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ABSTRACT

Safety Modeling via Segmentation of Transportation Networks

Jun Seok Oh

Dissertation Advisor: Associate Professor Venky N. Shankar

This dissertation proposes a methodology to address a long-standing question in
traffic safety relating to the evaluation of safety risk and the benefits associated with
safety interventions. Traditionally, safety risk has been assessed at the corridor level,
with corridors being evaluated in terms of accident rates, as in accidents per million
vehicle miles. This measure allowed safety planners and engineers to look for
correlations at the aggregate level using economic and sociodemographic data from
counties and cities. As roadway geometric data became more widely available, both in
terms of general access to public agencies and in terms of measurement detail, statistical
models for safety were developed incorporating correlations between safety outcomes at
the roadway segment level and roadway geometrics. This approach avoids the problem
of ecological correlation that is likely to occur in modeling using county or city level
independent variables. The problem of ecological correlation occurs when correlations
between safety outcomes in corridors are evaluated using mean accident rates and county
or city level means for independent variables. This approach assumes corridor and

regional means reflect segment means accurately, an assumption that is not tenable,
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especially when segmental heterogeneity is significant, as has been shown to be, in the
safety context. Heterogeneity refers to the deviations in patterns of accident occurrences
at individual roadway segments, and how these deviations are referred to an “average
site.” This average site can be a virtual site represented by the group mean.
Heterogeneity results in overdispersion of accidents, meaning that the variance of the
accident distribution exceeds the mean. This is due to the fact that the probability of
accident occurrence is not uniformly distributed in space and time. Therefore, one can
expect accidents to cluster at various locations on the transportation network, such as at
intersections, interchanges, lane drops or lane additions, horizontal or vertical curves, or
at locations where decisions have to be made by drivers regarding lane changing, braking,
speed reduction or acceleration, or route change.

Given this background, the problem of evaluating safety interventions is
compounded by the challenge of modeling the effect of heterogeneity simultaneously
alongside the modeling of the marginal effect of an intervention. There are two primary
contributors to this challenge. The first contributor is selection bias, which arises when
locations for safety interventions are not randomly chosen. The second contributor is the
scale of measurement of this bias. It may be that selection bias at aggregate scales (for
example, in instances where corridor length treatments are applied) is influenced by
heterogeneity in a different manner compared to bias at smaller scales (for example, spot
interventions). The impact of this variation is that the assessment of safety interventions
can be varied depending on the scale at which the evaluation is conducted. Hence, the

methodological problem of simultaneously addressing heterogeneity and selection bias is
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the objective of this dissertation. This dissertation attempts to provide some perspective
to this problem via multiple scales, by proposing a joint model of heterogeneity and
selection bias using a discrete-count approach, and using this framework to address the

following research questions:

a) What is the impact of selection bias on safety intervention due to scale? In
other words, if safety interventions are applied at locations where accident
patterns are severe and frequent, how does one account for the lack of
intervention at less problematic locations? And how does a statistical
methodology derived for selection bias provide inference across scales, as
segments are scaled up from very small lengths to lengths of the order of
corridors?

b) How does one represent insights into the policy implications of selection bias
in a manner that integrates context (i.e., roadway location and characteristics)

and scale?

I use freeway roadway lighting as an example safety intervention to make these
evaluations in this dissertation. Roadway lighting is installed in order to improve traffic
flow, thereby also contributing to improved roadway safety. Roadway lighting is
installed in various forms — as in median-side lighting, versus right-side lighting, versus
tunnel lighting, versus ramp-mainline merge points, versus, installations on both sides of

the traveled way. This dissertation involved data collection on all 1,528 centerline miles



vi
of interstate freeway in Washington State and analyzed the correlation of accident
frequencies with roadway lighting installation, after accounting for roadway geometrics
and traffic flow levels. It was determined that certain installations are more effective
than others, when selection bias is taken into account. For example, right-side lighting
installation is found to be effective in reducing accident frequencies compared to other
types of lighting installation, indicating a 30% reduction in accident frequencies
compared to segments where there is no roadway lighting at the lighting segmentation
scale. Such a result appears to justify the installation of right-side lighting at critical
locations such as ramp merge points or departure points. The key phrase is “appears to
justify”. This dissertation explores the extent to which scale affects inferences such as
the above. With different scales of segmentation, such as interchange and non-
interchange segments, one mile uniform length segments, or accident-cluster length
segments, right-side installation has a smaller reduction of accident frequencies compared
to accident reduction at the lighting segmentation scale. In the case of accident-cluster
level segmentation, right-side lighting installation is associated with an increase in
accident frequency. This example result demonstrates that the scale of data plays a very
important role in safety inferences, especially when heterogeneity and selectivity bias are
accounted for.

While roadway lighting is used as an example for application of this dissertation’s
analytical framework, it is expected that the full-purpose self-contained computational
framework for analyzing safety outcomes will be of substantial interest to the safety

community at large. One can use this framework for the analysis of any safety
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intervention at any scale. The framework incorporates the typical geometric design
decisions used in practice, and therefore, analysts can use this framework to address
selectivity bias arising from roadway improvement projects involving all geometric types.
In particular, the framework developed in this dissertation can also aid decision makers to
conduct scenario testing. One example of scenario testing would be to examine the
impact of energy-conservation efforts on traffic safety patterns on urban and rural
freeways. Another would be to explore the design contexts associated with high levels of
unobserved heterogeneity, where the discussion on the measurement of factors that do
not currently exist in highway databases can be motivated. Example factors relating to
heterogeneity could involve measures of segment-level kinematics such as speed, speed
dispersion, and headway following distances. Or, they could involve microclimatic
measurements such as pavement temperatures, determination of icing likelihoods, wind

gust speeds and sun angles.
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Chapter 1

INTRODUCTION

Since the development of the American Association for State Highway
Transportation Officials (AASHTO) Strategic Highway Safety Plan (SHSP), several
states have adopted a similar approach in developing their own highway safety plan. The
Washington Department of Transportation (WSDOT) is a recognized leader in this area.
The WSDOT conducts statistical modeling and visualization analyses as part of their
accident research initiative in order to establish systematic bases in its strategic safety
plan. This dissertation is an in-depth, original look at statistical approaches appropriate
for public agency decision making; hence, the focus of this dissertation is empirical. The
main motivations for this dissertation are drawn from current and prior research
conducted by the author for the Washington State Department of Transportation.

The WSDOT research effort was begun in 2006, with the author leading research
activities in the area of data collection methods for freeway accident data systems.
Significant goals of the effort were: a) exchangeability of data in multiple formats, b)
usability of data for the development of statistical models, c) post-processing of model
outputs for visualization, and d) usability of the above components for integrated
prioritization of freeway corridors. The author demonstrated the viability of components
“a” and “b” via two bodies of work, namely his MS thesis (Oh 2006) and a research

report published for the WSDOT in June 2008 (Shankar et al, 2008).



2

The earlier work in 2006 reproduced accident, geometric, and traffic flow data by
direction for 124 centerline miles in a consistent, complete record format. The latter
work in 2008 extended this reproduction to the entire interstate system consisting of
1,528 centerline miles. To the author’s knowledge, consistent and complete database
compilation involving over 100 accident related variables, traffic flow, and geometrics at
a statewide scale has not been done in the nation. While the lack of such efforts may
sound surprising, potential reasons do exist. Some challenges occurred when creating
record consistency and completeness in the proper format. For example, some highway
log information such as number of lanes, shoulder widths, and presence of median barrier
by type, were available as text documents in their original form. Traffic flow data such
as annual average daily traffic (AADT) was available in electronic form at 0.1-mile or 1-
mile intervals. The 0.1-mile data were interpolations of AADT measured using loop
detectors which are not necessarily regularly placed at 0.1-mile or 1-mile intervals on the
state interstate system. Interpolations were produced by WSDOT in-house through a
feedback algorithm that ensures consistency with neighboring AADT computations.
Accident data was available for multiple years in the form of detailed accident reports
that contained information by severity type (property damage only, possible injury,
evident injury, disabling injury and fatality), type of collision such as entering at angle,
sideswipe, same direction, fixed object, overturn or headon, vehicle involvement, driver
related factors such as alcohol or drug involvement, seat belt use, age, gender, occupant
information including factors similar to that for the driver and in addition, occupant

position in vehicle, and environmental factors such as occurrence of snowy, icy, rainy or



dry driving conditions, as well as presence or absence of roadway lighting. It should be
noted here that this database is event-specific. In order to construct segment-level
decision frameworks, which is the primary objective of this dissertation, event-specific
information needs to be aggregated to appropriate scales. The appropriateness of scale
depends on the level and nature of the research questions being asked. In this dissertation,
the following research questions are asked:

a) What is the impact of selection bias on safety intervention due to scale? In
other words, if safety interventions are applied at locations where accident
patterns are severe and frequent, how does one account for the lack of
intervention at less problematic locations? And how does a statistical
methodology derived for selection bias provide inference across scales, as
segments are scaled up from very small lengths to lengths of the order of
corridors?

b) How does one represent insights into the policy implications of selection bias
in a manner that integrates context (i.e., roadway location and characteristics)

and scale?

Given this background and objectives, the remainder of this dissertation is
organized as follows. I review literature of direct relevance to the dissertation and in
addition provide a bibliography relevant to the dissertation itself. The review includes

segmentation and selection bias research related to transportation applications. In this
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sense, the technical benefit of the work will be to provide flexibility, and as a result,
scalability in modeling safety.

It was noted that the marginal effects of key infrastructure variables are of interest.
From a policy standpoint, this is definitely a substantial motivation, because cost
effectiveness is a major factor driving prioritization schemes for safety, mobility, and
accessibility related infrastructure improvements. Herein lies an issue of statistical
significance; typically, transportation improvements are applied at locations where a need
is determined to exist. Therefore, the application of improvements is not random; rather,
it follows a selection rule. In the transportation case, a selection rule may be based on
ordering of need. A decision making framework that is empirically based uses accident
data observed at either the selection locations alone, or also at locations where
improvements are not applied. In either case, some accounting needs to occur for the
selection bias associated with the marginal effect of the improvement in question. For
example, if I consider roadway lighting as the variable of interest, then it can be argued
that the marginal effect of roadway lighting can be expected to decrease accident
propensity at locations where lighting is installed. A policy based on the examination of
just lighting-only locations may estimate the effectiveness of roadway lighting with bias.
Statistical and econometric methods involving the treatment of selectivity bias are
documented, and the literature review in this dissertation addresses that.

Following the literature review, I present the methods employed in this
dissertation. A description of data collection and segmentation methods to obtain

structured datasets at multiple scales for accident analyses is provided. Statistical



modeling designs for this research are also presented. I discuss the results to demonstrate
the wviability of the methods proposed and conclude with major findings and

recommendations for future work.



Chapter 2

RELATED WORKS AND RESEARCH QUESTIONS

2.1 Segmentation Methods

Location based analysis of transportation accidents plays an important role in
safety prioritization. This is primarily because estimation of safety risk must be
conducted using location-specific attributes such as geometrics, traffic volumes and
environmental conditions. For the remainder of this dissertation, the words location and
segment are used interchangeably. Alternative risk estimation approaches involving
regional socio-economic characteristics do not provide accurate estimates of segment
level risk, although they do provide trend estimates at the regional level for the system as
a whole. Regional models have other shortcomings in their employment for segment-
level risk estimation. First is the issue of ecological correlation. Ecological correlation is
an effect that arises out of the use of regional means rather than location-specific values
thereby introducing bias where location specific values deviate significantly from
regional means. This is particularly true for the accident context since location specific
frequencies of accidents can be significantly different from a regional mean. A regional
mean in accident context can refer to a district or region of administration within a state.

Typically a region or district of administration is an area delineated on the basis of
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topography, balance of geographic coverage and annual differences in environmental
conditions. Washington State, which serves as the empirical context for this dissertation,
has six regions encompassing in total 7,100 centerline miles of state highway. As a
consequence of location specific deviations from a representative mean, the problem of
heterogeneity arises in the modeling of safety risk. Heterogeneity can occur due to
various contributing factors — geometric changes, environmental changes, traffic flow
changes, and changes in driver behavior due to driving context such as urban versus rural.
A consequence of heterogeneity is the concentration of accidents spatially that
contributes to the problem of overdispersion in the estimation of accident counts.
Overdispersion means the variance of the count is significantly greater than the mean.
This problem of overdispersion is nonlinear in accident contexts — the variance-mean
relationship is quadratic (see for example Shankar et al 1995). Nonlinearities compound
the overdispersion problem when locations are scaled up to corridors or regions — another
reason for bottom-up estimation. A final note relating to segmentation relates to the
problem of aggregation bias. Aggregation bias occurs when event occurrence
probabilities are estimated using mean values of the independent variables — a problem
sure to occur when regional values are used. For the above mentioned reasons, I consider
segmentation literature and methods that deal directly with the dependent variable of
interest, frequency of accidents, or deal with independent variables in a manner that
minimizes heterogeneity and aggregation bias.

Segmentation methods commonly used in the contemporary statistical context of

traffic safety are independent variable based (see for example Shankar 1995; Lord 2000).



Since the early work of Shankar 1995, where fixed-length segments were employed, the
current state of the art involves homogeneous segmentation where segment lengths are
defined on the basis of homogeneity of all independent variables. Lord (2000) is a good
example of this application. The rule here is for an X vector of dimension K, with
Var[X,]=0 for all X for any segment j. The main idea here is that by constraining the
within-segment variance of Xy to be zero, all inference is conditioned on between-
segment variance. However, the downside of this approach is one can end up with too
small a segment length (of the order of 0.01 miles or 52.80 feet). This creates an
artificially induced estimation and prediction problem — with numerous small segments,
the sample of segments can have a predominance of zero frequency values and hence,
may over-represent the concentration of accident risk at few locations. In contrast to the
homogeneous length approach, the fixed-length approach can be viewed as arbitrary — for
example, if one were to use one-mile segment lengths, the only justification is a practical
one in the sense that the segmentation decision is usually driven by a variable of
particular interest for the study. For example, Shankar et al (1995) proposed to study the
interaction between roadway geometrics and environmental conditions such as
precipitation and the effects these interactions had on accident occurrences on rural
freeway sections in Washington State. The segment lengths are fixed to be consistent
with the spatial interval of measurement for precipitation data. A secondary justification
offered in the Shankar study was that the error distributions were roughly independently
and identically distributed (IID) at that scale. It is not clear whether several

segmentations were compared, but Shankar et al suggest that the inclusion of
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environmental data in the analysis of accident risk can pose substantial segmentation
challenges. I interpret this to be a generalized challenge for the field of safety as a whole
— the current literature has surprisingly not dealt with this issue at depth. I can speculate
two reasons — the first relating to the availability of environmental data, and the second to
the plethora of methodological issues that can complicate the segmentation problem.
Environmental data for accident analysis are difficult to measure and maintain on a
consistent basis, for the reason that weather station data is not readily useful for pavement
level inferences — which is in fact the level at which roadway accidents occur. Weather
station data are fixed station measurements that can contain considerable altitude
variations depending on the location of the weather station. For example, in Washington
State, over 250 weather stations are used as permanent recording stations; however, less
than 10 percent of these stations are located close enough to the roadway for even rough
assumptions regarding pavement level environmental conditions. So, considerable post-
processing of weather station information is required before segment level analyses can
commence. Importantly, pavement icing probabilities and temperature variations, factors
strongly associated with accident occurrence, are not measured by permanent weather
stations. Such data can be estimated (see for example Senn 2005) but require a
meteorological basis, a methodological issue beyond the domain of traffic safety
estimation methods.

Roadway segmentation is fairly common in Geographic Information System (GIS)
applications in transportation. Nyerges (1990) introduced a locational referencing and

roadway segmentation method on the basis of simple transportation referencing schema.
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Most transportation organizations use a combination of three schemes for transportation
information referencing. They are road name and milepost, control section, and link and
node. A control section is defined as a segment which has homogeneous types of
information. Link schemes are used for the connection of two or more roadways, with
nodes being connection points on these roadways. While research based on the link-
node concept is well established in graph theory and well-known transportation problems
relating to traffic assignment, little integration has occurred in terms of relating this
concept to network safety, especially via segmentation. Segmentation is an area that can
be fruitful in terms of benefits for field integration — that is, bringing together concepts in
traffic demand and assignment, traffic flow, and safety.

