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ABSTRACT 

Although automated test equipment standards have improved substantially since 

as recently as the early 1990s, the standards have not reached the point where instrument 

models are interchangeable. This may never be achievable, which is why a software 

solution is necessary in order to allow for instrument interchangeability. 

This paper introduces an instrument driver system that can solve the problem of 

instrument interchangeability for those companies and organizations that have test 

programs that last for many years or test stations with dozens of test programs. Although 

there is a specification for driver systems, called the Interchangeable Virtual Instrument 

Measurement and Stimulus Subsystems (IVI-MSS) specification, it does not describe 

implementation details or issues. This paper introduces guidelines and recommendations 

for implementation details for a driver system, but it does not replace IVI-MSS or any 

other high-level specification. The driver system that is introduced focuses on the signals 

to be sourced or measured rather than specific instrument settings. It also builds on 

current driver technology, including IVI and VXIplug&play driver standards. 

To prove the validity of such a system, an oscilloscope driver class was created 

and tested for three different oscilloscope models by two manufacturers. The code was 

written in Microsoft Visual C# .NET® for use on a test station that uses Microsoft 

Windows® XP on the controlling computer. The driver system successfully took the 

same three measurements with all three oscilloscope models using the same driver calls, 

thereby proving that such a system can work even with discrepant underlying specific 

drivers.
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Chapter 1: Introduction 

In the modern world of automated test and measurement equipment (henceforth 

called instruments), engineers must write test programs that can control those instruments 

as accurately, efficiently, and thoroughly as possible. The way they do this is through the 

use of instrument drivers. Commercial drivers have come a long way from the days of 

“free-for-all”, non-standardized drivers to the current state of the art, which are 

standardized Interchangeable Virtual Instrument (IVI) drivers. Even with IVI drivers, 

though, there is still room for improvement. This is because one of the biggest problems 

with instrument drivers is the difficulty in replacing instruments without having to rewrite 

the test programs that use those instruments. 

While IVI drivers address some of the problems associated with instrument 

replacement, there are still lingering issues that need to be addressed. Despite the fact that 

the word “interchangeable” is used in the name of the specification, it is still not possible 

to guarantee interchangeability using IVI drivers alone. One of the IVI specifications, 

Measurement and Stimulus Subsystems, proposes additional layers between an 

application program (test program) and the instruments it uses. This specification is more 

complicated than what is required for many automated test systems; for one, the 

specification dictates that interchangeability extend beyond the class of the instrument. 

For example, if the test program takes a voltage measurement, the user application should 

not care whether it’s taken with a digital multimeter (DMM) or an oscilloscope. 

Therefore, the intermediate layer should allow for substitution of a DMM where an 

oscilloscope had previously been used. 
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This thesis will present an efficient instrument driver system that will allow for 

the substitution of instruments in the same family without the need to change, recompile, 

or rebuild any of the code in the test programs that use the driver system. This will be 

accomplished by focusing on the signals and connections that the test program requires 

rather than the specific settings for the instrument that will be providing the signal, 

connection, or measurement. With a system such as this in place, companies could 

potentially save thousands of hours and hundreds of thousands of dollars whenever an 

instrument they were using goes obsolete. 
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Chapter 2: Prior Work (Current State) 

2.1 History of Instrument Drivers 

Although IEEE standard 488.1 standardized the physical and electrical 

specifications for General Purpose Interface Bus (GPIBi) instruments, it wasn’t until the 

introduction of IEEE standard 488.2 in 19871 that there was any standardization for the 

command structure used by the instruments. Driver commands and formats varied 

between manufacturers and could even vary between different models built by the same 

manufacturer. This created a larger learning curve for the engineers who needed to write 

test programs for the instruments and meant that most test programs would have to be re-

written whenever an instrument was replaced with a different model. IEEE 488.2 

introduced standard command words for important instrument functions and instructions. 

For instance, the standard dictated that “*RST” would cause an instrument to perform a 

reset, “*IDN?” would cause the instrument to return its identity in a predefined format, 

and “*TST?” would cause the instrument to perform a self-test and then return the status 

of the self-test. 

Standard Commands for Programmable Instruments (SCPI) 

Although IEEE 488.2 created standards for many commands, it mandated only a 

few of the commands and left many design and implementation decisions up to the 

device manufacturers. Additionally, it was originally essentially an extension of IEEE 

                                                           
i GPIB is the more common name for IEEE-488. It is widely used in the test and measurement industry. 
More information about the mechanical and electrical characteristics is available at 
http://standards.ieee.org/reading/ieee/std_public/description/im/488.1-1987_desc.html 

http://standards.ieee.org/reading/ieee/std_public/description/im/488.1-1987_desc.html
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488.1, the GPIB hardware standard. This meant that manufacturers of VXI or RS-232 

based instruments, for example, still did not have a standard to follow2. 

To combat these problems, the Standard Commands for Programmable 

Instruments (SCPI) Consortium was founded in 19903. The SCPI standards were built on 

IEEE 488.2, which means that SCPI-compliant devices are automatically IEEE 488.2-

compliant, as well.4 To be a SCPI compliant device, an instrument would have to 

implement the core set of SCPI commands and not violate any of the SCPI rules.5 In 

addition, the instrument would have to use the SCPI-defined commands for any functions 

the manufacturer chose to implement. In other words, if the instrument had the capability 

to measure DC voltage, it would have to understand the command structure 

“MEASure:VOLTage:DC?” and not “MEAS:DC:Voltage?” or some other variation of 

the standard command structure. Although SCPI defined the standard architecture and 

functionality of instrument I/O messages, it was not incorporated by most of the 

instrument models available today6. 

VXIplug&play 

In 1993, not long after the SCPI Consortium was established, the VXIplug&play 

Systems Allianceii was founded. The major goal of the alliance was to establish system 

software architecture standards for VXIiii instruments7. Because VXI instruments are 

controlled entirely through software, the alliance felt that an open, standard architecture 

for VXI systems and VXI instrument drivers was critical to the continued success and 

further adoption of VXI instruments. 

                                                           
ii In 2003, the VXIplug&play Systems Alliance merged with the IVI Foundation. As a result, the 
VXIplug&play Systems Alliance no longer exists. 
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Although the target for the standard was VXI instruments, VXIplug&play driver 

standards were quickly adopted by most of the major instrument manufacturers and 

software suppliers for GPIB instruments, as well. This may have been partly because, at 

that point, the VXIplug&play standard was the only high-level instrument driver standard. 

It could also be because the alliance created a standard library for instrument 

communication, called the Virtual Instrument Software Architecture (VISA). All 

VXIplug&play drivers are required to use this, and only this, library for instrument I/O, 

which is freely available for anyone to download and install. This requirement makes it 

much easier for end users to incorporate VXIplug&play drivers into their test programs 

partly because the library defines all data types in a standard way. 

