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Abstract
Accurate representation of flow functions, particularly absolute permeability (kabs)

and relative permeability (kr) is crucial for understanding subsurface fluid behavior in
Geologic Carbon Storage (GCS) applications. While micro-CT scanning and digital
rock physics have improved our understanding of multiphase flow processes through
image simulation techniques such as pore network modeling, lattice Boltzmann, or
direct image simulation, their limited scale and high acquisition costs pose significant
challenges in bridging the gap between detailed pore-scale physics and field-scale reservoir
characteristics. Such disconnection has long prevented the effective upscaling of flow
functions for practical reservoir simulations.

This thesis presents a systematic investigation into methodologies for upscaling
both porous medium and flow functions through the reconstruction of porous media
conditioned to larger-scale rock properties. We present methodologies evolving from
simple statistical correlations between flow functions and field-scale characteristics to
increasingly sophisticated deep-learning approaches such as GANs and transformers.
We first explore GAN-based reconstruction methods with property conditioning, which
successfully generate synthetic structures but face limitations in capturing long-range
spatial dependencies. This exploration led to our key innovation: a transformer-based
architecture for multi-dimensional porous media reconstruction through an autoregressive
approach.

From a pure image reconstruction perspective, the transformer-based approach adopts
a robust multi-token generation strategy for high-dimensional spatial object reconstruc-
tion involving multiple image patches, which could inspire research related to video
generation, 3D object reconstruction, and similar applications. In the context of porous
media, it provides a viable approach for spatial upscaling and enables arbitrary-size
generation. Although the current prototype is only a baby transformer model trained on
a total of 6 micro-CT scans (each with a voxel resolution of 6363 voxels), this approach
demonstrates its capability in generating spatially coherent porous media that honor
field-scale constraints while accurately predicting both absolute and relative permeability.
This success validates our hypothesis that autoregressive modeling can effectively capture
the complex spatial relationships crucial for accurate flow function prediction.

Our work serves as a fundamental stepping stone toward a more holistic approach to
solving upscaling challenges in subsurface characterization. The methodologies developed
here extend beyond pore-scale reconstruction, offering potential applications in digital
material reconstruction, inverse problems, and reservoir model generation.
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Chapter 1 |
Introduction

1.1 Background

The continuing trend of global warming due to increased greenhouse gas concentration
has made it necessary to make geologic CO2 sequestration (GCS) viable to reign in the
emission of greenhouse gases into the atmosphere. GCS is a process where CO2 is injected
into subsurface aquifers or depleted reservoirs for long-term storage [4]. Optimizing
and managing this process requires a good understanding of multiphase �ow, which is
also manifested in many other processes including subsurface contaminant transport,
medical treatments such as brain and liver cancer therapy, groundwater remediation,
and enhanced oil recovery (EOR) [5,6]. During GCS, the �owing phases consist of CO2

and brine, where the injected CO2 acts as the non-wetting phase displacing in-situ brine,
which serves as the wetting phase. This process of the non-wetting phase displacing the
wetting phase that is initially present in the reservoir or aquifer is known as primary
drainage. Conversely, the process is known as imbibition when the wetting phase (water)
is injected back into a formation fully saturated with a non-wetting phase such as oil or
gas. One of the important physical parameters characterizing multiphase �ow systems
is relative permeability (kr ), which is de�ned as the ratio of e�ective permeability of a
particular �uid at a given saturation to its absolute permeability (kabs) when the medium
is completely saturated with the �uid, as described in equation 1.1.

kr =
kef f

kabs
(1.1)

Relative �ow of CO2 and brine in a multiphase system can be described by Darcy's law
(equations 1.2 and 1.3), whereQ represents the fractional �ow rate for either the wetting
phase (w) or non-wetting phase (nw), and K rnw represents the relative permeability of
the non-wetting phase.K rnw characterizes the �ow behavior of the non-wetting phase
CO2 in the presence of wetting phase brine.K rnw is a dynamic physical property that
depends on phase saturation and numerous other complex factors.

Qnw =
� KK rnw A

� nw
(
@Pnw

@x
+ � nw gsin� ) (1.2)
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Qw =
� KK rw A

� w
(
@Pw
@x

+ � wgsin� ) (1.3)

Another important �ow-related property is absolute permeability (kabs), as previously
introduced in the kr equation 1.1. Although it cannot characterize multiphase �ow likekr ,
kabs remains a critical parameter for measuring a rock's ability to conduct a single �uid
through its pores. Bothkabs and kr are crucial in determining the volume of CO2 that can
be injected [7,8] and controlling the migration of the plume after injection [1,8]. These
properties are also essential parameters in reservoir simulation for modeling �uid �ow and
transport in subsurface reservoirs at �eld scale. Thus, accurate prediction or measurement
of both properties is crucial. While several options exist for interpolatingkabs using
either �ow-based approaches [9] or empirical porosity-permeability correlations such as
the Kozeny-Carman equation, interpolating and upscaling multiphase �ow parameters
such askr remains a challenging and unsolved research problem.

One complexity of multiphase �ow systems is that primary drainage and imbibition
processes alone are insu�cient to fully characterize subsurface multiphase �ow, as
additional physics such as hysteresis may be present. Hysteresis implies that �uid
con�gurations resulting from multiphase �ow depend not only on �uid properties but
also on the speci�c displacement path. For example, secondary drainage and secondary
imbibition processes may occur after primary drainage and imbibition, resulting in
di�erent �nal �uid con�gurations. Unlike kabs, it is practically impossible to build a
simple correlation forkr data due to the numerous potential saturation paths that must
be considered.

