample are largely heterogeneousregfards to their brain process.
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Connectivity maps, defined approaches which seek to identify how brain areas or nodes
relateacross time (Friston & Stephan, 200dre commonly estimated within the SEM
framework. Thus the spuriousflings seen in thiglonte Carlodemonstration apply to this

type of analysisApplication to empirical datdlustratesthat the model derived from
aggregated data fails to fit the majority of individuals. Running individual models appears to
be the most reliable approachtlais time, although this method carries some caveats which

are also discussed in this chapter.

Chapter three introduces a novel method, the group iterative multiple model
estimation (GIMME) for acquiring reliable grougnd individuallevel connectivitynaps
within the SEM framework. Connectivity maps may be conducted either on predefined
regions (such as regions of interest, or ROIs) or across the full brain on the level of voxels. A
di stinction has also been madeesdilres ween Afunc
correlatonb ased met hods and fdneffective connecti vi
attempt to identify the direction of the inflnce among brain areas (Friston & Stephan,
2007). Recently, Smith et al. (2011) examined functional and effectmeectivity methods
for examining relations among predefined ROIs. After looking at 38 methods across 28 data
sets simulated to emulate conditions seen in fMRI studies, Smith et al. (2011) concluded that
functional connectivity approaches are much malalre than effective connectivity in
uncovering true relations. The general recommendation was to avoid effective connectivity

techniques.

SEM conducted via GIMME falls intthe category oéffective connectivity, but was
not included in the original Sthi et al. (2011) paper. In chapter 3, results from application of

A

Gl MME conducted on one set of Smith et al . 6s
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outperformed the other effective connectivity techniques in its ability to recover true relations
among thesimulated ROI time series. Importantly, GIMME also outperformed the heralded
functional connectivity techniques. The Smith et al. (2011) data were homogenous within the
simulated sets such that each replication shared the same model structure and some
paraneters. Thus it does not test how well GIMME can ascertain a model common to the
individuals comprising the group when heterogeneity is present. For this reason, the same
data used in chapter 2 to demonstrate issues when arise when heterogeneous data are
aggregated prior to analysis was used in cha
reliable group patterns. GIMME was able to tease apart group relations from individual
variation while also improving the recovery of individlelel estimates. Takengether,

GIMME can appropriately pick out signal from noise to improve recovery of individual

parameters while acquiring a common model for the individuals within the group.

Having demonstrated the ability of GIMME to recover parameters used te data
on which other effective connectivity approaches failed, chapter 4 tests GIMME under a
mulititude of conditions. The remaining data sets created by Smith et al. (2011) were used.
Each set had slightly different parameters which were informed leytatconfounds,
noise, and experimental protocols that may occur in empirical fMRI studies. These data thus
offer a unique opportunity to test the conditions under which the reliability of GIMME
changes relative to the 38 techniques tested by Smith(@Dall). GIMME continues to
outperform the majority of techniques, in particular being impervious to the presence of
added noise from various sources typical in fMRI studtesvever, GIMME performs
poorlywhen the repetition time (TR) between scans @alesed to a quarter of a second.

This short TR is rarely used, but with increasing advances in technology may become more



prevalent. In the end, GIMME appears to be more robust than competing methods under

various conditions often seen in fMRI research.

The present dissertation focuses on the problem of nonergodicity. First, the problem
is presented in terms of any research on human processes with focus turning to fMRI data in
the empirical example. Next comes the introduction of GIMME, a novel solatithet
problem of making reliable group and individual inferences from noisy or heterogeneous
fMRI data. Third, GIMME is tested in a myriad of conditions which exist within fMRI
research. The problem of nonergodic processes in social science researah attesided to

for valid and reliable inferences regarding human process can be made.
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Chapter 2:Nonergodicity inPsychological Processes

~

The term Anomotheticd was originally coin
Windelband in the late facentury to represent phenomena that are always occurring or can
be considered lawfyWindelband,1980 . ANomot hetico thus referr.e
described all individuals of a certain kind, whether thegtoms in a molecule, planets in a
solar systemor human minds in the world. In this original conceptualization, inferences
made for a group (e.g., humans) must describe that which most always occurs in the
population. This original meaning was diluted and modified over the@tury largely as
a result of the emergence of aggregate statistics in the social sciences. The term
i nomot évenualycame to meafh a g g roéeed.améell, 1998)Whereas the
traditional view holds that relations found for the group must apply to each and every case
comprising the group, the current standard does not impose such conGtrait.inferences
regarding psychological processes derived from relations occurring on the aggregate lose
utility if they do not also describe processes which exist for the indilsdiomprising the
group.Thepresenthapterdemonstrates that by stark contrast to this original conception, the
current standards for arriving at nomothetic, or group, infereregasding psychological

processes the social sciences may fail to déserany individual comprising the group.

The observation that grotpvel summary models based on aggregatedaftea do
not represendny individual is not novel (cf., Molenaar, 2004; Molenaar, 2007). Indeed, the
field has seen a spike in the quantifyntensive longitudinal datesearch studiesmingto
circumvent the issues seen when crgsstional data fails to describe processes which occur
on the individual levelThe increase in studies which acquire such data appears to have

outpaced the delopment oimethods whicltanaccommodate heterogeneitythe



processesnder observatia'While most researchers may acknowledge that the aggregate
data do not represent any one given person in particular, results from these types of analysis
arepresented as evidencing a lawful finding, or a characteristic common to all (or at least the
majority of) individuals.The problem becomes apparent in the current standard for using
structural equation modeling (SEM) techniques to ideihinfy variables fate across time

with the aim of identifying human processB&searchers still tend to aggregéis rich
individuatlevel date in some manner, such as concatenation of the time series, and then
appl the aggregated dataan SEM to identify relationamong variables across tinfeor

analysis of longitudinal data conducted from within the SEM framework, aggregation
appears to be a normal practice seestunlies which acquire data \daily diaries (e.g.,

Dunkley, Zuroff, & Blankstein,2003 andfunctioral MRI (e.g.,Zhuang, LaConte, Peltier,

Zhang, & Hu, 2008 Part of the reason for aggregation in the daily diary context results from
data series which are too short to conduct analysis solely on the individual level. With the
increase in the use of dailljaries across longer spans and ecological momentary
assessments which may provide longer time series for individuals, concatenatingpseries

increase the number of data poiwii no longer be necessary.

For any type of intensive longitudinal dategrelard approaches for making group
inferences within the SEM context may not meet the criteria for lawfulness because they do
not necessitate that findings at the group level correspond to processes seen at the individual
level. Statistically, the conditioin which the results from analysis of data pooled across
subjects differ from analysis conducted acro

(Molenaar & Campbell, 2009Nonergodicdescribegprocesses which vary across



individuals(or within individuals and across tim&) the extent thatneaggregate model that

describes the individuals may not be obtained

There are two primary ways that grederived SEM models may fail to describe
individualsin the case of nonergodicitthe beta weightandbr thepresencef significant
relations among variables may diffecross individualdProviding that all individuals have
the same structureefined as the pattern of relations among variaples)first case is easily
remedied by running confirmatoy SEM informed by thegrouplevel structure oeach
individual to acquire beta weights at the individual level. From this, further analysis may be
done to see how trestimated betaveight of the relation among the two variables may in
turn relate to morstatic individuallevel traits, such as gender or education léRahdom

effects models can accommodate these types of variations.

The seconaase is not so easily remedied. If differpatternsof relations among
variables exist across individuals, thisly cause spurious relations on the aggregate level
and result in a structure which fails to describe any individual. Alternatively, relations which
exist for the majority may be absent from the model obtained on the aggregated group level
(Molenaar, 200 In either case, the resulting structure which, in the context of intensive
longitudinal data, describes reétms among variables over time at the group levay not
describe any individual. The model thus fails to be useful in describing the huncasgro

under study.

Researchers rarely investigdéte reporj if the underlying processes suggested from
relations obtained from aggregated data describe all, or even the majority, of individuals

comprising the group. Within the field of neuroscience research, heterogeneity in processes



across individuals has redbnreceived attention (Miller & van Horn, 2007; Sporns, 2011).
Given the potential for group inferences from neuroscience to be implemented in clinical or
other applied settings, the potential harm from acquiring erroneous findings at the individual
levelmay be large. It is thus a scientific and public health imperative that researchers acquire
estimates which truly can be said to be common to the individuals comprising the sample.
Moreover, a recent paper asserted that aggregating data prior to medgbses one of six

major problems in fMRI data analysis (Ramsey et al., 2010). For these reasons, functional
MRI data is used in the present paper to illustrate the misleading inferences which may result
when nonergodicity exists and data are aggreg&t#t.the simulations and rationale

contained within this paper generalize to any intensive longitudinal data on which SEMs are

run on aggregated data.

A few researchers have taken on the challenge of exploring the heterogeneity of
information processig using fMRI data. In terms of spatial parametric maps, Miller et al.
(2002) found that no individual showed activation in the pattern found on the group
activation map. Even more noteworthy, a region found to be significant for the group was not
presenobn any individual sé map. The authors sugc¢c
meaningful and not noise. This finding echoes a warning from Hu et al., (1997) that the fMRI
blood-oxygenation level dependent (BOLBignal becomes greatly distorted wheeraged
across individuals, citing both variability in amplitude and temporal response as causes.
Miller and van Horn (2006) describe terkdifferences seen among individuals in their
connectivity maps (i.e., SEM structure of relations) generated fepiandic retrieval task.
They conclude that, Afexclusive reliance on g

understanding the true underlying cognitive
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Horn, 2007)More recently, Hillary et al. (2011pénd that, across 24 individuals, no two
people had the same connectivity map of significant couplings during a working memory
task. Moreover, there was no single coupling between two regions that all participants had.
The presence of hamustlexasifdr avergoneovasuingt bhitamey, atthough

some autoregressive effects were found for the majority.

