

The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

IMPLEMENTATION OF AN EFFICIENT WIRELESS ROUTING PROTOCOL

BASED ON SMALL END-TO-END SEQUENCE NUMBERS

A Thesis in

Computer Science and Engineering

by

Kiran A. Kashalkar

© 2009 Kiran A. Kashalkar

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

August 2009

ii

The thesis of Kiran A. Kashalkar was reviewed and approved by the following:

John Metzner
Professor of Computer Science and Engineering
Thesis Co-Advisor

George Kesidis
Professor of Computer Science and Engineering
Thesis Co-Advisor

Raj Acharya
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

*Signatures are on file in the Graduate School

iii

ABSTRACT

 Mobile Ad-Hoc Networks (MANETs) have evolved tremendously over the past

few years. Today MANETs contain not only simple mobile routers but also those

with the capability to perform complex functions like encryption/decryption. Even

today, the most common form of a mobile ad-hoc network still remains as a network

including a base station or a network of base stations which are responsible for

reliable data communication to other devices in the network. Such a network may

also employ helper nodes which may be specially designed to relay data alone or

those nodes in the network that have their own data to send but have extra resources

to help as relays. Energy is an important resource in a wireless ad-hoc network.

Wireless routing protocols try to minimize wasteful operations so that energy is

conserved wherever possible. The ability of such a routing protocol to change routes

dynamically plays a big role in how efficient the protocol is.

 In the protocol described here, routes change dynamically with feedback

responses. The specific problem dealt with is communication to a base station or a

network of multiple base stations, with the possible assistance of helper nodes. At any

time, the route can change based on window information and sender desires. No

special route establishment is needed. No end-to-end successfully acknowledged

packets need to be re-sent.

iv

 It will be assumed that the network is of the wideband, low utilization type. This

is a common situation with low energy, short range transmissions such as in Ultra-

Wideband transmission or Wideband Aloha. Collisions would be a rarity, and the

Automatic Repeat Request (ARQ) techniques employed can handle collisions when

they occur.

v

TABLE OF CONTENTS

LIST OF FIGURES ...vii

LIST OF TABLES...viii

ACKNOWLEDGEMENTS... ix

CHAPTER 1 INTRODUCTION ..1

CHAPTER 2 BACKGROUND ..4

CHAPTER 3 PROTOCOL DESCRIPTION ..8

3.1 Network Topology..8
3.2 Assumptions about the system..9
3.3 The Protocol..10

3.3.1 Assumptions about the protocol ...10
3.3.2 Description ...12
3.3.3 Theorem..15
3.3.4 Proof ...15

CHAPTER 4 PROTOCOL IMPLEMENTATION ..18

4.1 Implementation decisions. ..18
4.2 Packet Formats..20

4.2.1 The “seek” header...21
4.2.2 The “offer” header. ...22
4.2.3 The “nack” header. ...23
4.2.4 The “e2eack” header...24
4.2.5 The “general” header. ...25

4.3 Protocol implementation in NS-2 ...26
4.3.1 Node implementation ...27
4.3.2 Routing Agent implementation ..28
4.3.3 Overloaded recv method...31
4.3.4 seek header packet handling...34
4.3.5 offer header packet handling ..35
4.3.6 general header packet handling ..36
4.3.7 nack header packet handling ..36
4.3.8 end-2-end ack header packet handling ...37

4.4 How to implement test scripts in OTcl for the protocol38

CHAPTER 5 ANALYSIS AND FUTURE WORK ...41

5.1 Experiment and Analysis..41

vi

5.2 Future Work..43

REFERENCES ..46

APPENDIX A NS-2 ADDENDUM ...50

APPENDIX B NS-2 SCRIPTS...52

B.1 Simulation running script...52
B.2 Scenario generator script..56
B.3 Traffic generator script...57
B.4 AODV running script...58
B.5 DSR running script...59
B.6 E2ESeqNumAgent running script..60

vii

LIST OF FIGURES

Fig. 1: Typical network topology...8

Fig. 2: Message Diagram ...10

Fig. 3: Receiver’s perspective. H=2 [14]. ..15

Fig. 4: Generic packet format ..20

Fig. 5: The seek header ..22

Fig. 6: The offer packet..23

Fig. 7: The nack packet..24

Fig. 8: The e2eack packet ..25

Fig. 9: The general header ...26

Fig. 10: NS-2 unicast node [17]...28

Fig. 11: Overloaded recv method flowchart ..32

Fig. 12: Overloaded recv method flowchart (contd.)...33

Fig. 13: seek header packet handling...34

Fig. 14: offer header packet handling ..35

Fig. 15: general header packet handling ..36

Fig. 16: nack header packet handling ..37

Fig. 17: end-2-end acknowledgement header packet handling....................................38

Fig. 18: NRL vs. pause time for 10 nodes ...43

viii

LIST OF TABLES

Table 1: Routing Agent fields..30

Table 2: Simulation parameters ...42

ix

ACKNOWLEDGEMENTS

I am most grateful and indebted to my thesis advisers, Dr. George Kesidis and Dr.

Metzner, for the guidance, patience and encouragement they have shown during my

presence here at Penn State. I am especially grateful for the independence they have

given me with my work and work style over the years. I thank my committee for their

insightful commentary on my work.

I would also like to thank the Penn State University for giving me the push that I

required as I had come to a stagnating period in my life and making me believe in myself

and making me realize my worthiness.

I would like to dedicate this work to my family who stood by me in these times,

offering all they could to help me realize the dream of getting a masters.

Finally, I would like to dedicate this work to the new addition to my family – my

wife: Sara. She encouraged me a lot to complete this thesis.

1

CHAPTER 1

INTRODUCTION

With the growing popularity of Mobile Ad-hoc Networks (MANETs), several ad-

hoc routing protocols have been developed [1]. The protocols can be categorized

according to the way they operate as being proactive or reactive. Proactive protocols

maintain fresh lists of destinations and their routes by periodically distributing routing

tables through the network, whereas reactive protocols flood the network on demand

when they have data to send. Proactive protocols try to achieve smaller latency time by

keeping the network ready to send data whenever it is present by keeping all nodes

informed about updates in the network topology. Reactive protocols try to minimize the

amount of information passed in the network maintenance plane by not sending routing

information when data does not need to be sent.

Due to their high overhead, proactive protocols haven’t become as popular as

reactive protocols yet. This is, however, changing with the higher performance and

processing powers of the network devices that are now being manufactured. The most

popular of reactive protocols are Ad-hoc On-demand Distance Vector (AODV) [2] and

Dynamic Source Routing (DSR) [3]. Both try to achieve a low overhead and yet are able

to react very quickly to changes in the network. On a broader perspective, both have two

main mechanisms that help them to function – route discovery and route maintenance.

2

Most ad-hoc routing protocols along with the above two mentioned try to set up a

route prior to some data transfer. Whenever a link fails, the route maintenance

mechanism takes over. However, in most protocols, route maintenance is a subset of the

route establishment mechanism. In MANETs, routes often need to be changed due to the

dynamic nature of the network. It is generally difficult to change a route without

interrupting reliable data transfer. Also, since route maintenance is almost always as

expensive as route establishment, these protocols are hardly as efficient as desired in

MANETs. Adequate sequence numbering is a problem as data might continue flowing

from older routes causing sequence number ambiguity. Sending data over multiple routes

for better assurance of delivery (reliable transfer) aggravates this problem with a great

deal of out-of-order and multiple packet reception.

When order is preserved, sequence numbers of small size have been adequate to

prevent ambiguity, as shown by the High-Level Data Link Control (HDLC) protocol [4]

and early selective repeat protocols [5]. With the introduction of Internet datagram

communication that allows out-of-order reception and long data paths, the Transmission

Control Protocol (TCP) was introduced [6] at a higher layer to solve the problems of out-

of-order transmission. TCP solved the problem of sequence number ambiguity in a brute

force manner by using a large 32 bit sequence number. However, wireless

communication often operates best with relatively smaller packets and having smaller

sized sequence numbers would greatly increase efficiency thus.

