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ABSTRACT 

Safety Modeling via Segmentation of Transportation Networks 

 

Jun Seok Oh 

 

Dissertation Advisor: Associate Professor Venky N. Shankar 

 

This dissertation proposes a methodology to address a long-standing question in 

traffic safety relating to the evaluation of safety risk and the benefits associated with 

safety interventions.  Traditionally, safety risk has been assessed at the corridor level, 

with corridors being evaluated in terms of accident rates, as in accidents per million 

vehicle miles.  This measure allowed safety planners and engineers to look for 

correlations at the aggregate level using economic and sociodemographic data from 

counties and cities.  As roadway geometric data became more widely available, both in 

terms of general access to public agencies and in terms of measurement detail, statistical 

models for safety were developed incorporating correlations between safety outcomes at 

the roadway segment level and roadway geometrics.  This approach avoids the problem 

of ecological correlation that is likely to occur in modeling using county or city level 

independent variables.  The problem of ecological correlation occurs when correlations 

between safety outcomes in corridors are evaluated using mean accident rates and county 

or city level means for independent variables.  This approach assumes corridor and 

regional means reflect segment means accurately, an assumption that is not tenable, 
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especially when segmental heterogeneity is significant, as has been shown to be, in the 

safety context.  Heterogeneity refers to the deviations in patterns of accident occurrences 

at individual roadway segments, and how these deviations are referred to an “average 

site.”  This average site can be a virtual site represented by the group mean.  

Heterogeneity results in overdispersion of accidents, meaning that the variance of the 

accident distribution exceeds the mean.  This is due to the fact that the probability of 

accident occurrence is not uniformly distributed in space and time.  Therefore, one can 

expect accidents to cluster at various locations on the transportation network, such as at 

intersections, interchanges, lane drops or lane additions, horizontal or vertical curves, or 

at locations where decisions have to be made by drivers regarding lane changing, braking, 

speed reduction or acceleration, or route change.   

Given this background, the problem of evaluating safety interventions is 

compounded by the challenge of modeling the effect of heterogeneity simultaneously 

alongside the modeling of the marginal effect of an intervention.  There are two primary 

contributors to this challenge.  The first contributor is selection bias, which arises when 

locations for safety interventions are not randomly chosen.  The second contributor is the 

scale of measurement of this bias.  It may be that selection bias at aggregate scales (for 

example, in instances where corridor length treatments are applied) is influenced by 

heterogeneity in a different manner compared to bias at smaller scales (for example, spot 

interventions).  The impact of this variation is that the assessment of safety interventions 

can be varied depending on the scale at which the evaluation is conducted.  Hence, the 

methodological problem of simultaneously addressing heterogeneity and selection bias is 
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the objective of this dissertation.  This dissertation attempts to provide some perspective 

to this problem via multiple scales, by proposing a joint model of heterogeneity and 

selection bias using a discrete-count approach, and using this framework to address the 

following research questions: 

 

a) What is the impact of selection bias on safety intervention due to scale?  In 

other words, if safety interventions are applied at locations where accident 

patterns are severe and frequent, how does one account for the lack of 

intervention at less problematic locations?  And how does a statistical 

methodology derived for selection bias provide inference across scales, as 

segments are scaled up from very small lengths to lengths of the order of 

corridors? 

b) How does one represent insights into the policy implications of selection bias 

in a manner that integrates context (i.e., roadway location and characteristics) 

and scale?  

 

I use freeway roadway lighting as an example safety intervention to make these 

evaluations in this dissertation.  Roadway lighting is installed in order to improve traffic 

flow, thereby also contributing to improved roadway safety.  Roadway lighting is 

installed in various forms – as in median-side lighting, versus right-side lighting, versus 

tunnel lighting, versus ramp-mainline merge points, versus, installations on both sides of 

the traveled way.  This dissertation involved data collection on all 1,528 centerline miles 
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of interstate freeway in Washington State and analyzed the correlation of accident 

frequencies with roadway lighting installation, after accounting for roadway geometrics 

and traffic flow levels.  It was determined that certain installations are more effective 

than others, when selection bias is taken into account.  For example, right-side lighting 

installation is found to be effective in reducing accident frequencies compared to other 

types of lighting installation, indicating a 30% reduction in accident frequencies 

compared to segments where there is no roadway lighting at the lighting segmentation 

scale.  Such a result appears to justify the installation of right-side lighting at critical 

locations such as ramp merge points or departure points.  The key phrase is “appears to 

justify”.  This dissertation explores the extent to which scale affects inferences such as 

the above.  With different scales of segmentation, such as interchange and non-

interchange segments, one mile uniform length segments, or accident-cluster length 

segments, right-side installation has a smaller reduction of accident frequencies compared 

to accident reduction at the lighting segmentation scale.  In the case of accident-cluster 

level segmentation, right-side lighting installation is associated with an increase in 

accident frequency.  This example result demonstrates that the scale of data plays a very 

important role in safety inferences, especially when heterogeneity and selectivity bias are 

accounted for. 

While roadway lighting is used as an example for application of this dissertation’s 

analytical framework, it is expected that the full-purpose self-contained computational 

framework for analyzing safety outcomes will be of substantial interest to the safety 

community at large.  One can use this framework for the analysis of any safety 
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intervention at any scale.  The framework incorporates the typical geometric design 

decisions used in practice, and therefore, analysts can use this framework to address 

selectivity bias arising from roadway improvement projects involving all geometric types.  

In particular, the framework developed in this dissertation can also aid decision makers to 

conduct scenario testing.  One example of scenario testing would be to examine the 

impact of energy-conservation efforts on traffic safety patterns on urban and rural 

freeways.  Another would be to explore the design contexts associated with high levels of 

unobserved heterogeneity, where the discussion on the measurement of factors that do 

not currently exist in highway databases can be motivated.  Example factors relating to 

heterogeneity could involve measures of segment-level kinematics such as speed, speed 

dispersion, and headway following distances.  Or, they could involve microclimatic 

measurements such as pavement temperatures, determination of icing likelihoods, wind 

gust speeds and sun angles. 
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Chapter 1 
 

INTRODUCTION 

 

Since the development of the American Association for State Highway 

Transportation Officials (AASHTO) Strategic Highway Safety Plan (SHSP), several 

states have adopted a similar approach in developing their own highway safety plan.  The 

Washington Department of Transportation (WSDOT) is a recognized leader in this area.  

The WSDOT conducts statistical modeling and visualization analyses as part of their 

accident research initiative in order to establish systematic bases in its strategic safety 

plan.  This dissertation is an in-depth, original look at statistical approaches appropriate 

for public agency decision making; hence, the focus of this dissertation is empirical.  The 

main motivations for this dissertation are drawn from current and prior research 

conducted by the author for the Washington State Department of Transportation.     

The WSDOT research effort was begun in 2006, with the author leading research 

activities in the area of data collection methods for freeway accident data systems.  

Significant goals of the effort were: a) exchangeability of data in multiple formats, b) 

usability of data for the development of statistical models, c) post-processing of model 

outputs for visualization, and d) usability of the above components for integrated 

prioritization of freeway corridors. The author demonstrated the viability of components 

“a” and “b” via two bodies of work, namely his MS thesis (Oh 2006) and a research 

report published for the WSDOT in June 2008 (Shankar et al, 2008). 
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The earlier work in 2006 reproduced accident, geometric, and traffic flow data by 

direction for 124 centerline miles in a consistent, complete record format.  The latter 

work in 2008 extended this reproduction to the entire interstate system consisting of 

1,528 centerline miles.  To the author’s knowledge, consistent and complete database 

compilation involving over 100 accident related variables, traffic flow, and geometrics at 

a statewide scale has not been done in the nation.  While the lack of such efforts may 

sound surprising, potential reasons do exist.  Some challenges occurred when creating 

record consistency and completeness in the proper format.  For example, some highway 

log information such as number of lanes, shoulder widths, and presence of median barrier 

by type, were available as text documents in their original form.  Traffic flow data such 

as annual average daily traffic (AADT) was available in electronic form at 0.1-mile or 1-

mile intervals.  The 0.1-mile data were interpolations of AADT measured using loop 

detectors which are not necessarily regularly placed at 0.1-mile or 1-mile intervals on the 

state interstate system.  Interpolations were produced by WSDOT in-house through a 

feedback algorithm that ensures consistency with neighboring AADT computations.   

Accident data was available for multiple years in the form of detailed accident reports 

that contained information by severity type (property damage only, possible injury, 

evident injury, disabling injury and fatality), type of collision such as entering at angle, 

sideswipe, same direction, fixed object, overturn or headon, vehicle involvement, driver 

related factors such as alcohol or drug involvement, seat belt use, age, gender, occupant 

information including factors similar to that for the driver and in addition, occupant 

position in vehicle, and environmental factors such as occurrence of snowy, icy, rainy or 
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dry driving conditions, as well as presence or absence of roadway lighting.  It should be 

noted here that this database is event-specific.  In order to construct segment-level 

decision frameworks, which is the primary objective of this dissertation, event-specific 

information needs to be aggregated to appropriate scales.  The appropriateness of scale 

depends on the level and nature of the research questions being asked.  In this dissertation, 

the following research questions are asked: 

a) What is the impact of selection bias on safety intervention due to scale?  In 

other words, if safety interventions are applied at locations where accident 

patterns are severe and frequent, how does one account for the lack of 

intervention at less problematic locations?  And how does a statistical 

methodology derived for selection bias provide inference across scales, as 

segments are scaled up from very small lengths to lengths of the order of 

corridors? 

b) How does one represent insights into the policy implications of selection bias 

in a manner that integrates context (i.e., roadway location and characteristics) 

and scale?  

 

Given this background and objectives, the remainder of this dissertation is 

organized as follows.  I review literature of direct relevance to the dissertation and in 

addition provide a bibliography relevant to the dissertation itself.  The review includes 

segmentation and selection bias research related to transportation applications.  In this 
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sense, the technical benefit of the work will be to provide flexibility, and as a result, 

scalability in modeling safety.   

It was noted that the marginal effects of key infrastructure variables are of interest.  

From a policy standpoint, this is definitely a substantial motivation, because cost 

effectiveness is a major factor driving prioritization schemes for safety, mobility, and 

accessibility related infrastructure improvements.  Herein lies an issue of statistical 

significance; typically, transportation improvements are applied at locations where a need 

is determined to exist.  Therefore, the application of improvements is not random; rather, 

it follows a selection rule.  In the transportation case, a selection rule may be based on 

ordering of need.  A decision making framework that is empirically based uses accident 

data observed at either the selection locations alone, or also at locations where 

improvements are not applied.  In either case, some accounting needs to occur for the 

selection bias associated with the marginal effect of the improvement in question.  For 

example, if I consider roadway lighting as the variable of interest, then it can be argued 

that the marginal effect of roadway lighting can be expected to decrease accident 

propensity at locations where lighting is installed.  A policy based on the examination of 

just lighting-only locations may estimate the effectiveness of roadway lighting with bias. 

Statistical and econometric methods involving the treatment of selectivity bias are 

documented, and the literature review in this dissertation addresses that.   

Following the literature review, I present the methods employed in this 

dissertation.  A description of data collection and segmentation methods to obtain 

structured datasets at multiple scales for accident analyses is provided.  Statistical 
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modeling designs for this research are also presented.  I discuss the results to demonstrate 

the viability of the methods proposed and conclude with major findings and 

recommendations for future work. 
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Chapter 2 
 

RELATED WORKS AND RESEARCH QUESTIONS 

 

2.1 Segmentation Methods 

Location based analysis of transportation accidents plays an important role in 

safety prioritization.  This is primarily because estimation of safety risk must be 

conducted using location-specific attributes such as geometrics, traffic volumes and 

environmental conditions.  For the remainder of this dissertation, the words location and 

segment are used interchangeably.  Alternative risk estimation approaches involving 

regional socio-economic characteristics do not provide accurate estimates of segment 

level risk, although they do provide trend estimates at the regional level for the system as 

a whole.  Regional models have other shortcomings in their employment for segment-

level risk estimation.  First is the issue of ecological correlation.  Ecological correlation is 

an effect that arises out of the use of regional means rather than location-specific values 

thereby introducing bias where location specific values deviate significantly from 

regional means.  This is particularly true for the accident context since location specific 

frequencies of accidents can be significantly different from a regional mean.  A regional 

mean in accident context can refer to a district or region of administration within a state.  

Typically a region or district of administration is an area delineated on the basis of 
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topography, balance of geographic coverage and annual differences in environmental 

conditions.  Washington State, which serves as the empirical context for this dissertation, 

has six regions encompassing in total 7,100 centerline miles of state highway.  As a 

consequence of location specific deviations from a representative mean, the problem of 

heterogeneity arises in the modeling of safety risk.  Heterogeneity can occur due to 

various contributing factors – geometric changes, environmental changes, traffic flow 

changes, and changes in driver behavior due to driving context such as urban versus rural.  

A consequence of heterogeneity is the concentration of accidents spatially that 

contributes to the problem of overdispersion in the estimation of accident counts.  

Overdispersion means the variance of the count is significantly greater than the mean.  

This problem of overdispersion is nonlinear in accident contexts – the variance-mean 

relationship is quadratic (see for example Shankar et al 1995).  Nonlinearities compound 

the overdispersion problem when locations are scaled up to corridors or regions – another 

reason for bottom-up estimation.  A final note relating to segmentation relates to the 

problem of aggregation bias.  Aggregation bias occurs when event occurrence 

probabilities are estimated using mean values of the independent variables – a problem 

sure to occur when regional values are used.  For the above mentioned reasons, I consider 

segmentation literature and methods that deal directly with the dependent variable of 

interest, frequency of accidents, or deal with independent variables in a manner that 

minimizes heterogeneity and aggregation bias.    

Segmentation methods commonly used in the contemporary statistical context of 

traffic safety are independent variable based (see for example Shankar 1995; Lord 2000).  
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Since the early work of Shankar 1995, where fixed-length segments were employed, the 

current state of the art involves homogeneous segmentation where segment lengths are 

defined on the basis of homogeneity of all independent variables.  Lord (2000) is a good 

example of this application.  The rule here is for an X vector of dimension K, with 

Var[Xk]=0 for all X for any segment j.  The main idea here is that by constraining the 

within-segment variance of Xk to be zero, all inference is conditioned on between-

segment variance.  However, the downside of this approach is one can end up with too 

small a segment length (of the order of 0.01 miles or 52.80 feet).  This creates an 

artificially induced estimation and prediction problem – with numerous small segments, 

the sample of segments can have a predominance of zero frequency values and hence, 

may over-represent the concentration of accident risk at few locations.  In contrast to the 

homogeneous length approach, the fixed-length approach can be viewed as arbitrary – for 

example, if one were to use one-mile segment lengths, the only justification is a practical 

one in the sense that the segmentation decision is usually driven by a variable of 

particular interest for the study.  For example, Shankar et al (1995) proposed to study the 

interaction between roadway geometrics and environmental conditions such as 

precipitation and the effects these interactions had on accident occurrences on rural 

freeway sections in Washington State.  The segment lengths are fixed to be consistent 

with the spatial interval of measurement for precipitation data.  A secondary justification 

offered in the Shankar study was that the error distributions were roughly independently 

and identically distributed (IID) at that scale.  It is not clear whether several 

segmentations were compared, but Shankar et al suggest that the inclusion of 
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environmental data in the analysis of accident risk can pose substantial segmentation 

challenges.  I interpret this to be a generalized challenge for the field of safety as a whole 

– the current literature has surprisingly not dealt with this issue at depth.  I can speculate 

two reasons – the first relating to the availability of environmental data, and the second to 

the plethora of methodological issues that can complicate the segmentation problem.  

Environmental data for accident analysis are difficult to measure and maintain on a 

consistent basis, for the reason that weather station data is not readily useful for pavement 

level inferences – which is in fact the level at which roadway accidents occur.  Weather 

station data are fixed station measurements that can contain considerable altitude 

variations depending on the location of the weather station.  For example, in Washington 

State, over 250 weather stations are used as permanent recording stations; however, less 

than 10 percent of these stations are located close enough to the roadway for even rough 

assumptions regarding pavement level environmental conditions.  So, considerable post-

processing of weather station information is required before segment level analyses can 

commence.  Importantly, pavement icing probabilities and temperature variations, factors 

strongly associated with accident occurrence, are not measured by permanent weather 

stations.  Such data can be estimated (see for example Senn 2005) but require a 

meteorological basis, a methodological issue beyond the domain of traffic safety 

estimation methods.   

Roadway segmentation is fairly common in Geographic Information System (GIS) 

applications in transportation.  Nyerges (1990) introduced a locational referencing and 

roadway segmentation method on the basis of simple transportation referencing schema.  
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Most transportation organizations use a combination of three schemes for transportation 

information referencing.  They are road name and milepost, control section, and link and 

node.  A control section is defined as a segment which has homogeneous types of 

information.  Link schemes are used for the connection of two or more roadways, with 

nodes being connection points on these roadways.   While research based on the link-

node concept is well established in graph theory and well-known transportation problems 

relating to traffic assignment, little integration has occurred in terms of relating this 

concept to network safety, especially via segmentation.  Segmentation is an area that can 

be fruitful in terms of benefits for field integration – that is, bringing together concepts in 

traffic demand and assignment, traffic flow, and safety.     