Another complexity lies in the fact that kr is scale-sensitive and has a Representative
Elementary Volume (REV) scale [10] that is controlled by the spatial heterogeneity
exhibited by the pore structures and the connected �ow paths at the pore scale. There
are di�erent scales of relative permeability characterization: pore scale, core scale, and
reservoir scale [11]. A common approach to measure relative permeability in laboratories
is by performing Special Core Analysis (SCAL) on core or plug samples. However,
this procedure is typically time-consuming and expensive [12]. Moreover, the scale of
laboratory measurements is con�ned to core scale (cm), which is incompatible with well
(m) and reservoir scale predictions (km). During �eld-scale characterization, spatial
heterogeneity in geological models may introduce variations in pore structure [13], which
in turn in�uences the spreading of �uids within the pore space, thereby a�ecting relative
permeability data. To improve the accuracy of �uid �ow simulation at the �eld scale, it
is necessary to minimize such inconsistencies between heterogeneous geological systems
at the �eld scale and relatively homogeneous pore-scale models at the microscopic level.
Relative permeability data must be interpolated and upscaled while being conditioned to
geological spatial heterogeneity at both pore and �eld scales.

Building direct statistical correlations to interpolate �ow functions may not be ideal,
as we will further demonstrate in Chapter 3. Performing direct pore-scale simulations on
3D micro-computed tomography (CT) images o�ers a more �exible approach to studying
multiphase behavior at the micron scale. This approach also allows for manipulating
di�erent physical factors, such as the capillary number and viscosity, to study the
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sensitivity of multiphase �ow process to various physical parameters [14, 15]. This in
turn can yield more robust calculation of multiphase �ow process properties like relative
permeability using pore-scale simulation such as pore network model coupled with Stokes
�ow simulation [16]. However, solely depending on pore-scale simulation as a tool to
study and interpolate multiphase �ow processes in the subsurface is not enough. Firstly,
there are not enough micro-CT samples available for analysis due to their high acquisition
cost. Secondly, they are only representative of a small portion of variations in subsurface
geologic properties, thus historical data and prior information may not be suitable for
new �eld conditions. Therefore, building a more �exible methodology that can connect
both pore-scale simulation and �eld-scale geological variations is a prerequisite to perform
necessary accurate multiphase �ow process interpolation and upscaling.

To address some of the above issues, research e�orts have focused on developing
synthetic models for porous media to alleviate the cost of acquiring micro-CT scans and to
increase the variability and abundance of pore-scale models. Statistics-based techniques
such as those based on multipoint statistics are able to generate models that preserve the
continuity of features such as pore throats connections [17� 19]. However, the disadvantage
of these approaches is that they are computationally expensive and are limited to the
reconstruction of complex and heterogeneous object patterns under the conditions of
statistical stationary and the availability of rich training data [20]. Recent advancements
in deep learning o�er potentially more comprehensive solutions to reconstruct complex
target distributions while assimilating di�erent data sources by using deep generative
neural networks. Compared with stochastic geostatistical reconstruction methods such
as those based on multiple-point statistics (MPS) [21], deep learning-based generative
models are more capable of capturing complex patterns from training data [20] since
they have a larger parameter space. In the realm of subsurface properties reconstruction,
deep learning approaches are widely used in channel reconstruction [22], solving inverse
problems [23, 24] and conditional reservoir model generation [25, 26]. In the realm of
digital rocks, GAN-based deep learning models such as Deep Convolutional Generative
Adversarial Networks (DCGAN) have been utilized to reconstruct 2D and 3D micro-CT
images of Berea sandstone, bead packs, and oolitic Ketton limestone [20,27,28] while
honoring petrophysical and Minkowski functional properties from training samples.

1.2 Current limitations

As we had previously discussed, �ow function relevant variables, especiallykr , are
intrinsically complex due to their uncertain scaling behavior and hysteresis. These
variables are in�uenced by both geological properties (static and spatial) and �ow-related
factors (such as viscosity). Obviously, developing a system to predict these �ow functions
incorporating all these factors is quite unrealistic. Thus, most existing approaches
tend to focus on modeling multiphase �ow processes based on a few limited factors.
Standard saturation-dependent models such as Brooks-Corey [29] are used to model
relative permeability but lack the ability to incorporate more complex physics such as
hysteresis that comes about because of variations in �ow paths. State function-based
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approaches to predict relative permeability are better compared with saturation-dependent
models at handling hysteresis e�ects because extra physical parameters (such as phase
connectivity and interfacial area) can be incorporated in those approaches to describe
relative permeability [6, 15]. However, the state function approach lacks the ability
to incorporate spatial variations in rock properties. While rock properties along with
other in�uential factors such as wettability can serve as tuning parameters for both state
function-based approaches and traditional saturation-based models, such direct statistical-
based correlations are unstable since the tuning parameter space is not su�cient enough
to capture the complexity of �ow processes while accounting for spatial heterogeneity.

Meanwhile, deep learning models have been proposed that are able to reconstruct
3D porous media with quite good authenticity. However, there is not so much focus on
connecting such reconstruction to rock properties that can be measured in the �eld or
to spatial rock property distributions. The conditional GAN (cGAN) work�ow [30] is
straightforward but often not feasible for reconstructing multivariate physically consistent
realizations, especially when involving multiple, inter-correlated physical parameters. At
the same time, the cGAN-based approach necessitates labeling conditioning data for
each training image, which is both computationally expensive and renders the approach
in�exible in real practice due to the need to pre-de�ne conditional variables during
GAN training. Given the existence of multiple physical simulation approaches, such
as Pore Network Modeling (PNM) or the Lattice Boltzmann Method, each capable
of incorporating varied physical factors like wettability and capillary number, a more
�exible and controllable generation framework is necessary to work harmoniously with
the software for multiphase �ow modeling.

