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ABSTRACT 

Researchers wishing to understand how processes occur for individuals identify relations 

among variables across time to see how they relate both lagged and contemporaneously. This 

represents a divergence from traditional research paradigms in the social sciences which 

attempted to identify human processes by examining how variables relate across people at 

one time point. Towards the goal of identifying processes as they occur within individuals, 

data are increasingly being collected across time for each participant. Despite acquisition of 

such rich data, the current standard for looking at data obtained across time is to aggregate 

across individuals in some manner prior to analysis. This aggregate approach is particularly 

problematic in the field of brain processing research which utilizes functional MRI data 

because the processes are highly heterogeneous and often cannot be explained by one model. 

The present dissertation attends to this issue in 3 ways: 1) demonstrates the spurious relations 

which occur when heterogeneous data are aggregated across individuals prior to model 

selection; 2) introduces a novel estimation method, Group Iterative Multiple Model 

Estimation (GIMME), for recovering reliable parameters at the group and individual levels; 

and 3) tests GIMME under a variety of confounds and experimental conditions common in 

fMRI data analysis. Findings suggest that GIMME far outperforms most other brain mapping 

techniques in terms of reliability. GIMME offers an effective, novel, and timely solution to 

the problem of making inferences from heterogeneous processes. 
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Chapter 1: Introduction. 

 

Research on varied human processes often seeks to identify relations among variables 

of interest across time to establish temporal precedence and contemporaneous effects on the 

outcomes.  These processes may be contained within the individual, such as the relations 

between affect and sleep across time or the relations among brain regions of interest while 

executing an experimental task. Increasingly, researchers are using intensive longitudinal 

designs to obtain data on how these processes occur across time for individuals. This 

represents a divergence from traditional research approaches in the social sciences which 

look at how variables relate across people and thus opens up the possibility of identifying 

processes as they occur in individuals. Still, the current standard when looking at data 

obtained across time for individuals is to aggregate the data in some manner prior to analysis. 

If the findings from the aggregated data do not apply to any individual comprising the group, 

the utility of the findings may decrease since the objective is to identify human processes. 

Researchers are beginning to acknowledge persistent claims (e.g., Molenaar, 2004; 

Molenaar, 2007) that relations existing on the group level may not always apply to the 

individuals comprising the group.  

It appears that human processes oftentimes do not meet the criteria for ergodicity. For 

a process to be ergodic, the analysis of data pooled across participants must yield the same 

results as analysis of data collected across time within individuals. Two sufficient conditions 

exist for ergodicity to exist with Gaussian processes: stationarity across time and 

homogeneity of the population. The first condition is met when parameters describing the 

variables remain constant across time. While nonstationarity certainly influences aggregated 
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data and is a concern in in its own right, the second condition directly relates to issues of 

aggregation and is the focus of the present dissertation. According to the second condition, 

homogeneity of the population, if each participant obeys the same statistical model and has 

the same parameter estimates then ergodicity exists. Nonergodic thus describes processes 

which vary across individuals to the extent that one aggregate model that describes the 

individuals may not be obtained (Molenaar & Campbell, 2009). 

The potential for nonergodicity in human processes appears to be particularly relevant 

to the field of neuroscience research. The present dissertation extends the general topic of 

ergodicity in the social sciences to the timely issues seen in applying current methods to 

functional MRI (fMRI) data.  While most fMRI researchers may acknowledge that the 

aggregate data do not represent any one given person in particular, results from these types of 

analysis are presented as evidencing a characteristic common to all (or at least the majority 

of) individuals in that group. Each chapter in the dissertation attends to this problem.  

Chapter two discusses the misleading results which may surface when heterogeneous 

data are applied to a model arrived at from data aggregated across individuals. Monte Carlo 

simulations presented therein show that spurious relations may occur when data are 

aggregated prior to application to data-driven approaches within the SEM framework. Thus 

the current standard appears to be ill-suited for identifying true relations among variables in 

the presence of heterogeneous data. This can lead to inferences which are potentially 

erroneous, hindering the state of science, and potential negative effects on recommendations 

in the clinical sector. Brain imaging research in particular necessitates methods for 

accommodating nonergodic processes. Preliminary evidence from fMRI studies suggests that 

individuals in a given sample are largely heterogeneous with regards to their brain process. 
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Connectivity maps, defined as approaches which seek to identify how brain areas or nodes 

relate across time (Friston & Stephan, 2007), are commonly estimated within the SEM 

framework. Thus the spurious findings seen in the Monte Carlo demonstration apply to this 

type of analysis. Application to empirical data illustrates that the model derived from 

aggregated data fails to fit the majority of individuals. Running individual models appears to 

be the most reliable approach at this time, although this method carries some caveats which 

are also discussed in this chapter.  

Chapter three introduces a novel method, the group iterative multiple model 

estimation (GIMME) for acquiring reliable group- and individual-level connectivity maps 

within the SEM framework. Connectivity maps may be conducted either on predefined 

regions (such as regions of interest, or ROIs) or across the full brain on the level of voxels. A 

distinction has also been made between ñfunctional connectivityò which describes 

correlation-based methods and ñeffective connectivityò, which describes methods which 

attempt to identify the direction of the influence among brain areas (Friston & Stephan, 

2007). Recently, Smith et al. (2011) examined functional and effective connectivity methods 

for examining relations among predefined ROIs. After looking at 38 methods across 28 data 

sets simulated to emulate conditions seen in fMRI studies, Smith et al. (2011) concluded that 

functional connectivity approaches are much more reliable than effective connectivity in 

uncovering true relations. The general recommendation was to avoid effective connectivity 

techniques.  

SEM conducted via GIMME falls into the category of effective connectivity, but was 

not included in the original Smith et al. (2011) paper. In chapter 3, results from application of 

GIMME conducted on one set of Smith et al.ôs (2011) data are presented. GIMME far 
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outperformed the other effective connectivity techniques in its ability to recover true relations 

among the simulated ROI time series. Importantly, GIMME also outperformed the heralded 

functional connectivity techniques. The Smith et al. (2011) data were homogenous within the 

simulated sets such that each replication shared the same model structure and some 

parameters. Thus it does not test how well GIMME can ascertain a model common to the 

individuals comprising the group when heterogeneity is present. For this reason, the same 

data used in chapter 2 to demonstrate issues when arise when heterogeneous data are 

aggregated prior to analysis was used in chapter 3 to test GIMMEôs ability to arrive at 

reliable group patterns. GIMME was able to tease apart group relations from individual 

variation while also improving the recovery of individual-level estimates. Taken together, 

GIMME can appropriately pick out signal from noise to improve recovery of individual-level 

parameters while acquiring a common model for the individuals within the group.  

Having demonstrated the ability of GIMME to recover parameters used to create data 

on which other effective connectivity approaches failed, chapter 4 tests GIMME under a 

mulititude of conditions. The remaining data sets created by Smith et al. (2011) were used. 

Each set had slightly different parameters which were informed by potential confounds, 

noise, and experimental protocols that may occur in empirical fMRI studies. These data thus 

offer a unique opportunity to test the conditions under which the reliability of GIMME 

changes relative to the 38 techniques tested by Smith et al. (2011). GIMME continues to 

outperform the majority of techniques, in particular being impervious to the presence of 

added noise from various sources typical in fMRI studies. However, GIMME performs 

poorly when the repetition time (TR) between scans is decreased to a quarter of a second. 

This short TR is rarely used, but with increasing advances in technology may become more 
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prevalent. In the end, GIMME appears to be more robust than competing methods under 

various conditions often seen in fMRI research.  

The present dissertation focuses on the problem of nonergodicity. First, the problem 

is presented in terms of any research on human processes with focus turning to fMRI data in 

the empirical example. Next comes the introduction of GIMME, a novel solution to the 

problem of making reliable group and individual inferences from noisy or heterogeneous 

fMRI data. Third, GIMME is tested in a myriad of conditions which exist within fMRI 

research. The problem of nonergodic processes in social science research must be attended to 

for valid and reliable inferences regarding human process can be made.  
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Chapter 2:  Nonergodicity in Psychological Processes. 

The term ñnomotheticò was originally coined by the philosopher Wilhelm 

Windelband in the late 19
th
 century to represent phenomena that are always occurring or can 

be considered lawful (Windelband, 1980). ñNomotheticò thus referred to things that 

described all individuals of a certain kind, whether they be atoms in a molecule, planets in a 

solar system, or human minds in the world. In this original conceptualization, inferences 

made for a group (e.g., humans) must describe that which most always occurs in the 

population.  This original meaning was diluted and modified over the 20
th
 century largely as 

a result of the emergence of aggregate statistics in the social sciences. The term 

ñnomothetic,ò eventually came to mean ñaggregateò (see Lamiell, 1998). Whereas the 

traditional view holds that relations found for the group must apply to each and every case 

comprising the group, the current standard does not impose such constraint. Group inferences 

regarding psychological processes derived from relations occurring on the aggregate lose 

utility if they do not also describe processes which exist for the individuals comprising the 

group. The present chapter demonstrates that by stark contrast to this original conception, the 

current standards for arriving at nomothetic, or group, inferences regarding psychological 

processes in the social sciences may fail to describe any individual comprising the group.  