Dueker (2000) and Butler (2001) are other prominent examples of segmentation 

applications using GIS attributes for network links, nodes, route, traversal segments of 

routes and geographic coordinates. In an uncommon example, Quiroga (2000) uses 

dependent variables such as travel time and speed to segment transportation systems.  

However, the segmentation purpose in this paper is quite basic – the network is 

segmented so to provide the ability to retrieve particular component information; not 

necessarily for the purpose of evaluating model behavior across scales, which is a central 

issue in this dissertation.  By far, the literature on dependent variable based assessments 

of traffic safety is limited to clustering analyses (see for example Tarko and Karlaftis 

1998).  In this thought-provoking paper, the authors look at the assessment of 

heterogeneity using clustering methods; however, their focus is strictly on the evaluation 

of similar heterogeneities across the network, a conclusion drawn on the basis of 
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clustering.  Locations within a cluster are estimated to share heterogeneities of similar 

magnitudes.  I find this to be an interesting objective; while there appears to be statistical 

support, via automatic clustering, the method is not informed by an evaluation of its 

viability for statistical model estimation.  That is, how does one construct a model with 

network segment clusters that are geographically dispersed?  Research by 

Anagnostopoulos (2006) raises similar questions in his address of segmentation using 

time scales in addition to geographic scales.  

In short, the literature on segmentation is scant and surprisingly limited in terms 

of guidance on issues relating to either linear or grid network components.  For example, 

the following questions are not addressed: 

a) How does one segment in order to address multidimensional heterogeneity?  The 

common answer appears to be the very short segment approach – which I have 

discussed at some length as being problematic due to the problem of excess zeros.  

I refresh the reader that the problem of very short segments arises because the 

focus is on independent variables alone. 

b) How does one segment in order to address longitudinal heterogeneity?  A well 

established method is not apparent in the literature. 

 

An integrative approach would involve a justifiable segmentation approach that 

serves as the foundation of multi-scale analysis of traffic safety.  By “justifiable,” I mean 

in a somewhat narrow sense quantifiable objectives, such as consistency of outcomes in 

their ability to serve as key indicators of network safety, while at the same time, 
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providing guidance on definitions for measures of mobility and accessibility as well.  For 

example, if network safety evaluation can be consistently measured across scales via an 

objective measure such as total number of accidents, or severity index, or cost, then one 

can ask the question: Can the same scales be useful for simultaneous analysis of mobility 

and accessibility?  In this sense, segmentation theory is fundamental.  I discuss in the 

following chapter two approaches, one that is exogenous segmentation, and one that is 

endogenous segmentation.   

There are two aspects of consistency here that motivate the rest of this dissertation.  

The first aspect as I just discussed is a general theory for segmentation – should it be 

purely endogenous, or some hybrid that accounts for exogenous variables as well.  

Incidentally, Anagnostopoulos (2006) provides some guidance here through the field of 

dynamic programming.  The second aspect of consistency on an empirical basis is the 

development of understanding the variation in heterogeneity across scales, and how this 

can affect inferences.  I acknowledge that this is purely statistical, but I argue that without 

a solid statistical basis, guidance on causal mechanism investigation can be misleading.  

For example, if we find that policy effects associated with lighting installation can be 

consistently inferred across scales through the sign of coefficients as well as the 

magnitude of impact, then the remaining important issue statistically speaking relates to 

uncertainty.  How uncertainty varies across scales can be decomposed into model 

uncertainty and parameter uncertainty.  This can provide further guidance for targeted 

research on causal mechanisms and extend the domain of methods from purely statistical 

to possibly statistical-physical or beyond. 
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2.2 Selectivity Bias and Two Step Process 

The infrastructure policy assessment problem is essentially a selection bias 

problem.  Research in the area of selection bias correction in traffic safety is nonexistent.  

This is not surprising since the field has spent a majority of its focus on evaluation 

techniques for before-after scenarios involving the application of policy variables.  Green 

et al (2003) present the results on a before and after analysis for the impact of lighting at 

a rural intersection in District 12 in Kentucky State.  They conclude the mean crash rate 

per year is reduced by about 45% after the lighting installation.  Isebrands et al (2004) 

conducted a before and after study at rural intersections in Iowa State.  They used linear 

regression models to get the mean ratios of night crashes to total crashes at the 10% level 

of significance.  The ratio of night crashes to total crashes is reduced by 15% in after-

lighting installation period.  Also, Poisson regression models were used for comparing 

the mean crash rates during the before and after installation periods.  Isebrands et al say 

the expected night crash rate in the before installation period is 54% higher than the after 

installation period at the 10% significant level.  The day time crash rate is increased by 

24% from the before to after period, but it is not found to be statistically significant.  

Washington et al (2006) present a method to evaluate the effectiveness of left turn lanes 

on traffic safety.  They present the evaluation problem as an endogeneity issue.  

Endogeneity arises when a bi-directional relationship exists between the dependent 

variable and an independent variable.  Strictly speaking, this is an effect that can bias 

parameter estimates for the policy relevant independent variable due to nonzero 

covariance between the policy variable and the error term in the estimation equation.  
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Washington et al use this interpretation in their evaluation on the effect of left turn lanes 

on traffic safety.  They argue that locations with high accident profiles may have a higher 

probability of left turn lane installation, and proceed to estimate a statistical model that 

corrects for this dependence.  In this dissertation I encounter a similar problem, but it is 

not interpreted in the same way, although the statistical underpinnings for problem 

resolution are very similar.  The problem is motivated by the selection of roadway 

lighting as the policy variable of interest in this dissertation.  I examine the issue of 

roadway lighting since it is emerging as a policy variable of great interest motivated by 

energy efficiency and sustainability issues.  Agencies are beginning to ask whether 

roadway lighting has substantial safety benefits, and whether there are design situations 

where non-installation would provide substantial energy savings, but not result in 

increased societal costs due to safety problems.  The roadway lighting installation 

decision is not set by firm rules that depend on traffic volume, or curvature, or restricted 

sight distance – common measures that would indicate a safety problem.  Rather, it 

appears somewhat ad-hoc that lighting installation is found to be more frequent in urban 

than rural settings.  One can argue that urban volumes are higher; in addition, the density 

of interchanges and overpasses is greater, implying that situations which require decision 

distances for drivers making lane changes or route choice changes may be driving 

lighting installation choice.  I find only part of this to be true in my examination of 

lighting installation choice.  There is substantial departure from these afore-mentioned 

conditions in cases where lighting has been installed either on the median or right hand 

side.  Some of this departure is attributable to transition zone effects, i.e., when roadway 
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character changes from rural to urban.  In some other cases, it is attributable to the 

presence of short curves, whether they are located on bridges, stream crossings, or 

culverts.  The main point here is that lighting installation choice does not appear to be 

restricted to safety motivating situations if one were to measure safety through observed 

outcomes such as accident counts and severity.  However, the situations where lighting 

installation occurs may have been perceived to be dangerous by engineers.  It is the 

nature of the heterogeneity behind this perception that motivates the lighting installation 

choice problem as a selection bias problem.  In simple words, the problem can be 

characterized as follows: 

The choice to install lighting is selective due to the presence of observable 

segment attributes such as traffic volume, curvature, interchange and overpass density, 

and lane capacity.  In addition, the choice is influenced by unobserved heterogeneity.  

The unobserved heterogeneity may also affect the magnitude of the count outcome due to 

the fact that the outcome is conditioned on selectivity; hence, heterogeneity motivates the 

selection problem.  The key to examining empirical evidence of heterogeneity rests in 

large part on scale.  How does heterogeneity influence selection bias across scales?  The 

larger the degree of heterogeneity, the potentially larger the selection bias.  One can then 

expect that as heterogeneity increases, the estimation of lighting impacts on safety 

becomes more uncertain.  The nominal way to estimate lighting impacts is to estimate 

average treatment effects across the sample. 

Much of the work on selection bias correction was pioneered by James Heckman 

who won the Nobel Prize in Economics in 2000 along with Daniel McFadden.  In fact, 
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the two share a common methodological interest in the treatment of the selection bias 

problem.  McFadden’s methods (see for example Durbin and McFadden 1984) are 

applicable under specific types of selection bias, whereas Heckman’s selection correction 

methods have been applied across a variety of policy scenarios (see for example, 

Heckman 1979, 1990).  The essential idea Heckman posts is that the bias from using non-

randomly selected samples arises because of a missing data problem.  In other words, 

non-random selection of locations only provides us with before and after effects of a 

policy for that subsample.  We do not observe the policy effects for observations that 

were not selected for the policy application.  In the lighting case, the same question can 

be asked.  In essence, this is a counterfactual approach, i.e., what would the policy effect 

be if it were applied randomly.  To deal with this missing data problem, Heckman’s 

selectivity bias correction involves two stages.  In the first stage a probit or logit analysis 

is conducted to predict the probability of policy application for any observation.  An 

observation here refers to the unit of analysis (in our case, a segment).  In the second 

stage, a linear regression is conducted with the predicted probit/logit probability as the 

independent variable in lieu of the original policy variable.  If the predicted probability 

coefficient is significant in the second stage, then the policy variable is estimated to 

statistically influence the outcome of the policy.  In our case, the outcome is the number 

of accidents per segment, and the policy variable is the decision to install lighting in a 

given segment.  Generally, the regression model has the following form: 

iii εxβαy +¢+=                                                                             (1) 
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where α is an intercept term, β are estimable coefficients, x is the observed 

variable, y is the dependent variable, and ε is the random unobserved error term.  Because 

the general regression model cannot capture selection bias in independent variables, the 

model is corrected by adding the Inverse Mill’s ratio term for explaining the seemingly 

chosen portion. 

The selection bias correction model is presented as: 

iiii εσλxβαY ++¢+=                                                                (2) 

where λ is the Inverse Mill’s ratio and σ is the estimated coefficient.  The Inverse 

Mill’s ratio is a measure of the “selection hazard,” meaning that it provides the 

instantaneous probability of a segment being selected for lighting given that it has not 

been chosen.  In other words, the Inverse Mill’s ratio takes into account the probability of 

a non-selected location being selected, thereby accounting for non-randomness.  Some 

problems exist with this basic Heckman approach, especially when the error distribution 

is not normal.  In this case, Lee (1984) has provided several options through non-normal 

distributions.  In a more general sense, for our application, using generalized extreme 

value distributions to estimate lighting installation choice is reasonable.  The second 

aspect of the Heckman two-step process that is restrictive relates to the nature of the 

choice.  So far I have only discussed a binary choice followed by a regression function.  

In the lighting choice situation, the choice is polytomous, meaning, we have more than 

two choices (lighting or no lighting) and up to seven distinct and mutually exclusive 

choices.  These relate to the location on the roadside where installation is chosen.  For 

example, the location choices can include a) median side only, b) median and right side, c) 



18 
 

right side only, d) lighting in tunnels, e) median side point, and f) right side point.   

Lighting at a single point such as a merge point between an on-ramp and the mainline, is 

different from continuous lighting, where a series of luminaires are installed.  Choices “a” 

through “d” reflect continuous lighting types, whereas “e” and “f” reflect point 

installations; the baseline choice is no lighting.  For a polytomous model with an extreme 

value distribution, I propose to use the mixed logit approach, which accounts for choice 

heterogeneity in the selection problem very flexibly.  It is flexible in the sense that no 

apriori structure is required for estimating say, a nested logit type model.  One can 

directly estimate a single-level mixed logit model, compute the predicted probabilities, 

and then proceed to incorporate them in the second stage regression model.  Given these 

preliminaries, some methodological issues of note are to be presented.  First, in the sense 

of Heckman, the selection bias problem is similar to an omitted variables bias problem 

(see Puhani 2000 for details).  Second, the problem of identification is a significant one in 

the estimation of the regression equation for the outcome.  As collinearity between the 

vector of regressors in the choice equation and the outcome increases, identification 

becomes increasingly challenging.  At a minimum, it is recommended that at least one 

variable in the choice equation be omitted from the outcome regression equation.  A more 

generalized view of this is based on the fact that the Inverse Mill’s ratio is quasi-linear, 

meaning that only in very extreme samples where choice selection as opposed to no 

selection approaches unity does the Inverse Mill’s ratio become non-linear, which in turn 

means that identical regressors in both equations may still make estimation feasible in 

those extreme ranges (Puhani 2000).  This is not usually the case in the lighting choice 
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problem; the non-selection probability is non-trivial.  This probability will vary 

depending on the scale (length of segment) at which lighting choice is evaluated.  Hence, 

a good empirical procedure is to estimate Inverse Mill’s ratios from the choice equation 

and regress those on the regressors in the outcome equation.  If the adjusted R-squared of 

this regression is less than 0.8, then proceeding with the outcome regression is admissible.  

Otherwise, it is desirable to find more instruments in the choice equation, namely, 

regressors that are not in the outcome equation.  A final note relates to the consistency of 

the variance-covariance matrix of the regression outcome equation.  This may not be 

consistent, and it may be necessary to adjust for inconsistency using robust approaches 

such as the White estimator (White 1980) or an estimator that accounts for variability 

arising from the first-stage prediction (Murphy and Topel 1985). 

To summarize, selection bias correction in transportation safety policy is 

practically non-existent; it appears there is one article in the published literature that 

addresses the topic as an endogeneity issue, which is not necessarily an accurate 

characterization in most policy application situations.  The lighting choice problem serves 

as an example.  The second limitation with the selection bias correction problem relates 

to extending methods from the Heckman two-step process with a binary choice selection 

equation to a polytomous selection choice equation.  The second variant I will address 

relates to the use of nonlinear regression models for the outcome equation in the second 

step, whereas the Heckman procedure uses the classical ordinary least squares (OLS) 

regression equation.  The need for a nonlinear regression in the second step arises from 

the fact that I will be dealing with counts of accidents in years, for any given segment.  
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Using a linear OLS model will produce inconsistent parameter estimates.  A nonlinear 

regression model such as Poisson or negative binomial model has been found to be 

suitable for count regressions where heterogeneity is plausible.  If heterogeneity is 

significant, a negative binomial (NB) regression usually suffices.  The complication in 

my empirical case arises from the fact that the NB regression is a second-stage regression 

and not an independent regression.  Hence, I must factor in the heterogeneity effect 

common to both the selection equation and the count outcome equation.  This makes the 

estimation process somewhat challenging since the estimation now requires a single-step 

procedure as opposed to a two-step procedure in order to be efficient.     

Given these preliminaries, I discuss the extension of the Heckman approach to our 

empirical case by using a richer lighting choice set in the first step, and accident 

frequencies as the outcome in the second step.  This procedure, if feasible, can be 

conducted from any subset of frequencies, such as fatalities, injuries, or non-injuries.  It 

can also be conducted for collision types, such as rear ends, overturns, fixed object hits, 

or other types.  In this sense, a procedure accommodating a polytomous choice along 

with a count regression outcome that accounts for heterogeneity and overdispersion is a 

useful method.  This is a central and main scientific contribution of my dissertation, the 

other being a justifiable theory for network segmentation.  It helps answer the research 

questions I initially raised in the introduction section of this dissertation.   These 

questions are revisited for quick reference: 

a) What is the impact of selection bias on safety intervention due to scale?  In 

other words, if safety interventions are applied at locations where accident 
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patterns are severe and frequent, how does one account for the lack of 

intervention at less problematic locations?  And how does a statistical 

methodology derived for selection bias provide inference across scales, as 

segments are scaled up from very small lengths to lengths of the order of 

corridors? 

b) How does one represent insights into the policy implications of selection bias 

in a manner that integrates context (i.e., roadway location and characteristics) 

and scale?  

2.3 Mixed Logit Model 

Since the lighting choice equation involves seven choices as previously described, 

the multinomial logit model (MNL) developed by McFadden (1984) is the most popular 

discrete choice model and can be used for the choice estimation equation in a Heckman-

type two stage selectivity bias correction process.  MNL operates on the basis of 

independent and identical distribution of random components in the utilities assumption.  

Generally, the utility function (U) of MNL has the following form: 

ijij
'
jjij εxβαU ++=

                                                                            (3) 

where, α is a constant term for alternative j, x is the observed variable in 

individual i for alternative j, β are coefficients, and ε is a randomly distributed 

unobserved utility. 
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With the utility function, the probability that individual i selects alternative j is 

given by: 
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However, the MNL model is based on the IID assumption and cannot capture 

preference heterogeneity in individual characteristics.  The mixed logit model provides 

features for model analysis, including observed and unobserved heterogeneity, from a 

variety of sources.  The individual specific random parameter is introduced in the mixed 

logit model, so that the parameters are randomly distributed over individuals with unique 

means and variances in each individual.  With unique parameters in each individual, the 

utility function of the mixed logit model can be considered as follows: 

ijij
'
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'
jjij ε)xσβ(αU +++=

                                                       (4) 

where σ’ are the observed heterogeneity term to capture preference heterogeneity 

for individual i with alternative j, and the other parameters are the same as those in the 

utility function of the MNL model. 

Deb et al (2006) introduced the treatment-effects model, which can be used when 

one treatment is chosen from more than two choices.  This model uses a mixed 

multinomial logit (MMNL) structure to capture the effects of unobserved factors as well 

as observed factors.  I begin my main analysis by applying the treatment-effects model of 

Deb et al (2006).  In their paper, they use a shared heterogeneity term to motivate the 

selection bias problem influencing treatment-effects.  They analyze the choice of health 
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insurance plan type, and the outcome measures medical care usage by the treatment-

effects model.  For the model development, the indirect utility function is defined as 

follows: 

)εl(δxβαU ijij
'
jij

'
jjij +++=

                                                       (5) 

where x denotes the exogenous variable, l is an unobserved factor for individual i 

and treatment j, and ε is the independently and identically distributed error term.  