It must be noted that not all evidence suggests that brain processes exhibit
nonergodicity. James and colleagues (2009) provide evidendenftarsouplings among
regions across individuals. Using a measure derived from the root mean square error of
approximation (RMSEA), a robust fit index recommended for use with SEM (Brown, 2006),
they found that 85% of individuals fit the gredprived mapHowever given the findings

noted abovethis finding may not be generadizle to all connectivity maps.

The currenpaperdemonstrates the misleading results found when aggregating across
individual data prior to brain connectivity analysis within ®EM context. While it is
understood that pooling data across replications (e.g., participants) may in some cases be a
useful descriptive summary, obtaining common relations among variables in SEM cannot be
done by first aggregating the data. The nonadgliiature of structurally different
connectivity maps (i.eyisual depictions of relations among variables) which occur in

heterogeneous populations causes this effect.

For clarity and succinctness in presentation, one type of SEM, extended unified SEM
(euSEM; Gates et al., 2011), is utilized. EUSEM captures contemporaneous and lagged
(i.e.delayed) influences among multivariate tidependent processes, which in the case of

fMRI may be the BOLD activities of predefined regions of interest (ROIs) or nodes.

11



Additionally, euSEM estimates the effects of stimuli (such as experimental manipulation) on
these processes as well as the tiragying influence that the stimuli may have on the
relationships between pairs of processes. Please note that, while on¢ypedelSEM)

will be used for demonstration in what follows, these issues are ubiquitous when looking at
any type of SEMbased process analysis. We present first simulated data examples. Next, we
offer empirical data analysis and explore how the euSEMuztied on aggregated data

grossly misrepresents the individuals comprising the group data. Although previous
researchers have demonstrated heterogeneity in SEM connectivity maps (Hillary et al., 2011;
Miller & van Horn, 2006), none have directly comparedividuallevel results to those

obtained at the group level.

Formal Explication

Ergodicity requires that statistical models be invariant across subjects. Take an SEM
solution for contemporaneous relations solved for each individual,
di(t) =Aidi (1) +zi(t)
with di(t) representing a-pariate timeseries fog a ¢ h i = 1, 2 ,Aéthelppy ndi vi
dimensioned matrix of contemporaneous relations among variables foththadividual,
and z;(t) p-vectored series representingsidual error process fdhat individual. For an
aggregated data set, the model may be written as,
d” (t) =A% (1) +2° (1),
with the d°(t) being the pvariate aggregated data across individauls (e.g., concatenating
individual mearcentered timeseries for N times T time pointsy,the (p,p)-dimenstion

matrix of contemporaneous relations among ROIs in the aggregated datt)sandz® the

12



residual process for the group.
For the process to be ergodic across N individuals,
A =AY,
That is, if the process is ergodiche i ndi vi dual s6 pé&é¢ Amatrik o f
would be invariant and equivalent tiee results found in the growgerived matrix. In what
follows, we argue that the heterogeneity in psychological processes preclude this from
occurring.

Modd selection procedures occur in varied ways, from comparing multiple models
(e.g. Bayes nets), to identifying significant correlations, to Lagrange Multiplier test
equivalents. When applied to heterogeneous data (often the case in psychology) which has
been concatenated as though it were homogenous, the approaches select what best explains
variance in the group average, which may differ from what is selected in-sirgjkct
analyses carried out at the individual level. In the latter sisgjgect analyseresearchers
will not be able to recover the growierived solution from the individual solutions because
solutions obtained at the two levels bear no relationship to each other. Averaging across
participants is appropriate if the individual variationnfrahe group model truly is noise.
However, given the possibility that variation in human processes often is meaningful, and
precisely what the researcher is after, approaches which dismiss the nuances seen in

individuals blur findings.

Materials and Methods

Simulated Data

13



Time series of length 200 (T=200) were simulated for two patterns of relations among
variables These patterns of relationsi | | be referred to as fistruc
which may reflect experimental manipulation, was creatmth that at each time point there
was a .30 chance of occurring independent of other time points. This input vector was then
convolved with a hemodynamic response function (Sarty, 2898 customary in fMRI
analysisto account for the delayed respotisee seen in fMRI BOLD following neuronal
excitation Errors were generated to be Gaussian white noise with mean zero and unit
variance. Each subgroup contained 50 simulated time series created according to the
parameters displayed in Figuzda and2.1b. Please note that the structures shared a number
of common couplingsvariable3contemporaneously predict®@riablelandVariable4 and
eachvariablehad an autoregressive effethese commonalities could be considered lawful
relations. €beiseumedvaherablo make the si mul
the case of fMRI data analygisese represent predefinadd spatially distributeckegions of
interest (ROIs) or node$heheterogeneityn thesulgroups reflects findings from empirical
data that within a sample, rarely will more than fifty percent of people have any given
couplingamongnodesin fMRI literature(e.g., Hillary et al.2017J). In fact, the simulated
data example is likely much more homogeneous than typically seen in espeliniata.

Despite this imposed homogeneity, poor dit&l a spurious coupling restddm applying the

standard aggregating technique.
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Figure 2.1. A) and B): Structures and corresponding betas used to create subgroups. C)
Structure and beta weightsroked by averaging covariance matrices across individuals prior
to analysis. D) Structure and beta weights derived by averpgaegionmatrices across

individuals prior to analysis.
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Empirical Data

Data were obtained as part of a larger study whidmined the effects of traumatic
brain injury on working memory process@sillary et al., 2011). Briefly, all individuals
performed one run of aldack serial letter recognition task followed by-bak serial letter

recognition task during data acqtisn by a 3T Siemens Magnetom Trio (Siemens, New

15



York City, USA). Individualswere presented letters one at a time every 2 seconds and must
respond if the current letter is the same as the one seen in the previous ftmok) @r two
frames ago (ack) depending on the conditiomhese tasks are thought to assess online
verbal working memory (cf., Chang et al., 2001). We applied analysis to the last half of the
2-back run to concentrate on a cognitively demanding task that had been partially learned in

order to explore potential heterogeneity in a cognitive domain.

Plan of analysis

As mentioned previouslythe euSEMwill be applied to the data sampld&ased on
the traditional SEM approach common in fMRI literature (Mcintosh, 1994), the euSEM
buildsfromt he Kim and coll eaguesd (2007) mo d el
and lagged effects. The euSEM includes bilinear terms which offer estimates of the
relationship amongariablesin the presence of experimentally manipulated stimuli in an
eventrelated design (Gates et al., 2011). This arrives at unbiased estifitegesuSEMmay
be implemented in an entirely daddven manner using an automatic search procedure
which is similar to the criteria used in Granger causality utilizes Lagrange Miiplier
Tests(Gates et al., 2010).

We will then apply two current methods for making group inferences: averaging
covariance matrices and averaging inverted covariance makw&®ging covariance
matrices oequivalentlyc o nc at e n at i nmm serigsapiesentsdthe anbsscomnton
method for making group inferencé3entering each time series prior to concatenation will
yield the same covariance matrix as averaging the covariance matrices (concatenation
without such centering will yield a covaniee matrix biased by mean level differences).
From this, time series analysis reveals the temporal relationship among variables from data
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on all individuals simultaneously. This would be appropriate if all individuals behaved
similarly across time. Howeveas discussed above this assumption rarely can be maintained
when studying human behavidduch like other search algorithms, the method utilized by

Lisrel identifies the connections or set of connections that best explain variance in the data.
When averging, a connection which is important to all individuals but ranges from negative

to positive values may be washed out and appear to have no influence. Similarly, a
connection which is around zero for the majority of individuals could be high in an aderage
covariance matrix if there are a few outliers for whom this connection strength is strong. In
the end, a map may appear which appropriately explains the variance in the aggregated data

but does not describe relations found in individuals.

One potentiasolution b the above averaging probleimgo average the inverted
covariance (also called precision) matrices of individuals and then invert this averaged
matrix. This approach considers that there is insecurity regarding the measurement of our
subjectsThe elements of precision matrices can be considered to be partial correlations
among pairs of variables after accounting for the effect of all other variables (Marrelec et al.,
2006).Recent findingsising simulated data suggest that partial correlatiap outperform

examination of full correlation matrices (Smith et al., 2011).

Results

Simulated Data

Averagedcovariance matrices

We begin the simulated demonstration of nonergodimitgcquiring the optimal

model for the averaged covariance matrix using the automatic search procedure introduced in
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Gates et al. (2010). The analysis arrived at a group model which was evaluated by fit indices
which demonstrated reliability in simulatistudies (Brown, 2006)ypot mean square error

of approximation RMSEA), non-normed fit index INFI), andcomparative fit index@Fl).

For RMSEA, values less than .05 indicate an excellent fit and for NNFI and CFI values
greater than .95 indicate an exeal fit. The groupglerived model had excellent fit according

to t hese ?#8D.67 (df=A1dp=.048)s RMSEAG= .04, NNFI=.99, and CFI=.99).