VXIplug&play drivers take the format “abxyz_command”, where “ab” represents 

a two-character code for the instrument manufacturer, “xyz” represents an abbreviation of 

unspecified length for the instrument model, and “command” represents something like 

“init”, “reset”, “measure”, or another driver function. The instrument manufacturer code 

must be registered with the IVI Foundation, thereby guaranteeing that no two drivers will 

have the same name. As an example, the VXIplug&play driver call to initialize 

communications with a Tektronix TDS5104B oscilloscope is 

tktds5k_init(ViRsrc resourceName, ViBoolean IDQuery, 
ViBoolean resetDevice, ViSession *instrumentHandle) 

Similarly, for the Agilent (formerly Hewlett-Packard) 54831B oscilloscope, the function 

call is 

hp548xx_init(ViRsrc resourceName, ViBoolean IDQuery, 
ViBoolean resetDevice, ViSession *instrumentHandle) 

                                                                                                                                                                             
iii VXI, which stands for VME eXtensions for Instrumentation, is a standard bus architecture for test 
instruments. More information is available at http://www.vxibus.org/ 

http://www.vxibus.org/
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Beyond the standard initialize, reset, self-test, and close functions, however, the 

command can vary greatly. This means that it is still necessary to refer to the driver 

documentation frequently in order to find the correct function and the function signature. 

For example, in order to set the vertical scaling and offset for the TDS5104B oscilloscope, 

a programmer would call 

tktds5k_SetVerticalScale (ViSession instrumentHandle, 
ViInt32 channel, ViReal64 scale) 

and 

tktds5k_SetVerticalOffset (ViSession 
instrumentHandle, ViInt32 channel, ViReal64 offset) 

For the HP54831B oscilloscope, though, the programmer would call 

hp548xx_channelScale(ViSession instrumentHandle, 
ViInt16 channel_number, ViReal64 rangevalue, 
ViReal64 offsetvalue) 

Differences such as these are common between instrument drivers and indicate 

the level of variance between them. This left programmers with the same problems they 

faced before IEEE 488.2 and SCPI – a lack of standardization for instrument driver calls. 

Now, instead of differences at the hardware and firmware level, the differences were 

primarily in the software. Regardless of where the differences lie, however, the end result 

is the same – a higher learning curve and major rewrites when switching to a new 

instrument. VXIplug&play drivers are also strongly instrument configuration-based 

rather than signal-based, which is partly why there is so much variation in possible 

function names. Lastly, because SCPI was not a widely adopted standard and because 

VXI instrument drivers can be register-based instead of message-based, the low-level I/O 

calls inside the instrument drivers are usually specific to the instrument for which they 

were written. This means that interchangeability is not possible with most VXIplug&play 

drivers. 
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Interchangeable Virtual Instruments (IVI) 

In order to address these latest problems, the Interchangeable Virtual Instruments 

(IVI) Consortium was formed in 1998 by a group of instrument vendors and end users. 

The goal of this group was to create specifications that would promote high quality, high 

performance instrument drivers and instrument interchangeability. At this point, the 

consortium has nineteen active specifications under the headings of “Architecture” and 

“Instrument Classes”. 

Currently, there are eleven IVI architecture specifications. These specifications 

are independent of the type of instrument that is being programmed. For example, 

specification IVI-3.1, the Driver Architecture Specification, gives an overview of IVI 

driver requirements and describes all of the required and optional behaviors of an IVI-

compliant driver. It also explains, among other things, the different types of IVI drivers 

and their intended usage. These types include IVI class drivers, IVI class-compliant 

specific drivers, and IVI custom specific drivers. These various types will be discussed in 

more detail later. 

In addition to the architecture group, the consortium created specifications for 

instrument classes. These eight specifications describe the base and extended 

functionality for each of eight types of instruments – oscilloscopes, digital multimeters, 

function generators / arbitrary waveform generators, DC power supplies, switching 

matrices, power meters, spectrum analyzers, and RF signal generators. IVI-4.1, for 

example, is the IviScope Class Specification, which defines the class capabilities, base 

capability group, and optional extension groups for oscilloscope drivers. To aid in their 

main goal of supporting interchangeability, the consortium created a goal of covering 
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95% of the models in a given instrument class in their base capability group 

specifications8. This means that they didn’t include functionality that is not present in at 

least 95% of the models currently on the market for any given instrument class. For the 

IviScope class, the base capabilities include the attributes and functions that contribute to 

the configuration of the channel, acquisition, and trigger subsystems. For options that 

don’t make it into the base capability group, there are extension groups. For example, 

because there are so many types of triggers available, the base capability group for 

oscilloscopes includes only an edge trigger type; in order to use a runt trigger, the IVI 

driver must incorporate the IviScopeRuntTrigger extension group. 

Types of IVI Drivers 

There are three types of IVI drivers, each with different levels of 

interchangeability. From the most interchangeable to the least, they are IVI class drivers, 

IVI class-compliant specific drivers, and IVI custom specific drivers. For each of these 

driver types, the specifications describe both an Ansi C application programming 

interface (API), called an IVI-C driver, and a COM API, called an IVI-COM driver. IVI 

class drivers are provided by the IVI Foundation and contain all of the base and extended 

capabilities for the class. The prefix of the function calls for an IVI-C class driver is the 

IVI class name; for example, the function call to configure common characteristics of a 

scope channel is 

IviScope_ConfigureChannel (…) 

By using a completely generic function call, the test program is not tied to a specific 

driver library. 
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In order to control the hardware, however, there must be another level. Although 

the IVI class specifications describe the functions and attributes for the instrument class, 

they do not describe the low-level driver calls. Therefore, where one instrument might 

expect to see “TRIGger:A:” as the prefix for any commands regarding the main trigger, 

another instrument might expect to see “TRIGger:MAIn:”. Specifying the correct low 

level string or register manipulation (in the case of some VXI instruments) is the job of 

an IVI class-compliant specific driver. As the name implies, the driver must be written to 

comply with an IVI class specification. The class-compliant specific driver complies with 

the class specification by exporting the API described by the class specification. The 

difference is that the class name prefix is replaced with the specific driver prefix. Using 

the TDS5104B IVI class-compliant specific driver as an example, the call to configure 

common characteristics of a scope channel is 

tkds5000_ConfigureChannel (…) 

Because it is a specific driver, though, it contains the underlying low-level instrument 

calls required to control a specific instrument model, which typically makes it 

incompatible with other instrument models. For this reason, in order to allow for 

interchangeability, the test program must not make direct calls to the specific driver. 

The last type of IVI driver is an IVI custom specific driver. This type of driver 

does not conform to any of the IVI class specifications. A custom driver might be written 

for an instrument for which there is no class specification, such as a counter / timer, but 

the driver author still wants the other benefits of the IVI architecture. These drivers do 

not allow for hardware interchangeability. 

IVI drivers have additional features that make them superior to standard 

VXIplug&play drivers. In order to use IVI drivers, the end user must install the IVI 
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Shared Components, which are available on the IVI Foundation web site. This package 

includes all the files necessary for using the class drivers and interacting with the IVI 

configuration store, which is an XML document that contains all of the information about 

the instrument models and drivers in the system. In this document, the user can associate 

a “logical name” with a particular IVI driver. For instance, the logical name “SCOPE” 

could be set up to refer to the tkds5000 IVI-C class-compliant specific driver. The 

specific driver would then be tied to the specific piece of hardware (TDS5104B). The 

following is a snippet of an entry for the tkds5000 driver, edited for length. 

