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ABSTRACT 

Tarmat deformation and failure behavior during depletion of a giant reservoir-

aquifer system is studied and a mathematical model is developed for this kind of 

composite systems. Deformation response of tarmat to increasing pressure differential 

caused by continuous depletion of reservoir is studied. In this context, geomechanical 

failure that takes place at the instant that the pressure differential reaches a critical value 

is evaluated. Fracture that occurs after this geomechanical failure is characterized. 

Fracture permeability that is established due to the characterized fracture is studied. Plate 

theory, maximum shear stress failure criterion, conventional well test model, Perkins-

Kern-Nordgren model (PKN model), Khristianovic-Geertsma-de Klerk model (KGD 

model), flow through fractures models have been combined in a way such that tarmat 

behavior in giant reservoir-aquifer systems would be modeled appropriately. This 

sensitivity analysis, being conducted with parameters of reservoir, rock and fluid 

properties, proposes a protocol to find relationships and suggests designs in composite 

systems. The proposed methodology, ultimately, predicts fracture width and fracture 

permeability that would be developed in a system with a tarmat layer having a certain 

thickness and a reservoir being produced at a certain production rate and total depletion 

time.  
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Chapter 1 
 

Introduction 

1.1 Introduction 

Oil resources are located in various types of reservoir formations, varying with 

properties, dimensions and architectures. Creating feasible production designs with a 

reasonable exploration and development plan is of great importance in the production of 

these oil sources. The development plan requires a good understanding of not only oil 

and reservoir properties, but also the existing geological architecture of the reservoir of 

interest. 

Giant oil fields, being oil sources with high production potentials, are defined as 

oil fields having at least 500 million barrels of ultimate recovery and they constitute 

almost 75% of the recoverable oil resources in the world. These fields with significant 

amount of recoverable oil resources, are spread into countries as Saudi Arabia, United 

States of America, former Soviet  Union, Iran, Kuwait, Venezuela and Iraq, to name the 

seven largest. Saudi Arabia has known giant and potential giant reservoirs more than any 

other country [Nehring, 1978]. 

This study focuses on a three-layered composite system, typical of giant oil fields 

in the Middle East. Upper layer of the system contains the reservoir fluids, middle layer 

contains tarmat, and the bottom layer of the system is a high pressure water aquifer. 
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Middle layer, having a negligible permeability, acts like an impermeable barrier between 

the upper and bottom layers of the system.  

The primary purpose of this study is to understand and model the behavior of the 

middle impermeable layer due to reservoir depletion and consequences of its behavior. 

Initial pressure equilibrium would be disturbed by oil production from the upper layer. 

This disturbance would cause a certain pressure differential between the upper and 

bottom boundaries of the tarmat that would eventually cause geomechanical failure of the 

tarmat. As a consequence of this failure, a fracture opening would occur, resulting in a 

certain permeability of the new system. Detailed analysis of the successive behavior of 

the system is of interest. 

1.2 Structure of the Thesis 

This thesis is composed of six chapters. 

Chapter 1, titled as Introduction gives a general overview and description of the 

problem of interest. It basically explains the goal of the investigation, by mentioning the 

necessary outputs, their dependencies, used inputs. It also highlights a general outline of 

the thesis. 

Chapter 2, titled as Statement of the Problem extends the introduction and 

provides a detailed description of the problem. It involves circumstantial statement of 

objectives of the thesis. 

Chapter 3, titled as Background Information includes the information gathered 

regarding rock mechanics, oil production, plate deformation, and fracture 
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characterization. Failure theories and failure modes are introduced in general while the 

used failure theory is emphasized. Basic fundamental information on oil production is 

provided. Finally, approaches used to evaluate fractures and their conductivities are 

described. 

Chapter 4, titled as Method of Approach provides information on how the 

problem is defined, approached and analyzed. It allows the reader to understand how the 

components of the problem definition are attached to each other in the steps of the 

complete analysis. 

Chapter 5, titled as Results and Discussions gives the results of the study and 

includes detailed discussion regarding the obtained relationships and observed behavior. 

Chapter 6, titled as Summary, Conclusions and Recommended Future Work 

provides the conclusions drawn from the complete study on which this thesis is based. It 

includes ideas about the possible ways to improve the weaknesses and/or extend the 

present status of the analysis. 

 

 

 



 

 

Chapter 2 
 

Statement of the Problem 

2.1 General Description 

The system under study is a composite system composed of three layers of porous 

medium. This composite system is depicted in Figure 2.1 below.  

In Figure 2.1, the bottom layer is an aquifer with a strong water drive. The middle 

layer is a structure referred as “tarmat” with negligible permeability and the upper layer is 

a hydrocarbon reservoir. The tarmat is a very viscous hydrocarbon layer being composed 

 

Figure 2.1: Schematic representation of the system under consideration 

a 
b 

Hydrocarbon 
 Reservoir 

Tarmat 

Aquifer 

q
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of tar or bitumen, which exists between oil and water contact in many cases. Having a 

very low permeability, it acts as a permeability barrier between the reservoir and aquifer. 

Three distinct layers of the system are at the same pressure at initial conditions, 

before the introduction of any external disturbance to the system. As production form the 

hydrocarbon reservoir at the top is started, pressure at the reservoir begins to decrease 

gradually while pressure at the aquifer remains the same. This results in a pressure 

differential across the upper and bottom boundaries of the tarmat. The resulting pressure 

differential creates a stress filed and a deformation field. The tarmat, acting as a barrier in 

the middle of the system, continues to block any communication between upper layer and 

the bottom layer; until a critical condition of the stress field develops occur as a 

consequence of a certain pressure differential value. This critical condition is referred as 

geomechanical failure of tarmat. After the geomechanical failure, tarmat does not act as a 

barrier anymore and the previously created stress fields, open fractures with certain 

dimensions. The dimensions (i.e. width and length) of the created fracture controls the 

degree of communication between the hydrocarbon reservoir and the aquifer. The 

characterization of the fracture is of importance when evaluating the established fracture 

permeability. 

2.2 Objectives 

The main objectives of this study are two folds: 

1. To characterize the geomechanical behavior of tarmat as the gradual 

increase of pressure differential occurs as a consequence of oil production from the 
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hydrocarbon reservoir. This characterization is aimed to include geomechanical failure of 

tarmat. 

2. To evaluate the system behavior after geomachanical failure of tarmat 

takes place.  This part of the analysis includes the fracture permeability characterization 

and expected communication behavior in the absence of a barrier that does not continue 

to act so. 

In the first stage, gradual pressure differential across the upper and bottom 

boundaries of the tarmat and its corresponding deformation are main outputs. This 

analysis not only enables in finding out the pressure differential that would cause 

geomechanical failure, but also how much would the tarmat deform until this critical 

pressure differential is established. 

Second stage focuses on the new form of the composite system, that follows the 

geomechanical failure. It is an analysis that quantifies fracture width and corresponding 

permeability that would be established across the fracture. 

To achieve both of these objectives listed above; reservoir, rock and fluid 

properties are inputs of significant importance, being influencial in both of the major 

stages of this study.  



 

 

Chapter 3 
 

Background Information  

3.1 Rock Mechanics 

Rock mechanics is the area which deals with the properties of rock and the special 

methodology required for design of rock related components of engineering schemes 

[Goodman, 1989]. Being the rock related component of the engineering design, concept 

of rock mechanics has major applications in common with the concept of mechanics of 

materials. 

Mechanics of materials is the general name of the study which deals with the  

response of the material system to an external effect or applied disturbance [Gere, 2001]. 

This study can also be referred as strength of materials and mechanics of deformable 

bodies.  

In rock mechanics, it is very important to understand the material properties of the 

rock of interest, nature of the disturbance,  pre-existing and present boundary conditions. 

Rock mechanics may come into the picture in many different engineering applications, 

projects and problems. In order to have a safe design in each of them, mechanical 

behavior should be well understood. For reliable engineering solutions, not only 

understanding the logical developments of rock mechanics principles is necessary, but 

also is the correct application of these solutions to the practical and appropriate situations. 

To do this; stresses, strains and displacement of structures due to the applied load that is 
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acting on them should be determined. In other words, in order to have a complete picture 

of mechanical behavior of rocks, stresses, strains and deformations due to prevailing 

loading condition at a specific time should be evaluated until failure conditions are 

reached. This study requires a relevant failure criterion selection depending on the 

problem of interest. 

3.1.1 Concept of Stress and Strain 

Concept of stress and strain should be well understood to be able to evaluate the 

rock behavior mainly controlled by the nature of disturbance and rock properties 

[Whittaker et al., 1992, Gere, 2001]. Before defining rock properties which are 

significant parameters in the analysis presented in this thesis, stress, strain and their 

relations are reviewed in the rest of this part of the current section.  

Stresses are classified as, normal stresses and shear stresses. Strain associated 

with normal stress is referred as normal strain where strain associated with shear stress is 

shear strain. Relationship between stress and strain is important to understand the 

behavior of material of interest. To obtain this relationship for particular materials; 

tension and compression tests can be performed.  These tests are performed at different 

magnitudes of the applied load. The diagram, which shows stress and strain relationship 

by plotting obtained results as stress versus strain is called stress-strain diagram. A 

typical stress-strain diagram for a particular material can be observed in Figure 3.1. 

Elastic behaving and plastic behaving regions are marked. If the material is beyond the 

elastic behaving region, it would not behave similarly when unloaded. However, if it 
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stays in the elastic beviour region, it can behave similarly no matter the number of 

loading cyles and types. 

Normal stress occurs as an object is axially loaded by a force with a certain 

magnitude and direction. Uniformly distributed normal stress that occurs due to this type 

of loading is indicated by Equation 3.1. Note that this is a uniformly disributed stress. 

In Equation 3.1; σ is normal stress, P is axial force and A  is cross sectional area. 

In cases where tensile forces are being applied to the object, normal stress is tensile and 

in cases where compressive forces are being applied to the object, normal stress is 

compressive. In the case of tensile stress, object elongates while in the case of 

compressive stress, object shortens. Elongation or contraction per unit length is defined 

as strain and expressed by Equation 3.2; 

 

Figure 3.1: Stress-strain diagram showing elastic and plastic regions 

A
P

=σ  (Eq. 3.1)

σ

Loading 

Unloading 

ε

Plastic BehaviorElastic Behavior
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In Equation 3.2; ε  is normal strain, δ  is elongation or contraction and L  is original 

length. 

Shear stress occurs as an object is tangentially loaded by a force with a certain 

magnitude and direction. Shear stresses that occur due to this type of loading is indicated 

by Equation 3.3;  

In Equation 3.3; τ  is shear stress, V  is shear force and A  is cross sectional area. 

Shear strains are defined as shape changing factors rather than causing elongations or 

contractions. Angles between the side faces of the elements that are subjected to shear 

stress, change. 

Another important concept about stress is, principle stresses. These stresses are 

defined as maximum and minimum normal stresses. Principle stresses are associated not 

only with normal stresses, but also with shear stresses. Equation 3.4 expresses the 

relation of principle plane angle, normal stresses and shear stress, while its geometric 

representation is denoted by Figure 3.2.  

In Equation 3.4; pθ  is principle angle, xyτ  is shear stress, xσ  is normal stress in x  

direction, yσ   is normal stress in y  direction. 

 

L
δε =  (Eq. 3.2)

A
V

=τ  (Eq. 3.3)

yx

xy
p σσ

τ
θ

−
=

2
2tan  (Eq. 3.4)
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General expression for first and second principle stresses is given by Equation 3.5 and is 

based on sum of normal stresses on perpendicular planes being equal. 

In Equation 3.5; 2,1σ  is first and second principle stresses, respectively shown by 

subscripts. On the other hand, the third principle stress, 3σ  may be larger or smaller than 

the other two principle stresses. In two dimensional analyses it is assumed to be zero.  

3.1.2 Properties of Rocks 

Material properties of the rocks is an influencial aspect of rock mechanics. Their 

effect can be observed in the complete picture of each of the specific rock mechanics 

problems.  

 

Figure 3.2: Geometric representation of Equation 3.4 

2
2
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⎠

⎞
⎜⎜
⎝

⎛ −
±

+
=  (Eq. 3.5)
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Influencial geomechanical rock properties that come into the picture in the 

specific problem studied in this work are Young’s modulus of elasticity, Poisson’s ratio 

and strength.  

Young’s modulus of elasticity is a constant of proportionality that is a function of 

axial stress and the axial strain. Their relationship is expressed by the Equation 3.6; 

In Equation 3.6; E  is Young’s modulus of elasticity, σ  is axial stress and ε  is axial 

strain. 