 The observation that group-level summary models based on aggregated data often do 

not represent any individual is not novel (cf., Molenaar, 2004; Molenaar, 2007). Indeed, the 

field has seen a spike in the quantity of intensive longitudinal data research studies aiming to 

circumvent the issues seen when cross-sectional data fails to describe processes which occur 

on the individual level. The increase in studies which acquire such data appears to have 

outpaced the development of methods which can accommodate heterogeneity in the 
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processes under observation. While most researchers may acknowledge that the aggregate 

data do not represent any one given person in particular, results from these types of analysis 

are presented as evidencing a lawful finding, or a characteristic common to all (or at least the 

majority of) individuals. The problem becomes apparent in the current standard for using 

structural equation modeling (SEM) techniques to identify how variables relate across time 

with the aim of identifying human processes. Researchers still tend to aggregate this rich 

individual-level date in some manner, such as concatenation of the time series, and then 

apply the aggregated data to an SEM to identify relations among variables across time. For 

analysis of longitudinal data conducted from within the SEM framework, aggregation 

appears to be a normal practice seen in studies which acquire data via daily diaries (e.g., 

Dunkley, Zuroff, & Blankstein, 2003) and functional MRI (e.g., Zhuang, LaConte, Peltier, 

Zhang, & Hu, 2006). Part of the reason for aggregation in the daily diary context results from 

data series which are too short to conduct analysis solely on the individual level. With the 

increase in the use of daily diaries across longer spans and ecological momentary 

assessments which may provide longer time series for individuals, concatenating series to 

increase the number of data points will no longer be necessary.  

For any type of intensive longitudinal data, standard approaches for making group 

inferences within the SEM context may not meet the criteria for lawfulness because they do 

not necessitate that findings at the group level correspond to processes seen at the individual 

level. Statistically, the condition in which the results from analysis of data pooled across 

subjects differ from analysis conducted across an individual is termed, ñnonergodicityò 

(Molenaar & Campbell, 2009). Nonergodic describes processes which vary across 
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individuals (or within individuals and across time) to the extent that one aggregate model that 

describes the individuals may not be obtained.  

There are two primary ways that group-derived SEM models may fail to describe 

individuals in the case of nonergodicity: the beta weights and/or the presence of significant 

relations among variables may differ across individuals. Providing that all individuals have 

the same structure (defined as the pattern of relations among variables), the first case is easily 

remedied by running a confirmatory SEM informed by the group-level structure on each 

individual to acquire beta weights at the individual level. From this, further analysis may be 

done to see how the estimated beta weight of the relation among the two variables may in 

turn relate to more static individual-level traits, such as gender or education level. Random-

effects models can accommodate these types of variations. 

The second case is not so easily remedied. If different patterns of relations among 

variables exist across individuals, this may cause spurious relations on the aggregate level 

and result in a structure which fails to describe any individual. Alternatively, relations which 

exist for the majority may be absent from the model obtained on the aggregated group level 

(Molenaar, 2004). In either case, the resulting structure which, in the context of intensive 

longitudinal data, describes relations among variables over time at the group level may not 

describe any individual. The model thus fails to be useful in describing the human process 

under study.  

Researchers rarely investigate (or report) if the underlying processes suggested from 

relations obtained from aggregated data describe all, or even the majority, of individuals 

comprising the group. Within the field of neuroscience research, heterogeneity in processes 
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across individuals has recently received attention (Miller & van Horn, 2007; Sporns, 2011). 

Given the potential for group inferences from neuroscience to be implemented in clinical or 

other applied settings, the potential harm from acquiring erroneous findings at the individual 

level may be large. It is thus a scientific and public health imperative that researchers acquire 

estimates which truly can be said to be common to the individuals comprising the sample. 

Moreover, a recent paper asserted that aggregating data prior to model selection is one of six 

major problems in fMRI data analysis (Ramsey et al., 2010). For these reasons, functional 

MRI data is used in the present paper to illustrate the misleading inferences which may result 

when nonergodicity exists and data are aggregated. Still, the simulations and rationale 

contained within this paper generalize to any intensive longitudinal data on which SEMs are 

run on aggregated data.   

A few researchers have taken on the challenge of exploring the heterogeneity of 

information processing using fMRI data. In terms of spatial parametric maps, Miller et al. 

(2002) found that no individual showed activation in the pattern found on the group 

activation map. Even more noteworthy, a region found to be significant for the group was not 

present on any individualsô map. The authors suggest that variation from the group map is 

meaningful and not noise. This finding echoes a warning from Hu et al., (1997) that the fMRI 

blood-oxygenation level dependent (BOLD) signal becomes greatly distorted when averaged 

across individuals, citing both variability in amplitude and temporal response as causes. 

Miller and van Horn (2006) describe the stark differences seen among individuals in their 

connectivity maps (i.e., SEM structure of relations) generated for an episodic retrieval task. 

They conclude that, ñexclusive reliance on group analysis may be to the detriment of 

understanding the true underlying cognitive nature of brain activationsò (p.211, Miller & van 
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Horn, 2007). More recently, Hillary et al. (2011) found that, across 24 individuals, no two 

people had the same connectivity map of significant couplings during a working memory 

task. Moreover, there was no single coupling between two regions that all participants had. 

The presence of a ñlawfulò coupling that must exist for everyone was not obtained, although 

some autoregressive effects were found for the majority.   

It must be noted that not all evidence suggests that brain processes exhibit 

nonergodicity. James and colleagues (2009) provide evidence for similar couplings among 

regions across individuals. Using a measure derived from the root mean square error of 

approximation (RMSEA), a robust fit index recommended for use with SEM (Brown, 2006), 

they found that 85% of individuals fit the group-derived map. However, given the findings 

noted above, this finding may not be generalizable to all connectivity maps.   

The current paper demonstrates the misleading results found when aggregating across 

individual data prior to brain connectivity analysis within the SEM context. While it is 

understood that pooling data across replications (e.g., participants) may in some cases be a 

useful descriptive summary, obtaining common relations among variables in SEM cannot be 

done by first aggregating the data. The nonadditive nature of structurally different 

connectivity maps (i.e., visual depictions of relations among variables) which occur in 

heterogeneous populations causes this effect.  

For clarity and succinctness in presentation, one type of SEM, extended unified SEM 

(euSEM; Gates et al., 2011), is utilized. EuSEM captures contemporaneous and lagged 

(i.e.delayed) influences among multivariate time-dependent processes, which in the case of 

fMRI may be the BOLD activities of predefined regions of interest (ROIs) or nodes. 
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Additionally, euSEM estimates the effects of stimuli (such as experimental manipulation) on 

these processes as well as the time-varying influence that the stimuli may have on the 

relationships between pairs of processes. Please note that, while one model type (euSEM) 

will be used for demonstration in what follows, these issues are ubiquitous when looking at 

any type of SEM-based process analysis. We present first simulated data examples. Next, we 

offer empirical data analysis and explore how the euSEM conducted on aggregated data 

grossly misrepresents the individuals comprising the group data. Although previous 

researchers have demonstrated heterogeneity in SEM connectivity maps (Hillary et al., 2011; 

Miller & van Horn, 2006), none have directly compared individual-level results to those 

obtained at the group level. 

Formal Explication  

 Ergodicity requires that statistical models be invariant across subjects. Take an SEM 

solution for contemporaneous relations solved for each individual,  

ɖi(t) =Aiɖi (t) + zi(t) 

with ɖi(t) representing a p-variate timeseries for each i = 1,2,é N individuals, A i the (p,p)-

dimensioned matrix of contemporaneous relations among variables for the i-th individual, 

and zi(t) p-vectored series representing residual error process for that individual. For an 

aggregated data set, the model may be written as, 

ɖ
g
 (t) =A

g
ɖ

g
 (t) + z

g
 (t), 

with the ɖ
g
(t) being the p-variate aggregated data across individauls (e.g., concatenating 

individual mean-centered timeseries for N times T time points), A
g 

the (p,p)-dimenstion 

matrix of contemporaneous relations among ROIs in the aggregated data set ɖ
g
(t), and z

g 
the 
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residual process for the group.  

For the process to be ergodic across N individuals,  

A i  = A
g
 . 

That is, if the process is ergodic the individualsô pattern of relations seen in the A matrix 

would be invariant and equivalent to the results found in the group-derived matrix. In what 

follows, we argue that the heterogeneity in psychological processes preclude this from 

occurring.  

 Model selection procedures occur in varied ways, from comparing multiple models 

(e.g. Bayes nets), to identifying significant correlations, to Lagrange Multiplier test 

equivalents. When applied to heterogeneous data (often the case in psychology) which has 

been concatenated as though it were homogenous, the approaches select what best explains 

variance in the group average, which may differ from what is selected in single-subject 

analyses carried out at the individual level. In the latter single-subject analyses researchers 

will not be able to recover the group-derived solution from the individual solutions because 

solutions obtained at the two levels bear no relationship to each other. Averaging across 

participants is appropriate if the individual variation from the group model truly is noise. 

However, given the possibility that variation in human processes often is meaningful, and 

precisely what the researcher is after, approaches which dismiss the nuances seen in 

individuals blur findings. 

