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Abstract: 

 Communications drives the world. Much research is being done to advance the 

abilities to communicate with more people or higher data rates. Bandwidth has become 

the limiting factor for many communication systems. One popular solution for efficient 

bandwidth utilization is Direct Sequence Spread Spectrum (DSSS) which is used as the 

physical layer modulation underneath Code Division Multiple Accesses (CDMA). 

 

 In Direct Sequence – Code Division Multiple Access (DS-CDMA), every user 

acts as an interferer to every other user. This fundamental issue limits the number of users 

that can be placed on a single frequency band. The implementation of Power Control, 

causing the power of every user at the receiver to be nearly the same, increased the 

capacity of the channel. One newer technique being analyzed to improve DS-CDMA 

channel capacity is Multi-user Detection (MUD) or multi-user interference mitigation. 

One type of interference mitigation is Successive Interference Cancellation (SIC). 

Currently, SIC is not feasible to be implemented in mobile devices due to of the 

computation time and power consumption needed.   

 

Scale-Time Offset Robust Modulation (STORM) is being presented in this paper 

as an alternative physical layer to help with synchronization for SIC on a DS-CDMA 

channel.  
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1 Introduction 

 
1.1 Background 

One wireless networking solution is CDMA, in where users share the same 

channel in time and frequency. Unlike frequency-division multiple access (FDMA), 

where users are separated by orthogonal frequency bands, and time-division multiple 

access (TDMA), where users are separated by orthogonal time slots, users in CDMA 

obtains multiplexing by use of unique codes. Since every user can transmit at any point in 

time and is also allocated the entire frequency band, CDMA is also known as a spread-

spectrum multiple access (SSMA) method [1]. 

 

In DS-CDMA, the most popular version of CDMA, each user’s data is multiplied 

by a unique code. The received signal is created by summing all users’ signals. Each 

users’ signal overlaps in time and frequency with every other user. Signal detection and 

demodulation, for a particular user, is traditionally performed by correlating to the unique 

code of the particular user [1].  

 

Multiple access interference (MAI), the name given to the interference between 

direct sequence users, establishes a restriction on the capacity and performance of a DS-

CDMA system. DS-CDMA is an asynchronous communications system. Therefore, there 

are timing offsets between signals that makes it impossible to design unique user code 

waveforms to be completely orthogonal resulting in MAI. MAI is a function of the 

number and the power of the users within the channel, as either value increases so does 

the MAI. The conventional detector ignores MAI in by using a single-user approach for 

signal detection [1].  

 

Multi-user detection (MUD) is a better approach for signal detection. MUD is 

also known by the names joint detection and interference cancellation. MUD exploits 

information about more than one user simultaneously to better detect an individual user 

and their data. Use of MUD techniques has the potential to further aid current DS-CDMA 

systems [1]. 

  

1.2 Multi-user Detection 

 MUD exploits the fact that the structure of the MAI is known. With this in mind, 

the interference can be detected and removed. For this to be successful though, an 

accurate estimate of the MAI needs to be obtained. MUD can be divided into two broad 

subgroups: Optimal MUD and Sub-optimal MUD. 

 

Optimal MUD uses either Maximum Likelihood Sequence Estimation (MLSE) or 

a Matched Filter Bank followed by the Viterbi Algorithm [26]. The Viterbi Algorithm 

samples the output from the match filters in sequential order and then calculates the most 

likely path solution. An example of the use of the Viterbi Algorithm method can be seen 

in Figure 1. 

 

The problem with using Optimal MUD Solutions is that the complexity is not 

realistic in a practical scenario. MLSE has 2
M 

solutions to be tested, where M is the 
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number of users on the channel. Use of the Viterbi Algorithm reduces the number of 

solutions to 2
(M-1)

. However, 2
(M-1)

 is still not a reasonable number of computations in a 

realistic scenario [26].  

 

 

 
Figure 1 – Optimal MUD technique [26] 

 

 Sub-optimal schemes focus on reducing the complexity of the system to a more 

realistic level. This area can be divided into Linear and Non-Linear methods. Linear 

methods include Minimum Mean Squared Error (MMSE) and the Decorrelator. Non-

Linear forms can come in Decision Feedback and Subtractive Interference Cancellation 

[26].  

 

 Using a Sub-optimal MUD scheme has several drawbacks in comparison to the 

optimal version. Non-Linear versions are susceptible to a common Spread Spectrum (SS) 

issues like “The Near-Far” problem. In comparison, linear receivers are less affected by 

this issue. Synchronizing to the received signal can also be an issue in non-linear 

schemes. Linear MUD techniques do not need to synchronize whereas Non-Linear 

receivers need to worry about when the signal starts. Good estimation of other channel 

characteristics are needed to be able to demodulate using a Non-Linear method [26].  

 

 

1.3 Subtractive Interference Cancellation (SIC) 

A particular group of non-optimal detectors that have received a lot of attention 

are known as successive interference cancellation (SIC) detectors. The driving concept of 

a SIC detector is to estimate the MAI created by each individual user and then remove a 

part or the whole contributed MAI from the aggregate received signal [1].  

 

 A hard or soft bit decision can be used to establish a particular users’ data [1]. The 

easier to implement solution is the soft-decision. Using a hard-decision bit estimate in a 

feed-back loop changes the SIC detector to be non-linear. An accurate estimate of the 

received power is needed for the hard-decision. However, hard-decision SIC detectors 

consistently perform better in comparison to a soft-decision SIC detector. Research has 

shown that when a users’ power estimate is imperfect, there is a degragation in the 

system performance [27,28].  

 

 

MF 3 

MF 1 

MF 2 

Viterbi Algorithm 

Searches for ML 

bit sequence 

s1(t)+s2(t)+s3(t) 

b1+I1 

b2+I2 

b3+I3 Synchronous Case 
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2 Successive interference Cancellation 
 

2.1 Successive Interference Cancellation 

 The SIC detector takes a serial approach to removing the MAI of a particular user 

[2, 3]. The detector first demodulates the signal to achieve bit estimates of the interfering 

signal. Next the detector regenerates an estimate of the interfering signal. Finally, the 

detector subtracts out the regenerated signal from the aggregate signal such that the 

remaining signal contains less MAI [1].  

 

A simple pseudo algorithm of the SIC detector follows: 

 

Step 1. Power Order signals. Choose signal with the highest power. 

Step 2. Decode the data contained within the signal with the highest power 

Step 3. Remodulate the signal with the highest power. 

Step 4. Subtract out the interfering signal. 

 

When step 3 provides an accurate estimate of the received interfering signal, this 

algorithm results in a correctly decoded data sequence for the interfering signal. 

Additionally, a new receive signal with lower MAI is produced.  

 

This detector can be designed in an iterative method, where the k
th
 iteration takes in the 

input from the output of the (k-1)
th
 iteration. The output of each subsequent iteration has 

a further reduction in MAI than the previous iteration. Additionally, the detector also 

outputs a bit estimate for the signal mitigated in the k
th
 iteration [1]. 

 

 Choosing to mitigate the signals in descending order of powers is an easy choice. 

First, signal estimation and demodulation is easiest on users with the highest powers due 

to their correlation peaks being higher. Next, the mitigation of the users causing the most 

MAI will achieve the largest benefit for the resulting signal. In conclusion, mitigation of 

a user with lower MAI will not provide a significant benefit to a user with high MAI. 

However, the converse is not true. Mitigation of a user with high MAI will have a large 

benefit to a user with smaller MAI. However, this complicates the given algorithm 

further. First, an accurate estimate of each users power must be maintained at all times. 

Second, a further bit delay is introduced into the system. Thus, a compromise must be 

established between power ordering accuracy and computational complexity [1].  

A problem occurs when the SIC detector incorrectly estimates a data sequence for a user. 

In this situation, irrelevant of the accuracy of the timing, power, and phase, subtracting 

out the regenerated signal will create more MAI than originally existed in the current 

iteration. In fact, instead of removing the MAI caused by the interfering user, the MAI is 

instead quadrupled in power. Consequently, a minimum bit error rate (BER) must be 

maintained within the system for the SIC detector to provide improvement in the system 

[1]. 

  

 Many existing SIC implementations use conventional detectors to obtain and 

order the power estimations of the individual signals. By taking the correlation of every 

signal at each point in time, a correlation matrix can be formed. From this matrix, an 
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estimate of each signals power can be found and then reordered to continue the SIC 

process. 

 Two problems with using a conventional detector to create an estimate of the 

power are the resources required to create the correlation matrix, and the inflexibility of 

the correlation matrix in dealing with high energy multipaths. Creation of the correlation 

matrix at each point in time takes an abundance of resources and time. The extra 

resources needed for computation makes using a Computational Detector not a viable 

option for a mobile device. Strong powered multipaths cause a great problem because the 

joint correlation matrix becomes singular, and a singular matrix needs even more 

resources to be stabilized. 

 

2.2 New Approach 

 A new method for implementing SIC has emerged. By using features of the 

physical layer implementation of Scale-Time Offset Robust Modulation (STORM) 

computationally cheaper and robust estimations of the power, phase, amplitude, and 

timing can be obtained. 
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3 Scale-Time Offset Robust Modulation 

 
3.1 STORM 

STORM [33, 40, 42, 43, 44] is a modulation scheme that enables highly flexible multi-

resolution processing of signals through fading and dispersive channels.  STORM may be 

used as a stand-alone modulation technique or it can be used as an encapsulation 

modulation technique containing a signal modulated with another modulation scheme, 

such as QAM  [43]. STORM aids conventional systems that require rapid and robust 

synchronization. The benefits of using STORM are that it enables variable time 

resolution; rapid, robust, reliable signal detection and synchronization; unique spatial 

processing robustness and gains; estimates of signal power, controllable non-coherent 

multipath gain; and other, subsequently detailed benefits [44]. 

 

STORM is an extension of Transmitted Reference (TR) modulation in that it adds a time 

scaling step into the modulation process. Signal pairs in existing TR systems contain an 

offset in frequency or time but not both simultaneously. There are many limitations to a 

typical TR system. A TR system containing an offset in frequency requires additional 

bandwidth. Additionally, such a TR system is more difficult to synchronize to. There also 

exists a fundamental limitation on the frequency offset. When the channel coherence 

bandwidth is less than the frequency offset, there is a decorrelation in the frequency 

domain between the two signals and a subsequent degradation the system’s ability to 

synchronize. A decorrelation between the signal pair also takes place in a time offset 

based TR system when the time delay surpasses the coherence time of the channel. A 

decorrelation in the time delayed TR system also has similar system synchronization 

performance degradation [43].  

