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Abstract 

A linear discrete time-varying model utilizing recursive parameter estimation coupled 

with an adaptive dual controller is presented for real-time modeling and control of the 

compromised glucose regulatory system in patients with type-1 diabetes mellitus.  The 

performance of the proposed adaptive dual control for insulin delivery is evaluated via 

simulations using various performance indices widely adopted in existing literature. 

Compared to the clinical data (which include clinical measurement of glucose level, 

clinically-administered insulin delivery, and carbohydrate intake) collected from several 

patients over 72 hours, the simulation results show that the adaptive dual controllers 

developed in this thesis provide lower occurrence of hyperglycemia and hypoglycemia. 

 

In simulations, a virtual patient in the form of a linear time-varying input-output model 

was built based on clinical data using Kalman-filter based recursive parameter estimation. 

This virtual patient is then used in the simulations to evaluate the proposed adaptive dual 

controller for insulin delivery. The clinical data include measurement of glucose level, 

estimated carbohydrate intake and insulin delivery rate for five patients over 72 hours in 

5-minutes intervals.  Due to temporary interruptions in the data, the longest stretch of 

uninterrupted data was used, of which 49 hours was the minimum. Each of the patients 

was diagnosed with type-1 diabetes and under continuous subcutaneous insulin infusion 

plus bolus treatment. The virtual patient model takes into account the absorption and 

transport time delays existed in the subcutaneous insulin injection and carbohydrate 

intake in its design of the finite impulse filters for the system inputs. In evaluation of the 

virtual patient model, model correlation coefficients which are generated between half-
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hour future blood glucose prediction and clinical data glucose measurement, ranged from 

0.84 to 0.96, showing sufficient model accuracy. 

 

Based on Kalman-filter estimation of system parameters from the virtual patient (the 

algorithm itself does not depend on the model of the virtual patient, and hence can be 

applied to any simulation environments as well as real clinical environments), an 

adaptive dual controller is designed to determine the insulin injection based on the 

feedback information of the glucose measurement, together with the estimated carb 

intake. 

 

The adaptive dual control algorithm minimizes two cost functions in the calculation of 

the control input in an attempt to cautiously track the target value while simultaneously 

providing persistent excitation required for accurate parameter estimation.  Simulations 

show that the adaptive dual controller developed in this thesis has better control of type-1 

diabetes with statistical significance when compared with the clinical treatment used 

during data acquisition. The results show that the adaptive approach based on real-time 

model estimation coupled with dual control could be a potentially very promising tool for 

closing the loop in blood glucose control in those with type-1 diabetes. 

  

Compared to the conventional approaches based on compartmental models and non-

adaptive control designs (either classical PID controllers or modern optimal control 

designs) in the current literature, the proposed empirical modeling based on online 

recursive parameter estimation, together with adaptive control design has several 

advantages. First, the modeling and control designs can be used for patients in a natural 
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living condition, with meal intake and exercises, noting the lack of a good meal model in 

the existing compartmental-model based control designs. Second, the proposed adaptive 

control approach provides the ability to track the time-varying behavior in a diabetic 

patient and react fast. Finally, the proposed framework allows easy extension to taking 

into account various factors that could affect patient’s diabetic control such as exercises, 

stress levels, etc in the future study.       
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Chapter 1: Diabetes Mellitus: An Introduction 

1.1 Overview 

Type-1 diabetes mellitus is a disease of the glucose regulatory system (GRS) in which, the 

blood glucose concentration is completely uncoupled from pancreatic insulin secretion. 

In type-2 diabetes, either the pancreas does not produce insulin in sufficient quantity, or 

the insulin produced is not effectively utilized by insulin sensitive tissues (impaired 

insulin action).  Several pathological processes have been linked to the development of 

diabetes mellitus, including: autoimmune destruction of the beta cell, naturally increasing 

insulin resistance, and naturally decreasing insulin secretion [30]. Diabetes mellitus is 

diagnosed by either fasting hyperglycemia or by elevated glucose levels during an oral 

glucose tolerance test (OGTT) [30]. 

 

Until the National Diabetes Data Group (NDDG) published their classification system 

[66] in 1979, there was “no general accepted systematic categorization” for diabetes 

mellitus [30].  The World Health Organization (WHO) expert committee on diabetes and 

the WHO study group on diabetes later backed the findings of the NDDG system.  

Revisions on the initial classifications of diabetes later came from the Expert Committee 

on the Diagnosis and Classification of Diabetes Mellitus [31, 32]. These organizations 

defined a few types of diabetes.  The most common two have been aptly named type 1 

and type 2, while gestational diabetes mellitus and prediabetes are less publicly discussed 

forms [16]. All forms of diabetes relate to the patients inability to naturally control blood 

glucose [17, 30]. 
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Type 1 diabetes mellitus (T1DM), previously called Insulin-Dependent Diabetes Mellitus 

(IDDM) or juvenile onset diabetes mellitus, is an autoimmune disorder and results in the 

destruction of pancreatic beta cells by the subject’s immune system. These beta cells are 

the only natural source of the hormone insulin which is crucial in regulating blood 

glucose [30, 31]. Type 1 diabetes is common in children and young adults but has been 

known to onset at any age. Type 1 diabetes accounts for between five and ten percent of 

diagnosed cases. Risk factors for type 1 diabetes include autoimmunity, genetic and 

environmental [17, 30]. 

 

Type 2 diabetes mellitus (T2DM), previously called non-insulin-dependent diabetes 

mellitus (NIDDM) or adult onset diabetes, is characterized by a lack of insulin secretion 

and/or an increased resistance to the action of insulin (insulin resistance: IR). It is often 

undiagnosed until serious long term complications arise [30]. Type 2 diabetes mellitus 

makes up ninety to ninety-five percent of all diagnosed cases. During the onset of type 2 

diabetes, the action of insulin is reduced (increased insulin resistance). This requires the 

pancreas to secrete more insulin, eventually reducing the pancreases ability to produce it 

[17].  

 

Gestational Diabetes occurs in some women during pregnancy and requires treatment to 

void infantile complications. Obesity and genetics are the main risk factors. Women with 

gestational diabetes may develop permanent diabetes, usually being type 2. This occurs 
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immediately after pregnancy for between five to ten percent of women and for fifty 

percent of women in ten years [16, 17].  

 

Prediabetes is a condition where unusual blood glucose levels are present but are not 

significant enough to diagnose diabetes. People with prediabetes are at an increased risk 

of developing T2DM. Impaired fasting glucose (IFG) and impaired glucose tolerance 

(IGT) are indicators of prediabetes [17]. IFG occurs when the blood glucose is between 

100-125 mg/dl after an overnight fast. IGT occurs when the blood glucose level is 

between 140-199 mg/dl after a two hour glucose tolerance test [31]. For the years 1984-

1994, of all adults in the United States, 33.8% had IFG, 15.4% had IGT and 40.1% had 

prediabetes (IGT, IFT or Both) [17]. The progression from prediabetes to diabetes is not 

guaranteed. Losing weight and increasing physical activity has been shown to reduce 

blood glucose levels to normal [17]. 

 

People with type 1 diabetes require insulin deliveries from outside sources due to the lack 

of β-cell population. Type-2 diabetics may require deliveries to supplement their 

insufficient production, inadequate utilization, or both [17].  Decreasing body weight, 

following a specific diet, exercising, and taking oral medications all can reduce the need 

for exogenous insulin.  Many methods and devices are available for insulin delivery. The 

deliveries are accomplished using either an insulin pump or via direct injection.  In both 

cases insulin is deposited into the subcutaneous tissue. Of those diagnosed with diabetes 

(types 1 and 2) between 2004 and 2006 in the United States, fourteen percent take insulin 
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only, thirteen percent take both insulin and oral medication, fifty-seven percent take oral 

medication only and 16 percent take no medication [17]. 

 

Currently, treatment of diabetes is a process which requires measuring the blood glucose 

regularly and deciding on appropriate bolus delivery amount around meal time. This 

decision is routinely (and intuitively) made based on current blood glucose, past blood 

glucose, past insulin delivery, past carbohydrate intake and forecasted carbohydrate 

intake.  Some basic equations have been developed for calculating an appropriate dosage 

of insulin from a known meal size (see the 1500 and 1700 Rules [26]). These equations 

are general and must be modified to the individual patient. 

 

The main affect of the disease is hyperglycemia; which results in chronic health 

problems. However, hypoglycemia is a major side effect of treatment, specifically over-

treatment [25]. Hypoglycemia has acute effects and poses more of an immediate danger 

to the body. 

 

Complications from hyperglycemia include heart disease, stroke, blindness (retinopathy) 

high blood pressure (hypertension), kidney disease (nephropathy), nervous system 

disease (neuropathy), amputations, dental/gum disease (gingivitis), sexual dysfunction, 

and complications during pregnancy [17, 30].  These complications have been related to 

the degree of “uncontrolled” blood glucose over time, most being chronic conditions 

[17]. Retinopathy, nephropathy and peripheral neuropathy are the most common [17, 30].  
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Polyuria (frequent urination), polydipsia (frequent drinking/thirst), polyphagia (frequent 

eating/hunger), and weight-loss are common symptoms of hyperglycemia [30]. 