- <IviSoftwareModule id="p308"> 
   <Name>tkds5000</Name>  
   <Description>Tektronix TDS 5000 Series Instrument Driver</Description>  
   <ModulePath>tkds5000_32.dll</ModulePath>  
   <Prefix>tkds5000</Prefix>  
   <ProgID />  
  <SupportedInstrumentModels>TDS5052,TDS5054,TDS5104</SupportedInstru
mentModels>  
- <PhysicalNames> 
- <IviPhysicalName id="p311"> 
  <Name>CH1</Name>  
  <RCName>Channel</RCName>  
  <PhysicalNames />  
  </IviPhysicalName> 
- <IviPhysicalName id="p312"> 
  <Name>CH2</Name>  
  <RCName>Channel</RCName>  
  <PhysicalNames />  
  </IviPhysicalName> 
- <IviPhysicalName id="p313"> 
  <Name>CH3</Name>  
  <RCName>Channel</RCName>  
  <PhysicalNames />  
  </IviPhysicalName> 
- <IviPhysicalName id="p314"> 
  <Name>CH4</Name>  
  <RCName>Channel</RCName>  
  <PhysicalNames />  
  </IviPhysicalName> 
  </PhysicalNames> 
- <PublishedAPIs> 
  <IviPublishedAPI idref="p5" />  
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  </PublishedAPIs> 
  <AssemblyQualifiedClassName />  
  <ModulePath64 />  

</IviSoftwareModule> 
 

In the preceding example, the tag “ModulePath” was followed by “tkds5000_32.dll” and 

the tag “Prefix” was followed by “tkds5000”. This is how the IVI class driver knows 

which specific driver to use and what functions to call in the specific driver. After loading 

the correct specific driver, the class driver substitutes the value of the Prefix tag for the 

class name. For example, if the test program calls “IviScope_ConfigureChannel(…)”, 

the IVI scope class driver will, in turn, call “tkds5000_ConfigureChannel(…)” in the 

specific driver. 

In the hardware asset section, the TDS5104B’s I/O resource descriptor (address) 

would be specified. The following is a snippet from the hardware asset section of the IVI 

configuration store for a TDS5104B: 

- <IviHardwareAsset id="p342"> 
   <Name>TDS5104B</Name>  
   <Description>Tektronix TDS5104B Oscilloscope</Description>  
   <DataComponents />  
   <IOResourceDescriptor>GPIB0::6::INSTR</IOResourceDescriptor>  
  </IviHardwareAsset> 

 
In this case, the TDS5104B uses the instrument address “GPIB0::6::INSTR”. When 

initializing the instrument session in the test program code, the programmer does not 

have to specify the address of the instrument. This has the added benefit of allowing the 

test program to be installed and run on a test station where the instruments were assigned 

addresses that do not match those of the development station. Also, if the end user 

wanted to use a different instrument model, the IVI configuration store would be edited 

to have the logical name “SCOPE” point to the appropriate specific IVI driver, which in 
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turn is associated with the new hardware asset. This is how the IVI system allows for 

instrument substitutions without having to modify the test program in any way. 

2.2 Current Software Architecture 

As has been shown, it’s generally difficult to replace an instrument without 

modifying the test program. One possible exception is replacing an instrument with a 

different model within the same model family that uses the same driver – for instance, 

replacing a Tektronix TDS754D with a TDS784D. Other than this case, however, either 

an IVI class driver or an abstraction layer would be required to allow for substitution. 

Unfortunately, neither IVI class drivers nor simple abstraction layers can guarantee 

interchangeability. 

In some cases, instrument replacement is not an issue. One example is a 

production environment in which very few test programs are developed for a particular 

test station. In this case, it would most likely be more cost effective to rewrite the existing 

test programs than it would to develop a comprehensive instrument driver system to 

allow for instrument replacement without test program modification. In addition, in 

industries where the products being tested have a relatively short life cycle, such as 

consumer electronics, the measurement instruments often last longer than the products. In 

this case, by the time the instrument goes obsolete and must be replaced, the products 

might no longer be tested and the test programs will no longer be needed. In these cases, 

the instrument driver system proposed in this paper would not be cost effective. 

On the other hand, for a test station with test programs that number in the 

hundreds, an instrument driver system will certainly cost less in the long run than re-

writing and re-testing all of the test programs that used the replaced instrument models. It 
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is also sometimes very difficult to obtain the products to be tested at the time that the 

instrument is being replaced, which makes it even more difficult to re-write and re-

release the modified test programs. Also, in an industry where the products being tested 

have a very long life cycle, the test instrument models are likely to go obsolete at some 

point during the lifetime of the test programs; some instrument types might even have to 

be replaced multiple times. 

One solution to this problem is to apply a simple abstraction layer. A driver 

abstraction layer is a dynamic link library with exported function calls that acts as an 

interface between the test program and the various specific VXIplug&play instrument 

drivers. It is essentially a pass-through layer between the test program and the specific 

driver calls for the instrument. This allows the test program to make “generic” instrument 

driver calls. For example, instead of calling the VXIplug&play driver function 

tktds5k_init(…) 

to initialize communications with the TDS5104B scope, the test program calls 

Scope_init(…) 

This leaves it up to the abstraction layer to determine which scope model is in use and 

then make the appropriate specific driver calls. A simple abstraction layer removes the 

need to change function calls or link to a different library, but it does not guarantee 

interchangeability. 

With a simple abstraction layer, the main reason that direct replacement might not 

be possible is the hardware and firmware. Test program developers have a tendency to 

rely on default settings of the development instrument model. They issue an instrument 

reset and then change only the settings that are required to get a signal to appear correctly 

on the instrument model that is being used for development. If they don’t have the time 
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or resources available to try the code with all of the instrument models, the developers 

might fail to find problems with the settings until after the test program is released and in 

use on the production floor. 

For example, the Tektronix TDS5104B was a suggested replacement oscilloscope 

for the discontinued Tektronix TDS654C. Although the TDS5104B primarily contains a 

superset of the functionality of the TDS654C, Tektronix made a major change to the 

horizontal time base – instead of using the 1-2-5 sequence of the TDS654C, the 

TDS5104B uses a 1-2-4 sequence. This means, for example, that while the time-per-

division options for the TDS654C in the nanosecond range include 100 ns, 200 ns, and 

500 ns, the options for the TDS5104B are 100 ns, 200 ns, and 400 ns. If the programmer 

wished to verify the period of a 3 us square wave using the TDS5104B during 

development, he might issue a call to set the seconds per division to 300 ns (3 us / 10 

horizontal divisions = 300 ns). With rounding, the TDS5104B would set the time base to 

400 ns / division, but the TDS654C would be set to 200 ns / division. If the test program 

were to be run on a test station with a TDS654C scope, the signal would not be captured 

fully and the measurement would fail. 

Another, more subtle, potential pitfall is the difference in time that it takes for 

different instrument models to complete various commands. For example, some scopes 

and their drivers complete commands faster than others, so if a test were to be developed 

on a slow scope, then later run with a faster scope, the signal might not be available in 

time to take a measurement or to issue a particular setup call. In this case, a simple driver 

abstraction layer is insufficient – a study of the characteristics of the underlying driver 

calls and the behavior of the hardware is required. 
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Lastly, with a simple abstraction layer, there could be missed opportunities for 

instrument interchangeability. For instance, two different instrument models might be 

capable of taking the same measurement or triggering off of a certain condition, but it 

might not be straightforward to configure either one of the instruments via a single 

abstraction layer call. Additional logic and multiple function calls might be necessary in 

order to configure both instruments to get the same functionality. 