 

Similar to a TR signal, a STORM transmit signal is also obtained by summing a pair of 

relatively offset signals, known as the base and offset signals. The base signal can be 

comprised of many other modulation schemes or modulated signals (ex. random noise, 

colored noise, a PN sequence, or QAM). The offset signal is obtained from a copy of the 

base signal that is that modified by a time delay and time scale. Additionally, a phase or 

amplitude difference can also be applied to the offset signal. By using a time scale close 

to one, the base and offset signals will be highly overlapped in frequency. A similar 

overlap in time will occur when a time delay that is lower than the channel coherence 

time is used [43].  

 

There is nothing to distinguish a TR time delayed offset signal from a multipath signal in 

a traditional channel. High levels of relative motion create natural time scaling distortion 

within electromagnetic signals of around 1 + 10
-5

 at velocities of 3km/s. Thus, significant 

time scaling does not occur naturally and therefore a time scaled signal can easily be 

distinguished from a multipath [42].  

 

STORM waveform design offers several advantages. To begin with, the signal can 

rapidly and robustly detected and synchronized to even when the channel has pore time 

or frequency coherence. Additionally, by fixing the bandwidth, the multipath resolution is 

adjustable by varying the scaling value. Consequently, a STORM demodulator can stack 
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multipath energy from a non-coherent channel without using a RAKE receiver. Finally, 

processing rates for synchronization and detection are orders of magnitude lower than a 

traditional matched filter receiver, assuming the scale parameter is known in advance 

[42]. 

 

3.2 STORM Modulation Description  

 

STORM is similar to time offset modulation, which is a TR modulation with an offset in 

time. Time offset modulation has been used in RF and fiber optic applications. The 

background of time offset modulation will be reviewed and will be expanded to the 

application of STORM [42].  

3.3 Time-Offset/Embedded Reference Modulation 

 

When the time scaling parameter of STORM has the value of one, the STORM 

modulation reduces to time offset modulation, which is a TR modulation with a time 

delay. Time offset modulation is created by the addition between a base signal and a 

modified copy of the base signal [42]. 

 

 
Figure 2 - Time Offset Modulation [42] 

 

The base signal can be one of the following: wideband short duration, narrow band long 

duration, or wideband long duration. Possible specific signals or modulations include 

noise, PN sequences, BPSK, FSK, and QAM signals. Narrow band short duration signals 

are not used due to typically having ambiguous correlation features [43]. 

 

Figure 2 shows a schematic of the modulator for time offset modulation.  To begin with, 

the base signal is obtained from a source. Next, a time delay is applied to a copy of the 

b(t) + amb(t – m) 

Base signal 

b(t) 

Input 
Data  

Stream 

Base 

Signal 

Source 

Complex Amplitude am  

Delay 

Map Several Bits to Delay, 
Amplitude Symbol 

amb(t – m) 

Delay m 

Offset 
signal 

Time Offset Signal 



7 

 

base signal. To continue the modulation, the time delayed signal has a complex amplitude 

applied to it. Finally, the base signal is summed to the time delayed complex signal. The 

transmit signal is given by equation 1, where the base signal is represented by b(t), the 

complex amplitude is am ,and time delay is τm [42]. 

 

     mm tbatbtx 
             (1)  

 

Equation 2, a common operator that estimates the auto-correlation of a signal over a 

period T, is used for specific lags in a time offset demodulator. When the delay in the 

demodulator corresponds to the delay in the modulator, a peak in the estimation of the 

auto-correlation will occur [42]. 

 

  

                     (2) 

 

3.4 STORM’s Transmit Waveform Design 

 

STORM is an extension of existing TR modulation by adding time scaling. Figure 3 

shows that an input data stream establishes the information for delay, time scale, and 

amplitude. The delay term represents a time shift. Time scaling interpolates or decimates 

the signal in time. A phase and amplitude difference between the base and offset signals 

is established by multiplication of a complex amplitude [42]. 

 

 
Figure 3 - STORM Modulator [42] 

 

The four distinct steps in creation of a STORM signal are shown in Figure 4. First, a copy 

of the base signal is delayed in time by τm. Next, the copied and delayed signal is time 

Base 
signal b(t) 

amb(sm (t– m)) 
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scaled by sm.  Thirdly, the time-scaled, delayed, and copied signal had a complex 

amplitude, am, applied to it. Finally, the offset signal is summed to the base signal. 

Equation 3 shows a non-orthogonal mathematical form of the STORM signal. The base 

signal is given by b(t). The complex amplitude, time scale, and delay values are 

represented by am, sm, and τm respectively. 

  

 
      mmm tsbatbtx 

                    (3) 

 

The offset signal can also be established by swapping the time scaling and time delay 

steps. This changes the equations, but the signal qualities do not change [42].  

 

 
Figure 4 - STORM Modulation [42] 

 

 

3.5 STORM Demodulation 

 

One way to demodulate STORM is to apply the time scale to the received base signal so 

that it can be correlated to the received offset signal. Alternately, time scaling the 

received offset signal such that it will correlate with the received base signal would also 

work. Figure 5 shows a figure representing the first type of STORM demodulator. This is 

achieved by time delaying and time scaling a copy of the received signal to create an 

offset signal and then correlating the offset signal with the original received signal. For a 

high correlation peak to exist, si, the timing scale of the receiver, must match sm, the 

timing scale of the transmitter [42].  

time 

time 

stime 
 

time 

Step 1:  Create Base Signal 

Step 2:  Time Shift Base Signal 

Step 3:  Time Scale Step 2 Result 

Step 4:  Sum Step 1 with the Product of Step               
3  

m/sm 

L/sm

m 

L 
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Figure 5 - STORM Correlation Receiver [42] 

 

Equation 4 [42] defines a wideband auto-ambiguity estimator [5] for x(t) from Figure 5: 

 

       

             (4)

  

 

When the time scale, si, is equal to one, equation 4 reduces to the previously mentioned 

auto-correlation estimator. The value, to, represents the start of the hypothesized symbol 

period. The time delay and scale values are represented by si and τi, respectively. 

Estimating equation 4 one or more times may result approximations for am, sm, and τm 

[42].   

 

Figure 6 represents a pictorial look at a STORM demodulator. Equation 4, the wideband 

auto-ambiguity function, is estimated when the received signal, r(t) is correlated with a 

time delayed and time scaled copy or r(t). This system is known as an offset auto-

correlator and is a function of the time delay and time scale [43].  

 

A matched filter receiver must hypothesize the arrival of a signal with a minimum rate of 

the inverse of the bandwidth, (1/BW). In other words, at a minimum sample rate for a 

signal, the matched filter receiver needs to do a correlation sample-by-sample. However, 

the STORM receiver does not need make a hypothesis at the same rate. For example, a 

STORM receiver might need to calculate 4-10 estimations of the auto-ambiguity function 

to achieve synchronization of a million sample signal. Few correlations are needed to 

achieve synchronization due to the fact that the base and offset signals maintain relative 

correlation across the entirety of a signal [43].  

 

Scale Delay Integrate 
& Dump 

 tr

Conj iâ
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Figure 6 - graphical STORM demodulation [43] 

 

3.6 STORM and SIC 

 

The use of STORM as a physical layer aids in the implementation of SIC. STORM 

allows rapid and robust synchronization to a signal with fewer correlations than a 

traditional detector allowing for rapid power ordering of users and their multipaths. 

 

Figure 10 shows a flowchart of SIC being implemented with the aid of STORM. This 

flow chart follows the SIC algorithm mentioned in chapter 2. Step 1 through step 3 of the 

STORM SIC algorithm match up with step 1 from the chapter 2 algorithm. T Blocks that 

have a MATLAB m-filename within the block are controlled by a MATLAB file of the 

labeled name. All MATLAB files are compiled within the Appendix.  A breakdown of 

each block and functionality follows. A more detailed look into each block will follow in 

chapter 4. Step 1 through Step 3 of the STORM SIC method match up with step 1 of the 

pseudo-code SIC algorithm discussed in chapter 2. 
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Figure 7 - Flow Chart of SIC using STORM 

 

 

Step 1. Power Order & Rough timing estimate 

 

 The STORM synchronization process provides a power estimate of each user and 

each multipath. Additionally, a rough timing estimate is also provided.  

 

Step 2. Sync to the signal with the highest Power 

 

 A hard decision is made choosing the signal with the highest power estimate.  

 

Step 3. DS Code Table Lookup 

 

 A reference lookup for the direct sequence (DS) sequence for the chosen user 

takes place. 

 

Step 4. Demodulate data 

 

STORM’s rough timing estimate for each user is not accurate enough for 

conventional demodulation, thus a standard detector follows the STORM demodulator. 

These methods are already well researched and documented [4]. The conventional 

detector will create bit estimates for the entire data frame.  

 

Step 5. Remodulate 

 

 Step 1 provided a power and timing estimate of the signal. Step 4 provided 

estimate of the data bits for the given frame. Using these values, an estimation of the 

transmitted signal is created, ś(t). The remodulation of the signal needs to accompany 
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both STORM and the accompanying modulation scheme. Thus, in the case of DS-

CDMA, the remodulation step will need to account for the STORM and DS-CMDA 

aspects of the signal. 

 

Step 6. Subtract 

 

 Once the estimate ś(t) has been obtained, it is subtracted from the original 

received signal. The new signal, s*(t), will be returned to the beginning of the loop to be 

operated on again with the goal of having less Signal-to-Noise ratio than before.  
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4 Simulation 

 
4.1 Setup 

It has been argued in this paper that using STORM as a modulation technique provides a 

performance enhancement in the synchronization of signals over a conventional detector. 

A demonstration using MATLAB has been developed as a proof to this concept. 

 

 

 

 

 

 
Figure 8 – Demo Setup 

 

Figure 11 shows the setup for this demonstration. The source computer creates a 

baseband acoustic STORM signal which is transmits using an attached speaker. The 

receiver computer records the acoustic signal via an attached microphone. The receiver 

computer then stores the signal on the hard drive. A second stage of the demonstration 

will load the saved data. The first stage of the demonstration, the transmitter and receiver 

setup, is discussed in 4.2. The second stage of the demonstration is discussed in section 

4.3. The MATLAB files associated with transmitting and receiving are given below the 

respective stages in figure 11.  

 

4.2 MATLAB Transmission Description 

The STORM modulator, discussed in section 3.4 of this paper, was used to create the 

transmitter. The base signal source was chosen to be maximal length gold codes 

discussed in 4.2.1. Time scales were chosen to be less than one and have an order in the 

hundredths (ex .99, .98, and .97).   

 

The base signal was created by modulating a random sequence of binary data bits with 

the user’s DS code. The chip gain, the number of chips representing a single bit, was set 

to 100. A chip is a single sample of the DS and multiple chips are used to represent an 

individual bit.  
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Once the complete base signal was obtained, the base signal was copied and delayed by 

sm. The delayed copy was then time-scaled by τm. The two signals, the base signal and the 

time-delayed and time-scaled signal, are summed together. The final composite signal 

was then passed through a pulse shaping filter followed by a bandpass filter to minimize 

inter-symbol-interference and to accommodate the channel coherence respectively. The 

bandpass filter is discussed in 4.2.2 and the pulse shaping filter is covered in section 

4.2.3. The signal returned from the filters was then played through the computers 

speaker. 