With the above utility function, the probability of treatment can be described with 

a mixed multinomial logit structure as follows: 
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where d is the binary variable representing the observed treatment choice. 

So, the expected outcome equation for individual i can be defined as: 
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where z is a set of exogenous variable associated with the treatment effects 

parameters, d is the choice variable, and l is the shared latent variable. 

As noted, the shared heterogeneity makes it a single-step estimation procedure 

which is likely to be more efficient than the traditional Heckman type approach.  In 

summary, the Deb approach allows for evaluating treatment selection effects on a count 

outcome through observed and unobserved factors. 
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Chapter 3 
 

SAFETY ANALYSIS PROCESS AND EMPRIRCAL SETTINGS 

3.1 Safety Analysis Process 

The focal point of this dissertation is to demonstrate the effect of data scale on 

selection bias in safety analysis.  For the analysis on the basis of the data scale effect, 

various segmentation approaches were employed.  Figure 1 shows the taxonomy of 

segmentation types used in this dissertation.  In the top half of the figure above the dotted 

line, exogenous segmentation types are shown, along with the modeling method 

employed for that type of segmentation.  In the bottom half of the figure, endogenous 

segmentation types are shown, along with modeling method used for analyzing that type 

of segmentation.  Exogenous segmentation includes segmentation on the basis of 

independent variables such as lighting type, exposure offsets such as length of segment, 

and geometric network classifiers such as interchange and noninterchange segments.  

Endogenous segmentation is based on the outcome’s distribution in space – in this case 

the total annual frequency of accidents.  Accident clusters are identified using the method 

of medoid based clustering, which in turn provides for the opportunity to directly link 

lighting presence with accident occurrence in space.   

The modeling method used for analyzing exogenous segmentation datasets 

involves the joint model of lighting type or sequence choice and the accident count 

outcome.  In essence, this is analogous to a full information simulated maximum 



25 
 

likelihood method.   This method becomes computationally burdensome and impractical 

in datasets where endogenous segmentation yields a large number of segments.  

Therefore, for the endogenous segmentation dataset, a two-step Heckman-type approach 

is used involving predicted probabilities from a discrete choice model of lighting type 

sequence in the outcome equation as an independent variable. 

Safety analysis will be achieved following the process in Figure 1.  Four types of 

segmentation datasets are created for safety analysis.  Segmentation datasets by lighting 

installation type, interchange existence, and one mile section are prepared as exogenous 

 

 
Figure 1:  Safety Analysis Procedure. 
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segmentation datasets while accident clustering is used for the case of endogenous 

segmentation.  Definitions of segmentation will be presented in the next section.   

Two types of models are estimated for safety analysis.  The key variable for 

selection bias is the lighting installation variable, which allows the predicted lighting 

choice values to become independent variables at the second step of model estimation.  A 

treatment-effect model is used for the exogenous segmentation datasets.  As described in 

the previous section, the treatment-effect model is the one step estimation model that 

condenses Heckman’s two step selection bias estimation into one operation.   

Both the treatment-effect model and the mixed multinomial logit model cannot 

handle the large dataset containing small scale segments.  The size of data can be one 

problem because both models are based on simulation, in which the allocation of data 

into memory at the random draw step for computation can halt the modeling.  This may 

cause the models to create inappropriate coefficients by the problem even though they are 

successfully estimated.  Due to the main problem of regular selection bias estimation, 

alternate two step estimation methods are used for the small scale dataset in this 

dissertation.  The predicted lighting choice probabilities are estimated by regression with 

observed probabilities and random predicted probabilities, as dependent variables and 

independent variables, respectively, at the pre-process modeling step.  The regression 

model can be defined as: 

ijijk
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where p is predicted probabilities of sequence choice by regression for individual i 

and alternative j, α is the constant, β are coefficients of random choice predicted 

probabilities, and x are the 200 random predicted probabilities of sequence choice. 

For the simulation method, random choice probabilities are obtained by 

generating two hundred random numbers on the basis of a multivariate random 

distribution.  The inputs for random number generation are mean and standard deviation 

numbers from the multinomial logit model estimation results. The predicted probabilities 

are calibrated against the observed probabilities for a sequence type (calculated by 

dividing the number of observations in the sequence choice within the sub-block by the 

total number of observations in the sub-block).  The sub-block for computation of 

observed probabilities is defined based on the Highway Capacity Manual (HCM) level 

design criteria. This process is carried out for the various sub-blocks defined in Table 1.  

The total interstate network is divided into 144 sub-blocks by the criteria shown in Table 

1. 

Table 1:  Highway Capacity Manual Design Criteria for Geometric Sub-Block. 

Six traffic flow level (q) Six shoulder width combinations Four curve combinations 

q ≤ 1440 vphpl (Left SW ≤ 2) AND (Right SW ≤ 2) (Horizontal Curve = 0) AND 
(Vertical Curve = 0) 

1400 < q ≤ 1650 vphpl (Left SW ≤ 2) AND (2 < Right SW ≤ 10) (Horizontal Curve ≠ 0) AND 
(Vertical Curve = 0) 

1400 < q ≤ 1900 vphpl (Left SW ≤ 2) AND (Right SW > 10) (Horizontal Curve = 0) AND 
(Vertical Curve ≠ 0) 

1900 < q ≤ 2150 vphpl (Left SW > 2) AND (Right SW ≤ 2) (Horizontal Curve ≠ 0) AND 
(Vertical Curve ≠ 0) 

2150 < q ≤ 2400 vphpl (Left SW > 2) AND (2 < Right SW ≤ 10)  

q > 2400 vphpl (Left SW > 2) AND (Right SW > 10)  
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The negative binomial model is estimated with predicted probabilities from pre-

processing and other exogenous variables at the second step.  This is similar to the second 

step estimation in Heckman’s two selection correction model; the model equation is: 

iijji
'

i εpσzβα)ln(y +++=
                                                     (8) 

       where y is the accident count for individual i, α is the constant, β are coefficients of 

exogenous variables, z are exogenous dependent variables, σ are coefficients of predicted 

sequence choice probabilities, and p are predicted sequence choice probabilities by 

regression. 

3.2 Segmentation Data Setting 

Exogenous segmentation refers to segmentation using independent variables alone 

as previously discussed, whereas endogenous segmentation refers to dependent variable 

based segmentation.  The motivations for exogenous segmentation are purely statistical – 

that is, the segmentation is based on the type of variation in the X vector and how that 

variation is associated with the variation in the outcome.  For exogenous segmentation, 

three types of variations are used, such as lighting installation type, interchange and 

non-interchange section, and one mile section as example cases.  In contrast, endogenous 

segmentation is based on the nature of occurrence of the outcome, in the case of this 

dissertation, for example, frequency of accidents.  In a sense, frequency of accidents can 

be time-invariant, that is, if accidents are clustering around specific locations on the 

network, there must be an underlying causal mechanism, and this causal mechanism does 
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not vary substantially over time, unless interventions occur.  Investigating the causal 

mechanism requires approaches beyond pure statistics or associative modeling.  

Kinematic underpinnings need to be explored, as in heterogeneities that can occur due to 

environmental interactions and driver to driver interactions.  While this aspect of research 

is beyond the scope of this dissertation, the goal of this dissertation is to set the table for 

this type of unifying discussion.  In order to set the table, a consistent empirical template 

is required.  

A total of 1,528 centerline miles were scanned, by direction, covering interstates 

in Washington State for input into the segmentation datasets.  As seen in Figure 2, 

 

 

Figure 2:  Seven Interstates in Washington State. 



Washington State covers 7 interstates 

705.  Lighting pole installation, interstate, and overpass information 

scanning the WSDOT interstate driving view

lighting data is aggregated by lighting type

 

Table 2:  Definitions of 

  
No lighting 
Median continuous only
Median point only
Right continuous only
Right point only 
Both lighting 
Tunnel lighting 

 

 
 

 

Figure 3: Input Transportation 

Washington State covers 7 interstates including: I-5, I-82, I-90, I-182, I

installation, interstate, and overpass information 

WSDOT interstate driving view images provided by the

lighting data is aggregated by lighting type definition as shown in Table

Definitions of Lighting Types for Lighting Segmentation. 

Description of lighting 
Lighting pole does not exist 

Median continuous only Continuous lighting poles present at median side
Median point only Point lighting pole presents at median side
Right continuous only Continuous lighting poles present at shoulder side

 Point lighting pole present at shoulder side
Lighting poles are installed at both side
Lighting installed in a tunnel 

ransportation Data for Segmentation. 
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182, I-205, I-405, and I-

installation, interstate, and overpass information were collected by 

images provided by the SRWeb.  The 

hown in Table 2.   

 

t at median side 
presents at median side 

s present at shoulder side 
t at shoulder side 

s are installed at both side 
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Figure 4:  Four Types 

s database was used for collecting information on the 

, number of horizontal curves, and number of vertical curves

in this dissertation spans accidents over a recent nine year period

Transportation Data Office (TDO) provides accident location and 

information from 1999 to 2007.  Also, annual average daily traffic (AADT) flow for

every one mile is provided as traffic information.  Sample transportation dataset

safety analysis are shown in Figure 3. 

Four data templates are prepared for the segmentation data on the basis of 

each segmentation type.  Raw data in Figure 

by counting and weighting methods; the segmented datasets are shown 

ypes of Segmentation Results for Accident Analysis
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information on the number of lanes, 

s, and number of vertical curves.  Safety 

in this dissertation spans accidents over a recent nine year period.  The WSDOT 

dent location and accident type 

rage daily traffic (AADT) flow for 

transportation datasets for 

segmentation data on the basis of 

each segmentation type.  Raw data in Figure 3 are aggregated into 

segmented datasets are shown in 

nalysis. 
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The input for choice variables in the random parameter model or treatment-effect 

model must be dummy information.  In the case of lighting segmentation, lighting 

information is a logical value for each lighting choice type, but in other segmentation 

cases, lighting choice values represent the proportion of luminary cover.   

 

Table 3:  Definitions of Lighting Sequence Types for Other Segmentation. 

  Description of sequence 
Sequence 1 No lighting presence 
Sequence 2 Median continuous lighting presence 
Sequence 3 Right continuous lighting presence 
Sequence 4 Median continuous with no lighting presence 
Sequence 5 Right continuous with no lighting presence 
Sequence 6 Median point with no lighting presence 
Sequence 7 Right point with no lighting presence 
Sequence 8 other lighting types presence 

 

 
 

 

 
Figure 5:   Proportions of Segment Length in Urban and Rural Areas. 



33 
 

Due to the variation in definition, lighting variables are replaced by lighting 

sequence choice variables in the other segmentation cases.  Lighting sequence types for 

model estimation are shown in Table 3. Here, it is not considered the order of lighting 

type for lighting sequence. For instance, median continuous lighting presence is followed 

by no lighting presence as well as no lighting presence is followed by median continuous 

lighting presence in case of median continuous with no lighting presence. 

 

 

 
Figure 6:  Lighting Observation Counts in Lighting Segmentation and Sequence 
Observation Counts for Each Segmentation Type. 
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As shown in Figure 2, interstates 182, 205, 405, and 705 exist in urban areas, 

while interstates 5, 82, and 90 cover both urban and rural areas.  The total percentage of 

segment length in the rural area is greater than the percentage of urban interstate length.  

Proportions of segment length in the two different areas are shown in Figure 5.  The rural 

area comprises around 58 percent of all segmentation. 

Figure 6 presents lighting and sequence observation counts for each segmentation 

type.  The proportion of no lighting presence is more than 50 percent for all 

segmentation cases.  In the case of lighting segmentation, no lighting presence covers 

about 52 percent of all observations.  No lighting presence occupies roughly 59 percent 

 

 

 
Figure 7:  Segment Observation Counts in Urban and Rural Area. 
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in interchange segmentation, 70 percent in one mile segmentation, and 78 percent in 

accident-cluster segmentation respectively.  When the segment length size decreases, 

the percentage of no lighting presence increases.  This can affect choice model 

estimation negatively because of the lack of observations in the other lighting types or 

sequences types.  

Although the rural proportion of the interstate system is greater than its urban 

counterpart, the lighting observations and sequence observations can appear in different 

ways.  One can expect that more lighting poles are installed in the urban area because of 

safety impact factors such as traffic flow; this is statistically shown in Figure 7.  In most 

cases, the lighting installed segment count in the urban area is greater than those in the 

rural area.  Only the median lighting with no lighting sequence type has more 

observations in the rural area than in the urban area.  This may be because no lighting 

observations affect sequence more than median lighting installation.  As seen in Figure 7, 

too few observations exist for both-side lighting and tunnel lighting in the lighting 

segmentation for both the urban and the rural area.  Due to negative effects of lack of 

observations in the model estimation process, two lighting cases are excluded.  In the 

sequence segmentation cases, too many zeros also exist in the rural area, which 

dramatically inflates the coefficients for the estimation of the choice model; therefore, all 

rural independent variables will be excluded from model estimation. 
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3.3 Descriptive Statistics Results 

Figures 8 through 11, and Tables 4 through 7 show the descriptive statistics for 

key variables in the four types of segment datasets for total accidents.  Lighting segments 

are identified based on the segmentation method in the previous section.  Descriptive 

statistics for lighting segmentation are presented in Figure 8 and Table 4.  The mean 

length of the lighting segments is approximately 1.42 miles.  Minimum segment length is 

0.01 miles and maximum segment length is 62.27 miles.  The percent of no lighting 

segments is 85.4.  Point lighting segments constitute 5.57 percent of the network, 

continuous lighting segments accounts for 8.03 percent, and other type segments 

comprise less than 1 percent.   

 

           
Figure 8:  Lighting Type Segment Observation in Lighting Segmentation. 
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On the average, 1.12 interchanges exist in each urban segment with a maximum 

of 10, while the mean number of interchanges in rural segments is 1.78 with maximum of 

13.  The average number of overpasses in each segment is 0.72 with a maximum of 12.  

The average number of vertical curves per urban segment is 2.04 with a maximum of 55, 

while the mean number of vertical curves per rural segment is 8.48 with a maximum of 

81. Each segment has 1.32 horizontal curves, on the average, with a maximum of 46.  

Table 4:  Descriptive Statistics for Key Variables in the Interstate Lighting Segment 
Dataset for Washington State. 

Variable Mean Minimum Maximum 

 Segment length in miles 1.42 0.01 62.27 

 Percent of segments increasing direction of travel 50.00% 0 1 

 Number of interchanges in urban segment 1.12 0 10 

 Number of interchanges in rural segment 1.78 0 13 

 Number of overpasses in urban segment 0.72 0 12 

 Number of vertical curves in urban segment 2.04 0 55 

 Number of vertical curves in rural segment 8.48 0 81 

 Number of horizontal curves in urban segment 1.32 0 46 

 Left shoulder width in feet in urban segment 6.83 2 14 

 Left shoulder width in feet in rural segment 7.18 2 10.21 

 Right shoulder width in feet in urban segment 6.61 2 24 

 Right shoulder width in feet in rural segment 7.30 2 16 

 Log average daily traffic per lane in urban 10.53 8.61 11.40 

 Log average daily traffic per lane in rural 9.42 7.51 10.61 

 Number of total accidents in segment 11.42 0 247 
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The mean left shoulder width is 6.83 feet per urban segment with a minimum of 2 feet 

and a maximum of 14 feet.  The average left shoulder width is 7.18 feet per rural segment 

with a minimum of 2 feet and a maximum of 10.21 feet.  The average right shoulder 

width per urban segment is 6.13 feet with a minimum of 2 feet and a maximum of 24 feet, 

while the mean right shoulder width per rural segment 7.30 feet with a minimum of 2 feet 

and a maximum of 16 feet.   

Mean log AADT per lane in each urban segment is 10.23 with a minimum of 8.61 

vehicles per day and a maximum of 11.40 vehicles per day, while average log AADT per 

lane in each rural segment is 9.42 with a minimum of 7.54 vehicles per day and a 

maximum of 10.61 vehicles per day.  The mean number of total accidents is 11.42 per 

segment with a maximum of 247. 

 

    

          
Figure 9:  Sequence Type Segment Observation in Interchange Segmentation. 
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Figure 9 and Table 5 show descriptive statistics for the interchange segmentation 

dataset.  The mean length of the lighting segments is 1.31 miles, while the minimum 

segment length is 0.01 miles and the maximum segment length is 20.38 miles.  The 

percent of no lighting segments is 67.98, while the segments with median point with no 

lighting encompasses 9.98 percent of the total segments.  Only right continuous lighting 

segments constitute 6.36 percent of the network, median continuous with no lighting 

segments maintains 5.37 percent of the network, and other sequence segments make up 

less than 5 percent. 

The average number of overpasses in each urban segment is 0.88 with a 

maximum of 16.  On the average, 2.45 vertical curves exist in each urban segment with a 

maximum of 30, while the mean number of horizontal curves in each urban segment is 

1.56 with a maximum of 37.  Each segment has a left shoulder width of 7.02 feet, on the 

Table 5:  Descriptive Statistics for Key Variables in Interchange Segment Dataset for 
Washington State. 