Materials and Methods 

Simulated Data 
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 Time series of length 200 (T=200) were simulated for two patterns of relations among 

variables. These patterns of relations will be referred to as ñstructuresò. A vector of inputs, 

which may reflect experimental manipulation, was created such that at each time point there 

was a .30 chance of occurring independent of other time points. This input vector was then 

convolved with a hemodynamic response function (Sarty, 2007) as is customary in fMRI 

analysis to account for the delayed response time seen in fMRI BOLD following neuronal 

excitation. Errors were generated to be Gaussian white noise with mean zero and unit 

variance. Each subgroup contained 50 simulated time series created according to the 

parameters displayed in Figure 2.1a and 2.1b. Please note that the structures shared a number 

of common couplings: Variable3 contemporaneously predicted Variable1 and Variable4, and 

each variable had an autoregressive effect. These commonalities could be considered lawful 

relations. The term ñvariableò is used here to make the simulation example more general; in 

the case of fMRI data analysis these represent predefined and spatially distributed regions of 

interest (ROIs) or nodes. The heterogeneity in the subgroups reflects findings from empirical 

data that within a sample, rarely will more than fifty percent of people have any given 

coupling among nodes in fMRI literature (e.g., Hillary et al., 2011). In fact, the simulated 

data example is likely much more homogeneous than typically seen in experimental data. 

Despite this imposed homogeneity, poor fits and a spurious coupling result from applying the 

standard aggregating technique.  
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Figure 2.1. A) and B): Structures and corresponding betas used to create subgroups. C) 

Structure and beta weights derived by averaging covariance matrices across individuals prior 

to analysis. D) Structure and beta weights derived by averaging precision matrices across 

individuals prior to analysis.  

 

Empirical Data 

 Data were obtained as part of a larger study which examined the effects of traumatic 

brain injury on working memory processes (Hillary et al., 2011). Briefly, all individuals 

performed one run of a 1-back serial letter recognition task followed by a 2-back serial letter 

recognition task during data acquisition by a 3T Siemens Magnetom Trio (Siemens, New 
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York City, USA). Individuals were presented letters one at a time every 2 seconds and must 

respond if the current letter is the same as the one seen in the previous frame (1-back) or two 

frames ago (2-back), depending on the condition. These tasks are thought to assess online 

verbal working memory (cf., Chang et al., 2001). We applied analysis to the last half of the 

2-back run to concentrate on a cognitively demanding task that had been partially learned in 

order to explore potential heterogeneity in a cognitive domain. 

Plan of analysis 

 As mentioned previously, the euSEM will be applied to the data samples. Based on 

the traditional SEM approach common in fMRI literature (McIntosh, 1994), the euSEM 

builds from the Kim and colleaguesô (2007) model which estimates both contemporaneous 

and lagged effects. The euSEM includes bilinear terms which offer estimates of the 

relationship among variables in the presence of experimentally manipulated stimuli in an 

event-related design (Gates et al., 2011). This arrives at unbiased estimates. The euSEM may 

be implemented in an entirely data-driven manner using an automatic search procedure 

which is similar to the criteria used in Granger causality and utilizes Lagrange Multiplier 

Tests (Gates et al., 2010).  

 We will then apply two current methods for making group inferences: averaging 

covariance matrices and averaging inverted covariance matrices. Averaging covariance 

matrices or equivalently concatenating individualsô time series represents the most common 

method for making group inferences. Centering each time series prior to concatenation will 

yield the same covariance matrix as averaging the covariance matrices (concatenation 

without such centering will yield a covariance matrix biased by mean level differences). 

From this, time series analysis reveals the temporal relationship among variables from data 
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on all individuals simultaneously. This would be appropriate if all individuals behaved 

similarly across time. However, as discussed above this assumption rarely can be maintained 

when studying human behavior. Much like other search algorithms, the method utilized by 

Lisrel identifies the connections or set of connections that best explain variance in the data. 

When averaging, a connection which is important to all individuals but ranges from negative 

to positive values may be washed out and appear to have no influence. Similarly, a 

connection which is around zero for the majority of individuals could be high in an averaged 

covariance matrix if there are a few outliers for whom this connection strength is strong. In 

the end, a map may appear which appropriately explains the variance in the aggregated data 

but does not describe relations found in individuals.  

 One potential solution to the above averaging problems is to average the inverted 

covariance (also called precision) matrices of individuals and then invert this averaged 

matrix. This approach considers that there is insecurity regarding the measurement of our 

subjects. The elements of precision matrices can be considered to be partial correlations 

among pairs of variables after accounting for the effect of all other variables (Marrelec et al., 

2006). Recent findings using simulated data suggest that partial correlation may outperform 

examination of full correlation matrices (Smith et al., 2011).  

Results 

Simulated Data 

Averaged covariance matrices.  

We begin the simulated demonstration of nonergodicity by acquiring the optimal 

model for the averaged covariance matrix using the automatic search procedure introduced in 
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Gates et al. (2010). The analysis arrived at a group model which was evaluated by fit indices 

which demonstrated reliability in simulation studies (Brown, 2006): root mean square error 

of approximation (RMSEA), non-normed fit index (NNFI), and comparative fit index (CFI). 

For RMSEA, values less than .05 indicate an excellent fit and for NNFI and CFI values 

greater than .95 indicate an excellent fit. The group-derived model had excellent fit according 

to these fit indices:  ɢ
2
=80.67 (df=61, p=.047), RMSEA = .04, NNFI=.99, and CFI=.99). 

Still, the group model did not describe any one individual time series (see Figure 2.1c). In 

particular, the spurious connection from Variable1 to Variable5 indicates that the beta matrix 

arrived at from the averaged covariance matrix does not equal the average of the individual 

matrices, which we know do not have this connection.  

We then applied the structure obtained from the group-derived model to each 

individual, allowing for parameters to be estimated only for those couplings found to be 

significant at the group level (i.e., constrained single-subject analyses). As expected, poor fits 

results. The averaged fit indices were as follows: ɢ
2
 = 262.10 (df=61, p<.001), RMSA = .13, 

NNFI = .85, and CFI = .93. None of the models were excellent fits according to the ɢ
2
, 

RMSEA,  or NNFI and only nine percent of the models had excellent fits according to the 

CFI.  

This approach is not without promise. Please note that the three ñlawfulò 

contemporaneous and all the autoregressive relations were recovered successfully. When 

looking just at the percentage of true positives, 73% were recovered. However, of great 

importance, the bilinear effect of Variable1 on Variable5 was found in the group model but 

does not exist for any of the individual data sets. Thus the structure is not lawful but rather 

misleading, and with empirical data of which the true structure is unknown the researcher 
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will be unable to tell from this type of analysis which paths are noise and which are 

meaningful. Clearly, relying solely on the averaged connectivity map would lead researchers 

to erroneous conclusions.  

Averaged precision matrices.  

As seen in Figure 2.1d, averaging the precision, or inverted covariance, matrices yielded a 

map that matched the structure used to create subgroup Aôs structure, improving the true 

positive rate to 75%. Still, poor fits resulted when the structure derived from the averaged 

data was applied to the individual data in constrained single-subject analysis, with none of 

the models meeting the criteria for excellence according to the ɢ
2 
or RMSEA. According to 

either the NNFI or CFI, only 46% of the models had excellent fits. Taken together, the 

precision matrix does not appear to meaningfully outperform the current technique of 

averaging.   

Individual models.   

The averaging approaches attempted above did not yield satisfactory group 

inferences. Indeed, the results from averaging covariance matrices failed to describe any of 

the simulated datasets, and therefore did not explain a process found in any individual. 

Averaging precision matrices fared better by identifying only those relations which exist for 

each individual, but still fell short of explaining enough variance at the individual level. This 

clearly demonstrates the need for analytical techniques that maintain the nuances in 

individuals. One remedy would be to allow for unique structures for each individual. The 

automatic search procedure leads to models with excellent fits if present, thus ensuring that 

each model optimally describes the individual when stationarity across time is assumed. 
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When the automatic search was conducted at the individual level, a vast improvement in 

recovery of true positives occurred (89%). Furthermore, excellent model fits were obtained 

across individuals with average fit indices of: ɢ
2
 = 120.37,  RMSA = .05, NNFI = .96, and 

CFI = .98. All individualsô models were excellent by at least two and good by at least four of 

the five criteria, with 75% excellent according to the chi-square test, 52% according to 

RMSEA, 67% according to NNFI, 100% according to SRMR, and 94% according to CFI.  

Empirical  Data 

Averaged covariance matrices. 

 Using an averaged covariance matrix (or equivalently concatenating centered time 

series) represents the most common method for making group inferences for any type of 

connectivity analysis. When fit to the euSEM using the automatic search, the resulting 

structure demonstrated excellent fit: ɢ
2
=61.54 (df=90, p=.99), RMSEA = .00, NNFI=1.00, 

and CFI=1.00. Figure 2.2 displays the structure obtained from the group averaged covariance 

matrix. The frequency of these couplings occurring for the individually-derived maps 

(explained below) is presented. While the group-derived map captures the autoregressive 

effects which were present in the majority of individuals, the contemporaneous effects did 

not describe the majority. When this structure was applied to the individual datasets allowing 

for estimation of only the parameters selected for the optimal group model, poor fits result. 

The average fit indices were as follows: ɢ
2 
= 524.04 (df=90, p<.001), RMSEA = .26, NNFI = 

.31, and CFI = .67.  Not one person had an excellent model fit when the model derived from 

the average was applied at the individual level. Indeed, no individual map had the structure 
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found in the group map. Thus the group model applied to no individual, and as described 

below the majority of individuals did not have the couplings found on the group level.  