Another limitation of current deep learning applications in porous media recon-
struction is the di�culty in incorporating spatial heterogeneity of rock properties into
reconstruction, given that most �eld-scale geological models are rarely homogeneous.
Multiphase �ow functions like relative permeability should be linked to spatial variations
in rock properties to obtain more representative �ow functions at scales that are coarser
than the pore scale. Part of the reason for such limitation is that the scale of these
reconstruction models tends to be restricted, mostly ranging from643 to 1283 voxels due
to computational limits. With better computational resources, a2563 voxel image can
sometimes be achieved. However, as size increases, the computational resources required
for data processing in terms of the number of GPUs and their memory requirements
increase, while at the same time, the number of training images becomes insu�cient. Most
current deep learning-based generators for pore-scale models are trained on sub-volumes
of a complete micro-CT dataset, and larger training images result in fewer sub-volumes
for model training. More importantly, when the models are synthesized at the scale of
the sub-volume, most physical attributes computed corresponding to these porous media
are below the Representative Elementary Volume (REV) scale. This is especially true
for transport properties such as relative permeability and permeability [10], whose REV
scale is larger than that of porosity. Analyzing transport properties below REV scale is
easily in�uenced by local pore structure, rendering them not representative of �eld-scale
quantities. Thus, a more robust deep learning system that is not limited to the scale
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of training images and can autoregressively perform spatial upscaling is key to solving
current limitations.

Laboratory results and numerical studies indicate that multiple complex factors
in�uence the shape of multiphase �ow functions (kr ) and, consequently, multiphase
�ow processes. However, quantitative assessment of the in�uence of pore structure
parameters and spatial heterogeneity of geological properties onkr � s remains limited
due to the sparsity of multiphase �ow experimental results that could be used to study
parameter sensitivity. Considering that bulk parameters like porosity and permeability
are commonly available and abundant at well and �eld scales, establishing relationships
between these parameters and relative permeability may be key to deriving �ow functions
at scales relevant for �eld-scale applications. Although deep learning-based approaches are
good candidates for reconstructing high-resolution, physically reasonable and authentic
3D porous media, they haven't contributed enough to the process of interpolating and
upscaling of �ow functions that require �exible integration of pore scale �ow simulation
and static scale reconstruction. Thus, working towards building more systematic deep
learning work�ows that can combine most existing models and simulation toolboxes into
interpolation and upscaling of �ow functions is necessary.

1.3 Research objectives

To address some of the above challenges in Section 1.2, we propose two sets of deep
learning-based systems to reconstruct 3D porous media in conjunction with a physical
simulator and to autoregressively model porous media at any arbitrary scale (possibly
di�erent from the scale of the training set). We conjecture that such an approach would
provide the �exibility to perform spatial upscaling and downscaling. These two sets
of deep learning systems don't con�ict with physics-based models but rather, serve to
ensure that existing relative permeability models or pore-scale simulators can use the
reconstructed porous media and �ow function properties within their own work�ow for
customized analysis.

The �rst set of deep learning systems is based on Wasserstein Deep Convolutional
Generative Adversarial Networks (WDCGAN) [31,32], which is a type of deep learning
model that is especially good at reconstructing high-resolution images. To align deep
learning generator outputs with �eld observations of rock properties such as porosity or
pore-size distribution, we employ a gradual Gaussian perturbation approach combined
with a physical simulator to directly optimize the Gaussian-based latent space in the
generator of GAN. This optimization ensures that the generated rock structures align well
with �eld-derived values or physical simulation outputs, as demonstrated in Chapter 4.
Although the GAN-based generation approach does well in the controllable generation of
porous media under the Gaussian perturbation conditional framework, its limitation in
incorporating spatial heterogeneity in rock properties is still an issue, and that will be
discussed in Chapter 5.

WDCGAN is good at approximating a static target distribution, which makes it hard
to incorporate spatial heterogeneity, and the reconstruction size using such a system is
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limited to the size of training images. Thus, we developed the second set of deep learning
systems to overcome such limitations by adopting an autoregression-based framework
using the transformer and vector quantized variational autoencoder (VQVAE) that
serves as the image latent compressor. Transformer-based deep learning system can
dynamically generate porous media much larger than the scale of the original training
image with spatial continuity in an autoregressive manner. We start by compressing
the smaller-size training images into low-dimensional tokens using the VQVAE/VQGAN
framework [33, 34] and train the transformer to autoregressively generate each image
token quantized by the VQVAE model. Inspired by multi-token transformer generation
strategy [35], our transformer model generates multiple tokens per image patch, preserving
image integrity and allowing the transformer to focus on �guring out the global spatial
coherency between patches. We have validated this approach using real data from a test
well, showcasing its potential to generate models for the porous media at the well scale
using only a spatial porosity model. Compared with the reference porous media which
are unconstrained by spatial rock properties, the assembled representative porous media
re�ect �eld-scale geological properties and yield more accurate modeling of transport
properties, including permeability and multiphase �ow relative permeability of CO2 and
brine.

The goal of this dissertation is to address the following:

ˆ Develop a deep learning system that can reconstruct porous media and interpolate
�ow function variables conditioned to static rock properties incorporating a physical
�ow simulator within the framework.

ˆ Establish a deep learning-based system that can reconstruct and spatially upscale
porous media at arbitrary scales (reconstruction size is �exible and not limited by
training image sizes) and interpolate �ow function variables conditioned on spatial
distributions of rock properties (e.g., spatial� distribution).

ˆ Upscale permeability and relative permeability by combining spatial characteriza-
tion of geological properties with stochastic perturbation to represent �eld-scale
heterogeneity.