Dueker (2000) and Butler (2001) are other prominent examples of segmentation
applications using GIS attributes for network links, nodes, route, traversal segments of
routes and geographic coordinates. In an uncommon example, Quiroga (2000) uses
dependent variables such as travel time and speed to segment transportation systems.
However, the segmentation purpose in this paper is quite basic — the network is
segmented so to provide the ability to retrieve particular component information; not
necessarily for the purpose of evaluating model behavior across scales, which is a central
issue in this dissertation. By far, the literature on dependent variable based assessments
of traffic safety is limited to clustering analyses (see for example Tarko and Karlaftis
1998). In this thought-provoking paper, the authors look at the assessment of
heterogeneity using clustering methods; however, their focus is strictly on the evaluation

of similar heterogeneities across the network, a conclusion drawn on the basis of
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clustering. Locations within a cluster are estimated to share heterogeneities of similar
magnitudes. I find this to be an interesting objective; while there appears to be statistical
support, via automatic clustering, the method is not informed by an evaluation of its
viability for statistical model estimation. That is, how does one construct a model with
network segment clusters that are geographically dispersed? Research by
Anagnostopoulos (2006) raises similar questions in his address of segmentation using
time scales in addition to geographic scales.

In short, the literature on segmentation is scant and surprisingly limited in terms
of guidance on issues relating to either linear or grid network components. For example,
the following questions are not addressed:

a) How does one segment in order to address multidimensional heterogeneity? The
common answer appears to be the very short segment approach — which I have
discussed at some length as being problematic due to the problem of excess zeros.
I refresh the reader that the problem of very short segments arises because the
focus is on independent variables alone.

b) How does one segment in order to address longitudinal heterogeneity? A well

established method is not apparent in the literature.

An integrative approach would involve a justifiable segmentation approach that
serves as the foundation of multi-scale analysis of traffic safety. By “justifiable,” I mean
in a somewhat narrow sense quantifiable objectives, such as consistency of outcomes in

their ability to serve as key indicators of network safety, while at the same time,
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providing guidance on definitions for measures of mobility and accessibility as well. For
example, if network safety evaluation can be consistently measured across scales via an
objective measure such as total number of accidents, or severity index, or cost, then one
can ask the question: Can the same scales be useful for simultaneous analysis of mobility
and accessibility? In this sense, segmentation theory is fundamental. I discuss in the
following chapter two approaches, one that is exogenous segmentation, and one that is
endogenous segmentation.

There are two aspects of consistency here that motivate the rest of this dissertation.
The first aspect as I just discussed is a general theory for segmentation — should it be
purely endogenous, or some hybrid that accounts for exogenous variables as well.
Incidentally, Anagnostopoulos (2006) provides some guidance here through the field of
dynamic programming. The second aspect of consistency on an empirical basis is the
development of understanding the variation in heterogeneity across scales, and how this
can affect inferences. I acknowledge that this is purely statistical, but I argue that without
a solid statistical basis, guidance on causal mechanism investigation can be misleading.
For example, if we find that policy effects associated with lighting installation can be
consistently inferred across scales through the sign of coefficients as well as the
magnitude of impact, then the remaining important issue statistically speaking relates to
uncertainty. How uncertainty varies across scales can be decomposed into model
uncertainty and parameter uncertainty. This can provide further guidance for targeted
research on causal mechanisms and extend the domain of methods from purely statistical

to possibly statistical-physical or beyond.
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2.2 Selectivity Bias and Two Step Process

The infrastructure policy assessment problem is essentially a selection bias
problem. Research in the area of selection bias correction in traffic safety is nonexistent.
This is not surprising since the field has spent a majority of its focus on evaluation
techniques for before-after scenarios involving the application of policy variables. Green
et al (2003) present the results on a before and after analysis for the impact of lighting at
a rural intersection in District 12 in Kentucky State. They conclude the mean crash rate
per year is reduced by about 45% after the lighting installation. Isebrands et al (2004)
conducted a before and after study at rural intersections in lowa State. They used linear
regression models to get the mean ratios of night crashes to total crashes at the 10% level
of significance. The ratio of night crashes to total crashes is reduced by 15% in after-
lighting installation period. Also, Poisson regression models were used for comparing
the mean crash rates during the before and after installation periods. Isebrands et al say
the expected night crash rate in the before installation period is 54% higher than the after
installation period at the 10% significant level. The day time crash rate is increased by
24% from the before to after period, but it is not found to be statistically significant.
Washington et al (2006) present a method to evaluate the effectiveness of left turn lanes
on traffic safety. They present the evaluation problem as an endogeneity issue.
Endogeneity arises when a bi-directional relationship exists between the dependent
variable and an independent variable. Strictly speaking, this is an effect that can bias
parameter estimates for the policy relevant independent variable due to nonzero

covariance between the policy variable and the error term in the estimation equation.
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Washington et al use this interpretation in their evaluation on the effect of left turn lanes
on traffic safety. They argue that locations with high accident profiles may have a higher
probability of left turn lane installation, and proceed to estimate a statistical model that
corrects for this dependence. In this dissertation I encounter a similar problem, but it is
not interpreted in the same way, although the statistical underpinnings for problem
resolution are very similar. The problem is motivated by the selection of roadway
lighting as the policy variable of interest in this dissertation. I examine the issue of
roadway lighting since it is emerging as a policy variable of great interest motivated by
energy efficiency and sustainability issues. Agencies are beginning to ask whether
roadway lighting has substantial safety benefits, and whether there are design situations
where non-installation would provide substantial energy savings, but not result in
increased societal costs due to safety problems. The roadway lighting installation
decision is not set by firm rules that depend on traffic volume, or curvature, or restricted
sight distance — common measures that would indicate a safety problem. Rather, it
appears somewhat ad-hoc that lighting installation is found to be more frequent in urban
than rural settings. One can argue that urban volumes are higher; in addition, the density
of interchanges and overpasses is greater, implying that situations which require decision
distances for drivers making lane changes or route choice changes may be driving
lighting installation choice. I find only part of this to be true in my examination of
lighting installation choice. There is substantial departure from these afore-mentioned
conditions in cases where lighting has been installed either on the median or right hand

side. Some of this departure is attributable to transition zone effects, i.e., when roadway
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character changes from rural to urban. In some other cases, it is attributable to the
presence of short curves, whether they are located on bridges, stream crossings, or
culverts. The main point here is that lighting installation choice does not appear to be
restricted to safety motivating situations if one were to measure safety through observed
outcomes such as accident counts and severity. However, the situations where lighting
installation occurs may have been perceived to be dangerous by engineers. It is the
nature of the heterogeneity behind this perception that motivates the lighting installation
choice problem as a selection bias problem. 1In simple words, the problem can be
characterized as follows:

The choice to install lighting is selective due to the presence of observable
segment attributes such as traffic volume, curvature, interchange and overpass density,
and lane capacity. In addition, the choice is influenced by unobserved heterogeneity.
The unobserved heterogeneity may also affect the magnitude of the count outcome due to
the fact that the outcome is conditioned on selectivity; hence, heterogeneity motivates the
selection problem. The key to examining empirical evidence of heterogeneity rests in
large part on scale. How does heterogeneity influence selection bias across scales? The
larger the degree of heterogeneity, the potentially larger the selection bias. One can then
expect that as heterogeneity increases, the estimation of lighting impacts on safety
becomes more uncertain. The nominal way to estimate lighting impacts is to estimate
average treatment effects across the sample.

Much of the work on selection bias correction was pioneered by James Heckman

who won the Nobel Prize in Economics in 2000 along with Daniel McFadden. In fact,
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the two share a common methodological interest in the treatment of the selection bias
problem. McFadden’s methods (see for example Durbin and McFadden 1984) are
applicable under specific types of selection bias, whereas Heckman’s selection correction
methods have been applied across a variety of policy scenarios (see for example,
Heckman 1979, 1990). The essential idea Heckman posts is that the bias from using non-
randomly selected samples arises because of a missing data problem. In other words,
non-random selection of locations only provides us with before and after effects of a
policy for that subsample. We do not observe the policy effects for observations that
were not selected for the policy application. In the lighting case, the same question can
be asked. In essence, this is a counterfactual approach, i.e., what would the policy effect
be if it were applied randomly. To deal with this missing data problem, Heckman’s
selectivity bias correction involves two stages. In the first stage a probit or logit analysis
is conducted to predict the probability of policy application for any observation. An
observation here refers to the unit of analysis (in our case, a segment). In the second
stage, a linear regression is conducted with the predicted probit/logit probability as the
independent variable in lieu of the original policy variable. If the predicted probability
coefficient is significant in the second stage, then the policy variable is estimated to
statistically influence the outcome of the policy. In our case, the outcome is the number
of accidents per segment, and the policy variable is the decision to install lighting in a

given segment. Generally, the regression model has the following form:

_ !
y, =a+B'x, +¢g, O
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where a is an intercept term, S are estimable coefficients, x is the observed

variable, y is the dependent variable, and ¢ is the random unobserved error term. Because

the general regression model cannot capture selection bias in independent variables, the

model is corrected by adding the Inverse Mill’s ratio term for explaining the seemingly
chosen portion.

The selection bias correction model is presented as:

Y, =a+B'x, +0A, +¢, o

where 4 is the Inverse Mill’s ratio and o is the estimated coefficient. The Inverse
Mill’s ratio is a measure of the “selection hazard,” meaning that it provides the
instantaneous probability of a segment being selected for lighting given that it has not
been chosen. In other words, the Inverse Mill’s ratio takes into account the probability of
a non-selected location being selected, thereby accounting for non-randomness. Some
problems exist with this basic Heckman approach, especially when the error distribution
is not normal. In this case, Lee (1984) has provided several options through non-normal
distributions. In a more general sense, for our application, using generalized extreme
value distributions to estimate lighting installation choice is reasonable. The second
aspect of the Heckman two-step process that is restrictive relates to the nature of the
choice. So far I have only discussed a binary choice followed by a regression function.
In the lighting choice situation, the choice is polytomous, meaning, we have more than
two choices (lighting or no lighting) and up to seven distinct and mutually exclusive
choices. These relate to the location on the roadside where installation is chosen. For

example, the location choices can include a) median side only, b) median and right side, c)
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right side only, d) lighting in tunnels, e) median side point, and f) right side point.
Lighting at a single point such as a merge point between an on-ramp and the mainline, is

€%

different from continuous lighting, where a series of luminaires are installed. Choices “a
through “d” reflect continuous lighting types, whereas “e” and “f’ reflect point
installations; the baseline choice is no lighting. For a polytomous model with an extreme
value distribution, I propose to use the mixed logit approach, which accounts for choice
heterogeneity in the selection problem very flexibly. It is flexible in the sense that no
apriori structure is required for estimating say, a nested logit type model. One can
directly estimate a single-level mixed logit model, compute the predicted probabilities,
and then proceed to incorporate them in the second stage regression model. Given these
preliminaries, some methodological issues of note are to be presented. First, in the sense
of Heckman, the selection bias problem is similar to an omitted variables bias problem
(see Puhani 2000 for details). Second, the problem of identification is a significant one in
the estimation of the regression equation for the outcome. As collinearity between the
vector of regressors in the choice equation and the outcome increases, identification
becomes increasingly challenging. At a minimum, it is recommended that at least one
variable in the choice equation be omitted from the outcome regression equation. A more
generalized view of this is based on the fact that the Inverse Mill’s ratio is quasi-linear,
meaning that only in very extreme samples where choice selection as opposed to no
selection approaches unity does the Inverse Mill’s ratio become non-linear, which in turn
means that identical regressors in both equations may still make estimation feasible in

those extreme ranges (Puhani 2000). This is not usually the case in the lighting choice
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problem; the non-selection probability is non-trivial. This probability will vary
depending on the scale (length of segment) at which lighting choice is evaluated. Hence,
a good empirical procedure is to estimate Inverse Mill’s ratios from the choice equation
and regress those on the regressors in the outcome equation. If the adjusted R-squared of
this regression is less than 0.8, then proceeding with the outcome regression is admissible.
Otherwise, it is desirable to find more instruments in the choice equation, namely,
regressors that are not in the outcome equation. A final note relates to the consistency of
the variance-covariance matrix of the regression outcome equation. This may not be
consistent, and it may be necessary to adjust for inconsistency using robust approaches
such as the White estimator (White 1980) or an estimator that accounts for variability
arising from the first-stage prediction (Murphy and Topel 1985).

To summarize, selection bias correction in transportation safety policy is
practically non-existent; it appears there is one article in the published literature that
addresses the topic as an endogeneity issue, which is not necessarily an accurate
characterization in most policy application situations. The lighting choice problem serves
as an example. The second limitation with the selection bias correction problem relates
to extending methods from the Heckman two-step process with a binary choice selection
equation to a polytomous selection choice equation. The second variant I will address
relates to the use of nonlinear regression models for the outcome equation in the second
step, whereas the Heckman procedure uses the classical ordinary least squares (OLS)
regression equation. The need for a nonlinear regression in the second step arises from

the fact that I will be dealing with counts of accidents in years, for any given segment.
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Using a linear OLS model will produce inconsistent parameter estimates. A nonlinear
regression model such as Poisson or negative binomial model has been found to be
suitable for count regressions where heterogeneity is plausible. If heterogeneity is
significant, a negative binomial (NB) regression usually suffices. The complication in
my empirical case arises from the fact that the NB regression is a second-stage regression
and not an independent regression. Hence, I must factor in the heterogeneity effect
common to both the selection equation and the count outcome equation. This makes the
estimation process somewhat challenging since the estimation now requires a single-step
procedure as opposed to a two-step procedure in order to be efficient.

Given these preliminaries, I discuss the extension of the Heckman approach to our
empirical case by using a richer lighting choice set in the first step, and accident
frequencies as the outcome in the second step. This procedure, if feasible, can be
conducted from any subset of frequencies, such as fatalities, injuries, or non-injuries. It
can also be conducted for collision types, such as rear ends, overturns, fixed object hits,
or other types. In this sense, a procedure accommodating a polytomous choice along
with a count regression outcome that accounts for heterogeneity and overdispersion is a
useful method. This is a central and main scientific contribution of my dissertation, the
other being a justifiable theory for network segmentation. It helps answer the research
questions I initially raised in the introduction section of this dissertation. = These
questions are revisited for quick reference:

a) What is the impact of selection bias on safety intervention due to scale? In

other words, if safety interventions are applied at locations where accident



21
patterns are severe and frequent, how does one account for the lack of
intervention at less problematic locations? And how does a statistical
methodology derived for selection bias provide inference across scales, as
segments are scaled up from very small lengths to lengths of the order of
corridors?

b) How does one represent insights into the policy implications of selection bias
in a manner that integrates context (i.e., roadway location and characteristics)

and scale?

2.3 Mixed Logit Model

Since the lighting choice equation involves seven choices as previously described,
the multinomial logit model (MNL) developed by McFadden (1984) is the most popular
discrete choice model and can be used for the choice estimation equation in a Heckman-
type two stage selectivity bias correction process. MNL operates on the basis of
independent and identical distribution of random components in the utilities assumption.

Generally, the utility function (U) of MNL has the following form:

where, a is a constant term for alternative j, x is the observed variable in
individual i for alternative j, S are coefficients, and ¢ is a randomly distributed

unobserved utility.
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With the utility function, the probability that individual i selects alternative j is

given by:
Ujj
Pr(j|x;)= Je
3o
p=I

However, the MNL model is based on the IID assumption and cannot capture
preference heterogeneity in individual characteristics. The mixed logit model provides
features for model analysis, including observed and unobserved heterogeneity, from a
variety of sources. The individual specific random parameter is introduced in the mixed
logit model, so that the parameters are randomly distributed over individuals with unique
means and variances in each individual. With unique parameters in each individual, the

utility function of the mixed logit model can be considered as follows:

Uij =a; + (Bj + csij)xij + & @

where ¢’ are the observed heterogeneity term to capture preference heterogeneity
for individual i with alternative j, and the other parameters are the same as those in the
utility function of the MNL model.

Deb et al (2006) introduced the treatment-effects model, which can be used when
one treatment is chosen from more than two choices. This model uses a mixed
multinomial logit (MMNL) structure to capture the effects of unobserved factors as well
as observed factors. I begin my main analysis by applying the treatment-effects model of
Deb et al (2006). In their paper, they use a shared heterogeneity term to motivate the

selection bias problem influencing treatment-effects. They analyze the choice of health
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insurance plan type, and the outcome measures medical care usage by the treatment-
effects model. For the model development, the indirect utility function is defined as

follows:

Uy =0, +Bx;+(0l;+¢g;) “

where x denotes the exogenous variable, / is an unobserved factor for individual i
and treatment j, and ¢ is the independently and identically distributed error term.
With the above utility function, the probability of treatment can be described with

a mixed multinomial logit structure as follows:

eV
Pr(d, |x,.) = ———

1+ ZeUi"
p=1

where d is the binary variable representing the observed treatment choice.