Equation 3.6 is a form of Hooke’s Law, which has been solved for Young’s modulus of 

elasticity. Hooke’s Law is denoted by Equation 3.7; 

This property can be obtained from a stress-strain diagram of a linearly elastic material or 

from the linear elastic portion of the stress strain diagram of a material, which is basically 

the slope. Linearly elastic materials show a linear relationship between stress and strain 

as well as behaving elastically [Gere, 2001]. 

Poisson’s ratio, which represents a dimensionless quantity, is a property that 

relates lateral strain and axial strain. This relationsip is a necessary material property 

since a material in tension encounters not only an axial elongation but also a lateral 

contraction.  The lateral strain at any point in the material that is in tension is directly 

proportional to the axial strain at the same point. This is valid for linearly elastic 

materials. Following expression in Equation 3.8 is the definition of Poisson’s ratio that is 

function of lateral strain and axial strain: 

ε
σ

=E  (Eq. 3.6)

εσ E=  (Eq. 3.7)
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In Equation 3.8; v  is Poisson’s ratio, 'ε  is lateral strain and ε  is axial strain. Presence 

of a minus sign is due to the fact that lateral strain and axial strain has opposite signs 

[Gere, 2001]. 

One of the most important rock properties is its strength. There are different types 

of rock strength, mainly compressive strength, tensile strength and yield strength 

[Toulokian et al., 1981]. There is a dominating strength that effects conclusions of a 

specific study, due to the problem definition.  

There are testing methods to determine strength of rock masses in which the 

representative rock specimen is taken to apply the test of interest. Strength testing 

methods that are in extensive usage are unconfined compression tests, confined 

compression tests, shear tests, direct tension tests and indirect tension tests. 

Unconfined compression test is a method to determine compressive strength of 

the rock sample being tested. This method has a complex procedure and results are 

dependent on how the procedure is applied. Rock specimen that is in common usage in 

that type of testing method is cylindrical and its length to width ratio is in between 2 and 

2.5. Flat, smooth and parallel ends of the cylinder is cut perpendicularly to the axis of the 

cylinder. There are various applications to smoothen the ends or reducing the friction. 

Following expression, Equation 3.9 shows how the compressive srength is determined 

due to applied load to the rock cylinder with a certain cross section: 

ε
εν

'

−=  (Eq. 3.8)

A
Pqu =  (Eq. 3.9)
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In Equation 3.9;  uq  is compressive strength, P  is peak load and A  is cross sectional 

area [Goodman, 1989]. 

Triaxial compression test is a method to determine compressive strength of the 

rock. In this procedure cylindirically shaped rock sample is compressed and confining 

pressure is applied to it at the same time. At the peak load,  following conditions occur 

which are expressed by Equation 3.10 and Equation 3.11 as shown below. 

 

In Equation 3.10 and Equation 3.11; P  is peak load (highest load supportable parallel 

to the axis of the cylinder), 1σ  is first principle stress, 3σ  is third principle stress, 'P  is 

pressure in the confining medium and A  is cross sectional area of the rock cylinder. 

As a result of application of confining pressure, confinement effect, that is the 

strengthening of the rock sample, occurs. This effect is significantly observed in many 

rock types. In a regular triaxial compression test, first step is to apply 'P  as it surrounds 

the cylinder. This causes first and third principle stresses to be equal to the confining 

pressure. Following step is the application of '
1 P−σ  as an axial load, while the lateral 

pressure is not changing [Goodman, 1989]. 

Brazillian test, or splitting tensile test, is a method to determine the tensile 

strength of the rock. The Brazillian test is applied for cylindirical concrete specimens by 

loading them on their side in a compression machine. As a result of this type of loading, 

A
P

=1σ  (Eq. 3.10)

'
3 P=σ  (Eq. 3.11)
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rock core splits along the diameter and parallel to the cylindirical axis. Crack is almost as 

long as the diameter. Tensile strength is estimated by Equation 3.12 below: 

In Equation 3.12; Bt ,σ  is estimated tensile strength, P  is peak compression load, d  is  

diameter of the cylinder and t  is thickness of the disk or length of the cylinder. 

It should be noted that tensile strength estimate in Brazilian test is quite different from 

that in the direct tension test. This difference varies from case to case. This happens due 

to the fact that fissures are also effecting the failure in Brazilion test procedure, on top of 

the tensile stress [Goodman, 1989, Toulokian et al., 1981]. 

Flexural test is a method to determine failure point of a rock by bending. It is 

based on simple beam theory where beam bending occurs at perfectly elastic conditions. 

A representative rock beam is used in this method. It is supported from both of its ends 

and loads are applied from 3L  distance from each edge. Determined strength is the 

tensile stress of the rock beam which corresponds to the peak load applied to the beam. 

Peak tensile stress here is referred as modulus of rupture or flexural strength. Flexural 

strength mostly corresponds to the double or tripple of the actual tensile strength. 

Equation 3.13 gives the expression for modulus of rupture: 

In Equation 3.13; MRT  is modulus of rupture, P  is peak load, L  is length between load 

reactions on the lower surface and d  is diameter of the core [Goodman, 1989]. 

dt
P

Bt π
σ 2

, =  (Eq. 3.12)

33
16

d
PLTMR π

=  (Eq. 3.13)
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Ring shear test is a method to determine strength of the intact rock in terms of 

confining pressure. Specimen used in this testing method may or may not have square 

and smooth ends. Load is applied parallel to the axis of the core specimen. The 

application of load to the plunger causes shear to occur on two planes. This leads 

formation of two fracture surfaces along the planes. Due to the results, strength increases 

with confining pressure. Relation of peak load on the plunger, cross sectional area of the 

core sample and shear strength of the intact rock is expressed in Equation 3.14: 

In Equation 3.14; pτ  is peak shear stress, i.e. shear strength, P  is peak load applied to 

the plunger and A   is cross sectional area of the core sample [Goodman, 1989]. 

3.1.3 Failure Theories and Failure Modes 

3.1.3.1 Failure Theories 

Maximum shear stress failure criterion is based on the theory that is suggested by 

Charles Coulomb (1773) and Henry Tresca (1868). Due to this theory, failure point is 

reached when the maximum shear stress in the material becomes equal to the value of the 

shear stress at yielding. This point, which indicates the occurance of failure is referred as 

yield strength and can be determined by uniaxial compression or uniaxial tension test.  In 

Figure 3.3, uniaxial specimen that is subjected to 0σ  as a tensile stress and related 

Mohr’s circle can be seen.  

A
P

p 2
=τ  (Eq. 3.14)
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As can be observed, Yσσ =0 , while the maximum shear stress is given in Equation 

3.15: 

This equation denotes the situation that the failure point is reached, by expressing 

maximum shear stress, maxτ , being equal to the shear stress at yield, Yτ . For instance, if 

principle stresses are ordered as 3σ , 2σ  and 1σ , respectively in terms of magnitude in a 

case; maximum shear stress and the condition when the failure occurs are given by 

Equation 3.16 and Equation 3.17,  respectively: 

 

 

 

 
Figure 3.3: Uniaxial specimen subjected to a tensile stress and its related Mohr’s circle 

2max
o

Y
σ

ττ ==  (Eq. 3.15)

2
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τ
−

=  (Eq. 3.16)
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Previous case or similar ones with different magnitude orders of principle stresses may 

not always be cases to be encountered. In some cases, one of the principle stresses may 

be zero while the other two are not. There are three main combinations of these type of 

cases in which 3σ  is selected to be the one that is equal to zero. First case which may 

occur is 021 σσ , 03 =σ . The block with principle stresses acting on it, maxτ  plane of 

the block and related Mohr’s circle, with stress relations is given in Figure 3.4. 

It can be deduced that ( ) ( )
22

0 211 σσσ −−  from the figure denoting this case. In 

conclusion, absolute maximum shear stress of this case is given in Equation 3.18: 
 

22
31 Y

Y
σ

τ
σσ

==
−

 (Eq. 3.17)

 

Figure 3.4: Maximum shear stresses for 021 σσ , 03 =σ  

2
1

max
σ

τ =  (Eq. 3.18)
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Second case which may occur is 012 σσ , 03 =σ . The block with principle stresses 

acting on it, maxτ  plane of the block and related Mohr’s circle, with stress relations is 

given in Figure 3.5. 

Again, it can be deduced that 
( )

22
0 212 σσσ −−

 from the figure denoting this case. In 

conclusion, absolute maximum shear stress of this case is given in Equation 3.19: 

Third case which may occur is 01σ , 02σ , 03 =σ . The block with principle stresses 

acting on it, maxτ  plane of the block and related Mohr’s circle, with stress relations is 

given in Figure 3.6. 

 

 

Figure 3.5: Maximum shear stresses for 012 σσ , 03 =σ  

2
2

max

σ
τ =  (Eq. 3.19)
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Similarly, it can be deduced that 
( )

22
121 σσσ −  and 

( )
22

221 σσσ −  from the figure 

denoting this case. In conclusion, absolute maximum shear stress of this case is given by 

Equation 3.20: 

For the cases above, in which 3σ  is equal to zero, maximum shear stress can be denoted 

by Equation 3.21 as: 

 

Figure 3.6: Maximum shear stresses for 01σ , 02σ , 03 =σ  
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−

=  (Eq. 3.20)
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This equation summarizes all possible cases and their related maximum shear stresses. 

Failure occurs if the any of the above values becomes equal to or exceeds the allowable 

shear stress; 
2

Yσ  [Bickford, 1998]. 

Mohr-Coulomb failure criterion is a common way of evaluating failure by 

relating shearing resistance to contact forces, friction and cohesion that is present among 

the rock grains. Equation 3.22 gives the following relation:  

In Equation 3.22; τ  is shear stress, C  is cohesive strength, φ  is angle of internal 

friction or friction angle and '
nσ  is effective normal stress acting on the grains. 

A linear relationship exists between τ  and '
nσ . C  and φ  are linearization factors. This 

criterion is evaluating failure when failure occurs due to shear forces becoming dominant. 

If this criterion is used for inappropriate cases, deviation from this linearity is observed. 

Construction of failure envelopes can be achieved by using a number of Mohr’s circles. 

Each circle represents a triaxial test in which 32 σσ =  and 1σ , axial stress, is being 

increased until failure is observed. Once the envelope is constructed, it can be treated as a 

separating border of safe zone and failed zone. Failure envelope may be expressed in 

terms of 1σ  and 3σ . Equation 3.23, Equation 3.24 and Equation 3.25 represent this 

analysis: 

 

φστ tan'
nC +=  (Eq. 3.22)

0
'
3

'
1 sin1

sin1 C+
−
+

= σ
φ
φσ  (Eq. 3.23)
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After constructing failure envelope, normal stresses and shear stresses may be calculated 

by assuming internal friction angle to be 450. Equation 3.26 and Equation 3.27 below 

can be evaluated for finding points to use in the stability analysis: 

 

These two points can be plotted on the figure and checked for stability [Fjaher et 

al.,1992, Lianyang, 2005, Economides et al., 1998]. 

Internal friction theory or Coulomb-Mohr failure criterion is appropriate to be 

applied for brittle materials. It is based on condition of principle stresses and ultimate 

tensile and ultimate compressive strengths of the material of interest. Ultimate tensile 

strength and ultimate compressive strength are material dependent properties and they 

can be determined by uniaxial tension and uniaxial compression tests, respectively. 

Internal friction theory can be well explained by Figure 3.7.  
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As can be seen in Figure 3.7, squares in the first and third quadrants are safe regions, in 

which failure is not observed. In these squares, principle stresses are both positive or both 

negative. However, the second and fourth quadrants are the quadrants when principle 

stresses have opposite signs with each other. Safe regions are determined by lines l1 and l2 

for this case. Equations which represent l1 and l2 in terms of principle stresses and 

ultimate tensile and compressive strengths are expressed by Equation 3.28 and Equation 

3.29, respectively: 

 

 

Figure 3.7: Safe regions and their relevant equations for internal friction theory 
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Due to this theory, failure occurs if any state of principle stresses lie outside the shaded 

region [Bickford, 1998]. 

Maximum normal stress failure criterion is another criterion that is suitable for 

failure prediction of brittle materials. It is based on maximum principle stress reaching 

ultimate normal stress value of the material of interest. This criterion would give 

reasonable conclusions only if the tensile principle stress has a comparable magnitude 

with the ultimate normal stress. Ultimate normal stress; ULTσ  is determined by uniaxial 

tension test. Due to this criterion, if any combination of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ULTULT σ
σ

σ
σ 21 ,  is outside the 

closed region of a unit square that has corners (1,1), (-1,1), (-1,-1), (1,-1) in four 

quadrants, this indicates failure [Bickford, 1998]. 