 

The receiver, using a microphone, records for a certain amount of time. The data 

recorded saved locally to a file on the hard drive.  

 

4.2.1 User ID’s 

Maximal length Gold codes were selected as the DS user codes for the demonstration. A 

Maximal length binary sequence (MLBS) is known as a pseudo-random binary sequence. 

A MLBS is a periodic, deterministic, sequence with white noise properties.  

 

A Gold code set comes in the size of 2
N
, which is greater than the 2

N/2
 size of Kasami 

code set. However, Kasami codes have better cross-correlation performance than Gold 

codes. Where N is the number of shift registers used to create the sequences. 

 

To generate a Gold code set, begin with two maximum length sequences, of length 2
N
 -1, 

a[n] and b[n]. The two sequences, a[n] and b[n] must be limited to a three-values cross-

correlation. Sequences that share only a three valued cross-correlation are known as 

preferred polynomials. A partial table for N = 10 is shown in Table 1 [40]. The modulo 

two addition of the two maximal length sequences with all phase shifts, including a shift 

of zero, comprises the 2
N
 Gold code set [40].  

 

Primative Polynomial 1 Primative Polynomial 2 

1 + z3 + z10 1 + Z1 + z2 + z3 + z5 + z6 + z10 

1 + z3 + z10 1 + z1 + z3 + z7 + z10 

1 + z3 + z10 1 + z1 + z2 + z5 + z6 + z7 + z10 

1 + z3 + z10 1 + z2 + z3 + z8 + z10 

1 + z3 + z10 1 + z1 + z5 + z8 + z10 
1 + z3 + z10 1 + z2 + z5 + z6 + z7 + z8 + z10 

1 + z3 + z10 1 + z3 + z4 + z5 + z6 + z9 + z10 

1 + z3 + z10 1 + z2 + z3 + z6 + z8 + z9 + z10 

1 + z3 + z10 1 + z2 + z4 + z6 + z8 + z9 + z10 

1 + z3 + z10 1 + z1 + z3 + z4 + z6 + z7 + z8 + z9 + z10 

Table 1 – Partial preferred polynomials for N = 10 
 
 

4.2.2 Channel Coherence 

 

The STORM transmitter is limited to a sample rate of either 44.1kHz or 22.05kHz. This 

is due to the creation of an incoherent channel for other sampling rates chosen with 

MATLAB. Figure 12 shows a comparison of the channel coherence between a 44.1kHz 



15 

 

sample rate and a 40kHz sample rate. The 40kHz channel is not acceptable for use with a 

coherent demodulator, such as a matched filter. However, STORM can still synchronize 

to a signal in a non-coherent channel, which has been verified through simulation. 

 

  
Figure 9 – Channel Coherence for 44.1kHz and 40kHz 

 

A bandpass filter was chosen to be applied to the signal before it was transmitted. The 

44.1kHz channel has poor channel coherence at less than 100Hz and starts to degrade 

past 3000Hz. The frequency response of the passband of the filter, shown in Figure 13, 

matches up with the coherent frequencies of the channel.  

 

 

 
Figure 10 – Signal Bandpass Filter Response  
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4.2.3 Pulse shaping 

 

To minimize inter symbol interference, the signal was pulse shaped by a root-raised-

cosine filter. There is an upsample effect that occurs when applying a root raised cosine 

pulse shape to a digital signal. The upsample rate was chosen to be an even value of 10. 

The pulse shape filter used can be seen in figure 14. 

 

 
Figure 11 – Pulse Shape Filter 

 

4.3 MATLAB SIC Description  

The second stage of the demonstration, the state that applies SIC, follows the flow 

diagram given by figure 10. The first and second tiers of data flow are given by figure 10. 

The MATLAB file, SIC_and_STORM.m, represents the first tier view of the entire SIC 

system and is an encapsulation file that controls the entire second stage of the 

demonstration. This file follows the steps previously discussed in section 3.6 of this 

paper. 

 

1. Power Order & Rough timing estimate 

2. Sync to the signal with the highest Power 

3. DS Code Table Lookup 

4. Demodulate data 

5. Remodulate 

6. Subtract 

 

A more detailed look at the Steps: 1 - Power Order, 2 - Synchronize, 4 – Demodulate, and 

5 – Remodulate, will follow. Step 3 is a reference table lookup and will not be examined 

further. Power ordering and synchronization will be covered by section 4.3.1. 

Demodulation and remodulation will be discussed by section 4.3.2. 
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4.3.1 Power Ordering & Synchronization 

An accurate estimate of each user’s power is needed. The MATLAB file, power_order.m, 

provides these power estimates in addition to rough timing estimates. To obtain these 

needed values, the simulation goes through STORM demodulation as explained in Figure 

8. The output of the STORM demodulator is a three-dimensional surface. Each received 

frame, whether a main signal or a multipath, shows up on this surface as different series 

of peaks.  

 

Figure 15 shows one such STORM surface containing a single user’s received data across 

two data frames. The correlation spreading effect of the STORM demodulator is also 

demonstrated within the figure. Instead of having a sharp impulse like peak, the output of 

the correlator has a spreading effect across time. The x and y axis in this figure represent 

time, in correlation shifts, and delay, in samples, respectively. The time shifts used to 

create the STORM surfaces within the demonstration are at .001 times the samples rate. 

Thus, there is a reduction computation for synchronization of a factor of 1000.  

 

The peak of a particular STORM surface represents a power estimate of the scaled and 

delayed part of the STORM signal corresponding to the signal that created the STORM 

surface. For a power estimate of the composite STORM signal, the power estimate needs 

to be adjusted to include the base signal. Multiplying the power estimate by 2 results in 

an estimate with enough accuracy for the purposes of this demonstration. 

 

 
Figure 12 – 3-d STORM Surface 
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Following up the power estimate of the STORM surface is the synchronization step. To 

get the STORM synchronization, the line equation corresponding to the STORM surface 

must be calculated. The STORM surface is projected onto the time-delay correlation-

index axis, creating a 2d representation of the STORM surface. This 2d representation 

can be seen in Figure 16. The x and y axis, like the STORM surface in Figure 15, are the 

correlation index and the time-delay values respectively. The line equation associated 

with the points along the STORM surface line can be calculated by using a second order 

linear least squares form fitting function. Methods for solving least squared functions are 

covered in the text [39]. The known time-delay, τ, is used within the line equation, τ = a0 

+a1x, and reverse solved to obtain the timing estimate. The units of the timing estimate 

are based off of the correlation index, and must be converted back into samples. 

 
Figure 13 – 2d STORM surface projection 

 

4.3.2 Data Demodulation and Remodulation 

A traditional matched filter was chosen to demodulate the data and obtain the bit 

sequence. However, the matched filter was adjusted to take advantage of the fact that 

both the base signal and the time-delayed and scaled signal contain the transmitted data. 

I.e. the equation for the matched filter was equation 3 as opposed to the traditional b(t). 

 

Timing knowledge was exploited on the receiver for demodulation. The distance between 

each bit, in samples, in a frame was measured. The distance was assumed to be near 

constant for the entire frame, and any peaks from the correlator outside of the desired 

distance are assumed to be error. Following this idea, bit errors within the demonstration 

were reduced significantly. 
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It was found during simulation that the matched filter using equation 3 had a high 

sensitivity to τm and sm. This means that if there is an error in the known values of τm and 

sm, there will be a significant increase in the bit error rate. 

 

The decoded bit sequence is then used to remodulate an estimate of the received signal. 

The power estimate established previously is then used to attenuate the remodulated 

signal to the desired power level. 

 

4.4 Results 

Making use of the ability to control whether the channel is coherent or not, simulations 

were ran to see if STORM could still synchronize within a non-coherent channel. It was 

found that even within a non-coherent channel, STORM was still able to produce an 

accurate power estimate and timing estimate. However, the simulator used a coherent 

detector, and therefore the data of the signal could not be decoded even though 

synchronization had occurred. 

 

It was verified that STORM could synchronize to a signal with fewer correlations 

compared to a traditional matched filter. Consistent and successful synchronization 

occurred within the demonstration for a signal with a sample rate of 44.1 kHz and a 

correlation rate of 44 Hz. This is a reduction by a factor of a thousand in the needed 

correlations for synchronization compared to a traditional detector. It was also verified 

that STORM gave accurate power ordering of users at the same time as synchronizing to 

the respective users. 

 

  
Figure 14 Frame Correlation Pro and Post SIC 
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Figure 15 Frame Correlations of SIC Twice 

 

Testing of this demonstration showed that applying SIC a single time to a frame of data 

would remove, on average, 64 percent of the power of the frame. Applying SIC to the 

same frame two times would remove, on average, 81 percent of the power of the frame. 

These averages were generated by testing ten frames of data. Figure 18 shows the cross-

correlation of a signal pre and post SIC respectively. It can be seen that the peak, and 

therefore the power of the signal decreases when SIC is applied to the frame. Figure 19 

shows the cross-correlation of the same frame after SIC has been applied twice to the 

signal. On the second iteration, the demodulation step is skipped. Instead, the previously 

established remodulated frame is subtracted off of the signal. We can see a further 

decrease in the correlation from Figure 18 to Figure 19 when SIC is applied. 

 

4.5 Conclusion 

 

Scale Time Offset Robust Modulation (STORM) is a high bandwidth waveform design 

that adds time-scale to embedded reference modulations using only time-delay. Since 

STORM can be used as an encapsulation modulation, it can easily be added to current 

CDMA systems with no additional hardware. There is minimal degradation in 

conventional performance due to STORM’s introduction [40]. 

 

Using STORM as a physical layer was proven to offer computational savings for power 

ordering and synchronization in comparison to a conventional detector. Simulations show 

that synchronization and power ordering took place at a rate of one thousandth the sample 

rate. The chosen multiuser detection and mitigation strategy, successive interference 

cancellation, was shown to be successful in its implementation at removing a significant 

portion, over sixty percent, of the chosen interfering signals power.  
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Appendix  – Matlab File Descriptions  

 

Appendix B MATLAB Files 

coherent_detector.m 
% Alexis Sietins 
% 4/2/09 
% coherent_detector.m 
%  
% Function: coherent_detector 
% 
%Description: This function/file is for debugging purposes. It employes 

a 
%conventional detector to the given passed data and plots the output of 

the 
%match filter. This allows a visualization of the timing of the signal. 