So, the expected outcome equation for individual i can be defined as:

J J
ECY, |d,,z, 1) =a+Bz + D od;+ D Al
= = (6)
where z is a set of exogenous variable associated with the treatment effects
parameters, d is the choice variable, and / is the shared latent variable.
As noted, the shared heterogeneity makes it a single-step estimation procedure
which is likely to be more efficient than the traditional Heckman type approach. In
summary, the Deb approach allows for evaluating treatment selection effects on a count

outcome through observed and unobserved factors.
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Chapter 3

SAFETY ANALYSIS PROCESS AND EMPRIRCAL SETTINGS

3.1 Safety Analysis Process

The focal point of this dissertation is to demonstrate the effect of data scale on
selection bias in safety analysis. For the analysis on the basis of the data scale effect,
various segmentation approaches were employed. Figure 1 shows the taxonomy of
segmentation types used in this dissertation. In the top half of the figure above the dotted
line, exogenous segmentation types are shown, along with the modeling method
employed for that type of segmentation. In the bottom half of the figure, endogenous
segmentation types are shown, along with modeling method used for analyzing that type
of segmentation. Exogenous segmentation includes segmentation on the basis of
independent variables such as lighting type, exposure offsets such as length of segment,
and geometric network classifiers such as interchange and noninterchange segments.
Endogenous segmentation is based on the outcome’s distribution in space — in this case
the total annual frequency of accidents. Accident clusters are identified using the method
of medoid based clustering, which in turn provides for the opportunity to directly link
lighting presence with accident occurrence in space.

The modeling method used for analyzing exogenous segmentation datasets
involves the joint model of lighting type or sequence choice and the accident count

outcome. In essence, this is analogous to a full information simulated maximum
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likelihood method. This method becomes computationally burdensome and impractical
in datasets where endogenous segmentation yields a large number of segments.
Therefore, for the endogenous segmentation dataset, a two-step Heckman-type approach
is used involving predicted probabilities from a discrete choice model of lighting type

sequence in the outcome equation as an independent variable.

Endogenous
Segmentation

Treatment-Effect
Modeling

Modeling process:
two step modeling

Modeling process:
second step medaling

Negative
Binomial

Maodeling

Figure 1: Safety Analysis Procedure.

Safety analysis will be achieved following the process in Figure 1. Four types of
segmentation datasets are created for safety analysis. Segmentation datasets by lighting

installation type, interchange existence, and one mile section are prepared as exogenous
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segmentation datasets while accident clustering is used for the case of endogenous
segmentation. Definitions of segmentation will be presented in the next section.

Two types of models are estimated for safety analysis. The key variable for
selection bias is the lighting installation variable, which allows the predicted lighting
choice values to become independent variables at the second step of model estimation. A
treatment-effect model is used for the exogenous segmentation datasets. As described in
the previous section, the treatment-effect model is the one step estimation model that
condenses Heckman’s two step selection bias estimation into one operation.

Both the treatment-effect model and the mixed multinomial logit model cannot
handle the large dataset containing small scale segments. The size of data can be one
problem because both models are based on simulation, in which the allocation of data
into memory at the random draw step for computation can halt the modeling. This may
cause the models to create inappropriate coefficients by the problem even though they are
successfully estimated. Due to the main problem of regular selection bias estimation,
alternate two step estimation methods are used for the small scale dataset in this
dissertation. The predicted lighting choice probabilities are estimated by regression with
observed probabilities and random predicted probabilities, as dependent variables and
independent variables, respectively, at the pre-process modeling step. The regression
model can be defined as:

200
Py =0+ D By + &
K (M
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where p is predicted probabilities of sequence choice by regression for individual i
and alternative j, o is the constant, f are coefficients of random choice predicted

probabilities, and x are the 200 random predicted probabilities of sequence choice.

Table 1: Highway Capacity Manual Design Criteria for Geometric Sub-Block.

Six traffic flow level (q) Six shoulder width combinations Four curve combinations

(Horizontal Curve = 0) AND
(Vertical Curve = 0)

(Horizontal Curve # 0) AND
(Vertical Curve = 0)

q < 1440 vphpl (Left SW <2) AND (Right SW <2)

1400 < q < 1650 vphpl | (Left SW <2) AND (2 < Right SW < 10)

(Horizontal Curve = 0) AND

1400 < q < 1900 vphpl | (Left SW < 2) AND (Right SW > 10) (Vortioal Curve 2 0)

(Horizontal Curve # 0) AND

1900 <q<2150 vphpl | (Left SW > 2) AND (Right SW <2) (Vortical Curve % 0)

2150 < q <2400 vphpl | (Left SW > 2) AND (2 < Right SW < 10)

q > 2400 vphpl (Left SW > 2) AND (Right SW > 10)

For the simulation method, random choice probabilities are obtained by
generating two hundred random numbers on the basis of a multivariate random
distribution. The inputs for random number generation are mean and standard deviation
numbers from the multinomial logit model estimation results. The predicted probabilities
are calibrated against the observed probabilities for a sequence type (calculated by
dividing the number of observations in the sequence choice within the sub-block by the
total number of observations in the sub-block). The sub-block for computation of
observed probabilities is defined based on the Highway Capacity Manual (HCM) level
design criteria. This process is carried out for the various sub-blocks defined in Table 1.
The total interstate network is divided into 144 sub-blocks by the criteria shown in Table

1.
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The negative binomial model is estimated with predicted probabilities from pre-

processing and other exogenous variables at the second step. This is similar to the second

step estimation in Heckman’s two selection correction model; the model equation is:
'

In(y;)=a+pz + O.p; T8 )

where y is the accident count for individual i, « is the constant, § are coefficients of

exogenous variables, z are exogenous dependent variables, ¢ are coefficients of predicted

sequence choice probabilities, and p are predicted sequence choice probabilities by

regression.

3.2 Segmentation Data Setting

Exogenous segmentation refers to segmentation using independent variables alone
as previously discussed, whereas endogenous segmentation refers to dependent variable
based segmentation. The motivations for exogenous segmentation are purely statistical —
that is, the segmentation is based on the type of variation in the X vector and how that
variation is associated with the variation in the outcome. For exogenous segmentation,
three types of variations are used, such as lighting installation type, interchange and
non-interchange section, and one mile section as example cases. In contrast, endogenous
segmentation is based on the nature of occurrence of the outcome, in the case of this
dissertation, for example, frequency of accidents. In a sense, frequency of accidents can
be time-invariant, that is, if accidents are clustering around specific locations on the

network, there must be an underlying causal mechanism, and this causal mechanism does
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not vary substantially over time, unless interventions occur. Investigating the causal
mechanism requires approaches beyond pure statistics or associative modeling.
Kinematic underpinnings need to be explored, as in heterogeneities that can occur due to
environmental interactions and driver to driver interactions. While this aspect of research
is beyond the scope of this dissertation, the goal of this dissertation is to set the table for
this type of unifying discussion. In order to set the table, a consistent empirical template

is required.

s W
297 52 miles

Figure 2: Seven Interstates in Washington State.

A total of 1,528 centerline miles were scanned, by direction, covering interstates

in Washington State for input into the segmentation datasets. As seen in Figure 2,
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Washington State covers 7 interstates including: I-5, I-82, 1-90, I-182, 1-205, 1-405, and I-
705. Lighting pole installation, interstate, and overpass information were collected by
scanning the WSDOT interstate driving view images provided by the SRWeb. The

lighting data is aggregated by lighting type definition as shown in Table 2.

Table 2: Definitions of Lighting Types for Lighting Segmentation.

Description of lighting

No lighting Lighting pole does not exist

Median continuous only Continuous lighting poles present at median side
Median point only Point lighting pole presents at median side
Right continuous only Continuous lighting poles present at shoulder side

Right point only Point lighting pole present at shoulder side
Both lighting Lighting poles are installed at both side
Tunnel lighting Lighting installed in a tunnel
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Figure 3: Input Transportation Data for Segmentation.
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WSDOT’s database was used for collecting information on the number of lanes,
shoulder widths, number of horizontal curves, and number of vertical curves. Safety
analysis in this dissertation spans accidents over a recent nine year period. The WSDOT
Transportation Data Office (TDO) provides accident location and accident type
information from 1999 to 2007. Also, annual average daily traffic (AADT) flow for
every one mile is provided as traffic information. Sample transportation datasets for
safety analysis are shown in Figure 3.
Four data templates are prepared for the segmentation data on the basis of
segment length for each segmentation type. Raw data in Figure 3 are aggregated into
data templates by counting and weighting methods; the segmented datasets are shown in

Figure 4.
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Figure 4: Four Types of Segmentation Results for Accident Analysis.
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The input for choice variables in the random parameter model or treatment-effect

model must be dummy information. In the case of lighting segmentation, lighting
information is a logical value for each lighting choice type, but in other segmentation

cases, lighting choice values represent the proportion of luminary cover.

Table 3: Definitions of Lighting Sequence Types for Other Segmentation.

Description of sequence

Sequence 1 | No lighting presence

Sequence 2 | Median continuous lighting presence
Sequence 3 | Right continuous lighting presence

Sequence 4 | Median continuous with no lighting presence
Sequence 5 | Right continuous with no lighting presence
Sequence 6 | Median point with no lighting presence
Sequence 7 | Right point with no lighting presence
Sequence 8 | other lighting types presence

Percentof urban and rural segments |Percentof urban and rural segments
in lighting type length segmentation | ininterchange level segmentation

Urban Ares
41.11%

Urban Area
41.51%

Aural Area RuralArea
58.89% 58.49%

Percentof urban and rural segments |Percent of urban and rural segmentsin
in one-mile length segmentation accident cluster length segmentation

Urban Ares
42.31%

Urban Area
41.03%

Rital Arss Rural Ares
58.97% 57.69%

Figure S: Proportions of Segment Length in Urban and Rural Areas.
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Due to the variation in definition, lighting variables are replaced by lighting
sequence choice variables in the other segmentation cases. Lighting sequence types for
model estimation are shown in Table 3. Here, it is not considered the order of lighting
type for lighting sequence. For instance, median continuous lighting presence is followed
by no lighting presence as well as no lighting presence is followed by median continuous

lighting presence in case of median continuous with no lighting presence.
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As shown in Figure 2, interstates 182, 205, 405, and 705 exist in urban areas,

while interstates 5, 82, and 90 cover both urban and rural areas. The total percentage of
segment length in the rural area is greater than the percentage of urban interstate length.
Proportions of segment length in the two different areas are shown in Figure 5. The rural

area comprises around 58 percent of all segmentation.
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Figure 7: Segment Observation Counts in Urban and Rural Area.

Figure 6 presents lighting and sequence observation counts for each segmentation
type. The proportion of no lighting presence is more than 50 percent for all
segmentation cases. In the case of lighting segmentation, no lighting presence covers

about 52 percent of all observations. No lighting presence occupies roughly 59 percent



35
in interchange segmentation, 70 percent in one mile segmentation, and 78 percent in
accident-cluster segmentation respectively. When the segment length size decreases,
the percentage of no lighting presence increases. This can affect choice model
estimation negatively because of the lack of observations in the other lighting types or
sequences types.

Although the rural proportion of the interstate system is greater than its urban
counterpart, the lighting observations and sequence observations can appear in different
ways. One can expect that more lighting poles are installed in the urban area because of
safety impact factors such as traffic flow; this is statistically shown in Figure 7. In most
cases, the lighting installed segment count in the urban area is greater than those in the
rural area. Only the median lighting with no lighting sequence type has more
observations in the rural area than in the urban area. This may be because no lighting
observations affect sequence more than median lighting installation. As seen in Figure 7,
too few observations exist for both-side lighting and tunnel lighting in the lighting
segmentation for both the urban and the rural area. Due to negative effects of lack of
observations in the model estimation process, two lighting cases are excluded. In the
sequence segmentation cases, too many zeros also exist in the rural area, which
dramatically inflates the coefficients for the estimation of the choice model; therefore, all

rural independent variables will be excluded from model estimation.
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Figures 8 through 11, and Tables 4 through 7 show the descriptive statistics for

key variables in the four types of segment datasets for total accidents. Lighting segments

are identified based on the segmentation method in the previous section. Descriptive

statistics for lighting segmentation are presented in Figure 8 and Table 4. The mean

length of the lighting segments is approximately 1.42 miles. Minimum segment length is

0.01 miles and maximum segment length is 62.27 miles.

The percent of no lighting

segments is 85.4. Point lighting segments constitute 5.57 percent of the network,

continuous lighting segments accounts for 8.03 percent, and other type segments

comprise less than 1 percent.
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Figure 8: Lighting Type Segment Observation in Lighting Segmentation.
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Table 4: Descriptive Statistics for Key Variables in the Interstate Lighting Segment

Dataset for Washington State.

Variable Mean Minimum |Maximum
Segment length in miles 1.42 0.01 62.27
Percent of segments increasing direction of travel | 50.00% 0 1
Number of interchanges in urban segment 1.12 0 10
Number of interchanges in rural segment 1.78 0 13
Number of overpasses in urban segment 0.72 0 12
Number of vertical curves in urban segment 2.04 0 55
Number of vertical curves in rural segment 8.48 0 81
Number of horizontal curves in urban segment 1.32 0 46
Left shoulder width in feet in urban segment 6.83 2 14
Left shoulder width in feet in rural segment 7.18 2 10.21
Right shoulder width in feet in urban segment 6.61 2 24
Right shoulder width in feet in rural segment 7.30 2 16
Log average daily traffic per lane in urban 10.53 8.61 11.40
Log average daily traffic per lane in rural 9.42 7.51 10.61
Number of total accidents in segment 11.42 0 247

On the average, 1.12 interchanges exist in each urban segment with a maximum

of 10, while the mean number of interchanges in rural segments is 1.78 with maximum of

13. The average number of overpasses in each segment is 0.72 with a maximum of 12.

The average number of vertical curves per urban segment is 2.04 with a maximum of 55,

while the mean number of vertical curves per rural segment is 8.48 with a maximum of

81. Each segment has 1.32 horizontal curves, on the average, with a maximum of 46.
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The mean left shoulder width is 6.83 feet per urban segment with a minimum of 2 feet
and a maximum of 14 feet. The average left shoulder width is 7.18 feet per rural segment
with a minimum of 2 feet and a maximum of 10.21 feet. The average right shoulder
width per urban segment is 6.13 feet with a minimum of 2 feet and a maximum of 24 feet,
while the mean right shoulder width per rural segment 7.30 feet with a minimum of 2 feet
and a maximum of 16 feet.

Mean log AADT per lane in each urban segment is 10.23 with a minimum of 8.61
vehicles per day and a maximum of 11.40 vehicles per day, while average log AADT per
lane in each rural segment is 9.42 with a minimum of 7.54 vehicles per day and a
maximum of 10.61 vehicles per day. The mean number of total accidents is 11.42 per

segment with a maximum of 247.
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Figure 9: Sequence Type Segment Observation in Interchange Segmentation.
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Figure 9 and Table 5 show descriptive statistics for the interchange segmentation
dataset. The mean length of the lighting segments is 1.31 miles, while the minimum
segment length is 0.01 miles and the maximum segment length is 20.38 miles. The
percent of no lighting segments is 67.98, while the segments with median point with no
lighting encompasses 9.98 percent of the total segments. Only right continuous lighting
segments constitute 6.36 percent of the network, median continuous with no lighting
segments maintains 5.37 percent of the network, and other sequence segments make up

less than 5 percent.

Table S5: Descriptive Statistics for Key Variables in Interchange Segment Dataset for
Washington State.

Variable Mean Minimum |[Maximum
Segment length in miles 1.31 0.01 20.38
Percent of segments increasing direction of travel | 50.00% 0 1
Number of overpasses in urban segment 0.88 0 16
Number of vertical curves in urban segment 2.45 0 30
Number of horizontal curves in urban segment 1.56 0 37
Left shoulder widths in feet in urban segment 7.02 2 18
Right shoulder widths in feet in urban segment 6.75 2 18
Log average daily traffic per lanes in urban 10.31 8.16 11.39
Number of total accidents in segment 10.69 0 388

The average number of overpasses in each urban segment is 0.88 with a
maximum of 16. On the average, 2.45 vertical curves exist in each urban segment with a
maximum of 30, while the mean number of horizontal curves in each urban segment is

1.56 with a maximum of 37. Each segment has a left shoulder width of 7.02 feet, on the
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average, with a minimum of 2 feet and a maximum of 18 feet, while the average right
shoulder width per urban segment 6.75 feet with a minimum of 2 feet and a maximum of
18 feet. Mean log AADT per lane in each urban segment is 10.31 with a minimum of
8.16 vehicles per day and a maximum of 11.39 vehicles per day, while the mean number

of total accidents is 10.69 per segment with a maximum of 388.
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Figure 10: Sequence Type Segment Observation in One Mile Segmentation.

