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ABSTRACT 

Since 2014, Campylobacter has been the leading bacterial cause of foodborne illness, 

resulting in billions in economic losses each year and straining public health. Chicken, the most 

consumed meat in the US, is the primary source of Campylobacter infection in humans, 

accounting for 50 – 90% of all cases. To survive food processing stressors like oxidative and cold 

stress, Campylobacter enters a viable but nonculturable (VBNC) state, where cells remain intact 

(viable) but cannot grow in conventional culture media (nonculturable). This presents a food 

safety challenge since growth in selective media, which only determines the culturable cells, is 

the standard method for food safety monitoring and surveillance. Recently, culture-independent 

detection methods like viability quantitative polymerase chain reaction (qPCR) have been 

developed to detect both culturable and nonculturable viable cells.  

In the first project, we tested retail chicken breasts (n = 211) for Campylobacter spp. 

using the gold-standard culture-based methods and viability qPCR. Culture-based enrichment 

yielded isolates for 16 samples, with whole genome sequencing identifying isolates from five 

samples as C. jejuni, eight samples as Acinetobacter spp., one as Micrococcus luteus, and one as 

Escherichia coli, resulting in 1.9% prevalence on retail chicken breast. Isolate from one sample 

could not be resuscitated for whole genome sequencing. The Campylobacter concentrations on 

five enrichment-positive chicken breast samples appeared to have been below the limit of 

detection of direct plating (60 CFU per 325 g sample) and viability qPCR (3,200 – 5,000 cells per 

325 g sample) methods.  

In the second project, we evaluated the antimicrobial activity of peroxyacetic acid (PAA), 

an antimicrobial commonly used in poultry processing to control foodborne pathogens post-

slaughter. PAA acts as an antimicrobial by inducing oxidative stress, which can inactivate 

Campylobacter but may also induce a VBNC state. To assess to what extent PAA inactivates 
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Campylobacter on chicken meat, we treated Campylobacter-inoculated chicken breasts with 500 

ppm PAA for 10 seconds via spray or immersion and quantified culturable cells via direct plating 

and viable cells via viability qPCR. Immediately after the 10-second PAA treatment, immersion 

reduced the viable Campylobacter population by in 0.25 ± 0.16 log10 (p = 0.99) and the culturable 

population by 0.81 ± 0.10 log10 (p < 0.001), while spray reduced the viable population by 0.19 ± 

0.16 log10 (p = 1.00) and the culturable population 0.51 ± 0.10 log10 (p = 0.11). This demonstrated 

that PAA induced 0.56 ± 0.18 log10 CFU/mL (immersion) and 0.32 ± 0.19 log10 CFU/mL (spray) 

into a VBNC state immediately after treatment. Post-treatment, the samples were stored at 4°C 

and were sampled after one hour and 24 hours. PAA did not exert significant additional 

antimicrobial effects during post-treatment storage. Exposure to aerobic and cold stress had a 

stronger impact on viability than PAA itself, as samples treated with PAA by spraying had 0.37 ± 

0.23 log (p = 0.98) lower and 0.03 ± 0.24 log (p = 1.00) lower Campylobacter counts 1-hour and 

24-hours post-treatment, while the reduction was 0.07 ± 0.28 log and 0.08 ± 0.22 (p = 1.00) for 

PAA-immersed samples. Culture-based quantification overestimated PAA’s antimicrobial 

activity by 0.56 ± 0.18 log10, 1.01 ± 0.32 log10 and 0.86 ± 0.37 log10 immediately after, one hour, 

and 24 hours post-immersion treatment, while for spray, it overestimated antimicrobial activity by 

0.32 ± 0.19 log10, 0.43 ± 0.28 log10, and 0.72 ± 0.40 log10, respectively. These findings suggest 

that previous studies using culture-based methods may have overestimated PAA’s antimicrobial 

efficacy due to VBNC.  
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Chapter 1 
 

Literature Review 

1.1 Campylobacter 

Campylobacter spp. are Gram-negative, microaerophilic, and thermophilic bacteria, 

which makes them well suited to reside in the gastrointestinal tract of poultry, where they find 

their natural niche. They have a polar flagellum on one or both ends of the cell, allowing them to 

move rapidly in thick mucosal lining to infect hosts. The Campylobacter genus is large and 

diverse, consisting of 49 species (Costa & Iraola, 2019; Sneath et al., 1980). C. jejuni is the most 

significant species within this genus, as it is responsible for approximately 90% of human 

campylobacteriosis cases. Other species, including C. coli and C. fetus, also cause illness but at a 

substantially lower rates (CDC, 2024; Schielke et al., 2014). The term “Campylobacter” comes 

from the Greek words “kampylos” and “baktron”, meaning “curved rod” due to characteristic 

spiral morphology of the viable Campylobacter. However, when exposed to stressors, this 

morphology can change to a coccoid shape. 

1.1.1 Growth Requirements  

C. jejuni is thermophilic, thriving between 37 - 42°C, with optimal growth at 42°C, the 

body temperature of poultry. Its growth declines significantly below 30°C (Jackson et al., 2009). 

However, at refrigeration temperatures, it remains culturable for longer periods than at 25 - 30°C 

(Jackson et al., 2009). Campylobacter is a microaerophilic pathogen that grows best in an 

atmosphere with reduced oxygen (2 - 10%) and an elevated carbon dioxide concentration (1 - 

10%) (Kaakoush et al., 2007). In a study where C. jejuni was cultured in brain heart infusion 
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broth in aerobic and microaerobic conditions for 18 h, growth varied by initial cell density. At 

cell densities above 107 CFU/ml, it grew better aerobically; at cell densities lower than 105 

CFU/ml it required microaerobic conditions, and at 105 - 106 CFU/ml, it grew similar under both 

conditions (Kaakoush et al., 2007). Campylobacter can undergo anaerobic respiration using final 

electron acceptors including fumarate, nitrate, and nitrite (Sellars et al., 2002), which helps it 

thrive in mostly anaerobic environments like the chicken gut. However, it cannot grow under 

entirely anaerobic conditions (Sellars et al., 2002; Véron et al., 1981), and settles instead in the 

mucus layer of the gastrointestinal tract where it can scavenge more oxygen than it could further 

down in the lumen.  

The mucus layer is an optimal place for Campylobacter to grow due to an abundance of 

nutrients. While many other gut pathogens feed off glucose, Campylobacter cannot grow on 

glucose and other mono- and disaccharides, with only some strains being able to break down 

fucose (Burnham & Hendrixson, 2018; Hofreuter, 2014). Instead, it catabolizes amino acids, 

peptides, and organic acids, which are abundant in the gut, with serine, aspartate, glutamate and 

proline being preferentially used in that order (Guccione et al., 2008). Many of these nutrients 

serve as chemoattractants to identify optimal niches for Campylobacter to settle in (Hofreuter, 

2014). However, Campylobacter metabolism is strain dependent due to a variable presence of 

metabolic genes and different chemoreceptors interacting differently with various nutrients 

(Hofreuter, 2014). Despite being a fastidious bacterium, Campylobacter demonstrates remarkable 

adaptability, withstanding many environmental conditions, like pH changes, oxidative stress and 

low nutrient availability (Chaveerach et al., 2003; Okada et al., 2023; Sanders et al., 2008). 
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1.1.2 Detection of Viable Cells 

In the context of food safety, a food product is considered safe if it is free of viable 

foodborne pathogens. However, defining viability and death in bacteria is difficult, given the 

complexity of the concept of death at the cellular level. Hence, four main categories of bacterial 

viability status have been proposed: i. reproductive (i.e., growing) cells, ii. metabolically active 

but not actively growing cells, iii. intact cells without compromised membrane, and iv. 

permeabilized cells with a compromised membrane (i.e., dead cells) (Nebe-von-Caron et al., 

2000). Nebe-von-Caron et al. (2000) include energy dependent (biosynthesis, pump activity, 

membrane potential) and energy independent (enzyme activity) mechanisms within metabolic 

activity (Nebe-von-Caron et al., 2000). Depending on the application, the first three states 

(reproductive, metabolically active, and intact cells) have been used to define “viable” bacteria. 

For instance, a viable cell can be detected by direct plating methods only if it reproduces and 

grows into a visible colony. Further, a viable cell can be detected by direct viable count only if it 

is metabolically active, while a cell must be intact to be detected as a viable cell using a viability 

quantitative polymerase chain reaction (qPCR). In the latter, permeabilized cells with 

compromised membranes are detected as non-viable cells. Stingl et al. (2015) and Nebe-von-

Caron et al., (2000) suggest that the most accurate way to define bacterial death in the context of 

controlling foodborne pathogens is by monitoring membrane permeability, which is based on the 

premise that cells cannot recover from a severely compromised membrane (Nebe-von-Caron et 

al., 2000; Stingl et al., 2015). For example, a treatment with 5% hydrogen peroxide results in 

Campylobacter death, as determined by complete loss of culturability and membrane integrity 

(Krüger et al., 2014). Therefore, the term “intact and potentially infectious units (IPIU)” was 

suggested for viable cells with an intact membrane, since they can regain growth when 
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reintroduced into a favorable environment. This is also the definition of viability that was adopted 

in this thesis. 

1.1.3 Viable but Nonculturable State 

Many bacteria temporarily enter dormancy states, such as viable but nonculturable 

(VBNC), spore, or persister state, as a survival strategy when in unfavorable environments 

(McDonald et al., 2024). In various dormancy states, cells reduce or completely halt their 

metabolism, stop growing, and increase their resistance to stress. Cells in all dormancy states 

maintain their viability and resuscitate once conditions are suitable for their growth (McDonald et 

al., 2024). Sensors in the inner membrane detect sugars and amino acids which can trigger spore 

germination (Christie & Setlow, 2020; Zhou et al., 2019). Spores are made up of multiple 

protective layers, including a cortex and spore coat, which shield the cell from heat, chemicals 

and desiccation. Their low metabolic state and the large amount of dipicolinic acid stabilize DNA 

and proteins against damage (Wen et al., 2022). The spore is a highly genetically programmed 

state that some bacteria use to resist stressful conditions. However, there are also less elaborate 

systems that provide shorter term resistance to stressful conditions that can be used by bacteria. 

Two examples of these are the viable but nonculturable (VBNC) and persister cells.  

First identified in Campylobacter in 1986, VBNC cells are defined as having intact 

membranes, low to no levels of metabolic activity, and exhibiting gene expression (Patrone et al., 

2013; Rollins & Colwell, 1986). In this state, some Campylobacter cells transition from their 

notable helical and spiral morphology into a coccoid shape (Ikeda & Karlyshev, 2012). This 

coccoid shape has a thickened cell wall, which increases resistance to stressors and prolongs 

survival (Frirdich et al., 2019). However, VBNC cells are not able to divide on nutrient media and 

are not immediately able to regain this ability. They can resuscitate through in vivo passage, as 
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was shown for Campylobacter through the mouse and chick gut (Baffone et al., 2006; Cappelier 

et al., 1999), or by the reintroduction of favorable environments like a microaerobic or nutrient 

rich ones (Bovill & Mackey, 1997). The VBNC state can be induced by stressors including low 

nutrient environments, temperature, pH, and oxidative stress, but VBNC cells can also exist 

before exposure to stress (Ayrapetyan et al., 2015). On the other hand, persister cells are a slow-

growing or nongrowing subpopulation that can survive antibiotic treatment without acquiring 

resistance (Ayrapetyan et al., 2015). They are genetically identical to the non-persister majority 

but have a drug-tolerant phenotype (Balaban et al., 2004). Like VBNC cells, they can exist 

randomly in cultures but are also induced by stressors including low-nutrient, temperature, pH, 

oxidative and antibiotic stress (Ovsepian et al., 2020; Wu et al., 2012).  

Ayrapetyan et al. (2015) hypothesized that due to the mechanic similarity of these states, 

they exist at different points on a ‘dormancy continuum’, with VBNC cells entering a deeper state 

of hibernation (as evidenced by a more drastic ATP depletion) and requiring more time to recover 

after stress has been removed compared to persister cells (Ayrapetyan et al., 2015). In addition, 

persister cells show a higher level of metabolic activity, while cell division shuts down 

completely for VBNC cells. Detection methods differ as well, with VBNC cells detected using 

viability stains (see 1.3.2), persister cells identified through antibiotic tolerance assays, and spores 

distinguished by spore-specific stains (e.g., malachite green) (Harms et al., 2017; Kozuka & 

Tochikubo, 1991). One proposed distinction is that persister cells can resume growth on solid 

media after antibiotics treatment, while VBNC cells require up to 24 h of resuscitation before 

regaining culturability. In my thesis, I do not resuscitate any cells in a dormant state. Since we do 

not resuscitate dormant cells, we cannot experimentally distinguish persisters from VBNC cells. 

However, we will use the term VBNC going forward to characterize cells that did not regain 

culturability within 48 h of incubation on solid media.   
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Food safety monitoring of Campylobacter is typically conducted using standard 

microbiological methods that require growth in selective media (FDA, 2021; USDA FSIS, 2024). 

In this sense, many standard protocols used by food companies and food safety authorities rely on 

the “reproductive” cell definition of viability, potentially leading to false negative detection of 

VBNC Campylobacter in food systems. Reproductive cells of pathogens have the highest 

infectivity and exhibit full virulence, while metabolically active and intact cells are typically in 

survival mode expending little energy on virulence. Therefore, it is sensible to prioritize detecting 

growing cells in food products. However, VBNC Campylobacter also presents a food safety risk, 

given that it can regain its culturability and infectious potential, as demonstrated with 

resuscitation in embryonated eggs (Cappelier et al., 1999) and mouse intestine (Baffone et al., 

2006). We can therefore hypothesize that upon entry into the human intestinal tract, VBNC cells 

may resume growth and cause campylobacteriosis.  

During poultry processing, Campylobacter is exposed to multiple stressors, including 

oxidative stress from exposure to an aerobic environment, heat stress from scalding, cold stress 

from chilling, acid stress from antimicrobial sprays or dips, and osmotic stress from sodium 

chloride (NaCl) used as a preservative (Pokhrel et al., 2022). While these hurdles aim to kill 

pathogens, sublethal stress can induce a VBNC state, facilitating Campylobacter survival.  

Oxidative Stress 

C. jejuni can respire through both anaerobic and aerobic pathways, allowing it to adapt to 

environments with different oxygen levels. Rollins & Colwell first reported that Campylobacter 

can withstand prolonged aerobic exposure by entering a VBNC state (Rollins & Colwell, 1986). 

