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ABSTRACT 

Understanding hydrologic model behavior for different model structures (lumped vs. 

distributed) and under different data scenarios (gauged vs. ungauged) is critical to 

effectively take advantage of advancements in models and data sources and to 

appropriately apply models for specific circumstances. This dissertation presents multiple 

studies that evaluate hydrologic model behavior for specific cases in hydrologic 

forecasting, with an ultimate objective of identifying appropriate models and approaches 

for less-developed, data-sparse regions. The cases evaluated include (1) a lumped, 

conceptual model in gauged watersheds across a hydroclimatic gradient, (2) a distributed, 

conceptual model in a gauged watershed, and (3) a lumped, parsimonious model in 

ungauged watersheds. For the first case, a comprehensive, global sensitivity analysis is 

performed to investigate how model behavior varies across watersheds with different 

hydroclimatic characteristics. The results of the sensitivity analysis are then used to 

determine if the parametric dimensionality of the model can be reduced for multi-

objective optimization, without significantly impacting model performance. For the 

second case, a series of synthetic rainfall events are used to investigate spatially-varying 

model behavior across the domain of a distributed model. Lastly, for the third case, an 

approach for ungauged hydrologic prediction is tested for a region of southern Africa and 

changes in the modeled streamflow response due to projections of climate change are 

assessed. Overall findings demonstrate that hydrologic model behavior is a dynamic 

variable that varies across watersheds, time periods, and the model domain (in the 

distributed case). Results also highlight the limitations of existing methods and need for 

new dynamic methods for model identification that take patterns of model behavior into 

account for both lumped and distributed modeling. And finally, results for the ungauged 

case extend the modeling approach to less-developed countries and project that annual 

runoff for the study area will increase in the future, thereby highlighting the importance 

of such studies for water resources and flood management. 
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PREFACE 

The research presented in this dissertation represents a manifestation of questions that I 
began to formulate prior to pursuing a PhD, while working in South Africa and other 
developing countries. During that time, I was regularly confronted with challenges of 
lacking data, both in quality and quantity, as well as a lacking confidence in the 
sustainability and the underlying hydrologic theory of the technology I was 
implementing. At the time, though, my sources for guidance and depth of understanding 
were limited. My decision to return to graduate school was largely prompted by a desire 
to increase my understanding of hydrologic processes, variability, models, and model 
evaluation techniques. With that knowledge, I felt I could better recognize (or develop) 
appropriate approaches to hydrologic modeling in different regions of the world that 
effectively take into account data restrictions and hydroclimatic variability.   
 Through work on the studies presented in this dissertation, I steadily progressed 
toward this goal. In the process, I also came to realize how large the gap is between 
research and practice in hydrologic modeling. In research, there have been significant 
advances in our understanding of processes at various scales, sources and implications of 
uncertainty, use of remotely sensed data, methods for parameter estimation, etc. However 
these advances take a very long time to filter down into operational use, if they get there 
at all. And conversely, the issues faced in an operational environment do not always filter 
up into modeling approaches designed in a research setting. It is my intention throughout 
my career to work not only towards advancing the science and application of hydrologic 
modeling in less-developed as well as developed regions, but also towards closing the 
gap and opening greater lines of communication between research and practice. This 
dissertation is a big first step in that direction. 
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1.1 BACKGROUND 
 
Hydrologic forecasts are a vital part of planning and mitigation strategies for the 

protection of human life and the ecological health of our planet. On multi-year time-

scales, water resources management depends on forecasts to indicate possible changes in 

long-term water availability and to ensure sustainable use of our water supply. On 

monthly or annual time scales, forecasts provide crucial information for drought 

assessment and guidance of mitigation efforts. And on daily time-scales, emergency 

management organizations rely on hydrologic forecasts for effective flood warning and 

for the preparation of response personnel and resources. 

 In order to generate hydrologic forecasts, mathematical models of the natural 

processes controlling movement and storage of moisture in a watershed are needed. The 

approaches and tools used for watershed modeling vary widely and have evolved over the 

last several decades [Singh and Woolhiser, 2002]. Before the arrival of computers, 

models began as simple representations of individual components of the hydrologic 

cycle. Two key examples are the unit hydrograph and the rational formula, both 

developed by Dooge [1957; 1959], which simulate flow routing and excess rainfall, 

respectively. These methods, though still often used, evolved into more complete 

representations of the hydrologic cycle as digital computers became more commonly 

available. The Stanford Watershed Model (SWM), developed in the 1960s [Crawford 

and Linsley, 1966], marked the first of such models representing the complete cycle and 

was also the first to allow for continuous (versus single-event) simulation of the 

hydrologic system (a requirement for hydrologic forecasting). The SWM formed the 

basis for the Sacramento Soil Moisture Accounting Model (SAC-SMA) [Burnash et al., 
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1973], which is still widely used and is currently the primary operational forecasting 

model in the United States. Up to this point in the evolution of models, hydrologic 

processes were represented conceptually, rather than explicitly by governing laws of 

physics. In the 1980s, the first physically-based watershed model emerged with the 

development of the Système Hydrologique Européen (SHE) [Abbott et al., 1986]. At the 

time of initial development, however, physically-based models were severely limited by 

computing power and therefore not widely applied. This constraint has dramatically 

decreased over time, allowing for continued development of these models and an increase 

in their use and applicability. Since the 1980s, development and improvement of 

watershed models have increased exponentially. The resulting range of available models 

varies widely in complexity, data requirements, and modeling philosophy [Singh and 

Frevert, 2006]. 

Today we stand at cross-roads in the evolution of watershed models. Lack of 

computational constraints (relative to the past) combined with a multitude of existing 

models make the selection of an appropriate model for hydrologic forecasting (or other 

application) a formidable task. Compounding the issue, we live in a time when climate 

change threatens to further stress our water resources and increase the frequency of 

extreme events [Milly et al., 2002; Milly et al., 2005; Kundzewicz et al., 2008]. The need 

for forecasts therefore in all parts of the world and under many different circumstances is 

growing. If the science underlying hydrologic forecasting is to advance in a direction that 

will confront such issues, the research community must proceed not only towards 

developing new models and approaches, but also towards increasing our understanding of 

the strengths, weaknesses, and most appropriate applications of existing models for the 
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variety of hydroclimatic, data availability, and economic situations that exist across this 

planet. 

 

1.2 CURRENT DRIVERS IN HYDROLOGIC FORECASTING RESEARCH 

The research questions that are currently at the forefront of scientific discussion related to 

hydrologic forecasting reflect an effort within the community to more effectively and 

broadly apply hydrologic models to better address today's societal needs. Wagener et al. 

[in review], identified the following three primary (but inter-related) drivers that 

encompass the impetus behind much recent and ongoing research: 

1) The need to understand, estimate, and effectively communicate uncertainty in 

hydrologic predictions [e.g., McIntyre et al., 2003; Wagener and Gupta, 

2005]. 

2) The need to build hydrologic ‘models of everywhere’ – i.e., to develop the 

capacity to generate forecasts at any location, including interior points in a 

watershed (i.e., above a streamflow gauge), as well as in ungauged or poorly-

gauged basins [e.g., Sivapalan et al., 2003; Beven, 2007]. 

3) The need to predict the impacts of environmental change (such as climate and 

land-use change) on hydrology and water resources [e.g., Allen and Ingram, 

2002; Porporato et al., 2004; Milly et al., 2005; Poff et al., 2006]. 

 The analysis of uncertainty in model predictions (Driver 1) is necessary both to 

recognize the current limitations of our science and to provide decision makers with 

better, more complete information. It also represents one way of evaluating how 

appropriate a model is for a particular application or situation. Computational 

  4 



advancements have significantly facilitated recent progress in uncertainty analysis by 

making it possible to sample from high dimensional spaces and relax some very limiting 

assumptions that were previously necessary [McIntyre et al., 2002]. Specific issues 

remaining include the lack of an approach in which all sources of uncertainty can be 

considered simultaneously (data, model structure, model states, parameter values, etc.), 

our limited understanding of and ways to consider model structural uncertainty, the lack 

of uncertainty studies for complex models and inadequate methods to clearly 

communicate uncertainty to decision makers. 

 The need for hydrologic ‘models of everywhere’ (Driver 2) stems in part from the 

growing recognition of the value in hydrologic predictions in all locations and on smaller 

spatial scales. Two major topics fall under this driver – predictions at interior points in 

gauged watersheds (i.e., locations upstream of the outlet point where data is available) 

and predictions for ungauged or poorly-gauged watersheds (i.e., where the quantity 

and/or quality of data is inadequate or entirely lacking). These two topics differ 

somewhat in their relevant approaches and issues. Both, however, are limited by the 

problem of identifying appropriate model parameters. Forecasts at interior locations in 

gauged watersheds are generated by discretizing the area into smaller model elements 

(e.g., sub-basins, grid elements, etc.). The result is a distributed (versus lumped) model 

configuration. In general to achieve reliable predictions in gauged watersheds, most 

models (lumped or distributed) require at least some degree of calibration to observed 

data. This need arises because not all model parameters can be estimated directly from 

measurable watershed characteristics [Wagener et al., 2003]. A key question then for 

distributed modeling is how to best use the data at the watershed outlet to parameterize 
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multiple interior model elements (assuming no spatial observations such as soil-moisture 

are available, which is often the case). For ungauged situations, where sufficient data are 

not available for calibration, an alternative approach is necessary to parameterize the 

model [Sivapalan et al., 2003]. Many studies have attempted to parameterize models of 

ungauged basins using relationships between the real (natural) hydrologic system 

structure and model parameters. However, as mentioned, most model parameters have 

weak relationships to measurable system characteristics and therefore model predictions 

for ungauged basins are often very uncertain [Wagener and Wheater, 2006]. Thus a 

primary issue for modeling ungauged and poorly-gauged watersheds is the development 

of better approaches for extracting information about model parameters and model 

structure from static watershed characteristics (such as soil type, vegetation, slope, etc.).  

  Driver 3 (modeling environmental change) is important for understanding how 

changes to the system forcing (e.g., climate) or system structure (e.g., landuse) may 

potentially impact the overall hydrologic system response (e.g., runoff). Growing concern 

about water availability and improving information from climate models have recently 

generated an increase in the number of investigations focusing on climate change impacts 

for water resources. Studies vary widely in approach and study location, but collectively 

demonstrate a probable increase in water-stress for some parts of the world and the need 

for continued research on this topic [e.g., Lettenmaier et al., 1999; Kiem and Franks, 

2001; Nijssen et al., 2001; Hay et al., 2002; Arnell, 2004; Christensen et al., 2004; 

Manabe et al., 2004; Vanrheenen et al., 2004; Milly et al., 2005; Andersson et al., 2006]. 

In contrast to climate change studies, landuse change impact studies have been a focus in 

hydrology for several decades. The topics addressed reflect the range of processes (both 
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natural and anthropogenic) that can affect a watershed’s hydrologic response – including 

deforestation and reforestation [e.g., Likens et al., 1977; Swank and Crossley, 1988; 

Calder, 1990]; forest and rangeland fires [e.g., Parkin et al., 1996; Cerda, 1998]; 

urbanization [e.g., DeWalle et al., 2000]; and beetle infestation and agricultural drainage 

[e.g., Robinson, 1986; Dunn and Mackay, 1996]. Modeling environmental change is 

inherently related to building ‘models of everywhere’ by the common problem of 

identifying appropriate parameter values. Since model parameter values reflect (in some 

way) the specific characteristics of a watershed or a location, structural changes (i.e., 

landuse) within a watershed can potentially be reflected through a change in the model 

parameters. If no observations of the changed system response are available, then the 

parameters need to be adjusted based on changes in the physical characteristics (e.g., 

landuse) of the system. Thus a relationship is needed (as for the ungauged case) between 

physical characteristics and model parameters. The success of modeling environmental 

change therefore also hinges on how well appropriate model parameters and model 

structure can be identified from static watershed characteristics. 

 

1.3 HYDROLOGIC MODEL BEHAVIOR 

A fundamental issue underlying all of the topics mentioned above is the need to 

understand hydrologic model behavior and changes in model behavior under varying 

conditions (i.e., varying watershed conditions and/or modeling approaches). A typical 

uncertainty analysis (Driver 1) assesses how much each source (model component or 

input) will affect the uncertainty in the model output [e.g., Butts et al., 2004; Clark and 

Vrugt, 2006; Ajami et al., 2007]. Therefore to account for all sources of uncertainty, it is 
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necessary to fully understand the model's structure and how it behaves under certain 

conditions. When moving from a lumped to a distributed configuration (i.e., for 

developing 'models of everywhere' – Driver 2), model behavior may vary spatially as 

well as across model components. Understanding the impact of spatial discretization on 

model behavior is essential to determine how best to use streamflow observations at the 

watershed outlet (i.e., to guide calibration approaches) and to determine the most 

appropriate spatial configuration (i.e., the degree of spatial discretization). For hydrologic 

modeling of ungauged watersheds (Driver 2), as well as for modeling environmental 

change (Driver 3), observed data are not available to evaluate and parameterize the model 

by usual methods. Therefore, rather than comparing the model output to observed 

watershed responses, the watershed model can be used to understand the real-world 

system behavior in ungauged locations and/or under conditions of environmental/climate 

change.  

 

1.4 DISSERTATION SCOPE 

The studies presented in this dissertation address multiple questions related to watershed 

model behavior for three different cases of hydrologic forecasting. Each case constitutes 

one phase of research and encompasses elements from the main drivers in hydrologic 

modeling research listed previously. The topics were selected also to relate to existing 

situations in operational hydrologic forecasting and to provide insight for the ultimate 

objective of increasing forecasting capabilities in less developed (and thus data sparse) 

regions. Phases I and II look at model behavior from an internal perspective – i.e., using 

observations of the natural system to understand what’s going on inside of the model 
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structure.  Phase III looks at model behavior from an external perspective – i.e., using the 

model response (‘external behavior’) to understand the structure of and changes in the 

natural system. The three phases and main questions targeted are: 

Phase I: For a lumped, conceptual model in multiple gauged watersheds – How 

important are various model components and how appropriate is the model 

for representing watersheds across multiple hydroclimatic regimes? What 

is the impact of reducing the model's complexity (by treating some model 

parameters as constants) on the model's predictive performance and how 

does the impact change across watersheds? 

Phase II: For a distributed, conceptual model in a single gauged watershed – What 

controls the model behavior and how does it vary spatially? What are 

implications of spatially-varying model behavior for the value of 

streamflow observations at the outlet?  

Phase III: For a lumped conceptual model in ungauged and poorly-gauged 

watersheds – What is an appropriate approach for modeling 

ungauged/poorly gauged watersheds? How does the model respond to 

conditions of climate change and what does this tell us about future 

impacts on water resources in the region? 

 
1.4.1 Phase I 

Phase I represents the current situation of operational hydrologic forecasting in the 

United States, where a single, lumped conceptual model (SAC-SMA) is used for 

watersheds of many different hydroclimatic regimes. The research objective of the first 

step, Phase I (a), is to determine how the model represents watersheds across a range of 
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hydroclimatic regimes and if the model structure is appropriate (e.g., adequately or overly 

flexible). To investigate this question, a global sensitivity analysis is performed on the 

SAC-SMA to assess how the importance and behavior of model components vary across 

12 watersheds of different regimes. The results indicate how strong an impact each 

parameter has on model predictions. Parameters found to be sensitive have a significant 

impact on model predictions and represent important components of the model structure. 

Those found to be insensitive have little impact on model predictions and represent 

potentially unwarranted (excessive) model complexity. The findings have implications 

for calibration of the SAC-SMA specifically, as well as for model identification and 

evaluation in general, since they allow for testing whether the actual model behavior is 

appropriate. 

 The second objective, Phase I (b), builds upon the first step and addresses whether 

or not the model complexity can be reduced in order to simplify model calibration, which 

is particularly important when the model is applied in distributed configuration or when a 

very large number of watersheds must be calibrated (as is the case for operational 

forecasting). If a particular model component is found to be unimportant (for a given 

watershed), then the associated parameters can theoretically be removed from the 

calibration process and treated as constants. Although this type of complexity reduction is 

commonly done in hydrologic modeling [Cox et al., 2006; Huang and Liang, 2006], the 

impact on model performance and how feasible it is across different regimes has not been 

fully assessed. In Phase I (b), multi-objective optimizations are performed for full and 

partial parameter sets to determine the impact of setting the less sensitive or insensitive 
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model parameters to fixed a priori values. Results demonstrate the feasibility of using this 

approach to simplify the calibration process for hydrologic models. 

 
 
1.4.2 Phase II 

Phase II addresses questions related to distributed hydrologic modeling, which is the 

future direction of operational forecasting in the United States (and elsewhere). 

Throughout the hydrology community, focus is shifting from lumped to distributed model 

configurations due to the potential benefits that are associated with distributed modeling 

(i.e., forecasts at interior locations and use of spatially-distributed precipitation data) 

[Smith et al., 2004]. The main objective of Phase II of this dissertation research is to 

understanding the impact of a spatially-distributed configuration on overall hydrologic 

model behavior. Distributed models include an additional dimension of model behavior 

to consider (as compared to the lumped models) due to the spatial discretization of the 

model domain. Therefore, to fully understand the behavior of distributed models, it is 

necessary to investigate the relative significance of model elements for streamflow 

predictions at the outlet. It is also important to determine what factors are largely 

controlling spatial behavior (e.g., precipitation distribution, initial model states, cell 

location, etc.).  

In Phase II, a global sensitivity analysis is performed using the Hydrology Lab 

Distributed Hydrologic Modeling System (HL-DHMS) of the National Weather Service 

(NWS). Previous work [Tang et al., 2007] established methods and presented initial but 

inconclusive results of a global sensitivity analysis for a fully-distributed model. The 

results highlighted the complexity of the analysis and the fact that numerous factors can 
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affect model behavior in distributed models (e.g., spatially distributed forcing and initial 

states, and differential routing distances from cells to outlet). In a real-world system, 

where these factors vary simultaneously and data unavoidable contains noise, it becomes 

very difficult to interpret results. This study therefore uses (synthetic) virtual experiments 

to enable an in-depth and error free analysis. Results indicate regions across the model 

domain that control model behavior and the factors (e.g., precipitation distribution) that 

are most significant for spatial variation of model behavior. 

 
 
1.4.3 Phase III 

Phase III represents the situation of ungauged and poorly-gauged basins that are 

encountered in many (particularly less-developed) parts of the world. The primary 

objectives of this phase are to test an approach to model ungauged watersheds in a region 

where predictions are currently unavailable and apply the approach to investigate the 

impacts of climate change on water resources. The study focuses in the Olifants Basin 

(which is within Limpopo Basin) in southern Africa, where existing water stress, 

potentially large impacts of climate change, and transboundary cooperation issues make 

hydrologic forecasts a very real necessity [Levite et al., 2003; FAO, 2004; Khandlhela 

and May, 2006]. However, most areas lack adequate data for calibration, as well as 

adequate resources for system sustainability, therefore data-intensive approaches to 

hydrologic modeling are inappropriate.   

 The study of Phase III uses an alternative data-modest approach in which the 

expected hydrologic response is constrained (rather than calibrated) using regionalized 

relationships between watershed characteristics (physical and climatic) and indices of 
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streamflow response. A parsimonious model structure is then used to obtain ensemble 

predictions for ungauged watersheds. The approach is tested and verified in gauged 

watersheds and then expanded to ungauged watersheds in a localized area of high 

significance for water resources in the Olifants Basin. Simulations of future runoff are 

produced for the ungauged watersheds based on downscaled climate change projections 

and the overall impacts of climate change on water resources in the region are assessed. 

 

1.5 ORGANIZATION 

The remaining chapters of this dissertation are organized by research phase (with Phase I 

broken into two chapters for clarity) as follows:    

 Chapter 2 – Phase I (a)  

 Chapter 3 – Phase I (b) 

 Chapter 4 – Phase II  

 Chapter 5 – Phase III  

Chapter 6 presents an overall summary of the scientific contributions of this dissertation 

and recommendations for future work. Appendices A and B include supplementary 

figures and tables for Chapters 4 and 5, respectively. 
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2.1 INTRODUCTION 

Watershed-scale hydrologic models are essential for flood and drought prediction, water 

resources planning and allocation, erosion and sedimentation studies, nonpoint source 

pollution and remediation, climate and land use change assessments, hydropower 

operations, etc. [Singh and Frevert, 2006]. The extensive array of models that have been 

developed to date include both simple [e.g., Jakeman et al., 1990] and highly complex 

structures [e.g., Abbott et al., 1986; Reggiani et al., 2000]. For some applications, such as 

operational forecasting, a single model structure may be used to represent a wide range of 

watersheds with varying physical and hydroclimatic characteristics. Such cases may 

require a model with sufficient flexibility (and therefore complexity) to represent the 

different watersheds. However, as a consequence of increasing model flexibility (and/or 

complexity) there is an associated increase in the number of model parameters that must 

be estimated. The potential for equifinality and over-parameterization thus also increases 

for complex models, resulting in parameter values that are not always easily identifiable 

in the calibration process [Beven, 1989]. Studies have shown [e.g., Jakeman and 

Hornberger, 1993; Wagener et al., 2003; Wagener and Wheater, 2006] that as model 

complexity increases, the number of unidentifiable parameters also increases, preventing 

(for those unidentifiable parameters) the possibility of locating one parameter value that 

is any better than another in the calibration process.  

Sensitivity analysis has become a popular tool in watershed modeling to explore 

high-dimensional parameter spaces, assess parameter identifiability, and understand 

sources of uncertainty. [Hornberger and Spear, 1981; Freer et al., 1996; Saltelli et al., 

1999; Wagener et al., 2001, 2003; Wagener, 2003; Hall et al., 2005; Muleta and Nicklow, 
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2005; Sieber and Uhlenbrook, 2005; Bastidas et al., 2006; Pappenberger et al., 2006, 

2008; van Griensven et al., 2006; Demaria et al., 2007; Tang et al., 2007b; Tang et al., 

2007c]. In this context, sensitivity analysis is commonly used to determine which 

parameters have a significant impact on the model response and should be the focus of 

estimation efforts, and conversely, which have an insignificant impact (e.g., due to over-

parameterization) and could be fixed to some a priori or regional estimates. In several 

previous studies, model output sensitivity to parameter values (herein referred to as 

"parameter sensitivity") has been shown to vary significantly across watersheds, time 

periods and time scales, and evaluation metrics [Wagener et al., 2001; Sieber and 

Uhlenbrook, 2005; Demaria et al., 2007; Tang et al., 2007c; Tang et al., 2007b]. 

However, no studies have characterized this variation for a single model across a well-

defined hydroclimatic gradient using multiple metrics and time periods/scales. Therefore, 

an understanding of model behavior – and its dependency on hydroclimatic regime – 

remains limited.  

For the case in which a model is used to simulate watersheds with widely varying 

characteristics, an assessment of why and how parameter sensitivities vary across 

watersheds for a suite of flow condition metrics can help to determine if the model 

structure is fully exploited and/or if it is over-parameterized in all cases. Some studies 

have suggested that relatively few (e.g., 3 to 5) parameters are identifiable from 

observations of streamflow for hydrologic models [Jakeman and Hornberger, 1993]. 

However, the existence of significant sensitivity variation across watersheds, time 

periods/scales, and evaluation metrics would suggest that the number of identifiable 

parameters found in their study is more a function of the experimental design and cannot 
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be generalized. A comprehensive analysis of varying model behavior would test this 

hypothesis as well as provide valuable understanding and guidance for calibration. Such 

information is particularly useful for watershed models that are used extensively in 

operational environments. These models often require calibration across a wide range of 

watersheds and are used in multiple applications. As an example, the Sacramento Soil 

Moisture Accounting Model (SAC-SMA) is the primary model used by the National 

Weather Service (NWS) River Forecast Centers (RFC) throughout the US. Several 

studies have presented automatic or semi-automatic methods that could facilitate 

calibrating this model for the hundreds of watersheds across the US, as is required for a 

country-wide forecasting system [Brazil, 1988; Sorooshian et al., 1993; Duan et al., 

1994; Boyle et al., 2000, 2001; Vrugt et al., 2003a; Hogue et al., 2006; Tang et al., 2006; 

Vrugt et al., 2006]. Other studies have focused on the development and assessment of a 

priori parameter estimates for the SAC-SMA [Koren, 2000; Duan et al., 2001; Koren et 

al., 2003; Anderson et al., 2006; Gan and Burges, 2006]. However, to date, few 

sensitivity analyses of the SAC-SMA exist in the literature despite its common use in 

operations and hydrologic research. Furthermore, our previous work [Tang et al., 2007b; 

Tang et al., 2007c] has suggested that some common assumptions about parametric 

sensitivities of the SAC-SMA model structure are not valid. These findings have 

implications for methodologies based on a priori assumptions about parameter sensitivity, 

such as "step-wise" or "stepped" calibration approaches [e.g., Hogue et al., 2000, 2006; 

Fenicia et al., 2007] and warrant further investigation. Finally, as efforts continue to 

reformulate this model into a distributed configuration [Koren et al., 2004], a complete 

understanding of its parameter sensitivities becomes increasingly vital.  