 

The vast majority of hypoglycemic episodes in patients with type 1 diabetes mellitus 

(T1DM) result from the over administration of insulin, so-called iatrogenic hypoglycemia 

[25].  Treatment can push the blood glucose concentration low enough that cognitive 

impairment, blurred vision, unconsciousness, organ failure, coma, and death have been 

known to result.  Hypoglycemia has been defined as a blood glucose concentration less 

than 60 mg/dl (with some restrictions, which will be defined later) [41, 25], and severe 

hypoglycemia less than 30 mg/dl [94]. 

 

In 2007, the direct medical expenses related to diabetes were estimated to reach $116 

billion. Indirect expenses such as disability payments, work loss, and premature death 

were estimated at $58 billion. This totals to $174 billion in 2007 alone [17].  With these 

large figures, it is no wonder that in recent years there has been such a vast amount of 

research relating to achieving closed-loop control and finding a permanent cure. 

1.2 The Biology behind the Disease 

Extracting usable energy from chemical compounds, stored primarily in the bonds of the 

structure, is known as metabolism [55].  Glucose is the primary fuel used in metabolism 

in the human body. The pancreatic hormones insulin and glucagon are the tools the body 

uses in the regulation of glucose metabolism. These two hormones have opposite effects 

on the blood glucose concentration and thus have opposite triggers.  Other hormones, 
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such as: epinephrine, cortisol and the human growth hormone (HGH) have also been 

shown to have minor influences in regulation [25].  

 

In normal humans, when the blood glucose concentration is low, insulin concentration 

drops (there-by reducing insulin dependent glucose utilization, see below) and α-cells in 

the pancreas produce glucagon. The glucagon triggers the liver into producing glucose 

(hepatic glucose production or endogenous glucose production). This glucose is made 

from glycogen (stored in the liver) and glucagon. This glucose is then secreted back into 

the blood stream, raising the blood glucose concentration [55].  When the blood glucose 

is very low, elevated levels of the hormones epinephrine, cortisol, and HGH help 

stimulate hepatic glucose production and slow insulin dependent glucose utilization [25].  

Elevated blood glucose concentrations cause the α-cells stop making glucagon and the β-

cells start producing insulin.  In most cells, insulin is required for glucose to pass through 

the cell membrane.  When insulin receptors are filled, glucose transporters (specifically 

GLUT4) aid glucose uptake into skeletal muscle and adipose tissue (the main consumers 

of glucose) [90].  GLUT4 transporters, and thus glucose utilization, have also recently 

been shown to be activated by exercise [36, 38, and 90].  The liver is also a consumer of 

glucose. Hepatic glucose uptake allows the liver to act as described above, as a counter 

regulatory (prevent hypoglycemia) agent.  Renal clearance of glucose to the urine is 

another natural regulatory measure. Glucose uptake lowers the blood glucose 

concentration completing the closed loop system. The major parts of a healthy glucose 

regulatory system (GRS) are diagramed in Figure 1.1. 
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Figure 1.1: Diagram of the main functions in the glucose regulatory system 

 

In diabetic people, the pancreas does not produce insulin (or enough insulin) and/or the 

action of insulin (glucose transportation into cells) is compromised (insulin resistance) 

[30].  This results in partial or complete dysfunction in the glucose regulatory system 

(GRS), ultimately manifesting itself as hyperglycemia.  Additionally, counter regulatory 

functions (such as glucagon and epinephrine secretion) have also been shown to be 

compromised in people with type 1 diabetes mellitus (T1DM) [25].  The counter 

regulatory functions in those with type-2 diabetes mellitus (T2DM) has been shown to 

degrade with time [25]. 
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Many outside influences make the regulation of glucose a difficult task.  Natural 

disturbances, in the form of digestion forced glucose increases, occur primarily after 

meals and snacks (postprandial hyperglycemia). During treatment of diabetes, unnatural 

disturbances frequently occur in the form of exogenous insulin and glucose injections and 

intake.  These events make the blood glucose trajectory rather time variant. Iatrogenic 

hypoglycemia is the major obstacle in achieving euglycemia in diabetic patients and 

makes control a non-trivial task [25].  

1.3 Blood Glucose Measurement 

The measurement of the blood glucose concentration started to gain technical attention in 

the middle of the last century, as noted by [48, 93].  Ever since these times, blood glucose 

measurement has been an essential part of the treatment of diabetes.  Sensor accuracy is, 

of course, very important in this specific case due to the possibility of insulin over-

dosage.  Originally, many traditional statistical measures were used to characterize 

accuracy of glucose measurement including linear regression, percent deviation, and 

standard deviation.  These statistics, while sufficient for most applications, have specific 

problems in accurately describing glucose sensor performance (these problems are further 

discussed in [18]).  In 1987, Clarke et al devised an error grid analysis which rates the 

difference of the reference value and system generated value into five zones (A-E, A 

being good, E being not good). Although the error grid analysis is not a perfect statistic 

[24], it has become widely reported in literature [27, 64, and 92]. 
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In the case of self monitoring of blood glucose (SMBG), measurement inaccuracy 

encompasses both inherent sensor inaccuracy and human misinterpretation. For closed-

loop systems, the human impact is avoided. 

 

‘Finger-stick’ devices have become commonplace in the management of diabetes.  There 

are a plethora of devices on the market today, most being relatively cheap. For this 

reason, a review of all the devices on the market will not be given.  However, reviewing 

accuracy of these meters is important.  According to [67], there is no universal standard 

of measurement error for “finger-stick” monitors. However, the International 

Organization for Standardization (ISO) 15197 is widely accepted.  This states that for 

blood glucose levels less than 75 mg/dl, meters should report values less than 15 mg/dl 

from the reference value.  For blood glucose levels above 75 mg/dl, the meter should 

report values no more than 20% from the reference value.  For obvious reasons, it has 

been suggested that the error tolerance over the entire range of glucose values be changed 

to ±5 mg/dl from the reference value [67]. 

 

The first commercial continuous blood glucose meter came on the market in 1999.  The 

Continuous Glucose Monitoring System (CGMS; Medtronic MiniMed, Northridge CA, 

USA) uses a hydrogen peroxide-based enzyme electrode to accomplish the sensing.  

Samples are taken from the subcutaneous (sc) tissue.  Sampling at ten seconds intervals, 

the meter filters the data and stores a reading every five minutes, with data stored for a 

maximum of three days [41].  The system has an inherent time-delay of two and a half 

minutes [28].  Calibration is recommended four times per day via comparison with self-
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monitoring of blood glucose (SMBG) and requires another commercially available meter.  

A newer, more accurate ‘Gold’ version was realized in 2002 [28]. 

 

Many studies have focused on this initial monitoring system [62, 63] (most of which are 

summarized in [41]).   The studies claim a CGMS to SMBG correlation of 0.85, a mean 

absolute deviation of 15% with 42% of readings within 15 mg/dl of the reference [41, 

28].  Sensor failure rate was recorded at 28%.  Over estimation of hypoglycemic and 

hyperglycemic episodes were recorded with reproducibility also in question [41].  

Though not without its problems, the CGMS led the continuous blood glucose monitors 

onto the market. 

 

The long term sensor system (LTSS; Medtronic MiniMed, Northridge CA, USA) uses 

their long term glucose sensor to measure blood glucose intravenously (iv).  It has been 

reported that >95% of LTSS reported measurements lie within zones A and B of the 

Clarke error grid. Additionally, the LTSS has been shown to provide reliable readings for 

14 months [75]. 

 

The GlucoWatch G2 Biographer (Cygnus, Redwood City, CA) received FDA approval in 

2002 as a temporary (thirteen hour maximum) continuous monitoring device.  It operates 

without puncturing the skin by electrically pulling fluids through the skin and produces a 

measurement each ten minutes [32].  This method, while convenient, yields a glucose 

value that has a mean seventeen-and-a-half minute time delay compared to a venous 

measurement.  The meter has been shown to be less accurate than the CGMS with 31% 
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of reading within 15 mg/dl of the reference and a false hypoglycemic alarm rate of 51% 

[28].  The GlucoWatch G2 Biographer is a convenient alternative to the CGMS, however, 

due to the longer measurement delay and higher measurement error, it is not as useful to 

those focused on achieving closed-loop (CL) control. 

 

In 2004, Guardian Continuous Monitoring-System (GCMS; Medtronic MiniMed, 

Northridge CA, USA) was realized.  It acquires interstitial glucose readings every 5 

minutes after an initial calibration and can provide the user with alerts for both low and 

high glucose levels.  Sensor replacement intervals were not stated.   According to 

MiniMed, the sensor has a mean absolute difference (from reference values) of 19.7% 

with 61.7% and 34.4% were in zones A and B respectively of the Clarke error grid [64]. 

 

The Free Style Navigator (Abbott Diabetes Care, Alameda, CA) was approved by the 

FDA for continuous glucose monitoring over the course of five days.  The system 

requires a ten hour start up period with calibration accomplished internally and provides 

an interstitial glucose measurement every minute [92].  The sensor has been shown to be 

rather accurate over the five day period with 81.7% and 16.7% in zones A and B of the 

Clarke error grid [92]. 