3

In [14], Dr. Metzner defines the problem to solve relative to a special network

topology where several nodes in a network exist and can collaborate to achieve

transmission to a base station. This is a very common network scenario and can be

augmented by the fact that the base station is capable of reaching all desired nodes in one

transmission once it receives the data to be transmitted from the sender node. Such a

topology is very popular in sensor and peer-to-peer (P2P) networks as well. Such

networks tend to be small and dynamic. Certain nodes may be dedicated originators of

data while some may be dedicated relay nodes. Nodes can also change their role based on

how much surcharge energy they have to assist other nodes in sending data. The protocol

as formulated in [14] is described in more detail in Section 3.3 of this thesis.

The problem we thus formulate in this thesis is to implement the aforementioned

protocol for this network type but not limited to the same for sending packets efficiently

end-to-end. The use of different acknowledgement strategies can then be studied in

conjunction with the protocol in simulations to determine if it would further improve

efficiency. Implementation strategy and decisions will be discussed in Section 3.4.

The implementation details of the protocol will be discussed in Chapter 4 and

finally we will close with future work and possible extensions in Chapter 5.

CHAPTER 2

BACKGROUND

Wireless ad-hoc networks have been around for several years from their inception

in the 1970s. The earliest wireless ad hoc networks were the packet radio networks

(PRNETs), sponsored by Defense Advanced Research Projects Agency (DARPA) [9]

after the ALOHANet project [10]. Initially, several researchers tried to leverage

techniques applicable to wired networks into wireless networks. Although they were

successful, they were hit with several problems due to the nature of the physical medium

over which wireless networks operated. Lately, this has changed and research in wireless

networks has evolved as an almost exclusive branch in the networking field. This has

triggered the evolution of standards such as 802.11 [22], Wi-Fi Protected Access (WPA)

[23] and routing protocols such as AODV and DSR. Apart from the popular routing

protocols, researchers have been developing newer protocols, trying to improve wireless

standards on the efficiency, security and speed. These three factors are not mutually

exclusive and hence researchers have been trying to reach an optimized algorithm for

routing in the wireless world. Researchers have often been challenged by the dynamic

nature of this physical medium as the wireless channel is a very fast-evolving technology.

Given this, most algorithmic standards have been developed at the network or higher

layers for routing.

5

MANETs were developed by the global research community and military as a

way to simplify initialization and use of wireless networks. This brought distributed

algorithms to the wireless world as routing now became a responsibility of all nodes

participating in the wireless network. Several routing protocols have been developed for

MANETs of which we will discuss a few in the following paragraphs.

DSR is one such protocol that has been actively developed by companies and the

academic community alike. DSR runs as a distributed algorithm in a wireless network

with the source determining the complete source that a packet traverses to reach its

destination. Although very easy to conceptualize, DSR is a very complex routing protocol

and it does not deal well with several issues such as packet loss, node crashes, congestion

and long routes. DSR needs flooding so that nodes have complete information about the

topography of the network and sources are able to determine the route when sending a

packet. Thus there is a large startup overhead as well. Also, when completely aware, DSR

sends entire path in the packet yielding to low efficiency. These overheads also affect the

scalability of DSR. Researchers have actively tried to overcome these problems in DSR,

e.g. “flow-state transmission” in DSR [24] eliminates the need for packets to contain the

entire path once a flow of data has been established in a well-connected network.

To overcome the inefficiencies of DSR, another protocol known as AODV was

developed. AODV used sequence numbers to build loop free routes. The key difference

from DSR is that source-filled path is not required yielding very high data efficiency.

Path discovery and routing table population was distributed in forward and reverse path

6

setup mechanisms. However, AODV does not consider individual node resources in

setup and does not use end-to-end sequence numbers. Several protocols tried to overcome

these shortcomings of AODV by adding performance metrics in the protocol that

determine which nodes are selected in routing. Better Approach To Mobile Adhoc

Networking (B.A.T.M.A.N.) [25] is one such protocol. However, B.A.T.M.A.N. does not

use end-to-end sequence numbers. Implicit Source routing tries to preserve the

advantages of source routing while avoiding the associated per-packet overhead in most

cases [26].

Most protocols try to find the shortest path between source and destination.

However, this has shown to be not enough for efficient and reliable data transfer when it

comes to wireless ad-hoc networks [27].

In the protocol described in this thesis, the use of end-to-end sequence numbers

along with the use of a performance metric that will be based on the resource availability

of participating nodes has been conceptualized [34]. Based on whether a node

participates as a helper node and the amount of resources it has, it can distribute its

resources dynamically to result in highly efficient network-wide transfers. Intermediary

nodes can vary their function by acting as fast nodes for a few flows or allowing several

flows through them slowly to keep the routes at maximum throughput. Such a protocol

also facilitates load balancing in the network.

7

Work was undertaken as part of this thesis to implement the protocol so that it

could be analyzed for its performance and compared against the other protocols. There

were two ways to do this:

i. Implement the protocol and deploy it along with other protocols in similar

hardware network configurations to get results and compare them.

ii. Implement the protocol in a simulator that already had implementations of

other wireless ad-hoc protocols so that it could be compared with already

present test cases.

 As with most academic projects, the second option was chosen. There was a wide

variety of simulator options available for this; the most popular ones being NS-2,

OMNet++ and OPNET IT Guru Academic Edition [28].

All of these are discrete event simulation systems. Of these OMNet++ and NS-2

are both free and popular amongst the developer community. Both have implementations

of AODV and DSR. However, OMNet++ was a budding system at the time of

implementation and NS-2 was a well established leader with contributions from several

reputed researchers. Hence, NS-2 was chosen for implementing the protocol.

The following chapter will describe the protocol in detail.

CHAPTER 3

PROTOCOL DESCRIPTION

3.1 Network Topology

As shown in Fig. 1, the typical network topology consists of several nodes in a

given area. The nodes can themselves be originators of data (depicted as white or blue in

the figure) or helper nodes (depicted as solid green in the figure). Originator nodes that

have extra resources such as extra energy and/or extra bandwidth may opt to act as helper

Fig. 1: Typical network topology

Base Station (Y)

Sender (X)

Helper node (H1)

Helper node (H2)

9

nodes to help other originator nodes get their data to the base station. The base station is a

special type of node (depicted as solid black in the figure) that typically has resources

enough to broadcast or multicast data to nodes in the entire network. Please note we do

not make any special assumptions for the purpose of such a base station, but such

topologies are used massively in sensor and mobile networks, and also some P2P

networks.

3.2 Assumptions about the system

Specific to the description of the protocol described in the next section, the

following assumptions are made [14]:

Assume station X wishes to communicate to the base station Y. Let X have an

address IDX, Y have an address IDY. Helper nodes may exist in between that help X to

transmit data to Y. Let each such helper node be H#, where # is the hop index from the

sender X. In Fig. 1 above, there are 2 helper nodes, H1 and H2, that help X to get its data

to station Y. Routes can change anytime based on several conditions and no special route

establishment needs to be done prior to data transfer. Ranges are generally short and

energy is the premium resource. Collisions between sending nodes can be minimized by

using ultra wide-band, low energy transmissions without careful coordination and the use

of protocols such as Multiple Access with Collision Avoidance for Wireless (MACAW)

[7] [8]. Limited collision avoidance can be employed. For example, if a nearby sender is

10

heard sending a train of pulses, in ultra-wideband case, the transmitted timing can be

adjusted to avoid overlap. In a multi-band network, frequencies overheard from

neighbors can be avoided for sending data.

3.3 The Protocol

3.3.1 Assumptions about the protocol

X initially sends a “seek” packet indicating its own ID: IDX; and the ID of the

destination node: IDY. If Y responds directly favorably, X can send packets directly to Y.