  20 



 The main objective of this study is to use Sobol’s variance-based global 

sensitivity analysis to build a comprehensive picture of parametric sensitivity for the 

SAC-SMA and understand its variation across hydroclimatic regimes, flow types, time 

periods, and time scales. Further objectives are to determine how the variation informs us 

about model behavior and to what extent the variation is related to the hydroclimatic 

characteristics of the watersheds and/or simulated time periods. The analysis is intended 

to demonstrate [1] if moderate model complexity is warranted (or proven excessive) 

when modeling a range of watersheds, [2] comprehensive trends in SAC-SMA model 

behavior for calibration guidance, and [3] the validity of typical parameter sensitivity and 

identifiability assumptions. 

 

2.2 MOPEX BASINS AND DATA 

The hydro-meteorological datasets used in this study were developed as part of the Model 

Parameter Estimation Experiment (MOPEX) and include data for twelve watersheds in 

the US that span different hydroclimatic regimes and geographic locations [Duan et al., 

2006]. Previous studies [Duan et al., 2006; Gan and Burges, 2006] summarized the 

performance of the SAC-SMA in these watersheds. 

 From the MOPEX dataset, daily precipitation and daily streamflow for 39 years 

(1960-1998) of data were used, along with mean monthly estimates of potential 

evaporation and vegetation adjustments. The relative locations of the 12 watersheds are 

shown in Figure 2.1 and their characteristics are listed in Table 2.1. In this table and in 

subsequent figures, the watersheds are ordered from dry to wet based on the wetness 

index, which is defined as the ratio of mean annual precipitation (P) to mean annual 
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Figure 2.1 Location and elevation of 12 MOPEX watersheds 

potential evaporation (PE). Throughout this paper, the watersheds will be identified using 

the three-letter IDs listed in Table 2.1.  

 As illustrated in Figure 2.1, the watersheds’ drainage areas range from the 

smallest (BLU) case encompassing 1021 km2 to the largest (EAS) watershed draining 

4421 km2. They are located in the general Southeastern region of the US and include a 

variety of topographic and land cover characteristics. The wide ranges of mean annual P 

(765-1564 mm/a), mean annual runoff coefficient (ROC) (0.15–0.63), and mean annual 

PE (711-1528 mm/a) exemplify the diverse hydroclimatic regimes represented in the 

dataset. A further summary of watershed characteristics is presented in Figures 2.2a-e. 

Additional physical characteristics of these watersheds are presented by Duan et al. 

[2006] and Gan and Burges [2006]. 
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Table 2.1 MOPEX Watershed Characteristics 
ID River Outlet Location Area 

(km2) 
Mean Annual 
Precip. (mm) 

Mean Annual 
ROC (Q/P) 

Mean Annual 
PE (mm) 

GUA Guadalupe Spring Branch, TX 3406 765 0.15 1528 
SAN San Marcos Luling, TX 2170 827 0.22 1449 
ENG English Kalona, IA 1484 893 0.30 994 
SPR Spring Waco, MO 3015 1076 0.28 1094 
RAP Rappahannock Fredericksburg, VA 4134 1030 0.37 920 
MON Monocacy Frederick, MD 2116 1041 0.40 896 
EAS East Fork White Columbus, IN 4421 1015 0.37 855 
POT S. Branch Potomac Springfield, WV 3810 1042 0.33 761 
BLU Bluestone Pipestem, WV 1021 1018 0.41 741 
AMI Amite Denham Springs, LA 3315 1564 0.39 1073 
TYG Tygart Valley Phillipi, WV 2372 1166 0.63 711 
FRE French Broad Ashville, NC 2448 1383 0.58 819 
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Figure 2.2 MOPEX watershed characteristics: (a) mean monthly runoff volume in mm (b) mean monthly 
precipitation (c) mean monthly potential evaporation (d) hydrologic ratios (e) flow duration curves. 
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2.3 METHODS 

2.3.1 Sacramento Soil Moisture Accounting Model (SAC-SMA) 

The SAC-SMA is a conceptual rainfall-runoff model that represents the soil column by 

an upper and lower zone of multiple storages [Burnash, 1995]. It has been used 

extensively in both research and operational applications where it is the primary rainfall-

runoff model used for river forecasting by the National Weather Service (NWS) River 

Forecast Centers (RFCs) across the United States. Figure 2.3 shows the structure of the 

SAC-SMA and the main function of its 16 model parameters (shown in bold). Beyond 

these main functions, several parameters have secondary functions as part of the 

percolation component, which connects upper and lower zones. The representation of the 

percolation process is somewhat different in the SAC-SMA than in some other 

commonly-used watershed models (e.g., PRMS, VIC, TOPMODEL) as discussed by 

Clark et al. [in press]. In the SAC-SMA, percolation is a function of both the upper zone 

moisture availability and the lower zone moisture deficit (versus only moisture 

availability as in many other models). Therefore parameters that control the moisture 

content of both the upper and lower zones also impact the amount of percolation.  

Table 2.2 Description of SAC-SMA parameters and allowable ranges analyzed in this study 

 

Parameter Units Description Range 
UZTWM mm Upper zone tension water maximum storage  25 – 125 
UZFWM mm Upper zone free water maximum storage 10 – 75 
UZK day-1 Upper zone free water withdrawal rate 0.2 – 0.5 
PCTIM % / 100 Percent permanent impervious area 0.0 – 0.05 
ADIMP % / 100 Percent area contributing as impervious when saturated 0.0 – 0.2 
RIVA % / 100 Percent area affected by riparian vegetation 0.0 – 0.2 
ZPERC none Maximum percolation rate under dry conditions 20 – 300 
REXP none Percolation equation exponent 1.4 – 3.5 
PFREE % / 100 % of percolation going directly to lower zone free water 0 – 0.5 
LZTWM mm Lower zone tension water maximum storage 75 – 300 
LZFPM mm Lower zone free water primary maximum storage 40 – 600 
LZFSM mm Lower zone free water supplementary maximum storage 15 – 300 
LZPK day-1 Lower zone primary withdrawal rate 0.001 – 0.015 
LZSK day-1 Lower zone supplementary withdrawal rate 0.03 – 0.2 
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Figure 2.3 Conceptualization of the SAC-SMA. 

 
 
 In the parameter estimation process, two of the 16 SAC-SMA model parameters 

are typically set to standard values (SIDE and RSERV) for all watersheds. The remaining 

14 parameters must be estimated by some means (calibration or otherwise) for each 

watershed. These 14 parameters were the focus of this study and are described in Table 

2.2 along with the allowable ranges used in the sensitivity analyses [Anderson, 2002]. 

Our objective was to investigate the parameter sensitivities within the ranges defined as 

reasonable by the NWS for standard SAC-SMA model calibration over the variety of 

watershed types found in the US.  
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2.3.2 Sobol' sensitivity analysis 

Sobol's sensitivity analysis method [Sobol', 1993], is a variance-based approach in which 

the model output variance is decomposed into relative contributions from individual 

parameters and parameter interactions. This method was selected based on previous work 

that demonstrated it to be more robust than other sensitivity analysis methods for the 

evaluation of hydrologic models [Tang et al., 2007b]. In addition, Sobol's method 

explicitly includes the effects of parameter interactions and quantifies sensitivity with 

easily-compared indices, a necessity for our analysis. The method’s primary drawback is 

its relatively large computational requirements. 

In Sobol’s method, sensitivity to each parameter or parameter interaction is 

assessed based on its percent contribution to the total output variance. The variance in 

model output is typically measured as the variance in a model evaluation metric such as 

the root-mean square error (RMSE). Throughout this section, references to the variance 

in model output should be interpreted as the variance in an evaluation metric. The four 

metrics used in this study will be described in Section 2.3.3. Sobol's variance 

decomposition can be represented as: 

( ) ∑∑∑
<<<

+++=
kji

12...pijk
ji

ij
i

i DDDDfD                           (2.1) 

where f is the distribution of model output, D(f) is the total output variance; Di is the 

output variance due to the ith component of the input parameter vector Θ; Dij is the 

output variance due to the interaction of parameter θi and θj; Dijk represents third-order 

interactions; D12…p represents all interactions greater than third-order; and p defines the 

total number of parameters. In this study, we were primarily interested in each 

parameter’s total contribution to output variance, as well as how much of that 
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contribution was due to individual effects versus interactions with other parameters (i.e., 

the difference between the total and individual effects). The first-order and total Sobol 

sensitivity indices were calculated to measure these contributions and are defined as: 

first-order index:  Si = 
D
Di                       (2.2) 

total index:    STi = D
D i~1−                                             (2.3) 

where the first order index, Si, measures the model sensitivity to the individual effect of 

parameter θi, and the total index, STi, measures the sensitivity due to the combined effect 

of parameter θi plus its interactions with all other parameters in the analysis. In Eq. (2.3), 

the term D~i refers to the variance resulting from all of the parameters except θi. In other 

words, if parameter θi were removed from the analysis, the resulting reduction in output 

variance is equivalent to the total impact of parameter θi. Since the indices are ratios of a 

portion to the total output variance, their values range from 0 to 1 and can be directly 

compared. If a particular parameter has a small first order index, but a large total 

sensitivity index, then that parameter impacts the model primarily through parameter 

interactions.  

 The variance terms (i.e., D terms) in Eq. (2.1-2.3) can be approximated by 

numerical integration in a Monte Carlo framework. Distributions of model parameters are 

sampled and evaluated to generate distributions of model output. The total output 

variance, D, is simply the statistical variance of the output distribution, as follows:  
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where f is the model output, fo is the mean model output, n is the sample size, Θs is the 

sampled parameter vector. Calculation of the variance contributions is somewhat more 

complicated. An important aspect of Sobol's method is the use of two different samples, 

generated by the same scheme and with the same number of elements. The model is 

evaluated using the first sample to calculate the overall output mean and variance (i.e., 

the combined effects of all parameters). The second sample is then used to resample each 

parameter, rather than setting each to a fixed value, for the calculation of total and 

individual variance contributions. For the latter calculations, parameter vectors are 

constructed systematically, with values selected from the two samples in specific 

combinations defined by which parameter’s contribution is being calculated. The 

resulting distributions of the parameter vectors are evaluated to obtain the corresponding 

distributions of model output that are used in the approximations for Di and D~i. The 

expressions for Di and D~i as defined by Sobol' [1993, 2001], Hall et al. [2005], and 

Saltelli [2002] are: 

( ) ( ) 2)()(
)(~

1

)( ˆ,1ˆ
o

a
is

b
si

n

s

a
si fff

n
D −ΘΘΘ= ∑

=

                   (2.6) 

( ) ( ) 2)()(
)(~

1

)(
~

ˆ,1ˆ
o

b
is

a
si

n

s

a
si fff

n
D −ΘΘΘ= ∑

=

                  (2.7) 

where (a) and (b) are two different samples (both of size n). The Θ symbols, defined in 

Table 2.3, indicate from which samples the parameters values are taken. In this study 

Sobol's quasi-random sequence was used to sample points more uniformly in the 

parameter space than uncorrelated random sampling. Details of this sampling scheme can 

be found in the work of Sobol' [1967, 1993], Brantley and Fox [1988]; and William et al., 

[1999].  
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Table 2.3 Definition of the Θ symbols in Eqs. (2.4)–(2.7) of Sobol's method 
Symbol Definition 

sΘ  Sampled parameter vector 
)(a

isΘ  Parameter θi taken from sample (a) 
)(b

isΘ  Parameter θi taken from sample (b) 

( )
)(

~
a

siΘ  All parameters except θi taken from sample (a) 

( )
)(

~
b

siΘ  All parameters except θi taken from sample (b) 
 
 
 
2.3.3 Metrics for Model Evaluation 

Applications of watershed models are inherently multi-objective [Gupta et al., 1998; 

Madsen, 2000; Buras, 2001; Vrugt et al., 2003b; Bekele and Nicklow, 2005; Tang et al., 

2007a]. In this study, we used four different model evaluation metrics to assess parameter 

sensitivity, two of which are common statistical metrics and two that are aggregate 

measures of overall hydrologic response. Each metric replaces the function f in the 

equations for Sobol’s method defined above. Figure 2.4 illustrates that the metrics 

capture four important components of the hydrograph, including high flows, low flows, 

variability in mid-range flows (streamflow regime), and the long-term water balance. The 

high flow metric is the commonly-used Root Mean Squared Error (RMSE), defined as: 

( )∑
=

−=
m

1t

2
to,ts, QQ

m
1RMSE                                   (2.8) 

where m is the number of timesteps, Qs,t is the simulated flow for timestep t, and Qo,t is 

the observed flow in timestep t. For the low flow metric, the simulated and observed flow 

time series are first transformed by a Box-Cox transformation (Eq. 2.9) with a λ value of 

0.3, which has a similar effect as a log transformation. The RMSE of the transformed 

flows is then calculated to obtain a metric that emphasizes low flow, referred to here as 

the Transformed Root Mean Squared Error (TRMSE) (Eq. 2.10). 
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Figure 2.4 Hydrograph components captured by the four selected evaluation metrics. 
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where m is again the number of timesteps, Zs,t is the transformed simulated flow for 

timestep t, and Zo,t is the transformed observed flow in timestep t. The next metric, 

referred to as Slope of the Flow Duration Curve Error (SFDCE), measures how well the 

model captures the distribution of mid-level flows. The slope of a watershed's flow 

duration curve indicates the variability, or flashiness, of its flow magnitudes. The SFDCE 

metric is thus simply the absolute error in the slope of the flow duration curve between 

the 30 and 70 percentile flows as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−
=

4040
30,70,30,70, ooss QQQQ

absSFDCE                (2.11) 
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where Qs,30 and Qs,70 are the 30 and 70 percentile flows of simulated flow duration curve 

and Qo,30 and Qo,70 are the 30 and 70 percentile flows of observed flow duration curve. 

Since this metric first combines the flows into one value (in this case slope) before 

calculating the error, it is an aggregate measure of overall model response and less biased 

by individual events. Similarly, the final metric, the Runoff Coefficient Error (ROCE) 

captures the overall accuracy of the water balance by first combining the flows into one 

characteristic hydrologic descriptor, the mean annual runoff coefficient. The absolute 

error in the runoff coefficient is then calculated and thus the ROCE is defined as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

P
Q

P
Q

absROCE os                  (2.12) 

where sQ and oQ and are the simulated and observed mean annual runoff volume, and P is 

the mean annual precipitation.  

 

2.3.4 Spearman Rank Correlation 

The Spearman rank correlation coefficient was used in this study to assess the 

relationships between parameter sensitivities and hydroclimatic characteristics. It 

provided a means to quantify the strength of a monotonic relationship between two 

variables, with no assumptions of frequency distribution or linearity [Lehmann and 

D'Abrera, 1998]. Since some of the relationships were highly nonlinear in this study (as 

will be shown in Section 2.2.5), the Spearman rank coefficient was preferable to a 

traditional linear correlation coefficient. To calculate it, values of each of the variables (in 

this case watershed characteristics and sensitivity indices) are ranked and the correlation 

is calculated based on the difference in rankings as follows: 
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where d is the difference in rank between the variables for a given value and v is the 

number of values. 

 

2.4 APPROACH 

The methods described above were used to perform a comprehensive sensitivity analysis 

of the SAC-SMA for 12 watersheds using 4 model evaluation metrics for both a long-

term 39 year period as well as yearly periods. A Monte Carlo sampling scheme [Saltelli, 

2002; Tang et al., 2007b] was used with 8096 samples and a warm-up period of 1 year 

(i.e., the first year was not included in the sensitivity calculations to allow the model 

states to warm-up and remove any impact of uncertain initial conditions). The method 

was repeated for the 4 evaluation metrics described in Section 2.3.3, resulting in 48 

separate sets of sensitivity results (a "set" refers to a group of 14 individual and 14 total 

indices that result for the 14 model parameters in each run). The total-order Sobol indices 

were compared across watersheds and across the objectives to identify any visible 

patterns of variation in sensitivity. To quantify the variation, relationships between 

parameter sensitivity and several hydroclimatic characteristics were developed as scatter 

plots and correlation was calculated by the Spearman rank correlation method. Results of 

the long-term sensitivity and correlation analysis are presented in Section 2.5.1. 

 Beyond the long-term analysis, an interannual analysis was performed to 

investigate the year-to-year variation in sensitivity within each watershed. Sobol's method 

was applied using the same sampling scheme described above. For each sample, model 

simulations were again generated for a 39-year period, however, evaluation metrics and 
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Sobol's indices were calculated separately for each individual calendar year. Therefore, 

the results of each year are based on the same parameter samples and can be directly 

compared. As in the long-term analysis, the first year was used as a warm-up period and 

not included (leaving 38 separate years for analysis). Annual sensitivity indices were 

generated using this method for the 12 watersheds, 38 individual years, and 4 evaluation 

metrics. The results were plotted to identify patterns of temporal variation within 

watersheds, as well as to identify trends across watersheds that were masked in the long-

term analysis. Relationships between interannual hydroclimatic characteristics and the 

interannual sensitivity indices were plotted and quantified by Spearman rank correlation. 

Results of the interannual sensitivity and correlation analysis are presented in Section 

2.5.2. As a final step, the results from both the long-term and interannual sensitivity 

analyses are synthesized to provide some general overall guidance for SAC-SMA model 

identification in Section 2.5.3. 

 

2.5 RESULTS AND DISCUSSION 

2.5.1 Long-Term Sensitivities 

In the following sections, the results are organized by the different aspects of the flow 

that have been assessed through the four evaluation metrics. In each section, dominant 

patterns of sensitivity are highlighted first, followed by discernible trends across the 

watersheds. Grids of long-term Sobol sensitivity indices across the 12 watersheds and 14 

model parameters are presented in Figure 2.5a-d. Note that in each grid, watersheds (x-

axis) are ordered from dry to wet (left to right) based on the wetness index as in previous 

figures and tables. The model parameters (y-axis) are generally structured with upper 
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Figure 2.5 Long-term Sobol sensitivity indices for 12 watersheds and 14 parameters based on a 38-year 
eriod: Total (individual + interactions) sensitivities, first-order (individual contributions) and interaction
ontributions for (a) RMSE, (b) TRMSE, (c) ROCE, and (d) SFDCE. 
zone parameters at the top, percolation parameters in the middle, and lower zone 

parameters at the bottom. Total indices (individual + interactions), first-order indices 

(individual) and indices representing all parameter interactions (total index – first order 

index) are displayed separately to demonstrate the varying impact of parameter 

nteractions.  

.5.1.1 High Flows - RMSE 

ome dominant patterns are observable in the total indices for the high flow metric 

RMSE) (top grid of Figure 2.5a), where the amount of variable contributing area 

ADIMP), the percolation multiplier (ZPERC), and the sizes of the lower zone free 

torages (LZFPM, LZFSM) are consistently sensitive across the watersheds. The 
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sensitivity of variable contributing area (ADIMP) reflects that parameter's impact on high 

peaks (mainly at the high end of its allowable range). The strong sensitivity to lower zone 

parameters for this metric, however, is initially surprising and counter to typical a priori 

assumptions that mainly upper zone parameters dominate high flow simulations. 

However, in the SAC-SMA, the lower zone free water storages and recession rates are 

directly involved in the calculation of percolation. Since percolation controls the 

partitioning of water between the upper and lower zones, it also impacts how much of a 

given event is generated by faster, higher-peaking runoff components from the upper 

zone (i.e., interflow, surface runoff or direct runoff) versus slower, lower-peaking 

components from the lower zone (baseflow). In this capacity, parameters that control 

percolation (including ZPERC and lower zone storages and recessions) impact high-flow 

simulations as reflected by the sensitivity indices. The importance of interactions among 

these parameters is illustrated in Figure 2.5a (middle and lower grids). In some cases 

(e.g., lower zone recessions – LZPK and LZSK), a parameter's total sensitivity comes 

almost entirely from the effects of interactions. Overall the contributions by parameter 

interactions are a significant part of the total sensitivity picture for RMSE.  

 Comparing parameter sensitivities across the watersheds for RMSE (i.e., across 

rows of Figure 2.5a), several trends are visible that provide insight into model behavior 

across hydroclimatic regimes. For example, the strong trend of increasing sensitivity 

from dry to wet watersheds for the upper zone free storage (UZFWM) and the opposite 

(though not as strong) trend for percent impervious area (PCTIM) demonstrates a shift in 

mechanisms for generating peaks. These trends suggest that in wet watersheds, simulated 

peaks are more often generated by saturation of the upper zone free water storage, while 
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Figure 2.6 Scatter plots demonstrating Spearman rank correlation, R, between selected parameters’ long-
term Sobol sensitivity indices (SI) and long-term hydroclimatic variables across watersheds for (a) RMSE, 
(b) TRMSE, (c) ROCE, and (d) SFDCE. Watersheds are indicated by the marker symbols and the selected 
parameter is labeled on the y-axis. 
in dry watersheds peaks are largely controlled by direct runoff from impervious areas. 

This observation is intuitive as dry watersheds rarely receive enough rainfall to saturate 

both the tension storages and upper zone free water (which is required to generate surface 

runoff). Thus, in many events impervious area will be the dominant or even the only 

mechanism of producing runoff in the model. Conversely wet watersheds regularly 

saturate and produce surface runoff (which 'overshadows' impervious runoff in the RMSE 

measure). Figure 2.6a (top) illustrates the trend of increasing upper zone free storage 

sensitivity with watershed wetness index. The Spearman rank correlation coefficient for 

this relationship is 0.74. Another informative trend is the higher sensitivities of the 

tension storages in dry watersheds. Figure 2.6a (bottom) shows the strong negative rank 

correlation (R = -0.92) between lower zone tension storage (LZTWM) sensitivity and 

watershed wetness coefficient. This indicates the greater importance or "activation" of 

thresholds in dry watersheds for simulating peaks. In these watersheds, longer and more 

frequent dry periods (and less overall volume of precipitation) lead to tension storages 

drying out more often. Therefore the sizes of the tension storages become important in 
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determining if and when thresholds are crossed and when runoff is generated. On the 

other hand, in wet watersheds the tension storages may regularly be full (for nearly any 

size) and thus not have a significant impact on peak simulations.  

 

2.5.1.2 Low Flows - TRMSE 

Moving to Figure 2.5b and the low flow (TRMSE) evaluation metric, the pattern of 

sensitivity is similar to that of the high flow (RMSE) metric (e.g., prominent lower zone 

sensitivity) though some differences exist. For example, the switch in the parameter with 

highest sensitivities from the secondary to primary baseflow storage (i.e., from LZFSM 

to LZFPM) reflects the greater importance of slower-receding (primary) baseflow for low 

flow versus high flow periods. In addition, the reduced sensitivity of the percolation 

curve multiplier (ZPERC) suggests that the percolation in dry conditions (which is when 

ZPERC controls percolation) is less important than it was for high flows. This result is 

expected since much of percolation in dry conditions goes to lower zone tension storage 

and does not recharge baseflow. The lower zone sensitivities in TRMSE are likely due to 

both the main parameter functions (i.e., control of the potential volume of baseflow and 

slope of recession) as well as its role in the percolation during saturated soil conditions. 

Another difference between the high flow (RMSE) and low flow (TRMSE) results is the 

reduction in upper zone free storage (UZFWM) sensitivity. This difference makes sense 

since this parameter primarily impacts interflow and surface runoff generation (high flow 

components) rather than baseflow. The emergence of some sensitivity in parameters that 

control evapotranspiration (ET) losses (RIVA, LZTWM, PFREE) represents additional 

overall shifts in model control, as ET losses have a larger impact on low flows than on 
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high flows. Finally, in Figure 2.5b, the contribution of interactions to total parameter 

sensitivity is again apparent (as for RMSE), further supporting the importance of 

accounting for parametric interactions. 