Hoek-Brown failure criterion is an empirical approach to evaluate failure. It 

suggests a reasonable range when the failure taking place is brittle. It may lead to poor 

results when ductile failure is of interest. This criterion is common in applications when 

naturally fractured reservoirs are of interest. Empirical formulation is expressed in 

Equation 3.30 below: 

mI  and SI  are frictional index and intact index respectively. They are material properties. 

Together with OC , these material properties are measured in laboratories [Economides et 

al., 1998]. 

Von Mises failure criterion is an appropriate criterion for the materials which 

would be classified as ductile. This theory is identical to the criterion suggested by 

)( 2
030

'
3

'
1 CICI Sm ++= σσσ  (Eq. 3.30)
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octahedral shear stress theory. Due to this theory, failure is predicted to be the point at 

which octahedral shear stress becomes equal to the value of the octahedral stress at 

yielding in a uniaxial tensile test. Principle planes and octahedral planes are shown in 

Figure 3.8.  

Normal stress and shear stress that is acting on each octahedral plane is expressed by 

Equation 3.31 and Equation 3.32, respectively: 

 

 In an uniaxial tensile test, 1σ  is equal to yield stress, Yσ , while 2σ  and 3σ  are both 

equal to zero. After making these substitutions to Equation 3.32, Equation 3.33 below 

can be obtained: 

 

Figure 3.8: Principle planes and octahedral planes 
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Equation 3.34 can be obtained after solving Equation 3.32 and Equation 3.33 together 

for Yσ  and it gives the criterion for failure in terms of principle stresses and yield stress 

[Bickford, 1998]. 

Drucker-Prager criterion is an extended version of Von Mises failure criterion. It 

is based on Equation 3.35 as shown below:   

In Equation 3.35; K  and α  are material properties which are functions of internal 

friction angle; φ  and cohesion; C . 1I  and 2J  are functions of effective principle 

stresses. Failure point is evaluated when 2J  versus 1I  is plotted [Economides et al., 

1998]. 

Griffith Crack theory is a theory that may be applied to rock fracture. This theory 

is applicable to elastic materials. It gives reasonable results when brittle failure occurs. 

There are extended versions of this theory which deals with fluid pressure failure 

[Toulokian et al., 1981]. 

3.1.3.2 Failure Modes 

There exists various possible dominating failure modes depending mainly on the 

applied loading configuration of the load carrying rock. They can be categorized as; 

( ) ( ) ( )
2

0000
2
1 222 Y

YYoct
σ

σστ =−+−+−=  (Eq. 3.33)
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2
32

2
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1 σσσσσσσ −+−+−=Y  (Eq. 3.34)

021 =−+ KJIα  (Eq. 3.35)
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failure due to flexure, failure due to bending, failure due to tension and failure due to 

compression. More than one certain failure mode can be the most recognised mode due to 

the case of interest.  

Failure due to flexure occurs due to the bending of the rock. The bending of 

interest of the rock is supported and accelarated by occurance of tensile cracks. This type 

of failure basically occurs due to the occurance of disconnection between original rock 

and the roof on it. As a consequence, a gap forms and rock beam bends downward due to 

the gravitational effect, ending up with cracks. Layers above a mine roof is a typical 

example for this type of failure. 

Failure due to shear occurs as the shear stress approaches to a critical value. That 

is, a surface of rupture is created due to critical shear stresses. If shear stresses are 

released to the critical value as displacement occurs throughout the rupture surface, shear 

failure occurs. Typically, shear failure is encountered by fault zones, weathered or/and 

crushed rock structures, slopes having soil like rocks or weak zones. 

Failure due to direct tension occurs in rock layers that are oriented convex 

upward. Surface of rupture that occurs due to this type of failure is free from the 

wheathered rock particles. Basically, even if the friction would not allow the base of the 

rock to be steep, the inner layer has inclinations steeper than frictional allowance. Stable 

part of the rock applies a tensile force and pulls form the above part of the slope.  

Failure due to direct compression occurs due to the formation of small particles at 

the compression zone. They occur due to cracking. They stay attached to the compression 

zone and end up with crushing. This type of failure is also called as crushing failure. It is 
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common in shortened rock volumes and penetrated rocks. Rocks under drilling bits, or 

cutters of boring machines are some common examples [Goodman, 1989]. 

3.2 Oil Production and Well Testing  

Estimation of the capacity and performance of wells under production is 

important. In order to have such an estimate, well tests are implemented. These tests are 

mainly categorized as pressure build up tests and flow tests. Each of these tests helps 

characterizing various formation properties. Build up tests are ideal build up test, actual 

build up test and reservoir limits test and flow tests are drawdown tests and multirate 

tests. 

In order to estimate the pressure behavior of a case in which a drainage area with 

a single well is of interest, shape factors for the conventional well test model can be used. 

These shape factors include many drainage area shapes and possible well locations. 

Evaluations at any observation point located in the drainage area of interest, is possible to 

make. Tables regarding this analysis are present in the literature. In this analysis 

influential parameters are reservoir and fluid properties, reservoir dimensions and 

production rate of the well. Reservoir and fluid properties are porosity, permeability, 

thickness, compressibility, viscosity, formation volume factor and initial pressure. 

Wellbore radius is also influential in this type of analyses [Lee, 1982]. 
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3.3 Plate Theory 

Plate theory is a fundamental theory, that is encountered in many engineering 

applications. In addition to basics of this theory, there are specific studies related to plate 

theory, in literature [Bickford, 1998, Boresi and Schmidt, 2003, Timoshenko and 

Woinowski-Krieger, 1959]. 

Flat surfaces which are used to support loads that are perpendicular to their 

surface are called plates or flat plates. Geometry of a flat plane is defined such that there 

exists a 0=z  plane that lies within the plate. The 0=z  plane is called the middle 

surface of the plate, since it is assumed that material of the plate lies symmetrically about 

0=z  plane. Dimension that is perpendicular to vertical axis is the thickness of the plate. 

It is denoted by h . Flat plates have lateral dimensions or radial dimensions, depending on 

their shape. They have various types of supporting and loading conditions. 

 Figure 3.9 shows a plate with its middle surface, supports and loading in general.  

From many shapes that a plate may have, a rectangular shaped plate is displayed here. 

Other possible plate shapes are circular and annular plates. 

In a similar fashion that is observed in beams, internal forces occur as the flat 

plate resists the transverse loading that is being applied to it. Figure 3.10 shows a flat 

plate in which loading, original shape and deformed shape can be observed. Again, a 

rectangular shaped plate is displayed here. Loading that is applied to the plate maybe 

uniform or non-uniform. 
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Figure 3.9: Geometry of a flat plate (case of a rectangular plate) 

 

Figure 3.10: Deformation and loading on a flat plate (case of a rectangular plate) 
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In plate analysis, boundary conditions are very significant. Possible boundary 

conditions are simply supported edges, clamped edges and free edges. These boundary 

conditions may exist in both circular and rectangular plates. Coupled forms of different 

boundary conditions may exist in some cases. Figure 3.11 and Figure 3.12 display 

simply supported and clamped boundary conditions respectively. Equations that are 

placed in these figures are explained in Chapter 4 in detail. 

 

 

 

 

 

Figure 3.11: Boundary conditions for simply supported edges (all edges) 
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3.4 Hydraulic Fracturing Models and Fracture Width Characterization 

Fractures can occur naturally or can be artificially created. Natural fractures occur 

depending on the geomechanical properties of rock of interest and nature of external 

disturbances. Artificially created fractures also depend on geomechanical properties of 

rock of interest, accompanied by design parameters. Hydraulic fracturing is a method to 

create fractures that would not occur naturally.  

Main reason of this artificial process is increasing possible production of oil and 

gas. This process involves injection of a fluid into certain wellbore section. Injection is 

done at a high pressure with a reasonable fracturing fluid selection. Created fracture 

reaches the section that is believed to contain oil or gas [Yew, 1997]. 

Apart from improving productivity, hydraulic fracturing is also useful in 

overcoming wellbore damage, contributing in secondary recovery operations and helping 

injection of brine and waste material [Howard and Fast, 1970]. 

 

Figure 3.12: Boundary conditions for clamped edges (all edges) 
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In order to design successful hydraulic fracturing operations, dimensions and 

propagation characteristics of the fracture of interest should be taken into account 

thoroughly. In literature, there are models which enable a good understanding of 

relationships of influential parameters in this concept. Among these hydraulic fracturing 

models, Perkins-Kern-Nordgren model (PKN model) and Khristianovic-Geertsma-de 

Klerk model (KGD model) are helpful in determining fracture width. Average fracture 

width may be calculated as a function of injection rate, viscosity and specific gravity of 

the fracturing fluid, Poisson’s ratio, Young’s modulus of elasticity and shear modulus, of 

the rock that is composing fractured formation, thickness and length of the fracture. Shear 

modulus of the rock is a function of Poisson’s ratio and Young’s modulus of elasticity. 

Expressions giving width calculations by PKN model and KGD model are given 

in Equation 3.36 and Equation 3.37, respectively:  

 

In Equation 3.36 and Equation 3.37; w  is fracture width (in), iq  is injection rate 

(BPM/d), μ  is fluid viscosity (cp), v  is Poisson’s ratio, fx  is half fracture length (ft), G  

is shear modulus (psi), γ   is specific gravity of the fluid [Economides, 1992]. 
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3.5 Fracture Permeability Models 

In general, permeability is a rock property which corresponds to rocks ability to 

allow transmission of any fluid through its structure. Any rock is permeable and usually 

contains water or moisture in pore spaces or/and any discontinuities of it [Goodman, 

1989]. 

Fractured rocks, natural or artificial, contribute the increase in rocks’ fluid flow 

capacity, by increasing their permeability. Fracture’s fluid carrying capacity is strongly 

dependent on its width. Among literature, there are models focusing on fracture width 

analysis and relating fracture permeability to fracture width. One of these models is 

referred as viscous flow of wetting fluids through smooth fractures of constant width 

[Craft and Hawkins, 1959]. This model both deals with fracture width analysis and 

relates permeability to fracture width. Second one is referred as flow of hydraulic 

fracturing fluids through the induced fractures [Yew, 1997]. This model is focused on 

fracture width analysis. However, it is possible to relate fracture permeability to fracture 

width with the help of this model. 

Modelling of viscous flow of wetting fluids through smooth fractures of constrant 

width is very similar to Poiseulle’s law for capillary flow, except for the shape of the void 

space that the fluid flows through. 

Flow equation obtained for this model is given by Equation 3.38. Its derivation is 

provided in detail in Chapter 4 of this thesis. 

( )
L

PPAwq
μ12

21
2 −

=  (Eq. 3.38)
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In Equation 3.38; q  is volumetric flow rate, w  is width of the fracture, A  is cross 

sectional area of the fracture, ( )21 PP −  is pressure differential between the ends of the 

fracture, μ  is viscosity of the flowing fluid and L  is fracture length. 

Combining Equation 3.38 with Darcy’s law expressed in similar units, permeability term 

is expressed in terms of width.  Equation 3.39 denotes this expression as shown below: 

In Equation 3.39; k is permeability (darcy). 

Second model is based on hydraulic fracturing. Fracture is assumed to have a 

narrow opening with a constant width all through the fracture thickness. Flowing fluid is 

assumed as an incompressible Newtonian fluid. Using velocity profile for the fracture 

and flow rate per unit length, and comparing with Darcy’s equation, Equation 3.40 is 

obtained. It gives the permeability and width relationship. 

In Equation 3.40; k  is permeability (in2). 

Detailed derivations of these models are presented in Chapter 4. 
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Chapter 4 
 

Method of Approach 

4.1 Tarmat Deformation 

In order to analyze tarmat deformation, plate theory is used [Bickford, 1998, 

Boresi and Schmidt, 2003, Timoshenko and Woinowski-Krieger, 1959]. In this thesis, 

due to the case of interest, simply supported plates having rectangular shapes and lateral 

dimensions that are perpendicular to x  and y  axes, have been focused. Two types of 

loading have been studied. The first one is uniform loading and the second one is non-

uniform loading. Following parts of this section explain the assumptions and derivations 

of main equations that are used in our case, in detail. 

 Deformations take place in both x  and y  directions. Force resultants are 

consequences of normal and shear stresses. These force resultants are bending moments, 

shear forces and twisting moments which occur throughout the plane, when deformations 

occur. Figure 4.1 shows a deformed plate and bending moments and shear forces on it; 

V  represents shear force and M  represents bending moment.  