They also found that oxidative stress induces a morphological shift from a spiral to a coccoid 

form, which reverses upon removal of stress. This morphological transition has been further 
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supported by more recent studies (Chaisowwong et al., 2012; Klančnik et al., 2009; Oh et al., 

2015). Exposure to aerobic conditions at 42°C increased the VBNC population, but antioxidant 

treatment reduced this effect, reinforcing the link between oxidative stress and VBNC induction 

(Oh et al., 2015). Similarly, at 4°C, the VBNC state developed more rapidly under aerobic 

conditions than in microaerobic environment (Yagi et al., 2022). Zhang & Lu (2023) further 

confirmed that all tested C. jejuni isolates entered a VBNC state within 24 hours when exposed to 

aerobic conditions at 37°C. These findings suggest that when Campylobacter-contaminated 

chicken gut contents are exposed to an aerobic atmosphere, a subpopulation of cells likely enters 

the VBNC state, evading detection by traditional culture-based methods.  

Cold Temperature Stress 

As a thermophilic pathogen, C. jejuni thrives between 37°C and 42°C, with its optimal 

growth occurring at the higher end of this range. Prolonged culture at 37°C largely led to cell 

death, with the remaining viable cells transitioning into VBNC (Yagi et al., 2022). Below 30°C, 

the growth rate of C. jejuni declines rapidly (Jackson et al., 2009), and after 48 h at 30°C, C. 

jejuni became non-culturable. However, at lower temperatures, the transition to VBNC occurred 

more gradually, taking up to 21 days at 4°C. C. jejuni exhibits strain-dependent prolonged 

culturability at 4°C, ranging from 12 days to 4 months, before eventually entering a VBNC state, 

where viability can be maintained for up to 7 months (Baffone et al., 2006a; Rollins & Colwell, 

1986; Zhang & Lu, 2023). These findings suggest that cold temperatures not only extend survival 

but also promote VBNC induction over time.  

As chicken products progress through slaughter and packaging, they are typically stored 

at 4°C for prolonged periods. While this prevents microbial growth, it likely inadvertently 
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induces Campylobacter into a VBNC state, potentially allowing persistence despite standard food 

safety controls. 

Acid Stress 

A hurdle approach combining multiple strategies to inhibit microbial growth is 

commonly used in meat processing to enhance antimicrobial effectiveness. One such hurdle is the 

application of antimicrobials like chlorine, which inactivates microorganisms by damaging 

nucleic acids, altering the membrane permeability, and acidifying the cell (see 1.2.3). 

Campylobacter can survive at pH levels above pH 4.5, with optimal growth occurring between 

pH 6.5 and 7.5 (Jackson et al., 2009). In acidic environments, C. jejuni enters a VBNC state, but 

can be resuscitated through passage in fertilized eggs (Chaveerach et al., 2003). Exposure to 

chlorine (25 ppm) also induced a VBNC state in 1 - 10% of the C. jejuni population that was not 

completely inactivated by the treatment (Zhang & Lu, 2023). This suggests that while chlorine 

effectively reduces viable Campylobacter, it may also contribute to the survival of a 

subpopulation in VBNC state. Beyond chlorine, other antimicrobials used in poultry processing, 

such as peroxyacetic acid, have not been thoroughly investigated for their effect on the viability 

of C. jejuni, as most studies use culture-based methods to determine their efficacy, which do not 

account for nonculturable cells (see Chapter 2).  

Low Osmolarity Stress 

Like acid treatment, sodium chloride treatment is commonly used post-processing to 

inhibit microbial growth on meat products. A slight decrease in osmotic pressure within bacterial 

cells can inhibit essential processes and induce a VBNC state (Jackson et al., 2009). When treated 
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with 4.5% NaCl, C. jejuni culturability decreased by 5.5 log10 within 12 h at 42°C, whereas at 

4°C, culturability decreased by approximately 3 log10 over 14 days, suggesting that C. jejuni 

maintains culturability longer at lower temperatures when osmotically stressed (Doyle & Roman, 

1982). Similarly, prolonged incubation in low osmolality (distilled water) at 4°C largely led to 

cell death, and culturability was completely lost by day 20, with around 30% of cells induced into 

a VBNC state (Yagi et al., 2022).  

While individual stressors affecting Campylobacter viability have been studied, 

Campylobacter on chicken meat is usually exposed to simultaneous stress, such as oxidative and 

cold stress. Yagi et al. (2022) determined the effect of temperature (4°C vs. 37°C), nutrient 

availability (low nutrient vs. high nutrient), oxygen levels (aerobic vs. anaerobic vs. 

microaerobic), and osmotic pressure on VBNC induction, both individually and in combination. 

The fastest VBNC induction occurred within 25 days in a nutrient rich environment at 4°C under 

aerobic conditions (Yagi et al., 2022). These stressors are analogous to the environment 

Campylobacter encounters on packaged chicken meat in refrigerated storage. The rate of VBNC 

induction was strain dependent; hence more research is required to identify factors leading to 

strain-specific differences, such as aerotolerance.  

Expression of Virulence Factors in VBNC 

A large part of Campylobacter’s virulence is attributed to its ability to adhere and invade 

host cells in the intestine. Since entry into a VBNC state greatly reduces the metabolic activity, it 

is hypothesized that virulence factors expression is also diminished. Indeed, the transcription of 

virulence genes was shown to be down-regulated in C. jejuni in a VBNC state (Chaisowwong et 

al., 2012). Specifically, transcription of genes associated with host invasion was reduced in some 

strains when in a VBNC state, while those involved in iron transport and oxidative stress 
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protection remained actively transcribed (Santos et al., 2023). Despite this reduction in virulence 

gene transcription, C. jejuni in a VBNC state still expressed the CadF protein, a key adhesin that 

mediates bacteria-host interactions, and maintained its ability to adhere to intestinal epithelial 

cells in vitro, although with 26.9 - 40% reduced efficiency (Patrone et al., 2013). These findings 

indicate that C. jejuni may be able to persist in a host even in a dormant state until conditions 

favor resuscitation and infection.  

Outside of the host, incubation at 4°C led to complete loss of culturability after 38 days, 

yet VBNC cells retained their ability to invade human epithelial cells in vitro (Chaisowwong et 

al., 2012). This suggests that while transcription of invasion-related genes is reduced, VBNC C. 

jejuni can still adhere to and invade host cells, posing a potential risk for transmission and 

infection even when non-culturable.  

1.2 Campylobacter and Food Safety 

The Center for Disease Control (CDC) estimated that 1.5 million people in the United 

States become ill from a Campylobacter infection annually (CDC, 2025), and Campylobacter has 

been the leading cause of reported bacterial foodborne illness in humans in the United States 

since 2014 and in Europe since 2005 (EFSA, 2024; Shah, 2024). This leads to a major economic 

burden. In 1997, a report estimated that between $1.3 - $6.2 billion per year are lost to 

campylobacteriosis in the US, and with cases rising in the last decade and set to continue rising 

due to climate change (Kuhn et al., 2020), this number has likely already significantly increased 

(Buzby & Roberts, 1997; Hoffmann et al., 2012; Kaakoush et al., 2015). This places a financial 

and public health burden on the public, since Campylobacter can be controlled effectively at the 

level of production yet is not. Despite technological advances and economic prosperity, one in six 

individuals contract foodborne illnesses annually in the United States, and approximately 3,000 
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die due to preventable foodborne illness(CDC, 2018). This poses food scientists with a challenge 

to accelerate progress towards improving the safety of food to protect consumers.  

1.2.1 Campylobacter Prevalence and Transmission 

Campylobacter is a zoonotic pathogen, with poultry and cattle, among others, serving as 

its commensal hosts. Chickens are the main source of human campylobacteriosis, accounting for 

50 - 90% of cases (Rosner et al., 2017), while cattle and pigs are less frequent sources of human 

infections (Cody et al., 2019). Chickens and chicken meat are important vectors for transmission 

of Campylobacter, with chicken meat consumption being a particularly high-risk factor for 

infection. Other risk factors include dining out, handling raw meat alongside uncooked food, and 

contact with poultry, which places farm and slaughterhouse workers at higher risk (Igwaran & 

Okoh, 2019; Rosner et al., 2017). Most (97%) campylobacteriosis cases are sporadic (Ebel et al., 

2016; Rosner et al., 2017), meaning they are not associated with an outbreak. These sporadic 

cases can result from consumption of undercooked chicken (cooked below 74°C/165°F as 

recommended by the USDA FSIS) or due to cross-contamination from other foods in the kitchen.  

Campylobacter colonizes the broiler gut and is shed in the feces, contaminating the 

environment. C. jejuni can survive in broiler feces for up to six days, which makes the fecal-oral 

route a common transmission pathway (Sadek et al., 2023). The close quarters on broiler farms 

facilitate the rapid spread of Campylobacter, and, it has been reported that once introduced, 

Campylobacter can colonize the whole flock by the time of slaughter (Plishka et al., 2022). 

Positive flocks can also contaminate flocks that are negative for Campylobacter during transport 

and slaughter. The dose needed to colonize broilers is quite low, but once in the gut, 

Campylobacter can grow rapidly, with fecal droppings reaching concentrations as high as 6 - 10 

log10 CFU/g (Battersby et al., 2016). Fecal runoff can then contaminate surface water, introducing 
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Campylobacter into the environment, leading to colonization of livestock and wildlife and 

persistence along the food chain in products like raw milk and meat. Consumption of 

contaminated water and food can also spread it to humans (Igwaran & Okoh, 2019).  

The fact that chicken meat is the most consumed meat in the US, with more than 8 billion 

broilers slaughtered annually, and consumption projected to continue to increase into to the 2030s 

(USDA, 2024), highlights the significance of controlling Campylobacter in poultry. The projected 

increase in consumption is expected to increase consumers’ exposure to Campylobacter unless 

more effective control strategies are implemented.  

The prevalence of Campylobacter on chicken meat varies widely. In the US, studies 

reporting the prevalence on retail cuts of chicken range between 10 - 84% (Cui et al., 2005; 

Mollenkopf et al., 2014; Noormohamed & Fakhr, 2014; Price et al., 2007; Zhao et al., 2001), 

while retail carcasses have shown prevalence of up to 96% (Nannapaneni et al., 2005) and 

farmers market chickens up to 90% (Scheinberg et al., 2013).  

Once ingested, Campylobacter passes through host’s digestive tract and settles in the 

intestine where it colonizes the mucus layer of the ileum and colon. Here, if present in high 

enough numbers, it disrupts the normal activity of the epithelial cells by cell invasion and the 

production of toxins, or by the immune system’s inflammatory response to infection (Ketley, 

1997). This leads to human campylobacteriosis, with symptoms including diarrhea, cramping, 

abdominal pain, and fever (El-Saadony et al., 2023). More serious complications can also arise, 

such as pancreatitis, reactive arthritis and Guillain-Barré syndrome, which can be fatal (Kaakoush 

et al., 2015).  
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1.2.2 Control Strategies in the Poultry Industry 

Antimicrobial interventions are employed along the poultry processing chain to meet the 

United States Department of Agriculture (USDA) standards. These interventions use hot water, 

cooling, and chemical antimicrobial applications to reduce the microbial load of the final product 

(Chowdhury et al., 2023).  

Campylobacter’s main introductory route to the food chain is through colonization of 

poultry at farms, which requires only a low dose to take hold in their gut, with estimates ranging 

between 35 – 10,000 CFU (Line et al., 2008). As Campylobacter grows, this can quickly lead to 

high levels in the gut, which remain stable as the chickens grow (Stern, 2008) and can 

contaminate meat during slaughter, ultimately leading to human exposure through food (Lu et al., 

2021). The most common source of Campylobacter introduction into poultry farms is through 

horizontal environmental transmission, meaning from other livestock reared near the poultry 

farms and from hatcheries (Bull et al., 2006; Lu et al., 2021). This encompasses multiple sources, 

including contaminated water and feed, and the movement of farm workers. Therefore, there are 

preharvest practices that can be implemented to reduce the risk of broiler colonization and meat 

contamination.  

Enhanced biosecurity on farms is considered the best method to prevent flock 

colonization with Campylobacter (Vandeplas et al., 2008). Biosecurity encompasses measures to 

prevent entry of the pathogen into the farm all the way to transport to the slaughterhouse. 

Biosecurity measures employed to prevent the spread of Campylobacter at the farm level include 

footbaths, frequent shoe changes, and improved cleaning and sanitation practices around 

nourishment areas for the chickens (Lu et al., 2021). However, while these measures can 

drastically reduce the prevalence of Campylobacter, they are costly to farmers (Siekkinen et al., 
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2012). For biosecurity measures to be broadly adopted, they must be low-cost, easy to implement 

and proven effective.  

In addition to biosecurity measures, broiler colonization with Campylobacter can be 

controlled by adding chlorine or organic acids into birds’ drinking water (Jansen et al., 2014). 

Although this alone does not eliminate the risk of colonization, it can be used in combination with 

other measures, such as feed supplements, to improve the broiler gut health and reduce the fecal 

shedding of Campylobacter. Probiotics, prebiotics, organic acids, bacteriophages, and 

bacteriocins have been used as feed or water additives to control Campylobacter by promoting 

the growth of beneficial bacteria (Fonseca et al., 2024; Lu et al., 2021). While vaccination in ovo 

or of live chicks is another option, no vaccine currently exists that is effective for Campylobacter 

spp. due to its genetic diversity, and this is not yet seen as a fully effective strategy (Hermans et 

al., 2011; Pumtang-on et al., 2021).  

Next in the processing chain is transport to the slaughterhouse, where Campylobacter 

transmission can occur between contaminated and uncontaminated flocks. During transport, 

flocks are stressed, leading to defecation and the spread of pathogens. A study from the UK 

reported that 23.5% of crates used for transportation of birds were contaminated (Allen et al., 

2008), and that Campylobacter can survive for prolonged periods on these crates. Therefore, 

cleaning and sanitizing transportation equipment is crucial for preventing the spread of 

pathogens. However, they are difficult to clean and even those cleaned and disinfected are not 

completely free of Campylobacter (Hansson et al., 2005).  

During slaughter, Campylobacter can be transmitted from broiler intestine to meat. 

Therefore, several slaughterhouse interventions aim to reduce microbial load on meat. Scalding is 

the first step in poultry meat processing where Campylobacter is significantly reduced, by 

approximately 2 logs (Berrang & Dickens, 2000). After scalding, feather plucking puts pressure 

on the carcasses, which leads to defecation and further contamination, and has been shown to 
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increase Campylobacter counts (Rasschaert et al., 2020). Subsequently, during evisceration, the 

intestine can be cut open, spilling contents and further increasing Campylobacter by 0.25 to 1.5 

log10 (Rasschaert et al., 2020). Evisceration is considered as the highest risk step for 

Campylobacter contamination (Althaus et al., 2017). Once eviscerated, carcasses typically 

undergo chilling with cold water (1 - 2°C) for 30 - 60 min. This step results in the greatest 

reduction of Campylobacter, while the extent of reduction depends on the chilling duration 

(Rosenquist et al., 2006). There is typically a post-chill step following primary chilling, where the 

product is immersed or sprayed with a high concentration of an antimicrobial for a short time to 

further reduce microbial load and control pathogens.  

