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Abstract

Measurements of agreement are used to assess the reproducibility of a new assay

or instrument, the acceptability of a new or generic process, methodology or method

comparison. Examples include the agreement when two methods or two raters simulta-

neously assess a response or when one rater makes the same assessment at two times, the

agreement of a newly developed method with a gold standard method, and the agreement

of observed values with predicted values.

Traditionally, kappa and weighted kappa coefficients are used for measurements of

agreement when the responses are categorical. The concordance correlation coefficient is

used when the responses are continuous. Cohen’s kappa and weighted kappa coefficients

have received many criticisms since they were proposed and they may fail to work well

under certain situations. As a result, researchers have suggested the investigation of

alternative methods when measuring agreement.

In this paper, we investigate several different alternatives to Cohen’s kappa and

weighted kappa coefficients. Their properties and asymptotic distributions are presented.

Simulation performances are provided to compare with the performances of Cohen’s

kappa and weighted kappa coefficients.
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Chapter 1

Literature Review

Measurements of agreement are used to assess the reproducibility of a new assay

or instrument, the acceptability of a new or generic process, methodology or method

comparison. Examples include the agreement when two methods or two raters simulta-

neously assess a response or when one rater makes the same assessment at two times, the

agreement of a newly developed method with a gold standard method, and the agreement

of observed values with predicted values. In recent years, the question of agreement has

received considerable attention. In this chapter, we review briefly the various measures

in evaluating agreement.

1.1 Cohen’s Kappa and Weighted Kappa Coefficients

Suppose there is a bivariate response, (X,Y ), where each of X and Y yields

a categorical response. For convenience, the categories are denoted as 0, 1, 2, . . . , k.

Suppose the following is the bivariate distribution table:
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y

0 1 2 · · · i · · · j · · · k PX (x)

0 p00 p01 p02 · · · p0i · · · p0j · · · p0k p0·

1 p10 p11 p12 · · · p1i · · · p1j · · · p1k p1·

2 p20 p21 p22 · · · p2i · · · p2j · · · p2k p2·
...

...
...

...
...

...
...

...
...

...
...

x i pi0 pi1 pi2 · · · pii · · · pij · · · pik pi·
...

...
...

...
...

...
...

...
...

...
...

j pj0 pj1 pj2 · · · pji · · · pjj · · · pjk pj·
...

...
...

...
...

...
...

...
...

...
...

k pk0 pk1 pk2 · · · pki · · · pkj · · · pkk pk·

PY (y) p·0 p·1 p·2 · · · p·i · · · p·j · · · p·k 1

Define po and pc as

po =
k∑

i=0

pii

and

pc =
k∑

i=0

pi·p·i.

Cohen (1960) proposed a coefficient of agreement, called the kappa coefficient, for

nominal scales of response, which is defined by
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κ =
po − pc

1 − pc
, (1.1)

where po is the observed proportion of agreement and pc is the proportion of agreement

expected by chance.

If qo = 1 − po and qc = 1 − pc, then (1.1) can also be written as:

κ =
(1 − qo) − (1 − qc)

qc
=

qc − qo

qc
= 1 − qo

qc
. (1.2)

Cohen also derived the standard error of an observed κ̂ for a large sample of size

N:

σκ
∼=
√

po (1 − po)
N (1 − pc)

2 .

For a large sample, κ is approximately normally distributed. This expression was

later found to be incorrect. Fleiss and Cohen (1969) derived a corrected version of the

large sample variance of the estimated kappa:

V̂ar(κ̂) =
1

N(1 − pc)4
{

k+1∑
i=0

pii[(1 − pc) − (p·i + pi·)(1 − po)]
2

+(1 − po)
2
k+1∑
i=0

k+1∑
j=0

j �=i

pij(p·i + pj·)
2 − (popc − 2pc + po)

2}, (1.3)

where N is the sample size.

We can use (1.3) to find confidence limits as well as performing a hypothesis test.

The kappa coefficient provides a simple way to measure agreement. (1.1) gives

negative values when the observed agreement is less than that expected by chance. It
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yields 0 when the observed agreement can be exactly accounted for by chance and it

yields 1 when there is complete agreement.

Landis and Koch (1977) have characterized different ranges of values for kappa

with respect to the degree of agreement they suggest. For most purposes, values greater

than 0.75 or so may be taken to represent excellent agreement beyond chance, values

below 0.40 or so may be taken to represent poor agreement beyond chance, and values

between 0.40 and 0.75 may be taken to represent fair to good agreement beyond chance.

All previous articles in the literature, when referring to Cohen’s kappa coefficient,

say that the lower bound is −1. It seems that there is no formal proof for this state-

ment. In the following, through a new definition which is equivalent to Cohen’s kappa

coefficient, we show that the universal lower bound of Cohen’s kappa is −1. We state

this as a theorem.

Theorem 1.1.1. The universal lower bound of the kappa coefficient is −1.

Proof. Let X and Y be categorical variables with possible outcomes 0, 1, · · · , k. Let

PXY (x, y) = Pr[X = x, Y = y], where X,Y = 0, 1, · · · , k denote joint probabilities. Let

PX(x) = Pr[X = x] and PY (y) = Pr[Y = y] denote marginal probabilities. We define a

new statistic

ed = 1 −

∑∑
x �=y

PXY (x, y)d(x, y)∑∑
x �=y

PX(x)PY (y)d(x, y)
,

where d(x, y) is the distance function such that d(x, y) ≥ 0.

For categorical responses, we can use the following distance function:
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d(x,y)=

⎧⎪⎪⎨
⎪⎪⎩

1, if x �= y

0, if x = y

.

We can use the following estimator which is quite intuitive:

êd = 1 −

∑∑
k �=l

nkl
n d(k, l)

∑∑
k �=l

nk+

n · n+l

n d(k, l)
= 1 −

n ·∑∑
k �=l

nkld(k, l)∑∑
k �=l

nk+ · n+ld(k, l)
,

where nkl is the number of observations when x = k, y = l. nk+ represents the number

of observations when x = k and n+l represents the number of observations when y = l.

Apply the above distance function, we can get

êd = 1 −

∑∑
k �=l

nkl
n∑∑

k �=l

nk+

n · n+l

n

= 1 −
n ·∑∑

k �=l

nkl∑∑
k �=l

nk+ · n+l
.

Let qo =
∑∑

k �=l

nkl
n and qc =

∑∑
k �=l

nk+

n · n+l

n , then

êd = 1 − qo

qc
, (1.4)

which turns out to be the estimator of the simple Kappa coefficient. So ed is equivalent

to Cohen’s kappa. Therefore, we need only to show that ed ≥ −1.

Remark 1. For ordinal responses, if we use the absolute distance function, d(x, y) =

|a − b|, then ed can be estimated by

êd = 1 −
∑∑

k �=l
nkl
n |k − l|∑∑

k �=l
nk+

n · n+l

n |k − l| = 1 − n ·∑∑
k �=l nkl∑∑

k �=l nk+ · n+l
.
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Let vkl = |k − l|, pokl = nkl
n , pckl = nk+

n · n+l

n .

Then q′o =
∑∑

k �=l poklvkl and q′c =
∑∑

k �=l pcklvkl.

Consequently, êd can be rewritten as

êd = 1 − q′
o

q′
c

.

And this turns out to be the estimator for weighted kappa with weights being the

absolute distance function.

Note that to show

ed = 1 −

∑∑
x �=y

PXY (x, y)d(x, y)∑∑
x �=y

PX(x)PY (y)d(x, y)
≥ −1,

it is equivalent to show that

∑∑
x �=y

PXY (x, y)d(x, y)∑∑
x �=y

PX(x)PY (y)d(x, y)
≤ 2.

If we use the above distance function, we need to show that

∑∑
x �=y

PXY (x, y) ≤ 2
∑∑

x �=y

PX(x)PY (y).
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That is we need

1 − [P (0, 0) + P (1, 1) + . . . + P (k, k)] ≤ 2{PX(0) [PY (1) + PY (2) + . . . + PY (k)]

+PX(1) [PY (0) + PY (2) + . . . + PY (k)]

+ . . . + PX(k) [PY (0) + PY (1) + . . . + PY (k − 1)]}.

This is equivalent to showing that

1 − [P (0, 0) + P (1, 1) + . . . + P (k, k)] ≤ 2{PX (0) [1 − PY (0)] + PX(1) [1 − PY (1)]

+ . . . + 2PX(k) [1 − PY (k)]},

which is to show that

1 − [P (0, 0) + P (1, 1) + . . . + P (k, k)] ≤ 2 [PX(0) + PX(1) + . . . + PX(k)]

−2 [PX(0)PY (0) + PX(1)PY (1) + . . . PX(k)PY (k)] .

Since 2 [PX(0) + PX(1) + . . . + PX(k)] = 2, it is equivalent to show that

2 [PX(0)PY (0) + PX(1)PY (1) + . . . PX(k)PY (k)] ≤ 1+[P (0, 0) + P (1, 1) + . . . + P (k, k)] .



8

• The simple case is if all PX(i) or PY (i),where i = 0, 1, 2 . . . k, satisfy PX(i) ≤ 1
2 or

PY (i) ≤ 1
2 . Suppose all PX(i), where i = 0, 1, 2 . . . k, satisfy PX(i) ≤ 1

2 . Then

2[PX(0)PY (0) + PX(1)PY (1) + . . . PX(k)PY (k)]

≤ 2[1/2PY (0) + 1/2PY (1) + . . . 1/2PX (k)]

= PY (0) + PY (1) + . . . PX(k) = 1 ≤ 1 + [P (0, 0) + P (1, 1) + . . . + P (k, k)].

So [(1.1)] is satisfied.

• Now suppose there is one PX(i) such that PX(i) > 1/2. We know that there can

be only one such PX(i). Without loss of generality, we can let i = 0. That is,

suppose the marginal probability for the first category is greater than 1/2. Let

this probability be 1/2 + a, where 0 < a ≤ 1/2. We know that for all PX(i), where

i = 1, 2 . . . , k, PX(i) ≤ 1/2 − a. Then

2[PX (0)PY (0) + PX(1)PY (1) + . . . PX(k)PY (k)]

= 2[(1/2 + a)PY (0) + PX(1)PY (1) + . . . PX(k)PY (k)]

≤ 2[(1/2 + a)PY (0) + (1/2 − a)PY (1) + (1/2 − a)PY (2) + . . . + (1/2 − a)PY (k)]

= 2[1/2PY (0) + 1/2PY (1) + 1/2PY (2) + . . . + 1/2PY (k)

+ aPY (0) − aPy(1) − aPY (2) − . . . − aPY (k)]

= [PY (0) + PY (1) + PY (2) + . . . + PY (k)] + a[PY (0) − (PY (1) + PY (2) + . . . + PY (k))]

= 1 + a[PY (0) − (1 − PY (0))]

= 1 + a(2PY (0) − 1).
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Now if PY (0) ≤ 1/2, then (2PY (0) − 1) ≤ 0. Hence,

1 + a(2PY (0) − 1) ≤ 1 + [P (0, 0) + P (0, 1) + . . . + P (k, k)] .

So [(1.1)] is satisfied.

• Now if PY (0) > 1/2. Let PX(0) + PY (0) = b, then 1 < b ≤ 2.

2[PX(0)PY (0) + PX(1)PY (1) + . . . PX(k)PY (k)]

≤ 2 (PX(0)PY (0) + (1 − PX(0))[PY (1) + PY (2) + . . . + PY (k)])

= 2 [PX(0)PY (0) + (1 − PX(0))(1 − PY (0))]

≤ (PX(0) + PY (0))2 /2 + (2 − PX(0) − PY (0))2 /2

= b2/2 + (2 − b)2/2

=
2b2 − 4b + 4

2
= b2 − 2b + 2,

where b > 1.

Furthermore, since we know that PX(0) + PY (0) − P (0, 0) ≤ 1, so we can get

P (0, 0) ≥ PX(0) + PY (0) − 1. And because

1 + [P (0, 0) + P (0, 1) + . . . + P (k, k)]

≥ 1 + P (0, 0)

≥ 1 + PX(0) + PY (0) − 1

= PX(0) + PY (0)

= b,
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so if we can prove that b2 − 3b + 2 ≤ 0 when 1 < b ≤ 2, then we can say that (1.1)

is satisfied. A simple check shows that this is indeed true. And this completes the

proof.

Through our equivalent definition of Cohen’s kappa, it is straightforward to notice

that κ can only reach +1 only when
∑∑
x �=y

PXY (x, y) = 0, which means that all off-

diagonal cells are 0.

From the definition of the kappa coefficient, we can see that it makes no distinction

between different disagreements, assuming equal weights to all off-diagonal cells. But in

many situations, some off-diagonal cells are of greater gravity than others. Cohen (1968)

later proposed the weighted kappa coefficient to deal with ordinal categorical responses.

Define

q′o =
∑

vijpoij

vmax

and

q′
c
=
∑

vijpcij

vmax
,

where poij is the proportion of joint judgement in the ij cell and pcij is the proportion in

the same cell expected by chance. In particular, pcij = pi.p.j. And vij is the disagreement

whose assignment is determined, in many instances, by consensus of a committee of
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substantive experts or even by the investigator’s own judgement. vmax is the weight we

give to the maximum disagreement.

Then the weighted kappa coefficient can be defined as:

κw = 1 − q′
o

q′
c

= 1 −
∑

vijpoij∑
vijpcij

. (1.5)

Cohen presented the standard error of κ̂w for a large sample of size N, which is:

σκw
∼=

√√√√√
∑

v2
ij

poij −
(∑

vijpoij

)2
N
(∑

v2
ijpcij

)2 .

Again, Fleiss and Cohen (1969) presented the corrected version of the large sample

variance of the estimated weighted kappa coefficient:

V̂ar(κ̂w) =
1

N(1 − pc)4
{

k+1∑
i=0

k+1∑
j=0

pij [wij(1 − pc) − (w̄i· + w̄·j)(1 − po)]
2

−(popc − 2pc + po)
2}. (1.6)

Since kappa is a special case of weighted kappa with wij = 1 for i = j and wij = 0

for i �= j, it can be shown that (1.3) is a special case of (1.6).

The interpretation of the magnitude of weighted kappa is like that of unweighted

kappa: κ̂w ≥ 0.75 or so signifies excellent agreement, for most purposes, κ̂w ≤ 0.40 or so

signifies poor agreement and 0.4 < κ̂w < 0.75 signifies fair to good agreement.
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1.2 Extensions of Kappa and Weighted Kappa Coefficients

Since the time of Cohen’s proposed kappa and weighted kappa coefficient, many

researchers have worked on this topic to develop extensions.

Gonin et al. (2000) suggested modeling κ as a function of covariates and using

generalized estimating equations to estimate the weighted κ coefficient.

Suppose in an agreement study, object i is rated by Ri raters. The rating from

observer r (r = 1, . . . , Ri) on subject i is denoted by Yir. Each subject has a subject-

specific covariate vector gi of dimension P1 × 1 and also Ri rater-specific covariates gir,

r = 1, · · · , Ri of dimension P2 × 1. Let Xi = (xi1, . . . , xiRi
) represent the Ri × (P1 + P2)

matrix of covariates for individual i. Denote the probability of rating (Yir = j, Yis = k)

from observer r and s on subject i by

pirs,jk = Pr(Yir = j, Yis = k|xir, xis).

Then the weighted κ coefficient is defined as

κirs =
πirs,agree − πirs,chance

1 − πirs,chance
,

where πirs,agree is the weighted combination of joint probabilities between r and s:

πirs,agree =
K∑

j=1

K∑
k=1

wjkpirs,jk,

and πirs,chance is the weighted combination of cell probabilities between r and s under an

independence assumption:
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πirs,chance =
K∑

j=1

K∑
k=1

wjkpir,jpis,k.

The regression model to estimate the weighted κ coefficient is

g(κirs) = log
(

1 + κirs

1 − κirs

)
= Z ′

irsγ, (1.7)

where zirs is some function of covariates xir and xis.

Gonin et al. (2000) proposed the estimating equations for γ as well as the spec-

ification of the working covariances. Variance of γ̂ can be obtained using a jackknife

estimate. An advantage of the proposed method is that it applies to situations where

there are two or more raters. It also works when the data are unbalanced.

Kraemer (1980) proposed an extension of the kappa coefficient which deals ap-

propriately with multiple responses per observation and which permits multiple and not

necessarily equal numbers of observations per subject. Let ri(i = 1, 2, · · · , N) be the

average Spearman rank correlation coefficient among 1
2mi(mi − 1) pairs of observations

of subject i, and rI be the average of r1, r2, · · · , rN . Let rT be the average Spearman

rank correlation coefficient among all pairs of observations. Then the extended kappa is

defined as

κ0 =
rI − rT

1 − rT
.
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The nonnull conditional distribution, when assuming a fixed marginal distribu-

tion, can be easily obtained and can be used to construct confidence intervals or per-

forming test. For the unconditional case, jackknife procedure can be applied to build

confidence intervals or perform hypothesis tests.

1.3 Models for Measurement of Agreement

There also have been many models to measure agreement.

Agresti (1988) proposed an agreement plus linear-by-linear association model

which decomposes the overall agreement into three parts: chance agreement (agree-

ment when the classifications are independent), agreement due to a baseline association

between the ratings, and an increment that reflects the agreement beyond that from the

chance agreement or from the baseline association. This decomposition can be summa-

rized as

log mij = μ + λA
j

+ λB
j

+ βij + δ(i, j),

where βij represents a given structural form which reflects the expected baseline associ-

ation and

δ(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

δ i = j

0 i �= j

.

Since this is a log-linear model, it can be fitted using any software that has log-

linear options, such as SAS, GLIM, etc. If we want to test whether the ratings are

independent or not, the null hypothesis is Ho : β = δ = 0. To test whether there is
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extra agreement beyond the agreement due to baseline association, the null hypothesis

is Ho : δ = 0. To test whether there is extra association beyond that due to exact

agreement, the null hypothesis is Ho : β = 0.

Some of the positive features of this model are:

1. Making no independence assumption given that the raters agree.

2. Easy interpretation of the baseline association and extra agreement.

3. Utilization of orderings of the response categories.

Laurent (1998) proposed a measure to evaluate the agreement between an ap-

proximate method and a gold standard. The model that is considered is

Xi = Gi + εi,

where Xi is the approximate measurement on the ith unit, i = 1, . . . , n. Gi is a random

variable with mean μ and variance σ2
G
, which represents the corresponding gold standard

measurement. εi is measurement error for the approximate method with mean 0 and

variance σ2. It is also assumed that εi is independent of Gi.

Laurent proposed to use

ρ =
σ2

G

σ2
G + σ2

as the measure for evaluating the agreement between the approximate and the gold

standard. The preferred estimating method is
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1
1 + (n − 1)SDD/(nSGG)

,

where SGG =
∑

(Gi − Ḡ)2 and SDD =
∑

D2
i

with Ḡ =
∑

Gi/n and Di = Xi − Gi.

When there is more than one approximate method and one gold standard, the

proposed model is

Xij = Gi + εij ,

where εij is the measurement error on the ith unit by the jth approximate method.

We can use

ρj =
σ2

G

σ2
G

+ σjj

as the measure for evaluating the agreement between the jth approximate method and

the gold standard. Under certain assumptions, the maximum likelihood estimator of ρj

is

r2
g(j) =

1
1 + SDD(j)/SGG

,

where SDD(j) =
∑

(Xij − Gi)
2 for j = 1, . . . , J .

Carrasco and Jover (2005) proposed the following measurement model for count

data:

Yij |αi ∼ Poisson(μij), αi ∼ N(0, σ2
α), log(μij) = β0 + αi + βj ,
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where Yij is the measurement from the ith subject obtained by the jth observer, μij is

the mean of the measurement from the ith subject and jth observer, β0 is the baseline,

αi is the subject-effect and βj is the observer effect.

Using this model, the intraclass correlation coefficient (ICC) can be expressed as

a function of between-subject variance, between-observer variability, and the marginal

mean. Penalized quasi-likelihood (PQL) can be used to estimate the ICC using the

Poisson-Normal model. Confidence interval of the ICC was calculated by the Fisher’s

Z-transformation.

The Poisson distribution assumption can be checked by comparing the estimated

variance with the estimated mean. When the assumption of a Poisson distribution is not

fulfilled, some modification measures, such as allowing within-subject variation, must be

taken. Simulation study shows that penalized quasi-likelihood gives correct estimators

of the variance components and the concordance correlation coefficient. In some cases,

there is a certain bias which may be caused by the behavior of the penalized quasi-

likelihood estimator. When the residual distribution is Binomial or Poisson with a small

mean, it gives biased estimates.

1.4 Concordance Correlation Coefficient

1.4.1 Lin’s Concordance Correlation Coefficient

When the responses are measured on a continuous scale, Lin (1989) proposed a

new reproducibility index called the concordance correlation coefficient. Assume that
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we have n pairs of samples (Yi1, Yi2), i = 1, 2, ..., n, which are selected randomly from a

bivariate population with means μ1 , μ2 respectively and Covariance matrix

⎛
⎜⎜⎝ σ2

1
σ12

σ12 σ2
2

⎞
⎟⎟⎠.

The concordance correlation coefficient is defined as

ρc = 1 − E[(Y1 − Y2)
2]

Eindep[(Y1 − Y2)2]
(1.8)

= 1 − E[(Y1 − Y2)
2]

σ2
1 + σ2

2 + (μ1 − μ2)2

=
2σ12

σ2
1

+ σ2
2

+ (μ1 − μ2)2
. (1.9)

The concordance correlation coefficient can be estimated by substituting the sam-

ple moments of an independent bivariate sample into (1.8). That is,

ρ̂c =
2S12

S2
1

+ S2
2

+ (Ȳ 2
1
− Ȳ2)2

.

ρ̂c is a consistent estimator of ρc and has an asymptotic normal distribution with

mean ρc and variance

σ2
ρ̂c

=
1

n − 2

[
(1 − ρ2)ρ2

c
(1 − ρ2

c
)/ρ2 + 4ρ3

c
(1 − ρc)u

2/ρ − 2ρ4
c
u4/ρ2

]
.
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The inverse hyperbolic tangent transformation (or Z-transformation) can be used

to improve the normal approximation:

Ẑ = tanh−1(ρ̂c) =
1
2

ln
1 + ρ̂c

1 − ρ̂c
.