 

The DexCom Seven STS continuous glucose monitor appeared on the market in 2007 

[CM].  A revised Seven+ version has recently been released [27].  DexCom reports that 

the monitor can accurately measure subcutaneous glucose for a period of seven days with 

calibrations occurring every twelve hours.  It was reported that 96% of all measurements 
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lie within zones A and B of the Clarke error grid [27].  Other reports have shown this 

sensor to have an operational life on the order of three months [75]. 
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Chapter 2: Literature Review on GRS Models and 

Closed-loop Control Prototypes 

This chapter gives a short review on mathematical models and closed-loop controllers for 

the glucose regulatory system (GRS).  More extensive reviews can be found in [41, 42, 

57, and 85].  

 

2.1 GRS Models 

GRS models have been developed for many purposes.  Initially they were developed to 

aid in understanding the inherent dynamics in normal (non-diabetic) animals and people.  

Models eventually expanded into the realm of diabetic subjects where, among other 

things, endogenous insulin production is compromised.  In recent years, new models have 

focused on complementing a potential artificial pancreas (AP), specifically on selecting 

appropriate insulin injection amounts.   

 

It is important to note that most GRS models have a compartmental structure which 

characterizes the flow of material (glucose, insulin, etc) through different tissues and 

organs.  GRS models have been traditionally classified into two general categories: 

minimal (simple) and comprehensive (complex) [19].  Simply put, minimal models 

attempt to simulate the most important governing relationships with, as the name 

suggested, the minimum amount of terms.  More aggressive definitions have stated all 

parameters should be a priori identifiable. Either way, these models are friendly in terms 

of mathematical tractability.  Comprehensive models are focused on modeling everything 
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of importance in order to achieve the desired correlation, without regard to mathematical 

tractability, model reproducibility and parameter identifiably.  This categorization will be 

maintained within this work. 

 

Assessing the quality of each model can be accomplished by analyzing its realism and 

robustness [19]. Validation of realism is done through correlating model predictions and 

parameters to clinical measurements. Determining robustness is done is much the same 

way, but occurs under a variety of operating conditions.  A robust GRS model should be 

able to accurately simulate the dynamics during conditions ranging from fasting to meals 

and exercise. 

2.1.1 Comprehensive Models 

In 1975, Carson and Cramp [15] developed one of the first comprehensive models. Its 

multi-compartment nonlinear structure was developed to include explicit relations of the 

physiology known at that time.  The model consists of six compartments: blood glucose, 

liver glucose-6-phosphate, liver glycogen, blood insulin, blood glucagon, and blood 

adrenalin (epinephrine).  This model is a great example of the comprehensive type due to 

the vast amount of information the creators tried to simulate.  

 

In 1981, Cobelli and his colleagues [21] introduced a new concept of having multiple 

compartments for one compound.  Both glucose and glucagon subsystems have one 

compartment each.  However, the insulin subsystem has a total of five compartments 

corresponding to the pancreas, liver, portal plasma, plasma and interstitial fluid.  Like 

most GRS models, the model developed by Cobelli et al uses mass balance equations to 
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describe the flow of material.  In this case, glucose, insulin and glucagon are analyzed. 

Similar to many other GRS models, determining some of the model parameters can be 

difficult due to the inability of observing them.  Model performance was based on 

comparison to clinical data obtained during intravenous glucose tolerance tests (IVGTT) 

performed on five separate human subjects. Correlation was good, but data was limited to 

90 minutes making prediction past that mark extraneous.  Insulin-dependent glucose 

utilization is important within the context of this thesis.  Figure 2.1 shows both insulin-

dependent glucose utilization and the model correlation. 

 

 

Figure 2.1: Modeled Insulin-Dependent Glucose Utilization (Left) and Comparison of model 

prediction to clinical data following an IVGTT in a non-diabetic human (Right), adopted from [21] 

 

Lehmann and Deutsch published a model in 1992 [54]. The primary goal of this model 

was to educate patients and medical professionals on how to effectively control type-1 

diabetes.  This is achieved via showcasing the effects of proper and improper insulin 

dosing on blood glucose.  The model consists of a single glucose compartment, 

representing the blood plasma, and two insulin compartments.  The insulin has been 
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separated into plasma and ‘active’ insulin.  Glucose enters its single compartment by way 

of a time-delayed gastric absorption and hepatic production. Glucose exits the 

compartment through insulin dependent utilization (muscle and adipose tissues), 

independent utilization (central nervous system and red blood cells (RBC)), hepatic 

intake, and renal secretion to the urine [54].  Plasma insulin is governed by subcutaneous 

injection and hepatic degradation.  Active insulin is related to plasma insulin through first 

order dynamics and is responsible for glycemic control.  The renal secretion of glucose is 

an important feature of this model above the previously described.  It is modeled in a 

piecewise nature: zero secretion below a specified blood glucose threshold and linear 

with blood glucose above that threshold.  The slope of the linear portion represents the 

creatinine clearance (glomerular filtration) rate [54]. 

 

The model by Hovorka et al presented in [44, 45] is the state of the art in terms of the 

structure of the glucose regulatory system.  It is a time-varying, non-linear, multi-

compartment model containing multi-compartment subsystems which describe 

subcutaneous insulin absorption/action and glucose absorption from the gut.  This model 

is especially important due to its contribution into recent attempts at the Artificial 

Pancreas (AP).  The model is given by Equation 2-1 through Equation 2-9. 
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where, Q1 and Q2 represent the blood glucose mass in the accessible and non-accessible 

compartment respectively, VG and VI are the distribution volumes of the accessible 

glucose and insulin compartments respectively, G is the measurable blood glucose, EGP0 

is the endogenous glucose production, F01
c
 is the non-insulin dependent glucose 

utilization, FR is the renal glucose clearance, UG is a two compartment chain of glucose 

absorption from the gut, UI is the insulin absorption rate, tmax,G and tmax,I are the times of 

maximum absorption rates for the glucose and insulin respectively, and k12, ke, ka1, ka2, ka3 

are transfer rate constants. 

 

Many other comprehensive models can be found in [2, 29, 35, 39, 55, 58, 59, 78, 82, 89, 

91, the review paper 57] and references therein. 
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2.1.2 The Minimal Model and Its Variants 

The minimal model was first developed by Bergman et al [9] in 1979 in their attempt to 

make measuring insulin sensitivity less invasive then previous methods.  Since then, it 

has become the most widely studied model. Many revisions have been published 

afterwards [10, 12, 22, 23].  The minimal model is given by Equation 2-10 and Equation 

2-11. 

41 )())(( ptGtXpG   Equation 2-10 

)()( 32 tIptXpX   Equation 2-11 

where G is the blood glucose concentration, I is the blood insulin concentration, X is a 

variable proportional to the blood insulin concentration, p1 and p2 are material transfer 

rates, p3 is a conversion factor and p4 is the net expected hepatic glucose balance. 

 

In [9], to evaluate the minimal model, a series of Intravenous Glucose Tolerance Tests 

(IVGTT) were conducted on a set of five non-diabetic canines. Glucose and insulin 

concentrations were recorded every minute for one hour following the injection of three 

different quantities of glucose: 100, 200 and 300 in units of milligrams per kilogram of 

body weight (mg/kg).  The data was then fed into seven different and relatively simple 

dynamic models. Each model was systematically scored on its ability to predict the blood 

glucose concentration based on estimated model coefficients. The 'best' model was 

selected on its ability to predict blood glucose concentration for each of the three 

injection amounts (see Figure 2.2).  Lines indicate model estimates, circles are data 

points. The smaller of the two lines is plotted on a second axis and represents the volume 

of insulin in the remote compartment. 
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Figure 2.2: Prediction of blood glucose concentration and simulated insulin volume in the remote 

compartment following IVGTT in canines (figure adopted from [9]) 

 

In [9], the insulin sensitivity index (SI) is introduced as a ratio of model parameters, given 

by Equation 2-12.   This is a measure of how much the glucose concentration will 

decrease based on a specified amount of insulin concentration.  Similarly, the glucose 

effectiveness (SG) is defined and given by Equation 2-13.  

23 / ppS I   Equation 2-12 

1pSG   Equation 2-13 

A three compartment version of the minimal model was published in 1999 by Cobelli et 

al [20] in an effort to better model insulin sensitivity (SI) and the glucose effectiveness 

index (SG).  Data had shown these values to be underestimated and over estimated 

respectively [20].  The main modification by Cobelli et al to the minimal model is the 

addition of a non-accessible glucose compartment.  The non-accessible nature of the new 
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compartment forced Bayesian parameter estimation to be used in modeling instead of 

their preferred clinical measurement approach.  The revised model is given by Equation 

2-14 through Equation 2-16. 

  bQptQktQtXkptQ 1121212111 )()()()(   Equation 2-14 

)()()( 2121212 tQktQktQ   Equation 2-15 

])([)()( 32 bItIptXptX   Equation 2-16 

11VpSG   Equation 2-17 

  123 / VppS I   Equation 2-18 

2.2 Closed Loop Control for T1DM 

Traditionally, blood glucose concentration in patients with type-1 diabetes mellitus 

(T1DM) is controlled by providing the body with exogenous insulin in the form of either 

bolus only or boluses combined with basal insulin.  The latter is frequently referred to as 

continuous subcutaneous insulin infusion (CSII) and is accomplished with the assistance 

of an insulin pump. 

