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Abstract

Patrice Philippon and Yuri V. Nesterenko have proven results for measur-

ing the algebraic independence of certain numbers, which they achieved by using

properties of resultants of Chow forms. In this thesis we generalize the two results,

and use the research on Chow forms in positive characteristic undertaken by John

Zuehlke to extend the work to that setting.
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their assistance. Finally, thanks are also due to my parents and my husband for

their encouragement and emotional support over the years.



1

Chapter 1

Introduction

In 1949, A.O. Gelfond proved that for algebraic numbers α and β with α 6= 0,

logα 6= 0, and β a cubic irrational over Q, αβ and αβ
2

are algebraically independent.

Soon after Gelfond and his student N.I. Feldman found a measure of algebraic

independence for these numbers. They showed that for all ǫ > 0, there exists

a constant t = t(ǫ) > 0 such that for all polynomials P ∈ Z[X1, X2] satisfying

deg(P ) + h(P ) > t (where h(P ) is the logarithm of the maximum of the absolute

values of the coefficients of P ) we have

log |P (αβ , αβ
2

)| > − exp((deg(P ) + h(P ))4+ǫ). (1.1)

This is considered the initial application of elimination theory to transcendence

theory. These results have been refined over the years by A.A. Smelev, G.V. Chud-

novsky, Michel Waldschmidt, W. Dale Brownawell, and Guy Diaz.

More recently, Yuri V. Nesterenko and Patrice Philippon have independently

developed more general (and more flexible) tools to find measures of algebraic inde-

pendence. Both men’s results take the numbers as coordinates of a given point and

then work with families of polynomials with bounds on their degrees, logarithmic

heights, and values when evaluated at that given point. The procedure to obtain

these families is sometimes called the “Transcendence Machine” in the literature.
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Once this family of auxiliary polynomials is in hand, the two procedures assume

that certain technical constraints are satisfied and construct polynomials in new

variables known as Chow forms (see Chapter 2) to obtain a lower bound on the

evaluation of an algebraic cycle at the given point.

There are some significant differences between the two men’s work. Nesterenko

originally began this line of research in the realm of function fields, looking at orders

of zeros at a point when substituting a solution of a system of linear differential equa-

tions. Philippon started with number fields instead of function fields, though both

men have since worked in both settings. Nesterenko uses the standard valuations

exclusively in the calculation of his heights; Philippon sometimes substitutes Mahler

measures which require more delicate usage. Nesterenko uses hyperplanes defined

by linear forms, whereas Philippon uses the more general hypersurfaces defined by

more general forms. To account for this generality, Philippon uses a multidimen-

sional degree in his results, whereas Nesterenko does not. Nesterenko explicitly

introduces the concept of a resultant (see Section 2.3), whereas in Philippon it is

“hidden” as a specialization of a map obtained by substituting the coefficients of

the auxiliary polynomials in for the coefficients of the hypersurfaces.

Philippon’s student El Mostafa Jabbouri constructed a measure of algebraic

independence based on his adviser’s that slightly improves the technical hypothesis

and that assumes the auxiliary polynomials are without any common zero in a closed

ball around the given point. Jabbouri requires his degrees and heights to have a

fixed constant upper bound, whereas Nesterenko allows the bound to be in terms of

a chosen parameter. Brownawell and Rémond have further developed these tools.
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These results have been used to prove a variety of algebraic independence measures,

involving notably

• periods and quasi-periods of elliptic functions by Jabbouri in [5]

• values of Ramanujan functions by Nesterenko in [7], and

• improvements of the Gelfond-Feldman inequality in Equation (1.1) by Nesterenko

in [6] and by Diaz in [4].

The purpose of this thesis is to provide generalizations of the Jabbouri-

Philippon and Nesterenko results in the number field case, and create analogues

of their results in a form suitable for function field applications. In particular with

the results of John Zuehlke in [9], the results in this thesis can be used for t-modules,

the higher dimensional generalizations of Drinfeld modules. We present two appli-

cations in the number field setting and indicate further possibilities.
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Chapter 2

Chow forms and auxiliary results

In this chapter we present the main tool used in our results: the Chow form

(also known as the Cayley-Chow form, the eliminant form, and the associated form).

For a more detailed look at Chow forms, [2] summarizes the Nesterenko point of

view. We provide an even more abbreviated introduction below.

2.1 Introduction

Let R be a unique factorization domain with fraction field K, and let V be an

irreducible variety in Pn(K) of dimension d corresponding to a homogeneous prime

ideal P in K[x0, . . . , xn]. Define uj = (uj0, . . . , ujn) to be an (n + 1)-tuple of new

variables for j = 0, . . . , d. Denote by Hj the hyperplane

Hj : uj0x0 + · · · + ujnxn = 0.

Then the hyperplanes H1, . . . , Hd−1 intersect V in deg P points in Pn(K); call them

αk = (αk0 : · · · : αkn) for k = 1, . . . ,deg P. These points are considered “generic

zeros” of P, and their coordinates are algebraic over R[u0, . . . , ud−1].
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It can be shown (see [3]) that we can choose a ∈ R[u0, . . . , ud−1] so that the

polynomial

F (u0, . . . , ud) = a

deg P
∏

k=1

(αk0ud0 + · · · + αknudn)

has coefficients in R, but no (non-unit) factors in R. We call this a Chow form

of P. Any other choice of a Chow form of P will be a non-zero scalar multiple of

this one. Note that F (u0, . . . , ud) = 0 if and only if Hd passes through a point of

V ∩H0 ∩ · · · ∩Hd−1, i.e. that the Hi intersect in at least one point of V .

Let Z be an unmixed cycle. That is,

Z =
r
∑

i=1

eiPi

is a formal linear combination of distinct prime ideals P1, . . . ,Pr of K[x0, . . . , xn]

with assigned multiplicities e1, . . . , er, respectively. Then the Chow form of Z is

defined to be

F = FZ =
r
∏

i=1

Fi
ei , (2.1)

where Fi is a Chow form of the corresponding prime ideal Pi. Each Fi can be

written as

Fi = ai

deg Pi
∏

k=1

(αk0,i ud0 + · · · + αkm,i udm).