Figure 2.2. Group model found from averaging the covariance matrices using empirical data. 

Percentages shown represent the percent of individual-derived maps which found that 

coupling to be significant.  Line width corresponds to beta weight obtained in group-derived 

map.  

 

Individual  models. 

 We fit each subjectsô covariance matrix to a euSEM model using the automatic search 

procedure to arrive at connectivity maps which best describe the relations among ROIs for 

each individual (see Hillary et al., 2011). By the nature of the search procedure, the resulting 

model must have excellent fits according to at least 3 of the 4 indices used throughout this 

paper. The results completely support the notion of brain processing being nonergodic across 
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individuals. Out of the twelve participants, no two had the same connectivity map. When 

looking at couplings on their own, aside from the autoregressive effects, only one coupling 

was found in over half of the participants: 58% of individuals had RACC regressed on 

LACC. Of note, this coupling did not appear in the averaged map. The remaining couplings 

were only present in 33% or fewer individuals (Figure 2.2). Much like the simulated data 

example, the inability of the group map to fit the individuals resulted from heterogeneity in 

the individuals comprising the group. 

Discussion 

 Nonergodicity in psychological processes, such as the lack of lawful relations among 

ROIs across participants in fMRI research, presents researchers with a difficult problem. 

Studies across domains within the social sciences are conducted with the aim of arriving at 

patterns of human processes that generalize to the population. However, as presented here, 

the differences in at least one type of processes, that of how spatially disparate brain regions 

relate during a task, can vary greatly among individuals.  The high degree of heterogeneity 

causes the results from analysis conducted on averaged datasets to lack reliability. If the 

averaged results fail to describe the individuals comprising the group, then they may fail to 

provide meaningful insight into how the process of interest occurs.  

 Monte Carlo simulations demonstrated that even when there is a high degree of 

homogeneity in the structure of relations for a process, spurious relations surface that exist 

for no individual. When the structure obtained from the averaged covariance matrix was 

applied to individuals, poor fits resulted on the majority of fit measures. This approach also 

failed to find a relation which existed for half of the population. The absence of this coupling 
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would erroneously lead researchers to believe that one of the variables was not used in the 

process. By contrast, the data were simulated such that the variable played a crucial role in 

brain processing during task input. These findings suggest that averaging might induce 

couplings which really do not exist for the individuals while neglecting to find relations 

which may be important for a large number of participants.  

The initially promising technique of inverting covariance matrices was also explored. 

While this approach did not induce spurious couplings, it also failed to find the critical 

coupling. The interpretation of the resulting map would thus erroneously lead researchers to 

believe that a variable was not included in the process under study when in reality it played a 

large role for half of the simulated subjects. Since the inversion technique did not 

substantially outperform the current averaging technique, this is not a recommended solution.  

Finally, the current averaging technique was applied to empirical fMRI data obtained 

on healthy control participants during a working memory task. The average connectivity map 

failed to fit any of the individual subjectsô data. The individual-derived connectivity maps 

displayed a high degree of heterogeneity: none of the twelve subjects had the same 

connectivity map. Neglecting to allow for individual connectivity maps potentially causes 

biased estimates of couplings by not accounting for couplings which may explain more 

variation.  

From these findings, we strongly suggest that researchers conduct connectivity map 

analysis on the individual level as this seems like the most reliable solution to date. However, 

this approach has shortcomings. First, individual SEMs may be sensitive to individual-level 

noise. A potential strength in a mindful group-approach for analysis would be its ability to 
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pick up signal, or an effect which exists for most individuals in a group, from individual 

noise. Second, it is difficult to make group inferences from a series of individual analyses. 

Efforts have been made in graph-theory and pattern recognition which may help inform 

researchers on how to make meaningful groups from a seemingly heterogeneous sample.  

    The implications of this suggestion may initially appear dire to the researcher 

wishing to make a statement about human brain processing. If everyone has a different 

connectivity map, then how can these maps inform science? Spinning the question to 

challenge the current viewpoint, one could with equal fervor ask how an averaged SEM 

structure of relations which fails to describe individuals improves the state of knowledge. 

The data demonstrations provided within this paper suggest that aggregating across 

individuals prior to analysis could actually hinder the progression of scientific understanding 

by providing researchers with misleading results that do not describe human brain processing 

in any individual.  

 As mentioned in the introduction, a few researchers currently conduct analysis with 

this heterogeneity in mind. Some who do look at differing beta or correlation weights among 

couplings while others look at the frequency of meaningful significant relations. The current 

article demonstrated problems which arise when attempting to aggregate data prior to 

conducing connectivity analysis. If many human psychological processes are truly 

heterogeneous, as suggested by the empirical work presented here and previous work, future 

work needs to move towards arriving at standards of data analytic approaches for making 

group inferences from a set of individual connectivity maps.  
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Chapter 3: Uncovering Unbiased Effective Connectivity Estimates Using Group Iterative 

Multiple Model Estimation (GIMME)  

 

The current approaches for considering functional MRI data identify temporal 

relations among spatially disparate regions of the brain to identify how the brain coordinates 

activity over time. Multiple methods for modeling these relations exist, with the findings 

usually referred to as ñconnectivity mapsò or ñbrain networksò. Each approach typically 

requires identifying regions of interest (ROIs) or nodes prior to estimating the connectivity 

map of relations that best describes the brain network.  The utility and robustness of these 

emerging methods continues to be tested. In particular, the ability of connectivity models to 

correctly recover connections which truly exist (i.e., true positives) while dismissing ones 

which do not has recently received much attention (Smith et al., 2011). False positives, or 

connections obtained via modeling which do not exist in the data, may occur for a myriad of 

reasons, one of which being the standard methods for aggregating across individuals (Gates, 

Molenaar, & Medaglia, under review; Ramsey, Hanson, Hanson, Halchenko, Poldrack, & 

Glymour, 2010). The work presented here builds upon current connectivity model techniques 

by outlining potential causes for inaccurate estimation, advances in modeling to circumvent 

these issues, and a novel estimation technique which enables unbiased model estimation for 

reliable group inferences and individual estimates. While the focus of this paper is on 

connectivity modeling of brain networks, the new estimation technique has a much wider 

potential domain of application involving analysis of multivariate psychological processes of 

any nature obtained in replicated time series designs.  

The present paper focuses on effective connectivity methods, which result in 

connectivity maps containing directed influence as opposed to correlations for representing 
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the relations among nodes (Friston & Stephan, 2007). Smith and colleaguesô (2011) seminal 

paper demonstrated that statistical biases occur in the majority of effective connectivity 

methods to date that are so severe, the broad approach of effective connectivity was not 

recommended in favor of functional connectivity methods. Indeed, after thoroughly 

comparing 38 methods of effective and functional connectivity approaches (several of which 

also have more general domains of application outside of the field of neuroscience), the 

effective connectivity approaches consistently made false positives at higher rates than the 

functional connectivity methods. When effective connectivity approaches did identify true 

relations among nodes the directionality was not correct more often than would be expected 

by chance (Smith et al., 2011).  

The present paper introduces a modeling approach, Group Iterative Multiple Model 

Estimation (GIMME), for making unbiased estimates of individual connectivity maps while 

enabling group inferences from a potentially heterogeneous sample of individuals. GIMME 

capitalizes on recent advances in connectivity mapping to surpass all of the effective 

connectivity methods tested by Smith et al (2011) in terms of recovering the directionality of 

relations and performs as well as the best functional connectivity approaches according to the 

criteria set by the authors. One, GIMME correctly identifies true connections at a far higher 

rate than false connections. Two, when connections are identified, GIMME appropriately 

recovers the direction of the relationship. That is, for two nodes with related activity GIMME 

appropriately finds the relationship and distinguishes which node explains more variation in 

another node. We demonstrate here that GIMME performs far superior than current 

approaches at both identifying true connections and the directionality of those connections by 



31 

 

accommodating known sources of bias which may be found in a myriad of research contexts 

in addition to fMRI.  

Sources of Bias in Estimation 

Concrete explanations for the Smith et al. (2011) findings offered direction for 

improving upon effective connectivity methods. First, the data were simulated to represent 

relations among neurons occurring at near infinitesimal rates, and the majority of effective 

connectivity approaches tested solely estimated lagged relations. This is in contrast to the 

correlation-based approaches (i.e., ñfunctional connectivityò; Friston & Stephan, 2007), of 

which all were modeling contemporaneous relationships and fared better than the effective 

connectivity approaches. Prior work has revealed that models which consider only lagged 

relations and do not consider contemporaneous effects result in connectivity maps which 

contain biased estimates and false positives (Gates, Molenaar, Hillary, Ram, & Rovine, 

2010). The Smith et al (2011) data simulations considered relations among nodes according 

to the Balloon model, a biophysical model of the functional relationship between neural 

activity and the hemodynamic response assessed in fMRI (Buxton, Wong, & Frank, 1998). 