It's important to note that all upscaling experimentation and validation in this
dissertation is at the pore scale instead of �eld scale. In terms of length scale, the largest
pore-scale model simulation domain in our dissertation is approximately0:779mm3

(around 6003 voxels with voxel resolution3:7465� m3). We are primarily testing whether
the second deep learning system can recreate a synthetic porous medium from much
smaller training data (where the cubic volume is approximately0:001mm3 at 643

voxels), while honoring spatial heterogeneity of rock properties (description of these
spatial heterogeneity are also at pore scale). From an experimental perspective, we are
essentially upscaling from smaller pore scale (0:001mm3) to larger pore scale (0:779mm3)
while preserving larger-scale spatial heterogeneity. The validation data thus at larger
pore scale rather than using �ow-scale simulation results or production data, although
validation data at that scale remains the ultimate target.
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The legitimacy of performing upscaling experimentation at the pore scale stems
from the urgent need to develop a complete upscaling work�ow that bridges pore-scale
�ow properties and �eld-scale simulation. This approach provides two key technical
contributions. First, through establishing a pore-scale based upscaling framework, we
have developed a methodology that can reconstruct �ow functions while incorporating
spatial heterogeneity. In future experiments, pore-scale heterogeneity can be readily
replaced with well or �eld-scale heterogeneity, meaning we can build similar pore-scale
models where pore throat con�gurations re�ect �eld-scale rock property distributions,
such as porosity heterogeneity. A key prerequisite for achieving those goals is a systematic
work�ow for downscaling models for spatial correlation to depict the spatial variability
at the desired scale.

Secondly, our experiments introduce a novel framework for incorporating diverse
data sources into the �ow function modeling process, particularly the integration of
high-resolution data and rock properties. Rock properties can be seamlessly replaced
with geostatistical geological models. High resolution database can be extended to
incorporate other data sources, such as low-resolution medical CT images. Through
super-resolution processing, these low-resolution data can serve as training data for our
deep learning system, providing much richer core-scale heterogeneity for neural network
learning. We believe these two advantages establish a consistent work�ow that bridges
the gap between pore-scale and �ow-scale processes: pore-scale perturbations are guided
by �eld-scale heterogeneity, while �eld-scale single-phase and multiphase �ow properties
can be partially guided by perturbed pore-scale functions.

Our research hypothesis is that in order to reliably establish representative �eld-scale
�ow properties, spatial heterogeneity has to be rigorously incorporated into pore-scale
representations. Speci�cally, we hypothesize that:

1. Field-scale geological heterogeneity can be e�ectively downscaled to inform and
constrain pore-scale structure reconstruction. Furthermore, pore-scale �ow simula-
tions based on such reconstructions can re�ect the in�uence of such downscaled
�eld-scale geological heterogeneity.

2. The spatial distribution of rock properties at the �eld scale contains important
information that should be preserved and re�ected in pore-scale simulations.

The dissertation will use the data available from a �eld CO2 injection site to test
these hypotheses.

1.4 Dissertation layout

This dissertation is arranged as follows:

ˆ Chapter 1 introduces the research problems, current limitations, and research
objectives.

ˆ Chapter 2 presents a brief literature review on relevant topics
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ˆ Chapter 3 introduces the pore network modeling approach and corresponding
sensitivity analysis

ˆ Chapter 4 introduces physics-informed generative adversarial networks applications
on Micro-CT images pore network model reconstruction

ˆ Chapter 5 discusses the limitations of using GAN based approach

ˆ Chapter 6 discusses the application of transformer-based system in reconstructing
and upscaling porous mediums and �ow functions while honoring the spatial
distribution of porosity

ˆ Chapter 7 discusses the salient research results and outlines recommendations for
future work
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Chapter 2 |
Literature Review

2.1 Relative Permeability

2.1.1 Relative permeability models and in�uential factors

The relative permeability characteristics of a reservoir are in�uenced by numerous
factors. Laboratory-based measurements of relative permeability are possible under
certain assumptions regarding boundary conditions and other physical factors. To
understand the in�uence of various factors on relative permeability, a model based on
�uid �ow physics at the pore scale is necessary. Subsequently, the inferences from the
pore-scale model must be extrapolated to larger scales using a faster and more �exible
approach. This investigation begins with an examination of the physical parameters that
in�uence relative permeability data.

Figure 2.1 shows the typical pro�le of relative permeability during the drainage
process. Since relative permeability (krp ) is de�ned as the ratio of e�ective permeability
to absolute permeability, as described in equation 1.1, the parameter is normalized to
range from 0 to 1. The e�ective permeability of a certain phase (kp

ef f ) is de�ned as
the permeability of that phase at a speci�c saturation level (Sp) when other phases are
present and occupying the pore space. When the saturation of a phase reaches 100%, its
kef f becomes equal tokabs. Both e�ective permeability and relative permeability can
be described as monotonically increasing functions of saturation, as shown in �gure 2.1.
However, due to the complexity of multiphase transport processes, multiple factors
in�uence the shapes of thekef f � s and kr � s pro�les. Sincekrp is normalized bykabs,
the shape ofkr � s is typically more abstract and more di�cult to interpolate.

The relative permeability (kr ) is in�uenced by numerous complex factors, which can
be classi�ed into di�erent categories based on the underlying physical process as detailed
below.

2.1.1.1 Capillary Number and Viscosity

The �rst in�uential factor is capillary number NCa, which is de�ned in equation 2.1,
wherev represents the interstitial velocity, � represents pore-scale �ow viscosity and�
represents interfacial tension.
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Figure 2.1: Drainage CO2 (solid circles) and water (open circles) relative permeability
data for the four samples. Solid lines are best �t Brooks-Corey curves [1]

NCa =
v�
�

(2.1)

Two types of �ow regimes can be inferred from the capillary number: capillary-
dominated regime occurs when the �ow rate is low and interfacial tension is high (low
capillary number), while viscosity-dominated �ow occurs at higher capillary numbers.
These regimes manifest themselves in the shapes of relative permeability pro�les. Di�erent
capillary numbers not only in�uence thekr � s relationship but also a�ect the quadratic
response of the relative permeability state function [36], as discussed later in this chapter.

