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Abstract

Endogeneity and misspeci�cation of models are two main concerns in structural

estimation, which usually involves the optimal choices of economic agents with un-

observable characteristics. In estimating production functions, input variables are

endogenous because input decisions depend on unobservable productivity shocks.

Economic theory rarely suggests functional forms for either production functions

or the distribution of productivity.

Using control function approaches to endogeneity, nonparametric identi�cation

is established for production functions under weak conditions. The distribution

of productivity is also recovered nonparametrically. Instead of "inverting out"

productivity shocks, the control functions "smooth out" the unobserved shocks.

Controls are constructed using lagged levels of inputs as instruments, and the

control function condition is justi�ed by a Markov property of productivity shocks

along with interim uncertainty of productivity faced by �rms.

Nonparametric estimation of production functions then closely follows the iden-

ti�cation strategy without imposing extra modeling assumptions. A kernel estima-

tor is proposed for nonparametric regressions with endogeneity. If the preliminary
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estimators of controls converge su¢ ciently fast, the estimator achieves the optimal

rate of uniform convergence and the asymptotic variance is una¤ected by prelimi-

nary estimators.

The same strategy also applies to parametric identi�cation. When the Cobb-

Douglas production function is considered, a partial linear model arises, where the

parametric part represents the production function and the nonparametric part is

the control function to account for the endogeneity of input variables. An density-

weighted estimator is proposed for the partially linear model with constructed

controls, and
p
n-consistency is established under the given conditions.

The �nite sample performances of the proposed estimators are illustrated by

extensive Monte-Carlo experiments. The application to the Chilean panel shows

the empirical relevance of the identi�cation strategy and estimation procedure

proposed in this thesis. The resulting estimates are reasonable and show that

some parametric speci�cations may be restrictive.
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Chapter1
Introduction

1.1 Endogeneity and Misspeci�cation

The estimation of production functions has challenged empirical researchers and

econometricians for decades, despite the fact that �rm production is a pillar of eco-

nomics. The theoretical models of �rm production have been well studied where

the optimal input choices must take into account all the information available to

�rms when decisions are made. Input decisions generally depend on productivity

shocks and prices faced by �rms. Therefore, if observed, they should be incor-

porated into the estimation to control for their e¤ects on production. However,

�rm-level prices are seldom reported and productivity shocks are di¢ cult to mea-

sure. So we have to include productivity shocks into errors and input variables

become correlated to the error term. This missing-data/omitted-variable problem

can also be seen as a simultaneity problem, where not only the output but also

inputs are determined simultaneously when �rms solve their optimization prob-

lems. This issue applies to general structural models involving the optimal choices

of economic agents. Econometrically, input variables are endogenous due to their



2

potential correlation with the error term and the traditional OLS estimates are

inconsistent. Thus, how to account for �rm heterogeneity and control for idio-

syncratic productivity shocks is a central issue in the identi�cation of production

functions.

Misspeci�cation is another concern in estimating production functions. Eco-

nomic theories of �rm production rarely suggest functional forms for production

functions or the distribution of productivity. Imposing ad hoc model speci�cation

may lead to false identi�cation, and misspeci�cation usually results in inconsis-

tent estimates and misleading policy implication. Nonparametric methods do not

assume functional forms for either structural relationships or the distribution of

the data generating processes.1 Therefore, nonparametric estimates are more ro-

bust to misspeci�cation than their parametric counterparts. The downside is that

nonparametric estimators converge slower than the parametric rate and are more

demanding of data. With wider access to large datasets and computing resources,

nonparametric and semiparametric modeling and estimation attract much more

attention than before, especially in �elds such as empirical auction and structural

labor econometrics.2

Many alternatives have been proposed and two lines of literature are related to

this paper. The �rst one is the instrumental variables (IV) methods in dynamic

panel models, where exogenous variations of instruments are exploited to form

moment conditions. See Arellano and Bond (1991), Arellano and Bover (1995),

and Blundell and Bond (2000) among others. The second one begins with Olley

and Pakes (1996) and Levinsohn and Petrin (2003), where endogenous variations

1See Pagan and Ullah (1999), and Li and Racine (2006) for comprehensive coverage of non-
parametric and semiparametric methods.

2See Athey and Haile (2007) for an extensive survey of nonparametric approaches to auc-
tions; see Heckman and Vytacil (2007) for some discussion of nonparametric and semiparametric
approaches to econometric evaluation of treatment e¤ects.
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of proxies are used to control for unobserved productivity shocks. Heckman and

Vytlacil (2006) call this approach the method of replacement functions since the

productivity shock is replaced by the inversion of observable input decisions. In

some sense, the method of replacement functions can be seen as a special case of

control function approaches, which are general ways to handle endogeneity prob-

lems. I will review the literature of control function (CF) approaches in Section 1.3,

before which I go over some IV methods used to estimate production functions.

1.2 Instrumental Variables Methods

As an early solution, the instrumental variables (IV) method with �xed-e¤ects tries

to address the �rm heterogeneity by a �rm-speci�c, time-invariant scalar. This is

a strong assumption preventing dynamic e¤ects on production, and the resulting

estimates are discouraging (Griliches and Mairesse, 1998). The dynamic panel

(DP) models then extend the �xed-e¤ect models by introducing richer structures

of the unobserved productivity shock into the error term. A typical DP model is

as follows:

yit = �kkit + �llit + "it, where "it = �i + �t + ait + �it: (1.1)

The output yit is mainly determined by inputs (kit; lit), productivity ait, and tech-

nology (summarized by �k and �l). The error term "it is decomposed into four

components: the time-invariant �xed-e¤ect �i, the common time e¤ect �t (e.g.

general technological advance or macro shocks),3 the i:i:d: noise �it (e.g. measure-

ment errors), and the serially-correlated, idiosyncratic shock ait. Assumptions on

3Notice that if (�k; �l) are time-invariant, �t just picks up the location changes due to time-
varying shocks common to all �rms. With �t, ait is usually normalized by E (ait) = 0.
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the evolution of (�i; ; �t; ait; �it) and their relationships with (kit; lit) are imposed to

form the moment conditions to estimate (�k; �l). Since �i is time-invariant, some

di¤erencing is necessary to take �i out to form the moment conditions. Much of

useful variation is lost during di¤erencing, which leads to weak instruments (Blun-

dell and Bond, 2000). Additionally, DP models rely heavily on linear structures of

"it.

The Cobb-Douglas production function in (1.1) summarizes the technology

of an industry by two coe¢ cients only, which is restrictive in many empirical

applications. Relax the functional restriction on �rm production to

yit = g (xit) + uit;

where inputs xit are correlated to the error uit. Hence, g (x) cannot be recovered

as the conditional mean of yit given (xit = x)

E (yitjxit = x) = g (x) + E (uitjxit = x) 6= g (x)

for E (uitjxit) 6= 0. The IV approach can be extended to nonparametric case given

there exist instruments z such that E (uitjzit = z) = 0. So g(x) can be recovered

by solving the functional equation:

E (yitjzit = z) = E[g(xit)jzit = z] =
R
g(x)dFxjz;

where Fxjz is the conditional cumulative distribution of xit given zit = z. The

estimator of g(x) can then be derived by plugging in their sample analogs, i.e, bg(x)
solves bE (yitjzit = z) =

R
g(x)d bFxjz. Although it seems straightforward, except
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in the case with �nite support,4 this method su¤ers from the Ill-Posed Inverse

problem. The problem implies that the consistency of bE (yitjzit = z) and bFxjz
does not imply the consistency of bg(x).5 In order to get a consistent estimator of
g(x), some "regularization" has to be applied, see Darolles, Florens, and Renault

(2002), Newey and Powell (2003), and Hall and Horowitz (2005). Although the

ill-posed inverse problem is avoided and consistency is established in these papers,

unclear is the implication of those technical restrictions on applications.6 We then

turn to control function approaches to endogeneity, which have been extended to

nonparametric cases.

1.3 Control Function Approaches

As a generalization of control variables and proxy variables, control function ap-

proaches (CFAs) to endogeneity have been extensively used in studies of treatment

e¤ects, where the selection bias is a fundamental issue with non-experimental sam-

ples. CFAs also apply to various selectivity models, censored or truncated models,

and Roy models. See Heckman (1976, 1978, 1979), Heckman and Robb (1985),

and Heckman and Hotz 1989) among many others. Let�s consider a simple bi-

variate model to illustrate how the endogeneity caused by sample selection can be

controlled for by a function representing the selection process. We will see how

the distributional and functional assumptions can be relaxed, during which we go

from parametric to semiparametric, and then to nonparametric control function

4For instance, see Florens and Malavolti (2002), where the explanatory variable is binary and
there is no ill-posed inverse problem.

5See Florens (2003) for details about inverse problems in instrumental variables estimation in
nonparametric regressions.

6For a recent application, see Blundell, Chen and Kristensen (2003), where they develop sieves
estimators in nonparametric IV framework to estimate Engel curves.
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approaches.

Parametric Cases

For Type-2 Tobit models as in Heckman (1979), the latent variable equations

are

y�1i = x01i�1 + u1i, and y�2i = x02i�2 + u2i: (1.2)

Note that linear functions are speci�ed for both y�1i and y
�
2i. The outcome of interest

y�2i is observed if y
�
1i > 0. An example from labor economics is that y�1i determines

to work or not, and y�2i represents hours on job. So the observed variable equations

can be written as

y1i = 1 (y�1i > 0) , (sample selection) and

y2i = y�2i � 1 (y1i = 1) , (outcome equation).

Since the selection depends on observable x1, this is a model with selection on

observables. However, selection on observables is also possible in many empirical

applications, in which cases instruments are often required for identi�cation and

estimation.7

In the spirit of Tobin (1958), � can be estimated by maximal likelihood meth-

ods; see Amemiya (1985). Although MLE does not fall into the category of control

function approaches, I begin with MLE to show the di¤erence among alternative

methods in the distributional and functional restrictions required for estimation.

Besides the parametric (linear) speci�cation for (y�1i; y
�
2i), to derive the likelihood

7In Chapter 2, we will see a similar situation in estimating production functions, where we
construct variables from observable instruments to control for the endogeneity of input variables.
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function, a joint normal distribution is imposed on the errors:

�
u1
u2

�
� N

��
0

0

�
;

�
1 �12

�12 �22

��
:

Although being e¢ cient, the MLE is subject to misspeci�cation. MLE is inconsis-

tent if the errors are either non-normal or heteroskedastic.

With this in mind, Heckman (1979) proposes a two-step procedure,8 where

the joint distributional assumption on (u1; u2) is relaxed to a standard normal

distribution on u1 and a relationship between u1 and u2: u2 = �12u1 + �.9 The

conditional mean of y2 given x = (x1; x2) and y�1 > 0 is

E (y2jx; y�1 > 0) = x02�2 + E (u2ju1 > �x01�1)

= x02�2 + �12E (u1ju1 > �x01�1)

= x02�2 + �12� (x
0
1�1) ;

where � (t) � � (t)�� (t) with � (t) and � (t) respectively being the PDF and

CDF of standard normal distribution. Heckman�s two-step procedure estimates �2

by applying OLS to the following augmented model:

y2i = x02i�2 + �12�
�
x01
b�1�+ "i;

where "i is an error term, and b�1 is estimated by probit regression of y1 on x1 at
the �rst step. Notice that �12� (x01�1) is the term to correct the selection bias and

can be viewed as a control function. Although weaker than the MLE, the Heckit

8This two-step procedure is also called the Heckit estimator.
9It is assumed that � is independent of u1. Distributions other than normal may be speci�ed

for u1.
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estimator still relies heavily on distributional assumptions (on u1).

Note that y1i = 1 (y�1i > 0) is a discrete variable and u1 is normally distributed.

This leads to �
�
x01
b�1� by probit at the �rst step, followed by OLS at the second

step. In Rivers and Vuong (1988), the situation is reversed: the control is con-

structed by OLS residual at the �rst step and parameters of interest are estimated

by probit at the second step.10 Their model can be rewritten as follows:

y1i = x0i� + vi, (reduced form regression) and

y�2i = �y1i + x02i�2 + u2i, (outcome equation)

where y1i is always observed while y2i = y�2i is observed if y
�
2i > 0 and y2i = 0

otherwise. y1i is endogenous in the outcome equation of interest given u2i =

�12vi + �i. The augmented model becomes

y�2i = �y1i + x02i�2 + �12vi + �i: (1.3)

The parameters in (1.3) can be estimated by probit as �i is independent and nor-

mally distributed, before which vi has to be estimated as the residuals from OLS

regression of y1 on x, i.e, bvi = y1i � x0i
b�: (1.4)

In this example, the control function �12vi is linear and vi is a constructed variable.

In Heckman (1979) and Rivers and Vuong (1988), the model is complicated by

selection, censoring or truncation, but control function approaches still work in

these models.
10See also Smith and Blundell (1986) for the case with Tobit at the second step.
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Semiparametric Cases

When no distributional assumption is imposed on the errors, a semiparametric

Type-2 Tobit model arises as a partially linear model:

y2i = x02i�2 + c (x01i�1) + �2i; where

c (x01i�1) � E (u2ijxi; y1i = 1) = E (u2ijxi; u1i > �x01i�1) : (1.5)

No functional form is speci�ed for the errors and c (x01�1) is the nonparametric

counterpart of �12� (x01�1). Therefore, the estimates are more robust than those

obtained from the parametric methods described above. In order to estimate the

parameter of interest �2, �1 has to be estimated and plugged into c (x
0
1�1). For

the estimators of � in similar settings and their asymptotic properties, see Powell

(1987), Ichimura and Lee (1991), Ai (1997) and Li and Wooldridge (2002). This

partially linear model is slightly di¤erent from the one studied by Robinson (1988)

in that the conditioning variable x01�1 is a constructed one. Here x
0
1�1 comes from

the parametric speci�cation in (1.2), which may be a poor approximation.

For the Cobb-Douglas production function yit = x0it�+ait+ �it, if there exists a

control vit such that E (aitjxit; vit) = E (aitjvit) � c (vit), then we have a partially

linear model

yit = x0it� + c (vit) + "it, where "it � ait + �it � c (vit) : (1.6)

The parametric part is the Cobb-Douglas production function while the nonpara-

metric part is the control function to control for endogeneity. In Chapter 4, I

consider a partially linear model where the nonparametric part is a control func-

tion with the control being nonparametrically constructed from lagged levels of
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inputs as instruments.

Nonparametric Cases

When both the outcome equation and control function are relaxed to be non-

parametric, the model is more robust to the misspeci�cation of underlying data

generating processes. Consider a nonparametric model, Yi = g (Xi) + Ui where

E (UijXi) 6= 0. Now suppose that there is a control V such that

E (U jX;V ) = E (U jV ) � c (V ) ; (1.7)

which is called the control function assumption. This is essentially an exclusion

restriction, implying that X becomes conditionally mean-independent of U given

V .11 Under this assumption, a generalized additive model arises

E (Y j (X;V ) = (x; v)) = g (x) + c (v) ; (1.8)

and the augmented regression goes as follows

Yi = g (Xi) + c (Vi) + "i, where "i = Ui � c (Vi) . (1.9)

Intuitively, the new error term "i is formed by taking away the part correlated

to X (i.e, the endogenous part E (U jX;V ) = c (V )) from the old error term Ui.

Therefore, after c (Vi) is introduced to control for the endogeneity of Xi, "i is

orthogonal to (Xi; Vi) by construction.

If the control is observable as in the case with selection on observables, g (x) can

11Certainly, whether this is a strong assumption depends on the choice of V . See Chapter 2
for the case with production functions.
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be estimated using standard methods of generalized additive models.12 However,

the CFA with observable controls may not apply widely in empirical applications

due to several reasons. First,X and V should have no common elements so that the

function of interest g (x) can be nonparametrically distinguished from the control

function c(v).13 Second, as in the case with selection on unobservables, controls

are often not readily observed but latent.

Alternatively, the control can be constructed from instruments Z:

Vi = Xi � r (Zi) , where r (Zi) � E (XijZi) . (1.10)

Comparing (1.10) to (1.4), we see that Vi is constructed similarly to Rivers and

Vuong (1988) except that (1.10) is now the residual of nonparametric regression.

Here Xi is decomposed into two parts: r (Zi) = E (XijZi) is the one predicted by

Zi and Vi is the residual. We see that the CF estimation and IV estimation both

use instruments, but in di¤erent ways. For the IV estimation as in dynamic panel

models, the exogenous variations of instruments are used directly to form moment

conditions for estimation. In contrast, in the CF estimation, the instruments

are used to "purge" exogenous variations away from X so that only endogenous

variations in X (i.e, Xi � E (XijZi)) are left, which then serve as the controls.

To �nd the conditions under which V is a valid control, note that

E (U jX;V ) = E (U jr (Z) + V; V ) = E (U jZ; V ) ;
12See Hastie and Tibshirani (1990) for the iterative back�tting method; and see Newey 1994,

Linton and Nielsen 1995, or Chen et al 1996 for the marginal integration method.
13In the labor example, some factors determining job participation decision also tend to a¤ect

how much to work. Therefore, the exclusion restriction is not satis�ed.
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where the second equality holds if r (�) is strictly monotone. We also need

E (U jZ; V ) = E (U jV ) (1.11)

to get E (U jX;V ) = E (U jV ). The condition (1.11) is weaker than the indepen-

dence between V and (U; V ) and allows for heteroskedasticity. In addition, (1.11)

is neither more nor less general than the identifying assumption E (U jZ) = 0 in

the nonparametric IV estimation.14

Identi�cation in Nonparametric Control Function Models

Recently, the control function approach with constructed controls has been

extended to nonparametric regression cases. Newey, Powell, and Vella (1999) con-

sider nonparametric control function approaches (NPCFAs) to endogeneity in the

context of triangular simultaneous equations models. They give the conditions for

identi�cation, consistency and asymptotic normality. Pinkse (2000) extends the

asymptotic analysis to time series cases. Das, Newy and Vella (2003) add a selec-

tion mechanism (propensity score) upon the model considered by Newey, Powell,

and Vella (1999).

The control function assumptions ((1.7) or (1.11)) do not guarantee the iden-

ti�cation of g (�). Newey, Powell, and Vella (1999) give a su¢ cient and necessary

condition for the identi�cation, see also Matzkin (2006): Both g(x) and c(v) are

identi�ed up to a location if and only if m (x; v) = 0 implies that g(x) is a constant.

To see this, note that m(x; v) � E (Y j (X;V ) = (x; v)) is identi�ed and uniquely

determined by a random sample of (X;V ) so that g(x) + c(v) = m(x; v). Suppose

that there are other real functions g0(x) and c0(v) such that g0(x)+c0(v) = m(x; v),

14See Blundell and Powell (2003) for an extensive review of alternative approaches to endo-
geneity, including NPCFAs.
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we have

[g(x)� g0(x)] + [c(v)� c0(v)] = 0:

Then, [g(x)� g0(x)] = c and [c(v)� c0(v)] = �c, where c is a constant. The

identi�cation of g(�) essentially comes from the additivity structure of g(�) and

c(�), which in turn comes from the additivity of the error term. For the case with

constructed controls satisfying (1.11), a su¢ cient condition is that the rank of

(@r (z)�@z) equals the dimension of x (along with some regularity conditions).15

This is a nonparametric version of the usual rank condition and is usually satis�ed

unless Z a¤ects X in some special ways. The intuition is that g (x) is identi�ed as

long as Z generates su¢ cient exogenous variations in X so that the conditioning

information set for the control function is di¤erent from that for the function of

interest.

In the production function case, all current inputs contain some information

about the productivity shock. It is crucial to �nd controls such that the control

function assumption (1.7) can be justi�ed and the identi�cation conditions hold.

1.4 Main Contributions

Nonparametric Identi�cation of Production Functions

In Chapter 2, I establish the nonparametric identi�cation of production func-

tions using the control constructed from instruments. The control is essentially the

residual of nonparametric regression of current input levels against lagged input

levels, i.e, vit = xit � E (xitjxi;t�1). With this choice of control, the restrictions
15The regularity conditions include the di¤erentiability of g, c and r, and zero probability

on the boundary of support. Another su¢ cient condition to identify g(x) is that no functional
relationship exists between X and V . See Newey, Powell, and Vella (1999) and Matzkin (2006)
for the proof.



14

imposed to obtain nonparametric identi�cation are mild. For the productivity

shock ait, it is assumed that ait follows an exogenous Markov process, on which

a �rm i has some uncertainty. Speci�cally, in order to makes input decisions for

xit, the �rm has to predict ait based on ai;t�1. So the input decision can be writ-

ten as xit = xt (xi;t�1; ai;t�1), which is required to be increasing in xi;t�1 given

ai;t�1, and to satisfy a rank condition. I show that production functions can be

nonparametrically identi�ed using this identi�cation strategy.

These results are important for several reasons. First, both the production

function g(x) and the distribution of productivity are identi�ed nonparametrically.

Therefore, policy suggestions based on the nonparametric procedures proposed in

this thesis are robust to misspeci�cation of underlying data generating processes

(DGPs). This becomes more crucial when economic theories of �rm production

do not suggest functional forms for g(x) or for the distribution of productivity.

Second, the assumptions to make for identi�cation can be relatively easily justi�ed

in empirical applications, and the choice of controls/instruments is �exible. For

instance, either xi;t�1 or xi;t�2 can be used as the instrument to construct the

control. Third, nonparametric identi�cation implies parametric identi�cation. The

proposed identi�cation strategy also works for parametric models, such as the

Cobb-Douglas production function.