Variable Mean Minimum Maximum 

 Segment length in miles 1.31 0.01 20.38 

 Percent of segments increasing direction of travel 50.00% 0 1 
 Number of overpasses in urban segment  0.88 0 16 

 Number of vertical curves in urban segment  2.45 0 30 

 Number of horizontal curves in urban segment  1.56 0 37 
 Left shoulder widths in feet in urban segment  7.02 2 18 

 Right shoulder widths in feet in urban segment  6.75 2 18 

 Log average daily traffic per lanes in urban 10.31 8.16 11.39 

 Number of total accidents in segment 10.69 0 388 
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average, with a minimum of 2 feet and a maximum of 18 feet, while the average right 

shoulder width per urban segment 6.75 feet with a minimum of 2 feet and a maximum of 

18 feet.  Mean log AADT per lane in each urban segment is 10.31 with a minimum of 

8.16 vehicles per day and a maximum of 11.39 vehicles per day, while the mean number 

of total accidents is 10.69 per segment with a maximum of 388.  

Figure 10 and Table 6 show the descriptive statistics for the one mile 

segmentation.  The mean length of the lighting segments is 1.00 mile with a minimum 

segment length of 0.01 miles and a maximum segment length of 1.00 mile.  The percent 

of no lighting segments is 70.32, while the percent of segments with median point with 

no lighting is 7.72.  Only right continuous lighting segments constitute 6.15 percent of 

 

 

            
Figure 10:  Sequence Type Segment Observation in One Mile Segmentation. 
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the network, median continuous with no lighting segments accounts for 5.43 percent of 

the network, other type lighting segments comprises 5.30 percent, and other sequence 

segments make up less than 5 percent of the network. 

On the average, 0.97 overpasses exist for each urban segment with a maximum of 

7.  The average number of vertical curves for urban segments is 2.68 with a maximum of 

9, while the mean number of horizontal curves for urban segments is 1.66 with a 

maximum of 5.  Each segment maintains a 7.16 feet left shoulder width, on the average, 

with a minimum of 2 feet and a maximum of 14 feet, while the average right shoulder 

width per urban segment is 6.89 feet with a minimum of 2 feet and a maximum of 15.08 

feet.  Mean log AADT per lane in each urban segment is 10.14 with a minimum of 8.16 

vehicles per day and a maximum of 11.40 vehicles per day.  The mean number of total 

accidents is 8.14 per segment with a maximum of 172.  

Table 6:  Descriptive Statistics for Key Variables in One Mile Segment Dataset for 
Washington State. 

Variable Mean Minimum Maximum 

 Segment length in miles 1.00 0.01 1.00 

 Percent of segments increasing direction of travel 50.00% 0 1 
 Number of overpasses in urban segment  0.97 0 7 

 Number of vertical curves in urban segment  2.68 0 9 

 Number of horizontal curves in urban segment  1.66 0 5 
 Left shoulder widths in feet in urban segment  7.16 2 14 

 Right shoulder widths in feet in urban segment  6.89 2 15.08 

 Log average daily traffic per lane in urban  10.14 8.16 11.40 

 Number of total accidents in segment  8.14 0 172 
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Descriptive statistics for accident-cluster segmentation is shown in Figure 11 and 

Table 7.  The mean length of the lighting segments is 0.04 miles approximately with a 

minimum segment length of 0.00 miles and maximum segment length of 2.18 miles.  The 

percent of no lighting segments is 83.70, while the percent of segments with only right 

continuous is 7.92.  Only median continuous lighting segments constitute 5.31 percent of 

the network, median continuous with no lighting segments is 1.38 percent of the network, 

and other sequence segments make up less than 1 percent of the network. 

The average number of overpasses in each urban segment is 0.03 with a 

maximum of 3.  On the average, 0.38 vertical curves exist in urban segments with a 

maximum of 5, while the mean number of horizontal curves in urban segments is 0.33 

with a maximum of 4.  Each segment has a 6.98 left shoulder width, on the average, with 

 

          
Figure 11:  Sequence Type Segment Observation in Accident-Cluster Segmentation. 
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a minimum of 2 feet and a maximum of 26 feet, while the average right shoulder width 

per urban segment is 6.83 feet with a minimum of 2 feet and a maximum of 24 feet.  

Mean log AADT per lane in each urban segment is 10.46 with a minimum of 8.16 

vehicles per day and a maximum of 11.63 vehicles per day. The mean number of total 

accidents is 0.42 per segment with a maximum 26. 

Table 7:  Descriptive Statistics for Key Variables in Accident-Cluster Segment Dataset 
for Washington State. 

Variable Mean Minimum Maximum 

 Segment length in miles 0.04 0.00 2.18 

 Percent of segments increasing direction of travel 50.00% 0 1 
 Number of overpasses in urban segment  0.03 0 3 

 Number of vertical curves in urban segment  0.38 0 5 

 Number of horizontal curves in urban segment  0.33 0 4 
 Left shoulder widths in feet in urban segment  6.98 2 26 

 Right shoulder widths in feet in urban segment  6.84 2 24 

 Log average daily traffic per lane in urban  10.46 8.16 11.63 

 Number of total accidents in segment  0.42 0 26 
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Chapter 4 
 

STATISTICAL MODELING RESULTS FOR                                                   
INTERSTATE LIGHTING SEGMENTATION 

 

I will now discuss the results from the modeling trials relating lighting choice to 

accident count outcomes.  Prior to describing the model results and the implications for 

the modeling alternatives, I presented the descriptive statistics of the dataset I used from 

Washington State in the previous chapter.  This refined dataset is based on the raw data 

that was obtained from the Washington State Department of Transportation.   

4.1 Negative Binomial Model Results 

I will begin with the baseline model results based on lighting type presence in the 

lighting segmentation dataset.  Lighting type is distinguished as only median continuous, 

only right continuous, only median point, only right point, or none.  I do not use both 

lighting, tunnel lighting data, number of rural overpasses, and number of horizontal 

curves in the rural area because the segment lengths are very small, and hence, can 

contribute to convergence problems.  Table 8 shows the negative binomial model of 

accident frequencies with lighting choice variables on all Washington interstates.  The 

median-side continuous lighting variable appears to have counter-productive effects in 

the model.  Most geometric infrastructures, such as shoulders, median barriers, and 

guardrails, are installed to improve safety on interstates.  As a part of roadway 
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infrastructure, lighting poles are installed to decrease accident frequencies to improve 

driver vision at night or in adverse weather conditions.  This is the productive or positive 

effects of lighting installations on interstate safety.  As seen in the negative binomial 

model of accident frequencies in the case of lighting segmentation, the increase in the 

median continuous lighting installation appears to increase accident frequencies, and thus, 

produces counter-productive safety effects on interstates. 

If a coefficient of a choice variable has a positive sign, it contributes to increasing 

the value of a dependent variable compared to a baseline variable.  However, if the sign 

of the coefficient is negative, it contributes more to decreasing the value in relation to the 

Table 8:  Negative Binomial Model of Accident Frequencies with Lighting Choice 
Variables in case of Lighting Segmentation. 

  Coefficient Std. 
Err. 

t-
statistics 

P 
Value 

95% Conf. 
Interval 

Constant -10.410  0.308  -33.84  0.00  -11.013  -9.807  
Only median continuous lighting 0.312  0.033  9.48  0.00  0.247  0.377  
Only median point lighting -1.196  0.070  -17.17  0.00  -1.332  -1.059  
Only right continuous lighting -0.080  0.042  -1.91  0.06  -0.161  0.002  
Only right point lighting -1.729  0.048  -36.16  0.00  -1.823  -1.635  
Number of urban interchanges 0.281  0.024  11.89  0.00  0.235  0.328  
Number of rural interchanges -0.052  0.033  -1.57  0.12  -0.118  0.013  
Number of urban overpasses 0.207  0.014  15.11  0.00  0.180  0.234  
Number of urban vertical curves 0.063  0.008  8.19  0.00  0.048  0.079  
Number of rural vertical curves 0.086  0.004  19.69  0.00  0.078  0.095  
Number of urban horizontal curves 0.131  0.012  10.59  0.00  0.107  0.156  
Urban left shoulder widths -0.019  0.004  -4.65  0.00  -0.027  -0.011  
Rural left shoulder widths 0.121  0.014  8.52  0.00  0.093  0.149  
Urban right shoulder widths -0.015  0.004  -3.95  0.00  -0.023  -0.008  
Rural right shoulder widths 0.131  0.014  9.27  0.00  0.103  0.158  
Urban log AADT per number of lanes 1.131  0.028  39.85  0.00  1.076  1.187  
Rural log AADT per number of lanes 1.012  0.034  29.93  0.00  0.945  1.078  

Overdispersion 1.157  0.021  56.32  0.00  1.118  1.198  

log likelihood at constant -30982.55  
log likelihood at convergence -27427.18  
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baseline variable.  The coefficient of median continuous lighting variable has a positive 

sign, while the other lighting variables have negative signs.  Therefore, with traffic and 

geometry controls, more accident occurrences are expected with median continuous 

lighting presence than without lighting, but lighting presence contributes more to reduced 

accident frequencies than no lighting presence in the other three lighting cases.   

Baseline model results with lighting sequence variables in interchange and one 

mile segmentation are shown in Table 9 and Table 10.  Here, all variables are limited in 

the urban area because the lack of lighting presence in the rural area contributes to 

convergence problems.  

 

Table 9:  Negative Binomial Model of Urban Accident Frequencies with Lighting
Sequence Choice Variables in case of Interchange Segmentation. 

  Coefficient Std. 
Err. 

t-
statistics 

P 
Value 

95% Conf. 
Interval 

Constant 1.581  0.017  90.49  0.00  1.547  1.615  
Only median continuous lighting 0.418  0.057  7.32  0.00  0.306  0.530  
Only right continuous lighting -0.330  0.049  -6.75  0.00  -0.426  -0.234  
Median continuous with no lighting 0.495  0.039  12.87  0.00  0.420  0.571  
Right continuous with no lighting 0.131  0.047  2.80  0.01  0.039  0.223  
Median point with no lighting 0.085  0.035  2.43  0.02  0.017  0.154  
Right point with no lighting 0.395  0.088  4.47  0.00  0.222  0.568  
Other sequences 0.751  0.048  15.61  0.00  0.657  0.845  
Number of overpasses 0.087  0.011  7.86  0.00  0.065  0.108  
Number of vertical curves 0.023  0.008  2.75  0.01  0.007  0.040  
Number of horizontal curves 0.183  0.012  14.73  0.00  0.159  0.208  
Left shoulder widths -0.051  0.004  -11.87  0.00  -0.060  -0.043  
Right shoulder widths -0.030  0.004  -7.04  0.00  -0.038  -0.021  
Log AADT per number of lanes 0.085  0.006  15.26  0.00  0.074  0.096  

Overdispersion 0.992  0.015  64.582  0.000  0.962  1.022  

log likelihood at constant -35535.45  
log likelihood at convergence -33582.91  
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The only right-side continuous lighting presence variables for the two models 

have negative coefficient signs; they do not have counter-intuitive effects in both models.  

Here, the term counter-intuitive effect is used in similar manner as the term counter-

productive. Most people intuitively expect infrastructures are installed to improve safety 

on the roadway, but if accident frequencies are increased in the segment where the 

infrastructure is installed compared to locations where it is not installed, the infrastructure 

does not contribute to improving safety; this is the opposite concept of the lighting 

infrastructure to conventional intuition.  The only right-side continuous lighting presence 

variables for the two models seems to contribute to decreasing the accident frequencies, 

and it is only these lighting variables that do not have counter-intuitive effects on safety.  

Table 10:  Negative Binomial Model of Urban Accident Frequencies with Lighting
Sequence Choice Variables in case of One Mile Segmentation. 

  Coefficient Std. 
Err. 

t-
statistics 

P 
Value 

95% Conf. 
Interval 

Constant 0.926  0.013  72.66   .00  0.901  0.951  
Only median continuous lighting 1.049  0.091  11.49  0.00  0.870  1.228  
Only right continuous lighting -0.457  0.041  -11.03  0.00  -0.53   -0.376  
Median continuous with no lighting 0.919  0.039  23.60  0.00  0.842  0.995  
Right continuous with no lighting 0.489  0.042  11.55  0.00  0.406  0.572  
Median point with no lighting 0.459  0.033  13.90  0.00  0.394  0.524  
Right point with no lighting 0.784  0.099  7.90  0.00  0.589  0.978  
Other sequences 0.948  0.040  23.46  0.00  0.869  1.027  
Number of overpasses 0.098  0.011  8.67  0.00  0.076  0.121  
Number of vertical curves -0.026  0.009  -2.78  0.01  -0.044  -0.008  
Number of horizontal curves 0.136  0.013  10.73  0.00  0.111  0.160  
Left shoulder widths -0.058  0.004  -13.04  0.00  -0.066  -0.049  
Right shoulder widths -0.033  0.004  -7.72  0.00  -0.042  -0.025  
Log AADT per number of lanes 0.165  0.007  24.13  0.00  0.151  0.178  
Overdispersion 0.267  0.051  5.19  0.00  0.183  0.389  
log likelihood at constant -42346.821  
log likelihood at convergence -37447.936  
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The median-side continuous lighting variable and any type of lighting with no lighting 

presence variables have positive coefficient signs, so they have greater effects on 

accident frequencies than the no lighting presence variable.  The lighting presence 

variables, except the median continuous lighting variable in Table 10, have negative 

effects on the increase of accident frequencies, but all lighting sequence variables 

contribute to increasing accident frequencies.  This is because the no lighting portion in 

the lighting sequence segments appear to contribute more to increasing accident 

frequencies than the contribution of decreasing accident frequencies for the lighting 

installed portion.   

Table 11:  Negative Binomial Model of Urban Accident Frequencies with Lighting
Sequence Choice Variables in case of Accident-Cluster Segmentation. 

  Coefficient Std. 
Err. 

t-
statistics 

P 
Value 

95% Conf. 
Interval 

Constant -9.726  0.114  -85.41  0.00  -9.949  -9.503  
Only median continuous lighting 0.267  0.010  25.63  0.00  0.247  0.288  
Only right continuous lighting 0.217  0.016  13.69  0.00  0.186  0.248  
Median continuous with no lighting 0.530  0.050  10.67  0.00  0.433  0.628  
Right continuous with no lighting 0.602  0.068  8.80  0.00  0.468  0.736  
Median point with no lighting 0.332  0.072  4.62  0.00  0.191  0.472  
Right point with no lighting 0.227  0.126  1.79  0.07  -0.021  0.474  
Other sequences 0.361  0.033  10.79  0.00  0.295  0.426  
Number of overpasses 0.599  0.021  28.94  0.00  0.558  0.640  
Number of vertical curves 0.012  0.009  1.42  0.16  -0.005  0.029  
Number of horizontal curves -0.029  0.009  -3.26  0.00  -0.046  -0.012  
Left shoulder widths -0.018  0.001  -15.00  0.00  -0.020  -0.015  
Right shoulder widths -0.017  0.001  -14.49  0.00  -0.019  -0.015  
Log AADT per number of lanes 0.849  0.011  80.75  0.00  0.829  0.870  
Overdispersion 1.331  0.015  88.33  0.00  1.302  1.361  
log likelihood at constant -186199.12  
log likelihood at convergence -180676.97  
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The one mile segmentation model results have larger coefficients than the 

interchange segmentation model in the sense that lighting sequence has greater effects on 

accident frequencies when compared to no lighting presence. 

Table 11 shows the baseline model results with lighting sequence variables in the 

accident-cluster segmentation.  This model is estimated in the urban area as well.  Each 

lighting sequence presence variable has a positive sign and counter-intuitive effect on 

accident frequencies in the model.  Interstates with lighting pole installation have a 

greater expectation of accident frequencies than areas without lighting presence. 

4.2 The Mixed Multinomial-Selection Negative Binomial Count Treatment Effects 
Model and Negative Binomial Model with Pre-Processing 

This subsection presents the results based on a polytomous selection schema for 

lighting choice or lighting sequence choice incorporated with the negative binomial count 

outcome.  In the cases of lighting, interchange, and one mile segmentation, the effects of 

geometry and traffic flow on the choice of lighting installation are estimated by the mixed 

multinomial logit model.  The multinomial logit model is used for estimating the effects 

of traffic and geometry on lighting sequence choice in the case of accident-cluster 

segmentation.  The baseline choice is no lighting presence in all choice models.  The four 

types of lighting presence referenced in a previous chapter are used as alternative choices 

for the mixed multinomial logit model in the lighting segmentation case.  Alternative 

choices of sequence for the logit models are the seven types of lighting sequence in the 

other three segmentation cases.   
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Table 12:  Mixed Multinomial Logit Model of the Lighting Type Installation Probability 
in Lighting Segmentation. 