 

In either case, the dose of a preprandial insulin bolus is routinely calculated through the 

estimation of the carbohydrate (CHO) content of the anticipated meal [26] and a pre-meal 

blood glucose measurement. Both treatment methods mentioned above employ 

subcutaneous (sc) blood glucose (SMBG) testing at regular intervals to detect and avoid 

deviations from euglycemia through either additional insulin injections or food 

consumption. 
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Various closed-loop control algorithms have been implemented on various models and in 

clinical settings.  These include classic controllers, most notably the proportional-

integral-derivative (PID) (and its variants) and the linear model predictive controller 

(MPC) [49].  Other control schemes such as non-linear MPC [44], robust H∞, and sliding 

mode control have also been implemented [50]. 

 

The insulin infusion rate (IIR) corresponding to the PID controller is given by (Equation 

2-19), where BG(t) is the measured blood glucose at time ‘t’ [41].  Controller gains KP, 

KI, KP and KC usually are constants tuned offline using a validated numerical model of 

the system under control. Gt is the target value of the blood glucose and can be selected. 
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The insulin infusion rate determined by MPC results from minimizing a cost function 

over some finite horizon.  For a general linear time variant (LTV) system characterized 

by A(t) and B(t), Equation 2-20 represents a quadratic cost function to be minimized with 

represent to the input ‘u’, where the matrices Q and R represent the weight on the state(s) 

and input(s) respectively. 
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Equation 2-20 

In addition to the various controllers, there are a few interfacing options when connecting 

a closed loop (CL) system to a patient [41].  The variety of options related to how the 

blood glucose in measured and how the insulin is injected.  There are two basic 
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measuring paradigms. The first option is to subcutaneously (sc) measure the blood 

glucose concentration.  This method, however useful, is fundamentally flawed, because 

the glucose concentration in the subcutaneous tissue is not the blood glucose 

concentration [72].  It has been shown to have a time delay of about 25 minutes [41].   

The second option is to measure it intravenously (iv). This yields a faster measurement 

but has issues with implanting the sensor, infection, etc. 

 

There are three major schemes of insulin delivery.  The first is to subcutaneously deliver 

insulin.  This is currently the most widely used method as both insulin pens and pumps fit 

into this category. It has the advantage in that there are over 200,000 wearable insulin 

pump users [46, 69]. However, this method has a large time delay associated with 

absorption [41] and could potentially lead to controller instability.  The second option is 

to delivery insulin intravenously and is the closest to duplicating nature.  Delivering 

insulin intraperitoneal (ip) tissue is the third option.  There is a slightly less absorption 

time delay when compared with the sc route [41] but is still greater than an iv injection 

[52]. 

 

When combined in an abbreviated form, these sensing/delivery routes make an efficient 

categorization of closed loop systems.  Examples are a subcutaneous sensor combined 

with a subcutaneous delivery method, appropriately abbreviated sc-sc. Likewise, there 

are numerous combinations, including: iv-iv, iv-ip, sc-iv, etc. 
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It must be mentioned that though a potential engineered AP might have the ability to 

adequately replace a defective pancreas, it would, by no means, be a cure for the disease.  

Presenting potential cures for diabetes is outside the scope of this thesis, but could come 

in the form of stem cell treatment, islet transplantation, islet encapsulation, or other 

methods [42]. 

 

2.3 Obstacles and Challenges to Closed Loop Control 

Iatrogenic hypoglycemia is the major hurdle to overcome in order for closed-loop control 

to reach mainstream society, due to its acute and potentially deadly effects [12, 25, and 

88].  The main cause is over-dosing insulin, something easily attainable through an 

insufficiently engineered system. The glucose regulatory system is a high-order, non-

linear, time-variant, and population-variant system [44].  These facts make preventing 

hypoglycemia whilst treating hyperglycemia, especially during and after meals, a difficult 

task.  This difficulty in system control is made evident by the variety of health problems 

which commonly result under the current CSII plus bolus treatment method [17]. 

 

At this point in time, research has not granted us with the ability to continuously and 

confidently measure blood glucose without frequent calibration and/or sensor 

replacement over the long term.  All CGM devices currently approved by the FDA have 

an ‘adjunct’ labels, meaning the continuous measurements do not replace SMBG [42]. 

Until continuous glucose sensors become reliable, long lasting and receive a 

‘replacement’ label from regulatory agencies, closed loop control will only occur in 

clinical settings.  Additionally, the time lag between blood glucose and subcutaneous 
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tissue glucose is significant [88].  Time-delays could have a destabilizing effect on 

closed-loop systems.  Many sensors (described in section 1.3 of this thesis) measure the 

glucose concentration in the interstitial fluid of the subcutaneous tissue and this time 

delay should be taken into consideration during control design to avoid possible 

complications. 

 

While historically, modeling the glucose regulatory system has yielded insight into the 

inner-workings of the bio-physical system and laid the groundwork for several 

adequately performing controllers (see section 2.5), but it has not yet produced a 

universal closed-loop control solution to diabetes.  In addition to the common themes of 

GRS modeling, such as: insulin sensitivity and effect, carbohydrate (CHO) (or food) 

sensitivity and effect, renal clearance, non-insulin dependent glucose utilization, etc, one 

also must take a step back and wonder how these common themes are affected by other 

biophysical conditions and mental states.  Conditions such as stress [91], fatigue, sexual 

arousal and other hormone levels (epinephrine, cortisol, growth hormone, adiponectin, 

and resistin) [15, 25, 47 and 91], could potentially have a great impact on the governing 

biology. For example, modeling the effects and consequents of exercise in patients with 

T1DM has not yet reached mainstream engineering literature [12].  However, a few 

studies have been focused on the physiologic changes which occur during exercise.  

These changes more generally include an increase in glucose utilization, hepatic glucose 

production, blood flow and heart rate [1, 12].  From experiments in diabetic rats, exercise 

has shown to significantly increase short-term glucose uptake into skeletal muscle and 
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adipose tissues [36].  Similarly, a long-term increase in insulin sensitivity has been shown 

to result from exercise, in both acute and chronic forms [38]. 

 

2.4 Evaluating Quality of Control 

There is no universal measure of controller performance for type-1 diabetes treatment and 

management [41].  Many methods have been suggested: A1C blood test [17], diurnal 

mean blood glucose concentration [81], preprandial BG, two-hour postprandial BG, 

morning glycosuria [80], number of hypoglycemic events [41, 81], the percentage of time 

spent within euglycemia [40, 41, 80], mean amplitude of glycemic excursions (MAGE) 

[81], the M-value [80], the J-index [94] and the control-variability grid [56].  Among 

them, the first several measures are quite self-explained. In the following, more details on 

MAGE, M-value and J-Index are given. 

 

The mean amplitude of glycemic excursions (MAGE) statistic was developed by Service 

et al [81] in the early ‘70s.  It is a measure of the amplitude of the glucose extrema.  

However, only extrema which are greater then one standard deviation of the daily blood 

glucose from the last extrema are used in the calculation of MAGE [81]. 

 

The M-value was designed in the mid 1960’s as a method of more heavily weighting 

hypoglycemic events while still effectively measuring the overall control [80].  The M-

value has historically been the most widely used measure of glucose control, especially 

within the clinical setting [94].  One downside to this statistic is the variability in which it 

can be calculated [94]. The general form is shown in Equation 2-21 below, where ‘A’ and 



26 

‘B’ are constants.  These constants were initially chosen to be 10 and 80 respectively; 

however these have been modified several times [91].  In this thesis, two M-values will 

be reported. The two most common forms: A=10 with B=80, and A=10 with B=120 

produce aptly named M80 and M120 statistics, respectfully. 
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In 1990, the J-Index was developed in an effort to create a more uniform reporting 

statistic for blood glucose control [94].  It addition to Equation 2-22, the author published 

a scale consisting of 4 levels of control shown in Table 2.1.   

 2)(())((001.0 tBGstdtBGmeanJ   Equation 2-22 

 

Quality of Control J-Index 

Ideal 10 ≤ J ≤ 20 

Good 20 < J ≤ 30 

Poor 30 < J ≤ 40 

Lack of Control J > 40 

Table 2.1: Grading Scale for J-Index [94] 

 

With the mean blood glucose value, percentage of time within euglycemia, the MAGE, 

M80, M120, J-Index, and the number of hypoglycemic events, one has enough 

information to rate and compare controllers and clinical treatment.  All of these statistics 

will be reported within the context of this thesis. 
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2.5 Closed Loop Prototypes 

Simulation studies have been widely used in the research for GRS, e.g,  in [14], a 

proportional-derivative-2nd derivative (PDD2) controller was designed and implemented 

on the minimal model [9, 23] (with some modifications) during IVGTT for various 

glucose loads; in [68], a linear MPC is applied to a nonlinear 19th order model during an 

OGTT;  in [60], a bolus plus PID algorithm was designed using the model by Hovorka et 

al; to name a few. Several closed-loop systems have been developed throughout the years 

with implementation limited to a supervised clinical setting.  Clinical experiments are 

expensive and potentially dangerous which is why numerical controller simulation is 

popular.  However, some controllers have been tested in a supervised clinical setting with 

success.  A short summary of these prototypes is given below and readers can refer to 

[41, 42, and 85] and references therein for detailed information. 