As imposed in Olley and Pakes (1996), Levinsohn and Petrin (2003) and Acker-

berg, Caves and Frazer (2006), the assumption that the productivity shock can be

"inverted out" from input decisions appears to be restrictive for many empiri-

cal applications. Instead, we only need to "smooth out" the productivity shocks,

which overcomes several limitations inherited in the "invert-out" assumption. For

instance, multi-dimensional shocks, unobserved prices and random measurement

errors in input variables are now allowed for in this framework.
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More generally, as a general way to handle endogeneity, control function ap-

proaches apply to many empirical applications other than production functions.

Control functions may be derived, in a structural way, from the institutional knowl-

edge of endogeneity issues (e.g., how a person self-selects into a program). Alter-

natively, they may come from statistical properties of control variables or instru-

mental variables.

Nonparametric Control Function Estimators

The nonparametric estimation procedures proposed in Chapter 3 closely follows

the identi�cation strategy without imposing extra modeling assumptions. Thus

the connection from the function of interest to the sample analog, and then to the

actual estimate is clear and precise. Newey, Powell, and Vella (1999) and Pinkse

(2000) study the asymptotic properties of series-based NPCF estimators. As issue

with the proposed series estimators is that the optimal rate of uniform convergence

is not achieved and the asymptotic variance is a¤ected by preliminary estimators

of controls.

I propose two kernel-based NPCF estimators, bg (x) and eg (x). When the control
V is observed, the estimator eg (x) proceeds as in a generalized additive model. I
establish the asymptotic normality for eg (x) using a second-order U-statistic, where
the asymptotic variance is derived naturally. More importantly, the extension to

a third-order U-statistic allows me to establish the asymptotic normality for the

estimator bg (x) when the control V is unobservable but preliminarily constructed.

Basically, bg (x) is a kernel-based alternative to its series counterparts proposed
in Newey, Powell, and Vella (1999) and Pinkse (2000). bg (x) has some nice asymp-
totic properties. When the preliminary estimator bV of V converges fast enough,

bg (x) asymptotically behaves as if the controls were observed. The optimal rate of
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uniform convergence can be achieved, and the asymptotic variance of bg (x) is free
from the e¤ect of preliminary estimators. As by-products of asymptotic analysis of

bg (x) and eg (x), better rates of uniform convergence (as compared to Ahn (1995))

are obtained for multiple-step kernel estimation (Proposition 3.1); I also extend

generalized additive models to the case with constructed variables, and show that

the asymptotic properties remain una¤ected if the constructed variables converge

su¢ ciently fast.

Semiparametric Control Function Estimators

As mentioned in Section 1.2, when we consider the Cobb-Douglas production

function, a partial linear model like (1.6) arises, where the parametric part repre-

sents the production function and the nonparametric part is the control function

to "smooth out" unobserved shocks. The identi�cation strategy also work, where

the control is nonparametrically constructed from lagged levels of inputs as instru-

ments. This extends partially linear models to the case with preliminary kernel

estimators.

In Chapter 4, I propose an estimator b� for �, which can be viewed as a density-
weighted and preliminarily estimated version of Robinson (1988) or as a prelimi-

narily estimated version of Li (1996). I give the conditions under which b� is still
p
n-consistent despite that the variables in the nonparametric part are constructed

ones. Since Olley and Pakes (1996), Levinsohn and Petrin (2003) and Ackerberg,

Caves and Frazer (2006) all consider the Cobb-Douglas production function, b� can
be seen as a "smooth-out" extension of these "invert-out" counterparts.

The rest of thesis is organized as follows. In Chapter 5, a set of Monte-Carlo

experiments indicates that the NPCF and SPCF estimators proposed in this thesis
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perform well in �nite samples. In Chapter 6, I apply the identi�cation strategy and

estimation procedures to a Chilean panel data set to demonstrate the empirical

relevance. Respectively, Appendices A, B and C collect the proofs and technical

details for the uniform consistency and asymptotic normality of NPCF estimators,

and the
p
n-consistency of the SPCF estimator. The tables and �gures of Monte-

Carlo simulation results are reported in Appendix D. The empirical results are

collected in Appendix E.



Chapter2
Nonparametric Identi�cation of

Production Functions

In this chapter, I generalize the method of replacement functions to control func-

tion approaches by "smoothing out," instead of "inverting out," the productivity

shock. Under the given conditions, I establish the nonparametric identi�cation of

production functions, using controls constructed from instruments. I then propose

a method to nonparametrically recover the distribution of productivity shocks.

2.1 The Challenge and Solutions to Estimating

Production Functions

2.1.1 Methods of Replacement Functions

In contrast to the IV estimation, where the exogenous variations of instruments are

exploited, Olley and Pakes (1996) and Levinsohn and Petrin (2003) suggest using

the exogenous variations of proxies. OP propose using the observed investment
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decision it (kit; ait) to proxy the unobserved productivity shock ait. If it (kit; ait)

is strictly increasing in ait, ait can be inverted out as ait = i�1t (kit; iit) and the

production function can be rewritten as:

yit = �kkit + �llit + ait + �it � �llit + �(kit; iit) + �it; (2.1)

where � (kit; iit) = �kkit + i�1t (kit; iit) can be seen as the control function for �l

(but apparently not for �k). �l can be estimated using Robinson�s (1988) partial

linear model or by the OLS with � (kit; iit) being nonparametrically approximated

by polynomials. With b�l, � (kit; iit) can be estimated by yit � b�llit and ait can be
computed from

ait = i�1t (kit; iit) = b� (kit; iit)� �kkit; (2.2)

which depends on �k. In OP, ait is assumed to follow a �rst-order Markov process

so that ait can be decomposed into two parts: the predicted part E (aitjai;t�1)

and the innovation part ait � E (aitjai;t�1) � �it. A key assumption is that kit is

actually determined at t� 1 so that kit is orthogonal to the innovation of ait. This

assumption gives the moment condition to identify and estimate �k.
1

One potential issue with OP method is data-driven: investments are often

reported zeros in many datasets, in which cases the assumption on the strict

monotonicity of it (kit; ait) is likely to be violated. One can just use those ob-

servations with positive investments which, however, could incur e¢ ciency loss

and potential selection bias. LP instead suggest using the intermediate input de-

cision wt (kit; ait) as the proxy: ait = w�1t (kit; wit), given wt (kit; ait) is also strictly

increasing in ait. Intermediate inputs (such as materials, fuel and electricity) are

1Alternatively, similar to the estimation of �l, �k can also be estimated by applying Robinson�s
(1988) method to yit � b�llit = �kkit + ait + �it = �kkit + E (aitjai;t�1) + (�it + �it) :
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seldom zeros if reported at all.2 The estimation procedure of (�k; �l) in LP goes

the same as in OP.3

2.1.2 Identi�cation Issues and Alternatives

The replacement function method advocated by OP and LP is in�uential and

has stimulated many empirical applications. Ackerberg, Caves and Frazer (2006,

henceforth ACF), however, question the identi�cation of �l in the �rst step in

OP/LP estimation procedure. The intuition is that kit, lit, iit and mit are optimal

decisions of �rm i so that lit is collinear with �t (kit; iit) in (2:2) as long as all input

decisions use the same conditioning information set (e.g. kit and ait). To see this,

the optimal choice of labor stock is

lit = lt (kit; ait) = lt
�
kit; i

�1
t (kit; iit)

�
� elt (kit; iit) ; (2.3)

which is a function of (kit; iit) too. They search for DGPs that maintain the iden-

ti�cation of (�k; �l) under the framework of OP/LP, and �nd that the candidate

DGPs entail strong assumptions.4 The main reason for such a discouraging con-

clusion is the assumption that ait is the only scalar unobservable a¤ecting input

decisions so that ait can be inverted out from input decisions (i.e. it (kit; ait) in OP

and wt (kit; ait) in LP). In this paper, I relax this "invert-out" requirement to an

"expect-out" one, which allows multiple shocks and �exible timing structures.

2In the Chilean panel data used in Levinsohn and Petrin (2003), Ackergerg, Caves and Frazer
(2006) and this paper, about 50% observations see zero investments. On the contrary, postive
levels of intermediate inputs are reported at over 90% observations.

3There is, however, an important di¤erence between OP and LP methods: it (kit; ait) is a
dynamic choice a¤ecting production in future while wt (kit; ait) is usually a static/interim choice
a¤ecting current production. As a result, the conditioning information set for it (kit; ait) is likely
to be di¤erent from that for wt (kit; ait).

4See ACF for a detailed and enlightening discussion on how the timing of events a¤ects the
identi�cation.
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ACF propose a new procedure based on the idea of OP/LP with the spirit

of dynamic panels. They give up estimating �l in the �rst step in OP/LP pro-

cedures, given that it is not identi�ed. Using the intermediate input decision

mit = mt (kit; lit; ait) to proxy the productivity shock ait by w�1t (kit; lit; wit),5 ACF

�rst "net out" the non-transmitted error �it by a nonparametric regression of yit

on (kit; lit; wit):

yit = �kkit + �llit + w�1t (kit; lit; wit) + �it � �t (kit; lit; wit) + �it; (2.4)

The second step then "isolates out" ait from the composite term �t (kit; lit; wit) by

ait = �t (kit; lit; wit)� �kkit � �llit; (2.5)

which depends on � � (�k; �l).
6 The assumption on the timing implies that the

innovation of ait is orthogonal to both kit and li;t�1, i.e. �it ? (kit; li;t�1), which

provides the moment conditions to identify and estimate �. They thus provide

a clever way to construct moment conditions to identify and estimate � without

imposing strong assumptions on the structure of error terms. Wooldridge (2005)

also suggests estimating both �k and �l simultaneously by GMM, where both

current state variables (capital) and lagged inputs are used as instruments.

The
p
n-consistency and asymptotic normality have not been established in

OP, LP and ACF, and the estimation is computation-intensive.7 Furthermore,

5The investment decision iit = it (kit; lit; ait) can also be used to invert ait out and the estima-
tion proceeds similarly. Notice that these two proxies may entail di¤erent timing assumptions.
Also notice that in ACF mit depends on lit as well as kit.

6The di¤erence between OP/LP and ACF procedures can be seen by comparing (2:2)-(2:3)
to (2:5)-(2:6).

7Note that one needs to search over the parameter space of (�k; �l) with multi-step nonpara-
metric estimation of � (kit; lit; wit), ait and �it at each iteration.
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it is well-known that nonparametric regression is inconsistent near the boundary

of the support. Thus, it is necessary to apply some trimming to the estimation

procedures, which is not explicitly addressed in these papers.

One further concern is the potential misspeci�cation of production functions.

Restrictions imposed in estimation should re�ect the industry of interest, and mis-

speci�cation may give misleading estimates and policy suggestions. All the works

discussed above assume the Cobb-Douglas production function. This speci�cation

implies that the production technology of an industry can be summarized by two

parameters, �k and �l, which may not be a good approximation to many indus-

tries.8 In particular, Bond and Söderbom (2005) shows that parameterizations

like (2.1) or (2.4) are subject to misspeci�cation, especially for the case with ad-

justment costs expressed in the form of lost output. Unfortunately, as mentioned

in Chapter 1, it is di¢ cult to extend the IV method or the method of replace-

ment function to nonlinear or nonparametric cases, in terms either of asymptotic

analysis or of empirical implementation.

2.2 Nonparametric Identi�cation Using Control

Function Approaches

In this section, I develop a strategy to nonparametrically identify production func-

tions. The identi�cation strategy consists of two elements: the control function to

"smooth out" (or to "expect out") the unobservable shocks, and �rms�uncertainty

about productivity shocks.

8For instance, the technology applied by large �rms may be quite di¤erent from the one by
small �rms. We will see such a case in Chapter 6, where the food industry in Chile in 1980�s is
examined.
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2.2.1 Productivity Shocks: To Invert Out, or To Smooth

Out?

The idea of OP, LP and ACF relies on the availability of perfect proxies. They all

assume that productivity shocks can be perfectly proxied by "inverting out" ait

from observable input decisions.9 This assumption has several important implica-

tions. First, the input decision must be strictly increasing in ait to invert ait out,

which could be di¢ cult to justify in empirical applications as mentioned in the

case with it (kit; ait). Second, the unobserved shock can only be a scalar, which is

reasonable only if all relevant shocks can be summarized by a single index. Third,

there are no unobserved �rm-level prices, which are important determinants of

�rms�production behavior but are often absent in many datasets. Fourth, there

are no measurement errors in inputs, which could be prevalent in datasets collected

from surveys (Angrist and Krueger, 1998). The last three items add additional

unobservables to the input decisions and make the inversions impossible. In sum,

perfect proxies ask too much from data and actually prevent some identi�cation

strategies.

In fact, to handle the endogeneity problem in regression models, we don�t need

such a strong assumption: we only need to "expect out" rather than to "invert out"

(or to "solve out" as in Heckman and Vytlacil, 2006) the unobserved shocks. To see

this, note that E (yitjkit; lit) = �kkit+ �llit+ E (aitjkit; lit), where E (aitjkit; lit) 6= 0

so that we need to control for E (aitjkit; lit). In the method of replacement function,

restrictive structures are imposed to model ait directly, i.e, ait = i�1t (kit; iit) in OP

9If ait cannot be inverted out, neither of (2.1), (2.2), (2.4), and (2.5) is well de�ned.
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and ait = m�1
t (kit;mit) in LP. Instead, if we can �nd a control vit such that

E (aitjkit; lit; vit) = E (aitjvit) � ct (vit) ; (2.6)

we have an augmented regression function with vit as an additional regressor:

yit = gt (kit; lit) + ct (vit) + "it, where "it = ait + �it � ct (vit) (2.7)

With the control function ct (vit), the regressors now become exogenous to the

new error term �t. The control function assumption (2.6) means that the control

function ct (vit) is su¢ cient in evaluating the conditional mean E (aitj�) so that

other regressors provide no extra information. Since it is not required to invert ait

out, multi-dimensional shocks, unobserved prices or measurement errors in inputs

are allowed, as long as (2.6) holds.10

Now the issue is that ct (v) is unknown. As mentioned in the introduction, we

can treat ct (v) nonparametrically. Furthermore, we can also treat the production

function gt (k; l) nonparametrically. Once we establish the nonparametric identi�-

cation of production functions, the parametric identi�cation follows. Given gt (k; l)

is identi�ed, gt (k; l) can be estimated as a partial mean of E (yitjkit; lit; vit) �

mt (kit; lit; vit):

gt (k; l) = E [mt (kit; lit; vit) j (kit; lit) = (k; l)] ; (2.8)

where mt (k; l; v) can be consistently estimated from a sample f(kit; lit; vit)gni=1
and the location normalization E [ct (vit)] = 0 is imposed. By the law of iterated

10For the input decisions to be informative about ait, it is still necessary for input decisions to
be increasing in ait. This monotonicity, however, can be weak as long as no information is lost
in predicting ait.
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expectation, E [ct (vit)] = E [ait] = 0, which is also the location normalization for

the distribution of productivity.

This "smooth out" strategy alone, however, does not �x the endogeneity prob-

lem caused by functional relationships among inputs, prices and shocks. In fact,

something can always be computed from (2.8), andE [mt (kit; lit; vit) j (kit; lit) = (k; l)]

does not necessarily correspond to gt (k; l). This is an identi�cation issue, essen-

tially a nonparametric version of the collinearity problem arising in estimating �l

in OP/LP. As mentioned in Chapter 1, the identi�cation depends on the choice of

v. Although it is tempting to put either iit or wit into vit, as do in OP/LP, it is

di¢ cult to justify the control function condition (2.6), and to obtain the identi�ca-

tion at the same time. It is apparent that xit and vit cannot have common elements

so that any element in xit (e.g., kit or lit) cannot be include into vit. On the other

hand, vit = iit (or vit = wit) alone is not su¢ cient to be a control.11 An alternative

is to use vit = (iit; xi;t�1) (or vit = (wit; xi;t�1)) instead. However, it is also di¢ cult

to justify (2.6) because wit (or iit) typically is correlated to (kit; lit). Thus, the key

is to �nd a control v to nonparametrically identify production functions under the

control function assumption (2.6).

2.2.2 Firm Production with Interim Uncertainty of Pro-

ductivity

The endogeneity problem arises when some shocks are observed by �rms but not

by researchers. However, �rms themselves often face uncertainty and only get

noise-ridden signals of shocks. Thus, �rms have to take uncertainty into account

11The control function condition (2.6) means that controls move along with ait such that
conditioning on them best predicts ait. The same value of iit may mean high ait for small �rms,
but low ait for large �rms. We need some benchmark along with iit to better predict ait.
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when they make decisions. Interestingly, uncertainty faced by �rms may actually

help the identi�cation of production functions.

The �rm production under uncertainty has been explored in the literature to

study �rm turnover and industry evolution. In Jovanovic (1982), a �rm i does

not know its own cost parameter ci but each period draws a noisy signal cit about

ci from some known distribution.12 The industry dynamics are then driven by

each �rm�s entry/exit decisions based on the inference of ci by 1
T

PT
t=1 cit. But

it takes too long (the whole lifetime) for the �rm to learn ci, which makes the

�rm�s decisions depend on its entire history. Hopenhayn (1992) instead assumes

that �rms directly observe the productivity shock ait before production and the

uncertainty faced by the �rm becomes the need to predict ai;t+1 given ait to make

entry/exit decisions. It is assumed that a high ait means ai;t+1 tends to be high

too, which makes exit less likely for the �rm i as an incumbent (or entry more

likely as a potential entrant), vice versa. With industry evolution in mind, the

dynamic decisions focused by Hopenhayn (1992) are the exit or entry of �rms

under intertemporal uncertainty. I introduce interim uncertainty faced by �rms

when they make input decisions.

Consider the following �rm production with uncertainty about productivity. At

the beginning of period t, �rm i observes the vector of state variables (xi;t�1; ai;t�1)

predetermined at t � 1. The �rm faces some uncertainty in the sense that it

cannot directly observe nor perfectly predict the productivity shock ait. Since ait

is not observed, to make input decisions, the �rm predicts ait by E (aitjai;t�1) as

ait follows an exogenous �rst-order Markov process. Denote the input decision at

period t as xit = xt (xi;t�1; ai;t�1). The �rm adjusts the input from xi;t�1 to xit and

12It is ci that a¤ects the �rm�s cost (not cit, the signal of ci). By the duality, ci corresponds
to ait. Notice the di¤erence bewteen ci and ait: ci is time-invariant while ait is not.
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begins the production. The �rm learns about the true value of ait at the end of

period t.

2.2.3 Nonparametric Identi�cation with Constructed Con-

trols

We need to �nd primitive conditions that are su¢ cient for the identi�cation of the

production function gt (x). The non-transmitted error �it is dismissed by Assump-

tion 2.1. I impose a Markov structure on the productivity shock ait in Assump-

tion 2.2. In Assumption 2.3, some restrictions are imposed on the input decision

xit = xt (xi;t�1; ai;t�1) and the distribution of ait. Assumptions 2.2 and 2.3 are

both consistent with the model of �rm production with interim uncertainty of

productivity as described in Section 2.2.2.

Assumption 2.1: For all (i; t), E (�itjxit; xi;t�1; � � �; xi1) = 0.13

Assumption 2.2: For all (i; t), Fit is the information set before production and

Fit � fxit; xi;t�1; ai;t�1; :::; xi1; ai1g;

The productivity ait follows an exogenous First-order Markov process such that

E (aitjFit) = E (aitjai;t�1) :

Assumption 2.3: For all (i; t), the input decision xit = xt (xi;t�1; ai;t�1) and its

partial derivative @xt (x; a)�@x are both continuous over the compact support of
13Only E (�itjxit; xi;t�1) = 0 is necessary. Wooldridge (2005) argues that it is ad hoc to

assume conditional mean independence given outcomes at t and t � 1, without also assuming
E (�itjxit; xi;t�1; � � �; xi1) = 0.
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(x; a); and @xt (x; a)�@x and the distribution of productivity f (a) satis�es

(i).
R

@
@x
xt (x; a) f (a) da > 0 and

(ii). The rank of
R

@
@x
xt (x; a) f (a) da equals the dimension of x.

Assumption 2.1 is standard in the literature, see OP, LP, ACF and Wooldridge

(2005) for instance. Assumption 2.1 says nothing about the dependence structure

among f�itgt and actually allow for serial dependence in f�itgt as neither yit�s nor

�it�s appear in the conditioning set Fit.

Assumption 2.2 means that the �rm�s expectation about ait depends only on

ai;t�1 as long as ait has not been learnt. Although it is more restrictive than

E (aitjai;t�1; ai;t�2; :::; ai1) = E (aitjai;t�1), it is reasonable given the uncertainty

faced by the �rm. Indeed, OP assume that investments take one period to complete

so that kit is determined at (t� 1) and part of Fit. Similarly, LP, ACF and

Wooldridge also assume that dynamic inputs in xit belong to Fit. However, they

assume non-dynamic inputs do not belong to Fit. There is discrepancy about what

should be treated as dynamic inputs. For instance, kit is a dynamic input but lit is

not in OP while both are dynamic inputs in ACF and Wooldridge (2005). Unless

we have some institutional knowledge of the industry of interest, it is di¢ cult to

make such a call. Here, I resort to �rms�interim uncertainty of productivity.

Assumption 2.2 is also compatible with �rm production with adjustment costs

of inputs. Suppose that a �rm i �rst solves its dynamic programming problem to

set xit = xt (xi;t�1; ai;t�1). After incurring adjustment costs, inputs adjust from

xi;t�1 to xit and the �rm begins production, during which ait realizes sequentially

within the period t. Even if the �rm knows ait and �nds that xit are not at the

optimal levels (under usual marginal productivity conditions) given the realization

of ait, the adjustment costs prevent the �rm from changing the levels of xit at will.
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In the uncertainty story, the �rm learns about ait after period t production has

�nished. In the adjustment cost story, however, ait can be learnt right after xit

are set. These two arguments can be combined together to allow for more �exible

data generating processes.

