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ABSTRACT 

 Mobile Ad-Hoc Networks (MANETs) have evolved tremendously over the past 

few years. Today MANETs contain not only simple mobile routers but also those 

with the capability to perform complex functions like encryption/decryption. Even 

today, the most common form of a mobile ad-hoc network still remains as a network 

including a base station or a network of base stations which are responsible for 

reliable data communication to other devices in the network. Such a network may 

also employ helper nodes which may be specially designed to relay data alone or 

those nodes in the network that have their own data to send but have extra resources 

to help as relays. Energy is an important resource in a wireless ad-hoc network. 

Wireless routing protocols try to minimize wasteful operations so that energy is 

conserved wherever possible. The ability of such a routing protocol to change routes 

dynamically plays a big role in how efficient the protocol is.  

 

 In the protocol described here, routes change dynamically with feedback 

responses. The specific problem dealt with is communication to a base station or a 

network of multiple base stations, with the possible assistance of helper nodes. At any 

time, the route can change based on window information and sender desires. No 

special route establishment is needed. No end-to-end successfully acknowledged 

packets need to be re-sent.  
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 It will be assumed that the network is of the wideband, low utilization type. This 

is a common situation with low energy, short range transmissions such as in Ultra-

Wideband transmission or Wideband Aloha. Collisions would be a rarity, and the 

Automatic Repeat Request (ARQ) techniques employed can handle collisions when 

they occur. 
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CHAPTER 1 
 

INTRODUCTION 

With the growing popularity of Mobile Ad-hoc Networks (MANETs), several ad-

hoc routing protocols have been developed [1]. The protocols can be categorized 

according to the way they operate as being proactive or reactive. Proactive protocols 

maintain fresh lists of destinations and their routes by periodically distributing routing 

tables through the network, whereas reactive protocols flood the network on demand 

when they have data to send.  Proactive protocols try to achieve smaller latency time by 

keeping the network ready to send data whenever it is present by keeping all nodes 

informed about updates in the network topology. Reactive protocols try to minimize the 

amount of information passed in the network maintenance plane by not sending routing 

information when data does not need to be sent.  

 

Due to their high overhead, proactive protocols haven’t become as popular as 

reactive protocols yet. This is, however, changing with the higher performance and 

processing powers of the network devices that are now being manufactured. The most 

popular of reactive protocols are Ad-hoc On-demand Distance Vector (AODV) [2] and 

Dynamic Source Routing (DSR) [3]. Both try to achieve a low overhead and yet are able 

to react very quickly to changes in the network. On a broader perspective, both have two 

main mechanisms that help them to function – route discovery and route maintenance.  
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Most ad-hoc routing protocols along with the above two mentioned try to set up a 

route prior to some data transfer. Whenever a link fails, the route maintenance 

mechanism takes over. However, in most protocols, route maintenance is a subset of the 

route establishment mechanism. In MANETs, routes often need to be changed due to the 

dynamic nature of the network. It is generally difficult to change a route without 

interrupting reliable data transfer. Also, since route maintenance is almost always as 

expensive as route establishment, these protocols are hardly as efficient as desired in 

MANETs. Adequate sequence numbering is a problem as data might continue flowing 

from older routes causing sequence number ambiguity. Sending data over multiple routes 

for better assurance of delivery (reliable transfer) aggravates this problem with a great 

deal of out-of-order and multiple packet reception. 

 

When order is preserved, sequence numbers of small size have been adequate to 

prevent ambiguity, as shown by the High-Level Data Link Control (HDLC) protocol [4] 

and early selective repeat protocols [5]. With the introduction of Internet datagram 

communication that allows out-of-order reception and long data paths, the Transmission 

Control Protocol (TCP) was introduced [6] at a higher layer to solve the problems of out-

of-order transmission. TCP solved the problem of sequence number ambiguity in a brute 

force manner by using a large 32 bit sequence number. However, wireless 

communication often operates best with relatively smaller packets and having smaller 

sized sequence numbers would greatly increase efficiency thus. 
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In [14], Dr. Metzner defines the problem to solve relative to a special network 

topology where several nodes in a network exist and can collaborate to achieve 

transmission to a base station. This is a very common network scenario and can be 

augmented by the fact that the base station is capable of reaching all desired nodes in one 

transmission once it receives the data to be transmitted from the sender node. Such a 

topology is very popular in sensor and peer-to-peer (P2P) networks as well. Such 

networks tend to be small and dynamic. Certain nodes may be dedicated originators of 

data while some may be dedicated relay nodes. Nodes can also change their role based on 

how much surcharge energy they have to assist other nodes in sending data. The protocol 

as formulated in [14] is described in more detail in Section 3.3 of this thesis. 

 

The problem we thus formulate in this thesis is to implement the aforementioned 

protocol for this network type but not limited to the same for sending packets efficiently 

end-to-end. The use of different acknowledgement strategies can then be studied in 

conjunction with the protocol in simulations to determine if it would further improve 

efficiency. Implementation strategy and decisions will be discussed in Section 3.4. 

 

The implementation details of the protocol will be discussed in Chapter 4 and 

finally we will close with future work and possible extensions in Chapter 5. 

 



 

 

CHAPTER 2 
 

BACKGROUND 

 

Wireless ad-hoc networks have been around for several years from their inception 

in the 1970s. The earliest wireless ad hoc networks were the packet radio networks 

(PRNETs), sponsored by Defense Advanced Research Projects Agency (DARPA) [9] 

after the ALOHANet project [10]. Initially, several researchers tried to leverage 

techniques applicable to wired networks into wireless networks. Although they were 

successful, they were hit with several problems due to the nature of the physical medium 

over which wireless networks operated. Lately, this has changed and research in wireless 

networks has evolved as an almost exclusive branch in the networking field. This has 

triggered the evolution of standards such as 802.11 [22], Wi-Fi Protected Access (WPA) 

[23] and routing protocols such as AODV and DSR. Apart from the popular routing 

protocols, researchers have been developing newer protocols, trying to improve wireless 

standards on the efficiency, security and speed. These three factors are not mutually 

exclusive and hence researchers have been trying to reach an optimized algorithm for 

routing in the wireless world. Researchers have often been challenged by the dynamic 

nature of this physical medium as the wireless channel is a very fast-evolving technology. 

Given this, most algorithmic standards have been developed at the network or higher 

layers for routing. 
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MANETs were developed by the global research community and military as a 

way to simplify initialization and use of wireless networks. This brought distributed 

algorithms to the wireless world as routing now became a responsibility of all nodes 

participating in the wireless network. Several routing protocols have been developed for 

MANETs of which we will discuss a few in the following paragraphs. 