Fig. 2: Message Diagram

Sender (X) Helper (H) Base Station (Y)

seek

offer

data

T

Packet destroyed if no NACK

received within T sec.

data forwarded

end-2-end ACK broadcasted
T

Window
advances on
end-2-end
ACK

11

However, in the other case, if X does not hear a direct reply from Y, it may still hear

responses from other helper nodes that are willing to forward the data to Y. These packets

are known as “offer” packets and along with the replier’s ID, they consist of other

information that may help the seeker to make a decision so as to which helper node to

forward data through to the destination. This information may include no. of hops to

destination information (if the helper node has this information) and/or the available

bandwidth that the helper node has to spare for this flow of data. The seeker on receiving

this information picks up the most favorable helper node and starts sending its packets to

this node by including the helper node’s ID in the packet. An efficient way to include the

relay ID would be to use multicast addresses. However, this would involve hierarchical

addressing that can be done only in the case of static networks. We can imagine having a

static network of helpers and a base station, but this is not included in this work. Another

option would be to add the addresses and send the data. Only the chosen helper node

knows both addresses and can subtract the same from the packet before sending it further.

X can send a new “seek” packet seeking Y at anytime during the transmission to continue

with its transmission on another route. Alternatively, X can split its traffic, sending some

packets on one route and some on the other. Since X has control over the sequence

numbers, it has complete discretion to do this at anytime without affecting the flow of

traffic. Multiple packets at the destination with the same sequence number will simply be

discarded. In the next section we will prove a limit on the sequence number range that we

will use to avoid ambiguity at the destination.

12

The helper node specifications in the offer will be a “window length” that

specifies the number of packets that the helper node is willing to handle in some specific

time T. T is a system constant. The window length is a system variable and can change

with improvement in the helper node algorithm or hardware. With a static hardware

configuration, it varies with no. of hops to the destination and most importantly with the

helper node’s available capacity and/or energy reserves.

For the sake of completeness, we should also define acknowledgement packets of

2 kinds here. We use end-to-end acknowledgements with hop-by-hop NACKs (negative

acknowledgements) as we assume that the base station (destination) is capable of

broadcasting to all nodes in one transmission.

Also, apart from data itself, data packets must include the originator ID,

destination ID, relay ID (if any) and a sequence number. Although this is a premium to

pay for this protocol, it’s a very small one considering that the nodes themselves need not

hold a lot of routing data.

3.3.2 Description

There are 3 parts that the protocol we describe employs:

i. A small sequence number based on a window limitation of a maximum

of W packets in T seconds.

13

ii. A discarding policy that an intermediate station cannot send any packet

out more than T seconds after it has been received, which means all

packets T seconds old or older are discarded.

iii. A limit on the number of hops.

Suppose the source has a maximum window of W packets allowed to be

transmitted in time T, starting from the oldest unacknowledged packet. We wish to relate

this to the minimum number of bits in the sequence number that prevents ambiguity.

The source may switch routes or may even send identical copies over different

routes. On each route, assume hop-by-hop NACKs are used, with end-to-end cumulative

acknowledgments from Y. Hop-by-hop ACKs are optional. The ambiguity problem has a

well known solution for cases where all packets follow the same route and arrive in the

order transmitted. But in the route switching and parallelism environment out-of-order

arrivals violate the assumptions of these relationships. The method is designed for

systems where the number of hops is small and the distances are short, which is

appropriate for wireless communication with base stations.

Assume that no route has more than H hops. Also assume that the source will not

inject more than W different packets into the network in any T-second interval. This

corresponds to a maximum packet rate of W/T packets per second.

14

Every packet received by a non-source node that is not the destination

(intermediate node) is allowed to be held for at most T seconds starting from its most

recent reception of the packet. If a hop-by-hop NACK is received, it can retransmit if T

seconds have not expired. This is a simple way of applying a time-to-live feature that

helps solve the ambiguity problem. The value T may be a standard system parameter or

negotiated. In our case, we will assume T is a system parameter based on the speed

permissible by the underlying wireless protocol. The sender can use a smaller window

than W, and a lower packet rate, with lesser concern about ambiguity problems, since

fewer packets could be delivered in T seconds. But with changing conditions and routes,

the source may wish to change to a faster rate, where as many as W packets actually

would be delivered in T seconds. The required minimum number of bits in the sequence

number depends logarithmically on the maximum number H of hops but H would almost

always be small in wireless communication to a base station.

The source knows an intermediate node h hops from source can not be holding a

copy of the packet for retransmission at hT seconds after the source last injected. To

allow for either go-back or selective repeat transmission, assume the receiver is allowed

to accept any new packet in WR positions starting from first packet not yet correctly

received. WR = 1 is the go-back protocol.

15

3.3.3 Theorem

Assume propagation time is negligible compared to packet time. The number of

bits required in the sequence number is at least log2 |HW + WR|.

3.3.4 Proof

Consider first H = 2. Figure 1 shows the receiver viewpoint, knowing the sender’s

window ambiguity limit is W.

Fig. 3: Receiver’s perspective. H=2 [14].

>=T >=T >=T WR
W packets (3) W packets (2) W packets (1)

X = oldest packet not yet correctly received

X

These W last injected
by source prior to t-T,
since after t-T they
were all out of source
window; thus gone
from intermediate
station before t.

Sender will not re-inject
after t any packet sent
in this range, since they
all would have been
acknowledged based on
window advance.
 Illustrated for H=2 and one

intermediate node.

16

Refer Fig. 2. Here, H = 2. For this example, after time t, the only prior packets

that could be received at the destination from any path are the 2W most recently sent

packets. This is in addition to WR possible new packets.

If H = 3, the source will not re-inject after t-2T any packet prior to interval 3 since

a full window of packets has been sent in interval 3, before t-2T. The second intermediate

node could receive this injection up to t-T, and the destination up to t. An interval 3

packet as late as t-T, which could arrive at the next intermediate node as late as t, and the

destination as late as t+T, so interval 3 must be included in the possible received range.

Thus the widest range of reception is 3W + WR.

By a repeat of this argument for each additional hop, the general range of possible

receptions is HW + WR. This range cannot exceed 2b, where b is the sequence number bit

size. Hence proved.

 Since WR ≤ W, a bound for any amount of selective repeat is 2b ≥ (H+1)W.

Doubling H adds at most 1 bit to the required sequence number size. Also, a large

number of hops are not desirable, and one might use a lower W and lower bit rate for

such routes. Applying the method to communication to a base station or a network of

cooperating base stations allows very efficient, adaptive communication. If a route gives

fast rates and acknowledgments, stick to that route. As soon as a route starts to give

problems, seek an alternate route. For fault tolerance, hold onto two routes. With

17

cooperating base stations having a common destination address, different routes might go

to different base stations, often without intermediate stations.

The next chapter will go into details of the implementation. We will discuss the

different headers we used for differentiating packets, the implementation details of the

protocol agent and the algorithms with the help of flowcharts of the implementation.

CHAPTER 4

PROTOCOL IMPLEMENTATION

4.1 Implementation decisions.

We studied two simulators before implementation of the protocol – OMNet++

[15] and Network Simulator 2 (NS-2) [11]. Both are discrete event simulation systems.

While OMNet++ is rapidly gathering momentum, at the time of implementation of this

protocol, it was neither the most popular nor did it have a huge community of developers

to ask about technical difficulties with.

We ultimately chose NS-2 was as the simulation tool for implementing both our

protocol and test scripts to evaluate the performance of the protocol. NS-2 is a discrete

event simulator targeted at networking research. NS-2 provides substantial support for

simulation of TCP, routing, and multicast protocols over wired and wireless (local and

satellite) networks. NS-2 was chosen as it allows one to both implement their own

protocols and write scripts to test these protocols. NS-2 is written in C++ and object

oriented version of Tcl called OTcl. NS-2 also allows tracing of events based on time for

exhaustive evaluation. With graph plotting additions like “trace graph” [12], one can

convert traces to graphs. NS-2 also comes with an optional add-on Network Animator

(Nam) [13], which is a Tcl/TK based animation tool for viewing network simulation

19

traces and real world packet traces. It supports topology layout, packet level animation,

and various data inspection tools.