 

In 1974, Dr. Albisser published the first attempt at an artificial pancreas with clinical tests 

on six dogs [3] and three humans [4].  They developed and tested an iv-iv type monitor 

and control scheme with the capability of delivering both insulin and dextrose.  The 

dextrose was used as an agent to prevent hypoglycemic events.  In other experiment, the 

system was implemented without the dextrose infusion to test a more practical system 

[11].  Later modifications to the original system were tested again with similar results 

[51, 61].  Insulin injection, of the original system [3, 4], was determined in two different 

ways.  The first uses a function of current glucose measurement ‘G’ (Equation 2-23).  

The second function has the same form as the first, but uses a forward blood glucose 

prediction ‘GP’ calculated from the rate of change in BG (Equation 2-24 and Equation 
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2-25). Dextrose injection was determined using the same functional relationship using 

different parameter values (Equation 2-26) [3].  Results were universally positive and are 

shown in detail in [3, 4, 51, and 61]. 
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The Glucose Controlled Insulin Infusion System (GCIIS: or Biostator TM), introduced in 

1977, was the eventual result of the initial research by Dr Albisser. Its use was limited to 

clinical settings due to its size, need for constant supervision, and tendency for over 

treatment of insulin.  The tendency to over infuse insulin was partially due to the fully 

closed-loop (lack of meal announcement) nature of the controller [41]. 

 

Dr. Shichiri headed the group responsible for the second prototype of an artificial 

endocrine pancreas (AP). This work eventually resulted in a small bedside version, the 

STG-22 (Nikkiso Co. Ltd, Tokyo, Japan) [41, 49]. The initial models were of the sc-iv 

type.  The STG-22 is of the sc–sc type and uses a combination of unmodified short-acting 

insulin and an insulin analogue (Lispro) [41].  They have most recently explored the sc–

ip method [41]. The latest device is claimed to effectively maintain euglycemia over 

seven days with no calibration and fourteen days with one calibration [37, 41].  The 

glucose sensors used in these controllers have either been a micro-dialysis type [37] or a 
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needle type [83, 84].  A simple non-adaptive PD controller was implemented for the 

device (KI=0) and KP, KD and KC are functions of the insulin in use (unmodified short-

acting or lispro) [84].  

 

In more recent years, several groups have been intensely involved in developing the 

artificial pancreas (AP), including Hovorka et al, Renard et al, Medtronic MiniMed and 

others. Hovorka and his colleagues have completed several clinical control experiments 

focusing on a sc–sc type system.  They include both closed-loop control with meal 

announcement [13, 44] and semi-closed-loop [43] control. These studies employed MPC 

using the model noted in section 2.1.1 of this thesis.  Medtronic MiniMed implemented 

an external physiologic insulin delivery system (ePID), in 2004, to work in conjunction 

with the simultaneously realized Guardian Continuous Monitoring System [64].  The 

ePID controller was designed to emulate the first and second phase response of the β-cell 

through the implementation of a PID algorithm [85-87].  Renard et al [74-77] focused on 

utilizing the long-term sensor system (LTSS, described in section 1.3 of this thesis) 

developed by Medtronic MiniMed (Northridge, CA, US) [74-77] in combination with 

their implantable physiological insulin delivery system (iPID) which delivers insulin into 

the intraperitoneal (ip) cavity.  The system has been clinically tested using a standard PD 

control algorithm in the fully closed loop mode.  With the clinical success of these newest 

prototypes, it seems that achieving long term closed loop control is becoming more 

feasible. However, sensor problems still exist and closed loop control has yet to be tested 

outside of a clinical setting. 
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Chapter 3: Simulated Dual Control 

This chapter contains the technical details and methods used within this thesis. This 

includes: clinical data acquisition, modeling of the GRS for type-1 diabetes, and the 

adaptive dual control design algorithm. 

3.1 Clinical Data Acquisition 

The Institutional Review Board at the Pennsylvania State University approved the study.  

Blood glucose concentration, insulin delivery and meal intake were recorded in five type 

-1 diabetic subjects over three days during free-living conditions.  In some cases, the 

recorded data was temporarily interrupted. Therefore, for this work, only the longest 

stretch of uninterrupted data was utilized.  The general characteristics of subjects and the 

respective data sets are shown in Table 3.1. 

 

# Age (yr) Sex Weight (kg) Height (cm) Pump Used Data Length 

1 40 M 81 170 MiniMed 508 588 

2 30 M 120 198 Animas 1250 780 

3 64 M 84 179 Animas IR 1200 589 

4 44 F 60 159 Animas IR 1200 816 

5 33 F 104 170 Animas 1200 850 

Table 3.1: Subject attributes and acquired data length 

 

Insulin dosage was recorded by each insulin pump and downloaded afterwards.  The 

insulin analogue, lispro, was used by all subjects.  The Animas 1200 series pumps deliver 
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basal insulin in pulses every three minutes.  The Medtronic MiniMed 508 pump delivers 

0.1 units of insulin uniformly dispersed in order to meet the programmed insulin infusion 

rate (IIR).  Bolus size and delivery time were controlled by the subject.  Glucose 

concentrations were recorded every five minutes using the Medtronic MiniMed 

Continuous Glucose Monitoring System (CGMS: model MMT-7102) and were 

downloaded to a PC at the end of the collection period. The manufacturer’s directions for 

use (insertion, calibration, etc) were followed. 

 

Subjects reported all meals and snacks in the form of time-stamped digital photographs.  

One photograph was taken prior to each meal/snack and, if any food was not eaten, 

another was taken of the remaining portion. Intake was estimated from the digital 

photographs and/or food packaging by a dietitian at the General Clinical Research Center 

(GCRC) during a debriefing session with each subject.  This method of estimation has 

been shown to be acceptable [53].  Food intake was then entered into Nutritionist Pro 

Version 4.0.1 (Axxya Systems), which provided the carbohydrate content of the meals. 

 

Additionally, exercise and their associated times were logged by each subject.  Subjects 2 

and 4 reported no formal exercise.  Subject 1 rode bicycle for 25 minutes on two separate 

occasions.  Subject 3 exercised for 30 minutes on a treadmill.  Subject 5 reported 

cleaning and two hours of yard work on separate occasions. 

 

Once all of this information was recorded, the insulin injection and carbohydrate intake 

was then resolved into five minute intervals matching that of the glucose monitor, thus 
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creating a time-stamped value for each blood glucose, insulin injection and carbohydrate 

intake.  The exercise that was recorded was not used within this work. 

 

3.2 Data-Driven Linear Discrete Time-Varying Model 

Many previous attempts at modeling the glucose regulatory system (GRS) have either 

focused on a specific event (IVGTT, sc insulin bolus, etc), or have had issues with the 

inherent structure of the model (a priori) or large uncertainty in parameter 

selection/estimation (a posteriori) [19].  The lack of knowledge about system parameters 

limits the available options in system identification [5]. 

 

Inter-subject variability factors such as weight, age, gender, physical fitness, and insulin 

resistance make customizing models a must. Additionally, intra-subject factors such as 

the dawn phenomenon, acute illness, circadian and diurnal rhythms force model 

adaptation to occur [42].  Due to these factors, a data-driven linear time-varying model 

was selected in this research to model the GRS.  The adaptive nature of the model allows 

it to track data well [65]. 

 

The model consists of three autoregressive components: blood glucose (Equation 3-3), 

insulin delivery (Equation 3-4) and carbohydrate (CHO) intake (Equation 3-5).  A time 

delay on both insulin delivery and carbohydrate intake is realized through a normalized 

finite impulse response (FIR) function F (see Equation 3-6 through Equation 3-7) [95] 

and is representative of the delay of subcutaneous insulin absorption [7, 41] and gastric 

absorption [54] respectively. The finite impulse response filter can be seen in Figure 3.1. 
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where, BG is the measurement of blood glucose, G is the actual blood glucose, C is the 

carbohydrate (CHO) intake, I is the insulin injection, ε is the measurement error, If is the 

filtered insulin injection (insulin injection times the finite impulse response function), and 

similarly Cf is the filtered CHO intake. Φ[G(t)] is an autoregressive component consisting 

of a linear combination of p time-lagged values of blood glucose. Similarly, Β[If(t)] and 

Γ[Cf(t)] are autoregressive components consisting of q and r time lagged values of 
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filtered insulin and filtered CHO respectively. F is the finite impulse response function 

normalized to achieve the magnitude ||F|| equal to one. 