For everything that follows in this thesis, let M be a set, and let an absolute

value | · |v be given on the field K for each v ∈ M. Moreover, assume that the set of

these absolute values is such that for each a ∈ K×, there exists only a finite number

of elements v ∈ M with |a|v 6= 1, and
∏

v∈M |a|v = 1. In addition, assume that
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the subset M∞ ⊂ M consisting of all elements v ∈ M for which the corresponding

absolute value | · |v is archimedean and finite. Let ν denote the number of elements

in the set M∞. Unless otherwise indicated, we will assume we have chosen w ∈ M

and we let | · | = | · |w. We will also let K be the completion of the algebraic closure

of the completion of K with respect to | · |. Let |P | be the maximum of the absolute

values of the coefficients of the polynomial P .

2.2 Heights and absolute values

Let Z again be an unmixed cycle, and let F be its Chow form. We define

the degree of Z to be degu0
F =

∑

ei deg Pi.

For any nonzero polynomial P , we define the (logarithmic) height of P ,

h(P ) :=
∑

v∈M

log |P |v.

Then we let the height of Z be defined as the height of F . (Note that in [8],

Philippon allows a Mahler measure to replace the maximum of the coefficients for

his height in certain situations.)

For each non-zero point ω = (ω0, . . . , ωn) ∈ Kn+1. we set |ω| = max0≤j≤n |ωj |.

Throughout this thesis we will use the notation

||P ||ω =
|P (ω)|

|P | |ω|degP
(2.2)

for a homogeneous polynomial P ∈ K[x0, . . . , xn].
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Let S(i), 0 ≤ i ≤ d be generic n × n skew-symmetric matrices so

s
(i)
jk + s

(i)
kj = 0 but no other algebraic relations exist among the entries. Then

we define the absolute value of a Chow form at ω to be

|F |ω :=
|F (S(0)ω, . . . , S(d)ω)|

|F | |ω|(d+1) degF
.

Here we consider F (S(0)ω, . . . , S(d)ω) to be the polynomial in the variables s
(i)
jk ,

j < k, obtained as a result of the substitution of the vector S(i)ω for the variable

ui.

2.3 Resultants

The foundations for the resultant go back to Zariski. We will be using

Nesterenko’s formation of the resultant of a Chow form and a polynomial.

If we have a Chow form as in Equation (2.1) and take Q ∈ R[x0, · · · , xn] an

ordinary form, we can define the resultant of a Chow form F and Q to be

Res(F,Q) :=
r
∏

i=1



ai
degQ

deg Pi
∏

k=1

Q(αk0,i, · · · , αkm,i)





ei

.

This resultant is a product of the resultants of Q with each Fi. Note that the

resultant is zero if and only if Q ∈ ∪Pi since Q is being evaluated at the generic zeros

of the Pi. When dimF = 0, then Res(F,Q) ∈ K is zero exactly when Q vanishes at

one of the zeros of some Pi. In particular, Nesterenko showed the important fact

that if Res(F,Q) 6= 0 and the dimension of F is greater than 0, then this resultant is
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itself a Chow form. Moreover, Nesterenko has shown that Res(F,Q) has dimension

one lower than F .

We can describe the degree, height, and absolute value of a resultant in terms

of the ideal and polynomial used to construct it. Nesterenko proved the following

inequalities in the number field case in [7]; John Zuehlke has shown the function

field version in [9].

Proposition 2.1. Let R[X] be a ring of polynomials in the variables x0, . . . , xn

over R. Let P be a homogeneous prime ideal of R[X], dim P ≥ 0, with associated

Chow form F , and let Q be a homogeneous polynomial from R[X] with Q 6∈ P.

Assume, in addition, that | · | = | · |w, w ∈ M, is an absolute value on K.

If r = 1 + dimP, then

1. deg Res(F,Q) = degF degQ,

2. h(Res(F,Q)) ≤ h(F ) degQ+ h(Q) degF + νn(r + 1) degF degQ,

3. for any point ω ∈ Kn+1 and for ρ = min ||ω−β||, where the minimum is taken

over all nontrivial zeros β of F in Kn+1, the following inequality holds:

log |Res(F,Q)|ω ≤ log δ + h(F ) degQ+ h(Q) degF + 11νn2 degF degQ,

where

δ =























||Q||ω, if ρ < ||Q||ω

|F |ω, if ρ ≥ ||Q||ω.
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Here we are using the notation

||ϕ− ψ|| =

(

max
0≤i<j≤n

|ϕiψj − ϕjψi|

)

|ϕ|−1|ψ|−1

for the projective distance between two non-zero points ϕ = (ϕ0, . . . , ϕn),

ψ = (ψ0, . . . , ψn), both in Kn+1. Note that in the function field setting, ν = 0

so the terms which are factors of (degF degQ) are absent in inequalities 2 and 3.

This proposition also holds even when dimF = 0; then |Res(F,Q)|ω = 1.

In some applications we will apply the following alternate version of Propo-

sition 2.1:

Corollary 2.2. Under the same conditions as Proposition 2.1, assume that F and

Q satisfy

|F |ω ≤ exp(−S), S > 0, ||Q||ω ≤ exp(−2nν degQ).

If the integer η > 0 satisfies the inequality

−η log ||Q||ω ≥ 2 min

{

S, log
1

ρ

}

, (2.3)

then

1. deg Res(F,Q) ≤ η degF degQ,

2. h(Res(F,Q)) ≤ η (h(Q) degF + h(F ) degQ+ νn(r + 2) degF degQ),

3. log |Res(F,Q)|ω ≤ −S + η
(

h(F ) degQ+ h(Q) degF + 12νn2 degF degQ
)

.
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Just as in the previous proposition, the terms which are factors of (degF degQ) are

not present in inequalities 2 and 3 in the function field case, and the corollary still

holds when dimF = 0.