Assumption 2.3 imposes restrictions on the input decision xit = xt (xi;t�1; ai;t�1)

and the distribution of productivity f (a). A su¢ cient condition for Assumption

2.3.(i) is that xt (x; a) is strictly increasing in x given any value of a, which is

stronger than Assumption 2.3.(i) but still a reasonable condition. All other things

(especially the productivity) being equal, a larger �rm tends to have higher levels of

inputs like capital and labor. Note that the rank condition on
R

@
@x
xt (x; a) f (a) da

is not implied by the one on @
@x
xt (x; a).

Given Assumptions 2.1-2.3, I choose zit = xi;t�1 as the instrument and construct

the control vit as follows:

vit � xit � r (xi;t�1) , where r (xi;t�1) = E (xitjxi;t�1) : (2.9)

r (xi;t�1) is the projection of xit into xi;t�1, showing the e¤ect of previous input

levels on the choice of current input level. vit can be interpreted as the response of

input decision xit to the �rm�s prediction of ait, which is based on ai;t�1. Lagged

input levels other than xi;t�1, say xi;t�2, can also serve as the instrument.

The restrictions imposed on the input decision xit = xt (xi;t�1; ai;t�1) and the

distribution of productivity f (a) imply that r (x) is strictly increasing in x and

the rank of dr (x)�dx equals the dimension of x. To see this, by de�nition,

r (x) = E (xt (xi;t�1; ai;t�1) jxi;t�1 = x) = E (xt (x; ai;t�1)) ;
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where the expectation is with respect to ai;t�1. Since xt (x; a) and @xt (x; a)�@x

are both continuous over the compact support of (x; a), by the Leibniz�s rule

dr (x)

dx
=

d

dx
E (xt (x; ai;t�1)) =

Z
@

@x
xt (x; a) f (a) da:

Therefore, r (x) is strictly increasing in x by Assumption 2.3.(i) and, by Assump-

tion 2.3.(ii), the rank of dr (x)�dx equals the dimension of x. I summarize these

results in Lemma 2.1 below.

Lemma 2.1. For all (i; t), under Assumption 2.3, for r (x) � E (xt (x; ait))

(i). r (x) is strictly increasing in x;

(ii). The rank of dr (x)�dx equals the dimension of x.

Adopting the control function approach to endogeneity, I establish the nonpara-

metric identi�cation of the production function gt (x) under Assumptions 2.1-2.3,

using lag levels of inputs as the instrument to construct the control.

Proposition 2.1. Under Assumptions 2.1-2.3, the production function gt (x) is

nonparametrically identi�ed with the control v being constructed by (2.9).

Proof : Given Assumption 2.1, the endogeneity is caused by the correlation be-

tween xit and ait. By Lemma 2.1.(ii), the rank dr (x)�dx equals the dimension of

x so that the rank condition is satis�ed. It remains to check the control function

condition (2.6).

By the law of iterated expectation, we have

E (aitjxit; xi;t�1; ai;t�1) = E (aitjai;t�1) ;
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Notice that vit is a function of (xit; xi;t�1), by the law of iterated expectation,

E (aitjvit; ai;t�1) = E (aitjai;t�1) :

Together, E (aitjxit; xi;t�1; ai;t�1) = E (aitjvit; ai;t�1), which implies

E (aitjxit; xi;t�1) = E (aitjvit) : (2.10)

The control function condition (2.6) then holds for zit = xi;t�1:

E (aitjxit; vit) = E (aitjxit; xit � r (xi;t�1))

= E (aitjxit; xi;t�1)

= E (aitjvit) ;

where the �rst equality follows by the de�nition of vit, the second one by the strict

monotonicity of r (x) from Lemma 2.1.(i), and last one by (2.10). Therefore, (2.6)

holds under Assumption 2.2 with the control being de�ned by (2.9).

Applying Theorem 2.3 in Newey, Powell, and Vella (1999),14 the production

function gt (x) is nonparametrically identi�ed with the control v being constructed

by (2.9) under Assumptions 2.1-2.3. �

Proposition 2.1 establishes the nonparametric identi�cation of gt (x) under As-

sumptions 2.1-2.3, which can be consistently estimated by the kernel-base nonpara-

metric control function estimator bg (x) proposed in Chapter 3. The consistency
and asymptotic normality of bg (x) are established under the given conditions in
Chapter 3. Since nonparametric identi�cation implies parametric identi�cation, if

14See also Theorem 4.5 in Matzkin (2007).
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we consider the Cobb-Douglas production function, gt (x; �) = x0�, � can be iden-

ti�ed using the same strategy. In Chapter 4, the semiparametric control function

estimator b� is proposed for �, and the pn-consistency of b� is established under
the given conditions.

The identi�cation strategy and estimation procedure proposed in this paper

has several advantages relative to the methods in the literature. First, as a result

of "smooth-out" strategy, the restrictions associated with "invert-out" assumption

are not required. In particular, the main assumption about the productivity shock

ait is the Markov property as speci�ed in Assumption 2.2. Second, it is robust

to the misspeci�cation of underlying DGPs, not only because both identi�cation

and estimation are nonparametric, but also because the restrictions imposed on

the DGPs are �exible. The within-period uncertainty is su¢ cient to justify As-

sumption 2.2. Third, it is not demanding of data as it only requires a panel of

xit for two periods. No other observed variables such as investments and interme-

diate inputs are necessary. Finally, the identi�cation strategy applies to both the

gross production function where xit = (kit; lit; wit) and the value-added production

function where xit = (kit; lit), as long as Assumptions 2.1-2.3 hold.

2.3 Recover the Distribution of Productivity

As the industry average of �rm outputs, gt (�) is identical across �rms at the same

period, and the heterogeneity of �rms is mainly captured by the productivity shock

ait. It is ait that drives the turnover of �rms and evolution of industry. Thus,

besides gt (�), it is desirable to recover ait from data as well.15 Since OP/LP use

15In fact, besides the endogeneity caused by the simultaneity of inputs, another issue addressed
by Olley and Pakes (1996) is the industry evolution induced by entry and exit decisions of �rms.
Levinsohn and Petrin (1999) also consider both issues using the Chilean panel data.
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the invert-out method, it is not surprising that ait can be estimated, say by (2.2).

With the "smooth-out" method proposed in this paper, nevertheless, ait can

still be recovered as follows. Under Assumption 2.1, the non-transmitted error �it

can be isolated by: b�it = yit�gt (xit), where gt (x) is the estimate of E (yitjxit = x).

Note that gt (x) is not a consistent estimator of gt (x), but actually estimates

gt (x) + E (aitjxit = x). After gt (x) is consistently estimated by bg (x) using the
control function approach, the composite error uit � ait+�it can also be recovered asbuit = yit�bgt (xit). The key to nonparametrically recover idiosyncratic productivity
shocks relies on the availability of a consistent estimator of gt (x). The idiosyncratic

productivity shock ait is then estimated by

bait = buit �b�it = gt (xit)� bgt (xit) : (2.11)

Using the estimates bait�s as pseudo-values of ait, the empirical distribution of ait
can be estimated.16

Therefore, without imposing any functional form either on gt (�) or on the true

distribution of ait, we can recover the distribution of productivity nonparametri-

cally. This is desirable because, typically, little is known about the distribution of

productivity and economic theory gives no clue about its functional form either.

In addition, the conditional mean of ait given xit = x can also be recovered, in two

ways. One is to regress bait on xit, and the other is by bE (aitjx) = gt (x) � bg (x).
E (aitjx) reveals how ait is correlated to xit, and sheds light on the endogeneity

issue of inputs. This is of interest theoretically and practically. In Chapter 6, I

estimate E (aitjx) for the food industry using a Chilean panel data set.

16See Chapter 4 and Guerre, Perrigne and Vuong (2000) for the estimation of distribution from
preliminary estimates.



Chapter3
Nonparametric Control Function

Estimation

The nonparametric estimation of production functions closely follows the identi�-

cation strategy developed in Chapter 2. I propose a kernel estimator bg (x) where
controls are constructed from instruments as in (2.9). A kernel estimator eg (x)
is also proposed for the case with observed controls, which facilitates asymptotic

analysis of bg (x). The consistency and asymptotic normality are established for
both eg (x) and bg (x) under the given conditions.
3.1 Nonparametric Models and Control Function

Estimators

First, let�s summarize the model of nonparametric regressions with endogeneity

using general notation.1

1In this section, random variables (or vectors) are denoted by capital letters with their real-
izations by corresponding small letters.
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Assumption M (Models): Suppose we observe a representative random sample

of size n, either fYi; Xi; Vigni=1 when the control V is observed, or fYi; Xi; Zigni=1
when the instrument Z is observed. Y 2 R, X = (X1; X2) 2 Rd1 � Rd2, V 2 Rd2

and Z 2 RdZ , where d = d1 + d2 > 1 and dZ > 1.

(i) Y = g(X) + U , where E (U jX) 6= 0 and E (U) = 0;

(ii) The control V satis�es the control function assumption: E[U jX;V ] =

E[U jV ]. When V is unobservable (to researchers), V can be estimated from the

instrument Z for the endogenous variable X2 by X2 = r(Z)+V , where E[V jZ] = 0

and E[U jX1; X2; V ] = E[U jX1; r(Z) + V; V ] = E[U jV ]; r(z) is continuous and

strictly monotone in z and the rank of the Jacobian matrix of r(z) equals d2.

Under Assumption M, the conditional mean m(x; v) of Y given (X;V ) = (x; v)

satis�es

m(x; v) = g(x) + c (v) ; (3.1)

where c (v) � E [U jV = v]. For series-based estimation, both g(x) and c (v) can

be simultaneously estimated from (3.1) by imposing additivity of x and v on base

functions. For kernel-based estimation, no such restriction can be imposed on

kernels to estimate g(x) directly. Instead, m(x; v) has to be estimated �rst as an

augmented regression of Y on (X;V ) from either fYi; Xi; Vigni=1 or fYi; Xi; Zigni=1,

which is consistent after introducing the control V under Assumption M.

Newey, Powell, and Vella (1999) consider a similar model with unobservable

controls in a simultaneous equations setting, where X1 is a part of Z so that

typically dZ > d. They give the conditions under which g(x) is identi�ed, and

establish the consistency and asymptotic normality of bg(x). However, the uniform
convergence rate of bg(x) is always a¤ected by the preliminary estimator bV of V .
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As a result, it is impossible to achieve the optimal rate of uniform convergence as

derived in Stone (1982). Additionally, the asymptotic variance of bg(x) is always
a¤ected by bV . Pinkse (2000) also considers a similar model with unobserved con-
trols, where he derives the optimal rate of pointwise convergence for the i.i.d. case

and establishes the uniform consistency for stationary time series.

Härdle (1994) argues that series estimators are asymptotically equivalent to

their kernel counterparts in standard nonparametric regressions. This is no longer

true due to two complications involved here: the partial mean of kernel estimates,

and the preliminary nonparametric estimates as nuisance parameters. These two

complications bring challenges to asymptotic analysis of bg(x).
The �rst complication arises from the fact that g(x) has to be estimated as a

partial mean of m(x; v) given x, as in a generalized additive model:

g (x) = E [m (x; V )] : (3.2)

This may be done either by the iterative back�tting method (see Hastie and Tib-

shirani 1990, among others) or by the marginal integration method (see Newey

1994, Linton and Nielsen 1995, or Chen et al 1996, among others). Generalized

additive models (GAMs) are originally motivated as a method of dimension reduc-

tion to alleviate the curse of dimensionality in nonparametric estimation. Here the

additivity structure comes from the additive error terms. As a simpler method,

the marginal integration method is adopted in this paper.

When V is observed, the sample analog of (3.2) is

eg(x) = n�1
Pn

i=1 em (x; Vi) ; (3.3)
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where em (x; Vi) is the kernel estimator of m (x; v) evaluated at (x; Vi). The asymp-
totic properties of eg(x) have been well studied in the literature. Nevertheless, I
propose an alternative way to establish the asymptotic normality of eg(x) using a
U-statistic. As shown in Proposition 3.2, eg(x) can be expressed as some form of

a sample mean, from which the asymptotic variance of eg(x) is derived naturally.
Moreover, it allows me to extend the GAM to the case with generated regressors.

The second complication is common to both the series and kernel estimators.

Regressions with generated regressors in parametric models have been considered

by Pagan (1984) among others. Extensions to kernel regressions with generated

variables and additive error terms (e.g., bm (x; v) in (3.4) below) can be found in
Ahn (1995) and Rilstone (1996).2 There is no endogeneity issue with regressors in

both papers, and the optimal uniform convergence rate as derived in Stone (1982)

is not obtained because the approximation is not sharp enough.

When V is unobserved and has to be estimated �rst, the sample analog of (3.2)

becomes

bg(x) = n�1
Pn

i=1 bm�x; bVi� ; (3.4)

where bm�x; bVi� is the kernel estimator of m (x; v) with preliminary estimates bVi�s,
which are also kernel estimates based on Vi = X2i � r(Zi). Thus, bg(x) is a 3-step
estimator with kernel estimators bm and bV as nuisance parameters. Upon eg(x), bV
adds an additional layer of di¢ culty in analyzing the asymptotic properties of bg(x).
Nonetheless, the consistency and asymptotic normality of bg(x) are established and,
in particular, the optimal rates of uniform or pointwise convergence are possible.

2In Ahn (1995), the generated variable represents the expected return of schooling, which is
used in the second step to evaluate the conditional choice probabilities of schooling decisions of
high school graduates under uncertainty. In Rilstone (1996), the generated variable mainly acts
as a dimension reduction tool by collapsing the information contained in several variables into
the generated one. Ahn (1995) establishes both uniform consistency and asymptotic normality
while Rilstone (1996) only considers the latter.
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However, one more challenge is coming. It is well known that kernel estimators

are inconsistent near the boundary of supports, called the boundary e¤ects. Thus,

both (3.3) and (3.4) are inconsistent without controlling for the boundary e¤ects

of preliminary kernel estimators (i.e., em and
�bm; bV � respectively). We need to

add some trimming both to (3.3) and to (3.4), and the asymptotic properties of

the estimators are examined within inner compact subsets of their supports.

3.2 Estimation Procedures

Let SXV , SXZ , SX , SV , and SZ be the supports of (X;V ), (X;Z), X, V and

Z respectively. Let�s consider an inner compact subset CX of SX for g(x). As

g(x) is a partial mean of m (x; v), I study m (x; v) for (x; v) belonging to an inner

compact subset CXV of SXV such that fx 2 SX : (x; v) 2 CXV g = CX : Note that

for (x; v) 2 CXV , the estimators of m (x; v) use at most the observations in C 0XV ,

where C 0XV ( SXV is the set containing all hypercubes of size � (small enough)

centered at a point (x; v) 2 CXV so that CXV ( C 0XV . For x 2 CX , de�ne

CxV � fv 2 SV : (x; v) 2 CXV g and CxZ � fz 2 SZ : z = r�1 (x� v) ; v 2 CxV g.

Now I describe the estimation procedure of the nonparametric control function

(NPCF) estimators eg(x) and bg(x) with trimming.
Step 1: Generation of the Control Variable bV
When V is observed, this step is unnecessary. If V is unobserved, it can be

estimated by bV = X2 � er(Z), where er(Z) is the kernel estimator of r(z):
er(z) = bE[X2jZ = z] =

1

n

nP
l=1

X2lKh (z � Zl)� efz(z); (3.5)
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where efz(z) � 1
n

Pn
l=1Kh (z � Zl) is the density estimator,Kh (z � Zl) � 1

h
dZ
1

�
�
z�Zl
h1

�
is the kernel and h1 is the bandwidth.3 Note that er(z) is inconsistent for z near
the boundary. The estimated control variable is de�ned as

bVj =
8><>: X2j � er(Zj), if Zj 2 CZ  SZ ;

1, otherwise.
(3.6)

Notice that for bVj 6= 1, �bVj � Vj

�
= [r (Zj)� er (Zj)], so that the former has the

same asymptotic behavior as the latter. bVj is a consistent estimate of Vj if bVj 6=1,
because er(z) is consistent for z 2 CZ under E[V jZ] = 0.
Step 2: Nonparametric Estimation of the Augmented Regression Function m(x; v)

With the preliminary estimates bVj�s, for (x; v) 2 CXV , bm (x; v) is de�ned as
follows:

bm (x; v) = bE hY j(X; bV ) = (x; v)i � bq(x; v)� bf(x; v); (3.7)

where bq(x; v) � 1

n

Pn
j=1Kh (x�Xj)Kh

�
v � bVj�1C0XV �Xj; bVj�Yj,

bf(x; v) � 1

n

Pn
j=1Kh (x�Xj)Kh

�
v � bVj�1C0XV �Xj; bVj�.

Here Kh (x�Xj) � 1
hd
�
�
x�Xj
h

�
and Kh

�
v � bVj� � 1

hd2
�
�
v�bVj
h

�
are kernels, and

h is the bandwidth.4 The trimming 1C0XV

�
Xj; bVj� is the indicator function such

that 1C0XV

�
Xj; bVj� equals 1 if �Xj; bVj� 2 C 0XV and zero otherwise. To see how

the trimming ensures that bVj is a consistent estimate for Vj, note that �Xj; bVj� 2
3er(z) is a standard kernel estimator except that r(z) may be a vector function when d2 > 2.

Here each component in V uses the same set of instruments, which can be relaxed to allow each
component to use di¤erent sets of instruments. The convergence rate of bV is then determined by
the slowest one among the convergence rates of the component in bV . Also, V can contain some
observed elements, which do not a¤ect the rate of convergence of Step 1.

4To keep the notation compact, the kernel Kh (�) is distinguished by their arguments and so
does � (�). Also implicit is the dependence of bandwidths on the sample size.
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C 0XV  SXV implies that Zj 2 CZ  SZ so that er(Zj) and bVj are consistent.
While Zj 2 CZ is su¢ cient for bVj to be consistent, 1C0XV �Xj; bVj� facilitates the
asymptotic analysis and incurs no e¢ ciency loss. The trimming is unnecessary

if kernels with bounded supports are used in (3.7), because those inconsistent

estimates bVj�s go to in�nity by (3.6) and thus have zero weights.5
When the control V is observed, m(x; v) can be estimated by:

em(x; v) = eE[Y j(X;V ) = (x; v)] � eq(x; v)� ef(x; v); (3.8)

where eq(x; v) and ef(x; v) are de�ned similarly to (3.7), with bVi being replaced by
Vi and no trimming being required. By construction, both bm (x; v) and em(x; v)
are consistent due to the e¤ect of the control V under Assumption M.

Step 3: Estimation of the Structural Function g(x)

For x 2 CX , when V is unobservable, the trimmed version of (3.4) is

bg(x) = n�1
Pn

i=1 bm(x; bVi)1pxCXV �x; bVi� ; (3.9)

When V is observed, the trimmed version of (3.3) is

eg(x) = n�1
PN

i=1 em(x; Vi)1pxCXV (x; Vi) ; (3.10)

where 1pxCXV (x; v) � 1CXV (x; v)�px, and px � Pr (V 2 C
x
V ). (1�px) is introduced

to correct the bias caused by the trimming function 1CXV (x; v). Lemma A.2 shows

5This technique has been used by Guerre, Perrigne and Vuong (2000) in estimating the dis-
tribution of private values of bidders in �rst-price auctions. The pseudo private values of bidders
are estimated from observed bids and de�ned similarly to (3:6). The empirical distribution of
private values is then estimated from these pseudo values using kernels with compact supports.
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that px can be consistently estimated either by n�1
Pn

i=1 1CXV

�
x; bVi� for (3.9) or

by n�1
Pn

i=1 1CXV (x; Vi) for (3.10).

The trimming makes sure that the preliminary estimates are consistent. The

estimates of m(x; v) near the boundary of the support of (X;V ) are trimmed

away by the trimming functions 1CXV
�
x; bVi� in (3.9), or 1CXV (x; Vi) in (3.10).

Especially, for (3.9), 1CXV
�
x; bVi� simultaneously guarantees the consistency of

preliminary kernel estimates, not only for bm(�; �) but for bVi also. To see this, note
that bm(x; v) is consistent for any (x; v) 2 CXV ; and by (3.6), 1CXV

�
x; bVi� = 1

means that bVi 6= 1, which in turn implies Zi 2 CZ so that bVi = Xi � er(Zi) is
consistent.

3.3 Regularity Conditions

For the analysis of asymptotic properties of bg (x) and eg (x), some regularity as-
sumptions are imposed on key objects in kernel estimation: the kernel functions,

bandwidths, and underlying data generating processes (DGPs) in each step.

Assumption K (Kernels):

(i). Let K(s) be the class of Borel measurable, bounded, real-valued func-

tions k( ) with compact support such that
R
k( )d = 1,

R
k2( )d < 1, andR

 jk( )d = 0 for all j < s;6

(ii). k(�) has continuous bounded derivatives up to the second order.

(iii). For step 1, �
�
z�Z
h1

�
=

dZQ
p=1

k
�
zp�Zp
h1

�
with k 2K(s1); for step 2, �

�
x�X
h

�
=

6The method described in Bierens (1987) can be used to construct higher order kernels from
univariate kernels as the base kernel, such as the Epanechnikov�s kernel. The compactness of
the support can be replaced by the Parzen-Rosenblatt condition requiring that the kernel k( )
satis�es j jk( )! 0 as j j ! 1.