 

Figure 3.1: Normalized finite impulse response (FIR) function F from Equation 3-6 and Equation 

3-7.  Function adapted from [65, 95], normalization was added. 

 

The FIR function (Equation 3-6 and Equation 3-7) is an averaged truncated Gaussian 

distribution.  The mean and standard deviation were twelve and nine respectively. The 

dead time was five steps (25 minutes). After averaging and normalization, the resulting 

FIR function has a dead time d of three steps (15 min), a linear increase from three to six 

steps (15 to 30 min) and length of 36 steps (3 hours).  The parameters p, q, and r were 

defined as two, six, and six respectively in [65, 95].  These selections will be maintained 

within this work and give the model 14 unknown parameters. The model memory states 

the amount of past information used in the calculation of the next step.  For this model, it 

is defined as length of the FIR filter (36), plus the maximum of the parameters q and r, 
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minus one.  For q and r equal to six, the model memory is 41 steps (205 minutes)  This is 

very similar to the model memory of 36 steps (180 minutes) used in [68]. 

 

The model, although consisting of three components, does not have a compartmental 

structure.  Unlike most other models, it is not built on first-order mass transfer equations 

between compartments.  It is designed around the fact that insulin injection reduces blood 

glucose, carbohydrate (CHO) intake increases blood glucose and that both inputs have a 

time-lagged affect similar to the FIR filter. The exact magnitude and shape of their 

respective contributions to blood glucose are estimated through the state estimation 

routine. These assumptions are the only a priori assumptions made.  The initial 

conditions of magnitude and covariance, for the unknown parameters, are the only a 

posteriori assumptions made.  This data-driven modeling is especially beneficial in this 

case due to the high order and time varying nature of the glucose regulatory system 

(GRS). 

 

In [65, 95], a second-order extended kalman filter [6] was used for parameter estimation.  

In this thesis, a standard first order kalman filter is used [34]. This will be shown to be an 

adequate estimator for parameter identification, while simultaneously reducing 

complexity.  Persistency of excitation may be the biggest problem for estimation of this 

system.  The CSII plus bolus approach to glucose control was used in the clinical data. 

This method, due to the relatively constant basal injection may satisfy persistency 

requirements, while algorithm determined control may not.  There are major 

consequences of forcing persistent excitation of the GRS during closed loop control.  
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Without persistent excitation, parameters cannot be accurately identified, potentially 

resulting in poor forward prediction and thus control.  With persistent excitation, 

hypoglycemia may result due to over medication.  Conditions for defining persistence 

excitation can be found in [5]. 

 

3.3 Adaptive Dual Control 

Dual control is an adaptive estimation and control technique in which (1) “the system 

output cautiously tracks the desired reference value” and (2) “it excites the plant 

sufficiently for accelerating the parameter estimation process” as to improve future 

controller performance [34].  These two main functions give the technique its name. 

 

Traditionally, adaptive estimation and control were done in an uncoupled manner, where 

the controller is not designed to minimize the estimation error.  This method has been 

referred to as the certainty-equivalence approach and has historically been the most 

widely used adaptive estimation and control method in applications.  This method may be 

unfavorable for diabetes control due do the “turn-off” effect which occurs when the states 

of the system reach an equilibrium point and parameter estimation, and thus adaptation, 

slows.  This “turn-off” effect also refers to the determinant of the information matrix 

approaching zero; which has been known to cause unrealistically large and fast 

adaptations [34]. 

 

In determining control action for insulin delivery in this work, we follow a bicriterial 

synthesis method and design a dual version of the Self-Tuning Regulator (section 4.2 in 
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[34]).  The method involves minimizing two separate cost functions.  The control losses 

are first minimized, given by Equation 3-10, which results in the cautious control action 

uc(k). The second cost function, Equation 3-11, is minimized in a domain around the 

cautious control, resulting in the dual control which is to be implemented on the system. 
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  2
)()(ˆ)1( kmkpkyEJ Ta

k   Equation 3-11 

where E denotes the expectation, w is the set-point or target value, y is the system output, 

r & qi are weighting parameters, u is the system input, p̂  is a vector of system parameter 

estimates, m is a vector of inputs and measured outputs and mpTˆ  is the output prediction. 

 

3.4 Connecting the Model and Dual Controller 

For experimental evaluation, the estimation and control of the adaptive dual control 

should be applied to the real patient, possibly in a clinical setting. That is, the insulin 

delivery, carbohydrate (CHO) intake of the patient together with the glucose 

measurement of the patient will be used for estimation of the patient model; and then, 

based on the estimated patient model, the insulin determined by the adaptive control will 

be delivered to the real patient.  However, in this work, clinical evaluation of the dual 

controller was not conducted, i.e. the application of the dual-control generated insulin to 

the real patient, and glucose level measurement from the real patient resulted from the 

control-generated insulin delivery were not implemented. Instead, simulations are used to 

evaluate the dual controller. In the simulations conducted in this thesis, a virtual patient is 
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generated, which is the data-driven linear, time-varying GRS model given in Equation 

3-1 to Equation 3-9, derived using a first-order Kalman filter using clinically obtained 

data.  This virtual patient model is similar to the work presented in [65], by our research 

group, except a lower-order estimation routine was used in this thesis. This virtual patient 

simply defined a multi-input/single output (MISO) relationship which could accurately 

simulate the dynamics of the glucose regulatory system (GRS).  Carbohydrate (CHO) 

intake is the disturbance input and insulin injection is the control input, and blood glucose 

is the single output.  The virtual patient is fully defined by the coefficients φi, βi, and γi in 

the model described in section 3.2 and as described in [65]. The quality of fit for the 

virtual patient is presented in section 4.1 of this thesis. In the future, evaluation of the 

adaptive controller using a FDA-approved simulation platform is planned.  

  

As shown in Figure 3.2, at each iteration of the adaptive dual control, the model 

parameters, p̂  (in Equation 3-12), are estimated and then used in the implementation of 

the dual controller.  This estimation derives the model coefficients from the data provided 

to, and returned from, the virtual patient.  Then the estimated parameters are used to 

derive the cautious control by minimizing the cost function Equation 3-10. An additional 

control is derived to minimize the estimation error (cost function in Equation 3-11).  The 

dual control is obtained by the cautious control and the additional control which is then 

fed to the virtual patient. The process then repeats. Initial conditions of blood glucose, 

CHO intake and insulin delivery were taken from the clinical data in both cases (virtual 

patient and adaptive control).  A flow chart displaying the main operations in the process 

is shown in Figure 3.2 below 
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Figure 3.2: Flow chart of the modeling and control process.  The virtual patient serves as the I/O 

model of the glucose regulatory system (GRS) replacing a real patient. 

 

3.5 Design of Adaptive Dual Control for the Linear Time-Varying 
GRS Model 

In terms of Equation 3-1 through Equation 3-9, define  

 ):1():1():1()( rqpkpe   Equation 3-12 

 )5()(),5()(),1(),()(  kCkCkIkIkBGkBGkm ffffe   Equation 3-13 

Then we have 

)()()()1()1( kkmkpkBGky e

T

e   

Equation 3-14 

where ε(k) denotes the measurement noise and the subscript e denotes the form used 

within the estimation routine. For parameter estimation, a standard first order kalman 
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filter (as opposed to a 2
nd

-order extended kalman filter, used in [65]) is used and is given 

by Equation 3-15 through Equation 3-18 assuming pe(k+1)=pe(k)+ξ(k), where ξ(k) 

denotes the process noise in the state equation for pe(k). 

)1()1()(ˆ)1(ˆ  kekqkpkp ee  Equation 3-15 
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T

e  Equation 3-16 
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eee  Equation 3-17 

)()()()1()()1( kQkPkmkqkPkP e

T

eee   Equation 3-18 

where, e denotes the estimation error, ep̂ is a vector of system parameter estimates of pe, 

Pe is the corresponding covariance matrix for the state vector pe, σξ denotes the standard 

deviation of the process noise, and Qξ denotes the covariance matrix associated with the 

process noise.  Generally, covariance matrices provide a measure of how much variables 

change with respect to each other. Specifically, the covariance between two real valued 

random variables X and Y is given by Equation 3-19 where E[X] denotes the expected 

value of X. 

      YEYXEXEYXCov ),(  Equation 3-19 

 

Note that in Equation 3-13, the input variables in the I/O format used for estimation 

include both filtered insulin delivery rate and filtered carbohydrate intake, while the real 

control variable to the diabetic patient, which needs to be determined by the adaptive dual 

controller (considering the cost functions in Equation 3-10 and Equation 3-11) is the non-

filtered insulin delivery rate. Consequently, we re-write the I/O model given by Equation 

3-12 through Equation 3-14 into a new I/O format as follows (with subscript c to denote 
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that it is for control purpose). By taking into account the delay factor of the insulin 

delivery, we define 

 TT

c kpdkbkp )()()( 01   Equation 3-20 
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where u(k-d) corresponds to insulin delivery at the time instant k-d with time delay d, 

b1(k-d) is the coefficient associated with the control input at time k-d. The vectors pc and 

mc and their corresponding partitions should satisfy Equation 3-23. 