 

DSR is one such protocol that has been actively developed by companies and the 

academic community alike. DSR runs as a distributed algorithm in a wireless network 

with the source determining the complete source that a packet traverses to reach its 

destination. Although very easy to conceptualize, DSR is a very complex routing protocol 

and it does not deal well with several issues such as packet loss, node crashes, congestion 

and long routes. DSR needs flooding so that nodes have complete information about the 

topography of the network and sources are able to determine the route when sending a 

packet. Thus there is a large startup overhead as well. Also, when completely aware, DSR 

sends entire path in the packet yielding to low efficiency. These overheads also affect the 

scalability of DSR. Researchers have actively tried to overcome these problems in DSR, 

e.g. “flow-state transmission” in DSR [24] eliminates the need for packets to contain the 

entire path once a flow of data has been established in a well-connected network. 

 

To overcome the inefficiencies of DSR, another protocol known as AODV was 

developed. AODV used sequence numbers to build loop free routes. The key difference 

from DSR is that source-filled path is not required yielding very high data efficiency. 

Path discovery and routing table population was distributed in forward and reverse path 
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setup mechanisms. However, AODV does not consider individual node resources in 

setup and does not use end-to-end sequence numbers. Several protocols tried to overcome 

these shortcomings of AODV by adding performance metrics in the protocol that 

determine which nodes are selected in routing. Better Approach To Mobile Adhoc 

Networking (B.A.T.M.A.N.) [25] is one such protocol. However, B.A.T.M.A.N. does not 

use end-to-end sequence numbers. Implicit Source routing tries to preserve the 

advantages of source routing while avoiding the associated per-packet overhead in most 

cases [26]. 

 

Most protocols try to find the shortest path between source and destination. 

However, this has shown to be not enough for efficient and reliable data transfer when it 

comes to wireless ad-hoc networks [27]. 

 

In the protocol described in this thesis, the use of end-to-end sequence numbers 

along with the use of a performance metric that will be based on the resource availability 

of participating nodes has been conceptualized [34]. Based on whether a node 

participates as a helper node and the amount of resources it has, it can distribute its 

resources dynamically to result in highly efficient network-wide transfers. Intermediary 

nodes can vary their function by acting as fast nodes for a few flows or allowing several 

flows through them slowly to keep the routes at maximum throughput. Such a protocol 

also facilitates load balancing in the network. 
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Work was undertaken as part of this thesis to implement the protocol so that it 

could be analyzed for its performance and compared against the other protocols. There 

were two ways to do this: 

i. Implement the protocol and deploy it along with other protocols in similar 

hardware network configurations to get results and compare them. 

ii. Implement the protocol in a simulator that already had implementations of 

other wireless ad-hoc protocols so that it could be compared with already 

present test cases. 

 As with most academic projects, the second option was chosen. There was a wide 

variety of simulator options available for this; the most popular ones being NS-2, 

OMNet++ and OPNET IT Guru Academic Edition [28]. 

 

All of these are discrete event simulation systems. Of these OMNet++ and NS-2 

are both free and popular amongst the developer community. Both have implementations 

of AODV and DSR. However, OMNet++ was a budding system at the time of 

implementation and NS-2 was a well established leader with contributions from several 

reputed researchers. Hence, NS-2 was chosen for implementing the protocol. 

 

The following chapter will describe the protocol in detail.



 

 

CHAPTER 3 
 

PROTOCOL DESCRIPTION 

3.1 Network Topology 

 

 

As shown in Fig. 1, the typical network topology consists of several nodes in a 

given area. The nodes can themselves be originators of data (depicted as white or blue in 

the figure) or helper nodes (depicted as solid green in the figure). Originator nodes that 

have extra resources such as extra energy and/or extra bandwidth may opt to act as helper 

 

Fig. 1: Typical network topology 

Base Station (Y) 

Sender (X) 

Helper node (H1) 

Helper node (H2) 



9 

 

nodes to help other originator nodes get their data to the base station. The base station is a 

special type of node (depicted as solid black in the figure) that typically has resources 

enough to broadcast or multicast data to nodes in the entire network. Please note we do 

not make any special assumptions for the purpose of such a base station, but such 

topologies are used massively in sensor and mobile networks, and also some P2P 

networks. 

 

3.2 Assumptions about the system 

Specific to the description of the protocol described in the next section, the 

following assumptions are made [14]: 

 

Assume station X wishes to communicate to the base station Y. Let X have an 

address IDX, Y have an address IDY. Helper nodes may exist in between that help X to 

transmit data to Y. Let each such helper node be H#, where # is the hop index from the 

sender X. In Fig. 1 above, there are 2 helper nodes, H1 and H2, that help X to get its data 

to station Y. Routes can change anytime based on several conditions and no special route 

establishment needs to be done prior to data transfer. Ranges are generally short and 

energy is the premium resource. Collisions between sending nodes can be minimized by 

using ultra wide-band, low energy transmissions without careful coordination and the use 

of protocols such as Multiple Access with Collision Avoidance for Wireless (MACAW) 

[7] [8]. Limited collision avoidance can be employed. For example, if a nearby sender is 
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heard sending a train of pulses, in ultra-wideband case, the transmitted timing can be 

adjusted to avoid overlap. In a multi-band network, frequencies overheard from 

neighbors can be avoided for sending data. 

3.3 The Protocol  

3.3.1 Assumptions about the protocol 

 

 

X initially sends a “seek” packet indicating its own ID: IDX; and the ID of the 

destination node: IDY. If Y responds directly favorably, X can send packets directly to Y. 

 

Fig. 2: Message Diagram 

Sender (X) Helper (H) Base Station (Y)

seek 

offer 

data 

T 

Packet destroyed if no NACK 

received within T sec. 

data forwarded 

end-2-end ACK broadcasted 
T 

Window 
advances on 
end-2-end 
ACK 
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However, in the other case, if X does not hear a direct reply from Y, it may still hear 

responses from other helper nodes that are willing to forward the data to Y. These packets 

are known as “offer” packets and along with the replier’s ID, they consist of other 

information that may help the seeker to make a decision so as to which helper node to 

forward data through to the destination. This information may include no. of hops to 

destination information (if the helper node has this information) and/or the available 

bandwidth that the helper node has to spare for this flow of data. The seeker on receiving 

this information picks up the most favorable helper node and starts sending its packets to 

this node by including the helper node’s ID in the packet. An efficient way to include the 

relay ID would be to use multicast addresses. However, this would involve hierarchical 

addressing that can be done only in the case of static networks. We can imagine having a 

static network of helpers and a base station, but this is not included in this work. Another 

option would be to add the addresses and send the data. Only the chosen helper node 

knows both addresses and can subtract the same from the packet before sending it further. 

X can send a new “seek” packet seeking Y at anytime during the transmission to continue 

with its transmission on another route. Alternatively, X can split its traffic, sending some 

packets on one route and some on the other. Since X has control over the sequence 

numbers, it has complete discretion to do this at anytime without affecting the flow of 

traffic. Multiple packets at the destination with the same sequence number will simply be 

discarded. In the next section we will prove a limit on the sequence number range that we 

will use to avoid ambiguity at the destination. 
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The helper node specifications in the offer will be a “window length” that 

specifies the number of packets that the helper node is willing to handle in some specific 

time T. T is a system constant. The window length is a system variable and can change 

with improvement in the helper node algorithm or hardware. With a static hardware 

configuration, it varies with no. of hops to the destination and most importantly with the 

helper node’s available capacity and/or energy reserves.  