  Only median continuous lighting Only median point lighting 

  Coefficient Std. Err. t-
statistics Coefficient Std. Err. t-

statistics 

Constant -7.752 0.893   .68 -2.021 1.430 -1.41 
Number of urban interchanges -0.070 0.066 -1.05 -0.607 0.140 -4.32 
Numb r of rural interchanges 0.220 0.330 0.67 -0.772 0.433 -1.78 
Number of urban overpasses 0.157 0.037 4.30 -0.373 0.134 -2.77 
Number of urban vertical curves -0.139 0.023 -5.92 -1.227 0.111 -11.08 
Number of rural vertical curves -0.781 0.146 -5.34 -1.943 0.326 -5.97 
Number of urban horizontal curves -0.021 0.037 -0.57 -0.465 0.104 -4.46 
Urban left shoulder widths -0.007 0.010 -0.69 0.058 0.018 3.22 
Rural left shoulder widths -0.074 0.063 -1.16 0.116 0.101 1.14 
Urban right shoulder widths 0.022 0.010 2.32 0.039 0.016 2.43 
Rural right shoulder widths -0.139 0.063 -2.20 -0.138 0.092 -1.50 
Urban log AADT per number of lanes 0.654 0.082 7.97 0.045 0.132 0.34 
Rural log AADT per number of lanes 0.810 0.120 6.76 0.180 0.181 0.99 

  Only right continuous lighting Only right point lighting 

Constant 3.257 0.805 4.05 3.366 0.857 3.93 
Number of urban interchanges -0.749 0.079 -9.42 -0.014 0.115 -0.12 
Number of rural interchanges -1.467 0.150 -9.80 -0.876 0.179 -4.90 
Number of urban overpasses 0.242 0.042 5.73 -1.075 0.132 -8.11 
Number of urban vertical curves -0.021 0.027 -0.79 -0.696 0.074 -9.38 
Number of rural vertical curves 0.094 0.016 5.97 -1.648 0.104 -15.90 
Number of urban horizontal curves -0.019 0.041 -0.48 -1.253 0.093 -13.50 
Urban left shoulder widths -0.063 0.012 -5.13 0.085 0.014 5.93 
Rural left shoulder widths 0.223 0.050 4.43 0.199 0.037 5.32 
Urban right shoulder widths -0.074 0.012 -6.03 0.026 0.013 2.02 
Rural right shoulder widths 0.027 0.045 0.61 0.275 0.039 7.09 
Urban log AADT per number of lanes -0.335 0.075 -4.47 -0.430 0.081 -5.33 
Rural log AADT per number of lanes -0.593 0.103 -5.78 -0.368 0.095 -3.87 

log likelihood at constant -10668.76 

log likelihood at convergence -10583.66 
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Table 13:  Mixed Multinomial Logit Model of the Lighting Sequence Probability in 
Interstate Segmentation. 

  Only median continuous Only right continuous 

  Coefficient Std. Err. t-
statistics Coefficient Std. Err. t-

statistics 

Constant -20.992 1.58 -13.28 -2.887 0.068 -42.18 
Number of urban overpasses -0.170 0.086 -1.97 0.305 0.073 4.17 
Number of urban ver ical curves -0.350 0.048 -7.28 -0.094 0.041 -2.30 
Number of urban horizontal curves 0.118 0.064 1.83 -0.014 0.060 -0.24 
Urban left shoulder widths -0.088 0.021 -4.27 0.099 0.026 3.84 
Urban right shoulder widths -0.201 0.020 -9.91 -0.185 0.023 -7.94 
Urban log AADT per number of lanes 2.023 0.145 13.91 0.047 0.030 1.55 
  Median continuous with no lighting Right continuous with no lighting 

Constant -5.299 0.194 -27.30 -3.485 0.086 -40.36 
Number of urban overpasses 0.637 0.042 15.11 0.647 0.051 12.64 
Number of urban vertical curves -0.217 0.028 -7.76 -0.130 0.037 -3.53 
Number of urban horizontal curves 0.101 0.034 2.96 -0.030 0.055 -0.55 
Urban left shoulder widths -0.104 0.014 -7.28 -0.200 0.019 -10.61 
Urban right shoulder widths -0.090 0.014 -6.35 -0.182 0.019 -9.67 
Urban log AADT per number of lanes 0.488 0.024 20.04 0.340 0.023 14.80 
  Median point with no lighting Right point with no lighting 

Constant -5.844 0.258 -22.64 -1.922 0.049 -39.29 
Number of urban overpasses 0.151 0.115 1.31 0.407 0.059 6.92 
Number of urban vertical curves -0.338 0.073 -4.64 -0.052 0.033 -1.58 
Number of urban horizontal curves 0.088 0.101 0.88 -0.009 0.040 -0.23 
Urban left shoulder widths -0.113 0.030 -3.75 0.047 0.019 2.54 
Urban right shoulder widths 0.100 0.034 2.92 0.006 0.018 0.34 
Urban log AADT per number of lanes 0.257 0.046 5.59 -0.091 0.023 -3.91 
  Other sequences       

Constant -5.366 0.202 -26.53 
Number of urban overpasses 0.783 0.045 17.59 
Number of urban vertical curves -0.068 0.031 -2.18 
Number of urban horizontal curves 0.075 0.029 2.56 
Urban left shoulder widths -0.061 0.018 -3.43 
Urban right shoulder widths -0.105 0.017 -6.01 
Urban log AADT per number of lanes 0.359 0.028 13.02       

log likelihood at constant -13361.55 

log likelihood at convergence -13218.09 
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Table 14:  Mixed Multinomial Logit Model of the Lighting Sequence Probability in One 
Mile Segmentation. 

  Only median continuous Only right continuous 

  Coefficient Std. Err. t-
statistics Coefficient Std. Err. t-

statistics 

Constant -6.528 0.251 -25.96 -2.671 0.043 -61.91 
Number of urban overpasses 0.850 0.100 8.51 0.368 0.110 3.33 
Number of urban vertical curves 0.124 0.085 1.46 0.349 0.060 5.84 
Number of urban horizontal curves -0.433 0.129 -3.37 0.160 0.095 1.68 
Urban left shoulder widths -0.425 0.040 -10.70 1.077 0.082 13.08 
Urban right shoulder widths -0.614 0.046 -13.44 -0.375 0.044 -8.51 
Urban log AADT per number of lanes 0.843 0.053 16.06 -1.045 0.090 -11.67 
  Median continuous with no lighting Right continuous with no lighting 

Constant -6.279 0.216 -29.09 -4.092 0.079 -51.98 
Number of urban overpasses 1.050 0.048 21.66 1.072 0.055 19.47 
Number of urban vertical curves -0.025 0.035 -0.71 -0.003 0.043 -0.07 
Number of urban horizontal curves 0.357 0.049 7.32 -0.058 0.063 -0.91 
Urban left shoulder widths -0.133 0.019 -7.16 -0.299 0.023 -13.26 
Urban right shoulder widths -0.176 0.018 -9.66 -0.318 0.023 -14.07 
Urban log AADT per number of lanes 0.509 0.033 15.33 0.490 0.032 15.25 
  Median point with no lighting Right point with no lighting 

Constant -6.572 0.255 -25.74 -2.766 0.046 -60.67 
Number of urban overpasses 0.717 0.114 6.31 0.567 0.064 8.83 
Number of urban vertical curves -0.123 0.091 -1.35 -0.068 0.043 -1.59 
Number of urban horizontal curves 0.531 0.110 4.82 0.121 0.059 2.06 
Urban left shoulder widths -0.046 0.044 -1.05 -0.080 0.023 -3.51 
Urban right shoulder widths -0.036 0.044 -0.83 -0.152 0.022 -6.91 
Urban log AADT per number of lanes 0.179 0.070 2.56 0.150 0.033 4.59 
  Other sequences       

Constant -6.194 0.208 -29.74 
Number of urban overpasses 1.134 0.049 23.08 
Number of urban vertical curves 0.021 0.037 0.58 
Number of urban horizontal curves 0.626 0.050 12.42 
Urban left shoulder widths -0.179 0.019 -9.49 
Urban right shoulder widths -0.216 0.019 -11.51 
Urban log AADT per number of lanes 0.476 0.033 14.28       

log likelihood at constant -128789.87 

log likelihood at convergence -12721.13 
 

   



53 
 

 

Table 15:  Mixed Multinomial Logit Model of the Lighting Sequence Probability in 
Accident-Cluster Segmentation. 

  Only median continuous Only right continuous 

  Coefficient Std. Err. t-
statistics Coefficient Std. Err. t-

statistics 

Constant -12.328 0.163 -75.50 8.226 0.140 58.70 
Number of urban overpasses 0.223 0.033 6.79 0.321 0.040 8.08 
Number of urban vertical curves -0.104 0.012 -8.89 -0.007 0.015 -0.47 
Number of urban horizontal curves 0.116 0.012 9.74 0.004 0.017 0.25 
Urban left shoulder widths -0.042 0.002 -26.61 -0.061 0.002 -26.78 
Urban right shoulder widths -0.121 0.002 -76.60 -0.202 0.002 -83.36 
Urban log AADT per number of lanes 1.148 0.015 76.17 -0.839 0.013 -64.73 
  Median continuous with no lighting Right continuous with no lighting 

Constant -9.877 0.717 -13.77 -6.053 0.842 -7.19 
Number of urban overpasses 0.547 0.136 4.02 1.387 0.103 13.47 
Number of urban vertical curves -0.153 0.060 -2.57 0.291 0.072 4.05 
Number of urban horizontal curves 0.334 0.058 5.74 0.677 0.074 9.19 
Urban left shoulder widths 0.010 0.008 1.19 -0.026 0.012 -2.27 
Urban right shoulder widths -0.043 0.008 -5.27 -0.043 0.012 -3.75 
Urban log AADT per number of lanes 0.494 0.066 7.44 0.050 0.077 0.64 
  Median point with no lighting Right point with no lighting 

Constant -4.747 1.181 -4.02 -1.740 0.689 -2.53 
Number of urban overpasses -27.961 459391.80 0.00 1.003 0.122 8.23 
Number of urban vertical curves -0.500 0.138 -3.63 0.203 0.069 2.94 
Number of urban horizontal curves 1.069 0.120 8.89 -0.023 0.077 -0.30 
Urban left shoulder widths 0.117 0.019 6.15 0.058 0.011 5.07 
Urban right shoulder widths 0.047 0.018 2.67 0.013 0.011 1.19 
Urban log AADT per number of lanes -0.309 0.112 -2.75 -0.410 0.065 -6.31 
  Other sequences       

Constant -16.104 0.578 -27.87 
Number of urban overpasses 0.518 0.095 5.48 
Number of urban vertical curves 0.003 0.039 0.09 
Number of urban horizontal curves -0.557 0.046 -12.16 
Urban left shoulder widths 0.047 0.006 8.43 
Urban right shoulder widths -0.037 0.005 -7.05 
Urban log AADT per number of lanes 1.153 0.053 21.65       

log likelihood at constant  -198831.60 

log likelihood at convergence -186604.31 
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These models use traffic and geometry factors such as number of interchanges, 

number of overpasses, number of horizontal and vertical curves, number of lanes, and 

shoulder width, as independent variables.  For the mixed multinomial logit model, in the 

case of lighting segmentation, all urban and rural factors are used except number of 

overpasses and horizontal curves in the rural area.  Other logit models use urban 

geometry without interstate and urban traffic factors as independent variables. 

Tables 12 through 14 show the mixed multinomial logit model results of 

installation probability for each lighting type and lighting sequence type.  Table 15 also 

shows the multinomial logit model results for sequence probabilities.  The predicted 

outcomes of this lighting choice model are included in the negative binomial model as 

additional independent variables for selectivity bias correction.  

The selectivity bias correction model results with predicted outcomes in the case 

of lighting segmentation are shown in Table 16. Most independent variables are 

significant in the selectivity correction model estimations.  If the t-statistic value of the 

variable is greater than or equal to 2, or the p-value is less than or equal to 0.05, the 

variable is significant at the 95 percent confidence level.  If the variable is significant, the 

coefficient is highly different from zero and it will significantly increase or decrease the 

dependent variable at the confidence level.  Most geometry variables have a positive 

relationship with the number of accidents, except for urban shoulder widths, in the 

correction model.  The traffic flow variable also has a positive coefficient sign; this trend 

is applicable to the uncorrected model in Table 8 as well. 
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The number of interchanges in the rural area has a negative sign in both models, 

but the p-value is greater than 0.05 and the variable is not significant at the 95 percent 

confidence level.  Because the variable is not significant, there is no significant evidence 

that suggests the number of interchanges decrease accident frequency on interstates.  The 

right continuous lighting presence variable is significant in the uncorrected model, but it 

is not significant in the selectivity correction model.  Median continuous lighting has a 

Table 16:  Negative Binomial Results with Selectivity Bias Correction in Lighting 
Segmentation. 

  Coefficient Std. Er . t-statistics P Value 95% Conf. Interval 

Constant -10.574  0.329  -32.13  0.00  -11.219  -9.929  
Only median continuous lighting 0.324  0.054  6.03  0.00  0.219  0.430  
Only median point lighting -1.352  0.085  -15.82  0.00  -1.519  -1.185  
Only right continuous lighting -0.060  0.060  -1.00  0.32  -0.178  0.058  
Only right point lighting -2.178  0.060  -36.06  0.00  -2.296  -2.059  
Number of urban interchanges 0.287  0.026  11.04  0.00  0.236  0.338  
Number of rural interchanges -0.030  0.036  -0.85  0.40  -0.100  0.040  
Number of urban overpasses 0.233  0.015  15.32  0.00  0.203  0.262  
Number of urban vertical curves 0.042  0.009  4.89  0.00  0.025  0.059  
Number of rural vertical curves 0.079  0.005  16.32  0.00  0.069  0.088  
Number of urban horizontal curves 0.098  0.014  6.85  0.00  0.070  0.126  
Urban left shoulder widths -0.013  0.004  -3.07  0.00  -0.022  -0.005  
Rural left shoulder widths 0.127  0.015  8.27  0.00  0.097  0.157  
Urban right shoulder widths -0.011  0.004  -2.53  0.01  -0.019  -0.002  
Rural right shoulder widths 0.138  0.015  9.23  0.00  0.109  0.167  
Urban log AADT per number of lanes 1.134  0.030  37.41  0.00  1.075  1.194  
Rural log AADT per number of lanes 1.020  0.036  27.95  0.00  0.948  1.091  

Heterogeneity of only median 
continuous 0.014  0.048  0.28  0.78  -0.081  0.108  

Heterogeneity of only median point 0.173  0.045  3.84  0.00  0.085  0.261  
Heterogeneity of only right continuous -0.061  0.046  -1.31  0.19  -0.151  0.030  
Heterogeneity of only right point 0.591  0.039  15.18  0.00  0.514  0.667  

Overdispersion 0.806  0.041  19.60  0.00  0.729  0.890  

log likelihood at constant -38010.84  

log likelihood at convergence -37884.24  
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positive effect on accident frequency and it is significant in both models.  Median point 

lighting, right continuous lighting, and right point lighting variables are significant in 

both estimations and are associated with decreased accident frequencies. 

The standard errors after selectivity correction are slightly larger than the standard 

errors of the initial models.  This is due to the fact that unobserved heterogeneity is 

accounted for in their shared lambda variable.  The coefficients for the right continuous 

and right point lighting variables are changed by roughly 25 percent.  This implies that 

 

 

 
Figure 12:  Uncertainty of Lighting Choice Variables in Lighting Segmentation. 
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the unobserved heterogeneity has a greater influence on model estimation in the 

selectivity correction model.  The coefficient for the number of vertical curves and 

horizontal curves in urban area are changed by 34 percent and 25 percent, while the 

change in coefficient for left and right shoulder width in the urban area are changed by 29 

percent and 31 percent.  The coefficient change for the number of rural interchange 

variable is 42 percent, and the coefficient change for the median point lighting and urban 

overpass variables are roughly 10 percent, while the changes in coefficient for other 

variables is less than 10 percent.  

The confidence interval of parameter is the useful method to know the reliability 

of an estimate because it can measure the uncertainty of estimated parameters.  The mean 

value of the estimated parameter, its standard error, and sample size are associated with 

the computation of the confidence interval.  The 95 percent confidence interval is 

generally used for the confidence interval.  Figure 12 shows the 95 percent confidence 

intervals for key variables in lighting segmentation.  The selectivity correction model has 

more confidence intervals than the baseline model for all lighting choice variables 

because of the heterogeneity effect.  The confidence interval for the median continuous 

lighting variable is increased by 64 percent.  In the case of the right continuous lighting 

variable, the confidence interval is increased by 45 percent.  For the two types of point 

lighting variables, the confidence interval was found to increase by about 20 percent.  

The increases in uncertainty are because the selectivity bias model captures unobserved 

heterogeneity in parameter estimation. 
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Table 17 shows the selectivity bias correction model results with predicted 

outcomes in the case of interchange segmentation.  Most independent variables have 

positive effects on accident occurrences in the correction model and the baseline model in 

Table 9. Traffic and geometry variables are significant because the p-values are less than 

0.05 in both models.  The shoulder width variables have negative effects on accident 

frequency. The right point lighting with no lighting variable has a negative sign in the 

Table 17:  Negative Binomial Results with Selectivity Bias Correction in Interchange 
Segmentation. 