 Comparing sensitivities across watersheds for TRMSE (i.e., across rows of Figure 

2.5b), we find that the overall variability is somewhat larger than it was for RMSE There 

are fewer parameters in this case that are sensitive across all watersheds. Most noticeably, 

the two driest watersheds (SAN, GUA) have distinctly different patterns of sensitivity 

than the other (particularly the wettest) watersheds. The lower sensitivity for the lower 

zone free primary storage (LZFPM) in the dry watersheds (Figure 2.6b – top) reflects the 

limited importance of baseflow for low flow simulations in these watersheds (where 

baseflow may be intermittent). In contrast, the greater impact of ET on low flows in dry 

watersheds stands out strongly in the higher lower zone tension storage (LZTWM) 

sensitivities, riparian vegetation area (RIVA) sensitivities, and lower zone partitioning 

(PFREE) sensitivities. The latter trend is shown and quantified in Figure 2.6b (bottom) 

with Spearman rank correlations of -0.96. These parameters' impacts on ET-loss are 

discussed further in the next section. 

 

2.5.1.3 Water Balance - ROCE 

The overall parameter sensitivity pattern for the long-term water balance metric (ROCE) 

is distinctly different than that of the other metrics (Figure 2.5c). Rather than being 

dominated by the lower zone parameters, the pattern for ROCE is controlled across all 

watersheds by parameters that affect the volume of ET losses (UZTWM, PCTIM, RIVA, 

LZTWM). This result reflects the fact that these parameters largely control the volume 
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(rather than the shape) of the hydrograph, which impacts the long-term water balance. In 

the SAC-SMA, ET losses occur primarily from the upper and lower zone tension storages 

and from riparian areas. The amount of loss from each store depends on the demand 

(potential ET for that time of year) and on the supply (water content of the storage). The 

parameters that are sensitive to the long-term water balance are those that affect not only 

the size of these storages (i.e., the potential volume of losses), but also the amount of 

water that goes into these storages. For example, the percent impervious area controls the 

volume of runoff that enters the channel directly and is therefore unavailable to ET (i.e., 

it is the volume that does not enter the upper zone tension storage). Similarly, in the 

lower zone, percolated water is partitioned between tension and free storages by 

parameter PFREE. The volume that goes directly into free storage (rather than tension 

storage) is effectively unavailable for ET loss. These two parameters thus may be 

sensitive in addition to the parameters controlling the size of the ET-source zones 

(UZTWM, LZTWM, RIVA).  

 Evaluating the effects of interactions in Figure 2.5c (lower), it is clear that 

interactions are not significant for ROCE, in contrast to RMSE and TRMSE. The 

individual sensitivity pattern (middle) is nearly identical to the total sensitivity pattern 

(top) and the contributions from interactions (lower) are largely zero, with a few 

exceptions. This observation reflects that these parameters are sensitive due to their main, 

independent functions in the model (rather than due to any interacting process like 

percolation). The reasons for interaction sensitivities for a few watersheds (e.g., POT and 

EAS) could not be determined though these interactions may be a result of hydroclimatic 
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characteristics not included in this analysis (e.g., precipitation distribution) or of errors in 

the data. 

 Comparing results across watersheds for ROCE, large sensitivity differences are 

apparent between the two driest watersheds (SAN, GUA) and the rest of the watersheds. 

Here the upper zone tension storage (UZTWM) and the lower zone partitioning (PFREE) 

become sensitive. These trends likely relate to the frequency or infrequency of saturation 

of the upper and lower zone tension storages. If the lower zone is usually dry, the 

percolation partitioning (PFREE) is more important due to its control over the volume of 

percolation going into the tension storage (and eventually lost to ET as discussed above) 

during unsaturated lower zone conditions. If the lower zone is saturated, no percolation 

goes into tension storage, and the partitioning parameter has no effect. Similarly if the 

upper zone tension water storage is frequently full, the volume of ET loss is less variable 

than if this storage is often dry. ET losses always occur at the potential rate under 

saturated conditions, thus if a watershed's upper zone is often saturated, water balance 

sensitivity to upper zone tension storage will be low (and vice versa). The strong negative 

rank correlation associated with this trend is presented in Figure 2.6c (top). The second 

trend illustrated for ROCE involves the lower zone tension storage sensitivity (Figure 

2.6c – lower). This trend is different than others in that it shows a non-monotonic 

relationship with watershed characteristics since the highest sensitivities occur for the 

mid-wetness watersheds. Lower sensitivities occur for both the wettest and driest 

watersheds, producing the inverse V shape seen in the scatter plot of this parameter in 

Figure 2.6c. The reduction in sensitivity for wet watersheds is again likely due to more 

frequent saturation of the lower zone tension storage and thus less impact of its size on 
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the volume of losses to ET. Similar to UZTWM, in some years the storage may fill for all 

parameter values and the volume of ET loss is unaffected by that parameter for those 

periods. Conversely in very dry watersheds there are potentially long periods in which the 

upper zone tension storage never fills and thus no water percolates to the lower zone (and 

LZTWM has no effect).  

 

2.5.1.4 Medium Flow Regime - SFDCE  

The final metric, SFDCE, evaluates the error in the slope of the flow duration curve 

between the 30 and 70 percentile flow magnitudes. It thus captures the distribution (i.e., 

the variability of flow magnitudes) within the range of mid-level flows. The hydrograph 

components that fall into the 30-70% range vary by watershed, but will generally include 

small peaks and high baseflows (e.g., just after large storms). The distribution of these 

flow magnitudes (i.e., relative frequencies or "flashiness") determines the steepness (or 

mildness) of the FDC slope. Figure 2.5d shows that, for this metric, lower zone 

parameters again dominate the sensitivity pattern as they did for RMSE and TRMSE. In 

contrast to those metrics' results however, the lower zone tension storage parameter 

(LZTWM) and lower zone partitioning parameter (PFREE) are also sensitive for most of 

the watersheds. These sensitivities, along with lower zone storages and recessions, reflect 

the importance of both percolation and lower zone partitioning (between tension and free 

storages) for reproducing the flow regimes of the watersheds. The percolation function, 

as mentioned, determines how much water infiltrates to slow-responding baseflow (less-

variable flow magnitudes) versus how much moves through the upper zone to become 

faster-responding (more-variable) interflow or surface runoff. Lower zone partitioning 
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then impacts the amount of percolation that recharges baseflow after events (versus enters 

tension storage and is lost to ET). Watersheds with higher percolation and sustained 

baseflow generally show less variability in flow magnitude (less "flashy" regime) than 

those with less percolation and therefore more surface runoff and interflow. Figure 2.5d 

(bottom) shows that the effects of interactions for the SFDCE metric are again significant 

as they were for RMSE and TRMSE (where percolation was also important). If only 

individual effects were considered (middle plot) the parameter sensitivity results would 

be incomplete due to the large contribution by parameter interactions (bottom plot). The 

importance of interactions for RMSE, TRMSE and SFDCE, though not for ROCE, 

supports a hypothesis that parameter interactions in the SAC-SMA are largely a result of 

the percolation function. 

 Comparing sensitivities across the watersheds for this metric, it is seen that for the 

drier watersheds the ET-controlling parameters of the upper zone (UZTWM, PCTIM and 

RIVA) again become sensitive for SFDCE as they did for ROCE. In this case, however, 

the reason for their sensitivity is their impact on the variability in flow magnitudes (rather 

than their impact on long-term runoff volume as for ROCE). This impact is greater for 

dry watersheds than wet watersheds for two reasons. First, in dry watersheds the 

parameters will be more frequently "activated" over the 30-70 percentile range of flows 

(whereas in wet watersheds the upper zone will be more often full over this range of 

flows and UZTWM and RIVA will have less impact). Second, since relatively high flows 

occur less frequently in dry watersheds than in wet watersheds, the 30-70 percentile range 

will shift downward to include lower flows (relative the that watershed's range of flows). 

Therefore, the small peaks generated by impervious area and the recessions that are 
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affected by riparian and upper zone ET will more likely fall into the 30-70 range. Figure 

2.6d (top) demonstrates the decreasing dry to wet trend (R=-0.93) between watershed 

wetness and percent impervious area sensitivity (PCTIM). Figure 2.6d (bottom) also 

shows a bimodal trend for lower zone tension storage (LZTWM), similar to the trend for 

the ROCE evaluation metric (and likely for similar reasons of saturation 

frequency/infrequency as discussed in Section 2.5.1.3.). 

  

2.5.2 Interannual Sensitivities 

The interannual sensitivity analysis provides additional information about the variability 

of parameter sensitivities and model behavior across the watersheds. Temporal patterns 

(Figures 2.7-2.8) were plotted to observe how sensitivities change from year to year and 

how much interannual variability (or consistency) is present within each watershed. For 

all metrics and watersheds in Figures 2.7-2.8, variability in sensitivity patterns is evident. 

Based on the results in Section 2.5.1, it is reasonable to infer that differences in flow and 

forcing characteristics from year-to-year could also result in different sensitivity patterns 

(as seen in Figures 2.7-2.8) from year-to-year. The interannual correlation analysis 

supports this premise as trends were found for all watersheds between the hydroclimatic 

characteristics and the parametric sensitivity results for each year. Some trends found in 

the interannual analysis were similar to trends in the long-term analysis (i.e., patterns 

across wet and dry years within a watershed are similar to long-term patterns across wet 

and dry watersheds). Other interannual trends, however, did not exist in the long-term 

analysis since they seem to represent more specific combinations of long and short-term 

climatic characteristics at a certain location.  
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Figure 2.7 Interannual Sobol sensitivity indices for the six driest watersheds over the period 1980-1998. 
The overall sensitivity (last column in each grid) is the corresponding result from the long-term analysis 
shown in Figure 2.5. Total annual precipitation (left axis) and the runoff coefficient (right axis) for each 
year is shown above each sensitivity grid. 
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Figure 2.8 Interannual Sobol sensitivity indices for the six wettest watersheds over the period 1980-1998. 
The overall sensitivity (last column in each grid) is the corresponding result from the long-term analysis 
shown in Figure 2.5. Total annual precipitation (left axis) and the runoff coefficient (right axis) for each 
year is shown above each sensitivity grid. 
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Figure 2.9 Scatter plots demonstrating Spearman rank correlation (R) between parameters' annual Sobol 
sensitivity indices (SI) and annual hydroclimatic variables. Each plot displays the result for a particular 
watershed and parameter combination. The watershed is indicated by the marker and the parameter is 
labeled on the y-axis.  
 

In one bounding case, the wet conditions in the FRE watershed show an 

increasing trend in high flow sensitivity for the upper zone free water storage (UZFWM) 

with annual maximum flow in watershed FRE (top plot of Figure 2.9a). In the long-term 

analysis, this watershed (FRE) had the highest sensitivity to the upper zone free storage 

(UZFWM) parameter. The high sensitivity is attributed to more frequent saturation of the 

upper zones. In the interannual analysis, years with high annual maximum flow indicate 

when large event(s) occurred and thus when the upper zone storages of the SAC-SMA 

are most likely to be saturated. In such cases (as discussed in Section 2.5.1), runoff is 

produced in the model mainly by surface runoff (i.e., saturation excess). Thus the size of 

the upper zone free storage has a large impact on simulations particularly in those years, 

as demonstrated in Figure 2.9a. Another similar trend between the long-term and 

interannual analysis is the bimodal behavior of lower zone tension store sensitivity. In dry 

watersheds the interannual trend is positive (top Figure 2.9d) and in wet watersheds the 
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trend is negative (bottom Figure 2.9d). Similar reasons apply as were discussed in 

Section 2.5.1 (relative frequencies of lower zone saturation).  

 An example of a trend not apparent in the long-term analysis is the water balance 

(ROCE) sensitivity trend seen in watershed GUA for the percent impervious area (top of 

Figure 2.9c). The long-term sensitivity for this case (watershed GUA and parameter 

PCTIM in Figure 2.5c) was actually lower than most other watersheds. In the interannual 

analysis, however, percent impervious area becomes more sensitive in the dry years of 

watershed GUA than it does in nearly all years of other watersheds. This suggests a 

unique model behavior develops in the driest years of the driest watersheds that is not 

present for other conditions. In such cases total runoff is likely so low and storages so 

regularly dry, that impervious runoff from the few infrequent events is the only runoff-

generating mechanism and thus has a large impact on the water balance for that year. 

Another difference with long-term results is exemplified by the lower zone partitioning 

parameter (PFREE) in watersheds SAN and GUA. This parameter is sensitive for high 

flows in several of the individual years. However, the sensitivity does not appear in the 

long-term results (last column). As discussed in Section 2.5.1, PFREE controls lower 

zone partitioning between tension and free water zones and generally affects low- to mid-

flows and the water balance (in dry watersheds). In the dry years for these watersheds, 

peaks may be relatively low and PFREE will also impact the high flow metric. However, 

the total variance contribution to long-term results in those years is likely small (relative 

to years with high peaks) and the influence is therefore not discernible in the long-term 

result. This observation points out the potential of certain events to dominate long-term 

results and the ability to extract more information from the data when analyses are 
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performed at shorter time scales. In addition, similarities and differences between the 

interannual and long-term analyses highlight the influence of time scale on model 

behavior – a parameter’s influences will be most discernible on time scales for which the 

processes it controls are dominant. 

 A final point in the interannual results is the tendencies of some watersheds to 

‘look’ like other (wet or dry) watersheds in certain years. For example, watershed RAP 

(see Figure 2.7) has a low flow (TRMSE) sensitivity pattern in 1998 that is generally 

similar (e.g., with a limited sensitivity to PFREE) to the dominant pattern in the wet 

watersheds. However, its pattern in 1982 resembles the overall pattern of the dry 

watersheds. This fluctuating sensitivity pattern could be related to the fact that this 

watershed has a long-term P/PE value near 1 (thus it may fluctuate between energy-

limited and water-limited years). As another example, the sensitivity patterns in years 

when major floods occur cause patterns of drier watershed to resemble patterns of wet 

watershed. For example, the Mississippi Flood of 1993 is evident in watershed ENG and 

the Winter Flood of 1996 in the Mid-Atlantic shows up in watersheds MON and POT. 

This also demonstrates that two watersheds with different locations and hydroclimatic 

characteristics can potentially have the same sensitivity pattern in a given year (such as 

ENG and AMI in 1993) under extreme changes in forcing. Overall, Figures 2.7 and 2.8 

emphasize the risk of assuming a model’s sensitivity based on results from a different 

watershed or analysis time period. 
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2.5.3 Synthesis of Results  

Sensitivity analysis is often performed in an effort to determine which parameters are 

most identifiable (i.e., most sensitive) and should be the focus of calibration efforts. The 

results in the previous sections have demonstrated that parameter sensitivities vary 

depending on the hydroclimatic characteristics of the watershed and time period of 

analysis, as well as on the metrics used for the analysis. Based on these findings, it 

becomes clear that to determine parameter sensitivity for a particular watershed and 

period of record, it is best to perform a complete sensitivity analysis for that specific case. 

However, computational and time costs may often make this infeasible. Therefore, to 

provide some general guidance for SAC-SMA model identification, the results of the 

interannual and the long-term analyses are combined to create a summary of expected 

parameter sensitivity by watershed type and time period (Figure 2.10). Watersheds are 

grouped into three categories (dry, mid, and wet watersheds) based on indicated ranges of 

the wetness index. For each watershed group their behavior for dry, mid and wet years is 

classified as highly sensitive, sensitive, or not sensitive based on sensitivity indices (using 

the maximum index from the four evaluation metric results) of the corresponding 

watersheds and time periods. Highly sensitive sub-categories have a majority sensitivity 

index greater than 0.1 (e.g., the majority of the indices in the driest years of the dry 

watersheds are greater than 0.1). Sensitive sub-categories have a majority index between 

0.01 and 0.1 and not-sensitive sub-categories have a majority index less than 0.01. Given 

a particular watershed and period of record (i.e., how wet/dry is the period), Figure 2.9 

provides some general indication as to which parameters are likely to be the most 
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Figure 2.10 Summary of SAC-SMA parameter sensitivity results and guidance for parameter estimation
(based on the maximum index from the four evaluation metrics' results). Highly sensitive (black)
parameters are those where the majority of years have an SI > 0.1, sensitive (gray) are those where the
majority are in the range 0.01 < SI < 0.1; and not sensitive (white) are those where the majority of years
have an SI < 0.01. 
identifiable, which are less (but still somewhat) identifiable, and which (if any) are 

largely unidentifiable.  

The most evident indication in Figure 2.10 is the need to focus on the lower zone 

arameters (LZFSM, LZFPM, LZSK, LZPK) in model identification efforts, particularly 

or mid-wetness and wet watersheds. Section 2.5.1 discussed the involvement of these 

arameters in percolation and therefore their impact on low, mid, and high flow types. 

ignificant information is also present for these watersheds to identify percent 

mpervious area and lower zone tension storage using the water balance and mid-flow 

egime metrics. While high flows contain consistent information for identification of 

dditional impervious area (ADIMP). Information for most of the remaining parameters 
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is present in mid-wetness and wet watersheds, but is weaker and less consistent (i.e., not 

present in all years). In dry watersheds, model identification focus should shift to 

parameters impacting ET losses (UZTWM, PCTIM, RIVA, LZTWM, and PFREE) as 

discussed throughout Section 2.5.1. The remaining parameters (including percolation-

related parameters) are less consistently sensitive in dry watersheds and would require 

targeting specific time periods for identification. 

As a final point, it should be noted that similar variation in parameter sensitivity 

was found at shorter time scales (e.g., intra-annual) than those presented in this paper. We 

performed the sensitivity analysis on some test cases at a monthly time scale. Sensitivity 

patterns were still largely driven by hydroclimatic variation as in the longer time scales. 

These results were not included in this paper as long-term and interannual variation were 

deemed most relevant for current calibration approaches (i.e., static parameter values are 

determined based on aggregates measures of model predictions for years to decades). 

 

2.6 SUMMARY AND CONCLUSIONS 

This study demonstrates that intermediate-complexity watershed models, like the SAC-

SMA, include necessary flexibility for representing a wide range of watersheds located in 

different hydroclimatic regions. An in-depth analysis is presented of the SAC-SMA's 

parametric sensitivity variation across watersheds composing a hydroclimatic gradient for 

multiple time periods/scales and a suite of flow types. The sensitivity patterns 

demonstrate how different model components become dominant due to changes in 

forcing (hydroclimatic) conditions. This flexibility, combined with the lack of any 

consistently insensitive parameter (see Figure 2.10), substantiate that SAC-SMA's level 
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of complexity is warranted (i.e., the model is not consistently over-parameterized) for 

simulating watersheds across a range of hydroclimatic conditions. Results also provide 

detailed guidance for SAC-SMA calibration and refute some commonly employed a 

priori assumptions about the model's parametric sensitivity. The analysis has broader 

implications with respect to hydrologic model behavior and identification in general, as 

discussed below. 

 Across watersheds, we found that model behavior could be explained largely 

based on saturation of the upper and/or lower zones. In the upper zone, the free water 

storage is important in watersheds or time periods in which that zone is frequently 

saturated and therefore producing surface runoff. In contrast, the impact of the upper 

zone tension storage is greater under conditions of infrequent saturation and therefore 

variable ET loss. In each case, the respective conditions for sensitivity reflect conditions 

when the storage is actively impacting model predictions and reasonably represents the 

expected dominant processes. The structure of the upper zone in the SAC-SMA is similar 

to many hydrologic models in its partitioning between tension (ET-drained) and free 

water (gravity-drained) storages. Thus this moisture- and ET-driven model behavior of 

the upper zone would be relevant across many models.  

The lower zone structure of the SAC-SMA, however, is somewhat unique (among 

models of similar complexity) in its coupling with the upper zone through the demand-

based percolation function. As a result of the percolation structure, lower zone model 

behavior was found to extend beyond its more typical and assumed influences (low 

flows) to impact mid and high flows across most watersheds. This behavior was most 
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evident in watersheds with appreciable levels of lower zone saturation (mid-wetness and 

wet watersheds) due to the variable percolation demand in such watersheds.  

The patterns in model behavior for upper zone, lower zone, and percolation 

components of the SAC-SMA were interpreted across dry to wet watersheds based on the 

above-discussed, moisture-related mechanisms. Wet watersheds and dry watersheds 

resulted in distinctly different patterns of parametric control. The differences were 

reasonable and intuitive based on differential model forcing, evapotranspiration, and 

storage across watersheds. Similarly within watersheds, reasonable patterns of sensitivity 

were produced by wet years and dry years of the analysis record. It follows that similar 

model behavior variations would be expected to result from non-uniform forcing and 

storage across a spatially distributed model domain. Wet cells would be expected to have 

patterns of parametric control similar to wet year/watersheds of this analysis. And 

likewise dry cells would be expected to follow patterns of dry years/watersheds. Thus 

implications of this study are likely to apply (and be compounded) for a distributed 

configuration of the SAC-SMA.  

The differences in model behavior demonstrate that a moderate level of 

complexity (as in the SAC-SMA) is warranted to appropriately represent the hydrology 

of watersheds across a hydroclimatic gradient. Although some model components were 

found to be inactive for a single given watershed and/or flow type, a comprehensive 

evaluation across a range of watersheds and conditions revealed that nearly every model 

component is important in certain cases. Therefore generalizing model behavior and 

reducing the number of parameters that require calibration for this model would be 

difficult if all watersheds and all aspects of the hydrograph should be well represented. 
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These results also demonstrate counter-evidence for the premise that no more than 3-5 

parameters can regularly be identified from hydrologic data. We show that when results 

are combined across four metrics, substantial information exists for 6-10 parameters 

(highly sensitive parameters), and ‘some’ information exists for most of the remaining 

parameters. Additionally, the fact that the dominant parameters are often similar across 

multiple metrics (particularly the commonly-used statistical metrics) limits the feasibility 

of dividing parameters into non-intersecting groups for calibration, which is the basic 

premise of "step-wise" or "stepped" calibration procedures. 

The need to actively couple sensitivity analysis with calibration procedures is 

clearly indicated by the variation in sensitivity patterns found in this study. Assumptions 

of parametric controls based on extrapolation of sensitivity analysis results from different 

watersheds or time periods are likely to be invalid or inapplicable. Furthermore, some 

common assumptions with respect to the SAC-SMA (e.g., that lower zone parameters do 

not impact high flows) are incorrect, demonstrating the difficulty of discerning 

parametric controls a priori without rigorous computational analysis. To most effectively 

identify important model parameters for calibration of a given watershed and analysis 

period, sensitivity analysis should be performed for that specific case. Chapter 3 presents 

an extension of this study that investigates how parameters of varying sensitivity impact 

the overall model performance. Results of that study address the feasibility for different 

watershed types of removing (fixing to constants) parameters from the calibration 

process.  
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3.1 INTRODUCTION 

Watershed-scale hydrologic models are essential tools to understand and predict water 

movement and storage in a watershed. Before reliable predictions are possible, most, if 

not all, watershed models require some degree of calibration to observed streamflow data. 

A priori estimates of parameters, derived from available soils and land use data, may 

provide good starting values for the calibration process [e.g. Koren, 2000; Duan et al., 

2001; Koren et al., 2003]. However, the spatial scale of field measurements (e.g. the data 

used to estimate a priori parameters) is typically much different than the spatial scale of 

model elements. Furthermore, most model structures are an approximation (or 

conceptualization) of the real hydrologic system so model parameters do not represent 

measurable features of the true system. Therefore, a priori parameter estimates typically 

must still be adjusted by calibration to achieve reliable predictions [Beven, 1989; 

Wagener and Wheater, 2006]. 

 In the last two decades, advances in global optimization have proven useful for 

hydrologic model identification [Duan et al., 1992; Sorooshian et al., 1993; Yapo et al., 

1998; Vrugt et al., 2003; Wagener et al., 2003; Kollat and Reed, 2006; Tang et al., 

2007a]. Global algorithms have succeeded in overcoming some challenges of hydrologic 

model optimization (e.g., avoiding local optima, ridges and plateaus of the response 

surface) and have significantly increased the efficiency of the calibration process [Duan 

et al., 1992; Tang et al., 2006]. However, in recent years studies have begun to recognize 

that the complexity (i.e., number of parameters) of hydrologic models is often too large, 

given the amount of information contained in hydrologic data [Beven and Binley, 1992; 

Wagener et al., 2001, 2003]. As a result, most models include unidentifiable parameters – 
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i.e. parameters for which sufficient information does not exist in the streamflow 

observations (or other response variable of interest) and therefore cannot be well-

identified in the calibration process. If these unidentifiable parameters are allowed to vary 

freely during calibration, the resulting values will have little meaning (since one value is 

presumably no better than another). The problem formulation for hydrologic model 

calibration is a key step that should include a means of dealing with unidentifiable 

parameters. Another issue for model calibration is the limit to the dimension of the 

parameter space that can feasibly be searched by current optimization algorithms. For 

models with a very large number of free-varying parameters (e.g. physically-based and/or 

distributed models), the full calibration problem may not be viable, even with the most 

effective algorithms. 