2.1.1.2 Wettability

Wettability describes how �uid interacts with rock. Contact angle (� ) provides a
practical way to quantify rock wettability. According to Young's equation, the relationship
between interfacial tension and contact angle can be described in equation 2.2, where
� ws, � nws , and � w� nw represent the interfacial tensions between wetting phase/solid,
non-wetting phase/solid, and wetting/non-wetting phases, respectively. Based on contact
angle values (� ), porous medium wettability can be classi�ed as completely water wet
at � = 0 0, strongly water wet from � = 0 0 � 500, weakly water wet from� = 500 � 700,
intermediate wet from � = 700 � 1100, weakly CO2 wet from � = 1100 � 1300, strongly
CO2 wet from � = 1300 � 1800, and completely CO2 wet at � = 1800 [37]. Wettability
signi�cantly impacts the shape of thekr � s pro�le. Recent literature indicates that
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spatial heterogeneity in wettability and surface contact angle distribution can substantially
in�uence the kr � S path [37]. In this dissertation, wettability and contact angle are
treated as constants. For siliciclastic rocks, which are typically strongly water-wet [1],
this assumption may be warranted.

cos� =
� ws � � nws

� nww
(2.2)

2.1.1.3 Phase related variables

During multiphase �ow, phase-related variables including phase saturation (s), phase
connectivity (� ), and �uid/�uid interfacial area ( s) can accurately characterize the relative
permeability function. Saturation history-dependent models for relative permeability
have been widely studied and applied in both academia and industry. The standard
relative permeability model used in industry is the Brooks-Corey model [29,38], which can
be described by equation 2.3. In this equation,kr 1 represents the relative permeability of
phase 1,s1 represents the saturation of phase 1,s1r represents the residual saturation of
phase 1,s2r represents the residual saturation of phase 2,n1 is the Corey component of
phase 1, andk0

r 1 represents the end-point relative permeability of phase 1.

kr 1 = k0
r 1(

s1 � s1r

1 � s1r � s2r
)n1 (2.3)

Corey component, residual saturation, and end-point relative permeability are typically
treated as tuning parameters for a speci�ckr � S path. These models provide considerable
convenience for modeling relative permeability data, as their parameters can be �tted
through laboratory experimental data or by employing empirical assumptions. For
example, the Corey component can represent a pore size distribution index as an extension
to the general form of the Corey model. However, the limitations of saturation-dependent
models lie in their empirical nature and failure to incorporate pore-scale physics, which
may lead to inaccurate predictions of relative permeability under geological conditions
that di�er signi�cantly from those under which these models were �tted [6,11]. Although
Land-type [39] relative permeability models provide solutions to address hysteresis in
relative permeability, their intrinsic limitations remain unresolved, as the tuning process
lacks generality for predicting relative permeability under di�erent conditions. In other
words, the empirical phase saturation-based models lack universal predictive ability for
new pore structures encountered in the subsurface. While pore structure information
such as pore size distribution or connectivity can be used as �tting parameters for the
saturation-dependent model, such relationships remain empirical.

Recently, a state function approach for modeling relative permeability has been
demonstrated that incorporates multiple pore-scale parameters, including saturation (Sj ),
phase connectivity (� j ), wettability index ( I j ), capillary number (Nca), and pore struc-
ture (� ) [6], as described in equation 2.4. Under assumptions of �xed pore structure,
constant wettability index, and constant capillary number, equation 2.4 can be simpli-
�ed to equation 2.5, where an additional phase-related variable��uid-�uid interfacial
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area�is incorporated as an input parameter for modeling relative permeability [15].
Both machine learning and polynomial-based statistical models combined with this state
function approach provide accurate predictions of relative permeability when compared
to pore network model simulation results or laboratory measurements [12,15].

krj = f (Sj ; � j ; I j ; Nca; � ) (2.4)

dkr = � sdS + � � d� + � A dA (2.5)

Although the state function-based approach provides more accurate relative perme-
ability predictions, phase-related variables such as �uid phase connectivity and �uid/�uid
interfacial area are typically more di�cult to measure and obtain from �eld data or labo-
ratory experiments [12]. However, to upscale and incorporate spatial heterogeneity into
the prediction process, the relationships between pore structure parameters, geological
properties, and their in�uence on relative permeability need to be investigated.

2.1.1.4 Pore Structure and Geological Properties

The fourth set of factors that in�uence relative permeability can be summarized as
properties that intrinsically describe rock structure. These factors do not characterize
the state of multiphase �ow processes but serve as containers or con�nements within
which these processes occur. For example, the four Minkowski functionals [40, 41]
that characterize pore structure topology are: porosity (� ), grain surface area (Ap),
average curvature, and Euler characteristics (� ) [40]. Other pore structure parameters
include pore aspect ratio and distributions of pore size and pore radius. Absolute
permeability (kabs) can also be considered an intrinsic parameter of porous media since it
characterizes the connectivity of the porous medium and remains constant regardless of
saturation changes in multiple phases. Previous literature has largely focused on studying
qualitative relationships between relative permeability and pore structure parameters
such as porosity, absolute permeability, and average pore diameter [42]. However, the
in�uence of individual factors like porosity or permeability on the shape ofkr � s is
unpredictable and easily a�ected by changes in other parameters such as grain size
or the spatial heterogeneity of geological properties [42]. In most scenarios, multiple
pore structure parameters and their spatial heterogeneity in�uence relative permeability
collectively in an integrated manner. However, this remains a qualitative conjecture that
lacks support from systematic numerical experiments and quantitative validation.

Micromodel (miniaturized arti�cial pore network models) simulation results and
analytical solutions both demonstrate that pore throat ratio, coordination number, shape
factors, and pore throat orientation have signi�cant quantitative impacts on relative
and absolute permeability [43] [44]. Laboratory �ow experiments on various sandstone
and limestone samples show that residual saturation decreases with increasing porosity
and coordination number while decreasing with reduced pore aspect ratio [45]. The
complexity of these relationships increases exponentially when multiple porous media
structure parameters are analyzed simultaneously using real micro-CT pore-scale images

12



to study their in�uence on relative permeability behavior, especially when including
hysteresis phenomena.