The way these force resultants act and their relations with each other are shown on 

the middle surface of the plate and on the entire plate, as shown respectively in Figure 

4.2 and Figure 4.3. Figure 4.2 and Figure 4.3 represent the bending and twisting 

moments ( M ’s) and shear forces per unit length (Q ’s). 
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Figure 4.1: Bending moments and shear forces on a deformed plate 

 

Figure 4.2: Force resultant-stress relations (middle surface of the plate) 
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Expressions of bending, twisting and shear moments are provided by Equation 4.1 

through Equation 4.5. Subscripts denote the acting directions of resultants. 

 

 

 

 

 

Figure 4.3: Force resultant-stress relations (entire plate) 
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Equation of equilibrium can be developed by making use of equilibrium of forces on a 

free body diagram. Free body diagram and the forces acting on it are shown in Figure 

4.4. 

Equation 4.6 and Equation 4.7 represent the equilibrium obtained by summing the 

forces in z direction. Equation 4.7 is the simplified form of Equation 4.6: 

dzQ
h

h yzy ∫−−=
2

2
τ  (Eq. 4.5)

 

Figure 4.4: Free body diagram showing external loading and force resultants to construct 
equilibrium equations 
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Equations 4.8 and 4.9 represent the equilibrium obtained by summing the moments in x  

direction and Equation 4.9 is the simplified form of Equation 4.8: 

 

Equations 4.10 and 4.11 represent the equilibrium obtained by summing the moments in 

y  direction and Equation 4.11 is the simplified form of Equation 4.10: 

 

Taking the derivative of Equation 4.9 with respect to y  and taking the derivative of 

Equation 4.11 with respect to x  and substituting into Equation 4.7 yield elimination of 

xQ  and yQ . This substitution eventually leads to Equation 4.12: 
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Force resultant relations are derived by equilibrium in different directions in the 

free body diagram of the plate. Strain-displacement relations can be discussed since their 

definitions are necessary to obtain more detailed expressions. 

Plate that is subjected to transverse loading with certain distribution is displaced 

perpendicular to its middle plane. In addition to this major displacement, there are small 

displacements in x  and y  directions. These additional displacements occur due to 

rotations through x and y  axes.  

Displacements in each direction can be expressed as in Equation 4.13: 

In Equation 4.13; 0w  is the displacement of middle surface ( z component), 0u  is the 

displacement of middle surface ( x component), 0v  is the displacement of middle surface 

( y component), 1w  is displacement relative to middle surface ( z component), 1u  is the 

displacement relative to middle surface ( x component) and 1v  is the displacement 

relative to middle surface ( y component). 

In Figure 4.5; a view along y  axis is shown, in which u  is the displacement in x  

direction and w  is the displacement in z  direction. Figure would have been similar if it 

were drawn from a view along x  axis, v  being the displacement in y  direction. 
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With the assumption of deformations being small and not being larger than half thickness 

of the plate of interest, strain-displacement relations are assumed linear. Linear portions 

of relevant equations to analyze plane deformation are given in Equation 4.14 and 

Equation 4.15. They are written for normal strains and shear strains, respectively: 

 

Substitution of expressions in Equation 4.13 into the relevant expressions in Equation 

4.14 yields expressions in Equation 4.16: 

 

Figure 4.5: Plane deformation from a view along y axis 
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Since the thickness of the plate does not change, zε  is equal to zero. Displacements that 

occur within the middle surface of the plane, 0u  and 0v  are also zero. With these 

assumptions the shear strains of Equation 4.15 may be put into the form as shown by 

Equation 4.17:  

After this reevaluation, shear deformations, yzγ  and xzγ  are assumed to be zero. These 

assumptions yield to Equation 4.18:  

Equation 4.19, Equation 4.20 and Equation 4.21 summarize the displacements and 

strain-displacement relations: 

 

 

 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

=
y

yxu
x

yxvzxy
,, 11γ ,       

( ) ( )yxv
y

yxw
yz ,

,
1

0 +
∂

∂
=γ  

 
( ) ( )yxu
x

yxw
xz ,

,
1

0 +
∂

∂
=γ  

(Eq. 4.17)

( )
y

yxw
v

∂
∂

−=
,0

1 ,     
( )
x

yxw
u

∂
∂

−=
,0

1  (Eq. 4.18)

x
w

zu
∂
∂

−= ,     
y
wzv
∂
∂

−= ,     ( )yxww ,=   (Eq. 4.19)

2

2

x
wzx ∂

∂
−=ε ,     2

2

y
wzy ∂

∂
−=ε ,     0=zε  (Eq. 4.20)

yx
wzxy ∂∂

∂
−=

2

2γ ,     0=yzγ ,     0=xzγ  (Eq. 4.21)



44 

 

 Having provided displacements and strain-displacement relations, now stress- 

strain relations may be investigated to obtain detailed expressions of bending moments, 

twisting moments, normal stresses and shear stresses.  

Stress-strain relations which are mainly functions of Young’s modulus of 

elasticity and Poisson’s ratio are given in Equation 4.22: 

Expressions in Equation 4.22 are solved for normal and shear stresses. They are 

separately shown in Equation 4.23, Equation 4.24 and Equation 4.25, respectively: 

 

 

Expressions in Equation 4.20 and Equation 4.21 are substituted into relevant places in 

Equation 4.23, Equation 4.24 and Equation 4.25 to obtain Equation 4.26, Equation 

4.27 and Equation 4.29, respectively: 
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In order to obtain expressions for bending and twisting moments, Equation 4.26, 

Equation 4.27 and Equation 4.28 can be substituted into Equation 4.1, Equation 4.2 

and Equation 4.3. This substitution yields Equation 4.29, Equation 4.30, and Equation 

4.31: 

 

  

The flexural rigidity, D , that appears in Equation 4.29, Equation 4.30, Equation 4.31 

is defined by Equation 4.32: 

In order to obtain expressions for normal and shear stresses, the terms; 
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terms, may be eliminated. Equation 4.33 below contains the expressions obtained by this 

elimination. 
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Maximum bending stresses and maximum shear stresses occur in the middle plane. The 

substitution of the term 2hz =  into the expressions in Equation 4.33 yields Equation 

4.34: 

To obtain the biharmonic equation; Equation 4.29, Equation 4.30 and Equation 4.31 

are substituted into Equation 4.12. This substitution yields Equation 4.35: 

Equation 4.35 can be simplified and put into the form of Equation 4.36: 

 Equation 4.36 may also be written as in Equation 4.37: 

In our study, all of the edges of the plate are considered to have simply supported 

boundary conditions. Shape of the plate is square, which is a rectangle having equal 

lateral dimensions. There are two main conditions to be satisfied for simply supported 

edges. First one is, displacement w  must be equal to zero and the second one is moment 

which has a coinciding direction with the direction of the edge must be equal to zero. 

On the edges at which y  is constant, Equation 4.38 should be satisfied as boundary 

conditions: 
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On this edges, w  being equal to zero leads to 022 ≡∂∂ xw . However, in general yw ∂∂  

and yQ  are not equal to zero. This leads another way of expressing boundary conditions 

with Equation 4.39: 

On the edges at which x  is constant, Equation 4.40 should be satisfied as boundary 

conditions: 

Similarly, on this edges, w  being equal to zero leads to 022 ≡∂∂ yw . However, in 

general xw ∂∂  and xQ  are not equal to zero. This leads another way of expressing 

boundary conditions with Equation 4.41: 

Until this point, general information about stress, strain and displacement relations 

have been provided. Derivation of general expressions of bending and twisting moments, 

stresses have been considered. Then the shape and boundary condition assumptions have 

been presented. At this point, appropriate solution for rectangular plate problems with 

simply supported opposite edges can be considered. It should be noted that transverse 

loading may be non-uniform as well as uniform. Each type of loading is basically shown 

in Figure 4.6 followed by separate considerations of each type. 
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General solution for transverse displacement ( )yxw ,  is expressed by Equation 

4.42 below. This equation satisfies the requirements of simply supported boundary 

conditions: 

Equation 4.42 may also be put in a form that is expressed by Equation 4.43 in which 

superposition is used: 

Solution for transverse loading is expressed by Equation 4.44: 
 

Substituting Equation 4.43 and Equation 4.44 into Equation 4.37 yields Equation 

4.45: 

 

Figure 4.6: Uniformly (a) and non-uniformly (b) loaded rectangular plates 
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Solving Equation 4.45 for mnw  yields to Equation 4.46: 

In case of a uniform loading, where  0qq = , mnq  may be obtained by Equation 4.47 

which holds when m  and n  are odd: 

Substitution of Equation 4.47 into Equation 4.46, and then the obtained expression into 

Equation 4.43 yields Equation 4.48: 

In addition to transverse displacement derivations, bending moments and twisting 

moments can be derived as in the following equations that are Equation 4.49, Equation 

4.50 and Equation 4.51, respectively: 
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These expressions being appropriate for rectangular plates under uniform loading 

that are simply supported from all edges, can be evaluated until each series converges. 

In the case in which boundary conditions and the plate shape is similar, while the 

plate is under non-uniform loading that is distributed all over the surface, mnq  is 

expressed as in Equation 4.52:  
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In this equation 0q  refers to the intensity of the loading at the center of the plate. 

Equation 4.52 can be substituted into Equation 4.36 which yields Equation 4.53:  

For simplicity, m  and n  are assumed to be equal to zero. Then, Equation 4.42 is 

substituted into Equation 4.53. This substitution provides the expression for mnw  as it is 

solved for it. This solution is given by Equation 4.54: 

Equation 4.54 is placed in Equation 4.42 to obtain the deflection surface that is caused 

by non-uniform transverse loading. Equation 4.55 is the expression for representing the 

deflection at a given x  and y  coordinates: 

In addition to transverse displacement derivations, bending moments and twisting 

moments can be derived as in the following equations that are Equation 4.56, Equation 

4.57 and Equation 4.58, respectively:  
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Since these expressions are simplified before derivation by taking m  and n  as 1, 

evaluation of series has not been necessary in the case of non-uniform loading. 

A detailed discussion regarding the comparison of uniform and non-uniform 

loading is presented in Chapter 5. 

4.2 Failure Analysis 

In order to evaluate the tarmat behavior to the instant of geomechanical failure, 

tarmat deformation analysis should be forwarded to a failure criterion.  

In maximum shear stress failure criterion, three different cases can occur which 

depend on the principle stresses. They are explained in Chapter 3 with details. Principle 

stresses are obtained by Equation 4.59 below: 
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In Equation 4.59; 2,1σ  is first and second principle stresses (psi), which can be followed 

by subscript respectively. 

First case which may occur is 021 σσ , 03 =σ , second case which may occur is 

012 σσ , 03 =σ  and third case which may occur is 01σ , 02σ , 03 =σ .  

In this stage of our problem, first and second cases may be used both. In tarmat 

deformation analysis, after bending and twisting moment calculations, if expressions in 

Equation 4.34 are used by choosing negative sign convention, first case becomes the 

case to select. However, if they are used by choosing positive sign convention, second 

case is appropriate to select.  

In the first case maximum shear stress is calculated by Equation 4.60 where in second 

case it is calculated by Equation 4.61. They are provided below:   

 

They are concluded to lead to same failure points. Second case is chosen to use in our 

analysis. Following interpretations help to explain the analysis in detail. 

Due to Mohr’s circle, maximum shear stress is given by Equation 4.62 which is;  

In Equation 4.62; maxτ  is maximum shear stress (psi) and YSσ  is yield strength (psi). 
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By combining Equation 4.61 and Equation 4.62; criteria that needs to be satisfied in 

order for the material not to fail is obtained. This is shown by Equation 4.63 and 

Equation 4.64: 

 

This means that if 2σ  exceeds YSσ  of the material, failure occurs [Gere-2001, 

Bickford-1998]. 

4.3 Pressure Transient Model  

This stage of the analysis is dealing with reservoir depletion that occurs at the 

upper part of the composite system of interest. Conventional well test models have been 

used to calculate the change of pressure in the single phase, square shaped reservoir. Well 

is assumed to be located at the middle of the reservoir. Figure 4.7 shows the orientation 

of well point and observation points in the selected conventional well test case.  

 

 

 

 

 

 

22
2 YSσσ
=  (Eq. 4.63)

YSσσ =2  (Eq. 4.64)
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Table 4-1 shows the dimensionless pressure drops that would be encountered at a 

specific dimensionless time, due to  well point and observation points shown in Figure 

4.7.  