  Coefficient Std. 
Err. 

t-
statistics 

P 
Value 

95% Conf. 
Interval 

Constant 1.286  0.035  36.40  0.00  1.216  1.355  
Only median continuous 1.074  0.098  10.99  0.00  0.883  1.266  
Only right continuous -0.431  0.107  -4.04  0.00  -0.640  -0.222  
Median continuous with no lighting 0.822  0.119  6.89  0.00  0.588  1.056  
Right continuous with no lighting -0.099  0.130  -0.77  0.44  -0.354  0.155  
Median point with no lighting 0.382  0.123  3.10  0.00  0.141  0.624  
Right point with no lighting 0.013  0.098  0.13  0.90  -0.180  0.206  

Other sequences of lighting 0.937  0.089  10.51  0.00  0.762  1.111  
Number of overpasses 0.113  0.012  9.34  0.00  0.090  0.137  
Number of vertical curves 0.049  0.009  5.60  0.00  0.032  0.067  
Number of horizontal curves 0.089  0.013  6.73  0.00  0.063  0.114  
Left shoulder widths -0.057  0.005  -11.88  0.00  -0.066  -0.047  
Right shoulder widths -0.037  0.005  -7.94  0.00  -0.047  -0.028  
Log AADT per number of lanes 0.095  0.006  14.91  0.00  0.083  0.108  

Heterogeneity of only median continuous -0.666  0.093  -7.16  0.00  -0.849  -0.484  
Heterogeneity of only right continuous 0.077  0.104  0.74  0.46  -0.126  0.281  
Heterogeneity of median continuous with no 
lighting -0.244  0.128  -1.92  0.06  -0.494  0.006  

Heterogeneity of right continuous with no lighting 0.294  0.140  2.10  0.04  0.020  0.567  
Heterogeneity of median point with no lighting -0.029  0.101  -0.29  0.78  -0.227  0.169  
Heterogeneity of right point with no lighting 0.129  0.104  1.25  0.21  -0.074  0.333  
Heterogeneity of other sequences -0.064  0.082  -0.78  0.44  -0.224  0.096  

Overdispersion 0.434  0.060  7.27  0.00  0.332  0.569  

log likelihood at constant -46801.00  

log likelihood at convergence -46629.62  
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selectivity correction model, but it is not significant.  The right continuous lighting 

variable has a negative effect on accident frequency in both models.  The median 

continuous lighting, median continuous with no lighting, median point with no lighting, 

and right point with no lighting variables are significant in both estimations and are 

associated with increased accident frequencies. 

 

 

 
Figure 13:  Uncertainty of Sequence Choice Variables in Interchange Segmentation. 
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The standard errors of the selectivity correction model are slightly larger than the 

standard errors of the uncorrected models because of unobserved heterogeneity.  The 

coefficient for the median continuous with no lighting variable is changed by 66 percent, 

and the coefficient for the right point with no lighting variable is changed by 97 percent.  

The coefficient for the number of horizontal curves variable is changed by 52 percent.  

The median continuous lighting, right continuous with no lighting, median point with no 

lighting, and the number of vertical curves coefficients are changed by more than 100 

percent, while the percent change for other variables is less than 50. 

Figure 13 shows the 95 percent confidence intervals for key variables in 

interchange segmentation.  The increase in the confidence interval for median continuous 

lighting variable is 71 percent, while uncertainties of the other sequence variables are 

increased by over 100 percent.  The other lighting sequence variable has an 85 percent 

increase in parameter uncertainty. 

Table 18 shows the selectivity bias correction model results with predicted 

outcomes in the case of one mile segmentation. The number of vertical curves variable 

has a negative sign in the baseline model.  This variable has a positive sign in the 

selectivity correction model, but it is not significant in the 95 percent confidence interval.  

Both the left and right shoulder width variables have negative effects on accident 

frequency.  Both model results show that the right continuous lighting variable 

contributes to a greater decrease of accident frequency than no lighting presence, but the 

other sequence type variables have positive effects on accident occurrences. 
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For most variables, except for right point with no lighting, number of vertical 

curves, and left shoulder width variables, the standard errors of the selectivity correction 

model are slightly larger than the standard errors of the uncorrected models.  The 

standard error is slightly decreased after selectivity correction in the case of the right 

point with no lighting variable.  The coefficients for the right continuous lighting and the 

number of vertical curves variables are changed by over 100 percent.  The coefficient for 

Table 18:  Negative Binomial Results with Selectivity Bias Correction in One Mile 
Segmentation. 

  Coefficient Std. 
Err. 

t-
statistics 

P 
Value 

95% Conf. 
Interval 

Constant 0.734 0.025 28.96 0.00 0.684 0.784 
Only median continuous 1.341 0.122 10 97 0.00 1.101 1.580 
Only right continuous -1.026 0.057 -18.16 0.00 -1.137 -0.916 
Median continuous with n  lighting 1.181 0.072 16.39 0.00 1.040 1.322 
Right continuous with no lighting 0.582 0.070 8.37 0.00 0.446 0.719 
Median point with no lighting 0.790 0.117 6.75 0.00 0.560 1.019 
Right point with no lighting 0.479 0.071 6.71 0.00 0.339 0.619 
Other sequences of lighting 1.144 0.067 17.00 0.00 1.012 1.276 
Number of overpasses 0.086 0.012 6.86 0.00 0.061 0.110 
Number of vertical curves 0.003 0.009 0.30 0.76 -0.016 0.021 
Number of horizontal curves 0.104 0.013 7.91 0.00 0.078 0.130 
Left shoulder widths -0.062 0.005 -12.73 0.00 -0.072 -0.053 
Right shoulder widths -0.045 0.005 -9.17 0.00 -0.055 -0.036 
Log AADT per number of lanes 0.161 0.007 21.56 0.00 0.146 0.175 

Heterogeneity of only median continuous -0.099 0.080 -1.24 0.21 -0.255 0.057 
Heterogeneity of only right continuous 0.717 0.049 14.69 0.00 0.622 0.813 
Heterogeneity of median continuous with no 
lighting -0.101 0.070 -1.44 0.15 -0.239 0.036 
Heterogeneity of right continuous with no lighting -0.006 0.061 -0.10 0.92 -0.126 0.114 
Heterogeneity of median point with no lighting 0.065 0.062 1.05 0.29 -0.056 0.186 
Heterogeneity of right point with no lighting 0.016 0.068 0.24 0.81 -0.118 0.150 

Heterogeneity of other sequences -0.112 0.063 -1.79 0.07 -0.235 0.011 

Overdispersion 0.267 0.051 5.19 0.00 0.183 0.389 

log likelihood at constant -50269.07 

log likelihood at convergence -50095.44 
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median point with no lighting and right point with no lighting are changed by 72 percent 

and 39 percent, and the coefficient for right shoulder width is changed by 36 percent, 

while the other variables are changed between 2 percent and 29 percent. 

The 95 percent confidence intervals for key variables in one mile segmentation 

are shown in Figure 14.  Uncertainties of parameter estimation for the median continuous 

and the right continuous variables have 34 percent and 36 percent increases after 

selectivity correction.  The confidence interval for the median continuous with no 

lighting variable is increased by 85 percent.  About a 65 percent increase of uncertainty is 

 

 
Figure 14:  Uncertainty of Sequence Choice Variables in One Mile Segmentation. 
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found in the case of the right continuous with no lighting and other lighting sequence 

variables.  The 95 percent confidence interval for the median point with no lighting 

variable is increased by over 200 percent, while uncertainty for the right point with no 

lighting variable is decreased by 28 percent after selectivity correction estimation. 

Table 19 shows the results of the negative binomial with random sequence choice 

variables model in the case of accident-cluster segmentation.  All independent variables 

are significant in the initial model shown in Table 11, but any variables associated with 

lighting installation with no lighting are not significant in this model because the increase 

in variance by random draws affects the standard errors and t-statistic values.  Traffic and 

geometry variables, except vertical curves, seem to be significant in both models.  The 

Table 19:  Negative Binomial Results with Random Sequence Choice Probability in 
Accident-Cluster Segmentation. 

  Coefficient Std. Err. t-statistics P Value 95% Conf. Interval 

Constant -11 473  0.509  -22.52  0.00  -12.471  -10.474  
Only median continuous lighting 2.388  0.867  2.75  0.01  0.688  4.089  
Only right continuous lighting 1.055  2.752  0.38  0.70  -4 339  6.449  
Median continuous with no lighting -41.300  25.684  -1.61  0.11  -91.641  9.041  
Right continuous with no lighting -67.612  71.261  -0.95  0.34  -207.280  72.056  
Median point with no lighting 252.773  52.448  4.82  0.00  149.977  355.568  
Right point with no lighting 209.563  134.157  1.56  0.12  -53.380  472.507  
Other sequences of lighting 32.587  12.727  2.56  0.01  7.642  57.532  
Number of overpasses 0.627  0.021  30.31  0.00  0.587  0.668  
Number of vertical curves 0.010  0.009  1.13  0.26  -0.007  0.026  
Number of horizontal curves -0.022  0.009  -2.51  0.01  -0.040  -0.005  
Left shoulder widths -0.019  0.001  -15.41  0.00  -0.021  -0.016  
Right shoulder widths -0.026  0.001  -21.75  0.00  -0.028  -0.024  
Log AADT per number of lanes 0.874  0.011  82.70  0.00  0.854  0.895  

Overdispersion 1.363  0.015  88.84  0.00  1.333  1.394  

log likelihood at constant -184095.81  

log likelihood at convergence -179084.78  
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increase in the number of horizontal curves and the shoulder width variables contribute to 

the decrease in accident frequency on interstates. 

The standard errors for lighting sequence variables in the pre-processing model 

are larger than the standard errors of those variables in the initial models.  Too few 

observation findings affect the insignificance of the coefficients and the large standard 

errors of all other sequence variables except the median continuous and the right 

continuous lighting variables.  The standard errors for other geometry variables and the 

traffic variable do not change after pre-processing.  The coefficients for median 

 

 
Figure 15:  Uncertainty of Sequence Choice Variables in Accident-Cluster Segmentation. 
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continuous lighting, median point with no lighting, and other lighting sequence variables 

experience significant change.  The coefficient for the number of horizontal curves is 

changed by 23 percent, and the coefficient for right shoulder widths is changed by 51 

percent, while the other variables encounter between 2 percent and 6 percent coefficient 

changes. 

The 95 percent confidence intervals for key variables in accident-cluster 

segmentation are shown in Figure 15.  The only median continuous variable, median 

point with no lighting variable, and other lighting sequence variable are used for 

uncertainty comparison between the two models because the estimated parameters of the 

other variables are not significant.  In the case of the three lighting sequence variables, 

although they are significant in the pre-processing model, the coefficients and standard 

errors are too large to compare to those in the uncorrected model.  Because the input of 

the lighting sequence variable by pre-processing has random probabilities in a normal 

distribution, random numbers significantly impact the heterogeneity of lighting sequence 

parameters in count estimation. 

4.3 Elasticity Estimation Result of Model Outputs 

This section describes the elasticity of model estimation.  Elasticity describes the 

ratio of the percent change in one variable to the percent change in another variable.  

Elasticity is defined in this dissertation as the percent change in the dependent variable by 

the percent change of each independent variable.  Accident frequency is the dependent 

variable, while lighting choice or sequence, geometry, and traffic variables are the 
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independent variables.  All count models have a non-log form accident frequency 

variable and non-log form geometry variables.  So, the elasticity of geometry to accident 

frequency can be shown as: 

xβ̂ Ey
x =                                                                                                    (9) 

where y is the non-log form dependent variable, x consists of variables in non-log 

forms, and β is the coefficient of the independent variable.  Since log AADT numbers are 

used for the traffic variable in the models, the elasticity of the log form variable will be 

defined by following: 

 β̂ Ey
x =                                                                                                  (10) 

where y is the non-log form dependent variable, x consists of variables in log 

forms, and β is the coefficient of the independent variable.   

Table 20 shows the elasticity of the negative binomial model and the selectivity 

correction model in lighting segmentation.  A 1 percent change in the median continuous 

lighting variable will increase about a 0.06 percent change in accident occurrences for 

both estimations.  When median point lighting is increased by 1 percent, accident 

frequency will be decreased by 0.05 percent in the baseline model and 0.06 percent in the 

selectivity correction model, respectively. A 1 percent change in the right continuous 

lighting variable results in a less than 0.01 percent change in accidents for both models.  

The right point lighting variable decreases by 0.26 percent and 0.32 percent in accident 

frequency when it is increased by 1 percent.  All other geometry variables affect less than 
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a 0.3 percent change on accident frequency, but a 1 percent increase in traffic increases 

accident occurrence by about 1 percent. 

The 95% confidence intervals of elasticity for key variables in lighting 

segmentation are shown in Figure 16.  Uncertainties of elasticity for median continuous 

and right continuous variables have a 62 percent and a 19 percent increase after 

selectivity correction.  The confidence interval of elasticity for median point lighting is 

increased by 44 percent, while the uncertainty of elasticity for right point lighting has a 

26 percent increase. 

 

 

Table 20:  Elasticity of Negative Binomial Model and Selectivity Correction Model in 
Lighting Segmentation. 

  Negative binomial estimation Selectivity correction estimation 

Variable Elasticity Std.Err. 95% Conf. 
Interval Elasticity Std.Err. 95% Conf. 

Interval 

Only median continuous lighting 0.060  0.006  0.047  0.073  0.06   0.010  0.042  0.083  

Only median point lighting -0.051  0.004  -0.059  -0.044  -0.058  0.005  -0.067  -0.049  

Only right continuous lighting -0.009  0.005  -0.018  0.000  -0.007  0.007  -0.020  0.006  

Only right point lighting -0.255  0.009  -0.274  -0.237  -0.322  0.012  -0.345  -0.298  

Number of urban interchanges 0.249  0.021  0.207  0.290  0.254  0.023  0.208  0.299  

Number of rural interchanges -0.019  0.012  -0.044  0.005  -0.011  0.013  -0.037  0.015  

Number of urban overpasses 0.117  0.008  0.101  0.134  0.132  0.009  0.114  0.150  

Number of urban vertical curves 0.102  0.013  0.077  0.128  0.068  0.014  0.041  0.096  

Number of rural vertical curves 0.153  0.011  0.133  0.174  0.140  0.011  0.119  0.161  

Number of urban horizontal curves 0.137  0.013  0.111  0.163  0.102  0.015  0.073  0.132  

Urban left shoulder widths -0.101  0.022  -0.144  -0.058  -0.072  0.023  -0.118  -0.026  

Rural left shoulder widths 0.183  0.022  0.140  0.225  0.191  0.023  0.145  0.237  

Urban right shoulder widths -0.081  0.020  -0.121  -0.041  -0.056  0.022  -0.099  -0.012  

Rural right shoulder widths 0.200  0.022  0.157  0.243  0.211  0.023  0.165  0.256  

Urban log AADT per number of lanes 1.131  0.241  0.658  1.605  1.134  0.257  0.630  1.639  

Rural log AADT per number of lanes 1.012  0.078  0.860  1.164  1.020  0.082  0.858  1.181  
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Table 21 shows the elasticity of the negative binomial model and the selectivity 

correction model in interchange segmentation.  A 1 percent change of all variables 

contributes to a less than 1 percent change in accident occurrences.  The right continuous 

lighting variable decreases by 0.02 percent in both models, and the right continuous with 

no lighting variable slightly increases accident frequency in the initial model but 

decreases accidents in the correction model.  After selectivity correction, both shoulder 

width variables decrease in accident frequency by around 0.03 percent.  A 1 percent 

 

 
Figure 16:  Uncertainty of Lighting Choice Variables Elasticity in Lighting
Segmentation. 
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change in the number of horizontal curves results in a 0.17 percent increase of accidents 

in the baseline model.  The other variables affect less than a 0.1 percent change in 

accidents. 

The 95% confidence intervals of elasticity for key variables in interchange 

segmentation are shown in Figure 17.  The confidence interval of elasticity for the 

median continuous variable is increased by 83 percent, while the right point with no 

lighting variable has an 11 percent increase of uncertainty after selectivity correction.  

Selectivity correction also incurs a 70 percent increase in the confidence interval for the 

other lighting sequence variable. Uncertainties of elasticity for the right continuous 

lighting variable, the median continuous with no lighting variable, the right continuous 

with no lighting variable are increased by over 100 percent, while the elasticity of median 

Table 21:  Elasticity of Negative Binomial Model and Selectivity Correction Model in 
Interchange Segmentation. 

  Negative binomial estimation Selectivity correction estimation 

Variable Elasticity Std.Err. 95% Conf. 
Interval Elasticity Std.Err. 95% Conf. 

Interval 

Only median continuous lighting 0.016 0.002 0.011 0.020 0.040 0.004 0.032 0.049 

Only right continuous lighting -0.018 0.003 -0.023 -0.012 -0.023 0.006 -0.034 -0.012 

Median continuous with no lighting 0.048 0.004 0.040 0.056 0.079 0.012 0.056 0.103 

Right continuous with no lighting 0.007 0.003 0.002 0.012 -0.006 0.007 -0.020 0.009 

Median point with no lighting 0.001 0.000 0.000 0.002 0.005 0.002 0.002 0.009 

Right point with no lighting 0.041 0.009 0.023 0.059 0.001 0.010 -0.019 0.021 

Other lighting sequences 0.040 0.003 0.034 0.046 0.050 0.005 0.040 0.060 

Number of overpasses 0.045 0.006 0.034 0.057 0.060 0.006 0.047 0.072 

Number of vertical curves 0.034 0.012 0.010 0.058 0.072 0.013 0.047 0.097 

Number of horizontal curves 0.170 0.012 0.146 0.194 0.082 0.012 0.058 0.106 

Left shoulder widths -0.214 0.018 -0.250 -0.178 -0.237 0.020 -0.276 -0.197 

Right shoulder widths -0.119 0.017 -0.152 -0.086 -0.150 0.019 -0.187 -0.113 

Log AADT per number of lanes 0.085 0.034 0.018 0.153 0.095 0.039 0.018 0.172 
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point with no lighting variable has more than a 200 percent increase in the confidence 

interval. 