A more quantitative work�ow needs to be established to incorporate static porous
media parameters at di�erent scales, corresponding to various spatial patterns of hetero-
geneity, to interpolate and obtain relative permeability at the required scale. Currently,
pore network models and micro-CT images provide greater �exibility for performing
multiphase �ow simulations and studying the sensitivity of simulation results to various
pore parameters. However, as previously noted, relative permeability data remains sparse
and expensive to obtain. Thanks to advances in micro x-ray computed tomography
(� xCT), 3D pore structure models of rock samples can now be obtained at a wide range
of resolutions, from less than a micron up to a few millimeters [46]. Di�erent pore-scale
simulation techniques, such as pore network modeling [47], can quickly extract pore
structure parameters from micro-CT images and perform multiphase �ow simulations to
calculate relative permeability and capillary pressure curves. These advancements are
key to studying the relationships between pore structure parameters and multiphase �ow
processes in a more quantitative way.

2.1.2 Upscaling e�orts

Previous e�orts have focused on establishing core-scale �uid �ow models that in-
corporate pore-scale heterogeneity to upscale variables of interest. For example, a 3D
convolutional neural network (CNN) has been developed to establish correlations between
low-resolution image characteristics describing pore structure and absolute permeabil-
ity [48]. The permeability map at the core scale can be inferred from a trained CNN
using low-resolution micro-CT images as input. A Darcy �ow simulator can then be built
with these inferred permeability maps to obtain the upscaled permeability [48]. Similar
upscaling logic has been applied to relative permeability upscaling using a 3D CNN to
reconstruct petrophysical properties from low-resolution micro-CT image segments [46].
A continuum-scale simulator has been developed to estimate upscaled permeability
and relative permeability, achieving accurate agreement with original high-resolution
properties.

These upscaling procedures focus on predicting parameters of interest from low-
resolution micro-CT images at approximately core scale. Their goal is to establish
a relationship between properties at a coarse scale that are consistent with the high-
resolution CT scan information following a trial-and-error process. They do not consider
the e�ect of heterogeneity in petrophysical and �uid-�ow-related properties on the scale up
process. To incorporate spatial heterogeneity into multiphase transport �ow simulation,
research e�orts have focused on developing dynamic high-resolution core-scale numerical
simulators. These simulators consider capillary pressure as local pore-scale features
with perturbation factor k, as described in equation 2.6, wherepc;i represents individual
voxel-based capillary pressure [49] that introduces spatial heterogeneity of saturation (Si )
distribution.

Pc;i = K i � Pc;avg(Si ) (2.6)
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Pc(Sw) = Pe(
1 � Swirr

Sw � Swirr
)

1
� (2.7)

The perturbation parameterki is used to perform history matching with 3D saturation
map obtained from experiments. The result shows that capillary pressure heterogeneity
can be successfully characterized using this approach for sandstone samples.

However, these numerical models at the core scale still lack the �exibility to incorporate
well or �eld-scale geological models with their accompanying stochastic variations. In
reality, capillary pressure data distribution is di�cult to obtain and is con�ned to either
core measurements or even smaller pore-scale simulations. Most core-scale numerical
models focus on modeling multiphase �ow at the core scale instead of attempting to
perturb core con�gurations to make them representative of �eld-scale properties. As
previously discussed, core-scale heterogeneity can be more generally characterized in
terms of pore structure parameters (aspect ratio, pore size distribution, pore shape factor,
etc.) to study their impact on relative permeability and its hysteresis.

In addition to inferring relative permeability from pore-scale or core-scale measure-
ments, a characteristic relative permeability curve can also be derived from �eld-scale
production data using the JBN approach [50] [51]. In e�orts to upscalekr , an analytical
solution of equation 2.8 has been developed for a system consisting of two concatenated
domains with di�erent porosity, permeability, and relative permeability [50], under the
assumption of one-dimensional immiscible displacement. However, the upscaled relative
permeability obtained using this approach cannot match the pressure drop pro�le prior
to breakthrough [50].

� D m

@Sw
@tD

+
@fwm

@XD
= 0 (2.8)

Those numerical experiments inspire us to further consider the appropriate way of
upscaling relative permeability spatially. Our conjecture is that the upscaling should
be done assuming a gradual perturbation of relative permeability across the medium,
instead of assuming sharpkr � s transitions over small distances. This assumption
may be especially true for capillary-dominated percolation, since the heterogeneity of
permeability and porosity may not cause too much �uctuations ofkr � s [49]. A gradual
perturbation and upscaling of relative permeability may provide more accurate results.

2.1.3 Current limitations

From previous discussions, both laboratory results and numerical studies have indi-
cated that multiple complex factors in�uence the pro�les of multiphase �ow functions (kr )
and, consequently, general multiphase �ow processes. However, quantitative assessment
of the in�uence of pore structure parameters and spatial heterogeneity of geological
properties onkr � s remains limited due to the sparsity of multiphase �ow experimental
results that could be used to study parameter sensitivity. Considering that bulk parame-
ters like porosity and permeability are commonly available and abundant at well and
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�eld scales, establishing relationships between these parameters and relative permeability
may be key to deriving �ow functions at scales relevant to �eld-scale applications.

An integrated work�ow for relative permeability interpolation schemes is needed.
Recent advances in deep learning research provide inspiration for accomplishing this goal
in a novel manner. Relevant techniques will be introduced in the next section.