 

For the sake of completeness, we should also define acknowledgement packets of 

2 kinds here. We use end-to-end acknowledgements with hop-by-hop NACKs (negative 

acknowledgements) as we assume that the base station (destination) is capable of 

broadcasting to all nodes in one transmission. 

 

Also, apart from data itself, data packets must include the originator ID, 

destination ID, relay ID (if any) and a sequence number. Although this is a premium to 

pay for this protocol, it’s a very small one considering that the nodes themselves need not 

hold a lot of routing data. 

3.3.2 Description 

There are 3 parts that the protocol we describe employs: 

i. A small sequence number based on a window limitation of a maximum 

of W packets in T seconds. 
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ii. A discarding policy that an intermediate station cannot send any packet 

out more than T seconds after it has been received, which means all 

packets T seconds old or older are discarded. 

iii. A limit on the number of hops. 

 

Suppose the source has a maximum window of W packets allowed to be 

transmitted in time T, starting from the oldest unacknowledged packet. We wish to relate 

this to the minimum number of bits in the sequence number that prevents ambiguity. 

 

The source may switch routes or may even send identical copies over different 

routes. On each route, assume hop-by-hop NACKs are used, with end-to-end cumulative 

acknowledgments from Y. Hop-by-hop ACKs are optional. The ambiguity problem has a 

well known solution for cases where all packets follow the same route and arrive in the 

order transmitted. But in the route switching and parallelism environment out-of-order 

arrivals violate the assumptions of these relationships. The method is designed for 

systems where the number of hops is small and the distances are short, which is 

appropriate for wireless communication with base stations. 

 

Assume that no route has more than H hops. Also assume that the source will not 

inject more than W different packets into the network in any T-second interval. This 

corresponds to a maximum packet rate of W/T packets per second. 
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Every packet received by a non-source node that is not the destination 

(intermediate node) is allowed to be held for at most T seconds starting from its most 

recent reception of the packet. If a hop-by-hop NACK is received, it can retransmit if T 

seconds have not expired. This is a simple way of applying a time-to-live feature that 

helps solve the ambiguity problem. The value T may be a standard system parameter or 

negotiated. In our case, we will assume T is a system parameter based on the speed 

permissible by the underlying wireless protocol. The sender can use a smaller window 

than W, and a lower packet rate, with lesser concern about ambiguity problems, since 

fewer packets could be delivered in T seconds. But with changing conditions and routes, 

the source may wish to change to a faster rate, where as many as W packets actually 

would be delivered in T seconds. The required minimum number of bits in the sequence 

number depends logarithmically on the maximum number H of hops but H would almost 

always be small in wireless communication to a base station. 

 

The source knows an intermediate node h hops from source can not be holding a 

copy of the packet for retransmission at hT seconds after the source last injected. To 

allow for either go-back or selective repeat transmission, assume the receiver is allowed 

to accept any new packet in WR positions starting from first packet not yet correctly 

received. WR = 1 is the go-back protocol. 
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3.3.3 Theorem 

Assume propagation time is negligible compared to packet time. The number of 

bits required in the sequence number is at least log2 |HW + WR|. 

3.3.4 Proof 

Consider first H = 2. Figure 1 shows the receiver viewpoint, knowing the sender’s 

window ambiguity limit is W. 

 

 

 

Fig. 3: Receiver’s perspective. H=2 [14]. 

>=T >=T >=T WR 
W packets (3) W packets (2) W packets (1) 

X = oldest packet not yet correctly received 

X 

These W last injected 
by source prior to t-T, 
since after t-T they 
were all out of source 
window; thus gone 
from intermediate 
station before t. 

Sender will not re-inject 
after t any packet sent 
in this range, since they 
all would have been 
acknowledged based on 
window advance. 
 Illustrated for H=2 and one 

intermediate node. 
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Refer Fig. 2. Here, H = 2. For this example, after time t, the only prior packets 

that could be received at the destination from any path are the 2W most recently sent 

packets. This is in addition to WR possible new packets. 

 

If H = 3, the source will not re-inject after t-2T any packet prior to interval 3 since 

a full window of packets has been sent in interval 3, before t-2T. The second intermediate 

node could receive this injection up to t-T, and the destination up to t. An interval 3 

packet as late as t-T, which could arrive at the next intermediate node as late as t, and the 

destination as late as t+T, so interval 3 must be included in the possible received range. 

Thus the widest range of reception is 3W + WR. 

 

By a repeat of this argument for each additional hop, the general range of possible 

receptions is HW + WR. This range cannot exceed 2b, where b is the sequence number bit 

size. Hence proved. 

 

 Since WR ≤ W, a bound for any amount of selective repeat is 2b ≥ (H+1)W. 

Doubling H adds at most 1 bit to the required sequence number size. Also, a large 

number of hops are not desirable, and one might use a lower W and lower bit rate for 

such routes. Applying the method to communication to a base station or a network of 

cooperating base stations allows very efficient, adaptive communication. If a route gives 

fast rates and acknowledgments, stick to that route. As soon as a route starts to give 

problems, seek an alternate route. For fault tolerance, hold onto two routes. With 
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cooperating base stations having a common destination address, different routes might go 

to different base stations, often without intermediate stations. 

 

The next chapter will go into details of the implementation. We will discuss the 

different headers we used for differentiating packets, the implementation details of the 

protocol agent and the algorithms with the help of flowcharts of the implementation.



 

 

CHAPTER 4 
 

PROTOCOL IMPLEMENTATION 

4.1 Implementation decisions. 

We studied two simulators before implementation of the protocol – OMNet++ 

[15] and Network Simulator 2 (NS-2) [11]. Both are discrete event simulation systems. 

While OMNet++ is rapidly gathering momentum, at the time of implementation of this 

protocol, it was neither the most popular nor did it have a huge community of developers 

to ask about technical difficulties with. 

 

We ultimately chose NS-2 was as the simulation tool for implementing both our 

protocol and test scripts to evaluate the performance of the protocol. NS-2 is a discrete 

event simulator targeted at networking research. NS-2 provides substantial support for 

simulation of TCP, routing, and multicast protocols over wired and wireless (local and 

satellite) networks. NS-2 was chosen as it allows one to both implement their own 

protocols and write scripts to test these protocols. NS-2 is written in C++ and object 

oriented version of Tcl called OTcl. NS-2 also allows tracing of events based on time for 

exhaustive evaluation. With graph plotting additions like “trace graph” [12], one can 

convert traces to graphs. NS-2 also comes with an optional add-on Network Animator 

(Nam) [13], which is a Tcl/TK based animation tool for viewing network simulation 
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traces and real world packet traces. It supports topology layout, packet level animation, 

and various data inspection tools. 