NS-2 was especially advantageous as it already has several implemented routing

algorithms, which can be used for studying the implementation techniques and modified

to accommodate the requirements of our protocol. The Ad-hoc On-demand Distance

Vector (AODV) [2] and Dynamic Source Routing (DSR) [3] protocol implementation

were the primary ones studied among other protocols to be viably modified to implement

our protocol. DSR was chosen because of the fact that it already had headers that could

be easily modified and ported to the implementation of our protocol. AODV and other

protocols implemented in NS-2 were not suitable to be modified. However, several more

items required modification in the current DSR implementation to get our protocol up

and working.

Scripts for running simulations in NS-2 can be written in OTcl, which is an

extended version of Tcl with support for objects.

In the following sections, we will define the different kinds of packets we will

require to be part of our protocol. We will then go on to details of the implementation and

experiences in implementing the protocol. Finally we will discuss about the scenarios that

can be used to evaluate our protocol.

20

4.2 Packet Formats.

As our protocol is generic, we define all packets as a custom header followed by

the actual data (see Fig. 4).

There are 5 different kinds of headers we use:

i. seek

ii. offer

iii. nack

iv. e2eack

v. general

Our current implementation doesn’t send data along with seek, offer, nack, e2eack

type headers. That is application data is sent only with the general header as the packet

Fig. 4: Generic packet format

Header Data

Header : Indicates packet type. One of (seek, offer, nack, e2eack, general).

Data : Data from application.

21

header. The topic of chaining headers is a subject of future work that can benefit this

protocol.

4.2.1 The “seek” header.

The seek packet is the first packet sent to initiate any transmission by the sender.

The sender includes its own ID and the ID of the node it seeks in the header for such kind

of a packet. A receiver that has enough resources may decide to forward this packet to

help the sender and so it may require retransmitting this packet with the sender ID as its

own ID. However, for the destination to know which node this packet originated from,

the intermediate node has to copy the original sender’s ID in the header as well. Thus

there is an additional field of “original_seeker_id” in the seek packet header. The original

sender replicates its ID in both the seeker_id and original_seeker_id fields and

intermediate nodes only update the seeker_id field if they need to send this packet

forward. We use an internal field known as “header_type” to indicate the packet type to

our protocol handlers. This value is set to “seek_valid” for all seek packets. The header

format for this type of packet is shown in Fig. 5.

22

4.2.2 The “offer” header.

The offer packet is the packet is sent by prospective relay nodes that have enough

resources to forward data to the seeked_id. However, the decision of which relay to use is

solely left to the sender of data and hence all offer packets have information that help the

sender determine which node it should use as a relay. The information may thus include

no. of hops to destination, available power that the relay can allocate for this

transmission, etc. We simplify power availability and other factors in one simple

parameter: window size. The window size is thus the window that the relay can allocate

for this transmission. The relay also sends the no. of hops to destination from its previous

knowledge. As the offer itself may respond to two kinds of seek packets: one directly

received from originator or one relayed on by other intermediate nodes, we require three

Fig. 5: The seek header

header_type original_seeker_id seeked_id seeker_id

header_type : Indicates that this is a seek packet. Set to “seek_valid”.

seeker_id : Previous node packet received from.

seeked_id : Destination’s ID.

original_seeker_id : Original sender’s ID.

23

identifiers in the offer packet: the ID of the node that the seek packet came from, the ID

of the node that the seek packet originated from and its own ID. We should also note at

this point that the offer packet may also propagate all the way back to the originator and

the intermediary ID values may change. The offer header thus looks like Fig. 6.

4.2.3 The “nack” header.

A nack (negative acknowledgement) is sent on a hop-by-hop basis in our protocol

so that incorrect packets do not propagate in the network. Upon receiving a nack, the

Fig. 6: The offer packet

header_type tell_id offered_win_length

relay_id hops_to_dest to_id

offer_valid : Indicates this is an offer packet. Set to “offer_valid”.

offered_win_length : Window length that is guaranteed to be allocated for the length of

transmission.

tell_id : ID of node from whom the seek packet was received.

relay_id : Own ID.

to_id : Original seeker’s ID.

hops_to_dest : Number of hops to destination (may be unknown).

24

previous node resends the packet if it still has it in its buffer/window. If not, it may either

send back this nack to the previous node it received the packet from or drop the nack. Our

implementation decides to drop packets that aren’t in the buffer. Extensions may be

written later that will have a more complete nack solution. The most important field to

note in a nack packet is the “nacked_pkt_seq_num”. This field identifies the packet that

was received in error and that should be resent by the previous node(s). The nack header

thus looks like Fig. 7.

4.2.4 The “e2eack” header.

An end-to-end ACK (acknowledgment) packet is sent by the base station once it

receives a packet destined for it. In our implementation we assume that the base station

has enough power capability to send the e2eack packet directly to the originator. This is

Fig. 7: The nack packet

header_type nacked_pkt_seq_num to_id my_id

header_type : Indicates this is a NACK packet. Set to “nack_valid”.

nacked_pkt_seq_num : Sequence no. of the packet received in error.

to_id : ID of the node towards whom the NACK packet is directed.

my_id : ID of the node sending the NACK.

25

true in real world scenarios wherein base stations are usually dedicated antennas with

large resources available to handle thousands of connections if not millions. The e2eack

packet acknowledges a packet by having the sequence number of the same in its header.

The e2eack is thus as Fig. 8.

4.2.5 The “general” header.

The general header is pre-pended to all data packets and amongst other

information contains the end-to-end sequence number of the packet that is being

transmitted. The other important field in this header is the selected window length. This is

to incorporate a three way handshake after an offer is received and a relay node is

selected by the originator of data. The general header also contains ID’s of the originator,

the intermediary relay node and the destination node. The general header thus looks like

Fig. 9.

Fig. 8: The e2eack packet

header_type e2eack_seq_num to_id my_id

header_type : Indicates this is an end-2-end ACK packet. Set to “e2eack_valid”.

e2eack_seq_num : Sequence number of the packet being acknowledged.

to_id : Originator’s ID who sent the data.

my_id : ID of the node sending the end-to-end ACK packet.

26

4.3 Protocol implementation in NS-2

Our protocol is designed to fit at the Network layer in the Open Systems

Interconnection (OSI) Reference Model [16]. It is implemented as an object that runs as

the routing agent in a network node.

Fig. 9: The general header

header_type from_id selected_win_length

relay_id e2eseq_num to_id

header_type : Indicates this is a general packet. Set to “general”.

selected_win_length : Indicates the originator selected this as the window length for the

transmission.

from_id : Data originator’s ID.

relay_id : ID of node selected as the relay.

to_id : ID of the destination.

e2eseq_num : End-to-end sequence no. of the packet in the transmission.

27

4.3.1 Node implementation

Before we go into the details of the routing agent, let’s first understand how a

node looks like in NS-2.

A node in NS-2 is implemented as a composition of several objects that make it

emulate a real-world network object. At a minimum the node consists of an address or ID

to uniquely distinguish it from other objects in NS-2 and a list of neighbors. The other

objects in a node are a list of agents, a node type identifier, an address classifier and a

port classifier. Fig. 10 shows the schematic of a NS-2 unicast node. Our protocol is

implemented as an agent that resides inside every node of our specific routing agent type.

Once we define a node with our protocol identifier in the test scripts, it uses our routing

agent as the routing protocol. Although several protocol agents can be active at the same

time within a node, we do not test interworking with other protocols and that may be a

topic of future study.