1.2.3 Antimicrobial Interventions Used on Chicken Meat 

Antimicrobials can be introduced during or after the meat chilling step. These 

antimicrobials must have documented efficacy (with a standard 1 log10 reduction), defined 

parameters for application concentration and contact time, and have no detrimental effects on 

product quality. Lastly, antimicrobial products must be competitively priced (Cano et al., 2021).  

One of the most used antimicrobials in poultry processing is chlorine. However, high 

organic loads, high temperatures, prolonged application times, and pH fluctuations reduce its 

efficacy. It was has been reported that levels above the regulatory limit were required to 

inactivate pathogens attached to poultry skin (Bauermeister, Bowers, Townsend, & Mckee, 

2008). Alternatives to chlorine include organic acids (e.g., acetic, formic, citric, lactic, propionic), 

acidified sodium chlorite, sodium hypochlorite and hydrogen peroxide (Cano et al., 2021). Some 

of these antimicrobials are more effective in post-chill immersion and spray applications, while 

others are more effective at lower concentrations in the chiller (Cano et al., 2021).  
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Recently, poultry processing establishments have employed commercial peroxyacetic 

acid (PAA) products, which are a mixture of peroxyacetic acid (PAA), hydrogen peroxide (HP), 

acetic acid, and water. Some PAA products also include sulfuric acid, 1- Hydroxyethylidene1,1-

diphosphonic acid (HEDP), or dipicolinic acid (DPA) as stabilizers. The USDA has approved 

PAA for use on poultry carcasses and parts at a maximum concentration of 2,000 ppm (USDA 

FSIS, 2024). Chemical companies supply PAA specifically for poultry decontamination and the 

recommended application concentrations range depending on the intended application. PAA-

based products usually include a mixture of PAA, acetic acid and hydrogen peroxide (Ebel et al., 

2019). PAA has lower environmental impact than chlorine, as it decomposes into acetic acid and 

oxygen or hydrogen peroxide and does not result in toxic byproducts when exposed to high levels 

of organic matter. PAA reduces microbial load by oxidizing sulfhydryl and sulfur bonds in the 

cells. This permeates the cell wall and interferes with protein synthesis, causing the loss of 

membrane integrity (Oyarzabal et al., 2005). Its oxidizing and acidic properties make it effective 

against a broad range of microorganisms, from Gram-negative and Gram-positive organisms, to 

viruses, spores, and fungi (Kitis, 2004). Multiple studies have proven its superior efficacy to 

chlorine at reducing microbial load, as determined using culture-based methods. For example, 

chicken carcass immersion treatment with 200 ppm PAA was shown to be more effective 

compared to 50 ppm chlorine treatment at three different temperatures (4°C for 20 min, 15°C for 

min, and 22°C for 6 s). A one hour treatment with 30 ppm chlorine or 25 or 100 ppm PAA using 

immersion in a poultry chiller did not significantly reduce the Campylobacter populations, while 

treatment with or PAA at 200 ppm did, by 1.5 log10 CFU per sample (Bauermeister, Bowers, 

Townsend, & McKee, 2008). Chlorine is likely ineffective in chillers due to the high level of 

organic matter and long exposure time, while higher concentrations of PAA were not affected by 

organic matter.  
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Compared to antimicrobial treatments of whole carcasses at the chilling step, post-chill 

treatments are typically applied onto chicken parts and are shorter in time. Due to shorter 

exposure, higher concentrations of antimicrobials are applied to achieve similar pathogen 

reductions. PAA treatment is more effective than chlorine at decontaminating native and 

inoculated Campylobacter in prechill, chill, and postchill-like conditions at concentrations of 200 

ppm or higher. Poultry carcasses immersed in PAA (400 and 1000 ppm) for 20 s reduced the 

population of Campylobacter by approximately 2 log10 CFU/mL at both concentrations, while 

chlorine treatment (40 ppm) resulted in less than 1 log10 reduction (Nagel et al., 2013). PAA (700 

and 1000 ppm) was also proven more effective than chlorine (30 ppm) when applied by 

immersion of chicken drumsticks for 10, 20, and 30 s. Specifically, it significantly reduced the 

concentration of Campylobacter by more than 1.5 log10 CFU/mL at each application time and 

concentration, while chlorine reductions were similar to controls immersed in water (Zhang et al., 

2019). Similarly, Chen et al. (2014) found that when skin-on chicken breast and thighs were 

immersed for 23 s at the same concentrations and then ground up, chlorine treatment did not 

differ from the water control. At the same time, PAA provided a reduction of around 1.5 log10 

(Chen et al., 2014). Generally, longer exposure times result in greater reductions in 

Campylobacter (Kumar et al., 2020, Smith et al., 2015). However, while some reported similar 

efficacy of spray and immersion application, others found greater antimicrobial efficacy when 

PAA was applied by immersion (Kumar et al., 2020, Smith et al., 2015).  

Individual changes in pH (8.2 - 11), time (10 s or 60 min) and PAA concentration (50 and 

500 ppm) did not significantly impact the efficacy of PAA treatment on chicken wings inoculated 

with C. coli, and PAA treatment resulted in a reduction of C. coli populations by 2 – 2.5 log10 

CFU/mL (Kataria et al., 2020).  

To enumerate culturable Campylobacter, these studies rinsed chicken parts in a 

neutralizing solution after treatment, which halts the antimicrobial action of PAA, and plated 
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rinsates on standard media. However, during normal processing, PAA is not rinsed off chicken 

parts after spray or immersion but rather dissipates as the product moves through final processing 

and packaging steps. Walsh et. al (2018) determined that PAA levels on poultry dip below the 

limit of detection at 27.9 minutes, resulting in no long-term residues on the product (Walsh et al., 

2018). Therefore, studies determining PAA efficacy should incorporate prolonged rest times to 

determine whether additional reductions are achieved within the post-treatment time (see Chapter 

3).  

1.3 Campylobacter Detection Methods 

The USDA Food Safety and Inspection Service (FSIS) regulates Campylobacter on 

chicken by setting performance standards for poultry processing plants and regularly tests for 

Campylobacter on carcasses and cuts to determine whether they meet the standards in place. The 

current standards for chicken carcasses and chicken parts allow for 8 of 51 (15.7%) and 4 of 52 

(7.7%) samples to test positive for Campylobacter using their isolation and identification 

methods, respectively. The evaluation is done over a moving window period of one year (52 

weeks), and the sampling plan depends on the size and production volume (Cano et al., 2021; 

USDA, 2015). 

1.3.1 Culture-based Detection Methods 

The current guidelines for isolation and identification of Campylobacter from poultry 

sources in the US are the USDA FSIS Microbiology Laboratory Guidelines (MLG) 41.09, and the 

Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) Chapter 7 

(FDA, 2021; USDA FSIS, 2024). NOTE: FSIS intends to update the Campylobacter performance 
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standards; therefore, although FSIS continues to test product for Campylobacter, it does not 

assess whether establishments meet the performance standards (FSIS, 2025). In addition to these 

methods, the ISO 10272-1:2017 protocol outlines the method for isolation and enumeration of 

Campylobacter from poultry (FSIS, 2025). These are all culture-based methods that use 

conditions and media selective for Campylobacter to support its growth and recovery and employ 

antibiotics to inhibit the growth of non-targeted species. Once putative Campylobacter colonies 

are isolated, they are confirmed using biochemical tests or molecular methods for species 

identification. Compared to the FDA BAM and USDA FSIS MLG protocols, the ISO standard 

includes a quantitative method (detection method C), in addition to the enrichment method, which 

allows for the determination of Campylobacter concentration in a tested food product.  

1.3.2 Molecular Detection Methods 

Molecular detection methods provide a more comprehensive assessment of 

Campylobacter prevalence compared to traditional culture-based methods outlined above, 

especially when detecting nonculturable cells. Culture-based methods rely on bacterial growth 

and can therefore underestimate the true bacterial load when nonculturable cells are present 

(Magajna & Schraft, 2015). Molecular methods can identify viable and nonculturable cells by 

determining their membrane integrity, which provides a more accurate depiction of the infectious 

microbial load (Josefsen et al., 2010).  

For fresh Campylobacter cultures, Magajna and Schraft detected similar counts of viable 

and culturable cells. However, culturable cell counts decreased substantially during incubation for 

up to 60 days, while viable cells remained relatively stable (Magajna & Schraft, 2015). This 

discrepancy highlights a critical limitation of culture-based methods. While such methods are 

effective for detection of Campylobacter in fresh samples such as fecal droppings or carcasses 
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sampled immediately post-slaughter (Josefsen et al., 2010), they often underestimate the number 

of sub-lethally injured cells introduced by food processing stressors such as oxidative and cold 

stress (Jasson et al., 2007; Ritz et al., 2007).  

These stressors can render Campylobacter cells VBNC, making them challenging to 

resuscitate and detect using growth-dependent methods, since they often cannot divide in 

conventional culture media. As a result, traditional, growth-dependent, culture-based methods fail 

to capture the true potential of the foodborne Campylobacter population. To address this, 

alternative approaches have been developed to detect all intact and putatively infectious units 

(IPIU) of Campylobacter in food matrices. 

Much research has focused on molecular based methods like quantitative polymerase-

chain-reaction (qPCR) as a promising alternative to culture-based methods. However, qPCR 

alone amplifies DNA from both live and dead cells, as it does not differentiate between 

membrane-intact and membrane-compromised cells. To overcome this limitation, DNA-

intercalating dyes, such as propidium monoazide (PMA) can be used. These dyes selectively bind 

DNA in membrane-compromised cells, forming covalent bonds upon light-activation, which 

prevents DNA amplification during PCR (Nocker et al., 2006). This theoretically eliminates the 

signal from dead cells, leaving only DNA from viable cells to be amplified. For this approach to 

be effective, the dye must be passively excluded from viable cells to avoid underestimating those 

with low or no metabolic activity.  

Propidium monoazide (PMA) and ethidium monoazide (EMA) are widely used in 

membrane permeability assays. Both dyes enter membrane-compromised cells and bind to DNA 

after light activation, preventing amplification. However, EMA has significant drawbacks for 

viability studies. Krüger et al. (2014) and Jernaes and Steen (1994) demonstrated that the EMA 

exclusion from intact cells depends on active efflux, with more metabolically active cells showing 

higher efflux activity (Jernaes & Steen, 1994; Krüger et al., 2014). When they added an efflux 
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inhibitor, EtBr (an EMA analogue) permeability increased in intact cells regardless of their 

metabolic state. This limitation renders EMA unsuitable for differentiating between viable and 

dead cells in samples containing VBNC cells, as it could misclassify VBNC cells as dead. They 

also showed that EMA permeability into Campylobacter cells was highly dependent on the cell 

suspension medium, the incubation time and the metabolic state of the cells. At the same time, 

PMA was passively excluded from viable Campylobacter, regardless of these factors (Krüger et 

al., 2014; Nocker et al., 2006). While Krüger et al. (2014) successfully excluded PMA from 

viable Campylobacter at all incubation times and temperatures tested, dead cell signal reduction 

was optimal at 30°C for 15 min with a concentration of 20 µM (Krüger et al., 2014). Therefore, to 

identify IPIU cells from a food matrix, PMA is an appropriate dye. 

Methods involving PMA treatment followed by a qPCR have been effective at 

quantifying viable Campylobacter cells in various suspension matrices, including chicken rinsates 

(Josefsen et al., 2010a; Lv et al., 2020a; Okada et al., 2023). However, PMA concentrations and 

outcomes vary among studies. For instance, Josefsen et al. (2010) inoculated chicken rinses with 

heat inactivated C. jejuni (2 – 6 log10), confirmed the lack of viable cells through culture-based 

quantification, and performed PMA-qPCR to determine whether the dead cell signal was absent. 

They showed that 10 µg/mL (~ 20 µM) PMA completely inhibited the qPCR signal from dead 

cells of C. jejuni up to 6 log10 CFU/mL (Josefsen et al., 2010). In contrast, Pacholewicz et al. 

(2013) performed the same assay and reported incomplete inhibition of dead cells at 4.1 log10 

CFU/mL in a chicken rinse. Above this concentration the dead cell signal was reduced compared 

to the control that did not receive PMA treatment, but was not completely absent (Pacholewicz et 

al., 2013). Lv et al. (2020) observed similar variability, finding complete dead cell signal 

inhibition at 6 log10 CFU/mL of dead C. jejuni cells using 100 µM PMA, but only partial 

reduction using 20 µM (> 2 log10 CFU/mL reduction) (Lv et al., 2020). For C. coli, a 

concentration of 50 µM PMA did not fully eliminate the dead cell signal at any concentration 
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tested (2 - 6 log10 CFU/mL), indicating that PMA may be less permeable to C. coli (Duarte et al., 

2015). 

Further innovations, such as two-round PMA treatment and PMAxx (a more reactive 

PMA derivative), have improved dead cell signal inhibition. Okada et al. (2022) determined that 

adding the PMA Enhancer developed by Biotium significantly inhibited the dead cell signal by a 

ΔCt difference of around 9 cycles compared to PMAxx without the enhancer. They found that a 

single round treatment of treatment with PMAxx at 25 µM did not completely inhibit the dead 

cell signal in a bacterial suspension at a concentration of 5.7 log10 CFU/mL, while two round-

treatment did. Two-round treatment was also effective in a chicken rinse matrix spiked with 4.7 

log10 CFU/mL of C. jejuni, as it completely inhibited the dead cell signal (Okada et al., 2022). 

Differences in inhibition of the dead cell signal could be due to the variations in membrane 

composition of the different strains tested, and the degree of damage caused by the various stress 

factors, all of which could impact dye permeability (Fittipaldi et al., 2012).  