This lead to improved approximate normality with mean

Z =
1
2

ln
1 + ρc

1 − ρc

and variance

σ2
Ẑ

=
1

n − 2

[
(1 − ρ2)ρ2

c

(1 − ρ2
c
)ρ2 +

2ρ3
c(1 − ρc)u

2

ρ(1 − ρ2
c
)2

− ρ4
cu

4

4ρ2(1 − ρ2
c
)2

]
.

1.4.2 Extensions of Concordance Correlation Coefficient

King and Chinchilli (2001) pointed out that when there exist outliers, the coef-

ficient proposed by Lin (1989) may not be robust and may fail to accurately assess the

agreement that may exist in the majority of the data. Instead, they proposed robust ver-

sions of the concordance correlation coefficient which allow alternative distance functions

and may produce robust versions of the concordance correlation coefficient.

Let g (·) be the distance function which satisfies the following properties:

1. g (0) = 0

2. g (z) is an even function, i.e., g (−z) = g (z) for all z

3. g (z) is a non-decreasing function of z for all z ≥ 0
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The generalized concordance correlation coefficient is defined as:

ρg =
[EFXFY

g(X − Y ) − EFXFY
g(X + Y )] − [EFXY

g(X − Y ) − EFXY
g(X − Y )]

EFXFY
g(X − Y ) − EFXFY

g(X + Y ) + 1
2EFX

g(2X) + 1
2EFY

g(2Y )
,

(1.10)

where FXY is the cumulative distribution function (cdf) of (X,Y ); FX and FY are the

marginal cdf’s of X and Y, respectively.

It can be shown that when choosing appropriate distance functions, the gener-

alized concordance correlation coefficient reduces to Cohen’s kappa or weighted kappa

coefficient. Let q = 1, 2, . . . , p − 1 and r = 2, 3, . . . , p index the pairwise combinations of

the p responses. Then the extended concordance correlation coefficient can be expressed

as

ρ̄g =

∑
qr

q<r

EFXqFXr
[g(Xq − Xr) − g(Xq + Xr)] −

∑
qr

q<r

EFXqXr
[g(Xq − Xr) − g(Xq + Xr)]∑

qr
q<r

EFXq FXr
[g(Xq − Xr) − g(Xq + Xr)] + 1

2

∑
qr

q<r

EFXqXr
[g(2Xq) + g(2Xr)]

,

where q < r so that all pairwise comparisons are incorporated.

Fay (2005) pointed out that standard agreement coefficients (called the fixed

marginal agreement coefficients, or simply FMACs), such as the concordance correlation

coefficient, may indicate increased agreement as the marginal distributions of the two in-

struments become more different. Instead, he proposed the random marginal agreement

coefficients (RMACs) to deal with this problem.

All the agreement coefficients are in the form:

A = 1 − EFXY
{c(X,Y )}

EFU
EFV

{c(U, V )} ,
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where c(x, y) is the cost of disagreement when X = x and Y = y.

If we let U and V be independent responses from the same distribution FZ =

0.5FX + 0.5FY , this will lead to the proposed RMACs:

AR(c) = 1 − EFXY
{c(X,Y )}

EFZ1
EFZ2

{c(Z1, Z2)}
.

If we have a k × k table for categorical responses, then X and Y both represent

categorical responses with k possible responses. Let ej be a k × 1 vector of zeros except

with a 1 in the jth row. Let πab = Pr{X = ea, Y = eb}. Let cij = (ei, ej), then

AR(c) = 1 −

k∑
i=1

k∑
j=1

cijπij

k∑
i=1

k∑
j=1

cij(0.5πi· + 0.5π·i)(0.5πj· + 0.5π·j)
.

Define Πo =
k∑

i=1

k∑
j=1

wijπij and ΠZ =
k∑

i=1

k∑
j=1

wij(0.5πi· + 0.5π·i)(0.5πj· + 0.5π·j),

then

AR(c) =
Πo − ΠZ

1 − ΠZ
.

Thus it has the same form as the weighted kappa.

Although the concordance correlation coefficient, generally speaking, performs

well in measuring agreement when the responses are continuous, its agreement index is

defined in the context of comparing two observers. Barnhart et.al (2002) proposed the

overall concordance correlation coefficient for assessing agreement among multiple fixed

observers.
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Define V =
J∑

j=1
(Yj − Y•)

2/(J − 1), where Y• represents the arithmetic mean. The

overall concordance correlation coefficient (OCCC) can then be defined as

ρc
o

= 1 − E(V )
E(V |Y1, Y2, . . . , YJ are uncorrelated)

.

It can be shown that the OCCC is a natural extension of the CCC. It can be

interpreted as a weighted average of all pairwise CCCs, where higher weights are given to

the pairs of observers whose readings have higher variances and larger mean differences.

Barnhart and Williamson (2001) proposed a generalized estimating equations

(GEE) approach to model both the concordance correlation coefficient and the marginal

distribution while adjusting for covariates.

Three sets of estimating equations were proposed. It turns out that when there

are no covariates, the estimation process requires no iteration and the resulting estimate

is equivalent to Lin’s concordance correlation coefficient. When there are covariates, the

parameter estimates are consistent if the three models are correctly specified, no matter

whether the working correlation matrices are correctly specified or not. Confidence

intervals for the resulting estimate can also be derived using Fisher’s Z-transformation.

Carrasco and Jover (2003) showed that the concordance correlation coefficient

is a special case of the intraclass correlation coefficient (ICC) when the observers are

considered as a fixed effect. This implies that the concordance correlation coefficient,

just as the ICC, can be estimated by variance components.

Estimating the CCC by estimating the variance, covariance and means of the

observer (moment method) as suggested by Lin (1989) will lead to a biased estimator.



23

Instead, a less biased estimator is

ρ̂C =

2
k−1∑
i=1

k∑
j=i+1

Sij

(k − 1)
k−1∑
i=1

S2
i

+
k−1∑
i=1

k∑
j=i+1

(Ȳi − Ȳj)2 − k(k−1)
n

k−1∑
i=1

k∑
j=i+1

(S2
i

+ S2
j
− 2Sij)

.

The variance component of a mixed effect model was employed with subjects being a

random effect and observers being fixed effects. The inverse hyperbolic tangent trans-

formation was used to improve asymptotic normality.

The moment estimation method provides a biased estimation of between-observers

variability which produces a biased CCC, which is confirmed by simulation study. The

variance component method, on the other hand, provides systematically closer estimates

to the true value than the moment method.
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Chapter 2

Pairwise Conditional Measures of Agreement

Minus Disagreement

2.1 Definition of the Pairwise Conditional Measures

Suppose there is a bivariate response, (X,Y ), where each of X and Y yields a

categorical response. For convenience, the categories are denoted as 0, 1, 2, . . . , k. A

coefficient that reflects agreement minus disagreement between categories i and j, where

i �= j, conditioned on only responses in categories i and j, is as follows:

κij = Pr(X = Y |X,Y = i, j) − Pr(X �= Y |X,Y = i, j)

=
(pii + pjj) − (pij + pji)

pii + pij + pji + pjj

= 1 − 2(pij + pji)
pii + pij + pji + pjj

. (2.1)

For convenience, we express κ as the (k + 1) × (k + 1) symmetric matrix:

κ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 κ01 · · · κ0k

κ01 1 · · · κ1k

...
...

. . .
...

κ0k κ1k . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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We can also construct a 1
2k(k + 1) vector whose elements are the unique pairwise

kappa’s as we just defined:

Vech(κ) = [ κ01 κ02 . . . κ0k | κ12 . . . κ1k | . . . | κk−1,k
]T. (2.2)

2.2 Properties of κij

1. κij ≤ 1, for all i, j = 0, 1, 2, . . . , k, where i �= j.

2. Exclude the degenerate cases, κij = 1 if and only if pij + pji = 0. This means

that pij = pji = 0. Intuitively this makes sense in that this means that there is no

disagreement conditioned on only responses in i and j. This can be considered as

perfect conditional agreement.

3. Exclude the degenerate cases, κij = −1 if and only if pii = pjj = 0. Intuitively

this makes sense in that this means that there is no agreement conditioned on only

responses in i and j. This can be considered as complete conditional disagreement.

4. κij ≥ −1.

Proof. 1. Apparently this is true since

pij + pji

pii + pij + pji + pjj
≥ 0.

2. Obvious and no need to prove.

3. Obvious and no need to prove.
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4. Apparently this is true since

(pij + pji)
pii + pij + pji + pjj

≤ 1.

2.3 Asymptotic Distribution of the Estimators of the Pairwise Condi-

tional Measures

κij can be estimated in the following way:

κ̂ij = 1 − 2(p̂ij + p̂ji)
p̂ii + p̂ij + p̂ji + p̂jj

,

where p̂ij denotes the observed proportions, i, j = 0, 1, 2, . . . , k. When the sample size

is large, the estimated probabilities should be close to their true values. And hence the

estimated κij ’s should be close to their true values.

In most situations, the above estimator will work. However, when the number of

categories is large, it is possible in simulation studies as well as in practical situations

that p̂ii = p̂ij = p̂ji = p̂jj = 0. Consequently we get 0 for the denominator and thus κ̂ij

is undefined. One solution to this problem is to set the κ̂ij to be 0. This is reasonable

in that when p̂ii = p̂ij = p̂ji = p̂jj = 0, no information concerning agreement can be

obtained through the four cell probabilities used for the calculation of κij .

Similarly, Vech(κ) can be estimated by

Vech(κ̂) = [ κ̂01 κ̂02 . . . κ̂0k | κ̂12 . . . κ̂1k | . . . | κ̂k−1,k
]T.
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We want to derive the asymptotic distribution of κ̂ij and Vech(κ̂). Suppose the

sample size is n. First note that for a bivariate sample of size n,

• p̂ii = 1
n

∑∑
I{X = i, Y = i}

• p̂ij = 1
n

∑∑
I{X = i, Y = j}

• p̂ji = 1
n

∑∑
I{X = j, Y = i}

• p̂jj = 1
n

∑∑
I{X = j, Y = j}.

When n is large, we know that there is strong convergence, i.e.,

• p̂ii −→ E(I{X = i, Y = i}) = pii

• p̂ij −→ E(I{X = i, Y = j}) = pij

• p̂ji −→ E(I{X = j, Y = i}) = pji

• p̂jj −→ E(I{X = j, Y = j}) = pjj.

Now let v1 = pii, v2 = pij , v3 = pji, v4 = pjj and v̂1 = p̂ii, v̂2 = p̂ij, v̂3 = p̂ji, v̂4 = p̂jj.

Let v = (v1, v2, v3, v4) and v̂ = (v̂1, v̂2, v̂3, v̂4). Let g(v) be a function of v such that

g(v) = 1 − 2(v2 + v3)
v1 + v2 + v3 + v4

.

The vector v̂ has an asymptotic normal distribution with

E(v̂) = (v1, v2, v3, v4)

= (pii, pij , pji, pjj)
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and variance n−1Σ, where

Σ = {Wij}4×4

W11 = v1(1 − v1), W12 = W21 = −v1v2, W13 = W31 = −v1v3, W14 = W41 = −v1v4

W22 = v2(1 − v2), W23 = W32 = −v2v3, W24 = W42 = −v2v4

W33 = v3(1 − v3), W34 = W43 = −v3v4

W44 = v4(1 − v4).

Using the theory on functions of asymptotically normal vectors, we know that

g(v̂) has asymptotically a normal distribution with mean g(v) and variance n−1dΣd′,

where

d =

(
∂g

∂v1

∣∣∣∣
v=E(v)

, . . . ,
∂g

∂v4

∣∣∣∣
v=E(v)

)
.

The elements of d are

d1 = ∂g
∂v1

∣∣∣
v=E(v)

= 2
Q2 (v2 + v3),

d2 = ∂g
∂v2

∣∣∣
v=E(v)

= 2
Q2 [−(v1 + v4)],

d3 = ∂g
∂v3

∣∣∣
v=E(v)

= 2
Q2 [−(v1 + v4)],

d4 = ∂g
∂v4

∣∣∣
v=E(v)

= 2
Q2 (v2 + v3),
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where Q = v1 + v2 + v3 + v4. After some algebraic calculations, it can be shown that the

variance of g(v̂) is

σ2
g(v)

= n−1dΣd

=
4

nQ3 (v1 + v4)(v2 + v3)

=
4(v1 + v4)(v2 + v3)

n(v1 + v2 + v3 + v4)3
.

This implies that

√
n(κ̂ij − κij)

L−→
n→∞N

(
0,

4(pii + pjj)(pij + pji)
n(pii + pij + pji + pjj)3

)
. (2.3)

Now we want to find the asymptotic distribution of Vech(κ̂). From the above

derivation, we can get the asymptotic variance for κ̂ij , where i, j = 0, 1, 2, . . . , k, i �= j.

We also need to determine the asymptotic covariances. First, we derive the asymptotic

covariance between κ̂ij and κ̂ik, where j �= k. Note that

⎛
⎜⎜⎝ κ̂ij

κ̂ik

⎞
⎟⎟⎠ can be written as

⎛
⎜⎜⎝ κ̂ij

κ̂ik

⎞
⎟⎟⎠ = g

(
p̂

ijk

)
,

where p̂
ijk

is

(
p̂ii p̂ij p̂ji p̂jj p̂ik p̂ki p̂kk

)T

.
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As before, we can let v1 = pii, v2 = pij, v3 = pji, v4 = pjj, v5 = pik, v6 = pki, v7 = pkk

and v̂1 = p̂ii, v̂2 = p̂ij, v̂3 = p̂ji, v̂4 = p̂jj, v̂5 = p̂ik, v̂6 = p̂ki, v̂7 = p̂kk. We can let

v =
(

v1 v2 v3 v4 v5 v6 v7

)T

.

Then

√
n
(
p̂

ijk
− p

ijk

)
L−→

n→∞N
(
0,Σijk

)
,

where

Σijk = {Wijk}7×7,

W11 = v1(1 − v1), W12 = W21 = −v1v2,W13 = W31 = −v1v3, W14 = W41 = −v1v4,

W15 = W51 = −v1v5, W16 = W61 = −v1v6, W17 = W71 = −v1v7,

W22 = v2(1 − v2), W23 = W32 = −v2v3, W24 = W42 = −v2v4, W25 = W52 = −v2v5,

W26 = W62 = −v2v6, W27 = W72 = −v2v7,

W33 = v3(1 − v3), W34 = W43 = −v3v4, W35 = W53 = −v3v5, W36 = W63 = −v3v6,

W37 = W73 = −v3v7,

W44 = v4(1 − v4), W45 = W54 = −v4v5, W46 = W64 = −v4v6,, W47 = W74 = −v4v7,

W55 = v5(1 − v5), W56 = W65 = −v5v6, W57 = W75 = −v5v7,

W66 = v6(1 − v6), W67 = W76 = −v6v7,

W77 = v7(1 − v7).
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Therefore,

√
n
(
g(p̂

ijk
) − g(p

ijk
)
)

L−→
n→∞N

(
0, ġ(p

ijk
)Σijkġ(p

ijk
)T
)

,

where ġ(p
ijk

) is

⎛
⎜⎜⎝

2(v2+v3)
Q2

−2(v1+v4)
Q2

−2(v1+v4)
Q2

2(v2+v3)
Q2 0 0 0

2(v5+v6)
R2 0 0 0 −2(v1+v7)

R2
−2(v1+v7)

R2
2(v5+v6)

R2

⎞
⎟⎟⎠ .

After tedious algebraic calculations, it can be shown that ġ(p
ijk

)Σijkġ(p
ijk

)T is

⎛
⎜⎜⎝

4(v1+v4)(v2+v3)
Q3

4v1(v2+v3)(v5+v6)
Q2R2

4v1(v2+v3)(v5+v6)
Q2R2

4(v1+v7)(v5+v6)
R3

⎞
⎟⎟⎠ .

Therefore,

Cov(κ̂ij , κ̂ik) =
4v1(v2 + v3)(v5 + v6)

nQ2R2 for j �= k,

where Q = v1 + v2 + v3 + v4 and R = v1 + v5 + v6 + v7. That is,

Cov(κ̂ij , κ̂ik) =
4pii(pij + pji)(pik + pki)

n(pii + pij + pji + pjj)2(pii + pik + pki + pkk)2
for j �= k. (2.4)

Similarly, we can also obtain the asymptotic covariance between κ̂is and κ̂js, where i �= j:

Cov(κ̂is, κ̂js) =
4pss(pis + psi)(pjs + psj)

n(pii + pis + psi + pss)2(pss + pjs + psj + pjj)2
for j �= k. (2.5)

Now we need to find the asymptotic covariance between κ̂ik and κ̂jl, where i �= j

and k �= l. As before, we can let v1 = pii, v2 = pik, v3 = pki, v4 = pkk, v5 = pjj, v6 = pjl,
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v7 = plj, v8 = pll and v̂1 = p̂ii, v̂2 = p̂ik, v̂3 = p̂ki, v̂4 = p̂kk, v̂5 = p̂jj, v̂6 = p̂jl, v̂7 = p̂lj,

v̂8 = p̂ll. We can let

v =
(

v1 v2 v3 v4 v5 v6 v7 v8

)T

.

We know that

√
n(v̂ − v) L−→

n→∞N
(

0,
1
n

Σijkl

)
,

where

Σijkl = {Wijkl}8×8,

W11 = v1(1 − v1), W12 = W21 = −v1v2, W13 = W31 = −v1v3, W14 = W41 = −v1v4,

W15 = W51 = −v1v5, W16 = W61 = −v1v6, W17 = W71 = −v1v7, W18 = W81 =

−v1v8,

W22 = v2(1 − v2), W23 = W32 = −v2v3, W24 = W42 = −v2v4, W25 = W52 = −v2v5,

W26 = W62 = −v2v6, W27 = W72 = −v2v7, W28 = W82 = −v2v8,

W33 = v3(1 − v3), W34 = W43 = −v3v4, W35 = W53 = −v3v5, W36 = W63 = −v3v6,

W37 = W73 = −v3v7, W38 = W83 = −v3v8,

W44 = v4(1 − v4), W45 = W54 = −v4v5, W46 = W64 = −v4v6,, W47 = W74 = −v4v7,

W48 = W84 = −v4v8,

W55 = v5(1 − v5), W56 = W65 = −v5v6, W57 = W75 = −v5v7, W58 = W85 = −v5v8,

W66 = v6(1 − v6), W67 = W76 = −v6v7, W68 = W86 = −v6v8,
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W77 = v7(1 − v7), W78 = W87 = −v7v8,

W88 = v8(1 − v8).

Therefore,

√
n (g(v̂ − g(v)) L−→

n→∞N
(
0, ġ(v)Σijklġ(v)T

)
,

where ġ(v) is

⎛
⎜⎜⎝

2(v2+v3)
Q2

−2(v1+v4)
Q2

−2(v1+v4)
Q2

2(v2+v3)
Q2 0 0 0 0

0 0 0 0 2(v6+v7)
R2

−2(v5+v8)
R2

−2(v5+v8)
R2

2(v6+v7)
R2

⎞
⎟⎟⎠

and where Q = v1 + v2 + v3 + v4 and R = v5 + v6 + v7 + v8. Again, after long and tedious

algebraic calculations, it can be shown that ġ(v)Σijklġ(v)T is

⎛
⎜⎜⎝

4(v1+v4)(v2+v3)
Q3 0

0 4(v5+v8)(v6+v7)
R3

⎞
⎟⎟⎠ .

So the asymptotic variance between κ̂ik and κ̂jl, where i �= j and k �= l, is 0.

And now we can get the joint asymptotic distribution of Vech(κ̂). Since Vech(κ̂) can

also be considered as a function of p̂ij’s, for i, j = 0, 1, 2, . . . , k, its joint distribution is
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multivariate normal:

√
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ̂00

κ̂01

...

κ̂k−1,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ00

κ01

...

κk−1,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−→
n→∞N(0,Σv) , (2.6)

where Σv is a k(k+1)
2 × k(k+1)

2 matrix and can be obtained using the previously derived

variances and covariances.

2.4 An Overall Measure of Agreement Based on the Pairwise Condi-

tional Measures

2.4.1 Definition

κij , where i, j = 0, 1, . . . , k, reflects the pairwise agreement minus disagreement

conditioned on only responses in categories i and j. We would like to define an overall

agreement minus disagreement coefficient which utilizes the information contained in the

pairwise agreements. The overall measure can be constructed as the linear combination:

κw = wTVech(κ), (2.7)

where

w = [ w01 w02 . . . w0k | w12 . . . w1k | . . . | wk−1,k
]T

is a 1
2k(k + 1) weight vector with each wij ≥ 0 and

∑
wij = 1.
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2.4.2 Properties of κw

1. −1 ≤ κw ≤ 1.

2. κw = 1 if and only if κij = 1 for all i, j = 0, 1, 2, . . . , k, where i �= j. This means that

we have complete agreement for each κij . As we have already shown, this means

that that is no disagreement for each κij. Consequently, there is no observation

for all off-diagonal cells, which implies that we get perfect agreement.

3. κw = −1 if and only if κij = −1 for all i, j = 0, 1, 2, . . . , k, where i �= j. This means

that we have complete disagreement for each κij . As we have already shown, this

means that that is no agreement for each κij . Consequently, there is no observation

for all diagonal cells, which implies that we get perfect disagreement.

4. κmin ≤ κw ≤ κmax, where κmin = min(κ01, κ02, . . . , κk−1,k) and κmax = max(κ01, κ02, . . . , κk−1,k).

This means that the final agreement coefficient is between the minimum pairwise

conditional agreement and the maximum pairwise conditional agreement.

Proof. 1. We know that

κw = wTVech(κ)

=
∑
i<j

wijκij . (2.8)

We have already shown that −1 ≤ κij ≤ 1. Therefore, from (2.8), we know that

−1 = −
∑
i<j

wij ≤ κw =
∑
i<j

wijκij ≤
∑
i<j

wij = 1.
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That is,

−1 ≤ κw ≤ 1.

2. Obvious and no need to prove.

3. Obvious and no need to prove.

4. This is because

κw =
∑
i<j

wijκij ≤
∑
i<j

wijκmax = κmax

∑
i<j

wij = κmax.

Similarly,

κw =
∑
i<j

wijκij ≥
∑
i<j

wijκmin = κmin

∑
i<j

wij = κmin.

Therefore, κmin ≤ κw ≤ κmax.