Even IVI drivers cannot guarantee interchangeability. Besides the difference in 

execution time of the various function calls mentioned above, the specification allows for 

custom specific drivers, which are not interchangeable. Even if the test programs utilize a 

class-compliant driver, if even one instrument model does not have an IVI class-

compliant specific driver, as is the case for the TDS654C, the test program won’t work 

for that instrument. Lastly, if the test program uses an instrument that isn’t covered by 

one of the eight IVI class specifications, such as a counter / timer, then it’s not possible to 

use an IVI class driver because none exists. An IVI custom specific driver could be 

developed, but as previously explained, these do not allow for interchangeability. 

Additionally, even with the extension groups, IVI class drivers do not cover some 

fairly typical measurements. For instance, one of the more common measurements is a 

delay, or time interval, measurement. This measurement involves two channels and 

measures the delay between one event on one channel and another event on the other 

channel. For example, the test program might need to measure the delay between one 

signal transitioning to a high logic level and another signal transitioning to a low logic 

level. Unfortunately, the IVI scope class specification does not address measurements 

involving more than one channel, so this sort of measurement is impossible with only an 



16 

IVI class driver. An IVI specific driver could implement this measurement functionality 

if the hardware supports the measurement, but again, the instrument would no longer be 

interchangeable. 

IVI Measurement and Stimulus Subsystems (IVI-MSS) 

The IVI Foundation addressed these issues with IVI-3.10 Measurement and 

Stimulus Subsystems Specification. This specification is actually excessive for most end 

users. As previously mentioned, one of the features of an IVI-MSS solution is the ability 

to substitute an instrument of a different type in order to take a certain measurement. For 

example, even if the test were developed with a DMM taking a voltage measurement, the 

IVI-MSS solution would allow for the substitution of an oscilloscope in place of the 

DMM as long as the scope is capable of taking the voltage measurement. This feature is 

completely unnecessary and even virtually unworkable in many automated test stations. 

First of all, test specification documents always provide tolerance levels for signal 

measurements, which are used to do accuracy analysis based on the measurement 

capabilities of the target test instrument. If the analysis assumes that the DMM will be 

used to take the measurement, there is no way to guarantee that the oscilloscope will also 

meet the accuracy requirements. Secondly, in automated test stations, the signal routing is 

somewhat predefined by the configuration of the switching matrices. In many cases, the 

signal would have to take an entirely different route in order to be connected to a 

different instrument type, which could cause different loading conditions on the signal 

and adversely affect the measurement. Allowing for the substitution of different 

instrument types is therefore not necessarily worth the expense, nor is it always feasible. 
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The IVI-MSS specification refers to software modules called “Role Control 

Modules”, or RCMs, that contain the code with the specific calls to the instruments. 

Because of the mandated abilities of the IVI-MSS solution to swap instrument types or 

group instruments together into virtual instruments, these RCMs are so-named because 

they are not supposed to be specific to a particular instrument type, but rather, they are 

supposed to perform a particular “role”. The following picture was taken from the IVI-

MSS specification and illustrates the relationship of the RCMs to the instruments and the 

rest of the IVI-MSS solution and user application: 

 

Figure 1: Example IVI-MSS Solution. Source: IVI-3.10 Measurement and Stimulus Subsystems 
Specification, page 10. Copyright IVI Foundation. 

The IVI-MSS server is the part of the solution that controls the interface with the test 

program and communicates with the RCMs in order to initiate and query the results of 
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measurements. The RCMs are the replaceable units in an IVI-MSS solution, so if an 

instrument were to be replaced, the RCM would probably be rewritten. One key to 

interchangeability is that the RCM interface to the IVI-MSS server would have to remain 

the same. 

Another feature that the IVI-MSS specification allows for is the creation of a 

“virtual instrument” via the grouping of multiple instruments in order to take a single 

measurement. Though it’s not shown in Figure 1, this would be accomplished by having 

one RCM control multiple instruments while providing a single interface to the IVI-MSS 

server. Virtual instrumentation is a special case that is probably not necessary in most 

automated test systems. For many end users, this is not an issue they need to consider 

when designing an instrument driver system. 
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Chapter 3: Design (Proposed State) 

One of the reasons that simple abstraction layers and traditional (non-IVI) 

instrument drivers do a poor job when it comes to interchangeability is that they are too 

focused on instrument commands and settings. This focus on the instrument is misplaced 

– the emphasis should be placed on the signal to be measured or sourced. Changing the 

focus of the abstraction layer from the instrument to the signal is an excellent first step in 

creating a greater level of separation between the test program and a specific instrument. 

The idea of signal-oriented drivers is not original. In fact, SCPI measurement 

commands were designed to be signal-oriented. Consider this quote from the SCPI 

consortium web site: 

“The commands in the measure family are “signal oriented” in the sense that they specify a 
measurement in terms of the desired result and in terms of the signal to be measured. A user can 
specify characteristics of the signal measurement, such as expected signal value or the resolution 
of the measurement, by adding parameters to the command. Based upon these parameters, the 
instrument selects suitable settings.”9 

The idea was that the test program could send a command to take a frequency 

measurement, for example, and the instrument could configure itself with the appropriate 

settings, take the measurement, and report it to the calling program. For instance, the 

command “:MEASure:FREQuency? 5000, 1.0” would tell the instrument to configure 

itself to measure a 5 kHz signal with 1 Hz of resolution, take the frequency measurement, 

and report the measured frequency to the calling program. 

Unfortunately, this signal-oriented philosophy was lost when the VXIplug&play 

standard was developed. Although it was a great help to programmers in that it drastically 

reduced the learning curve for determining the proper driver calls and syntax, the new 

driver standard put the focus on the syntax instead of the functionality of the instrument. 
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IVI drivers brought some of the signal-oriented philosophy back while still maintaining 

rules regarding driver syntax. 

Because IVI drivers have already been developed for most of the instruments on 

the target test station, it makes sense to use them whenever possible in the proposed 

instrument driver system. With IVI class drivers, much of the basic programming work 

has been done already, freeing up resources to create the instrument driver system 

framework and the other methods and properties needed to track the states of the 

instruments. 

The target test station for the new instrument driver system is a Teradyne 

Spectrum 9100 with multiple commercial-off-the-shelf (COTS) automated test and 

measurement instruments. The current standard station configuration includes a 

Tektronix TDS5104B oscilloscope, but other oscilloscopes have been used in the past 

and are present in test stations that have been delivered around the globe. These other 

oscilloscope models are a Tektronix 654C and an Agilent 54831B. 

The driver system should establish defaults for all instrument settings that are 

applied when the instrument is reset. That way, all of the models will be starting from the 

same point, which takes the burden off of the test program developer. In order to ensure 

that all of the instrument models will work equally well, the defaults should be set to the 

least capable setting out of all of the currently used models, if there is more than one 

model. In the case of the target test station, the only instrument for which there are 

multiple models currently in use is the oscilloscope. For all of the other instruments in the 

station, the reset state should be based on the capabilities of the currently used models. 

This should be a safe starting point because any time an instrument goes obsolete and 
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must be replaced with a new model, the new model should be at least as capable as the 

model it is replacing. This could involve some lengthy investigation, but it is critical to 

viable instrument replacement. 