 

NS-2 was especially advantageous as it already has several implemented routing 

algorithms, which can be used for studying the implementation techniques and modified 

to accommodate the requirements of our protocol. The Ad-hoc On-demand Distance 

Vector (AODV) [2] and Dynamic Source Routing (DSR) [3] protocol implementation 

were the primary ones studied among other protocols to be viably modified to implement 

our protocol. DSR was chosen because of the fact that it already had headers that could 

be easily modified and ported to the implementation of our protocol. AODV and other 

protocols implemented in NS-2 were not suitable to be modified. However, several more 

items required modification in the current DSR implementation to get our protocol up 

and working. 

 

Scripts for running simulations in NS-2 can be written in OTcl, which is an 

extended version of Tcl with support for objects. 

 

In the following sections, we will define the different kinds of packets we will 

require to be part of our protocol. We will then go on to details of the implementation and 

experiences in implementing the protocol. Finally we will discuss about the scenarios that 

can be used to evaluate our protocol. 
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4.2 Packet Formats. 

As our protocol is generic, we define all packets as a custom header followed by 

the actual data (see Fig. 4). 

 

 

 

There are 5 different kinds of headers we use: 

i. seek 

ii. offer 

iii. nack 

iv. e2eack 

v. general 

 

Our current implementation doesn’t send data along with seek, offer, nack, e2eack 

type headers. That is application data is sent only with the general header as the packet 

 

Fig. 4: Generic packet format 

Header Data 

Header : Indicates packet type. One of (seek, offer, nack, e2eack, general). 

Data : Data from application.  
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header. The topic of chaining headers is a subject of future work that can benefit this 

protocol. 

4.2.1 The “seek” header. 

The seek packet is the first packet sent to initiate any transmission by the sender. 

The sender includes its own ID and the ID of the node it seeks in the header for such kind 

of a packet. A receiver that has enough resources may decide to forward this packet to 

help the sender and so it may require retransmitting this packet with the sender ID as its 

own ID. However, for the destination to know which node this packet originated from, 

the intermediate node has to copy the original sender’s ID in the header as well. Thus 

there is an additional field of “original_seeker_id” in the seek packet header. The original 

sender replicates its ID in both the seeker_id and original_seeker_id fields and 

intermediate nodes only update the seeker_id field if they need to send this packet 

forward. We use an internal field known as “header_type” to indicate the packet type to 

our protocol handlers. This value is set to “seek_valid” for all seek packets. The header 

format for this type of packet is shown in Fig. 5. 
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4.2.2 The “offer” header. 

The offer packet is the packet is sent by prospective relay nodes that have enough 

resources to forward data to the seeked_id. However, the decision of which relay to use is 

solely left to the sender of data and hence all offer packets have information that help the 

sender determine which node it should use as a relay. The information may thus include 

no. of hops to destination, available power that the relay can allocate for this 

transmission, etc. We simplify power availability and other factors in one simple 

parameter: window size. The window size is thus the window that the relay can allocate 

for this transmission. The relay also sends the no. of hops to destination from its previous 

knowledge. As the offer itself may respond to two kinds of seek packets: one directly 

received from originator or one relayed on by other intermediate nodes, we require three 

 

Fig. 5: The seek header 

header_type original_seeker_id seeked_id seeker_id

header_type  : Indicates that this is a seek packet. Set to “seek_valid”. 

seeker_id  : Previous node packet received from. 

seeked_id  : Destination’s ID. 

original_seeker_id : Original sender’s ID. 
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identifiers in the offer packet: the ID of the node that the seek packet came from, the ID 

of the node that the seek packet originated from and its own ID. We should also note at 

this point that the offer packet may also propagate all the way back to the originator and 

the intermediary ID values may change. The offer header thus looks like Fig. 6. 

 

 

4.2.3 The “nack” header. 

A nack (negative acknowledgement) is sent on a hop-by-hop basis in our protocol 

so that incorrect packets do not propagate in the network. Upon receiving a nack, the 

 

Fig. 6: The offer packet 

header_type tell_id offered_win_length 

relay_id hops_to_dest to_id 

offer_valid  : Indicates this is an offer packet. Set to “offer_valid”. 

offered_win_length : Window length that is guaranteed to be allocated for the length of 

transmission. 

tell_id   : ID of node from whom the seek packet was received. 

relay_id   : Own ID. 

to_id   : Original seeker’s ID. 

hops_to_dest  : Number of hops to destination (may be unknown). 



24 

 

previous node resends the packet if it still has it in its buffer/window. If not, it may either 

send back this nack to the previous node it received the packet from or drop the nack. Our 

implementation decides to drop packets that aren’t in the buffer. Extensions may be 

written later that will have a more complete nack solution. The most important field to 

note in a nack packet is the “nacked_pkt_seq_num”. This field identifies the packet that 

was received in error and that should be resent by the previous node(s). The nack header 

thus looks like Fig. 7. 

 

 

4.2.4 The “e2eack” header. 

An end-to-end ACK (acknowledgment) packet is sent by the base station once it 

receives a packet destined for it. In our implementation we assume that the base station 

has enough power capability to send the e2eack packet directly to the originator. This is 

 

Fig. 7: The nack packet 

header_type nacked_pkt_seq_num to_id my_id 

header_type  : Indicates this is a NACK packet. Set to “nack_valid”. 

nacked_pkt_seq_num : Sequence no. of the packet received in error. 

to_id   : ID of the node towards whom the NACK packet is directed. 

my_id   : ID of the node sending the NACK. 
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true in real world scenarios wherein base stations are usually dedicated antennas with 

large resources available to handle thousands of connections if not millions. The e2eack 

packet acknowledges a packet by having the sequence number of the same in its header. 

The e2eack is thus as Fig. 8. 

 

4.2.5 The “general” header. 

The general header is pre-pended to all data packets and amongst other 

information contains the end-to-end sequence number of the packet that is being 

transmitted. The other important field in this header is the selected window length. This is 

to incorporate a three way handshake after an offer is received and a relay node is 

selected by the originator of data. The general header also contains ID’s of the originator, 

the intermediary relay node and the destination node. The general header thus looks like 

Fig. 9. 

 

Fig. 8: The e2eack packet 

header_type e2eack_seq_num to_id my_id 

header_type  : Indicates this is an end-2-end ACK packet. Set to “e2eack_valid”. 

e2eack_seq_num  : Sequence number of the packet being acknowledged. 

to_id   : Originator’s ID who sent the data. 

my_id   : ID of the node sending the end-to-end ACK packet. 
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4.3 Protocol implementation in NS-2 

Our protocol is designed to fit at the Network layer in the Open Systems 

Interconnection (OSI) Reference Model [16]. It is implemented as an object that runs as 

the routing agent in a network node. 