2.2 Generative Deep Learning

Generative AI (arti�cial intelligence) techniques are becoming increasingly popular
in many areas. Notable examples include GPT, a chat agent based on Generative
Pre-trained Transformer developed by OpenAI, and DALL-E, a large image generation
toolkit. The core algorithms behind these successful generative models are based on large
deep neural networks, which have billions of parameters to learn di�erent representations
of tokens and images [52] [53]. A unique di�erence between generative and discriminative
machine learning models is that generative models focus on reconstructing distributions
similar to training data distributions, whether these be image pixels for generating
synthetic images, tokens for generating prompts like ChatGPT, or any arbitrary data
distribution. Discriminative machine learning models, by contrast, are more classical
approaches that aim to predict speci�c values or classify high-dimensional data into
certain outcomes, as exempli�ed in applications such as face recognition and image
segmentation. Compared with stochastic geostatistical simulation techniques such as
multiple-point statistics (MPS) [21], deep learning-based generative models may be more
capable of capturing complex random functions from training data [20], as they have a
larger parameter space.

A fundamental generative deep learning model is the Autoencoder (AE) [54], which
consists of an encodere� (y) and a decoderd� (z). The encoder compresses the original
high-dimensional datay into latent spacez, which is then transformed toŷ. The goal is
to minimize the di�erence betweeny and ŷ, represented by reconstruction loss, as shown
in equation 2.9, wherêy = d� (z) and z = e� (y).

L = jy � ŷj (2.9)

Latent parametersz are optimized through gradient descent to represent training
data space in a deterministic way, which limits their practical applicability primarily
to dimensionality reduction applications, such as image or audio compression [55]. The
Variational Autoencoder (VAE) addresses this limitation by incorporating stochastic
variational inference into the Autoencoder framework [56]. Instead of treating the latent
space as deterministic values, VAE treatsz as an approximated distributionp(zjy). The
objective is to make the approximated distributionp(zjy) as close as possible to the true
posterior p(z) [57]. A useful metric for measuring the distance between two distributions
is the Kullback-Leibler divergence (KL), which is described in equations 2.10 and 2.11.

KL (p(zjy)jjp(z)) = Ep(zjy) [ln
p(zjy)
p(z)

] (2.10)
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= Ep(zjy) [lnp(zjy)] � Ep(zjy) [lnp(z)] (2.11)

Ep(z) represents the expectation over the latent variable distributionz. VAE typically
assumes the prior distributionp(z) follows a standard normal distributionN (0; I ). The
objective becomes to approximate the posterior distributionq� (zjy) to match this prior
while minimizing the reconstruction loss as described in equation 2.9. The VAE loss
function can be expressed as:

L V AE = Eq� (zjy) [logp� (yjz)] � KL (q� (zjy)jjp(z)) (2.12)

To enable fully di�erentiable optimization of the latent spacez, VAE employs the
reparameterization trick:

z = � (y) + � (y) � �; � � N (0; 1) (2.13)

where � is sampled from a standard normal distributionN (0; I ). This trick allows
sampling from the encoded distribution while maintaining di�erentiability through the
network. The combination of di�erentiable sampling and variational inference makes VAE
particularly e�ective for complex data reconstruction and inference [52], with applications
in observation-optimized inversion [23] and 2D/3D image rendering [58].

Recently, a new generative deep learning model that learns data representation
through an adversarial process in a two-network system has been developed, called
Generative Adversarial Networks (GAN) [59].

GAN consists of a discriminator (D) and a generator (G). The generator's goal is
similar to the decoderd� (z) in VAE and AE: generating synthetic images from latent space
z, which is typically sampled from a standard Gaussian distribution. The discriminator's
role is to evaluate and distinguish between generated samplesŷ (synthetic) and real
training samplesy (real). The generator, in turn, aims to produce sampleŝy that can
deceive the discriminator into misclassifying the generated imagesŷ as real. This min-max
competition betweenG and D can be mathematically characterized by adversarial loss,
as described in equation 2.14 [59], whereE denotes expectation as the average operator
over a speci�ed distribution.

min
�

max
!

L (D ! ; G� ) = Ey� p(y) [log(D ! (y))] + Ez� pz (z) [log(1 � D ! (G� (z)))] (2.14)

During the training process of GAN, generatorG� and discriminator D ! are trained
separately using gradient descent in an iterative manner. The parameters of the network
for the generator are denoted by� , while those for the discriminator are denoted by! .
First, the loss function 2.15 for trainingD ! is maximized while keeping the parameters�
�xed; then, the loss function 2.16 for trainingG� is minimized while keeping parameters
! �xed.

L (D ! ) = Ey� p(y) [log(D ! (y))] + Ez� pz (z) [log(1 � D ! (G� (z)))] (2.15)

L (G� ) = Ez� pz (z) [log(1 � D ! (G� (z)))] (2.16)
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Theoretically speaking the optimal stopping criteria of GAN training process is when
L D! approximately equal toL G� , which is the so-called Nash equilibrium [53]. However,
in most scenarios, the Nash equilibrium is hard to achieve since GAN is very unstable to
train [31]. Thus, multiple variants of GAN with di�erent neural network structures and
loss functions have been invented in recent years to make GAN more stable in training
and evaluation. By replacing the binary entropy loss function of the original GAN
with Wasserstein distance, Wasserstein GAN with gradient penalty (WGAN-GP) has
been developed that improves and stabilizes the original GAN training process [31] [32].
Through combining style injection and progressive training strategy [60], styleGAN
and its variants can reproduce high �delity, high-resolution images like fake human
faces [61] [62].

GAN generation can be controlled by introducing conditional terms into the GAN
architecture [30]. This is achieved by treating the original training data space as a
conditional distribution p(yja), as shown in equation 2.17, wherea represents conditional
information that we aim to preserve during the GAN generation process. More sophisti-
cated models have been developed based on this structure to enable the conditioning of
GANs to complex data. Notable examples include Cycle-Consistent Adversarial Networks
for image-to-image translation [63], AttnGAN for text-to-image translation [64], and
CGAN for shoe design with preserved user preference features [65].

min
�

max
!