It must be assumed that while the test program is running, there will be no other 

source altering the instrument settings. In other words, there should not be any other 

running processes that might change a setting on an instrument, nor should an operator be 

changing settings. In the case that another source will have to change settings, there 

should be a mechanism for querying the new settings of the instrument and setting them 

back to their state prior to the interference, if necessary. By not allowing another source 

to alter the instrument state, time can be saved during program execution because the 

driver system will not have to check the instrument state constantly. Instrument input / 

output (I/O) is generally a much bigger source of delay than pure software routines in 

drivers, so minimizing the amount of I/O should be a priority. 

While the amount of I/O should be minimized, the driver system may have to 

introduce delays in other areas. It should always err on the side of caution when there is a 

possibility that an instrument setup call might take longer than it takes for the software to 

issue the next instrument setup or measurement call. One way to handle this would be to 

study the amount of time it takes for a particular model to perform certain setup calls. 

One example of this is the case where the test program is asking an oscilloscope for a 

measurement. There is a correlation between the horizontal time base, the record length, 

and the amount of time it will take to acquire an entire waveform. Therefore, if the driver 

call to initiate an acquisition is non-blocking, meaning that it will return control to the 

calling program before the acquisition is complete, then attempting to query the 
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instrument for the measurement right away could cause an error condition. The driver 

system should be aware of conditions such as the time base, the record length, and other 

related settings in order to determine when the acquisition will be completed. Even better, 

if the instrument supports it, the driver system should query the acquisition status to 

determine if it has completed or if the program needs to wait longer. 
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Chapter 4: Implementation 

Despite the fact that not all of the instruments in the target test station have IVI 

specific drivers, the abstraction layer still uses the IVI configuration store to track all of 

the instruments. This is possible because any driver can be added to the configuration 

store, whether or not it’s an IVI driver. Therefore, for instruments for which there is only 

a VXIplug&play driver available, the IVI configuration store can still hold information 

about the instrument model. That information can be queried at run time in order to 

determine which model is currently in use and therefore, which class should be 

instantiated – the IVI class driver version or the specific VXIplug&play driver version. 

To configure the IVI drivers and configuration store, IVI Shared Components 

1.5.1iv was installed on the target computer along with National Instruments’ (NI) IVI 

Compliance Package 3.2v. The NI software package includes NI’s Measurement and 

Automation Explorer (MAX), which allows end users to configure their IVI drivers, 

specify the instrument models that are being used, and associate drivers with logical 

names. Although MAX is not required to set up the IVI configuration store, it provides an 

easy-to-use graphical user interface (GUI) and it ensures that the XML file is well-

formatted and complete. See Figure 2 and Figure 3 for examples of MAX IVI 

configuration pages. 

Although there is an IVI-COM specific driver available for the HP54831B scope, 

the abstraction layer currently uses only IVI-C specific drivers. This was a design 

decision made because there is no IVI-COM specific driver available for the TDS5104B, 

                                                           
iv IVI Shared Components 1.5.1 is available on the IVI Foundation web site at 
http://ivifoundation.org/shared_components/Default.aspx 
v The current National Instruments’ IVI Compliance Package, along with previous versions, is available for 
download from http://joule.ni.com/nidu/cds/fn/p/sn/n23:3.1637.4711/lang/en 

http://ivifoundation.org/shared_components/Default.aspx
http://joule.ni.com/nidu/cds/fn/p/sn/n23:3.1637.4711/lang/en
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whereas both scopes have an IVI-C specific driver. This means that both scopes can 

utilize exactly the same IVI setup calls within the abstraction layer, which eliminates the 

redundancies of writing essentially the same calls in the IVI-COM format. Although the 

code has not yet been written for the other instrument classes in the abstraction layer, 

they will probably be structured the same way. This is because most of the IVI instrument 

drivers currently available for the standard S9100 instruments are IVI-C drivers; many of 

the instruments have no IVI-COM drivers available right now, and some have no IVI 

driver at all. 
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Figure 2: National Instruments Measurement & Automation Explorer IVI Configuration Setup – 
Logical Names 
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Figure 3: National Instruments Measurement & Automation Explorer IVI Configuration Setup – 
Driver Session 

 

In order to use the IVI-C and VXIplug&play drivers as easily as possible within 

the driver system, National Instruments’ Measurement Studio was used to create a C# 

interface for the native C drivers. Measurement Studio achieved this by reading the 



27 

exported dll functions from the target driver’s function panelvi to generate C# methods 

and then adding the C# DllImport command for all of the exported functions. The 

converter also created a private class called “PInvoke” that contains all of the DllImport 

commands. As an example, for the tktds7xx (TDS654C driver) “reset” command, 

tktds7xx_reset, the driver converter created a C# function called “reset”, which calls the 

tktds7xx_reset function: 

        public int reset() 
        { 
            int pInvokeResult = PInvoke.reset(this._handle); 
            PInvoke.TestForError(this._handle, pInvokeResult); 
            return pInvokeResult; 
        } 
 
In the PInvoke class, the converter created the following lines of code: 

[DllImport("tktds7xx.dll",EntryPoint="tktds7xx_reset",CallingConvention=
CallingConvention.StdCall)] 
public static extern int reset (System.IntPtr Instrument_Handle); 
 
In order to use the DllImport calls, the file includes the directive 

using System.Runtime.InteropServices; 

One helpful feature when using NI’s Measurement Studio to create a C# interface 

is that it can preserve all of the information about the function calls and their parameters 

and turn them into C# “summary” tags that provide context sensitive help for when the 

programmer uses the functions. If the interface were created by hand, it would take hours 

to copy and paste all of the function and parameter help into the C# code, so this is a 

useful and extremely helpful feature. 

                                                           
vi A function panel (.fp file) is a National Instruments file type that can be read in NI’s LabWindows/CVI 
ADE and allows for GUI-based entry of a function’s parameters and return values, along with function- and 
parameter-sensitive help. 
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Instrument Driver System Structure 

The instrument driver system is written in an object-oriented, hierarchical fashion. 

All of the instrument types have an abstract base class that implements the 

IInstrumentDriver interface, which includes the most basic methods for an instrument – 

Init, Reset, and Close – and C# getters for the instrument status value and error message. 

For the oscilloscope, the “Scope” class contains many classes that are used to track the 

state of the instrument and information about the waveforms to be acquired and measured. 