 One approach that has been applied to handle parameter unidentifiability and 

large (high-dimension) calibration problems is to reduce the number of free-varying 

parameters by fixing selected parameters to constant values [Bastidas et al., 1999; Cox et 

al., 2006; Hogue et al., 2006; Huang and Liang, 2006; Wagener and Wheater, 2006; 

Wagener and Kollat, 2007]. These previous studies have used judgment (e.g. 

understanding of the model structure) or computational tools like sensitivity analysis to 

determine which model parameters are least identifiable and can be set to constant values. 

However, these studies applied the approach for only one watershed or they fixed the 

same parameters to constant values for all watersheds in the study. Van Werkhoven et al. 

[2008] demonstrated that if a sensitivity analysis is applied for watersheds spanning a 

hydroclimatic gradient, the model parameters that are most sensitive may vary 

significantly. Thus the set of sensitive (and insensitive) parameters cannot be assumed to 
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be consistent across watersheds. Furthermore, previous studies have typically used only 

common statistical metrics of simulation error to assess parameter sensitivity. Statistical 

metrics quantify the distance between the observed and simulated flow time series based 

on assumptions about the statistical characteristics of the model residuals, but do not 

indicate how well the hydrologic function (e.g. water balance and flow regime) of the 

system is maintained by the model. The results of van Werkhoven et al. [2008] show that 

the parameters that are sensitive for one metric may be quite different than the parameters 

that are sensitive for another metric. Thus it is important to explicitly include 

hydrologically-based metrics in the sensitivity analysis and calibration process. Overall, 

the variation in parametric sensitivity across both watersheds and metrics implies that the 

selection of parameters to optimize (and fix to constants) should be done on a case-to-

case basis for different watersheds (rather than by a single, static approach), using a 

multi-objective framework that includes hydrologic metrics in addition to typical 

statistical metrics. 

 This study investigates a sensitivity-guided approach to watershed model 

calibration that is applied in a multi-objective framework using the SAC-SMA model for 

watersheds with varying hydroclimatic regimes. Specific objectives of the study are to 

determine for the different watersheds (1) to what extent and at what sensitivity level 

model performance is impacted by setting insensitive parameters to constant, a priori 

values, (2) the consequence with respect to the hydrologic function of the model if the 

parameter reduction and optimization are based on only statistical error measures, and (3) 

what, if any, generalizable guidelines emerge for applying this approach across a 

hydroclimatic gradient. 
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3.2 STUDY WATERSHEDS 

The watersheds used in this study are part of the Model Parameter Estimation Experiment 

(MOPEX), an initiative which has developed datasets for hundreds of watersheds across 

the US [Duan et al., 2006]. Four watersheds were selected to represent distinctly different 

hydroclimatic regimes. The relative locations and elevation ranges of the 4 watersheds 

are shown in Figure 3.1, along with normal- and log-scale hydrographs for an average 

year. As illustrated in Figure 3.1, the watersheds are of comparable size (3015 to 4421 

km2), but have different dynamic response characteristics as reflected by the watersheds’ 

hydrographs. The most humid (and lowest-elevation) watershed, AMI, has frequent, more 

attenuated peaks and higher sustained baseflow, which is typical for a humid regime. The 

hydrograph of EAS has somewhat less frequent peaks, though it shows similar 

attenuation and sustained baseflow as AMI. Watershed SPR has slightly less attenuated, 

less frequent peaks and lower baseflow than EAS. Finally, the most arid and highest-

elevation watershed, GUA, has infrequent, sharp peaks and low to intermittent baseflow 

as is typical for arid and semi-arid watersheds.  

The characteristics listed in Table 3.1 further reflect the watersheds’ diverse 

hydroclimatic regimes. As shown in Table 3.1, AMI is the wettest watershed in terms of 

both mean annual precipitation (P) and wetness index (P/PE), whereas GUA is the driest 

in terms of these measures. Watersheds EAS and SPR, have similar P but are different 

(higher in SPR) mean annual potential evaporation (PE). Thus SPR has a wetness index 

less than one (and is ‘water-limited’) while EAS has a wetness index greater than one 

(and is ‘energy-limited’) [Budyko, 1974]. Throughout discussions and figures in this 

paper, the watersheds are ranked from dry to wet based on the wetness index.  Additional  
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Figure 3.1 Study watersheds’ locations, elevation ranges, and hydrographs for an average year (normal and 
log scale). 
 
 
Table 3.1 Four study watersheds’ characteristics. 

ID River (State) Area 
(km2) 

Mean 
Annual 
P (mm) 

Mean 
Daily Q 
(cms) 

Mean 
Annual 

ROC (Q/P) 

Mean 
Annual 

PE (mm) 

Mean 
Annual 
P/PE 

AMI Amite (LA) 3315 1564 55 0.39 1073 1.46 
EAS E. Fork White (IN) 4421 1015 25 0.37 855 1.19 
SPR Spring (MO) 3015 1076 22 0.28 1094 0.98 
GUA Guadalupe (TX) 3406 765 11 0.15 1528 0.50 

 

characteristics of these watersheds are presented by Duan et al. [2006]; van Werkhoven et 

al. [2008]; and Gan and Burges [2006]. The data used from the MOPEX dataset includes 

daily precipitation and daily streamflow for 39 years (1960-1998) of data, long-term 

mean monthly estimates of PE, and vegetation adjustments to the PE estimates. 
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Table 3.2 Description of SAC-SMA parameters allowable ranges and a priori values.  
 Allowable A Priori Values 
Parameter Range AMI EAS SPR GUA 
UZTWM 25 – 125 62.5 53.5 54.8 31.75 
UZFWM 10 – 75 35.4 30.95 32.4 18.9 
UZK 0.2 – 0.5 0.36 0.36 0.37 0.27 
PCTIM 0.0 – 0.05 0.011 0.011 0.011 0.011 
ADIMP 0.0 – 0.2 0.063 0.063 0.063 0.063 
RIVA 0.0 – 0.2 0.0 0.0 0.0 0.0 
ZPERC 20 – 300 108.6 89.7 80.6 113.5 
REXP 1.4 – 3.5 2.21 2.28 2.68 2.514 
PFREE 0 – 0.5 0.205 0.224 0.36 0.317 
LZTWM 75 – 300 256.2 229.2 204.3 131.5 
LZFSM 15 – 300 31.28 37.3 33.17 23.83 
LZFPM 40 – 600 128.4 129.8 64.65 70.2 
LZPK 0.03-0.2 0.09 0.094 0.102 0.07 
LZPK 0.001-0.015 0.009 0.007 0.006 0.004 
 
 

3.3 METHODS 

3.3.1 Sacramento Soil Moisture Accounting Model (SAC-SMA) 

The SAC-SMA [Burnash, 1995] is a moderate-complexity lumped conceptual rainfall-

runoff model that represents the soil column by upper and lower zones of multiple 

storages (Figure 3.2). It is the primary rainfall-runoff model used for river forecasting by 

the National Weather Service (NWS) River Forecast Centers (RFCs) across the United 

States and it has also been used extensively in research [e.g. Gupta et al., 1998; Koren et 

al., 1999; Boyle et al., 2000; Boyle et al., 2001; Gan and Burges, 2006; Hogue et al., 

2006; Tang et al., 2006]. The model includes 16 parameters whose primary functions are 

depicted in Figure 3.2. Of these 16 parameters, two are typically set to standard values 

(SIDE and RSERV) in the parameter estimation process. The remaining 14 parameters 

must be estimated by some means (calibration or otherwise) for each watershed. These 14 

parameters were the focus of this study and are listed in Table 3.2 (see Table 2.2 of 

Chapter 2 for parameter descriptions and units). Table 3.2 also lists the parameters’ 

allowable ranges that were used in the multi-objective optimization [Anderson, 2002] and 
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3.3.2 Objective Function
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Figure 3.2 Conceptualization of the SAC-SMA. 
ted from soils data and other watershed characteristics by Koren 

lues were assigned to a given parameter and held constant (not 

 if that parameter was deemed insensitive for a particular case. 

s 

ling studies use statistically-based metrics as the primary 

libration. As discussed in Section 3.3.1, such metrics do not 

e hydrologic function of a watershed is well-represented. One 

assess the implication of leaving hydrologic metrics out of the 

 four metrics are used here – two common statistical metrics that 
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emphasize high and low flows and two hydrologic metrics that emphasize the water 

balance and the mid-range flow regime. Together, these metrics capture four different but 

important components of the hydrograph while allowing for a comparison between 

statistical and hydrologic metrics. The statistical high flow metric is the commonly-used 

root mean squared error (RMSE), defined as: 

( )∑
=

−=
m

1t

2
to,ts, QQ

m
1RMSE                                   (3.1) 

where m is the number of timesteps, Qs,t is the simulated flow for timestep t, and Qo,t is 

the observed flow in timestep t. For the second statistical metric, the simulated and 

observed flow time series are first transformed by a Box-Cox transformation (Eq. 3.2) 

with a λ value of 0.3, which has a similar effect as a log transformation. The RMSE of 

the transformed flows is then calculated to obtain a metric that emphasizes low flow, 

referred to here as the transformed root mean squared error (TRMSE) (Eq. 3.2). 
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λ 11 −+
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1                   (3.3) 

where m is again the number of timesteps, Zs,t is the transformed simulated flow for 

timestep t, and Zo,t is the transformed observed flow in timestep t. The third metric, the 

runoff coefficient error (ROCE), captures the overall accuracy of the water balance by 

first combining the flows into one characteristic hydrologic descriptor, the mean annual 

runoff coefficient. The absolute error in the runoff coefficient is then calculated and thus 

the ROCE is defined as 

⎟⎟
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⎛
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Q

absROCE os                    (3.4) 
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where sQ and oQ and are the simulated and observed mean annual runoff volume, and P is 

the mean annual precipitation. The final metric is the slope of the flow duration curve 

error (SFDCE) and measures how well the model captures the distribution of mid-level 

flows. The slope of a watershed's flow duration curve indicates the variability, or 

flashiness, of its flow magnitudes. The SFDCE metric is thus simply the absolute error in 

the slope of the flow duration curve between the 30 and 70 percentile flows as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−
=

4040
30,70,30,70, ooss QQQQ

absSFDCE                  (3.5) 

where Qs,30 and Qs,70 are the 30 and 70 percentile flows of simulated flow duration curve 

and Qo,30 and Qo,70 are the 30 and 70 percentile flows of observed flow duration curve.  

 

3.3.3 Epsilon Nondominated Sorted Genetic Algorithm II (ε-NSGAII)  

The ε-NSGAII is a multi-objective evolutionary algorithm (MOEA) that has been applied 

and tested for a variety of system optimization problems [Kollat and Reed, 2005, 2006; 

Tang et al., 2006; Tang et al., 2007a]. Within the area of water resources, the algorithm 

has been used most extensively for the calibration of hydrologic models [e.g. Tang et al., 

2006] and the design of long-term groundwater monitoring networks [e.g. Kollat and 

Reed, 2006]. Comparison studies have shown that the performance of the ε-NSGAII is 

equivalent or superior to other state-of-the-art MOEAs for solving water resources 

problems. In particular, the algorithm‘s strengths include its ease of implementation, 

reliability, and diverse representations of tradeoffs [Kollat and Reed, 2005; Tang et al., 

2006]. 
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 Evolutionary algorithms in general are methods that incorporate principles of 

biological evolution to generate solutions with the greatest "fitness" as defined by one or 

more objective functions for the given system. Like the original NSGAII [Deb et al., 

2002], the ε-NSGAII employs real-valued search operators that include simulated binary 

crossover (SBX) [Deb and Agrawal, 1994] and polynomial mutation as well as elitist 

selection strategies [Deb, 2001]. In addition, the algorithm maintains use of 

nondomination sorting and crowding distance to increase solution diversity as in the 

original version. The ε-NSGAII expands upon NSGAII by including the concept of ε-

nondominance [Laumanns et al., 2004] and dynamic population sizing [Harik and Lobo, 

1999]. Inclusion of ε-nondominance allows for user-control over the precision of the 

approximation to the Pareto set and thus also over the algorithm's computational cost (as 

shown by Kollat and Reed [2006]). Values of ε establish the error tolerance for each 

objective function – small values will more completely capture the full resolution Pareto 

set, while larger values will result in a more coarse approximation. Dynamic population 

sizing [Harik and Lobo, 1999] is a method that enables the algorithm's population size to 

increase or decrease commensurate with problem difficulty. The scheme uses a series of 

“connected runs” in which initial small populations pre-condition the search and 

subsequent populations are sized based on search progress. Using dynamic population 

sizing facilitates the implementation of ε-NSGAII by eliminating the need to specify the 

population size. For more detailed descriptions of ε-NSGAII, see Kollat and Reed [2005; 

2006] and Tang et al. [2007]. 
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3.3.4 Sobol' Sensitivity Analysis 

The SAC-SMA parameter sensitivity analysis results that are used in this study were 

developed as part of previous work by van Werkhoven et al. [2008]. That study used 

Sobol's method [Sobol', 1993] to determine SAC-SMA total and individual parameter 

sensitivities for 12 watersheds based on the four metrics described in Section 3.3.2. A 

subset of those results (i.e. total sensitivities for the four study watersheds) is used in this 

study to select sensitive versus insensitive parameters for optimization. 

 Sobol's sensitivity analysis method is a variance-based approach in which the 

model output variance is decomposed into relative contributions from individual 

parameters and parameter interactions. A given parameter's sensitivity in this method is 

quantified by the ratio of its contribution to the output variance to the full (i.e. due to all 

parameters) output variance, resulting in an index value ranging from 0 to 1. This index, 

called the Sobol' sensitivity index, can be calculated for both individual and total 

parameter sensitivities. The total index measures the sensitivity due to the combined 

effect of the parameter alone (i.e. individual sensitivity) plus its interactions with all other 

parameters in the analysis. This study uses total sensitivity indices since these values 

reflect the full impact of each parameter on the model output and are most relevant for 

calibration. In Sobol's method, the total output variance and the variance contributions 

are approximated in a Monte Carlo framework using two different samples. The model is 

evaluated using the first sample to calculate the full output mean and variance (i.e., the 

combined effects of all parameters). The second sample is then used to resample each 

parameter, rather than setting each to a fixed value, for the calculation of total and 

individual variance contributions. For more details on Sobol's method see Sobol' [1993, 
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2001], Hall et al. [2005], Saltelli [2002], Tang et al. [2007b], and van Werkhoven et 

al.[2008]. 

 

3.4 APPROACH 

For each of the 4 study watersheds, the methods described in Section 3.3.1-3.3.3 were 

used to perform multi-objective optimization with varying problem formulations in order 

to assess the importance of including multiple hydrologic metrics and the impact of 

reducing the number of optimized parameters for different watersheds. First, as a 

baseline, the full SAC-SMA parameter space (14 parameters) was optimized for each 

watershed using ε-NSGAII and the four objective functions defined in Section 3.3.2. 

Then, multiple reduced-parameter sets were developed by defining four thresholds (0.05, 

0.1, 0.2 and 0.3) on Sobol’s sensitivity index (see Figure 3.3). These thresholds identify 

parameters that contribute 5, 10, 20 and 30 percent of the total output variance, 

respectively. SAC-SMA parameter sensitivities were obtained by Sobol’s sensitivity 

analysis in a previous study [van Werkhoven et al., 2008], which includes an in-depth 

discussion of the resulting parameter sensitivities. For a given threshold and objective 

function, all parameters having a sensitivity index greater than the threshold were defined 

as sensitive for that metric. Two different reduced-parameter sets were then constructed 

for each threshold – one based on the union of sensitive parameters for the 2 statistical 

metrics (RMSE and TRMSE) and one based on the union of sensitive parameters for all 4 

metrics. The two reduced-parameter sets are thus referred to throughout the discussion 

section as the ‘2-metric reduction’ and the ‘4-metric reduction’. The parameter reduction 

approach and associated results are discussed in more detail in Section 3.5.1. Once the 
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parameter sets were developed, each was optimized using ε-NSGAII and the four 

objective functions. Thus for each watershed a total of 9 multi-objective optimization 

results were obtained – the full-parameter set plus 8 reduced parameters sets (i.e. 2 sets 

per threshold). The tradeoff or Pareto solution sets that resulted from the multi-objective 

optimizations were compared across thresholds to determine the overall impact of 

reducing the parameter space. Results were also compared between the 2-metric and 4-

metric reductions to assess the implication of ignoring hydrologic metrics in both the 

parameter-reduction and optimization steps of the calibration approach. 

 To ensure the reliability of results, the ε-NSGAII was executed for each case with 

50 different random seeds and 500,000 function evaluations (thus 25,000,000 total 

function evaluations for each parameter set). The solution sets from all 50 seeds were 

combined and ε-nondomination sorting was applied to obtain the final reference set in 

each case. These final results are plotted in Figures 3.4, 3.6, 3.8, and 3.10 and are 

discussed in Sections 3.5.2-3.5.5. 

 

3.5 RESULTS 

3.5.1 Reduced Parameter Sets 

The method used to develop reduced-parameter sets for SAC-SMA is depicted in Figure 

3.3. Each row of the figure corresponds to one of the four threshold values (0.05, 0.1, 0.2 

and 0.3) that were imposed on the Sobol sensitivity index to define ‘sensitive’ versus 

‘insensitive’ parameters. The color grids (Figure 3.3a) reflect the value of the sensitivity 

index for each SAC-SMA parameter (y-axis) in each watershed (x-axis). For each metric, 

parameters with a sensitivity index greater than the given threshold are identified and are 
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Figure 3.3 Development of parameter sets to optimize for each sensitivity index threshold (t) in each
study watershed. Part (a) indicates the parameters’ Sobol sensitivity indices for the four evaluation metrics
and shows which parameters (outlined in black) have indices above the given threshold value. Part (b)
illustrates how reduced-parameter sets were built by including parameters that are sensitive for RMSE or
TRMSE (2-metric reduced set) and parameters that are sensitive for any of the metrics (4-metric reduced
et). 
outlined in black. From these parameters, two different reduced-parameter sets are then 

constructed for each threshold. The 2-metric reduced set is the union of parameters that 

are sensitive for RMSE and TRMSE, while the 4-metric reduced set is the union of 
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parameters that are sensitive for all four study metrics. The resulting parameter sets are 

shown in Figure 3.3b (right side of the figure) by black solid squares. The differences 

between the 2-metric and 4-metric sets reflect that parametric sensitivity varies 

significantly across the metrics (as discussed in detail in van Werkhoven et al. [2008]). 

The 4-metric sets (for a given watershed and threshold) include the same parameters as 

the 2-metric sets (those sensitive for RMSE or TRMSE), in addition to the parameters 

that are sensitive for ROCE and SFDCE.  Thus in each case the 4-metric set will include 

an equal or greater number of parameters as compared to the 2-metric set. 

 For both cases, as the threshold increases, there are progressively fewer 

parameters included in the reduced sets. In the 2-metric case, applying thresholds 0.05, 

0.1, 0.2 and 0.3 result in ranges of 8-12, 6-7, 3-4, and 2-3 parameters included, 

respectively. While the thresholds in the 4-metric case result in ranges of 10-13, 8-10, 5-

6, and 3-4 parameters, respectively. The impact on the model performance of reducing 

the number of calibrated parameters by such extents (and based on different metrics) is 

presented and discussed for each watershed in Section 3.5.2. 

 

3.5.2 Optimization 

Results of the multi-objective optimizations are shown are Figures 3.4, 3.6, 3.8, and 3.10. 

For each watershed (i.e., each figure), the Pareto solutions from the full-parameter 

optimizations (top row – identical on both sides of the figure) and reduced-parameter 

optimizations (rows 2-5) are included for the 2-metric and 4-metric parameter reductions. 

Note that in all cases the optimizations resulted in a 4-objective Pareto solution set. For 

better interpretation and readability we have plotted the 4-objective solution set twice in 2 
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dimensions with color. In both, RMSE & TRMSE are plotted on x and y axis, 

respectively, with either ROCE (left) or SFDCE (right) shown in color (i.e. the left and 

right sides are the same solution set but plotted with a different metric in color). As a 

means of scaling and to enable comparisons, the x-axis range in each plot is equal to the 

watershed’s mean annual flow and the y-axis is one quarter of the transformed mean 

annual flow. Thus the distance between points in each plot has comparable significance. 

The a priori (un-optimized) solution is also plotted as a point in each case for comparison. 

This point (and its color) represents the objective values obtained when the model is run 

with all 14 parameters set to a priori values (calculated using pedo-transfer functions by 

Koren [2000]). Overall these plots capture a continuum from the case of full parametric 

search to the case of an a priori specified parameter set attained without search. 

 

3.5.2.1 Watershed AMI  

The results of the full and reduced-parameter optimizations for AMI, the most humid of 

the four watersheds, are shown in Figure 3.4. In the full-parameter result (top row), some 

overall performance improvement is evident in the relative distance between the 

minimum objective values (i.e. particularly RMSE, TRMSE and SFDCE) and the a priori 

result. Since the a priori ROCE value is already near zero, little improvement occurs for 

that metric. The parameter reductions at the first level (t=0.05) result in only a slight 

change in the solution set (as compared to the full-set optimization). This reflects that 

little impact on performance occurs as the least sensitive parameters are removed from 

the analysis. In addition, at this level the 2- and 4-metric reduction results are very 

similar, further demonstrating the low impact of the removed parameters. Moving down 
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Figure 3.4 Watershed AMI optimization results for the (a) 2-metric reduced parameter sets and the (b) 4-
metric reduced parameter sets. Results of the full parameter optimization are shown in the top row of both
(a) and (b). The sensitivity index threshold and the corresponding number of optimized parameters are
indicated in the gray box for each case. 
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to threshold levels of 0.1 and 0.2, some slight change on the shape of the solution set 

becomes apparent in for 2-metric reduction (Figure 3.4a), while the 4-metric result 

remains similar to the previous level. The optimum values for all metrics in both cases 

however do not significantly change. The shape change is likely a result of leaving out 

increasingly important parameters for ROCE and SFDCE – since the change disappears 

in the 4-metric reduction. When parameters LZTWM and PCTIM are added to the 

analysis for the 4-metric reduction, the solution set again is similar to the previous levels. 

It can be deduced however that parameter LZTWM is the primary influence on the shape 

difference between 3.4a and 3.4b at thresholds of 0.1 and above. Parameter PCTIM is 

also removed in the 2-metric reduction level 0.05 but the shape change did not occur at 

this level. At the final threshold level (t=0.3), the most significant degradation in 

performance occurs. Here the optimum RMSE and TRMSE values are near the a priori 

solution and the majority of the solution set is actually worse than the a priori value. At 

this level, parameters LZPK and UZFWM are removed for both the 2-metric and 4-

metric reductions.  As discussed by van Werkhoven et al. [2008], UZFWM is an 

important parameter for capturing high flows in wet watersheds, thus it's removal 

particularly impacts the optimal RMSE value that is attainable for this watershed. As in 

the previous two levels, when LZTWM is added to the analysis from the 2-metric to the 

4-metric case, the extent of the solution set reduces though the optimum values are not 

significantly affected. 

 The variation and quality of model simulations resulting from the solution sets for 

select cases are illustrated in Figure 3.5 by flow duration curves and cumulative runoff 

curves. We recognize the limitation of the flow duration curve to fully reflect the quality 
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Figure 3.5 Watershed AMI observed and simulated (i.e. pareto range) cumulative runoff volume curves
and flow duration curves (with the high flows (0-10%) portion shown in the inset plot on a larger y-axis
scale for readability). The cases presented include (a) the full parameter set optimization, (b) the ‘best’ 2-
metric reduction result (c) the ‘best’ 4-metric reduction result and (d) the corresponding 2-metric for the
threshold level of the ‘best’ 4-metric result (for comparison). The ‘best’ optimizations were selected
subjectively as the case with the fewest parameters where model performance is not severely impacted for
the metrics considered. 
of simulations since it includes no information on accurate flow timing (as time series 

would), only that the right distribution of flow levels occurred throughout the record.  