 

 

Fig. 9: The general header 

header_type from_id selected_win_length 

relay_id e2eseq_num to_id 

header_type  : Indicates this is a general packet. Set to “general”. 

selected_win_length : Indicates the originator selected this as the window length for the 

transmission. 

from_id  : Data originator’s ID. 

relay_id  : ID of node selected as the relay. 

to_id  : ID of the destination. 

e2eseq_num : End-to-end sequence no. of the packet in the transmission. 
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4.3.1 Node implementation 

Before we go into the details of the routing agent, let’s first understand how a 

node looks like in NS-2. 

 

A node in NS-2 is implemented as a composition of several objects that make it 

emulate a real-world network object. At a minimum the node consists of an address or ID 

to uniquely distinguish it from other objects in NS-2 and a list of neighbors. The other 

objects in a node are a list of agents, a node type identifier, an address classifier and a 

port classifier. Fig. 10 shows the schematic of a NS-2 unicast node. Our protocol is 

implemented as an agent that resides inside every node of our specific routing agent type. 

Once we define a node with our protocol identifier in the test scripts, it uses our routing 

agent as the routing protocol. Although several protocol agents can be active at the same 

time within a node, we do not test interworking with other protocols and that may be a 

topic of future study.  
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4.3.2 Routing Agent implementation 

The routing agent resides in every node and acts as a super-packet handler 

through which all packets are passed through. The agent itself interfaces with the NS-2 

logging system, the Media Access Control (MAC) layer, the link layer and the interface 

queue used for internal event prioritization. The log interface is used for gathering log 

traces that can be used for analysis of test scenarios. Having interfaces to the MAC and 

link layer as pointers allows a routing agent to use different MAC layer protocols and 

link layer characteristics. Although we have stated that our protocol would be ideal for a 

wideband ALOHA type MAC channel, at the time of our protocol implementation a 

 

Fig. 10: NS-2 unicast node [17] 
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stable implementation of such a MAC layer protocol does not exist in NS-2 and so we 

use the default MAC implementation as provided by NS-2, which has been provided by 

developers at Carnegie Melon University (CMU). The implementation of wideband 

ALOHA falls outside the scope of this thesis work. The agent also has offsets to the 

different headers inside of a packet. For our protocol, these are the offsets to the link 

layer header, the MAC layer header, the IP layer header and our protocol header 

(srheader). We have named the agent as E2ESeqNumAgent. Table 1 below shows the 

fields in E2ESeqNumAgent. 
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In NS-2, every packet received at a node results in a call to the “recv” method of 

the agent. The packet can then be analyzed and handled appropriately to implement one’s 

routing protocol. We thus overload the default recv method for an agent such that our 

recv method handles routing for nodes that are defined to use our protocol as the routing 

protocol. This definition as mentioned earlier is made in test scripts that generate network 

scenarios for simulation. The overloaded recv() function extracts the generic “srheader” 

from the packet, analyzes it and hands it down to one of the packet handlers. Every 

header-type has its own packet handler, viz. seekPktHandling, offerPktHandling, 

Table 1: Routing Agent fields. 

Field Description 
  

Logtarget The target to log statistics at 
Offset_mac The offset of the mac header in the packet 
Offset_ll The offset of the link-layer header in the packet 
Offset_ip The offset of the ip header in the packet 

Offset_sr 
The offset of the header to identify our protocol is being used in 
the packet 

net_id Net layer address (IP layer address) 
mac_id Mac layer address (unique ID if used) 
ra_addr_ Unique ID of this node 
Ll Object of link layer protocol being used 
Mac Object of MAC protocol being used 
Ifq Queue object of the queue in use at link layer 
MobileNode * node Flag to determine this is a mobile node. To be used in test scripts 

port_dmux 
This node’s port demuxifier that determines where the packet goes 
to within after processing 

route_table 
Small single deep cache that keeps reachability data to a node. 
Currently setup via scripts in ObjectTcl. 

send_window[MAX_WINDOWS] Our small receive/send window 

send_buf_timer 

Timer object that does processing every interval – the interval is 
very very small for realtime simulation,  but also depends on the 
PC’s capability right now 

Link NS specific 
agent_head NS specific  
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nackPktHandling, nackPktHandling, e2eackPktHandling, handleGeneral. We will discuss 

these in detail in the following sections. Fig. 11 and Fig. 12 show the implementation of 

the overloaded recv() method using a flowchart representation. 

 

4.3.3 Overloaded recv method 

As shown in the flowchart in Fig. 11 and Fig. 12, the recv method contains the 

main decision making logic for the packet routing within a node. Based on the 

combination of flags in the header, the recv method makes the following decisions: 

i. If the packet has been originated by an application tied to this node 

using our protocol? 

ii. If the packet is a broadcast packet? 

iii. If the node is a designated receiver of the packet (as a helper or 

intermediary node)? 

iv. If the node is the final designated receiver of the packet? 

v. What specific type of header the packet has or needs and which packet 

handling method must it be handed to? 

 

The packet is either dropped, consumed by the application designated to receive 

the packet or handed down to one of the specific header packet handlers for further 

processing. 
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Fig. 11: Overloaded recv method flowchart 
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Fig. 12: Overloaded recv method flowchart (contd.) 
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4.3.4 seek header packet handling 

The seekPktHandling method is responsible for handling packets with the seek 

header. Seek packet handling consists of adding the sender node’s information in the 

local cache and looking through the local cache for determining whether the seeked ID 

(final destination) is reachable by this node or not. Based on reachability to the final 

destination and the currently available resources, the node decides how many resources it 

can allocate the seeker and sends these as part of the offer header in its reply. The 

processing applied by seekPktHandling method can be seen in Fig. 13.  

 

   

 

Fig. 13: seek header packet handling 
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4.3.5 offer header packet handling 

The offerPktHandling() method is responsible for handling of offer packets that 

have been sent by a helper node. Offer packet handling consists of allocating resources 

on the sender’s side and thus form a way of stateless handshaking with the helper node. 

Please note that security is not considered to be one of the factors of this protocol and 

hence we do not attempt to add three-way handshaking and stateful handshaking in the 

protocol. The processing applied by offerPktHandling can be seen in Fig. 14. 

 

  

 

 

Fig. 14: offer header packet handling 
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4.3.6 general header packet handling 

The handleGeneral() method is responsible for handling packets with the general 

header. A general header packet designates a packet in the middle of a flow of data 

between end-to-end nodes. The helper nodes change the selected_win_len and relay_id 

fields in the packet header and send it ahead in the network to the next node (relay_id). 

The processing applied by handleGeneral() method can be seen in Fig. 15. 

 

  

4.3.7 nack header packet handling 

The nackPktHandling() method is responsible for resetting the window 

parameters of last packet sent and resending the packet to the intermediary node that sent 

out the nack. The behavior is different on whether ARQ(1) or ARQ(n) is used, which is 

 

Fig. 15: general header packet handling 
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determined by the application in the OTcl test scripts. Fig. 16 shows the generic 

processing that nackPktHandling() applies.  