The Balloon model is a system of differential equations, and as such the relations among 

nodes occur at near infinitesimal rates. Still, lagged effects on the order of seconds may occur 

in the data due to temporal smoothing and variability in hemodynamic response to neural 

activity across the brain (Friston, 2009). Thus, some of the false positives which occurred 

may have been effects found in the simulated data which resulted from smoothing and 

hemodynamic response variability (Smith et al., 2011), two confounds which do not appear 

to affect reliable identification of contemporaneous results. 
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A second, related, reason for the poor performance of effective connectivity methods 

revolves around the lack of contemporaneous models in the comparisons. Structural Equation 

Modeling (SEM; McIntosh, 1994), a popular approach for estimating effective 

contemporaneous effects with fMRI data, was not tested for practical reasons. At the time of 

submission, automatic search procedures were not in place. However, a powerful automatic 

search procedure has since been introduced (Gates et al., 2010), opening up the opportunity 

to investigate the ability of approaches within the SEM context to recover the true relations 

among nodes. 

Kim and colleagues (2007) introduced a solution to the aforementioned biases 

occurring when creating effective connectivity maps with fMRI data (Gates et al., 2010). 

Their model, the unified SEM, simultaneously estimates lagged and contemporaneous 

effects, and thus may immediately provide a solution for data obtained from resting-state 

(i.e., no task is presented) or block-design protocols. These experimental designs require that 

the participant sustain engagement in the activity across a length of time. Connectivity 

analysis on these data seeks to identify relations among nodes during these tasks. Smith et al. 

(2011) indicate that their data were simulated to emulate a block design. The Kim et al. 

(2007) approach has successfully recovered the parameters used to simulate data using the 

automatic search procedure mentioned above, which utilizes a Lagrange Multiplier Test 

(LMT) equivalent to identify parameters that, if freed, would optimally improve the model fit 

(Gates et al., 2010; Sörbom, 1989).  

An additional source of unreliable estimates in modeling remains. The connectivity 

models described in Smith et al. (2011) and Kim et al. (2007) are only optimal for resting-

state or block designs. Researchers have thus been restricted and tend to refrain from event-
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related analysis given the dearth of methods for analyzing such rich data. In contrast to 

resting-state or block designs, event-related designs seek to identify the influence of the 

presentation of experimentally manipulated stimuli, such as an odor, visual excitation, or 

cognitive problem, on brain activity. In addition to identifying relations among nodes, 

analysis of event-related designs should also include the effect of stimuli presentation on the 

network. The recently introduced extended unified SEM (euSEM) enables researchers to 

estimate connectivity maps that consider both lagged and contemporaneous relations, the 

effect of event-related experimental manipulation, and the bilinear effect of the experimental 

manipulation on the connections among nodes (Gates, Molenaar, Hillary, & Slobounov, 

2011).  The current option for event-related designs is the dynamic causal model, a model 

based on a system of differential equations which includes in it the Balloon model (Friston, 

2007). Unlike the dynamic causal model, which requires a priori specification, the euSEM 

connectivity map may be theory driven with paths identified prior to estimation in a 

confirmatory manner, entirely data driven to arrive at the connectivity map in an exploratory 

manner, or have some paths informed by theory  while allowing for others to be searched for 

in a semi-confirmatory approach.  

The methods by which subjects are aggregated across replications represent a final 

source of bias which has received scant attention and motivated the development of GIMME.  

Initial evidence suggests that the current methods for arriving at connectivity maps with 

fMRI data do not always arrive at a description of the majority of individuals comprising the 

group; indeed, it often describes no one person (Gates, Molenaar, & Medaglia, under review; 

Ramsey et al., 2010). Heterogeneity in individual brain processes while participating in a task 

surfaces in spatial parametric maps (i.e., maps indicating which areas of the brain increase in 
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activity across a task ; Miller et al., 2002) and connectivity maps (Hillary et al., 2011; Miller 

& van Horn, 2007). The general message appears to be that individuals may process 

information differently in terms of brain activity, and that methods need to accommodate 

these differences to make reliable group inferences.  

The current standards for effective connectivity mapping, by large, do not attend to 

heterogeneity.  Typically, researchers concatenate the time series of subjects such that one 

series occurs above the other, or equivalently (if the time series are first centered), average 

covariance matrices. In either case, the aggregated covariance matrices are then used in SEM 

approaches. This type of aggregation has intuitive appeal since it stems from the traditional 

approach of averaging across individuals to arrive at group norms. The difference is that 

when used to conduct connectivity modeling, spurious connections among nodes, or 

connections which do not exist in any subject, may be induced.  The heterogeneity seen in 

empirical data (Hillary et al., 2011; Miller, 2002; Miller & van Horn, 2007) introduces 

statistical biases since there is no one-to-one relationship between arriving at individual maps 

for each subject (which would be the optimal approach) and averaging across covariance 

matrices prior to conducting analysis. For this and other reasons, Ramsey and colleagues 

(2010) recently asserted that data should not be aggregated across individuals prior to model 

selection.  

A few promising innovations have been attempted to improve upon group modeling. 

Independent Component Analysis (ICA) approaches for exploring relations among nodes in 

fMRI data have seen the greatest progress in attempting to arrive at reliable group inferences. 

As outlined in Calhoun & Eichle (2004), group inferences with ICA approaches have been 

arrived at by combining ICA results across individuals (Calhoun, Adali, McGIrty, Pekar, 
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Watson, & Pearlson, 2001; Esposito et al., 2005), temporally concatenating time series much 

like in SEM approaches (Calhoun, Adali, Pearlson, & Pekar, 2001; Guo & Guiseppe, 2010; 

Schmithorst & Holland, 2004), spatially concatenating time series (Calhoun, Adali, Pearlson, 

& Pekar, 2001; Schmithorst & Holland, 2004), pre-averaging (Schmithorst & Holland, 

2004), and tensor decomposition (Beckman & Smith, 2005; Schmithorst & Holland, 2004).  

A major short-coming of these methods is that they assume homogeneity among individuals.  

Within the connectivity mapping framework, a two stage approach has been 

introduced by which individual maps are first obtained and then these maps are subjected to 

graphical clustering across individuals (van den Heuvel, Mandl, & Hulshoff Pol, 2008). This 

has only been applied to voxels and requires a large number of nodes to be meaningful. 

Recent advances in Greedy Equivalence Search (GES; Meek, 1997), an approach which 

identifies candidate paths to free up using a score function based on the maximum likelihood 

estimations, attempt to capitalize on commonalities among individuals to arrive at a group 

model (Ramsey et al., 2010). As a nonparametric approach, the method identifies 

connections which then could be entered into a traditional Markov model. Extensions of this 

approach were recently applied to the Smith et al. (2011) data sets and have surfaced as the 

first set of methods for identifying true connections as well as the directionality (Ramsey, 

Hanson, & Glymour, 2011). Although clearly a powerful procedure which offers a vast 

improvement upon connectivity models to date, a few caveats remain. First, the approaches 

described in Ramsey, Hanson, & Glymour (2011) are restricted for use in block-designs and 

cannot at this time accommodate event-related designs. Second, the authors admit that the 

approach is not optimal for connectivity maps whose structures are truly heterogeneous 
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across individuals. GIMME offers an improvement by accommodating data from block or 

event-related designs and accommodating heterogeneity.  

There are two primary ways in which group models may fail to best describe 

individuals in the context of effective connectivity mapping: the beta weights (parameters 

associated with the connections) vary across individuals and/or the network of couplings 

among nodes may differ in terms of presence or direction. Evidence exists for beta weights or 

connection strengths systematically varying across subjects (e.g., Kim et al., 2007). 

Emerging evidence suggests that the patterns (or ñstructuresò) of connectivity maps, defined 

by the presence and direction of couplings among nodes, may differ across individuals (e.g., 

Hillary et al., 2011). These two types of variation across individuals may be related.  For 

some individuals, alternative connections may better explain variance in the nodes. If these 

competing influences on node activity are accounted for, the individualôs beta estimates will 

be more accurate. A next step with respect to the current approaches would be to allow 

individuals to have unique connections within connectivity maps to accommodate possible 

heterogeneity across a sample. Only if the influences that other nodes might have on a target 

node are explicitly accounted for may unbiased estimates be obtained for the beta weight of 

interest.  

The utility of effective connectivity maps may improve in three ways if attention 

were given to differences occurring on the individual level.  First, estimating connections 

unique to the individual will decrease the bias in specific connections of interest when 

individuals are constrained to adhere to the group-derived map. This will ensure unbiased 

beta estimates since the influence of other nodes is also considered. A second, related, issue 

is that couplings may surface which carry great explanatory power for some individuals but 
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are washed out by averaging. Identifying these connections will offer insight into information 

processing for individuals who operate particularly well (or poorly) and perhaps enable 

researchers to identify multiple modes of information processing. Finally, and most 

importantly, conducting analyses which consider the individual reduces the likelihood of 

spurious couplings which do not exist in any individual data (Molenaar, 2004; Ramsey et al., 

2010). Thus the problem before researchers is two-fold: a method needs to provide 

appropriate group inferences and account for individual nuances.  

In summary, the current state of effective connectivity modeling is as follows. On the 

individual level, biases occurring because either lagged or contemporaneous effects, and not 

both, have been assuaged by the use of the uSEM (Kim et al., 2007; Gates et al., 2010). 