Still, the group model did not describe any one individual time series (see Eibcyen

particular, hespurious connection from Varialdleo Variables indicates that the beta matrix
arrived at from the averaged covariance matrix does not equal the average of the individual

matrices, which we know do not have this connection.

We then applied the structurbtained from the grougderived model to each
individual, allowing for parameters to be estimated only for those couplings found to be
significant at the group level (i.e., constrained sirggylbject analyses). As expected, poor fits
results. The averagedlt i ndi ces We26210 @lfs61,fpe.001),RMSA = .18,
NNFI = .85, and CFI = .93. None of?%the model
RMSEA, or NNFI and only nine percent of the models had excellent fits according to the

CFL.

Thisgpproach is not without promise. Pl ease
contemporaneous and all the autoregressive relations were recovered successfully. When
looking just at the percentage of true positives, 73% were recovered. However, of great
importance, lte bilinear effect o¥ariablelon Variable5was found in the group model but
does not exist for any of the individual data sets. Thus the structure is not lawful but rather

misleading, and witlempiricaldata of which the true structure is unknown theaesher

18



will be unable to telfrom this type of analysis which paths ar@seand which are
meaningful. Clearly, relying solely on the averaged connectivity map would lead researchers

to erroneous conclusions.
Averaged precision matrices

As seen in Fjure2.1d, averaging the precision, or inverted covariance, matrices yielded a

map that matched the structure ustetuet o creat
positive rate to 75%. Stjlpoor fits resulted when the structure derived from theaayesr

data was applied to the individual data in constrained sswgdgect analysis, with none of

the models meeting the cr i?2’reRMBSEA. Atcordingéox c el | en
either the NNFbr CFl, only 46% of the models had excellent fitak&n together, the

precision matrix does not appear to meaningfully outperform the current technique of

averaging.
Individual models.

The averaging approaches attempted above did not yield satisfactory group

inferences. Indeed, the results from averggiovariance matrices failed to describe any of

the simulated datasets, and therefore did not explain a process found in any individual.
Averaging precision matrices fared betbgridentifying only those relations which exist for
each individual, but dtifell short of explaining enough variance at the individual leVéis
clearly demonstrates the need for analytical technigues that maintain the nuances in
individuals. One remedy would be @ow for unique structures for each individual. The
automatic search procedure leads to models with excellent fits if present, thus ensuring that

each model optimally describes the individual when stationarity across time is assumed.
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When the automatic search wamducted at the individual level, a vast improvement in

recovery of true positives occurred (89%). Furthermore, excellent model fits were obtained
across individual s 3wil20187, RMBA=a0§,&NFl +.96,anch di c e s
CFI=.98.Allind vi dual s6 model s we andgoedkby & ledstdonrtof by at
the five criteriawith 75% excellent aceding to the chsquare tes§2% according to

RMSEA, 67% according to NNFL00% according to SRMRnd 94% according to CFlI.
Empirical Data
Averagedcovariance matrices

Using an averaged covariance matrix (or equivalently concatenating centered time
series) represents the most common method for making group inferences for any type of
connectivity analysis. When fit to the euSEM using &utomatic search, the resulting
structure demon $61lr54 (e, p=l0)cRMSEA=NCD, NNFI=t1.00, 6
and CFI=1.00. Figur2.2 displays the structure obtained from the group averaged covariance
matrix. The frequency of these couplinggorring for the individuallyderived maps
(explained below) is presented. While the grol@gpived map captures the autoregressive
effects which were present in the majority of individuals, the contemporaneous effects did
not describe the majority. Whenigtstructure was applied to the individual datasets allowing
for estimation of only the parameters selected for the optimal group model, poor fits result.
The average fit i?2F824.04qd=90yE<i0G), RMSEA 0.16|NOIRIS : G
.31, and CF=.67. Not one person had an excellent model fit when the model derived from

the average was applied at the individual level. Indeed, no individual map had the structure
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found in the group map. Thus the group model applied to no individuahsatelsebed

belowthe majority of individuals did not have the couplings found on the group level.

Figure 2.2. Group model found from averaging the covariance matrices using empirical data.
Percentages shown represent the percent of indivithraled maps whicfound that
coupling to be significant. Line width corresponds to beta weight obtained in-deowed

map.
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Individual models.

We fit each subjectsb6é covariance matri x t
procedure to arrive at connectivity nsaphich best describe the relations among ROls for
each individual (see Hillary et al., 2011). By the nature of the search procedure, the resulting
model must have excellent fits according to at least 3 of the 4 indices used throughout this

paper. The redis completely support the notion of brain processing being nonergodic across
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individuals. Out of the twelve participants, no two had the same connectivity map. When
looking at couplings on their own, aside from the autoregressive effects, only onegouplin
was found irover half of the participants: 58% of individualad RACC regressed on

LACC. Of note, this coupling did not appear in the averaged map. The remaining couplings
were only present in 33% or fewer individuals (Fig2). Much like the simuleed data
example, the inability of the group map to fit the individuals resulted from heterogeneity in

the individuals comprising the group.

Discussion

Nonergodicityin psychological processes, such as the lack of lawful relations among
ROls across participants in fMRI research, presents researchers with a difficult problem.
Studies across domains within the social sciences are conducted with the aim of arriving at
paterns of human processes that generalize to the populdtierever, as presented here,
the differences imt least one type of processes, thaim# spatially disparate brain regions
relate during a taskan varygreatly among individuals. The high degree of heterogeneity
causes the results from analysis conducted on averaged datasetsdbdbitiy. If the
averaged results fail to describe the individuals comprising the group, then they may fail to

providemeaningful insight into howthe process of interestcurs.

Monte Carlosimulations demonstrated that even when there is a high degree of
homogeneity in thetructure of relationfor a processspurious relations surface that exist
for no individual. Wien the structure obtained from the averaged covariance matrix was
applied to individuals, poor fits resulted on the majority of fit measures. This approach also

failed to find a relation which existed for half of the population. The absence of this ¢puplin

22



would erroneously lead researchers to believe that one vhtltableswvas not used ithe
processBy contrast, the data were simulated such thatahableplayed a crucial role in
brain processing during task input. These findings suggest thaigawgmight induce
couplings which really do not exist for the individuals wimésglecting to find relations

which may be important for a large number of participants

The initially promising technique of inverting covariance matrices was also explored.
While this approach did not induce spurious couplings, it also failed to find the critical
coupling. The interpretation of the resulting map would thus erroneously lead researchers to
believe that a variable was not included in the process under studyinvesiity it played a
large role for half of the simulated subjects. Since the inversion technique did not

substantially outperform the current averaging technique, this is not a recommended solution.

Finally, the current averaging technique was appbeeimpiricalfMRI data obtained
on healthy contrgbarticipantduring a working memory task. The average connectivity map
failed to fit any of t he darded gonngalivdiyf magsubj ect s
displayed a high degree of heterogenaibne of the twelve subjects had the same
connectivity mapNeglectingto allow for individual connectivity maps potentially causes
biased estimates of couplings by not accounting for couplings which may explain more

variation.

From these findings, wersngly suggest that researchers conduct connectivity map
analysis on the individual level as this seems like the most reliable solution to date. However,
this approach has shortcomings. First, individual SEMs may be sensitive to indiewxkial

noise.A potentialstrength in a mindful grouppproach for analysis would be its ability to
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pick up signalor an effect which exists for most individuals in a grdcgan individual
noise.Second, it is difficult to make group inferences from a series of indiVa&halyses.
Efforts have been made in grafffeory and pattern recognition which may help inform

researchers on how to make meaningful groups from a seemingly heterogeneous sample.

The implications of this suggestion may initially appear dire tog¢kearcher
wishing to make a statement about human brain processing. If everyone has a different
connectivity map, then how can these maps inform science? Spinning the question to
challenge the current viewpoint, one could with equal fervor ask how aagedSEM
structure of relationwhich fails to describe individuals improves the state of knowledge.
The data demonstrations provided within this paper suggestghedgatingcross
individuals prior to analysis could actually hinder the progressionieftfic understanding
by providing researchers with misleading results that do not describe human brain processing

in any individual.

As mentioned in the introduction, a few researchkarsently conducanalysis with
this heterogeneity in mind. Som#éo dolook at differing beta or correlation weights among
couplings while others look at the frequency of meaningful significdations The current
article demonstrated problems which arise when attempting to aggregate data prior to
conducingconnectivty analysis. If many human psychologiqabcesses arteuly
heterogeneous, as suggested by the empirical work presenteshtgnevious workfuture
work needs to move towards arriving at standards of data analytic approaches for making

groupinferences from a set of indidual connectivity maps.
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Chapter 3UUncovering Unbiased Effective Connectivity Estimates Using Group Iterative
Multiple Model Estimation (GIMME)

The current approaches for considering functional MRI idisgtatify temporal
relations among spatially disparate regions of the brain to identify how the brain coordinates
activity over time. Multiple methods for modelingee relations exist, with the findings
usual y referred mmapassbraicetiwerch s i tgFach approac
requires identifying regions of interg®OIs) or nodegrior to estimatingthe connectivity
map of relations that bedescribs the brain network. The utility and robustness of these
emerging methods continues to be tested. In particular, the ability of connectivity models to
correctly recover connections which truly exist (i.e., true positives) while dismissing ones
which do nt has recently received much attention (Smith et al., 2011). False positives, or
connections obtained via modeling which do not exist in the data, may occur for a myriad of
reasons, one of which being the standard methods for aggregating across indiGdtess
Molenaar, & Medaglia, under revieamsey, Hanson, Hanson, Halchenko, Poldrack, &
Glymour, 2010. The work presented here builds upon current connectivity model techniques
by outlining potential causes for inaccurate estimation, advances iningpttetircumvent
these issues, and a novel estimation technique which enables unbiased model estimation for
reliable group inferences and individual estimates. While the focus of this paper is on
connectivity modeling of brain networks, the new estimatgmmnique has a much wider
potential domain of application involving analysis of multivariate psychological processes of

any nature obtained in replicated time series designs.