Elasticity of the initial model and the selectivity correction model in one mile 

segmentation is shown in Table 22.  A 1 percent change of most variables incur less than 

a 0.1 percent change in accident frequency.  The right continuous lighting variable 

decreases by 0.03 percent and 0.06 percent in each model.  A 1 percent change in the 

number of vertical curves variable decreases accident frequency by 0.03 percent in the 

 

 
Figure 17:  Uncertainty of Sequence Choice Variables Elasticity in Interchange
Segmentation. 
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uncorrected model, but slightly increases in the correction model.  A 1 percent increase in 

the shoulder width variables decreases accident frequency by about 0.1 percent in both 

models. 

Figure 18 presents the 95% confidence intervals of elasticity for key variables in 

one mile segmentation.  Uncertainties of elasticity for the median continuous lighting 

variable and the right point with no lighting variable are increased by 30 percent, while 

the right continuous lighting variable and the other lighting sequence variable have a 50 

percent increase in uncertainty after selectivity correction.  The confidence interval of 

elasticity for the median continuous with no lighting variable is increased by more than 

64 percent, while the elasticity of the right continuous with no lighting variable has over a 

57 percent increase in the confidence interval.  Selectivity correction influences more 

than a 100 percent increase in the elasticity confidence interval for the median point with 

Table 22:  Elasticity of Negative Binomial Model and Selectivity Correction model in 
One Mile Segmentation. 

  Negative binomial estimation Selectivity correction estimation 

Variable Elasticity Std.Err. 95% Conf. 
Interval Elasticity Std.Err. 95% C nf. 

Interval 

Only median continuous lighting 0.008 0.001 0.006 0.010 0.010 0.001 0.008 0.013 

Only right continuou  lighting -0.028 0.003 -0.033 -0.023 -0.063 0.004 -0.071 -0.055 

Median continuous with no lighting 0.050 0.003 0.044 0.055 0.064 0.005 0.055 0.073 

Right continuous with no lighting 0.021 0.002 0.017 0.025 0.025 0.003 0.019 0.031 

Median point with no lighting 0.003 0.000 0.002 0.004 0.005 0.001 0.003 0.007 

Right point with no lighting 0.057 0.007 0.042 0.071 0.035 0.005 0.024 0.045 

Other lighting sequences 0.051 0.003 0.045 0.056 0.061 0.004 0.053 0.069 

Number of  overpasses 0.039 0.005 0.030 0.048 0.034 0.005 0.024 0.044 

Number of vertical curves -0.029 0.010 -0.049 -0.008 0.003 0.010 -0.017 0.024 

Number of horizontal curves 0.093 0.009 0.076 0.110 0.071 0.009 0.053 0.089 

Left shoulder widths -0.170 0.013 -0.196 -0.144 -0.184 0.015 -0.213 -0.156 

Right shoulder widths -0.094 0.012 -0.119 -0.070 -0.128 0.014 -0.156 -0.101 

Log AADT per number of lanes 0.165 0.029 0.107 0.222 0.161 0.032 0.098 0.223 
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no lighting variable, but it decreases the uncertainty of elasticity for the right point with 

no lighting variable by 29 percent. 

Table 23 shows the elasticity of the negative binomial model and the pre-process 

model in accident-cluster segmentation.  A 1 percent change of all variables contributes 

to a less than 1 percent change in accident occurrences. A 1 percent change in the median 

continuous lighting variable, the median point with no lighting variable, and the other 

 

 
Figure 18:  Uncertainty of Sequence Choice Variables Elasticity in One Mile 
Segmentation. 
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lighting sequence variable influences a less than 0.1 percent change in accident frequency 

in the initial model, but contributes more than a 0.4 percent change of accidents in the 

pre-process model.  Other sequence variables also have greater contributions to accidents 

in the pre-process model than in the baseline model, but they are not significant.  Both 

model results show that a 1 percent increase in traffic increases accident frequency by 0.8 

percent on interstates. 

Figure 19 shows the 95% confidence intervals of elasticity for significant choice 

variables in accident-cluster segmentation.  The elasticities for significant key choice 

variables also capture large heterogeneity like parameters for these variables, and this 

causes enormous increases (more than 1000 percent) of uncertainty.  Heterogeneity in the 

random selection probabilities at the pre-processing step derives large standard errors and 

uncertainties of parameters at the second step estimation; this becomes the cause of the 

Table 23:  Elasticity of Negative Binomial Model and Pre-process Model in Accident-
Cluster Segmentation. 

  Ne ative binomial estimation Selectivity correction estimation 

Variable Elasticity Std.Err. 95% Conf. 
Interval Elasticity Std.Err. 95% Conf. 

Interval 

Only median continuous lighting 0.0 2 0.002 0.048 0.056 0.463 0.168 0.133 0.792 

Only right continuous lighting 0.019 0.001 0.016 0.021 0.091 0.237 -0.373 0.554 

Median continuous with no lighting 0.003 0.000 0.002 0.003 -0.226 0.141 -0.502 0.050 

Right continuous with no lighting 0.002 0.000 0.001 0.002 -0.189 0.199 -0.580 0.202 

Median point with no lighting 0.001 0.000 0.001 0.002 0.843 0.175 0.500 1.186 

Right point with no lighting 0.000 0.000 0.000 0.001 0.242 0.155 -0.062 0.545 

Other lighting sequences 0.005 0.000 0.004 0.005 0.416 0.163 0.098 0.735 

Number of  overpasses 0.018 0.001 0.017 0.019 0.019 0.001 0.018 0.020 

Number of vertical curves 0.005 0.003 -0.002 0.011 0.004 0.003 -0.003 0.010 

Number of horizontal curves -0.010 0.003 -0.015 -0.004 -0.007 0.003 -0.013 -0.002 

Left shoulder widths -0.124 0.008 -0.140 -0.107 -0.131 0.009 -0.148 -0.114 

Right shoulder widths -0.117 0.008 -0.133 -0.101 -0.177 0.008 -0.193 -0.161 

Log AADT per number of lanes 0.849 0.110 0.634 1.065 0.874 0.111 0.658 1.091 
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immense change of elasticity uncertainty after pre-processing on the basis of random 

choice. 

4.4 Summary of Findings in Model Results  

This subsection describes the summary of findings for the modeling results. The 

median-side continuous lighting variable appears to have counter-productive effects on 

accident frequencies in the overall negative binomial models, while the median-side point 

 

 
Figure 19:  Uncertainty of Sequence Choice Variables Elasticity in Accident-Cluster 
Segmentation. 
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lighting variable has negative signs except for the accident-clustering segmentation 

model. All other lighting sequence variables have positive signs in the overall models. 

Most geometric infrastructures, such as shoulders, median barriers, and guardrails, are 

installed to improve safety on interstates. It is shown that the shoulder width variables 

have negative signs in overall model results, and this implies installed geometric 

infrastructures have productive effects on accident frequencies. 

Many independent variables have a positive relationship with accident 

frequencies in the overall selectivity bias correction models. The model results show that 

the right-side continuous lighting variable contributes to a greater decrease of accident 

frequency than no lighting presence, but the other sequence type variables have a positive 

relationship with accident occurrences. The right-side continuous lighting is associated 

with decreased accident frequencies in the lighting presence segmentation model and the 

lighting sequence segmentation models. The median-side continuous lighting variable 

seems to increase accident frequencies in the overall models. Most geometry variables 

have a positive relationship with the number of accidents, except for urban shoulder 

widths lighting segmentation in the overall models.  The traffic flow variable also has 

positive coefficient signs in all selectivity bias correction models. 

The selectivity bias correction model has more confidence intervals than the 

baseline model for all lighting choice variables because of the heterogeneity effect.  It 

means the standard errors of the selectivity correction model are larger than the standard 

errors of the uncorrected models because of unobserved heterogeneity. The standard error 

is slightly decreased after selectivity bias correction in the case of the right-side point 
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with no lighting variable in one mile segmentation. In case of accident cluster 

segmentation, too few observation findings affect the insignificance of the coefficients 

and the large standard errors of all other sequence variables except the median-side 

continuous and the right continuous lighting variables.  The standard errors for other 

geometry variables and the traffic variable do not change after pre-processing.  The 

coefficients for median-side continuous lighting, median-side point with no lighting, and 

other lighting sequence variables experience significant change. For elasticities of 

coefficients, all lighting and geometry variables affect small percent change on accident 

frequency in all baseline and selectivity bias correction models. A 1 percent increase in 

traffic increases accident occurrence by about 1 percent in case of lighting segmentation 

and accident cluster segmentation in both models. 
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Chapter 5 
 

CONCLUSION AND DIRECTIONS FOR                                                       
FUTURE RESEARCH  

 

This chapter includes a discussion of major conclusions and methodological 

issues directing future research in the area of network segmentation and segmentation 

based model building for traffic safety inference.  Major conclusions are discussed first, 

with a breakdown in terms of parameter inference conclusions and computation specific 

conclusions.  These conclusions relate comprehensively to this dissertation’s initial 

objective which is reiterated below: 

 To provide some perspective to the problem of modeling heterogeneity and 

selection bias via multiple scales, by proposing a joint model of heterogeneity and 

selection bias using a discrete-count approach, and using this framework to address the 

following research questions: 

 

c) What is the impact of selection bias on safety intervention due to scale?  In 

other words, if safety interventions are applied at locations where accident 

patterns are severe and frequent, how does one account for the lack of 

intervention at less problematic locations?  And how does a statistical 

methodology derived for selection bias provide inference across scales, as 
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segments are scaled up from very small lengths to lengths of the order of 

corridors? 

d) How does one represent insights into the policy implications of selection bias 

in a manner that integrates context (i.e., roadway location and characteristics) 

and scale?  

 

Major conclusions from this dissertation 

I successfully addressed the problem of simultaneously addressing heterogeneity 

and selection bias by developing a framework that incorporates a discrete-count statistical 

model across multiple scales.  I showed that the discrete-count model is estimable 

through simulation based inference.  I also showed that incorporating the discrete-count 

model at multiple scales through endogenous and exogenous segmentation is feasible, 

albeit subject to computational barriers.  Nevertheless, several significant conclusions in 

terms of parameter inference were derived, which I discuss next.  I discuss the 

computational barriers in a forthcoming section.    

I conclude that right-continuous lighting is associated with fewer accident 

occurrences compared to no-lighting in all corrected models.  The right continuous 

lighting variables have negative signs in all baseline (uncorrected, non-selectivity-bias, 

non-heterogeneity-inclusive) models except those involving accident-cluster 

segmentation.  In the case of selectivity correction model, the variables for sequence type 

that includes full or partial proportion of right continuous lighting have negative effects 

on accident frequencies across scale.  The median continuous lighting variable has 
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positive signs for both baseline and selectivity correction estimations across scales.  Both 

median point lighting and right point lighting have negative signs in the case of lighting 

type segmentation, but the sign is positive in lighting sequence segments involving point 

lighting and no lighting combinations.  The same trend is also shown in the selectivity-

heterogeneity correction model.  Other variables such as the number of urban overpasses 

in a segment, had a positive effect on accident frequencies across scale.  An increase in 

the number of urban vertical curves increases accident frequencies.  The number of urban 

horizontal curves has a negative sign only in the case of the accident-cluster segmentation.  

An increase in shoulder widths decreases accident occurrences while traffic flow 

increases accident frequencies.   

The median point with no lighting presence parameter in accident-cluster level 

segmentation has the highest uncertainty band of 205.59 from 149.98 to 355.57.  The 

uncertainty band width is 0.51 from -0.35 to 0.16 for the right continuous with no lighting 

parameter in interchange segmentation.  This presents that the right continuous with no 

lighting variable in interchange segmentation has a potential possibility to decrease 

accident frequencies.  The right continuous lighting parameter in interchange 

segmentation has consistently negative uncertainty from -0.64 to -0.22 with 0.42 band 

width.  The highest uncertainty band widths of parameters are found in selectivity 

correction estimation results.  This is because the simulation based estimation captures 

more heterogeneity by random draws. 

The uncertainty band width is 0.04 from -0.02 to 0.02 for the right point with no 

lighting elasticity in interchange segmentation.  The urban left shoulder width elasticity 
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in lighting segmentation has consistently negative uncertainty from -0.12 to -0.03 with 

0.09 band width.  The AADT per lane parameters in lighting segmentation and accident-

cluster segmentation have elasticity of greater than 1 or close to 1, and other parameters 

are significantly inelastic (less than 0.4).  The elasticity of the urban log AADT per lane 

parameter is 1.13 with the uncertainty band width of 1.01 from 0.63 to 1.64, while the 

rural log AADT per lane has the elasticity of 1.02 with the band width of 0.32 from 0.86 

to 1.18 in the case of lighting segmentation.  The elasticity of the urban log AADT per 

lane parameter is 0.85 and it swings from 0.63 to 1.07 with the band width of 0.44.  This 

implies that there is a significant increase in accident occurrences with a small increase in 

traffic flows.  However, traffic flow parameters are significantly inelastic (less than 0.2) 

in the case of interchange segmentation and one mile segmentation.  This presents how 

scale affects safety analysis in transportation as well.  The elasticities of the lighting 

sequence variables are increased from less than 0.002 to the range between 0.009 and 

0.843 after selectivity correction in the case of accident cluster segmentation.  This 

implies that the simulation based modeling method increases the contribution of lighting 

presence to the safety on interstates.  The increase of predicted probability for lighting 

sequence by random draws seems to increase the coefficients and elasticities of lighting 

sequence variables in the count estimation step of the model. 

 

Computation specific conclusions 

I used all interstates in Washington States data for model estimation in this 

dissertation.  I experienced that the input matrix size is a significant factor for simulation 
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based safety analysis in transportation field.  Robust inference requires panels with 

longitudinal histories of six years or more usually, and in the statewide context, this can 

involve several thousand or hundreds of thousands of observations depending on scale.  

The simultaneous maximum likelihood estimation method is used for getting the proper 

parameters and optimizing the models.  The initial parameters are randomly chosen at the 

first step of estimation.  The probabilities of the dependent variables are obtained by the 

probability function of the model.  New parameters are estimated by the probability and 

observed numbers.  Until the likelihood function is maximized (close to zero), this 

process is repeated simultaneously for multiple parameters.  A Newton-Raphson 

algorithm is generally used for the convergence of the maximum likelihood function; this 

is the optimization algorithm to find maximized function.  This algorithm is repeated 

while the absolute value of the function’s first derivate is greater than the tolerance, and 

the tolerance is generally 10-8.  The input value is replaced by subtracting the 

combination number of the first derivative and the second derivative from the old input 

value in this algorithm.  In the maximum likelihood estimation method, parameters are 

input values and are simultaneously replaced by the Newton-Raphson algorithm.  The 

maximum likelihood function and estimated parameters are obtained when the iteration is 

stopped by the first derivative of the likelihood function satisfying the tolerance.  

Although the simulation based approach offers a feasible method for full-information 

maximum likelihood modeling of heterogeneity and selectivity bias, model estimation is 

severely hampered by dataset size.  For example, the sample size of endogenous 

segmentation is 38,265 observations (while other segmentation types such as lighting-
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type-specific, one-mile, or interchange-type) have fewer than 1,600 observations.  The 

input matrix size is 612,240 cells with 16 variables in endogenous segmentation.  The 

mixed logit model uses Halton draws to generate random numbers. Generally, a pseudo 

random number generation is used to create random numbers, and it is based on a 

uniform distribution.  However, despite its fast speed to generate random numbers, it is 

an insufficient method to generate random numbers for model estimation because of its 

high discrepancy, which means the draws are far from uniform.  Instead, the Halton 

sequence is used to simulate random draws with low discrepancy.  The Halton sequence 

is also called a reverse radix-based sequence because it uses a radical inverse function to 

gain the point in the interval corresponding to a specific number (Kocis and Whiten 

1997).  The discrepancy is estimated by selecting a representative subinterval from the 

sequence draw, and then sliding the subinterval through the draw range.  Since the Halton 

draw focuses on a uniform interval rather than equal randomization, it promises lower 

discrepancy than the pseudo random draw.  With 200 quasi-random (based on the Halton 

sequence) draws, the mixed logit model treatment-effects model for endogenous 

segmentation was unable to handle this matrix size, and estimation fails to proceed 

iteratively.  It is to be noted that the 200-draw procedure is done repeatedly at each 

iteration in order to evaluate the function (log-likelihood for the observed sample) and the 

gradient.  The initial computations begin with converged parameter values from the 

multinomial logit baseline, using the well-known Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) method.  The line search sub-problem involving step sizes is rarely ever reached 

at the end of the first iteration.  As a point of reference, it requires typically around 100 
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iterations for convergence of the treatment-effects model in the smaller segmentation 

datasets. 

Matrix management in such cases had to be done manually.  To reduce the size of 

matrix in the models, the interstate dataset was divided into seven individual, interstate-

by-number datasets.  However, this produced sample size problem of another kind.  Some 

interstates, such as I-182, I-205, I-405, and I-705, had sample sizes that were too small as 

a result of few clusters.  The lack of variability in these samples forces the analyst to 

make judgments on combining interstates, which in turn implies restrictive assumptions 

on heterogeneity across interstates.  In essence, the computational problem comes with 

significant tradeoffs, one that should serve as a useful objective in future research.  

The nine year panel on accidents used in this dissertation serves as a good 

empirical example of endogenous segmentation that can create its own type of matrix 

size problems.  The cluster specification that leads to endogenous segmentation involves 

the method of medoids.  If other clustering methods were to be used along with other 

functional classes of roads, such as divided highways, arterials and collectors, the 

clustering method itself would be subject to computational challenges, let alone the 

challenge of post-processing the clusters for joint modeling of heterogeneity and 

selection bias.   