Figure 10 and Table 6 show the descriptive statistics for the one mile
segmentation. The mean length of the lighting segments is 1.00 mile with a minimum
segment length of 0.01 miles and a maximum segment length of 1.00 mile. The percent
of no lighting segments is 70.32, while the percent of segments with median point with

no lighting is 7.72. Only right continuous lighting segments constitute 6.15 percent of
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the network, median continuous with no lighting segments accounts for 5.43 percent of
the network, other type lighting segments comprises 5.30 percent, and other sequence
segments make up less than 5 percent of the network.

On the average, 0.97 overpasses exist for each urban segment with a maximum of
7. The average number of vertical curves for urban segments is 2.68 with a maximum of
9, while the mean number of horizontal curves for urban segments is 1.66 with a
maximum of 5. Each segment maintains a 7.16 feet left shoulder width, on the average,
with a minimum of 2 feet and a maximum of 14 feet, while the average right shoulder
width per urban segment is 6.89 feet with a minimum of 2 feet and a maximum of 15.08
feet. Mean log AADT per lane in each urban segment is 10.14 with a minimum of 8.16
vehicles per day and a maximum of 11.40 vehicles per day. The mean number of total

accidents is 8.14 per segment with a maximum of 172.

Table 6: Descriptive Statistics for Key Variables in One Mile Segment Dataset for
Washington State.

Variable Mean Minimum |[Maximum
Segment length in miles 1.00 0.01 1.00
Percent of segments increasing direction of travel | 50.00% 0 1
Number of overpasses in urban segment 0.97 0 7
Number of vertical curves in urban segment 2.68 0 9
Number of horizontal curves in urban segment 1.66 0 5
Left shoulder widths in feet in urban segment 7.16 2 14
Right shoulder widths in feet in urban segment 6.89 2 15.08
Log average daily traffic per lane in urban 10.14 8.16 11.40
Number of total accidents in segment 8.14 0 172
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Descriptive statistics for accident-cluster segmentation is shown in Figure 11 and

Table 7. The mean length of the lighting segments is 0.04 miles approximately with a
minimum segment length of 0.00 miles and maximum segment length of 2.18 miles. The
percent of no lighting segments is 83.70, while the percent of segments with only right
continuous is 7.92. Only median continuous lighting segments constitute 5.31 percent of
the network, median continuous with no lighting segments is 1.38 percent of the network,

and other sequence segments make up less than 1 percent of the network.
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Figure 11: Sequence Type Segment Observation in Accident-Cluster Segmentation.

The average number of overpasses in each urban segment is 0.03 with a
maximum of 3. On the average, 0.38 vertical curves exist in urban segments with a
maximum of 5, while the mean number of horizontal curves in urban segments is 0.33

with a maximum of 4. Each segment has a 6.98 left shoulder width, on the average, with
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a minimum of 2 feet and a maximum of 26 feet, while the average right shoulder width

per urban segment is 6.83 feet with a minimum of 2 feet and a maximum of 24 feet.

Mean log AADT per lane in each urban segment is 10.46 with a minimum of 8.16

vehicles per day and a maximum of 11.63 vehicles per day. The mean number of total

accidents is 0.42 per segment with a maximum 26.

Table 7: Descriptive Statistics for Key Variables in Accident-Cluster Segment Dataset

for Washington State.
Variable Mean Minimum |[Maximum
Segment length in miles 0.04 0.00 2.18
Percent of segments increasing direction of travel | 50.00% 0 1
Number of overpasses in urban segment 0.03 0 3
Number of vertical curves in urban segment 0.38 0 5
Number of horizontal curves in urban segment 0.33 0 4
Left shoulder widths in feet in urban segment 6.98 2 26
Right shoulder widths in feet in urban segment 6.84 2 24
Log average daily traffic per lane in urban 10.46 8.16 11.63
Number of total accidents in segment 0.42 0 26




44

Chapter 4

STATISTICAL MODELING RESULTS FOR
INTERSTATE LIGHTING SEGMENTATION

I will now discuss the results from the modeling trials relating lighting choice to
accident count outcomes. Prior to describing the model results and the implications for
the modeling alternatives, I presented the descriptive statistics of the dataset I used from
Washington State in the previous chapter. This refined dataset is based on the raw data

that was obtained from the Washington State Department of Transportation.

4.1 Negative Binomial Model Results

I will begin with the baseline model results based on lighting type presence in the
lighting segmentation dataset. Lighting type is distinguished as only median continuous,
only right continuous, only median point, only right point, or none. I do not use both
lighting, tunnel lighting data, number of rural overpasses, and number of horizontal
curves in the rural area because the segment lengths are very small, and hence, can
contribute to convergence problems. Table 8 shows the negative binomial model of
accident frequencies with lighting choice variables on all Washington interstates. The
median-side continuous lighting variable appears to have counter-productive effects in
the model. Most geometric infrastructures, such as shoulders, median barriers, and

guardrails, are installed to improve safety on interstates. As a part of roadway
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infrastructure, lighting poles are installed to decrease accident frequencies to improve
driver vision at night or in adverse weather conditions. This is the productive or positive
effects of lighting installations on interstate safety. As seen in the negative binomial
model of accident frequencies in the case of lighting segmentation, the increase in the
median continuous lighting installation appears to increase accident frequencies, and thus,

produces counter-productive safety effects on interstates.

Table 8: Negative Binomial Model of Accident Frequencies with Lighting Choice
Variables in case of Lighting Segmentation.

Coefficient Std. - P 95% Conf.
Err. statistics | Value Interval
Constant -10.410 | 0.308 -33.84 | 0.00 | -11.013 | -9.807
Only median continuous lighting 0.312 | 0.033 9.48 0.00 0.247 0.377
Only median point lighting -1.196 | 0.070 -17.17 0.00 | -1.332 | -1.059
Only right continuous lighting -0.080 | 0.042 -1.91 0.06 | -0.161 0.002
Only right point lighting -1.729 | 0.048 -36.16 | 0.00 | -1.823 | -1.635
Number of urban interchanges 0.281 | 0.024 11.89 | 0.00 0.235 0.328
Number of rural interchanges -0.052 | 0.033 -1.57 0.12| -0.118 0.013
Number of urban overpasses 0.207 | 0.014 15.11 0.00 0.180 0.234
Number of urban vertical curves 0.063 | 0.008 8.19 0.00 0.048 0.079
Number of rural vertical curves 0.086 | 0.004 19.69 0.00 0.078 0.095
Number of urban horizontal curves 0.131 | 0.012 10.59 0.00 0.107 0.156
Urban left shoulder widths -0.019 | 0.004 -4.65| 0.00 | -0.027 | -0.011
Rural left shoulder widths 0.121 | 0.014 852 | 0.00 0.093 0.149
Urban right shoulder widths -0.015 | 0.004 -395| 0.00| -0.023 | -0.008
Rural right shoulder widths 0.131 | 0.014 9.27 0.00 0.103 0.158
Urban log AADT per number of lanes 1.131 | 0.028 39.85 0.00 1.076 1.187
Rural log AADT per number of lanes 1.012 | 0.034 29.93 0.00 0.945 1.078
Overdispersion 1.157 | 0.021 56.32 0.00 1.118 1.198
log likelihood at constant -30982.55
log likelihood at convergence -27427.18

If a coefficient of a choice variable has a positive sign, it contributes to increasing
the value of a dependent variable compared to a baseline variable. However, if the sign

of the coefficient is negative, it contributes more to decreasing the value in relation to the
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baseline variable. The coefficient of median continuous lighting variable has a positive
sign, while the other lighting variables have negative signs. Therefore, with traffic and
geometry controls, more accident occurrences are expected with median continuous
lighting presence than without lighting, but lighting presence contributes more to reduced
accident frequencies than no lighting presence in the other three lighting cases.

Baseline model results with lighting sequence variables in interchange and one
mile segmentation are shown in Table 9 and Table 10. Here, all variables are limited in
the urban area because the lack of lighting presence in the rural area contributes to

convergence problems.

Table 9: Negative Binomial Model of Urban Accident Frequencies with Lighting
Sequence Choice Variables in case of Interchange Segmentation.

Cocfficient Std. t- P 95% Conf.
Err. statistics | Value Interval
Constant 1.581 | 0.017 90.49 | 0.00 1.547 1.615
Only median continuous lighting 0.418 | 0.057 7.32 | 0.00 0.306 0.530
Only right continuous lighting -0.330 | 0.049 -6.75 0.00 | -0.426| -0.234
Median continuous with no lighting 0.495 | 0.039 12.87 0.00 0.420 0.571
Right continuous with no lighting 0.131 | 0.047 2.80 | 0.01 0.039 0.223
Median point with no lighting 0.085 | 0.035 2.43 0.02 0.017 0.154
Right point with no lighting 0.395 | 0.088 4471 0.00 0.222 0.568
Other sequences 0.751 | 0.048 15.61 0.00 0.657 0.845
Number of overpasses 0.087 | 0.011 7.86 0.00 0.065 0.108
Number of vertical curves 0.023 | 0.008 2.75 0.01 0.007 0.040
Number of horizontal curves 0.183 | 0.012 14.73 0.00 0.159 0.208
Left shoulder widths -0.051 | 0.004 -11.87 | 0.00 | -0.060 | -0.043
Right shoulder widths -0.030 | 0.004 -7.04 | 0.00 | -0.038 | -0.021
Log AADT per number of lanes 0.085 | 0.006 15.26 0.00 0.074 0.096
Overdispersion 0.992 | 0.015 64.582 | 0.000 0.962 1.022
log likelihood at constant -35535.45
log likelihood at convergence -33582.91
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Table 10: Negative Binomial Model of Urban Accident Frequencies with Lighting
Sequence Choice Variables in case of One Mile Segmentation.

Coefficient Std. t- P 95% Conf.
Err. statistics | Value Interval
Constant 0.926 | 0.013 72.66 .00 0.901 0.951
Only median continuous lighting 1.049 | 0.091 1149 | 0.00 0.870 1.228
Only right continuous lighting -0.457 | 0.041 -11.03 0.00 | -0.53 -0.376
Median continuous with no lighting 0.919 | 0.039 23.60 | 0.00 0.842 0.995
Right continuous with no lighting 0.489 | 0.042 11.55 0.00 0.406 0.572
Median point with no lighting 0.459 | 0.033 13.90 | 0.00 0.394 0.524
Right point with no lighting 0.784 | 0.099 7.90 | 0.00 0.589 0.978
Other sequences 0.948 | 0.040 23.46 0.00 0.869 1.027
Number of overpasses 0.098 | 0.011 8.67 | 0.00 0.076 0.121
Number of vertical curves -0.026 | 0.009 -2.78 0.01 | -0.044 | -0.008
Number of horizontal curves 0.136 | 0.013 10.73 0.00 0.111 0.160
Left shoulder widths -0.058 | 0.004 -13.04 | 0.00 | -0.066 | -0.049
Right shoulder widths -0.033 | 0.004 =772 | 0.00 | -0.042 | -0.025
Log AADT per number of lanes 0.165 | 0.007 2413 | 0.00| 0.151| 0.178
Overdispersion 0.267 | 0.051 519] 0.00| 0.183] 0.389
log likelihood at constant -42346.821
log likelihood at convergence -37447.936

The only right-side continuous lighting presence variables for the two models

have negative coefficient signs; they do not have counter-intuitive effects in both models.

Here, the term counter-intuitive effect is used in similar manner as the term counter-

productive. Most people intuitively expect infrastructures are installed to improve safety

on the roadway, but if accident frequencies are increased in the segment where the

infrastructure is installed compared to locations where it is not installed, the infrastructure

does not contribute to improving safety; this is the opposite concept of the lighting

infrastructure to conventional intuition. The only right-side continuous lighting presence

variables for the two models seems to contribute to decreasing the accident frequencies,

and it is only these lighting variables that do not have counter-intuitive effects on safety.



48
The median-side continuous lighting variable and any type of lighting with no lighting
presence variables have positive coefficient signs, so they have greater effects on
accident frequencies than the no lighting presence variable. The lighting presence
variables, except the median continuous lighting variable in Table 10, have negative
effects on the increase of accident frequencies, but all lighting sequence variables
contribute to increasing accident frequencies. This is because the no lighting portion in
the lighting sequence segments appear to contribute more to increasing accident
frequencies than the contribution of decreasing accident frequencies for the lighting

installed portion.

Table 11: Negative Binomial Model of Urban Accident Frequencies with Lighting
Sequence Choice Variables in case of Accident-Cluster Segmentation.

Cocfficient Std. t- P 95% Conf.
Err. statistics | Value Interval
Constant -9.726 | 0.114 -85.41 0.00 | -9.949 | -9.503
Only median continuous lighting 0.267 | 0.010 25.63 0.00 0.247 0.288
Only right continuous lighting 0.217 | 0.016 13.69 0.00 0.186 0.248
Median continuous with no lighting 0.530 | 0.050 10.67 0.00 0.433 0.628
Right continuous with no lighting 0.602 | 0.068 8.80 0.00 0.468 0.736
Median point with no lighting 0.332 | 0.072 4.62 0.00 0.191 0.472
Right point with no lighting 0.227 | 0.126 1.79 0.07 | -0.021 0.474
Other sequences 0.361 | 0.033 10.79 0.00 0.295 0.426
Number of overpasses 0.599 | 0.021 28.94 | 0.00 0.558 0.640
Number of vertical curves 0.012 | 0.009 1.42 | 0.16 | -0.005 0.029
Number of horizontal curves -0.029 | 0.009 -3.26 | 0.00| -0.046| -0.012
Left shoulder widths -0.018 | 0.001 -15.00 | 0.00 | -0.020 | -0.015
Right shoulder widths -0.017 | 0.001 -1449 | 0.00| -0.019| -0.015
Log AADT per number of lanes 0.849 | 0.011 80.75| 0.00| 0.829| 0.870
Overdispersion 1331 0.015 88.33| 0.00| 1.302]| 1361
log likelihood at constant -186199.12
log likelihood at convergence -180676.97
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The one mile segmentation model results have larger coefficients than the
interchange segmentation model in the sense that lighting sequence has greater effects on
accident frequencies when compared to no lighting presence.

Table 11 shows the baseline model results with lighting sequence variables in the
accident-cluster segmentation. This model is estimated in the urban area as well. Each
lighting sequence presence variable has a positive sign and counter-intuitive effect on
accident frequencies in the model. Interstates with lighting pole installation have a

greater expectation of accident frequencies than areas without lighting presence.

4.2 The Mixed Multinomial-Selection Negative Binomial Count Treatment Effects
Model and Negative Binomial Model with Pre-Processing

This subsection presents the results based on a polytomous selection schema for
lighting choice or lighting sequence choice incorporated with the negative binomial count
outcome. In the cases of lighting, interchange, and one mile segmentation, the effects of
geometry and traffic flow on the choice of lighting installation are estimated by the mixed
multinomial logit model. The multinomial logit model is used for estimating the effects
of traffic and geometry on lighting sequence choice in the case of accident-cluster
segmentation. The baseline choice is no lighting presence in all choice models. The four
types of lighting presence referenced in a previous chapter are used as alternative choices
for the mixed multinomial logit model in the lighting segmentation case. Alternative
choices of sequence for the logit models are the seven types of lighting sequence in the

other three segmentation cases.
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Table 12: Mixed Multinomial Logit Model of the Lighting Type Installation Probability

in Lighting Segmentation.