The present paper focuses on effective connectivity metiaddsh result in
connectivity maps containing directed influence as opposed to correl@tiorpresenting
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the relations among nod@sriston & Stephan, 2007) Smi t h and col | eagues:¢

paper demonstrated that statistical biases occur im#arity of effective connectivity

methods to date that are so severe, the broad approach of effective connectivity was not
recommended in favor of functional connectivity methods. Indeed, after thoroughly
comparing 38 methods of effective and functioralrectivity approachgseveral of which

also have more general domains of application outside of the field of neurosdieace),
effective connectivity approaches consistently made false positives at higher rates than the
functional connectivitynethodsWhen effective connectivity approaches did identify true
relations among nodes the directionality was not correct more often than would be expected

by chance (Smith et al., 2011).

The present paper introduces a modeling approach, Group Iterative Muitig
Estimation (GIMME), for making unbiased estimates of individual connectivity maps while
enabling group inferencdgm a potentially heterogeneous sample of individualiMME
capitalizes on recent advances in connectivity mapping to surpasshedleffdctive
connectivity methods tested by Smith et al (2011) in terms of recovberdjrectionality of
relationsand performs as well as the best functional connectivity approaches according to the
criteria set by the authors. One, GIMME correctlynitifees true connections at a far higher
rate than falseonnectionsTwo, when connections are identified, GIMME appropriately
recovers the direction of the relationship. That is, for two nodes with related activity GIMME
appropriately finds the relationg and distinguishes which node explains more variation in
another node. We demonstrate here that GIMME performs far sugiemurrent

approaches at both identifying true connections and the directionality of those connections by
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accanmodating knownaurces of bias which may be found in a myriad of research contexts

in addition to fMRI.

Sources of Bias in Estimation

Concrete explanations for the Smith et al. (2011) findings offered direction for
improving upon effective connectivity methods. Firsg tfata were simulated to represent
relations among neurons occurring at near infinitesimal rates, and the majority of effective
connectivity approaches tested solely estimated lagged relations. This is in contrast to the
correlationbasedapproaches.e,if uncti onal connecti vijotyo;
which all weremodeling contemporaneous relationstapsl fared better than the effective
connectivity approaches. Prior work has revealed that models which consider only lagged
relations and do natonsider contemporaneous effects result in connectivity maps which
contain biased estimates and false positives (Gates, Molenaar, Hillary, Ram, & Rovine,
2010). The Smith et al (2011) data simulations considered relations amongocalekng
to the Ballmn modela biophysical model of the functional relationship between neural
activity and the hemodynamic response assessed in [®1Rton, Wong, & Frank199§.

The Balloon model is a system of differential equations, and as such the relations among
nodesoccur at neainfinitesimal rates. Still, lagged effects on the order of seconds may occur
in the data due to temporhoothing and variability in hemodynamic response to neural
activity across the brain (Friston, 2008hus,some of the false positiveghich occurred

may have been effects found in the simulated waiah resulted from smoothing and
hemodynamic response variabil{tymith et al., 2011), two confounds which do not appear

to affect reliable identification of contemporaneous results.
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A second, related, reason for the poor performance of effective connectivity methods
revolves around the lack of contemporaneous models in the comparisons. Structural Equation
Modeling (SEM; Mcintosh, 1994), a popular approach for estimatifegtive
conemporaneous effects with fMRI data, was not tested for practical reasons. At the time of
submission, automatic search procedures were not in place. However, a powerful automatic
search procedure has since been introduced (Gates et al., 2010), openengpgottunity
to investigate the ability of approaches within the SEM context to recover the true relations

among nodes.

Kim and colleagues (2007) introduced a solutiothemaforementioned biases
occurringwhen creating effective omectivity maps withMRI data (Gates et al., 2010).
Their model, the unified SEM, simultaneously estimates lagged and contemporaneous
effects, and thus may immediately provide a solution for data obtained from 1&stieg
(i.e., no task is presentedl) blockdesign protoca. These experimental designs require that
the participant sustain engagement in the activity across a length of time. Connectivity
analysis on these data seeks to identify relations among nodes during these tasks. Smith et al.
(2011) indicate that theirada were simulated to emulate a block deslgre Kim et al.
(2007)approach has successfully recovered the parameters used to simulate data using the
automatic search procedure mentioned above, which utilizes a Lagrange Multiplier Test
(LMT) equivalent tadentify parameters that, if freed, would optimally improve the model fit

(Gates et al., 201&06rbom, 1989).

An additional source of unreliable estimates in modeling remains. The connectivity
models described in Smith et al. (2011) and Kim et al. (28@¥pnly opimal for resting

state or blocldesigns. Researchers have thus been restricted and tend to refrain frem event
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related analysis given the dearth of methods for analyzing such richrdedatrast to
restingstate or block designs, eveariaied designs seek to identify the influence of the
presentation of experimentally manipulated stimuli, such as an odor, visual excitation, or
cognitive problem, on brain activity. In addition to identifying relations among nodes,
analysis of eventelated deigns should also include the effect of stimuli presentation on the
network.Therecently introduced extended unified SEM (euSEM) enables researchers to
estimate connectivity maps that consider both lagged and contemporaneous relations, the
effect of eventelated experimental manipulation, and the bilinear effect of the experimental
manipulation on the connections among nodes (Gates, Molenaar, Hillary, & Slobounov,
2011). The current option for evemelated designs is the dynamic causal model, a model
based on a system of differential equations which includes in it the Balloon model (Friston,
2007). Unlike the dynamic causal model, whiefjuires a priori specification, the euSEM
connectivity map may be theory driven with paths identified prior to estimat a

confirmatory manner, entirely data driven to arrive at the connectivity map in an exploratory
manner, or have some paths informed by theory while allowing for others to be searched for

in a semiconfirmatory approach.

The methods by which subjsare aggregateatross replicationgepresent a final
source of bias which has received scant attention and rremstittee development of GIMME.
Initial evidence suggests that the current methods for arriving at connectivity maps with
fMRI data do not alays arrive at a description of the majority of individuals comprising the
group; indeed, it often describes no one pe(Sates, Molenaar, & Medaglia, under review;
Ramsey et al., 2010Heterogeneity in individual brain processes while participatirggtask

surfaces in spatial parametric maps (i.e., maps indicating which areas of the brain increase in
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activity across a task ; Miller et al., 2002) and connectivity maps (Hillary et al., 2011; Miller
& van Horn, 2007). The general message appears t@abmthividuals may process
information differently in terms of brain activity, and that methods need to accommodate

these differences to make reliable group inferences.

The current standards for effective connectivity mapping, by large, do not attend to
heterogeneity.Typically, researchers concatenate the time series of subjects such that one
series occurs above the other, or equivalently (if the time series are first ceraeeeae
covariance matricesn either case, theggregatedovariance matces are then used in SEM
approaches. This type of aggregation has intuitive appeal since it stems from the traditional
approach of averaging across individuals to arrive at group norms. The difference is that
when used to conduct connectivity modeling,r&gmus connections among nodes, or
connections which do not exist in any subject, maihbaced. The heterogeneity seen in
empirical data (Hillary et al., 2011; Miller, 2002; Miller & van Horn, ZDihtroduces
statstical biases since thererie oneto-one relationship between arriving at individual maps
for each subject (which would be the optimal approach) and averaging across covariance
matrices prior to conducting analysior this and other reasons, Ramsey and colleagues
(2010) recently assertedathdatashould nobe aggregated across individuals prior to model

selection.

A few promising innovations have been attempted to improve upon group modeling.
Independent Component Analysis (IC&)proaches for exploring relations among nodes in
fMRI datahave seen the greatest progress in attempting to arrive at reliable group inferences.
As outlined in Calhoun & Eichle (2004), group inferences with ICA approaches have been

arrived at by combining ICA results across individuals (Calhoun, Adali, McGlrkarPe
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Watson, & Pearlson, 2001; Esposito et al., 2005), temporally concatenating time series much
like in SEM approaches (Calhoun, Adali, Pearlson, & Pekar, 2001; Guo & Guiseppe, 2010;
Schmithorst & Holland, 2004), spatially concatenating time series (Qa|lAxlali, Pearlson,

& Pekar, 2001; Schmithorst & Holland, 2004), yaseeraging (Schmithorst & Holland,

2004), and tensor decomposition (Beckman & Smith, 2005; Schmithorst & Holland, 2004).

A major shortcoming of these methods is that they assume honettgeamong individuals.