42

dQ
p=1

k
�
xp�Xp
h

�
and �

�
v�V
h

�
=

d2Q
p=1

k
�
vp�Vp
h

�
with k 2K(s), where both s and s1 are

strictly positive integers.7

Assumption B (Bandwidths): For uniform consistency, let the bandwidths be

h = �( log(n)
n
)(1+�)�(2s+d+d2) and h1 = �1(

log(n)
n
)(1+�1)�(2s1+dZ);

For pointwise consistency and asymptotic normality, let the bandwidths be

h = �(1�n)(1+�)�(2s+d+d2) and h1 = �1(1�n)(1+�1)�(2s1+dZ),

where ��s are strictly positive constants while ��s can be small positive or neg-

ative constants.

Assumption D (DGPs):

(i). The densities fx0(x), fv0(v), fz0(z) and f0(x; v) are all bounded away from

zero within their compact supports SX , SV , SZ and SXV respectively; however,

they equal zero at the boundary of their respective supports.

(ii). Within their respective supports, both r0(z), fv0(v) and fz0(z) are continu-

ously di¤erentiable with bounded derivatives up to the s1-th order and all of g0 (x),

m0(x; v) and f0(x; v) are continuously di¤erentiable with bounded derivatives up

to the s-th order. E [jY jp] <1 for some p > 2.

(iii). The following holds: For x 2 C 00X  SX

1
nhd

Pn
j=1

�����x�Xjh

���� a:s:�! f
X0
(x)
R
j� (t)j dt, and

1
nhd

Pn
j=1

�����x�Xjh

���� jYij a:s:�! E [jY j j X = x] f
X0
(x)
R
j� (t)j dt;

7For convenience of exposition, the product kernels are used for the multivariate conditioning
variable case. The general multivariate kernels, however, can be used without physical e¤ect on
the main results of this paper. Additionally, step 1 may use other kernels than step 2, but the
subscript is surpressed.
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both of which are bounded almost surely within CX ; For (x; v) 2 C 00XV  SXV ,

1
nhd+d2

Pn
j=1 �

|
����0 �v�Vjh ���� �����x�Xjh

���� a:s:�! f0(x; v) �
R
�| j�0 (!)j j� (t)j dtd!, and

1
nhd+d2

Pn
j=1 �

|
����0 �v�Vjh ���� �����x�Xjh

���� jYij a:s:�! E [jY j j x; v]�f0(x; v)�
R
�| j�0 (!)j j� (t)j dtd!,

both of which are bounded almost surely within C 00XV . Here � � (1; 1; � � �; 1)
| 2 Rd2.

The assumptions on kernels are quite standard in nonparametric econometrics.

In particular, we use higher order kernels to reduce the asymptotic biases and

impose the boundedness of (partial) derivatives of kernel functions up to the second

order. Compared to bandwidths, the choice of kernels has less impact on the

asymptotic behavior of kernel estimators.

Bandwidths are critical parameters in kernel estimation. The assumptions on

the bandwidths ensure that, as the sample size n!1, the h�s go to zero while nhd

and nhdz1 approach in�nity. When the ��s are zero, h�s are the optimal bandwidths

while � > 0 implies undersmoothing and � < 0 implies oversmoothing (see Stone,

1982). There is a trade-o¤ between the convergence rates and asymptotic biases

in the analysis of asymptotic normality. When the optimal bandwidth is adopted,

there exists an asymptotic bias. On the other hand, the asymptotic bias can be

taken away by undersmoothing, which lowers the convergence speed.8 For uniform

consistency, de�ne the uniform convergence rates as follow

 � (log (n)�n)s�(2s+d) ,

1 � (log (n)�n)s1�(2s1+dZ) , and

2 � (log (n)�n)s�(2s+d+d2) :
8When the asymptotic bias is di¢ cult to estimate, it may be desirable to undersmooth a little

bit by setting ��s to be small positive numbers.
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For pointwise consistency and asymptotic normality, rede�ne them as

 � (1�n)s�(2s+d) ;

1 � (1�n)s1�(2s1+dZ) , and

2 � (1�n)s�(2s+d+d2) :

Assumption D places restrictions on the smoothness of the underlying DGPs

to facilitate the derivation of uniform consistency and asymptotic normality. As

shown in Härdle (1994) among others, the optimal convergence rates of nonpara-

metric estimators are determined by their relative smoothness conditions, which

are (s1�dZ) for step 1, (s� (d+ d2)) for step 2, and (s�d) for step 3. The last part

of Assumption D is the boundedness restriction used to get sharper approximation

results in Proposition 3.1 and Theorem 3.1.

3.4 Uniform Consistency

Consistency and asymptotic normality are main properties of estimators. This sub-

section studies uniform consistency while pointwise consistency will be established

along with asymptotic normality in Section 3.5.

As standard results of nonparametric econometrics, within inner compact sub-

sets of their respective supports, the optimal rates of uniform convergence for g(x),

er(z) and em(x; v) are (1=), (1=1) and (1=2) respectively. Here g (x) is the kernel
estimator of the conditional mean of Y given X = x. Due to the extra dimension

from the control V , the convergence rate of em(x; v) slows down to (1=2), which is
improved back to (1=) for eg (x) by averaging em(x; Vj) over Vj�s, see Stone (1982).
Thus eg (x) corrects the endogeneity and, at the same time, maintains the same
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convergence rate as g (x).

Now the question is how the preliminary estimator of the control V a¤ects the

uniform convergence rate of bg (x) when V is unobserved but can be estimated.

Since bg (x) is the partial mean of bm(x; v), I �rst establish the uniform consistency

with the rates of convergence of bm(x; v) in Proposition 3.1.
Proposition 3.1. Let Assumptions M, K, B and D hold, let � = �1 = 0, and

suppose s1
(2s1+dZ)

� 1+d2
(2s+d+d2)

> 0, then

(a) sup
CXV

j bf(x; v)� f0(x; v)j = O (2 + 1�h), a.s.;

(b) sup
CXV

jbm(x; v)�m0(x; v)j = O (2 + 1�h), a.s..

Proof : See Appendix A.

The most important feature of Proposition 3.1 is that bm(x; v) can achieve the
same optimal uniform rate (1�2) as em(x; v) when the preliminary estimator bV
converges fast enough compared to em(x; v) in the sense that ((1�h)�2) = o (1),

i:e:, 1+s
(2s+d+d2)

6 s1
(2s1+dZ)

. As a result, the e¤ect of bV on bm(x; v) is negligible
asymptotically. On the other hand, when bV does not converge so fast, the uniform
convergence rate of bm(x; v) will be dominated by bV and only the suboptimal

rate (h�1) is possible. This is even slower than (1�1) and depends on step-2

bandwidth h. A larger h implies faster convergence of bm(x; v).9
Proposition 3.1 is of interest beyond the nonparametric control function ap-

proach to endogeneity as the control function assumption (Assumption M.(ii)) is

not used except in the third step. Thus it applies to more general 2-step kernel es-

timators with preliminary kernel estimates, including kernel estimators of densities

9The intuition is that a larger h e¤ectively includes more observations of
�
Xj ; bVj� to estimatebm(x; v). Since the kernel estimators are local averages, more observations help cancel out the

noise caused by bV .
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as indicated in Proposition 3.1.(a). In particular, Proposition 3.1 is an improve-

ment upon Ahn (1995), where the lower bound of uniform convergence rate for his

2-step kernel estimator is
�
1�hd+d2+1

�
. The optimal rate of uniform convergence

is impossible and the reason is that the approximation (i.e., Lemma A.3 in Ahn

(1995)) is too conservative. I extend a technique in Guerre, Perrigne and Vuong

(2000) to the case of general kernel regressions to achieve better rates given in

Proposition 3.1.

The uniform convergence rate of bg(x) exhibits a structure similar to that of
bm(x; v), as indicated in Theorem 3.1 below.

Theorem 3.1. Let Assumptions M, K, B,and D hold, let �1 = 0, also let � < 0

such that h = �( log(n)
n
)1�(2s+d), and suppose s1

(2s1+dZ)
� 1+d2

(2s+d+d2)
> 0, then

sup
CX

jbg(x)� g0(x)j = O ( + 1�h) a.s. for x 2 CX  SX .

Proof : It is a standard result that sup
CX

jeg(x)� g0(x)j = O () a.s. Proposition A.1

in Appendix A shows that

sup
CX

jbg(x)� eg(x)j = O ( + 1�h) a:s:

By the triangle inequality,

sup
CX

jbg(x)� g0(x)j 6 sup
CX

jbg(x)� eg(x)j+ sup
CX

jeg(x)� g0(x)j

= O ( + 1�h) : �

Theorem 3.1 shows that bg(x) is able to achieve the same optimal rate of uni-
form convergence as g (x) and eg (x) if the preliminary estimator bV converges fast

enough in the sense that O ((1�h)�) = o (1), i.e, s+1
(2s+d)

6 s1
(2s1+dZ)

. Thus, the
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unobservability of the control variable V does not a¤ect the uniform consistency

of bg(x) if V can be estimated fast enough. Notice that the step-2 bandwidth

h = �( log(n)
n
)1�(2s+d) undersmoothes bm(x; v) to get the optimal uniform conver-

gence rates for bg(x).
This result complements and extends Newey, Powell, and Vella (1999) by al-

lowing for the optimal and suboptimal rates of uniform convergence under less

restrictive conditions. To see this, denote the relative smoothness �1 = s1�dZ

for step-1 estimation and �2 = s�d for step-2 estimation (or step 3 in this paper

as kernel estimation does not have the same additive feature as series estima-

tion). The uniform convergence rates derived in Newey, Powell, and Vella (1999)

are Op
�
hd� + hd�1

�
for power series under the relative smoothness condition

�2 > 3+5�1
2�1

, and Op
�
hd=2� + hd=2�1

�
for splines under �2 > 3+3�1

2(�1�1) . The opti-

mal rate (1�) cannot be achieved for those estimators due to the terms hd (for

power series) or hd=2 (for splines).

In contrast, bg (x) can achieve the optimal rate of uniform convergence under less
restrictive conditions. Under the relative smoothness condition �2 > 1+d2=d

2�1+1+d2=d
,

the optimal rate (1�) can be achieved if �2+1=d
2�2+1

6 �1
2�1+1

; otherwise the suboptimal

rate (h�1) can be achieved.10 For instance, when d = 3, d2 = 1, s = 2, dz = 1,

and s1 = 3, bg(x) achieve the optimal rate of uniform convergence (log (n)�n)3�7

almost surely, which is impossible for the series estimators proposed in Newey,

Powell, and Vella (1999).

Theorem 3.1 also extends the literature of generalized additive models by al-

10The condition for the uniform consistency in this paper is less restrictive: the relative smooth-
ness condition for bg (x) is �2 > 1+d2=d

2�1+1+d2=d
, which is less restrictive than either �2 > 3+5�1

2�1
or

�2 > 3+3�1
2(�1�1) in Newey, Powell and Vella (1999). To see this, notice that

1+d2=d
2�1+1+d2=d

< 3+5�1
2�1

and 1+d2=d
2�1+1+d2=d

< 3+3�1
2(�1�1) as d2=d 6 1. Thus, for the same �2, the uniform convergence rate ofbg (x) given in Theorem 3.1 applies for more values of �1.
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lowing regressors to be estimated preliminarily, and maintaining the optimal rate

of uniform convergence.

3.5 Pointwise Consistency and Asymptotic Nor-

mality

Asymptotic normality is also an important property of estimators, upon which the

statistical inference of con�dence intervals can be made. In Proposition 3.2, an

alternative way based on U-statistic is proposed to establish the asymptotic nor-

mality of eg(x),11 which also facilitates the derivation of the asymptotic normality
of bg(x).
Proposition 3.2. Under Assumptions M, K, B, and D, let a0i � 1px

C0
XV

(x; Vi),eg(x)� g0 (x) can be expressed as

eg(x )� g0 (x)=1n nP
i=1

Kh (x�Xi) (Yi �m (x; Vi))
a0ifv0 (Vi)

f0 (x; Vi)
+Op (h

s) : (3.11)

Thus eg(x)� g0 (x) = Op

�
hs +

1p
nhd

�
, and

(i) If lim
p
nhdhs = c > 0, then

p
nhd (eg(x)� g0(x))

d�! N(cBg (x) ; Vg (x)),

where the asymptotic bias Bg (x) is given by (B:2) in Appendix B,12 and the as-

ymptotic variance is

Vg (x) =
1

nhd
R
V ar (Y jx; v)

(a0i)
2 f 2v0(v)

f0(x; v)
dv �

R
�2 (t) dt: (3.12)

11For the asymptotic normality of the estimator bm(x; v), see Ahn (1995) and Rilstone (1996).
12The asymptotic bias Bg (x) includes additional biases introduced by averaging em (x; Vi)�s

over Vi (the second term of the RHS of (3:11)), as well as the bias from the �rst term of the RHS
of (3:11).
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(ii) If lim
p
nhdhs =1 > 0, then 1

hs
(eg(x)� g0(x))

p�! Bg (x).

Proof : See Appendix B.

Proposition 3.2 shows that eg(x) can achieve the optimal rate of pointwise
convergence when Op (hs) = Op

�
1�
p
nhd

�
, that is, the optimal rate of eg(x) is

ns�(2s+d) when the bandwidth h is of exact order of n�1�(2s+d). Note that this

bandwidth is the optimal bandwidth for the simple kernel estimator g (x). It also

undersmooths em (x; v) (i.e., � < 0) so that em (x; v) is asymptotically unbiased.
The consistent estimator for the asymptotic variance Vg (x) can be obtained by

plugging consistent estimators of the components of Vg (x) into (3.12), see Newey

(1994) for instance.

Although kernel estimators of partial means have been studied in the litera-

ture of generalized additive models, by the way of U-statistics, we can express

eg(x) � g0 (x) as a sample average (the �rst term of the RHS of (3.11)) where the

asymptotic variance naturally arises as in (3.12). Moreover, the e¤ect of the prelim-

inary estimator bV can be analyzed relatively easily by extending the second-order

U-statistic for eg(x) to a third-order U-statistic for bg(x). The asymptotic properties
of eg(x) as derived in Proposition 3.2 form the basis for the asymptotic normality

of bg(x) as indicated in Theorem 3.2 below.

Theorem 3.2. Under Assumptions M, K, B, and D,

bg(x)� g0 (x) = (bg(x)� eg(x)) + (eg(x)� g0 (x)) = Op (1 + ) :

Thus, if O (1�) = o (1) (i.e.,
s

d
<
s1
dZ
), then bg(x)� g0 (x) = Op () and

p
nhd (bg(x)� g0 (x))

d�! N(cBg (x) ; Vg (x));
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where the asymptotic bias and asymptotic variance are given in Proposition 3.2.

Proof : The asymptotic properties of (eg(x)� g(x)) is derived in Proposition 3.2

and it remains to study that of bg(x)�eg(x). In Appendix B, Proposition B.1 shows
that

(bg(x)� eg(x)) = Op (1) , so that

bg(x)� g0 (x) = (bg(x)� eg(x)) + (eg(x)� g0 (x)) = Op (1) +Op () :

If O (1�) = o (1), O
�p

nhd
�
Op (1) = op (1) so that

p
nhd (bg(x)� g0 (x)) =

p
nhd (eg(x)� g0 (x)) + op (1)

d�! N(cBg (x) ; Vg (x)): �

Two points are worthwhile to mention. First, despite the fact that there are

endogenous variables in X and that the control V has to be estimated prelimi-

narily by bV , bg(x) may still achieve the optimal rate of pointwise convergence if bV
converges faster than g (x). Second, also in this case, the asymptotic variance of

bg(x) is una¤ected by bV . As long as the unobserved control V can be estimated fast
enough, the estimator bg(x) behaves as if V were actually observed. In contrast,

the asymptotic variance of the series estimators in Newey, Powell, and Vella (1999)

is always a¤ected by the preliminary estimators.



Chapter4
Semiparametric Control Function

Estimation

4.1 Partially Linear Models

Partially linear models are capable of capturing nonlinear relationships while mit-

igating the curse of dimension. As the result, partially linear models have been

extensively used in empirical studies. In a pioneer empirical application of par-

tially linear models, Engle, Granger, Rice and Weiss (1986) study the relationship

between electricity sales and temperature, which is typically nonlinear as both

heating in low temperatures and air-conditioning in high temperatures increases

electricity consumption. More examples include household gasoline consumption

in the United States (Schmalensee and Stoker, 1999), Engle curves (Blundell, Dun-

can and Pendakur, 1998), the production frontier of US banking industry (Adams,

Berger and Sickles, 1999), just to name a few. For an extensive treatment of

the theory and applications of partially linear models, see Hardle, Liang and Gao

(2000).
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Partially linear models can also be motivated as a way to control for endogene-

ity.1 In sample selection models, the endogeneity is caused by the selection bias,

which can be corrected by a function representing the selection process. As men-

tioned in Chapter 1, the semiparametric Type-2 Tobit model arise as a partially

linear model:

Y2i = X 0
2i�2 + c (X 0

1i�1) + �2i; where

c (X 0
1i�1) � E (u2ijXi; Y1i = 1) = E (u2ijXi; u1i > �X 0

1i�1) :

Notice that no functional form is speci�ed for g (�), which makes the model semi-

parametric. Also notice that, in order to estimate the parameter of interest �2,

�1 has to be estimated �rst so that the conditioning variable X
0
1i�1 becomes a

constructed one. For the
p
n-consistency of

�e�1; e�2�, see Powell (1987), Ichimura
and Lee (1991), Ai (1997) and Li and Wooldridge (2002). e�1 (and hence X 0

1i
e�1)

converges at the parametric rate.

In this thesis, the type of endogeneity, the estimator and its asymptotic prop-

erties are all di¤erent. For the Cobb-Douglas production function g(X; �) = X 0�,

the (capital and labor) coe¢ cients � cannot be consistently estimated by OLS due

to the endogeneity of input X. A partial linear model arises naturally where the

parametric part represents the production function and the nonparametric part is

the control function to "smooth out" unobserved shocks. Given that there exists

a control V satisfying the control function assumption

E (aijXi; Vi) = E (aijVi) � c (Vi) ; (4.1)

1Other motivations include the presence of heteroskedasticity of unknown form and rational
expecation in macroeconomic models; see Pagan and Ullah (1999).
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the augmented regression becomes

Yi = X 0
i� + c (Vi) + "i; where "i � ai + �i � c (Vi)

By construction, the regressors (Xi; Vi) in the augmented regression are exogenous:

E ("ijXi; Vi) = 0.2

Were the observable control available, � can be consistently estimated by

Robinson�s (1988) method:

e�R � �P
i

�
Xi � eXi

��
Xi � eXi

�0��1P
i

�
Xi � eXi

��
Yi � eYi� 1i;

where fWi �
1

n

P
jWiKh (Vi � Vj)� efi for Wi = Xi or Wi = Yi is the kernel re-

gressor and efi � 1

n

P
jKh (Vi � Vj) is the kernel density estimator. The indicator

function 1i � 1
� efi > b

�
is a trimming function to handle the random denominator

problem in estimating fXi and eYi. The trimming complicates the asymptotic analy-
sis and, besides the bandwidth h, the trimming parameter b needs to be speci�ed

too. Li (1996) proposes a density-weighted version, where the trimming is not

needed:

e�L � �P
i

�
Xi � eXi

� ef 2i �Xi � eXi

�0��1P
i

�
Xi � eXi

� efi �Yi � eYi� efi:
p
n-consistency is established both for e�R and for e�L, so that, under some regularity

conditions, they still converge at the parametric rate in spite of the presence of

preliminary kernel estimators.3

2The subscript t is surpressed for notation simplicity.
3For the asymptotic analysis, see also Speckman (1988), Stock (1989), and Andrew (1994).

Both Robinson�s (1988) and Li (1996) adopt kernels to estimate ex and ey; for partially linear
models using series methods, see Donald and Newey (1994).
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As mentioned in Chapter 2, it is di¢ cult to �nd such observables that sat-

isfy the control function assumption and maintain the identi�cation of production

functions. The controls are constructed from the instruments, such as the lagged

levels of inputs.

Vi = Xi � r (Zi) , where r (Zi) � E (XijZi) . (4.2)

Given E (U jZ; V ) = E (U jV ) and r (Z) is strictly monotone in Z, the control

function condition (4.1) holds for V as constructed by (4.2). Since the constructed

control bV is estimated nonparametrically and converges slower than the parametric
rate, the asymptotic analysis of b� with c�bV � will be di¤erent from e�R and e�L.4
For the partially linear model with constructed variables in the nonparametric

part, I propose an kernel-based estimator of �:

b� � �P
i

�
Xi � bXi

� bfi2 �Xi � bXi

�0��1P
i

�
Xi � bXi

� bfi �Yi � bYi� bfi; (4.3)

where bXi, bYi and bfi are to be de�ned below. It can be viewed as a density-weighted
and preliminarily estimated version of e�R (Robinson, 1988) or a preliminarily es-
timated version of e�L (Li, 1996).
4.2 Semiparametric Estimation Procedures

Now I describe the estimation procedure of the semiparametric control function

(SPCF) estimator.

Step 1: Construct the Control bV
4Stengos and Yan (2001) also consider partially linear models with contructed variables, where

the contructed variables are not in the nonparametric part, but in the parametric part.
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Similar to Section 3, the control bVj can be estimated by
bVj =

8><>: Xj � er(Zj), if Zj 2 CZ  SZ ;

1, otherwise;
(4.4)

where CZ is an inner subset of the support SZ of Z and er(Z) is the kernel estimator
of r(z):

er(z) = bE[XjZ = z] =
1

n

nP
l=1

XlKh (z � Zl)� efz(z);
Again, efz(z) � 1

n

Pn
l=1Kh (z � Zl) is the density estimator; Kh (z � Zl) and h1 are

the kernel and bandwidth respectively. Notice that for bVj 6=1, bVj is a consistent
estimator of Vj and

�bVj � Vj

�
= [r (Zj)� er (Zj)].