However space clearly prevents the inclusion of 38-year time series, and including only 

select years would make it impossible to link the metric values (which are calculated on 

the full 38 years) to the model outputs. Therefore these plots provide a more general 

indication of similarity and dissimilarity in results and (particularly) of the width or 

narrowness of the solution set range in each case.  Figure 3.5 (and in Figures 3.7, 3.9 and 

.11) includes 4 cases – the full-parameter result, the 'best' 2-metric result (determined 

ubjectively as the case with the fewest parameters where model performance is not 

everely impacted), the 'best' 4-metric result, and finally the 2-metric result 
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corresponding to the 'best' 4-metric result (i.e., at the same threshold level). Comparing 

these cases allows for a systematic assessment of the significance of including hydrologic 

metrics (i.e., ROCE and SFDCE) in the analysis. For watershed AMI, if the reduction and 

optimization were performed using only statistical metrics (Figure 3.4a), a sensitivity 

threshold of 0.2 might be selected to reduce the number of optimized parameters while 

maintaining the model performance. This case is identified as the 'best' 2-metric result 

and reduces the number of optimized parameters from 14 to 4 (UZFWM, LZFPM, 

LZFSM, LZPK). The range of model output for this case is plotted in Figure 3.5b. As 

compared to Figure 3.5a (full-parameter result), the width of the solution set’s simulation 

range (gray area) on the flow duration curve is wider, which reflects the wider range of 

objective values in this case (particularly SFDCE and RMSE). If the analysis were 

performed using all four metrics (Figure 3.4b), the 'best' result occurs at the same 

threshold (0.2). In this case (Figure 3.5c), the number of optimized parameters would be 

reduced to 6 (UZFWM, PCTIM, LZTWM, LZFSM, LZFPM, LZPK). Figure 3.5d for this 

watershed is identical to Figure 3.5b since the 'best' 2-metric and 4-metric results 

occurred at the same level. In contrast to other watersheds (as will be shown in the 

following sections), including hydrologic metrics for AMI is less critical. This 

observation is likely attributable to the near-zero water balance error (ROCE) of the a 

priori solution. Since the a priori values yield a good water balance, optimizing the 

parameters highly sensitive for metric ROCE does not greatly improve performance. 

Overall however, the results for watershed AMI show that the model complexity (in 

terms of number of optimized parameters) can be significantly reduced based on a Sobol 

sensitivity index of 0.2, resulting in four optimized parameters. 
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Figure 3.6 Watershed EAS optimization results for the (a) 2-metric reduced parameter sets and the (b) 4-
metric reduced parameter sets. Results of the full parameter optimization are shown in the top row of both 
(a) and (b). The sensitivity index threshold and the corresponding number of optimized parameters are 
indicated in the gray box for each case. 
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3.5.2.2 Watershed EAS  

The optimization results for watershed EAS (Figure 3.6) show some distinctly different 

patterns than watershed AMI. First, as seen in the full-parameter result (top row) the a 

priori solution is closer to the Pareto front for the statistical metrics (RMSE and 

TRMSE), therefore less overall improvement (in these metrics) is attainable by the 

optimization. In addition, the a priori water balance error (ROCE) is higher (0.03) than it 

was for AMI. The impact of parameter-reduction for this watershed is immediately 

apparent in the results of the 2-metric case at a threshold of 0.05. Here a large spread in 

values of RMSE and TRMSE develops in order to reach improved values of ROCE. Six 

parameters were removed from the analysis at this level. When four of those parameters 

are re-added to the analysis for the 4-metric reduction (moving from Figure 3.6a to 3.6b 

at level 0.05), the solution set returns to the shape and values of the full-parameter set 

result. The pattern of large spread in TRMSE values remains throughout the 2-metric 

reductions for all thresholds, while the 4-metric reductions' solution sets do not 

significantly change from the full-parameter set. The two parameters that are consistently 

different between Figure 3.6a and 6b are PCTIM and LZTWM. These two parameters are 

highly sensitive for metric ROCE.  Therefore it makes sense that if the initial (a priori) 

water balance is poor, then removing these two parameters from the analysis would 

prevent the optimization from improving or 'fixing' the water balance (unless it reaches 

into regions of high error for the other metrics). As an additional observation, parameter 

UZFWM is included for the 2-metric reduction at a threshold of 0.05 (while it is not for 

t=0.1 and above). The region of very high RMSE error at this level (when UZFWM is 

included) could be a result of large peaks generated by very low values of UZFWM that 
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Figure 3.7 Watershed EAS observed and simulated (i.e. pareto range) cumulative runoff volume curves
and flow duration curves (with the high flows (0-10%) portion shown in the inset plot on a larger y-axis
scale for readability). The cases presented include (a) the full parameter set optimization, (b) the ‘best’ 2-
metric reduction result (c) the ‘best’ 4-metric reduction result and (d) the corresponding 2-metric for the
threshold level of the ‘best’ 4-metric result (for comparison). The ‘best’ optimizations were selected
subjectively as the case with the fewest parameters where model performance is not severely impacted for
the metrics considered.  
are offsetting water balance error to improve the ROCE values at the expense of high 

RMSE error (resulting in the 'tail' at the top of the solution set in this case).  

 For watershed EAS, the 'best' 2-metric result occurs at a threshold of 0.1. At this 

level the optimum values of RMSE and TRMSE are still only slightly higher than the 

full-parameter result though still better than the a priori values.  For each subsequent 

threshold these values are closer to the a priori values. A threshold of 0.1 for the 2-metric 

case reduces the number of parameters from 14 to 6. The model output for the full-

parameter result and the 'best' 2-metric result are shown in Figures 3.7a and 3.7b, 

respectively. Figure 3.7b shows a wider solution set range on low, mid and high flows of 

he flow duration curve, as well as on the cumulative volume curve. The increased ranges 
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reflect the wide range of objective values that result for this case (i.e., throughout Figure 

3.6a). The 'best' 4-metric reduction result is selected at a threshold of 0.2 which again 

includes 6 parameters (though a different 6 parameters than the 'best' 2-metric case). 

Figure 3.7c shows the sharper (more narrow) solution set range on the output curves that 

results for the 'best' 4-metric case. Comparing Figures 3.7b and 3.7c also demonstrates 

the importance of which parameters are optimized rather than how many are optimized. 

These two cases included the same number of parameters (6), however the results appear 

significantly better in Figure 3.7c – when all four metrics are used in the parameter-

reduction.  For a final comparison, the results from the 2-metric reduction corresponding 

to the 'best' 4-metric reduction (i.e., threshold 0.2) are included in Figure 3.7d.  The wider 

(less sharp) range and decreased accuracy of results are evident in both the flow duration 

and cumulative volume curves. This demonstrates that when using a 2-metric reduction, a 

lower sensitivity threshold (i.e., including more parameters) would be necessary to 

achieve comparable results. Thus, for watershed EAS the impact of leaving the 

hydrologic metrics out of the analysis is significant. At all threshold levels in Figure 3.6 a 

large difference exists between the 2-metric reduction and 4-metric reduction. It is clearly 

beneficial to include hydrologic metrics in the parameter reduction process for this case. 

When 4 metrics are included, it appears possible to reduce the number of optimized 

parameter from 14 to 6, while maintaining model performance. 

 

3.5.2.3 Watershed SPR 

Figure 3.8 presents the optimization results for watershed SPR.  Like EAS, the a priori 

solution is relatively close to the optimized solution for RMSE, TRMSE, and SFDCE. In 
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Figure 3.8 Watershed SPR optimization results for the (a) 2-metric reduced parameter sets and the (b) 4-
metric reduced parameter sets. Results of the full parameter optimization are shown in the top row of both
(a) and (b). The sensitivity index threshold and the corresponding number of optimized parameters are
indicated in the gray box for each case. 
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this watershed, however, the a priori ROCE value is higher than it is for all other 

watersheds at 0.04 (corresponding to roughly a 15% volumetric bias). Similar to 

watershed AMI, the impact of the parameter reduction at the 0.05 threshold is minimal 

and no observable differences exist between the 2-metric and the 4-metric cases (at this 

level). Using this threshold, very few parameters are removed (e.g. fewer than EAS at the 

same level) so the small impact is not surprising. However, at a threshold of 0.1, the 

effect of the parameter reduction on performance becomes apparent for the 2-metric case, 

where 7 parameters are removed from the analysis. In this case, (as was seen in EAS) the 

solution set expands into a region of higher RMSE and TRMSE in order to minimize 

ROCE.  In other words, when these 7 parameters are removed, the best simulations with 

respect to low flows (in particular) are in turn very poor with respect to the water balance. 

When 3 parameters are re-added to the analysis (LZPK, LZTWM, and PFREE) for the 4-

metric reduction at the same threshold level, the results look very similar to the results at 

the 0.05 threshold.  The same trend of large impact in the 2-metric case and less change 

(particularly in the shape of the solution set) for the 4-metric case continues for t=0.2 and 

t=0.3.  However for t=0.2 and 0.3, the RMSE and TRMSE values reach closer to (and 

become worse than) the a priori values. The two parameters that are consistently removed 

from the analysis between Figure 3.8a and 8b (for t=0.1 and above) are LZTWM and 

LZPK.  LZTWM in particular has a very high sensitivity for this basin and it is likely that 

this parameter (as for AMI) is causing much of the differences seen in Figure 3.8. 

 The 'best' 2-metric result is selected at a threshold of 0.05, which includes 12 

parameters and is therefore a small reduction with only 2 parameters removed. Above 

that threshold, however, results significantly degrade. The model output for the full-
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Figure 3.9 Watershed SPR observed and simulated (i.e. pareto range) cumulative runoff volume curves and
flow duration curves (with the high flows (0-10%) portion shown in the inset plot on a larger y-axis scale 
for readability). The cases presented include (a) the full parameter set optimization, (b) the ‘best’ 2-metric
reduction result (c) the ‘best’ 4-metric reduction result and (d) the corresponding 2-metric for the threshold 
evel of the ‘best’ 4-metric result (for comparison). The ‘best’ optimizations were selected subjectively as
he case with the fewest parameters where model performance is not severely impacted for the metrics 
onsidered.  
parameter result and the 'best' 2-metric result are shown in Figures 3.9a and 3.9b, 

respectively. The two plots are very similar, reflecting the small impact of removing only 

2 very insensitive parameters.  The 'best' 4-metric result is selected at threshold 0.2 which 

includes 5 optimized parameters and is therefore a much larger reduction. Figure 3.9c 

shows that, on the flow duration curve, the results look again similar to Figures 3.9a and 

3.9b with slight degrade on the cumulative volume. Figure 3.9d illustrates that the 

corresponding 2-metric result for the 'best' 4-metric result (at the same threshold level) 

has a significantly wider solution set range and is much further from the full-parameter 

result in Figure 3.7a. The wide range in most metrics of the solution set for this case are 

also reflected in Figure 3.8a for this case (where the majority of the set is worse than the 
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a priori solution).  The importance of including the hydrologic metrics in this case is 

underpinned by the differences between Figures 3.8a and 3.8b at all threshold levels. This 

point is further emphasized by the better performance attained when optimizing 5 

parameters for the 4-metric case at level t=0.2 than when optimizing 7 parameters for the 

2-metric case at level t=0.1. With fewer parameters, better performance can be achieved 

if parameters are well-selected. Overall, it appears reasonable to reduce the number of 

optimized parameters from 14 to 5 (ADIMP, LZTWM, LZFSM, LZFPM, and LZPK) 

when using 4 metrics for watershed SPR.  

        

3.5.2.4 Watershed GUA 

The full-parameter optimization for GUA (the driest watershed) achieves the greatest 

relative improvement in high and low flow performance (i.e., in RMSE and TRMSE) 

from the a priori solution (as compared to the other three watersheds). Like SPR, the a 

priori ROCE value for GUA is also high, though the SFDCE value is lower. Like AMI 

and SPR, parameter reduction using a threshold of 0.05 does not have a significant 

impact on the performance for either the 2-metric or the 4-metric cases, though a larger 

number of parameters (6) are removed in this case. Increasing the threshold from 0.05 to 

0.1 removes just one additional parameter (LZFPM) from the analysis, but creates a very 

noticeable impact on the performance. A very similar effect occurs for the 4-metric case 

as well, where 2 parameters are removed (LZFPM and LZPK). In both cases the resulting 

minimum values for each metric do not change significantly, but the change in shape 

reduces the potential of a good tradeoff solution (i.e., a solution where all metrics are 

close to their minimum). The most significant impact on performance, however, occurs at 
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Figure 3.10 Watershed GUA optimization results for the (a) 2-metric reduced parameter sets and the (b) 4-
metric reduced parameter sets. Results of the full parameter optimization are shown in the top row of both
(a) and (b). The sensitivity index threshold and the corresponding number of optimized parameters are
indicated in the gray box for each case. 
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a threshold of 0.2.  At this level, RMSE and TRMSE increase to the a priori levels (and 

higher) for the 2-metric case. The 4-metric case shows less impact than the 2-metric case, 

though it is still significant as compared to lower thresholds of the 4-metric case. In 

addition, tradeoffs between metrics worsen again here as the best (lowest) TRMSE 

solutions have very high values of ROCE.  It is interesting to note that the improvement 

in RMSE at threshold 0.2 from the 2-metric to 4-metric case, a pattern not observed in 

other watersheds. This is initially unexpected since the parameters that are re-added to the 

analysis (UZTWM and LZTWM) for the 4-metric case are not sensitive to RMSE at this 

threshold level. However one of these parameters (LZTWM) is in fact sensitive for 

RMSE at the previous level (t=0.1), therefore re-adding this parameter has an impact. As 

discussed in van Werkhoven et al [2008] dry watersheds have been observed to have 

greater overlap in parametric sensitivity between the statistical and hydrologic metrics. 

Thus similar trends (i.e., an observable improvement in statistical metrics from the 2-

metric to 4-metric cases) are not apparent for other watersheds. As further demonstration, 

the final threshold level (t=0.3) results in the same parameter set (ADIMP, RIVA and 

PFREE) for both the 2-metric and 4-metric reduction in watershed GUA. Little 

improvement in performance is achieved by optimizing only these three parameters as the 

resulting solution set appears nearly as a point adjacent to the a priori solution. 

 The 'best' 2-metric result for this watershed is selected at a threshold of 0.05, 

which includes 8 parameters. Above t=0.05, however, the tradeoff potential and 

minimum values (especially over t=0.2) significantly degrade. The model output for the 

full-parameter result and the 'best' 2-metric result are shown in Figures 3.11a and 3.11b, 

respectively. The two plots are similar though slightly wider solution set ranges are 
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Figure 3.11 Watershed GUA observed and simulated (i.e. pareto range) cumulative runoff volume curves
and flow duration curves (with the high flows (0-10%) portion shown in the inset plot on a larger y-axis
scale for readability). The cases presented include (a) the full parameter set optimization, (b) the ‘best’ 2-
metric reduction result (c) the ‘best’ 4-metric reduction result and (d) the corresponding 2-metric for the
threshold level of the ‘best’ 4-metric result (for comparison). The ‘best’ optimizations were selected
subjectively as the case with the fewest parameters where model performance is not severely impacted for
the metrics considered.  
apparent in Figure 3.11b. As for watershed AMI, the 'best' 4-metric result is selected at 

the same level as the 'best' 2-metric result and includes two additional parameters for a 

total of 10. Very little difference is observable between Figure 3.7b and 3.7c. (Note 

Figure 3.7d is identical to 7b since the 2-metric result corresponding to the 'best' 4-metric 

result is simply again the 'best' 2-metric result in this case). Thus, including the 

hydrologic metrics for this watershed appears less critical than for EAS and SPR. 

However, a different reason for this observation is deduced for GUA than it was for 

watershed AMI (i.e., the near zero a priori ROCE value). In this case, the overlap in 

parametric sensitivities between the statistical and hydrologic metrics caused important 

parameters for hydrologic metrics (e.g. LZTWM) to also be included in the 2-metric 
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reduction for thresholds 0.1 and 0.05. Overall, a reduction in the number of optimized 

parameters for this watershed appears possible to 8 parameters, the largest number for all 

watersheds. This likely reflects the model’s limitations when representing processes in 

semi-arid environments, which results in the need to retain more model complexity to 

improve simulations. 

 

3.6 DISCUSSION 

Table 3.3 lists the specifications of the 'best' optimization results for each of the study 

watersheds (defined subjectively as the case for which the least number of parameters are 

optimized to produce results close to the full-parameter result). As shown in Table 3.3, 

the number of optimized parameters in these cases reduces from 14 to 4, 6, 5, and 8 

parameters for AMI, EAS, SPR, and GUA, respectively. For three of the four watersheds, 

the recommended sensitivity threshold would be 0.2, while for one (GUA) the threshold 

would be 0.05.  The lower threshold and greater number of parameters necessary to 

maintain performance for the GUA watershed (the most arid watershed) is likely related 

to the difficulty of modeling arid and semi-arid watersheds. More parameters are 

necessary to maintain acceptable performance to make up for model inadequacies. In 

addition, as shown in Table 3.3 the parameters that should be included for each watershed 

also vary. This is not surprising based on large parametric sensitivity differences that 

exist across the watersheds, particularly between the most arid (e.g., GUA) and most 

humid (e.g., AMI) watersheds. However, despite some differences, similarities persist. 

The lower zone free storages for example (LZFSM, LZFPM), should be included in each 

case due to the high sensitivity of these parameters for most watersheds. 
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Table 3.3 Four watersheds' best-case reduced-parameter optimization specifications. 

ID Sensitivity 
threshold 

# of 
params. Parameters included 

AMI 0.2 4 UZFWM, LZFPM, LZFSM, LZPK 
EAS 0.2 6 PCTIM, LZTWM, LZFPM, LZFSM, LZSK, LZPK 
SPR 0.2 5 ADIMP, LZTWM, LZFPM, LZFSM, LZPK 
GUA 0.05 8 PCTIM, ADIMP, RIVA, ZPERC, PREE, LZTWM, LZFPM, LZFSM  

 

The extent and rate at which model performance declines as parameters are 

removed varies for each case and is dependent on several factors. First, the quality of the 

a priori estimates strongly influences the impact of removing parameters. Since 

parameters are fixed to their a priori calculated value once they are removed from the 

analysis, these values increasingly control the model performance as additional 

parameters are removed (i.e. down the columns of Figures 3.4, 3.6, 3.8, and 3.10).  If the 

a priori solution (i.e., the metric values for the simulation using all a priori parameters) is 

close to the fully-optimized solution set with respect to each metric, than less decline in 

performance will be perceived as parameters are removed (and vice versa). In general, 

the a priori estimates were somewhat better for the two more humid watersheds (AMI 

and EAS) and the two more arid watersheds (SPR and GUA). The hydroclimatic 

characteristics of a watershed (e.g. arid versus humid) are a second factor in the rate of 

performance decline for the SAC-SMA model. As discussed above, arid systems present 

greater challenges for hydrologic modeling than humid systems. Therefore, model 

performance would be expected to decline more rapidly for arid versus humid watersheds 

as degrees of freedom are removed from the model. This is supported by the results of 

watershed GUA as compared to watershed AMI. Lastly, which and how many parameters 

are removed in each step impacts the extent of performance change. Thresholds values of 

the Sobol sensitivity index were defined to develop parameter sets (see Figure 3.3). Since 
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parameter sensitivities vary significantly across the watersheds, which and how many 

parameters are included for a given threshold also varies for each watershed, as does the 

impact of a particular set and number of parameters. In some cases, parameters at a lower 

sensitivity have a larger incremental impact than parameters at a higher sensitivity. Or 

similarly, a few parameters may have a larger incremental impact than several 

parameters. Overall, the impact on model performance of fixing parameters to a priori 

values is likely a complex interaction among all of these factors – the quality of the a 

priori estimates, the type of watershed, and parameters removed. Therefore, no 

generalized statement about the sensitivity level above which parameters impact 

performance is possible. The analysis should be performed on a case by case basis.   

The same factors discussed above also impact the importance of including 

hydrologic metrics in sensitivity-guided calibration. The quality of the a priori estimates 

influences whether or not such metrics are necessary to ensure that the hydrologic 

function of the model is acceptable. If the a priori hydrologic metrics are poor (e.g. 

watershed SPR), it is particularly vital to include these metrics in the analysis to 

appropriately select and optimize parameters and improve the simulations. However, 

even if the a priori hydrologic metrics appear to be acceptable, including these metrics 

may still improve the optimization and result in better performance with fewer 

parameters (e.g. EAS, Figure 3.6b). The type of watershed also influences the importance 

of including hydrologic metrics. The results of watershed GUA were similar at low 

threshold for the 2-metric and 4-metric reductions (i.e., with or without the hydrologic 

metrics) implying that including these metrics did not significantly improve results. This 

likely occurred due to the greater overlap that exists in parametric sensitivities for the 
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SAC-SMA across statistical and hydrologic metrics for semi-arid watersheds. Overall the 

results of this study underpin the benefit for many cases of including hydrologic metrics 

in a sensitivity-guided multi-objective calibration approach. 

 

3.7 CONCLUSIONS 

This study demonstrates that the number of parameters that must be calibrated for 

hydrologic models in watersheds across a hydroclimatic gradient can be reduced without 

a significant impact on model performance if those parameters are selected carefully – 

based on parametric sensitivities specific to each watershed using both hydrologic and 

statistical metrics in the analysis. To arrive at this conclusion, we perform multi-objective 

optimization of the SAC-SMA model for four watersheds using nine different sets of 

optimized parameters that are selected based on global sensitivity analysis (with non-

optimized parameters fixed to a priori values). Four metrics are used in the parameter 

selection and optimization processes, two statistically-based and two hydrologically-

based. Though the experiments reveal that reducing the number of calibrated parameters 

is possible, a generalized approach (e.g. which sensitivity level, metrics, or parameters to 

use) for all watersheds is not easily identified due to the differences in parametric 

sensitivities across watersheds and metrics, as well as the varying quality of a priori 

estimates. For each watershed, the recommended sensitivity threshold and parameters to 

include would be different. Though overall, results suggest that in more humid 

watersheds (e.g. AMI) the number of optimized parameters can be reduced further than in 

more arid watersheds (e.g. GUA). This is likely due to the combined effect of somewhat 

poorer a priori estimates in the more arid watersheds and the inadequecy of the model to 
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represent arid and semi-arid hydrologic processes (e.g. Hortonian overland flow). The 

importance of including hydrologic metrics (e.g., a water balance and flow regime 

metric) in a sensitivity-guided calibration approach also becomes evident when 

comparing results across watersheds. Using only statistically-based metrics (as has been 

common practice) may lead to poor selection of the optimized parameters and inadequate 

simulation of the watershed's hydrologic function, as clearly demonstrated by the results 

of watersheds EAS and SPR. In formulating a sensitivity-based approach to remove less 

identifiable parameters from the calibration process, differences across hydroclimatic 

regimes should not be ignored. A dynamic approach that couples sensitivity analysis and 

optimization on a case-to-case basis, using both statistical and hydrologic metrics, is 

necessary as shown here.  
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4.1 INTRODUCTION 

A growing shift from lumped to distributed models has been occurring within the 

hydrology community for a wide range of applications [Smith et al., 2004]. Despite some 

clear advantages of distributed models, the parameter identification process can be 

hindered by the fact that streamflow observations are often only available for the 

integrated hydrologic response at the watershed outlet. Our understanding of the 

information contained in streamflow observations and the value of this information for 

distributed model identification is not yet well-established. This knowledge gap has 

significant implications for our ability to predict the watershed response and to inform the 

design of observation networks using distributed hydrologic models. 

 Previous studies and parameter estimation approaches for distributed conceptual 

models have commonly assumed that their parametric sensitivities do not vary in space 

and time, thus ignoring the dynamic nature of the parameter identification problem [e.g., 

Leavesley et al., 2003; Madsen, 2003; Carpenter and Georgakakos, 2004; Muleta and 

Nicklow, 2005]. Tang et al. [2007] demonstrated that the distribution of precipitation 

significantly influences the location of identifiable regions within a distributed model 

grid, while also suggesting that other factors such as cell location and initial states may 

also have an influence. However the experimental structure of their study, which 

evaluated parameter sensitivities based on two past events of precipitation and antecedent 

moisture conditions, made it difficult to fully isolate and assess the impacts of individual 

controlling factors. Sensitivity within the routing component of the model also was not 

considered. Furthermore, the conclusions of this work did not account for uncertainty in 

the data and in the representation of the real world system, which unavoidably adds noise 
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to such an analysis. The use of virtual experiments is an alternative approach, which 

allows for the in-depth analysis of model behavior in a synthetic and thus error free 

environment [Bashford et al., 2002; Weiler and McDonnell, 2004; Winter et al., 2004].  