Within the connectivity mapping framework, a two stage approach has been
introduced by which individual magse first obtained and théhese maps are subjected
graphical clustering across individuals (van den Heuvel, Mantlui&hoff Pol, 2008). This
has only been applied to voxels and requires a large number of nodes to be meaningful.
Recent advances in Greedy Equivalence Search (GES; Meek, 1997), an approach which
identifiescandidate paths to free uging a score functiobased on the maximum likelihood
estimations, attempt to capitalize on commonalities among individuals to arrive at a group
model (Ramsey et al., 2010). As a nonparametric approach, the method identifies
connections which then could be entered into a toadit Markov model. Extensions of this
approach were recently applied to the Smith et al. (2011) data sets and have surfaced as the
first set of methods for identifying true connections as well as the directionality (Ramsey,
Hanson, & Glymour, 2011). lfhough clearly a powerful procedure which offers a vast
improvement upon connectivity models to datisva caveats remain. First, the approaches
described in Ramsey, Hanson, & Glymour (2011) are restricted for use indd@sigias and
cannotat this timeacaoommodate everrtelated designs. Second, the authors admit that the

approach is not optimal f@onnectivity maps whose structures are truly heterogeneous
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across individualsGIMME offers an improvement by accommodating data from block or

eventrelated designs and accommodating heterogeneity.

There are two primary ways in which group models may fail to best describe
individuals in the context of effective connectivity mapping: the beta weights (parameters
associated with the connections) vacyass individuals and/or the network of couplings
among nodes may differ in termsmesencer direction. Evidence exists foeta weights or
connection strengths systematically varying across subjects (e.g., Kim et al., 2007).
Emerging evidence suggedimitt he patt er ns domnectiviiysnaps,defited r e s 0)
by the presence and direction of coupliagsong nodesmay differ across individuals (e.qg.,
Hillary et al., 2011). These two types of variation across individuals may be related. For
someindividuals, alternative connections may better explain variance in the nodes. If these
competing influences on node activity are ac
be more accurate. A next step with respect to the current approachdsedalallow
individuals to have unique connections within connectivity maps to accommodate possible
heterogeneity across a sample. Only if the influences that other nodes might have on a target
node are explicitly accounted for may unbiasstimates bebtained for the beta weight of

interest.

The utility of effective connectivity maps may improve in three ways if attention
were given to differences occurring on the individual level. First, estimating connections
unigue to the individual will decreasige bias in specific connections of interest when
individuals are constrained to adhere to the gienived map. This will ensure unbiased
beta estimates since the influence of other nedalso considered. A second, related, issue

is that couplings magurface which carry great explanatory power for some individuals but
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are washed out by averaging. Identifying these connections will offer insight into information
processing for individuals who operate particularly well (or poorly) and perhaps enable
researchers to identify multiple modes of information processing. Finally, and most
importantly, conductingnalyses which consider the individual redibe likelihood of

spurious couplings which do not exist in any individual data (Molenaar, Farsey eal.,

2010. Thus the problem before researchers isfold: a method needs to provide

appropriate group inferences and account for individual nuances.

In summary, the current state of effective connectivity modeling is as follows. On the
individual lewel, biases occurring because either lagged or contemporaneous effects, and not
both, have been assuaged by the use of the uSEM (Kim et al., 2007; Gates et al., 2010).
Automatic search procedures which can accommodate the Kim model have now been
implementedGates et al., 2010). These recent advances will likely resolve the false positives
and lack of direction specificity found in the methods used by Smith et al. (2011). Designs
which contain eventelated experimental manipulation now have an analytiowpthe
euSEM(Gates et al., 2011)vhich may be implemented in a confirmatory, semi
confirmatory, or entirely exploratory fashion. The final source of bias, which is spurious
connections introduced by aggregating across groups, has yet to be resodvappiach
and accompanying program presented here, the Group Iterative Multiple Model Estimation
(GIMME), attends to this final issue in effective connectivity mapping while addressing the
modetspecific sources of bias by implementing either the uSERIKs@ et al., 2007) or
euUSEM (see Gates et al., 2011). Thus the primary goal of the present paper is to demonstrate

a novel method for estimatirggpnnectivitymapsfrom fMRI data(or in other contexts,
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temporal relations among psychological and behavemastructsyvhich enables reliable

group inferences while allowing for individual nuances.

Group lterative Mixed Model Estimation (GIMME)
The logic behind GIMME follows directlfrom well-established principlesFirst,

GIMME identifies a groupnodel(i.e., a connectivity map common to most individuals in

the sample)The procedure begins by running the fethptyymodel on each subj
This results in a matrix of Lagrange Multipli€est (LMTs)equivalents, called

Amodi fi cati on 1988)&ndasesach, indicatesrthe degree to which the model

would improve if that parameter were freed. The parameter may be lagged or

contemporaneous effects if the uSEM is being implemédntestingstate or block design

datg and lagged, contemporanes, experimental manipulation, or bilinear effects if the

euSEM is implementefibr eventrelated dataThe GIMME program uses théMTs to

identify which parameter, if freed, wouishprove the fit of the common model to the

greatest extent for a proportiofithe total sample of subjects which exceeds an a priori

chosen criterionTowards this end eaadandidategparameter receives a count of how many
individual sd model s wo ull ldveli$ thegparanfeterweareftegdy | mpr
Thegoal at this stage is to identifiye group modeko it is necessary to require tlitat

likelihood would significantly increase for the majority of individuals if that parameter were

freed. The criterion for what defines the majority of individualssmret to here as the

Asi mil ar i,is§priarichoser by the rasearchesr the analysis within this paper,

a similarity criterion informed by expectations of similar connections derived from empirical

data (Hillary et al., 2011), was choserb®75%. As a second check to ensure model

improvement across most individual models,che unt of i ndi vi dual sé LM
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indicate a significant improvememiu st b e g %.$9aN), e/fiere N b aumbesof
subjectsThe program repeats thesepstéeratively until the criterion is not met. Then, the
model is pruned by eliminatindnose connections which, because of the freeing up of

connections at later iterations, no longer obey the similarity criterion.

Second, GIMME identifies models on timglividual level in a semconfirmatory
manner. The search for the optimal model on the individual level does not begin with the null
(empty)modelas for the groupRather, e first iteration estimates the structure (i.e., pattern)
of parameters found ithe group searcihen, the automatic search procedure within Lisrel
identifies iteratively whichndividualspecific parameter accordibgthe modification
indices would optimally improve the model for this individusiter identifying optimal
models br each individual, parameters found in the group structure are evaluated again to
ensure that they are significant for the percent of individuals indicated by the similarity
criterion. If some became nonsignificant and this criterion is no longer meatinés
removed from the group structure and the individeaél search is conducted with the new
group structure of betas as the null mo#&eially, nonsignificant betas are remoadhe
individual level(providing they do not exist for the groupwstture) and a coirfnatory

model is fit. Figure 3. offers a schematic diagram of the process.
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Figure 31. Schematic diagram of GIMME approach for estimating uSEMs and euSEMSs.
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Formal Specification of GIMME

GIMME may be applied to any connectivity mapg and has been tested for use with
effective connectivity methods. We focus here on the euSEM (Gates et al., 2011) since it
includes within it the uSEM (Kim et al., 2007) and thus offers a more general application.

The euSEM estimated for a lag of oneléined as follows:

Ne = A?h +Z OiM—i +Z Vi Ut—j +Z Z TijMt—ilt—j +Ct

i= j=i

C ont. ~ y Py
La.gged. In-pu.t Modulating
whereh( t ) t =1, 2, émanifestp-vanatkitinesdries sf ROIladivity (where t

ranges across the sequence of registratidnd)e (p,p)dimension matrix of
contemporaneous relations among ROIs,the (p,p)-dimension matrix of the associations

among ROIs at a lag of ma(t-j) a univariateinput series at lag j (which may be expanded to
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a vector ofinputs) convolved with a hemodynamic respofsetion which models the lag

between neuronal activity and blomesponse known to exist in fMRI dai@arty, 2007),

vector of input effects on ROIE},; the (p,p)dimension matrivassociated with the bilinear

termh(t-m)u(t-j), andg(t) a pvectorerror series asswed to be a white noise process.

The euSEM s written abovepplies to a single multivariatene series, which may
be an individual 6s series of node activity w
series for data sets aggregated prior to anal@$MME further extends this modeling
appoach by identifying a connectivity map structure for the group as well as connections
unique for each individual. The above general equation may be modified as follows to

represent thi s b ytoiaddtate indigidudspeeific panamstesandithet A i O

superscript Agd to i ndimodelt e parameters in th
q k
ni(t) =(Ai + A5)mi(6) + D (dim + dm)mi(t — m)+>_(vij + v )ui(t — ) +
m=1 j=0
Contemporaneous ~ o 4 s "
Lagged Input
5 r

(Ti,mj + ’Tf;r]_.j)??f(f — m)u;(t — j)+¢(t)
m=1 j=1

"

Modulating

An important characteristic of the parameter matrk®s ¢, 9 and(¥ is that they would

not be identical to those found in the first equation but rather indicate the meareter
matricesfor the group. Please note that for connections which do not exist in the group
model the mean will likely be near zero since the parameter is not estimated for the majority.
The distribution for parameters not identified in the group mailethus be bimodal rather

than normalwith a spike at zerorhis represents an important difference from random
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effects models which induce a normal distribution on parameters under the assumption that
one model can explain all individualdnlike randm (or mixed) effects models, GIMME
allows for the structures of the connectivity maps to be unique across individuals (i.e.,

personspecific).