2.4 Additional inequalities

We will need the following results to proceed with our two main theorems.

All of the following except Proposition 2.4 were proven by Nesterenko in the number

field case in [7], and by John Zuehlke in the function field setting in [9]. Proposition

2.4 was proven for archimedean absolute values by Nesterenko in [6] and is proven

for non-archimedean situations in the appendix.

Proposition 2.3. Let I ⊂ K[X] be a homogeneous unmixed ideal, F its associated

Chow form, r = 1 + dimI ≥ 1, and let | · | be an absolute value. For each nonzero

point ω ∈ Kn+1, there exists a zero β ∈ Kn+1 of F such that

degF log ||ω − β|| ≤
1

r
log |F |ω +

1

r
h(F ) + (ν + 3)n3 degF.

If the absolute value | · | = | · |w, w ∈ M, is non-archimedean, then the factor ν + 3

on the right-hand side of this inequality can be replaced by ν. (In the function field

setting, ν = 0 so the final term disappears entirely.)

Proposition 2.4. Suppose that ω ∈ Kn+1 \ {0}, Z is an unmixed cycle with as-

sociated Chow form F , Q is a homogeneous polynomial with Q not in any of the

component prime ideals of Z. Suppose further that there exists µ such that 0 < µ ≤ 1
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and for all β a zero of Z,

||ω − β||µ ≥ |Q(ω)| |ω|−degQ.

Then Res(F,Q) satisfies the inequality:

log |(Res(F,Q))(ω)| < µ log |F (ω)| + degQh(F ) + degF h(Q) + 8n2 degF degQ.

If | · | is non-archimedean, then the factor 8n2 degF degQ can be omitted.

Proposition 2.5. Assume F =
∏r
i=1

Fi
ei as in Equation 2.1, and let ω ∈ Kn+1,

ω 6= 0. Then

1.
r
∑

i=1

ei degFi = degF ,

2.
r
∑

i=1

eih(Fi) ≤ h(F ) + νn2 degF ,

3.
r
∑

i=1

ei log |Fi|ω ≤ log |F |ω + n3 degF .

If M∞ = ∅, then the equality holds in (2). If |·| is a non-archimedean absolute value,

then the equality also holds in (3); moreover, the term n3 degF on the right-hand

side must be omitted.

Proposition 2.6. If V is a homogeneous polynomial of the ring K[X] and ω, ξ are

nonzero points, and moreover if V (ξ) = 0, then the following inequality holds:

||V ||ω ≤ ||ω − ξ|| exp((2n+ 1) deg V ).
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If the absolute value | · | is non-archimedean, then the factor exp((2n+1) deg V ) can

be omitted.
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Chapter 3

Lower bounds based on Jabbouri-Philippon

In this chapter we will prove the first of our two results. This theorem

generalizes the Jabbouri-Philippon measure for algebraic independence in number

fields and creates a new analogue in function fields.

3.1 Hypotheses

Let ω ∈ Km+1 \ {0} for a field K. Suppose that Z is an unmixed cycle of

dimension d ≥ 0. Let C and c1 be constants greater than 1 not depending on ω or

Z. Let c2 > 3c1 and let c3 be any constant greater than or equal to 11(ν + 3)m3.

Let DQ ∈ N, hQ > 1,

N0 =

⌊

c3

c1(3C)d+1

(

DQ

(d+ 1) degZ
+ hQ

)

⌋

, and

N1 =

⌈

c3
c2
DQ

d
(

DQh(Z) + (d+ 1)hQ degZ
)

⌉

.

Assume that for every N in the interval [N0, N1] there exists a finite family of

polynomials Qj ∈ K[X1, . . . , Xm] such that

• maxj |Q(ω)| ≤ exp(−c2(3C)d+1N)

• degQj ≤ DQ

• h(Qj) ≤ hQ
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• The Qj lack a common zero in B(ω, exp(−c1(3C)d+2N)).

3.2 Lower bound

Theorem 1. Under the above conditions,

log |Z|ω ≥ −c3(3C)d+1DQ
d(DQ h(Z) + (d+ 1)hQ degZ).

3.3 Proof of result

We define Fd to be the Chow form of Z, and then define Fi inductively by

letting Fi = Res(Fi+1, Qj) for a sequence of Qj ’s defined later.

The proof involves linking a sequence of assertions Ai, one for each codimen-

sion d − i, i = 0, . . . , d. Assertion Ad.1 is equivalent to the negation of Theorem

1, and the major part of the proof consists of establishing that Ai ⇒ Ai−1 for

i = d, d− 1, . . . , 1.

Assertion Ai:

1. log |Fi|ω ≤ −c3(3C)i+1DQ
i
(

DQ h(Fi) + (i+ 1)hQ degFi

)

.

2. degFi ≤ (degZ)DQ
d−i

3. h(Fi) ≤ h(Z)DQ
d−i + (d− i)hQ(degZ)DQ

d−i−1

We will prove the induction step for all three parts. Examining the base case,

we will see that A0.1 fails as we interpret |F0|ω to be 1 and degF0 to be 0.
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3.3.1 Inductive step for Ai.1

Denote by ρi the minimum projective distance from ω to a zero of Fi.

Consider the interval [N0, N1]. Choose Mi maximal in this interval such that

ρi ≤ exp(−c1(3C)d+2Mi).

First, we show that Mi actually lies in this interval; that is, N0 satisfies

ρi ≤ exp(−c1(3C)d+2N0).

By Proposition 2.3, we have

log ρi ≤
log |Fi| + h(Fi) + (ν + 3)(i+ 1)m3 degFi

degFi(i+ 1)
,

where the factor ν + 3 can be replaced by ν in a non-archimedean case.