 

 

4.3.8 end-2-end ack header packet handling 

The e2eackPktHandling() method, which is responsible for end-2-end 

acknowledgements for window advancements has been implemented to be triggered from 

the higher layer test scripts. It has been done so to keep the protocol simple and as it 

integrates well with the current mechanism of signaling nodes with the initial parameters, 

such as total resources available and the reachability matrix. When the application signals 

 

Fig. 16: nack header packet handling 
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an end-2-end ack, a call is sent to the node’s recv() method that falls down to the 

e2eackPktHandling() method which applies the necessary processing as show in Fig. 17. 

  

4.4 How to implement test scripts in OTcl for the protocol 

It is important to note that the applications coded in OTcl need to perform certain 

shared responsibilities. These responsibilities include: 

i. Creation of nodes and initialization of topography 

Topography needs to be set by the test scripts in OTcl. NS-2 reads 

topology related commands in the OTcl scripts and parses them to form a 

network of nodes. One can additionally add movement data in the scripts 

as well if the network is non-static. 

 

ii. Initialization of reachability matrix 

NS-2 provides a General Operations Director (GOD) object that is aware 

of the whole network topology. The test scripts have to use the GOD 

 

Fig. 17: end-2-end acknowledgement header packet handling 
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39 

 

object to specify initial node distances for helper nodes to the base station 

node. This is done by the following simple example statement: 

 $ns_ at 0.0 "$god_ set-dist 4 10 2" 

This loads the GOD object with the knowledge that the shortest path 

between node 4 and node 10 changed to 2 hops at time 0. As is evident, 

one can change the distances during run-time as well based on the time. 

 

iii. Initiating the end-2-end acknowledgement calls 

It is the responsibility of the OTcl scripts to initiate end-2-end 

acknowledgement calls so that the initiator of data transmission can 

advance the window accordingly for continuing transmission. 

 

iv. Attaching application specific streams to the routing agent 

A data stream, e.g. Constant Bit Rate (CBR) stream can be attached to the 

routing agent using the following commands: 

 set e2e_(0) [new Agent/E2ESeqNumAgent] 

 $ns_ attach-agent $node_(2) $e2e_(0) 

 set null_(0) [new Agent/Null] 

 $ns_ attach-agent $node_(3) $null_(0) 

 set cbr_(0) [new Application/Traffic/CBR] 

 $cbr_(0) set packetSize_ 512 

 $cbr_(0) set interval_ 0.25 

 $cbr_(0) set random_ 1 
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 $cbr_(0) set maxpkts_ 10000 

 $cbr_(0) attach-agent $e2e_(0) 

 $ns_ connect $e2e_(0) $null_(0) 

 $ns_ at 10.000 "$cbr_(0) start" 

This code-block creates an agent of our routing protocol 

(E2ESeqNumAgent) and attaches it to node 2. It then creates a null sink 

agent and attaches it to node 3. It then creates a CBR data stream and 

attaches it to our agent viz. e2e_(0). Finally it starts the flow at time 

10.000. 

 

Detailed scripts used to validate the correctness of implementation of this protocol 

can be found in Appendix B. In the next chapter, we will use these scripts to compare the 

routing overhead incurred by DSR, AODV and the protocol implemented here. 
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CHAPTER 5 
 

ANALYSIS AND FUTURE WORK 

5.1 Experiment and Analysis 

To validate the implementation of the routing protocol, a scenario was used to 

compare the normalized routing load vs. pause time for DSR, AODV and the 

implemented protocol (E2ESeqNumAgent). E2ESeqNumAgent was expected to show 

higher efficiency than both as no route setup was necessary. Simulations were run in a 

small 10 node multi-hop scenario. The CMU scenario generator, which is distributed as a 

part of the NS-2 package, was used to generate a scenario with 10 nodes in a 500m x 

500m 2-dimensional area. For generation of traffic, the CMU traffic generator tool was 

used, which is again distributed as a part of the NS-2 installation. A modification was 

required to be done to this tool to statically set one node as the receiver for all 

transmissions as we had to compare results with such a network only. Constant Bit Rate 

(CBR) traffic was generated for comparison. Varying pause times were used as a basis of 

comparison. The scripts used to generate the scenario, traffic and trace logs can be found 

in Appendix B. 

 

Normalized routing load is defined as the number of routing packets transmitted 

per data packet delivered at the destination. Each hop-wise transmission of a routing 

packet is counted as one transmission. 
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The simulation parameters which have been considered for doing the performance 

comparison of two on-demand routing protocols are given below: 

 

 

Fig. 18 shows the normalized routing load (NRL) vs. pause time for all three 

routing protocols. Lower routing load is a desirable feature in any protocol as it indicates 

lesser overhead and thus higher efficiency of the routing protocol. Another factor to 

consider is a stable NRL as it determines the scalability of the protocol. As seen in 

Fig. 18, the implemented protocol is superior to both AODV and DSR in such small 

topographies. DSR’s lower NRL than AODV is also due to the small network. With only 

10 nodes and fewer connections, source routes are comparatively small in the packets 

being sent. 

 

 

Table 2: Simulation parameters 

Protocols AODV, DSR, E2ESeqNumAgent 
Simulation time 100 seconds 
No. of nodes 10 
Map size 500m x 500m 
Traffic type Constant Bit Rate (CBR) 
Packet size 512 bytes 
Connection rate 8 packets/sec 
Pause time 0, 10, 20, 40, 100 
No. of connections 5, 10  
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5.2 Future Work 

This thesis involved an exhaustive study of the NS-2 simulator in addition to 

design and implementation of our specific experiment. NS-2, although a well-known and 

accepted simulator in academia, is a very complex simulator with a number of limitations 

due to its design and implementation methodologies. The most important of these 

limitations is the splitting of implementation in C++ and OTcl. OTcl is a home-brewed 

object-version of Tcl that hasn’t gained much popularity. Further work involves 

implementing OTcl test scripts for performance evaluation of the protocol. 
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Other limitations include insufficient scalability, lack of emulation support and 

non-standard logging [19]. The implementers of NS-2 and the open-source community 

have accepted these limitations and have been actively working towards new standards 

known as NS-3. The NS-3 project was announced in July 2006 as a 4 year program and is 

in a current state of active development. The first stable release of NS-3 was announced 

in June 2008 [18] but was published with limited functionality. The scripting interface 

has been changed to Python that is more familiar and accepted by the developer 

community. Tracing and logging has been changed such that traces can now be seen in 

Wireshark [21], which is a very popular network packet statistics viewing tool in the 

developer and network administration community [20]. It would greatly benefit porting 

the protocol to NS-3 once NS-3 is complete and released as it would let one easily test 

different scenarios without worrying about the additional split-object architecture. 