Automatic search procedures which can accommodate the Kim model have now been 

implemented (Gates et al., 2010). These recent advances will likely resolve the false positives 

and lack of direction specificity found in the methods used by Smith et al. (2011).  Designs 

which contain event-related experimental manipulation now have an analytic option, the 

euSEM (Gates et al., 2011), which may be implemented in a confirmatory, semi-

confirmatory, or entirely exploratory fashion. The final source of bias, which is spurious 

connections introduced by aggregating across groups, has yet to be resolved. The approach 

and accompanying program presented here, the Group Iterative Multiple Model Estimation 

(GIMME), attends to this final issue in effective connectivity mapping while addressing the 

model-specific sources of bias by implementing either the uSEM (see Kim et al., 2007) or 

euSEM (see Gates et al., 2011). Thus the primary goal of the present paper is to demonstrate 

a novel method for estimating connectivity maps from fMRI data (or in other contexts, 
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temporal relations among psychological and behavioral constructs) which enables reliable 

group inferences while allowing for individual nuances. 

Group Iterative Mixed Model Estimation (GIMME)  

 The logic behind GIMME follows directly from well-established principles.  First, 

GIMME identifies a group model (i.e., a connectivity map common to most individuals in 

the sample). The procedure begins by running the null (empty) model on each subjectôs data. 

This results in a matrix of Lagrange Multiplier Test (LMTs) equivalents, called 

ñmodification indicesò (Sºrbom, 1989) and as such, indicates the degree to which the model 

would improve if that parameter were freed. The parameter may be lagged or 

contemporaneous effects if the uSEM is being implemented for resting-state or block design 

data, and lagged, contemporaneous, experimental manipulation, or bilinear effects if the 

euSEM is implemented for event-related data. The GIMME program uses the LMTs to 

identify which parameter, if freed, would improve the fit of the common model to the 

greatest extent for a proportion of the total sample of subjects which exceeds an a priori 

chosen criterion. Towards this end each candidate parameter receives a count of how many 

individualsô models would significantly improve at the .01 level if the parameter were freed. 

The goal at this stage is to identify the group model, so it is necessary to require that its 

likelihood would significantly increase for the majority of individuals if that parameter were 

freed. The criterion for what defines the majority of individuals, referred to here as the 

ñsimilarity criterionò, is a priori chosen by the researcher. For the analysis within this paper, 

a similarity criterion informed by expectations of similar connections derived from empirical 

data (Hillary et al., 2011), was chosen to be 75%.  As a second check to ensure model 

improvement across most individual models, the count of individualsô LMTs which would 



39 

 

indicate a significant improvement must be greater than ɢ
2
(.99, N), where N = number of 

subjects. The program repeats these steps iteratively until the criterion is not met. Then, the 

model is pruned by eliminating those connections which, because of the freeing up of 

connections at later iterations, no longer obey the similarity criterion. 

 Second, GIMME identifies models on the individual level in a semi-confirmatory 

manner. The search for the optimal model on the individual level does not begin with the null 

(empty) model as for the group. Rather, the first iteration estimates the structure (i.e., pattern) 

of parameters found in the group search. Then, the automatic search procedure within Lisrel 

identifies iteratively which individual-specific parameter according to the modification 

indices would optimally improve the model for this individual. After identifying optimal 

models for each individual, parameters found in the group structure are evaluated again to 

ensure that they are significant for the percent of individuals indicated by the similarity 

criterion. If some became nonsignificant and this criterion is no longer met, the path is 

removed from the group structure and the individual-level search is conducted with the new 

group structure of betas as the null model. Finally, nonsignificant betas are removed at the 

individual level (providing they do not exist for the group structure) and a confirmatory 

model is fit. Figure 3.1 offers a schematic diagram of the process.  
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Figure 3.1. Schematic diagram of GIMME approach for estimating uSEMs and euSEMs.  

 

Formal Specification of GIMME  

GIMME may be applied to any connectivity mapping and has been tested for use with 

effective connectivity methods. We focus here on the euSEM (Gates et al., 2011) since it 

includes within it the uSEM (Kim et al., 2007) and thus offers a more general application. 

The euSEM estimated for a lag of one is defined as follows: 

 

where h(t), t=1,2,é,T, indicates the manifest p-variate timeseries of ROI activity (where t 

ranges across the sequence of registrations), A the (p,p)-dimension matrix of 

contemporaneous relations among ROIs, □ꜚ the (p,p)-dimension matrix of the associations 

among ROIs at a lag of m, u(t-j) a univariate input series at lag j (which may be expanded to 
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a vector of inputs) convolved with a hemodynamic response function which models the lag 

between neuronal activity and blood response known to exist in fMRI data (Sarty, 2007), ▒ a 

vector of input effects on ROIs, Űm,j the (p,p)-dimension matrix associated with the bilinear 

term h(t-m)u(t-j), and ɕ(t) a p-vector error series assumed to be a white noise process.  

 The euSEM as written above applies to a single multivariate time series, which may 

be an individualôs series of node activity when run on individual data or may be for a group 

series for data sets aggregated prior to analysis. GIMME further extends this modeling 

approach by identifying a connectivity map structure for the group as well as connections 

unique for each individual. The above general equation may be modified as follows to 

represent this by adding the subscript ñiò to indicate individual-specific parameters and the 

superscript ñgò to indicate parameters in the group sub-model:  

. 

An important characteristic of the parameter matrices A
g
, ꜚg

, g
, and Ű

g
 is that they would 

not be identical to those found in the first equation but rather indicate the mean parameter 

matrices for the group. Please note that for connections which do not exist in the group 

model the mean will likely be near zero since the parameter is not estimated for the majority. 

The distribution for parameters not identified in the group model will thus be bimodal rather 

than normal, with a spike at zero. This represents an important difference from random 
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effects models which induce a normal distribution on parameters under the assumption that 

one model can explain all individuals. Unlike random (or mixed) effects models, GIMME 

allows for the structures of the connectivity maps to be unique across individuals (i.e., 

person-specific).  

Simulations 

The ability of the GIMME program to correctly recover parameters used to create 

data was tested using simulated data from two sources: the Smith et al. (2011) data and in-

house event-related data. These sets of data offer comprehensive insight into the ability of 

GIMME to recover parameters under two scenarios. The Smith et al. (2011) data contains 

noise which is commonly seen in fMRI data. Using this data enables us to see how well 

GIMME can pick up signal from noise in a homogenous dataset. Furthermore, it offers a 

direct comparison to results obtained from other approaches which were discussed in Smith 

et al. (2011). The second set of data, which are in-house, are heterogeneous across 

individuals. These data provide a strict test for the GIMME to identify true positives in the 

presence of systematic deviations from the group.  

Smith et al. (2011) Data 

The reader is referred to Smith et al. (2011) for details regarding the simulation of the 

data sets obtained from Smith et al. (2011). In short, a block-design data set was simulated 

using the DCM forward model (Friston, Harrison, & Penny, 2003) which is based upon the 

nonlinear balloon model (Buxton et al., 1998). For ease in comparison, we selected 

simulation set number two (out of a possible 28 simulations) since it was deemed the most 

representative by Smith and colleagues and was given the most attention in their paper. This 

data set used a structure containing 10 nodes (ROIs) as seen in Figure 3.2, with 10 minutes of 
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data at a TR of 3 seconds for a total of 200 observations for each of the 50 simulated 

subjects.  

Figure 3.2. Connectivity map structure for Smith et al. (2011) simulations. 

 

 None of the effective connectivity methods tested by Smith et al. (2011) did well in 

terms of recovering the presence of a connection or the directionality of a connection. Those 

that did well on one construct fared poorly on the other. For instance, most of the effective 

connectivity methods correctly identified connections above the 95th percentile of the false 

positives (termed, ñc-sensitivityò) about 50% of the time. The few approaches that did better 

were entirely unable to correctly identify directionality above what would be expected by 

chance. The methods which performed best in terms of identifying correct directionality of 

relations only did so at 65%. However, these methods did extremely poorly at correctly 

identifying true connections over false connections, with a c-sensitivity of about 20%.  

 When the same data were fit to a uSEM using GIMME excellent fits were obtained 

according to indices previously found to demonstrate reliability in simulation studies (Brown, 

2006): 100% excellent according to chi-square, comparative fit index (CFI), and root mean 

square error of approximation (RMSEA), with 78% excellent according to non-normed fit 

index (NNFI) and 74% excellent for standardized root mean square residual (SRMR). More 
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importantly, the parameters were recovered excellently by all criteria. For one, the 

distribution of t-scores for the true positives for each subject was substantially higher than 

seen for false positives (Figure 3.3).  

Figure 3.3. Violin plots of true and false positives distributions. 

 

The distribution of the estimates for false positives was around zero, which is what 

one would expect. This pattern is markedly different, and better, than that seen for the 

majority of effective connectivity methods evaluated in Smith et al (p. 882; 2011). In terms 

of c-sensitivity, the GIMME implementation of the uSEM correctly identified 100% of the 

true connections. This is higher than the best approaches out of the 38 methods tested by 

Smith et al. (2011).  

Second, in addition to identifying the presence of a connection, uSEM implemented 

via GIMME correctly identified the direction of contemporaneous connections 91% of the 

time according to the Smith et al. (2011) direction sensitivity criterion. Identifying 

directionality 91% of the time offers a vast improvement upon all of the other methods (the 

best of which achieved correct directionality 65% of the time). Figure 3.4 displays, in light 
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blue, the distribution of t-value differences of true direction minus false direction for each 

relation that truly exists. Values greater than zero indicate correct identification.  