2.4.3 Asymptotic Distribution of κ̂w

In equation(2.6), we derived the joint asymptotic distribution for pairwise κ’s. It

remains straightforward to derive the asymptotic distribution for κw:

κw = wTVech(κ),

where

w = [ w01 w02 . . . w0k | w12 . . . w1k | . . . | wk−1,k
]T (2.9)
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is a 1
2k(k + 1) weight vector with each wij ≥ 0 and

∑
wij = 1. If w does not depend on

the data, then we know that

√
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
wT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ̂00

κ̂01

...

κ̂k−1,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− wT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ00

κ01

...

κk−1,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L−→
n→∞N

(
0, wTΣvw

)
. (2.10)

That is,

√
n (κ̂w − κw) L−→

n→∞N
(
0, wTΣvw

)
, (2.11)

where Σv is the same as defined before.

2.4.4 Choices of Weight for Nominal Responses

If X and Y are nominal variables, then a reasonable choice for w is to set each wij

to be
[

1
2k(k + 1)

]−1, where i, j = 0, 1, . . . , k. This means that we assign equal weight to

each pairwise measure of agreement. This makes sense when both X and Y are nominal.

However, in some cases this choice of weight may cause trouble. Suppose we get

a high agreement κrs conditioned on responses in r and s. If prr + prs + psr + pss is

very small, which means that the two raters are unlikely to give such ratings, then we

may exaggerate the overall agreement if we give equal weight to κrs. In other words,

high pairwise agreement with small rating probabilities may lead to the overestimation

of κw. Similarly, a small pairwise agreement with small probabilities may lead to the

underestimation of κw.
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To account for the probabilities associated with the calculation of the pairwise

conditional measure of agreement, we can use another weight for nominal responses

which we call equal weight adjusted for probabilities.

• In calculating κ01, we need p00, p01, p10, p11. So the sum of the four cell probabilities

for the calculation of κ01 is P01 = p00 + p01 + p10 + p11.

• The sum of the four cell probabilities for the calculation of κ02 is P02 = p00 + p02 +

p20 + p02.

· · · · · ·

• The sum of the four cell probabilities for the calculation of κk−1,k is Pk−1,k = pk−1,k−1+

pk−1,k + pk,k−1 + pk,k.

Therefore,

P = P01 + P02 + . . . + Pk−1,k

= [p00 + p01 + p10 + p11] + [p00 + p02 + p20 + p02]

+ . . . +
[
pk−1,k−1 + pk−1,k + pk,k−1 + pk,k

]
= 1 + (k − 1)

(
p11 + p22 + . . . + pk,k

)

= 1 + (k − 1)
k∑

i=0

pii.

Thereafter, we can set the weight wrs for κrs, where

wrs =
prr + prs + psr + pss

1 + (k − 1)
k∑

i=0
pii

.
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By using the equal weight adjusted for probabilities, we can avoid the disadvantage

of using equal weight, i.e. overestimation (high agreement for small cell probabilities)

or underestimation (poor agreement for small cell probabilities). Another advantage of

this type of weighting scheme occurs when prr + prs + psr + pss = 0. In such a situation,

κrs is undefined but receives a weight of zero. The disadvantage of this weight scheme

is that

κw =
∑∑

i<j

wijκij

=
∑∑

i<j

(pii + pjj) − (pij + pji)
pii + pij + pji + pjj

× pii + pij + pji + pjj

1 + (k − 1)
∑k

i=0
pii

=
∑∑

i<j

(pii + pjj) − (pij + pji)

1 + (k − 1)
k∑

i=0
pii

=

k
k∑

i=0
pii −

∑
i�=j

pii

1 + (k − 1)
k∑

i=0
pii

=
k

k∑
i=0

pii − (1 −
k∑

i=0
pii)

1 + (k − 1)
k∑

i=0
pii

=
(k + 1)

k∑
i=0

pii − 1

1 + (k − 1)
k∑

i=0
pii

. (2.12)

In other words, it results in a statistic that ignores the pairwise conditional mea-

sures.
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There certainly exist some other weighting schemes:

wrs =
max (prr, prs, psr, pss)∑∑

i<j
max

(
pii, pij , pji, pjj

)

or

wrs =

√
1
4

(
p2

rr
+ p2

rs
+ p2

sr
+ p2

ss

)
∑∑

i<j

√
1
4

(
p2

ii
+ p2

ij
+ p2

ji
+ p2

jj

)

=

√(
p2

rr + p2
rs + p2

sr + p2
ss

)
∑∑

i<j

√(
p2

ii + p2
ij + p2

ji + p2
jj

) .

These two schemes will maintain the advantage of a zero weight when κrs is undefined,

but do not have the disadvantage noted above. Also, because these weights must be

estimated by plugging in the estimation of the probabilities, which are the observed

proportions, we have to find the asymptotic distribution of κ̂w.

To derive the asymptotic distribution for the first weighting scheme, first note

that

• p̂00
P−→E(I{X = 0, Y = 0}) = p00

• p̂01
P−→E(I{X = 0, Y = 1}) = p01

• p̂02
P−→E(I{X = 0, Y = 2}) = p02

...

• p̂kk
P−→E(I{X = k, Y = k}) = pkk.
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Then we can get ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂00

p̂01

...

p̂k,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P−→
n→∞

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00

p01

...

pk,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let g : R
(k+1)2×1 	→ R

1
2
k(k+1)×1 be a continuous function such that

g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00

p01

...

pk,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max(p00,p01,p10,p11)P P

i<j
max(pii,pij ,pji,pjj)

max(p00,p02,p20,p22)P P

i<j
max(pii,pij ,pji,pjj)

...

max(pk−1,k−1,pk−1,k,pk,k−1,pk,k)
P P

i<j
max(pii,pij ,pji,pjj)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we know that

g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂00

p̂01

...

p̂k,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P−→
n→∞ g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00

p01

...

pk,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Let Ŵ and W be a 1
2k(k + 1) vector such that

Ŵ = g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂00

p̂01

...

p̂k,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

W = g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00

p01

...

pk,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

That is,

Ŵ
P−→

n→∞W.

For a given distribution, W is a constant vector. From 2.6, we know that the

asymptotic distribution of Vech(κ̂) is

√
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ̂00

κ̂01

...

κ̂k−1,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ00

κ01

...

κk−1,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L−→
n→∞N(0,Σv) .
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That is,

√
n [Vech(κ̂) − Vech(κ)] L−→

n→∞N(0,Σv) .

Let f : R
k(k+1) 	→ R

1 be a continuous function such that

f

⎛
⎜⎜⎝ Vech(κ)

WT

⎞
⎟⎟⎠ = WTVech(κ).

Then we can get

√
n
(
ŴTVech(κ̂) − WTVech(κ)

)
L−→

n→∞N
(
0,WTΣvW

)
. (2.13)

That is,

√
n (κ̂w − κw) L−→

n→∞N
(
0,WTΣvW

)
. (2.14)

This asymptotic distribution also applies when we use other weighting schemes.

We can see that this is exactly the same form as the previous asymptotic distribution

we have obtained earlier. So in general, we do not need to use different asymptotic

distributions for different weighting schemes.

However, there is also a disadvantage in using the max weighting scheme and the

square weighting scheme. Suppose we have a joint distribution where all off-diagonal el-

ements are small while some of the diagonal elements have relatively large probabilities.

Hence we will have at least several pairwise conditional measures of high values. How-

ever, at the same time, we will also allocate high weights for all of these high pairwise
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conditional measures since all the off-diagonal elements are small. This will obviously

overestimate the agreement level. In other words, we give high weights to high pairwise

conditional measures too many times because of some high agreement probabilities.

2.4.5 Choices of Weight for Ordinal Responses

If X and Y are ordinal variables, then w should be chosen such that wij ≥ wi,j−1

and wij ≥ wi−1,j for 0 ≤ i < j ≤ k. The rationale for this is that the further apart

the indices i and j, the more weight should be given to each κij because the pairwise

agreement (or disagreement) should be stronger. A simple way is to set the weight

proportional to the difference between i and j. To meet the requirement that
∑

wij = 1,

we can construct this simple weight in the following manner:

For i = 0, j = 1, 2, . . . , k, |i − j| = 1, 2, . . . , k. And we know that
∑ |i − j| = k(k+1)

2 .

For i = 1, j = 2, 3, . . . , k, |i−j| = 1, 2, . . . , (k−1). And we know that
∑ |i−j| = k(k−1)

2 .

For i = 2, j = 3, . . . , k, |i−j| = 1, 2, . . . , (k−2). And we know that
∑ |i−j| = (k−1)(k−2)

2 .

· · ·

For i = (k − 1), j = k, |i − j| = 1.

And it can be shown that

k(k + 1)
2

+
k(k − 1)

2
+

(k − 1)(k − 2)
2

+ · · · + 1 =
k(k + 1)(2k + 4)

12
.
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Therefore, we can set the weight for κij to be

wij =
|i − j|

k(k+1)(2k+4)
12

=
12|i − j|

k(k + 1)(2k + 4)
.

For example, suppose k = 2, that is, we have 3 categories. Then

wij =
|i − j|

4
.

Therefore, the weight for κ01 is 1
4 , the weight for κ02 is 2

4 and the weight for κ12 is 1
4 .

We can see that the sum of weights is equal to 1 and the weights are proportional to the

differences between index i and j.

We know that Cohen’s weighted kappa does not change if we multiply all the

weights by a certain constant. Therefore, in the calculation of Cohen’s weighted kappa

we can use similar weights that are proportional to the differences between index i and

j. That is, let wij = |i − j|.

In general, we can set the disagreement weight for wij using a general distance

function g(|i − j|), where g(·) is a positive-valued distance function.

For i = 0, j = 1, 2, . . . , k, we have g(1), g(2), . . . , g(k).

For i = 1, j = 2, 3, . . . , k, we have g(1), g(2), . . . , g(k − 1).

For i = 2, j = 3, . . . , k,we have g(1), g(2), . . . , g(k − 2).

· · ·

For i = (k − 1), j = k, we have g(1).
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And it can be shown that

g(1) + g(2) + . . . + g(k) + g(1) + g(2) . . . + g(k − 1) + · · · + g(1)

= kg(1) + (k − 1)g(2) + . . . + g(k)

=
k∑

t=1

(k − t + 1) g(t).

Therefore, the weight for wij is

wij =
g(|i − j|)

k∑
t=1

(k − t + 1) g(t)
.

For example, suppose we use the squared distance function, that is, let g(|i−j|) =

(i − j)2, for i, j = 0, 1, 2 . . . , k. Then

k∑
t=1

(k − t + 1) g(t)

=
k∑

t=1

(k − t + 1) t2

=
k(k + 1)2(k + 2)

12
.

Therefore,

wij =
|i − j|2

k(k+1)2(k+2)
12

=
12|i − j|2

k(k + 1)2(k + 2)
.
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For example, suppose k = 2, that is, we have 3 categories. Then

wij =
(i − j)2

6
.

Therefore, the weight for κ01 is 1
6 , the weight for κ02 is 4

6 and the weight for κ12 is 1
6 .

We can see that the sum of weights is equal to 1.

We know that Cohen’s weighted kappa does not change if we multiply all the

weights by a certain constant. Therefore, in the calculation of Cohen’s weighted kappa

we can use similar weights. That is, let wij = (i − j)2.

On the other hand, suppose we want to use exponential distance function. That

is, let g(|i − j|) = exp (|i − j|) − 1, for i, j = 0, 1, 2 . . . , k. Then

k∑
t=1

(k − t + 1) g(t)

=
k∑

t=1

(k − t + 1) (exp (t) − 1)

=
e

1 − e

[
e(ek − 1)

1 − e
+ k

]
− k(k + 1)

2
.

Therefore,

wij =
e|i−j| − 1

e
1−e

[
e(ek−1)

1−e + k
]
− k(k+1)

2

.

For example, suppose k = 2, that is, we have 3 categories. Then

e

1 − e

[
e(ek − 1)

1 − e
+ k

]
− k(k + 1)

2
= e2 + 2e − 3.
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Hence,

wij =
e|i−j| − 1

e2 + 2e − 3
.

Therefore, the weight for κ01 is e−1
e2+2e−3

, the weight for κ02 is e2−1
e2+2e−3

and the

weight for κ12 is e−1
e2+2e−3

. We can see that the sum of weights is equal to 1.

We know that Cohen’s weighted kappa does not change if we multiply all the

weights by a certain constant. Therefore, in the calculation of Cohen’s weighted kappa

we can use similar weights. That is, let wij = e|i−j| − 1.

Now suppose k = 3, that is , we have 4 categories. Then

e

1 − e

[
e(ek − 1)

1 − e
+ k

]
− k(k + 1)

2
= e3 + 2e2 + 3e − 6.

Hence,

wij =
e|i−j| − 1

e3 + 2e2 + 3e − 6
.

Therefore, the weight for κ01 is e−1
e3+2e2+3e−6

, the weight for κ02 is e2−1
e3+2e2+3e−6

, the weight

for κ03 is e3−1
e3+2e2+3e−6

, the weight for κ12 is e−1
e3+2e2+3e−6

, the weight for κ13 is e2−1
e3+2e2+3e−6

and the weight for κ23 is e−1
e3+2e2+3e−6

. We can see that the sum of weights is equal to 1.

And Cohen’s kappa remains the same as the previous case.

The weight assignment for κw, the proposed weighted sum of pairwise agreement

measures, is different from that for Cohen’s weighted kappa in that here we require that

the sum of individual weights must be 1 while for Cohen’s weighted kappa, the weight

can be any positive numbers since multiplication does not change its value.
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2.4.6 Advantages and Disadvantages of κw

As can be seen from the definition of κw, it utilizes all conditional pairwise in-

formation concerning agreements which both Cohen’s kappa and weighted kappa do not

include. Furthermore, it is easy to assign different weights to individual κij’s to repre-

sent the researcher’s perception of the different levels of gravity of individual pairwise

agreements. We hope that the κw defined in this way can have good performance, espe-

cially when there are more than two categories. Performances of the proposed κw will be

investigated through simulation studies, where Cohen’s kappa and weighted kappa are

also presented to compare their performances with the proposed method.

Another advantage is to avoid the so-called kappa’s paradox. Kappa will be higher

with an asymmetrical rather than symmetrical imbalance in marginal probabilities. Let’s

first consider one joint distribution:

y

0 1 2 PX (x)

0 0.1 0.2 0.05 0.35

x 1 0.2 0.1 0.1 0.4

2 0.05 0.1 0.1 0.25

PY (y) 0.35 0.4 0.25 1

In this example, the observed agreement, po, is 0.3. We can also see that the

marginal probabilities are symmetric. Cohen’s kappa gives −0.0687. The proposed
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method using equal weights gives 0. If we use max weights and square weights, we get

-0.0833 and -0.0781, respectively, which indicates that there is extremely poor agreement.

Let us then consider another joint distribution:

y

0 1 2 PX (x)

0 0.1 0.3 0.05 0.45

x 1 0.05 0.1 0 0.15

2 0 0.3 0.1 0.4

PY (y) 0.15 0.7 0.15 1

In this example, the observed agreement, po, is also 0.3. But there is asymmetri-

cal imbalance of the marginal probabilities. Cohen’s kappa gives 0.0879, which is higher

than the previous kappa we got. This does not make sense since in this example, we

should have poorer agreement. The proposed method using equal weights gives 0.0424.

However, if we use max weights and square weights, we can get -0.1169 and -0.0830, re-

spectively, which indicates that there is extremely poor agreement. This is in conformity

with our distribution setting.

One disadvantage of the pairwise agreement minus disagreement is that some

times it overestimates the overall level of agreement. When some diagonal cells have

relatively large agreement probabilities, this will result in a series of large pairwise agree-

ments, leading to an overall larger agreement coefficient. Another disadvantage is that
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the large sample formula is relatively too complicated. For example, if we have six cat-

egories, then Σv is a 15 × 15 matrix, making computations very difficult. In such cases,

we may consider using the bootstrap to estimate the variances.

2.5 κw, Corrected for Chance?

We know that both Cohen’s κ and weighted κ are chance corrected, which means

that they are measuring agreement with chance agreement excluded. We had tried to

construct a weighted sum of kappa statistics that is also corrected for chance. Originally

we want to construct the following measure:

kij =
Pr(X = Y |X,Y = i, j) − Prindep(X = Y |X,Y = i, j)

1 − Prindep(X = Y |X,Y = i, j)

=

pii+pjj

pii+pij+pjj+pji
− PX(i)PY (i)+PX (j)PY (j)

PX(i)PY (i)+PX(j)PY (j)+PX(i)PY (j)+PX(j)PY (i)

1 − PX(i)PY (i)+PX (j)PY (j)
PX(i)PY (i)+PX(j)PY (j)+PX(i)PY (j)+PX(j)PY (i)

,

where Prindep is the probability when assuming that X and Y are independent. However,

we encountered problems in the lower bound of κij . The following process explains this

situation:

To show that κij ≥ −1, we need to show that

2[PX(i)PY (i) + PX(j)PY (j)]
PX(i)PY (i) + PX(j)PY (j) + PX(i)PY (j) + PX(j)PY (i)

≤ 1 +
pii + pjj

pii + pij + pjj + pji
.

1. If

PX(i)PY (i) + PX(j)PY (j)
PX(i)PY (i) + PX(j)PY (j) + PX(i)PY (j) + PX(j)PY (i)

≤ 1
2
,
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then it is obvious that the inequality holds.

2. If, however,

PX(i)PY (i) + PX(j)PY (j)
PX(i)PY (i) + PX(j)PY (j) + PX(i)PY (j) + PX(j)PY (i)

>
1
2
.

This implies that

2[PX(i)PY (i) + PX(j)PY (j)] > PX(i)PY (i) + PX(j)PY (j) + PX(i)PY (j) + PX(j)PY (i)

⇒ PX(i)PY (i) + PX(j)PY (j) > PX(i)PY (j) + PX(j)PY (i)

⇒ [PX(i) − PX(j)][PY (i) − PY (j)] > 0

⇒ PX(i) > PX(j) AND PY (i) > PY (j) or PX(i) < PX(j) AND PY (i) < PY (j).

Now if PX(i) > PX(j) AND PY (i) > PY (j), then we can set PX(j) = m, PY (j) =

n, PX(i) = m + a and PY (i) = n + b, where m ≥ 0, n ≥ 0, a > 0, b > 0 and m + a ≤

1, n + b ≤ 1. So we want to show that

2[(m + a)(n + b) + mn]
(m + a)(n + b) + mn + (m + a)n + m(n + b)

< 1 +
pii + pjj

pii + pij + pjj + pji

⇒ 4mn + 2mb + 2an + 2ab

4mn + 2mb + 2an + ab
< 1 +

pii + pjj

pii + pij + pjj + pji

⇒ ab

4mn + 2mb + 2an + ab
<

pii + pjj

pii + pij + pjj + pji
.
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Apparently the inequality does not hold in general. One counterexample is when

pii + pjj = 0. So in general, we can not conclude that the lower bound of κij is −1.

Consider the following example:

y

0 1 2 PX (x)

0 0 1
8

2
8

3
8

x 1 1
8 0 0 1

8

2 2
8

1
8

1
8

4
8

PY (y) 3
8

2
8

3
8 1

We get that κ01 = −11
9 .

The uncertainty of the lower boundary of κij is because the calculation of the

conditional probability under the independence assumption involves probabilities that

are not involved with the conditional probability under the no independence assumption.

We then tried to define the conditioning event more explicitly in the hope that it

would yield a different result than we had previously. Let Z be the event that (X,Y ) =

(i, i), (i, j), (j, i) or (j, j). Define κij as

κij =
Pr(X = Y |Z) − Prindep(X = Y |Z)

Pr(Z) − Prindep(X = Y |Z)
.

However, it turns out that this definition is exactly the same as the previous one.

As long as we are dealing with the marginal probabilities in constructing the pairwise
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kappa, we may encounter the problem of the uncertainty of the lower bound. Therefore,

we have to abandon this approach for a weighted sum of agreement measures.

2.6 Simulation for Nominal Responses

2.6.1 Simulation Design

We used Matlab to generate samples following multimoninal distributions. For

each distribution, we calculated Cohen’s simple kappa, the pairwise agreement minus dis-

agreement using equal weights, weights corresponding to individual probabilities, maxi-

mum cell probabilities, and the square root weights as we previously introduced. Since in

practice, we often do not know the actual joint distribution of X and Y , we can use the

sample as the estimate of the joint distribution. Their variances are also given as well as

the variances calculated using the sample counterparts calculated from the asymptotic

distribution formula. To avoid the situation when there are no observations for cells with

small probabilities, we use a relatively large sample, say, n = 200, 400, and 800. And

each simulation is run 1000 times. As aforementioned, in practice, agreement measures

greater than 0.75 or so may be taken to represent excellent agreement beyond chance,

values between 0.40 and 0.75 may be taken to represent fair to good agreement beyond

chance and values below 0.40 or so may be taken to represent poor agreement.
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Case 1 The distribution is

y

0 1 2 PX (x)

0 0.2 0.05 0.05 0.3

x 1 0.03 0.3 0.07 0.4

2 0.05 0.07 0.18 0.3

PY (y) 0.28 0.42 0.3 1

This case represents medium agreement. We can see that the diagonal probabilities

add up to 0.68 and the marginal probabilities of X and Y are very close to each

other.

Case 2 The distribution is

y

0 1 2 PX (x)

0 0.05 0.1 0.05 0.2

x 1 0.22 0.05 0.03 0.3

2 0.13 0.35 0.02 0.5

PY (y) 0.4 0.5 0.1 1

This case represents poor agreement. It can be seen that there is more disagree-

ment between marginal probabilities as well as high probabilities for off-diagonal

probabilities.
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Case 3 The distribution is

y

0 1 2 PX (x)

0 0.21 0.01 0.02 0.24

x 1 0.02 0.4 0.02 0.44

2 0.01 0.01 0.3 0.32

PY (y) 0.24 0.42 0.34 1

This case represents high agreement. The diagonal probabilities add up to 0.91

and the marginal probabilities are very close to each other.

Case 4 The distribution is

y

0 1 2 PX (x)

0 0.2 0 0 0.2

x 1 0 0.3 0 0.3

2 0 0 0.5 0.5

PY (y) 0.2 0.3 0.5 1

This case represents complete agreement. There is no disagreement.
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Case 5 The distribution is

y

0 1 2 PX (x)

0 0.125 0.125 0 0.25

x 1 0 0.25 0 0.25

2 0 0.25 0.25 0.5

PY (y) 0.125 0.625 0.25 1

Again this case represent medium agreement.