 

Also, the current protocol requires initialization of the reachability matrix through 

OTcl explicitly. Further work can be done to automate initialization through flooding or 

some other mechanism. This work falls outside the scope of this thesis, but would be a 

worthwhile project to follow. Further improvement in the implementation can be brought 

about by chaining the headers so that all packets can contain data including packets with 

seek, offer headers. Finally, the use of error-coding as highlighted in [14] can be explored 

in the future. 
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Security was not considered when designing and implementing this protocol and 

so adding security constraints would be another area of feature development. This would 

include overcoming denial of service attacks that could be easily done with the current 

implementation. 

 

Future work would also involve trying different metrics for window length 

selection and trying the protocol with a well implemented wideband ALOHA or similar 

MAC protocol. 
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APPENDIX A 
 

NS-2 ADDENDUM 

 

Although NS-2 is a versatile simulator it is not trivially simple enough to start 

working with. The ns manual [17] is an exhaustive set of documents developed by the NS 

community, but is not kind for beginners. This is perhaps why several people have 

documented how to get started with NS-2. “NS Simulator for Beginners” [29] introduces 

the NS simulator and systematically ramps up rookies with most of the tools used within 

NS. However, much has changed in NS-2 since the first version of the ns simulator was 

released and much of the content in this document appears to be out-dated. Also, the 

document is not really useful for learning about wireless network simulations. 

 

Once familiar with the basics of the ns simulator, learning how to implement a 

new routing protocol in ns-2 is very useful. This task is simplified by Francisco J. Ros 

and Pedro M. Ruiz in their document “Implementing a New Manet Unicast Routing 

Protocol in NS2” [30]. The authors nicely explain how to implement a routing protocol 

for MANETs in NS2 without going into the depths of a particular routing protocol. 

 

Marc Greis in [31] attempts to make it easier for new ns users to use ns and nam, 

to create their own simulation scenarios for these tools and to eventually add new 

functionality to ns. Of most importance for this thesis work were sections IX (Running 
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Wireless Simulations in ns), X (Creating Wired-cum-Wireless and MobileIP Simulations) 

and XI (Generating traffic-connection and node-movement files for large wireless 

scenarios) from this tutorial. 

 

When implementing a new wireless protocol, it is always helpful to study and 

follow an already implemented protocol. Since the protocol implemented here is similar 

in some ways to DSR, Bryan’s NS-2 DSR FAQ [32] was very helpful when learning NS-

2 and implementing this protocol. Rishi Sinha’s presentation slide deck [33] is also useful 

for understanding how to use other tools provided by ns-2 in tandem with DSR. 

 

Several other resources have been already listed in the body of the thesis that will 

help new ns users. 
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APPENDIX B 
 

NS-2 SCRIPTS 

B.1 Simulation running script 

This is the script used to start a simulation. This script, "compare.tcl" takes 4 

command line arguments - scenario file, traffic file, output trace file and routing 

protocol(1 = DSR, 2 = AODV and 3 = E2ESeqNumAgent). Script usage is: 

 $ ns compare.tcl -scen {scen} -tfc {tfc} -tr {tr} -rpr 

{rpr}  

 

This script requires a scenario file and a traffic file. These files can be generated using 

third party tools which are now part of the NS2 installation. 

Script listing follows: 

 

# 
=========================================================== 
# Define options 
# 
=========================================================== 
set opt(chan) Channel/WirelessChannel 
set opt(prop) Propagation/TwoRayGround 
set opt(netif) Phy/WirelessPhy 
set opt(mac) Mac/802_11 
#set opt(ifq) Queue/DropTail/PriQueue 
set opt(ifq) CMUPriQueue 
set opt(ll)  LL 
set opt(ant)        Antenna/OmniAntenna 
set opt(x)  500   ;# X dimension of the topography 
set opt(y)  500   ;# Y dimension of the topography 



53 

 

set opt(ifqlen) 50       ;# max packet in ifq 
set opt(seed) 0.0 
set opt(tr)  dsr-10-0-5.tr    ;# trace file 
set opt(adhocRouting)   DSR 
#set opt(rpr) 1 ;#1 for DSR, 2 for AODV, 3 for 
E2ESeqNumAgent 
set opt(nn)              10           ;# how many nodes are 
simulated 
set opt(scen)  "movement/scen-10-0"  
set opt(tfc)  "traffic/cbr-10-5"  
set opt(stop)  100.0  ;# simulation time 
 
# 
=========================================================== 
# Main Program 
# 
=========================================================== 
 
if { $argc != 8 } { 
        puts "Wrong no. of cmdline args." 
 puts "Usage: ns compare.tcl -scen <scen> -tfc <tfc> -
tr <tr> -rpr <rpr>" 
        exit 0 
} 
 
 
# proc getopt {argc argv} { 
  
        for {set i 0} {$i < $argc} {incr i} { 
                set arg [lindex $argv $i] 
                if {[string range $arg 0 0] != "-"} 
continue 
                set name [string range $arg 1 end] 
#  puts $name 
                set opt($name) [lindex $argv [expr $i+1]] 
        } 
 set opt(scen) [lindex $argv 1] 
 set opt(tfc) [lindex $argv 3] 
 
        if {$opt(rpr) == 1} { 
 set opt(adhocRouting)   DSR 
 set opt(ifq) CMUPriQueue 
# set opt(ifq) Queue/DropTail/PriQueue 
        } else if {$opt(rpr) == 2} { 
 set opt(adhocRouting)   AODV 
 set opt(ifq) CMUPriQueue 
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# set opt(ifq) Queue/DropTail/PriQueue 
        } else if {$opt(rpr) == 3} { 
 set opt(adhocRouting)   E2ESeqNumAgent 
 set opt(ifq) CMUPriQueue 
# set opt(ifq) Queue/DropTail/PriQueue 
        } 
         
 
# set val(mov) $opt(scen) 
# set val(traf) $opt(tfc) 
# set opt(trace) $opt(tr) 
 
 puts $opt(scen) 
 puts $opt(tfc) 
 puts $opt(tr) 
# } 
 
 
# getopt $argc $argv 
 
  
 puts $opt(adhocRouting) 
# puts $val(mov) 
# puts $val(traf) 
# puts $opt(trace) 
 
# Initialize Global Variables 
# create simulator instance 
set ns_  [new Simulator] 
 
# set wireless channel, radio-model and topography objects 
set wtopo [new Topography] 
 
# create trace object for ns and nam 
set tracefd [open $opt(tr) w] 
$ns_ trace-all $tracefd 
# use new trace file format 
$ns_ use-newtrace  
 
# define topology 
$wtopo load_flatgrid $opt(x) $opt(y) 
 
# Create God 
set god_ [create-god $opt(nn)] 
 
#set chan_1_ [new $opt(chan)] 
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#set chan_2_ [new $opt(chan)] 
 