Simulations

The ability of the GIMME program to correctly recover parameters used to create
data was tested using simulated data from two sources: the Smith et al. (2011) data and in
house eventelated data. These sets of data offer comprehensive insight intolityecdbi
GIMME to recover parameters under two scenarios. The Smith et al. (2011) data contains
noise which is commonly seen in fMRI data. Using this data enables us to see how well
GIMME can pick up signal from noise in a homogenous dataset. Furthertraffers a
direct comparison to results obtained from other approaches which were discussed in Smith
et al. (2011). The second set of data, which ateuse, are heterogeneous across
individuals. These data provide a strict test for the GIMME to idetrtiy positives in the

presence of systematic deviations from the group.

Smith et al. (2011) Data
The reader is referred to Smith et al. (2011) for details regarding the simulation of the

data set®btained from Smith et al. (2011h short, a blocidespn data set was simulated
using the DCM forward model (Friston, Harrison, & Penny, 2003) which is based upon the
nonlinear balloon model (Buxton et al., 1998). For ease in comparison, we selected
simulation set number two (out of a possible 28 simulatisingg it was deemed the most
representativey Smith and colleagues and was given the most attention in their paper. This

data set used a structure containing 10 n@d€ds) as seen in Figure 3\&ith 10 minutes of

42



data at a TR of 3 seconds for a tath200 observations for each of the 50 simulated

subjects.

Figure 32. Connectivity map structure for Smith et al. (2011) simulations.

None of the effective connectivity methods tested by Smith et al. (2011) did well in

terms of recovering the presence of a connection or the directionality of a connection. Those

that did well on one construct fared poorly on the other. For instancepfitbsteffective

connectivity methods correctly identified connections above the 95th percentile of the false
positivessgnsirtmewi,t yiicc) about 50% of the ti me
were entirely unable to correctly identify directadity above what would be expected by

chance. The methods which performed best in terms of identifying correct directionality of
relations only did so at 65%. However, these methods did extremely poorly at correctly

identifying true connections over falsennections, with a-sensitivity of about 20%.

When the same data were fit to a uUSEM using GIMME excellent fits otdagned
according to indices previously found to demonstrate reliability in simulation studies (Brown,
2006): 100% excellent accorditg chisquare, comparative fit index (CFl), and root mean
square error of approximatigRMSEA), with 78% excellent according norrnormed fit
index (NNFI) and 74% excellent for standardized root mean square rgS&MR). More
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importantly, the paramatewere recovered excellently by all criteria. For one, the
distribution of tscores for the true positives for each subject was substantially higher than

seenfor false positives (Figure 3.3

Figure 33. Violin plots of true and false positives disttilouns.
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The distribution of the estimates for false positives was around zero, which is what
onewould expect. Thipatternis markedly different, and better, than that seen for the
majority of effective connectivity methods evaluated in Smith et algp; 301). In terms
of c-sensitivity, the GIMME implementation of the uSEM correctly identified 100% of the
true connections. This is higher than the best approaches out of the 38 methods tested by

Smith et al. (2011).

Second, in addition to identifyinh& presence of a connection, u>SEM implemented
via GIMME correctly identified the direction @bntemporaneous connectiori®®of the
time according to the Smith et al. (2011) direction sensitivity criteridentifying
directionality 9246 of the time offes a vast improvement upon all of the other methods (the

best of which achieved correct direciatity 65% of the time). Figure 8.displays, in light
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blue, the distribution oftvalue differences of true direction minus false direction for each

relation that truly exists. Values greater than zero indicate correct identification.

Figure 3.4. Distribution of-value differences of true direction minus false direction and

percent correct.
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In-house Data
Next, GIMME was applied to eventlated data created better replicate the

heterogeneity seen when examining individual connectivity maps. Series of length 200

(T=200) were simulated for two patterns of relations ammuages (ROIs)which will be
referred to as fAstruct ureflest@xperidientalenanipolationo f i np
was created such that at each time point there was a .3 chance of occurring independent of

other time points. This input vector was then convolved with a hemodynamic response

function (Sarty, 2007). Errors were generatetdeé Gaussian white noise with mean zero and

unit variance. Each subgroup contained 50 simulated time series created according to the
parameters displayed in Figu8é. The inclusion of an input vector and bilinear effects made

the euSEM an optimal mode method.
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Figure 35. Connectivity map structures foritouse simulations.

Legend:
== Contemp. ROI Effects <= == Lagged ROI Effects === Subgroup1
@ === Direct Input Effects & === Bilinear Effects = SUbgroup 2

Subgroup1 Subgroup 2

Please note that the structures shared a number of common couplings: ROI3
contemporaneously predicted ROI1 and ROI4, and eacthR®an autoregressive effect.
Thesecommonalities could be considered lawful relations. The differences in couplings
imposed on the groups reflects findings from empirical data that within a sample, rarely will
more than fifty percent of people have any given coupling (e.qg., Hillary @04l.). In fact,
the simulated data example is likely much more homogeneous than typically seen in
experimental data. Despite this imposed homogeneity, poor fits and spurious couplings result
from applying the staradd aggregating technique (Gates, Molen&avledaglia, under

review).

46



When the euSEMs for the subjects were modeled using GIMME, a valid group
structure emerged. The structure obtained at the group level contained only those connections
which truly existed in all of the subjects. In this cases¢éheere ROI3 contemporaneously
predicting ROI1 and ROI4, and each R@Ving an autoregressive effect. The effects which
only existed for subgroups 1 and 2 emerged for the vast majority of the subjects during the
individual semiconfirmatory search procedts Overall, the final models had excellent fits
with all individuals meeting the criteria for excellence on at least 3 of 4 fit indices (25% were
excellent according to Ct8quare tests, 100% according to SRMR and CFI, and 97%
according to NNFI). Furthesupporting the efficacy of GIMME in exploratory modeling,

97% of the recovered parameters were true directed positives, meaning that they were
connections between nodes in the simulated data and were in the right direction. This is an
improvement upon runng individuatlevel analysis (see chapter 2), in which only 89% of

the true parameters were recovered across replications, suggesting that tregogroaph
implemented with GIMME helps to pick up signal from individieatel noise. In terms of-c
sensitvity, GIMME again performed excellently, with 98% success rate in identifying true
relations (of either direction) which existed. In terms-@icduracy, GIMME identified

which direction better explained the relation among all true relations at a 99% rate

Discussion

Obtaining reliable connectivity maps is a large responsibility for fMRI researchers.
Results from fMRI studies are increasingly used to identify meaningful deviations from
normal brain processing, such as to identify ADHD profiles (e.g., Fair et al., 20d0)
impairment from traumatic brain injury (Hillary et al. 2011). The inferences may be then

used in a clinical setting to make recommendations for patients. Thus it is a scientific and
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public health imperative that the maps be accurate. For this reasoresent a method,

GIMME, which appropriately identifies relations which truly exist for the majority of
individuals in the group while all owing for
ability to pick out connectivity maps across individuals inghesence of noise often seen in

fMRI research and, more importantly, the ability to recover true parameters when the sample

contains individuals with heterogeneous maps.

Smith et al.déds (2011) shocking demonstrat
to obtain reliable maps caused a stir in the fMRI community. After testing 38 methods, the
conclusion was that correlatidrased methods far outperform effective connectivity
approaches. SEM approaches were not included in this comparison. We appBéd thie
with the unified SEM (Kim et al., 2007) to the same data created by Smith et al. (2011) to
test the competing approaches. GIMME outperformed even the best correlation methods.

That is, GIMME obtained a higher rate of tipesitives than even the besbdeling

approaches tested by Smith et al. (2011). Two reasons exist for this vast improvement upon
other methods. One, by implementing the uSEM we accounted for lagged relations as well as
contemporaneous. Biological processes such as those found idf#Rbften contain lags,

and the neurtinemodynamic model used to create the data would have induced these. Two,

the model selection approach for the group level appears to pick out signal from noise. By
selecting those connections which would optimallpimov e t he majority of

models, GIMME maximizes on similarities across individuals.

Given the high degree of heterogeneity seen across individuals in fMRI studies it was
important to ensure that GIMME was able to appropriately recover conbentaps in the

presence of heterogeneity. Our test indicates that GIMME appropriately identifies the
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structure which describes the majority of individuals in the group. Moreover, it recovers
those connections which exist only for the individual. In thet\@a were able to identify a

groupstructurefrom which to make inferences.

The reliability of results found with GIMME have huge implications. For one,
researchers now have a powerful tool with which to examine changes over time in
individuals. This maye useful when examining recovery from a concussion, or
development across the lifespan. Since GIMME produces maps which are more reliable than
other methods, changes across time will be true changes. Second, researchers have a tool for
making group infeneces. GIMME provides a structure which describes the majority of
individuals comprising the group even after considering the individual nuances. Unlike all
other methods, there is no assumption that a group model even exists. If a population is so
heterogaeous that no similar connection can be inferred for the group, then no connections
will be freed in the first step and all of the maps will be derived on the individual model. This
level of flexibility ensures that group inferences will be reliable aricdanoved at from

statistical artifact.