So it is sufficient to show that

log |Fi| + h(Fi) + (ν + 3)(i+ 1)m3 degFi
degFi(i+ 1)

≤ −c1(3C)d+2N0,

which is equivalent to

N0 ≤ −
log |Fi| + h(Fi) + (ν + 3)(i+ 1)m3 degFi

c1(3C)d+2(i+ 1)(degFi)
.
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By our definition of N0, we have:

N0 ≤ ⌊
c3

c1(3C)d+2

(

DQ

(d+ 1) degZ
+ hQ

)

⌋

≤
c3DQ

i

c1(3C)d−i+2





DQ
1−d+i

(i+ 1) degZ
+ hQ



 for 0 ≤ i ≤ d

≤
c3DQ

i

c1(3C)d−i+2

(

DQh(Fi)

(i+ 1)DQ
d−i degZ

+ hQ

)

since h(Fi) ≥ 1

≤
c3DQ

i

c1(3C)d−i+2

(

DQh(Fi)

(i+ 1) degFi
+ hQ

)

=
c3(3C)iDQ

i(DQh(Fi) + (i+ 1)hQ degFi)

c1(3C)d+2(i+ 1) degFi
by Ai.2, justified shortly

≤
c3(3C)i+1DQ

i(DQh(Fi) + (i+ 1)hQ degFi)

c1(3C)d+2(i+ 1) degFi

+
−h(Fi) − (ν + 3)(i+ 1)m3 degFi

c1(3C)d+2(i+ 1) degFi
by our bounds on c3

≤ −

(

log |Fi| + h(Fi) + (ν + 3)(i+ 1)m3 degFi

c1(3C)d+2(i+ 1) degFi

)

.

So N0 ≤Mi, as desired.

Case 1: Mi < N1. Then by the maximality of Mi, we have

exp(−c1(3C)d+2(Mi + 1)) < ρi ≤ exp(−c1(3C)d+2Mi).
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Then we choose Qji and let Fi−1 := Res(Fi, Qji). Then from the bounds on Qji

we have:

log |Qji(ω)| ≤ −c2(3C)d+1Mi

< −c13d+2Cd+1Mi

≤
Mi

C(Mi + 1)
(−c1(3C)d+2(Mi + 1))

≤
1

2C
(−c1(3C)d+2(Mi + 1))

This yields |Qji(ω)| < |ρi|
1

2C .

Applying Proposition 2.4, we get

log |Fi−1|ω ≤
1

2C
log |Fi|ω + degFi hQ + h(Fi)DQ + 8m2 degFiDQ

≤
1

2C

(

−c3(3C)i+1DQ
i(DQ h(Fi) + (i+ 1)hQ degFi)

)

+ degFi hQ + h(Fi)DQ + 8m2 degFiDQ

≤
3

2

(

−c3(3C)iDQ
i(DQ h(Fi) + (i+ 1)hQ degFi)

)

+ degFi hQ + h(Fi)DQ + 8m2 degFiDQ

≤ −c3(3C)iDQ
i(DQ h(Fi) + (i+ 1)hQ degFi)

+
1

2
(−c3(3C)iDQ

i(DQ h(Fi) + (i+ 1)hQ degFi))

+ degFi hQ + h(Fi)DQ + 8m2 degFiDQ

≤ −c3(3C)iDQ
i(DQ h(Fi) + (i+ 1)hQ degFi) by our bounds on c3
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Note that from Proposition 2.1(1), we know that

degFi−1 ≤ degFiDQ or equivalently, ihQ degFi−1 ≤ ihQ degFiDQ

and, similarly, from Proposition 2.1(2) we have

h(Fi−1) ≤ DQh(Fi) + hQ degFi, or DQh(Fi−1) ≤ DQ(DQh(Fi) + hQ degFi).

Applying this to our above inequality for log |Fi−1|ω, we get

log |Fi−1|ω ≤ −c3(3C)iDQ
i(DQh(Fi) + (i+ 1)hQ degFi)

≤ −c3(3C)iDQ
i−1(DQ

2h(Fi) +DQ(i+ 1)hQ degFi)

≤ −c3(3C)iDQ
i−1(DQ

2h(Fi) +DQhQ degFi + iDQhQ degFi)

≤ −c3(3C)iDQ
i−1(DQh(Fi−1) + ihQ degFi−1),

which proves Ai(1) in this case.

Case 2: Mi = N1. Here, we can find a Qji such that

Fi−1 := Res(Fi, Qji) 6= 0.

Otherwise, we would have that all of the Qj in our family have the zeroes of Fi in

common. But Fi has zeroes within ρi of ω, whereas the Qj do not have such zeros

in common by definition.
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Examining |Qji(ω)|, we find

log |Qji(ω)| ≤ −c2(3C)d+1N1

≤ −c2(3C)d+1 c3
c2
DQ

d
(

DQh(Z) + (d+ 1)hQ degZ
)

= −c2(3C)d+1 c3
c2

(3C)i−dDQ
i

×
(

DQh(Z)DQ
d−i + (d+ 1)hQ degZDQ

d−i
)

for 1 ≤ i ≤ d

≤ −c2(3C)d+1 c3
c2

(3C)i−dDQ
i

×

(

DQ

(

h(Z)DQ
d−i + (d− i) degZDQ

d−i−1
)

+ (i+ 1)hQ degZDQ
d−i

)

≤ −c2(3C)d+1 c3
c2

(3C)i−dDQ
i
(

DQh(Fi) + (i+ 1)hQ degFi

)

as we will show in 3.3.3

= −c3(3C)i+1DQ
i(DQ h(Fi) + (i+ 1)hQ degFi).
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Now

log |Fi−1|ω ≤ max{log |Fi|ω, |Qji(ω)|} + h(Fi)DQ + hQ degFi

+ 11νm2 degFiDQ

≤ −c3(3C)i+1DQ
i(DQ h(Fi) + (i+ 1)hQ degFi)

+ h(Fi)DQ + hQ degFi + 11νm2 degFiDQ

≤ −c3(3C)iDQ
i(DQ h(Fi) + (i+ 1)hQ degFi) by our bounds on c3.

In either case, we have constructed an Fi−1, and we proceed to prove the

remainder of the inductive hypothesis.