Only median continuous lighting

Only median point lighting

t-

t-

Coefficient | Std. Err. statistics Coefficient | Std. Err. statistics
Constant -7.752 0.893 .68 -2.021 1.430 -1.41
Number of urban interchanges -0.070 0.066 -1.05 -0.607 0.140 -4.32
Numb r of rural interchanges 0.220 0.330 0.67 -0.772 0.433 -1.78
Number of urban overpasses 0.157 0.037 4.30 -0.373 0.134 -2.77
Number of urban vertical curves -0.139 0.023 -5.92 -1.227 0.111 -11.08
Number of rural vertical curves -0.781 0.146 -5.34 -1.943 0.326 -5.97
Number of urban horizontal curves -0.021 0.037 -0.57 -0.465 0.104 -4.46
Urban left shoulder widths -0.007 0.010 -0.69 0.058 0.018 322
Rural left shoulder widths -0.074 0.063 -1.16 0.116 0.101 1.14
Urban right shoulder widths 0.022 0.010 2.32 0.039 0.016 243
Rural right shoulder widths -0.139 0.063 -2.20 -0.138 0.092 -1.50
Urban log AADT per number of lanes 0.654 0.082 7.97 0.045 0.132 0.34
Rural log AADT per number of lanes 0.810 0.120 6.76 0.180 0.181 0.99

Only right continuous lighting

Only right point lighting

Constant 3.257 0.805 4.05 3.366 0.857 393
Number of urban interchanges -0.749 0.079 -9.42 -0.014 0.115 -0.12
Number of rural interchanges -1.467 0.150 -9.80 -0.876 0.179 -4.90
Number of urban overpasses 0.242 0.042 5.73 -1.075 0.132 -8.11
Number of urban vertical curves -0.021 0.027 -0.79 -0.696 0.074 -9.38
Number of rural vertical curves 0.094 0.016 5.97 -1.648 0.104 -15.90
Number of urban horizontal curves -0.019 0.041 -0.48 -1.253 0.093 -13.50
Urban left shoulder widths -0.063 0.012 -5.13 0.085 0.014 593
Rural left shoulder widths 0.223 0.050 443 0.199 0.037 532
Urban right shoulder widths -0.074 0.012 -6.03 0.026 0.013 2.02
Rural right shoulder widths 0.027 0.045 0.61 0.275 0.039 7.09
Urban log AADT per number of lanes -0.335 0.075 -4.47 -0.430 0.081 -5.33
Rural log AADT per number of lanes -0.593 0.103 -5.78 -0.368 0.095 -3.87
log likelihood at constant -10668.76
log likelihood at convergence -10583.66
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Table 13: Mixed Multinomial Logit Model of the Lighting Sequence Probability in
Interstate Segmentation.

Only median continuous Only right continuous

Coefficient | Std. Err. g tatit;, ics Coefficient | Std. Err. S tatit; ics
Constant -20.992 158 | -13.28 -2.887 0.068 | -42.18
Number of urban overpasses -0.170 0.086 -1.97 0.305 0.073 4.17
Number of urban ver ical curves -0.350 0.048 -7.28 -0.094 0.041 -2.30
Number of urban horizontal curves 0.118 0.064 1.83 -0.014 0.060 -0.24
Urban left shoulder widths -0.088 0.021 -4.27 0.099 0.026 3.84
Urban right shoulder widths -0.201 0.020 991 -0.185 0.023 -7.94
Urban log AADT per number of lanes 2.023 0.145 13.91 0.047 0.030 1.55

Median continuous with no lighting Right continuous with no lighting

Constant -5.299 0.194 | -27.30 -3.485 0.086 | -40.36
Number of urban overpasses 0.637 0.042 15.11 0.647 0.051 12.64
Number of urban vertical curves 0217 0.028 -7.76 -0.130 0.037 -3.53
Number of urban horizontal curves 0.101 0.034 2.96 -0.030 0.055 -0.55
Urban left shoulder widths -0.104 0.014 -7.28 -0.200 0.019 | -10.61
Urban right shoulder widths -0.090 0.014 -6.35 -0.182 0.019 9.67
Urban log AADT per number of lanes 0.488 0.024 20.04 0.340 0.023 14.80
Median point with no lighting Right point with no lighting
Constant -5.844 0258 | -22.64 -1.922 0.049 | -39.29
Number of urban overpasses 0.151 0.115 1.31 0.407 0.059 6.92
Number of urban vertical curves -0.338 0.073 -4.64 -0.052 0.033 -1.58
Number of urban horizontal curves 0.088 0.101 0.88 -0.009 0.040 -0.23
Urban left shoulder widths -0.113 0.030 -3.75 0.047 0.019 2.54
Urban right shoulder widths 0.100 0.034 2.92 0.006 0.018 0.34
Urban log AADT per number of lanes 0.257 0.046 5.59 -0.091 0.023 -3.91

Other sequences

Constant -5.366 0.202 -26.53
Number of urban overpasses 0.783 0.045 17.59
Number of urban vertical curves -0.068 0.031 -2.18
Number of urban horizontal curves 0.075 0.029 2.56
Urban left shoulder widths -0.061 0.018 -3.43
Urban right shoulder widths -0.105 0.017 -6.01
Urban log AADT per number of lanes 0.359 0.028 13.02
log likelihood at constant -13361.55

log likelihood at convergence -13218.09




52

Table 14: Mixed Multinomial Logit Model of the Lighting Sequence Probability in One

Mile Segmentation.

Only median continuous

Only right continuous

t-

t-

Coefficient Std. Err. statistics Coefficient Std. Err. statistics
Constant -6.528 0.251 -25.96 2671 0.043 -61.91
Number of urban overpasses 0.850 0.100 8.51 0.368 0.110 3.33
Number of urban vertical curves 0.124 0.085 1.46 0.349 0.060 5.84
Number of urban horizontal curves -0.433 0.129 337 0.160 0.095 1.68
Urban left shoulder widths -0.425 0.040 -10.70 1.077 0.082 13.08
Urban right shoulder widths -0.614 0.046 -13.44 -0.375 0.044 -8.51
Urban log AADT per number of lanes 0.843 0.053 16.06 -1.045 0.090 -11.67

Median continuous with no lighting

Right continuous with no lighting

Constant

Number of urban overpasses

Number of urban vertical curves
Number of urban horizontal curves
Urban left shoulder widths

Urban right shoulder widths

Urban log AADT per number of lanes

-6.279 0.216 -29.09
1.050 0.048 21.66
-0.025 0.035 -0.71
0.357 0.049 7.32
-0.133 0.019 -7.16
-0.176 0.018 -9.66
0.509 0.033 15.33

-4.092 0.079 -51.98
1.072 0.055 19.47
-0.003 0.043 -0.07
-0.058 0.063 -0.91
-0.299 0.023 -13.26
-0.318 0.023 -14.07
0.490 0.032 15.25

Median point with no lighting

Right point with no lighting

Constant

-6.572 0.255 -25.74 -2.766 0.046 -60.67
Number of urban overpasses 0.717 0.114 6.31 0.567 0.064 8.83
Number of urban vertical curves -0.123 0.091 -1.35 -0.068 0.043 -1.59
Number of urban horizontal curves 0.531 0.110 4.82 0.121 0.059 2.06
Urban left shoulder widths -0.046 0.044 -1.05 -0.080 0.023 -3.51
Urban right shoulder widths -0.036 0.044 -0.83 -0.152 0.022 -6.91
Urban log AADT per number of lanes 0.179 0.070 2.56 0.150 0.033 4.59

Other sequences

Constant -6.194 0.208 -29.74
Number of urban overpasses 1.134 0.049 23.08
Number of urban vertical curves 0.021 0.037 0.58
Number of urban horizontal curves 0.626 0.050 12.42
Urban left shoulder widths -0.179 0.019 -9.49
Urban right shoulder widths -0.216 0.019 -11.51
Urban log AADT per number of lanes 0.476 0.033 14.28
log likelihood at constant -128789.87
log likelihood at convergence -12721.13
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Table 15: Mixed Multinomial Logit Model of the Lighting Sequence Probability in
Accident-Cluster Segmentation.

Only median continuous Only right continuous

Coefficient | Std. Err. . tat; ics Coefficient | Std. Err. s tatit;, fics
Constant -12.328 0.163 -75.50 8.226 0.140 58.70
Number of urban overpasses 0.223 0.033 6.79 0.321 0.040 8.08
Number of urban vertical curves -0.104 0.012 -8.89 -0.007 0.015 -0.47
Number of urban horizontal curves 0.116 0.012 9.74 0.004 0.017 0.25
Urban left shoulder widths -0.042 0.002 | -26.61 -0.061 0.002 | -26.78
Urban right shoulder widths -0.121 0.002 | -76.60 -0.202 0.002 | -83.36
Urban log AADT per number of lanes 1.148 0.015 76.17 -0.839 0.013 -64.73

Median continuous with no lighting | Right continuous with no lighting
Constant -9.877 0.717 -13.77 -6.053 0.842 -7.19
Number of urban overpasses 0.547 0.136 4.02 1.387 0.103 13.47
Number of urban vertical curves -0.153 0.060 -2.57 0.291 0.072 4.05
Number of urban horizontal curves 0334 0.058 5.74 0.677 0.074 9.19
Urban left shoulder widths 0.010 0.008 1.19 -0.026 0.012 227
Urban right shoulder widths -0.043 0.008 -5.27 -0.043 0.012 3.75
Urban log AADT per number of lanes 0.494 0.066 7.44 0.050 0.077 0.64

Median point with no lighting Right point with no lighting
Constant -4.747 1.181 -4.02 -1.740 0.689 -2.53
Number of urban overpasses -27.961 | 459391.80 0.00 1.003 0.122 8.23
Number of urban vertical curves -0.500 0.138 -3.63 0.203 0.069 2.94
Number of urban horizontal curves 1.069 0.120 8.89 -0.023 0.077 -0.30
Urban left shoulder widths 0.117 0.019 6.15 0.058 0.011 5.07
Urban right shoulder widths 0.047 0.018 2.67 0.013 0.011 1.19
Urban log AADT per number of lanes -0.309 0.112 2.75 -0.410 0.065 -6.31
Other sequences

Constant -16.104 0.578 | -27.87
Number of urban overpasses 0.518 0.095 5.48
Number of urban vertical curves 0.003 0.039 0.09
Number of urban horizontal curves -0.557 0.046 -12.16
Urban left shoulder widths 0.047 0.006 8.43
Urban right shoulder widths -0.037 0.005 -7.05
Urban log AADT per number of lanes 1.153 0.053 21.65
log likelihood at constant -198831.60
log likelihood at convergence -186604.31
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These models use traffic and geometry factors such as number of interchanges,
number of overpasses, number of horizontal and vertical curves, number of lanes, and
shoulder width, as independent variables. For the mixed multinomial logit model, in the
case of lighting segmentation, all urban and rural factors are used except number of
overpasses and horizontal curves in the rural area. Other logit models use urban
geometry without interstate and urban traffic factors as independent variables.

Tables 12 through 14 show the mixed multinomial logit model results of
installation probability for each lighting type and lighting sequence type. Table 15 also
shows the multinomial logit model results for sequence probabilities. The predicted
outcomes of this lighting choice model are included in the negative binomial model as
additional independent variables for selectivity bias correction.

The selectivity bias correction model results with predicted outcomes in the case
of lighting segmentation are shown in Table 16. Most independent variables are
significant in the selectivity correction model estimations. If the t-statistic value of the
variable is greater than or equal to 2, or the p-value is less than or equal to 0.05, the
variable is significant at the 95 percent confidence level. If the variable is significant, the
coefficient is highly different from zero and it will significantly increase or decrease the
dependent variable at the confidence level. Most geometry variables have a positive
relationship with the number of accidents, except for urban shoulder widths, in the
correction model. The traffic flow variable also has a positive coefficient sign; this trend

is applicable to the uncorrected model in Table 8 as well.
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Table 16: Negative Binomial Results with Selectivity Bias Correction in Lighting
Segmentation.

Coefficient | Std. Er . | t-statistics | P Value | 95% Conf. Interval
Constant -10.574 0.329 -32.13 0.00 | -11.219 -9.929
Only median continuous lighting 0.324 0.054 6.03 0.00 0.219 0.430
Only median point lighting -1.352 0.085 -15.82 0.00 -1.519 -1.185
Only right continuous lighting -0.060 0.060 -1.00 0.32 -0.178 0.058
Only right point lighting -2.178 0.060 -36.06 0.00 -2.296 -2.059
Number of urban interchanges 0.287 0.026 11.04 0.00 0.236 0.338
Number of rural interchanges -0.030 0.036 -0.85 0.40 -0.100 0.040
Number of urban overpasses 0.233 0.015 15.32 0.00 0.203 0.262
Number of urban vertical curves 0.042 0.009 4.89 0.00 0.025 0.059
Number of rural vertical curves 0.079 0.005 16.32 0.00 0.069 0.088
Number of urban horizontal curves 0.098 0.014 6.85 0.00 0.070 0.126
Urban left shoulder widths -0.013 0.004 -3.07 0.00 -0.022 -0.005
Rural left shoulder widths 0.127 0.015 8.27 0.00 0.097 0.157
Urban right shoulder widths -0.011 0.004 -2.53 0.01 -0.019 -0.002
Rural right shoulder widths 0.138 0.015 9.23 0.00 0.109 0.167
Urban log AADT per number of lanes 1.134 0.030 37.41 0.00 1.075 1.194
Rural log AADT per number of lanes 1.020 0.036 27.95 0.00 0.948 1.091
ii;ffj&‘:ity of only median 0014 | 0048 0.28 078 | -0.081 | 0108
Heterogeneity of only median point 0.173 0.045 3.84 0.00 0.085 0.261
Heterogeneity of only right continuous -0.061 0.046 -1.31 0.19 -0.151 0.030
Heterogeneity of only right point 0.591 0.039 15.18 0.00 0.514 0.667
Overdispersion 0.806 0.041 19.60 0.00 0.729 0.890
log likelihood at constant -38010.84
log likelihood at convergence -37884.24

The number of interchanges in the rural area has a negative sign in both models,
but the p-value is greater than 0.05 and the variable is not significant at the 95 percent
confidence level. Because the variable is not significant, there is no significant evidence
that suggests the number of interchanges decrease accident frequency on interstates. The
right continuous lighting presence variable is significant in the uncorrected model, but it

is not significant in the selectivity correction model. Median continuous lighting has a
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positive effect on accident frequency and it is significant in both models. Median point
lighting, right continuous lighting, and right point lighting variables are significant in

both estimations and are associated with decreased accident frequencies.
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Figure 12: Uncertainty of Lighting Choice Variables in Lighting Segmentation.

The standard errors after selectivity correction are slightly larger than the standard
errors of the initial models. This is due to the fact that unobserved heterogeneity is
accounted for in their shared lambda variable. The coefficients for the right continuous

and right point lighting variables are changed by roughly 25 percent. This implies that
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the unobserved heterogeneity has a greater influence on model estimation in the
selectivity correction model. The coefficient for the number of vertical curves and
horizontal curves in urban area are changed by 34 percent and 25 percent, while the
change in coefficient for left and right shoulder width in the urban area are changed by 29
percent and 31 percent. The coefficient change for the number of rural interchange
variable is 42 percent, and the coefficient change for the median point lighting and urban
overpass variables are roughly 10 percent, while the changes in coefficient for other
variables is less than 10 percent.

The confidence interval of parameter is the useful method to know the reliability
of an estimate because it can measure the uncertainty of estimated parameters. The mean
value of the estimated parameter, its standard error, and sample size are associated with
the computation of the confidence interval. The 95 percent confidence interval is
generally used for the confidence interval. Figure 12 shows the 95 percent confidence
intervals for key variables in lighting segmentation. The selectivity correction model has
more confidence intervals than the baseline model for all lighting choice variables
because of the heterogeneity effect. The confidence interval for the median continuous
lighting variable is increased by 64 percent. In the case of the right continuous lighting
variable, the confidence interval is increased by 45 percent. For the two types of point
lighting variables, the confidence interval was found to increase by about 20 percent.
The increases in uncertainty are because the selectivity bias model captures unobserved

heterogeneity in parameter estimation.
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Table 17: Negative Binomial Results with Selectivity Bias Correction in Interchange
Segmentation.