The 
%second part of this file calculates the point in time  
% 
% Inputs: 
%   recv_data - recieved data sequence, the data sequence that will be 

fed 
%             into the matched filter 
%   user_IDs -  the other half of the input for the matched filter. The 
%              unique data of a particular user 
%   search_len - length of the user_IDs that we will correlate with.  
%   frame_search_len - amount of adjustment for the search length 
%   chip_gain - number of chips per bit 
%   frame_size - length, in samples, of a frame of data 
%   phase   - lenght, in samples, between a signal and it's offset 
%   itterations - number of times to loop 
%   time_scales - time scales to be used in calculating the 

offset/scaled 
%           signal 

  

  
function [local_max_index signal_power] = coherent_detector(recv_data, 

user_IDs, search_len, ... 
    frame_search_len, chip_gain, frame_size, phase, itterations, 

time_scales) 

  
%take the number of users off of the user_IDs variable 
[num_users cols] = size(user_IDs); 

  
%adjust the search length based on the length of the recieved signal 
%if the search_len is short compared to the recv_data, then we will 

shorten 
%the searcg len to match accordingly 
if(search_len > length(recv_data)/2) 
    search_len2 = length(recv_data)/2; 
else 
    search_len2 = search_len + frame_search_len; 
end 
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%loop 
% 
% Base loop for the number of users. 
for l =1 :num_users; 

     
    %establish the base search code 
    search_code2 = user_IDs(l, 1 : frame_size); 
    %establish the scaled search code 
    search_code3 = resample(search_code2,100*time_scales(l),100); 

     
    %establish the data sequence 
    data = recv_data (1:search_len2); 
    %     copy_recv_data = recv_data; 
    for j = 1:itterations; 

         
        %set the form for both the base code and the scaled code 
        data_form = search_code2(1:frame_search_len); 
        data_form2 = search_code3(1:frame_search_len); 

         
        %used for debugging purposes 
        %     local_max(j) = plot_traditional_correlator( ... 
        %         data,data_form); 

         

         
        %percent error within the data to search 
        percent_depth = 3; 

         
        %take the conventional detection (synchronization) of the 

signal 
        corr_vals = xcorr(data,data_form); 
        corr_vals2 = xcorr(data,data_form2); 

         
        %establish the length of the data 
        data_len = length(data); 

         

        %establish the length of the data_form 
        form_len = length(data_form); 

         
%         data_len2 = length(data); 
        form_len2 = length(data_form2); 

         
        %IF statement 
        %if the recived data is longer than the data_form, plot the 

desired section 
        %of the output of the traditional correlator. 
        if(data_len > form_len) 
            %The xcorr output a sequence of length 2*M-1, the first 

half of this 
            %sequence is not desired (not within the timing given), 

thus it is 
            %tossed out for visual putposes. 
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            wanted_corr_vals = abs(corr_vals(data_len:end)); 
            wanted_corr_vals2 = abs(corr_vals2(data_len:end)); 

             
            %figure used for debugging. Plots of the output of the 

traditional 
            %correlator. 
            figure; 
            plot(wanted_corr_vals); 
            stitle = sprintf('Output of traditional Correlator for user 

%i',l); 
            title(stitle); 
            xlabel('Time (samples)'); 
            ylabel('correlation value'); 

             
            figure; 
            plot(wanted_corr_vals2); 
            stitle = sprintf('Output for STORM signal for user %i',l); 
            title(stitle); 
            xlabel('Time (samples)'); 
            ylabel('correlation value'); 
        end 
        %end IF statement 

         
        %% 
        %this section calculates the timing estimate of the 

conventional  
        %detector. The first local max is taken. There might be more 

max 
        %local maxes and they might have larger peaks, but the first 

one is 
        %the only one of real interest. 

         
        %finds the maximum of the absolute value of the 

wanted_corr_vals 
        max_val = max(wanted_corr_vals); 

         
        %finds all of index's of the values that are close to the 

max_val 
        index = find(wanted_corr_vals > .9*max_val); 

         
        %sets the error search to look for the actual correlation peak 
        search_depth = percent_depth*data_len/100; 

         
        % initialize the max value by use of the first value 
        local_max = wanted_corr_vals(index(1)); 
        temp_index = 1; 
        %scan through the rest of the want_corr_vals picking out the 

max 
        %value and storing it 
        for k = 2:length(index); 
            if(wanted_corr_vals(index(k)) > ... 
                    wanted_corr_vals(index(temp_index))); 
                if(index(k) - index(temp_index) < search_depth) 
                    temp_index = k; 
                end 
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            end 
        end 

         
        %store the index of the max value of the first peak 
        local_max_index(l,j) = index(temp_index); 

         
        %calculate the power of the frame of the signal 
        power_signal = 

recv_data(local_max_index(l,j):local_max_index(l,j)+frame_size+phase); 
        signal_power(l,j) = sum(power_signal.^2); 

         

        %shift the codes for the next itteration 
        search_code2 = circshift(search_code2,[0,-chip_gain]); 
    end 
end 

 

 

 
%Alexis Sietins 
%5-14-2009 
% 
%File: data_collection.m 
% 
%Description: Record Data from the microphone. Save characteristics 

about 
%the file too. File needs to be saved manually via the save command at 

the 
%command line. This is to allow a user specified file name. 
% 
%Input - none 
% 
%Output - none 

  
clear all; 
close all; 

  
%set the record sampling rate 
fs = 44100; 

  

%length of time (in seconds) to record 
record_time = 5; 

  
%record the data using the default microphone attatched to the computer 
data = wavrecord(fs*record_time,fs,1); 

  
%Take the FFT of the recieved data to create the freaquency spectrum 
fft_data = fft(data); 

  
%calculate the RMS of the recored  
rms_recorded_signal = sqrt(sum(data.^2)/length(data)) 

  

  

%generate a pretty graph of the freqency spectrum 
freq = 1/record_time:1/record_time:fs/2; 
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figure; 
plot(freq(5:end),abs(fft_data(5:length(freq)))); 
title('frequency spectrum of recorded signal'); 
xlabel('frequncy (Hz)'); 
ylabel('Energy'); 

  

  
%set user defined specifics about the recorded data. These values will 
%be manually changed by the user when the information is needed to be 
%changed for testing purposes. 
num_users = 1; 
% num_phases = 1; 
frame_size = 4410;  
chip_gain = 441;  
time_spread_factors = [.99];  
phases = [200]; 

 

  

  
%Alexis Sietins 
%5/17/2009 
% 
%Decode_data.m 
% 
%Description: Uses a conventioal Coherent correlator to decode the data 
%bits given within the passed signal. This function exploits timing 
%knowledge of the signal to get a better bit estimate (I.e. it is known 
%that each bit should be able the same distance apart from the bits 

next to 
%it, and therefore the average distance is measured and used to 

estimate 
%where each bit should be). The recieved data is a STORM code, and the 
%conventioal detector in this function correlates to not only the 

original 
%signal, but the scaled and delayed signal as well. 
% 
%process -  this function creates an estimate of what the STORM signal 
%should be and correlated to this in the detector.  
% 
%loop 1: for each bit 
%step 1. estimate base signal for the bit 
%step 2. copy the signal in step 1. 
%step 3. time delay and time scale the copy made in step 2. 
%step 4. add signals created in step 1 and step 3.  
%step 5. correlate signal in step 4 to the data sequence 
%step 6. Store correlator output and the index of the max values of the  
%   correlator output for each bit 
%end loop  
% 
%step 7. calculate the average bit index and standard deviation of the 

bit 
%   index for each bit. I.e. calcuate the average distance between each 
%   bit. 
%step 8. IF (standard deviation is too large) - remove the index's from  
%   the system that are beyond one standard deviation, thus reducing 

the 
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%   index's standard deviation of values. 
%step 9. With the narrowed range of index values created by step 8, do 

a 
%   formal bit detection by taking the sign of te max value of the 

reduced 
%   indec range for each bit. 
% 
%The main loop utilizes a dual sliding window. Both the search_code and 

the 
%data are moved along the sequence through a sliding window. Both of 

these 
%windows are moved at the same pace (the chip_gain) on each itteration 

of 
%the loop. The search_code is comprised of the base signal ad the time 
%scaled/delayed signal, both of which are moved via a sliding window. 

In 
%effect, there are three sliding windows being used within the main 

loop. 
% 
%Inputs:  
%   data - recieved (recorded) data frame. This sequence should be a 

STORM 
%       signal and it should contain actual data (vs noise). This 

sequence 
%       is longer than it 'needs' to be based off of a timing error 

created 
%       by the uncertainty associated with the timing estimate of the 

STORM 
%       synchronization. 
%   search_code - data sequnce (in this case the user IDs - a ML gold 

gold) 
%       that will be used to correlate against the variable data to 

decode 
%       the informtion 
%   chip_gain - chip per bit in the given code. Also known as the 
%      processing gain of the code. 
%   time_scale - time scale to be applied to the time delayed part of 

the 
%       STORM Signal - for coherent demodulation. 
%   delay - timing delay to be applied to the copied signal (before it 

is 
%       time scaled). Used for creating the STORM time-delayed and 

scaled 
%       copy. 

  
% function decoded_bits = Decode_data(data, search_code, chip_gain, ... 
%     time_scale, delay) 
% function decoded_bits = Decode_data(data, search_code, chip_gain, ... 
%     time_scale, delay) 

  
function [decoded_bits] = decode_frame(S_D, frame_num, user_num) 

  

  

    

  
    lower_bound = round(S_D.t_hat(user_num,frame_num) - ... 
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        (S_D.search_error_percent/100)*S_D.frame_size); 
    if(lower_bound < 1) 
        lower_bound = 1; 
    end 
    upper_bound = round(lower_bound + S_D.frame_size +... 
        2*(S_D.search_error_percent/100)*S_D.frame_size) + 

S_D.chip_gain; 
    if(upper_bound > length(S_D.recv_data)) 
        upper_bound=length(S_D.recv_data); 
    end 

  

  
data = S_D.duplicate_recv_data(lower_bound:upper_bound); 
search_code = S_D.search_code(user_num,:); 
time_scale = S_D.time_spread_factors(user_num); 
delay = S_D.phases(frame_num)*S_D.compression_ratio; 

  

  

  

  

  
%calculates the frame length based off of the length of the search_code 
frame_size = length(search_code); 

  
%the number of bits contained within the recieved data signal 
num_bits = floor(frame_size/S_D.chip_gain); 
%length of the data sequence 
data_len = length(data); 

  
%initialize the index vector to 0 
index =0; 

  
%transpose the search_code into row vector from colum vector 
search_code = search_code'; 
%scale the search code to desired length 
scaled_code = resample(search_code,100*time_scale,100); 

  
%Calculate chips per bit for the scaled signal 
scaled_chip_len = S_D.chip_gain*time_scale; 

  
%calculate the scaled delay for the time scaled/delay signal 
scaled_delay = delay*time_scale; 

  
%how many samples the signal will be shorted by appliing the scale 
delay_factor = round(S_D.chip_gain*(1 - time_scale)); 

  
%calculate the length of recieved data sequence to use for coherent 
%detection. The length is the timing uncertainty (error), plus the 

legnth 
%of the delay, plus 1.  
corr_len =  (data_len - frame_size) + scaled_chip_len +1 + delay; 