PMA-qPCR methods are consistent with culture-based enumeration when most cells are 

culturable but recover significantly more when cells have entered a VBNC state. Josefsen (2010) 

evaluated their PMA-qPCR against a culture-based enumeration method and qPCR using 

chickens naturally contaminated with Campylobacter. They determined that the viability-qPCR 

correlated well with the culture-based method, with 42 chicken samples testing positive by 

culture, 45 by viability qPCR, and 48 by qPCR without PMA treatment. Using this method, 

Pacholewicz (2013) analyzed chicken carcass rinse samples inoculated with live Campylobacter 

and naturally contaminated samples from various processing stages. They found no significant 

difference between methods for the inoculated samples, likely because these were fresh cultures 

with few to no dead or VBNC cells. In naturally contaminated rinse samples, they found that the 

PMA-qPCR recovered significantly more Campylobacter than culture-based method 

(Pacholewicz et al., 2013). Similarly, Duarte (2015) enumerated 26 neck skin samples from 
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naturally contaminated broiler carcasses using a PMA-qPCR and direct plating on mCCDA 

(Duarte et al., 2015), and found that the Campylobacter concentrations determined by the PMA-

qPCR were higher than those determined by culture-based method. The discrepancy between the 

inoculated and naturally contaminated can be attributed to fewer VBNC cells in the freshly 

prepared inoculum compared to naturally contaminated chicken samples, where cells have been 

exposed to oxidative stress for extended time.  

All previously mentioned culture-based methods have low detection limits (below 1 log10 

CFU/g), while the limit of detection among the viability-qPCR methods varies. The method 

developed by Josefsen et al. has the limit of quantification (LOQ) of 100 CFU/mL (2 log10 

CFU/mL), and the PCR assay was approved for the detection of Campylobacter from chicken 

carcasses and cuts, cloacal swabs, and boot swabs, and with the addition of the PMA treatment is 

more selective for viable cells. The limit of quantification of another qPCR method is 210 CFU/g 

broiler meat (~ 1.72 log10 CFU/mL), which is comparable with Josefsen (2010) (Duarte et al., 

2015). Lv (2020) developed a PMA-qPCR specific for C. jejuni, with an LOD of 3.52 log10 

CFU/g for C. jejuni VBNC detection on chicken breasts; this LOD is higher than that of the 

Josefsen method (Lv et al., 2020). While this method successfully detected and quantified VBNC 

C. jejuni cells (Lv et al., 2020), it was developed specifically for C. jejuni, and is therefore 

unsuitable for detection of C. coli and C. lari.  

The need for robust controls in PMA-qPCR (viability qPCR) assays is crucial to confirm 

efficient PMA crosslinking of dead and viable cells. Stingl (2015) recommended using dead cell 

samples with known membrane permeability properties to assess PMA cross-linking efficiency 

and reliably quantify Campylobacter (Stingl et al., 2015). By quantifying the number of dead 

cells that PMA did not permeate, the efficacy of dead cell reduction could be applied to the 

sample cells. This also eliminates the need for a complete reduction of a dead cell signal, which, 

except for Josefsen et al. (2010), was not achieved on samples containing over 4 log10 CFU/mL 
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dead Campylobacter (Duarte et al., 2015; Josefsen et al., 2010a; Lv et al., 2020a; Pacholewicz et 

al., 2013). Additionally, Pacholewicz et al. (2019) introduced an internal sample process control 

(ISPC) consisting of a known number of dead C. sputorum cells to monitor the dead cell signal 

reduction through PMA treatment and to offset DNA loses during DNA extraction and sample 

processing (Pacholewicz et al., 2019). The ISPC was added directly to a 1 ml aliquot of a rinse 

sample, which then underwent PMA staining and qPCR. C. sputorum was chosen because it 

shares key properties (amplicon size, target copy number per chromosome) with thermophilic 

Campylobacter. However, it can be distinguished by the intervening sequence (IVS) in its 16S 

rRNA gene sequence. It has also not been isolated from poultry and is therefore unlikely to 

contribute to false-positive results.  

Building on these advancements, Stingl et al. (2021) developed and validated a multiplex 

viability qPCR through an interlaboratory, international ring trial, combining thermophilic 

Campylobacter spp. detection in meat rinses, ISPC monitoring, and internal amplification 

controls (IACs) (Stingl et al., 2021). Having previously developed the ISPC, they adapted the 

method for routine use in laboratories by lyophilizing the ISPC and developing a single triplex 

qPCR which targets thermophilic Campylobacter, the ISPC, and the internal amplification control 

(IAC).  

Many food components, including fats and proteins, can inhibit PCR (Rossen et al., 

1992) by affecting the cell lysis, nucleic acids, and even inactivating DNA polymerase during 

amplification. For example, one study comparing a viability qPCR to culture-based method 

screened chicken meat samples for the presence of Campylobacter and found that the culture-

based method detected more positive results than the PMA-qPCR. They lacked an IAC to account 

for false negatives, so it is possible that the chicken matrix interfered with DNA amplification in 

some samples (Okada et al., 2023). Therefore, IACs are added into PCR to prevent false negative 

results caused by such inhibitors. A 125-bp sequence from Nicotiana tabacum is used as the IAC 
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target in the validated multiplex qPCR. The triplex qPCR developed by Stingl et al. (2019) 

performed similar to their two previously developed duplex qPCRs up to a concentration of 4.7 

log10 CFU/mL of Campylobacter, and the limit of quantification was 2.3 log10 CFU/mL, which is 

similar to previously developed methods (Josefsen et al., 2010b; Lv et al., 2020). Through the 

interlaboratory ring trial, they determined this method was more reliable and reproducible than 

the reference CFU counting method. Therefore, this method and a reference culture-based method 

were adopted in this thesis research. 

While PMA-qPCR remains the most extensively validated method for enumerating viable 

Campylobacter cells, alternative molecular approaches, such loop mediated isothermal 

amplification (LAMP) have shown promise. Peterson et al. (2012) developed LAMP assay for 

VBNC C. jejuni, achieving specificity for C. jejuni with a limit of detection of around 3 log10 

CFU/mL, which is higher than the qPCR methods developed by Josefsen (2010) and Stingl 

(2021). In addition, they designed primers to target the hippuricase-encoding gene (hipO), which 

is highly specific to C. jejuni, meaning that this gene is predominantly present in C. jejuni and is 

not commonly found in other Campylobacter species (LaGier et al., 2004). This makes it 

unsuitable for detecting all thermophilic Campylobacter from food samples, of which C. coli and 

C. lari are the next most prevalent after C. jejuni. Nevertheless, qualitative LAMP assays using 

primers that target the conserved 16S rRNA sequences (Babu et al., 2020) or include multiple 

primers sets targeting different species (Yamazaki, 2013), could be coupled with a PMA 

treatment to detect viable thermophilic Campylobacter spp.  
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1.4 Statement of the Problem 

This study had two aims. The first was to determine the prevalence and levels of retail 

chicken breast contamination with Campylobacter, and the second was to assess the antimicrobial 

efficacy of peroxyacetic acid spray and rinse against viable Campylobacter on chicken breasts.  

To recover cells in a VBNC state, recent studies have developed molecular methods to 

enumerate viable cells from poultry products, including a validated viability qPCR method. While 

their efficacy has been shown for inoculated chicken, it remains unclear whether molecular 

methods are useful for the enumeration of low-level contamination like what is commonly found 

on retail chicken breasts. Studies have also determined the prevalence of viable and VBNC 

Campylobacter on retail chicken breasts using direct plating and viability qPCR methods. 

Therefore, we aimed to compare their efficacy at recovering Campylobacter and to determine the 

prevalence of native (uninoculated) VBNC Campylobacter on retail chicken breasts. We 

hypothesized that the culture-based and molecular methods would not show the same recovery of 

cells, suggesting the presence of VBNC Campylobacter.  

Antimicrobials like peroxyacetic acid (PAA) are used during post-slaughter 

decontamination interventions to control the growth of pathogens such as Campylobacter. 

Previous studies have solely used culture-based recovery methods to determine the efficacy of 

PAA at reducing Campylobacter concentrations on chicken meat. Using both direct plating and 

viability qPCR recovery methods we aimed to compare the culturable and viable Campylobacter 

counts on chicken breasts after PAA treatment. We hypothesized that application of peroxyacetic 

acid through spray and immersion would reduce the culturable cell count of Campylobacter by 

inducing a subpopulation into a VBNC state.  
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Chapter 2 
 

Low Prevalence and Concentrations of Campylobacter Detected on Retail 
Chicken Breasts 

2.1 Introduction 

The Center for Disease Control estimates that 1.5 million people in the US become ill 

from a Campylobacter infection every year (CDC, 2025). In fact, campylobacteriosis is the most 

frequently reported bacterial food-borne illness in humans (Shah, 2024). This illness imposes a 

significant economic burden, with annual losses in the US estimated at approximately $2 billion 

(Hoffmann et al., 2012). Campylobacter is a Gram-negative, microaerophilic, and thermophilic 

bacterium, and it finds its natural niche in the chicken gut. It is most associated with raw or 

undercooked poultry, but it can also thrive in other animal guts, such as pigs or cows. The 

symptoms of campylobacteriosis in humans include diarrhea, cramping, abdominal pain, and 

fever (El-Saadony et al., 2023). More serious post-infection complications can arise, such as 

pancreatitis, reactive arthritis and Guillain-Barré syndrome, which can be fatal (Ruiz-Palacios, 

2007). 

Campylobacter can spread quickly within flocks via fecal contamination when fecal 

droppings exhibit high concentrations of Campylobacter, from 106 to 1010 CFU/g (Battersby et 

al., 2016; Berndtson et al., 1996; Rudi et al., 2004). Flocks that are negative for Campylobacter 

can also be contaminated by positive flocks during transport and slaughter. Campylobacter is 

often highly prevalent on retail chicken meat, with some studies reporting a prevalence of up to 

76% (Guyard-Nicodème et al., 2015). A recent study modeled dose-response curves and found 

that consuming 10 CFU Campylobacter in liquid resulted in a 100% predicted infection 

probability, whereas approximately 1,000 CFU were required for young adults consuming solid 

foods to reach the same probability (Abe et al., 2021).  
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Given the high prevalence and low infectious dose of Campylobacter, quantitative 

detection in poultry meat is crucial for improving pathogen control and reducing consumer 

exposure. However, detection methods need to account for both culturable and viable but non-

culturable (VBNC) cells. Campylobacter encounters stressors such as oxygen and cold 

temperatures outside the chicken gut, which can impair its ability to grow on standard 

microbiological media by causing a VBNC state (Yagi et al., 2022). This state is characterized by 

reduced metabolic activity, increased stress tolerance, and decreased culturability (W. Hazeleger 

et al., 1994; Ikeda & Karlyshev, 2012).  

There is a reliance on culture-based detection, and gold-standard methods, including the 

USDA Microbiology Laboratory Guidelines (MLG) and the FDA Bacteriological Analytical 

Manual (BAM), use enrichment, followed by pathogen isolation (FDA, 2021b; USDA FSIS, 

2024). These methods may underestimate Campylobacter prevalence on retail meat by detecting 

only culturable cells, thereby underestimating the viable bacterial load. This is particularly 

relevant for retail chicken meat, which undergoes prolonged exposure to low temperatures and 

oxidative stress conditions known to induce a VBNC state in Campylobacter (Yagi et al., 2022). 

VBNC C. jejuni has been resuscitated through inoculation into embryonated chicken eggs 

(Cappelier et al., 1999) and in vivo in mice (Baffone et al., 2006), suggesting that failure to detect 

VBNC cells may lead to a underestimation of the pathogen’s infectious potential. 

In recent years, numerous molecular and non-culture-based detection methods have been 

developed to address limitations in Campylobacter detection from food sources, which present a 

unique challenge. Several viability qPCR assays using DNA-intercalating dyes such as propidium 

monoazide (PMA) have been designed to block amplification of DNA from dead cells, ensuring 

only viable cells are detected (Josefsen et al., 2010b; Lv et al., 2020b; Okada et al., 2022; Stingl 

et al., 2021). Stingl et al. (2021) developed and validated a multiplex viability qPCR specifically 

for detecting thermophilic Campylobacter spp. from meat rinses (Stingl et al., 2021).  
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Despite recent advancements in viability qPCR, its application to uninoculated retail 

chicken breasts has not been studied, leaving a gap in understanding the prevalence of viable 

Campylobacter on the most consumed chicken meat cut in the United States (USDA, 2017). 

Therefore, the effectiveness of a viability qPCR method for Campylobacter detection at the retail 

stage remains unclear.  

This study compared culture-based methods, including the United States Department of 

Agriculture (USDA) Food Safety and Inspection Service (FSIS) Microbiology Laboratory 

Guidelines (MLG) 41.09 and the ISO 10272-1:2017 protocols which outline Campylobacter 

isolation and enumeration from poultry, to the recently validated viability qPCR (ISO, 2022b; 

Stingl et al., 2021; USDA FSIS, 2024). The goal was to determine the level of Campylobacter on 

retail chicken breasts and to investigate whether culture-based enumeration recovers the same 

amount of native Campylobacter from retail chicken breasts as viability qPCR, designed to detect 

all viable cells.  

2.2 Materials and Methods 

2.2.1 Sample Collection and Processing 

A total of 211 retail boneless, skinless whole chicken breasts were collected from seven 

grocery stores and two farmer’s markets (bone in, skin-on whole chicken breast) in State College, 

Pennsylvania between October 2023 and July 2024. The following formula was used to determine 

the sample size: N = Z2 P (1-P)/(D2), where Z = 1.96 at a 96% confidence interval, D is the 

tolerated margin of sampling error (5% was used), and P is the estimated prevalence of 

Campylobacter (Admasie et al., 2023). A previous study determined the prevalence of 

Campylobacter on skinless chicken breast to be 4.0%, resulting in a minimum sample size of 59 
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(Mujahid et al., 2023). Samples were immediately transported from the grocery store to the lab 

where they were stored at refrigeration temperatures (4°C) and processed within 24 h. On 

average, eight samples with different processing plant numbers were collected and processed 

weekly. For each sample processed, the establishment number on the package was used to 

identify the processing facility in the FSIS Meat, Poultry and Egg Product Inspection Directory 

(USDA, 2025). To prepare the chicken rinsate, 325 g of each sample was aseptically cut, 

weighed, and added to a homogenization bag (Whirl-Pak, Chicago, IL) pre-filled with 1,625 mL 

of sterile buffered peptone water (BPW; Neogen, Lansing, MI). A sample was then hand-

massaged and shaken for one minute to allow for bacterial detachment. 

2.2.2 Enrichment 

Chicken rinsates were enriched for Campylobacter jejuni/coli/lari by following the 

USDA FSIS MLG 41.07 protocol (USDA, 2022). Briefly, 30 mL of chicken rinsate were added 

to a homogenization bag pre-filled with 30 mL Hunt Medium (Remel, Thermo Scientific, 

Waltham, MA) and incubated at 42°C for 24 h in microaerobic conditions (5% O2, 10% CO2, 

75% N2). After enrichment, each sample was streaked using a 10 µL sterile loop, in duplicates, 

onto Campy-Cefex Agar (Neogen, Lansing, MI) and incubated at 42°C for 48 h in microaerobic 

conditions. After 24 h enrichment, the plates were checked for typical Campylobacter colonies. 