Case 6 The distribution is

y

0 1 2 3 PX (x)

0 0.0455 0.1136 0.1364 0.0182 0.3137

x 1 0.1364 0.2273 0.0818 0.0136 0.4591

2 0.0455 0.0545 0 0.0227 0.1227

3 0.0045 0.0227 0.0318 0.0455 0.1045

PY (y) 0.2319 0.4181 0.25 0.1 1

This case represents poor agreement. The diagonal probabilities add up to 0.3183.

But the marginal probabilities are not very different from each other.
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Case 7 The distribution is

y

0 1 2 3 PX (x)

0 0.1 0.1 0.0875 0.0375 0.325

x 1 0 0.175 0 0 0.175

2 0 0.1125 0.1125 0 0.225

3 0.0875 0 0 0.1875 0.275

PY (y) 0.1875 0.3875 0.2 0.225 1

This case represents medium agreement. The diagonal elements add up to 0.5750

and we can see that the off-diagonal elements are not quite different from each

other.

Case 8 The distribution is

y

0 1 2 3 PX (x)

0 0 0.05 0.1 0.2 0.35

x 1 0.05 0 0.2 0.15 0.4

2 0.06 0.02 0.05 0 0.13

3 0.05 0 0.02 0.05 0.12

PY (y) 0.16 0.07 0.37 0.4 1
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This case represents extremely poor agreement. In this case, we have complete

disagreement given the first two categories. And we want to see if this significantly

affect the agreement coefficient.

Case 9 The distribution is

y

0 1 2 3 PX (x)

0 0 0 0.1 0.05 0.15

x 1 0 0 0.08 0.02 0.1

2 0.05 0.03 0.3 0.01 0.39

3 0.06 0.02 0.03 0.25 0.36

PY (y) 0.11 0.05 0.51 0.33 1

In this case, we can see that p(1, 1) = p(1, 2) = p(2, 1) = p(2, 2) = 0. And as

we have suggested, κ(0, 1) should be set to 0. As a result, the covariance matrix

should also be modified correspondingly. And we will see the performance of the

proposed statistic κw through simulation.
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Case 10 The distribution is

y

0 1 2 3 PX (x)

0 0 0.01 0 0.01 0.02

x 1 0.02 0.05 0.05 0.3 0.42

2 0 0.25 0 0.12 0.37

3 0.08 0.03 0.05 0.03 0.19

PY (y) 0.1 0.34 0.1 0.46 1

In this case, we still have four categories but poor agreement. The diagonal ele-

ments add up to 0.08 and the marginal probabilities are very different from each

other.

Case 11 The distribution is

y

0 1 2 3 PX (x)

0 0.2 0 0 0 0.2

x 1 0 0.1 0 0 0.1

2 0 0 0.2 0 0.2

3 0 0 0 0.5 0.5

PY (y) 0.2 0.1 0.2 0.5 1
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In this case, we have four categories but complete agreement. We would like to see

whether the proposed method can correctly detect this or not.

Case 12 The distribution is

y

0 1 2 3 4 PX (x)

0 0.2 0.01 0 0.01 0 0.22

1 0 0.1 0 0.04 0.02 0.16

x 2 0.08 0 0.15 0 0.01 0.24

3 0.01 0.04 0 0.2 0 0.25

4 0 0.06 0 0.02 0.05 0.13

PY (y) 0.29 0.21 0.15 0.27 0.08 1

In this case, we have five categories, and we have relatively large agreement. The

sum of diagonal elements is 0.7 and all off-diagonal probabilities are small. We can

also see that the marginal probabilities for X and Y are very close to each other.
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Case 13 The distribution is

y

0 1 2 3 4 PX (x)

0 0.01 0.05 0.2 0.06 0.03 0.35

1 0 0.03 0.25 0.1 0.07 0.45

x 2 0 0.002 0.008 0.03 0.04 0.08

3 0 0.004 0.02 0.03 0.003 0.057

4 0.04 0.02 0.003 0 0 0.063

PY (y) 0.05 0.106 0.481 0.22 0.143 1

We have five categories but very poor agreement.

Case 14 The distribution is

y

0 1 2 3 4 PX (x)

0 0.1 0.01 0 0 0 0.11

1 0 0.2 0.05 0 0 0.25

x 2 0.002 0.01 0 0 0.003 0.015

3 0.003 0.002 0.01 0.3 0 0.315

4 0.05 0.01 0 0 0.25 0.31

PY (y) 0.155 0.232 0.06 0.3 0.253 1
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We have five categories but high agreement. The diagonal elements add up to 0.85

. The marginal probabilities of X and Y are close to each other.

Case 15 The distribution is

y

0 1 2 3 4 PX (x)

0 0.1 0 0 0 0 0.1

1 0 0.05 0 0 0 0.05

x 2 0 0 0.25 0 0 0.25

3 0 0 0 0.3 0 0.3

4 0 0 0 0 0.3 0.3

PY (y) 0.1 0.05 0.25 0.3 0.3 1

We have five categories and complete agreement. There is no disagreement.

2.6.2 Simulation Results

Table 2.1 gives the simulation results for case 1 to case 9 and table 2.2 gives the

simulation results for case 10 to case 15.

Note: κ means Cohen’s kappa, ke, km, ks are the proposed statistic using equal

weights, max weights and square weights, respectively. vκ is the observed variance of

Cohen’s kappa, vke, vkm, vks are the corresponding observed variances. v1, v2, v3 are the

corresponding variances calculated using the asymptotic formula derived previously.



64

T
ab

le
2.

1.
Si

m
ul

at
io

n
re

su
lt
s

fo
r

pa
ir

w
is

e
ag

re
em

en
t

m
in

us
di

sa
gr

ee
m

en
t

fo
r

ca
te

go
ri

ca
l
re

sp
on

se
s

ca
se

n
κ

ke
km

ks
v κ

v k
e

v k
m

v k
s

v 1
v 2

v 3
1

20
0

0.
51

23
0.

61
83

0.
62

37
0.

62
21

0.
00

24
0.

00
21

0.
00

21
0.

00
21

0.
00

17
0.

00
17

0.
00

17
1

40
0

0.
51

13
0.

61
72

0.
62

19
0.

62
05

0.
00

12
0.

00
11

0.
00

11
0.

00
11

0.
00

08
0.

00
09

0.
00

09
1

80
0

0.
51

29
0.

61
81

0.
62

27
0.

62
14

0.
00

06
0.

00
06

0.
00

06
0.

00
06

0.
00

04
0.

00
04

0.
00

04
1

10
00

0.
51

26
0.

61
79

0.
62

25
0.

62
12

0.
00

06
0.

00
05

0.
00

05
0.

00
05

0.
00

04
0.

00
04

0.
00

04
2

20
0

-0
.2

20
8

-0
.5

48
9

-0
.5

92
5

-0
.5

85
1

0.
00

12
0.

00
56

0.
00

44
0.

00
47

0.
01

45
0.

00
70

0.
00

74
2

40
0

-0
.2

20
3

-0
.5

49
3

-0
.5

90
8

-0
.5

84
2

0.
00

06
0.

00
28

0.
00

24
0.

00
25

0.
00

71
0.

00
34

0.
00

36
2

80
0

-0
.2

22
0

-0
.5

50
3

-0
.5

91
0

-0
.5

84
7

0.
00

03
0.

00
13

0.
00

11
0.

00
12

0.
00

34
0.

00
17

0.
00

18
2

10
00

-0
.2

21
6

-0
.5

50
0

-0
.5

90
3

-0
.5

84
0

0.
00

02
0.

00
11

0.
00

09
0.

00
09

0.
00

27
0.

00
13

0.
00

14
3

20
0

0.
85

95
0.

90
34

0.
90

51
0.

90
51

0.
00

09
0.

00
05

0.
00

05
0.

00
05

0.
00

04
0.

00
04

0.
00

04
3

40
0

0.
86

05
0.

90
40

0.
90

55
0.

90
56

0.
00

05
0.

00
03

0.
00

03
0.

00
03

0.
00

02
0.

00
02

0.
00

02
3

80
0

0.
86

18
0.

90
48

0.
90

63
0.

90
64

0.
00

02
0.

00
01

0.
00

01
0.

00
01

0.
00

01
0.

00
01

0.
00

01
3

10
00

0.
86

16
0.

90
46

0.
90

61
0.

90
62

0.
00

02
0.

00
01

0.
00

01
0.

00
01

0.
00

01
0.

00
01

0.
00

01
4

20
0

1.
00

00
1.

00
00

1.
00

00
1.

00
00

0
0.

00
00

0
0

0.
00

00
0.

00
00

0.
00

00
4

40
0

1.
00

00
1.

00
00

1.
00

00
1.

00
00

0
0.

00
00

0
0

0.
00

00
0.

00
00

0.
00

00
4

80
0

1.
00

00
1.

00
00

1.
00

00
1.

00
00

0
0.

00
00

0
0

0.
00

00
0.

00
00

0.
00

00
4

10
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

0
0.

00
00

0
0

0.
00

00
0.

00
00

0.
00

00
5

20
0

0.
45

42
0.

61
24

0.
60

17
0.

56
65

0.
00

19
0.

00
18

0.
00

23
0.

00
25

0.
00

15
0.

00
15

0.
00

17
5

40
0

0.
45

48
0.

61
19

0.
60

40
0.

56
66

0.
00

09
0.

00
09

0.
00

12
0.

00
12

0.
00

07
0.

00
08

0.
00

09
5

80
0

0.
45

37
0.

61
06

0.
60

52
0.

56
56

0.
00

05
0.

00
05

0.
00

06
0.

00
06

0.
00

04
0.

00
04

0.
00

04
5

10
00

0.
45

36
0.

61
03

0.
60

58
0.

56
55

0.
00

04
0.

00
03

0.
00

04
0.

00
05

0.
00

03
0.

00
03

0.
00

03
6

20
0

0.
01

74
0.

16
27

0.
20

23
0.

18
45

0.
00

18
0.

00
50

0.
00

61
0.

00
59

0.
00

51
0.

00
41

0.
00

40
6

40
0

0.
01

75
0.

16
09

0.
20

21
0.

18
63

0.
00

10
0.

00
26

0.
00

31
0.

00
31

0.
00

26
0.

00
21

0.
00

20
6

80
0

0.
01

83
0.

16
25

0.
20

44
0.

18
95

0.
00

05
0.

00
12

0.
00

16
0.

00
15

0.
00

13
0.

00
10

0.
00

10
6

10
00

0.
01

75
0.

16
12

0.
20

00
0.

18
58

0.
00

04
0.

00
10

0.
00

13
0.

00
12

0.
00

10
0.

00
08

0.
00

08
7

20
0

0.
44

06
0.

61
76

0.
63

96
0.

62
76

0.
00

19
0.

00
17

0.
00

16
0.

00
18

0.
00

13
0.

00
12

0.
00

13
7

40
0

0.
44

40
0.

61
97

0.
64

05
0.

63
09

0.
00

09
0.

00
08

0.
00

07
0.

00
09

0.
00

07
0.

00
06

0.
00

06
7

80
0

0.
44

54
0.

62
08

0.
64

09
0.

63
24

0.
00

05
0.

00
04

0.
00

04
0.

00
04

0.
00

03
0.

00
03

0.
00

03
7

10
00

0.
44

34
0.

61
88

0.
63

88
0.

63
05

0.
00

04
0.

00
03

0.
00

03
0.

00
04

0.
00

03
0.

00
02

0.
00

03
8

20
0

-0
.0

98
3

-0
.4

45
3

-0
.5

37
5

-0
.5

22
9

0.
00

08
0.

00
49

0.
00

83
0.

00
84

0.
00

45
0.

00
51

0.
00

51
8

40
0

-0
.0

97
6

-0
.4

42
2

-0
.5

34
7

-0
.5

18
7

0.
00

04
0.

00
23

0.
00

42
0.

00
43

0.
00

23
0.

00
26

0.
00

26
8

80
0

-0
.0

98
3

-0
.4

44
5

-0
.5

37
8

-0
.5

21
2

0.
00

02
0.

00
11

0.
00

20
0.

00
20

0.
00

11
0.

00
13

0.
00

13
8

10
00

-0
.0

97
5

-0
.4

42
4

-0
.5

35
3

-0
.5

18
3

0.
00

01
0.

00
09

0.
00

17
0.

00
17

0.
00

09
0.

00
11

0.
00

11



65

T
ab

le
2.

2.
Si

m
ul

at
io

n
re

su
lt
s

fo
r

pa
ir

w
is

e
ag

re
em

en
t

m
in

us
di

sa
gr

ee
m

en
t

fo
r

ca
te

go
ri

ca
l
re

sp
on

se
s

(c
on

ti
nu

ed
)

9
20

0
0.

31
63

0.
46

05
0.

55
66

0.
56

79
0.

00
19

0.
00

15
0.

00
20

0.
00

21
0.

00
15

0.
00

20
0.

00
19

9
40

0
0.

31
83

0.
46

16
0.

55
55

0.
56

84
0.

00
10

0.
00

08
0.

00
11

0.
00

11
0.

00
07

0.
00

10
0.

00
09

9
80

0
0.

31
85

0.
46

23
0.

55
53

0.
56

86
0.

00
05

0.
00

04
0.

00
06

0.
00

06
0.

00
04

0.
00

05
0.

00
05

9
10

00
0.

31
87

0.
46

24
0.

55
52

0.
56

86
0.

00
04

0.
00

03
0.

00
04

0.
00

04
0.

00
03

0.
00

04
0.

00
04

10
20

0
-0

.2
58

1
-0

.3
81

1
-0

.5
96

6
-0

.5
93

6
0.

00
07

0.
00

62
0.

00
83

0.
00

80
0.

00
52

0.
00

59
0.

00
59

10
40

0
-0

.2
58

5
-0

.3
80

8
-0

.5
95

4
-0

.5
92

6
0.

00
03

0.
00

30
0.

00
40

0.
00

38
0.

00
26

0.
00

30
0.

00
30

10
80

0
-0

.2
58

6
-0

.3
79

1
-0

.5
92

2
-0

.5
89

6
0.

00
02

0.
00

16
0.

00
21

0.
00

19
0.

00
13

0.
00

15
0.

00
15

10
10

00
-0

.2
58

3
-0

.3
79

4
-0

.5
92

2
-0

.5
89

7
0.

00
01

0.
00

13
0.

00
17

0.
00

16
0.

00
11

0.
00

12
0.

00
12

11
20

0
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

11
40

0
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

11
80

0
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

11
10

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

12
20

0
0.

61
77

0.
81

06
0.

83
24

0.
82

51
0.

00
16

0.
00

06
0.

00
05

0.
00

06
0.

00
05

0.
00

04
0.

00
04

12
40

0
0.

61
75

0.
80

96
0.

83
17

0.
82

49
0.

00
08

0.
00

03
0.

00
02

0.
00

03
0.

00
03

0.
00

02
0.

00
02

12
80

0
0.

61
85

0.
81

04
0.

83
16

0.
82

52
0.

00
04

0.
00

01
0.

00
01

0.
00

01
0.

00
01

0.
00

01
0.

00
01

12
10

00
0.

61
95

0.
81

09
0.

83
19

0.
82

58
0.

00
03

0.
00

01
0.

00
01

0.
00

01
0.

00
01

0.
00

01
0.

00
01

13
20

0
-0

.0
53

2
-0

.3
39

2
-0

.5
43

2
-0

.5
26

6
0.

00
05

0.
00

89
0.

00
85

0.
00

93
0.

00
64

0.
00

46
0.

00
48

13
40

0
-0

.0
53

8
-0

.3
40

8
-0

.5
41

3
-0

.5
26

0
0.

00
02

0.
00

46
0.

00
42

0.
00

47
0.

00
33

0.
00

24
0.

00
25

13
80

0
-0

.0
54

0
-0

.3
40

4
-0

.5
38

8
-0

.5
24

3
0.

00
01

0.
00

22
0.

00
21

0.
00

24
0.

00
17

0.
00

12
0.

00
13

13
10

00
-0

.0
53

6
-0

.3
38

7
-0

.5
37

1
-0

.5
22

8
0.

00
01

0.
00

17
0.

00
17

0.
00

19
0.

00
13

0.
00

10
0.

00
10

14
20

0
0.

80
10

0.
90

36
0.

91
43

0.
91

78
0.

00
10

0.
00

03
0.

00
02

0.
00

02
0.

00
03

0.
00

02
0.

00
02

14
40

0
0.

80
01

0.
90

31
0.

91
30

0.
91

69
0.

00
05

0.
00

02
0.

00
01

0.
00

01
0.

00
02

0.
00

01
0.

00
01

14
80

0
0.

80
02

0.
90

31
0.

91
26

0.
91

67
0.

00
03

0.
00

01
0.

00
01

0.
00

01
0.

00
01

0.
00

01
0.

00
01

14
10

00
0.

80
06

0.
90

32
0.

91
28

0.
91

69
0.

00
02

0.
00

01
0.

00
00

0.
00

00
0.

00
01

0.
00

00
0.

00
00

15
20

0
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

15
40

0
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

15
80

0
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

15
10

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00



66

2.6.3 Discussion

Generally speaking, the proposed method is good as an indicator of measurement

of agreement. In most cases, the equal weighting scheme, the max weighting scheme

and the square weighting scheme have similar performance and work well. Under some

cases, such as when the diagonal probabilities predominate (for example, case 7, case

12, case 14), it overestimates the agreement level. The proposed method is very good

at detecting poor or good agreement. We therefore recommend that a researcher look

at the data before he actually does the analysis and if possible, calculate Cohen’s kappa

and the proposed statistic using different weights. If there is a significant difference, a

decision can be made based on the distribution of the original data.

The measurement of agreement is itself a complicated issue. If there are more

categories available, then the two raters have more options in giving their evaluations.

And the difference between two categories will become more subtle, making it harder

for two raters to completely agree with each other. For example, if there are only two

categories, good and bad, then it is very easy for two skillful raters to agree on an

individual rating. However, if there are more categories, say, extremely poor, poor, fair,

good and excellent (here we only consider them as categorical), then it is natural that

the two raters will disagree on some ratings. Suppose fair, good and excellent can be

categorized as being good and extremely poor and poor can be categorized as being

poor. Consider the following example:
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y

0 1 2 3 4 PX (x)

0 0 0.2 0 0 0 0.2

1 0.3 0 0 0 0 0.3

x 2 0 0 0 0.1 0.1 0.2

3 0 0 0.1 0 0.1 0.2

4 0 0 0.1 0 0 0.1

PY (y) 0.3 0.2 0.2 0.1 0.2 1

So Cohen’s kappa gives -0.25 and the proposed method with max and square

weight both give -0.4. However, if we have only two categories, then the distribution is

y

0 1 PX (x)

0 0.5 0 0.5

x 2 0 0.5 0.5

PY (y) 0.5 0.5 1

Cohen’s kappa is one and the proposed method also gives one. This example

shows that the degree of agreement really depends on the evaluation methods. Given

such context, it makes sense intuitively that some agreement coefficients may be higher

than the sum of diagonal elements. And in such cases, the proposed method makes

sense.
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2.7 Simulation for Ordinal Responses

2.7.1 Simulation Design

We used Matlab to generate samples following multinominal distributions. For

each distribution, we calculated Cohen’s weighted kappa using simple proportional weights,

square weights and exponential weights. We also calculated the proposed statistic κw

using corresponding weights. Their variances are also given as well as the variances

calculated using the sample counterparts calculated using the asymptotic distribution

formula. Each simulation is run 1000 times. Keep in mind that in practice, the inter-

pretation of the magnitude of weighted sum of pairwise agreement measures is similar as

that of simple kappa. Agreement measures with values greater than 0.75 or so may be

taken to represent excellent agreement, values between 0.40 and 0.75 may be taken to

represent fair to good agreement and values below 0.40 or so may be taken to represent

poor agreement.

2.7.2 Simulation Results

Note: wk1, wk2, wk3 are Cohen’s weighted kappa using proportional weights,

square distance weights and exponential distance weights, respectively. mwk1, mwk2,

mwk3 are the proposed statistic’s κw using proportional weights, square weights and ex-

ponential weights, respectively. x1, y1 are the variances of wk1 and mwk1, respectively. z1

is the mean asymptotic variance for the proposed statistic κw using proportional weights.

x2, y2 are the variances of wk2 and mwk2, respectively. z2 is the mean asymptotic vari-

ance for the proposed statistic κw using square weights. x3, y3 are the variance of wk3
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and mwk3, respectively. z3 is the mean asymptotic variance for the proposed statistic κw

using exponential weights.

2.7.3 Discussion

It is more difficult and less intuitive to interpret weighted kappa since the degree

of agreement is not as straightforward. Generally speaking, the proposed method is good

as an indicator of measurement of agreement. In most cases, the equal weighting scheme,

the max weighting scheme and the square weighting scheme have similar performances

and work well. Under some cases, such as when the diagonal probabilities predominate

(for example, case 7, case 12, case 14), it overestimates the agreement level. The proposed

method is very good at detecting poor agreement. We therefore recommend that a

researcher examine the data before he actually does the analysis and if possible, calculate

Cohen’s kappa and the proposed statistic using different weights. If there is significant

difference, a decision can be made based on the distribution of the original data.
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Chapter 3

Development, Properties and Estimators

of the Re-defined Conditional κ

3.1 Definition of the Conditional κ

Another alternative that we have investigated is to construct the following mea-

surement of agreement:

κ =

k∑
i=1

wi(po,i − pe,i)

k∑
i=1

wi(1 − pe,i)
, (3.1)

where po,i is defined as

po,i =
pii

pii +
k∑

j=0
j �=i

(pij + pji)
.

And pe,i is defined as

pe,i =
pi·p·i

pi·p·i +
k∑

j=0
j �=i

(pi·p·j + pj·p·i)
.

It can be shown that
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po,i =
pii

pii +
k∑

j=0
j �=i

(pij + pji)

=
pii

pi· + p·i − pii
.

Similarly,

pe,i =
pi·p·i

pi·p·i +
k∑

j=0

j �=i

(pi·p·j + pj·p·i)

=
pi·p·i

k∑
j=0

(pi·p·j + pj·p·i) − pi·p·i

=
pi·p·i

pi·
k∑

j=0
p·j + p·i

k∑
j=0

pj· − pi·p·i

=
pi·p·i

pi· + p·i − pi·p·i
.

Therefore, the conditional κ can also be expressed as

κ =

k∑
i=0

wi(
pii

pi·+p·i−pii
− pi·p·i

pi·+p·i−pi·p·i
)

k∑
i=0

wi(1 − pi·p·i
pi·+p·i−pi·p·i

)
. (3.2)

3.2 Properties of the Conditional κ

1. −1 ≤ κ ≤ 1.