Step 2: Nonparametric Estimation of bX and bY
With the preliminary estimates bVj�s, cWi � bE hWijbVii (W = X or W = Y ) are

de�ned as follows: cWi �
1

n

P
j 6=i

WiKh

�bVi � bVj��bfi,
where bfi � bf �bVi� = 1

n

P
j 6=iKh

�bVi � bVj� is the kernel density estimator,Kh

�
v � bVj� �

1
hd
�
�
v�bVj
h

�
is the kernel, and h is the bandwidth. To simplify the asymptotic

analysis, kernels with bounded supports are used so that the trimming is unneces-

sary because those inconsistent estimates bVj�s go to in�nity and have zero weights.
Also, note that cWi is a leave-one-out kernel estimator, which also facilitate the

asymptotic analysis.

Step 3: Estimation of �
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Estimate � as an OLS estimator for the regression

(Yi � E (YijVi)) fi = [Xi � E (XijVi)]0 �fi + uifi;

where bXi is plugged in for E (XijVi), bYi for E (YijVi) and bfi for fi. The formula of b�
is (4.3). Being density-weighted, b� is free from the problem of random denomina-

tors for there is no denominator in cWi
bfi � 1

n

P
j 6=iWiKh (Vi � Vj). Furthermore,

given that the density f (x; v) is zero near the boundary of the support of (X;V ),

inconsistent estimates of
� bX; bY � due to the boundary e¤ect are o¤set by the

density weighting. Therefore, we obtain the consistent estimator b� of � without
trimming.

As we can see, the estimation procedure of b� is straightforward and no iterative
algorithm is required. Since no trimming being involved, the only parameters we

need to decide are the bandwidths (h; h1). Usually, the rule of thumb is used

to choose (h; h1) in practice. There are, however, some asymptotic restrictions

imposed on (h; h1) in order to achieve the
p
n-consistency of b�, as indicated in the

conditions for Theorem 4.1.

4.3 Regularity Conditions

To establish the
p
n-consistency of b�, some regularity assumptions are imposed on

key objects in kernel estimation: the kernel functions, bandwidths, and underlying

data generating processes.

Assumption SP.M (Model)

(i). fYi; Xi; Zigni=1 is an i.i.d. sample where Y 2 R, X;V 2 Rd, Z 2 RdZ , and

d; dZ > 1
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(ii). Y = g(X; �) + U = X 0� + U , where E (U jX) 6= 0 and E (U) = 0;

(iii). X = r(Z) + V , where E[V jZ] = 0 and E[U jX;V ] = E[U jr(Z) + V; V ] =

E[U jV ]; r(z) is continuous and strictly monotone in z and the rank of the Jacobian

matrix of r(z) equals d.

Assumption SP.D (DGPs)

(i). The densities fx0(x), fv0(v), and fz0(z) are all bounded away from zero within

their compact supports SX , SV , and SZ respectively; however, they equal zero at

the boundary of their respective supports.

(ii).Within their respective supports, both r0(z), fv0(v) and fz0(z) are continuously

di¤erentiable with bounded derivatives up to the s1-th order and all of E [XijVi],

E [YijVi] and f0(x; v) are continuously di¤erentiable with bounded derivatives up to

the s-th order. E [jY jp] <1 for some p > 2.

(iii). E ("2jx; v) = �2 (x; v) is continuous in (x; v); both " and X have �nite fourth

moments.

Assumption SP.K (Kernels)

(i). Let K(s) be the class of Borel measurable, bounded, real-valued functions k( )

with compact support such that
R
k( )d = 1,

R
k2( )d <1, and

R
 jk( )d =

0 for all j < s;

(ii). Moreover, k(�) has continuous bounded derivatives up to the second order.

(iii). For step 1, �
�
z�Z
h1

�
=

dZQ
p=1

k
�
zp�Zp
h1

�
with k 2K(s1); for step 2, �

�
v�V
h

�
=

dQ
p=1

k
�
vp�Vp
h

�
with k 2K(s), where both s and s1 are strictly positive integers.

Assumption SP.B (Bandwidths):



58

As n!1, nh2d !1, nh4s ! 0, and nh4s11 ! 0.

Comparable to the assumptions made by Robinson (1988) and Li (1996), As-

sumptions SP made above are quite standard in nonparametric econometrics. The

main departure is the restriction on the bandwidth h1 for estimating the controlbV , where nh4s11 ! 0 is imposed. When nh2d ! 1 is not binding, nh4s11 ! 0 is

symmetric to nh4s ! 0 in some sense.

4.4
p
n-Consistency

As we can see from the estimation procedure, b� depends on � bX; bY �, which in turn
depend on bV . So we need to take into account the fact that the conditioning vari-
ables bV are preliminary kernel estimators. Compared to e�R and e�L, the asymptotic
analysis of b� is further complicated by bV . Nevertheless, the pn-consistency of b�
is established in Theorem 4.1.

Theorem 4.1. Under Assumptions SP.M, SP.D, SP.K, and SP.B,

p
n
�b� � �0

�
d�! N

�
0;��1f 	f�

�1
f

�
;

where the asymptotic variance is determined by

�f � E
�
(Xi � E (XijVi)) (Xi � E (XijVi))0 f 2i

�
and

	f � E
�
�2 (Xi; Vi) (Xi � E (XijVi)) (Xi � E (XijVi))0 f 4i

�
:
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Proof: Note that Yi � bYi = �Xi � bXi

�0
� + (gi � bgi + "i � b"i) so that we have

b� = S�1
(X� bX) bfS(X� bX) bf;(Y�bY ) bf

= S�1
(X� bX) bfS(X� bX) bf;(X� bX)0�+(g�bg+"�b") bf

= �0 + S�1
(X� bX) bfS(X� bX) bf;(g�bg+"�b") bf :

With normalization by
p
n, we have

p
n
�b� � �0

�
= S�1

(X� bX) bf
p
nS(X� bX) bf;(g�bg+"�b") bf

= S�1
(X� bX) bf

p
n
�
S(X� bX) bf;(g�bg) bf + S(X� bX) bf;" bf � S(X� bX) bf;b" bf

�
:

Respectively, in Appendix C, Propositions C.1 and C.2 establish that

S(X� bX) bf p�! �f , and

p
nS(X� bX) bf;" bf =

p
nS�f;"f + op (1)

d�! N (0;	f ) :

The remaining two terms, S(X� bX) bf;(g�bg) bf and S(X� bX) bf;b" bf , are asymptotically neg-
ligible for both are op

�
n�1=2

�
as indicated by Proposition C.3 in Appendix C.

Therefore, we have

p
n
�b� � �0

�
= (�f + op (1))

�1 �op (1) + �pnS�f;"f + op (1)
�
+ op (1)

�
d�! ��1f N (0;	f ) = N

�
0;��1f 	f�

�1
f

�
: �

Theorem 4.1 is an analog to the Theorem in Robinson (1988) or Theorems 1

and 2 in Li (1996). It shows that the e¤ect of the preliminary kernel estimator bV
is asymptotically negligible as long as bV converges su¢ ciently fast. The e¤ect of
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bV is mute in the proof of Theorem 4.1, but apparent in Lemma C.1 in Appendix

C, which shows that

E
h
(c (Vi)� c (V1))Kh

�bVi � bV1� jV1i = O (hs + hs11 ) : (4.5)

To make the comparison, note that if V were observed, then

E [(c (Vi)� c (V1))Kh (Vi � V1) jV1] = O (hs).5

We see that hs11 in (4.5) is due to the fact that the control V is unobservable and

has to be preliminarily estimated. (4.5) also leads to the condition imposed for h1

in Assumption SP.B for the
p
n-consistency of b�.

The consistent estimator of the asymptotic variance ��1f 	f�
�1
f can be obtained

by plugging in consistent estimators of �f and 	f . The consistent estimators for

�f and 	f respectively are

b�f � 1

n

X
i

�
Xi � bXi

� bf 2i �Xi � bXi

�0
and

b	f � 1

n

X
i

�
Xi � bXi

� bfi �d"ifi�2 bfi �Xi � bXi

�0
;

whered"ifi � �Yi � bYi� bfi��Xi � bXi

�0 b� bfi is a consistent estimator for the density-
weighted error "ifi.

5See Lemma 5 in Robinson (1988) or Lemma 1 in Li (1996).
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Monte Carlo Experiments

5.1 Experiment Design

To illustrate the estimation procedure and to check the �nite sample performance of

eg (x) and bg (x) proposed in Chapter 3, I conduct a set of Monte Carlo simulations.
Set the sample size n = 1000 and the number of replications R = 100. To show

and compare the true and estimated functions graphically, we set d = d2 = 1. Four

speci�cations for the true function g0 (x) are considered: Linear: Yi = 1+Xi+Ui;

Quadratic: Yi = 1 + :2X2
i + Ui; Cubic: Yi = 1 + :2X3

i + Ui; and Exponential:

Yi = e:5Xi + Ui.

The (pseudo) random variables are generated as follows. (Ui; Vi)�s are i:i:d:

random draws from joint Normal distribution with zero mean, unit variance, and

correlation coe¢ cient �. Zi�s are i:i:d: random draws from uniform distribution on

[�5;+5]. X is then generated by Xi = 1+0:5Zi+Vi.1 Therefore, X is exogenous if

� = 0 and (severely) endogenous if � = 1. Except for Figures 5-8, set � = :5 and the

correlation coe¢ cient of X and U is :35. Next, Y is generated by Yi = g0 (Xi)+Ui,

1For �gue 9 and 10, the dimension of Z is 3, where for each component of Z, random draws
are generated from the uniform distribution on [�2;+2]; the Xi = Z1i + Z2i + Z3i + Vi.
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where g0 (x) is speci�ed as above.

For each speci�cation, I run R times of simulations. At each replication, the

random draws of Z and (U; V ) are generated as described above. The estimation

follows the procedure described in Section 3.2. When V is unobserved, er (z) is
estimated by (3.5), bV by (3.6), bm (x; v) by (3.7), and bg (x) by (3.9). When V
is observed, em (x; v) is estimated by (3.8), and eg(x) by (3.10). The bandwidths
are chosen by the rule of thumb selector: h1 = 1:06b�Z � n�1=5 if dZ = 1 and

h1 = 1:06b�Z � n�1=7 if dZ = 3; h = 1:06b�XV � n�1=6. The Epanechnikov�s kernel
is used, which satis�es Assumption K with s = 2. For comparison purpose, g (x)

is also estimated by kernel regression of Y on X using bandwidth 1:06b�X � n�1=5.
Trimming is slightly more complicated than the procedure in Section 3.2 because,

besides boundary e¤ects, we need to account for the random denominator problem

in kernel regressions when the data are sparse in some region. Therefore, to handle

both problems in the estimation, I apply the trimming suggested by Robinson

(1988) by specifying the estimated density to be bounded from bottom by n�1.

The estimation is carried out on a grid with 100 equally-spaced points for x

and for v. On each point of the grid, I show the mean, the 5% percentile and

95% percentile of the 100 estimates of bg(x), which gives us the pointwise 90%
con�dence interval for g0(x). I also compare bg(x) to eg(x) and g (x). In the �gures,
the estimates between 5% and 95% percentile of x are shown. The solid black line

is the true function g0(x); the red line of plus sign is the mean of bg(x) estimates,
90% of which are contained between the two red doted lines; the blue dashed line

is eg(x); and the blue dash-doted line is g (x). For Figures E.7-10, only g0(x) and
the 90% con�dence intervals of bg(x) estimates and of eg(x) estimates are reported
as there is no signi�cant di¤erence between their means.

For the semiparametric control function (SPCF) estimator b� proposed in Chap-
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ter 4, let Yi = X 0
i� + Ui as we are interested in the Cobb-Douglas production

function. Here, Xi = (X1i; X2i)
0 2 R2 and � = (0:3; 0:7)0. Set the sample size

n = 100, n = 500, and n = 1000, and the number of replications R = 100. At

each replication, Ui�s are random draws from N(0; 1). (V1i; V2i)�s are generated by

Vpi = �Ui+Tpi (p = 1; 2), where Tpi�s are random draws from uniform distribution

on [�1; 1]. Then Xpi�s are generated by Xpi = 0:9Zpi+Vpi, where Zpi�s are random

draws from uniform distribution on [0; 5]. So X is endogenous if � 6= 0, and I set

� = 0:5. Then the control Vi = (V1i; V2i) is estimated by (4.2) and � by (4.3). The

bandwidths and kernels are the same as above.

5.2 Simulation Results

I �rst report the performance of bg(x) compared to g (x) in these four model spec-
i�cations. In the �rst set of �gures, from Figures E.1 to E.4, the true function

g0(x), bg(x) with its 90% con�dence interval, and g (x) are displayed for each spec-
i�cation. In every case, bg(x) is consistent with the true function g0(x) contained
in the 90% con�dence interval of bg(x). At the same time, g (x) is inconsistent for
all four speci�cations, which is expected as it does not account for the potential

endogeneity of X.

The second set of �gures shows how the correlation coe¢ cient � a¤ects bg(x),
eg(x) and g (x).2 When � = 0, X is exogenous but becomes severely endogenous

when � = 1, which means that U and V are perfectly correlated. Figure E.5 shows

that when there is no endogeneity problem, g (x) actually outperforms bg(x) as
the latter has noises from the �rst and second step estimation. Figure E.6 is the

2From now on, I only report the results for the quadratic speci�cation to save space and the
results for other speci�cations are similar.
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opposite case where g (x) is inconsistent with large biases and bg(x) is consistent
except in some small area near the boundary. This is because the high (positive)

correlation between X and V means that the data points are sparse in the area in

the southeast and northwest corners of the support of (x; v). Thus the boundary

e¤ects are further aggravated by the correlation between X and V .

It is also interesting to see how eg(x) changes with �, compared to bg(x). When
� = 0, V contains no information about U so that there is no signi�cant di¤erence

between bg(x) and eg(x) as shown in Figure E.7. Also note that there the boundary
e¤ects are absent in Figure E.7 as the data points are evenly distributed over the

support of (x; v). However, when � = 1, V is a very good control for U and eg(x)
should and does perform very well, as shown in Figure E.8, which indicates control

function approaches really work. In this case, as indicated by tighter con�dence

intervals, bg(x) is dominated by eg(x) due to the fact that the control V has to be

estimated for bg(x).
As indicated in Theorems 3.1 and 3.2, higher dimension dz of the instrument Z

slows down the convergence rate of step-1 estimation and eventually a¤ects bg(x)
if it converges slower than g(v). However, it has no e¤ect on eg(x) because V is

observed and not estimated from Z. In Figures E.9 and E.10, dz increases to 3, as

expected by Theorems 3.1 and 3.2, eg(x) outperforms bg(x).
Finally, since bandwidths are critical parameters in kernel estimation, I check

whether the bandwidth selector used here is a good one and whether the estimation

is sensitive to bandwidths. As mentioned above, the rule of thumb selector is used

and h = 1:06b�Xn�1=5. The step-2 bandwidth is set to h�2 in Figure E.11 and 2�h
in Figure E.12. These two �gures show the trade-o¤ between the bias and variance

of the estimator. Due to the undersmoothing in Figure E.11, bg(x) has larger
variances but smaller biases than that in Figure E.12, where the oversmoothing
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results in smaller variances and larger biases. This fairly comprehensive set of

Monte Carlo simulations shows that both bg(x) and eg(x) perform well in �nite

samples under various scenarios.

As for the SPCF estimator b�, the simulation results in Table D.1 in Appen-
dix D indicate that b� perform better as sample size increases. Although b� is
p
n-consistent, the nonparametric preliminary estimators, i.e, bV , bX and bY , con-

verge slower than the parametric rate and are more sensitive to sample sizes and

dimensions.



Chapter6
Empirical Example

There are two purposes in this empirical example. The �rst is to illustrate the

empirical relevance of the identi�cation strategy and the nonparametric and semi-

parametric estimators proposed in this thesis. After designing and testing the

procedures (as in Chapters 2-4 and 5), we want to see how it works in practice,

which is related to the second purpose. We want to make comparison to alternative

methods, especially the methods by Olley and Pakes (1996)/Levinsohn and Petrin

(2003), and by Ackerberg, Caves and Frazer (2006).

6.1 The Dataset and Estimators

For the empirical example, I use the same Chilean data set as Levinsohn and Petrin

(2003) and Ackerberg, Caves and Frazer (2006). This Chilean panel is representa-

tive of many �rm/plant level panels, in which investments and many intermediate

inputs are reported along with capital and labor.1 The focus here is how the endo-

geneity of inputs is addressed using control function approaches. Since the interest

is in demonstrating the empirical relevance of the proposed identi�cation strategy

1Details about this dataset can be found in Roberts and Tybout (1996).
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and kernel estimators, I only report the results for food industry (CIIU 311) in

1986.2 This industry is suitable for nonparametric estimation as it has about 800

observations each year, the largest one among surveyed industries. See Table E.1

in Appendix E for summary statistics of the subsample used in the estimation.

Similar to ACF, I estimate value-added production functions (xit = (kit; lit))

rather than gross-revenue production functions (xit = (kit; lit; wit)). In the Chilean

dataset, wit includes materials, electricity, and fuels. For bg (x), the curse of dimen-
sion will make the estimation imprecise given the sample size. The dimension of

xit = (kit; lit; wit) is 5 while that of xit = (kit; lit) is 2, which is also suitable for

graphic display of the estimates of g (x). For b�, one concern with estimating a
gross-revenue production function is that the elements in wit are highly collinear

with each other (and with kit and lit as well). This multicollinearity will make the

estimates of � instable.

As discussed in Chapter 2, I estimate the production function with controls

estimated from lagged levels of capital and labor as instruments. Both (ki;t�1; li;t�1)

and (ki;t�2; li;t�2) are used as the instruments and, respectively, denote the NPCF

estimators as bgk1l1t and bgk2l2t , and the SPCF estimators as b�k1l1t and b�k2l2t . This

shows the �exibility in the choice of instruments and, as indicated in Section 6.2,

the estimates are not sensitive to the choice of instruments.

The estimation then follows from the procedures proposed in Chapters 3 and

4. The control V is constructed by (3.6). Similar to Chapter 5, the second-order

Epanechnikov kernel is used, the bandwidths are chosen by the rule of thumb,

exogenous trimming suggested by Robinson (1988) is adopted.3 Both bgk1l1t and

bgk2l2t are estimated by (3.9), and b�k1l1t and b�k2l2t by (4.3). gt (k; l) is estimated on a

2More estimation results on other industries/years are available from the author.
3Since b� is density weighted, no trimming is needed in the second and third steps.
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30� 20 grid of (k; l), which covers the region between 10% and 90% percentiles of

k and of l respectively. Since bg (x) and b� are complex kernel estimators, I resort to
the basic idea of bootstrap, treat the sample as population, and directly resample

from the data. See Horowitz (2001) for an extensive review of bootstrap.

In order to make the comparison to alternative methods, I also applying LP

and ACF methods to the sample used for b�, denoting the LP estimator as �LP
and the ACF estimator as �ACF .4 For �LP and �ACF , I use either material or

electricity as the proxy. To highlight the endogeneity issue, I also compute the

standard OLS and �xed-e¤ects estimators, denoted as �OLS and �FE respectively.

Nonparametric identi�cation and estimation are robust to misspeci�cation of

underlying data generating processes (DGPs). This is desirable because little is

actually known about the true DGPs for the surveyed industries in Chile. However,

in order to make a comparison to � estimated using the methods of SPCF, LP and

ACF, I compute the density-weighted mean coe¢ cients of capital and labor. For

production function estimator bg (k; l), the capital and labor coe¢ cients estimates
�NP �

�
�k; �l

�
are computed as follows

�k �
X

i;j
bgk (ki; lj)! (ki; lj) and �l �X

i;j
bgl (ki; lj)! (ki; lj) ;

where both bgk (ki; lj) and bgl (ki; lj) are partial derivative de�ned as follows
bgk (ki; lj) � bg (ki+1; lj)� bg (ki; lj)

ki+1 � ki
and bgl (ki; lj) � bg (ki; lj+1)� bg (ki; lj)

lj+1 � lj
;

The weight ! (ki; lj) � bf (ki; lj)�Pt;s
bf (kt; ls), where bf (ki; lj) is the density esti-

4See LP and ACF for details of their estimation procedures. Here, third-degree polynomials
are used.
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mated at (ki; lj).5

6.2 Estimation Results

Since the Cobb-Douglas production summarizes the industry in a succinct way,

let�s consider the estimates of �. All the estimates are reported in Table E.2 in

Appendix E with the bootstrapped standard errors in parentheses. Notice that

both b� and � are not sensitive to the choice of controls/instruments. Switching
the instrument from zit = (ki;t�1; li;t�1) to zit = (ki;t�2; li;t�2), the estimates are not

signi�cantly di¤erent. It changes from 0.297 to 0.303 for �k, from 0.807 to 0.814

for �l; from 0.369 to 0.372 for b�k, and from 0.765 to 0.770 for b�l.
First, let�s compare b� and � to the LP estimates �LP and ACF estimates �ACF .

For the capital coe¢ cient �k, b�k and �k are signi�cantly smaller than either �LPk
or �ACFk , no matter which set of instruments is used. On the other hand, b�l and �l
is smaller than �ACFl but larger than �LPl . Together, the return to scale parameter

is around 1.1 using the methods proposed in this paper. Given that the major

portion of observations came from bakery in Chile in 1980�s, it is reasonable to

describe the industry as labor-intensive with slightly increasing returns to scale.