 

 

 

 

 

 

 

 

 

Figure 4.7: Reservoir configuration with locations of well point and observation points 
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Dimensionless pressure drop values in Table 4-1 are tabulated with the assumption that 

wrA  is equal to 2,000. However, if this is not the case, values displayed in table should 

Table 4-1: Dimensionless Pressure Drop and Corresponding Dimensionless Time at Well
Point and Observation Points, wrA =2,000 [Earlougher, et al., 1968] 

X=0.5000 X=0.6250 X=0.6250 X=0,7500 X=0.7500 X=0.8750 X=0.8750 X=0.8750 X=1.0000 X=1.0000 X=1.0000
tDA Y=0.5000 Y=0.5000 Y=0.6250 Y=0.5000 Y=0.7500 Y=0.5000 Y=0.7500 Y=0.8750 Y=0.5000 Y=0.7500 Y=1.0000

0.002 4.898 0.026 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.003 5.101 0.068 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.004 5.245 0.114 0.026 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.005 5.356 0.161 0.046 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.006 5.447 0.205 0.068 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.007 5.525 0.248 0.091 0.018 0.001 0.001 0.000 0.000 0.000 0.000 0.000
0.008 5.591 0.287 0.114 0.026 0.002 0.001 0.000 0.000 0.000 0.000 0.000
0.009 5.650 0.324 0.138 0.035 0.004 0.002 0.000 0.000 0.000 0.000 0.000
0.010 5.703 0.359 0.161 0.046 0.006 0.003 0.001 0.000 0.000 0.000 0.000
0.020 6.049 0.621 0.359 0.161 0.046 0.035 0.012 0.004 0.011 0.004 0.001
0.030 6.252 0.794 0.507 0.268 0.103 0.088 0.040 0.018 0.044 0.022 0.006
0.040 6.397 0.923 0.622 0.363 0.165 0.149 0.080 0.044 0.091 0.053 0.022
0.050 6.510 1.028 0.719 0.447 0.228 0.213 0.128 0.080 0.147 0.095 0.050
0.060 6.605 1.118 0.804 0.524 0.290 0.277 0.181 0.124 0.207 0.143 0.087
0.070 6.689 1.198 0.882 0.597 0.353 0.342 0.237 0.174 0.268 0.196 0.132
0.080 6.765 1.273 0.954 0.666 0.416 0.406 0.295 0.228 0.330 0.253 0.183
0.090 6.837 1.343 1.023 0.733 0.479 0.470 0.355 0.285 0.393 0.311 0.237
0.100 6.906 1.411 1.090 0.799 0.542 0.534 0.415 0.343 0.455 0.371 0.294
0.200 7.547 2.050 1.727 1.434 1.170 1.164 1.039 0.963 1.083 0.993 0.910
0.300 8.175 2.679 2.356 2.062 1.798 1.792 1.668 1.591 1.712 1.621 1.538
0.400 8.804 3.307 2.984 2.690 2.427 2.420 2.296 2.220 2.340 2.250 2.167
0.500 9.432 3.935 3.612 3.319 3.055 3.049 2.924 2.848 2.968 2.878 2.795
0.600 10.060 4.564 4.241 3.947 3.683 3.677 3.553 3.476 3.597 3.506 3.423
0.700 10.689 5.192 4.869 4.575 4.312 4.305 4.181 4.105 4.225 4.135 4.052
0.800 11.317 5.820 5.497 5.204 4.940 4.934 4.809 4.733 4.853 4.763 4.680
0.900 11.945 6.449 6.126 5.832 5.568 5.562 5.438 5.361 5.482 5.391 5.308
1.000 12.574 7.077 6.754 6.460 6.197 6.190 6.066 5.990 6.110 6.019 5.937
2.000 18.857 13.360 13.037 12.743 12.480 12.473 12.349 12.273 12.393 12.303 12.220
3.000 25.140 19.643 19.320 19.027 18.763 18.757 18.632 18.556 18.676 18.586 18.503
4.000 31.423 25.926 25.603 25.310 25.046 25.040 24.915 24.839 24.959 24.869 24.786
5.000 37.706 32.210 31.887 31.593 31.329 31.323 31.199 31.122 31.243 31.152 31.069
6.000 43.989 38.493 38.170 37.876 37.612 37.606 37.482 37.405 37.526 37.435 37.352
7.000 50.273 44.776 44.453 44.159 43.896 43.889 43.765 43.689 43.809 43.719 43.636
8.000 56.556 51.059 50.736 50.443 50.179 50.172 50.048 49.972 50.092 50.002 49.919
9.000 62.839 57.342 57.019 56.726 56.462 56.456 56.331 56.255 56.375 56.285 56.202

10.000 69.122 63.625 63.302 63.009 62.745 62.739 62.614 62.538 62.658 62.568 62.485
12.000 81.688 76.192 75.869 75.575 75.311 75.305 75.181 75.104 75.225 75.134 75.052
15.000 100.538 95.041 94.718 94.425 94.161 94.155 94.030 93.954 94.074 93.984 93.901
20.000 131.954 126.457 126.134 125.840 125.577 125.570 125.446 125.370 125.490 125.400 125.317
30.000 194.785 189.289 188.966 188.672 188.408 188.402 188.278 188.201 188.322 188.231 188.148

Dimensionless Pressure Drop At Well Point and Observation Points 
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be fixed for the value obtained for wrA  for the case of interest [Earlougher, 1977]. 

This correction should be done at the well point only and can be conducted as shown by 

Equation 4.65: 

In Equation 4.65; A   is area of interest (ft2),  wr  is well bore radius (ft), 'P  is the 

dimensionless pressure drop at the well point as given for wrA =2,000  and ''P  is the 

corrected dimensionless pressure drop for the relevant wrA . 

In order to find the relationship between actual pressure and actual time, the standard 

computational procedure of classical well test model is followed [Earlougher, 1977, 

Lee, 1982]. In this procedure, dimensionless time should be converted to actual time and 

dimensionless pressure should be converted into actual pressure. Dimensionless 

production rate is used as an intermediate step in these calculations.  Equation 4.66 is an 

expression used for dimensionless flow rate, which is suitable for our case: 

In Equation 4.66; Dq  is dimensionless flow rate, γ  is the appropriate constant for the 

units used, B  is formation volume factor (STB/RB), pq  is production rate (STB/d), μ  is 

viscosity (cp), k  is permeability (md), h  is thickness (ft) and iP  is initial pressure of the 

reservoir (psi). 

Equation 4.67; is an expression used for dimensionless pressure, which is suitable for 

our case:  

( ) ''' ln000,2ln P
r
AP
w

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−  (Eq. 4.65)

i

p
D khP

Bq
q

μγ
=  (Eq. 4.66)
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In Equation 4.67; DPΔ  is dimensionless pressure drop and P  is actual pressure at a 

given time (psi). 

Equation 4.67 is solved for pressure as expressed by Equation 4.68: 

Equation 4.69 is an expression used for dimensionless time: 

In Equation 4.69; Dt  is dimensionless time, λ  is the appropriate constant for the units 

used, t  is the real time (hours), c  is the compressibility, (psi-1) and φ  is porosity. 

However, it is necessary to evaluate the dimensionless time for the area of our interest, 

which contains a well in the middle of it. These expressions are provided in Equation 

4.70 and Equation 4.71, respectively: 

 

Equation 4.71 is solved for actual time to which is expressed by Equation 4.72: 
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Assumed reservoir properties are influential in this procedure. Oil production rates 

range from 1,000 STB/d to 10,000 STB/d and is one of the parameters with the most 

significant influence in the relationship between pressure and time. As production rate 

increases, a certain pressure differential is reached in a shorter period of time. This means 

that, as unloading occurs with a higher rate, critical pressures are reached faster. The 

dimensions of the discharge area are also very important and 51.75 acres and 200 acres 

are used in this analysis. Effects of influential parameters are discussed in Chapter 5 in 

detail. Table 4.3 has the information of assigned properties of the reservoir. 

With assigned properties of the reservoir and a certain production rate, pressure 

differential versus time graphs are obtained. This study can be done for a number of 

locations within the reservoir, since pressure distribution throughout the reservoir can be 

determined. However, main interest is the center, due to the fact that critical pressure that 

determines the instant of failure occurs at the center.  

Table 4-2: Assigned Properties of Reservoir 

Property Value Unit 
 μ 0.72 cp 
Ø 0.25 fraction 
B 1.3 rb/stb 
k 400 md 
h 200 ft 
c 0.0000015 psi-1 
rw 0.5 ft 
Pi 9,000 psi 
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4.4 Fracture Width Analysis 

This part presents the approach that is taken in fracture width analysis. In fracture 

width analysis, two different hydraulic fracturing models have been used as have been 

introduced in Chapter 3. First one is the PKN model and second one is the KGD model. 

They both relate hydraulic fracture width to properties of fluid and rock to be fractured; 

in a specific case of hydraulic fracturing. Fluid in our model is water that would 

communicate with the upper layers of the composite system and rock in our model is 

tarmat that would fail by the disturbance of pressure differential.  

In both models; influential fluid properties are viscosity and specific gravity and 

influential rock properties are Poisson’s ratio, Young’s modulus of elasticty. Other 

properties depending on the case are; fluid injection rate and fracture length. One more 

property that is not influential in PKN model but is influential in KGD model is fracture 

thickness.  

Inputs into the analysis protocol followed in this study are viscosity and specific 

gravity of water, Poisson’s ratio and Young’s Modulus of Elasticiy of tarmat, reservoir 

production rate and thickness of tarmat. Reservoir production rate is substituted for the 

fluid injection rate. The reason for this substitution is that the effect of fluid injection rate 

in a hydraulic fracturing case is similar to the effect of  reservoir production rate in our 

geomechanical failure case; as both of them are expected to create a similar pressure 

differential in magnitude and direction. The problem has been approached inversely, to 

estimate fracture width as a function of reservoir production rate. Another input, 

thickness of tarmat, is substituted for fracture length. This is due to the reason that; in a 
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hydraulic fracturing case, fracture length is the parameter that helps to express the 

penetration of the created crack while in the case of our interest, penetration of the crack 

is expressed by tarmat thickness. On the other hand, fracture thickness that comes into the 

picture in only KGD model; corresponds to fracture length in the analyzed case. PKN 

model and KGD model are in agreement when the fracture thickness is assumed to be as 

long as the line that is drawn at the points on the plate where shear stress is 99 per cent of 

the maximum shear stress. 

Figure 4.8 and Figure 4.9 explains fracture thickness and fracture length 

orientation for a hydraulic fracturing case and for our case, respectively. 

 

 

 

 

Figure 4.8: Fracture length, fracture width and fracture thickness in a hydraulic crack 

Fracture length 
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Fracture width 
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The fracture width is expressed by Equation 4.73 and Equation 4.74, for the 

PKN and KGD models, respectively andG , which is an input parameter in each model is 

expressed by Equation 4.75:  

  

 

 

Figure 4.9: Fracture length and fracture thickness in the case of interest 
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In Equation 4.73, Equation 4.74 and Equation 4.75; μ  is viscosity of fluid (water, 

cp),γ  is specific gravity of fluid (water), v  is Poisson’s ratio of rock (tarmat), E  is 

Young’s modulus of elasticity of rock (tarmat, psi), G  is shear modulus of rock (tarmat, 

psi), q  is flow rate (production rate, BPM), ( )20h  is half fracture length (half tarmat 

thickness, ft), and fh  is fracture thickness (fracture length, ft) [Economides, 1992]. 

4.5 Permeability Analysis 

This stage of the analysis focuses on the fracture permeability that would be 

established after the geomechanical failure of tarmat followed by creation of a fracture 

with a certain width. Two different approaches have been used to estimate fracture 

permeability. First one is referred as viscous flow of wetting fluids through smooth 

fractures of constrant width [Craft and Hawkins, 1959]. Second one is referred as flow 

of hydraulic fracturing fluids through the induced fractures [Yew, 1997]. How they are 

used in this stage of our analysis is explained in detail in the following sections.  

4.5.1 Flow through Fractures 

The first approach that focuses on viscous flow of wetting fluids through smooth 

fractures of constrant width, is based on a particular case of fluid flow in reservoirs. For 

capillary flow in porous media, Poiseuille’s law for capillary flow relates flow rate to 

fluid viscosity, pressure differential, radius and length of the capillary tube through which 

flow occurs. Then, permeability can be related to the radius. In this stage of the analysis, 
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fracture permeability is related to fracture width, by following the same derivation 

procedure that leads to Poiseuille’s Law for Capillary Flow in a capillary flow case. Only 

difference is that flow that takes place in the case of our interest is through a fracture of 

constant width. 