Coefficient Std. t- P 95% Conlf.
Err. statistics | Value Interval
Constant 1.286 | 0.035 36.40 0.00 | 1.216 | 1.355
Only median continuous 1.074 | 0.098 10.99 0.00 | 0.883 1.266
Only right continuous -0.431 | 0.107 -4.04 0.00 | -0.640 | -0.222
Median continuous with no lighting 0.822 | 0.119 6.89 0.00 | 0.588 | 1.056
Right continuous with no lighting -0.099 | 0.130 -0.77 0.44 | -0.354 | 0.155
Median point with no lighting 0.382 | 0.123 3.10 0.00 | 0.141 | 0.624
Right point with no lighting 0.013 | 0.098 0.13 0.90 | -0.180 | 0.206
Other sequences of lighting 0.937 | 0.089 10.51 0.00 | 0.762 | 1.111
Number of overpasses 0.113 | 0.012 9.34 0.00 | 0.090 | 0.137
Number of vertical curves 0.049 | 0.009 5.60 0.00 | 0.032 | 0.067
Number of horizontal curves 0.089 | 0.013 6.73 0.00 | 0.063 | 0.114
Left shoulder widths -0.057 | 0.005 -11.88 0.00 | -0.066 | -0.047
Right shoulder widths -0.037 | 0.005 -7.94 0.00 | -0.047 | -0.028
Log AADT per number of lanes 0.095 | 0.006 14.91 0.00 | 0.083 | 0.108
Heterogeneity of only median continuous -0.666 | 0.093 -7.16 0.00 | -0.849 | -0.484
Heterogeneity of only right continuous 0.077 | 0.104 0.74 0.46 | -0.126 | 0.281
{—ilglitttir;)ggeneity of median continuous with no 0244 | 0128 192 006 | -0.494 | 0.006
Heterogeneity of right continuous with no lighting 0.294 | 0.140 2.10 0.04 | 0.020 | 0.567
Heterogeneity of median point with no lighting -0.029 | 0.101 -0.29 0.78 | -0.227 | 0.169
Heterogeneity of right point with no lighting 0.129 | 0.104 1.25 0.21 | -0.074 | 0.333
Heterogeneity of other sequences -0.064 | 0.082 -0.78 0.44 | -0.224 | 0.096
Overdispersion 0.434 | 0.060 7.27 0.00 | 0.332| 0.569
log likelihood at constant -46801.00
log likelihood at convergence -46629.62

Table 17 shows the selectivity bias correction model results with predicted
outcomes in the case of interchange segmentation. Most independent variables have
positive effects on accident occurrences in the correction model and the baseline model in
Table 9. Traffic and geometry variables are significant because the p-values are less than
0.05 in both models. The shoulder width variables have negative effects on accident

frequency. The right point lighting with no lighting variable has a negative sign in the



59
selectivity correction model, but it is not significant. The right continuous lighting
variable has a negative effect on accident frequency in both models. The median
continuous lighting, median continuous with no lighting, median point with no lighting,
and right point with no lighting variables are significant in both estimations and are

associated with increased accident frequencies.
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Figure 13: Uncertainty of Sequence Choice Variables in Interchange Segmentation.
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The standard errors of the selectivity correction model are slightly larger than the
standard errors of the uncorrected models because of unobserved heterogeneity. The
coefficient for the median continuous with no lighting variable is changed by 66 percent,
and the coefficient for the right point with no lighting variable is changed by 97 percent.
The coefficient for the number of horizontal curves variable is changed by 52 percent.
The median continuous lighting, right continuous with no lighting, median point with no
lighting, and the number of vertical curves coefficients are changed by more than 100
percent, while the percent change for other variables is less than 50.

Figure 13 shows the 95 percent confidence intervals for key variables in
interchange segmentation. The increase in the confidence interval for median continuous
lighting variable is 71 percent, while uncertainties of the other sequence variables are
increased by over 100 percent. The other lighting sequence variable has an 85 percent
increase in parameter uncertainty.

Table 18 shows the selectivity bias correction model results with predicted
outcomes in the case of one mile segmentation. The number of vertical curves variable
has a negative sign in the baseline model. This variable has a positive sign in the
selectivity correction model, but it is not significant in the 95 percent confidence interval.
Both the left and right shoulder width variables have negative effects on accident
frequency. Both model results show that the right continuous lighting variable
contributes to a greater decrease of accident frequency than no lighting presence, but the

other sequence type variables have positive effects on accident occurrences.
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Table 18: Negative Binomial Results with Selectivity Bias Correction in One Mile
Segmentation.

Coefficient Std. t- P 95% Conlf.
Err. statistics | Value Interval

Constant 0.734 | 0.025 28.96 0.00 | 0.684 | 0.784
Only median continuous 1.341 | 0.122 10 97 0.00 | 1.101 1.580
Only right continuous -1.026 | 0.057 -18.16 0.00 | -1.137 | -0.916
Median continuous with n lighting 1.181 | 0.072 16.39 0.00 | 1.040 | 1322
Right continuous with no lighting 0.582 | 0.070 8.37 0.00 | 0446 | 0.719
Median point with no lighting 0.790 | 0.117 6.75 0.00 | 0.560 1.019
Right point with no lighting 0479 | 0.071 6.71 0.00 [ 0339 | 0.619
Other sequences of lighting 1.144 | 0.067 17.00 0.00 | 1.012 | 1276
Number of overpasses 0.086 | 0.012 6.86 0.00 [ 0.061 | 0.110
Number of vertical curves 0.003 | 0.009 030 | 076 | -0.016 | 0.021
Number of horizontal curves 0.104 | 0.013 791 | 0.00| 0.078| 0.130
Left shoulder widths -0.062 | 0.005| -12.73| 0.0 | -0.072 | -0.053
Right shoulder widths -0.045 | 0.005 9.17 | 0.00 | -0.055 | -0.036
Log AADT per number of lanes 0.161 | 0.007 21.56 | 0.00 | 0.146 | 0.175
Heterogeneity of only median continuous -0.099 | 0.080 -1.24 0.21 | -0.255| 0.057
Heterogeneity of only right continuous 0.717 | 0.049 14.69 0.00 | 0.622 | 0.813
Heterogeneity of median continuous with no

lighting -0.101 | 0.070 -1.44 0.15 | -0.239 | 0.036
Heterogeneity of right continuous with no lighting -0.006 | 0.061 -0.10 092 | -0.126 | 0.114
Heterogeneity of median point with no lighting 0.065 | 0.062 1.05 0.29 | -0.056 | 0.186
Heterogeneity of right point with no lighting 0.016 | 0.068 0.24 0.81 | -0.118 | 0.150
Heterogeneity of other sequences -0.112 | 0.063 -1.79 0.07 | -0.235 ] 0.011
Overdispersion 0.267 | 0.051 519  0.00| 0.183 | 0.389
log likelihood at constant -50269.07
log likelihood at convergence -50095.44

For most variables, except for right point with no lighting, number of vertical
curves, and left shoulder width variables, the standard errors of the selectivity correction
model are slightly larger than the standard errors of the uncorrected models. The
standard error is slightly decreased after selectivity correction in the case of the right
point with no lighting variable. The coefficients for the right continuous lighting and the

number of vertical curves variables are changed by over 100 percent. The coefficient for
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median point with no lighting and right point with no lighting are changed by 72 percent

and 39 percent, and the coefficient for right shoulder width is changed by 36 percent,

while the other variables are changed between 2 percent and 29 percent.
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Figure 14: Uncertainty of Sequence Choice Variables in One Mile Segmentation.

The 95 percent confidence intervals for key variables in one mile segmentation

are shown in Figure 14. Uncertainties of parameter estimation for the median continuous

and the right continuous variables have 34 percent and 36 percent increases after

selectivity correction.

The confidence interval for the median continuous with no

lighting variable is increased by 85 percent. About a 65 percent increase of uncertainty is
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found in the case of the right continuous with no lighting and other lighting sequence
variables. The 95 percent confidence interval for the median point with no lighting
variable is increased by over 200 percent, while uncertainty for the right point with no

lighting variable is decreased by 28 percent after selectivity correction estimation.

Table 19: Negative Binomial Results with Random Sequence Choice Probability in
Accident-Cluster Segmentation.

Coefficient | Std. Err. | t-statistics | P Value 95% Conlf. Interval
Constant -11 473 0.509 -22.52 0.00 -12.471 -10.474
Only median continuous lighting 2.388 0.867 2.75 0.01 0.688 4.089
Only right continuous lighting 1.055 2.752 0.38 0.70 -4 339 6.449
Median continuous with no lighting -41.300 25.684 -1.61 0.11 -91.641 9.041
Right continuous with no lighting -67.612 71.261 -0.95 0.34 -207.280 72.056
Median point with no lighting 252.773 52.448 4.82 0.00 149.977 355.568
Right point with no lighting 209.563 | 134.157 1.56 0.12 -53.380 472.507
Other sequences of lighting 32.587 12.727 2.56 0.01 7.642 57.532
Number of overpasses 0.627 0.021 30.31 0.00 0.587 0.668
Number of vertical curves 0.010 0.009 1.13 0.26 -0.007 0.026
Number of horizontal curves -0.022 0.009 -2.51 0.01 -0.040 -0.005
Left shoulder widths -0.019 0.001 -15.41 0.00 -0.021 -0.016
Right shoulder widths -0.026 0.001 -21.75 0.00 -0.028 -0.024
Log AADT per number of lanes 0.874 0.011 82.70 0.00 0.854 0.895
Overdispersion 1.363 0.015 88.84 0.00 1.333 1.394
log likelihood at constant -184095.81
log likelihood at convergence -179084.78

Table 19 shows the results of the negative binomial with random sequence choice
variables model in the case of accident-cluster segmentation. All independent variables
are significant in the initial model shown in Table 11, but any variables associated with
lighting installation with no lighting are not significant in this model because the increase
in variance by random draws affects the standard errors and t-statistic values. Traffic and

geometry variables, except vertical curves, seem to be significant in both models. The
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increase in the number of horizontal curves and the shoulder width variables contribute to

the decrease in accident frequency on interstates.
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Figure 15: Uncertainty of Sequence Choice Variables in Accident-Cluster Segmentation.

The standard errors for lighting sequence variables in the pre-processing model

are larger than the standard errors of those variables in the initial models.

Too few

observation findings affect the insignificance of the coefficients and the large standard

errors of all other sequence variables except the median continuous and the right

continuous lighting variables. The standard errors for other geometry variables and the

traffic variable do not change after pre-processing.

The coefficients for median
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continuous lighting, median point with no lighting, and other lighting sequence variables
experience significant change. The coefficient for the number of horizontal curves is
changed by 23 percent, and the coefficient for right shoulder widths is changed by 51
percent, while the other variables encounter between 2 percent and 6 percent coefficient
changes.

The 95 percent confidence intervals for key variables in accident-cluster
segmentation are shown in Figure 15. The only median continuous variable, median
point with no lighting variable, and other lighting sequence variable are used for
uncertainty comparison between the two models because the estimated parameters of the
other variables are not significant. In the case of the three lighting sequence variables,
although they are significant in the pre-processing model, the coefficients and standard
errors are too large to compare to those in the uncorrected model. Because the input of
the lighting sequence variable by pre-processing has random probabilities in a normal
distribution, random numbers significantly impact the heterogeneity of lighting sequence

parameters in count estimation.

4.3 Elasticity Estimation Result of Model Outputs

This section describes the elasticity of model estimation. Elasticity describes the
ratio of the percent change in one variable to the percent change in another variable.
Elasticity is defined in this dissertation as the percent change in the dependent variable by
the percent change of each independent variable. Accident frequency is the dependent

variable, while lighting choice or sequence, geometry, and traffic variables are the
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independent variables. All count models have a non-log form accident frequency
variable and non-log form geometry variables. So, the elasticity of geometry to accident
frequency can be shown as:

y

Ex _ BX 9)

where y is the non-log form dependent variable, x consists of variables in non-log
forms, and /£ is the coefficient of the independent variable. Since log AADT numbers are
used for the traffic variable in the models, the elasticity of the log form variable will be
defined by following:

EY =P
X (10)
where y is the non-log form dependent variable, x consists of variables in log
forms, and f is the coefficient of the independent variable.

Table 20 shows the elasticity of the negative binomial model and the selectivity
correction model in lighting segmentation. A 1 percent change in the median continuous
lighting variable will increase about a 0.06 percent change in accident occurrences for
both estimations. When median point lighting is increased by 1 percent, accident
frequency will be decreased by 0.05 percent in the baseline model and 0.06 percent in the
selectivity correction model, respectively. A 1 percent change in the right continuous
lighting variable results in a less than 0.01 percent change in accidents for both models.
The right point lighting variable decreases by 0.26 percent and 0.32 percent in accident

frequency when it is increased by 1 percent. All other geometry variables affect less than



67
a 0.3 percent change on accident frequency, but a 1 percent increase in traffic increases

accident occurrence by about 1 percent.

Table 20: FElasticity of Negative Binomial Model and Selectivity Correction Model in
Lighting Segmentation.

Negative binomial estimation Selectivity correction estimation

Variable Elasticity | Std.Err. gi:ﬁerc\?;f' Elasticity | Std.Err. 91‘1/:;‘Zif.

Only median continuous lighting 0.060 0.006 0.047 0.073 0.06 0.010 0.042 0.083
Only median point lighting -0.051 0.004 -0.059 | -0.044 -0.058 0.005 -0.067 | -0.049
Only right continuous lighting -0.009 0.005 -0.018 0.000 -0.007 0.007 -0.020 0.006
Only right point lighting -0.255 0.009 -0.274 | -0.237 -0.322 0.012 -0.345 | -0.298
Number of urban interchanges 0.249 0.021 0.207 0.290 0.254 0.023 0.208 0.299
Number of rural interchanges -0.019 0.012 -0.044 0.005 -0.011 0.013 -0.037 0.015
Number of urban overpasses 0.117 0.008 0.101 0.134 0.132 0.009 0.114 0.150
Number of urban vertical curves 0.102 0.013 0.077 0.128 0.068 0.014 0.041 0.096
Number of rural vertical curves 0.153 0.011 0.133 0.174 0.140 0.011 0.119 0.161
Number of urban horizontal curves 0.137 0.013 0.111 0.163 0.102 0.015 0.073 0.132
Urban left shoulder widths -0.101 0.022 -0.144 | -0.058 -0.072 0.023 -0.118 | -0.026
Rural left shoulder widths 0.183 0.022 0.140 0.225 0.191 0.023 0.145 0.237
Urban right shoulder widths -0.081 0.020 -0.121 | -0.041 -0.056 0.022 -0.099 | -0.012
Rural right shoulder widths 0.200 0.022 0.157 0.243 0.211 0.023 0.165 0.256
Urban log AADT per number of lanes 1.131 0.241 0.658 1.605 1.134 0.257 0.630 1.639
Rural log AADT per number of lanes 1.012 0.078 0.860 1.164 1.020 0.082 0.858 1.181

The 95% confidence intervals of elasticity for key variables in lighting
segmentation are shown in Figure 16. Uncertainties of elasticity for median continuous
and right continuous variables have a 62 percent and a 19 percent increase after
selectivity correction. The confidence interval of elasticity for median point lighting is
increased by 44 percent, while the uncertainty of elasticity for right point lighting has a

26 percent increase.
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Figure 16: Uncertainty of Lighting Choice Variables Elasticity in Lighting
Segmentation.

Table 21 shows the elasticity of the negative binomial model and the selectivity
correction model in interchange segmentation. A 1 percent change of all variables
contributes to a less than 1 percent change in accident occurrences. The right continuous
lighting variable decreases by 0.02 percent in both models, and the right continuous with
no lighting variable slightly increases accident frequency in the initial model but
decreases accidents in the correction model. After selectivity correction, both shoulder

width variables decrease in accident frequency by around 0.03 percent. A 1 percent
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change in the number of horizontal curves results in a 0.17 percent increase of accidents
in the baseline model. The other variables affect less than a 0.1 percent change in

accidents.

Table 21: Elasticity of Negative Binomial Model and Selectivity Correction Model in
Interchange Segmentation.

Negative binomial estimation Selectivity correction estimation

Variable Elasticity | Std.Err. 9?1:/:;\2?' Elasticity | Std.Err. 9?:;’6?\?;1&

Only median continuous lighting 0.016 0.002 0.011 0.020 0.040 0.004 0.032 0.049
Only right continuous lighting -0.018 0.003 -0.023 -0.012 -0.023 0.006 | -0.034 | -0.012
Median continuous with no lighting 0.048 0.004 0.040 0.056 0.079 0.012 0.056 0.103
Right continuous with no lighting 0.007 0.003 0.002 0.012 -0.006 0.007 | -0.020 0.009
Median point with no lighting 0.001 0.000 0.000 0.002 0.005 0.002 0.002 0.009
Right point with no lighting 0.041 0.009 0.023 0.059 0.001 0.010 | -0.019 0.021
Other lighting sequences 0.040 0.003 0.034 0.046 0.050 0.005 0.040 0.060
Number of overpasses 0.045 0.006 0.034 0.057 0.060 0.006 0.047 0.072
Number of vertical curves 0.034 0.012 0.010 0.058 0.072 0.013 0.047 0.097
Number of horizontal curves 0.170 0.012 0.146 0.194 0.082 0.012 0.058 0.106
Left shoulder widths -0.214 0.018 | -0.250 | -0.178 -0.237 0.020 | -0.276 | -0.197
Right shoulder widths -0.119 0.017 | -0.152 | -0.086 -0.150 0.019 | -0.187 | -0.113
Log AADT per number of lanes 0.085 0.034 0.018 0.153 0.095 0.039 0.018 0.172

The 95% confidence intervals of elasticity for key variables in interchange
segmentation are shown in Figure 17. The confidence interval of elasticity for the
median continuous variable is increased by 83 percent, while the right point with no
lighting variable has an 11 percent increase of uncertainty after selectivity correction.
Selectivity correction also incurs a 70 percent increase in the confidence interval for the
other lighting sequence variable. Uncertainties of elasticity for the right continuous
lighting variable, the median continuous with no lighting variable, the right continuous

with no lighting variable are increased by over 100 percent, while the elasticity of median
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point with no lighting variable has more than a 200 percent increase in the confidence
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Figure 17:

Segmentation.