# define how node should be created 
#global node setting 
$ns_ node-config -adhocRouting $opt(adhocRouting) \ 
   -llType $opt(ll) \ 
   -macType $opt(mac) \ 
   -ifqType $opt(ifq) \ 
   -ifqLen $opt(ifqlen) \ 
   -antType $opt(ant) \ 
   -propType $opt(prop) \ 
   -phyType $opt(netif) \ 
   -channelType $opt(chan) \ 
   -topoInstance $wtopo \ 
   -agentTrace ON \ 
                 -routerTrace ON \ 
                 -macTrace OFF  
# -channel $chan_1_ 
 
#  Create the specified number of nodes [$opt(nn)] and 
"attach" them 
#  to the channel.  
for {set i 0} {$i < $opt(nn) } {incr i} { 
 set node_($i) [$ns_ node]  
 $node_($i) random-motion 0  ;# disable random 
motion 
} 
 
# Define node movement model 
puts "Loading connection pattern..." 
source $opt(scen) 
  
# Define traffic model 
puts "Loading traffic file..." 
source $opt(tfc) 
 
# Define node initial position in nam 
for {set i 0} {$i < $opt(nn)} {incr i} { 
 
    # 20 defines the node size in nam, must adjust it 
according to your scenario 
    # The function must be called after mobility model is 
defined 
   $ns_ initial_node_pos $node_($i) 20 
} 
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# Tell nodes when the simulation ends 
for {set i 0} {$i < $opt(nn) } {incr i} { 
    $ns_ at $opt(stop).000000001 "$node_($i) reset"; 
} 
 
# tell nam the simulation stop time 
#$ns_ at  $opt(stop) "$ns_ nam-end-wireless $opt(stop)" 
$ns_ at  $opt(stop).000000001 "puts \"NS EXITING...\" ; 
$ns_ halt" 
puts "Starting Simulation..." 
$ns_ run 
 

B.2 Scenario generator script 

The scenario file is generated using the “setdest” tool in the “make-scenario.sh” 

script. Listing of “make-scenario.sh” follows: 

 

#!/bin/bash 
 
dest_dir="movement" 
 
if [ -d $dest_dir ] 
then 
 # Do nothing 
 echo "'$dest_dir' is a directory" 
else 
 echo "Creating directory $dest_dir"; 
 mkdir --verbose $dest_dir 
fi 
 
setdest_loc="~/ns/ns-allinone-2.33/ns-2.33/indep-utils/cmu-
scen-gen/setdest/setdest"; 
 
if [ -x $setdest_loc ] 
then 
 # Do nothing 
 echo "$setdest_loc is executable" 
else 
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 echo "$setdest_loc does not exist or is not 
executable"; 
 exit; 
fi 
 
# Create the scenarios 
 
for i in 0 10 20 40 100 
do 
 $setdest_loc -v 1 -n 10 -p $i -M 20 -t 100 -x 500 -y 
500 > $dest_dir/scen-10-$i 
done 
 
echo "" 
echo "Created the following files" 
echo "" 
ls -la $dest_dir/scen-10* 
 

B.3 Traffic generator script 

The traffic file is generated using the “cbrgen.tcl” tool in the “make-traffic.sh” 

script. Listing of “make-traffic.sh” follows: 

 

#!/bin/bash 
 
dest_dir="traffic" 
 
if [ -d $dest_dir ] 
then 
 # Do nothing 
 echo "'$dest_dir' is a directory" 
else 
 echo "Creating directory $dest_dir"; 
 mkdir --verbose $dest_dir 
fi 
 
script_file="~/ns/ns-allinone-2.33/ns-2.33/indep-utils/cmu-
scen-gen/cbrgen.tcl"; 
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if [ -f $script_file ] 
then 
 # Do nothing 
 echo "$script_file exists" 
else 
 echo "$script_file does not exist" 
 exit; 
fi 
 
# Create the scenarios 
 
for i in 5 10 
do 
 ns $script_file -type cbr -nn 10 -seed 1 -mc $i -rate 
8.0 > $dest_dir/cbr-10-$i 
done 
 
echo "" 
echo "Created the following files" 
echo "" 
ls -la $dest_dir/cbr-10* 
 

B.4 AODV running script 

The “run-aodv.sh” script listed as follows will start and run the simulation and 

generate 2 files with suffix sent and route_pkts to mean sent and routing packets. Each 

line in the file is “Pause Time”, “CBR Load” and the “Extracted Value”. 

 

#!/bin/bash 
 
for i in 5 10; 
do 
 for j in 0 10 20 40 100 
 do 
  ns compare.tcl -scen movement/scen-10-$j -tfc 
traffic/cbr-10-$i -tr temptr -rpr 2; 
  sent=`grep "^s.*\-Nl AGT.*\-It cbr.*" temptr | wc 
-l`; 
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  echo "$j $i $sent" >> aodv-sent; 
  route_pkts=`grep "^\(s\|f\).*\-Nl RTR.*\-It 
\(AODV\|message\).*" temptr | wc -l`; 
  echo "$j $i $route_pkts" >> aodv-route_pkts; 
 done 
done 
 

B.5 DSR running script 

The “run-dsr.sh” script listed as follows will start and run the simulation and 

generate 2 files with suffix sent and route_pkts to mean sent and routing packets. Each 

line in the file is “Pause Time”, “CBR Load” and the “Extracted Value”. 

 

#!/bin/bash 
 
for i in 5 10; 
do 
 for j in 0 10 20 40 100 
 do 
  ns compare.tcl -scen movement/scen-10-$j -tfc 
traffic/cbr-10-$i -tr temptr -rpr 1; 
  sent=`grep "^s.*\-Nl AGT.*\-It cbr.*" temptr | wc 
-l`; 
  echo "$j $i $sent" >> dsr-sent; 
  route_pkts=`grep "^\(s\|f\).*\-Nl RTR.*\-It 
\(DSR\|message\).*" temptr | wc -l`; 
  echo "$j $i $route_pkts" >> dsr-route_pkts; 
 done 
done 
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B.6 E2ESeqNumAgent running script 

The “run-e2eseqnumagent.sh” script listed as follows will start and run the 

simulation and generate 2 files with suffix sent and route_pkts to mean sent and routing 

packets. Each line in the file is “Pause Time”, “CBR Load” and the “Extracted Value”. 

 

#!/bin/bash 
 
for i in 5 10; 
do 
 for j in 0 10 20 40 100 
 do 
  ns compare.tcl -scen movement/scen-10-$j -tfc 
traffic/cbr-10-$i -tr temptr -rpr 3; 
  sent=`grep "^s.*\-Nl AGT.*\-It cbr.*" temptr | wc 
-l`; 
  echo "$j $i $sent" >> e2eseqnumagent-sent; 
  route_pkts=`grep "^\(s\|f\).*\-Nl RTR.*\-It 
\(E2ESeqNumAgent\|message\).*" temptr | wc -l`; 
  echo "$j $i $route_pkts" >> e2eseqnumagent-
route_pkts; 
 done 
done

 