  

%initialize and zero out this variable 
%This variable will represent the summed original signal and 
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%time_scaled/delayed singal to be used in the conventional detector 
bit_search_code = zeros([num_bits,delay+S_D.chip_gain]); 

  

  

%loop 
%This loop follows the psuedo code loop discussed in the function 
%descrioption section at the begining of this m file. 
for j = 1:num_bits; 

     
    %generate the base signal for conventional detection 
    bit_search_code(j,1:S_D.chip_gain) = search_code(1:S_D.chip_gain); 
    %generates time scaled/delayed signal for conventional detection 
    bit_search_code(j, scaled_delay-(j-1)*delay_factor: ... 
        scaled_delay-j*delay_factor+S_D.chip_gain-1)... 
        = scaled_code(1:S_D.chip_gain-delay_factor); 

     
    %create the output of the conventional detector. Store the data for 
    %each bit. 
    corr_vals(j,:) = xcorr(data(1 : corr_len), bit_search_code(j,:)); 

     
    %following 2 lines are used for debugging. Output of the 

conventional 
    %correltor based on just the base signal. 
%     simple_corr_vals(j,:) = xcorr(data(1 : corr_len),... 
%        search_code(1:S_D.chip_gain)); 
%      
      %these figured used for debugging purposes. Viewing the output of 

the 
      %correlators via a graph. 
%         figure; 
%         plot(corr_vals(j,:)); 
%         figure; 
%         plot(simple_corr_vals(j,:)); 

     
    %find and save the index of the max absolute value of the output  
    %of the correlator for each bit.  
    index(j) = find(max(abs(corr_vals(j,:))) == abs(corr_vals(j,:))); 

         
    %apply the sliding window to the base code 
    search_code = circshift(search_code, -S_D.chip_gain); 
    %apply the sliding window to the scaled signal 
    scaled_code = circshift(scaled_code, -S_D.chip_gain+delay_factor); 

     
    %apply the sliding window to the data 
    data = circshift(data, -S_D.chip_gain);  

     
end 
%end loop 

  
%% 
%this section of the code applies knowledge of the timing of the signal 

to 
%narrow the search area of the bits. Thus increasing the accuracy of  
%correct bit detection 
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%take the average of the values in the index vector. I.e. take the 

average 
%distance between each bit 
avg_index = mean(index); 
%calcualate the statistitcal standard deviation of the index vector. 
std_dev = sqrt(var(index)); 
%initialize the new_index variable 
new_index = []; 

  
%if statement - condition on the standard deviation. Check to see if 

the 
%standard diviation is small enough to begin with that we don't need to 
%reduce it further. 
if(std_dev > 2) 
    %loop 
    %This loop is to reduce the stardard deviation to such that we can 
    %seach for bit timing more accuatly. 
    for j =1 :num_bits 
        %if the measured bit index is outside the standard deviation, 

then 
        %that is a timing error and that bit index is thrown out in the 
        %calculation of the new_index vector. 
        if( abs(index(j)-avg_index) < std_dev) 
            new_index = [new_index index(j)]; 
        end 
    end 
    %end loop 
else 
    %else, the standard diviation is good enough and we keep the old 

values 
    new_index = index; 
end 
%end if statement 

  
%set the maximum and minimum search indexes for bit detection. These 

values 
%are based off of the narrowed index range of 'new_index' variable. 
max_search_val = max(new_index)+1; 
min_search_val = min(new_index)-1; 

  
%loop 
%This loop does the actual bit detection 
for j = 1:num_bits 
    %Look at the correlation value of the narrowed range 
    true_index(j) = find(max(abs(... 
        corr_vals(j, min_search_val:max_search_val)))... 
        == abs(corr_vals(j, min_search_val:max_search_val))); 

     
    %formal bit decision 
    decoded_bits(j) = sign(corr_vals(j,true_index(j)+min_search_val)); 

     
end 

  
% decoded_bits = decoded_bits'; 
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%these figures are for debugging purposes. 
% figure; 
% plot(index); 
% figure; 
% plot(new_index); 

 

 

 

 
% Alexis Sietins 
% 
%demod_storm_pulse_shape.m 
%version 1 
% 6/2/2009 
% 
% 
% Description - This m-file is an encapsilation file. As in it controls 

the 
% entire simulation system just from here. The vfirst section defines 

all 
% of the parameters that will be used within the simulation system. 
% 
% step 1. create the unique codes that each user will use to identify 
% themselved. 
% - main loop - 
% step 2 - power order the current frame 
% - small loop - for each user 
% step 3 - demodulate data 
% step 4 - remodulate signal esitmate 
% step 5 - subract 
% - end small loop - 
%step 6 - advance to next frame 
% - end main loop- 
% 
% 
%%%%%%% Over View  %%%%%%%%% 

  
clear all; 
clear all; 
close all; 

  

  
%% 
%%%%%%%%%%%%%%%%% BEGIN  MAIN %%%%%%%%%%%%%%% 

  

  

%%%%%%%%%%%%% System Varable Delcaration %%%%%%%%%%%%%% 
warning off; 
%%%%%%%%%% system variables 

  
%load the recorded data file to process on 
load 'Z:\\MATLAB\\recieved data\\STORM_signal_5_24_09_rrc_ones_2'; 
% load 'Z:\\MATLAB\\recieved 

data\\STORM_signal_5_21_09_rrc_ones_98scale'; 
% load 'Z:\\MATLAB\\recieved data\\two_signals_same_synch_2' 
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% load 'Z:\\MATLAB\\recieved 

data\\STORM_signal_5_21_09_rrc_ones_2users'; 
% load 'Z:\\MATLAB\\recieved 

data\\STORM_signal_5_20_09_rrc_ones_98scale'; 
% load 'Z:\\MATLAB\\recieved 

data\\STORM_signal_5_20_09_rrc_ones_2users'; 
% load 'Z:\\MATLAB\\recieved data\\STORM_signal_5_20_09_rrc_ones'; 
% load 'Z:\\MATLAB\\recieved data\\STORM_signal_5_19_09_power_test_2'; 
% load 'Z:\\MATLAB\\recieved data\\STORM_signal_5_13_09_rrc_ones'; 
% load 'Z:\\MATLAB\\recieved data\\STORM_signal_5_13_09_rrc_neg_ones'; 
% load 'Z:\\MATLAB\\recieved data\\STORM_signal_5_12_09_rrc_neg_ones'; 
% load 'Z:\\MATLAB\\recieved data\\STORM_signal_5_11_09_rrc_ones'; 
% load 'Z:\\MATLAB\\recieved data\\test_data'; 

  
%give string of the filename location containing the desired maximum 

length 
%gold sequences 
S_D.mls_fname = 'Z:\\MATLAB\\PR\\mlseq_13'; 
%give the string file name location of the filter coefficients used on 

the 
%recorded data 
S_D.filter_fname = 'Z:\\MATLAB\\PR\\Filter_coefs_BP_5_11_09'; 

  
% establish some system parameters. Store them in the S_D struct. S_D 
% struct contains all revelant System Data to pass from one function to 
% another. The next 7 lines of code copy values straight from the data 
% file. 
S_D.recv_data = data; 
S_D.frame_size = frame_size; 
S_D.phases = phases; 
S_D.num_users = num_users; 
S_D.record_time = record_time; 
S_D.time_spread_factors = time_spread_factors; 
S_D.sample_rate = fs; 

  
%error accountable between the STORM timing estimate and the actual 

value 
S_D.error = .0025; 
% S_D.error = 0; 

  

for j = 1:length(S_D.time_spread_factors) 
    S_D.scale_error(j) = (1-S_D.time_spread_factors(j))*100* ... 
        S_D.time_spread_factors(j)*S_D.error + 

S_D.time_spread_factors(j); 
end 

  
% defines the percent to narrow the view of the cross-correlation 

output of 
% the STORM surface 
S_D.percent_view = 20; 

  
%power factor defines how much to multiply the STORM surface peak by to 
%achieve the actual signal power. Since there is the base and offset 
%signal, the power needs to be multiplied by 2 
S_D.power_factor = 2; 
%upsampling factor to be applied to the generated code sequence for 



36 

 

%demoddulation  and remoddulation 
S_D.root_raised_cos_factor = 10; 
%number of frequency bins to be averaged over. This variable not 

currently 
%used 
S_D.freq_bin_size = 10; 
%percent error or the frame between the STORM surface timing estimate 

and 
%the actual timing value. This is the searchable range on either side 

of 
%the STORM estimate. As in, the code will search the given percent to 

the 
%left and to the right of the calculated STORM synch point 
S_D.search_error_percent = 2; 

  
%establish the number of users based off the number of spread factors 

in 
%the given data file 
S_D.num_spread_factors = length(S_D.time_spread_factors); 

  
%establish the ratio between the sample rate and frame size. 
S_D.compression_ratio = S_D.sample_rate/S_D.frame_size; 

  
%simple boolean expression designating use of the finite impulse 

responce 
%filter on the code sequence for both demodulation and remodulation 
S_D.use_filter = true; 

  
%if statement - if (user filter) - then load the filter data into 

memory 
%and then process the recieved data by the filter. 
if(S_D.use_filter) 
    %load filter data into memory 
    cmd = sprintf('load %s',S_D.filter_fname); 
    eval(cmd); 

     
    %same filter_coefs to the system data (S_D) struct 
    S_D.filter_coefs = filter_coefs; 
    %subtract out the DC term of the recorded code. Put in by the 
    %microphone 
    S_D.recv_data = S_D.recv_data - mean(S_D.recv_data); 

     
    %filter the recieved code 
    S_D.recv_data = filtfilt(... 
        S_D.filter_coefs,1,data); 
end 

  

  

  
%boolean to resame the recieved code to 4410hz 
%this code is no longer used 
% resample_code = false; 

  

%establish the number of bits each frame of data contains 
S_D.bits_per_frame = S_D.frame_size/S_D.chip_gain; 
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%upscale the frame_size to match the upsampled rate created by pulse 
%shaping the signal - in samples 
S_D.frame_size = S_D.frame_size*S_D.compression_ratio; 

  
%upscale the chip_gain in samples to match the upsampled rate created 

by 
%the pulse shaping of the signal 
S_D.chip_gain = S_D.chip_gain*S_D.compression_ratio; 

  
%set a base search length criteria 
S_D.search_len = S_D.frame_size; 

  
%establish the number of frames to decode information for 
S_D.frames_to_decode = S_D.record_time -1; 

  
% establish the number of divisions that will take place to create the 
% STORM surface. 
S_D.frame_divisions = 44; 
% S_D.frame_divisions = 100; 
% S_D.frame_divisions = round(frame_size*(1/time_spread_factors(1) -

1)); 