Uncertainty of Sequence Choice Variables Elasticity in Interchange

Elasticity of the initial model and the selectivity correction model in one mile

segmentation is shown in Table 22. A 1 percent change of most variables incur less than

a 0.1 percent change in accident frequency. The right continuous lighting variable

decreases by 0.03 percent and 0.06 percent in each model. A 1 percent change in the

number of vertical curves variable decreases accident frequency by 0.03 percent in the
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uncorrected model, but slightly increases in the correction model. A 1 percent increase in
the shoulder width variables decreases accident frequency by about 0.1 percent in both

models.

Table 22: Elasticity of Negative Binomial Model and Selectivity Correction model in
One Mile Segmentation.

Negative binomial estimation Selectivity correction estimation

Variable Elasticity Std.Err. 9?1:/:;\2?' Elasticity | Std.Err. 9?;/:6?\/;11f'

Only median continuous lighting 0.008 0.001 0.006 0.010 0.010 0.001 0.008 0.013
Only right continuou lighting -0.028 0.003 -0.033 -0.023 -0.063 0.004 | -0.071 -0.055
Median continuous with no lighting 0.050 0.003 0.044 0.055 0.064 0.005 0.055 0.073
Right continuous with no lighting 0.021 0.002 0.017 0.025 0.025 0.003 0.019 0.031
Median point with no lighting 0.003 0.000 0.002 0.004 0.005 0.001 0.003 0.007
Right point with no lighting 0.057 0.007 0.042 0.071 0.035 0.005 0.024 0.045
Other lighting sequences 0.051 0.003 0.045 0.056 0.061 0.004 0.053 0.069
Number of overpasses 0.039 0.005 0.030 0.048 0.034 0.005 0.024 0.044
Number of vertical curves -0.029 0.010 | -0.049 | -0.008 0.003 0.010 | -0.017 0.024
Number of horizontal curves 0.093 0.009 0.076 0.110 0.071 0.009 0.053 0.089
Left shoulder widths -0.170 0.013 -0.196 | -0.144 -0.184 0.015 | -0.213 -0.156
Right shoulder widths -0.094 0.012 | -0.119 | -0.070 -0.128 0.014 | -0.156 | -0.101
Log AADT per number of lanes 0.165 0.029 0.107 0.222 0.161 0.032 0.098 0.223

Figure 18 presents the 95% confidence intervals of elasticity for key variables in
one mile segmentation. Uncertainties of elasticity for the median continuous lighting
variable and the right point with no lighting variable are increased by 30 percent, while
the right continuous lighting variable and the other lighting sequence variable have a 50
percent increase in uncertainty after selectivity correction. The confidence interval of
elasticity for the median continuous with no lighting variable is increased by more than
64 percent, while the elasticity of the right continuous with no lighting variable has over a
57 percent increase in the confidence interval. Selectivity correction influences more

than a 100 percent increase in the elasticity confidence interval for the median point with
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no lighting variable, but it decreases the uncertainty of elasticity for the right point with

no lighting variable by 29 percent.
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Figure 18: Uncertainty of Sequence Choice Variables Elasticity in One Mile
Segmentation.

Table 23 shows the elasticity of the negative binomial model and the pre-process
model in accident-cluster segmentation. A 1 percent change of all variables contributes
to a less than 1 percent change in accident occurrences. A 1 percent change in the median

continuous lighting variable, the median point with no lighting variable, and the other
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lighting sequence variable influences a less than 0.1 percent change in accident frequency
in the initial model, but contributes more than a 0.4 percent change of accidents in the
pre-process model. Other sequence variables also have greater contributions to accidents
in the pre-process model than in the baseline model, but they are not significant. Both
model results show that a 1 percent increase in traffic increases accident frequency by 0.8

percent on interstates.

Table 23: Elasticity of Negative Binomial Model and Pre-process Model in Accident-
Cluster Segmentation.

Ne ative binomial estimation Selectivity correction estimation

Variable Elasticity | Std.Err. 9?3{3?\2? Elasticity Std.Err. 9?:(;?5;?

Only median continuous lighting 0.0 2 0.002 0.048 0.056 0.463 0.168 0.133 0.792
Only right continuous lighting 0.019 0.001 0.016 0.021 0.091 0.237 | -0.373 0.554
Median continuous with no lighting 0.003 0.000 0.002 0.003 -0.226 0.141 -0.502 0.050
Right continuous with no lighting 0.002 0.000 0.001 0.002 -0.189 0.199 | -0.580 0.202
Median point with no lighting 0.001 0.000 0.001 0.002 0.843 0.175 0.500 1.186
Right point with no lighting 0.000 0.000 0.000 0.001 0.242 0.155 | -0.062 0.545
Other lighting sequences 0.005 0.000 0.004 0.005 0.416 0.163 0.098 0.735
Number of overpasses 0.018 0.001 0.017 0.019 0.019 0.001 0.018 0.020
Number of vertical curves 0.005 0.003 -0.002 0.011 0.004 0.003 -0.003 0.010
Number of horizontal curves -0.010 0.003 -0.015 -0.004 -0.007 0.003 -0.013 -0.002
Left shoulder widths -0.124 0.008 | -0.140 | -0.107 -0.131 0.009 | -0.148 | -0.114
Right shoulder widths -0.117 0.008 | -0.133 -0.101 -0.177 0.008 | -0.193 -0.161
Log AADT per number of lanes 0.849 0.110 0.634 1.065 0.874 0.111 0.658 1.091

Figure 19 shows the 95% confidence intervals of elasticity for significant choice
variables in accident-cluster segmentation. The elasticities for significant key choice
variables also capture large heterogeneity like parameters for these variables, and this
causes enormous increases (more than 1000 percent) of uncertainty. Heterogeneity in the
random selection probabilities at the pre-processing step derives large standard errors and

uncertainties of parameters at the second step estimation; this becomes the cause of the



74
immense change of elasticity uncertainty after pre-processing on the basis of random

choice.
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Figure 19: Uncertainty of Sequence Choice Variables Elasticity in Accident-Cluster
Segmentation.

4.4 Summary of Findings in Model Results

This subsection describes the summary of findings for the modeling results. The
median-side continuous lighting variable appears to have counter-productive effects on

accident frequencies in the overall negative binomial models, while the median-side point
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lighting variable has negative signs except for the accident-clustering segmentation
model. All other lighting sequence variables have positive signs in the overall models.
Most geometric infrastructures, such as shoulders, median barriers, and guardrails, are
installed to improve safety on interstates. It is shown that the shoulder width variables
have negative signs in overall model results, and this implies installed geometric
infrastructures have productive effects on accident frequencies.

Many independent variables have a positive relationship with accident
frequencies in the overall selectivity bias correction models. The model results show that
the right-side continuous lighting variable contributes to a greater decrease of accident
frequency than no lighting presence, but the other sequence type variables have a positive
relationship with accident occurrences. The right-side continuous lighting is associated
with decreased accident frequencies in the lighting presence segmentation model and the
lighting sequence segmentation models. The median-side continuous lighting variable
seems to increase accident frequencies in the overall models. Most geometry variables
have a positive relationship with the number of accidents, except for urban shoulder
widths lighting segmentation in the overall models. The traffic flow variable also has
positive coefficient signs in all selectivity bias correction models.

The selectivity bias correction model has more confidence intervals than the
baseline model for all lighting choice variables because of the heterogeneity effect. It
means the standard errors of the selectivity correction model are larger than the standard
errors of the uncorrected models because of unobserved heterogeneity. The standard error

is slightly decreased after selectivity bias correction in the case of the right-side point
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with no lighting variable in one mile segmentation. In case of accident cluster
segmentation, too few observation findings affect the insignificance of the coefficients
and the large standard errors of all other sequence variables except the median-side
continuous and the right continuous lighting variables. The standard errors for other
geometry variables and the traffic variable do not change after pre-processing. The
coefficients for median-side continuous lighting, median-side point with no lighting, and
other lighting sequence variables experience significant change. For elasticities of
coefficients, all lighting and geometry variables affect small percent change on accident
frequency in all baseline and selectivity bias correction models. A 1 percent increase in
traffic increases accident occurrence by about 1 percent in case of lighting segmentation

and accident cluster segmentation in both models.
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Chapter 5

CONCLUSION AND DIRECTIONS FOR
FUTURE RESEARCH

This chapter includes a discussion of major conclusions and methodological
issues directing future research in the area of network segmentation and segmentation
based model building for traffic safety inference. Major conclusions are discussed first,
with a breakdown in terms of parameter inference conclusions and computation specific
conclusions. These conclusions relate comprehensively to this dissertation’s initial
objective which is reiterated below:

To provide some perspective to the problem of modeling heterogeneity and
selection bias via multiple scales, by proposing a joint model of heterogeneity and
selection bias using a discrete-count approach, and using this framework to address the

following research questions:

c) What is the impact of selection bias on safety intervention due to scale? In
other words, if safety interventions are applied at locations where accident
patterns are severe and frequent, how does one account for the lack of
intervention at less problematic locations? And how does a statistical

methodology derived for selection bias provide inference across scales, as
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segments are scaled up from very small lengths to lengths of the order of
corridors?

d) How does one represent insights into the policy implications of selection bias
in a manner that integrates context (i.e., roadway location and characteristics)

and scale?

Major conclusions from this dissertation

I successfully addressed the problem of simultaneously addressing heterogeneity
and selection bias by developing a framework that incorporates a discrete-count statistical
model across multiple scales. 1 showed that the discrete-count model is estimable
through simulation based inference. I also showed that incorporating the discrete-count
model at multiple scales through endogenous and exogenous segmentation is feasible,
albeit subject to computational barriers. Nevertheless, several significant conclusions in
terms of parameter inference were derived, which I discuss next. 1 discuss the
computational barriers in a forthcoming section.

I conclude that right-continuous lighting is associated with fewer accident
occurrences compared to no-lighting in all corrected models. The right continuous
lighting variables have negative signs in all baseline (uncorrected, non-selectivity-bias,
non-heterogeneity-inclusive) models except those involving accident-cluster
segmentation. In the case of selectivity correction model, the variables for sequence type
that includes full or partial proportion of right continuous lighting have negative effects

on accident frequencies across scale. The median continuous lighting variable has
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positive signs for both baseline and selectivity correction estimations across scales. Both
median point lighting and right point lighting have negative signs in the case of lighting
type segmentation, but the sign is positive in lighting sequence segments involving point
lighting and no lighting combinations. The same trend is also shown in the selectivity-
heterogeneity correction model. Other variables such as the number of urban overpasses
in a segment, had a positive effect on accident frequencies across scale. An increase in
the number of urban vertical curves increases accident frequencies. The number of urban
horizontal curves has a negative sign only in the case of the accident-cluster segmentation.
An increase in shoulder widths decreases accident occurrences while traffic flow
increases accident frequencies.

The median point with no lighting presence parameter in accident-cluster level
segmentation has the highest uncertainty band of 205.59 from 149.98 to 355.57. The
uncertainty band width is 0.51 from -0.35 to 0.16 for the right continuous with no lighting
parameter in interchange segmentation. This presents that the right continuous with no
lighting variable in interchange segmentation has a potential possibility to decrease
accident frequencies. = The right continuous lighting parameter in interchange
segmentation has consistently negative uncertainty from -0.64 to -0.22 with 0.42 band
width. The highest uncertainty band widths of parameters are found in selectivity
correction estimation results. This is because the simulation based estimation captures
more heterogeneity by random draws.

The uncertainty band width is 0.04 from -0.02 to 0.02 for the right point with no

lighting elasticity in interchange segmentation. The urban left shoulder width elasticity
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in lighting segmentation has consistently negative uncertainty from -0.12 to -0.03 with
0.09 band width. The AADT per lane parameters in lighting segmentation and accident-
cluster segmentation have elasticity of greater than 1 or close to 1, and other parameters
are significantly inelastic (less than 0.4). The elasticity of the urban log AADT per lane
parameter is 1.13 with the uncertainty band width of 1.01 from 0.63 to 1.64, while the
rural log AADT per lane has the elasticity of 1.02 with the band width of 0.32 from 0.86
to 1.18 in the case of lighting segmentation. The elasticity of the urban log AADT per
lane parameter is 0.85 and it swings from 0.63 to 1.07 with the band width of 0.44. This
implies that there is a significant increase in accident occurrences with a small increase in
traffic flows. However, traffic flow parameters are significantly inelastic (less than 0.2)
in the case of interchange segmentation and one mile segmentation. This presents how
scale affects safety analysis in transportation as well. The elasticities of the lighting
sequence variables are increased from less than 0.002 to the range between 0.009 and
0.843 after selectivity correction in the case of accident cluster segmentation. This
implies that the simulation based modeling method increases the contribution of lighting
presence to the safety on interstates. The increase of predicted probability for lighting
sequence by random draws seems to increase the coefficients and elasticities of lighting

sequence variables in the count estimation step of the model.

Computation specific conclusions

I used all interstates in Washington States data for model estimation in this

dissertation. I experienced that the input matrix size is a significant factor for simulation
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based safety analysis in transportation field. Robust inference requires panels with
longitudinal histories of six years or more usually, and in the statewide context, this can
involve several thousand or hundreds of thousands of observations depending on scale.
The simultaneous maximum likelihood estimation method is used for getting the proper
parameters and optimizing the models. The initial parameters are randomly chosen at the
first step of estimation. The probabilities of the dependent variables are obtained by the
probability function of the model. New parameters are estimated by the probability and
observed numbers. Until the likelihood function is maximized (close to zero), this
process is repeated simultaneously for multiple parameters. A Newton-Raphson
algorithm is generally used for the convergence of the maximum likelihood function; this
is the optimization algorithm to find maximized function. This algorithm is repeated
while the absolute value of the function’s first derivate is greater than the tolerance, and
the tolerance is generally 10®. The input value is replaced by subtracting the
combination number of the first derivative and the second derivative from the old input
value in this algorithm. In the maximum likelihood estimation method, parameters are
input values and are simultaneously replaced by the Newton-Raphson algorithm. The
maximum likelihood function and estimated parameters are obtained when the iteration is
stopped by the first derivative of the likelihood function satisfying the tolerance.
Although the simulation based approach offers a feasible method for full-information
maximum likelihood modeling of heterogeneity and selectivity bias, model estimation is
severely hampered by dataset size. For example, the sample size of endogenous

segmentation is 38,265 observations (while other segmentation types such as lighting-
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type-specific, one-mile, or interchange-type) have fewer than 1,600 observations. The
input matrix size is 612,240 cells with 16 variables in endogenous segmentation. The
mixed logit model uses Halton draws to generate random numbers. Generally, a pseudo
random number generation is used to create random numbers, and it is based on a
uniform distribution. However, despite its fast speed to generate random numbers, it is
an insufficient method to generate random numbers for model estimation because of its
high discrepancy, which means the draws are far from uniform. Instead, the Halton
sequence is used to simulate random draws with low discrepancy. The Halton sequence
is also called a reverse radix-based sequence because it uses a radical inverse function to
gain the point in the interval corresponding to a specific number (Kocis and Whiten
1997). The discrepancy is estimated by selecting a representative subinterval from the
sequence draw, and then sliding the subinterval through the draw range. Since the Halton
draw focuses on a uniform interval rather than equal randomization, it promises lower
discrepancy than the pseudo random draw. With 200 quasi-random (based on the Halton
sequence) draws, the mixed logit model treatment-effects model for endogenous
segmentation was unable to handle this matrix size, and estimation fails to proceed
iteratively. It is to be noted that the 200-draw procedure is done repeatedly at each
iteration in order to evaluate the function (log-likelihood for the observed sample) and the
gradient. The initial computations begin with converged parameter values from the
multinomial logit baseline, using the well-known Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method. The line search sub-problem involving step sizes is rarely ever reached

at the end of the first iteration. As a point of reference, it requires typically around 100
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iterations for convergence of the treatment-effects model in the smaller segmentation
datasets.

Matrix management in such cases had to be done manually. To reduce the size of
matrix in the models, the interstate dataset was divided into seven individual, interstate-
by-number datasets. However, this produced sample size problem of another kind. Some
interstates, such as [-182, 1-205, 1-405, and 1I-705, had sample sizes that were too small as
a result of few clusters. The lack of variability in these samples forces the analyst to
make judgments on combining interstates, which in turn implies restrictive assumptions
on heterogeneity across interstates. In essence, the computational problem comes with
significant tradeoffs, one that should serve as a useful objective in future research.

The nine year panel on accidents used in this dissertation serves as a good
empirical example of endogenous segmentation that can create its own type of matrix
size problems. The cluster specification that leads to endogenous segmentation involves
the method of medoids. If other clustering methods were to be used along with other
functional classes of roads, such as divided highways, arterials and collectors, the
clustering method itself would be subject to computational challenges, let alone the
challenge of post-processing the clusters for joint modeling of heterogeneity and
selection bias.