GIMME represents a first, albeit powerful, step for arriving at group inferences. A
next step for the field to take would be to identify subgroups within a sample. From the
resulting network maps, researchers caddohtify if they differ in a meaningful way, such as
relating to diagnoses or performance measures, or simply represent multiple ways in which
the brain processes information. Another necessary step needed in fMRI research would be to
allow for timevarying parameters. This would better accommodate the evolution of
processes throughout the experimental protocol, which may be particularly important when

effects such as learning, habituation, or fatigue may be present. By offering one of the most
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reliable metods for arriving at group inferences, GIMME provides a solid foundation for
these extensions while offering a practical method for acquiring individual network maps that
surpasses most effective connectivity map approaches tadGIMBIE meets the critea

necessary for use in fMRI data analysis even when tested under strict conditions. Moreover,
GIMME may be applied to any data acquired across time within individuals for which
researchers wish to identify the lelad) and contemporaneous relations in psjyagical and

behavioral processes.

50



References

Beckmann, C. F. & Smith, S. M. (2005). Tensorial extensions of independent component

analysis for multisubject fMRI analysisleurolmage, 25294-311.

Brown, T. A. (2006). Confirmatory Factor Analysis fopplied Research. Gilford Press.

New York.

Buxton, R., Wong, E., & Frank, L., 1998. Dynamics of blood flow and oxygenation changes

during brain activation: the balloon model. Magn. Reson. Med. 39 88385

Calhoun, V. D. & Eichele, T. (2010) Fusion of EBGd fMRI by Parallel Group ICA. In
Simultaneous EEG and fMRI61-175). Oxford: Oxford Scholarship Online

Monographs.

Calhoun, V. D., Adali, T., McGinty, V., Pekar, J. J., Watson, T., & Pearlson, G. D. (2001).
fMRI activation in a visuaperception taskNetwork of areas detected using the
general linear model and independent component analisisolmage, 141080

1088.

Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group
inferences from functional MRI data usimglependent component analysisiman

Brain Mapping, 14140-151.

Esposito, F., Scarabino, T., Hyvarinen, A., Himber, J., Formisano, E., Comani, S., Tedeschi,
G., Goebel, R., Seifritz, E., & Di, S. F. (2005). Independent component analysis of

fMRI group dudies by seHorganizing clusteringNeurolmage, 25193-368.

51



Fair, D. A., Posner, J., Nagel., B. J., Bathula, D., Costa Dias, T. G., Mills, K. L., Blythe, M.
S., Giwa, A., Schmitt, C. F., & Nigg, J. T. (2010). Atypical default network
connectivity in yaith with attentiordeficit/hyperactivity disordemBiological

Psychiatry, 6810841091.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. Neuroimage 19 (3),

1273 1302.

Friston, K.J. & Stephan, K. (2007). Modeling brain responses&riston, K.J., Ashburner,
J.T., Kiebel, S.J., Nichols, T.E., Penny, W.D. (Eds.), Statistical Parametric Mapping:

The Analysis of Functional Brain Images. Academic Press, Amsterdam,-gp. 32

Friston, K. (2009). Causal modeling and brain connectivifymetional magnetic resonance

imaging.PLoS Biol.7e21000033.

Gates, K. M., Molenaar, P. C. M., Hillary, F., Ram, N., & Rovine, M. (20A0)omatic
search in fMRI connectivity mapping: An alternative to Granger causality using
formal equivalences between SEM path modeling, VAR, and unified SEM.

Neurolmage, 5311181125.

Gates, K. M., Molenaar, P. C. M., Hillary, F., & Slobounov, S. (20&Et)ended unified

SEM approach for modeling everglated fMRI dataNeurolmage, 541151-1158.

Gates, K. M., Molenaar, P.C.M., & Medaglia, J. (Under Review). Nonergodicity in

psychological processeBerspectives in Psychological Processes.

Guo, Y. & Giwseppe, P. (2008). A unified framework for group independent component

analysis for multisubject fMRI dataNeurolmage, 4210781093.
52



James, G. A, Kelley, M. E., Craddock, R. C., Hotzheimer, P. E., Dunlop, B. W., Nemeroff,
C. B., Mayberg, H. S., &lu, X. P. (2009). Exploratory structural equation modeling
of restingstate fMRI: Applicability of group models to individual subjects.

Neurolmage, 45, 77887.

Kim, J., Zhu, W., Chang, L., Bentler, P.M., Ernst, T., 2007. Unified structural equation
modding approach for the analysis of multisubject, multivariate functional MRI data.

Hum. Brain Mapp. 28, 8®3.

Mcintosh, A.R., Gonzalekima, F., 1994. Structural equation modeling and its application

to network analysis in functional brain imagifiduman Bain Mapping, 2 2i 22.

Meek, C. (1997). Graphical Models: Selecting causalstaistical models. PhD thesis,

Carnegie Mellon University.

Miller, M. B., Van Horn, J., Wolford, G. L., Handy, T. C., Valsangimyth, M., Inati, S.,
Grafton, S., & GazzanigM. S. (2002). Extensive individual differences in brain
activations during episodic retrieval are reliable over time. Journal of Cognitive

Neuroscience, 14, 1261r14.

Miller, M. B. & Van Horn, J. D. (2007). Individual variability in brain activiaticassociated
with episodic retrieval: A role for largecale databases. International Journal of

Psychophysiology, 63, 26513.

Molenaar, P.C.M. (2004). A manifesto on Psychology as idiographic science: Bringing the
person back into scientific psychologyistlime foreverMeasurement, 24), 20t

218.

53



Ramsey, J. D., Hanson, S. J., Hanson, C., Halchenko, Y. O., Poldrack, R.A., & Glymour, C.

(2010).Neurolmage, 4915451558.

Ramsey, J. D., Hanson, S. J., & Glymour, C. (2011). Muikject search correctlgientifies
causal connections and most causal directions in the DCM models of Smith et al.

simulation studyNeurolmage, 58338-848.

Sarty, G.E., 2007. Computational brain activity maps from fMRI {&@ees images.

Cambridge University Press, New York.

Schmithorst, V. J. & Holland, S. K. (2004). Comparison of three methods for generating
group statistical inferences from independent component analysis of fMRI group

studies by selbrganizing clusteringNeurolmage, 25193-205.

Smith, S. M., Miller, K. L.,SalimiKhorshidi, G., Webster, M., Beckmann, C. F., Nichols, T.
E., Ramsey, J. D., & Woolrich, M. W. (2011). Network modeling methods for FMRI.

Neurolmageb4, 875891.

Sorbom, D., 1989. Model modification. Psychometrika 54) 384.

Van den Huevel, M., Mndl., R., & Hulshoff Pol, H. (2008). Normalized cut group clustering

of restingstate fMRI dataPLoS ONE &): e2001.

54



Chapter 4Testing the GIMME

Findings from Smith and coll eaguesdé (2011
category of effective carectivity methods, which estimates the directed influence among
predefined regions of interest (ROIs) or nodes (Fri&t@tephan 2007), offer the least
reliableapproachefor detecting true connections among nodes. Their study tested 38
di fferent methodsé ability to recover connec
varied in degree of model complexity, experimental protocol, and potential confounds. There
were no nethods which consistently identified true connections as well as the direction of
influence. The general recommendation was to avoid lagged approaches (such as Granger
causality) and rely on functional connectivity maps, defined as those which iderify sol
relations among nodes and not directionality (Frigkddtephan, 200) to identify true
connectivity maps. The authors even caution against using the best effective connectivity
approach for identifying causal relations, Bayes nets approaches, bettiestow ability
to identify true connections and low reliability across diverse conditions. The paper did not
test SEM approaches because the availability of an automatic search procedure (Gates et al.,
2010) was not widely known at the time of subneisf the paper. The simulated data offer
a unique opportunity to test a novel estimation approach which works within an SEM
framework, group iterative multiple model estimation (GIMME), under diverse situations. If
GIMME consistently identifies true coaations at the individual level as well as the
direction, it wild.l be the only connectivity

connectivity mapso0 t @&acrosseconditiolsl y recover par an
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Chapter three demonstrated the ability of euSEM emginted via GIMME to arrive
at reliable individualevel estimates while obtaining valid group inferences. Indeed, in terms
of both the ability to identify a true positive relative to false positives and the true direction
of the relation, the GIMME approbk worked far better than any of the effective connectivity
mapping methods used in Smith (20Mhile it seems clear this approach works for the
typical data set seen in the best fMRI study scenarios, it is unknown how well GIMME will
work with data simlated to replicate a range of relationships among brain regions, such as
when there are greater or fewer nodes. Additionally, it remains to be seen how robust the
method is in the case of issues specific to fidRbies such as nonstationgier shared
neuronal input, varying time series (TR) lengths, suboptimal experimental protocols,
increased noise, and cyclical neuronal maps. The data provided by Smith and colleagues
(2011), thenceforth referred to a6GMMEBhe A Smit
for a number of conditions which may occur in fMRI data. The results will test the reliability
of GIMME in comparison to a multitude of other methods and elucidate which assumptions

must be met when using the GIMME.