  
%initilize a vartiable that will contain the information about how much 

the 
%signal has shifted (I.e. how much the signal has advanced, in samples, 
%since the begining of processing) 
total_shift_amount =0; 

  
%clear the data that has been stored in the System Data (S_D) struct 

and 
%will not be used elsewhere. 
clear chip_gain data frame_size num_users 
clear record_time time_spread_factors fs fft_data freq phases cmd 

  

  
%% 
%%%%%%%% Generate User Maximum Length gold code Sequences %%%%%%%%%% 

  
%generate the user_IDs for each desired user 
S_D.base_user_IDs = ... 
    generate_user_IDs(S_D.mls_fname, S_D.num_users ); 

  
%upsample the user IDs based off of the root raised cosine pulse 

shaping 
%that took place on the transmitter 
S_D.user_IDs = rcosflt(S_D.base_user_IDs, ... 
    1,S_D.root_raised_cos_factor,'sqrt'); 

  
%transpose the two ID variables so that each row = each user 
S_D.user_IDs = S_D.user_IDs'; 
S_D.base_user_IDs = S_D.base_user_IDs'; 
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%% 

  
%%%%%%%%%%%%%%%%%% MAIN LOOP   %%%%%%%%%%%%%%%%% 

  

%initilize the loop for the first frame 
current_frame = 1; 
%zero out/initialize the matrix containing the decoded bit sequence 
S_D.decoded_bits = zeros([S_D.bits_per_frame, S_D.frames_to_decode,... 
    S_D.num_users]); 

  
%establish the section of the user IDs that will be used to create the 
%desired frames. 
S_D.search_code = S_D.user_IDs(:, 1 : S_D.frame_size); 

  
%make a copy of the revieced signal so that we can shift the copy and 
%maintain the reference point with the original 
S_D.duplicate_recv_data = S_D.recv_data; 

  

%MAIN LOOP 
% 
% loops on each frame to be decoded. 
% step 1. power order each user - obtain timing estimate at same time 
% step 2. domodulate user with highest power 
% step 3. remodulate user with highest power 
% step 4. subtract out signal from total 
% goto step 2 
% 
%advance loop 
while(current_frame <S_D.frames_to_decode+1) 

     
    %power oder each user fro this frame with the power_order function 
    [S_D.power_estimate(:,current_frame),S_D.t_hat(:,current_frame)] 

=... 
        power_order(S_D); 

     
    %loop - over each user 
    %1. obtain user with highest power 
    %2. domodulate user. 
    %3. remodulate user 
    %4. subtract out user from signal 
    for j =1:S_D.num_users; 

         
        %establish the user with the highest power. 
        user_to_be_removed = ... 
            find(max(S_D.power_estimate(:,current_frame)) == ... 
            S_D.power_estimate(:,current_frame)); 

         
        %decode data for user with highest power. 
        S_D.decoded_bits(:,current_frame, user_to_be_removed) =... 
            decode_frame(S_D,current_frame,user_to_be_removed); 

         
        %using data decoded from previous step, remodulate the signal 

for 
        %the user with the highest power 
        [S_D.remodded_signal] = ... 
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            remod_signal(S_D,user_to_be_removed, current_frame); 

         
        %subtract out the signal from the agrigate signal 
        S_D.duplicate_recv_data = ... 
            remove_frame_from_signal(S_D, user_to_be_removed, 

current_frame); 

         
        %debugging purposes.  
        %figure plots the power, based off of corrlation, of each user. 
%         figure; 
%         plot(xcorr(S_D.recv_data,S_D.remodded_signal)); 
%         title('correlation of old signal'); 

         
        %zero out the user with the highest power so that the next user 

can be 
        %removed 
        S_D.power_estimate(user_to_be_removed, current_frame) = 0; 

         
    end 
    %END USER LOOP 

     

     
    %advance the current frame 
    current_frame = current_frame+1; 
%     current_frame = current_frame+6; 

  
    %shift the recv_data vector to the next frame. 
    S_D.duplicate_recv_data = ... 
        circshift(S_D.duplicate_recv_data ,-1.3*S_D.frame_size); 

     
    %add up the shifted amount and keep track of how much has been 

shifted. 
    total_shift_amount = total_shift_amount + S_D.frame_size; 
end 

  
%END MAIN LOOP 

  
%% 

  
%%%%%%%%%%%%%%%   Perform Traditional Correlation %%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%  I.e. matched filter 

  
%this section is purley for debugging purposes.  
%applied a matched filter for a timing estimate to the first frame of 
%recorded data 
if(false) 
    frame_search_len = 30000; 
    itterations = 1; 
    [S_D.coherent_synch_pt S_D.signal_power] = ... 
        coherent_detector(S_D.recv_data, S_D.user_IDs, S_D.search_len, 

... 
        frame_search_len, S_D.chip_gain, S_D.frame_size, ... 
        S_D.phases, itterations, S_D.time_spread_factors); 
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end 
  

 

 

 

 
%Alexis Sietins 
%5/14/2009 
% 
% Function: find_sync.m 
% 
%Description: Take a STORM surface matrix and calculates a timing 
%estimate. First, a 2-d projection of the storm surface is created. 
% Then the largest (longest) peak is taken to lock onto. As assumption 

is 
% being made that the longest storm surface will belong to the storm 
% signal that is most in view of the given frame. Next, using a 2nd 

order 
% linear least sqaures form fitting function, the equation of the line 
% associated with the chosen STORM surface is estimated. Combining the 
% knowledge of the line and the given delay estimate, a timing estimate 
% is created and returned 
% 
% inputs: 
%     input - STORM surface. N x M sized matrix. Rows - Time divisions. 
%         Corrasponds to time. Colums - correlation output. Corresponds 
%         to delay. N << M normally 
%     tau - delay estimate to be used in combination with STORM surface 

line 
%         equation to generate timing estimate. 
% Output: 
%     pt - timing estimate 

  

  
function [pt, power_estimate] = find_sync(input,tau) 

  

  
%fins the number of rows and columns of input - the STORM surface 
[rows cols] = size(input); 

  
%Pre-loop 
%initialize loop conditions by setting the first peak of the storm 

surface 
peak(1) = find(max(input(1,:)) == input(1,:)); 
%intiailize loop 
frame_bgn_index = [1]; 

  
%Loop 
%generate 2-D STORM surface projection 
for j = 2:rows 
    peak(j) = find(max(input(j,:)) == input(j,:)); 
    power(j) = max(input(j,:)); 
    if(peak(j) > peak(j-1)) 
        frame_bgn_index = [frame_bgn_index , j]; 
    end 
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end 

  
frame_bgn_index = [frame_bgn_index , rows]; 

  

%Loop 
%calculate the length of each surface within the given Frame 
for j = 2:length(frame_bgn_index) 
    lens(j-1) = frame_bgn_index(j)-frame_bgn_index(j-1); 
end 

  
% while(pt<0) 
    %find the frame with the most data points associated with it 
    full_frame = find(max(lens) == lens); 
    if(size(full_frame) >1) 
        full_frame = full_frame(1); 
    end 

     
    %create the power estimate based of the max value on the desired 
    %correlation range 
    power_estimate = max(power(frame_bgn_index(full_frame):... 
        frame_bgn_index(full_frame+1))); 

     
    %% 
    %form fitting 
    %2nd order Linear Least Squares Form Fitting 
    % 
    % Typical least squares solution 
    % [b0 b1 ] = inv(X'*X)*X'*Y 
    % where 
    % X - each column of X is the x component of the data 
    % vector raised to the power of the 
    % column number (Ex. 1st col is all 1's. 2nd col is actual raw 

data. 3rd 
    % col is data squared... ect) 
    % Y - y component of the data vector M x 1 vector 
    % 
    % This system obtimizes y = b0 + b1*x 

     
    %generate X matrix 
%     X = [ones(1,lens(full_frame)) ; ... 
%         

peak(frame_bgn_index(full_frame):frame_bgn_index(full_frame+1)-1)]; 
    X = [ones(1,lens(full_frame)) ; ... 
        frame_bgn_index(full_frame):frame_bgn_index(full_frame+1)-1]; 
    X = X'; 
    %generate Y vector 
%     Y = frame_bgn_index(full_frame):frame_bgn_index(full_frame+1)-1; 
    Y = peak(frame_bgn_index(full_frame):frame_bgn_index(full_frame+1)-

1); 
    Y = Y'; 

     
    %Solve for B vector 
    B_hat = inv(X'*X)*X'*Y; 
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    figure; 
    plot(peak); 
    title('2-d projection of STORM surface'); 
    xlabel('Correlation index (time)'); 
    ylabel('time delay (samples)'); 

     
    %adjust the giving delay estimate for the middle of the correlation 
    tau_hat = (length(input(1,:))/2) + tau; 
    %use B vector solution to create timing estimate 
%     pt = B_hat(1) + B_hat(2)*tau_hat; 
    pt = (tau_hat-B_hat(1))/B_hat(2);     

  

     

 

  

  

 
% Alexis Sietins 
% 4/3/2009 
% generate_user_IDs.m 
%  
% Description: This file creates the maximum length gold sequences for 

each 
% user. The number of users is passed as an argument into the function. 
% Since generting these values cold each time can take a long time, the 
% maximum length base sequences needed to create the gold code family 

have 
% previously been calculated and saved to the hard disk. These values 

are 
% loaded into memory and then xor'd to obtain the unique id for each 

user. 
% 
% Input -  
%   fname - string file name used to locate the maximum length sequence 
%      generating codes 
%   num_users - number of users. Each user will get a unique code 

assigned 
%       to them 
% 
% Output - 
%   user_IDs - [n x m] matrix containing the codes for each user. n is 

the 
%   numer of users, as designated by the num_users input variable. m is 

the 
%   2^(number of shift registers)-1 - where (number of shift registers) 

is 
%   deturmined by the fname passed to the function 

  
function [user_IDs ] = generate_user_IDs(fname, num_users ) 

  

  
%%%%%%%%%%%%% generate User IDs %%%%%%%%%%%%%% 

  
    %store the filename into a command line string and then execute the 
    %command such that the file is laoded into local memory 



43 

 

    cmd = sprintf('load %s',fname); 
    eval(cmd); 
    % load 'C:\\Documents and Settings\\Administrator\\My 

Documents\\MATLAB\\PR\\mlseq_13' 
    %     load 'Z:\\MATLAB\\PR\\mlseq_13'; 

     
    %compare the lengths of the two sequences. If they are not the same 
    %length, then there is a problem and exit 
    if(length(ml_seq1) ~= length(ml_seq2)) 
        error('Maximal length sequences are not' ... 
            'of equal length - exiting now'); 
        quit; 
    else 
        %if they are the same length, establish the baseline length for 

the 
        %system. 
        mls_len = length(ml_seq1); 
    end 

     
%%%%%%%%%  Set up information needed for each user %%%%%%%%%% 

  
%initilize the variable user_IDs 
user_IDs = zeros(num_users,mls_len);  