 The study presented here uses global sensitivity analysis to fully evaluate a 

common conceptual distributed model across the spatial domain and to identify regions 

(in the model grid space) that control the model response behavior. The impacts of 

relevant event characteristics (i.e., precipitation distribution, initial soil-moisture state 

distribution, and active grid cell location) on these controlling regions, and therefore on 

the parameters that could be identified during calibration, are isolated using specific 

scenarios of synthetic data. A strong relationship between event characteristics and 

parameter sensitivity would indicate that significant spatio-temporal variations exist in 

the information content of the available observations, which may bias model 

identification. 

 

4.2 MODEL DESCRIPTION 

Many grid-based distributed hydrologic models establish a cell-to-cell connectivity only 

through surface channel routing, i.e., the cells are not connected in the subsurface [e.g., 

Liang et al., 2004] Several more complex, integrated models that include subsurface 

connectivity have also been developed [e.g., VanderKwaak and Loague, 2001; Panday 

and Huyakorn, 2004; Kollet and Maxwell, 2006; Qu and Duffy, 2007], however, the 

simpler surface-connected models continue to be widely used in both research and 

operational environments. One example of such a simpler model is used here – the 

National Weather Service's (NWS) Hydrology Laboratory Distributed Hydrologic 
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Modeling System (HL-DHMS) [Koren et al., 2004]. The HL-DHMS is based on a 

structure of approximately 4 x 4 km grid cells, each of which consists of a conceptual 

water balance component, a hillslope routing component, and a channel routing 

component. The Sacramento Soil Moisture Accounting Model (SAC-SMA) [Burnash, 

1995] is typically used as the water balance component (see Figure 2.3) and the 

kinematic wave method is used for hillslope and channel routing. The 14 main SAC-

SMA parameters are included in the analysis (Table 4.1). For kinematic wave hillslope 

(overland) routing, only the roughness parameter (hill-n) is included in the analysis, as 

the other two parameters (slope and drainage density) were estimated from DEM data as 

part of the Distributed Model Intercomparison Project (DMIP) of the NWS [Reed et al., 

2004] and are usually not considered variable. For channel routing, we used the ‘rating 

curve’ method of HL-DHMS [see Koren et al., 2004] in which the two parameters qo and 

m of the kinematic wave equation q=qoAm are estimated directly rather than by 

calculating them from physical properties of the channel. Thus a total of 17 parameters 

(14 SAC-SMA, 1 hillslope routing, and 2 channel routing) were included for each grid 

cell in the sensitivity analyses of this study (see Table 4.1). Note that the hillslope and 

channel routing models are treated as one combined model in the discussion and 

presentation of results.  

 

4.3 SOBOL’ SENSITIVITY ANALYSIS 

 Sobol's sensitivity analysis method [Sobol', 1993] is a variance-based approach in 

which the model output variance is decomposed into relative contributions from 

individual parameters and parameter interactions, as follows: 
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Table 4.1 Description of SAC-SMA and routing parameter descriptions, a priori grid ranges, and 
sensitivity analysis ranges.  

 

Parameter Description 
NWS a priori 
grid range 

Sensitivity analysis 
range 

uztwm Upper zone tension water maximum storage  24 – 65 19.2 – 78 
uzfwm Upper zone free water maximum storage 11 – 54 8.8 – 64.8 
uzk Upper zone free water withdrawal rate 0.19 – 0.76 0.152 – 0.912 
pctim % permanent impervious area 0 0 – 0.05 
adimp % saturated impervious area 0 0 – 0.2 
riva % area affected by riparian vegetation 0 0 – 0.2 
zperc Maximum dry condition percolation rate 34 – 117 27.2 – 140.4 
rexp Percolation equation exponent 2.11 – 2.89 1.69 – 3.47 
pfree % percolation going to lower zone free water 0.2 – 0.46 0.16 – 0.55 
lztwm Lower zone tension water max storage 77 – 208 61.6 – 249.6 
lzfpm Lower zone free water primary max storage 11 – 49 8.8 – 58.8 
lzfsm Lower zone free water supp. max storage 24 – 161 19.2 – 193.2 
lzpk Lower zone primary withdrawal rate 0.051 – 0.22 0.0408 – 0.264 
lzsk Lower zone supplementary withdrawal rate 0.0021 – 0.0146 0.00168 – 0.0175 
hill-n Overland roughness coefficient 0.15 0.12 – 0.18 
qo Channel routing coefficient 0.195 – 0.4525 0.156 – 0.543 
m Channel routing exponent 1.263 1.0104 – 1.5156 
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where p is the total number of parameters, f is the distribution of model output, D(f) is the 

full model output variance, Di is the output variance due to the ith component of the input 

parameter vector Θ, Dij is the output variance due to the interaction of parameters θi and 

θj; and the final two terms represent third-order and greater interactions. In this study, 

each model parameter in each grid cell is treated as an individual parameter. Thus the 

total number of parameters analyzed (1326) is the number of parameters per cell (17) 

times the total number of cells (78). A given parameter's sensitivity is quantified by the 

ratio of its variance contribution to the full (i.e., due to all parameters) output variance, 

resulting in an index value ranging from 0 to 1. The ‘total’ Sobol sensitivity index used in 

this study reflects the combined effect of the parameter alone (i.e., individual sensitivity) 

plus its interactions with all other parameters in the analysis. The total index, STi, is 

defined as: 

  103 



 

STi = D
D i~1−                                                                      (4.2) 

where D is the full output variance and D~i is the variance resulting from all of the 

parameters except θi. In other words, if parameter θi were removed from the analysis, the 

resulting reduction in output variance is equivalent to the total impact of parameter θi. 

Using a Monte Carlo framework, the full output variance is approximated as the 

statistical variance of the output distribution and the variance contribution D~i is 

approximated as follows: 
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where (a) and (b) are two different samples (both of size n), fo is the output statistical 

mean, Θs
(a) implies that all parameters are taken from sample (a), Θ(~i)s

(a) implies that all 

parameters except θi are taken from sample (a), and Θis
(b) implies that parameter θi is 

taken from sample (b). For more details on Sobol's method see Sobol’ [1993], Saltelli 

[2002], or van Werkhoven et al. [2008]. For the purpose of this study, the model output 

variance is measured by the commonly-used root mean square error (RMSE), which we 

assume is appropriate to capture event-based behavior. The RMSE is defined as,  
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1                                                                                          (4.4) 

where m is the number of time steps, Qs,t is the simulated flow for time step t, and Qo,t is 

the observed flow in time step t. For each sensitivity analysis, we used a sample size (n) 

of 3000, which is adequate based on minimum sample size recommendations for Sobol’s 

method (500-1000) reported by Saltelli et al. [2008]. The number of model simulations 

required for Sobol’s method is equal to n(k+2), where n is the sample size (3000) and k is 
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the number of parameters (1326). Thus a total of 3,984,000 model simulations were 

performed for each sensitivity analysis experiment discussed in Section 4.4. 

 

4.4 EXPERIMENTAL DESIGN 

The sensitivity analysis experiments in this study were performed using synthetic data 

designed to isolate and characterize the controlling factors of distributed model behavior. 

The grid structure of the Blue River Basin in southern Oklahoma was used as the study 

basin for the analyses. The basin is represented using 78 grid cells in an elongated shape 

(see Figures 4.1-4.2) resulting in a total basin area of 1248 km2. Five scenarios of 

precipitation were designed, including a spatially-uniform frontal storm event and four 

spatially-distributed convective storm events (an upper basin stationary storm, lower 

basin stationary storm, a storm moving downstream in the basin, and a storm moving 

upstream in the basin). The precipitation events were temporally distributed using design 

storm hyetographs defined by the US Department of Agriculture Soil Conservation 

Service [1986] for convective and frontal events. The spatial structure of the storm cell 

for the convective events is based on a circular Gaussian distribution with maximum 

intensity at the cell center [Sivapalan and Wood, 1987; Morin et al., 2006]. For each of 

the five scenarios, we applied a maximum 24-hour precipitation accumulation (Ptot) of 

157 mm, based on the 10-year return period for a 24-hour event for the basin location 

(i.e., applied to the cell center for the convective cases and all cells for the uniform case). 

The spatial and temporal distributions of Ptot are shown in Figures 4.1a (uniform case) 

and Figure 4.2a-d (convective cases). In addition to multiple scenarios of precipitation, 

we applied two different scenarios of initial soil-moisture states (Si) to allow for an 
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assessment of the impact of initial states on model behavior. The first scenario assumed 

that values of Si were spatially-homogeneous and the values represent wet basin 

conditions. To obtain reasonable values, a large uniform precipitation event was 

simulated and the six SAC-SMA model states that occurred following the event were 

selected as initial states for the first scenario (Table 4.2). For the second scenario, random 

values of the initial states were assigned to each cell to reflect typical dry conditions. As 

described by Grayson and Bloschl [2001], the spatial correlation of soil-moisture states 

declines as a watershed becomes dry and can approach a random spatial pattern with little 

or no remaining influence of watershed physical characteristics. Thus, the assumption of 

randomly-distributed initial states was used for the variable-state scenario and to 

represent dry conditions.   

Table 4.2 Values and ranges for the two scenarios of SAC-SMA initial states. 

 

State Description Scenario 1 constant  Scenario 2 range 
uztwc Upper zone tension water contents 0.5 0.0 – 1.0 
uzfwc Upper zone free water contents 0 0.0 – 1.0 
adimpc Additional impervious area contents 1 0.0 – 1.0 
lztwc Lower zone tension water contents 1 0.0 – 1.0 
lzfsc Lower zone free water supplemental contents 0.5 0.0 – 1.0 
lzfpc Lower zone free water primary contents 1 0.0 – 1.0 

A total of six sensitivity analysis experiments were designed by combining the 

five precipitation scenarios and two initial states scenarios as follows: (1) uniform Ptot 

and uniform Si, (2) uniform Ptot and random Si, (3) upper storm Ptot and uniform Si, (4) 

lower storm Ptot and uniform Si, (5) moving upstream Ptot and uniform Si, and (6) moving 

downstream Ptot and uniform Si. Experiments (1) and (2) allow for an assessment of the 

impact of cell location and initial states, respectively. While experiments (3)-(6) focus on 

the impact of non-uniform precipitation distribution on model behavior across the basin. 

For each experiment, Sobol’s method is executed twice – once to analyze the SAC-SMA 
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model and routing model parameters simultaneously and once to analyze the SAC-SMA 

model parameters separately. Synthetic observations of streamflow were generated by 

running the HL-DHMS with a priori values provided by the NWS. In the sensitivity 

analyses, parameter values were allowed to vary across a range equal to the a priori grid 

minimum value minus 20% and the a priori grid maximum plus 20%. The experiments 

were performed using a 1-hour model time step over a 10-day period. 

 

4.5 RESULTS  

Results of the sensitivity analyses are shown in Figures 4.1 and 4.2. Each section of the 

figures (e.g., Figure 4.1a) corresponds to one of the sensitivity experiments described 

above. In each case, the spatial distributions of total accumulated rainfall (Ptot) and 

resulting sensitivity indices are plotted, along with the synthetic streamflow hydrographs. 

The three maps of sensitivity indices correspond to the two separate executions of 

Sobol’s method for each case. The first two sensitivity index grids (“SAC + ROUT”) are 

the results for the SAC-SMA model (left) and routing model (middle) when all 

parameters of the two models were analyzed simultaneously. The third grid (“SAC only”) 

is the results for the SAC-SMA model when analyzed separately (i.e., with routing 

parameters fixed to constant a priori values). The cell values reflect the sum of all the 

parameters’ indices for the given model (i.e., the sum of 14 indices for SAC-SMA and 

the sum of 3 parameters for the routing model). Grids of individual parameter results 

were generated and are included as Figures 4.3-4.5 for experiments (1)-(3). In addition, 

parameter contributions to the total mean areal sensitivity in each case are summarized in 

Figure 4.6. The reason for the two executions of Sobol’s method for each case is the 
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niform initial states (Si) and (b) uniform precipitation and nonuniform initial states. Sensitivity indices are
he total of all model parameters for a given cell. Indices are presented for the SAC-SMA and routing
odel analyzed simultaneously (SAC + ROUT – left two maps) and for the SAC-SMA analyzed separately

SAC only – right map). 
  108 

analysis. The impact of initial states can be assessed by comparing Figures 4.1a and 4.1b. 

dominance of the routing model when the two models are run together (e.g., see Figure 

4.1a – SAC + ROUT), which caused the SAC-SMA results to be masked.  

The first experiment’s results (uniform Ptot and uniform Si – Figure 4.1a) clearly 

show the impact of cell location on model sensitivity. The importance of routing 

parameters significantly increases along the channel toward the basin outlet. A region of 

high sensitivity near the outlet also emerges in the “SAC only” analysis. Since both 

rainfall and initial states are spatially constant in this case, the main pattern of spatial 

variation in sensitivity can be attributed to cell location with respect to the outlet. Some 

small scale variation is likely also due to numerical approximation in the sensitivity 
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The dominant patterns of sensitivity (increase towards the outlet) are maintained with 

some slight increase in variation in the upper part of the basin. The impact of initial states 

thus appears minimal in comparison to the impact of cell location. 

Figure 4.2 demonstrates the strong impact of the precipitation spatial distributions 

on the model sensitivity distributions. For all storms (Figures 4.2a-d), the dominance of 

the routing parameters is less pronounced as some measurable sensitivity occurs for 

SAC-SMA at the location of the storm center for the combined (SAC+ROUT) analyses 

(as opposed to Figure 4.1). In these cases, the routing parameter sensitivity no longer 

increases continuously towards the basin outlet as was seen in Figure 4.1. Here the 

routing sensitivity appears to be impacted by the location of the precipitation event with 

respect to the basin outlet, resulting in a somewhat more even distribution of sensitivity 

from the localized precipitation to the outlet (e.g., Figure 4.2a). For the two stationary 

events (i.e., Figures 4.2a and 4.2b), the “SAC only” cases resulted in very clear 

correlations to the total precipitation distribution. The sensitivity in the remainder of the 

basin (where precipitation did not occur) is primarily due to the lower zone parameters, 

which control the baseflow that results from initial soil moisture states. Thus while some 

information exists in the data for the baseflow components of the model across the full 

grid (if the initial states are wet), information exists only where precipitation occurs for 

the surface runoff components. Similar results are found for the two dynamic storms  

(Figures 4.2c and 4.2d) although, in those cases, the precipitation (and thus sensitivity) 

occurs across most of the grid with a few cells of highest accumulation (and thus highest 

ty 

he 

sensitivity) where the storm is located at maximum intensity. Overall the sensitivi

experiments in Figure 4.2 demonstrate that when localized precipitation occurs in t



 

basin, the precipitation distribution becomes the dominant control on spatial information 

content across the model domain. Results for three additional metrics – TRMSE, ROCE 

and SFDCE (defined in Chapter 2) – are included in Appendix A. 

 

4.6 CONCLUSIONS 

This study demonstrates that the information contained in integrated observations of 

streamflow response for distributed watershed model identification is not evenly 

distributed in space and time across the model domain. These results are representative 

for distributed models that connect cells through the channel without explicit subsurface 

connectivity, though the strong impact of precipitation distribution is likely to extend to 

more complex models. We show that for the type of model used here, regions of high 

information content are controlled by the spatial distribution of precipitation, as well as 

the location of a particular cell with respect to the watershed outlet. Thus, given the 

spatiotemporal variability of precipitation, information content for distributed model 

identification also becomes a dynamic variable. New dynamic procedures are required to 

account for this effect and optimally utilize the observations for model calibration. 

Ignoring the dynamic nature of information content (e.g., adjusting parameters in regions 

where precipitation did not occur for a given event) may introduce significant parameter 

estimation error. Results also indicate that for some storm types, the value of streamflow 

observations for model identification is limited to a finite distance upstream of the gauge. 

This knowledge combined with an analysis of dominant precipitation patterns for a given 

region would provide valuable guidance for the optimal design of streamflow 

observational networks. 
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Figure 4.3 Individual parameter grids resulting from the sensitivity analysis for Experiment 1 – uniform 
precipitation (P) and uniform initial states (Si)  
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Figure 4.4 Individual parameter grids resulting from the sensitivity analysis for Experiment 2 – uniform 
precipitation (P) and randomly varying initial states (Si)  
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Figure 4.5 Individual parameter grids resulting from the sensitivity analysis for Experiment 3 – localized 
precipitation (P) in the upper part of the basin and uniform initial states (Si)  
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Figure 4.6 Relative impacts of model parameters for each scenario of total precipitation (Ptot), initial states 
(Si), and model analysis (i.e., combined SAC+ROUT or SAC only). Values are percentages of total (sum of 
all parameters) mean areal sensitivity indices. Shades of gray also reflect the magnitude of the values. 
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CHAPTER 5 
 

Phase III:  Evaluating Climate Change Impacts for Ungauged 
Watersheds in Southern Africa 
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5.1 INTRODUCTION 
 
Southern Africa is a water-stressed and flood-prone region. Unreliable, episodic rainfall 

patterns cause both recurring drought and frequent flooding [Staudenrausch and Flugel, 

2001; Aldhous, 2003; Reason et al., 2005]. Due to poor infrastructure and a poverty-

stricken population in much of the region, the impact of flood and drought can be 

particularly devastating [FAO, 2004; Khandlhela and May, 2006]. Climate change may 

further exacerbate the problems by reducing available water resources and increasing the 

risk of large floods [Schulze et al., 2001; Milly et al., 2002; Milly et al., 2005]. Given 

these issues, maintaining a network of hydrometeorologic gauges should be a priority in 

the region for monitoring and prediction of drought and floods. However, as in many 

parts of the world, networks are declining as socio-economic and health issues use up the 

few resources available [Stokstad, 1999; Houghton-Carr and Fry, 2006]. In recent years, 

the scientific community has recognized the need to focus research on improving 

hydrologic predictions in ungauged and poorly-gauged basins [Sivapalan et al., 2003]. 

The work presented in this chapter extends a recently-developed approach for modeling 

ungauged basins in southern Africa to investigate the hydrologic impact of climate 

change, a topic of great concern in this region that is considered highly vulnerable to 

climate change impacts [Meadows, 2005; Milly et al., 2005; Kundzewicz et al., 2008]. 

 The study focuses on the Olifants Basin, which is part of the Limpopo Basin in 

southeastern Africa. The Limpopo Basin is shared by four countries – Mozambique, 

South Africa, Botswana, and Zimbabwe (Figure 5.1). As of yet, no hydrologic model has 

been implemented for cooperative operational forecasting in the Limpopo region due to 

lack of forcing and streamflow data for model calibration in much of the area [DuPlessis, 
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2007]. Though, cross-border cooperation and information exchange is vital for water 

management and flood warning. The Olifants Basin, for example, makes up the 

contributing area to Mozambique's Massingir Dam, which is located just over the border 

from South Africa (Figure 5.1). Mozambique relies heavily on this dam for water supply 

and flood control in its southern provinces [FAO, 2004]. In addition to transboundary 

issues, the Olifants Basin is characterized by a semi-arid climate, seasonal patterns, 

impacts of ENSO, and fully-allocated resources, making effective water management 

critical [Levite et al., 2003], particularly in the face of a changing climate. The 

vulnerability and importance of water resources management in the Olifants Basin, led 

the UNESCO-International Hydrological Program to designate it as a Hydrology for the 

Environment, Life, and Policy (HELP) basin. This designation demonstrates an 

international recognition of the significance of the basin from a water resources 

perspective [IWMI, 2004]. 

 Several recent studies have used predictions from Global Climate Models 

(GCMs) to investigate potential impacts of climate change on water resources on a global 

scale [Milly et al., 2002; Gordon et al., 2005; Milly et al., 2005; Nohara et al., 2006; 

Sheffield and Wood, 2008]. However analyzing impacts at regional and local scales, 

requires downscaling of GCM data since localized variations in climate (e.g., orographic 

effects on precipitation) cannot be resolved at the low resolution (3-5°) of GCMs. Thus, 

studies of regional and local climate change impacts are less common and none (to the 

author's knowledge) have been performed for the Olifants Basin. Recent work by 

Hewitson and Crane [2006] presented and applied a new method of empirical 

downscaling for South Africa. The resulting downscaled climate variables (i.e., 
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precipitation and temperature) provide forcing for hydrologic models to assess climate 

change impacts on water resources in the region.  

 Data and resource scarcity, however, make the use of many common hydrologic 

modeling approaches with large data and maintenance requirements infeasible. Most 

notably, since the majority of models require some level of calibration to observed 

streamflow data, an alternative approach to parameterize the model becomes necessary 

when observed streamflow data is unavailable. Methods presented in the past have 

focused primarily on either regionalizing model parameters using watershed 

characteristics in nearby basins or calculating model parameters from watershed 

properties such as soil type, landuse and topography. However neither approach has been 

overly successful in producing reliable predictions in ungauged basins [Beven, 1989; 

Wagener and Wheater, 2006]. Other recent studies have indicated that, alternatively, 

relationships between hydrologic response signatures and watershed characteristics 

(physical and hydroclimatic) can be developed by regression analysis [Eng and Milly, 

2007; Yadav et al., 2007]. Adding uncertainty bounds to the relationship forms 

constraints on an ungauged watershed's hydrologic response [Yadav et al., 2007]. Model 

simulations (for any model) that fall within the constraints can then be identified, forming 

an ensemble of acceptable simulations. By the same method, constrained hydrologic 

responses to future scenarios of climate change can be developed.  

 The work presented here tests this ungauged modeling approach for watersheds 

within the Olifants Basin in southern Africa and evaluates the potential for applying the 

approach in other parts of the Limpopo Basin where information is even more limited. 

The approach is applied to investigate climate change impacts in an area with 
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disproportionately high runoff and thus high significance for water resources 

management.  

 

5.2 STUDY AREA AND DATA 

5.2.1 The Olifants Basin 

The Olifants Basin is located in the southern part of the Limpopo Basin and includes an 

area of roughly 75,000 km2 above its confluence with the mainstem of the Limpopo 

River in Mozambique (Figure 5.1). The topography of the basin is characterized by low 

elevation in the east, a sharp rise in elevation up to an escarpment near the center, and 

high elevation in the western part of the basin. Climate patterns are significantly 

influenced by the topography and, as such, are highly variable across the basin. The mean 

annual precipitation ranges from 300 mm up to 1800 mm in localized areas along the 

escarpment (Figure 5.2), while the mean value for the basin as a whole is 630 mm. A 

distinct rainy season exists throughout the basin from October to April, with highest 

accumulations typically occurring in December and January. Seasonality and high 

rainfall variability (spatial and temporal) contribute to the basin's propensity for both 

droughts and floods [Levite et al., 2003; FAO, 2004; de Lange et al., 2005].   

 Water resources are heavily allocated and developed throughout the basin, and 

even over-allocated in some areas. Irrigation makes up over 50% of the water demand, 

primarily going to large-scale, commercial farms. Small scale irrigation (for smallholder 

farms) is also increasingly becoming a priority with a growing effort to improve food 

security and conditions for the poor communities (some of the poorest in the country) in 

the Olifants region [IWMI, 2004; FAO, 2004; de Lange et al., 2005]. Mining, power 
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Figure 5.1 Relative locations of the Limpopo Basin, the Olifants Basin, Kruger National Park, and
Massingir Dam in southern Africa. 
generation, and industrial activities are also prominent and contribute significantly to 

water demand, while also making the basin important for South Africa's economy. 

Environmental flow requirements are also of concern, particularly through the protected 

Kruger National Park which is located in the eastern (downstream) portion of the basin 

(Figure 5.1). Maintaining dry season flows and reducing the impact from upstream 

industrial effluent are critical for the ecological integrity of the park [de Lange et al., 

2005].  