)()()()1( kkmkpkBG c

T

c   Equation 3-23 

 

 The covariance matrix Pc for pc is defined accordingly in terms of the partition of  

 pc and mc, with pb1 being a scalar corresponding to the covariance of b1. 

 

In the design of the adaptive dual controller for the virtual patient, we consider the cost 

functions defined in Equation 3-10 and Equation 3-11 for minimizing the tracking error 

(cautions control) and minimizing estimation errors. For the glucose control, the output 

y(k+1) is BG(k+1), and w(k+1) denotes the target glucose level at (k+1) time instant; the 

control input u(k) denotes the insulin delivery at time instant k. It should be noted that for 

Equation 3-11, in terms of the two I/O representations (pe, me, Pe) and (pc, mc, Pc), we 

have  

)()(ˆ)()(ˆˆ kmkpkmkpy e

T

ec

T

c   Equation 3-24 
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In order to derive the control variable u(k) in terms of the new I/O format (pc, mc, Pc) to 

minimize the cost functions, the covariance matrix Pc(k) in terms of pc(k) has to be 

computed from Pe(k) given in Equation 3-18. Fortunately, only the first row and diagonal 

elements of the new covariance matrix Pc need to be computed in the derivation of the 

adaptive dual control. The computation of mc, pc and Pc in terms of me, pe, and Pe is given 

as follows, 

  Tfc kCkBGkBGmkIdkIkm )(),1(),(),(:)()(   Equation 3-25 
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Equation 3-28 

where Γ[Cf(k)] is the accumulated carbohydrate contribution towards blood glucose 

(calculated by Equation 3-5), parameters φi and βi in Equation 3-26 are φi(k) and βi(k) 

respectively (the time index was omitted to make the notation concise), Pe is the 

covariance matrix resulting from parameter estimation, Pc(1,:,k) is the first row of the 

transformed covariance matrix Pc and diag(Pc(:,:,k)) is a vector of the diagonal elements 

of the transformed covariance matrix Pc. 
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The design of the dual control is described as follows. First the cautious control is 

calculated by substituting Equation 3-14 into Equation 3-10 and then taking the 

expectation. After setting the derivative with respect to the control input, u(k-d), equal to 

zero, the cautious control, denoted by uc, takes the form shown in Equation 3-29.  After 

the cautious control is obtained, the second cost function (Equation 3-11) is minimized in 

the region around the cautious control. 
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Equation 3-33 

where uc is the cautious control, u is the final dual control, w is the target or set-point 

value (constant in this design), Ω is the range for the dual control around the cautious 

control, d is the delay time, and qi (i=1:nQ), r & η are design parameters. 

 

Two hard constraints are imposed on the control input.  First, the control input (insulin 

injection) must be greater than or equal to zero.  This is a physical constraint because 

once insulin is delivered, it cannot be retrieved.  The second constraint is added as a 

safety measure to reduce the occurrence of hypoglycemia.  It states that if the blood 

glucose concentration is below the target value, then no insulin should need to be 

injected.  These two constraints might limit the input signal from the dual control 
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algorithm which tries to maintain persistent excitation and thus could reduce the 

efficiency of accurate estimation. 

 

According to Filatov and Unbehauen [34], “the strict convergence and stability analysis 

of the considered adaptive systems {adaptive dual control} presents a difficult problem 

that cannot be solved analytically for the general case presently”.  Additionally, they 

noted the importance of checking for convergence via computer simulations. The 

simulations requested for assessing stability and convergence of adaptive systems are 

performed within thesis. Further discussion is presented in the next chapter. 
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Chapter 4: Simulation Results 

This chapter focuses on performance evaluation of modeling the GRS, parameter 

estimation and the adaptive dual controller.  First the virtual patient model is given and 

the quality of the model is evaluated in terms of and goodness-of-fit of the parameter 

estimation, for which a correlation coefficient R, is computed between the clinically 

measured data and a 6-step (30 minute) forward prediction of the blood glucose 

concentration.  Generally, correlation coefficients have values ranging from -1 to 1 and 

signify how related two variables are; with 1 being perfectly related, -1 being inversely 

related and 0 being no relation. The correlation coefficient R is given by Equation 4-1, 

where X, in this case, is the measured blood glucose and Y is the 6-step (30 minute) 

forward prediction of the blood glucose concentration; X  and Y are the mean values of 

X and Y respectively, n is the number of measurements.  
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 Equation 4-1 

The performance evaluation of the interconnected parameter estimation and adaptive dual 

controller will be given in terms of the statistics and metrics outlined in section 2.4 of this 

thesis. 

4.1 Virtual Patients 

As in [65], virtual patients were created from all five data-sets.  Correlation coefficients 

using the first-order kalman filter were not significantly different  to that achieved in 

[65], in which a second order extended kalman filter was used (see Table 4.1) in terms of 
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two-tailed Student t-tests with the significance level α set to 0.1, defined by Equation 4-2 

where c is the confidence level between zero and one). Throughout this thesis, the 

measurement error was assumed to be a normally distributed random variable with a 

mean of zero and standard deviation of two mg/dl.  This value is rather arbitrary. The 

literature suggests a large, partially biased, measurement error for the CGMS device 

(mean absolute deviation was 15-20%) [41], while the clinically measured data seems to 

have minimal random error (determined by eye, references values were not recorded).  

 c 1  Equation 4-2 

 

Virtual 

Patient No. 

6-Step Ahead Correlation 

Coefficient “R” [65] 

6-Step Ahead Correlation 

Coefficient “R” [This thesis] 

1 0.84 0.82 

2 0.97 0.95 

3 0.93 0.86 

4 0.92 0.88 

5 0.91 0.88 

Mean 0.91 0.88 

St.D. 0.05 0.05 

Table 4.1: Correlation coefficients between six-step step (30-min) ahead forward model predictions 

and measured blood glucose values 

 

In Figure 4.5 through Figure 4.5, the clinical data for all five patients is plotted against 

virtual patient model predictions.  Note that the blood glucose prediction is for 6-steps or 

30 minutes in the future for each time step. The clinically determined insulin injection 

and carbohydrate (CHO) intake is shown in black in subplots 2 and 3 of the above 
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mentioned figures.  Their time-delayed effects towards the blood glucose prediction is 

shown in red and plotted on a separate ordinate axis.  Also note that insulin injection 

always has a negative contribution to the blood glucose and that (CHO) always has a 

positive contribution to blood glucose.  Due to some lapses in the three days of clinically 

acquired data, the longest uninterrupted time period of data was used for each patient 

making the length of prediction different for each patient.  The length of each 

uninterrupted data set was 49.00, 64.92, 49.08, 62.33, and 70.83 hours for patient’s one 

through five respectively. 

 

Figure 4.1: Virtual Patient 1, blood glucose prediction is for 6-steps (30 min.) forward in time, Insulin 

and CHO Contributions are time delayed responses, blood glucose measurement error is assumed to 

be normally distributed with zero mean and standard deviation of 2 mg/dl 
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Figure 4.2: Virtual Patient 2 

 

 
Figure 4.3: Virtual Patient 3 
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Figure 4.4: Virtual Patient 4 

 

 

Figure 4.5: Virtual patient 5 
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The parameter estimates for all five patients are given in Figure 4.6 through Figure 4.10.  

The initial values of the unknown parameters used in the estimation are given in Table 

4.2 (used for all patient datasets).  The initial values of the covariance matrix were chosen 

randomly from a normally distributed function with zero mean and standard deviation of 

0.01 (the same set of random covariance initial conditions were used for all patient 

datasets by setting the random number stream to the default value in MATLAB).  Note 

below the time-varying behavior of the estimated parameters. 

Unknown 

Parameter Initial Value 

φ1 0.8 

φ2 0.2 

βi (i=1,…,6) -5/6 

γi (i=1,…,6) 2/6 

Table 4.2: Initial parameter values. Note: all β's and all γ's have the same initial value 
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Figure 4.6: Parameter estimates for virtual patient 1 using clinical data. For the sake of space, 

legends have been omitted.  Subplot 1 contains the φ parameters, subplot 2 contains the β parameters 

subplot 3 contains the γ parameters. The color of the parameters 1-6 is given by standard MATLAB 

color code (blue, green, red, cyan, magenta, yellow) respectively. 
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Figure 4.7: Parameter Estimates for Virtual Patient 2 using clinical data. 

 

 
Figure 4.8: Parameter Estimates for Virtual Patient 3 using clinical data. 
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Figure 4.9: Parameter Estimates for Virtual Patient 4 using clinical data. 

 

 
Figure 4.10: Parameter Estimates for Virtual Patient 5 using clinical data. 
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4.2 Adaptive Dual Control 

The design parameters of the adaptive dual control were chosen on a trial and error basis.  