  
%convert the ML sequences to binary 0 or 2 
%the xor function needs 0 and non-zero entries  
ml_seq1 = ml_seq1 + 1;  
ml_seq2 = ml_seq2 + 1; 

  
%loop spans the GOLD Space defined by the ML sequences. 
%each row is the ID for each specific user 
for j = 1:num_users;  
    %take the xor of the 2 sequences to create each user id 
    user_IDs(j,:) = xor(ml_seq1,ml_seq2);  

     
    %do a logical circular shift on 1 register. 
    temp = ml_seq1(1); 
    ml_seq1(1:mls_len-1) = ml_seq1(2:mls_len); 
    ml_seq1(mls_len) = temp; 
end 

  
%convert user_IDs from logical 0 & 1 to logical -1 & 1 
user_IDs = 2.*user_IDs - 1; 
%make a copy. 1 to be used for transmitting, the other recieving 
user_IDs = user_IDs'; 

 

 

 

 

 
%Alexis Sietins 
% 4/3/2009 
% power_order.m 
% 
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% 
%Description: Create a power ordered estimate for each user.  
%       step 1; creat a storm surface for each user 
%       step 2; calcualte a timing estimate and power estimate based 

off of 
%           the storm surface for each user 
% 
%Input  
%   S_D - System Data Struct. Contains all relevant system data 
% 
% Output 
%   power_estmate - vector containing the power estimates for each user 
%   timing_estimate - vector containing all the STORM timing estimates 
% 

  
function [power_estimate, timing_estimate] = power_order(S_D) 

  
%expand the searchable range - since the MATLAB transmit capabilities 

are 
%not real time and therefore have a gap between each transmitted frame 
search_len = 1.3*S_D.frame_size; 

  
%amount, in samples, the frame should be shifted each itteration 
shift_size = round(search_len/S_D.frame_divisions); 

  

%eastblish a copy of the recv_data to shift 
duplicate_data = S_D.recv_data; 

  
%outter loop 
% for each user 
%1. create STORM surface 
%2. take power estimate (max of the storm surface) 
%3. create timing estimate based off of the STORM surface 
for j = 1:S_D.num_users 

     
    %grab the data to be turned into a STORM surface 
    shifted_recv_data = duplicate_data(1:2*search_len)'; 

     
    %loop - for each frame division 
    % this loop creates the STORM surface 
    for k = 1:S_D.frame_divisions 

         
        %establishes the base signal 
        unscaled_recv_data = shifted_recv_data(1:S_D.frame_size); 
        %establishes the scaled signal 
        scaled_recv_data = resample(unscaled_recv_data ,... 
            100*S_D.time_spread_factors(j), 100); 

         
        %autoabiguity function for the scaled & base signal 
        corr_vals(j,k,:) = xcorr(unscaled_recv_data',... 
            scaled_recv_data','none'); 

         
        %time shift the data sequence  
        shifted_recv_data = ... 
            circshift(shifted_recv_data, [0,-shift_size]); 
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    end 

     
    %establish the length of the cross correlation output 
    corr_len = length(corr_vals(j,1,:)); 

     
    %next few lines comress the "view" of the cross-correlation such 

that 
    %it is easier to view and easier to process.  
    num_samples_view = (S_D.percent_view/100)*corr_len; 
    upper_bnd = round((corr_len/2) + (num_samples_view/2)); 
    lower_bnd = round((corr_len/2) - (num_samples_view/2)); 
    %store the 'narrowed view' signal in a temp variable 
    temp(:,:) = corr_vals(j,:,lower_bnd:upper_bnd); 

     
    %establish the delay value that will be used to obtain the timing 
    %estimate 
    real_tau(j) = round(S_D.phases(j)*S_D.time_spread_factors(j))*... 
        S_D.compression_ratio; 

     
    %obtain the timing estimate.  This value is in 

%frame/frame_divisions 
    [pt_hat(j), power_estimate(j)] = ... 
        find_sync(temp,real_tau(j)*S_D.scale_error(j)); 

     
    %convert the timing estimate created by the find_sync function into 

the 
    %desired sample 
    timing_estimate(j) = pt_hat(j)*search_len/S_D.frame_divisions - ... 
        real_tau; 

     

     
end 

 

 

 

 

 
%Alexis Sietins 
% remod_signal.m 
% 5/14/2009 
%  
% Function : remod_signal 
% Descrition: create an estimate of a transmitted signal to be  
%     subtracted out from a recieved signal for Sucessive 
%     Interference Cancellation (SIC) 
%     The output has an unmodified power spectrum - I.e. the signal 
%     needs to be further modified to account for recieved power. 
%      
% Inputs: 
%     bit_sequence - estimated recieved bits 
%     user_ID - gold code sequency comprising unique user IDs 
%     chip_gain - number of chips per bit 
%     delay - time delay shift between the base signal and the 

scaled/delayed 
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%         signal 
%     time_spread_factor - scaling factor to be used on the 

scaled/delayed  
%         signal 
%     filter_coefs - filter coefficients to be used after pulse shaping 
% Outputs: 
%     rx - estimated recieved signal, with no adjustment for power 

  
function [rx] = remod_signal(S_D, user_num, frame_num) 

  
bit_sequence = S_D.decoded_bits(:,frame_num); 
chip_gain = S_D.chip_gain/S_D.compression_ratio; 
user_ID = S_D.base_user_IDs(user_num,:); 
delay = S_D.phases(frame_num); 
time_spread_factor = S_D.time_spread_factors(user_num); 
filter_coefs = S_D.filter_coefs; 
power_estimate = S_D.power_estimate(user_num, frame_num);         

  

  

  

  

  
%factor to be used with the root raised cosine filter. In other  
%words, the amount of upsampling that takes place 
root_raised_cos_factor = 10; 

  
%temp variable so it can be circular shifted without loosing the 
%orignal begining 
user_ID_copy = user_ID; 

  
%number of decoded bits  
num_bits = length(bit_sequence); 

  
%length of the signal 
signal_len = num_bits*chip_gain; 

  
%if statement checking the the user_id is of sufficient length 
%if the ID is not long enough, then there will be redudant correlation 
%within a single data Frame 
if(signal_len > length(user_ID)) 
    'error - remod_signal.m User ID sequence not long enough' 
    rx =0; 
    return 
end 

  
%initialize the base signal and zero it out 
base_signal = zeros([1,signal_len]); 

  
%loop: generates the base signal.  
for j = 1:num_bits 
    %multiplies segments of the user_ID by the estimated bit sequence 
    base_signal((j-1)*chip_gain+1:j*chip_gain) = ... 
        bit_sequence(j)*user_ID_copy(1:chip_gain); 
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    %rotates user_ID_copy by the chip gain. This rotation is needed for 
    %the previous line of code 
    user_ID_copy = circshift(user_ID_copy,[0,-chip_gain]); 
end 

  
if(S_D.bits_per_frame - floor(S_D.bits_per_frame) > 0) 
   additional_sig_len = S_D.frame_size/S_D.compression_ratio - 

signal_len; 
   base_signal = [base_signal user_ID_copy(1:additional_sig_len)]; 
end 

  

  
%add a tail of zeros to the base signal - so that when base signal is  
%copied and delayed, the base signal won't rotate around on itself. 
offset_signal = [base_signal [zeros([1,delay])]]; 
%copy and time delay the base signal 
offset_signal = circshift(offset_signal, [0,delay]); 
%time-scaled the delayed/copied signal by the time_scaling factor 
scaled_offset_signal = resample(offset_signal,... 
    100*time_spread_factor, 100); 

  
%calculate the number of samples to extend the scaled/offset signal 
% pad_len = length(base_signal) - length(scaled_offset_signal); 

  
%pad the end of the scaled/delayed signal so its length matched the 

length 
%of the base signal 
% scaled_offset_signal = scaled_offset_signal'; 
% scaled_offset_signal  = [scaled_offset_signal ; zeros([pad_len,1])]; 
% scaled_offset_signal = scaled_offset_signal'; 

  
%pulse shape the base signal 
pulse_shaped_base = 

rcosflt(base_signal,1,root_raised_cos_factor,'sqrt'); 
%filter the pulse-shaped base signal 
filtered_base_sig = filtfilt( filter_coefs, 1, pulse_shaped_base); 
% filtered_base_sig = filtfilt( filter_coefs, 1, filtered_base_sig); 
% final_base_sig = 

rcosflt(first_filtered_base_sig,1,root_raised_cos_factor,'sqrt'); 

  
%pulse shape the time sclaed/delayed signal 
pulse_shaped_scaled_sig = rcosflt(... 
    scaled_offset_signal,1,root_raised_cos_factor,'sqrt'); 
%filter the pulse-shaped time scaled/delayed signal 
filtered_scaled_sig = filtfilt( filter_coefs, 1, 

pulse_shaped_scaled_sig); 
% filtered_scaled_sig = filtfilt( filter_coefs, 1, 

filtered_scaled_sig); 

  
base_power = sum(filtered_base_sig.^2); 
scaled_power = sum(filtered_scaled_sig.^2); 
%  
% filtered_base_sig2 = 

filtered_base_sig*(sqrt(power_estimate/base_power)); 
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% filtered_scaled_sig2 = 

filtered_scaled_sig*(sqrt(power_estimate/scaled_power)); 
%  
filtered_base_sig = 

filtered_base_sig*(sqrt(power_estimate/base_power)); 
filtered_scaled_sig = 

filtered_scaled_sig*(sqrt(power_estimate/scaled_power))*time_spread_fac

tor; 

  

  
% base_power2 = sum(filtered_base_sig2.^2) 
% scaled_power2 = sum(filtered_scaled_sig2.^2) 

  
%Add the two signals together for the final signal esitmate 
rx = zeros([length(filtered_scaled_sig),1]); 
rx(1:length(filtered_base_sig)) =rx(1:length(filtered_base_sig))+ 

filtered_base_sig; 
rx(1:length(filtered_scaled_sig)) = rx(1:length(filtered_scaled_sig)) + 

filtered_scaled_sig; 
rx(1:length(filtered_scaled_sig))= 

filtfilt(S_D.filter_coefs,1,rx(1:length(filtered_scaled_sig))); 
% rx(1:length(filtered_scaled_sig)) = 

rx(1:length(filtered_scaled_sig))*2*sqrt(power_estimate); 

  
base_power = sum(filtered_base_sig.^2) 
scaled_power = sum(filtered_scaled_sig.^2) 
total_power = sum(rx.^2) 
%  
% rx2 = zeros([length(filtered_scaled_sig2),1]); 
% rx2(1:length(filtered_base_sig2)) =rx2(1:length(filtered_base_sig2))+ 

filtered_base_sig2; 
% rx2(1:length(filtered_scaled_sig2)) = 

rx2(1:length(filtered_scaled_sig2))+ filtered_scaled_sig2; 