Therefore, it is reasonable to believe that b� and � strike a better balance. Without
controlling for the endogeneity, the OLS estimator �OLS overestimates �l and the

return to scale parameter while the FE estimator �FE underestimates �k and the

return to scale parameter.

Second, comparing b� to �, b� gives higher estimates of the capital coe¢ cient �k
but lower estimates of the labor coe¢ cient �l. However, the estimates of return

to scale are not signi�cantly di¤erent from each other. A possible explanation is

5See Pagan and Ullah (1999) for nonparametric estimation of derivatives and their average.
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di¤erent weighting schemes involved in b� and �. For b�, we impose that all �rms
(plants) have the same coe¢ cients. In contrast, �rms with di¤erent capital and

labor stocks may have di¤erent values of � and � is an (density-weighted) average

of those values. Indeed, large �rms tend to have higher values of � than small

�rms, which is also apparent in nonparametric estimates of g (k; l). Therefore,

the Cobb-Douglas production function may not be a good approximation to the

industry of interest.

Nonparametric estimation is more �exible than parametric speci�cation using

the Cobb-Douglas production function, and enables us to learn more about the

industry beyond two coe¢ cients (�k; �l). All nonparametric estimates are reported

in Appendix E. In Figures E.1 and E.2, I �rst present bgk1l1t and bgk2l2t , the estimates

using instruments zit = (ki;t�1; li;t�1) and zit = (ki;t�2; li;t�2) respectively. Both

�gures give us a similar big picture of the industry. The production function

g (k; l) is increasing in k and l. In addition, the estimates of derivatives of g (k; l)

(i.e, the ��s) with respect to k and to l are not constant across (k; l). Thus, it seems

restrictive to assume � to be constant as in the case of Cobb-Douglas production.

Figures E.3 shows the di¤erence between bgk1l1t and bgk2l2t , which is not signi�cantly

di¤erent from zero except on some corner regions.6 The stability of estimates of gt

indicates that the proposed estimator bg is not sensitive to the choice of instruments.
With consistent estimates of gt, we can recover the idiosyncratic productivity

shock using the method proposed in Section 2.3. ait can be consistently estimated

by (2.11), and its empirical distribution bf (a) is then estimated from bait, as shown
in Figure E.4. It is clear that bf (a) is not symmetric and the normal distribution

6The regions where bgk1l1t and bgk2l2t do not agree with each other are points (k; l)�s with large
k and small l, or small k and large l. The data on these regions are sparse due to the propor-
tion between k and l in the food insdustry. Due to the di¢ culty in 3-dimensional display, the
bootstrapped (pointwise) con�dence intervals are not shown in the �gures.



71

may not be a good approximation to f (a). Note that the mean of bait is not
signi�cant di¤erent from zero, which is consistent with the location normalization

in Chapters 2 and 3.

Let�s see how the endogeneity of inputs in production estimation is addressed

using control function approaches. For comparison purpose, Figure E.5 shows the

estimate of gt (k; l), the conditional expectation of y given (k; l). Figure E.6 then

shows the di¤erence between gt (k; l) and bgk1l1t (k; l), which is also the conditional

mean of productivity shock ait given (k; l). It appears that ait is positively cor-

related to capital and labor. An interpretation is that higher ait induces �rms to

have higher levels of capital.

Besides the function g (k; l) of interest, the control function c (v) is also esti-

mated. Figures E.7 shows the control function bc (v), where controls vt = �vkt ; vlt�
are estimated from instruments zit = (ki;t�1; li;t�1). Except for some values of v

near the two corners, bc (v) is increasing in both vkt and vlt.7 This is essence of

control function approaches: the control vt moves along with the productivity so

that vt can be used to control for the unobserved productivity.

A �rm�s output is determined by ait and gt (xit), where gt (x) is the same for

every �rm at t. Levinsohn and Petrin (1999) ask the following question. What

makes an industry more productive: relocation of resources from less productive

�rm to more productive ones, or progress of all �rms? If the answer is the lat-

ter, we see gt (x) increases with t. This question can be better answered by the

di¤erence between bgk1l186 and bgk1l185 , shown in Figure E.8. We see that most �rms

(around 70%) becomes signi�cantly more productive from 1985 to 1986.8 Cer-

tainly, macroeconomic shocks are incorporated into gt (x) so that the conclusion is

7Figure E.7 can be compared to Figure 1 in LP, where controls are observed.
8Again, the estimates on the two corners are not precise due to sparseness of data on those

two corners.
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not without quali�cation. The purpose is to show the potential of nonparametric

control function approaches in production function estimation.
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AppendixA
Uniform Consistency

Lemma A.1. Let Assumptions K, B, and D hold, for C 0XV  SXV de�ned in

Section 3,

sup
i
1
��
Xi; bVi� 2 CXV � ���bVi � Vi

���= O (1) a:s :
Proof: By the de�nition of bVi in (3:6), �Xi; bVi� 2 CXV implies Zi 2 CZ , where

CZ is the inner subset of the support SX of Z. Since bVi � Vi = r0(Zi) � er(Zi), ifbVi 6=1,
sup
i
1
��
Xi; bVi� 2 CXV � ���bVi � Vi

��� = sup
i
1 (Zi 2 CZ) jer(Zi)� r0(Zi)j

6 sup
CZ

jer(z)� r0(z)j = O (1) a:s:;

where sup
CZ

jer(z)� r0(z)j = O (1) a.s. is a standard result in nonparametric econo-

metrics. �

Lemma A.2. For any x 2 CX , let px � Pr (V 2 CxV ), then

(i) n�1
Pn

i=1 1CXV (x; Vi)
a:s:�! px; and

(ii) n�1
Pn

i=1 1CXV

�
x; bVi� a:s:�! px,
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whereCxV � fv 2 SV : (x; v) 2 CXV g and CxZ � fz 2 SZ : z = r�1 (x� v) ; v 2 CxV g.

Proof : (i) Notice that 1CXV (x; Vi) = 1 (Vi 2 CxV ), so that by the Law of Large

Numbers,

n�1
Pn

i=1 1CXV (x; Vi) = n�1
Pn

i=1 1 (Vi 2 CxV )
a:s:�! Pr (V 2 CxV ) = px:

(ii) Notice that px = Pr (V 2 CxV ) = Pr (x� r (Z) 2 CxV ) = Pr (Z 2 CxZ). Now

de�ne Cx0Z � fz 2 SZ : z = er�1 (x� v) ; v 2 CxV g. Since bV is a uniformly consistent
estimator of V for Z 2 CZ , CxZ � Cx0Z . As n ! 1, Pr (Z 2 Cx0Z nCxZ) = 0 so that

Pr (Z 2 Cx0Z ) = Pr (Z 2 CxZ) and

n�1
Pn

i=1 1CXV

�
x; bVi�

= n�1
Pn

i=1 1 (Z 2 Cx0Z )
a:s:�! Pr (Z 2 Cx0Z ) = Pr (Z 2 CxZ) = px:�

Proof of Proposition 3.1: Part (a).

Note that bf(x; v)� f0(x; v) =
h bf(x; v)� ef(x; v)i+ h ef(x; v)� f0(x; v)

i
so that by the triangle inequality,

sup
CXV

j bf(x; v)� f0(x; v)j 6 sup
CXV

j bf(x; v)� ef(x; v)j+ sup
CXV

j ef(x; v)� f0(x; v)j:

As a standard result of nonparametric econometrics,

sup
CXV

j ef(x; v)� f0(x; v)j = O (2) ;

and it remains to �nd out the order of sup
CXV

j bf(x; v)� ef(x; v)j.1
1It is worthwhile to note that the same bandwidth and kernel should be used for ef(x; v)
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De�ne C 0XV as an inner closed subset of SXV containing all hypercubes of size

� (small enough) centered at a point (x; v) in CXV ; also de�ne C 00XV similarly with

respect to C 0XV . Thus CXV  C 0XV  C 00XV  SXV . Note that for (x; v) 2 CXV

with n large enough, bf(x; v) uses at most observations �Xj; bVj� in C 0XV with the
corresponding point (Xj; Vj) in C 00XV because bVj a:s:�! Vj uniformly within C 0XV for

all
�
Xj; bVj�. Also note that ef(x; v) uses at most observations (Xj; Vj) in C 00XV . So

almost surely for n large enough, for (x; v) 2 CXV

bf(x; v)� ef(x; v) = 1

nhd+d2

nP
j=1

1C00XV (Xj; Vj)
�
�
�
x�Xj
h

�
�
�
v�bVj
h

�
� �

�
x�Xj
h

�
�
�
v�Vj
h

��
;

where V j is between
�
v�bVj
h

�
and

�
v�Vj
h

�
, and � = [1; 1; :::; 1]| 2 Rd2. Then by a

second order Taylor expansion, for (x; v) 2 CXV

��� bf(x; v)� ef(x; v)���
6 1

nhd+d2+1

nP
j=1

1C00XV (Xj; Vj)
����bVj � Vj

�|
�0
�
v�Vj
h

�
�
�
x�Xj
h

����
+

1

2nhd+d2+2

nP
j=1

1C00XV (Xj; Vj)
����bVj � Vj

�|
�00
�
V j

� �bVj � Vj

�
�
�
x�Xj
h

����
6 1

nhd+d2+1

nP
j=1

1C00XV (Xj; Vj)
���bVj � Vj

���| ����0 �v�Vjh ���� �����x�Xjh

����
+

1

nhd+d2+2

nP
j=1

1C00XV (Xj; Vj)
���bVj � Vj

���| ���00 �V j

��� ���bVj � Vj

��� �����x�Xjh

����
6 O (1�h) �

1

nhd+d2

nP
j=1

�|
����0 �v�Vjh ���� �����x�Xjh

����
+O

�
21�h2+d2

�
� sup

�
�| j�00 (�)j � � 1

nhd

nP
j=1

�����x�Xjh

����
where both the �rst and the second inequalities follow from the triangular in-

in
h bf(x; v)� ef(x; v)i as for ef(x; v) in h ef(x; v)� f(x; v)i when we study the rates of uniform

convergence.
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equality, and the third one from Lemma A.1. Both e|
����0 �v�Vjh ���� �����x�Xjh

���� and�����x�Xjh

���� can be viewed as kernels except that they do not necessarily integrate
to 1. By Assumption D,

1

nhd+d2

nP
j=1

�|
����0 �v�Vjh ���� �����x�Xjh

���� a:s:�! f0(x; v) �
R
�| j�0 (!)j j� (t)j dtd!;

1

nhd

nP
j=1

�����x�Xjh

���� a:s:�! f
X0
(x) �

R
j� (t)j dt;

both of which are bounded almost surely. Thus we have,

sup
CXV

j bf(x; v)� ef(x; v)j = O
�
1�h+ 21�h2+d2

�
:

Note that s1
(2s1+dZ)

� 1+d2
(2s+d+d2)

> 0 implies that O (1�h2) = o(1) and that

O

�
21�h2+d2
1�h

�
= O

�
1�h1+d2

�
= (LogN�N)

s1
(2s1+dZ)

� 1+d2
(2s+d+d2) = o (1) ;

so that O (1�h) > O
�
21�hd2+2

�
. Therefore we have

sup
CXV

j bf(x; v)� ef(x; v)j = O (1�h) a:s:

Collecting the results, we have sup
CXV

j bf(x; v)� f0(x; v)j = O (2 + 1�h).

Part (b). First prove that sup
CXV

jbq(x; v)� q0(x; v)j = O (2 + 1�h) almost

surely. By the triangle inequality,

sup
CXV

jbq(x; v)� q0(x; v)j 6 sup
CXV

jbq(x; v)� eq(x; v)j+ sup
CXV

jeq(x; v)� q0(x; v)j:

Again we know that sup
CXV

jeq(x; v)� q0(x; v)j = O (2), and it remains to �nd out the
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order of sup
CXV

jbq(x; v)� eq(x; v)j. Similar to Part (a), for (x; v) 2 CXV
jbq(x; v)� eq(x; v)j

6 1

nhd+d2+1

nP
j=1

1C00XV (Xj; Vj)
���bVj � Vj

���| ����0 �v�Vjh ���� : �����x�Xjh

���� : jYjj
+

1

nhd+d2+2

nP
j=1

1C00XV (Xj; Vj)
���bVj � Vj

���| ���00 �V j

��� ���bVj � Vj

��� : �����x�Xjh

���� : jYjj
6 O (1�h) �

1

nhd+d22

nP
j=1

�|
����0 �v�Vjh ���� �����x�Xjh

���� jYjj
+O

�
21�h2+d2

�
� sup

�
�| j�00 (�)j � � 1

nhd

nP
j=1

�����x�Xjh

���� jYjj ;
where V j is between

�
v�bVj
h

�
and

�
v�Vj
h

�
. By Assumption D, for (x; v) 2 CXV

1

nhd+d2

nP
j=1

�|
����0 �v�Vjh ���� �����x�Xjh

���� jYij
a:s:�! E [jY j j x; v] � f0(x; v) �

R
�| j�0 (!)j j� (t)j dtd!, and

1

nhd

nP
j=1

�����x�Xjh

���� jYij a:s:�! E [jY j j X = x] � f
X0
(x) �

R
j� (t)j dt;

both of which are bounded almost surely. Thus, similar to Part (a), we have

sup
CXV

jbq(x; v)� eq(x; v)j = O
�
1�h+ 21�hd2+2

�
= O (1�h) a.s,

so that almost surely

sup
CXV

jbq(x; v)� q0(x; v)j = O (2 + 1�h) :

Notice that

bm(x; v)�m0(x; v) = bf(x; v)�1 n[bq(x; v)� q0(x; v)]�m0(x; v)
h bf(x; v)� f0(x; v)

io
;
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and that within CXV , m(x; v) is bounded and bf(x; v) is bounded away from zero

a.s.. Thus for all (x; v) 2 CXV , almost surely we have

sup
CXV

jbm(x; v)�m0(x; v)j

6 sup
CXV

��� bf(x; v)�1��� ��sup
CXV

jbq(x; v)� q0(x; v)j+ sup
CXV

jm0(x; v)j � sup
CXV

��� bf(x; v)� f0(x; v)
���� .

Part (b) then follows from Part (a) and the results above. �

Proposition A.1: For x 2 CX , sup
CX

jbg(x)� eg(x)j = O (1�h) a.s.

Proof: We need to check the order of sup
CX

jbg(x)� eg(x)j, i.e. the uniform conver-

gence rate of

n�1
Pn

i=1

h
1px
CXV

�
x; bVi� bm(x; bVi)� 1pxCXV (x; Vi) em(x; Vi)i :

First, study the rate of uniform convergence of bf(x; bVi) to ef(x; Vi) within CXV :
1px
CXV

�
x; bVi� bf(x; bVi)� 1pxCXV (x; Vi) ef(x; Vi)

= 1px
CXV

�
x; bVi�� bf(x; bVi)� ef(x; bVi)�

+
�
1px
CXV

�
x; bVi� ef(x; bVi)� 1pxCXV (x; Vi) ef(x; Vi)� : (A.1)

Consider the �rst term on the RHS of (A:1). By Proposition 3.1.(a), for given

(x; bVi) 2 CXV and n large enough, we have
sup
i

���1px
CXV

�
x; bVi�� bf(x; bVi)� ef(x; bVi)����

= sup
(x;bVi)2CXV

���� bf(x; bVi)� ef(x; bVi)���� = O (1�h) : (A.2)

Now turn to the second term on the RHS of (A:1). Similar to the proof of
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Proposition 3.1, de�ne C 0XV as an inner closed subset of SXV containing all hyper-

cubes of size � centered at a point (x; v) in CXV so that CXV  C 0XV  SXV . For�
x; bVi� 2 CXV and n large enough, ef(x; bVi) uses at most observations (Xj; Vj) in

C 0XV and so does ef(x; Vi) for (x; Vi) 2 CXV . Therefore,
1px
CXV

�
x; bVi� ef(x; bVi)� 1pxCXV (x; Vi) ef(x; Vi)

=
1

nhd+d2

nP
i=1

1px
C0
XV

(Xj; Vj)
h
�
�
x�Xj
h

�
�
� bVi�Vj

h

�
� �

�
x�Xj
h

�
�
�
Vi�Vj
h

�i
:

By the second order Taylor expansion, for (x; bVi) 2 CXV and (x; Vi) 2 CXV
��� ef(x; bVi)� ef (x; Vi)���

6 1

nhd+d2+1

nP
j=1

1px
C0
XV

(Xj; Vj)
���bVi � Vi

���| ����0 �Vi�Vjh

���� �����x�Xjh

����
+

1

nhd+d2+2

nP
j=1

1px
C0
XV

(Xj; Vj)
���bVi � Vi

���| ���00 �V j

��� ���bVi � Vi

��� �����x�Xjh

����
6 O (1�h) �

1

nhd+d2

nP
j=1

�|
����0 �Vi�Vjh

���� �����x�Xjh

����
+O

�
21�h2+d2

�
� sup

�
�| j�00 (�)j � � 1

nhd

nP
j=1

�����x�Xjh

����
= O (1�h) ,

where V j is between
�
Vi�Vj
h

�
and

� bVi�Vj
h

�
, the second inequality follows from

Lemma A.1 and the last equality holds as in the proof of Proposition 3.1.(a). Thus

with the condition s1
(2s1+dZ)

� 1+d2
(2s+d+d2)

> 0, we have

sup
CXV

���1px
CXV

�
x; bVi� ef(x; bVi)� 1pxCXV (x; Vi) ef(x; Vi)��� = O (1�h) a.s. (A.3)
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Combine (A:2) and (A:3), for (x; bVl) 2 CXV and (x; Vl) 2 CXV with n large enough,
sup
i

���1px
CXV

�
x; bVi� bf(x; bVi)� 1pxCXV (x; Vi) ef(x; Vi)��� = O (1�h) a.s. (A.4)

Similar to the proof above and of Proposition 3.1.(b), for (x; bVi) 2 CXV and

(x; Vi) 2 CXV with n large enough, we have

sup
i

���1px
CXV

�
x; bVi� bq(x; bVi)� 1pxCXV (x; Vi) eq(x; Vi)��� = O (1�h) a:s: (A.5)

Notice that

bf(x; bVi)�1 nh1pxCXV �x; bVi� bq(x; bVi)� 1pxCXV (x; Vi) eq(x; Vi)i
�m0(x; v)

h
1px
CXV

�
x; bVi� bf(x; bVi)� 1pxCXV (x; Vi) eq(x; Vi)io

= 1px
CXV

�
x; bVi� h1pxCXV �x; bVi� bm(x; bVi)� 1pxCXV (x; Vi) em(x; Vi)i :

Because exactly those data points in CXV are used for the estimation,

h
1px
CXV

�
x; bVi� bm(x; bVi)� 1pxCXV (x; Vi) em(x; Vi)i

= 1px
CXV

�
x; bVi� h1pxCXV �x; bVi� bm(x; bVi)� 1pxCXV (x; Vi) em(x; Vi)i :

Again, as em(x; v) is bounded and bf(x; v) is bounded away from zero a.s. for

(x; v) 2 CXV , similar to Proposition 3.1.(b), from (A:4) and (A:5) we get

sup
i

���1px
CXV

�
x; bVi� bm(x; bVi)� 1pxCXV (x; Vi) em(x; Vi)��� = O (1�h) a.s.
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So almost surely we have

sup
CX

jbg(x)� eg(x)j
=

���n�1Pn
i=1 1

px
CXV

�
x; bVi� bm(x; bVi)� n�1

Pn
i=1 1

px
CXV

(x; Vi) em(x; Vi)���
6 n�1sup

i

���1px
CXV

�
x; bVi� bm(x; bVi)� 1pxCXV (x; Vi) em(x; Vi)���

= O (1�h) :

Thus for x 2 CX and n large enough, sup
CX

jbg(x)� eg(x)j = O (1�h) a.s. �



AppendixB
Aysmptotic Normality

Some useful lemmas are collected here, which are extensions of standard results in

the literature, tailored for this paper.1

Lemma B.1 (Linearization): For (x; v) 2 CXV  SXV ,

(i) em (x; v)�m (x; v)= heq (x; v)� ef (x; v)m (x; v)i�f (x; v)+Op (
2
2)

if em (x; v)�m (x; v) = Op (2) ;

(ii) bm (x; bv)�m (x; v)= hbq (x; bv)� bf (x; bv)m (x; v)i�f (x; v)+Op (
2
m)

if bm (x; bv)�m (x; v) = Op (m) ;

where em (�; �) and bm (�; �) are the kernel estimators of conditional mean as de�ned
in (3:7) and (3:8), and the density f (x; v) is bounded away from zero.

For (i), this kind of linearization of kernel estimators has been studied in Ahn

and Powell (1993) among others, usually in semiparametric settings with the re-

minder terms simply represented as Op
�
n�1=2

�
. (ii) extends the linearization to the

1In this section, to make notation compact, the subscript 0 to indicate the true underlying
function is suppressed. Also suppressed are the subscripts for the density functions, which are
distinguished by the arguments. For instance, f (x) is the density for X and f (z) is for Z.
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case with preliminary kernel estimators as the conditioning variables. The proof

of (ii), however, is basically the same as that of (i). bm (x; bv) is slightly di¤erent
from bm (x; v) as the former is evaluated at (x; bv).
Lemma B.2 (Projection of U-statistics): The projection of a U-statistic Un on the

basic observation �i is bUn = �n +
c
n

nP
i=1

[rn (�i)� �n] where rn (�i) � E [Pn (�) j�i],

�n � E [rn (�i)] = E [Pn (�)] and Pn (�) is the symmetric kernel of Un. The constant

c = 2 for the second-order U-statistics, and c = 3 for the second-order U-statistics.