The reference strain C. jejuni ATCC 33560 was used as a positive control by inoculating a colony 

in 30 mL of BPW, then following the same enrichment and isolation steps. Any colonies grown 

on the agar were Gram-stained and Gram-negative colonies were substreaked onto modified 

Charcoal Cefoperazone Deoxycholate (mCCD) agar (Oxoid, Waltham, MA). A representative 

colony was selected from a plate, and DNA was extracted using the GeneJet Genomic DNA 

Purification Kit (Thermo Scientific, Waltham, MA), and tested using a multiplex PCR to confirm 
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Campylobacter (FDA, 2021b; Wang et al., 2002). DNA from all Gram-negative colonies was 

also whole genome sequenced using Nanopore as outlined below.  

2.2.3 Direct Plating 

In parallel to enrichment, rinsates prepared for enrichment were also used for 

Campylobacter quantification by following the ISO 10272-1:2018 (ISO, 2022). The rinsates were 

serially diluted and 100 µL of dilutions were plated in duplicate on both Campy-Cefex and 

mCCD agars using a spiral plater (Interscience, Woburn, MA) in the exponential setting. Two 

negative controls consisting of sterile PBS were plated before and after plating samples to control 

for spiral plater contamination. The Campy-Cefex plates were incubated at 42°C for 24 h, and the 

mCCDA plates were incubated at 42°C for 48 h, both in microaerobic conditions. Two negative 

controls for each medium were incubated alongside samples to confirm media sterility. 

2.2.4 PMA Treatment and Viability qPCR 

Chicken rinsates were treated with propidium monoazide (PMA), followed by DNA 

extraction and viability qPCR by following the protocol from Stingl et al., 2021. First, two 1-mL 

aliquots of the chicken rinsate were prepared - one for treatment with PMA and one without. 

Internal sample process control was prepared using the C. sputorum lyophilizate (German Federal 

Institute for Risk Assessment, Berlin, Germany), aliquoted and stored at -80°C until PMA 

treatment, at which point an aliquot was thawed and diluted with BPW and Peptone Water-blue 

(PW-blue) (0.05% bromophenol blue in BPW) to obtain the working solutions ISPChigh and 

ISPClow. One milliliter of BPW was added to the five controls. Samples and controls not treated 

with PMA were placed on ice for two min and 10 µL ISPClow was added to each sample, followed 
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by centrifugation at 16.000 x g for five min at 4°C (Galaxy 20R, VWR International, Radnor, 

PA). Supernatants were discarded, and the cell pellets were frozen at -20°C until DNA extraction.  

Ten microliters of ISPChigh were added to the PMA-treated samples and controls at room 

temperature (20°C), followed by vortexing. Then, 2.5 µL of PMA (20 mM) was added and 

samples were incubated in a thermomixer (Multi-Therm, Benchmark Scientific, Sayreville, NJ) 

for 15 min at 30°C under shaking at 700 rpm in the dark, covered with aluminum foil. Once the 

incubation was completed, the tubes were transferred to the PMA-Lite 2.0 LED Photolysis 

Device (Biotium, Fremont, CA) and crosslinked for 15 min in the dark. After cross-linking, 

samples were placed on ice for two min in the dark, followed by the addition of 10 µL ISPClow. 

The samples were then centrifuged at 16.000 x g for five min at 4°C (Galaxy 20R, VWR 

International, Radnor, PA), supernatants were discarded, and the cell pellets were stored frozen at 

-20°C until DNA extraction.  

DNA extraction was performed following the GeneJet Genomic DNA Purification Kit 

(Thermo Scientific, Waltham, MA) protocol and extracted DNA was kept frozen at -20°C until 

the qPCR was performed. Quantitative PCR was carried out in a triplex reaction using Platinum 

Taq DNA Polymerase (Invitrogen, Thermo Scientific, Waltham, MA; 5 U/µL), targeting DNA of 

thermophilic Campylobacter, the ISPC, and the internal amplification control (IAC). The PCR 

cycling program consisted of an initial denaturation step for three min at 95°C, then 45 cycles of 

15 s at 95°C, 60 s at 60°C, and 30 s at 72°C (Stingl et al., 2021).  

2.2.5 DNA Extraction, Nanopore Sequencing, and Genome Analysis 

For Nanopore whole genome sequencing, a loopful of a representative Gram-negative 

colony was substreaked onto mCCDA and incubated at 42°C for 48 h in microaerobic conditions. 

Genomic DNA was then extracted using the GeneJet Genomic DNA Purification Kit (Thermo 
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Scientific, Waltham, MA), and extracted DNA was kept frozen at -20°C until sequencing. The 

concentration of extracted DNA was quantified using a Qubit (Qubit 4, Invitrogen, Thermo 

Scientific, Waltham, MA). DNA concentration was adjusted to 400 ng per 7.5 µL for each 

sample. Libraries were prepared using the Rapid Barcoding Library Preparation Kit (Oxford 

Nanopore Tech, cat. No. SQK-RBK004, Oxford, United Kingdom) by following manufacturer’s 

instructions and one isolate was sequenced per each flow cell (FLO-MIN106). Each isolate was 

sequenced for 48 hours using a MinION Mk1C sequencer (Oxford Nanopore Tech, Oxford, 

United Kingdom), and the base-calling was carried out in real time using the fast model. The 

generated fastq files were concatenated and quality of reads was assessed using FastQC in 

GalaxyTrakr (Galaxy Version 0.73) (Gangiredla et al., 2021). Sequencing reads were assembled 

using Flye (Galaxy Version 2.9.1) (Lin et al., 2016) and the read quality was checked using Quast 

(Galaxy Version 5.2.0) (Gurevich et al., 2013). GTDBtk (Galaxy Version 2.2.2) was used to 

identify taxonomic species. Subsequently, assemblies were analyzed using ABRicate (Galaxy 

Version 1.0.1) to detect antimicrobial resistance gene sequences. Lastly, genomes were queried 

via PubMLST to determine multilocus sequence typing (MLST) sequence types (STs). Genomes 

that had an undetermined ST were submitted to PubMLST for new allele and/or ST definition 

(Jolley et al., 2018).  

2.3 Results and Discussion 

From October 2023 to July 2024, 211 chicken breasts were sampled and analyzed for 

Campylobacter spp. to determine prevalence and to compare the performance of the culture-

based and viability qPCR methods. Based on the processing establishment number listed on a 

packaging label, we determined that samples were processed in at least 18 processing plants. 

Among these, 50 of the 211 samples were processed in plants in Delaware, eight in Georgia, 11 in 
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Illinois, 19 in Kentucky, three in Maryland, 45 in North Carolina, 38 in Pennsylvania (including 

both the farmer’s market samples), and 21 in Virginia (Fig. 2.1). The processing plant number 

was not listed on the packaging for fifteen of the analyzed samples. Based on the FSIS Meat, 

Poultry and Egg Product Inspection Directory records, all plants from which our samples were 

sourced were poultry processing plants, with some also including poultry slaughter or other meat 

processing (FSIS, 2025).  

 

 
Figure 2.1. Relative number of retail chicken breast samples included in this study that had been 

processed in each state.  

Enrichments of 16 chicken breast samples produced visible colonies upon streaking 

enrichments onto Campy-Cefex agar plates and incubating them at the prescribed conditions. 

Colonies from all 16 samples were Gram negative and colonies from five had a typical 

Campylobacter spp. morphology observed using a light microscope. However, none of the tested 

samples produced colonies when rinsates were plated directly onto Campy-Cefex and mCCDA 
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and incubated at prescribed conditions. Consistent with the results of direct plating, viability 

qPCR produced a negative results for all tested samples. Campylobacter enrichment method can 

detect as few as 12 cells per 325 g sample. In contrast, direct plating and viability qPCR have a 

higher limit of detection (60 CFU and 3200 - 5000 cells per 325 g chicken sample depending on 

the level of organic matter, or 0.18 CFU/g and 9.8 – 15.4/g, respectively). This suggests that the 

16 samples that tested positive using enrichment and negative using quantitative methods were 

likely contaminated with fewer than 60 CFU per sample. This indicates that while enrichment 

was able to detect Campylobacter at low concentrations, the bacterial load was below the limit of 

detections for both quantitative methods. This highlights their limitations in the detection of low-

level Campylobacter contamination.  

Experimental human infection studies have estimated the infectious dose for 

Campylobacter to be between 500 and 800 cells (5 – 8 cells/g considering a 100 g serving size) 

(Black et al., 1988; Robinson, 1981). However, while lower doses have not been tested, a dose-

response model found that 1 – 10 CFU can cause infection and 100 – 1,000 CFU have between a 

60 – 100% chance of causing infection in young adults consuming solid food (Abe et al., 2021). 

Culture-based methods have a detection limit well below this dose (e.g., 0.04 cells/g chicken 

sample for enrichment) and can detect low-level contamination and can therefore be useful for 

assessing the positivity rate. In contrast, the limit of detection for viability qPCR is by 

approximately two orders of magnitude higher, which makes it less suitable for detection of very 

low-level contamination. However, it can detect viable Campylobacter, including VBNC cells, 

and provides a quantitative estimate of the contamination level, which can be used to assess 

compliance with regulation based on the quantitative limits. For example, in the European Union, 

Regulation (EU) 2017/1495 outlines microbiological criteria and the regulatory limit of 1,000 

CFU/g for Campylobacter on broiler carcasses and requires that 40 out of 50 tested samples meet 

this criterium to comply with the regulation (EFSA, 2017). When quantitative limits are in place, 
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viability qPCR may offer a more accurate quantification by accounting for VBNC 

Campylobacter, which may regain infectious potential in a human host.  

Nine of the 16 isolates were PCR positive using Campylobacter spp. specific primers, 

and eight were PCR positive using primers specific to the C. jejuni species. Among these, four 

showed intense bands in the gel electrophoresis, while all others produced faint bands. One 

isolate which produced a strong band in the C. jejuni confirmation PCR showed no band for the 

23S rRNA amplicon. To mitigate false positive confirmation, 15 of these 16 isolates were whole 

genome sequenced using Nanopore. One isolate did not grow after subculturing and was therefore 

not sequenced. Based on the taxonomic classification using GTDBtk, five of the 15 isolates were 

confirmed as C. jejuni, eight were Acinetobacter spp. (three Acinetobacter baumannii, three 

Acinetobacter seifertii, two Acinetobacter nosocomialis), one Micrococcus luteus, and one 

Escherichia coli, which suggested poor specificity of the confirmation PCR method. 

 

Figure 2.2. Number of chicken breast samples processed from the end of October 2023 to July 

2024. The orange circles indicate isolates that were determined to be C. jejuni by WGS while the 

purple circles were not.  
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The five C. jejuni isolates were obtained from chicken breast samples processed in a 

Pennsylvania facility in January, Illinois facility in February, Virginia facility in April, Delaware 

facility in June, and from a farmer’s market sample in July (Fig. 2.2). This resulted in the overall 

prevalence of Campylobacter spp. on retail chicken breast of 1.9% (n = 209).  

Once Campylobacter leaves its natural niche in the chicken gut, it spreads through fluids 

and feces, attaching to the skin, which provides a more protective environment than exposed 

muscle tissue (Davis & Conner, 2007). As a result, contamination levels and prevalence rates are 

generally higher on chicken skin than on meat, making direct comparisons with studies on other 

cuts other than boneless, skinless breasts, difficult (Hansson et al., 2015; Luber & Bartelt, 2007). 

For example, Campylobacter prevalence was significantly higher on chicken carcasses (90%, n = 

120) and legs (85.1%, n = 121) compared to skinless chicken breasts (53.3%, n = 120) (Guyard-

Nicodème et al., 2015). Similarly, a study using a previous version of the same MLG (41.05) 

found Campylobacter in 4.0% of boneless, skinless chicken breasts, while the prevalence was 

higher (7.5%) in bone-in, skin-on breasts (Mujahid et al., 2023). Their samples, sourced from 

metro areas across the US (n = 499) in January and February, likely yielded a higher prevalence 

(compared to our 1.9%) due to seasonal variation, sample sourcing differences, and the use of a 

different enrichment method. These factors highlight the importance of considering sample type, 

methodology, and seasonality when comparing Campylobacter prevalence across studies. Our 

study focused exclusively on skinless chicken breasts, which may partially explain the lower 

Campylobacter prevalence compared to studies examining different chicken cuts, where 

prevalence ranges from 3.2% for boneless, skinless tenders to 95% for skin-on wings (Mujahid et 

al., 2023; Poudel et al., 2022; Sasaki et al., 2023; Walker et al., 2019a; Zendehbad et al., 2015).  

A study comparing Campylobacter prevalence on fresh or frozen whole skin-on chicken 

from farmers’ markets and supermarkets in Pennsylvania found that 52% (n = 50) of the retail 

chicken samples tested positive for Campylobacter. However, only one of these samples had a 
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quantifiable level of contamination. While their reported prevalence is higher, likely due to the 

presence of skin, the overall contamination level aligns with our findings, as all positive samples 

in our study had Campylobacter below the level of quantification.  

During our sampling period, the FSIS collected national-scale prevalence data on 

Campylobacter in chicken meat and the reported prevalence from October 1, 2023, to September 

30, 2024 was 20.63% (n = 7,206). FSIS samples raw chicken parts, including legs, breasts and 

wings. However, since this dataset does not specify the exact distribution of cuts tested, direct 

comparisons with our results are challenging. Given that multiple skin-on cuts are included, the 

higher prevalence observed in this dataset is expected. 

Previous studies have demonstrated seasonal variation in Campylobacter prevalence, 

with higher prevalence in warmer months compared to cooler months (Hinton et al., 2004; Willis 

& Murray, 1997). While it is possible that temperature directly affects the increases in human 

cases, more likely it serves as a marker for increase in human behavior that increase the risk of 

infection, like consumption of barbecued meat or swimming (Mughini Gras et al., 2012; Rosner 

et al., 2017). Additionally, a model showed the risk of getting Campylobacter infection from 

chicken meat is lower during the winter months (Xu et al., 2023). In our study, two samples 

tested positive in winter, one in spring and one in summer. However, we sampled the fewest 

number of chickens in fall (n = 16) and summer (n = 40), and the most in spring (n = 87) and 

winter (n = 68). This inconsistency makes it difficult to draw definitive conclusions about 

seasonality based on our data, and a similar number of samples would need to be collected each 

season to draw conclusions based on seasonality.   