Figure 3.4. Distribution of t-value differences of true direction minus false direction and 

percent correct.  

In -house Data  

Next, GIMME was applied to event-related data created to better replicate the 

heterogeneity seen when examining individual connectivity maps. Series of length 200 

(T=200) were simulated for two patterns of relations among nodes (ROIs), which will be 

referred to as ñstructuresò. A vector of inputs, which may reflect experimental manipulation, 

was created such that at each time point there was a .3 chance of occurring independent of 

other time points. This input vector was then convolved with a hemodynamic response 

function (Sarty, 2007). Errors were generated to be Gaussian white noise with mean zero and 

unit variance. Each subgroup contained 50 simulated time series created according to the 

parameters displayed in Figure 3.5. The inclusion of an input vector and bilinear effects made 

the euSEM an optimal modeling method. 
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Figure 3.5. Connectivity map structures for in-house simulations.  

 

 

Please note that the structures shared a number of common couplings: ROI3 

contemporaneously predicted ROI1 and ROI4, and each ROI had an autoregressive effect. 

These commonalities could be considered lawful relations. The differences in couplings 

imposed on the groups reflects findings from empirical data that within a sample, rarely will 

more than fifty percent of people have any given coupling (e.g., Hillary et al., 2011). In fact, 

the simulated data example is likely much more homogeneous than typically seen in 

experimental data. Despite this imposed homogeneity, poor fits and spurious couplings result 

from applying the standard aggregating technique (Gates, Molenaar, & Medaglia, under 

review). 
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When the euSEMs for the subjects were modeled using GIMME, a valid group 

structure emerged. The structure obtained at the group level contained only those connections 

which truly existed in all of the subjects. In this case those were ROI3 contemporaneously 

predicting ROI1 and ROI4, and each ROI having an autoregressive effect. The effects which 

only existed for subgroups 1 and 2 emerged for the vast majority of the subjects during the 

individual semi-confirmatory search procedure. Overall, the final models had excellent fits 

with all individuals meeting the criteria for excellence on at least 3 of 4 fit indices (25% were 

excellent according to Chi-Square tests, 100% according to SRMR and CFI, and 97% 

according to NNFI).  Further supporting the efficacy of GIMME in exploratory modeling, 

97% of the recovered parameters were true directed positives, meaning that they were 

connections between nodes in the simulated data and were in the right direction. This is an 

improvement upon running individual-level analysis (see chapter 2), in which only 89% of 

the true parameters were recovered across replications, suggesting that the group-approach 

implemented with GIMME helps to pick up signal from individual-level noise. In terms of c-

sensitivity, GIMME again performed excellently, with 98% success rate in identifying true 

relations (of either direction) which existed. In terms of d-accuracy, GIMME identified 

which direction better explained the relation among all true relations at a 99% rate.  

Discussion 

 Obtaining reliable connectivity maps is a large responsibility for fMRI researchers. 

Results from fMRI studies are increasingly used to identify meaningful deviations from 

normal brain processing, such as to identify ADHD profiles (e.g., Fair et al., 2010) and 

impairment from traumatic brain injury (Hillary et al. 2011). The inferences may be then 

used in a clinical setting to make recommendations for patients. Thus it is a scientific and 
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public health imperative that the maps be accurate. For this reason we present a method, 

GIMME, which appropriately identifies relations which truly exist for the majority of 

individuals in the group while allowing for individual nuances. We demonstrate GIMMEôs 

ability to pick out connectivity maps across individuals in the presence of noise often seen in 

fMRI research and, more importantly, the ability to recover true parameters when the sample 

contains individuals with heterogeneous maps.  

Smith et al.ôs (2011) shocking demonstration that the majority of methods are unable 

to obtain reliable maps caused a stir in the fMRI community. After testing 38 methods, the 

conclusion was that correlation-based methods far outperform effective connectivity 

approaches. SEM approaches were not included in this comparison. We applied the GIMME 

with the unified SEM (Kim et al., 2007) to the same data created by Smith et al. (2011) to 

test the competing approaches. GIMME outperformed even the best correlation methods. 

That is, GIMME obtained a higher rate of true-positives than even the best modeling 

approaches tested by Smith et al. (2011). Two reasons exist for this vast improvement upon 

other methods. One, by implementing the uSEM we accounted for lagged relations as well as 

contemporaneous. Biological processes such as those found in fMRI data often contain lags, 

and the neuro-hemodynamic model used to create the data would have induced these. Two, 

the model selection approach for the group level appears to pick out signal from noise. By 

selecting those connections which would optimally improve the majority of individualôs 

models, GIMME maximizes on similarities across individuals.  

Given the high degree of heterogeneity seen across individuals in fMRI studies it was 

important to ensure that GIMME was able to appropriately recover connectivity maps in the 

presence of heterogeneity. Our test indicates that GIMME appropriately identifies the 
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structure which describes the majority of individuals in the group. Moreover, it recovers 

those connections which exist only for the individual. In the end we were able to identify a 

group structure from which to make inferences.  

The reliability of results found with GIMME have huge implications. For one, 

researchers now have a powerful tool with which to examine changes over time in 

individuals. This may be useful when examining recovery from a concussion, or 

development across the lifespan. Since GIMME produces maps which are more reliable than 

other methods, changes across time will be true changes. Second, researchers have a tool for 

making group inferences. GIMME provides a structure which describes the majority of 

individuals comprising the group even after considering the individual nuances. Unlike all 

other methods, there is no assumption that a group model even exists. If a population is so 

heterogeneous that no similar connection can be inferred for the group, then no connections 

will be freed in the first step and all of the maps will be derived on the individual model. This 

level of flexibility ensures that group inferences will be reliable and not arrived at from 

statistical artifact.  

GIMME represents a first, albeit powerful, step for arriving at group inferences. A 

next step for the field to take would be to identify subgroups within a sample. From the 

resulting network maps, researchers could identify if they differ in a meaningful way, such as 

relating to diagnoses or performance measures, or simply represent multiple ways in which 

the brain processes information. Another necessary step needed in fMRI research would be to 

allow for time-varying parameters. This would better accommodate the evolution of 

processes throughout the experimental protocol, which may be particularly important when 

effects such as learning, habituation, or fatigue may be present. By offering one of the most 
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reliable methods for arriving at group inferences, GIMME provides a solid foundation for 

these extensions while offering a practical method for acquiring individual network maps that 

surpasses most effective connectivity map approaches to date. GIMME meets the criteria 

necessary for use in fMRI data analysis even when tested under strict conditions. Moreover, 

GIMME may be applied to any data acquired across time within individuals for which 

researchers wish to identify the lead-lag and contemporaneous relations in psychological and 

behavioral processes. 
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Chapter 4: Testing the GIMME 

 

Findings from Smith and colleaguesô (2011) recent paper suggest that the broad 

category of effective connectivity methods, which estimates the directed influence among 

predefined regions of interest (ROIs) or nodes (Friston & Stephan, 2007), offer the least 

reliable approaches for detecting true connections among nodes. Their study tested 38 

different methodsô ability to recover connectivity maps on 28 simulated data sets which 

varied in degree of model complexity, experimental protocol, and potential confounds. There 

were no methods which consistently identified true connections as well as the direction of 

influence. The general recommendation was to avoid lagged approaches (such as Granger 

causality) and rely on functional connectivity maps, defined as those which identify solely 

relations among nodes and not directionality (Friston & Stephan, 2007), to identify true 

connectivity maps. The authors even caution against using the best effective connectivity 

approach for identifying causal relations, Bayes nets approaches, because of the low ability 

to identify true connections and low reliability across diverse conditions. The paper did not 

test SEM approaches because the availability of an automatic search procedure (Gates et al., 

2010) was not widely known at the time of submission of the paper. The simulated data offer 

a unique opportunity to test a novel estimation approach which works within an SEM 

framework, group iterative multiple model estimation (GIMME), under diverse situations. If 

GIMME consistently identifies true connections at the individual level as well as the 

direction, it will be the only connectivity model falling under the class of ñeffective 

connectivity mapsò to reliably recover parameters across conditions. 
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Chapter three demonstrated the ability of euSEM implemented via GIMME to arrive 

at reliable individual-level estimates while obtaining valid group inferences. Indeed, in terms 

of both the ability to identify a true positive relative to false positives and the true direction 

of the relation, the GIMME approach worked far better than any of the effective connectivity 

mapping methods used in Smith (2011). While it seems clear this approach works for the 

typical data set seen in the best fMRI study scenarios, it is unknown how well GIMME will 

work with data simulated to replicate a range of relationships among brain regions, such as 

when there are greater or fewer nodes. Additionally, it remains to be seen how robust the 

method is in the case of issues specific to fMRI studies such as nonstationarity or shared 

neuronal input, varying time series (TR) lengths, suboptimal experimental protocols, 

increased noise, and cyclical neuronal maps. The data provided by Smith and colleagues 

(2011), thenceforth referred to as the ñSmith dataò, offer a rich opportunity to test GIMME 

for a number of conditions which may occur in fMRI data. The results will test the reliability 

of GIMME in comparison to a multitude of other methods and elucidate which assumptions 

must be met when using the GIMME.  