28

4.3.2 Routing Agent implementation

The routing agent resides in every node and acts as a super-packet handler

through which all packets are passed through. The agent itself interfaces with the NS-2

logging system, the Media Access Control (MAC) layer, the link layer and the interface

queue used for internal event prioritization. The log interface is used for gathering log

traces that can be used for analysis of test scenarios. Having interfaces to the MAC and

link layer as pointers allows a routing agent to use different MAC layer protocols and

link layer characteristics. Although we have stated that our protocol would be ideal for a

wideband ALOHA type MAC channel, at the time of our protocol implementation a

Fig. 10: NS-2 unicast node [17]

Link Link Link

Address
classifier

Port classifier
Agent

Agent

Agent

Node
entry

29

stable implementation of such a MAC layer protocol does not exist in NS-2 and so we

use the default MAC implementation as provided by NS-2, which has been provided by

developers at Carnegie Melon University (CMU). The implementation of wideband

ALOHA falls outside the scope of this thesis work. The agent also has offsets to the

different headers inside of a packet. For our protocol, these are the offsets to the link

layer header, the MAC layer header, the IP layer header and our protocol header

(srheader). We have named the agent as E2ESeqNumAgent. Table 1 below shows the

fields in E2ESeqNumAgent.

30

In NS-2, every packet received at a node results in a call to the “recv” method of

the agent. The packet can then be analyzed and handled appropriately to implement one’s

routing protocol. We thus overload the default recv method for an agent such that our

recv method handles routing for nodes that are defined to use our protocol as the routing

protocol. This definition as mentioned earlier is made in test scripts that generate network

scenarios for simulation. The overloaded recv() function extracts the generic “srheader”

from the packet, analyzes it and hands it down to one of the packet handlers. Every

header-type has its own packet handler, viz. seekPktHandling, offerPktHandling,

Table 1: Routing Agent fields.

Field Description

Logtarget The target to log statistics at
Offset_mac The offset of the mac header in the packet
Offset_ll The offset of the link-layer header in the packet
Offset_ip The offset of the ip header in the packet

Offset_sr
The offset of the header to identify our protocol is being used in
the packet

net_id Net layer address (IP layer address)
mac_id Mac layer address (unique ID if used)
ra_addr_ Unique ID of this node
Ll Object of link layer protocol being used
Mac Object of MAC protocol being used
Ifq Queue object of the queue in use at link layer
MobileNode * node Flag to determine this is a mobile node. To be used in test scripts

port_dmux
This node’s port demuxifier that determines where the packet goes
to within after processing

route_table
Small single deep cache that keeps reachability data to a node.
Currently setup via scripts in ObjectTcl.

send_window[MAX_WINDOWS] Our small receive/send window

send_buf_timer

Timer object that does processing every interval – the interval is
very very small for realtime simulation, but also depends on the
PC’s capability right now

Link NS specific
agent_head NS specific

31

nackPktHandling, nackPktHandling, e2eackPktHandling, handleGeneral. We will discuss

these in detail in the following sections. Fig. 11 and Fig. 12 show the implementation of

the overloaded recv() method using a flowchart representation.

4.3.3 Overloaded recv method

As shown in the flowchart in Fig. 11 and Fig. 12, the recv method contains the

main decision making logic for the packet routing within a node. Based on the

combination of flags in the header, the recv method makes the following decisions:

i. If the packet has been originated by an application tied to this node

using our protocol?

ii. If the packet is a broadcast packet?

iii. If the node is a designated receiver of the packet (as a helper or

intermediary node)?

iv. If the node is the final designated receiver of the packet?

v. What specific type of header the packet has or needs and which packet

handling method must it be handed to?

The packet is either dropped, consumed by the application designated to receive

the packet or handed down to one of the specific header packet handlers for further

processing.

32

Fig. 11: Overloaded recv method flowchart

recv(packet)

Extract Srheader – to identify if one of our
protocol headers is applied.

Srheader valid?

Next hop
==

IP_BROADCAST?

Srheader valid?

SendOutBcastPkt(packet)

port_dmux->recv(packet)

Outgoing packet without srheader.
Add srheader.

handlePktWithoutSR(packet)

Broadcast packet
that I did not

originate. Give to
my port demuxifier.

invalid

valid

yes no

yes no

destination
==

IP_BROADCAST?

A

no

yes Data or
seek?

seekPktHandling()

seek

Unknown protocol
packet.

Not supported, so
drop.

drop(packet)

data

33

Fig. 12: Overloaded recv method flowchart (contd.)

A

Am I the
intended

destination?

Is this a
NACK packet?

Is this an
end-2-end ACK

packet?

Am I the
final

destination?

offerPktHandling()

nackPktHandling()

e2eackPktHandling(

handleGeneral()

target_->recv(packet)

Stripped the headers
off and packet has
come down to me.
Must consume it.

yes

yes

yes

yes

no

no

no

no

Must be a packet with
the General header

Is this an
offer packet?

port_dmux->recv(packet)

yes

no

34

4.3.4 seek header packet handling

The seekPktHandling method is responsible for handling packets with the seek

header. Seek packet handling consists of adding the sender node’s information in the

local cache and looking through the local cache for determining whether the seeked ID

(final destination) is reachable by this node or not. Based on reachability to the final

destination and the currently available resources, the node decides how many resources it

can allocate the seeker and sends these as part of the offer header in its reply. The

processing applied by seekPktHandling method can be seen in Fig. 13.

Fig. 13: seek header packet handling

Do I have
enough

resources?

Add sender to our
cache.

send_offer()

drop(packet)

Yes No

seekPkthandling()

Determine window limit
based on currently

available resources.

Allocate resources
(update resource table)

35

4.3.5 offer header packet handling

The offerPktHandling() method is responsible for handling of offer packets that

have been sent by a helper node. Offer packet handling consists of allocating resources

on the sender’s side and thus form a way of stateless handshaking with the helper node.

Please note that security is not considered to be one of the factors of this protocol and

hence we do not attempt to add three-way handshaking and stateful handshaking in the

protocol. The processing applied by offerPktHandling can be seen in Fig. 14.

Fig. 14: offer header packet handling

offerPktHandling()

Set the required parameters for the
session – queue limits, sequence
number reset, etc.

Set the values appropriately in the
“General” header over the packet.

handleGeneral()

36

4.3.6 general header packet handling

The handleGeneral() method is responsible for handling packets with the general

header. A general header packet designates a packet in the middle of a flow of data

between end-to-end nodes. The helper nodes change the selected_win_len and relay_id

fields in the packet header and send it ahead in the network to the next node (relay_id).

The processing applied by handleGeneral() method can be seen in Fig. 15.

4.3.7 nack header packet handling

The nackPktHandling() method is responsible for resetting the window

parameters of last packet sent and resending the packet to the intermediary node that sent

out the nack. The behavior is different on whether ARQ(1) or ARQ(n) is used, which is

Fig. 15: general header packet handling

handleGeneral()

Data flow is on (this node may be a
helper or originator). Change fields
in the general header and send the

packet to next hop towards
destination.

send(packet)

37

determined by the application in the OTcl test scripts. Fig. 16 shows the generic

processing that nackPktHandling() applies.

4.3.8 end-2-end ack header packet handling

The e2eackPktHandling() method, which is responsible for end-2-end

acknowledgements for window advancements has been implemented to be triggered from

the higher layer test scripts. It has been done so to keep the protocol simple and as it

integrates well with the current mechanism of signaling nodes with the initial parameters,

such as total resources available and the reachability matrix. When the application signals

Fig. 16: nack header packet handling

nackPktHandling()

Reset required parameters – packet
number sent, etc.

Retry sending the failed packet(s)
based on the acknowledgement

protocol being used.

send(packet)

Has packet
timer

expired?

No

Yes return

38

an end-2-end ack, a call is sent to the node’s recv() method that falls down to the

e2eackPktHandling() method which applies the necessary processing as show in Fig. 17.