The matrix size problem also contributes to limitations in lighting-type variable 

definitions.  The treatment-effects model handles the lighting-type variables at the mixed 

multinomial logit estimation step.  The lighting choices are dummy numbers from the 

lighting-type segmentation, while they become proportions of lighting type presence in 
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other segmentations.  In the outcomes component, the lighting type probabilities are 

inserted as independent variables via the selection-bias with heterogeneity correction.  

The crucial part is the estimation of lighting type probabilities for the “second stage” 

estimation.  The mixed logit model produces the proper probability output for small 

matrix sizes with up to roughly 1,000 rows, 3 columns, and 100 quasi-random draws, but 

it produces unexpected probabilities (sometimes nonsensical) with 13,824 rows, 7 

columns, and 100 random coefficients in larger- scale segmentations.  In purely 

exogenous segmentation, the problem of micronumerosity occurs.  For example, tunnel 

and both side lighting are relatively minimal in observation size compared to right-side 

and median-side lighting samples in the lighting segmentation dataset.  This can cause 

identification type problems since the vector of “1s” is small.  I tested the convergence 

without tunnel and both-side lighting types incrementally.  When compared with the 

uncorrected negative binomial model, the treatment effects models show substantial 

changes in the magnitude of coefficients associated with lighting type.  The model 

estimation results show larger standard errors and uncertainties after selectivity correction 

by treatment as well.  The selectivity correction model captures heterogeneity of lighting 

choice at the logistic estimation step, and this heterogeneity can cause the change of 

coefficients associated with lighting choice and cause greater uncertainties in parameters 

and elasticities. 
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Policy Implications of the Findings 

In the field of transportation, the current policy for lighting installation is applied 

based on random area choice or darkness in the area on a roadway.  It does not consider 

the impact of lighting presence on safety.  The policy also does not consider removal or 

reinstallation of lighting presence based on the improvement of safety and energy 

consumption.  So, decision makers must consider the policies for lighting installation 

based on the analysis of the effects of lighting installations on accident frequencies on the 

roadway.  This dissertation provides the example policy implication of lighting 

installation by safety analysis on interstates; this can assist decision makers in 

determining future policies for managing luminaries on interstates.  Several policy 

implications arise from the models estimated in this dissertation.  For example, the 

findings on the right-continuous lighting type support current practice which favors that 

type of installation.  The elasticities for median point lighting type and other sequences of 

lighting types from the accident-cluster model show that their installation produces 

counter-productive effects that are not negligible.  Median point lighting type is estimated 

to produce an elasticity greater than one on the high end of the 95% confidence band, 

suggesting that lighting policy should consider abandoning this type of installation on 

freeways.  The known installation types such as median continuous and right continuous 

lighting types produce productive safety effects (elasticities around 0.2) decreasing 

accident occurrences even at the high end of the 95% confidence band.   With the 

modeling results, decision makers can consider the removal of median point lighting 

from segments where accident frequencies are high compared to no lighting areas.  Also, 
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they may consider installing more median lighting poles in these segments to convert 

median point lightings to median continuous lighting types because the median 

continuous lighting has produced effects that improve safety.  If significant accident 

frequencies are found in no lighting segments, decision makers can consider the policy of 

median continuous or right continuous lighting in the segments. 

The lighting policy can also be considered based on the elasticities of parameters 

as well.  In the case of lighting segmentation, other lighting presences, except median 

continuous lighting, contribute to decreasing accident frequencies compared to no 

lighting presence.  However, the elasticities of the parameters are significantly small, and 

this means that a large increase in these types of lighting installation will only have a 

small decrease in accident frequencies on interstates.  Compared to the elasticities of 

other infrastructure parameters, the elasticities of lighting sequence parameters are 

significantly small in the interchange and one mile segmentation cases.  The policy 

decision makers should consider more investment in right-continuous lighting, median-

point lighting, right-point lighting installation, and re-installation of lighting poles in 

sequence segment cases, rather than investment in other geometry infrastructures to 

improve safety on interstates. 

Coupled with these safety insights, decision makers can utilize energy 

consumption models for various lighting types to determine the optimal installation 

lengths in terms of energy and safety, while promoting traffic flow without breakdowns.  

If a certain type of lighting does not have positive affects accident reduction, then these 

luminaries need to be turned off even at night or under bad weather for energy 
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conservation.  For example, from the modeling results, median point lighting has counter-

productive effects on accident frequencies.  So, decision makers can consider turning off 

the power to median point lighting for energy conservation on interstates.  In rural areas, 

the sudden presence of point lighting after the a long period of darkness can alter the 

driver’s behavior because of the sudden vision adjustment; this may be a contributing 

factor of crashes on the roadway as well.  Median point lighting can also be considered 

for removal or turned off for energy saving as well as for safety.  On the contrary, 

although median continuous or right continuous lighting consume a large amount of 

energy, the continuous lightings should be kept on for interstate safety.  The safety cost 

can be inflated by vehicle maintenance, the treatment of the injured and killed people, 

crash handling, recovery of the roadway, and traffic flow recovery.  Since the cost of 

safety includes many costly actions, it must be deliberated whether an infrastructure 

significantly decreases safety cost by reducing accidents, even though the energy cost 

may be very high.  Based on the modeling results in this dissertation, two continuous 

lightings significantly contribute to decreasing accident frequencies.  Because two 

continuous lightings seem to significantly reduce the safety cost compared to the cost of 

energy consumption by lighting poles, decision makers must consider whether to keep 

turning on or installing more continuous lightings on interstates.  Instead of turning the 

luminary on or off, an adjustment to luminary density can be considered to get efficient 

energy saving while also reducing accident risk on interstates.  To find the most efficient 

luminary strength, the lighting models should be considered to compromise between 

energy saving under Energy Policy Act 2005 and the cost of safety.  This methodology is 
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used for defining the commercial lighting power limits developed by the American 

Society of Heating, Refrigerating and Air-Conditioning / Illuminating Engineering 

Society of North America (ASHRAE/IESNA) 90.1-2004.  The methodology calculates 

lighting power allowances for building spaces and whole buildings, and it uses available 

efficient lamp/ballast/fixture data, and illuminance values from IESNA illuminance 

recommendations.  Energy-efficient design is promoted through the resulting lighting 

power densities (LPD) by this model. 

 

Transferability Issues for Model Results 

Accident analysis based on statistical modeling must consider roadway 

environmental factors such as number of curves, shoulder widths, and traffic volume.  

Since each state has different roadway environments and conditions, it is not easy to 

apply transportation accident analysis policies that can be used in one state to another 

state.  In regards to data aggregation, the data by exogenous segmentation affects model 

transferability more for other states than endogenous segmentation data.  The exogenous 

segmentation creates aggregated data based on independent variables that include 

geometrics and traffic information, while the endogenous segmentation is the data 

aggregation by accident cluster in this dissertation.  Washington State has several unique 

environmental conditions influenced by a combination of factors such as mountainous 

terrains, frequent rains, and size of the urban area.  The size of the mountainous area 

affects vertical and horizontal curves design, while the size of the urban area can 

influence the traffic flow.  So, the model results in Washington State can to be applied to 
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states having similar topographic features or urban size.  As such, the results in this 

dissertation are difficult to be applied to states having mostly flat areas and small urban 

areas such as Iowa, Nebraska, or Kansas.  Also, if weather condition is to be considered 

as independent variables, it is difficult to apply the Washington State modeling results to 

Arizona, New Mexico, Texas, or Nevada because the weather conditions are completely 

different in these states.  The models estimated in this dissertation focus on the policy 

decision of lighting installation to decrease accident frequencies on interstates.  The 

predicted probability of lighting choice reflects data aggregation at the discrete choice 

modeling step in the case of exogenous segmentation, such as lighting segmentation and 

interchange segmentation, while data aggregation only affects the predicted probability of 

accident frequencies in the endogenous segmentation case.  The models are estimated 

with Washington State interstates data; since the data segmentation affects lighting 

installation choice in exogenous segmentation cases, it is very difficult to apply the policy 

implication of lighting installation to other states based on the Washington State results.  

However, it is possible to use the policy implication of lighting installation from the 

analysis results to other states or nationwide in the case of endogenous segmentation.  

The transferability issue demonstrates the importance of data aggregation in accident 

analysis; this is another contribution from this dissertation for policy decision-making by 

accident analysis in the field of transportation. 
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Methodological Issues Directing Future Research 

Regarding segmentation theory, some methodological issues are bound to arise.  I 

have presented an arbitrary segmentation approach while building my treatment effects 

model.  This segmentation approach assumed that lighting segments are defined by the 

boundaries of existence of a particular type of lighting; so, it is a purely exogenous 

segmentation process.  However, it is not so pure that all X variables are homogeneous in 

this definition; only the lighting definition is homogeneous.  This introduces to some 

extent the “counting problem”.  As an example, I have computed the number of 

horizontal curves at the lighting segment level.  The count of curves is not a complete 

count in the sense that some curves extend beyond the boundaries of the segment.  So 

“counting” is done in a limited sense for the purpose of extracting variables for model 

estimation.  I do not think this can be avoided, since the only recourse is to have purely 

homogeneous segments where all Xs are homogeneous.  As discussed previously, this 

artificially induces the problem of excess zeros, and further, does not have potential to 

serve as a template for causal investigation since the scale can be very small.  At the very 

least, scale should be defined by a minimum length – that is a length that can 

accommodate vehicle to vehicle interaction effects and environmental effects.  This being 

said, I examined other scales, such as an accident clustering segment scale, and physical 

scales based on interchange and every one mile density.  Both scales are very meaningful 

choices.  The first is based on the outcome and hence is purely endogenous.  I was able to 

draw insights into the causal nature of the accident occurrence process by 

accommodating minimal lengths of scale issues.  
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Here, instead of using lighting installation dummies, the eight types of lighting 

sequence variables are used for model estimation in purely endogenous and physical 

scales.  A similar convergence problem was observed while I ran both models for the 

interstate segmentation and one mile scale datasets with all urban and rural geometry, and 

traffic variables.  Since the problem stems from the lack of lighting sequence 

observations in the rural area, I only considered urban area data for model estimations.  

The change of parameters, standard errors, and uncertainties associated with lighting 

sequence are found after selectivity correction in these segmentation cases as well.  

However, the magnitude of the parameter changes, the standard errors, and the 

uncertainties are varied in each scale, and this shows how segmentation scale impacts 

selectivity bias and heterogeneity of choice.  The negative binomial model results after 

pre-processing by random sequence choice probabilities in case of endogenous scale is 

described in the previous chapter as well.  Accident-cluster segmentation creates a very 

small scale dataset.  Due to small scale segmentation, the dataset has too many 0 values 

in all independent variables, which creates a convergence problem for treatment effect 

model estimation.  Instead of a treatment effect model, I estimated a negative binomial 

model with pre-processing for capturing heterogeneity in the lighting sequence choice 

variables.  I simply applied random sequence probabilities for heterogeneity, but this 

creates too much overdispersion and more problems in the parameter estimation of some 

sequence choices.  Although some sequence choice variables have insignificant problems, 

this model result also presents the effects of heterogeneity on selectivity bias and 
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uncertainties.  More meaningful random methodology should be considered for 

heterogeneity controls in small scale datasets for further research. 

The visualization of modeling results can be conducted with Internet map service 

technologies for future research as well.  The visualization of statistical model results will 

allow decision makers to visually inspect severe heterogeneity associated with lighting 

type.  The visualization template will permit people to see the heterogeneity along the 

centerline and explore which locations have similar magnitudes.  
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Glossary 

Endogenous: Parameters are endogenous by correlation between parameters.  The 

measurement errors, simultaneity, omitted variables, and sample selection errors can be 

causes of endogeneity.  

Exogenous: Exogeneity occurs when a parameter comes from outside of the equation 

without correlation with any other variables.  It arises when a bi-directional relationship 

exists between the dependent variable and an independent variable; the opposite meaning 

of endogeneity. 

Heckman's correction: The statistical method to correct selectivity bias of choice 

variables. This has two stage processes.  The binary choice model is estimated in the first 

stage, and the choice probability is used for the independent variables in the second stage 

count estimation. 

Heterogeneity: This term is used when a variable has a large number of structural 

variations in the model estimation.  The randomness can be described by the same 

terminology. 

Inverse Mill's ratio: Terminology to explain the probability of a non-selected proportion 

being selected in the selection bias correction model.  It accounts for non-randomness. 

Mixed multinomial logit regression: The multinomial logit regression capturing the 

randomness of parameters in the estimation. 

Multinomial logit regression: The regression model in which the generalized logistic 

regression accounts for two or more discrete choice out comes. 
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Negative binomial regression:  The regression analysis for the count estimation.  This 

model is used for count estimation overdispersion exists within the data. 

Overdispersion: Overdispersion occurs when the variance is greater than the mean value. 

Poisson regression: The regression analysis for count estimation.  The dependent 

variable is based on Poisson distribution.  

Selection bias: This is a statistical bias by an error in choosing the individuals or groups 

to take part in a study.  This occurs mostly by errors from the method of collecting 

samples. 

Selection bias correction model: Count model that minimizes selection bias by 

capturing the seemingly selected portion.  The Inverse Mill's ratio term is added in the 

general model in order to account for the probability of a non-selected portion being 

selected. 

Uncorrected model: Negative binomial model without selectivity bias correction. This 

model is used for comparing selection bias in choice variables. This is also called the 

initial model or the baseline model in the dissertation. 
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Appendix 

 

COMMANDS FOR MODEL ESTIMASTIMATION 

NEGATIVE BINOMIAL AND TREATMENT-EFFECT ESTIMATION 

1. Lighting segmentation 

. insheet using "E:\LightingMileUrbanRuralFullInteraction.csv" 
(23 vars, 9630 obs) 

. nbreg total mc mp rc rp urbaninter ruralinter urbanoverp  
urbanvcurve ruralvcurve urbanhcurve  urba nlftshw rurallftshw 
 urbanrighshw ruralrighshw urbanlnadtpl rurallnadtpl, 
dispersion(mean) 
 
. mtreatnb total urbaninter ruralinter urbanoverp urbanvcurve ruralvcurve urbanhcurve urbanlftshw 
rurallftshw urbanrighshw ruralrighshw urbanlnadtpl rurallnadtpl, mtreatment (light urbaninter ruralinter 
urbanoverp urbanvcurve ruralvcurve urbanhcurve urbanlftshw rurallftshw urbanrighshw ruralrighshw 
urbanlnadtpl rurallnadtpl) simulationdraws(100) 
 

2. Interchange segmentation 

. insheet using "E:\SequenceOfInterMileUrbanruralADTPLWithoutTunnelandBoth.csv" 
(31 vars, 10521 obs) 

. nbreg total sequence2 sequence3 sequence4 sequence5 sequence6 sequence7 sequence8 urbanoverp 
urban vcurve urbanhcurve 
urbanlftshw urbanrighshw urbanlnadtpl,  dispersion(mean)  
 
. mtreatnb total urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrighshw urbanlnadtpl, 
mtreatment (stype urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrighshw urbanlnadtpl)  
simulationdraws(100) 

3. One mile segmentation 

. insheet using "E:\SequenceOfOneMileUrbanruralADTPLWithoutTunnelandBoth.csv" 
(31 vars, 13824 obs) 

 . nbreg total sequence2 sequence3 sequence4 sequence5 sequence6 sequence7 sequence8 urbanoverp 
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urban vcurve urbanhcurve 
urbanlftshw urbanrighshw urbanlnadtpl,  dispersion(mean) 
 
. mtreatnb total urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrighshw urbanlnadtpl, 
mtreatment (stype urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrighshw urbanlnadtpl)  
simulationdraws(100) 

4. Accident-cluster segmentation 

. insheet using "E:\DataSet_For_NB_With_Obs_Model.csv" 
(16 vars, 218637 obs) 

. nbreg total s2 s3 s4 s5 s6 s7 s8 urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrshw  
urbanlnadtpl , dispersion(mean) 

 

MULTINOMIAL LOGIT ESTIMATION AND PRE-PROCESSING 

1. Multinomial Logit Estimation 
. insheet using "E:\DataSet_For_MNL_Model.csv" 
(8 vars, 218637 obs) 

. mlogit stype urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrshw urbanlnadtpl 
 

2. Get Random Mean and Standard Deviation 

. ereturn list 
 
. matrix list e(b) 

. matrix list e(V) 
 

3. Regression Estimation by Predicted Probabilities 

. regress obchoice rchoice1 rchoice2 rchoice3 rchoice4 rchoice5 rchoice6 rchoice7 rchoice8 rchoice9 
rchoice10 rchoice11 rchoice12 rchoice13 rchoice14 rchoice15 rchoice16 rchoice17 rchoice18 rchoice19 
rchoice20 … rchoice191 rchoice192 rchoice193 rchoice194 rchoice195 rchoice196 rchoice197 
rchoice198 rchoice199 rchoice200 

4. Negative Binomial Estimation with Random Sequence Probabilities 
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. set memory 570m 
(583680k) 

. insheet using "E:\DataSet_For_NB_Model.csv" 
(24 vars, 218637 obs) 

. nbreg total pr1 pr2 pr3 pr4 pr5 pr6 pr7  urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrshw 
urbanlnadtpl , dispersion(mean) 

 

PREDICTION AND ELASTICITY  

. predict mean, xb 

. predict stderr, stdp 

. summarize 

. mfx, eyex 

. mfx, eydx 
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