2. κ = 1 if pij = 0, for i, j = 0, 1, 2, · · · , k, i �= j.
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This property is nice in that when we have complete agreement, we will get 1 for

the proposed method.

3. κ = 0 if pii = pi·p·i, i = 0, 1, 2, · · · , k.

This property means that when the observed agreement can be accounted exactly

by chance, then the agreement coefficient is 0.

4. κ = −1 if pi· + p·i = 3pi·p·i and pii = 0 for each i = 0, 1, 2, · · · , k.

Proof. 1. From the definition of po,i and pe,i, it can be easily seen that 0 ≤ po,i ≤ 1

and 0 ≤ pe,i ≤ 1. Hence it is straightforward to see that

pii

pi· + p·i − pii
− pi·p·i

pi· + p·i − pi·p·i
≤ 1 − pi·p·i

pi· + p·i − pi·p·i
,

for each i = 0, 1, 2, · · · , k.

Therefore,

κ =

k∑
i=0

wi(
pii

pi·+p·i−pii
− pi·p·i

pi·+p·i−pi·p·i
)

k∑
i=0

wi(1 − pi·p·i
pi·+p·i−pi·p·i

)

≤ 1.

To show that

κ =

k∑
i=0

wi(
pii

pi·+p·i−pii
− pi·p·i

pi·+p·i−pi·p·i )

k∑
i=0

wi(1 − pi·p·i
pi·+p·i−pi·p·i )

≥ −1,
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we need to show that

k∑
i=0

wi(1 +
pii

pi· + p·i − pii
) ≥

k∑
i=0

wi(
2pi·p·i

pi· + p·i − pi·p·i
).

We want to show that

1 +
pii

pi· + p·i − pii
≥ 2pi·p·i

pi· + p·i − pi·p·i
,

for i = 0, 1, 2, · · · , k. Now if

pi·p·i
pi· + p·i − pi·p·i

≤ 1
2
,

then it is obvious that the inequality holds.

Suppose, on the other hand, that for some i,

pi·p·i
pi· + p·i − pi·p·i

≥ 1
2
.

That is, pi· + p·i ≤ 3pi·p·i. To avoid confusion, let v1 = pii, v2 = pi· and v3 = p·i.

So in this case, v2 + v3 ≤ 3v2v3. And we want to show that

v2 + v3

v2 + v3 − v1
≥ 2v2v3

v2 + v3 − v2v3
.

Note that v2 + v3 ≤ 3v2v3 can also be written as v2(1− v3)+ v3(1−2v2) ≤ 0. Since

0 ≤ v2 ≤ 1, 0 ≤ v3 ≤ 1, for the left side to be smaller than 0, v2 ≥ 1
2 . Similarly, we
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can also get that v3 ≥ 1
2 . We know that there can be only one such i that satisfies

these properties.

We can let v2 = 1
2 + a and v3 = 1

2 + b, where 0 ≤ a ≤ 1
2 and 0 ≤ b ≤ 1

2 . Then

v2 + v3 = 1 + a + b.

Because we know that v2 + v3 − v1 ≤ 1. So we can get v1 ≥ a + b.

Therefore, we get

v2 + v3

v2 + v3 − v1
≥ v2 + v3

v2 + v3 − (a + b)
.

We want to show that

v2 + v3

v2 + v3 − (a + b)
≥ 2v2v3

v2 + v3 − v2v3
.

If we plug in the values for v2 and v3, respectively, the inequality becomes

1 + a + b ≥ 2(1
2 + a)(1

2 + b)
1 + a + b − (1

2 + a)(1
2 + b)

.

That is, we need to show that

(1 + a + b)2 − (
1
2

+ a)(
1
2

+ b)(1 + a + b) ≥ 2(
1
2

+ a)(
1
2

+ b).

This means we need to prove that

(1 + a + b)2 ≥ (
1
2

+ a)(
1
2

+ b)(3 + a + b).
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Tedious but straightforward algebraic calculation shows that we need to prove

1
2
(a2 + b2) +

1
4
(a + b) +

1
4
≥ 2ab + ab(a + b).

Since we know that 0 ≤ a ≤ 1
2 and 0 ≤ b ≤ 1

2 , so 0 ≤ ab ≤ 1
4 . So 1

4(a+b) ≥ ab(a+b).

And since 1
2(a2 + b2) ≥ ab. Hence we can see that the inequality does hold. This

finishes the proof.

2. If pij = 0, for i, j = 0, 1, 2, · · · , k, i �= j, then we can get

pi· + p·i = 2pii.

Hence

pii

pi· + p·i − pii
= 1,

for i = 0, 1, 2, · · · , k

Therefore,

k∑
i=0

wi(
pii

pi· + p·i − pii
− 1) = 0

⇒
k∑

i=0

wi(
pii

pi· + p·i − pii
− pi·p·i

pi· + p·i − pi·p·i
) =

k∑
i=0

wi(1 − pi·p·i
pi· + p·i − pi·p·i

)

⇒ κ = 1.

3. If pii = pi·p·i, i = 0, 1, 2, · · · , k, then
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pii

pi· + p·i − pii
=

pi·p·i
pi· + p·i − pi·p·i

.

Thus each term in the numerator becomes zero and hence κ = 0.

4. From the previous proof, it can be easily verified that if pi· + p·i = 3pi·p·i and

pii = 0 for each i = 0, 1, 2, · · · , k, then

pii

pi· + p·i − pii
− pi·p·i

pi· + p·i − pi·p·i
= −1(1 − pi·p·i

pi· + p·i − pi·p·i
),

for each i = 0, 1, 2, · · · , k.

Hence

wi(
pii

pi· + p·i − pii
− pi·p·i

pi· + p·i − pi·p·i
) = −wi(1 − pi·p·i

pi· + p·i − pi·p·i
),

for each i = 0, 1, 2, · · · , k.

Therefore,

k∑
i=0

wi(
pii

pi· + p·i − pii
− pi·p·i

pi· + p·i − pi·p·i
) = −1 ×

k∑
i=0

wi(1 − pi·p·i
pi· + p·i − pi·p·i

).

As a result, κ = −1. Notice that this is a sufficient but not a necessary condition

for κ = −1. κ can be −1 under some other conditions.
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3.3 Asymptotic Distributions

As before, we can apply δ − method to derive the asymptotic distribution of κ.

Suppose the sample size is n. First note that for a bivariate sample of size n,

• p̂00 = 1
n

∑∑
I{X = 0, Y = 0}

• p̂01 = 1
n

∑∑
I{X = 0, Y = 1}

• p̂02 = 1
n

∑∑
I{X = 0, Y = 2}

...

• p̂kk = 1
n

∑∑
I{X = k, Y = k}.

When n is large, we know that there is strong convergence, i.e.,

• p̂00 −→ E(I{X = 0, Y = 0}) = p00

• p̂01 −→ E(I{X = 0, Y = 1}) = p01

• p̂02 −→ E(I{X = 0, Y = 2}) = p02

...

• p̂kk −→ E(I{X = k, Y = k}) = pkk.

First suppose that the weight wi does not depend on the data, for i = 0, 1, . . . , k.

Let v = (p00, p01, p02, · · · , pkk) and v̂ = (p̂00, p̂01, p̂02, · · · , p̂kk). Then the vector v̂

has an asymptotic normal distribution with

E(v̂) = (p00, p01, p02, · · · , pkk)
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and variance n−1Σ, where Σ is a (k + 1)2 × (k + 1)2 matrix such that

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p00(1 − p00) −p00p01 · · · −p00p0k −p00p10 ... −p00pkk

−p00p01 p01(1 − p01) · · · −p01p0k −p01p10 ... −p01pkk

...
...

...
...

...
...

...

...
...

...
...

...
...

...

−pkkp00 −pkkp01 · · · −pkkp0k −pkkp10 · · · pkk(1 − pkk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.3)

Let g(v) be a function of v such that

g(v) =

k∑
i=0

wi(
pii

pi·+p·i−pii
− pi·p·i

pi·+p·i−pi·p·i
)

k∑
i=0

wi(1 − pi·p·i
pi·+p·i−pi·p·i

)
.

Note that κ can also be written as

κ =

k∑
i=0

wi [(pi· + p·i)(pii − pi·p·i)]

k∑
i=0

wi [(pi· + p·i − pii)(pi· + p·i − 2pi·p·i)]
. (3.4)

Let

R =
k∑

i=0

wi [(pi· + p·i)(pii − pi·p·i)]

and

Q =
k∑

i=0

wi [(pi· + p·i − pii)(pi· + p·i − 2pi·p·i)] .
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Using the theory on functions of asymptotically normal vectors, we know that

g(v̂) has asymptotically a normal distribution with mean g(v) and variance n−1dΣd′,

where d is a (k + 1)2 vector such that d = (ġ(p)) with

d1 = ∂g
∂p00

∣∣∣
v=E(v)

= Qt1−Rt2
Q2 ,

d2 = ∂g
∂p01

∣∣∣
v=E(v)

= Qt3−Rt4
Q2 ,

d3 = ∂g
∂p02

∣∣∣
v=E(v)

= Qt5−Rt6
Q2 ,

...

...

dk+1 = ∂g
∂p0k

∣∣∣
v=E(v)

= Qt2k+1−Rt2k+2

Q2 ,

dk+2 = ∂g
∂p10

∣∣∣
v=E(v)

= Qt2k+3−Rt2k+4

Q2 ,

dk+3 = ∂g
∂p11

∣∣∣
v=E(v)

= Qt2k+5−Rt2k+6

Q2 ,

...

...

d(k+1)2 = ∂g
∂pkk

∣∣∣
v=E(v)

=
Qt

2(k+1)2−1
−Rt

2(k+1)2

Q2 ,

where

t1 = 2w0(p00 − p0·p·0) + w0(p0· + p·0)[1 − (p0· + p·0)],

t2 = w0(p0· + p·0) − 2p0·p·0 + 2w0[(p0· + p·0) − p00][1 − (p0· + p·0)],

t3 = w0[p00 − p0·p·0 − (p0· + p·0)p·0] + w1[p11 − p1·p·1 − (p1· + p·1)p1·],



82

t4 = w0[(p0· + p·0 − 2p0·p·0)+ (p0· + p·0 − p00)(1− 2p·0)]+w1[(p1· + p·1 − 2p1·p·1)+ (p1· +

p·1 − p11)(1 − 2p1·)],

t5 = w0[p00 − p0·p·0 − (p0· + p·0)p·0] + w2[p22 − p2·p·2 − (p2· + p·2)p2·],

t6 = w0[(p0· + p·0 − 2p0·p·0)+ (p0· + p·0 − p00)(1− 2p·0)]+w2[(p2· + p·2 − 2p2·p·2)+ (p2· +

p·2 − p22)(1 − 2p2·)],

...

...

t2k+1 = w0[p00 − p0·p·0 − (p0· + p·0)p·0] + wk[pkk − pk·p·k − (pk· + p·k)pk·],

t2k+2 = w0[(p0· + p·0 − 2p0·p·0)+ (p0· + p·0− p00)(1− 2p·0)]+ wk+1[(pk· + p·k − 2pk·p·k)+

(pk· + p·k − pkk)(1 − 2pk·)],

t2k+3 = w0[p00 − p0·p·0 − (p0· + p·0)p0·] + w1[p11 − p1·p·1 − (p1· + p·1)p·1],

t2k+4 = w0[(p0· + p·0 − 2p0·p·0) + (p0· + p·0 − p00)(1 − 2p0·)] + w1[(p1· + p·1 − 2p1·p·1) +

(p1· + p·1 − p11)(1 − 2p·1)],

t2k+5 = 2w1(p11 − p1·p·1) + w1(p1· + p·1)[1 − (p1· + p·1)],

t2k+6 = w1(p1· + p·1) − 2p1·p·1 + 2w1[(p1· + p·1) − p11][1 − (p1· + p·1)],

...

...

t2(k+1)2−1 = 2wk(pkk − pk·p·k) + wk(pk· + p·k)[1 − (pk· + p·k)],

t2(k+1)2 = wk(pk· + p·k) − 2pk·p·k + 2wk[(pk· + p·k) − pkk][1 − (pk· + p·k)].
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In other words,

√
n [κ̂ − κ] L−→

n→∞N
(
0, dΣd

′)
. (3.5)

If, on the other hand, wi does depend on the data, for i = 0, 1, . . . , k. wi can be

considered as a function with respect to p00, p01, · · · , pkk. Then κ can be considered as

a function with respect to p00, p01, · · · , pkk.

Note that

• p̂00
P−→E(I{X = 0, Y = 0}) = p00

• p̂01
P−→E(I{X = 0, Y = 1}) = p01

• p̂02
P−→E(I{X = 0, Y = 2}) = p02

...

• p̂kk
P−→E(I{X = k, Y = k}) = pkk.

Using similar arguments as before, we also have

√
n [κ̂ − κ] L−→

n→∞N
(
0, dΣd′

)
. (3.6)

The actual form of d depends on the specification of the wi, for i = 0, 1, . . . , k.

So no matter whether wi depends on the data or not, we can get the same form of

asymptotic distributions.
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3.4 Choices of Weight

There are many weighting schemes that we can consider for the conditional kappa.

For example, we can use equal weight, i.e., we let wi to be the same for all i = 0, 1, . . . , k.

We can also use the agreement weights, i.e., using each diagonal element as the weights.

Other weighting schemes include the functions of the agreement weights, such as the

cube of each diagonal weights, etc..

3.5 Simulation Study

3.5.1 Simulation Design

We used the same simulation design as in the last chapter and added one more

case that has 6 categories. The distribution is

Case 16

y

0 1 2 3 4 5 PX (x)

0 0.02 0.01 0.03 0.001 0.001 0.002 0.064

1 0.05 0.08 0.01 0.005 0 0 0.145

2 0.003 0.012 0.25 0 0.002 0 0.267

x 3 0.005 0 0 0.03 0 0.01 0.3

4 0 0.05 0 0.2 0.001 0.001 0.252

5 0.02 0.02 0.007 0.08 0 0.1 0.227

PY (y) 0.098 0.172 0.297 0.316 0.004 0.113 1
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We have six categories and medium agreement for this case. The diagonal el-

ements add up to 0.481. The marginal probabilities are not very different from each

other.

In the simulation studies, we calculated Cohen’s kappa, the proposed conditional

kappa using equal weight, agreement weights and the cube of agreement weights as

well as their corresponding observed variances. Since the asymptotic formula becomes

increasingly complicated as there are more categories in the responses, making it prac-

tically useless, we used bootstrap to estimate the large sample variances and compared

the results with the observed variances.

3.5.2 Simulation Results

Table 3.1 gives the simulation results for case 1 to case 8 and table 3.2 gives the

simulation results for case 9 to case 16.

Note: Here κ means Cohen’s simple kappa, rm1, rm2 and rm3 is the proposed

method using equal weight, the agreement weight(using each diagonal element as a weight)

and the cube of the agreement weight(the cube of each diagonal weight), respectively. The

last four columns are the corresponding observed variances.
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Table 3.1. Simulation results for conditional kappa

case n κ rm1 rm2 rm3 v1 v2 v3 v4

1 20 0.5079 0.3981 0.4331 0.4588 0.0271 0.0245 0.0243 0.0285
1 40 0.5067 0.3883 0.4088 0.4318 0.0129 0.0114 0.0115 0.0136
1 80 0.5078 0.3856 0.4005 0.4211 0.0060 0.0053 0.0052 0.0062
1 200 0.5137 0.3887 0.3997 0.4173 0.0025 0.0023 0.0023 0.0026
2 100 -0.2221 -0.1110 -0.1206 -0.1259 0.0023 0.0006 0.0013 0.0031
2 200 -0.2217 -0.1113 -0.1240 -0.1337 0.0012 0.0003 0.0007 0.0020
2 400 -0.2219 -0.1118 -0.1245 -0.1343 0.0006 0.0002 0.0003 0.0011
2 800 -0.2222 -0.1121 -0.1252 -0.1356 0.0003 0.0001 0.0002 0.0006
3 100 0.8581 0.7806 0.7910 0.8055 0.0021 0.0042 0.0038 0.0037
3 200 0.8614 0.7840 0.7933 0.8074 0.0009 0.0019 0.0017 0.0017
3 400 0.8607 0.7825 0.7914 0.8052 0.0005 0.0010 0.0009 0.0008
3 800 0.8606 0.7822 0.7908 0.8043 0.0002 0.0005 0.0004 0.0004
4 100 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
4 200 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
4 400 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
4 800 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
5 100 0.4540 0.3599 0.3450 0.3294 0.0041 0.0037 0.0036 0.0044
5 200 0.4532 0.3576 0.3398 0.3205 0.0019 0.0017 0.0017 0.0021
5 400 0.4544 0.3583 0.3393 0.3188 0.0010 0.0009 0.0008 0.0010
5 800 0.4539 0.3578 0.3377 0.3157 0.0004 0.0004 0.0004 0.0005
6 100 0.0166 0.0456 0.1071 0.1022 0.0038 0.0016 0.0037 0.0046
6 200 0.0177 0.0452 0.1019 0.0984 0.0019 0.0008 0.0019 0.0024
6 400 0.0179 0.0436 0.0983 0.0978 0.0009 0.0004 0.0009 0.0011
6 800 0.0180 0.0441 0.0975 0.0974 0.0005 0.0002 0.0005 0.0006
7 100 0.4423 0.3245 0.3719 0.4313 0.0037 0.0026 0.0034 0.0064
7 200 0.4427 0.3238 0.3637 0.4208 0.0018 0.0013 0.0015 0.0028
7 400 0.4432 0.3234 0.3628 0.4215 0.0010 0.0007 0.0008 0.0015
7 800 0.4437 0.3238 0.3609 0.4178 0.0005 0.0003 0.0004 0.0008
8 100 -0.0961 -0.0470 0.0143 0.0208 0.0015 0.0004 0.0011 0.0015
8 200 -0.0981 -0.0488 0.0088 0.0132 0.0007 0.0002 0.0005 0.0006
8 400 -0.0984 -0.0492 0.0067 0.0092 0.0004 0.0001 0.0002 0.0003
8 800 -0.0973 -0.0488 0.0066 0.0080 0.0002 0.0000 0.0001 0.0001
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Table 3.2. Simulation results for conditional kappa (continued)

case n κ rm1 rm2 rm3 v1 v2 v3 v4

9 100 0.3180 0.1409 0.3788 0.3697 0.0039 0.0008 0.0040 0.0050
9 200 0.3149 0.1382 0.3732 0.3625 0.0019 0.0004 0.0019 0.0023
9 400 0.3201 0.1400 0.3772 0.3656 0.0009 0.0002 0.0009 0.0011
9 800 0.3192 0.1394 0.3756 0.3626 0.0005 0.0001 0.0005 0.0006

10 100 -0.2577 -0.1037 -0.1718 -0.1774 0.0014 0.0002 0.0011 0.0018
10 200 -0.2577 -0.1043 -0.1740 -0.1842 0.0007 0.0001 0.0005 0.0009
10 400 -0.2583 -0.1051 -0.1750 -0.1880 0.0003 0.0000 0.0002 0.0004
10 800 -0.2579 -0.1049 -0.1757 -0.1907 0.0002 0.0000 0.0001 0.0002
11 100 1.0000 1.0000 1.0000 1.0000 0* 0.0000 0.0000 0.0000
11 200 1.0000 1.0000 1.0000 1.0000 0* 0.0000 0.0000 0.0000
11 400 1.0000 1.0000 1.0000 1.0000 0* 0.0000 0.0000 0.0000
11 800 1.0000 1.0000 1.0000 1.0000 0* 0.0000 0.0000 0.0000
12 100 0.6182 0.4575 0.5259 0.5786 0.0033 0.0035 0.0038 0.0050
12 200 0.6180 0.4556 0.5177 0.5673 0.0017 0.0018 0.0019 0.0024
12 400 0.6184 0.4558 0.5142 0.5628 0.0008 0.0008 0.0009 0.0012
12 800 0.6190 0.4558 0.5133 0.5611 0.0004 0.0004 0.0004 0.0006
13 100 -0.0532 -0.0175 0.0197 0.0327 0.0008 0.0002 0.0018 0.0038
13 200 -0.0541 -0.0181 0.0130 0.0272 0.0005 0.0001 0.0009 0.0026
13 400 -0.0536 -0.0182 0.0099 0.0242 0.0002 0.0001 0.0004 0.0015
13 800 -0.0536 -0.0183 0.0088 0.0232 0.0001 0.0000 0.0002 0.0009
14 100 0.7995 0.5652 0.7814 0.8379 0.0022 0.0022 0.0023 0.0025
14 200 0.8002 0.5653 0.7791 0.8369 0.0010 0.0011 0.0011 0.0013
14 400 0.7992 0.5639 0.7760 0.8345 0.0005 0.0005 0.0006 0.0006
14 800 0.8006 0.5643 0.7761 0.8348 0.0003 0.0003 0.0003 0.0003
15 100 1.0000 1.0000 1.0000 1.0000 0 0.0000 0.0000 0.0000
15 200 1.0000 1.0000 1.0000 1.0000 0 0.0000 0.0000 0.0000
15 400 1.0000 1.0000 1.0000 1.0000 0 0.0000 0.0000 0.0000
15 800 1.0000 1.0000 1.0000 1.0000 0 0.0000 0.0000 0.0000
16 100 0.3857 0.2446 0.5215 0.7048 0.0024 0.0013 0.0039 0.0082
16 200 0.3863 0.2445 0.5157 0.7098 0.0012 0.0007 0.0020 0.0038
16 400 0.3875 0.2450 0.5121 0.7109 0.0006 0.0004 0.0010 0.0021
16 800 0.3890 0.2459 0.5116 0.7140 0.0003 0.0002 0.0004 0.0009
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3.5.3 Discussion

As can be seen from the simulation results, for the first few cases, the proposed

method gives values smaller than Cohen’s kappa, although for many cases this difference

is not very significant. And equal weight almost does not work in any case. The observed

variances for Cohen’s kappa and the conditional kappa are very close to each other, when

the sample size is large, the differences are almost negligible.

The only significant difference between kappa and the conditional kappa appears

in the last case in which the proposed method gives very large estimates.