4.4 How to implement test scripts in OTcl for the protocol

It is important to note that the applications coded in OTcl need to perform certain

shared responsibilities. These responsibilities include:

i. Creation of nodes and initialization of topography

Topography needs to be set by the test scripts in OTcl. NS-2 reads

topology related commands in the OTcl scripts and parses them to form a

network of nodes. One can additionally add movement data in the scripts

as well if the network is non-static.

ii. Initialization of reachability matrix

NS-2 provides a General Operations Director (GOD) object that is aware

of the whole network topology. The test scripts have to use the GOD

Fig. 17: end-2-end acknowledgement header packet handling

e2eackPktHandling()

Reset the send window
appropriately. Consume the packet.

39

object to specify initial node distances for helper nodes to the base station

node. This is done by the following simple example statement:

 $ns_ at 0.0 "$god_ set-dist 4 10 2"

This loads the GOD object with the knowledge that the shortest path

between node 4 and node 10 changed to 2 hops at time 0. As is evident,

one can change the distances during run-time as well based on the time.

iii. Initiating the end-2-end acknowledgement calls

It is the responsibility of the OTcl scripts to initiate end-2-end

acknowledgement calls so that the initiator of data transmission can

advance the window accordingly for continuing transmission.

iv. Attaching application specific streams to the routing agent

A data stream, e.g. Constant Bit Rate (CBR) stream can be attached to the

routing agent using the following commands:

 set e2e_(0) [new Agent/E2ESeqNumAgent]

 $ns_ attach-agent $node_(2) $e2e_(0)

 set null_(0) [new Agent/Null]

 $ns_ attach-agent $node_(3) $null_(0)

 set cbr_(0) [new Application/Traffic/CBR]

 $cbr_(0) set packetSize_ 512

 $cbr_(0) set interval_ 0.25

 $cbr_(0) set random_ 1

40

 $cbr_(0) set maxpkts_ 10000

 $cbr_(0) attach-agent $e2e_(0)

 $ns_ connect $e2e_(0) $null_(0)

 $ns_ at 10.000 "$cbr_(0) start"

This code-block creates an agent of our routing protocol

(E2ESeqNumAgent) and attaches it to node 2. It then creates a null sink

agent and attaches it to node 3. It then creates a CBR data stream and

attaches it to our agent viz. e2e_(0). Finally it starts the flow at time

10.000.

Detailed scripts used to validate the correctness of implementation of this protocol

can be found in Appendix B. In the next chapter, we will use these scripts to compare the

routing overhead incurred by DSR, AODV and the protocol implemented here.

41

CHAPTER 5

ANALYSIS AND FUTURE WORK

5.1 Experiment and Analysis

To validate the implementation of the routing protocol, a scenario was used to

compare the normalized routing load vs. pause time for DSR, AODV and the

implemented protocol (E2ESeqNumAgent). E2ESeqNumAgent was expected to show

higher efficiency than both as no route setup was necessary. Simulations were run in a

small 10 node multi-hop scenario. The CMU scenario generator, which is distributed as a

part of the NS-2 package, was used to generate a scenario with 10 nodes in a 500m x

500m 2-dimensional area. For generation of traffic, the CMU traffic generator tool was

used, which is again distributed as a part of the NS-2 installation. A modification was

required to be done to this tool to statically set one node as the receiver for all

transmissions as we had to compare results with such a network only. Constant Bit Rate

(CBR) traffic was generated for comparison. Varying pause times were used as a basis of

comparison. The scripts used to generate the scenario, traffic and trace logs can be found

in Appendix B.

Normalized routing load is defined as the number of routing packets transmitted

per data packet delivered at the destination. Each hop-wise transmission of a routing

packet is counted as one transmission.

42

The simulation parameters which have been considered for doing the performance

comparison of two on-demand routing protocols are given below:

Fig. 18 shows the normalized routing load (NRL) vs. pause time for all three

routing protocols. Lower routing load is a desirable feature in any protocol as it indicates

lesser overhead and thus higher efficiency of the routing protocol. Another factor to

consider is a stable NRL as it determines the scalability of the protocol. As seen in

Fig. 18, the implemented protocol is superior to both AODV and DSR in such small

topographies. DSR’s lower NRL than AODV is also due to the small network. With only

10 nodes and fewer connections, source routes are comparatively small in the packets

being sent.

Table 2: Simulation parameters

Protocols AODV, DSR, E2ESeqNumAgent
Simulation time 100 seconds
No. of nodes 10
Map size 500m x 500m
Traffic type Constant Bit Rate (CBR)
Packet size 512 bytes
Connection rate 8 packets/sec
Pause time 0, 10, 20, 40, 100
No. of connections 5, 10

43

5.2 Future Work

This thesis involved an exhaustive study of the NS-2 simulator in addition to

design and implementation of our specific experiment. NS-2, although a well-known and

accepted simulator in academia, is a very complex simulator with a number of limitations

due to its design and implementation methodologies. The most important of these

limitations is the splitting of implementation in C++ and OTcl. OTcl is a home-brewed

object-version of Tcl that hasn’t gained much popularity. Further work involves

implementing OTcl test scripts for performance evaluation of the protocol.

NRL vs. Pause Time

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 40 100

Pause Time

N
R

L

NRL AODV
NRL DSR
NRL E2ESeqNumAgent

Fig. 18: NRL vs. pause time for 10 nodes

44

Other limitations include insufficient scalability, lack of emulation support and

non-standard logging [19]. The implementers of NS-2 and the open-source community

have accepted these limitations and have been actively working towards new standards

known as NS-3. The NS-3 project was announced in July 2006 as a 4 year program and is

in a current state of active development. The first stable release of NS-3 was announced

in June 2008 [18] but was published with limited functionality. The scripting interface

has been changed to Python that is more familiar and accepted by the developer

community. Tracing and logging has been changed such that traces can now be seen in

Wireshark [21], which is a very popular network packet statistics viewing tool in the

developer and network administration community [20]. It would greatly benefit porting

the protocol to NS-3 once NS-3 is complete and released as it would let one easily test

different scenarios without worrying about the additional split-object architecture.

Also, the current protocol requires initialization of the reachability matrix through

OTcl explicitly. Further work can be done to automate initialization through flooding or

some other mechanism. This work falls outside the scope of this thesis, but would be a

worthwhile project to follow. Further improvement in the implementation can be brought

about by chaining the headers so that all packets can contain data including packets with

seek, offer headers. Finally, the use of error-coding as highlighted in [14] can be explored

in the future.

45

Security was not considered when designing and implementing this protocol and

so adding security constraints would be another area of feature development. This would

include overcoming denial of service attacks that could be easily done with the current

implementation.

Future work would also involve trying different metrics for window length

selection and trying the protocol with a well implemented wideband ALOHA or similar

MAC protocol.

46

REFERENCES

 1 “List of ad-hoc Routing Protocols”, Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Ad_hoc_routing_protocol_list.

 2 C. Perkins, E. Belding-Royer, S. Das, RFC 3561, “Ad hoc On-Demand Distance
Vector (AODV) Routing”, July 2003.

 3 D. Johnson, Y. Hu, D. Maltz, RFC 4728, “The Dynamic Source Routing Protocol
(DSR) for Mobile Ad Hoc Networks for IPv4”, February 2007.

 4 W. Simpson, RFC 1662, “PPP in HDLC-like Framing”, July 1994.

 5 R.A.Comroe and D.J.Costello, "ARQ schemes for data transmission in mobile
radio systems", IEEE J. Select. Areas Commun., 2:472-481, July 1984.

 6 Information Sciences Institute, for Defense Advanced Research Projects Agency,
RFC 793, “Transmission Control Protocol”, September 1981.

 7 Vaduvur Bhargavan, Alan Demers, Scott Shenker, Lixia Zhang, “MACAW: A
Media Access Protocol for Wireless LAN’s”, In the Proc. ACM SIGCOMM
Conference (SIGCOMM '94), August 1994.

 8 R.J. Fontana, “Recent System Applications of Short-Pulse Ultra-Wideband
(UWB) Technology”, Invited Paper, IEEE Microwave Theory & Tech., Vol. 52,
No. 9, September 2004, pp. 2087-2104.