3.3.2 Inductive step for Ai.2

We start at i = d. By Proposition 2.1(1) we get

degFd−1 ≤ degFdDQ

= degZDQ.
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Now assume degFi ≤ degZDd−i
Q

. Then as above, we get

degFi−1 ≤ degFiDQ

≤ (degZDQ
d−i)DQ

≤ degZDQ
d−(i−1).

3.3.3 Inductive step for Ai.3

We again start at i = d. By Proposition 2.1(2), we have

h(Fd−1) ≤ h(Fd)DQ + hQ degFd

= h(Z)DQ + hQ degZ.

Now assume h(Fi) ≤ h(Z)DQ
d−i + (d − i)hQ degZDQ

d−i−1. Then by

Proposition 2.1,

h(Fi−1) ≤ h(Fi)DQ + hQ degFi

≤
(

h(Z)DQ
d−i + (d− i)hQ degZDQ

d−i−1
)

DQ + hQ degZDQ
d−i

≤ h(Z)DQ
d−(i−1) + (d− (i− 1))hQ degZDQ

d−(i−1)−1.

3.3.4 Base case

This completes the inductive step in the proof of our assertion. Now consider

A0.1. Here, F0 is the product of the polynomials Qj evaluated at the generic zeroes
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of the ideal underlying F1. In other words, F0 is simply a constant, which by

definition has degree 0. Thus F0 must satisfy A0.2 and A0.3. However, if we try to

apply A0.1, we get

log |F0|ω ≤ −c3(3C)DQ h(F0).

But by definition,

log |F0|ω = log |F0(S(0)ω, . . . , S(d)ω)| − (d+ 1) degF0(log |ω|)

= h(F0).

This means h(F0) ≤ −c3(3C)DQ h(F0), which is false as h(F0), C, c3, and DQ are

all greater than zero. Thus our inductive hypothesis cannot hold for any value of

i = 0, . . . , d. So we must have

log |Fd|ω = log |Z|ω > −c3(3C)d+1DQ
d(DQh(Z) + (d+ 1)hQ degZ),

as desired.
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Chapter 4

Lower bounds based on Nesterenko

4.1 Hypotheses

Let ω ∈ Km+1 \ {0} for a field K. Let a and b be two rational numbers with

a > 1. Let c1, c2, c3, and c4 be positive real constants with c3 > c4. Let d ∈ Z≥0,

d 6= a, and s ∈ Q. Define αd := a
a−d and βd := −bd

a−d .

Assume that there exists an integer N0 such that for all integers N ≥ N0

there is a (finite) family of polynomials FN = {Q} such that

• degQ ≤ c1N

• h(Q) ≤ c2N(logN)s

• −c3N
a(logN)b ≤ log |Q(ω)| ≤ −c4N

a(logN)b

4.2 Lower bound

Theorem 2. Under the above conditions, there exists a constant µd > 0 depending

on c3, c4, and N0 such that for any unmixed cycle Z of dimension d, the following

inequality holds:

log |Z|ω ≥ −µdD
αd(logD)βd ,
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where D is an arbitrarily large number satisfying

D ≥ (max{1, exp(bd/a)})
(

h(Z) + degZ(log(h(Z) + degZ))s
)

.

4.3 Proof of result

We shall prove the theorem by descending induction in d, extending the proof

given by Nesterenko in [7] in the archimedean case where 0 ≤ d ≤ 3, a = 4, b = −3,

and s = 1. Let d be the least number for which the assertion of Theorem 2 is no

longer true. Since d is the dimension of a cycle, d ≥ 0.

Note that we will use the notation //κ to indicate an inequality where we are

assuming the constant κ is sufficiently large.

4.3.1 Existence of unbounded D

Let c5 be an arbitrarily large constant. We claim that the set of numbers D

for which there exists a Chow form F of dimension d,

(max{1, exp(bd/a)})
(

h(F ) + degF (log(h(F ) + degF ))s
)

≤ D, (4.1)

log |F |ω < −2c5D
αd(logD)βd , (4.2)

is unbounded. Assume not. Define

ϕ(F ) := (max{1, exp(bd/a)})
(

h(F ) + degF (log(h(F ) + degF ))s
)

.
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Then there must exist a positive constant C such that

log |F |ω ≥ −C ϕ(F )αd (logϕ(F ))βd (4.3)

would hold for all Chow forms F with dimension d. Let G be such a Chow form of

dimension d. Write G =
∏t
i=1

Fi
ei as in Equation 2.1.

Then by Proposition 2.5(1) and (2),

t
∑

i=1

eiϕ(Fi) =
t
∑

i=1

ei (max{1, exp(bd/a)})
(

h(Fi) + degFi (log(h(Fi) + degFi))
s)

≤ γ1ϕ(G) for some constant γ1.

Now consider the function f(x) = xλ(log x)δ for some constants λ and δ. By

examining its derivative, we see that it monotonically increases when

x ≥ max{1, exp

(

−
δ

λ

)

}. (4.4)

Letting λ = αd, δ = βd, we note that ϕ(Fi) is greater than or equal to the

quantity on the right hand side of Equation (4.4), so we get

t
∑

i=1

eiϕ(Fi)
αd (logϕ(Fi))

βd ≤ (γ1ϕ(G))αd (log (γ1ϕ(G)))βd .
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Now Proposition 2.5(3) gives us

log |G|ω ≥
t
∑

i=1

ei log |Fi|ω − νm2 degG

≥ −C
t
∑

i=1

eiϕ(Fi)
αd (logϕ(Fi))

βd − νm2 degG by Equation (4.3)

≥ −C
(

(γ1ϕ(G))αd (log (γ1ϕ(G)))βd
)

=: γ2 (ϕ(G))αd (log (ϕ(G)))βd for some constant γ2.

But this contradicts our assumption that d is the smallest number not satis-

fying the assertion of Theorem 2. Thus we can choose an arbitrarily large D and a

Chow form F that satisfies conditions (4.1) and (4.2).