In addition to identifying which models worked best with fMRI data, much was 

learned from Smith and colleagues (2011) regarding the assumptions which must be met for 

models. First, since correlation methods worked optimally and surpassed methods which 

utilize higher order statistics, it appears as though the nonlinearities seen in neuronal data are 

not an issue at the BOLD level. That is, the data obtained from fMRI studies works well for 

methods based on second-order statistics, such as the SEM, which assume normal 

distributions. Second, due to the temporal relations among neurons being very fast (on the 

order of milliseconds) and the time series obtained from fMRI studies being much slower (on 
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the order of seconds), the true neuronal relations across time were best quantified with 

contemporaneous approaches as opposed to lagged-based ones. However, spurious relations 

among the BOLD signal in empirical data may be induced from true neuronal relations 

making it necessary to statistically control for lagged effects in BOLD data to obtain reliable 

contemporaneous connections (Gates et al., 2010; Kim et al., 2007).  Consistent with these 

inferences, the relations recovered from the Smith data in chapter 3 surfaced in the 

contemporaneous matrix of effects among ROIs.  

Methods 

Simulated Data 

The reader is referred to Smith et al. (2011) for details regarding the simulation 

procedures. Briefly, 28 block-design data sets containing 50 replications (which may be 

considered participants or repetitions) were simulated using the dynamic causal modeling 

forward model (Friston, Harrison, & Penny, 2003) which is based upon the nonlinear balloon 

model (Buxton et al., 1998). The inputs representing neural innovations were modeled using 

a Poison process indicating the binary switching from an ñonò to an ñoffò state. , These may 

be considered to be neuronal signal or noise equivalently and ultimately produce vascular 

dynamics witnessed via the BOLD signal. Importantly, Smith et al. (2011) reduced the neural 

lag between timeseries from an unrealistic 1 second lapse set as the default to a 50 

millisecond delay in the relations among nodes for all but one of the datasets. The change in 

simulated BOLD signal, about 4%, matched that seen in a typical 3T study. The data seem to 

appropriately replicate that seen in empirical fMRI studies. 
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Each set had slightly different parameters used in the simulations that were informed 

by potential confounds, noise, theory, and experimental protocols that may occur in empirical 

fMRI studies. The datasets simulated relations among 5, 10, 15, or 50 nodes (see Figure 4.1).  

Figure 4.1. Structures of relations among nodes used to create data.  
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The simulation for 50 nodes (simulation 4) was not included in the present study 

since it is too computationally taxing for GIMME implementation at this time. Another 

simulation, number 16, was also not included in the present investigation because the 

structure of the relations among ROIs was not included in the Smith et al., (2011) paper. In 

terms of confounds related to experimental design, session length varied from 2.5 to 250 

minutes (which is unrealistic in a true fMRI study) and TR length from .25 to 3 seconds. 

Post-processing choices included having the number of nodes range from 5 to 50 and poor 

ROI selection. The latter reflected ROI selection based on atlases in which the ROI was not 

appropriate or the ROI was not distinct from other ROIs in the connectivity map. The data 

sets also contained differences that are outside the control of the researcher. Some reflected 

known differences in the hemodynamic-neural relationship across brain regions, such as 

shared inputs from one neuron into multiple nodesô BOLD signal, different neural lag times, 

nonstationary activity, and variations in HRF delay. Finally, some datasets reflected true 

differences in the overall connectivity map such as reciprocal connections (i.e., two nodes 

influence each other), cyclical connections (i.e., loop), having more connections, stronger 

connections, global mean noise, and having only one input source into the connectivity map.  

Group Iterative Multiple Model Estimation (GIMME)  

GIMME constitutes an iterative estimation approach for arriving first at a group 

model which explains the greatest amount of variance across individual subjects. In a second 

step, GIMME frees parameters which may be specific to each individual. Both steps utilize 

Lagrange Multiplier Test equivalents to identify which parameter, if freed, would optimally 

improve model fits. In this way valid group inferences may be made regarding relations 

which truly define the individuals comprising the group while attending to individual 
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nuances. Attending to these influences decrease statistical bias which may occur by 

neglecting to include these factors. Additionally, some argument exists surrounding the value  

of individual nuances in terms of these being noise (James et al, 2009) versus meaningful 

(Miller et al., 2002). Estimating the degree to which populations are heterogeneous, and how 

this may relate to behavioral indices such as performance, may offer great insight into this 

debate.  

GIMME can be employed for any model within the general SEM framework. Recent 

advances in the SEM approaches specific to fMRI-related concerns include the addition of 

lags to the traditional SEM. First introduced by Kim and colleagues (2007) as the unified 

SEM (uSEM), the model has been recently been extended to enable estimation of effects 

related to even-related stimuli (euSEM; Gates et al., 2011). Both models may be 

implemented via GIMME. For the Smith data, the uSEM is sufficient since there are no 

explicit experimental stimuli. The uSEM reduced to a lag of one and estimated by means of 

GIMME (see chapter 3 for details) is defined as follows:  

–ὸ ὃ ὃ – ‰ȟ ‰ –ὸ ρ ‒ὸ 

where Ɫ░ὸ indicates the p-variate node time series at time t = 1,2, éT (where t ranges 

across the sequence of registrations), A the (p,p)-dimension matrix of contemporaneous 

relations among ROIs, ꜚ  the (p,p)-dimension matrix of lag 1 associations, and ɕ a p-variate 

series of error assumed to be a white noise process. The superscript ógô indicates the mean 

parameter estimates for that individualôs subgroup (or entire group, if there is only one 

group) and óiô indicates the deviation from the subgroup (or group) mean for that individual. 
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GIMME can be employed in a semi-confirmatory manner to accommodate theory-

driven specifications of connections from which the researcher wishes to start the iterative 

search for more connections. Since autoregressive relations are induced in BOLD data due to 

smoothing, one general theory-driven start to identifying the optimal connectivity model 

would be to free the diagonal of the  ꜚmatrix which represents the relations of nodes at time 

with themselves at a previous time point (in this case, the previous scan). Accounting for true 

autoregressive relations may improve model selection by ensuring unbiased estimates of 

effects at each iteration, which in turn relate to Lagrange Multiplier Test approximations. To 

test how this assumption assists with identifying the true parameters, each model for each 

simulation was first estimated with GIMME in an entirely exploratory manner. Next, 

GIMME was applied to each simulation set in a semi-confirmatory manner by first freeing 

the diagonal of the ꜚmatrix (i.e. the autoregressive elements). The second approach will be 

referred to as, ñsemi-confirmatory ARò. Exploratory results will always be given below, with 

the semi-confirmatory AR results reported when they differ from the exploratory findings.  

Performance Measures 

 The measures evaluating how well uSEM implemented via GIMME recovers the true 

parameters used to create the data come straight from Smith and colleagues (2011). The first, 

c-sensitivity, quantifies how sensitive the method is for identifying the presence of a 

connection. It is the percentage of true positives which have values that are above the 95 

percentile distribution of false positives. The second, d-accuracy, looks only at true 

connections and assesses correct identification of the directionality by looking at the 

percentage of estimates which are in the correct direction. The use of these measures allow 

for immediate comparison to the methods evaluated in Smith and colleagues (2011). While  
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fit indices are typically included when using SEM based approaches, the use of such in the 

present context is redundant since the criteria for model selection requires that the model fit 

the data well according to commonly used criteria (see chapter 3 and Gates et al., 2010).  

Results 

Basic Simulation Results  

Figure 5.2 displays the percent accuracies according to c-sensitivity and d-accuracy 

across all simulations included here and Table 5.1 lists the simulations and accompanying 

parameter settings. The details of the parameter settings are described below with the 

relevant results. A look at GIMMEôs ability to successfully recover parameters in protocols 

and situations which may be typical in fMRI studies offers a baseline from which to compare 

the approachôs efficacy in suboptimal and extreme conditions. Simulation 2 (discussed in 

Chapter 3) received the most attention in Smith et al. (2011). Their findings revealed that 

partial correlation, ICOV, and Bayes net methods performed the best in terms of detecting 

true connections with c-sensitivities above 90%.  Lagged-based methods performed poorly 

(less than 20% accuracy). GIMME performed exceptionally well in terms of detecting true 

connections: 100% for c-sensitivity. This means that GIMME identified all true relations 

among ROIs above the 95-percentile distribution of false relations. None of the methods 

applied by Smith and colleagues did well with regard to correctly identifying directionality 

for those directions which truly existed. Patelôs Ű far outperformed the rest by reaching nearly 

65% d-accuracy, but it should be noted that this method only correctly identified 20% of true 

positives using the c-sensitivity criteria and thus is not a stand-alone approach.  GIMME had 
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a d-accuracy of 91%, making it the only approach that achieved high accuracy in 

directionality. 

Table 5.1. Parameters for data simulations.  

 

Thus GIMME is the only approach that successfully identified relations as well as the 

direction of the influence. Taken together, GIMME correctly identified the true directed 

connection 91% of the time, whereas the best effective connectivity approach considered by 

Smith and colleagues correctly identified 45-52% of the true directed connections.   
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Figure 5.2. Percent accurate according a) c-sensitivity and b) d-accuracy. ñar0ò indicates the 

fully automatic search routine and ñar1ò indicates the semi-confirmatory AR (lag 1) 

approach. 

 




