3.5.4 Bootstrap to Estimate Variances

Since the asymptotic variance becomes increasingly complicated the categories

increase, we, instead, consider using bootstrap in obtaining the estimated variances of the

estimated conditional kappa. We compared Cohen’s kappa with the conditional kappa

using the weights wi = P (X = i or Y = i) for i = 0, 1, . . . , k. We estimated Cohen’s

kappa, conditional kappa, and conditional kappa estimated by using bootstrap as well as

the their corresponding variances. In addition, we also included the asymptotic variances

for Cohen’s kappa to compare its performance with that of the observed variances of

Cohen’s kappa and the conditional kappa.

We did 1000 simulations for each sample size in each distribution and 800 boot-

strap replicates for each simulation. The observed variances of the proposed method and

the mean bootstrap variances are compared.
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Table 3.3. Bootstrap simulation result for conditional kappa

Case n κ rm rmb v1 v2 v3 v4

1 80 0.5110 0.3897 0.3903 0.0057 0.0051 0.0054 0.0061
1 160 0.5099 0.3870 0.3873 0.0030 0.0027 0.0027 0.0031
2 80 -0.2210 -0.0779 -0.1175 0.0031 0.0001 0.0007 0.0034
2 160 -0.2193 -0.1197 -0.1182 0.0015 0.0004 0.0004 0.0015
3 80 0.8568 0.7861 0.7859 0.0024 0.0046 0.0045 0.0024
3 160 0.8596 0.7887 0.7886 0.0012 0.0023 0.0023 0.0012
4 80 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0003
4 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0001
5 80 0.4523 0.3291 0.3301 0.0049 0.0041 0.0037 0.0047
5 160 0.4536 0.3288 0.3293 0.0024 0.0020 0.0019 0.0023
6 80 0.0191 0.0145 0.0167 0.0050 0.0019 0.0015 0.0046
6 160 0.0193 0.0139 0.0152 0.0023 0.0008 0.0008 0.0024
7 80 0.4425 0.3134 0.3143 0.0045 0.0036 0.0032 0.0047
7 160 0.4456 0.3147 0.3151 0.0024 0.0019 0.0016 0.0024
8 80 -0.0960 -0.0506 -0.0485 0.0018 0.0005 0.0004 0.0018
8 160 -0.0944 -0.0498 -0.0488 0.0009 0.0002 0.0002 0.0009
9 80 0.3181 0.2289 0.2312 0.0049 0.0033 0.0021 0.0048
9 160 0.3152 0.2256 0.2262 0.0023 0.0015 0.0010 0.0024

10 80 -0.2558 -0.1362 -0.1335 0.0017 0.0004 0.0004 0.0017
10 160 -0.2558 -0.1363 -0.1346 0.0008 0.0002 0.0002 0.0008
11 80 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0003
11 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0001
12 80 0.6199 0.4813 0.4822 0.0042 0.0048 0.0041 0.0039
12 160 0.6203 0.4798 0.4800 0.0019 0.0022 0.0021 0.0020
13 80 -0.0554 -0.0291 -0.0277 0.0012 0.0003 0.0003 0.0011
13 160 -0.0543 -0.0286 -0.0279 0.0006 0.0002 0.0001 0.0006
14 80 0.7979 0.6972 0.7204 0.0027 0.0047 0.0032 0.0026
14 160 0.7985 0.6964 0.6979 0.0012 0.0021 0.0015 0.0013
15 80 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
15 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
16 80 0.3871 0.2637 0.2649 0.0032 0.0023 0.0014 0.0030
16 160 0.3863 0.2618 0.2621 0.0016 0.0011 0.0007 0.0015
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Note: κ means Cohen’s kappa, rm is the conditional kappa using the third weight,

rmb is the mean of the proposed method using bootstrap, v1 is the observed variance of

Cohen’s kappa, v2 is the variance of the proposed method, v3 is the mean of the bootstrap

variances and v4 is the mean of the asymptotic variances of Cohen’s kappa.

3.5.5 Discussion

The results show that the asymptotic formula for Cohen’s kappa has very good

performance. When the sample size is 200, variances calculated using the asymptotic

formula are almost equal to the observed variances. Generally speaking, the bootstrap

method also works well in that the variances obtained using bootstrap are very close

to the true observed variances. Moreover, the bootstrap estimates are very close to the

observed values of the conditional kappa. And the variances for the conditional kappa

are smaller than those of Cohen’s kappa. In other words, bootstrap is a good alternative

to the complicated asymptotic distribution formula.
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Chapter 4

Multivariate Kappa

4.1 Multivariate Kappa

Let X and Y be categorical variables, with the categories being designated as

0, 1, 2, · · · , k. Let pij = Pr(X = i, Y = j), i, j = 0, 1, 2, · · · , k, denote the bivariate prob-

ability and let pi· = Pr(X = i) and p·j = Pr(Y = j) denote the marginal probabilities.

Let I(·) denote the indicator function, and define the (k + 1) × 1 vectors as

ZX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(X = 0)

I(X = 1)

I(X = 2)

...

I(X = k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

ZY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(Y = 0)

I(Y = 1)

I(Y = 2)

...

I(Y = k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Define the (k + 1) × (k + 1) matrices PD and PI as

PD = E[(ZX − ZY )(ZX − ZY )T ]

and

PI = EInd[(ZX − ZY )(ZX − ZY )T ],

where EInd[·] denotes expectation under the assumption that X and Y are independent.

Suppose A is a non-zero vector such that A ∈ R
k+1. Then

ATPDA = ATE[(ZX − ZY )(ZX − ZY )T ]A

= E[AT(ZX − ZY )(ZX − ZY )T A]

= E[(UA)2] ≥ 0,

where UA is the random variable (ZX −ZY )TA. Therefore, PD is a nonnegative definite

matrix, denoted by PD ≥ 0. Similarly, it can be shown that PI is also a non-negative

definite matrix, denoted by PI ≥ 0.

Next,
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ZX − ZY =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(X = 0) − I(Y = 0)

I(X = 1) − I(Y = 1)

I(X = 2) − I(Y = 2)

...

I(X = k) − I(Y = k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Straightforward calculations lead to

PD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p0· + p·0 − 2p00) (−p01 − p10) · · · (−p0k − pk0)

(−p01 − p10) (p1· + p·1 − 2p11) · · · (−p1k − pk1)

...
...

. . .
...

(−p0k − pk0) (−p1k − pk1) · · · (pk· + p·k − 2pkk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

PI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p0· + p·0 − 2p0·p·0) (−p0·p·1 − p1·p·0) · · · (−p0·p·k − pk·p·0)

(−p0·p·1 − p1·p·0) (p1· + p·1 − 2p1·p·1) · · · (−p1·p·k − pk·p·1)

...
...

. . .
...

(−p0·p·k − pk·p·0) (−p1·p·k − pk·p·1) · · · (pk· + p·k − 2pk·p·k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Therefore, PI − PD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(p00 − p0·p·0) (p01 − p0·p·1) + (p10 − p1·p·0) · · · (p0k − p0·p·k) + (pk0 − pk·p·0)

(p01 − p0·p·1) + (p10 − p1·p·0) 2(p11 − p1·p·1) · · · (p1k − p1·p·k) + (pk1 − pk·p·1)

...
...

. . .
...

(p0k − p0·p·k) + (pk0 − pk·p·0) (p1k − p1·p·k) + (pk1 − pk·p·1) · · · 2(pkk − pk·p·k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Before presenting the properties of PI −PD, we first exclude one scenario in which

the joint distribution is a degenerate matrix. That is, if for some i = 0, 1, 2, · · · , k, pii = 1

and pmn = 0 for all m �= i, n �= i, then we say that the matrix representing the joint

distribution is a degenerate matrix. For example, the following joint distribution matrix

is a degenerate matrix:

y

0 1 2 PX (x)

0 1 0 0 1

x 1 0 0 0 0

2 0 0 0 0

PY (y) 1 0 0 1

The difference, PI − PD, satisfies the following properties:

1. −PI ≤ PI − PD ≤ PI .

2. If X and Y are independent, then PI − PD is a null matrix.
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3. X = Y with probability one, i.e., pij = 0 for all i �= j, if and only if PI −PD = PI .

4. Excluding the set of degenerate cases, pii = 0 for each i = 0, 1, 2, · · · , k and pij =

pji = 0.5 for one choice of i �= j if and only if PI − PD = −PI .

Proof.

1. The right inequality is self-evident since it means that PD is a nonnegative matrix.

To show that the left side inequality holds, we need to show that 2PI − PD ≥ 0.

First note that

PI = EInd[(ZX − ZY )(ZX − ZY )T ]

= EInd[ZXZT
X − ZXZT

Y − ZY ZT
X + ZY ZT

Y ]

= (ΣXX + μXμT
X

) − μXμT
Y
− μY μT

X
+ (ΣY Y + μY μT

Y
)

= (ΣXX + ΣY Y ) + (μX − μY )(μX − μY )T

and
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PD = E[(ZX − ZY )(ZX − ZY )T ]

= E[ZXZT
X
− ZXZT

Y
− ZY ZT

X
+ ZY ZT

Y
]

= (ΣXX + μXμT
X) − (ΣXY + μXμT

Y ) − (ΣY X + μY μT
X)

+(ΣY Y + μY μT
Y

)

= (ΣXX + ΣY Y ) − ΣXY − ΣY X + (μX − μY )(μX − μY )T.

Then

2PI − PD = ΣXX + ΣY Y + ΣXY + ΣY X + (μX − μY )(μX − μY )T

= [I I]

⎡
⎢⎢⎣ ΣXX ΣXY

ΣY X ΣY Y

⎤
⎥⎥⎦
⎡
⎢⎢⎣ I

I

⎤
⎥⎥⎦+ (μX − μY )(μX − μY )T,

which is nonnegative definite because

⎡
⎢⎢⎣ ΣXX ΣXY

ΣY X ΣY Y

⎤
⎥⎥⎦

is a covariance matrix and by definition, it is nonnegative definite. Since (μX −

μY )(μX −μY )T is also nonnegative definite, it follows that 2PI +PD is nonnegative
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definite because the sum of two nonnegative definite matrices is itself nonnegative

definite, which completes the proof.

2. If X and Y are independent, then pij = pi·p·j, for i, j = 0, 1, 2, · · · , k. It can easily

be verified that PI − PD is a null matrix.

Remark 2. Note that X = Y is only a sufficient but not a necessary condition for

PI − PD being a null matrix. Consider the following example:

y

0 1 2 PX (x)

0 0.04 0.08 0.08 0.2

x 1 0.16 0.36 0.08 0.6

2 0 0.16 0.04 0.2

PY (y) 0.2 0.6 0.2 1

Apparently, this satisfies the condition that PI − PD is a null matrix. But X and

Y are not independent.

3. If PI − PD = PI , for each i = 0, 1, 2, · · · , k, for j = 0, 1, 2, · · · , k, where j �= i, we

have

pij − pi·p·j + pji − pj·p·i = −pi·p·j − pj·p·i

⇒ pij + pji = 0

⇒ pij = pji = 0.
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So pij = 0 for i �= j, that is, X = Y with probability one.

Suppose, on the other hand, pij = 0 for i �= j. It follows that pii = pi· = p·i. So for

each i = 0, 1, 2, · · · , k, 2(pii − pi·p·i) = pi· + p·i − 2pi·p·i. Therefore, the diagonal

elements of PI − PD are the same as the corresponding ones of PI . Since pij = 0

for all i �= j, it can be easily verified that all the off-diagonal elements of PI − PD

are the same as the corresponding ones of PI . Hence, PI − PD = PI .

4. If pii = 0 for each i = 0, 1, 2, · · · , k and pij = pji = 0.5 for one choice of i �= j,

then pi· = pj· = p·i = p·j = 0.5 for some choice of i �= j and all other elements

are 0. So for the specified i and j such that pij = 0.5 = pji, 2(pii − pi·p·i) = −0.5.

For the corresponding element in −PI , it is 1[pi· + p·i − 2pi·p·i] = −0.5. Therefore,

the corresponding diagonal elements in both matrices are equal. To see that the

off-diagonal elements are the same for both matrices, without loss of generality, we

can assume that p01 = p10 = 0.5. Therefore, p0· = p1· = p·0 = p·1. It can be easily

verified that (p01 − p0·p·1) + (p10 − p1·p·0) = p0·p·1 + p1·p·0. Because all the other

elements are 0, we can then conclude that PI − PD = −PI .

Suppose, on the other hand, that PI − PD = −PI , which implies that 2PI = PD.

Considering the ith diagonal element of 2PI and PD, i = 0, 1, 2, · · · , k, we get

2pii + pi· + p·i − 4pi·p·i = 0.

Summing over all diagonal elements yields that
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k∑
i=0

pii = 2
k∑

i=0

pi·p·i − 1.

We want to show that
k∑

i=0

pii = 0.

Let A = [p0· p1· · · · pk·]
T and B = [p·0 p·1 · · · p·k]

T. Then

ATB =
k∑

i=0

pi·p·i,

where the elements of A and B are nonnegative and ITA = ITB = 1. Differential

calculus with a Lagrangian multiplier yields that ATB is maximized when A = B,

i.e., pi· = p·i, for i = 0, 1, 2, · · · , k. If pi· > 0, then

2pii + pi· + p·i − 4pi·p·i = 0

⇒ 2pii + pi· − 4(p2
i·) = 0

⇒ pii = −pi·(1 − 2pi·) ≥ 0

⇒ pi·(1 − 2pi·) ≤ 0

⇒ 1 − 2pi· ≤ 0

⇒ pi· ≥
1
2
.
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Thus, pi· = p·i = 0 or pi· = p·i ≥ 1
2 for each i = 0, 1, 2, · · · , k. Because p0· + p1· +

· · ·+pk· = 1 and p·0 +p·1+ · · ·+p·k = 1, however, this means that there are exactly

two choices of i for which pi· = p·i = 1
2 and for which pi· = p·i = 0 for all other

values of i (note that the degenerate cases of pi· = p·i = 1 for any i are excluded).

Finally,

k∑
i=0

pii = 2
k∑

i=0

pi·p·i − 1

= 2(
1
2
× 1

2
+

1
2
× 1

2
) − 1 = 0,

indicating that pii = 0 for each i = 0, 1, 2, · · · , k.

Next, the above proof indicates that
k∑

i=0
pi·p·i = 1

2 . Furthermore, because pii = 0

for each i = 0, 1, 2, · · · , k, 0 ≤ pi· + p·i ≤ 1 and 2pii + pi· + p·i − 4pi·p·i = 0 ⇒

pi· + p·i − 4pi·p·i = 0, this yields that pi·p·i ≤ 1
4 . It is obvious that for each i,

(pi·, p·i) = (0, 0) and (1
2 , 1

2) are solutions to pi· + p·i − 4pi·p·i = 0. There are no

other solutions (pi·, p·i) that satisfy 0 ≤ pi· + p·i ≤ 1 and pi·p·i ≤ 1
4 . In particular,

• if 0 ≤ pi· ≤ 1
4 , then p·i ≤ 0,

• if 1
4 < pi· ≤ 1

3 , then p·i ≥ 1,

• if 1
3 < pi· < 1

2 , then pi·p·i > 1
4 ,

• if 1
2 < pi· < 1, then pi· + p·i > 1.
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Therefore, there are only two values of i for which (pi·, p·i) = (1
2 , 1

2), indicating that

pii = 0 for each i = 0, 1, 2, · · · , k and pij = pji = 0.5 for one choice of i �= j, which

completes the proof.

These results indicate that we could use the matrix PI − PD to assess agreement

between the variable X and Y . If PI−PD is “close” to PI , then there is strong agreement

between X and Y . If PI − PD is “close” to the null matrix, then there is no agreement

beyond chance. If PI−PD is “close” to −PI , then there is strong disagreement. Instead of

examining the matrix PI −PD, however, it may be simpler to construct a scalar quantity

that reflects agreement. Therefore, let W be a (k + 1) × (k + 1) symmetric matrix of

weights with wij = 1 for i = 0, 1, 2, · · · , k and 0 ≤ wij < 1 for i �= j = 0, 1, 2, · · · , k.

Then we construct the following coefficient:

κ(W ) =
tr{W (PI − PD)}

tr{WPI}

= 1 − tr{WPD}
tr{WPI}

. (4.1)

If W is the (k +1)× (k +1) identity matrix, then κ(W ) reduces to Cohen’s kappa

coefficient and other choices of W will lead to a weighted kappa coefficient (this will

be shown later). Two popular weighting schemes for weighted kappa are the Cicchetti-

Allison weights:

wij = 1 − |i − j|
k

, for i, j = 0, 1, 2, · · · , k,
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and Fleiss-Cohen weights:

wij = 1 − (i − j)2

k2 , for i, j = 0, 1, 2, · · · , k.

Lemma 4.1.1. The weighting matrix W using Cicchetti-Allison weights is nonnegative

definite.

Proof. First suppose we employ Cicchetti-Allison weights. It can be seen easily that

W is the correlation matrix using the following popular nonnegative linear correlation

function with θ = k and d = i − j:

R(d) = 1 − 1
θ
|d|,

where |d| ≤ θ.

Therefore, W must be nonnegative definite.

Remark 3. If we use Fleiss-Cohen weights, however, it is not always nonnegative defi-

nite. For example, let k = 2, then

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.75 0

0.75 1 0.75

0 0.75 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Apparently, this is not a nonnegative definite matrix (because its determinant is

-0.125).
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The statistic, κ(W ), satisfies the following properties:

1. −1 ≤ κ(W ) ≤ 1.

2. If X and Y are independent, then κ(W ) = 0.

3. If X=Y with probability one, then κ(W ) = 1.

4. If pii = 0 for each i = 0, 1, 2, · · · , k and pij = pji = 0.5 for one choice of i �= j, then

κ(W ) = −1.

Proof.

1. Straightforward calculation shows that

tr{WPD} = 2 − 2
k∑

i=0

pii − 2
∑∑

i�=j

wijpij

≥ 2 − 2
k∑

i=0

pii − 2
∑∑

i�=j

pij

= 2 − 2
k∑

i=0

k∑
j=0

pij

= 2 − 2 = 0.

Similarly,
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tr{WPI} = 2 − 2
k∑

i=0

pi·p·i − 2
∑∑

i�=j

wijpi·p·j

> 2 − 2
k∑

i=0

pi·p·i − 2
∑∑

i�=j

pi·p·j

= 2 − 2
k∑

i=0

k∑
j=0

pi·p·j

= 2 − 2 = 0.

Therefore,

κ(W ) = 1 − tr{WPD}
tr{WPI}

≤ 1.

To show that the left-side inequality holds, we need to show that

tr{WPD}
tr{WPI}

≥ 2

⇒
2 − 2

k∑
i=0

pii − 2
∑∑

i�=j

wijpij

2 − 2
k∑

i=0
pi·p·i − 2

∑∑
i�=j

wijpi·p·j

≥ 2

⇒ 1 +
k∑

i=0

pii +
∑∑

i�=j

wijpij ≥ 2
k∑

i=0

pi·p·i + 2
∑∑

i�=j

wijpi·p·j.

If we use Cicchetti-Allison weights, then
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1 +
k∑

i=0

pii +
∑∑

i�=j

wijpij = 1 +
k∑

i=0

pii +
∑∑

i�=j

(1 − |i − j|
k

)pij

= 2 −
∑∑

i�=j

|i − j|
k

pij

and

2
k∑

i=0

pi·p·i + 2
∑∑

i�=j

wijpi·p·j = 2
k∑

i=0

pi·p·i + 2
∑∑

i�=j

(1 − |i − j|
k

)pi·p·j

= 2 −
∑∑

i�=j

|i − j|
k

pi·p·j.

Therefore, we need only to show that

2 −
∑∑

i�=j

|i − j|
k

pij ≥ 2 −
∑∑

i�=j

|i − j|
k

pi·p·j

⇒
∑∑

i�=j

|i − j|pij ≤
∑∑

i�=j

|i − j|pi·p·j.

We can use the same statistic as constructed in chapter 1:

ed = 1 −

∑∑
x �=y

PXY (x, y)d(x, y)∑∑
x �=y

PX(x)PY (y)d(x, y)
.
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Using a method similar to Fay’s (2006) argument, we can multiply the numerator

and the denominator by a constant, say c, and this will not change ed. Now denote

c · d(x, y) by d∗(x, y). The c is chosen such that maxx,yd
∗(x, y) = 1. And let

wxy = 1 − d∗(x, y). For perfect agreement, wxy = 1; for all x �= y, 0 ≤ wxy < 1.

Note that ed can also be written as

ed = 1 −

∑∑
x �=y

PXY (x, y)d(x, y)∑∑
x �=y

PX(x)PY (y)d(x, y)

= 1 −

∑
x

∑
y

PXY (x, y)d(x, y)∑
x

∑
y

PX(x)PY (y)d(x, y)
,

since d(x, y) = 0 for all x = y.

Now we can rewrite ed as

ed = 1 −

∑
x

∑
y

PXY (x, y)d∗(x, y)∑
x

∑
y

PX(x)PY (y)d∗(x, y)
.

Since d∗(x, y) = 1 − wxy, so
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ed = 1 −

∑
x

∑
y

PXY (x, y)(1 − wxy)∑
x

∑
y

PX(x)PY (y)(1 − wxy)

= 1 −
1 −∑

x

∑
y

wxyPXY (x, y)

1 −∑
x

∑
y

wxyPX(x)PY (y)

=
Πo − Πe

1 − Πe
.

So ed is actually the same as weighted kappa with Πo =
∑
x

∑
y

wxyPXY (x, y) and

Πe =
∑
x

∑
y

wxyPX(x)PY (y).

Hence,

1 −

∑∑
x �=y

PXY (x, y)d(x, y)∑∑
x �=y

PX(x)PY (y)d(x, y)
≥ −1

⇒
∑∑

x �=y

PXY (x, y)d(x, y) ≤ 2
∑∑

x �=y

PX(x)PY (y)d(x, y).

Take the distance function d(x, y) as

d(x,y)=

⎧⎪⎪⎨
⎪⎪⎩

|x − y|, if x �= y

0, if x = y

and this completes the proof.

Similarly, if we use Fleiss-Cohen weights, then
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1 +
k∑

i=0

pii +
∑∑

i�=j

wijpij = 1 +
k∑

i=0

pii +
∑∑

i�=j

(1 − (i − j)2

k2 )pij

= 2 −
∑∑

i�=j

(i − j)2

k2 pij

and

2
k∑

i=0

pi·p·i + 2
∑∑

i�=j

wijpi·p·j = 2
k∑

i=0

pi·p·i + 2
∑∑

i�=j

(1 − (i − j)2

k2 )pi·p·j

= 2 −
∑∑

i�=j

(i − j)2

k2 pi·p·j.