4.3.2 Choice of and bounds on N

Choose N such that

2c3N
a(logN)b = min{2c5D

αd(logD)βd , log
1

ρ
}. (4.5)

Proposition 2.3 tells us that N increases to infinity as D does.

From Equation (4.4), we know that the function f(x) = xa(log x)b increases

for x sufficiently large. Choose γ3 such that

γ3 logD ≥
1

a

(

log
c3

c5γ3
b

+ αd logD + (βd − b) log logD

)

,
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and notice that

f





(

c5

c3γ3
b

)1
a

D
αd
a (logD)

βd−b
a



 =
c5

c3γ3
b
Dαd(logD)βd−b

×

(

1

a
log

c5

c3γ3
b

+
αd
a

logD +
βd − b

a
log logD

)b

≥
c5

c3γ3
b
Dαd(logD)βd−b (γ3 logD)b

=
c5
c3
Dαd(logD)βd .

Thus

f(N) = Na(logN)b ≤
c5
c3
Dαd(logD)βd ≤ f





(

c5

c3γ3
b

)1
a

D
αd
a (logD)

βd−b
a



 .

Since we can choose D large enough so that N ≥ max{1, exp
(

− b
a

)

}, we get

N ≤

(

c5

c3γ3
b

)1
a

D
αd
a (logD)

βd−b
a . //D (4.6)

Now the above also gives us

logN ≤
1

a
log

(

c5

c3γ3
b

)

+
αd
a

logD +
βd − b

a
log logD

≤ γ3 logD (4.7)



28

4.3.3 Induction step

We wish to apply Corollary 2.2 to Res(F,Q). First, we claim that Q is not

contained in the ideal associated with the Chow form F . For if it were, then by

Proposition 2.6 and Definition 2.2,

log |Q(ω)| ≤ log ρ+ h(Q) +N log |ω| + exp ((2m+ 1) degQ)

≤ −2c3N
a(logN)b +N(logN)s +N log |ω| + exp ((2m+ 1) degQ)

≤ −c3N
a(logN)b, //N

which contradicts the lower bound on |Q(ω)|.

Next, set η = 1 + [4c3/c4]. Since

−η log ||Q||ω ≥ −η log |Q(ω)|

≥ ηc4N
a(logN)b

> 4c3N
a(logN)b

= 2 min{2c5D
αd(logD)βd , log

1

ρ
}

from (4.5), we get the inequality needed to apply Corollary 2.2 (with

S = 2c5D
αd(logD)βd). Note that by our construction of D, h(F ) ≤ D and
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degF ≤ 2D(logD)−s. Thus through Corollary 2.2, we see that

deg Res(F,Q) ≤ η degF degQ

≤ 2D(logD)−sc1N

≤ 2D(logD)−sc1

(

c5

c3γ3
b

)1
a

D
αd
a (logD)

βd−b
a by (4.6)

=: γ4D
αd+a

a (logD)
βd−b−sa

a ; (4.8)

h(Res(F,Q)) ≤ η (h(F ) degQ+ h(Q) degF + νm(d+ 3) degF degQ)

≤ Dc1N + c2N(logN)s 2D(logD)−s

≤ DN

(

c1 + 2c2

(

logN

logD

)−s)

+ νm(d+ 3) degF degQ

≤ DN
(

c1 + 2c2γ3
−s
)

+ νm(d+ 3) degF degQ by (4.7)

≤
(

c1 + 2c2γ3
−s
)

(

c5

c3γ3
b

)

D
αd+a

a (logD)
βd−b

a

+ νm(d+ 3) degF degQ by (4.6)

=: γ5D
αd+a

a (logD)
βd−b

a ; //D (4.9)
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and

log |Res(F,Q)|ω ≤ −S + η (h(F ) degQ+ h(Q) degF )

≤ −2c5D
αd(logD)βd

+ γ5D
αd+a

a (logD)
βd−b

a by (4.9)

≤ −c5D
αd(logD)βd . //c5

(4.10)

Put together, equations 4.8 and 4.9 mean that
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ϕ(Res(F,Q)) = (max{1, exp(bd/a)})
(

h(Res(F,Q))

+ deg Res(F,Q)(log(h(Res(F,Q)) + deg Res(F,Q)))s
)

≤ (max{1, exp(bd/a)})

(

γ5D
αd+a

a (logD)
βd−b

a

+

(

γ4D
αd+a

a (logD)
βd−b−sa

a

)

× log

(

γ5D
αd+a

a (logD)
βd−b

a + γ4D
αd+a

a (logD)
βd−b−sa

a

)s)

≤ (max{1, exp(bd/a)})

(

γ5D
αd+a

a (logD)
βd−b

a

+

(

γ4D
αd+a

a (logD)
βd−b−sa

a

)

×

(

log γ5 +
αd + a

a
logD +

βd − b

a
log logD + log γ4

+
αd + a

a
logD +

βd − b− sa

a
log logD

)s
)

< (max{1, exp(bd/a)})

(

γ5D
αd+a

a (logD)
βd−b

a

+ γ4D
αd+a

a (logD)
βd−b−sa

a

(

2
αd + a

a
logD

)s
)

//D

=: γ6D
αd+a

a (logD)
βd−b

a ,
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which leads to

logϕ(Res(F,Q)) = log γ6 +
αd + a

a
logD +

βd − b

a
log logD

=: γ7 logD. //D

So now

(ϕ(Res(F,Q)))αd−1 (logϕ(Res(F,Q)))βd−1 ≤ γ6
αd−1γ7

βd−1D

(

αd+a
a

)

αd−1

× (logD)

((

βd−b
a

)

αd−1

)

+βd−1

=: γ8D

(

αd+a
a

)

αd−1

× (logD)

((

βd−b
a

)

αd−1

)

+βd−1
.