47

 9 Defense Advanced Research Projects Agency, http://www.darpa.mil.

 10 Franklin F. Kuo, “The ALOHA system” in Computer Networks, Prentice-Hall,
pp. 501–518, 1973.

 11 The Network Simulator – ns-2, http://www.isi.edu/nsnam/ns/.

 12 Trace Graph - Network Simulator NS-2 trace files analyzer,
http://www.tracegraph.com/.

 13 Nam: Network Animator, http://www.isi.edu/nsnam/nam/.

 14 J. Metzner, “New acknowledgement protocols for dynamic wireless routing and
multiple path transmission”, Draft, 2008.

 15 OMNet++ Discrete Event Simulation System,
http://www.omnetpp.org/index.php/.

 16 Hubert Zimmermann, OSI Reference Model – The ISO Model of Architecture for
Open Systems Interconnection, Invited paper, IEEE Transactions and
Communications, Vol. Com-28, No. 4, April 1980.

 17 The ns Manual, The Network Simulator ns-2: Documentation,
http://www.isi.edu/nsnam/ns/ns-documentation.html.

 18 ns-3 News, http://www.nsnam.org/news.html.

48

 19 Tom Henderson and Sumit Roy, “ns-3 Project Plan,
http://www.nsnam.org/docs/meetings/snowbird06/ns-3.ppt, 2006 NSF CRI-PI
Meeting.

 20 Workshop on ns-3, Tutorials, http://www.nsnam.org/workshops/wns3-2009/ns-3-
tutorial-part-1.pdf and http://www.nsnam.org/workshops/wns3-2009/ns-3-
tutorial-part-2.pdf.

 21 Wireshark, http://www.wireshark.org/.

 22 IEEE Standard for Information technology—Telecommunications and
information exchange between systems—Local and metropolitan area networks—
Specific requirements Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications
http://standards.ieee.org/getieee802/download/802.11-2007.pdf.

 23 IEEE Standard for Information technology—Telecommunications and
information exchange between systems—Local and metropolitan area networks—
Specific requirements Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications, Amendment 6: Medium Access Control
(MAC) Security Enhancements,
http://standards.ieee.org/getieee802/download/802.11i-2004.pdf.

 24 Yih-Chun Hu and David B. Johnson, “Implicit Source Routes for On-Demand Ad
Hoc Network Routing”, Proceedings of the 2001 ACM International Symposium
on Mobile Ad Hoc Networking & Computing (MobiHoc 2001), pp. 1-10, ACM,
Long Beach, CA, October, 2001.

 25 B.A.T.M.A.N. Concept, “B.A.T.M.A.N. Overview”, http://www.open-
mesh.net/wiki/BATMANConcept.

 26 YihChun Hu and David B. Johnson, “Implicit Source Routes for OnDemand Ad
Hoc Network Routing”, In Proceedings of the Second Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc 2001), 2001.

49

 27 Douglas S. J. De Couto, Daniel Aguayo, Benjamin A. Chambers and Robert
Morris, “Performance of Multihop Wireless Networks: Shortest Path is Not
Enough”, ACM SIGCOMM Computer Communications Review, Volume 33,
Number 1: January 2003.

 28 OPNET IT Guru Academic Edition,
http://www.opnet.com/university_program/itguru_academic_edition/.

 29 Eitan Altman and Tania Jimenez, “NS Simulator for beginners”, Lecture Notes,
2003-2004, December 4 2003.

 30 Francisco J. Ros and Pedro M. Ruiz, “Implementing a New Manet Unicast
Routing Protocol in NS2”, December 2004.

 31 Marc Greis, “Tutorial for the Network Simulator ns,
http://www.isi.edu/nsnam/ns/tutorial/index.html.

 32 Bryan’s NS-2 DSR FAQ, http://www.geocities.com/b_j_hogan/, September 2007.

 33 Rishi Sinha, “Using DSR in ns2”, http://nile.cise.ufl.edu/ee499/rishi-dsr-ns2.ppt.

 34 J. Metzner, Personal Communication.

50

APPENDIX A

NS-2 ADDENDUM

Although NS-2 is a versatile simulator it is not trivially simple enough to start

working with. The ns manual [17] is an exhaustive set of documents developed by the NS

community, but is not kind for beginners. This is perhaps why several people have

documented how to get started with NS-2. “NS Simulator for Beginners” [29] introduces

the NS simulator and systematically ramps up rookies with most of the tools used within

NS. However, much has changed in NS-2 since the first version of the ns simulator was

released and much of the content in this document appears to be out-dated. Also, the

document is not really useful for learning about wireless network simulations.

Once familiar with the basics of the ns simulator, learning how to implement a

new routing protocol in ns-2 is very useful. This task is simplified by Francisco J. Ros

and Pedro M. Ruiz in their document “Implementing a New Manet Unicast Routing

Protocol in NS2” [30]. The authors nicely explain how to implement a routing protocol

for MANETs in NS2 without going into the depths of a particular routing protocol.

Marc Greis in [31] attempts to make it easier for new ns users to use ns and nam,

to create their own simulation scenarios for these tools and to eventually add new

functionality to ns. Of most importance for this thesis work were sections IX (Running

51

Wireless Simulations in ns), X (Creating Wired-cum-Wireless and MobileIP Simulations)

and XI (Generating traffic-connection and node-movement files for large wireless

scenarios) from this tutorial.

When implementing a new wireless protocol, it is always helpful to study and

follow an already implemented protocol. Since the protocol implemented here is similar

in some ways to DSR, Bryan’s NS-2 DSR FAQ [32] was very helpful when learning NS-

2 and implementing this protocol. Rishi Sinha’s presentation slide deck [33] is also useful

for understanding how to use other tools provided by ns-2 in tandem with DSR.

Several other resources have been already listed in the body of the thesis that will

help new ns users.

52

APPENDIX B

NS-2 SCRIPTS

B.1 Simulation running script

This is the script used to start a simulation. This script, "compare.tcl" takes 4

command line arguments - scenario file, traffic file, output trace file and routing

protocol(1 = DSR, 2 = AODV and 3 = E2ESeqNumAgent). Script usage is:

 $ ns compare.tcl -scen {scen} -tfc {tfc} -tr {tr} -rpr

{rpr}

This script requires a scenario file and a traffic file. These files can be generated using

third party tools which are now part of the NS2 installation.

Script listing follows:

===
Define options

===
set opt(chan) Channel/WirelessChannel
set opt(prop) Propagation/TwoRayGround
set opt(netif) Phy/WirelessPhy
set opt(mac) Mac/802_11
#set opt(ifq) Queue/DropTail/PriQueue
set opt(ifq) CMUPriQueue
set opt(ll) LL
set opt(ant) Antenna/OmniAntenna
set opt(x) 500 ;# X dimension of the topography
set opt(y) 500 ;# Y dimension of the topography

53

set opt(ifqlen) 50 ;# max packet in ifq
set opt(seed) 0.0
set opt(tr) dsr-10-0-5.tr ;# trace file
set opt(adhocRouting) DSR
#set opt(rpr) 1 ;#1 for DSR, 2 for AODV, 3 for
E2ESeqNumAgent
set opt(nn) 10 ;# how many nodes are
simulated
set opt(scen) "movement/scen-10-0"
set opt(tfc) "traffic/cbr-10-5"
set opt(stop) 100.0 ;# simulation time

===
Main Program

===

if { $argc != 8 } {
 puts "Wrong no. of cmdline args."
 puts "Usage: ns compare.tcl -scen <scen> -tfc <tfc> -
tr <tr> -rpr <rpr>"
 exit 0
}

proc getopt {argc argv} {

 for {set i 0} {$i < $argc} {incr i} {
 set arg [lindex $argv $i]
 if {[string range $arg 0 0] != "-"}
continue
 set name [string range $arg 1 end]
puts $name
 set opt($name) [lindex $argv [expr $i+1]]
 }
 set opt(scen) [lindex $argv 1]
 set opt(tfc) [lindex $argv 3]

 if {$opt(rpr) == 1} {
 set opt(adhocRouting) DSR
 set opt(ifq) CMUPriQueue
set opt(ifq) Queue/DropTail/PriQueue
 } else if {$opt(rpr) == 2} {
 set opt(adhocRouting) AODV
 set opt(ifq) CMUPriQueue