The matrix size problem also contributes to limitations in lighting-type variable
definitions. The treatment-effects model handles the lighting-type variables at the mixed
multinomial logit estimation step. The lighting choices are dummy numbers from the

lighting-type segmentation, while they become proportions of lighting type presence in
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other segmentations. In the outcomes component, the lighting type probabilities are
inserted as independent variables via the selection-bias with heterogeneity correction.
The crucial part is the estimation of lighting type probabilities for the “second stage”
estimation. The mixed logit model produces the proper probability output for small
matrix sizes with up to roughly 1,000 rows, 3 columns, and 100 quasi-random draws, but
it produces unexpected probabilities (sometimes nonsensical) with 13,824 rows, 7
columns, and 100 random coefficients in larger- scale segmentations. In purely
exogenous segmentation, the problem of micronumerosity occurs. For example, tunnel
and both side lighting are relatively minimal in observation size compared to right-side
and median-side lighting samples in the lighting segmentation dataset. This can cause
identification type problems since the vector of “1s” is small. I tested the convergence
without tunnel and both-side lighting types incrementally. When compared with the
uncorrected negative binomial model, the treatment effects models show substantial
changes in the magnitude of coefficients associated with lighting type. The model
estimation results show larger standard errors and uncertainties after selectivity correction
by treatment as well. The selectivity correction model captures heterogeneity of lighting
choice at the logistic estimation step, and this heterogeneity can cause the change of
coefficients associated with lighting choice and cause greater uncertainties in parameters

and elasticities.
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Policy Implications of the Findings

In the field of transportation, the current policy for lighting installation is applied
based on random area choice or darkness in the area on a roadway. It does not consider
the impact of lighting presence on safety. The policy also does not consider removal or
reinstallation of lighting presence based on the improvement of safety and energy
consumption. So, decision makers must consider the policies for lighting installation
based on the analysis of the effects of lighting installations on accident frequencies on the
roadway. This dissertation provides the example policy implication of lighting
installation by safety analysis on interstates; this can assist decision makers in
determining future policies for managing luminaries on interstates. Several policy
implications arise from the models estimated in this dissertation. For example, the
findings on the right-continuous lighting type support current practice which favors that
type of installation. The elasticities for median point lighting type and other sequences of
lighting types from the accident-cluster model show that their installation produces
counter-productive effects that are not negligible. Median point lighting type is estimated
to produce an elasticity greater than one on the high end of the 95% confidence band,
suggesting that lighting policy should consider abandoning this type of installation on
freeways. The known installation types such as median continuous and right continuous
lighting types produce productive safety effects (elasticities around 0.2) decreasing
accident occurrences even at the high end of the 95% confidence band.  With the
modeling results, decision makers can consider the removal of median point lighting

from segments where accident frequencies are high compared to no lighting areas. Also,
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they may consider installing more median lighting poles in these segments to convert
median point lightings to median continuous lighting types because the median
continuous lighting has produced effects that improve safety. If significant accident
frequencies are found in no lighting segments, decision makers can consider the policy of
median continuous or right continuous lighting in the segments.

The lighting policy can also be considered based on the elasticities of parameters
as well. In the case of lighting segmentation, other lighting presences, except median
continuous lighting, contribute to decreasing accident frequencies compared to no
lighting presence. However, the elasticities of the parameters are significantly small, and
this means that a large increase in these types of lighting installation will only have a
small decrease in accident frequencies on interstates. Compared to the elasticities of
other infrastructure parameters, the elasticities of lighting sequence parameters are
significantly small in the interchange and one mile segmentation cases. The policy
decision makers should consider more investment in right-continuous lighting, median-
point lighting, right-point lighting installation, and re-installation of lighting poles in
sequence segment cases, rather than investment in other geometry infrastructures to
improve safety on interstates.

Coupled with these safety insights, decision makers can utilize energy
consumption models for various lighting types to determine the optimal installation
lengths in terms of energy and safety, while promoting traffic flow without breakdowns.
If a certain type of lighting does not have positive affects accident reduction, then these

luminaries need to be turned off even at night or under bad weather for energy
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conservation. For example, from the modeling results, median point lighting has counter-
productive effects on accident frequencies. So, decision makers can consider turning off
the power to median point lighting for energy conservation on interstates. In rural areas,
the sudden presence of point lighting after the a long period of darkness can alter the
driver’s behavior because of the sudden vision adjustment; this may be a contributing
factor of crashes on the roadway as well. Median point lighting can also be considered
for removal or turned off for energy saving as well as for safety. On the contrary,
although median continuous or right continuous lighting consume a large amount of
energy, the continuous lightings should be kept on for interstate safety. The safety cost
can be inflated by vehicle maintenance, the treatment of the injured and killed people,
crash handling, recovery of the roadway, and traffic flow recovery. Since the cost of
safety includes many costly actions, it must be deliberated whether an infrastructure
significantly decreases safety cost by reducing accidents, even though the energy cost
may be very high. Based on the modeling results in this dissertation, two continuous
lightings significantly contribute to decreasing accident frequencies. Because two
continuous lightings seem to significantly reduce the safety cost compared to the cost of
energy consumption by lighting poles, decision makers must consider whether to keep
turning on or installing more continuous lightings on interstates. Instead of turning the
luminary on or off, an adjustment to luminary density can be considered to get efficient
energy saving while also reducing accident risk on interstates. To find the most efficient
luminary strength, the lighting models should be considered to compromise between

energy saving under Energy Policy Act 2005 and the cost of safety. This methodology is
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used for defining the commercial lighting power limits developed by the American
Society of Heating, Refrigerating and Air-Conditioning / Illuminating Engineering
Society of North America (ASHRAE/IESNA) 90.1-2004. The methodology calculates
lighting power allowances for building spaces and whole buildings, and it uses available
efficient lamp/ballast/fixture data, and illuminance values from IESNA illuminance
recommendations. Energy-efficient design is promoted through the resulting lighting

power densities (LPD) by this model.

Transferability Issues for Model Results

Accident analysis based on statistical modeling must consider roadway
environmental factors such as number of curves, shoulder widths, and traffic volume.
Since each state has different roadway environments and conditions, it is not easy to
apply transportation accident analysis policies that can be used in one state to another
state. In regards to data aggregation, the data by exogenous segmentation affects model
transferability more for other states than endogenous segmentation data. The exogenous
segmentation creates aggregated data based on independent variables that include
geometrics and traffic information, while the endogenous segmentation is the data
aggregation by accident cluster in this dissertation. Washington State has several unique
environmental conditions influenced by a combination of factors such as mountainous
terrains, frequent rains, and size of the urban area. The size of the mountainous area
affects vertical and horizontal curves design, while the size of the urban area can

influence the traffic flow. So, the model results in Washington State can to be applied to
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states having similar topographic features or urban size. As such, the results in this
dissertation are difficult to be applied to states having mostly flat areas and small urban
areas such as Iowa, Nebraska, or Kansas. Also, if weather condition is to be considered
as independent variables, it is difficult to apply the Washington State modeling results to
Arizona, New Mexico, Texas, or Nevada because the weather conditions are completely
different in these states. The models estimated in this dissertation focus on the policy
decision of lighting installation to decrease accident frequencies on interstates. The
predicted probability of lighting choice reflects data aggregation at the discrete choice
modeling step in the case of exogenous segmentation, such as lighting segmentation and
interchange segmentation, while data aggregation only affects the predicted probability of
accident frequencies in the endogenous segmentation case. The models are estimated
with Washington State interstates data; since the data segmentation affects lighting
installation choice in exogenous segmentation cases, it is very difficult to apply the policy
implication of lighting installation to other states based on the Washington State results.
However, it is possible to use the policy implication of lighting installation from the
analysis results to other states or nationwide in the case of endogenous segmentation.
The transferability issue demonstrates the importance of data aggregation in accident
analysis; this is another contribution from this dissertation for policy decision-making by

accident analysis in the field of transportation.
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Methodological Issues Directing Future Research

Regarding segmentation theory, some methodological issues are bound to arise. |
have presented an arbitrary segmentation approach while building my treatment effects
model. This segmentation approach assumed that lighting segments are defined by the
boundaries of existence of a particular type of lighting; so, it is a purely exogenous
segmentation process. However, it is not so pure that all X variables are homogeneous in
this definition; only the lighting definition is homogeneous. This introduces to some
extent the “counting problem”. As an example, I have computed the number of
horizontal curves at the lighting segment level. The count of curves is not a complete
count in the sense that some curves extend beyond the boundaries of the segment. So
“counting” is done in a limited sense for the purpose of extracting variables for model
estimation. I do not think this can be avoided, since the only recourse is to have purely
homogeneous segments where all Xs are homogeneous. As discussed previously, this
artificially induces the problem of excess zeros, and further, does not have potential to
serve as a template for causal investigation since the scale can be very small. At the very
least, scale should be defined by a minimum length — that is a length that can
accommodate vehicle to vehicle interaction effects and environmental effects. This being
said, I examined other scales, such as an accident clustering segment scale, and physical
scales based on interchange and every one mile density. Both scales are very meaningful
choices. The first is based on the outcome and hence is purely endogenous. I was able to
draw insights into the causal nature of the accident occurrence process by

accommodating minimal lengths of scale issues.
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Here, instead of using lighting installation dummies, the eight types of lighting
sequence variables are used for model estimation in purely endogenous and physical
scales. A similar convergence problem was observed while I ran both models for the
interstate segmentation and one mile scale datasets with all urban and rural geometry, and
traffic variables. Since the problem stems from the lack of lighting sequence
observations in the rural area, I only considered urban area data for model estimations.
The change of parameters, standard errors, and uncertainties associated with lighting
sequence are found after selectivity correction in these segmentation cases as well.
However, the magnitude of the parameter changes, the standard errors, and the
uncertainties are varied in each scale, and this shows how segmentation scale impacts
selectivity bias and heterogeneity of choice. The negative binomial model results after
pre-processing by random sequence choice probabilities in case of endogenous scale is
described in the previous chapter as well. Accident-cluster segmentation creates a very
small scale dataset. Due to small scale segmentation, the dataset has too many 0 values
in all independent variables, which creates a convergence problem for treatment effect
model estimation. Instead of a treatment effect model, I estimated a negative binomial
model with pre-processing for capturing heterogeneity in the lighting sequence choice
variables. 1 simply applied random sequence probabilities for heterogeneity, but this
creates too much overdispersion and more problems in the parameter estimation of some
sequence choices. Although some sequence choice variables have insignificant problems,

this model result also presents the effects of heterogeneity on selectivity bias and
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uncertainties. More meaningful random methodology should be considered for
heterogeneity controls in small scale datasets for further research.

The visualization of modeling results can be conducted with Internet map service
technologies for future research as well. The visualization of statistical model results will
allow decision makers to visually inspect severe heterogeneity associated with lighting
type. The visualization template will permit people to see the heterogeneity along the

centerline and explore which locations have similar magnitudes.
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Glossary

Endogenous: Parameters are endogenous by correlation between parameters. The
measurement errors, simultaneity, omitted variables, and sample selection errors can be

causes of endogeneity.

Exogenous: Exogeneity occurs when a parameter comes from outside of the equation
without correlation with any other variables. It arises when a bi-directional relationship
exists between the dependent variable and an independent variable; the opposite meaning

of endogeneity.

Heckman's correction: The statistical method to correct selectivity bias of choice
variables. This has two stage processes. The binary choice model is estimated in the first
stage, and the choice probability is used for the independent variables in the second stage

count estimation.

Heterogeneity: This term is used when a variable has a large number of structural
variations in the model estimation. The randomness can be described by the same

terminology.

Inverse Mill's ratio: Terminology to explain the probability of a non-selected proportion

being selected in the selection bias correction model. It accounts for non-randomness.

Mixed multinomial logit regression: The multinomial logit regression capturing the

randomness of parameters in the estimation.

Multinomial logit regression: The regression model in which the generalized logistic

regression accounts for two or more discrete choice out comes.
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Negative binomial regression: The regression analysis for the count estimation. This

model is used for count estimation overdispersion exists within the data.

Overdispersion: Overdispersion occurs when the variance is greater than the mean value.

Poisson regression: The regression analysis for count estimation. The dependent

variable is based on Poisson distribution.

Selection bias: This is a statistical bias by an error in choosing the individuals or groups
to take part in a study. This occurs mostly by errors from the method of collecting

samples.

Selection bias correction model: Count model that minimizes selection bias by
capturing the seemingly selected portion. The Inverse Mill's ratio term is added in the
general model in order to account for the probability of a non-selected portion being

selected.

Uncorrected model: Negative binomial model without selectivity bias correction. This
model is used for comparing selection bias in choice variables. This is also called the

initial model or the baseline model in the dissertation.
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Appendix

COMMANDS FOR MODEL ESTIMASTIMATION

NEGATIVE BINOMIAL AND TREATMENT-EFFECT ESTIMATION

1. Lighting segmentation

. insheet using "E:\LightingMileUrbanRuralFullInteraction.csv"
(23 vars, 9630 obs)

. nbreg total mc mp rc rp urbaninter ruralinter urbanoverp
urbanvcurve ruralvcurve urbanhcurve urba nlftshw rurallftshw
urbanrighshw ruralrighshw urbanlnadtpl rurallnadtpl,
dispersion(mean)

. mtreatnb total urbaninter ruralinter urbanoverp urbanvcurve ruralvcurve urbanhcurve urbanlftshw
rurallftshw urbanrighshw ruralrighshw urbanlnadtpl rurallnadtpl, mtreatment (light urbaninter ruralinter
urbanoverp urbanvcurve ruralvcurve urbanhcurve urbanlftshw rurallftshw urbanrighshw ruralrighshw
urbanlnadtpl rurallnadtpl) simulationdraws(100)

2. Interchange segmentation
. insheet using "E:\SequenceOfInterMileUrbanrural ADTPLWithoutTunnelandBoth.csv"
(31 vars, 10521 obs)

. nbreg total sequence2 sequence3 sequence4 sequence5 sequence6 sequence? sequence8 urbanoverp
urban vcurve urbanhcurve
urbanlftshw urbanrighshw urbanlnadtpl, dispersion(mean)

. mtreatnb total urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrighshw urbanlnadtpl,
mtreatment (stype urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrighshw urbanlnadtpl)
simulationdraws(100)

3. One mile segmentation

. insheet using "E:\SequenceOfOneMileUrbanrural ADTPLWithoutTunnelandBoth.csv"
(31 vars, 13824 obs)

. nbreg total sequence2 sequence3 sequence4 sequence5 sequence6 sequence? sequence8 urbanoverp
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urban vcurve urbanhcurve
urbanlftshw urbanrighshw urbanlnadtpl, dispersion(mean)

. mtreatnb total urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrighshw urbanlnadtpl,
mtreatment (stype urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrighshw urbanlnadtpl)
simulationdraws(100)

4. Accident-cluster segmentation

. insheet using "E:\DataSet For NB_With Obs Model.csv"
(16 vars, 218637 obs)

. nbreg total s2 s3 s4 s5 s6 s7 s8 urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrshw
urbanlnadtpl , dispersion(mean)

MULTINOMIAL LOGIT ESTIMATION AND PRE-PROCESSING

1. Multinomial Logit Estimation

. insheet using "E:\DataSet For MNL Model.csv"
(8 vars, 218637 obs)

. mlogit stype urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrshw urbanlnadtpl

2. Get Random Mean and Standard Deviation

. ereturn list

. matrix list e(b)

. matrix list e(V)

3. Regression Estimation by Predicted Probabilities

. regress obchoice rchoicel rchoice2 rchoice3 rchoice4 rchoice5 rchoice6 rchoice? rchoice8 rchoice9
rchoicel0 rchoicell rchoicel2 rchoicel3 rchoicel4 rchoicel5 rchoicel6 rchoicel? rchoicel8 rchoicel9
rchoice20 ... rchoicel191 rchoicel92 rchoice193 rchoice194 rchoicel95 rchoicel196 rchoice197
rchoice198 rchoice199 rchoice200

4. Negative Binomial Estimation with Random Sequence Probabilities
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. set memory 570m
(583680k)

. insheet using "E:\DataSet For NB Model.csv"
(24 vars, 218637 obs)

. nbreg total prl pr2 pr3 pr4 pr5 pr6 pr7 urbanoverp urbanvcurve urbanhcurve urbanlftshw urbanrshw
urbanlnadtpl , dispersion(mean)

PREDICTION AND ELASTICITY

. predict mean, xb

. predict stderr, stdp
. summarize

. mfX, eyex

. mfx, eydx
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