The isolated C. jejuni strains were submitted to the Campylobacter jejuni/coli multilocus 

sequence typing (MLST) database (Jolley et al., 2012) on PubMLST (Jolley et al., 2018). The 

five isolates represented novel sequence types (STs), including ST 14450, ST 14451, ST 14452, 

ST 14453 and ST 14454, none of which were assigned to a clonal complex. Two isolates (80, 
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195) carried blaOXA-61 (80) and blaOXA-184 (195), and tet(O) genes that had been associated 

with ampicillin and tetracycline resistance (Yan et al., 2023). One isolate (137) carried just 

blaOXA-61. None of the Campylobacter isolates carried mutations or genes associated with 

resistance to fluoroquinolones and macrolides, which are used for the treatment of 

campylobacteriosis. 

A Finnish study identified ST 45 (33.0%), ST 677 (9.5%) and ST 267 (5.5%) as the most 

prevalent Campylobacter sequence types in chicken pre-slaughter (n = 380) (Llarena et al., 2015). 

In a seven year study subtyping Campylobacter from commercial broiler chickens, the most 

prevalent ST was ST 353 (Berrang et al., 2023). Since our Campylobacter isolates were assigned 

novel STs and not placed into existing clonal complexes, they are likely not similar to the most 

prevalent genotypes reported.  

In addition to Campylobacter, the enrichment broth and Campy-Cefex agar supported 

growth of off-target species of Acinetobacter in eight samples, Micrococcus luteus and E. coli. 

These species included Acinetobacter baumannii, Acinetobacter seifertii, and Acinetobacter 

nosocomialis. Three isolates (two A. nosocomialis and one A. seifertii) along with Micrococcus 

luteus were recovered from chicken breasts processed at the same plant in Georgia between April 

and June. Additionally, three Acinetobacter isolates (one A. baumannii and two A. seifertii) 

originated from chicken breasts processed at a Delaware plant between February and March. One 

A. baumannii isolate was collected from chicken processed at a plant in Virginia in April, and 

Campylobacter jejuni was isolated from chicken breast processed at the same facility two weeks 

later. The last A. baumannii isolate was recovered from chicken processed in a plant in Virginia 

in May. The E. coli isolate was obtained from chicken processed in a plant in Pennsylvania in 

April. Although some isolates were isolated from the same processing facilities, none of them 

were closely related as determined by percent relatedness using kSNP, with the lowest pairwise 

SNP difference being 248 (Gardner et al., 2015). This indicates that these isolates are not 
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genetically related and hail from distinct lineages. The eight Acinetobacter isolates had 

undetermined sequence types, and were therefore submitted to PubMLST for typing using the 

Pasteur scheme (Diancourt et al., 2010; Jolley et al., 2018). Of the three A. baumannii isolates, 

one was assigned ST 203 and one ST 869. Of the three A. seifertii isolates one was ST 2746 and 

one ST 2747. One of the A. nosocomialis isolates was assigned ST 359. One isolate per species  

was not assigned a ST due to insertions or deletions (indels) in the sequence. All strains isolated 

in this thesis are available in the NCBI Sequence Read Archive (SRA) repository under the 

BioProject ID PRJNA1233267 (see table 2.1). 

 

Table 2.1. Isolate number, name, species, sequence accession number, sequence type, and state 

the chicken was processed in for 15 isolates that grew on Campylobacter selective enrichment 

plates.  

a Multi-locus sequence type (MLST) determined through submission to PubMLST. 

Isolate 
number 

Isolate 
name Species 

Sequence 
Accession 
Number 

MLSTa State 

44 PS03104A Campylobacter jejuni SRR32610261 14450 PA 
57 PS03188A Acinetobacter seifertii SRR32610260 2746 DE 
67  Acinetobacter baumannii SRR32610254 203 DE 
80 PS03105A Campylobacter jejuni SRR32610253 14451 IL 
87 PS03189A Acinetobacter seifertii SRR32610252 2747 DE 
121  Acinetobacter baumannii SRR32610251 869 VA 
124 PS03190A Acinetobacter seifertii SRR32610250  GA 
132  Escherichia coli SRR32610249  PA 
137  Campylobacter jejuni SRR32610248 14452 VA 
146 PS03194A Micrococcus luteus SRR32610247  GA 
158  Acinetobacter nosocomialis SRR32610259  GA 
163  Acinetobacter baumannii SRR32610258  VA 
174  Acinetobacter nosocomialis SRR32610257 359 GA 
195  Campylobacter jejuni SRR32610256 14453 DE 
204  Campylobacter jejuni SRR32610255 14454 PA 
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 The three Acinetobacter species isolated in this study belong to the Acinetobacter 

calcoaceticus-baumannii complex (Acb), a group of six phenotypically similar pathogens 

associated with nosocomial infections such as pneumonia and bacteremia (Nemec et al., 2015). 

Acinetobacter baumannii is of particular concern due to its increasing antibiotic resistance and 

persistence in hospital environments, making infections exceptionally difficult to treat (Wareth et 

al., 2019).  

Multi-drug resistant A. baumannii is among the six most critical nosocomial pathogens in 

the US, according to the Infectious Diseases Society of America (ISDA), with approximately 

45,000 clinical infections annually and an ICU mortality rate of up to 50% (Wei et al., 2023). It is 

also part of the ‘ESKAPE’ pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, A. baumannii, Pseudomonas aeruginosa, and Enterobacter species), a group of 

bacteria responsible for the majority of nosocomial infections in the US and known for their 

extensive antimicrobial resistance mechanisms (Miller & Arias, 2024; Pendleton et al., 2013).  

Carbapenem-resistant A. baumannii (CRAB) is a major concern for hospital-acquired 

infections, as carbapenems were once the standard treatment for critical infections, but increased 

usage has driven resistance (Jiang et al., 2022). This led to CRAB being designated as a critical-

priority pathogen by the WHO, highlighting the urgent need for new antibiotics (Tacconelli et al., 

2018). The primary mechanism of carbapenem resistance in A. baumannii is the production of 

OXA-type β-lactamases, with five major groups (OXA-23-, OXA-24/40-, OXA-51-, OXA-58-, 

and OXA-143-like) being most common. The three A. baumannii isolates in this study carried 

sequences of blaOXA-203, blaOXA-259, and blaOXA-78, all of which have been associated with 

resistance to carbapenems (Evans & Amyes, 2014; Kafshnouchi et al., 2022). Both blaOXA-78 

and blaOXA-203 encode enzymes within the intrinsic OXA-51-like enzyme group, commonly 

found in A. baumannii and A. nosocomialis, which confer baseline carbapenem resistance. 

However, their clinical significance depends on expression levels and the presence of additional 
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resistance mechanisms. The gene blaOXA-259 is less well characterized but is known to be an 

intrinsic β-lactamase gene that also confers resistance to carbapenems. It was previously reported 

in a community-acquired carbapenem-resistant A. baumannii strain also carrying the blaOXA-72 

gene (Jia et al., 2019).  

Although Acinetobacter is rarely associated with enteric disease, it has been suggested as 

a potential foodborne pathogen. Its role in foodborne illness is often overlooked due to its 

association with more severe infections and its frequent co-occurrence with well-known enteric 

pathogens. However, multiple studies have isolated Acinetobacter species from the feces of 

children with diarrhea, and these isolates exhibited cytotoxicity in cell cultures, suggesting a 

possible link to illness (Amorim & Nascimento, 2017). Unlike many foodborne bacteria, 

Acinetobacter can persist on dry surfaces commonly found in food processing environments and 

hospitals, form biofilms (Cerqueira & Peleg, 2011), and compete with established foodborne 

pathogens like E. coli and Salmonella (Damaceno et al., 2015). Given these characteristics, 

standardized methods for the isolation and identification of Acinetobacter from food should be 

developed, and its potential role as a foodborne pathogen warrants further investigation. 

Furthermore, the ability of Actinetobacter spp. to survive under conditions selective for 

Campylobacter raises additional concerns regarding foodborne surveillance and detection. While 

Acinetobacter spp. are primarily aerobes with an optimal growth temperature of 30 - 37°C, 

Acinetobacter spp. has demonstrated the ability to grow under conditions designed for 

Campylobacter spp., as observed in our study. It has previously been isolated from poultry 

carcass rinses, retail meat products, surface water, and dairy cattle manure storage tanks under 

similar conditions (Cha et al., 2021; Fernando et al., 2016; Oyarzabal et al., 2005). Thus, its 

growth under microaerobic conditions (5% O2, 10% CO2, 75% N2) at a 42°C, in the presence of 

multiple antibiotics, is not unexpected. The resistance of Acinetobacter to the antimicrobials 

present in selective media and its growth in these media may suppress Campylobacter growth, 
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potentially leading to underestimation of Campylobacter prevalence. Acinetobacter is 

intrinsically resistant to cephalosporins, carbapenems, and penicillins, so if contamination 

persists, addition of others such as tigecycline and aminoglycosides to selective media might aid 

in effectively isolating Campylobacter (Eliopoulos et al., 2008).  

Lastly, the E. coli isolate that grew in the Hunt enrichment and Campy-Cefex agar carried 

aph(3'')-Ib, aph(6)-Id, blaTEM-1B, dfrA14 and sul2 resistance genes associated with resistance to 

streptomycin, kanamycin, ampicillin, trimethoprim and sulfisoxazole, respectively (Poirel et al., 

2018). This was the only isolate whose predicted phenotype was resistant to trimethoprim, an 

antibiotic added into Campylobacter enrichment media. In addition, a sitABCD homologue was 

detected in this isolate, which is significant as sitABCD was identified in avian pathogenic E. coli 

and was associated with iron and manganese transport, which contributes to oxidative stress 

resistance (Sabri et al., 2006). The presence of sitABCD in this isolate indicates a role in metal ion 

acquisition that may increase survival under the Campylobacter selective conditions.  E. coli can 

grow in media selective for Campylobacter, like Campy-Cefex, Bolton media and mCCDA, all 

containing cefoperazone (Chon et al., 2012; W. C. Hazeleger et al., 2016; Kim et al., 2019).  

This study provides insight into the prevalence of culturable Campylobacter on retail 

chicken breasts and demonstrates a lack of specificity of gold-standard enrichment methods for 

detecting Campylobacter from chicken meat. We were unable to determine the level of viable or 

culturable Campylobacter since the quantitative methods were not able to detect the low-level 

contamination of Campylobacter in any samples, highlighting the limitations in current detection 

approaches. The lack of specificity of the enrichment method led to the isolation of off-target 

bacteria, including the clinically relevant Acinetobacter spp., which demonstrates their 

persistence in poultry environments and raises concern about its transmission as a foodborne 

pathogen.  
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Chapter 3 
 

Effect of Peroxyacetic Acid Treatment on Campylobacter Culturability and 
Viability in Chicken Breasts 

3.1 Introduction 

Campylobacter is the leading cause of bacterial foodborne illness, and chicken is its main 

reservoir for transmission to humans (Rosner et al., 2017; Shah, 2024). Despite biosecurity 

measures at the farm level, ensuring that broilers are free of Campylobacter before entering the 

processing chain is challenging due to horizontal transmission and subsequent colonization and 

rapid growth in the poultry gut (Cody et al., 2019; Sadek et al., 2023). Therefore, control 

measures are introduced at the slaughterhouse to reduce microbial load on carcasses (Vandeplas 

et al., 2008). Once broilers have been eviscerated, carcasses move to a chill step, where cold 

water (1 – 2 °C) is used to reduce microbial load and inhibit microbial growth (Rosenquist et al., 

2006). Low concentrations of antimicrobials can be added to the water to further reduce microbial 

load. At a post-chill step, higher concentrations of antimicrobials are typically applied to the 

carcass or chicken parts using spraying or immersion, without further rinsing (Cano et al., 2021).  

The most commonly used antimicrobials approved for post-chill application on chicken 

carcasses are chlorine and peroxyacetic acid (PAA) (Wideman et al., 2016). While chlorine 

efficacy decreases in the presence of high organic loads, PAA remains effective at sufficiently 

high concentrations (Su et al., 2022). As a result, PAA has become a preferred choice in poultry 

processing facilities and is widely used post-chill to reduce microbial load through its oxidizing 

and acidic properties.  

Studies have demonstrated that PAA effectively reduces culturable Campylobacter on 

chicken meat (Cano et al., 2021; Gonzalez et al., 2021; Kataria et al., 2020; Kumar et al., 2020; 

Laranja et al., 2023; Park et al., 2017; Smith et al., 2015). For example, at 200 ppm for 60 s, 
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immersion resulted in 1.42 log10 reduction of C. jejuni, whereas spraying reduced counts by 0.61 

log10 (Smith et al., 2015). This was corroborated by another study, where 30-second immersion at 

250 ppm PAA reduced Campylobacter by more than 1 log10, while a higher concentration (500 

ppm) was required to achieve a similar reduction with spray application (Kumar et al., 2020). 

Similarly, a 5 s immersion at 550 ppm reduced culturable Campylobacter by over 2 logs on 

chicken wings, while a 4 s spray achieved less than 1 log10 reduction (Gonzalez et al., 2021). 

Notably, after a 24 h of storage at 4°C, the reductions remained consistent relative to untreated 

controls.  

Higher PAA concentrations further enhance its efficacy. Immersion at 1200 ppm was 

shown to lead over 2 log10 reduction of culturable C. coli cells (Park et al., 2017). Despite the 

variability in experimental conditions, immersion seems to achieve a greater Campylobacter 

reduction on chicken meat compared to spray application, and PAA concentrations above 200 

ppm were shown to consistently reduce Campylobacter by over 1 log10, with higher 

concentrations yielding greater reductions.  

The studies discussed above used culture-based methods to recover Campylobacter cells 

after PAA treatment, even though oxidative and acidic stress can induce a viable but 

nonculturable (VBNC) state in Campylobacter. In this state, Campylobacter fails to grow on 

selective media but maintains its membrane integrity and may regain its infectivity under 

favorable conditions, such as in a host’s gut (Baffone et al., 2006c; Yagi et al., 2022a; Zhang & 

Lu, 2023). Therefore, PAA interventions must assess not only reductions in culturable 

Campylobacter, but also in viable populations to ensure irreversible inactivation. To accurately 

determine the load of viable cells, viability qPCR methods have been developed using DNA-

intercalating dyes to differentiate live and dead cells (Josefsen et al., 2010b; Lv et al., 2020a; 

Okada et al., 2022; Stingl et al., 2021). When used alongside culture-based methods, viability 
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qPCR helps quantify the proportion of Campylobacter population in the VBNC state, providing a 

more comprehensive assessment of antimicrobial effectiveness. 