Examining the coefficient of D, we see that

(

αd + a

a

)

αd−1 =

( a
a−d + a

a

)

(

a

a− d+ 1

)

=

(

a

a− d
+ a

)(

1

a− d+ 1

)

=

(

a+ a2 − ad

a− d

)

(

1

a− d+ 1

)

=
a

a− d
= αd.
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Doing the same for the coefficient of logD:

(

βd − b

a

)

αd−1 + βd−1 =





−bd
a−d − b

a





(

a

a− d+ 1

)

+
−b(d− 1)

a− d+ 1

=

(

−bd− ba+ bd

a− d

)(

1

a− d+ 1

)

+
−bd+ b

a− d+ 1

=
−ba

(a− d)(a− d+ 1)
+

−abd+ bd2 + ba− bd

(a− d)(a− d+ 1)

=
−bd

a− d
= βd.

Thus

(ϕ(Res(F,Q)))αd−1 (logϕ(Res(F,Q)))βd−1 ≤ γ8D
αd(logD)βd .

By our assumption on d, the inequality

log |Res(F,Q)|ω ≥ −µd−1ϕ(Res(F,Q))αd−1 (logϕ(Res(F,Q)))βd−1

≥ −µd−1γ8D
αd (logD)βd

must hold for Res(F,Q). But if we choose c5 ≥ µd−1γ8, this contradicts Equation

(4.10). This contradiction completes the proof of Theorem 2.
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Chapter 5

Applications

In this chapter we present two applications of our results and suggest areas

for future research.

5.1 Application of first result to Gelfond-Feldman situation

We apply our result from Chapter 3 to the Gelfond-Feldman measure, Equa-

tion (1.1), extending Diaz’s result to the non-archimedean number field case.

Let K be a number field, α ∈ K \ {0, 1}, and β be algebraic over K of degree

3. Fix an unmixed cycle Z of dimension 1 and let F be its chow form.

We use the same auxiliary polynomials as in [4]. Thus we obtain a family

of polynomials P (x, y) for every N in the interval [N0, N1] with each polynomial

being sufficiently small at the point ω = (αβ , αβ
2

), lacking a common zero in a ball

around (αβ , αβ
2

), and satisfying

degP ≤ N, h(P ) ≤ N (logN)s .

We choose N such that logN ≤ γ1 degF h(F ), and s such that

(logN)s ≤ γ2h(F )/degF . This puts us where we need to be to apply Theorem 1,
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obtaining

log |F (αβ , αβ
2

)| ≥ −c3(3C)2DQ(DQ h(F ) + 2hQ degF )

≥ −c3(3C)2N
(

Nh(F ) + 2N (logN)s degF
)

≥ −c3(3C)2 exp (γ1 degF h(F ))

(

exp (γ1 degF h(F ))h(F )

+ 2 exp (γ1 degF h(F ) (γ2h(F )/degF ) degF )

)

≥ −c3γ3(3C)2h(F ) exp (2γ1 degF h(F )) .

This produces a much sharper lower bound than in Equation (1.1), and it is

comparable to Diaz’s result.

5.2 Application of second result to Nesterenko situation

Let σk(n) =
∑

d|n d
k. Consider the Ramanujan functions

P (z) = 1 − 24
∞
∑

n=1

σ1(n)zn,

Q(z) = 1 + 240
∞
∑

n=1

σ3(n)zn,

R(z) = 1 − 504
∞
∑

n=1

σ5(n)zn.

Let q ∈ C, 0 < |q| < 1, and let ω1, ω2, ω3 ∈ C be such that q, P (q), Q(q), and R(q)

are all algebraic over Q(ω1, ω2, ω3). Then there exists a constant
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γ1 = γ1(q, ω1, ω2, ω3) such that for any non-zero polynomial A ∈ Z[x1, x2, x3],

|A(ω1, ω2, ω3)| ≥ exp
(

−γ1D
4(logD)9

)

,

where

D ≥ max{h(A) + degA× log(degA+ h(A)), e}.

In other words, we have the Chow form of an unmixed ideal (of dimension 2) gen-

erated by the polynomials A and T , where T is a minimal polynomial vanishing at

the point (q, P (q), Q(q), R(q)).

This implies, for example, that {π, eπ,Γ(1/4)} are algebraically independent

when q = e−2π.

To apply the second result, let d = 3, a = 4, b = −3, and s = 1. Nesterenko

constructs a family of polynomials {A} such that

degA ≤ N

h(A) ≤ 2γN logN

exp
(

−κ2N
4(logN)−3

)

≤ |A(ω1, ω2, ω3)| ≤ exp
(

−κ1N
4(logN)−3

)

where γ = 190(log |rq |)
−1, κ1 = 1

4 log 1
r , κ2 = 3c log 2

|q|
, r = min{

1+|q|
2 , 2|q|}, and

c = 1047.

Thus by application of our result, we get that

|A(ω1, ω2, ω3)| > exp
(

−γ1D
4(logD)9

)

,
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as αd = 4
4−3 = 4 and βd =

−(−3)(3)
4−3 = 9.

5.3 Possibilities for future applications

Our two theorems are suitable for application in the realm of number fields,

just as the results they were based on are. However, combined with the power of John

Zuehlke’s work in [9], these results are among the first such measures of algebraic

independence applicable to the function field case. For example in [1], Becker,

Brownawell, and Tubbs proved a qualitative version of Gelfond’s original theorem

from Chapter 1 using the Drinfeld module equivalent of the exponential function.

With the construction of appropriate polynomial families and zero estimates, these

results should provide an analogue of the quantitative Gelfond-Feldman inequality.

Other results from what is known as the Gelfond-Schneider family of tran-

scendence results can now be carried over to the function field setting using our

methodology for measures of algebraic independence. It is also entirely possible

that transcendence results unique to t-modules (i.e., with no known characteristic

zero equivalent) may be uncovered as has happened in other branches of transcen-

dence in positive characteristic.
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Appendix

Proof of Proposition 2.4

This proof is almost identical to that for the Archimedean case in [6]; we

include it here merely for completeness.

We cite two results needed for this proof. Again, both were proven in the

number field case in [7], and in the function field case in [9]. We let κ(E) be

the polynomial in the symmetric variables sjk
(i), j < k, from Chapter 2 with

i = 1, . . . , r, with coefficients in the field K which is obtained as a result of the

substitution of the vector S(i)ω for the variables ui in E.