The four most important configuration classes are shown in a UML class diagram in 

Figure 4. Every field in each of the configuration classes has a default value that is set by 

calling the appropriate “setDef” method, such as “setDefHorizontal (…)”. 
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+Vertical()

+name : string
+scale : double
+range : double
+coupling : int
+display : bool
+selected : bool
+offset : double
+bandwidth : short
+deskew : double
+extAtten : double
+extDBAtten : double
+probeAtten : double
+position : double
+impedance : bool
+invert : bool

Scope::Vertical

+Horizontal()

+scale : double
+setPosition : double
+actualPosition : double
+divisions : int
+recordLength : int
+minRecordLength : int
+sampleRate : double
+triggerPosition : short
+fitToScreen : bool
+mode : short
-roll : bool
+fFrame : FastFrame
+displayMode : short
+delayScale : double
+delay : double
+referencePoint : double

Scope::Horizontal

+sAcquisition()

+mode : short
+numAvg : int
+numEnv : int
+numSamples : ulong
+samplingMode : short
+repetitive : bool
+state : bool
+stopAfter : bool
+type : int

Scope::Acquisition

+sTrigger()

+mainLevel : double
+mainMode : bool
+mainTrigType : TRIGTYPE
+mainEdgeCoupling : short
+mainEdgeSlope : bool
+mainEdgeSource : int
+holdoff : bool
+holdoffTime : double
+mainDelayBy : short
+repetitive : bool
+secondaryTrig : bool
+secondaryType : TRIGTYPE
+secondaryTime : double
+secondaryCount : int
+secondarySource : int
+secondaryCoupling : short
+secondarySlope : bool
+secondaryTrigLevelType : short
+secondaryUserLevel : double
+pulse : Pulse
+logicTrig : Logic
+setHold : SetHold

Scope::Trigger

+Idn() : string
+HWAddress() : string
+HasHandle() : bool
+createTables()
+coerceRecLength(in recLength : int, in RecLengthIdx : int, out newRecLength : int)
+Scope(in LogicalName : string, in reset : bool)
+setDefaults()
+setDefHorizontal()
+setDefVertical()
+setDefAcquisition()
+setDefTrigger()
+configureHorizontal(in width : double, in recLength : int, in delay : double)
+configureAcquisition(in type : int, in width : double, in continuous : bool)
+configureEdgeTrigger(in source : short, in coupling : short, in slope : bool, in level : double, in mode : bool, in holdOff : double)
+takeMeasurement(in channelNum : short, in waveform : Waveform)
+takeMeasurement(in channelNum1 : short, in channelNum2 : short, in waveform : Waveform)

+type : Type = Type.UNKNOWN
-IDN : string
-hwAddress : string
+defHoriz : Horizontal = new Horizontal()
+defAcq : Acquisition = new sAcquisition()
+defChannels : Vertical[] = new Vertical[Scope.MAX_CHANNELS]
+defTrigger : Trigger = new sTrigger()
+RecLengthTable : int[][] = new int[NUMSCOPETYPES][]

Scope

1

1

1

1..*

1

1

1

1

 

Figure 4: UML class diagram of the Scope class and four of the most important state classes 

For each instrument type, the abstract base class has one or more inherited classes. 

If all of the models for a given type have IVI-C class-compliant drivers, there is only one 

inherited class. Otherwise, there is one inherited class for each specific driver. In the case 

of the scope, both the TDS5104B and the HP54831B have IVI-C class compliant drivers, 

so they both use the IviScope class, which inherits from the Scope class. For the 
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TDS654C model, though, there is a separate class called “TDS654C”, which also inherits 

from the Scope class. These examples are shown in Figure 5 and Figure 6. In both figures, 

certain fields and methods, along with initial field values and method parameters, have 

been deleted to conserve space. 

 

+Idn()
+HWAddress()
+HasHandle()
+createTables()
+coerceRecLength()
+Scope()
+setDefaults()
+setDefHorizontal()
+setDefVertical()
+setDefAcquisition()
+setDefTrigger()
+configureHorizontal()
+configureAcquisition()
+configureEdgeTrigger()
+takeMeasurement()
+takeMeasurement()

+type : Type
-IDN : string
-hwAddress : string
+defHoriz : Horizontal
+defAcq : Acquisition
+defChannels : Vertical[]
+defTrigger : Trigger
+RecLengthTable : int[][]

Scope

+ReturnStatus() : int
+ErrorMessage() : string
+Init(in LogicalName : string, in IDN : string)
+Init(in LogicalName : string, in Reset : bool, in IDN : string)
+Reset()
+Close()

«interface»InstrumentDrivers::IInstrumentDriver

+ReturnStatus()
+ErrorMessage()
+Init()
+Init()
+Reset()
+Close()
+IviScope()
+setVerticalDefaults()
+setHorizontalDefaults()
+setAcquisitionDefaults()
+setTriggerDefaults()
+getTrigType()
-getMeasureType()
-coerceHorizontalScale()
-iviOhms()

-IDN : string
-scopeIdx : int
+Divisions : uint
+horizDivisions : uint
-numChannels : int
-horiz : Horizontal
-acq : Acquisition
-channels : Vertical[]
-trig : Trigger
-iviScope : IVIScopeDriverWrapper
-scope : Scope
-haveHandle : bool

Interfaces::IviScope

 

Figure 5: UML Static Diagram of the relationship between the abstract Scope class, the interface 
IInstrumentDriver, and the class IviScope 
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+Idn()
+HWAddress()
+HasHandle()
+createTables()
+coerceRecLength()
+Scope()
+setDefaults()
+setDefHorizontal()
+setDefVertical()
+setDefAcquisition()
+setDefTrigger()
+configureHorizontal()
+configureAcquisition()
+configureEdgeTrigger()
+takeMeasurement()
+takeMeasurement()

+type : Type
-IDN : string
-hwAddress : string
+defHoriz : Horizontal
+defAcq : Acquisition
+defChannels : Vertical[]
+defTrigger : Trigger
+RecLengthTable : int[][]

Scope

+HasHandle()
+configureHorizontal()
+configureAcquisition()
+configureEdgeTrigger()
+takeMeasurement()
+takeMeasurement()
+ReturnStatus()
+ErrorMessage()
+Init()
+Init()
+Reset()
+Close()
+TDS654C()
+setVerticalDefaults()
+setHorizontalDefaults()
+setAcquisitionDefaults()
+setTriggerDefaults()
#commandError()
-coerceHorizontalScale()
-getMeasureType()

-haveHandle : bool
+Divisions : uint
+horizDivisions : uint
-horiz : Horizontal
-acq : Acquisition
-channels : Vertical[]
-trig : Trigger
+address : string
-IDN : string
-scope : Scope
-tds654 : tktds7xx
-return_status : int
-error_message : string

Interfaces::TDS654C

+ReturnStatus() : int
+ErrorMessage() : string
+Init(in LogicalName : string, in IDN : string)
+Init(in LogicalName : string, in Reset : bool, in IDN : string)
+Reset()
+Close()

«interface»InstrumentDrivers::IInstrumentDriver

 

Figure 6: UML Static Diagram of the relationship between the abstract Scope class, the interface 
IInstrumentDriver, and the class TDS654C 

 
When a test program or other application first calls the “init” command for an 

instrument, the program passes the logical name for the instrument. From that, the driver 

system must determine which of the instrument type’s subclasses it must instantiate. To 

do this, the IVI configuration store is queried for the current driver session, and from 

there, the exact hardware model and, optionally, the hardware I/O resource string 
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(address) can be determined. The following calls are an example of how to do that (some 

initialization calls have been omitted): 

static IviDriverSession ds = new IviDriverSession(); 

static IviHardwareAsset hwAsset = new IviHardwareAsset(); 

ds = configStore.GetDriverSession(LogicalName); 

hwAsset = ds.HardwareAsset; 

hwAddress = hwAsset.IOResourceDescriptor; 

 

The driver system compares the hardware asset’s name against a list of known 

instrument models to determine which model is in use in the system. From there, it can 

instantiate the correct class. All classes that inherit from a base instrument type must 

implement all of the same public methods so that the same methods can be called 

regardless of the class that was instantiated. 