  

  

  

 
%Alexis Sietins 
%4/3/2009 
%remove_frame_from_signal.m 
% 
% description: Apply the subtraction of the remodded signal to the 

recorded 
% signal. First, do a fine accurate synchronization to the remodded 

frame. 
% Then subtract out the signal based on this fine timing estimate. 
% 
% Input - 
%   S_D - struct containing all of the system data  
%   user_num - the number of the current user being processed. 
%   frame_num - number of the current frame being processed 
% 
% Output -  
%   rx_signal - new signal with the frame subtracted from it   
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function rx_signal = remove_frame_from_signal(S_D, user_num, frame_num) 

  
%establish the length of the remodded signal 
remod_len = length(S_D.remodded_signal); 

  
%establish the data that will be searched for the fine synchronization 
searchable_data = S_D.duplicate_recv_data(1:2*S_D.frame_size); 

  
%calulate the cross correlation 
corr_vals = xcorr(searchable_data,S_D.remodded_signal); 

  
%establish the point in the corr_vals variable that the search will 

start 
%with 
min_search_index = 2*S_D.frame_size;  

  
%calcuate the fine tune timing estimate 
timing_estimate = find(max(abs(corr_vals(min_search_index:end))) == ... 
    abs(corr_vals(min_search_index:end))); 
sgn = sign(corr_vals(min_search_index+timing_estimate)); 

  
%these figures are used for debugging purposes. 
% figure; 
% plot(corr_vals); 
% figure; 
% plot(corr_vals(min_search_index:end)); 

  
%estimate the power based off the maximum corrleation value 
power_est = max(corr_vals(min_search_index:end)); 
%calculate the power of the remodded signal 
remod_power = sum(S_D.remodded_signal.^2); 

  
%scale the remodded signal based on the power estimate 
remod_sig = S_D.remodded_signal*power_est/remod_power; 

  
%copy the duplicate_signal so that subtraction can take place 
rx_signal = S_D.duplicate_recv_data; 

  
%begugging purposes  
%estimate tthe power of the frame before subtraction 
% base_rd_power_est = sum(... 
%     rx_signal(timing_estimate:timing_estimate + remod_len).^2) 

  
%SUBTRACT out the reomdeed signal from the signal 
rx_signal(timing_estimate:timing_estimate + remod_len -1) = ... 
    rx_signal(timing_estimate:timing_estimate + remod_len -1) - ... 
    sgn*remod_sig; 

     
%debugging purpose 
%calcualte the power of the new signal 
% new_rx_power_est = sum(rx_signal(timing_estimate:timing_estimate... 
%   + remod_len).^2) 
% remod_power_est = sum(S_D.remodded_signal.^2) 
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%debugging purpose 
% figure plots the correlation peaks of the frame with the demodded 

signal 
% figure;  
% plot(xcorr(rx_signal,S_D.remodded_signal)); 
% title('correlation of new signal'); 

  

  

 

 

 

 

 
% Alexis Sietins 
%transmit_storm_pulse_shape.m 
% 4/4/2009 

  
%Description: Transmit an acoustic STORM signal 
%conditions wanted in this file: 
% 1. supports multiple users 
% 2. create a signal for each user, 
% 3. each user has a specified time scale and time delay 
% 4. each user can have an adjustable power 
% 5. each user can have adjustable delay (timing erro) introduced into 

the 
%   signal 
% 6. play the composit signal for a certain length of time, repeating 

the 
% signal 

  

  

  
clear all; 
clear all; 
close all; 

  
%% 
%%%%%%%%%% system variables  %%%%%%%%%%%% 

  
%load the file containing the filter coefficients used to sven out the 
%spectrum for transmitssion 
load 'C:\\Documents and Settings\\Administrator\\My Documents'... 
    '\\MATLAB\\PR\\Filter_coefs_BP_5_11_09.mat' 

  

  
num_users = 1; %number of users 

  

  
chip_gain = 441; %number of chips per bit. 

  

NSR = 13; %number of shift registers used in calculating the MLS 

sequence 
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sample_rate = 44100; 
root_raised_cos_factor = 10; 

  

play_time = 10; 
frame_size = 4410; 
time_spread_factor = [.99]; 
num_samples = frame_size; 
phase_delay = [200]; 
% num_samples = 5*sample_rate; 
frame_num = 1; 

  
compression_ratio = sample_rate/frame_size; 

  
if(2^(NSR)-1 < num_users) 
    error('MLS sequence too short for number of users - exiting now'); 
    quit; 
end 

  
if(2^(NSR)-1 < frame_size) 
    error('MLS sequence too short for frame size - exiting now'); 
    quit; 
end 

  
is_running = false; 
%% 
%%%%%%%%%%%%%%% Generate ML gold sequences %%%%%%%%%%%%% 

  
%load the file containing the maximum length gold codes. These 

sequences 
%have been calcuated apriori to reduce run-time computation time. 
load 'C:\\Documents and Settings\\Administrator\\'... 
    'My Documents\\MATLAB\\PR\\mlseq_13'; 

  
%if statement 
%establish that the two sequences are of the same length 
if(length(ml_seq1) ~= length(ml_seq2)) 
    %if the two sequences are not of the same length, we cannot 

continue.  
    error('Maximal length sequences are not of equal'... 
        ' length - exiting now'); 
    quit; 
else 
    %establish the length of the sequences, used in the rest of the 
    %program. This length will be 2^(number of shift registers)-1, 

where 
    %(number of shift registers) is a variable used in calculating the 
    %maximum length sequences 
    mls_len = length(ml_seq1); 
end 

  

  
%% 

  
%%%%%%%%%  Set up information needed for each user %%%%%%%%%% 
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%%%%%%%%%%%%%%%% Generate Needed Psuedo Random Sequences 

  
% creates 2-D matrix to be filled with the needed unique user ID's 
% each row represents a seperate user 
user_IDs = zeros(num_users,mls_len);  

  
%convert the ML sequences to binary 0 or 2 
%the xor function needs 0 and non-zero entries 
ml_seq1 = ml_seq1 + 1; 
ml_seq2 = ml_seq2 + 1; 

  
%loop spans the GOLD Space defined by the ML sequences. 
%each row is the ID for each specific user 
for i = 1:num_users; 
    %take the xor of the 2 sequences to create each user id 
    user_IDs(i,:) = xor(ml_seq1,ml_seq2); 

     

    %do a logical circular shift on 1 register. 
    temp = ml_seq1(1); 
    ml_seq1(1:mls_len-1) = ml_seq1(2:mls_len); 
    ml_seq1(mls_len) = temp; 
end 

  
%convert user_IDs from logical 0 & 1 to logical -1 & 1 
user_IDs = 2.*user_IDs - 1; 
%make a copy. 1 to be used for transmitting, the other recieving 
user_IDs_recv = user_IDs; 

  

  
%% 
%%%%%%%%%%% Create Transmitted signal 

  
%zero out/initialize the transmitted signal 
transmitted_sig = zeros(1,compression_ratio*length(user_IDs(1,:))); 

  
%%%%%%%%%%% Generate Bit sequences (simulated transmitted Data) at 

Random 

  
%created large 2-D matrix with random binary data. 
%user_data_sequence = -1*ones(num_users, round(num_samples/chip_gain)); 
user_data_sequence = ones(num_users, round(num_samples/chip_gain)); 

  
%zero out these zariables for future use 
current_max_len = 0; 
previous_max_len = 0; 

  
%loop  
%outter loop to shift through each user 
for j = 1:num_users; 

     
    %loop - shift through each bit 
    % create the base signal for the first user 
    for k = 1:num_samples/chip_gain 
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        %create a temp variable - will make shifting the User_ID much 
        %easier. 
        temp = user_IDs(j,1:chip_gain); 
        %signal_idex used to visually simplify the update equation 
        sig_index =(k-1)*chip_gain +1 ; 

         
        %update the transmitted signal with the new chip pattern for 

the 
        %given user, user_ID, and bit value 
        base_sig(sig_index: sig_index + chip_gain -1) = ... 
            user_data_sequence(j,k)*temp; 

         

         
        %circular shift the MLS sequences 
        user_IDs(j,1:mls_len-chip_gain) = 

user_IDs(j,chip_gain+1:mls_len); 
        user_IDs(j,mls_len - chip_gain +1:mls_len) = temp; 
    end 

     
    %expand the base signal so that is can be circular shifted without 
    %loosing data 
    expanded_base_sig = [base_sig zeros([1,phase_delay(j)])]; 

  
    %ciruclar shift (delay) the base signal to create the time delayed 

copy 
    %of the base signal 
    delayed_base_sig = circshift(expanded_base_sig, [0, 

phase_delay(j)]); 

     
    %scale the time delayed base signal to create the time 

delayed/scaled 
    %signal 
    scaled_sig = resample(delayed_base_sig,100*time_spread_factor(j), 

100); 

     
    %pulse shape the base signal 
    rrc_base_sig = rcosflt(base_sig,1, root_raised_cos_factor,'sqrt'); 
    % filter the pulse shaped signal for spectral reasons 
    filtered_base_sig = filtfilt(filter_coefs,1,rrc_base_sig); 

     
    %pulse shape the time delayed/scaled signal 
    rrc_scaled_sig = rcosflt(scaled_sig,1, 

root_raised_cos_factor,'sqrt'); 
    %filter the pulse shpaed scaled signal for spectral reasons 
    filtered_scaled_sig = filtfilt(filter_coefs,1,rrc_scaled_sig); 

     
%     have an adjustable pad length for debugging purposes. 
    pad_len = 0; 

     
    %add the base signal to the transmitted_sig 
    transmitted_sig(1+pad_len:length(filtered_base_sig)+pad_len) =... 
        transmitted_sig(1:length(filtered_base_sig)) + 

filtered_base_sig'; 

     
    %add the scaled/delayed signal the to transmitted_sig 
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    transmitted_sig(1+pad_len:length(filtered_scaled_sig)+pad_len) =... 
        transmitted_sig(1:length(filtered_scaled_sig)) +... 
        filtered_scaled_sig'; 

     
    %establish what signal has the greater length. 
    current_max_len = max([length(filtered_base_sig) ... 
        length(filtered_scaled_sig)]); 

     
    %compare the max length of the current signal to previous signals. 

If 
    %the new one is longer, establish the new length to be the 

greatest. 
    if(current_max_len > previous_max_len) 
        previous_max_len = current_max_len; 
    end 

     
end 

  
%establish the signal that will actually be transmitted 
final(1,1:previous_max_len) = transmitted_sig(1:previous_max_len); 
%only one speaker should play, this the second channel should be zeroed 
final(2,1:previous_max_len) = zeros([1,previous_max_len]); 

  

  
%play the desired signal until the play time has been exceeded 
tic 
while(toc<play_time) 
    wavplay(final',sample_rate); 
end 

 

 

  

  

  

  

 

 

 

 