Lemma A.1. Let V and W be homogeneous polynomials from the ring K[X] of de-

gree d. Then, for any nonzero vectors ω = (ω0, . . . , ωn) ∈ Kn+1,

ξ = (ξ0, . . . , ξn) ∈ Kn+1, the following inequality holds:

|V (ω)W (ξ) − V (ξ)W (ω)| ≤ ||ω − ξ|| × |V | × |W | × |ω|d|ξ|d(d+ 1)2m+1.

If the absolute value | · | is non-Archimedean, then the factor (d + 1)2m+1 on the

right-hand side of the last inequality can be omitted.

Lemma A.2. Suppose that Z ⊂ K[X] is an unmixed cycle, F its Chow form, r =

1 + dimZ ≥ 1, x0 is not in any prime component of Z, ω ∈ Kn+1, |ω| = 1, and let

κ(a) 6= 0. Suppose, in addition, that | · | = | · |w, w ∈ M, is an absolute value on
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the field K. Then there exists a homomorphism

τ : K[u1, . . . , ur−1, α1
(1), . . . , αm

(degF )] → K

which is identical on K and such that for βi
(j) = τ

(

αi
(j)
)

∈ K, the vectors

β
j

=
(

1, β1
(j), . . . , βm

(j)
)

, 1 ≤ j ≤ degF , are zeros of F , and, moreover,

• (1) |τ(a)|

degF
∏

j=1

|β
j
| ≤ |F | exp(2n

2
degF ),

• (2) |τ(a)|

degF
∏

j=1

(

||ω − β
j
|| × |β

j
|
)

≤ |F |ω × |F | exp(2n
2

degF ).

If | · | is a non-Archimedean absolute value, then the factors exp(2n
2

degF ) can be

omitted in these inequalities.

In addition, for each polynomial H ∈ K[u1, . . . , ur−1], the homomorphism τ

can be chosen such that

• (3a) |κ(H)| = |τ(H)| if | · | is non-Archimedean, or

• (3b) |κ(H)| ≤ (1 + ǫ)|τ(H)| for any given ǫ > 0 if | · | is an Archimedean

absolute value.

We now prove Proposition 2.4:

Proof. We can suppose that |ω| = 1. By assumption, ||ω − β
j
||
µ
≥ |Q(ω)|

for j = 1, . . .degF . Applying Lemma A.1 to the polynomials Q and R = xk
degQ

,
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where the index k is chosen so that |ωk| = |ω| = 1, we find that

|Q(ω)β
j
degQ

−Q(β
j
)ω

degQ
| ≤ ||ω − β

j
|| |Q| |xk

degQ
| |ω|

degQ
|β|

degQ

|Q(β
j
)| − |Q(ω)| |β

j
|
degQ

≤ ||ω − β
j
|| exp(h(Q)) 1 |β

j
|
degQ

1

|Q(β
j
)| ≤ |Q(ω)| |β

j
|
degQ

+ ||ω − β
j
|| |β

j
|
degQ

exp(h(Q)).

Hence,

log |Q(β
j
)| ≤ degQ log |β

j
| + log

(

|Q(ω)| + ||ω − β
j
|| exp (h(Q))

)

≤ degQ log |β
j
| + log

(

||ω − β
j
||
µ

+ ||ω − β
j
|| exp (h(Q))

)

≤ degQ log |β
j
| + h(Q) + log max{||ω − β

j
||, ||ω − β

j
||
µ
}

Now from Lemma A.2, letting Res(F,Q) be written as

Res(F,Q) = a
degQ

degF
∏

j=1

Q(β
j
)

(where, due to possible inseparability, the β
j

are not necessarily distinct) we use

the homomorphism τ defined in Lemma A.2 to get
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τ(Res(F,Q)) = τ(a)
degQ

degF
∏

j=1

Q(β
j
)

log τ(Res(F,Q)) = degQ log τ(a) +

degF
∑

j=1

Q(β
j
)

≤ degQ log τ(a)

+

degF
∑

j=1

(

degQ log |β
j
| + h(Q)

+ log max{||ω − β
j
||, ||ω − β

j
||
µ
}

)

≤ degQ



log τ(a) +

degF
∑

j=1

log |β
j
|



+ degF h(Q)

+ µ
∑

||ω−β
j
||≤1

log ||ω − β
j
|| +

∑

||ω−β
j
||≥1

log ||ω − β
j
||

Since ||ω − β
j
|| < 1,

∑

||ω−β
j
||≥1

log ||ω − β
j
|| ≥ µ

∑

||ω−β
j
||≥1

log ||ω − β
j
||.
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So our inequality becomes

log τ(Res(F,Q)) ≤ degQ



log τ(a) +

degF
∑

j=1

log |β
j
|



+ degF h(Q)

+ µ

degF
∑

j=1

log ||ω − β
j
||

≤ (degQ− µ)



log τ(a) +

degF
∑

j=1

log |β
j
|





+ µ



log τ(a) +

degF
∑

j=1

log |β
j
|





+ degF h(Q) + µ

degF
∑

j=1

||ω − β
j
||

≤ (degQ− µ)



log τ(a) +

degF
∑

j=1

log |β
j
|



+ degF h(Q)

+ µ



log |τ(a)| +

degF
∑

j=1

(log ||ω − β
j
|| + log |β

j
|)





≤ (degQ− µ)(h(F )) + degF h(Q) + µ
(

log |τ(a)|

+

degF
∑

j=1

(log ||ω − β
j
|| + log |β

j
|)
)

by Lemma A.2

≤ (degQ− µ)(h(F )) + degF h(Q) + µ(log |F (ω)| + h(F ))

by Lemma A.2(2)

≤ degQh(F ) + degF h(Q) + µ log |F (ω)|.

Finally, by Lemma A.2, |τ(Res(F,Q))|ω = |Res(F,Q)|ω, which yields our desired

result. �
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