Once the correct class is instantiated, the “init” method is called. This method is 

responsible for calling all of the “setDef” methods mentioned earlier. It also resets the 

instrument, applies the default settings, and creates local versions of the vertical, 

horizontal, trigger, etc, classes. This guarantees that all models will start in essentially the 

same state. After that, the driver system will change the instrument’s settings, as 

appropriate, in response to calls from the test program. Each time an instrument setting is 

updated successfully, the driver system updates the appropriate settings in the appropriate 

classes. For instance, if the test program requests a particular trigger setting, the driver 

system makes the appropriate calls to the instrument and then updates the settings in its 

locally instantiated trigger class. 

Most of the classes for an instrument type are instantiated once per instrument. 

For some classes, though, it is necessary to instantiate multiple copies. One example of 

this is the “Vertical” class in the oscilloscope class; the “Vertical” class is instantiated 
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once for every scope channel. This is necessary because each channel can have 

completely separate settings, whereas there is only one trigger and one time base for the 

entire oscilloscope. 

Although using IVI class drivers makes much of the work easier, there are cases 

where it actually causes problems. Because the IVI class driver specifications don’t detail 

exactly what each of the driver calls is supposed to do at the hardware level, some of the 

IVI class-compliant specific drivers interpret certain settings in different ways. For 

example, the TDS5104B treats vertical position and offset as separate entities, whereas 

the HP54831B does not have a setting called “position”. The IVI scope class driver 

specification appears to use the Agilent scope’s method of combining the two, so for 

setting the signal position for the TDS5104B, the IVI driver is insufficient. 

To combat this, the driver system’s IviScope class also uses the VXIplug&play 

driver to get lower-level control. The driver system queries the scope type that is in use in 

order to determine which VXIplug&play driver it needs and then instantiates it. If there 

are any cases in which the IVI class driver does not suffice, the VXIplug&play driver can 

be used to get finer control over the instrument. 

Another problem with the IVI driver was encountered during the development of 

the test case. While using the HP54831B scope, the timing measurements initially failed. 

Despite the fact that the test signal’s period was passed to the appropriate IVI scope class 

driver call, the scope did not set the time base to allow enough of the signal to be 

displayed in order to take period or frequency measurements. In order to prevent this 

problem, the instrument driver system multiplies the expected period by 1.25 and then 

passes the resulting value to the IVI scope class driver call. This method ensures that 
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enough of the waveform will be displayed in order for the scope to take timing 

measurements such as period and frequency. 
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Chapter 5: Results 

For the test case, probes were connected to each of the three oscilloscope models 

in order to access test signals. The signals chosen for this test were the probe 

compensation outputs provided by the TDS654C and TDS5104B oscilloscopes. The true 

purpose of the outputs is to calibrate any probes that are attached to the oscilloscope 

channels, but they provided fairly accuratevii,10 signals that were simple to use as control 

inputs. Both signals had a frequency of approximately 1 kHz, and the signal from the 

TDS654C scope was approximately 0.5 volts peak-to-peak, versus approximately 1.0 volt 

for the TDS5104B signal. The TDS654C’s signal was connected to channel 1 of each 

scope, while the TDS5104B’s signal was connected to channel 2. A simple test 

application was written to configure basic settings on the scope, and then the application 

requested period, frequency, and voltage amplitude readings for both signals. 

The test application was run once for each of the three scopes. Before each new 

scope was used, the IVI configuration store was updated to reflect the new target model. 

The only system change that was required was to navigate to the Logical Names section 

in Measurement and Automation Explorer (see Figure 2), click the drop-down box for the 

driver session, select the appropriate specific driver, and then click “Save IVI 

Configuration”. Each of the oscilloscopes was set to use GPIB bus address 6, so the 

models that were not currently being used were set to the “off bus” setting. Other than 

these two minor steps, nothing needed to be changed in order to run the same test 

application on each of the three scope models. 

                                                           
vii Frequency specifications: TDS654C and TDS5104B = 1 kHz ± 5%; Voltage peak-to-peak specifications: 
TDS654C = 500 mV ± 1.0%; TDS5104B = 1.0 V ± 1.0% 
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To verify that each of the scope models was taking the correct measurements, the 

test application printed the results of each of the measurements to text files. The printouts 

did not include the units, but for each of the measurements, the readings are given in 

terms of the base units for the measurement type. In other words, voltage measurements 

are given in volts, period measurements in seconds, and frequency measurements in hertz. 

The contents of the files are shown below, followed by the results of the mean and 

standard deviation calculations for each of the measurements. 

Current scope model: TDS654C 

Period Measurement on CHANNEL1: 0.00099999 

Frequency Measurement on CHANNEL1: 996.0283 

VAmpl Measurement on CHANNEL1: 0.499 

Period Measurement on CHANNEL2: 0.00100399 

Frequency Measurement on CHANNEL2: 1000.036 

VAmpl Measurement on CHANNEL2: 0.992 

 

Current scope model: HP54831B 

Period Measurement on Channel1: 0.0009990394 

Frequency Measurement on Channel1: 999.68356 

VAmpl Measurement on Channel1: 0.4971 

Period Measurement on Channel2: 0.00100247827 

Frequency Measurement on Channel2: 997.565554 

VAmpl Measurement on Channel2: 0.993 
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Current scope model: TDS5104B 

Period Measurement on CHANNEL1: 0.0010003 

Frequency Measurement on CHANNEL1: 999.6786 

VAmpl Measurement on CHANNEL1: 0.49608 

Period Measurement on CHANNEL2: 0.0010024 

Frequency Measurement on CHANNEL2: 997.5578 

VAmpl Measurement on CHANNEL2: 0.98592 

 

  Channel1 Channel2 
  Period Frequency Vampl Period Frequency Vampl 

TDS654C 9.9999E-04 996.028 0.499 1.0040E-03 1000.036 0.992
HP54831B 9.9904E-04 999.684 0.4971 1.0025E-03 997.566 0.993
TDS5104B 1.0003E-03 999.679 0.49608 1.0024E-03 997.558 0.98592

Mean 9.998E-04 998.463 0.497 1.003E-03 998.386 0.990

Std dev. 6.569E-07 2.109 0.001 8.962E-07 1.429 0.004

Table 1: Mean and standard deviation for measurements taken by all three scope models 

 
 

The standard deviations for the period measurements for both signals (channel 1 

and channel 2) are extremely small – less than 1 us each for measurements of 

approximately 1 ms. The amplitude reading for the signal on channel 2 has the poorest 

standard deviation – 0.004 V for a 0.990 V signal. This represents a 4.43% difference 

from the mean of the amplitude readings. The precision of the amplitude reading by the 

TDS5104B was good, though, as multiple test runs consistently produced the same 

voltage reading of 0.98592 V. The specification for the voltage amplitude on the 

TDS5104B probe compensation signal is 1.0V +/- 1%10, so the expected readings were 

between 1.01 V and 0.99 V. The particular TDS5104B oscilloscope used for this 
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experiment was out of calibration, though, and this could certainly account for the 

inaccuracies. 

After the voltage amplitude reading was taken for each signal on each scope, the 

test application was paused so that screen shots of the signals on the oscilloscopes could 

be taken. These are shown in the figures below. 