The following parameters were used for all patients in producing all the simulation 

results given in the section.  In Equation 3-29 through Equation 3-32, BGtarget = w = 100 

mg/dl for all k, r = 0.35, η = 0.1, nQ=d+1=4, q0-qnQ=0.01.  Among the five patients: 

patients 1, 3, 4, and 5 show better performance than the clinical data (detailed 

information given below), while the control for patient 2 is not stable.  The cause of the 

instability is not currently clear for this current stage of research; and the simulation 

results corresponding to patient two are thus omitted in the remainder of this thesis. 

 

Figure 4.11 through Figure 4.14 show the simulated performance of the adaptive dual 

controller in terms of blood glucose (subplot 1), insulin delivery (subplot 2) and 

carbohydrate intake (subplot 3, taken from clinical data) for patients 1, 3, 4, and 5 

respectively. Note that the black dotted lines in the second subplot of the above 

mentioned figures indicate the range of potential control around the cautious control.  

This range is given by Equation 3-33.  The red dash-dotted lines in the second and third 

subplots (plotted on a second y-axis) indicate the ‘actual’ contributions of insulin and 

carbohydrate (CHO) towards blood glucose (see Equation 3-4 and Equation 3-5).  These 

‘actual’ contributions were determined by applying the insulin delivery determined by the 

dual control algorithm and CHO intake observed clinically to the virtual patient model; 

i.e. they are computed by the product of virtual patient insulin sensitivity parameters (βi, 

i=1:6) and controlled insulin delivery, and the product of virtual patient carbohydrate 

sensitivity parameters (γi, i=1:6) and the clinically observed CHO intake.  The dashed red 
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lines indicate the contribution of the same insulin and CHO inputs as seen by adaptive 

dual control; i.e. they are calculated using online parameter estimates for the insulin and 

CHO sensitivities as opposed to those estimated offline for the virtual patient.   The 

difference between the red dash-dotted lines and red dashed lines, in these subplots, is the 

realized difference in parameter estimation (between the virtual patient and online 

controller).  In Figure 4.11 through Figure 4.14 there is almost no difference between the 

‘actual’ insulin contribution (computed from the virtual patient) and the insulin 

contribution calculated with estimated parameters used in the online dual control 

algorithm.  In these same figures, the difference in the carbohydrate contribution was 

significant; consistently resulting in, from the perspective of the controller, an 

underestimated carbohydrate affect towards blood glucose. This substantial 

underestimation makes closed loop control more difficult because it forecasts a smaller 

glucose excursion than which occurs within the virtual patient and thus what actually gets 

applied to the model. Considering this, the performance of the dual control algorithm 

appears very impressive. 
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Figure 4.11: Simulated performance of adaptive dual control for patient 1. In subplot 1, the black 

solid line represents the clinically measured blood glucose concentration; the red dashed line 

represents the blood glucose concentration as outputted by the virtual patient model under the 

adaptive dual control. In subplot 2, the black solid line represents the final insulin delivery 

determined by the dual control algorithm, the black dotted lines are the range of possible dual 

control around the cautious control, the red dash-dotted line represents the corresponding insulin 

contribution computed from the virtual patient, and the red dashed line (almost perfectly 

overlapping the red dash-dotted line) is the cooresponding insulin contribution computed from the 

estimated parameters resulting from the online dual controller. In subplot 3, the black solid line 

represents the clinically observed carbohydrate intake, the red dash-dotted line represents the 

corresponding CHO contribution from the virtual patient, and the red dashed line represents the 

CHO contribution computed from parameter estimates from the online dual controller. 
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Figure 4.12: Simulated performance of adaptive dual control for patient 3. 

 

 
Figure 4.13: Simulated performance of adaptive dual control for patient 4. 
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Figure 4.14: Simulated performance of adaptive dual control for patient 5. 

 

Notice that parameter estimation for the virtual patient is conducted to implement the 

adaptive dual control during simulation.  Comparison of the parameters of the virtual 

patient versus the parameter estimation under dual control provides a direct measure of 

estimation error to a certain extent, assuming that the virtual patient is accurate.  These 

comparisons for patients 1, 3, 4 and 5 are given in Figure 4.15 through Figure 4.18.  The 

initial conditions of the parameters used in parameter estimation for dual control were 

same as that for virtual patient (shown in Table 2.1).   Figure 4.15 through Figure 4.18 

show that the estimated parameters characterizing autoregression of blood glucose (φ1-2) 

during dual control tracked fairly well. The insulin sensitivity parameters (β1-6) did not 

track well. However the contribution tracked almost perfectly, as is subplot 2 above). 

Neither the carbohydrate parameters (γ1-6) nor their accumulated contribution towards 

blood glucose tracked particularly well. 
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Figure 4.15: Parameter estimates for patient 1. Black solid lines represent the time-varying 

parameters of the virtual patient and red dashed lines represent parameters estimated during 

control. 

 
Figure 4.16: Parameter estimates for patient 3. 
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Figure 4.17: Parameter estimates for patient 4. 

 
Figure 4.18: Parameter estimates for patient 5. 
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Presented next, is a comparison of the performance of the adaptive dual control versus 

the clinical treatment in terms of several community-adopted statistics: mean of blood 

glucose concentration, M80, M120, J, and the number of hypoglycemic events. Even with 

the small sample size, the statistics of mean blood glucose, M80, M120, and J, from the 

dual controller, were all significantly lower when compared to those calculated from the 

clinical measurements.  In the computation of the statistics, the significance level α was 

0.1, confidence level c was 0.9, in two-tailed Student’s t-tests. Table 4.3 summarizes 

performance statistics for the clinical treatment and Table 4.4 summarizes performance 

statistics of the adaptive dual control algorithm. It is noted that when compared to the 

clinical measurements the total insulin delivery (ID) for each patient is not significantly 

different at the above specified confidence levels. It is also noted that under adaptive dual 

control there are a lower number of hypoglycemic events for patients 1 and 3. From 

Table 4.3, it is interesting to see that the statistics for patient 2 are, for the most part, on 

the high end compared to the other patients; this might be related to the instability of the 

adaptive dual controller. 
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Patient 

No. 

Treatment 

Method 

Mean 

BG 

(mg/dl) 

Total ID 

(U) nHypo
* M80 M120 MAGE J 

1 Clinical 149.0 110.1 3.0 474.0 202.0 128.0 45.0 

2 Clinical 147.0 358.8 2.0 569.0 247.0 182.0 52.0 

3 Clinical 112.0 79.4 6.0 348.0 365.0 180.0 33.0 

4 Clinical 156.0 439.2 2.0 443.0 130.0 144.0 42.0 

5 Clinical 141.0 256.5 1.0 333.0 114.0 127.0 36.0 

Mean 

 (Across 

Patients) 141.0 248.8 2.8 433.4 211.6 152.2 41.6 

Std 

 (Across 

Patients) 17.1 155.2 1.9 96.8 101.3 27.2 7.5 

Table 4.3: Summary of performance statistics of clinical treatment during observation. *nHypo is the 

number of hypoglycemic episodes under 60 mg/dl.  Total ID is the total insulin delivery during 

observation.  Note that statistics for patient 2 are, for the most part, on the high end compared to the 

other patients; this might be related to the instability of the adaptive dual controller. 

 

Patient 

No. 

Treatment 

Method 

Mean 

BG 

(mg/dl) 

Total ID 

(U) nHypo M80 M120 MAGE J 

1 DC 107.4 131.9 1.0 76.7 53.5 66.5 18.2 

3 DC 102.8 126.2 2.0 95.7 86.5 62.9 19.1 

4 DC 100.5 109.7 2.0 48.4 62.1 49.0 15.3 

5 DC 120.4 288.6 1.0 113.4 21.4 73.5 21.2 

Mean 

(Across 

Patients) 107.9 164.4 1.3 84.8 53.5 62.2 18.5 

Std 

(Across 

Patients) 8.6 83.9 0.5 30.9 26.6 12.7 2.6 

Table 4.4: Summary of performance statistics of closed-loop dual control. 
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Chapter 5: Conclusion and Future Work 

It has been shown that the dual control algorithm may be an appropriate method of 

connecting a blood glucose monitor to an insulin pump in the formation of an artificial 

pancreas (AP).  Though yielding promising results, this study has certain restrictions.  

The first and possibly the biggest issue is the validity of the virtual patient models used in 

the simulation. There are two methods which are suggested in overcoming this 

uncertainty: build (or otherwise interface with) an FDA approved model and implement 

the adaptive dual control algorithms on it (another in silico experiment), or apply the 

algorithms in real-time during a supervised clinical experiment.  Continuing in both 

directions is preferred.  There were several secondary sources of potential uncertainty in 

this work.  They include: measurement error (both real and simulated) and the accuracy 

of the FIR function used to characterize subcutaneous insulin and gastric absorption. 

 

Going forward, it is recommended that the adaptive dual control methods used in this 

thesis be implemented on another (or several) numerical GRS model(s) prior to clinical 

experimentation.  These other simulations will boost confidence in the methods described 

within this thesis especially if implemented successfully on an FDA approved GRS 

model.  These experiments are recommended due to their low cost and lack of health risk.  

After these simulations, the next step would be to either test the system in real-time in a 

supervised clinical setting or to continue improving these methods in a virtual 

environment by re-running in silico experiments. 
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