If E
�
kPn (�)k2

�
= o (n22), then Un = bUn + op().

For the projection of second-order U-statistics, Ahn (1995) extends Lemma 3.1

in Powell, Stock and Stoker (1989), relaxing the condition E
�
kPn (�)k2

�
= o (n)

to E
�
kPn (�)k2

�
= o (n22) to allow for wider choices of the bandwidth.2 The

extension to the third-order U-statistic is straightforward using the same reasoning

in these two papers.

Lemma B.3 (Extended Bochner�s Lemma): Suppose that both m (x) and f (x)

are functions from Rd to R with the s-th order derivatives that are uniformly

continuous and bounded within their supports. Also k (�) is a s-th order kernel

with bounded support. Using the change of variable t = X�x
h
; as the bandwidth h

goes to zero,

(i)
R 1

hd
k

�
X � x

h

�
[m (X)�m (x)] dX =

R
k (t) [m (x+ ht)�m (x)] dt

= hsksm
(s) (x) + o (hs),

where ks � 1
s!

R
k (t) tsdt and m(s) (x) is the s-th order derivative of m (x);

2Note that the nonparametric convergence rate 1= is slower than the parametric rate
p
n

so that o
�
n22

�
= o

�
n (
p
n� (1�))2

�
> o (n). If 1= =

p
n, the condition o

�
n22

�
= o (n)

goes back to the original case of Powell, Stock and Stoker (1989), where they consider the
p
n-

consistency of a semiparametric estimator for a single-index model.
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(ii)
R 1

hd
k

�
X � x

h

�
f (X) dX =

R
k (t) f (x+ ht) dt

= f (x)+hsksf
(s) (x)+o (hs) ;

(iii)
R 1

hd
k

�
X � x

h

�
f (X) [m (X)�m (x)] dX

=
R
k (t) f (x+ ht) [m (x+ ht)�m (x)] dt

= hsks

h
(m � f)(s) (x)�m (x) f (s) (x)

i
+ o (hs),

where (mf)(s) (x) is the s-th order derivative of (m (x) f (x)).

Bochner�s Lemma is extensively applied in the literature of kernel estimation,

usually with O (hs) to denote the reminder term. Lemma B.3 is a special case of

Bochner�s Lemma for di¤erentiable functions, where the s-th order Taylor expan-

sion is used to derive the explicit expression of the limits.

Lemma B.4: Suppose both m (x) and f (x) be functions from Rd to R with up to

the s-th order derivatives that are uniformly continuous and bounded within their

supports. Additionally, f (x) = 0 for x at the boundary of the support of f (x).

Also k (�) is a s-th order kernel with bounded support. As the bandwidth h goes to

zero,

(i) :
1

h

R 1

hd
k 0
�
x�X
h

�
f (X) dX = f 0 (x)+O (hs) ;

(ii) :
1

h

R 1

hd
k 0
�
x�X
h

�
f (X)m (X) dX = f 0 (x)m (x)+f (x)m 0 (x)+O (hs) :
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Proof : Using the change of variables X�x
h
= h

1

h

Z
1

hd
k0
�
x�X
h

�
f (X) dX =

1

h

Z
k0 (�t) f (x+ ht) dt

= �
Z
f (x+ ht) dk (t)

= �f (x+ ht) dk (t) jtt +
Z
f 0 (x+ ht) k (t) dt

= f 0 (x) +O (hs) ;

where f (x+ ht) k (t) jtt = f (X) k
�
x�X
h

�
jXX = 0 as f (x) = 0 at the boundary. The

last equality follows from Lemma B.3.(ii), where f 0 (x) admits derivatives up to

(s-1)-th order only so that the reminder terms are all zero due to the s-th order

kernel. The proof of (ii) is similar to that of (i). �

Linearization of Kernel Estimators with Preliminary Estimates

By linearization, the stochastic denominator problem in kernel regressions is

avoided and the estimators can be expressed as U-statistics more easily. By Lemma

B.1, the linearization of bm(x; v) gives
bm(x; v) = 1

f (x; v)

hbq (x; v)� bf (x; v)m (x; v)i+m (x; v) + op():

To introduce the trimming into the linearization of bm(x; bVi), note that bVi converges
to Vi uniformly within CXV so that 1CXV

�
x; bVi� = 1C0

XV

(x; Vi) and 1C0
XV

�
x; bVj� =

1
C00
XV

(x; Vj) where CXV  C 0XV  C 00XV . Let ai � 1pxCXV
�
x; bVi�, a0i � 1pxC0

XV

(x; Vi)

and a00i � 1pxC00
XV

(x; Vi) and let a0j � 1pxC0
XV

(Xj; Vj), a00j � 1pxC00
XV

(Xj; Vj). Therefore,

ai bm(x; bVi) = 1

n

nP
j=1

Kh (x�Xj)Kh

�bVi � bVj� a0ia00j (Yj �m (x; Vi))

f (x; Vi)
+aim(x; Vi)+op():
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Thus bg(x)� g (x) can be written as

bg(x)� g (x) = n�1
Pn

i=1 ai bm(x; bVi)
=

1

n2

nP
i=1

nP
j=1

Kh (x�Xj)Kh

�bVi � bVj� a0ia00j (Yj �m (x; Vi))

f (x; Vi)

+

�
1

n

nP
i=1

a0im (x; Vi)� g (x)

�
+ op()

=
1

n2

nP
i=1

nP
j=1

Kh (x�Xj)Kh

�bVi � bVj� a0ia00j (Yj �m (x; Vi))

f (x; Vi)
+ op();

where the third equality follows from the Central Limit Theorem. A Taylor ex-

pansion of Kh

�bVi � bVj� around Kh (Vi � Vj) yields

Kh

�bVi � bVj��Kh (Vi � Vj) =
1

hd2+1
�0h

�
Vi�Vj
h

���bVi � Vi

�
�
� bVj � Vj

��
+

1

hd2+2
�00h
�
V
� ��bVi � Vi

�
�
� bVj � Vj

��2
;

where V is between
� bVi�cVj

h

�
and

�
Vi�Vj
h

�
. Since the second-order term is asymp-

totically negligible, we only need to consider the �rst-order term of the expansion.3

Note that for bVi 6=1, bVi�Vi = r (Zi)�er (Zi) and the linearization of er (Zi) yields
er (Zi)� r (Zi) =

1

n

nP
l=1

Kh (Zi � Zl)
(r (Zi)�X2l)

f (Zi)
:

3To see this, note that

E
� bVi � Vi�� �cVj � Vj�2 6 E

 bVi � Vi2 + E cVj � Vj2 = 2O �21� = o (1).
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Therefore bg(x)� g (x) can be rewritten as

bg(x)� g (x)

= (bg(x)� eg(x)) + (eg(x)� g (x)) (B.1)

=

�
n

2

��1
1

2

nP
i=1

nP
j 6=i

Khx (x�Xj)Kh (Vi � Vj) a
0
ia
00
j

(Yj �m (x; Vi))

f (x; Vi)

+

�
n

3

��1
1

6

nP
i=1

P
j 6=i

P
l 6=i;l 6=j

Kh (x�Xj)
1

h
K 0
h (Vi � Vj) a

0
ia
00
j
(Yj�m(x;Vi))

f(x;Vi)
Kh (Zi � Zl)

(r(Zi)�X2l)
f(Zi)

+

�
n

3

��1
1

6

nP
i=1

P
j 6=i

P
l 6=i;l 6=j

Kh (x�Xj)
1

h
K 0
h (Vi � Vj) a

0
ia
00
j
(Yj�m(x;Vi))

f(x;Vi)
Kh (Zj � Zl)

(r(Zj)�X2l)
f(Zj)

+op();

where the second equality follows from the fact that the terms with i = j, j = l,

or l = i are asymptotically negligible.4 To derive the asymptotic normality of

bg(x)� g (x), I study the asymptotic properties of (eg(x)� g (x)) (the �rst term of

(B:1)) in Proposition 3.2, and those of (bg(x)� eg(x)) (the second and third terms
of (B:1)) in Theorem 3.2.

Proof of Proposition 3.2: Note that we can express eg(x)�g (x) as a U-statistic:
eg(x)� g (x) =

�
n

2

��1 nP
i=1

P
j>i

Pn
�
�i; �j

�
+ op () � Un + op () ;

where Pn
�
�j; �j

�
is the kernel of the U-statistic Un and

Pn
�
�i; �j

�
� 1

2
Kh (x�Xj)Kh (Vi � Vj) (Yj �m (x; Vi)) a

0
ia
00
j�f (x; Vi)

+Kh (x�Xi)Kh (Vj � Vi) (Yi �m (x; Vj)) a
0
ia
00
j�f (x; Vj)

� 1

2

�
Pn1

�
�i; �j

�
+ Pn2

�
�i; �j

��
:

4See a similar result in the proof of Theorem 3 in Ahn and Powell (1993).
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Next, I project Un onto the basic observation �i. The projection of Un is

bUn = �n +
2

n

nP
i=1

[rn (�i)� �n] ;

where rn (�i) � E
�
Pn
�
�i; �j

�
j�i
�
and �n � E [rn (�i)] = E

�
Pn
�
�i; �j

��
. By Lemma

B.2, if E
hPn ��i; �j�2i = o (n22), then Un = bUn + op(), where bUn is the

projection of Un. It is easy to show that E
hPn ��i; �j�2i = O

�
1�hd+d2

�
=

o (n22) if and only if
�
nhd

� �
nhd2

�
�!1, which is implied by Assumption B.

Consider the projection of Pn1
�
�i; �j

�
on �i. Let

xj�x
h
= t1 and

vj�Vi
h

= t2,

E
�
Pn1

�
�i; �j

�
j�i
�

=

Z
Kh (x� xj)Kh (Vi � vj) a

0
ia
00
j [m (xj; vj)�m (x; Vi)]

f (xj; vj)

f (x; Vi)
dxjdvj

=
a0ia

00
i

f (x; Vi)

Z
� (�t1)� (�t2) aj [m (x+ ht1; Vi + ht2)�m (x; Vi)]

a00jf (x+ ht1; Vi + ht2) dt1dt2

= hs
ksa

0
i

f (x; Vi)

h
(mf)(s) (x; Vi)�m (x; Vi) f

(s) (x; Vi)
i
+ op (h

s)

� hsa0iB1 (x; Vi) + op (h
s) ;

where a0ia
00
i = a0i and the third equality follows from Lemma B.3.5

5Note that by Bochner�s lemma,R
� (t1)� (t2) 1C00

XV
(x+ hxt1; Vi + hvt2) dt1dt2

= 1C00
XV
(x; Vi)

R
� (t1)� (t2) dt1dt2 = 1C00

XV
(x; Vi) = a00i :

Also note that a0ia
00
i � 1C0

XV

(x; Vi) � 1C00
XV

(x; Vi) = 1C0
XV

(x; Vi) = a0i.
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For the projection of Pn2
�
�i; �j

�
on �i, let

vj�Vi
h

= t,

E
�
Pn2

�
�i; �j

�
j�i
�

= Kh (x�Xi) a
0
i

Z
Kh (vj � Vi) (Yi �m (x; vj)) a

00
j

f (vj)

f (x; vj)
dvj

= Kh (x�Xi) a
0
ia
00
i

Z
� (t) (Yi �m (x; Vi + ht))

f (Vi + ht)

f (x; Vi + ht)
dt

= Kh (x�Xi) a
0
i (Yi �m (x; Vi))

Z
� (t) f(Vi+ht)

f(x;Vi+ht)
dt

�Kh (x�Xi) a
0
i

Z
� (t) [m (x; Vi + ht)�m (x; Vi)]

f (Vi + ht)

f (x; Vi + ht)
dt

= Kh (x�Xi) (Yi �m (x; Vi))
a0if (Vi)

f (x; Vi)

+hsksKh (x�Xi) (Yi �m (x; Vi)) a
0
i

�
fV
fXV

�(s)
v

(x; Vi)

�hsksKh (x�Xi) a
0
i

"�
m
fV
fXV

�(s)
v

(x; Vi)�m (x; Vi) �
�
fV
fXV

�(s)
v

(x; Vi)

#

where a0ia
00
i = a0i and the fourth equality follows from Lemma B.3.6

Now consider �n, which is actually the leading term of the bias of (eg(x)� g (x)).

�n � E [rn (�i)] = E
�
Pn
�
�i; �j

��
(B.2)

=
1

2
hsks

Z h
(m (x; v) f (x; v))(s)x �m (x; v) f (s)x (x; v)

i a0if (v)
f (x; v)

dv

+
1

2
hs
Z
a0i

"�
m
fV
fXV

�(s)
v

(x; v)�m (x; v)

�
fV
fXV

�(s)
v

(x; v)

#
f (x; v) dv

+
1

2
hs
Z
a0iB1 (x; v) f (v) dv + o (hs)

� hs
1

2
[B0 (x) +B1 (x) +B2 (x)] + o (hs)

� hsBg (x) + o (hs) :

6Here (f
V
�f

XV
)
(s)
v (x; Vi) is the s-th order partial derivative of (f (v)�f (x; v)) w.r.t.

v evaluated at (x; Vi), and (mf
V
�f

XV
)
(s)
v (x; Vi) is the s-th order partial derivative of

(m (x; v) f (v)�f (x; v)) w.r.t. v evaluated at (x; Vi).
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Note that the bias is at the order of O (hs) as Bg (x) is bounded for x 2 CX .

Put together,

bUn � �n =
1

n

nP
i=1

Kh (x�Xi) (Yi �m (x; Vi))
a0if (Vi)

f (x; Vi)
+ o (hs) and

eg(x)� g (x) =
�bUn � �n

�
+ (�n � 0)

=
1

n

nP
i=1

Kh (x�Xi) (Yi �m (x; Vi))
a0if (Vi)

f (x; Vi)
+Op (h

s) ;

By the Liapunov�s Central Limit Theorem,

1

n

nP
i=1

Kh (x�Xi) (Yi �m (x; Vi))
aif (Vi)

f (x; Vi)

d�! N (B0 (x) ; Vg (x)) , where

Vg (x) =
1

nhd
R
V ar (Y jx; v) (a

0
i)
2 f 2(v)

f(x; v)
dv �

R
�2 (t) dt:

Therefore the variance is at the order of O
�
1
nhd

�
.

Collecting the results above, we have

eg (x)� g (x) = Op

�
hs + 1p

nhd

�
: (B.3)

This shows that the optimal rate of (pointwise) convergence of eg (x) to g (x) is
achieved when hs has exactly the order of 1p

nhd
. That is, when h assumes the

optimal bandwidth of the exact order n�1=(2s+d), eg (x) obtains the optimal rate
ns=(2s+d). To establish Proposition 3.2.(i), it su¢ ces to multiply (B:3) by

p
nhd and

to take the limit as n!1. Note that the bias is Bg (x) = B0 (x)+B1 (x)+B2 (x),

not just B0 (x). This is because eg (x) is estimated by averaging em (x; Vi)�s over Vi,
which introduces additional biases. To prove Proposition 3.2.(ii), it su¢ ces to

divide (B:3) by hs and to take the limit as n!1. �



99

Proposition B.1. For x 2 CX , (bg(x)� eg(x)) = Op (1).

Proof : The asymptotic properties of (eg(x)� g(x)) is derived in Proposition 3.2

and it remains to study that of bg(x)� eg(x). Express bg(x)� eg(x) as a third-order
U-statistic:

bg(x)� eg(x)
=

�
n

3

��1 nP
i=1

P
j 6=i

P
l 6=i;l 6=j

1

6
Kh (x�Xj)

1

h
K 0
h (Vi � Vj) a

0
ia
00
j
(Yj�m(x;Vi))

f(x;Vi)
Kh (Zi � Zl)

(r(Zi)�X2l)
f(Zi)

+

�
n

3

��1 nP
i=1

P
j 6=i

P
l 6=i;l 6=j

1

6
Kh (x�Xj)

1

h
K 0
h (Vi � Vj) a

0
ia
00
j
(Yj�m(x;Vi))

f(x;Vi)
Kh (Zj � Zl)

(r(Zj)�X2l)
f(Zj)

+op ()

�
�
n

3

��1 nP
i=1

P
j>i

P
l>j

Pn1
�
�i; �j; �l

�
+

�
n

3

��1 nP
i=1

P
j>i

P
l>j

Pn2
�
�i; �j; �l

�
+ op ()

� Un1 + Un2 + op () (B.4)

where both Un1 and Un2 are third-order U-statistics with the kernels Pn1
�
�i; �j; �l

�
and Pn2

�
�i; �j; �l

�
respectively.

Lemma B.5 and B.6 show that Un1 = Op (h
s1
1 ) and Un2 = Op (h

s1
1 ) respectively.

Unless we oversmooth in Step 1, Op (h
s1
1 ) 6 Op (1). Hence, for x 2 CX

(bg(x)� eg(x)) = Op (1). �

Lemma B.5: For the third order U-statistic Un1 de�ned in (B:4), Un1 = Op (h
s1
1 ).

Proof: Un1 =
�
n
3

��1 nP
i=1

P
j>i

P
l>j

Pn1
�
�i; �j; �l

�
, where Pn1

�
�i; �j; �l

�
is the kernel of

Un1 and

Pn1
�
�i; �j; �l

�
=

1

6
[pn1

�
�i; �j; �l

�
+ pn1

�
�i; �l; �j

�
+ pn1

�
�j; �i; �l

�
+pn1

�
�l; �i; �j

�
+ pn1

�
�j; �l; �i

�
+ pn1

�
�l; �j; �i

�
];



100

with pn1 (�; �; �)�s to be de�ned below.

The asymptotic behavior of Un1 is studied by the projection bUn1 of Un1 onto
the basic observations �i�s.

bUn1 = �n1 +
6

n

nP
i=1

[rn1 (�i)� �n1] ;

where rn1 (�i) � E
�
Pn1

�
�i; �j; �l

�
j�i
�
and �n1 � E [rn1 (�i)] = E

�
Pn1

�
�i; �j; �l

��
.

By Lemma B.2, if E
hPn1 ��i; �j; �l�2i = o (n22), then Un1 = bUn1 + op(). It

can be shown that E
hPn1 ��i; �j; �l�2i = O

�
1

hd+d2+1
1

hdz1

�
= o (n22) if and only

if n22hd+d2+1hdz1 �!1, which is implied by Assumption B.

One by one, I examine the projection of six components of Pn1
�
�i; �j; �l

�
on �i.

Since Un1 is a third-order U-statistic, it is di¢ cult to project Un1 on �i directly. I

do it in a sequential way, where the techniques are similar to but more involved

than those used the proof of Proposition 3.2.

For pn1
�
�i; �j; �l

�
= Kh (x�Xj)

1
h
K 0
h (Vi � Vj)

(Yj�m(x;Vi))a0ia00j
f(x;Vi)

Kh (Zi � Zl)
(r(Zi)�X2l)

f(Zi)
:

Sequential projection on decreasing sets of conditioning variables yields

E
�
pn1
�
�i; �j; �l

�
j�i; �j

�
= Kh (x�Xj)

1

h
K 0
h (Vi � Vj)

(Yj�m(x;Vi))a0ia00j
f(x;Vi)f(Zi)

� hs11 R1 (Zi) ;

where R1 (Zi) =
h
(rf)(s1) (Zi)� r (Zi) f

(s1) (Zi)
i R

� (t) ts1dt;

E
�
pn1
�
�i; �j; �l

�
j�i; Vj

�
=

1

h
K 0
h (Vi � Vj)

h
s1
1 R1(Zi)a

0
ia
00
j

f(x;Vi)f(Zi)
[f (x) (m (x; Vj)�m (x; Vi)) +Op (h

s)] ;

E
�
pn1
�
�i; �j; �l

�
j�i
�
= hs11

f (x) f (Vi) a
0
i

f (x; Vi) f (Zi)
m0
v (x; Vi) + op (h

s1
1 ) :
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Similarly, for

pn1
�
�i; �l; �j

�
= Kh (x�Xl)

1
h
K 0
h (Vi � Vl)

(Yl�m(x;Vi))a0ia00j
f(x;Vi)

Kh (Zi � Zj)
(r(Zi)�X2j)

f(Zi)
;

E
�
pn1
�
�i; �l; �j

�
j�i
�
= hs11

f(x)f(Vi)a
0
i

f(x;Vi)f(Zi)
m0
v (x; Vi) + op (h

s1
1 ) :

Note that E [pn1 (�i; �; �)] = Op (h
s1
1 ) as

f(x)f(v)a0i
f(x;v)

m0
v (x; v) is bounded within C

0
XV .

7

For pn1
�
�j; �i; �l

�
= Kh (x�Xi)

1
h
K 0
h (Vj � Vi)

(Yi�m(x;Vj))a0ia00j
f(x;Vj)

Kh (Zj � Zl)
(r(Zj)�X2l)

f(Zj)
:

Sequential projection on decreasing sets of conditioning variables yields

E
�
pn1
�
�j; �i; �l

�
j�i; �j

�
= Kh (x�Xi)

1

h
K 0
h (Vj � Vi)

(Yi�m(x;Vj))a0ia00j
f(x;Vj)f(Zj)

� hs11 R1 (Zj) ;

E
�
pn1
�
�j; �i; �l

�
j�i; Vj

�
= Kh (x�Xi)

1

h
K 0
h (Vj � Vi)

(Yi�m(x;Vj))a0ia00j
f(x;Vj)f(Zj)

hs11 �R1;

where R1 =
R
R1 (z) dz;

E
�
pn1
�
�j; �i; �l

�
j�i
�

= hs11 Kh (x�Xi)

�
(Yi �m (x; Vi))

�
fV
fXV

�0
v
(x; Vi)�m0

v (x; Vi)
f(Vi)
f(x;Vi)

�
a0iR1 + op (h

s1
1 ) :

Similarly, for

pn1
�
�l; �i; �j

�
= Kh (x�Xi)

1
h
K 0
h (Vl � Vi)

(Yi�m(x;Vl))a0ia00j
f(x;Vl)

Kh (Zl � Zj)
(r(Zl)�Xj)
f(Zl)

;

E
�
pn1
�
�l; �i; �j

�
j�i
�

= hs11 Kh (x�Xi)

�
(Yi �m (x; Vi))

�
fV
fXV

�0
v
(x; Vi)�m0

v (x; Vi)
f(Vi)
f(x;Vi)

�
a0iR1 + op (h

s1
1 ) :

Note that E [pn1 (�; �i; �)] = Op (h
s1
1 ) as m

0
v (x; v)

f(v)a0i
f(x;v)

R1 is bounded within C 0XV .