In addition to identifying whicimodels worked best with fMRI data, much was
learned from Smith and colleagues (2011) regarding the assumptions which must be met for
models. First, since correlation methods worked optinsaily surpassed methods which
utilize higher order statistic# gppears as though the nonlinearities seen in neuronal data are
not an issue at the BOLD level. That is, the data obtained from fMRI studies works well for
methods based on seceodler statistics, such as the SEM, which assume normal
distributions. Secondliue to the temporal relations among neurons being very fast (on the

order of milliseconds) and the time series obtained from fMRI studies being much slower (on
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the order of seconds), the true neuronal relations across time were best quantified with
contempraneous approaches as opposed to labgedd ones. However, spurious relations
among the BOLD signal in empirical data may be induced from true neuronal relations
making it necessary to statistically control for lagged effects in BOLD data to obtaioleeli
contemporaneous connections (Gates et al., 2010; Kim et al., 2D0i$istent with these
inferences, the relations recovered from the Smithidadaapter 3 surfaced in the

contemporaneous matrix of effects among ROIs.

Methods

Simulated Data

Thereader is referred to Smith et al. (2011) for details regarding the simulation
procedures. Briefly, 28 bloe#fesign data sets containing 50 replications (which may be
considered participants repetition} were simulated using the dynamic causateling
forward model (Friston, Harrison, & Penr3003) which is based upon the nonlinear balloon
model (Buxton et al., 1998). The inputs representing neural innovations were modeled using
a Poison process indicating t hstatehThesemgy swi t c
be considered to be neuronal signal or noise equivalently and ultimately produce vascular
dynamics witnessed via the BOLD signal. Importantly, Smith et al. (2011) reduced the neural
lag between timeseries from an unrealistic 1 secors®lagt as the default to a 50
millisecond delay in the relations among nodes for all but one of the datasets. The change in
simulated BOLD signal, about 4%, matched that seen in a typical 3T study. The data seem to

appropriately replicate that seen in engal fMRI studies.
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Each set had slightly different parameters used in the simulations that were informed
by potential confounds, noistheory, ancgexperimental protocols that may occur in empirical

fMRI studies.The datasets simulated relations amont05,15, or 50 nodes (see Figure 4.1).

Figure 4.1. Structures of relations among nodes used to create data.

10 Nodes

15 Nodes
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The simulation for 50 noddsimulation 4)was not included in the present study
since it is too computationally taxing for GIMME implementatadrthis time Another
simulation, numbet6, was also not included in the present investigation because the
structure of the relations among ROIs was not included in the Smith et al., (2011)paper.
terms of confounds related to experimental desigssion length varied from 2.5 to 250
minutes (which is unrealistic in a true fMRI study) and TR length from .25 to 3 seconds.
Postprocessing choices included having the number of nodes range from 5 to 50 and poor
ROI selection. The latter reflected R@lection based on atlases in which the ROl was not
appropriate or the ROI was not distinct from other ROIs in the connectivity map. The data
sets also contained differences that are outside the control of the researcher. Some reflected
known differences ithe hemodynamioeural relationshiacross brain regionsuch as
shared inputs from one neuron into multiple
nonstationary activity, and variations in HRF delay. Finally, some datasets reflected true
differences in the overall connectivity map such as reciprocal connections (i.e., two nodes
influence each other), cyclical connections (i.e., loop), having more connections, stronger

connections, global mean noise, and having only one input source into tleetoatynmap.

Group Iterative Multiple Model Estimation (GIMME)

GIMME constitutes an iterative estimation approach for arriving first at a group
model which explains the greatest amount of variance across individual subjects. In a second
step, GIMME freeparameters which may be specific to each individual. Both steps utilize
Lagrange Multiplier Test equivalents to identify which parameter, if freed, would optimally
improve model fits. In this way valid group inferences may be made regarding relations

which truly define the individuals comprising the group while attending to individual
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nuances. Attending to these influences decrease statistical bias which may occur by

neglecting to include these factors. Additionally, some argument exists surroundinu¢he va

of individual nuances in terms of these being noise (James et al, 2009) versus meaningful

(Miller et al., 2002). Estimating the degree to which populations are heterogeneous, and how

this may relate to behavioral indices such as performance, maguadtrinsight into this

debate.

GIMME can be employed for any model within the general SEM framework. Recent

advances in the SEM approaches specific to fisfdted concerns includbe addition of

lags to the traditional SEM. First introduced by Kim aotleagues (2007) as the unified

SEM (USEM), the model has been recently been extended to enable estimation of effects

related to evemelated stimuli (euSEM; Gates et al., 2011). Both models may be

implemented via GIMME. For the Smith data, the uSEMiifigent since there are no

explicit experimental stimuli. The uSEM reduced to a lag of one and estimated by means of

GIMME (see chapter 3 for details) is defined as follows:
-0 0 0o - %o, %o — O P -0

wheret 0 indicateshepv ar i ate node time series at
across the sequence of registratioAsihe (p,p)dimension matrix of contemporaneous

relations among ROIS, the (p,p)dimension matrix of lag 1 associations, aap-variate

serieso f error assumed to be a white noi se

parameter estimates for that individual

group) and O0i 6 indicates the deyvtiadividualn
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GIMME can be employed in a sefmonfirmatory manner to accommodate theory
driven specifications of connections from which the researcher wishes to start the iterative
search for more connections. Since autoregressive relations are ind8¢adDrdata due to
smoothing, one general theedyiven start to identifying the optimal connectivity model
would be to free the diagonal of thematrix which represents the relations of nodes at time
with themselves at a previous time point (in this cdseprevious scan). Accounting for true
autoregressive relations may improve model selection by ensuring unbiased estimates of
effects at each iteration, which in turn relate to Lagrange Multiplier Test approximations. To
test how this assumption assisfigh identifying the true parameters, each model for each
simulation was first estimated with GIMME in an entirely exploratory manner. Next,

GIMME was applied to each simulation set in a seanifirmatory manner by first freeing
the diagonal of the matrix (i.e. the autoregressive elements). The second approach will be
referred-ctoon fasr,mafitsoernyi ARO. Exploratory resul

the semiconfirmatory AR results reported when they differ from the exploratory findings.

Performance Measures

The measures evaluating how well uSEM implemented via GIMME recovers the true
parameters used to create the data come straight from Smith and colleagues (2011). The first,
c-sensitivity, quantifies how sensitive the method is for identifyire presence of a
connection. It is the percentage of true positives which have values that are above the 95
percentile distribution of false positives. The secoradc¢clracy, looks only at true
connections and assesses correct identification of thetidinality by looking at the
percentage of estimates which are in the correct direction. The use of these measures allow
for immediate comparison to the methods evaluated in Smith and colleagues (2011). While

61



fit indices are typically included when usi®&&EM based approaches, the use of such in the
present context is redundant since the criteria for model selection requires that the model fit

the data well according to commonly used criteria (see chapter 3 and Gates et al., 2010).

Results

Basic Simulation Results

Figure 5.2 displays the percent accuracies accordingémsitivity and eaccuracy
across all simulations included hened Table 5.1 lists the simulations and accompanying
parameter setting¥he details of the parameter settingsdescribed below with the
relevantresultsA | ook at GI MMEG6s ability to successf
and situations which may be typical in fMRI studies offers a baseline from which to compare
t he approachos ef f iemaaonditions) Simulatioo(@iscussacih and e x
Chapter 3yeceived the most attention in Smith et al. @0Their findings revealed that
partial correlation, ICOV, and Bayes net methods performed the best in terms of detecting
true connections with-sensitvities above 90%. Laggdshsed methods performed poorly
(less than 20% accuracy). GIMME performed exceptionally well in terms of detecting true
connections: 100% for-sensitivity. This means that GIMME identified all true relations
among ROIs above th&$ercentile distribution of false relatioridone of the methods
applied by Smith and colleagues did well with regard to correctly identifying directionality
for those directions which truly existed. P a
65% daccuracy, but it should be noted that this method only correctly identified 20% of true

positives using the-sensitivity criteria and thus not a standlone approach. GIMME had
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a daccuracy of 91%, making it the only approach that achieveddugracy in

directionality.

Table 5.1. Parameters for data simulations.

Simulation Noise
# nodes
# (%)
s 10 3 1 05

B o 10 3 1 0.5

R - 10 3 1 0.5

B 60 3 1 0.5

[ 6 [N 60 3 1 0.5

5 250 3 1 0.5

“ 10 3 1 0.5 shared inputs
n 5 250 3 1 0.5 shared inputs
“ 10 3 1 0.5 global mean confound
B o 10 3 1 0.5 bad ROIs

[ 12 [T 10 3 1 0.5 bad ROIs
“ 5 10 3 1 0.5 backwards connections
“ 5 10 3 0.1 0.5 cyclic connections
“ 5 10 3 1 0.5 stronger connections

10 10 3 1 0.5

BE 10 3 0.1 0

B 10 025 01 0.5 neural lag = 100 ms
B 10 0.25 1 0 neural lag = 100 ms

[ 21 S 10 3 0.1 0.5 2-group test
“ 5 10 3 1 0.5 nonstationary connection strengths
“ 5 10 3 1 0.5 stationary connection strengths
“ 5 10 3 0.1 0.5 only one strong external input
25 [ 5 3 1 0.5

B 2.5 3 0.5

5 2.5 3 0.1 0.5

B 5 3 0.1 0.5

Thus GIMME is the only approach that successfully identified relations as well as the

direction of the influence. Taken togeth@iMME correctly identified the true directed
connection 91% of the time, whereas the best effective connectivity approach considered by

Smith and colleagues correctly identified8%% of the true directed connections.

63



Figure 5.2. Percent accurate acoogda) csensitivity and b) éhccuracyiar 006 i ndi cat e
fully automatic sear ch r-confitmatorgeARglagd) fiar 10 i nd
approach
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