This study aimed to evaluate the efficacy of 500 ppm PAA in reducing Campylobacter on 

chicken breasts using immersion and spray application methods. Reduction in Campylobacter 

was quantified using both quantitative culture-based and viability qPCR methods to assess the 

effect of PAA on both culturability and viability. 

3.2 Materials and Methods 

3.2.1 Preparation of Inoculum 

Three strains of Campylobacter jejuni were used to inoculate chicken breast samples, one 

of which was a human clinical isolate (PS00332, ST-50 CC) and two were chicken meat isolates 

(PS01840, ST-48 CC; PS01849, ST-353 CC). To prepare the inoculum, a loopful of each 

cryostock was streaked onto an mCCD agar plate (Oxoid, Waltham, MA) and incubated for 48 h 

at 42°C in microaerobic conditions (5% O2, 10% CO2, 75% N2). Subsequently, one isolated 

colony was transferred into 40 ml Brucella broth (BD Biosciences, Franklin Lakes, NJ) and 

incubated for 48 h at 42°C in microaerobic conditions. After completed incubation, optical 

density of each culture was measured, and cultures were adjusted to 107 CFU/ml using an OD-

CFU/ml curve. Cultures were then centrifuged at 3,000 g for 10 min. Supernatants were decanted, 

and the pellets were resuspended in 400 µL PBS, resulting in the final concentration of 109 

CFU/ml. The adjusted cultures were combined in equal volumes and vortexed. The concentration 

of culturable cells in the inoculum cocktail was confirmed by plating serial dilutions prepared in 

buffered peptone water (BPW) onto mCCD agar plates (Oxoid, Waltham, MA). Inoculated plates 

were incubated at 42°C for 48 h in microaerobic conditions. The concentration of viable cells in 
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the inoculum was determined by propidium monoazide (PMA) treatment of the 10-5 dilution, 

followed by a viability qPCR, as described under the “PMA Treatment and Viability qPCR” 

below. 

3.2.2 Sample Inoculation 

Chicken breasts were purchased the day of the start of the experiment from a local 

grocery store. The chicken breasts were cut into 5 x 5 x 0.5 cm slices weighing approximately 25 

g and were kept at 4°C in sterile Petri dishes until inoculation. A 100 µl aliquot of the inoculum 

was deposited onto the surface of a chicken slice with a micropipette and spread across the entire 

top surface with a sterile spreader. The inoculum was left to attach for 10 minutes at room 

temperature in a biosafety cabinet with the air flow on and the lid of the Petri dish off.  

3.2.3 Peroxyacetic Acid Treatment 

Peroxyacetic acid solution (22%) (Perasan MP-2C, Enrivotech, Modesto, CA) was 

diluted in chilled, sterile, deionized (DI) water to 500 ppm. The final concentration was 

confirmed using high-range PAA test strips (LaMotte, Chestertown, MD).  

A total of six slices of chicken were prepared for each experiment and each experiment 

was repeated independently at least three times. In each experiment, two samples were treated 

with chilled 500 ppm PAA either through immersion (I) or spray (S), two were immersed or 

sprayed with sterile chilled DI water as immersion or spray controls (IC, SC), one was used as a 

negative control that was uninoculated and untreated (NC), and one was used as a positive control 

that was inoculated but untreated (PC). IC and SC were included as immersion or spraying 

controls, respectively, to quantify the Campylobacter reduction resulting from physical removal 
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during immersion or spraying, rather than inactivation by PAA. NC was included to assess the 

natural presence of Campylobacter on meat and to quantify the total aerobic mesophilic 

microbiota, while PC was used to evaluate the impact of non-PAA factors (e.g., exposure to air) 

on Campylobacter culturability and viability.  

For the immersion treatment, sterile forceps were used to fully submerge each breast slice 

individually for 10 s in a 150 mL aliquot of pre-chilled PAA in a homogenization bag (Whirl-

Pak, Chicago, IL). Freshly prepared PAA solution was used for treatment of each sample to 

prevent the reduction in antimicrobial efficacy due to increased organic load in the solution.  

For spray treatment, a custom-enclosed spray apparatus was assembled using a sprayer 

wand (HDX, Home Depot, Atlanta, GA) and stainless-steel restaurant-style containers (6” depth, 

12 ¾” length, 10 ½” width) (The Restaurant Store, Lancaster, PA). Before treatment, the spray 

apparatus was sanitized by running 70% ethanol through it for 10 s, followed by a 10 s flush with 

PAA. Using sterile forceps, breast slices were individually placed on a sterile mesh rack inside 

the pan and sprayed for 10 s on the inoculated side, depositing approximately 50 ml PAA per 

sample.  

Samples were analyzed immediately after treatment, 1 h post-treatment, or 24 h post-

treatment. Samples designated for 1 h and 24 h analysis were stored at 4°C in sterile Petri dishes 

with covered lids until processing. For analysis, samples were aseptically transferred to sterile 

homogenization bags (Whirl-Pak, Chicago, IL) containing 100 ml sterile neutralizing buffered 

peptone water (nBPW) supplemented with 0.1% sodium thiosulfate (Sigma, St. Louis, MO) to 

neutralize PAA and halt its antimicrobial activity. Samples were then hand-massaged and 

vigorously shaken for 1 minute to detach Campylobacter cells. The resulting suspension was 

serially diluted in sterile BPW, and 100 µl of each dilution (10-3 to 10-7) were plated on mCCD 

agar plates (Oxoid, Waltham, MA) in duplicate, and incubated for 48 h at 42°C in microaerobic 

conditions. In addition to being plated on mCCD agar, the negative control was also plated on 
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standard plate count agar (SPCA) and lower dilutions (10-1 to 10-3) were used. The SPCA plates 

were then incubated at 35°C for 48 h in aerobic conditions to enumerate the background 

microbiota present on the chicken and to assess the selectivity of mCCD agar for Campylobacter.  

3.2.4 PMA Treatment and Viability qPCR 

The samples underwent propidium monoazide (PMA) treatment, followed by DNA 

extraction and viability qPCR (Stingl et al., 2021). From each rinsate bag, two diluted rinsate 

samples (10 µl rinsate in 990 µl sterile BPW) were aliquoted into microcentrifuge tubes. Internal 

sample process controls, ISPChigh and ISPClow were prepared and aliquoted in advance using the 

C. sputorum lyophilizate (German Federal Institute for Risk Assessment, Berlin, Germany), and 

were diluted in BPW and Peptone Water-blue (PW-blue) (0.05% bromophenol blue in buffered 

peptone water) on the day of PMA treatment. 1 ml sterile BPW was added to five control tubes, 

four without PMA treatment and one with PMA treatment. Samples and controls not undergoing 

PMA treatment were placed on ice for 2 min, then 10 µl ISPClow was added to each tube, 

followed by centrifugation at 16,000 x g for 5 min (4°C) (Galaxy 20R, VWR International, 

Radnor, PA). The supernatant was discarded, and the cell pellets were frozen at -20°C until DNA 

extraction. Ten microliters ISPChigh were added to the PMA-treated samples and controls at room 

temperature (20°C), followed by vortexing to mix. Then, 2.5 µl of PMA (20 mM) were added and 

samples were incubated in a thermomixer (Multi-Therm, Benchmark Scientific, Sayreville, NJ) 

for 15 min at 30°C under shaking at 700 rpm in the dark, covered with aluminum foil. Once 

completed, the tubes were transferred to the PMA-Lite 2.0 LED Photolysis Device (Biotium, 

Fremont, CA) for PMA crosslinking for 15 min in the dark, covered with aluminum foil. After 

cross-linking, samples were placed on ice for 2 min in the dark, followed by the addition of 10 µl 

ISPClow. The samples were then centrifuged at 16,000 x g for 5 min at 4°C (Galaxy 20R, VWR 
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International, Radnor, PA), the supernatant was discarded, and the cell pellets were frozen at -

20°C until DNA extraction.  

The GeneJet Genomic DNA Purification Kit (Thermo Scientific, Waltham, MA) protocol 

was followed for DNA extraction, and extracted DNA was kept frozen at -20°C until the viability 

qPCR was performed. Viability qPCR was carried out in two duplex reactions, one targeting 

DNA of thermophilic Campylobacter, and either the ISPC or the internal amplification control 

(IAC). Platinum Taq DNA Polymerase (Invitrogen, Thermo Scientific, Waltham, MA; 5 U/µL) 

was in a PCR consisting of an initial denaturation step for 3 min at 95°C, then 45 cycles of 15 s at 

95°C, 60 s at 60°C, and 30 s at 72°C.  

3.2.5 Statistical Analysis 

Microbial cell concentrations, as determined by colony counts and viability qPCR, were 

converted into log10 CFU/ml. The Campylobacter concentrations obtained for the PAA-treated 

samples (I or S) were subtracted from the Campylobacter concentrations for the respective 

rinsing controls (IC or SC) to determine the antimicrobial effect of PAA treatment without the 

contribution of physical rinsing. These differences were then subtracted from the respective 

inoculated but untreated control (PC) to determine the reduction in concentration resulting from 

PAA treatment alone.  

A three-way ANOVA test was performed to examine the effect of interactions between 

the method (direct plating vs. viability qPCR), treatment (PC, I, S), and cold storage time post-

treatment (0 h, 1 h, 24 h) on Campylobacter concentration. Interactions that were statistically 

significant (p < 0.05) were further examined using a Tukey’s HSD to determine the significance 

of all pairwise comparisons.  
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3.3 Results and Discussion 

3.3.1 A small but significant subpopulation of Campylobacter was in a non-culturable state prior 
to PAA treatment 

 We initially determined whether cells were in a VBNC state prior to inoculation onto the 

chicken by comparing the culturable and viable concentration of Campylobacter in the inoculum, 

as determined by dilution plating and viability qPCR. The concentration of viable cells (9.29 ± 

0.57 log10 CFU/mL) was significantly higher (p < 0.001) than the concentration of culturable cells 

(8.76 ± 0.52 log10 CFU/mL), suggesting that 0.53 log10 CFU/mL were in a VBNC state before 

inoculation onto chicken breasts (Table 3.1). However, the margins of error (viable: 8.72 – 9.86 

log10 CFU/mL; culturable: 8.24 – 9.28 log10 CFU/mL) overlap, so the culturable and viable 

differences should be interpreted with caution, as they may not be practically significant. 

Furthermore, we quantified culturable and viable Campylobacter after inoculation onto chicken 

breast (before PAA treatment) to assess the effect of environmental stressors (e.g., oxidative 

stress) on Campylobacter culturability. Immediately after inoculation, the population of 

culturable Campylobacter was 0.59 log10 CFU/mL lower (p = 0.04) compared to the viable 

Campylobacter (6.04 ± 0.14 log10 CFU/mL vs. 6.63 ± 0.35 log10 CFU/mL). This difference was 

similar to the difference between culturable and viable Campylobacter in the inoculum before 

inoculation on the chicken breasts (0.53 log), suggesting that inoculation onto chicken meat did 

not further induce VBNC in Campylobacter. The difference between viable and culturable cells 

on the untreated controls was insignificant when samples were tested 1 h or 24 h (p = 0.99) after 

inoculation, suggesting that prolonged cold storage did not further induce VBNC (see 3.3.2). 
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Table 3.1. Campylobacter concentrations (log10 CFU/mL; Mean ± SD) of inoculum and control. 

Recovery Method Inoculum Untreated Control 

culturable 8.76 ± 0.52a 6.04 ± 0.14a 

viable 9.29 ± 0.57b 6.63 ± 0.35b 

a,b Values followed by different letters (a, b) are significantly different (p < 0.05), as determined 

by the Tukey’s HSD test.  

3.3.2 Prolonged exposure to oxidative and cold stress significantly reduced Campylobacter 
viability on chicken breast 

 To further evaluate the impact of air exposure at 4°C on Campylobacter culturability and 

viability, we compared viable and culturable concentrations on untreated samples (PC) tested 

immediately after inoculation, after 1 h, and 24 h of incubation at 4°C under normal atmospheric 

(aerobic) conditions. The concentration of culturable Campylobacter on untreated controls 

decreased by 0.84 ± 0.21 log10 after 24 h at 4°C, compared to samples tested immediately after 

inoculation (6.04 ± 0.14 log10 CFU/mL vs. 5.20 ± 0.50 log10 CFU/mL; p = 0.006) (Fig. 3.1). 

Similarly, viable Campylobacter concentration decreased by 1.10 ± 0.19 log10 (p < 0.001) after 24 

h (6.63 ± 0.35 log10 CFU/mL vs. 5.53 ± 0.39 log10 CFU/mL) (Fig. 3.2). This suggests that cold 

storage for 24 h resulted in both cell death (> 1 log) and the induction of VBNC state in a 

subpopulation of viable Campylobacter.  
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 Previous research demonstrated that C. jejuni strains cultured in Mueller-Hinton broth 

under aerobic conditions at 37°C fully entered VBNC within 24 h (Zhang & Lu, 2023). However, 

in our study, a subpopulation of C. jejuni retained culturability in all samples after 24 h, likely 

due to the lower storage temperature (4°C). C. jejuni has been shown to maintain culturability 

longer at refrigeration temperature, requiring more time to transition into non-culturable state 

compared to higher temperatures (Jackson et al., 2009). Our results indicate a similar decrease in 

culturable and viable cells, followed by the transition of a small subpopulation into the VBNC 

state within 24 h at 4°C. These differences may be attributed to our study using an inoculated 

Campylobacter cocktail on chicken breasts, whereas the previous study used C. jejuni cultured in 

Figure 3.1. Concentrations of viable and culturable Campylobacter (log10 CFU/mL) in the 

inoculum and inoculated untreated control chicken breast samples (i.e., positive controls; PCs) 

tested immediately (0 h), 1 h and 24 h after inoculation. 
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Muller-Hinton broth, highlighting potential matrix-dependent effects on VBNC formation. The 

chicken breast that we pipetted our inoculum onto could have provided protective niches to 

Campylobacter that impacted its transition into a VBNC state. In addition, Yagi et al. (2022) 

found that culture in MH broth induced a VBNC state quicker than a low nutrient medium (PBS), 

which is what our inoculum was resuspended in (Yagi et al., 2022). 

3.3.3 A 10-second PAA treatment reduced Campylobacter culturability without significantly 
affecting its viability  

 To assess its antimicrobial and VBNC-inducing effect, we compared viable and 

culturable Campylobacter counts after 500 ppm PAA immersion and spray treatments. 