Derivation can be started by writing an expression for viscous forces that would 

be created within the flowing fluid: 

In Equation 4.76; vF  is viscous force, (dynes), μ  is fluid viscosity, (poises), A  is area 

that the flowing fluid wets while flowing, (cm2)  and 
dx
dv  is the velocity gradient, 

[cm/sec)/cm]. 

Area that is wetted by the flowing fluid is twice the lateral areas of each fracture wing. 

This is expressed by Equation 4.77: 

In Equation 4.77; fh  is thickness of the fracture (cm) and 0h  is thickness of the tarmat 

(cm). 

Equation 4.77 is substituted into Equation 4.76 to obtain Equation 4.78: 

In addition to viscous forces, the pressure differential through the penetration length of 

the fracture creates another force through the fracture. This force may be referred as the 

dx
dvAFv μ=  (Eq. 4.76)

fhhA 02=  (Eq. 4.77)

( )
dx
dvhhF fv 02μ=  (Eq. 4.78)
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driving force. Since the flowing fluid is not accelerating, driving forces and viscous 

forces add up to zero. Equation 4.79 shows the relevant force balance:  

In Equation 4.79; ( )21 PP −  is pressure differential acting on the cross sectional area of 

fluid flow (dyne/cm2) and 'A  is cross sectional area that pressure differential acts on     

(cm2).  

Separating velocity gradient terms and integrating, Equation 4.80 and Equation 4.81 are 

obtained respectively: 

 

In Equation 4.80 and Equation 4.81; C is the integration constant and x  represents the 

lateral extent of width. Since v  would be equal to zero where x  is equal to w , Equation 

4.81 is solved for this situation to find an expression for C , shown by Equation 4.82: 

In Equation 4.82; w  is width of the fracture (cm). 
 
Equation 4.82 is substituted back to the Equation 4.81 to obtain Equation 4.83: 
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At this point, fluid flow rate, should be related to the derived velocity expression. 

Equation 4.84 is general expression for a relevant element: 

In Equation 4.84; q  is fluid flow rate (cm3/sec). 

Flow rate is expressed in terms of cross sectional area and velocity as in Equation 4.85 

and put into the differential form as in Equation 4.86: 

 

Equation 4.86 is substituted to Equation 4.84 to obtain Equation 4.87: 
 

Cross sectional area of flow through fracture is expressed in terms of fracture thickness 

and width. This expression and its differential form are given in Equation 4.88 and 

Equation 4.89: 

 

Equation 4.83 and Equation 4.89 are substituted to Equation 4.87 to obtain Equation 

4.90: 
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 (Eq. 4.84)
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'vdAdq =  (Eq. 4.86)
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Separating parameters that are independent from x  and integrating Equation 4.90 

through the entire width of the fracture, Equation 4.91, Equation 4.92 and Equation 

4.93 are obtained: 

 

 

Equation 4.93 can also be written as in Equation 4.94, since multiplication of fracture 

thickness and fracture width gives cross sectional area. This can be referred as the flow 

equation obtained for wetting fluids through smooth fractures of constant width: 

Equation 4.95; as shown below is the form of Darcy’s law, which is expressed in similar 

units with Equation 4.94: 

In Equation 4.95; k  is the formation permeability (darcy). 
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Equation 4.94 and Equation 4.95 are combined and solved for k  as being permeability 

of the fracture. Equation 4.96 is obtained as an expression which provides fracture 

permeability as a function of fracture width: 

In Equation 4.96, w  is in inches and k  is in darcies. 

4.5.2 Hydraulic Fracturing 

 In this model, fracture is assumed to have a narrow opening with a constant width 

all through the fracture thickness. Flowing fluid is assumed to be an incompressible 

Newtonian fluid, which is valid for our case. Ignoring the negligible pressure differential 

created through the width of the fracture, velocity profile can be expressed as in 

Equation 4.97. Subscript denotes the flow direction: 

In Equation 4.97; zv  is velocity, μ  is fluid viscosity, w  is fracture width, 
dz
P∂  is 

pressure gradient [Howard and Fast, 1970]. 

Volumetric flow rate per unit fracture is a function of velocity and can be evaluated by 

means of velocity profile expression. Equation 4.98 expresses the volumetric flow rate 

per unit fracture thickness: 

261054 wk ×=  (Eq. 4.96)
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In Equation 4.98; zq  is volumetric flow rate, fh  is fracture thickness, w  is fracture 

width and  
dz
P∂   is pressure gradient [Howard and Fast, 1970]. 

Equation 4.97 is substituted to Equation 4.98 to obtain Equation 4.99: 

Simplified form of Equation 4.99 that is solved for volumetric flow rate is Equation 

4.100: 

Equation 4.101 is Darcy’s equation written in the differential form: 
 

Equation 4.100 and Equation 4.101 are combined to solve for permeability term that is 

expressed in terms of width. Equation 4.102 is the form of cross sectional area that is 

expressed in terms of fracture thickness and fracture width: 

Equation 4.103, Equation 4.104 and Equation 4.105 conclude the permeability term 

evaluation as shown below: 
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Since 1 darcy is equal to 1.52973 x 10-9 in2, necessary conversion can be reflected to 

Equation 4.104, where w is expressed in inches. Equation 4.105 is the form of equation 

where permeability is expressed in darcies and width is expressed in inches.  

4.6 Summary of the Procedure of the Approach 

Stepwise analysis of the problem on which this thesis is based, is composed of 

three main steps.  

The first step is deformation versus loading analysis and failure analysis. This 

step of the analysis is dependent on tarmat properties and dimensions. This step helps to 

determine failure envelope associated with the deformation versus loading analysis. 

Second step is the use of a conventional well test model or a numerical model. This 

model helps to study the relationship between pressure differential and time differential, 

for a range of various production rates. This study is dependent on reservoir properties 

and dimensions. The third and final step is fracture width estimation that would occur 

after geomechanical failure of tarmat and  fracture permeability analysis that is dependent 

on fracture width. This step is dependent on tarmat properties and dimensions, water 

properties and reservoir production rate.  

271045.5 wk ×=  (Eq. 4.105)



 

 

Chapter 5 
 

Results and Discussions 

The analysis this thesis is based on is composed of three main steps. Each step 

involves parametric analysis. First step deals with geomechanical failure of tarmat, 

second stage deals with expected pressure distribution during reservoir depletion and  

third step deals with fracture clearance and that would be created after geomechanical 

failure and permeability that would be established after fracture clearance occurs.  

Having discussed the methodology in Chapter 5, this chapter presents the results 

and discussions of each stage separately followed with the suggested protocol to be 

followed in the complete analysis.  

5.1 Failure Analysis 

This stage of the analysis is a sensitivity analysis that investigates the behavior of 

tarmat as the overlying reservoir is being depleted. Reservoir depletion followed by 

increasing pressure differential acts as if there is an increasing loading is being applied to 

tarmat from the bottom. To model the behavior of tarmat under this circumstances, 

rectangular plate deformation model is used. In this model, deformation behavior of 

tarmat as loading on it increases is investigated until expected geomechanical failure 

occurs. Geomechanical failure of tarmat is characterized by maximum shear stress failure 

criterion. This analysis is made with two different assumptions, uniform loading 
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assumption and non-uniform loading assumption. These two protocols are discussed and 

compared in the following parts of this section. 

5.1.1 Failure Analysis with Uniform Loading Assumption 

In this part, failure analysis with uniform loading assumption, which means a 

loading assumption as if it has the same magnitude through the surface of tarmat, is 

discussed based on influential parameters.  

Figure 5.1 shows deformation  versus loading and the associated failure envelope 

with three different cases. In each of them, different tarmat thicknesses are used varying 

from 30 ft to 100 ft. Deformation versus loading behavior is investigated until the point 

where maximum shear stress failure criterion restricted this behavior and provided the 

conclusion of geomechanical failure. The curve combining the failure points for different 

thicknesses is referred as the failure envelope. Influential properties are Young’s modulus 

of elasticity, Poisson’s ratio, yield strength and lateral dimensions of tarmat. It should be 

noted that Young’s modulus of elasticity is influential in deformational behavior 

determination. However, yield strength and Young’s modulus of elasticity are specific for 

the material, and Young’s modulus of elasticity has an indirect effect in determining the 

failure envelope. In Figure 5.1 lateral dimensions are 750 ft and Poisson’s ratio is 0.30. 

However Young’s modulus of elasticity and yield strength are 3,000,000 psi and 30,000 

psi in Figure 5.1(a), 5,500,000 psi and 50,000 psi in Figure 5.1(b), 8,000,000 psi and 

75,000 psi in Figure 5.1(c), respectively. Figures 5.1(a) through 5.1(c) are drawn in the 

same scale to display explicitly the expected influences of main parameters in this 
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sensitivity analysis. Lateral dimensions and Poisson’s ratio have been held constant in 

this part of the failure analysis since they are not dependent on elastic properties. Yield 

strength assumptions have been increased with Young’s modulus of elasticity 

assumptions since they generally show a directional relationship in a specific material as 

their influences are discussed in following parts of the failure analysis. 

In each of Figure 5.1 a conclusion about thickness of tarmat is drawn. Thicker the tarmat, 

more pressure it requires encountering the geomechanical failure. However, thinner the 

tarmat, more deformation occurs until the observation of failure. As each of Figure 5.1 

are compared together the following can be deduced: As Young’s modulus of elasticity 

and yield strength becomes higher, pressure required failing tarmat increases and 

deformation decreases slightly.  

 

 

 

 

 

 

 

 

 

 

 

 



74 

 

 

0
5

10
15
20
25
30

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

∆h
, f

t

∆P, psi
(a)

E=3,000,000 psi
σYS=30,000 psi
a=b=750 ft
v=0.30Failure Envelope 

0
5

10
15
20
25
30

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

∆h
, f

t

∆P, psi
(b)

E=5,500,000 psi
σYS=50,000 psi
a=b=750 ft
v=0.30Failure Envelope 

0

5

10

15

20

25

30

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

∆h
, f

t

∆P, psi
(c)

E=8,000,000 psi
σYS=75,000 psi
a=b=750 ft
v=0.30Failure Envelope 

Figure 5.1: Deformation versus loading with associated failure envelope (a)E=3,000,000 
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  Figure 5.2, Figure 5.3 and Figure 5.4 display the magnitude and nature of the 

effects caused by the principal parameters of this analysis on failure pressure. Most 

influential parameters are lateral dimensions, yield strength and Poisson’s ratio of tarmat. 

All of them also express direct proportion of tarmat thickness and magnitude of pressure 

required to geomechanically fail the tarmat, again. Each of Figure 5.2, Figure 5.3 and 

Figure 5.4 are drawn considering critical pressures and deformations that occur until 

critical pressure is reached.  

Figure 5.2 presents the effect of lateral dimensions of tarmat on failure pressure 

due to various possible tarmat thicknesses. Corresponding reservoir drainage areas are 

expressed in Figure 5.2. Lateral dimensions are varied within a range of 500 ft and 4,000 

ft while corresponding drainage areas vary between 5.75 acres and 368 acres. Young’s 

modulus of elasticity, yield strength and Poisson’s ratio are assigned to be 4,000,000 psi, 

40,000 psi and 0.30, respectively. It is observed that in smaller drainage areas, more 

pressure differential is required to fail tarmat. This is due to the placement of artificial 

supports along the edges of the plate. The effects of these supports become less 

influential as the lateral extent of the system is increased. 
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Figure 5.3 displays the effect of yield strength of tarmat on failure pressure due to 

various possible tarmat thicknesses. Yield strengths are varied within a range of 15,000 

psi and 100,000 psi. Young’s modulus of elasticity, Poisson’s ratio and lateral 

dimensions are assigned to be 4,000,000 psi, 0.30 and 750 ft, respectively. It is observed 

that tarmat having higher yield strengths, requires more pressure differential until 

geomechanical failure. This result is due to the fact that the maximum shear stress that 

occurs within the tarmat as loading increases is being compared with a higher yield 

strength value, letting pressure to increase for the material to reach that shear stress value. 
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Figure 5.2: Loading versus thickness graph for various lateral dimensions (E=4,000,000 
psi, σYS=40,000 psi, ν =0.30) 
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Figure 5.4 displays the effect of Poisson’s ratio of tarmat on failure pressure due 

to various possible tarmat thicknesses. Poisson’s ratios are varied within a range of 0.10 

and 0.50. Young’s modulus of elasticity, yield strength and lateral dimensions are 

assigned to be 4,000,000 psi, 40,000 psi and 750 ft, respectively. It is observed that 

tarmats with smaller Poisson’s ratios, require more pressure differential until the failure 

point.  
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5.1.2 Failure Analysis with Non-Uniform Loading Assumption 

In this part, failure analysis with non-uniform loading assumption which is the 

most at the center and gets lower towards the edges is made. The results of this  analysis 

and comments regarding the analysis itself and its comparison with uniform loading 

assumption is made in the following part of this section. 
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Figure 5.4: Loading versus thickness graph for various Poisson’s ratios (E=4,000,000 
psi, σYS=40,000 psi, a=b=750 ft) 



79 

 

5.1.3 Comparison of Uniform and Non-Uniform Loading 

In this part, failure analysis with uniform loading and failure analysis with non-

uniform loading is compared. 