Therefore, we need only to show that

2 −
∑∑

i�=j

(i − j)2

k2 pij ≥ 2 −
∑∑

i�=j

(i − j)2

k2 pi·p·j

⇒
∑∑

i�=j

(i − j)2pij ≤
∑∑

i�=j

(i − j)2pi·p·j.

Take the distance function d(x, y) as

d(x,y)=

⎧⎪⎪⎨
⎪⎪⎩

(x − y)2, if x �= y

0, if x = y
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and using a similar procedure, it can be easily verified that the inequality holds,

which completes the proof.

Remark 4. From the proof, it is obvious that if the weight function has the generic

form wij = 1 − d(i, j), for i, j = 1, 2, · · · , k, then the inequality −1 ≤ κ(W ) ≤ 1

always holds.

2. Similarly, from a previous proof, we know that if X and Y are independent, then

PI = PD. Hence WPI = WPD. Therefore, tr{WPD} = tr{WPI}. Hence, κ(W ) =

0.

3. From a previous proof, we know that if X = Y with probability one, then PI−PD =

PI ⇒ PD = 0 ⇒ WPD = 0 ⇒ tr{WPD} = 0 ⇒ κ(W ) = 1.

4. From a previous proof, we know that pii = 0 for each i = 0, 1, 2, · · · , k and pij =

pji = 0.5 for one choice of i �= j, then PI − PD = −PI ⇒ PD = 2PI ⇒ WPD =

2WPI ⇒ tr{WPD} = 2tr{WPI} ⇒ κ(W ) = −1.

If we set W equal to the (k + 1) × (k + 1) identity matrix I, then

tr{PD} =
k∑

i=0

pi· +
k∑

i=0

p·i − 2
k∑

i=0

pii

= 2 − 2
k∑

i=0

pii
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and

tr{PI} =
k∑

i=0

pi· +
k∑

i=0

p·i − 2
k∑

i=0

pi·p·i

= 2 − 2
k∑

i=0

pi·p·i.

Therefore,

κ(W ) = 1 − tr{PD}
tr{PI}

= 1 −
2 − 2

k∑
i=0

pii

2 − 2
k∑

i=0
pi·p·i

=

k∑
i=0

pii −
k∑

i=0
pi·p·i

1 −
k∑

i=0
pi·p·i

=
po − pc

1 − pc
,

which is the standard form for Cohen’s kappa.

For other choices of a weight matrix W , straightforward calculation shows that

tr{WPD} = 2
k∑

i=0

wii(pi· + p·i) − 2
k∑

i=0

k∑
j=0

wijpij

= 2 − 2
k∑

i=0

k∑
j=0

wijpij
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and

tr{WPI} = 2
k∑

i=0

wii(pi· + p·i) − 2
k∑

i=0

k∑
j=0

wijpij

= 2 − 2
k∑

i=0

k∑
j=0

wijpi·p·j.

Therefore,

κ(W ) = 1 − tr{WPD}
tr{WPI}

=

k∑
i=0

k∑
j=0

wijpij −
k∑

i=0

k∑
j=0

wijpi·p·j

1 −
k∑

i=0

k∑
j=0

wijpi·p·j

=
∏

o −
∏

e

1 −∏
e

,

where
∏

o =
k∑

i=0

k∑
j=0

wijpij and
k∑

i=0

k∑
j=0

wijpi·p·j. This is the standard form for Cohen’s

weighted kappa.

It is important that the weight matrix W in the construction of κ(W ) be non-

negative definite. If W is nonnegative definite, then it has a square-root decomposition,

denoted as W = W
1
2 W

1
2 . Then

κ(W ) = 1 − tr(WPD)
tr(WPI)

= 1 − tr(W
1
2 PDW

1
2 )

tr(W
1
2 PIW

1
2 )

.
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Because PD and PI both are nonnegative definite, then W
1
2 PDW

1
2 and W

1
2 PIW

1
2

both are nonnegative definite. If, for example, PI ≥ PD, then tr(WPI) ≥ tr(WPD). If

W is not nonnegative definite, however, then PI ≥ PD does not imply that tr(WPI) ≥

tr(WPD).

An example is as follows. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.3751 −0.5303 0.3750

−0.5303 0.7501 −0.5303

0.3750 −0.5303 0.3751

⎤
⎥⎥⎥⎥⎥⎥⎦

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1250 −0.1768 0.1250

−0.1768 0.25 −0.1768

0.1250 −0.1768 0.1250

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It is straightforward to demonstrate that A ≥ B ≥ 0. Therefore, we would like

tr(WA) ≥ tr(WB) for a symmetric weight matrix W. If we use the Fleiss-Cohen weight

matrix, however,

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.75 0

0.75 1 0.75

0 0.75 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then
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WA =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0226 0.0323 −0.0227

0.0323 −0.0454 0.0323

−0.0227 0.0323 −0.0226

⎤
⎥⎥⎥⎥⎥⎥⎦

and tr(WA) = −0.0906.

WB =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0076 0.0107 −0.0076

0.0107 −0.0152 0.0107

−0.0076 0.0107 −0.0076

⎤
⎥⎥⎥⎥⎥⎥⎦

and tr(WB) = −0.0304. Thus, although A ≥ B, tr(WA) ≤ tr(WB). For this reason,

the Fleiss-Cohen weight matrix is not recommended for the construction of κ(W ).

4.2 A Generalization

4.2.1 Definition

The coefficient

κ(W ) = 1 − tr(WPD)
tr(WPI)

suggests other constructions of the form

κg(W ) = 1 − g(WPD)
g(WPI)

, (4.2)

where g is a matrix function that satisfies the following definitions.
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Definition 4.2.1. Suppose g(·) is a R
(k+1)×(k+1) 	→ R function. g(·) is said to be non-

decreasing if ∀ nonnegative definite matrices A(k+1)×(k+1), B(k+1)×(k+1), where A ≤ B,

we have g(A) ≤ g(B).

Definition 4.2.2. Suppose g(·) is a R
(k+1)×(k+1) 	→ R function. g(·) is said to be a scale-

equivariant function if ∀ matrices A(k+1)×(k+1) and constants c yield that g(cA) = cg(A).

Remark 5. Definition 4.2.2 implies that g(0) = 0 and that g(−A) = −g(A), i.e., g is

an odd function.

g(·) should be chosen such that it is a non-decreasing and scale-equivariant func-

tion.

The agreement coefficient kg(W ) satisfies the same four properties as κ(W ) above.

Proof.

1. Since both PI and PD are nonnegative matrices, it follows that all the eigenvalues

are nonnegative. Hence,
k∑

i=0
viλi ≥ 0. Therefore, g(WPD) ≥ 0, g(WPI) > 0.

So kg(W ) ≤ 1. From the previous proof, we know that 2PI − PD is nonnegative

definite. Using similar argument, we can get g(2PI −PD) ≥ 0. It then follows that

2g(WPI ) ≥ g(WPD) ⇒ g(WPD)
g(WPI) ≤ 2 ⇒ kg(W ) ≥ −1.

2. Similarly, from the previous proof, we know that if X and Y are independent,

then PI = PD. Hence WPI = WPD. Therefore, g(WPD) = g(WPI). Hence,

κg(W ) = 0.

3. From the previous proof, we know that if X = Y with probability one, then

PI − PD = PI ⇒ PD = 0 ⇒ WPD = 0 ⇒ g(WPD) = 0 ⇒ κg(W ) = 1.
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4. From the previous proof, we know that if pii = 0 for each i = 0, 1, 2, · · · , k and

pij = pji = 0.5 for one choice of i �= j, then PI − PD = −PI ⇒ PD = 2PI ⇒

WPD = 2WPI ⇒ g(WPD) = g(2WPI ) = 2g(WPI) ⇒ κg(W ) = −1.

Clearly, g(A) = tr(A) satisfies definitions 4.2.1 and 4.2.2. Therefore, Cohen’s

kappa κ = 1 − tr(PD)
tr(PI ) and Cohen’s weighted kappa κ(W ) = 1 − tr(WPD)

tr(WPI) , where W is

nonnegative definite, are appropriate coefficients of agreement.

Another function to consider is g(A) = λA1
, the largest eigenvalue of A.

Remark 6. The function g(A) = λA1
satisfies definitions 4.2.1 and 4.2.2.

Proof. 1. Suppose A and B are (k + 1) × (k + 1) nonnegative definite matrices with

A ≤ B. Then

λA1
= sup

d∈R(k+1)

d′d=1

(d′Ad)

≤ sup
d∈R

(k+1)

d′d=1

(d′Ad) + d′(B − A)d (Because B−A is nonnegative definite)

= sup
d∈R

(k+1)

d′d=1

(d′Bd)

= λB1
.

Thus, λA1
≤ λB1

when A ≤ B, which means that g(A) ≤ g(B). So g being the

largest eigenvalue is a nondecreasing matrix function.
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2. Also, suppose g(A) = λA1
, where λA1

is the largest eigenvalue of A. Then g(cA)

is equal to the largest eigenvalue of cA, where c is a constant. And it is equal to

c × λA1
= c × g(A). That is, g(cA) = cg(A). So it is scale-equivariant.

Although other matrix functions exist that satisfy definitions 4.2.1 and 4.2.2, they

are extremely complex and not always applicable. Therefore, we focus on the functions

gtr(A) = tr(A) = sum of the eigenvalues of A and gle(A) = λA1
= largest eigenvalues of A.

In the context of our agreement coefficients, where we will be using g(WPD) and g(WPI),

and W is nonnegative definite, our choices are:

1. the mean of the eigenvalues because we can substitute 1
k+1tr(A) for the tr(A);

2. The range of the eigenvalues because the smallest eigenvalue of WPD and WPI is

zero, so the largest eigenvalue−the smallest eigenvalue=range.

Finally, we could construct an entire class of matrix functions g that satisfy def-

initions 4.2.1 and 4.2.2 of weighted averages of the sum of the eigenvalues and the largest

eigenvalue. Let gtr(A) = tr(A) = sum of the eigenvalues and gle(A) = largest eigenvalue of A.

Let δ be a real number such that 0 ≤ δ ≤ 1. Then

gδ(A) = δgtr(A) + (1 − δ)gle(A) (4.3)

satisfies definitions 4.2.1 and 4.2.2.

In such a case,
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κgδ
= 1 − δ ∗ tr(W ∗ PD) + (1 − δ) ∗ largest eigenvalue of (W ∗ PD)

δ ∗ tr(W ∗ PI) + (1 − δ) ∗ largest eigenvalue of (W ∗ PI)
. (4.4)

So when δ = 1, this becomes Cohen’s weighted kappa coefficient. When δ = 0,

this becomes κle(W ). For simplicity, however, we focus on the cases δ = 1 (sum of the

eigenvalues) and δ = 0 (largest eigenvalue). The relationship between this coefficient

and Cohen’s kappa coefficient will be shown in the plots in the next section.

The asymptotic distribution of

κ̂le(W ) = 1 − largest eigenvalue(WP̂D)
largest eigenvalue(WP̂I)

is extremely complex, unfortunately, so we will use the bootstrap to estimate the large

sample variances for κle(W ).

4.2.2 Comparison of κ with κgδ

In this section, we construct several plots to compare the Cohen’s kappa agreement

coefficients with the coefficients obtained using the generalization method. For your

convenience, we include here again the probability distributions on which the plots are

based.
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The probability distribution for case 1 is:

y

0 1 2 PX (x)

0 0.2 0.05 0.05 0.3

x 1 0.03 0.3 0.07 0.4

2 0.05 0.07 0.18 0.3

PY (y) 0.28 0.42 0.3 1

The probability distribution for case 2 is:

y

0 1 2 PX (x)

0 0.05 0.1 0.05 0.2

x 1 0.22 0.05 0.03 0.3

2 0.13 0.35 0.02 0.5

PY (y) 0.4 0.5 0.1 1
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The probability distribution for case 4 is:

y

0 1 2 PX (x)

0 0.2 0 0 0.2

x 1 0 0.3 0 0.3

2 0 0 0.5 0.5

PY (y) 0.2 0.3 0.5 1

The probability distribution for case 9 is:

y

0 1 2 3 PX (x)

0 0 0 0.1 0.05 0.15

x 1 0 0 0.08 0.02 0.1

2 0.05 0.03 0.3 0.01 0.39

3 0.06 0.02 0.03 0.25 0.36

PY (y) 0.11 0.05 0.51 0.33 1
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The probability distribution for case 12 is:

y

0 1 2 3 4 PX (x)

0 0.2 0.01 0 0.01 0 0.22

1 0 0.1 0 0.04 0.02 0.16

x 2 0.08 0 0.15 0 0.01 0.24

3 0.01 0.04 0 0.2 0 0.25

4 0 0.06 0 0.02 0.05 0.13

PY (y) 0.29 0.21 0.15 0.27 0.08 1

The probability distribution for case 16 is:

y

0 1 2 3 4 5 PX (x)

0 0.02 0.01 0.03 0.001 0.001 0.002 0.064

1 0.05 0.08 0.01 0.005 0 0 0.145

2 0.003 0.012 0.25 0 0.002 0 0.267

x 3 0.005 0 0 0.03 0 0.01 0.3

4 0 0.05 0 0.2 0.001 0.001 0.252

5 0.02 0.02 0.007 0.08 0 0.1 0.227

PY (y) 0.098 0.172 0.297 0.316 0.004 0.113 1
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Fig. 4.1. The degree of agreement for case 1 when using kappa and the generalization
method
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Fig. 4.2. The degree of agreement for case 2 when using kappa and the generalization
method
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Fig. 4.3. The degree of agreement for case 4 when using kappa and the generalization
method



124

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

Delta

A
gr

ee
m

en
t

 

 

delta kappa
Cohen’s kappa

Fig. 4.4. The degree of agreement for case 9 when using kappa and the generalization
method
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Fig. 4.5. The degree of agreement for case 12 when using kappa and the generalization
method
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The plots show that there are not substantial differences between Cohen’s weighted

kappa coefficient and κgδ
. And they confirm our statement that when δ = 1, this becomes

Cohen’s weighted kappa coefficient and when δ = 0, this becomes κle(W ).

4.3 Alternative Method

We can generate a different approach to the construction of agreement coefficients

in the following manner. Note that PI and PD are (k + 1) × (k + 1) matrices of rank k

because PI · 1 = 0 and PD · 1 = 0, where 1 is a (k + 1) × 1 vector of unit values. Thus,

PI · 1 = 0 · 1, indicating that 0 is an eigenvalue for PI with corresponding (standardized)

eigenvector e0 = 1√
k+1

. The same is true for PD as well. Let EI = [e0 e1 · · · ek] denote

the (k + 1) × (k + 1) matrix of eigenvectors for PI . By definition, EI is orthogonal, so

EI(EI)
T = (EI)

TEI = I, which yields that 1Te1 = 0, · · · , 1Tek = 0.

Because PI is not of full rank, its inverse does not exist, but it does have a Moore-

Penrose generalized inverse, denoted by (PI)
+. If ΛI = Diag(0, λ1, · · · , λk) denotes the

(k+1)×(k+1) diagonal matrix of eigenvalues for PI , then the Moore-Penrose generalized

inverse of ΛI is (ΛI)
+ = Diag(0, (λ1)

−1, · · · , (λk)−1) and the Moore-Penrose generalized

inverse of PI is (PI)
+ = EI(ΛI)

+(EI)
T.

Returning to −PI ≤ PI − PD ≤ PI , this is equivalent to

−((PI)
+)

1
2 PI((PI)

+)
1
2 ≤ ((PI)

+)
1
2 PI((PI)

+)
1
2−((PI)

+)
1
2 PD((PI)

+)
1
2 ≤ ((PI)

+)
1
2 PI((PI)

+)
1
2 ,

where ((PI)
+)

1
2 = EI((ΛI)

+)
1
2 (EI)

T.
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But

((PI)
+)

1
2 PI((PI)

+)
1
2 = EI((ΛI)

+)
1
2 (EI)

TEIΛI(EI)
TEI((ΛI)

+)
1
2 (EI)

T

= EI((ΛI)
+)

1
2 ΛI((ΛI)

+)
1
2 (EI)

T

= EIDiag(0, 1, · · · , 1)(EI)
T

= e1(e1)
T + · · · + ek(ek)

T

= I − 1 · 1T/(k + 1).

Therefore, we get that

−{I −1 ·1T/(k +1)} ≤ {I −1 ·1T/(k +1)}− ((PI)
+)

1
2 PD((PI)

+)
1
2 ≤ {I −1 ·1T/(k +1)}.

If g(A) is a function of the symmetric matrix A, and g(·) satisfies the properties

defined previously, then a class of agreement coefficients is given by

κ∗
g = 1 − g{(P+

I )
1
2 PD(P+

I )
1
2}

g{(I − 1
k+11 · 1T)} .

If g(A) = tr(A), then

κ∗
tr

= 1 − 1
k
tr(PD(PI)

+). (4.5)

Properties of κ∗
g
:

1. −1 ≤ κ∗
tr
≤ 1
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2. κ∗
tr = 1 if X = Y with probability one, i.e., pij = 0 for all i �= j.

3. κ∗
tr

= −1 if and only if pii = 0 for each i = 0, 1, 2, · · · , k and pij = pji = 0.5 for one

choice of i �= j, excluding the set of degenerate cases.

4. κ∗
tr = 0 if X and Y are independent.

Proof.

1. Using the above inequality, we know that

0 ≤ (P+
I )

1
2 PD(P+

I )
1
2 ≤ 2(I − 1

k + 1
1 · 1T).

Therefore,

0 ≤ tr((P+
I

)
1
2 PD(P+

I
)

1
2 ) ≤ tr{2(I − 1

k + 1
1 · 1T)}

⇒ 0 ≤ tr(PD(PI)
+) ≤ 2k

⇒ −1 ≤ κ∗
tr
≤ 1.

2. If X = Y with probability one, i.e., pij = 0 for all i �= j, from previous proof, we

know that PI − PD = PI . That is, PD = 0. Thus tr(PD(PI)
+) = 0 ⇒ κ∗

tr = 1

3. From the previous proof, we know that, excluding the set of degenerate cases, if

pii = 0 for each i = 0, 1, 2, · · · , k and pij = pji = 0.5 for one choice of i �= j, then
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PI − PD = −PI ⇒ PI = 1
2PD. Therefore, (PI)

+ = (1
2PD)+ = 2(PD)+. Hence,

tr(PD(PI)
+) = 2tr(PD(PD)+)

= 2tr((P+
D

)
1
2 PD(P+

D
)

1
2 )

= 2tr(I − 1 · 1T/(k + 1))

= 2k.

Therefore, κ∗
tr

= −1.

4. From the previous proof, we know that if X and Y are independent, then PI = PD.

Therefore,

tr(PD(PI)
+) = tr(PD(PD)+)

= tr((P+
D

)
1
2 PD(P+

D
)

1
2 )

= tr(I − 1 · 1T/(k + 1))

= k.

Therefore, κ∗
tr

= 0.

If we set g(A) = tr(W ∗ A), then
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κ∗
tr
(W ) = 1 − tr(W ∗ PD ∗ (PI)

+)
tr{W ∗ (I − 1

k+11 · 1T)}

= 1 − tr(W ∗ PD ∗ (PI)
+)

tr(W ) − 1
k+1tr(W ∗ 1 · 1T)

= 1 − tr(W ∗ PD ∗ (PI)
+)

tr(W ) − 1
k+1

∑k
i=0

∑k
j=0

Wij

. (4.6)

In general, if g(·) satisfies definitions 4.2.1 and 4.2.2, then κ∗
g
(W ) has the following

properties:

1. −1 ≤ κ∗
g
(W ) ≤ 1

2. κ∗
g
(W ) = 1 if X = Y with probability one, i.e., pij = 0 for all i �= j.

3. κ∗
g
(W ) = −1 if and only if pii = 0 for each i = 0, 1, 2, · · · , k and pij = pji = 0.5 for

one choice of i �= j, excluding the set of degenerate cases.

4. κ∗
g
(W ) = 0 if X and Y are independent.

Proof.

Without loss of generality, we set W = I. The proofs for other weight matrices

W are slightly more complex.

1. From the previous proof, we know that

0 ≤ (P+
I )

1
2 PD(P+

I )
1
2 ≤ 2(I − 1

k + 1
1 · 1T).

Since g(·) is a non-decreasing and scale-equivalent function, we have
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0 ≤ g{(P+
I )

1
2 PD(P+

I )
1
2} ≤ 2g{(I − 1

k + 1
1 · 1T)}.

It is then straightforward to see that −1 ≤ κ∗
g ≤ 1

2. If X = Y with probability one, i.e., pij = 0 for all i �= j, from previous proof, we

know that PD = 0. It is then straightforward to see that κ∗
g

= 0.

3. From the previous proof, we know that, excluding the set of degenerate cases, if

pii = 0 for each i = 0, 1, 2, · · · , k and pij = pji = 0.5 for one choice of i �= j,

then PI − PD = −PI ⇒ PI = 1
2PD. Hence (PI)

+ = (1
2PD)+ = 2(PD)+ and

((PI)
+)

1
2 =

√
2((PD)+)

1
2 . Therefore, (P+

I
)

1
2 PD(P+

I
)

1
2 = 2(P+

D
)

1
2 PD(P+

D
)

1
2 and

(P+
I

)
1
2 PI(P

+
I

)
1
2 = (P+

D
)

1
2 PD(P+

D
)

1
2 . Hence, κ∗

g
= −1.

4. From the previous proof, we know that if X and Y are independent, then PI = PD.

It is straightforward to see that κ∗
g

= 0.

As before, we can also use g(A) = λA1
, the largest eigenvalue of A as another

function for g(·).

Thus, there are four coefficients we propose to assess agreement with categorical

data: (1) κtr(W ), which is equivalent to Cohen’s weighted kappa, (2) κle(W ), (3) κ∗
tr(W )

and (4) κ∗
le(W ).

Lemma 4.3.1. When k = 1, that is, when there are only two categories, the four

coefficients are equivalent and they all reduce to Cohen’s kappa.
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Proof. 1. When k = 1, the Cicchetti-Allision weights become an identity matrix.

Therefore,

κtr(W ) = 1 − tr(WPD)
WPI

= 1 − tr(PD)
tr(PI)

= κ.

2. Since the weighting matrix is a 2 × 2 matrix, so the two eigenvalues of PD can be

denoted by 0 and λ1. Therefore, the largest eigenvalue is equal to λ1 = tr(PD).