 Within the Olifants Basin, 23 gauged headwater watersheds were identified that 

do not have substantial impacts from major dams and diversions (based on information 

available).   They are relatively spread across the basin (Figure 5.3) with the exception of  
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Figure 5.2 Elevation and mean areal precipitation of the Olifants Basin. 
 

the driest and least developed areas, where few or no gauges have been installed beyond 

the mainstem of the river (which are affected by abstractions and dams and therefore not 

included). The gauged watersheds are used in the regionalization analysis that is 

described in Section 5.3.1. For the climate change assessment, several ungauged 

watersheds were identified in an area of the basin that is critical for water resources. As 

previously mentioned and shown in Figure 5.2, a distinct region of higher rainfall occurs 

along the escarpment near the center of the basin. This relatively small area produces a 

large portion (approximately 40%) of the total annual runoff. Nine of the gauged 

watersheds are located within this area. Nineteen additional ungauged headwater 

watersheds were delineated to cover the remainder of the area (as well as possible). The 

resulting 28 watersheds (9 gauged, 19 ungauged) make up 11% of the Olifants basin area 

while generating approximately 37% of the total annual runoff. They are referred to 

throughout this study as the ‘source watersheds’.   
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                       (a) Study watersheds                                   (b) Climate change data  

      
 
Figure 5.3 Location of (a) study watersheds within the Olifants Basin (gauged watersheds were used to 
generate regression relationships and source watersheds were the focus of the climate change assessment) 
and (b) the downscaled precipitation grid and temperature stations with respect to the source watersheds. 
 
 
 
5.2.2 Data 

Data for this study were collected from a variety of sources. Grids of physical 

characteristics for the Limpopo region, including elevation (90 m) and vegetation cover, 

were obtained from the International Water Management Institute (IWMI). IWMI 

maintains data for the Limpopo Basin (which covers the Olifants Basin) since it is one 

the institute's 'Challenge Program River Basins'. Grids of historical mean annual and 

mean monthly precipitation, temperature and potential evaporation (A-pan based) for all 

of South Africa were obtained from datasets that accompany the South African Atlas of 

Climatology and Agrohydrology [Schulze, 2006]. Due to the lack of available observed 

time series, monthly time series of potential evaporation were generated based on these 

historical mean monthly values. The Department of Water Affairs and Forestry (DWAF) 

of the South African government provided historical monthly time series (1920-1989) of 

precipitation, which were developed as part of a comprehensive water resources study 
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entitled 'Water Resources 90' (WR90). The WR90 time series include mean areal 

precipitation values calculated from precipitation stations for areas referred to as 'rain 

zones' (areas with spatially-consistent precipitation characteristics). Within the Olifants 

Basin, the rain zones are roughly the size (and in many cases correspond exactly) to the 

watersheds delineated for this study. For watersheds larger than the rain zones, weights 

were calculated to combine rain zones' values into an appropriate mean areal value. The 

DWAF also provided historical time series of streamflow observations for the 23 gauged 

watersheds via the Hydrology division's data distribution site. The website location and a 

table of station information are included in Appendix B.  

 Data representing scenarios of future climate in the form of downscaled, gridded 

(0.25° resolution) precipitation data and station-based temperature data were obtained 

from the University of Cape Town (UCT), Climate Systems Analysis Group (Figure 5.3). 

The data were downscaled from the Intergovernmental Panel on Climate Change (IPCC) 

Assessment Report 4 (AR4) datasets by the empirical procedure developed by Hewitson 

and Crane [2006]. This procedure is based on a concept of self-organizing maps, which 

are used to characterize the state of the atmosphere surrounding each grid cell and its 

associated precipitation probability density function. The downscaled data are based on 

the SRES A2 scenario, which is generally regarded as a 'worst case' scenario.  Although 

the SRES A1B scenario is more regularly used in impact assessments, relatively small 

differences in runoff have been shown to occur for southern Africa between the two 

scenarios [Sheffield and Wood, 2008]. Furthermore, the difference between the scenarios 

is likely to be less than the overall uncertainty incurred by the downscaling and 

regionalization procedures used in this study. 
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Table 5.1 Models on which the downscaled data used in this study were based and availability for 
precipitation (P), temperature (T), the control period (1961-2001), the future A period (2045-2065), and the 
future B period (2081-2100). 

Model Group (Country) 
Control 

(1961-2001) 
Future A 

(2045-2065) 
Future B 

(2081-2100) P T 

ECHAM5/
MPI-OM 

Max Planck Institute for 
Meteorology (Germany)      

GISS-ER NASA/Goddard Institute for Space 
Studies (USA)      

CNRM 
Météo-France/Centre National de 
Recherches Météorolgiques 
(France) 

     

NCEP 
The National Centers for 
Environmental Prediction (NCEP) 
Reanalysis Project (USA) 

     

 

 The GCMs on which the downscaled data are based are listed Table 5.1. NCEP 

results, which were downscaled by the same method and are used in the analyses for 

additional comparison in the historical (control) period, are also included. Note that 

downscaled temperature was not available for model CNRM-CM3. Therefore, in order to 

take advantage of as much available data as possible, CNRM precipitation was combined 

with both ECHAM and GISS temperature data to create two additional cases of future 

climate. This was considered reasonable since variability between models was not large 

for temperature, as will be shown in Section 5.5.3. Two additional datasets were initially 

available from UCT but were not included in the analysis due to record length and quality 

issues. These include the CGCM3 model from the Canadian Centre for Climate Modeling 

and Analysis (for which the future B period was not available) and the IPSL-CM4 model 

from the Institut Pierre Simon Laplace (for which a phase shift existed in the seasonal 

rainfall pattern, indicating problems with the data). 
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5.3 METHODS 

5.3.1 Regionalization of Hydrologic Constraints 

A model-independent method of regionalizing constraints on watershed response [Yadav 

et al., 2007] was used to obtain hydrologic predictions in the source watersheds. The first 

step of the method is to develop relationships by regression analysis between watershed 

physical or climatic characteristics and indices of the dynamic watershed response. 

Examples of response indices include the runoff coefficient (ROC) (i.e., the ratio of 

annual runoff to annual precipitation), frequency of large events, coefficient of variation 

(CV) of flow, mean summer/winter runoff, etc. Yadav et al.[2007] discuss a wide range 

of potential streamflow indices. The appropriate indices to use depend on the specific 

characteristics of runoff in the region of interest and the modeling objectives. 

Relationships between the selected response variable (the streamflow index) and one or 

more predictor variables (physical or climatic watershed characteristics) are developed by 

single and/or multivariate regression analysis. The predictor or group of predictors that is 

found to produce the strongest relationship with the selected index is identified. 

Uncertainty bounds are applied to the resulting relationship (based on the statistical 

confidence interval, prediction interval, or other method) to obtain constraints on the 

expected watershed response any new value(s) of the predictor(s) (i.e., the 

climatic/physical characteristics of an ungauged watershed).  

 The second step of the method uses the constraints to build an ensemble of 

'acceptable' simulations with any hydrologic model. The simplest approach to do this is 

by Monte Carlo analysis to generate a large (e.g. 10,000) number of model simulations. 

Streamflow indices are calculated for each simulation and those with values that fall 
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Figure 5.4 General skematic of (a) the regionalization of hydrologic constraints and (b) a constrained
ensemble prediction. 
within the constraints are retained. The collection of retained simulations forms the 

resulting ensemble prediction for the ungauged basin. A general depiction of the method 

in provided in Figure 5.4. For more detail on the overall method see Yadav et al. [2007]. 

 

5.3.2 Development of Climate Change Time Series 

Downscaled time series of precipitation for each source watershed were calculated 

simply from the grid cell or cells that covered the area of each watershed (see Figure 5.3). 

Downscaled climate change projections for temperature, however, were available only at 

specific station locations (rather than on a continuous grid as precipitation). In order to 

obtain representative time series of temperature for each watershed, a two-step weighting 

and adjustment procedure was performed. The first step used simple Thiessen polygons 

to calculate weights for each watershed’s surrounding stations. The Thiessen method, 

which is commonly applied for mean areal rainfall calculation and also applicable for 

temperature, assumes that any point in a watershed is best represented by the nearest 

station to that point. However, the stations are somewhat sparsely distributed across the 

Olifants Basin (Figure 5.3), particularly given the large differences in elevation in the 
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vicinity of the source watersheds. Therefore a second step was performed to adjust the 

Thiessen station weights based on relative differences between the mean monthly 

temperature at a station (Ti) and the mean monthly temperature over the portion of a 

watershed’s area that station is assumed to represent (i.e. the intersection of the station’s 

Thiessen polygon and the watershed area) [Fiedler, 2003]. Using historical, gridded 

temperature patterns (which account for temperature differences due to elevation), the 

mean areal value of temperature (MATi) over each intersection area was obtained. Station 

weight adjustment factors were then calculated as the ratio of MATi/Ti and applied to the 

original Thiessen weights to obtain new, scaled weights. By using the adjusted weights to 

calculate temperature time series, localized differences in temperature due to elevation 

differences were taken into account.  

 Potential evaporation time series were generated from temperature time series 

using the Hargreaves method [Hargreaves and Samani, 1985], which is the temperature-

based method recommended by Shuttleworth [1993] since it explicitly accounts for solar 

radiation. The Hargreaves equation defines evaporation as 

( )81700230 .T∆S.E To +=                        (5.1) 

where T is the temperature in ºC, and ∆T is the difference between mean monthly 

maximum and mean monthly minimum temperatures, and So is the water equivalent of 

extraterrestrial radiation (mm/day) given by 

( ssro ωδδωd.S sincoscossinsin39215 )φφ +=                     (5.2) 

( )δφω tantanarccos −=s                        (5.3) 

⎟
⎠
⎞

⎜
⎝
⎛ −= 405.1

365
2sin4093.0 Jπδ                       (5.4) 
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2cos033.01 π                        (5.5) 

where ωs is the sunset hour angle (in radians), φ is the latitude of the site, δ is the solar 

declination (in radians), dr is the relative distance between the earth and sun, and J is the 

Julian day number. Hargreaves equation yields an estimate for reference crop 

evaporation, which can also be treated as an approximation of potential evaporation 

[Shuttleworth, 1993].  

 

5.3.3 Model Description 

The hydrologic model used in this study is a lumped, parsimonious model structure that 

has been widely applied [Moore, 2007]. The model conceptualizes the runoff generation 

process by a single store that accounts for variable watershed capacity via a probability 

distributed storage function (Figure 5.5). The Pareto distribution, which is most 

commonly applied and is used here, is specified by the parameter b. Excess precipitation 

occurs when the soil moisture store overflows, indicated in Figure 5.5 as OV1 (entire 

watershed overflows) and OV2 (variable area overflows). Evaporation (E) loss in the 

model is the product of moisture availability (contents/capacity) and the potential 

evaporation (PE) adjusted by a factor Eadj to account for differences in actual vegetation 

cover from the reference PE vegetation cover. To represent surface runoff at a monthly 

time scale (when a time lag in surface runoff is not observed), excess precipitation is 

routed directly to the channel. To represent baseflow, drainage from the soil moisture 

store occurs at a rate Kd, where it is in turn routed through a linear reservoir to the 

channel at the rate Ks. Total runoff (Q) from the model is the sum of surface runoff and 

baseflow. The five model parameters and associated ranges are listed in Table 5.2.  
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Figure 5.5 Structure of the monthly probability distributed storage model used in this study. 
 

Table 5.2 Description and ranges of model parameters. Ranges were obtained from previous studies using 
this model [Moore, 2007; Yadav et al., 2007] and from literature (for Eadj) [Chow et al., 1988]. 

Parameter Description Units Range 
Huz Maximum storage capacity of the watershed mm 1 – 400 
b Exponent defining the spatial variability of capacity none 0 – 2  
Eadj Evaporation adjustment for vegetation none 0.2 – 1.3 
Kd Drainage rate to baseflow d-1 0 – 1 
Ks Residence time of baseflow linear reservoir d-1 0 – 1 

 
 
 
5.4 APPROACH 

The methods described above are used in this study to develop predictions of the 

hydrologic response to climate change in the Olifants Basin. First, the regionalization 

analysis described in Section 5.3.1 was performed to obtain constraints for the ungauged 

watersheds. Streamflow indices that effectively capture the dominant response behavior 

characteristics were selected by reviewing hydrographs and testing the reliability of 

ensembles using various combinations of indices to constrain the simulations. Mean 

values of watershed physical and climatic characteristics were calculated for the 23 

gauged watersheds. Multivariate regression analysis was then performed using a step-
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wise method to identify the predictor(s) from the set of available watershed 

characteristics that has strongest relationship, and thus the most predictive power, for the 

selected response variables (i.e., the streamflow indices). Once the set of predictors and 

response variables was selected, a validation analysis was performed to test the modeling 

approach in the gauged watersheds and establish confidence for applying the approach in 

the ungauged watersheds. Finally, hydrologic response constraints were obtained for each 

ungauged watershed based on the value of its predictor (watershed characteristic) 

including the corresponding statistical confidence and prediction limits of the 

regionalized relationship. Constrained historical simulations for the ungauged basins 

were obtained by Monte-Carlo analysis. 

 To evaluate the impacts of climate change in the source watersheds, time series of 

future precipitation and temperature were created based on the downscaled precipitation 

and temperature data for each model and time period. Temperature time series were 

transformed into potential evaporation by Hargreaves method. Predictions of future 

watershed climatic characteristics (i.e., the predictors of the regionalized relationships for 

hydrologic response) were then calculated for each available model, time period (Table 

5.1), and source watershed. Updated constraints were obtained from the regionalized 

relationship for each case and ensemble predictions of streamflow were generated by 

Monte Carlo analysis. The resulting ensemble predictions of streamflow were assimilated 

and compared for each period to assess the potential impacts of climate change on water 

resources in the high runoff-producing region of the Olifants Basin. 
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5.5 RESULTS 

5.5.1 Regionalization Analysis 

To identify appropriate hydrologic indices for the regionalization procedure, hydrographs 

of the 23 gauged watersheds were evaluated. It was found that the main streamflow 

characteristics that vary across the region are flow volume (i.e., the mean flow) and flow 

variability (i.e. the regime or 'peakiness' of the hydrograph). Multiple streamflow indices 

that describe these two characteristics were tested (Table 5.3) to determine how well each 

(and each combination) constrains the hydrograph and captures the observations. The two 

indices selected were the runoff coefficient (ROC) and the coefficient of variation of flow 

(CV). These two indices were used further in the regionalization analysis. 

Table 5.3 Streamflow indices tested for the regionalization of hydrologic constraints. 
Streamflow Index Description  Units 
Mean Mean monthly flow mm 
Variance Variance of monthly flow  mm 
Coefficient of variation Ratio of the standard deviation to the mean monthly flow  none 
Runoff coefficient Ratio of total runoff to total precipitation none 
Median Median monthly flow mm 
Maximum Maximum monthly flow mm 
Max/Mean Ratio of maximum to mean monthly flow none 
Minimum Minimum monthly flow mm 
Mean annual Mean annual flow mm 
Max annual Maximum annual flow mm 
Min annual Minimum annual flow mm 
# Zero months Number of months with zero flow months 
Min/Max Ratio of minimum annual to maximum annual flow  none 
High pulse count Number of periods with flow greater than the 3 x median periods 
Low pulse count Number of periods with flow less than 1/3 x median periods 

  

 Several watershed physical and climatic characteristics (based on available data) 

were calculated and tested as predictors in the regionalization analysis, including the 

wetness index (P/PE), elevation (ELEV), slope (SL), topographic index (TI), land use 

index (LU), soil wilting point (WP), soil drainage rate (DR), and the normalized 

difference vegetation index (NDVI). The TI is defined as ln(a/tanB) where a is the total 
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Figure 5.6 Scatter plots of watershed characteristics (predictors) that were selected by regression analysis
and streamflow indices (response variables) for (a) ROC and (b) CV. Note, that plots are included to
provide a general idea of the single-variable relationships, although the final (strongest) relationships and 
tatistical intervals (confidence and prediction intervals) were multivariate and not easily depicted in 2-
imensions.  
upstream area and B is slope. Maps of these characteristics for the 23 gauged watersheds 

re included in Appendix B. Results of multivariate regression indicate that the ROC is 

est predicted by P/PE and TI, while the CV is best predicted by ELEV and TI (Table 

.4). The relationship of ROC with P/PE and TI indicates that overall runoff volume is 

mpacted by both climate and topography. The influence of P/PE on ROC is expected as 

reater rainfall volume should produce greater runoff.  The influence of TI on ROC likely 

elates to the fact that higher slopes tend to reduce infiltration and increase runoff. 

imilarly, high sloping watersheds often result in higher, faster peaks and thus greater 

ariability of flow. Therefore, the relationship between TI and CV is also intuitive. The 

trong influence of elevation on CV could be related to the higher slopes that occur in the 

reas of highest elevation in the Olifants Basin. Elevation could also be acting as a 

urrogate for other watershed characteristics that might vary with elevation in this region 

e.g. geology) and for which no information was available.  

Table 5.4 Multivariate regression results for the selected response indices, where R2 is the coefficient of 
etermination and the P-value indicates the statistical significance of the relatipnship between the given 
redictor has on the response variable.  Low values (<0.05) indicate a statistically significant relationship. 
Response variable Predictor 1 – P value Predictor 2 – P value R2

ROC P/PE – 0.000 TI – 0.005  77.63 
CV Elev – 0.000 TI – 0.003 76.03 
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5.5.2 Historical Streamflow Predictions and Verification 

Using the final regionalized relationships described above, ensemble predictions were 

generated for several gauged watersheds to verify the approach and provide confidence 

that reliable predictions can be produced in the ungauged watersheds. To do so, each 

validation basin was removed from the regression analysis to obtain unbiased constraints. 

Monte Carlo analysis was performed and the resulting ensemble simulations for three 

watersheds are included in Figure 5.7. These three gauged watersheds are also source 

watersheds, therefore the reliability of their results should provide a good indication of 

the reliability that can be achieved in the other (ungauged) source watersheds. Visually, 

the confidence and predictions limits on the hydrographs in Figure 5.7 constrain the 

observations reasonably well. Reliability (percent of the observed hydrograph contained 

with the interval) values range from 0.88 to 0.97 for the prediction interval and 0.74 to 

0.88 for the confidence interval. Since the approach performs well in the gauged basins, it 

is assumed that predictions in the ungauged basins will have similar reliability. 

 The historical ensemble predictions from all of the 28 source watersheds were 

assimilated into a regional ensemble prediction (the total runoff from all 28 watersheds) 

by adding the upper and lower bounds from each watershed. The regional constrained 

hydrograph is shown in Figure 5.8. Several examples of individual watersheds' results are 

included in Appendix B. These historical source watershed predictions (regional and 

individual watersheds) were compared with predictions based on future projections of 

climate change to determine potential impacts on water resources as described in the 

following sections. 
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Figure 5.7 Validation of ensemble predictions for 3 gauged watersheds that area also source watersheds.  
Reliability (L) of the confidence and prediction intervals is noted in the legend. 
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Figure 5.8 Constrained streamflow predictions for the historical period and total source area (sum of runoff 
from all source watersheds), generated using observations of precipitation as forcing. 
 

5.5.3 Future Trends in Climate Variables 

The overall trends in downscaled precipitation, temperature and potential evaporation for 

the control (1961-2000), future A (2045-2065) and future B (2081-2100) periods are 

shown in Figure 5.9. Regional values of each climate variable were calculated by area-

weighting the mean annual values of each individual watershed. Figure 5.9 clearly shows 

a strong increasing pattern in all variables and all models. Mean annual temperature 

increases over the region by roughly 2 degrees from control to future A and 4.5-5.5 

degrees from control to future B. The change in temperature causes an increase in 

potential evaporation of 100 mm from control to future A and 350 mm from control to 

future B. Good agreement between models exists for temperature and potential 

evaporation (since it is calculated by temperature) and also between the observed and 

modeled values in the control period. The changes in temperature generally agree with 

multi-model mean values reported for the region for scenario A2 in the IPCC AR4 

[Meehl et al., 2007]. 
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Figure 5.9 Regional climate change trends based on downscaled mean annual precipitation (P), 
temperature (T), and potential evaporation (PE) for the control (1961-2000), future A (2045-2065) and 
future B (2081-2100) periods. Note that T and PE data were not available for model CNRM. 
 

 All models also show an increasing trend in precipitation after downscaling, 

although variation exists in the magnitude of the values in each period and amount of the 

increase (Figure 5.9). Spatial distributions of the historical (control) downscaled and 

observed precipitation, as well as distributions of changes in future precipitation for each 

model over the Olifants region are included in Figures B.3-B.4 of Appendix B. The 

highest rainfall magnitude occurs in each period for model CNMA, while the largest 

change from the control occurs for model ECHAM. Model GISS shows the least change 

in regional precipitation and closest agreement to the observed in the control period.  The 

model mean also shows good agreement with the observed value. Note that NCEP data 

shows significantly lower mean annual precipitation for the region than the observed. 
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This data was included only for comparison purposes since it is used in the downscaling 

process.  

 The overall increasing trend in precipitation differs from the ensemble mean 

result reported for the region in the IPCC AR4, which generally shows a slight decreasing 

trend over interior southeastern Africa [Meehl et al., 2007]. However significant 

variability exists across the models that are included in the ensemble mean (i.e. roughly 

half show an increasing trend and half a decreasing trend). Variability also exists in sign 

of the precipitation change across the original (non-downscaled) results of the three 

GCMs used in this study (Figure B.5 in Appendix B). Thus these three models are 

assumed generally reflective of the variability across the IPCC ensemble (i.e. they are not 

a sub-sample of models with only wetting trends as might be suspected based on the 

increasing trends in downscaled data). Consistent increasing trends and agreement 

between models (though different models than used in this study) for the downscaled 

precipitation was also shown by Hewitson and Crane [2006]. The downscaling method 

extracts states of the atmosphere from GCM simulations and uses them in combination 

with self-organizing maps generated by observed data to predict precipitation values (i.e., 

it does not use any GCM precipitation scheme). Thus, since the downscaling process uses 

only atmospheric states from each GCM, a difference between the trends in mean annual 

precipitation found in this study and that of the GCM results is not entirely surprising and 

is not cause for concern. Furthermore, the downscaled precipitation accounts for the 

strong influence of orographic effects in the Olifants Basin, also leading to differences 

and greater confidence in results as compared to the GCM precipitation projections. 
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Figure 5.10 Regional climate change trends in mean monthly precipitation (P), temperature (T), and 
potential evaporation (PE).  
 

 Trends in regional mean monthly precipitation (Figure 5.10) show a greater 

increase in precipitation in the summer months, as well as the distinct pattern of 

seasonality. The pattern for model GISS, however, is somewhat shifted and reduced (i.e., 

less difference between summer and winter). Temperature and potential evaporation 

show a more uniform increase for all months from the control period to the future 

periods. In Figure 5.11, trends are presented for the 28 individual source watersheds 

(ordered left to right from observed wet to dry). Here, spatial variability in variables and 

in their agreement with observations (for precipitation) is evident. The precipitation 

trends for model GISS reveal some additional issues with this model (in addition to its 

reduced seasonality pattern) in its significant over-predictions for several watersheds 

(primarily the smallest watersheds therefore the bias is not apparent in the regional 
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Figure 5.11 Climate change trends in mean annual precipitation (P), temperature (T), and potential
evaporation (PE) by watershed and GCM. 
results). Regardless, the overall increasing trend in the three variables is consistent across 

all watersheds and models. 

 

5.5.4 Future Streamflow Predictions 

Future values of mean annual P/PE were calculated from the downscaled precipitation 

and potential evaporation time series for each source watershed, model, and time period. 

These values were used along with static TI values to obtain future constraints on the 

watersheds' ROCs from the regionalized relationship defined in Section 5.5.1. The 

resulting ROC ranges provide the first indication of how mean annual runoff volume 

might change under scenarios of future climate. Figure 5.12 shows the regional trends in 

P/PE and ROC for each model (based on the area-weighted mean from all source 

watersheds). Observed values are also included for comparison ('observed' ROC ranges 

are constraints obtained based on observed historical precipitation). All models, except 

GISS, show an increase in ROC in both periods in the future. The model mean agrees 
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Figure 5.12 Regional climate change trends in P/PE and in the range of the prediction interval (PI) and 
onfidence interval (CI) of the ROC for each model. Historical observed P/PE (black dot) and resulting
anges on the ROC (black and white patches) are also shown. 
well in the control period with the observed P/PE and ROC range. The rising trends in the 

P/PE ratios (and thus ROC ranges) indicate that the increase in precipitation is greater 

than the increase in potential evaporation, in all but the GISS climate projections. 