Figure 5.5 displays a comparison between deformation versus loading and 

associated failure envelope of uniform loading (a) and non-uniform loading (b). For a 

tarmat with a certain thickness, lateral dimensions, Young’s modulus of elasticity, 

Poisson’s ratio and yield strength, more pressure differential is required to observe 

geomechanical failure in the case of non-uniform loading. More deformation would be 

observed in the case of a uniform loading. Difference in deformation amount is relatively 

small. 
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Figure 5.5: Comparison of deformation versus loading with associated failure envelope 
with uniform and non-uniform loading assumption (E=8,000,000 psi, σYS=75,000 psi, 
a=b=750 ft, v =0.30) 
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Figure 5.6 displays a comparison between loading versus thickness for different 

lateral dimensions of tarmat in the cases of uniform loading (a) and non-uniform loading 

(b). For a tarmat of certain lateral dimensions, thickness, Young’s modulus of elasticity, 

Poisson’s ratio and yield strength, more pressure differential is required to observe 

geomechanical failure in the case of non-uniform loading.  

Figure 5.7 displays a comparison between loading versus thickness for different 

yield strengths of tarmat in the cases of uniform loading (a) and non-uniform loading (b). 

For a tarmat with a certain yield strength, lateral dimensions, thickness, Young’s modulus 

of elasticity and Poisson’s ratio, more pressure is required to observe geomechanical 

failure in the case of non-uniform loading.   
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Figure 5.6: Comparison of loading versus thickness graphs for various lateral dimensions 
with uniform and non-uniform loading assumption 
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 Figure 5.8 displays a comparison between loading versus thickness for different 

Poisson’s ratios of tarmat in the cases of uniform loading (a) and non-uniform loading 

(b). For a tarmat of certain Poisson’s ratio, lateral dimensions, thickness, Young’s 

modulus of elasticity, and yield strength, more pressure differential is required to observe 

geomechanical failure in the case of non-uniform loading.  
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5.2 Pressure Transient Model 

This stage of the analysis is dealing with reservoir depletion that occurs in the 

upper section of the composite system of interest. Conventional well test model is used to 

calculate the change of pressure in a single phase, square shaped reservoir, having a 

single well located at the center. By this model, pressure differential at a given time can 

be determined not only at the well point but also throughout the reservoir. However, main 

interest is the center, due to the fact that critical pressure that determines the instant of 
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failure occurs at the center. This study has been conducted for two different drainage area 

assumptions. In each case, production rate has been varied between 1,000 STB/d and 

10,000 STB/d. Reservoir properties assigned in this analysis are given in Table 5-1 

below. 

Figure 5.9 provides a comparison of different drainage area assumptions while 

production rate influences on pressure versus time relationship can also be observed. 

Figure 5.9 (a) and Figure 5.9 (b) represent the analysis with drainage area assumption of 

51.65 acres and Figure 5.9 (c) and Figure 5.9 (d) represent the analysis with drainage 

area assumption of 200 acres. These drainage areas represent lateral dimensions of 1,500 

ft and 2,952 ft respectively. Figure 5.9 (b) and Figure 5.9 (d) show the zoomed portions 

of Figure 5.9 (a) and Figure 5.9 (b) respectively. 

            As production rate increases, a certain pressure differential is reached in a shorter 

period of time. This means that, as unloading occurs with a higher rate, critical pressures 

are reached faster. From Figure 5.9 it can also be extracted that, similar production rates 

applied on reservoirs with different drainage areas result in different pressure versus time 

Table 5-1: Hydrocarbon Reservoir Properties 

Property Value Unit 
μ 0.72 cp 
Ø 0.25 fraction 
B 1.3 rb/stb 
k 400 md 
h 200 ft 
c 0.0000015 psi-1 
rw 0.5 ft 
Pi 9,000 psi 
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behavior. For reservoirs with smaller drainage areas, it takes less time to reach a certain 

pressure differential than it does for those with larger drainage areas.  

5.3 Characterization of the Formed Fractures 

This stage of the analysis deals with the fracture width predictions. Two different 

hydraulic fracturing methodologies have been used to predict fracture width; PKN model 

and KGD model. Production rate from the reservoir above that would make a similar 

 

Figure 5.9: Pressure differential versus time differential graphs for various flow rates
(a),(b): Cross sectional area=51.65 acres, (c),(d): Cross sectional area=200 acres 

(a) 

(c) (d) 

(b) 
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effect as injection rate from the aquifer below has been used as an input flow rate. Range 

that has been used in the analysis with conventional well test model has been used. This 

production rate range is form 1,000 STB/d to 10,000 STB/d. This analysis that is relating 

production rate and width has been repeated for a possible range of tarmat thicknesses 

varying between 30 ft and 100 ft.  

Figure 5.10 and Figure 5.11 shows the relationship between fracture width and 

production rate as analyzed using the PKN model and KGD model respectively. 

Poisson’s ratio has been assigned as 0.30 in both Figure 5.10  and Figure 5.11. Young’s 

modulus of elasticity has been assigned to be 3,000,000 psi in Figure 5.10 (a) and Figure 

5.11 (a) and 5,500,000 psi in Figure 5.10 (b) and Figure 5.11 (b). Fracture thickness, 

which corresponds to crack length through the tarmat layer is assigned to be 47.82 ft as it 

corresponds to the assumed limitation that has been explained in Chapter 4. Fracture 

thickness is an influential input in KGD model, while it does not come into the picture in 

PKN model. 

In both models, Young’s modulus of elasticity is observed to be inversely 

proportional with fracture width. A system with a certain reservoir production rate and a 

certain tarmat thickness would encounter a wider width than another system having 

everything the same but the Young’s modulus of elasticity higher. Apart form Young’s 

modulus of elasticity, production rate is an influential parameter. A system with known 

properties encounter a wider crack width if the reservoir at the top of the system is being 

produced with a higher production rate. On the other hand thickness of tarmat is a 

significant parameter. Wider widths would be created in systems with thicker tarmat 

layers. 
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Figure 5.10: Width versus production rate graphs for various tarmat thicknesses (PKN
model) (a)E= 3,000,000 psi, v=0.30, hf=47.82 ft, (b) E=5,500,000 psi, v=0.30, hf=47.82 ft
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Apart from similar trends and relationships, there are differences and comparable 

predictions of PKN model and KGD model. PKN model predicts larger widths than KGD 

does. Difference in this prediction is largest in systems with high reservoir production 
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Figure 5.11: Width versus production rate graphs for various tarmat thicknesses (KGD
model) (a)E= 3,000,000 psi, v=0.30, hf=47.82 ft, (b) E=5,500,000 psi, v=0.30, hf=47.82 ft
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rates and thick tarmats. However, the difference becomes smaller in a system in which 

reservoir is being produced with a lower production rate and tarmat is thinner. 

5.4 Permeability Analysis 

Following graph, displayed in Figure 5.12 shows a relationship between fracture 

permeability and fracture width. Equation 1 refers to the first method and equation 2 

refers to the second method that are derived and explained in Chapter 4. 

5.5 Suggested Computational Protocol  

This part of the section presents the analysis of this study that attaches each 

separate step. 
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Figure 5.12: Fracture permeability versus fracture width  
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Suggested protocol is explained with selection of two different composite 

systems. In a certain stage of each system, two different assumptions are made and 

brought to the end of the analysis. This is explained in detail in following sections.  

5.5.1 Case 1 

Assigned properties of each layer of the composite system are given in Table 5-2. 

First step of the protocol is the construction of deformation versus loading with 

associated failure envelope. This relation is dependent on Young’s modulus of elasticity, 

yield strength, Poisson’s ratio and lateral dimensions of the reservoir. Figure 5.13 is the 

output of the study of this relation, for various inputs presented in the tarmat part of 

Table 5-2: Assigned Properties of Composite System (Case 1) 

 Property Value Unit 

Hydrocarbon 
Reservoir 

A 
51.65 acres 

2,250,000 ft2 
 μ 0.72 cp 
Ø 0.25 fraction 
B 1.3 rb/stb 
k 400 md 
h 200 ft 
c 0.0000015 psi-1 
rw 0.5 ft 
Pi 9,000 psi 

Tarmat 

v 0.3 - 
E 8,000,000 psi 
a 1,500 ft 
b 1,500 ft 
h 80 ft 
σYS 30,000 psi 

Fluid γ 1 - 
μ 1 cp 
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Table 5-2. In Figure 5.13, determination of deformation and pressure magnitudes at the 

instant of failure have also been shown. 

As observed in Figure 5.13, by entering from the 80 ft tarmat thickness line, 

magnitudes of deformation and pressure are found to be 15 ft and 432 psi, respectively 

when failure takes place. 

Second step involves the computation of the pressure differential with the help of 

the conventional well test model. Conventional well test model is used to obtain the 

relationship between pressure differential and time, for various flow rates within the 

chosen range. Figure 5.14 is the output of the study of this relation, due to the inputs 

presented in hydrocarbon reservoir part of Table 5-2. Production rate selection or 
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producing time selection is required at this step. For this case, two different time 

selections have been made. First time selection is 3 days and second time selection is 7 

days. 

As entered with the failure pressure of 432 psi that is found in first step of the 

analysis, production rate for 3 day time selection is 5,000 STB/d and production rate for 7 

day time selection is 2,000 STB/d. This means that, if the hydrocarbon reservoir is to be 

produced at 5,000 STB/d, tarmat with given material properties and dimensions would be 

exposed to its failure pressure in 3 days and for the case of  2,000 STB/d production rate, 

failure pressure would be reached in 7 days. 

Following step is fracture width determination. Two different models, PKN model 

and KGD model are used in this third step. They are constructed for selected range of 
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production rates and tarmat thicknesses. Relation of width and production rate in Figure 

5.15 is the output, due to the inputs presented in tarmat part and fluid part of Table 5-2. 
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Figure 5.15: Width versus production rate graphs for various tarmat thicknesses (PKN
and KGD model) (E=8,000,000 psi, v=0.30, hf=47.82 ft) 
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Entering with production rates of 2,000 STB/d and 5,000 STB/d, thickness of 80 ft 

is selected from family of thickness curves in both models. The y axis value of the two 

points on 80 ft curve are the predictions for fracture widths. Fracture width due to 2,000 

STB/d production rate is predicted to be 0.0140 in by PKN model and 0.0130 in by KGD 

model. Similarly, a fracture width due to 5,000 STB/d production rate is predicted to be 

0.0180 in by PKN model and 0.0165 in by KGD model. 

Final step of the analysis is determination of the permeability that would be 

established by the fracture widths that are created after geomechanical failure of tarmat. 

At this stage, relationship of permeability and fracture width that is studied for both 

rectangular fractures and hydraulic fractures is used. Average values of PKN model and 

KGD model predictions are found. These average widths are 0.0135 in and 0.0173 in for 

the first and second models, respectively.  
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Figure 5.16: Fracture permeability versus fracture width 
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As entered with a fracture width of 0.0135 in, permeability value is found to be 

10,500 darcy and as entered with a fracture width of 0.0173 in permeability value is 

found to be 16,000 darcy. 

This step is the end of this analysis associated with the given case. In summary, 80 

ft thick tarmat with given properties and dimensions would deform up to 15 ft until its 

failure that would occur at 432 psi of pressure differential. This pressure differential 

would be created in 3 days at the well point with a production rate of 5,000 STB/d and in 

7 days with a production rate of 2,000 STB/d. 3 day long reservoir depletion would cause 

a fracture width of 0.0173 in after the failure while 7 day long reservoir depletion would 

cause a fracture with of 0.0135 in. 0.0173 in wide fracture would establish a fracture 

permeability of 16,000 darcy while 0.0135 in wide fracture would establish a fracture 

permeability of 10,500 darcy. If failure pressure is reached in a shorter time with a higher 

production rate, fracture permeability is lower than a process with a longer time and 

lower production rate. 

5.5.2 Case 2 

Assigned properties of each layer of the composite system are given in Table 5-2. 
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The corresponding deformation versus loading with associated failure envelope is 

given in Figure 5.17 due to the inputs presented in tarmat part of Table 5-3.  