54

set opt(ifq) Queue/DropTail/PriQueue
 } else if {$opt(rpr) == 3} {
 set opt(adhocRouting) E2ESeqNumAgent
 set opt(ifq) CMUPriQueue
set opt(ifq) Queue/DropTail/PriQueue
 }

set val(mov) $opt(scen)
set val(traf) $opt(tfc)
set opt(trace) $opt(tr)

 puts $opt(scen)
 puts $opt(tfc)
 puts $opt(tr)
}

getopt $argc $argv

 puts $opt(adhocRouting)
puts $val(mov)
puts $val(traf)
puts $opt(trace)

Initialize Global Variables
create simulator instance
set ns_ [new Simulator]

set wireless channel, radio-model and topography objects
set wtopo [new Topography]

create trace object for ns and nam
set tracefd [open $opt(tr) w]
$ns_ trace-all $tracefd
use new trace file format
$ns_ use-newtrace

define topology
$wtopo load_flatgrid $opt(x) $opt(y)

Create God
set god_ [create-god $opt(nn)]

#set chan_1_ [new $opt(chan)]

55

#set chan_2_ [new $opt(chan)]

define how node should be created
#global node setting
$ns_ node-config -adhocRouting $opt(adhocRouting) \
 -llType $opt(ll) \
 -macType $opt(mac) \
 -ifqType $opt(ifq) \
 -ifqLen $opt(ifqlen) \
 -antType $opt(ant) \
 -propType $opt(prop) \
 -phyType $opt(netif) \
 -channelType $opt(chan) \
 -topoInstance $wtopo \
 -agentTrace ON \
 -routerTrace ON \
 -macTrace OFF
-channel $chan_1_

Create the specified number of nodes [$opt(nn)] and
"attach" them
to the channel.
for {set i 0} {$i < $opt(nn) } {incr i} {
 set node_($i) [$ns_ node]
 $node_($i) random-motion 0 ;# disable random
motion
}

Define node movement model
puts "Loading connection pattern..."
source $opt(scen)

Define traffic model
puts "Loading traffic file..."
source $opt(tfc)

Define node initial position in nam
for {set i 0} {$i < $opt(nn)} {incr i} {

 # 20 defines the node size in nam, must adjust it
according to your scenario
 # The function must be called after mobility model is
defined
 $ns_ initial_node_pos $node_($i) 20
}

56

Tell nodes when the simulation ends
for {set i 0} {$i < $opt(nn) } {incr i} {
 $ns_ at $opt(stop).000000001 "$node_($i) reset";
}

tell nam the simulation stop time
#$ns_ at $opt(stop) "$ns_ nam-end-wireless $opt(stop)"
$ns_ at $opt(stop).000000001 "puts \"NS EXITING...\" ;
$ns_ halt"
puts "Starting Simulation..."
$ns_ run

B.2 Scenario generator script

The scenario file is generated using the “setdest” tool in the “make-scenario.sh”

script. Listing of “make-scenario.sh” follows:

#!/bin/bash

dest_dir="movement"

if [-d $dest_dir]
then
 # Do nothing
 echo "'$dest_dir' is a directory"
else
 echo "Creating directory $dest_dir";
 mkdir --verbose $dest_dir
fi

setdest_loc="~/ns/ns-allinone-2.33/ns-2.33/indep-utils/cmu-
scen-gen/setdest/setdest";

if [-x $setdest_loc]
then
 # Do nothing
 echo "$setdest_loc is executable"
else

57

 echo "$setdest_loc does not exist or is not
executable";
 exit;
fi

Create the scenarios

for i in 0 10 20 40 100
do
 $setdest_loc -v 1 -n 10 -p $i -M 20 -t 100 -x 500 -y
500 > $dest_dir/scen-10-$i
done

echo ""
echo "Created the following files"
echo ""
ls -la $dest_dir/scen-10*

B.3 Traffic generator script

The traffic file is generated using the “cbrgen.tcl” tool in the “make-traffic.sh”

script. Listing of “make-traffic.sh” follows:

#!/bin/bash

dest_dir="traffic"

if [-d $dest_dir]
then
 # Do nothing
 echo "'$dest_dir' is a directory"
else
 echo "Creating directory $dest_dir";
 mkdir --verbose $dest_dir
fi

script_file="~/ns/ns-allinone-2.33/ns-2.33/indep-utils/cmu-
scen-gen/cbrgen.tcl";

58

if [-f $script_file]
then
 # Do nothing
 echo "$script_file exists"
else
 echo "$script_file does not exist"
 exit;
fi

Create the scenarios

for i in 5 10
do
 ns $script_file -type cbr -nn 10 -seed 1 -mc $i -rate
8.0 > $dest_dir/cbr-10-$i
done

echo ""
echo "Created the following files"
echo ""
ls -la $dest_dir/cbr-10*

B.4 AODV running script

The “run-aodv.sh” script listed as follows will start and run the simulation and

generate 2 files with suffix sent and route_pkts to mean sent and routing packets. Each

line in the file is “Pause Time”, “CBR Load” and the “Extracted Value”.

#!/bin/bash

for i in 5 10;
do
 for j in 0 10 20 40 100
 do
 ns compare.tcl -scen movement/scen-10-$j -tfc
traffic/cbr-10-$i -tr temptr -rpr 2;
 sent=`grep "^s.*\-Nl AGT.*\-It cbr.*" temptr | wc
-l`;

59

 echo "$j $i $sent" >> aodv-sent;
 route_pkts=`grep "^\(s\|f\).*\-Nl RTR.*\-It
\(AODV\|message\).*" temptr | wc -l`;
 echo "$j $i $route_pkts" >> aodv-route_pkts;
 done
done

B.5 DSR running script

The “run-dsr.sh” script listed as follows will start and run the simulation and

generate 2 files with suffix sent and route_pkts to mean sent and routing packets. Each

line in the file is “Pause Time”, “CBR Load” and the “Extracted Value”.

#!/bin/bash

for i in 5 10;
do
 for j in 0 10 20 40 100
 do
 ns compare.tcl -scen movement/scen-10-$j -tfc
traffic/cbr-10-$i -tr temptr -rpr 1;
 sent=`grep "^s.*\-Nl AGT.*\-It cbr.*" temptr | wc
-l`;
 echo "$j $i $sent" >> dsr-sent;
 route_pkts=`grep "^\(s\|f\).*\-Nl RTR.*\-It
\(DSR\|message\).*" temptr | wc -l`;
 echo "$j $i $route_pkts" >> dsr-route_pkts;
 done
done

60

B.6 E2ESeqNumAgent running script

The “run-e2eseqnumagent.sh” script listed as follows will start and run the

simulation and generate 2 files with suffix sent and route_pkts to mean sent and routing

packets. Each line in the file is “Pause Time”, “CBR Load” and the “Extracted Value”.

#!/bin/bash

for i in 5 10;
do
 for j in 0 10 20 40 100
 do
 ns compare.tcl -scen movement/scen-10-$j -tfc
traffic/cbr-10-$i -tr temptr -rpr 3;
 sent=`grep "^s.*\-Nl AGT.*\-It cbr.*" temptr | wc
-l`;
 echo "$j $i $sent" >> e2eseqnumagent-sent;
 route_pkts=`grep "^\(s\|f\).*\-Nl RTR.*\-It
\(E2ESeqNumAgent\|message\).*" temptr | wc -l`;
 echo "$j $i $route_pkts" >> e2eseqnumagent-
route_pkts;
 done
done