 Using the ROC and CV constraints, ensemble predictions of streamflow were 

generated by Monte-Carlo analysis for each watershed, climate model and time period. 

The results of all watersheds were combined into a regional ensemble hydrograph (as 

done for the historical simulations) to assimilate the climate trends over the entire source-

area. The regional hydrographs for the model mean and three periods are shown in Figure 

5.13 and the rest are included in Appendix B. From the hydrographs, estimates of mean 

annual and mean monthly runoff volume (Q) were calculated (Figure 5.14). In all cases, 

mean annual runoff volume increases though the increase is small for model GISS. 

Percent change from the control (1961-2000) ranges from 2% to 24% in future A (2045- 
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Figure 5.13 Model mean regional ensemble simulations of hydrologic response to climate change, showing 
the control period (top), future A period (middle), and future B period (bottom). 
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Figure 5.14 Regional climate change trends in the range of the prediction interval (PI) and confidence 
interval (CI) on total volume of mean annual runoff (Q) in units of million m3 for each model – calculated 
from the ensemble predictions. Percent change in the mean Q (mean of the range) from the control period 
to each of the future periods is indicated in red text. Historical ranges based on observed forcing are also 
shown (black and white patches). 
 

2065) and from 5% to 58% in future B (2081-2100). The model mean, which is closest to 

observations in the control period and provides the 'best estimate' of projected changes in 

runoff, increases by 16% in future A and by another 16% (for a total increase of 32%) in 

future B.  

 The runoff increase, however, is not evenly distributed throughout the year.  

Mean monthly runoff volume and the monthly change in volume from the control to 

future periods is shown in Figure 5.15. The majority of the increase occurs in the rainy 

season (Oct – Apr), with variation between models in the months that see the greatest 

increase. All models are consistent in projections that dry season runoff volume will 

remain essentially the same.  

 Breaking the trend down by watersheds (Figure 5.16), the percent change in mean 

annual runoff volume is positive in nearly all cases, though the magnitude of the change 
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Figure 5.15 Regional climate change trends in the range of the prediction interval (PI) and confidence
interval (CI) on total volume of mean monthly runoff (Q) in units of million m3 for each model – calculated 
rom ensemble predictions. The ∆Q (blue line) is the monthly change (in the range mean) from the control

period to the future periods divided by the total annual runoff to indicate how each month contributes to the
verall change in annual runoff. The PI and CI based on observed historical forcing is shown (red lines) for

comparison in the control period. 
is variable. The spatial patterns of runoff volume and projected changes in runoff are 

hown in Figures 5.17-5.18 for the model mean result. The watersheds with the highest 

unoff are located in the southeast part of the region, which corresponds to an area of 

ery high rainfall (see Figure 5.2). The relative change in runoff, however, is greatest is 

he southwest (drier) watersheds, as well as some of the northern watersheds.  
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Figure 5.16 Watershed climate change trends in the percent change in total mean annual runoff from the 
control period to future A (2045-2065) and future B (2081-2100). 
 

 

           (a) Control (1961-2001)          (b) Future A (2045-2065)         (c) Future B (2081-2100) 

     
 
Figure 5.17 Mean annual runoff based on the mean climate model projections across the 28 source 
watersheds for (a) the control period (1961-2000) (b) future A (2045-2065) and (c) future B (2081-2100). 
Runoff values are in units of mm to enable comparison across watersheds.   
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                               (a) Future A (2045-2065)              (b) Future B (2081-2100) 

                       
 
Figure 5.18 Projected change in annual runoff across the 28 source watersheds for (a) future A (2045-
2065) and (b) future B (2081-2100).  
 
 
 
5.6 DISCUSSION AND CONCLUSIONS 

Two primary outcomes emerge from this study – (1) positive support for the 

regionalization method for ungauged hydrologic predictions and (2) an assessment of 

climate change impacts on water resources in a high-runoff area of the Olifants Basin.  

The method presented here is distinct from past methods in that it is model independent 

and based on relationships between watershed physical/climatic characteristics and 

dynamic streamflow response indices. Verification of the method in several gauged 

watersheds shows high reliability and thus confidence in the approach. The quality of 

results suggests good potential for expanding the method to other parts of the Olifants 

Basin and beyond to other, more data sparse tributaries of the Limpopo Basin. 

Furthermore, the method's low data requirements and compatibility with simple model 

structures make it more appropriate and feasible for use in developing countries than 

other data-intensive approaches. 

  148 



 The climate change assessment of this study shows a projected increase in 

regional mean annual runoff of approximately 16% by 2065 and 32% by 2100 (based on 

the model mean result). The projections in mean annual runoff volume have overall 

positive implications for water resources availability, but negative implications with 

respect to flood risk. Since the Olifants basin is a semi-arid region with high water 

demand from agriculture and industry, much concern has been raised as to whether the 

water supply will be able to meet the needs of all users in the future, particularly given 

forecasted increases in demand. Our results suggest that a decline in water availability 

due to increasing demand may be offset by an increasing volume of runoff in some 

regions. However, the seasonal pattern indicates that the additional volume will arrive 

almost entirely during the rainy season, when low flows and drought are less common. If 

the demand increase, on the other hand, is evenly distributed throughout the year, a 

greater deficit could still be experienced in the future during the dry season, when 

drought is most prevalent. In addition to implications for industrial, agricultural, and 

domestic users, dry season low flows are also of great ecological concern for protected 

areas such as Kruger National Park, which is located downstream of the study area.  

 The seasonal difference in the runoff trend re-emphasizes the importance of water 

resources management in the basin. Additional rainwater harvesting projects may become 

necessary to store the larger volume of rainy season runoff that is projected to occur so 

that it is available to meet demands during the dry season. Rainwater harvesting has been 

shown to have high potential in the region of southern Africa as a solution to overcome 

intra-seasonal dry periods and meet agicultural water needs [Brown and Hansen, 2008]. 
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Small-scale rainwater harvesting projects may also become crucial to sustain the 

increasing number of smallholder farms that are developing within the region. 

 In contrast, more runoff in the rainy season implies increased flood risk and 

greater challenges for flood management. The Olifants region is flood prone and the 

majority of floods occur during the rainy season. If runoff increases as projected here, the 

frequency of floods is likely to increase as well. Based on the spatial distribution of the 

runoff change (Figures 5.17-5.18), a greater flood risk could potentially be seen in 

watersheds that may have been less prone to flood in the past (e.g., the drier watershed in 

the southwest where the relative runoff increase is higher) and therefore where flood 

protection might not be as strong. Our results highlight the need for effective flood 

management and prediction throughout the region. Implementing a cooperative, 

operational flood forecasting system, using methods for ungauged hydrologic prediction 

such as those presented here, is a critical step toward improving the regional ability to 

prevent and mitigate the negative impacts of floods. 

 This study demonstrates an effective regionalization-based method for hydrologic 

prediction in ungauged basins in southern Africa. The approach has been applied to 

assess the impacts of climate change on water resources in an area of particular 

importance for water resources in the region. Trends of increasing rainy season runoff 

emphasize the importance of water storage, to capture the short term increase and sustain 

demand through the dry season, as well as flood management, to mitigate the associated 

rise in flood risk. More broadly, this study contributes to the pressing need for 

advancement in our understanding of hydrologic prediction in poorly gauged basins 

throughout the world. In many regions, like southern Africa, a lack of local ground-based 
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data hinders the development of a hydrologic forecast system and declining networks 

indicate that the situation is not improving. The ability to cope, in such regions, with the 

projected intensification of water-related issues in the face of climate change hinges on 

the development and application of data-modest approaches to hydrologic modeling, such 

as the methods presented here.   
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6.1 SUMMARY OF SCIENTIFIC CONTRIBUTIONS 
 
This dissertation presents a series of studies that evaluate hydrologic model behavior and 

modeling approaches from the perspective of different situations that exist in hydrologic 

forecasting. Phase I (a) applies a comprehensive sensitivity analysis to investigate how 

the behavior of a widely-used, lumped, conceptual model varies across a range of 

watersheds with diverse physical and hydroclimatic characteristics. The primary 

scientific contributions of this work are (1) an understanding that distinctly different 

patterns of parametric control occur for watersheds of different hydroclimatic regime, (2) 

evidence that common assumptions about parametric controls for the specific model are 

invalid, and (3) demonstration that the complexity level of the model is warranted to 

adequately represent the response of watersheds across a hydroclimatic gradient. These 

findings are directly relevant for operational forecasting and calibration guidance (for 

users of the SAC-SMA), and more broadly for the development of effective model 

evaluation and identification approaches. 

 Phase I (b) of this dissertation builds upon the sensitivity analysis of Phase I (a) to 

investigate if removing insensitive parameters from model calibration is feasible without 

a significant impact on model performance. The two main contributions that emerged 

from this study are (1) evidence that this type of sensitivity-based complexity reduction is 

possible without substantial decline in model performance if applied on a case-to-case 

basis (i.e., it is sufficient to only adjust some key parameters during calibration) and (2) 

demonstration that calibration procedures need to be expanded beyond statistical error 

metrics to include metrics that capture important hydrologic characteristics of the model 

response to achieve realistic model behavior. The contributions of Phase I (b) are relevant 
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for SAC-SMA optimization, particularly as a distributed version of the model becomes 

more widely implemented (and the magnitude of the calibration problem for forecasting 

operations increases significantly), though they provide guidance for this class of model 

in general. The contributions of Phase I (b) also more broadly suggest that the 

development of approaches to dynamically couple multi-objective sensitivity analysis 

and optimization are needed to deal with the widening discrepancy (as more complex 

models are developed) between the information content of hydrologic data and number of 

parameters that can be identified. Overall consequences of Phase I (two steps combined) 

are that an evaluation of model behavior is as important as an evaluation of model 

performance to assess the appropriateness of a model. And, lastly, it is only necessary to 

to calibrate a small number of parameters, but which specific parameters within the 

model structure varies and thus a more complex model structure might be justified. 

 Phase II of this dissertation evaluates the spatially-varying behavior of a 

distributed hydrologic model and how characteristics of rainfall, antecedent soil moisture, 

and grid cell location control the variation of model behavior across the model domain.  

The important scientific contributions of Phase II are a demonstration that (1) information 

content of streamflow data is a dynamic property (in space and time) that is controlled 

largely by characteristics of rainfall events, (2) for certain storm types the value of 

streamflow observations for model identification is limited to a finite distance upstream 

from the gauge. The first contribution is of primary importance for the development of 

new, dynamic calibration methods for distributed models as existing methods incorrectly 

assume static and spatially-uniform information content. The second contribution is 

relevant for the optimal design of streamflow observational networks for which an 
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estimation of the true information content of data is crucial. A consequence of this phase 

is the realization that previous approaches to model identification do not allow us to 

properly assess the value of observations in the context of spatially distributed modeling.   

 The study in Phase III evaluated an approach for modeling ungauged watersheds 

in southern Africa and applied the approach to assess potential hydrologic impacts of 

climate change in a region with disproportionately high runoff and significance for water 

resources. Phase III results have two primary contributions – (1) the extension of the 

regionalization of flow characteristics approach to a less-developed country and the 

verification that this modeling approach is a viable option to produce reliable streamflow 

predictions in ungauged watersheds in such regions (where data availablity is limited) 

and (2) projections that annual runoff over the study area will increase in the future by a 

seasonal pattern, with the majority of the increase occurring during the months of the 

rainy season. Extension and verification of the modeling approach is relevant and 

important for hydrologic forecasting in the region, where a lack of data has prevented the 

establishment of forecasting capabilities. The projections of increasing future runoff as a 

result of climate change have implications for the importance of rainwater harvesting 

(due to the seasonal distribution of the runoff increase), as well as for flood management 

in the region. Specifically, the projections suggest that the strategic placement of new 

reservoirs or expansion of existing facilities (to store the water where it falls) could 

significantly reduce impacts of both droughts and floods in the Olifants Basin. 

 All of the methods for modeling and evaluation of model behavior presented 

throughout this dissertation are applicable for any hydrologic model structure. Therefore, 

these studies not only provide insight into patterns of behavior that are specific for the 
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given models (e.g. the SAC-SMA), but they also introduce highly useful tools and 

methodologies for evaluation of hydrologic model behavior in general. Such tools will 

become increasingly valuable as the development and use of complex, integrated models 

continues and hydrologic models become more broadly applied across the world. The 

challenges hydrologists face to understand, parameterize, and appropriately apply models 

will unquestionably become greater in the future. 

 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

Recommendations of future work are identified for each phase that would build upon and 

expand the study's findings. The sensitivity analysis of Phase I (a) was performed at both 

long-term and inter-annual time scales. The variation in sensitivity found at the inter-

annual time scale as compared to the long-term time scale point out that, in addition to 

variation across watersheds, model behavior also varies in time within a watershed. 

Performing the analysis on even shorter time scales (e.g. monthly, daily) in the same 

watersheds could provide greater insight into the time-varying nature of model behavior. 

The multi-objective optimization of Phase I (b) yielded solution sets that varied widely in 

size and complexity across the results. From an optimization/computational perspective, 

it would be useful to more fully evaluate the optimization dynamics associated with the 

different solution sets to better understand how and why the size and complexity 

differences occur. From a hydrologic modeling and calibration perspective, it would be of 

benefit to perform the analysis for additional watersheds to establish guidance for a 

sensitivity threshold level that could be used in an actively coupled sensitivity-based 

calibration approach.  
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 In Phase II, the results of the distributed sensitivity analysis for uniform storms 

revealed that the spatial extent of information content did not reach the upstream portion 

of the watershed. Further investigation of the areal extent of information content for 

uniform storms is worthwhile. Interesting extensions, for example, could include adding 

interior gauges and testing the resulting sensitivity pattern, as well as changing the 

watershed size and/or event size (total volume of precipitation) of the uniform storm to 

find conditions for which full coverage of information occurs. In addition, the results of 

this study implied that a new distributed model calibration approach is needed that 

dynamically takes into account the spatial distribution of rainfall in order to optimally 

utilize available information. Therefore, the development of such an approach is an 

recommended as a continuation of the work of Phase II. 

 The first recommendation to extend the work of Phase III is to expand the 

regionalization analysis into other parts of the Limpopo Basin. To do this, it would also 

be of benefit to investigate the feasibility of using other types of streamflow response 

information (e.g. 'soft data') in the regionalization analysis, which may be available where 

stream gauge data is not. Along with expanding into other regions, the ungauged 

modeling approach should also be expanded to predictions on a daily step. In 

conjunction, a rigorous analysis of satellite-based daily precipitation data is 

recommended to identify and correct (if possible) systematic biases in the data that occur 

for the region, so that the data could be used as daily forcing for hydrologic models. 

Lastly, performing the climate change analysis at the daily time scale is also 

recommended, particularly given the results of greater runoff on the monthly time scale, 

to assess potential changes in extreme events due to climate change. This would provide 
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a more complete picture of the potential consequences of climate change for flood risk in 

the region.  
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Figure A.1 Metric TRMSE: Spatially distributed parameter sensitivity for cases of (a) uniform total 
precipitation (Ptot) and uniform initial states (Si) and (b) uniform precipitation and nonuniform initial states. 
Sensitivity indices are the total of all model parameters for a given cell. Indices are presented for the SAC-
SMA and routing model analyzed simultaneouly (SAC + ROUT – left two maps) and for the SAC-SMA 
analyzed separately (SAC only – right map). 
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Figure A.2 Metric ROCE: Spatially distributed parameter sensitivity for cases of (a) uniform total 
precipitation (Ptot) and uniform initial states (Si) and (b) uniform precipitation and nonuniform initial states. 
Sensitivity indices are the total of all model parameters for a given cell. Indices are presented for the SAC-
SMA and routing model analyzed simultaneouly (SAC + ROUT – left two maps) and for the SAC-SMA 
analyzed separately (SAC only – right map). 
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Figure A.3 Metric SFDCE: Spatially distributed parameter sensitivity for cases of (a) uniform total 
precipitation (Ptot) and uniform initial states (Si) and (b) uniform precipitation and nonuniform initial states. 
Sensitivity indices are the total of all model parameters for a given cell. Indices are presented for the SAC-
SMA and routing model analyzed simultaneouly (SAC + ROUT – left two maps) and for the SAC-SMA 
analyzed separately (SAC only – right map). 
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Figure A.4 Metric TRMSE: Spatially distributed parameter sensitivity for 4 different distributed storm 
events - (a) an upper basin stationary storm (b) a lower basin stationary storm (c) a storm moving 
downstream and (d) a storm moving upstream. Sensitivity indices are the total of all model parameters’ 
indices for a given cell. In each case, indices are presented for the SAC-SMA and routing model analyzed 
simultaneouly (SAC + ROUT – left two maps) and for the SAC-SMA analyzed separately (SAC only – 
right map). 
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Figure A.5 Metric ROCE: Spatially distributed parameter sensitivity for 4 different distributed storm 
events - (a) an upper basin stationary storm (b) a lower basin stationary storm (c) a storm moving 
downstream and (d) a storm moving upstream. Sensitivity indices are the total of all model parameters’ 
indices for a given cell. In each case, indices are presented for the SAC-SMA and routing model analyzed 
simultaneouly (SAC + ROUT – left two maps) and for the SAC-SMA analyzed separately (SAC only – 
right map). 
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Figure A.6 Metric SFDCE: Spatially distributed parameter sensitivity for 4 different distributed storm 
events - (a) an upper basin stationary storm (b) a lower basin stationary storm (c) a storm moving 
downstream and (d) a storm moving upstream. Sensitivity indices are the total of all model parameters’ 
indices for a given cell. In each case, indices are presented for the SAC-SMA and routing model analyzed 
simultaneouly (SAC + ROUT – left two maps) and for the SAC-SMA analyzed separately (SAC only – 
right map). 
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Table B.1 Streamflow station information for gauges used in this study 

ID Tributary Lat. Long. Upstream 
Area 

Start 
Record 

End 
Record % Missing 

B1H001 Blyde 24.68 30.80 518 1909 2007 34.0 
B1H002 Spookspruit 25.82 29.34 252 1956 2007 5.6 
B1H004 Klipspruit 25.67 29.17 376 1959 2007 6.6 
B1H012 Little Olifants 25.81 29.59 1503 1978 2007 0.1 
B1H018 Olifants 26.22 29.46 985 1989 2007 0.2 
B1H021 Steenkoolspruit 26.14 29.27 1356 1990 2007 0.2 
B2H004 Osspruit 25.92 28.59 123 1984 2007 0.0 
B2H007 Koffiespruit 26.00 28.66 317 1985 2007 0.1 
B2H014 Wilge 25.83 28.88 1086 1990 2007 0.3 
B3H007 Moses 25.27 29.18 971 1980 2007 3.3 
B4H003 Steelpoort 25.03 29.86 2240 1957 2007 3.0 
B4H005 Waterval 25.04 30.22 188 1960 2007 0.0 
B4H007 Klein-spekboom 25.01 30.50 151 1968 2007 0.9 
B4H009 Dwars 24.91 30.10 448 1966 2007 6.2 
B4H010 Dorps 25.08 30.44 526 1979 2007 0.4 
B7H004 Klaserie 24.56 31.03 136 1950 2007 10.1 
B7H010 Ngwabitsi 24.04 30.43 318 1960 2007 9.7 
B7H013 Mohlapitse 24.17 30.10 263 1970 2007 15.5 
B8H010 Letsitele 23.89 31.36 477 1960 2007 0.4 
B8H011 Tsende 23.57 31.43 432 1960 2007 2.9 
B9H001 Shisha 22.84 31.24 648 1960 2007 9.8 
B9H002 Shingwidzi 23.22 31.22 810 1983 2007 1.8 
B9H004 Mphongola 22.95 31.23 739 1983 2007 9.0 

 
Data source: http://www.dwaf.gov.za/hydrology/cgi-bin/his/cgihis.exe/station 
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Figure B.1 Maps of climatic and physical watershed characteristics for the 23 gauged watersheds, 
including the wetness index (PPE), elevation (ELEV), slope, and topographic index (TI).  PPE is unitless 
(ratio), ELEV in meters, slope in degrees, and TI is unitless. 
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Figure B.2 Maps of additional physical watershed characteristics for the 23 gauged watersheds, including 
the normalized difference vegetation index (NDVI), landuse (LU), soil drainage rate (DRATE) and soil 
water content (m/m) at the permanent wilting point (WP).  LU values are integer land cover classes defined 
as: 
 
9 – close deciduous forest 
10 – deciduous woodland 
12 – open deciduous shrubland 
13 – closed grassland 
18 – cropland (> 50%) 
 
 
 
  

  171 



 
 
Figure B.3 Spatial distribution of mean annual precipitation for control period (1961-2000) based on 
observations and downscaled climate model projections. 
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Figure B.4 Spatial distribution of percent change in downscaled precipitation from the control period 
(1961-2000) to Future A (2046-2065) and Future B (2081-2100) for each model. 
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Figure B.5 Change in mean annual precipitation based on the original (non-downscaled) global climate 
model projections from the three models used in this study for future A (2045-2065) and future B (2081-
2100) periods. Precipitation change is measured with respect to the historical period 1961-1990. 
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Figure B.6 Model echam5 regional ensemble simulations of hydrologic response to climate change, 
showing the control period (top), future A period (middle), and future B period (bottom). 
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Figure B.7 Model giss regional ensemble simulations of hydrologic response to climate change, showing 
the control period (top), future A period (middle), and future B period (bottom). 
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Figure B.8 Model cnrm/echam5 regional ensemble simulations of hydrologic response to climate change, 
showing the control period (top), future A period (middle), and future B period (bottom). 
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Figure B.9 Model cnrm/giss regional ensemble simulations of hydrologic response to climate change, 
showing the control period (top), future A period (middle), and future B period (bottom). 

  178 



Vita 
Kathryn L. van Werkhoven 

 
EDUCATION 
 

PhD Candidate, Civil and Environmental Engineering, Penn State University, State 
College, PA, expected Aug 2008, Dissertation: Evaluating model behavior for hydrologic 
forecasting in gauged and ungauged watersheds. 
 
M.S., Hydrology and Water Resources, University of Arizona, Tucson, AZ, Aug 1999, 
Thesis: Analysis of the utility of remote sensing data for urban hydrologic modeling.  
 
B.S., Engineering and Environmental Science, University of Notre Dame, Notre Dame, 
IN, May 1997 

 
AWARDS AND HONORS 
 
 Outstanding Student Paper Award, AGU Fall Meeting 2007 
 GE Faculty for the Future Fellowship, 2007-2008 
 Outstanding Student Paper Award, AGU Fall Meeting 2006 
 Clare Luce Booth Fellowship, 2005-2007 
 Penn State College of Engineering Fellowship, 2005-2007 
 NSF Graduate Traineeship in Hydrology, University of Arizona, 1997-98 
 
PROFESSIONAL EXPERIENCE 
 

Engineer, Department of Water Affairs and Forestry, Government of South Africa 
Pretoria, South Africa, 2004 –2005 
 
Water Resources Engineer, Riverside Technology, inc. 
Fort Collins, CO, 1999 – 2003 

 
SELECTED PUBLICATIONS 
 

van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang (in revision). Sensitivity-guided 
multi-objective optimization of a lumped watershed model across a hydroclimatic gradient. 
Water Resources Research. 
 
van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang (2008). Rainfall characteristics 
define the value of streamflow observations for distributed watershed model identification. 
Geophysical Research Letters, 35, doi:10.1029/2008GL034162 
 
van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang. (2008). Characterization of 
watershed model behavior across a hydroclimatic gradient. Water Resources Research. 
doi:10.1029/2007WR006271.
 
Wagener, T., P. Reed, K. van Werkhoven, Y. Tang and Z. Zhang (in review). Advances in 
the identification and evaluation of complex environmental systems models. Journal of 
Hydroinformatics. 
 
Tang, Y., P. Reed, K. van Werkhoven, and T. Wagener (2007). Advancing the identification 
and evaluation of distributed rainfall-runoff models using global sensitivity analysis. Water 
Resources Research, 43, doi:10.1029/2006WR005813. 
 
Tang, Y., P. Reed, T. Wagener, and K. van Werkhoven (2007). Comparing sensitivity 
analysis methods to advance lumped watershed model identification and evaluation. 
Hydrology and Earth System Sciences, 11, 793-817. 

            