 

 

 

 

 

 

 

 

Table 5-3: Assigned Properties of Composite System (Case 2) 

 Property Value Unit 

Hydrocarbon 
Reservoir 

A 
200 acres 

8,712,002 ft2 
 μ 0.72 cp 
Ø 0.25 fraction 
B 1.3 rb/stb 
k 400 md 
h 200 ft 
c 0.0000015 psi-1 
rw 0.5 ft 
Pi 9,000 psi 

Tarmat 

v 0.2 - 
E 5,000,000 psi 
a 2,952 ft 
b 2,952 ft 
h 90 ft 
σYS 20,000 psi 

Fluid γ 1 - 
μ 1 cp 
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As entered from 90 ft tarmat thickness line, magnitudes of deformation and 

pressure are found to be 63 ft and 101 psi respectively.  

Second step that is used for production rate prediction involves relevant 

conventional well test model study. Figure 5.18 shows the relationship between pressure 

differential and time which is constructed due to the selected range of production rates 

and to the inputs presented in hydrocarbon reservoir part of Table 5-3. Producing time 

selections are made. First time selection is 3 days and second time selection is 9 days, for 

this case. 

 

 

 

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140

∆P, psi

∆h
, f

t

h=40 ft

h=90 ft
h=80 ft

h=70 ft

h=60 ft

h=50 ft

h=30 ft

h=100 ft

E=5,000,000 psi
σYS=20,000 psi
v =0.20
a=b=2,952 ft

Failure Envelope

Figure 5.17: Deformation versus loading with associated failure envelope (E=5,000,000 
psi, σYS=20,000 psi, a=b=2,952 ft, v =0.20) 



97 

 

As entered with the failure pressure of 101 psi that is found in first step of the 

analysis, production rate for 3 day time selection is 3,000 STB/d and production rate for 9 

day time selection is 1,000 STB/d.  

Following step is the fracture width determination. Two different models, PKN 

model and KGD model are used in this third step. They are constructed for selected range 

of production rates and tarmat thicknesses. Relation of width and production rate in 

Figure 5.19 is the output, due to the inputs presented in tarmat part and fluid part of 

Table 5-3. 
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Entering with production rates of 1,000 STB/d and 3,000 STB/d, thickness of 90 ft 

is selected from family of thickness curves in both models. Fracture width for 1,000 

STB/d production rate is predicted to be 0.0135 in by PKN model and 0.0133 in by KGD 
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Figure 5.19: Width versus production rate graphs for various tarmat thicknesses (PKN
and KGD model) (E=5,000,000 psi, v=0.20, hf=47.82 ft) 
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model. Fracture width of 3,000 STB/d production rate is predicted to be 0.0185 in by 

PKN model and 0.0180 in by KGD model. 

At this fourth and final step, relationship of permeability and fracture that has 

already been used in Case 1 and independent of material properties and dimensions have 

been used. Average values of PKN model and KGD model predictions are 0.0134 in and 

0.0183 in for first selection and second selection, respectively. 

As entered with the width of 0.0134 in, permeability value is found to be 11,000 

darcy and as entered with width of 0.0183 in permeability value is found to be 20,000 

darcy. 

To summarize, 90 ft thick tarmat with given properties and dimensions would 

deform up to 63 ft until its failure that would occur at 101 psi of pressure differential. 
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Figure 5.20: Fracture permeability versus fracture width  
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This pressure differential would be created in 3 days with production rate of 3,000 STB/d 

and in 9 days with production rate of 1,000 STB/d. 3 day long reservoir depletion would 

cause a fracture width of 0.0183 in after the failure while 9 day long reservoir depletion 

would cause a fracture with of 0.0134 in. 0.0183 in wide fracture would establish a 

fracture permeability of 20,000 darcy while 0.0134 in wide fracture would establish a 

fracture permeability of 11,000 darcy.  

5.6 Application of the Suggested Protocol to a Numerical Simulator 

Suggested protocol for the problem of interest is summarized below:  

1) Input data: These data are hydrocarbon reservoir properties, tarmat 

properties and fluid properties. Hydrocarbon reservoir properties are area, viscosity, 

porosity, formation volume factor, permeability, thickness, compressibility, wellbore 

radius and initial pressure. Tarmat properties are Poisson’s ratio, Young’s modulus of 

elasticity, lateral dimensions, thickness and yield strength. Fluid properties are specific 

gravity and viscosity.  

2) Failure analysis: Deformation versus loading with associated failure 

envelope data can be embedded into a data matrix (in a table look-up form). This matrix 

would have deformation and corresponding loading values until failure points of possible 

tarmat thicknesses. Tarmat thickness from the input data can be used in the failure 

analysis to get two outputs; deformation and loading value at the failure point. Loading 

value would refer to the pressure differential value. 
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3) Production rate and producing time analysis:  Pressure differential versus 

time differential graph for various flow rates can be embedded into another data matrix. 

This matrix would have pressure differential and corresponding time differential values 

for possible production rates. Output that comes from failure envelope analysis, pressure 

differential can be used in production rate analysis to have sets of differential time and 

production rates. In other words, this analysis would suggest production time choices, 

their corresponding production rates for reaching the previously obtained pressure 

differential. At this point, a certain production time which is coupled with a flow rate that 

is required in order to fail tarmat within selected time differential, should be selected. 

4) Fracture width analysis:  Fracture width versus production rate data for 

possible tarmat thicknesses can be embedded into two matrices: one relevant to the PKN 

model and the other relevant to the KGD model. Each of these matrices would have 

fracture width and corresponding production rate values for various tarmat thicknesses. 

Tarmat thickness from the input data and production rate from the output data set of the 

previous step can be used in fracture width analysis. Output of this part would be fracture 

width. 

5)      Fracture permeability analysis:  Fracture permeability versus fracture width 

data can be embedded into the final matrix. This matrix would contain fracture 

permeability values that are corresponding to fracture widths. Fracture width that is 

output of the previous analysis can be used in this analysis to obtain relevant fracture 

permeability. 

This aforementioned protocol may be incorporated into a dynamic numerical 

reservoir simulator. Before reservoir depletion starts, transmissibility values assigned 
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across the tarmat is zero. Pressure distributions at each iteration level of a certain time 

step are provided by the simulator. Maximum pressure differential created across the 

tarmat is compared with the failure pressure that is calculated from protocol described 

earlier. If failure pressure is larger than the maximum pressure differential that the most 

recent iteration within the current time step gives, a similar comparison is conducted 

within the next time step. This procedure may be repeated, until failure is concluded to 

have occurred. After this point, fracture width and fracture permeability values are 

calculated and transmissibility of the block hosting the fracture is updated accordingly. (It 

is important to note that obtained fracture permeability and width values are associated 

with the fracture).  



 

 

Chapter 6 
 

Summary, Conclusions and Recommended Future Work 

6.1 Summary 

In this work, tarmat deformation and failure behavior during depletion of a giant 

oil reservoir-aquifer system is studied. A mathematical model is developed for these kind 

of composite systems. Deformation response of tarmat to increasing pressure differential 

caused by continuous depletion of reservoir is studied and geomechanical failure that 

takes place is evaluated. Fracture that occurs after failure is characterized. Fracture 

permeability that is established due to the characterized fracture is studied. Plate theory, 

maximum shear stress failure criterion, conventional well test model, PKN model, KGD 

model, flow through fractures models have been combined in a suitable way. This 

sensitivity analysis is conducted with parameters of reservoir, rock and fluid properties. A 

protocol is proposed to find relationships and suggest designs in composite systems. The 

proposed methodology, predicts fracture width and fracture permeability that would be 

created in a system with a tarmat layer having a certain thickness and a reservoir being 

produced at a certain production rate and total depletion time.  

Entire analysis is a procedure with three steps. First step is a sensitivity analysis 

that investigates deformation versus loading behavior and determines any failure 

envelope associated with deformation versus loading analysis. This analysis is a 

parametric study, based on plate theory that is forwarded to suitable case choice of 
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maximum shear stress failure criterion. Rectangular plate solution with simply supported 

boundary conditions is used for uniform and non-uniform loading configurations. 

Influential parameters at this stage are material properties and dimensions of tarmat. 

Material properties are, Young’s Modulus of elasticity, Poisson’s ratio and yield strength. 

Second step is the use of conventional well test model that helps to study the relationship 

between pressure differential and time differential. This step is not only dependent on 

reservoir properties and dimensions, but also production rate and selected well 

configuration. This step is conducted by choosing a certain range of production rates for 

different reservoir dimensions. Third step is the fracture width estimation that would 

occur after geomechanical failure of the tarmat and fracture permeability analysis that is 

dependent on estimated width of the fracture. This step is dependent on tarmat properties 

and dimensions, water properties and reservoir production rate. Influential tarmat 

properties are Young’s Modulus of elasticity and Poisson’s ratio and influential water 

properties are fluid viscosity and specific gravity. In order to find fracture permeability as 

a function of fracture width, two different approaches are used. They are; viscous flow of 

wetting fluids through smooth fractures of constant width and flow of hydraulically 

fracturing fluids through the induced fractures.  

6.2 Conclusions 

First, conclusions about deformation versus pressure differential and associated 

failure envelopes are presented, which are valid for both uniform and non-uniform 

loading configurations. Second, conclusions reached from comparison of uniform and 
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non-uniform loading configurations are provided. Then, conclusions drawn from well 

test analysis are presented followed by fracture width prediction conclusions. Finally, 

conclusions related to fracture permeability analysis are given. 

Within the bounds of the followed procedure; following conclusions are drawn: 

1. As thickness of tarmat increases, total deformation that occurs until the 

failure point decreases. 

2. As thickness of tarmat increases, pressure differential that is required to 

geomechanically fail tarmat increases.  

3. As Young’s modulus of elasticity and yield strength of tarmat increase 

(which are in direct proportion with each other), pressure differential that is required to 

geomechanically fail tarmat increases.  

4. As Young’s modulus of elasticity and yield strength of tarmat increases, 

deformation amount that occurs until geomechanical failure of tarmat decreases. 

However, decrease/increase in deformation is not significant. 

5. As tarmat area, or its lateral dimensions increase, pressure differential that 

is required to geomechanically fail tarmat decreases. 

6. As yield strength of tarmat increases, pressure differential that is required 

to geomechanically fail tarmat increases. 

7. As Poisson’s ratio of tarmat increases, pressure differential that is required 

to geomechanically fail tarmat decreases. 

8. A case of non-uniform loading requires more pressure until 

geomechanical failure, than a similar case with uniform loading configuration. 
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9.   A case of non-uniform loading experiences less deformation until 

geomechanical failure, than a similar case with uniform loading configuration. 

10.  The PKN model predicts larger fracture widths than KGD model does. 

This difference is most obvious in the cases of thick tarmats and high production rates. 

11.  Each model predicts wider cracks in the cases of higher reservoir 

production rates.  

12.  Each model predicts wider cracks in the cases of thicker tarmats. 

6.3 Recommended Future Work 

Within the overall scope of this thesis, there are some areas that may be improved 

and brought further. The protocol suggested in this thesis provides a path to study more 

complex problems or similar problems with a more detailed approach. Recommendations 

along these lines are provided below: 

1. In order to increase the universality of the solutions presented, it is 

suggested to express all of the relevant charts in a dimensionless form.  

2. Suggested protocol that can be incorporated with a numerical simulator, 

can be evaluated for further analysis of the composite system. After finding the iteration 

level in the time step whose pressure distribution corresponds to the failure pressure of 

suggested protocol, fracture permeability would be found after finding fracture width. 

This permeability is associated only with the opening that has been created through the 

tarmat. Fracture permeability needs to be converted to an overall tarmat permeability for 

the tarmat block(s) containing the fracture.  
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3. Experimental data would help to evaluate the accuracy of the approach 

proposed. Triaxial test is suggested to be made with the rock specimens of interest, in 

order find their strengths. Peak load and the deformation of the specimen at the peak load 

for representative rock samples would help to select a curve from family of curves that 

have been used in failure analysis part of this work.  

4. In this analysis, each step focuses on the behavior of a certain layer. For 

example, failure analysis is done by approaching tarmat as a rectangular plate. This 

analysis provides an estimation on tarmat failure behavior, however, entire composite 

system can be analyzed with the consideration of each layer being attached to each other 

and would behave together. Fracture, which is expected to initiate on the upper surface of 

the tarmat, is recommended to be analyzed in detail. Fracture penetration level through 

the tarmat can be analyzed in detail as a function of time without assuming that it would 

penetrate through the entire thickness of the tarmat. 
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