7Note that a0i = 1 ((x; v) 2 C 0XV ) but the notation a0i is still used.
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For pn1
�
�j; �l; �i

�
= Kh (x�Xl)

1
h
K 0
h (Vj � Vl)

(Yl�m(x;Vj))a0ia00j
f(x;Vj)

Kh (Zj � Zi)
(r(Zj)�X2i)

f(Zj)
:

Sequential projection on decreasing sets of conditioning variables yields

E
�
pn1
�
�j; �l; �i

�
j�i; �j; Vl

�
=

1

h
K 0
h (Vj � Vl) a

0
ia
00
j
f(x)[m(x;Vl)�m(x;Vj)]+Op(hs)

f(x;Vj)
Kh (Zj � Zi)

(r(Zj)�X2i)
f(Zj)

;

E
�
pn1
�
�j; �l; �i

�
j�i; Vj; Vl

�
=

1

h
K 0
h (Vj � Vl) a

0
ia
00
j
f(x)[m(x;Vl)�m(x;Vj)]+Op(hs)

f(x;Vj)
[(r (Zi)�X2i) +Op (h

s1
1 )] ;

E
�
pn1
�
�j; �l; �i

�
j�i; Vj

�
=
f (x) a0ia

00
j

f (x; Vj)
[f (Vj)m

0
v (x; Vj)] [(r (Zi)�X2i)] +Op (h

s1
1 ) ;

E
�
pn1
�
�j; �l; �i

�
j�i
�
= f (x) (r (Zi)�X2i)

Z
f2(v)m0

v(x;v)a
0
i

f(x;v)
dv +Op (h

s1
1 ) :

Similarly, for

pn1
�
�l; �j; �i

�
= Kh (x�Xj)

1
h
K 0
h (Vl � Vj)

(Yj�m(x;Vl))a0ia00j
f(x;Vl)

Kh (Zl � Zi)
(r(Zl)�X2i)

f(Zl)
;

E
�
pn1
�
�l; �j; �i

�
j�i
�
= f (x) (r (Zi)�X2i)

Z
f2(v)m0

v(x;v)a
0
i

f(x;v)
dv +Op (h

s1
1 ) :

Note that E [pn1 (�; �; �i)] = Op (h
s1
1 ) as E [r (Zi)�X2i] = 0.

Put together,
�bUn1 � �n1

�
= 6

n

nP
i=1

[rn1 (�i)� �n1] = Op (h
s1
1 ) and (�n1 � 0) =

Op (h
s1
1 ) so that bUn1 = Op (h

s1
1 ). Therefore Un1 = bUn1 + op () = Op (h

s1
1 ). �

Lemma B.6: For the third order U-statistic Un2 de�ned in (B:4), Un2 = Op (h
s1
1 ).

Proof: Un2 =
�
n
3

��1 nP
i=1

P
j>i

P
l>j

Pn2
�
�i; �j; �l

�
, where Pn2

�
�i; �j; �l

�
is the kernel of
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Un2 and

Pn2
�
�i; �j; �l

�
=

1

6
[pn2

�
�i; �j; �l

�
+ pn2

�
�i; �l; �j

�
+ pn2

�
�j; �i; �l

�
+pn2

�
�l; �i; �j

�
+ pn2

�
�j; �l; �i

�
+ pn2

�
�l; �j; �i

�
]:

with pn2 (�; �; �)�s to be de�ned below.

Similar to Un1, we have Un2 = bUn2 + op(), where bUn2 is the projection of Un2
onto the basic observation �i.

bUn2 = �n2 +
6

n

nP
i=1

[rn2 (�i)� �n2] ;

where rn2 (�i) � E
�
Pn2

�
�i; �j; �l

�
j�i
�
and �n1 � E [rn2 (�i)] = E

�
Pn2

�
�i; �j; �l

��
.

Since the techniques involved in the projection of Un2 on �i is similar to those in

Lemma B.5, I just report the �nal results of the projection of six components of

Pn2
�
�i; �j; �l

�
on �i.

For both

pn2
�
�i; �j; �l

�
= Kh (x�Xj)

1
h
K 0
h (Vi � Vj)

(Yj�m(x;Vi))a0ia00j
f(x;Vi)

Kh (Zj � Zl)
(X2l�r(Zj))

f(Zj)

pn2
�
�i; �l; �j

�
= Kh (x�Xl)

1
h
K 0
h (Vi � Vl)

(Yl�m(x;Vi))a0ia00j
f(x;Vi)

Kh (Zl � Zj)
(X2j�r(Zl))

f(Zl)
:

E [pn2 (�i; �; �) j�i] = hs11
f (x) f (Vi) a

0
i

f (x; Vi)
m0
v (x; Vi)R1 + op (h

s1
1 ) ;

and the expectation E [pn2 (�i; �; �)] = O (hs11 ) as
f(x)f(v)a0i
f(x;v)

m0
v (x; v)R1 is bounded

within C 0XV .

For both

pn2
�
�j; �i; �l

�
= Kh (x�Xi)

1
h
K 0
h (Vj � Vi)

(Yi�m(x;Vj))a0ia00j
f(x;Vj)

Kh (Zi � Zl)
(X2l�r(Zi))

f(Zi)
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pn2
�
�l; �i; �j

�
= Kh (x�Xi)

1
h
K 0
h (Vl � Vi)

(Yi�m(x;Vl))a0ia00j
f(x;Vl)

Kh (Zi � Zj)
(Xj�r(Zi))
f(Zi)

:

E [pn2 (�; �i; �) j�i]

= hs11
Kh(x�Xi)aiR1(Zi)

f(Zi)

�
(Yi �m (x; Vi))

�
f(Vi)
f(x;Vi)

�0
v
�m (x; Vi)

0
v
f(Vi)
f(x;Vi)

�
+ op (h

s1
1 ) ;

and E [pn2 (�; �i; �)] = O (hs11 ) as
f(x)f(v)
f(x;v)

m0
v (x; v) a

0
iR1 is bounded within C

0
XV .

For both

pn2
�
�j; �l; �i

�
= Kh (x�Xl)

1
h
K 0
h (Vj � Vl)

(Yl�m(x;Vj))a0ia00j
f(x;Vj)

Kh (Zl � Zi)
(X2i�r(Zl))

f(Zl)

pn2
�
�l; �j; �i

�
= Kh (x�Xj)

1
h
K 0
h (Vl � Vj)

(Yj�m(x;Vl))a0ia00j
f(x;Vl)

Kh (Zj � Zi)
(X2i�r(Zj))

f(Zj)
:

E [pn2 (�; �; �i) j�i] = [r (Zi)�X2i] f (x)

Z
f 2 (v)m0

v (x; v) a
0
i

f (x; v)
dv +Op (h

s1
1 ) ;

and E [pn1 (�; �; �i)] = O (hs11 ) as E [r (Zi)�X2i] = 0.

Although [r (Zi)�X2i] f (x)
R f2(v)m0

v(x;v)a
0
i

f(x;v)
dv is not of order Op (h

s1
1 ),

1

n

nP
i=1

E [pn2 (�; �; �i) j�i]

= f (x)

Z
f 2 (v)m0

v (x; v) a
0
i

f (x; v)
dv � 1

n

nP
i=1

[r (Zi)�X2i] = Op
�
n�1=2

�
;

where the variance is of order Op
�
n�1=2

�
and f (x)

R f2(v)m0
v(x;v)a

0
i

f(x;v)
dv is bounded

within C 0XV .

Put together,
�bUn2 � �n2

�
= 6

n

nP
i=1

[rn2 (�i)� �n2] = Op (h
s1
1 ) and (�n2 � 0) =

Op (h
s1
1 ) so that bUn2 = Op (h

s1
1 ). Therefore Un2 = bUn2 + op () = Op (h

s1
1 ). �



AppendixC
Root-N-Consistency

I establish the
p
n-consistency of b�, the density-weighted estimator with con-

structed variables in the nonparametric part of the partially linear model. The

proof proceeds similarly to that in Li (1996), except that we need to take into

account the fact that the conditioning variable V is a constructed one bV . An ana-
logue to Lemma 1 in Li (1996), Lemma C.1 is the key di¤erence and shows the

e¤ect of preliminary kernel estimator bV .
De�ne �i � E (XijVi) and �i � Xi � �i so that Xi = �i + �i and bXi = b�i + b�i

where, bfi � 1

n

P
jKh

�bVi � bVj�, and cWi �
1

n

P
jWjKh

�bVi � bVj�� bfi for Wi =

Xi; �i; �i. Let m (Vi) = c (Vi) or m (Vi) = E (XijVi) = �i, and �i = "i or �i = �i. I

prove only the case thatm is a scalar function (d = 1). For the case with d > 1, the

proof follows by the Cauchy inequality. Since n
n�1 ! 1 as n ! 1, the di¤erence

between n and (n� 1) is ignored.

Lemma C.1. E
h
(m (Vi)�m (V1))Kh

�bVi � bV1� jV1i = O (hs + hs11 ) :

Proof: As mentioned in Appendix B,

Kh

�bVi � bV1��Kh (Vi � V1) =
1

h
K 0
h (Vi � V1)

��bVi � Vi

�
�
� bV1 � V1

��
+ s:o;
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where s.o. represents that the remainder term is of smaller order than the �rst

order term. Therefore, expand Kh

�bVi � bV1� and we get
E
h
(m (Vi)�m (V1))Kh

�bVi � bV1� jV1i
= E [(m (Vi)�m (V1))Kh (Vi � V1) jV1]

+E

�
(m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)

�bVi � Vi

�
jV1
�

�E
�
(m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)

� bV1 � V1

�
jV1
�
:

It is a standard result that the �rst term E [(m (Vi)�m (V1))Kh (Vi � V1) jV1] =

O (hs), see Robinson (1988) or Li (1996). The second and third terms are due

to the preliminary estimator bV , and I show that both terms are O (hs11 ). From
Appendix B, for bVi 6=1,

bVi � Vi = r (Zi)� er (Zi) = 1

n

nP
l=1

Kh (Zi � Zl)
(r (Zi)� r (Zl))

f (Zi)
:

First, consider E
�
(m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)

� bV1 � V1

�
jV1
�
. Conditioning

on (V1; Z1; Vi),

E

�
(m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)

� bV1 � V1

�
j V1; Z1; Vi

�
= (m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)E

�
1

n

nP
l=1

�
Kh (Z1 � Zl)

(r (Z1)� r (Zl))

f (Z1)

�
j Z1

�
= (m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)E

��
Kh (Z1 � Zl)

(r (Z1)� r (Zl))

f (Z1)

�
j Z1

�
= (m (Vi)�m (V1))

1

h
K 0
h (Vi � V1) � hs11 ksr(s1) (Z1) ;
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where the last equality follows by Lemma B.3.(i). Then by Lemma B.4,

E

�
(m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)

� bV1 � V1

�
jV1
�

= hs11 ksr
(s1) (Z1) [m

0 (V1) f (V1) +O (hs)] :

Since the functions r(s1) (Z1), m0 (V1) and f (V1) are all bounded,

E

�
(m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)

� bV1 � V1

�
jV1
�
= O (hs11 ) :

Next, consider E
�
(m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)

�bVi � Vi

�
jV1
�
. Conditioning

on (V1; Vi; Zi),

E

�
(m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)

�bVi � Vi

�
j V1; Vi; Zi

�
= (m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)E

�
1

n

nP
l=1

�
Kh (Zi � Zl)

(r (Zi)� r (Zl))

f (Zi)

�
j Zi

�
= (m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)E

��
Kh (Zi � Zl)

(r (Zi)� r (Zl))

f (Zi)

�
j Zi

�
= (m (Vi)�m (V1))

1

h
K 0
h (Vi � V1) � hs11 ksr(s1) (Zi) ;

where the last equality follows by Lemma B.3.(i). Similarly, we have,

E

�
(m (Vi)�m (V1))

1

h
K 0
h (Vi � V1)

�bVi � Vi

�
jV1
�
= O (hs11 ) :

Together, E
h
(m (Vi)�m (V1))Kh

�bVi � bV1� jV1i = O (hs + hs11 ). �

Lemma C.2. S(bm�m) bf = Op

�
h2s + h2s11 + h2

�
nhd

��1�.
Proof: Let E1 [�] � E (�jV1) and Ki1 � Kh

�bVi � bV1�. It can be shown that
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E
�
(mi �m1)

2K2
i1

�
= O

�
h2�d

�
.

E
h���S(bm�m) bf ���i

=
1

n

P
i

E
h
(bmi �mi)

2 bfi2i = E
h
(bm1 �m1)

2 bf12i
=

1

n2
P

i

P
j E [(mi �m1)Ki1 (mj �m1)Kj1]

=
1

n2
P
i6=1

(
E
�
(mi �m1)

2K2
i1

�
+

P
j 6=1;j 6=i

E (E1 [(mi �m1)Ki1] � E1 (mj �m1)Kj1)

)
6 1

n

�
O
�
h2�d

�
+ nO (hs + hs11 )

2�
= O

�
h2s + h2s11 + h2

�
nhd

��1�
,

where the inequality follows from Lemma C.1. �

Lemma C.3. S(bm�m) bf;� bf = op
�
n�1=2

�
.

Proof : Notice that S(bm�m) bf;�( bf�f) is of smaller order than S(bm�m) bf;�f since
� bf � f

�
=

op (1). So S(bm�m) bf;� bf is of the same order as S(bm�m) bf;�f , which is derived below.

E
h
S2
(bm�m) bf;�f

i
=

1

n2
P
i

E
h
(bmi �mi)

2 bfi2�2i f 2i i
=

1

n
E
h
(bm1 �m1)

2 bf12�2� (X1; V1) f
2
i

i
6 B�

n
E
h
(bm1 �m1)

2 bf12i
=

B�
n
E
h
S(bm�m) bf

i
= n�1o (1) = o

�
n�1

�
,

where the inequality follows from the boundedness of the functions of (X1; V1) and

the fourth equality from Lemma C.2. Therefore, S(bm�m) bf;� bf = op
�
n�1=2

�
. �

Lemma C.4. S(bm�m) bf;b� bf = op
�
n�1=2

�
.
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Proof : By the Cauchy inequality,

���S(bm�m) bf;b� bf ��� 6
h���S(bm�m) bf ��� ���Sb� bf ���i1=2

=
h
Op

�
h2s + h2s11 + h2

�
nhd

��1�
Op

��
nhd

��1�i1=2
= Op

�
hs
�
nhd

��1=2
+ hs11

�
nhd

��1=2
+ h

�
nhd

��1�
= op

�
n�1=2

�
: �

Lemma C.5.

(i) : S" bf;b� bf = op
�
n�1=2

�
; (ii). Sb" bf;� bf = op

�
n�1=2

�
; (iii). Sb" bf;b� bf = op

�
n�1=2

�
.

Proof of (i): Again notice that S"( bf�f);b� bf is of smaller order than S"f;b� bf since� bf � f
�
= op (1). So S" bf;b� bf is of the same order as S"f;b� bf , which is derived as

follows.

E
h
S2
"f;b� bf

i
=

1

n2
P
i

E

�
�2i f

2
i

�b�ibfi�2�
=

1

n
E

�
�2� (X1; V1) f

2
i

�b�ibfi�2�
6 B�

n
E

��b�ibfi�2� = O
�
n�1

�
nhd

��1�
;

where the inequality follows from the boundedness of the functions of (X1; V1)

and the last equality from Lemma C.2. Therefore, S" bf;b� bf = O
��
nhd=2

��1�
=

op
�
n�1=2

�
.

Proof of (ii): The same as (i).
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Proof of (iii): By the Cauchy inequality,

���Sb" bf;b� bf ��� 6
h���Sb" bf ��� ���Sb� bf ���i1=2

=
h
Op

��
nhd

��1�
Op

��
nhd

��1�i1=2
= Op

��
nhd

��1�
= op

�
n�1=2

�
. �

Lemma C.6. (i). Sb� bf = op (1); (ii). Sb� bf;� bf = op (1).

Proof of (i):

E
h���Sb� bf ���i =

1

n

P
i

E
hb�2i bf 2i i = E

hb�1 bf1i
=

1

n2
P

i

P
j E
�
�i�jKi1Kj1

�
=

1

n2
P

iE
�
�2iK

2
i1

�
=

1

n
E
�
�2� (X1; V1)K

2
i1

�
6 B�

n
E
�
K2
i1

�
= O

��
nhd

��1�
= o (1) :

Proof of (ii): Follows from Lemma C.5.(i). �

Proposition C.1. S(X� bX) bf p�! �f :

Proof : Note that Xi = �i+�i and bXi = b�i+b�i so that �X � bX� bf = �� � b�� bf +
� bf � b� bf . We have

S(X� bX) bf = S(��b�) bf+� bf�b� bf
= S(��b�) bf + S� bf + Sb� bf + 2S(��b�) bf;� bf � 2S(��b�);b� bf � 2S� bf;b� bf
= S� bf + op (1) = S�f + op (1)

=
1

n

P
i

�i�
0
ifi + op (1)

p�! E (�1�
0
1f1) � �f ;
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by Lemmas C.2 - C.6 and the Law of Large Numbers. �

Proposition C.2.
p
nS(X� bX) bf;" bf d�! N (0;	f ) :

Proof : Since
�
X � bX� bf = �� � b�� bf + � bf � b� bf ,

p
nS(X� bX) bf;" bf =

p
n
�
S(��b�) bf;" bf + S� bf;" bf + Sb� bf;" bf

�
=

p
nS� bf;" bf + op (1) =

p
nS�f;"f + op (1)

=
1p
n

P
i

�i"if
2
i

d�! N (0;	f ) ;

by Lemmas C.2 - C.6 and the Central Limit Theorem. �

Proposition C.3. (i) S(X� bX) bf;(g�bg) bf = op
�
n�1=2

�
; and (ii) S(X� bX) bf;b" bf = op

�
n�1=2

�
:

Proof: Since
�
X � bX� bf = �� � b�� bf + � bf � b� bf , we have (i):

S(X� bX) bf;(g�bg) bf = S(��b�) bf+� bf�b� bf;(g�bg) bf
= S(��b�) bf;(g�bg) bf + S� bf;(g�bg) bf � Sb� bf;(g�bg) bf
= op

�
n�1=2

�
;

and (ii):

S(X� bX) bf;b" bf = S(��b�) bf;b" bf + S� bf;b" bf � Sb� bf;b" bf
= op

�
n�1=2

�
:

by Lemmas C.2 - C.6. �



AppendixD
Monte Carlo Simulations

Semiparametric Control Function Estimation:

Y = X 0� + U , where E (U jX) 6= 0 and E (U) = 0;

V = X � E (XjZ), where E[U jX;V ] = E[U jV ].

True values of parameters: �1 = 0:3 and �2 = 0:7.

Sample Size n �1 S.E. �2 S.E.

n = 100 0.290 (0.031) 0.711 (0.072)

n = 500 0.293 (0.026) 0.706 (0.086)

n = 1000 0.297 (0.020) 0.702 (0.059)

Table D.1 Estimates of �
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Nonparametric Control Function Estimation

Four Speci�cations
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Exogenous v.s Endogenous Regressors
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The E¤ect of The Dimension of Instruments
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The E¤ect of Bandwidths
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AppendixE
Empirical Results

Chilean Panel Dataset - Food Industry - 1986

t = 1986 Obs Mean S.D. Min Max

Log Value Added yit 787 9.018 1.686 5.034 14.192

Log Capital kit 787 8.047 2.061 -0.659 14.472

Log Capital ki;t�1 787 8.061 2.033 -0.554 14.482

Log Capital ki;t�2 787 8.094 2.003 -0.448 14.520

Log Labor lit 787 3.392 0.935 2.303 6.731

Log Labor li;t�1 787 3.377 0.902 2.303 6.575

Log Labor li;t�2 787 3.343 0.878 2.303 6.548

Table E.1. Summary Statistics
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Chilean Panel Dataset - Food Industry - 1986

Food Industry �k S.E. �l S.E.

NPCF: zit = (ki;t�1; li;t�1) 0.297 (0.054) 0.807 (0.072)

NPCF: zit = (ki;t�2; li;t�2) 0.303 (0.059) 0.814 (0.086)

SPCF: zit = (ki;t�1; li;t�1) 0.369 (0.043) 0.765 (0.059)

SPCF: zit = (ki;t�2; li;t�2) 0.372 (0.041) 0.770 (0.061)

ACF - mit 0.383 (0.042) 0.832 (0.054)

ACF - eit 0.386 (0.040) 0.867 (0.051)

LP - mit 0.458 (0.039) 0.681 (0.039)

LP - eit 0.451 (0.037) 0.764 (0.046)

OLS 0.344 (0.029) 0.937 (0.034)

FE 0.165 (0.052) 0.704 (0.060)

Table E.2 Estimates of Capital and Labor Coe¢ cients
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