 

Figure 7: TDS654C scope displaying its own probe compensation signal on channel 1 



39 

 

Figure 8: TDS654C scope displaying TDS5104B probe compensation signal on channel 2 
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Figure 9: TDS5104B scope displaying TDS654C probe compensation signal on channel 1 
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Figure 10: TDS5104B scope displaying its own probe compensation signal on channel 2 

 
 



42 

 

Figure 11: HP54831B scope displaying TDS654C probe compensation signal on channel 1 
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Figure 12: HP54831B scope displaying TDS5104B probe compensation signal on channel 2 

 
The figures show that each of the oscilloscopes was configured with the same 

vertical scale (volts per division) of 78 mV / division for the first signal and 156 mV / 

division for the second signal. The vertical scale is stretched as much as possible, while 

still allowing room for waveforms that could be slightly outside the target voltage. This 

means that the vertical (voltage) accuracy is improved over a more basic setting of 100 or 

200 mV per division. Additionally, all of the scopes captured enough of the waveforms to 

perform period and frequency measurements without expanding the waveforms so much 

that horizontal (time) accuracy would be lost. In this case, each scope’s time base was set 

to 200 us, but if the signals had required a slightly higher time base, there would have 

been a difference between the TDS654C and the other two oscilloscopes. This is because, 
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as mentioned earlier, the TDS654C uses a 1-2-5 sequence, whereas the TDS5104B uses a 

1-2-4 sequence and the HP54831B is not constrained by a set sequence at all. Because the 

HP scope’s time base is variable, it was forced by the abstraction layer to conform to the 

TDS5104B’s more limited time base settings. 
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Chapter 6: Conclusion 

Although the test signals required a fairly simple oscilloscope configuration, they 

still show that a well designed instrument driver system can be a valuable tool in test 

program development. The test application demonstrated that the driver system can 

provide the same results even when using instrument models and specific drivers from 

different manufacturers. With IVI class drivers alone, the TDS654C would not have been 

available as a replacement instrument because it does not have an IVI driver. Similarly, 

with a simple abstraction layer, the huge differences in driver function calls and structure 

between the Tektronix VXIplug&play scope drivers and the Agilent VXIplug&play 

scope driver would make it extremely difficult to come up with a logical driver interface 

for the test program. Additionally, the IVI-C driver for the Agilent scope did not 

adequately configure the scope in order to take periodic measurements during the 

experiment. 

Using Microsoft Visual C# .NET 2003 made it easy to create a flexible system 

where new code for additional instrument models could be added easily. Because classes 

are instantiated only after querying the IVI configuration store, only the driver for the 

currently active model need be installed on the controlling computer. With a simple 

abstraction layer written in a language such as C, drivers for all the possible instrument 

models must be present on the controlling computer or else the abstraction layer’s dll will 

not load. This means that a test station without a TDS654C scope, for example, will still 

need to have the TDS654C driver installed on the computer, which is a superfluous 

requirement. 
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Because of the number of lines of code and the hours involved in creating and 

maintaining an instrument driver system, it is not a cost-effective solution for all 

situations. For test stations that have only a small number of test programs, or for 

production environments where test programs have a short life span, an instrument driver 

system is an unnecessary expense. On the other hand, for test stations with hundreds of 

test programs that can last for ten years or longer, a driver system can save hundreds of 

thousands of dollars in the long run. 

Future Work 

Although it is a major software project in itself, the driver system should not be 

seen as a standalone product. Rather, it should be part of a suite of applications that all 

aid in the development of instrument setup and measurement for a test program. A 

natural extension to the driver system is a GUI that the test program developer can use to 

fill in the function calls. This method of test program creation will ensure that the driver 

system is used in the manner intended and it will speed test program development time. 

The GUI should pose a series of increasingly specific questions in order to lead the user 

to the appropriate function calls. 

One possible series of questions is shown below, in Figure 13, Figure 14, and 

Figure 15. In the case that the user wants to apply a 10 kHz, 5 volts peak-to-peak square 

wave from an arbitrary waveform generator, he would select the options shown. First the 

user would click “Source a signal” on the first page, which would then cause the “Source 

a Signal” page to appear. On that page, he would click the “Standard” button, which 

would then lead to a panel where he could select a square wave (not shown), and so on. 
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Finally, after clicking the appropriate sequence of buttons, the user would be presented 

with a screen on which to enter the specific signal characteristics (Figure 15). 

What would you like to do?

Apply power to a pin Measure a signal

Connect two or more channels / signals

Source a signal

 

Figure 13: Abstraction Layer User GUI -- Initial window displayed to test program developer 

 

What kind of signal do you want?

Standard Arbitrary Sequence

 

Figure 14: Abstraction Layer GUI -- Page presented after user selects "Source a Signal" 
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Specify the characteristics of the square wave:

Frequency (Hz):

Amplitude (V): DC Offset (V):

Duty Cycle (%):10000

5

50

2.5

 

Figure 15: Abstraction Layer GUI -- Page presented once user has walked through "Source a 
Signal" path 

Finally, the abstraction layer GUI would produce the code snippet required by the 

driver system in order to produce the desired signal (this code is just an example as the 

driver system interface for the arbitrary waveform generator has not yet been developed, 

but it conveys the general idea): 

ARB_StdWaveformType (SQUAREWAVE); 

ARB_Waveform_Freq (10e3); 

ARB_Waveform_Vpp (5.0); 

ARB_Waveform_Offset (2.5); 

ARB_Waveform_Duty (0.5); 

ARB_Output (OUTPUT_ON); 

In addition to creating the test program code, the code generator could inform the 

developer about any instrument limitations. For example, if the developer wanted to use a 

particular oscilloscope trigger mode that isn’t supported by at least one of the models 

currently in use by the driver system, the code generator would pop up a message that 

explains which models will not work and why. The developer would then have the option 

to change the test strategy or decide that they just will not be able to run the test program 

with the less capable oscilloscope model. 
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Another utility that would be useful and could be added to the code generator GUI 

is an accuracy analysis tool. As mentioned earlier, all test programs require accuracy 

analysis for the signals that will be sourced or measured based on the equipment that will 

be used to source or measure the signal. The developer could enter the required 

measurement and tolerance from the test specification, and then the accuracy analysis 

tool could determine if the accuracy is good enough with each of the possible target 

instrument models. It could also produce an accuracy analysis report for the developer to 

include as part of the development process. 

Lastly, the instrument driver system requires a COM interface. Because the driver 

system was created in Microsoft’s C# .NET language and compiled into a class library 

assembly, it can be utilized in its native form only by other .NET languages. On the target 

test platform, the S9100 test station, C is the current standard language used for test 

program development, which means that the assembly cannot be used natively. To handle 

this, there must be a COM interface to the driver system, which can be registered in the 

Windows® environment, allowing the C-based test programs to use it. This COM 

interface will essentially be a pass-through layer, compiled into a dynamic link library 

(dll) with exported functions that hide the COM interface from the test program. This 

way, the test engineers will not have to understand or directly use COM technology; they 

can simply call the exported functions as if there were no COM interface involved. The 

exported functions in the driver system interface will then turn the calls from the test 

program into COM function calls in order to access the .NET drivers. See Figure 16, 

below. For test programs or other end applications that are written in a .NET language, 
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they can directly access the driver system functions without using COM; they will merely 

reference the assembly. 

C-based Test Program C-based COM pass-
through layer 

Abstraction Layer 

.NET abstraction-
layer instrument 
drivers 

.NET-based Test 
Program or Other 
Utility 

 

Figure 16: Abstraction Layer Interface Options 
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