Immediately after the treatment, immersion and spray applications resulted in 0.25 ± 0.16 log10 (p 

= 0.99) and 0.19 ± 0.16 log10 (p = 1.00) reduction in viable Campylobacter, respectively, while 

culturablility was reduced by 0.81 ± 0.10 log10 (p < 0.001) for immersion and 0.51 ± 0.10 log10 (p 

= 0.11) for spray compared to the untreated control (Table 3.2). This suggests minimal 

antimicrobial effect, as the viable population remained largely unchanged, while the reduction in 

culturable cells was greater, particularly for immersion.   

A significant difference (p < 0.001) was observed between culturable and viable 

Campylobacter counts immediately after immersion and spray treatment. Prior to treatment, the 

difference between untreated control culturable and viable counts was 0.59 ± 0.11 log10. After the 

treatment, the culturable/viable gap increased to 1.14 ± 0.15 log10 for PAA-immersed samples 

and 0.91 ± 0.15 log10 for PAA-sprayed samples. This indicates that 0.56 ± 0.18 log10 (immersion) 

and 0.32 ± 0.19 log10 (spray) of the population were induced into a VBNC state immediately after 

treatment, leading to an underestimation of viable Campylobacter when using culture-based 

methods. These findings highlight the risk of overestimating PAA’s antimicrobial efficacy when 
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relying solely on culture-based quantification, as a subpopulation of intact, potentially infectious 

cells may persist in the VBNC state.  

While previous studies have shown that PAA induces the VBNC state in E. coli and 

Listeria monocytogenes (Arvaniti et al., 2021, 2024; Truchado et al., 2021; Yin et al., 2023), this 

is the first study to demonstrate that PAA induces VBNC formation in Campylobacter, likely 

leading to the underestimation of viable cells when using culture-based methods. However, the 

reduction of culturable Campylobacter in this study was lower than previously reported. Kumar et 

al. (2020) observed a reduction from 1.16 ± 0.16 log10 to 1.23 ± 0.13 log10 in C. coli populations 

after 10 s PAA (500 ppm) treatment on chicken breasts, from a starting concentration of ~5 log10 

CFU/g. A key limitation of our study is the high inoculum concentration (~7 log10 CFU/g) used to 

capture a broader range of reductions. This does not reflect the real-world contamination levels, 

which are significantly lower. A Japanese study found an average contamination level of ~26.3 

CFU/g on retail chicken breasts, while an Australian study reported that 98% of tested retail 

chicken samples had < 4 log10 CFU per carcass (~ 5.62 CFU/g), and 10% had < 21 CFU total 

(Sasaki et al., 2023; Walker et al., 2019). It remains unclear whether PAA’s antimicrobial 

efficacy at high contamination levels translates to its efficacy on naturally contaminated chicken 

with lower Campylobacter loads. 

3.3.4 PAA treatment did not exert additional antimicrobial or VBNC-inducing effects during 
post-treatment cold storage  

 Previous research found that PAA residues become undetectable on poultry within 27.9 

minutes post-application (Walsh et al., 2018), suggesting that the antimicrobial activity may 

persist for up to 27.9 minutes after treatment. In poultry processing, post-chill PAA-treated 

chicken is not rinsed before packaging and remains refrigerated until purchase. Thus, we 
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hypothesized that residual PAA could continue to exert oxidative stress and further reduce viable 

and culturable Campylobacter populations after treatment. To test this, PAA-treated chicken 

samples were stored at 4°C and analyzed 1 hour and 24 hours post-treatment. We found that PAA 

treatment did not continue to exert antimicrobial activity or induce VBNC state during post-

treatment cold storage at 4°C. The untreated control showed no significant reduction in viable 

Campylobacter one hour post-treatment (0.30 ± 0.15 log10; p = 0.99) compared to immediately 

after inoculation. However, by 24 hours post-inoculation, viable Campylobacter on untreated 

controls decreased significantly (1.10 ± 0.19 log10, p < 0.001) compared to immediately after 

inoculation.  

The reduction in viable Campylobacter due to PAA treatment 1 h and 24 h post-treatment 

was determined by subtracting both untreated control (PC) and rinsing control (SC or IC) 

analyzed at 1 h and 24 h post-treatment, respectively. At both 1-hour and 24-hours post-

treatment, PAA did not achieve additional reduction of viable Campylobacter. Specifically, 

samples treated with PAA by immersion had 0.07 ± 0.28 log10 and 0.08 ± 0.22 log10 (p = 1.00) 

lower, and samples treated with PAA by spraying had 0.37 ± 0.23 log10 (p = 0.98) lower and 0.03 

± 0.24 log10 (p = 1.00) lower Campylobacter counts 1-hour and 24-hours post-treatment (Fig. 

3.3). Although viable Campylobacter concentrations decreased over time in both treated and 

untreated samples after 24 h, the magnitude of reduction was greater in the untreated controls 

than in PAA-treated samples. This suggests that exposure to aerobic, low-temperature stress at 

4°C had a stronger impact on viability than PAA treatment itself.  

To determine whether the culturable counts aligned with the viable counts after 

treatment, we calculated the reduction due to PAA treatment for culturable Campylobacter and 

viable Campylobacter, then subtracted the viable reduction from the culturable reduction. The 

culture-based quantification overestimated antimicrobial activity of immersion by 0.56 ± 0.18 

log10, 1.01 ± 0.32 log10 and 0.86 ± 0.37 log10 immediately after treatment, one hour and 24 h after 
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treatment, respectively, while for spray it was 0.32 ± 0.19 log10, 0.43 ± 0.28 log10, and 0.72 ± 0.40 

log10. These findings suggest that previous studies that used culture-based methods likely 

overestimated the PAA’s antimicrobial effect due to its VBNC-inducing effect on 

Campylobacter. Across all time points, the average untreated culturable concentration was 5.82 ± 

0.45 log10 CFU/mL while the average sprayed culturable concentration was 5.20 ± 0.59 log10 

CFU/mL and the immersed culturable concentration was 4.98 ± 0.50 log10 CFU/mL. These are 

significant reductions of 0.62 ± 0.15 log10 (p < 0.001) and 0.84 ± 0.14 log10 (p < 0.001). This 

suggests that PAA treatment reduced the culturable population by inducing a VBNC state rather 

than killing Campylobacter, since the average viable cell reductions were minimal, at 0.17 ± 0.16 

log10 (p = 0.66) and 0.09 ± 0.16 log10 (p = 0.97) for spray and immersion, respectively.  

Our findings align with previous studies showing that while some sanitizers reduce 

culturability, their impact on viability is less pronounced. Zhang & Lu (2023) demonstrated that 

Campylobacter lost culturability immediately after chlorine (25 ppm) treatment, while viability 

remained stable over 24 hours (Zhang & Lu, 2023). After PAA treatment, the VBNC population 

also remained stable over 24 h in our study, however culturability was not completely lost. 

Similarly, Gonzalez et al. (2021) reported a 0.9 - 2.2 log10 reduction in C. jejuni culturability after 

5 s exposure to 550 ppm PAA, with reductions persisting over 24 h (Gonzalez et al., 2021).   

Our study observed comparable stable reductions in culturability after 10 s 500 ppm PAA 

spray, with reductions of 0.51 ± 0.10 log10 (p = 0.11), 0.80 ± 0.16 log10 (p = 0.06) and 0.75 ± 0.31 

log10 (p = 0.11) immediately, one hour post-treatment, and 24 hours post-treatment, respectively. 

For immersion, the culturable reduction was 0.81 ± 0.10 log10 (p < 0.001), 0.95 ± 0.17 log10 (p = 

0.008) and 0.78 ± 0.30 log10 (p = 0.08) immediately after, 1 h post-treatment and 24 h post-

treatment. While these reductions remained consistent over time, only the immediate and 1 h 

post-treatment reductions due to immersion treatment significantly differed from the untreated 
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controls. These findings further support the idea that PAA’s apparent antimicrobial effect is 

largely due to inducing a VBNC state rather than causing irreversible cell inactivation. 

 

Table 3.2. Campylobacter concentrations (log10 CFU/mL; Mean ± SD) on chicken breasts 

immersed or sprayed with 500 ppm PAA for 10 s. 

Post-treatment 
cold storagea 

(h) 

Recovery 
Method Untreated Spray Immersion 

0 
culturable 6.04 ± 0.14bcde 5.53 ± 0.35ef 5.23 ± 0.30f 

viable 6.63 ± 0.35a 6.43 ± 0.45ab 6.37 ± 0.41abc 

1 
culturable 6.00 ± 0.16bcde 5.20 ± 0.36fg 5.06 ± 0.37fg 

viable 6.33 ± 0.26abcd 5.96 ± 0.50bcde 6.40 ± 0.63abc 

24 
culturable 5.20 ± 0.50fg 4.45 ± 0.58g 4.42 ± 0.54g 

viable 5.53 ± 0.39def 5.50 ± 0.45ef 5.61 ± 0.36cdef 

Values followed by different letters (a - g) are significantly different (p < 0.05), as determined by 

the Tukey’s HSD test.  

a Post-treatment cold storage refers to the time of samples storage at 4°C in aerobic conditions 

after completed PAA treatment. Samples were tested immediately after treatment (0 h), 1 h post-

treatment (1 h), and 24 h post-treatment (24 h). The 1 h and 24 h post-treatment samples were 

stored at 4°C between treatment and analysis. 
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Figure 3.2.4Viable and culturable Campylobacter concentrations (log10 CFU/mL) on chicken 

breast fillets either immersed in or sprayed with 500 ppm PAA for 10 s. Different significance 

letters (a-g) are significantly different by Tukey’s HSD (p < 0.05). 

 

  

 
 

 

 

 

 

  

Figure 0.2 Figure 3.3. Viable and culturable Campylobacter reductions (log10 CFU/mL) due to PAA 

effect, after accounting for untreated control and rinsing control reductions. 
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Chapter 4 

Conclusions and Future Directions 

The studies in this thesis provide insight into the prevalence of Campylobacter in retail 

chicken breasts collected between October 2023 and July 2024 and the antimicrobial efficacy of 

peroxyacetic acid against Campylobacter inoculated on chicken breasts.  

Our findings show a low Campylobacter spp. prevalence of 1.9% on retail chicken 

breasts, which is consistent with previous studies that reported lower contamination prevalence in 

boneless, skinless cuts compared to skin-on chicken meat products. The negative results of testing 

chicken breast for Campylobacter using direct plating and viability qPCR suggest that the 

contamination levels in samples that tested positive by enrichment were low, given their 60 CFU 

and 3,200 – 5,000 cells per 325 g sample limit of detections, respectively. Notably, all isolated 

Campylobacter strains exhibited novel sequence types that could not be assigned to known clonal 

complexes, indicating their genetic distinctiveness compared to strains commonly isolated from 

chicken meat. A future study could sample meat cuts that are known to carry higher loads of 

Campylobacter, such as skin-on cuts, to be able to assess the discrepancy between viable and 

culturable Campylobacter on retail chicken. Studies aiming to decrease the limit of detection for 

quantitative detection methods to detect common low-level Campylobacter contamination would 

also be valuable for quantitative assessment of Campylobacter contamination on chicken meat.  

In addition to Campylobacter, this study isolated Acinetobacter baumannii, A. seifertii, 

and A. nosocomialis from enrichments of eight samples. These species fall within the 

Acinetobacter calcoaceticus-baumannii complex, consisting primarily of opportunistic pathogens 

associated with nosocomial infections and increased antibiotic resistance. The presence of these 

species in retail chicken begs questions about their relatively understudied role in foodborne 
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transmission and requires further research into their prevalence, survival, and public health risks. 

In the future, methods for identifying and isolating Acinetobacter spp. from food sources such as 

chicken should be developed to determine their prevalence. Isolates from food sources could be 

further assessed by testing their antimicrobial resistance to clinically relevant antibiotics, 

determining their virulence potential, and investigating their transmission in the food systems. 

These steps would aid in assessing the potential role of Acinetobacter spp. as a foodborne 

pathogen.   

In the third chapter, we studied the antimicrobial efficacy of PAA in Campylobacter and 

the limitations of culture-based methods in assessing antimicrobial efficacy. We found that a 

subpopulation of Campylobacter cells existed in a non-culturable state before treatment, as shown 

by higher recovery of viable compared to culturable cells in the inoculum. This discrepancy 

remained consistent after inoculation onto chicken and during 24 h storage at 4°C, showing that 

inoculation and cold storage did not induce additional cells into a VBNC state. However, while 

24 h post-PAA-treatment cold storage at 4°C reduced both viable and culturable populations, the 

magnitude of reduction was greater for the untreated controls, indicating that oxidative and cold 

stress were more effective at killing Campylobacter after 24-hour post-treatment cold storage 

than the PAA treatment itself.  

Immediately after PAA treatment, culturability was reduced significantly while viability 

was not, showing that it induced a subpopulation into a VBNC state rather than inducing cell 

death. We found that immersion and spray treatments had similar effects, in contrast to previous 

studies that found PAA immersion resulted in greater reductions of Campylobacter. During cold 

storage, PAA did not continue to induce VBNC or exert additional antimicrobial effects. This 

suggests that PAA’s effect is primarily immediately upon application.  

These findings have important implications for food safety, as gold-standard, culture-

based methods may be overestimating PAA’s antimicrobial effectiveness. Given the potential for 
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VBNC Campylobacter to regain infectivity, alternate quantitative detection methods would be 

beneficial for a more accurate assessment of risk associated with different levels of 

Campylobacter contamination, particularly in chicken parts that are known to carry higher loads 

of Campylobacter than chicken breast. 

Future research should focus on the effects of PAA against natural contamination levels 

of Campylobacter on chicken meat, which would provide a more accurate assessment of PAA’s 

antimicrobial efficacy. We hypothesize that because a subpopulation of native Campylobacter is 

likely already in a VBNC state due to processing stressors, they would be less susceptible to PAA 

treatment compared to a freshly cultured inoculum since they would have already undergone 

stress adaptations. In addition, to achieve a more comprehensive evaluation of antimicrobial 

interventions, we could incorporate viability-based detection methods such as viability qPCR into 

future challenge studies. This could prevent the overestimation of antimicrobial efficacy, provide 

accurate assessments of bacterial viability rather than just culturability, and provide better limits 

for food safety regulations. Lastly, while some research has focused on the resuscitation of 

VBNC Campylobacter, specifically through passage in embryonated eggs and mouse intestines, it 

is crucial to determine whether VBNC Campylobacter can regain viability and infectious 

potential in humans. In vitro human gut models could mimic passage through the gastrointestinal 

tract to identify whether VBNC resuscitation is possible in humans and to determine conditions 

that promote VBNC resuscitation.

 