Similarly, it can be shown that the largest eigenvalue of PI is also equal to tr(PI).

Thus, κtr(W ) = κle(W ).

3. From the previous proof,we know that (PI)
+ = EI(ΛI)

+ET
I . When k = 1, (ΛI) is

(ΛI) =

⎡
⎢⎢⎣ 0 0

0 λI1

⎤
⎥⎥⎦

and (ΛI)
+ is

(ΛI)
+ =

⎡
⎢⎢⎣ 0 0

0 1/(λI1)

⎤
⎥⎥⎦ .

Because k = 1,
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κ∗
tr
(W ) = 1 − tr(PD(PI)

+)

= 1 − tr(PD
1

λI1
eI1e

′
I1

)

= 1 − tr(PDeI1e
′
I1

)
λI1

= 1 − tr(PDeI1e
′
I1

)
tr(PI)

,

where eI1 is the eigenvector of PI associated with the largest eigenvalue λI1 of PI .

But for the case k = 1, because eI1 = eD1 =

⎡
⎢⎢⎣ 1/

√
2

−1/
√

2

⎤
⎥⎥⎦, eI1 also is the eigenvector

of PD associated with the largest eigenvalue λD1 of PD. Thus,

κ∗
tr
(W ) = 1 − tr(PDeD1e

′
D1

)
tr(PI)

= 1 − tr(e
′
D1

PDeD1)
tr(PI)

= 1 − λD1

tr(PI)

= 1 − tr(PD)
tr(PI)

= κ.

4. From the derivation of κ∗
le(W ), where W =

⎡
⎢⎢⎣ 1 0

0 1

⎤
⎥⎥⎦, we know that it can be

written as
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κ
∗
le(W ) = 1 − largest eigenvalue of [((PI )

+)
1
2 PD((PI)

+)
1
2 ]

largest eigenvalue of [I − 1
21 · 1T]

.

But largest eigenvalue for the case k = 1 is equal to the trace, so κ∗
le(W ) =

κ∗
tr
(W ) = κ.

4.4 Simulation Study

In this section, we compare the performance of the four proposed coefficients with

that of Cohen’s kappa or weighted kappa.

4.4.1 Simulation Result for κle(W )

Table 4.1 gives the simulation results for for the proposed alternative method with

the function g being the largest eigenvalue.

Note: κtr(W ) is Cohen’s weighted kappa, κle(W ) is the proposed method with the

g function being the largest eigenvalue, κleb(W ) is the corresponding bootstrap estimate.

v1, v2 are the observed variances for the estimate of Cohen’s weighted kappa and the

estimate of κle(W ), respectively and v3 is the estimated variance using bootstrap.
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Table 4.1. Simulation results for κle(W )
case n κW κle(W ) κleb(W ) v1 v2 v3

1 80 0.4914 0.4600 0.4522 0.0075 0.0117 0.0113
1 160 0.4912 0.4622 0.4582 0.0036 0.0056 0.0058
2 80 -0.1282 -0.0356 -0.0411 0.0034 0.0065 0.0068
2 160 -0.1270 -0.0319 -0.0347 0.0019 0.0035 0.0034
3 80 0.8516 0.8365 0.8292 0.0032 0.0048 0.0046
3 160 0.8489 0.8359 0.8321 0.0015 0.0023 0.0024
4 80 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
4 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
5 80 0.5331 0.5510 0.5448 0.0044 0.0069 0.0067
5 160 0.5355 0.5526 0.5510 0.0023 0.0038 0.0036
6 80 0.0536 -0.0191 -0.0223 0.0075 0.0143 0.0147
6 160 0.0544 -0.0186 -0.0203 0.0037 0.0078 0.0077
7 80 0.3939 0.2983 0.2939 0.0080 0.0140 0.0138
7 160 0.3948 0.3003 0.2980 0.0040 0.0074 0.0070
8 80 -0.1716 -0.2514 -0.2504 0.0038 0.0081 0.0076
8 160 -0.1725 -0.2535 -0.2530 0.0020 0.0040 0.0039
9 80 0.1442 -0.0597 -0.0553 0.0059 0.0097 0.0098
9 160 0.1454 -0.0612 -0.0590 0.0029 0.0051 0.0050

10 80 -0.3122 -0.4027 -0.3976 0.0035 0.0080 0.0079
10 160 -0.3160 -0.4076 -0.4051 0.0017 0.0040 0.0040
11 80 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
11 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
12 80 0.5605 0.5331 0.5228 0.0063 0.0092 0.0091
12 160 0.5624 0.5373 0.5322 0.0028 0.0045 0.0045
13 80 -0.0742 -0.0882 -0.0899 0.0025 0.0070 0.0072
13 160 -0.0736 -0.0861 -0.0870 0.0012 0.0035 0.0037
14 80 0.7849 0.7599 0.7555 0.0044 0.0072 0.0068
14 160 0.7900 0.7675 0.7655 0.0021 0.0036 0.0034
15 80 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
15 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
16 80 0.4823 0.4981 0.4877 0.0042 0.0064 0.0063
16 160 0.4816 0.5020 0.4965 0.0021 0.0032 0.0031
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4.4.2 Simulation Result for κ∗
tr(W ) With W Being the Identity Matrix

Table 4.2 gives the simulation result for the proposed alternative method with

the function g being the sum of the eigenvalues and W being the identity matrix (thus

we will compare Cohen’s kappa coefficient and the proposed method).

Note: κ is estimate of Cohen’s kappa, κtr is the estimate of proposed method

with the g function being the sum of the eigenvalues, κ∗
trb is the corresponding bootstrap

estimate. v1, v2 are the observed variances for the estimate of Cohen’s kappa and the

estimate of κtr, respectively and v3 is the estimated variance using bootstrap.

4.4.3 Simulation Result for κ∗
le(W )

Table 4.3 gives the simulation result for the proposed method with the function

g being the largest eigenvalue when the generalized inverse matrix is used.

Note: κW is the estimate for Cohen’s weighted kappa. κ∗
le
(W ) is the estimate

of the proposed alternative method with g being the largest eigenvalue. κ∗
leb(W ) is the

bootstrap estimate. v1, v2 are the observed variances for Cohen’s weighted kappa and

κ∗
le
(W ), respectively and v3 is the estimated variance using bootstrap.

4.4.4 Discussion

In most cases, all the agreement coefficients we have proposed give very close

results to Cohen’s kappa or weighted kappa. Bootstrap turns out to be a good alternative
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Table 4.2. Simulation results for κ∗
tr(W )

case n κ κ∗
tr

κ∗
trb

v1 v2 v3

1 80 0.5072 0.5028 0.4982 0.0059 0.0060 0.0062
1 160 0.5099 0.5063 0.5040 0.0030 0.0030 0.0031
2 80 -0.2210 -0.2134 -0.2101 0.0031 0.0030 0.0029
2 160 -0.2212 -0.2144 -0.2128 0.0015 0.0014 0.0015
3 80 0.8599 0.8544 0.8517 0.0023 0.0026 0.0028
3 160 0.8594 0.8550 0.8537 0.0011 0.0012 0.0013
4 80 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
4 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
5 80 0.4513 0.4950 0.4933 0.0024 0.0022 0.0021
5 160 0.4542 0.4984 0.4951 0.0051 0.0045 0.0043
6 80 0.0150 0.0498 0.0483 0.0047 0.0045 0.0041
6 160 0.0176 0.0541 0.0532 0.0024 0.0022 0.0021
7 80 0.4378 0.4339 0.4297 0.0049 0.0048 0.0044
7 160 0.4427 0.4397 0.4376 0.0025 0.0024 0.0022
8 80 -0.0968 -0.0873 -0.0856 0.0020 0.0017 0.0014
8 160 -0.0985 -0.0895 -0.0887 0.0009 0.0008 0.0007
9 80 0.3172 0.1401 0.1427 0.0046 0.0011 0.0011
9 160 0.3173 0.1385 0.1399 0.0021 0.0005 0.0005

10 80 -0.2553 -0.2048 -0.1995 0.0017 0.0009 0.0010
10 160 -0.2578 -0.2071 -0.2047 0.0008 0.0004 0.0004
11 80 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
11 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
12 80 0.6152 0.5776 0.5702 0.0040 0.0047 0.0044
12 160 0.6192 0.5851 0.5813 0.0021 0.0024 0.0022
13 80 -0.0552 -0.0350 -0.0347 0.0011 0.0012 0.0012
13 160 -0.0525 -0.0317 -0.0317 0.0006 0.0006 0.0006
14 80 0.8026 0.6167 0.6197 0.0026 0.0018 0.0031
14 160 0.7992 0.6156 0.6144 0.0014 0.0009 0.0008
15 80 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
15 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
16 80 0.3856 0.3333 0.3278 0.0033 0.0029 0.0025
16 160 0.3867 0.3389 0.3360 0.0015 0.0014 0.0013
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Table 4.3. Simulation results for κ∗
le(W )

case n κW κ∗
le
(W ) κ∗

leb
(W ) v1 v2 v3

1 80 0.4880 0.4768 0.4801 0.0073 0.0107 0.0100
1 160 0.4881 0.4755 0.4762 0.0039 0.0057 0.0055
2 80 -0.1289 0.0234 0.0388 0.0038 0.0014 0.0021
2 160 -0.1263 0.0149 0.0250 0.0019 0.0008 0.0010
3 80 0.8518 0.8397 0.8377 0.0030 0.0049 0.0051
3 160 0.8500 0.8366 0.8356 0.0017 0.0028 0.0026
4 80 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
4 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
5 80 0.5340 0.6591 0.6569 0.0048 0.0048 0.0046
5 160 0.5338 0.6593 0.6583 0.0024 0.0022 0.0022
6 120 0.0548 0.3028 0.3038 0.0049 0.0076 0.0073
6 160 0.0560 0.3065 0.3070 0.0040 0.0065 0.0057
7 80 0.3869 0.4081 0.4151 0.0076 0.0060 0.0062
7 160 0.3943 0.4094 0.4130 0.0041 0.0035 0.0033
8 80 -0.1716 0.0692 0.0757 0.0038 0.0007 0.0007
8 160 -0.1721 0.0676 0.0707 0.0020 0.0004 0.0003
9 160 0.1497 0.2111 0.2146 0.0029 0.0007 0.0007
9 320 0.1490 0.2085 0.2103 0.0015 0.0003 0.0003

10 160 -0.3172 0.0624 0.0631 0.0017 0.0002 0.0002
10 320 -0.3180 0.0617 0.0620 0.0009 0.0001 0.0001
11 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
11 320 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
12 160 0.5641 0.5159 0.5172 0.0032 0.0036 0.0033
12 320 0.5611 0.5104 0.5111 0.0015 0.0017 0.0017
13 160 -0.0739 0.0392 0.0476 0.0012 0.0003 0.0003
13 320 -0.0748 0.0352 0.0390 0.0006 0.0001 0.0001
14 160 0.7912 0.7555 0.7541 0.0020 0.0038 0.0040
14 320 0.7906 0.7542 0.7534 0.0010 0.0018 0.0020
15 160 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
15 320 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
16 160 0.4798 0.5444 0.5438 0.0021 0.0040 0.0039
16 320 0.4831 0.5490 0.5486 0.0011 0.0022 0.0020



140

as an estimation of the large sample variances, which , in many cases, are smaller than the

variances of kappa or weighted kappa. For κle(W ), the only significant difference appear

in case 9 (even so, they both indicate poor agreement). For κ∗
tr
(W ) , the only substantial

difference appears in case 9 (even so, they both indicate poor agreement) and case 14

(Cohen’s kappa indicates that there is excellent agreement while the proposed method

indicates that there is good agreement). For κ∗
le
(W ), the only significant difference

appears in case 5 (even so, they both indicate fair agreement). Note that for the last

method we use relatively large sample size since if the sample size is too small, drawing

bootstrap samples, it often happens that, when the probabilities are small, some rows

and columns have no observation. In such a case, the actual dimension of the estimated

PI and PD are reduced by 1, resulting in a null eigenvalue. This makes sense in that

when we have a relatively large number of categories in response, say k = 5, then the

total number of all possible pairs of ratings would be 36. Even if we have n = 160, in

each cell, on average there are less than 5 observations. Too few observations make it

hard to estimate the actual probability distribution.

The proposed method is a very promising method for measurement of agreement

for categorical data due to the following reason: (1). It is a generalization of Cohen’s

kappa and weighted kappa coefficient. (2). It provides very consistent and reasonable

results. (3). In many cases, it gives variances smaller than those of Cohen’s kappa and

weighted kappa, meaning that we are more precise in drawing statistical inferences. (4).

It also can be adapted to accommodate other matrix functions that might have better

performance.
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4.5 Examples for Ordinal Data

In this section, we use several ordinal categorial examples from the literature to

see the application of the proposed method and compare it with that of Cohen’s weighted

kappa.

The first example is from Agresti (2002), in which two pathologists, A and B,

separately rated 118 subjects regarding the presence and extent of carcinoma of the

uterine cervix. The rating scale has the ordered categories (0) negative, (1) atypical

squamous hyperplasia, (2) carcinoma in situ and (3) squamous or invasive carcinoma.

The data is summarized in the following table:

B

0 1 2 3 PX (x)

0 0.1864 0.0169 0.0169 0 0.2203

A 1 0.0424 0.0593 0.1186 0 0.2203

2 0 0.0169 0.3051 0 0.3220

3 0 0.0085 0.1441 0.0848 0.2374

PY (y) 0.2288 0.1017 0.5847 0.0848 1

The following tables shows the result calculated from the above example:

Cohen’s kappa is 0.4930. All the coefficients using trace functions work well. The

proposed methods using the largest eigenvalue function , when applying the Cicchetti-

Allison weights, seem to give larger agreement coefficient, indicating good agreement
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Table 4.4. Results for example 1

Weight κW κtr(W ) κle(W ) κ∗
tr(W ) κ∗

le(W )
Cicchetti-Allison 0.6489 0.6489 0.7716 0.6410 0.7624

Fleiss-Cohen 0.7839 0.7839 0.7839 0.7574 0.7510

vs fair agreement implied by Cohen’s weighted kappa coefficients and our two other

agreement coefficients.

The second example is a hypothetical one from Fleiss et al (2002), in which

subjects are classified into one of 3 categories by rater A and into another by rather

B. The three categories are: (0) Psychotic, (1) Neurotic and (2) Organic. The data is

summarized in the following table:

y

0 1 2 PX (x)

0 0.75 0.01 0.04 0.8

x 1 0.05 0.04 0.01 0.1

2 0 0 0.10 0.1

PY (y) 0.80 0.05 0.15 1

The following tables shows the result calculated from the above example:

Cohen’s kappa is 0.6765 for this example. And we can see that κtr(W ) is equal to

Cohen’s weighted kappa, as we have shown before. And all the other coefficients gives

results that are very close to corresponding Cohen’s weighted kappa.
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Table 4.5. Results for example 2

Weight κW κtr(W ) κle(W ) κ∗
tr(W ) κ∗

le(W )
Cicchetti-Allison 0.7222 0.7222 0.7434 0.7072 0.7698

Fleiss-Cohen 0.7553 0.7553 0.7553 0.7763 0.7686

The third example is by Fay (2005), who proposed the Random Marginal Agree-

ment Coefficient. In the example, 149 patients were classified into four categories by

two neurologists. The four categories are: (0) Certain multiple sclerosis, (1) probable

MS and (2) possible MS (50:50 odds) and (3) doubtful. The data is summarized in the

following table:

B

0 1 2 3 PX (x)

0 0.2550 0.0336 0 0.0067 0.2953

A 1 0.2215 0.0738 0.0201 0 0.3154

2 0.0671 0.0940 0.0336 0.0403 0.2350

3 0.0201 0.2484 0.0201 0.0671 0.1543

PY (y) 0.5637 0.2484 0.0738 0.1141 1

Fay then modified the data by supposing that 10 patients that were rated ’2’ by

Neurologist 1 and ’0’ by Neurologist 2, were instead rated ’0’ by Neurologist 1 and ’2’
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by Neurologist 2. Hence the new data is:

B

0 1 2 3 PX (x)

0 0.2550 0.0336 0.0671 0.0067 0.3624

A 1 0.2215 0.0738 0.0201 0 0.3154

2 0 0.0940 0.0336 0.0403 0.1679

3 0.0201 0.2484 0.0201 0.0671 0.1543

PY (y) 0.4966 0.2484 0.1409 0.1141 1

The following tables shows the result calculated from the first data set:

Table 4.6. Results for the first data set of example 3

Weight κW κtr(W ) κle(W ) κ∗
tr(W ) κ∗

le(W )
Cicchetti-Allison 0.3797 0.3797 0.4974 0.3920 0.5267

Fleiss-Cohen 0.5246 0.5246 0.5246 0.5443 0.5321

For the second data set, the results are:

Table 4.7. Results for the second data set of example 3

Weight κW κtr(W ) κle(W ) κ∗
tr(W ) κ∗

le(W )
Cicchetti-Allison 0.3553 0.3553 0.4706 0.3734 0.5099

Fleiss-Cohen 0.5035 0.5035 0.5035 0.5266 0.5159



145

In this example, for the first data set, Cohen’s kappa is 0.2079 and for the second

data set, it is 0.1855, which means that there is less agreement in the second data set.

Fay argues that Cohen’s kappa fails to work in this case since the two data sets have

identical diagonal elements (exact matches) and the second data set has closer matching

marginal probabilities. This appears to be true at the first glance. However, a more

in-depth investigation shows that it is not as simple at it looks. We know that Cohen’s

kappa is chance excluded, which means it measures the agreement which is exclusive of

the agreement expected by chance. Changing the data set changes the marginal values

and hence the agreement expected by chance. In both cases, the observed agreement is

the same, what is different is the expected agreement. A simple algebraic calculation

shows that the second data set has more agreement that is expected by chance (0.0198

more). Although the marginal probabilities are close to each other, more agreement

are obtained by chance. So if we want an index that is chance-corrected, then Cohen’s

kappa still makes sense. The result also shows that all the agreement coefficients show

a decrease of the degree of agreement in the second example.

The above examples confirm that κtr(W ) is the same as Cohen’s weighted kappa

coefficient, that all agreement coefficients perform well with κ∗
tr
(W ) being the best, giving

results very close to Cohen’s weighted kappa. κle(W ) and κ∗
le(W ), in some cases, tend

to give slightly larger agreement coefficients.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, several alternative methods to Cohen’s kappa and weighted kappa

coefficients are developed to measure agreement when responses are categorical.

In chapter 2, we establish a pairwise agreement minus disagreement coefficient.

An overall agreement coefficient can be obtained as a weighted sum of each pairwise

agreement minus disagreement coefficients. The properties of this overall agreement

coefficient are investigated and its large sample distribution is developed. Its performance

is exhibited through simulation studies, which shows that it is particularly good at

detecting poor agreement.

In chapter 3, we develop a conditional kappa, an agreement coefficient that is

obtained by measuring agreement conditioned on each possible category. We examine

the properties of the conditional kappa and develop its large sample distribution. Due

to the complexity of its large sample distribution, we choose to use bootstrap instead in

estimating the large sample variances of the estimator, which turns out to be very close

to the observed values. Simulation study shows that overall, the conditional kappa has

good performance and bootstrap can be used to estimate the large sample variances,

although it is more computation intensive.
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In chapter 4, we develop the multivariate kappa by constructing two matrices

PI and PD, the difference of which, we believe, contains all the information concerning

agreement. Different matrix functions can be applied to the two matrices to construct

a scalar measurement of the degree of agreement. We consider two functions, the trace

function (sum of eigenvalues) and the largest eigenvalue. An alternative method is to

apply the two functions to the generalized inverse of the two matrices. Altogether,

this gives us four agreement coefficients. When there are only two categories, all the

four agreement coefficients reduce to Cohen’s kappa coefficient. The properties of these

four coefficients are investigated and through simulation studies, their performance is

compared with that of Cohen’s kappa or weighted kappa.

5.2 Some Additional Thoughts

The measurement of agreement for categorical data, although at first glance seem-

ing to be simple, turns out to be a very complex topic. One worrisome issue is whether

we should exclude the so-called agreement obtained by chance. We already discussed

this briefly in the example given by Fay (2005). Here is an extreme example:

Y

0 1 PX (x)

X 0 0.81 0.09 0.9

1 0.09 0.01 0.1

PY (y) 0.9 0.1 1
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Although we have high diagonal values and the same marginal values, Cohen’s

kappa coefficient is 0 since all the agreement is obtained when we assume that X and Y

are independent. Fay’s RMAC also gives 0.

However, if we change the data slightly in the following way:

Y

0 1 PX (x)

X 0 0.81 0.18 0.99

1 0 0.01 0.01

PY (y) 0.81 0.19 1

The kappa is 0.082, implying that there is more agreement in the second data set,

despite that in the second case we have the same diagonal values and more imbalanced

marginal values. Fay’s RMAC remains at 0, which implies insensitivity to the change of

the marginal probabilities. Fay argues that this is an advantage of his proposed method.

We really doubt this argument since if his argument holds, we should expect a smaller

agreement coefficient instead of being the same for both cases. In the first table, Cohen’s

kappa gives 0 because by its definition, all the agreements we get are observed by chance.

But in reality, assuming that rater A is giving evaluation that is independent of rater

B does not mean that they should not be close to each other, as is the case in the

first table. So the question is, should these agreements be removed when measuring the

overall agreement?

Another problem is the reproducibility of the measurement of agreement coeffi-

cient itself. Suppose we are measuring agreement between two raters A and B. We don’t
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want our conclusion of the degree of agreement between A and B to vary depending on

which evaluation method the two raters are using. In other words, we wish that our

agreement coefficients agree with each other no matter what kind of evaluation method

the two raters are using. This topic has been covered in the simulation part of chapter

2.

5.3 Future Work

The multivariate kappa seems to be a very promising method as a generalization

to Cohen’s kappa and weighted kappa coefficients. Future research would include:

1. Investigate whether there are others forms of matrix functions that can be applied

to the multivariate kappa.

2. If such functions exist, investigate which function has better performance.

3. Investigate whether chance should be included in constructing agreement coeffi-

cients.

4. Investigate whether this multivariate kappa can be generalized to deal with multi-

rater agreement problems.

5. Investigate the agreement issue with respect to the employment of different eval-

uation methods. Investigate whether the number of categories in the responses

can be taken into account in constructing the agreement coefficients or whether

suggestions can be made concerning the number of categories that should be used

in the responses
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