L (D ! ; G� ) = Ey� p(y) [log(D ! (yja))] + Ez� pz (z) [log(1 � D ! (G� (zja)))] (2.17)

Deep generative models (GANs) combined with adversarial loss achieve signi�cantly
better results compared with other generative models like VAE. The high-resolution
and high-�delity image reconstruction capability of GANs can be especially valuable
for modeling subsurface properties at di�erent scales since subsurface geological interpo-
lations are highly uncertain and modeled distributions should honor observation data
from di�erent sources (well logs, seismic, etc.). For example, GANs have been used
to solve subsurface problems including stochastic channel facies generation [22] and
conditional geological modeling [25]. In digital rock physics, DCGAN [66] has been used
to reconstruct 2D and 3D micro-CT images of Berea sandstone, bead packs, and oolitic
Ketton limestone [20] [27] [28] while honoring petrophysical and Minkowski functional
statistical distributions from training samples. Both VAE and GAN are also valuable for
solving inverse problems, particularly as they excel at perturbing physical parameters and
latent spacez to generate prior and posterior models matching observation data [23] [67].

Generative deep learning methodologies such as Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAE) are promising candidates for reconstructing
subsurface data across scales, from pore-scale micro-CT images to �eld-scale reservoir
models, while preserving hard conditioning data. Their fully di�erentiable nature in
latent space makes these models e�ective at perturbing generated realizations to match
observations from forward models. Theoretically, GANs and VAE can conditionally
incorporate any data sources to create subsurface realizations. This capability is particu-
larly valuable for interpolating geological models or porous media structures that require
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assimilating multiple data sources at di�erent scales. The main focus of this disserta-
tion is to use deep generative adversarial networks to reconstruct porous media images
conditioned to �eld-scale information to interpolate and upscale relative permeability.
Detailed discussion will be presented in chapters 4 and 5.

While GAN-based models such as Deep Convolutional Generative Adversarial Net-
works (DCGAN) are good at reconstructing pixel-based image data, the model's objective
function itself tries to minimize JL divergence between generated samples and target
samples. Such optimization is purely static, and thus reconstruction samples are limited
to training image scale and cannot perform automatic upscaling. Whereas traditional
geostatistical-based simulation, like sequential Gaussian simulation [68], uses an autore-
gressive framework so instead of modeling geological realization all in one model, the
autoregression-based model focuses on capturing spatial covariance among geological
properties. This spatial autoregressive framework can be more suitable for geoscience
spatial modeling tasks instead of focusing on pure static reconstruction using GAN-based
approaches.

Transformer-based models are excellent at handling Natural Language Process-
ing (NLP) related tasks such as translation or language modeling, which require processing
or generating sequences of language tokens. A key advantage brought by transformer-
based models for processing sequential data is their self-attention mechanism, which
is adept at both parallel processing of di�erent positions in a sequence and handling
long-range dependencies [69]. Self-attention in transformers can e�ciently determine
which positions to focus on when predicting current outputs. The self-attention layer
primarily consists of three matrices: query (Q), key (K ), and value (V). The attention
features are calculated through a scaled dot product process as described in Equation 6.4,
where

p
dk is the scaling factor andsof tmax ( QK T

p
dk

) calculates the attention score or
weight that can be assigned to the value corresponding to every position combination.

Attention (Q; K; V ) = sof tmax (
QK T

p
dk

)V (2.18)

There are two main types of transformer models in terms of application: autoregressive-
based transformers (decoder-only) like the Generative Pretrained Transformer (GPT)
series [70] and bidirectional encoder representation from transformers like BERT [71].
Autoregressive-based transformers attempt to predict data in future positions given all
previously available sequential features. Famous applications such as GPTs are trained
to predict the last token of input language data. Due to their autoregressive nature, this
transformer architecture masks the attention matrix to the lower diagonal to prevent
future information from in�uencing current state predictions. This autoregressive nature
shares similarities with geostatistical spatial modeling approaches like sequential Gaussian
simulation (SGS), where new values are simulated based on previously simulated points
and their spatial correlations. Such similarity makes transformer models potentially good
candidates for modeling subsurface spatial properties, as they can o�er more �exible, non-
linear predictions compared to traditional geostatistical approaches like Kriging. However,
a key challenge in applying transformers to spatial modeling is that, unlike language
tokens, spatial data requires careful preprocessing. Direct pixel-by-pixel prediction
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would be computationally expensive, necessitating e�cient data compression methods
to make the approach practical. The detailed implementation of our transformer-based
autoregressive model and these compression strategies will be illustrated in Chapter 6.

2.3 Conclusion

Current literature indicates that the relationship between pore structure and �ow
function variables is not fully understood. Much of this complexity stems from insu�-
cient data to quantify the relationships between multiphase dynamical systems, static
characterization parameters, and their spatial distributions. Moreover, no comprehensive
numerical model currently exists that can predict �ow function variables while incorpo-
rating data from multiple sources and di�erent scales. A more systematic work�ow for
relative permeability and permeability interpolation and upscaling needs to be established
that can incorporate well and �eld-scale properties.
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Chapter 3 |
Investigating the scaling charac-
teristics of porous media

Pore network models (PNM) employ a simpli�ed con�guration of pores and throats to
represent real porous media. The network can be either statistically derived [72] or derived
from micro-CT images using the maximum ball algorithm [47] or marker-based watershed
segmentation, which is also called the SNOW algorithm [73]. Relative permeability, as
well as phase-related variables such as phase connectivity, can be estimated by executing
percolation simulations on extracted PNMs to obtain �uid distributions within the pores
at various saturation levels. Relative permeability can be calculated by conducting
multiphase Stokes �ow simulations corresponding to di�erent saturation levels.

In comparison to direct numerical simulations, pore network model-based multiphase
simulations o�er faster computation and greater �exibility to assess the impact of
variations in pore and throat sizes, rock wettability, and other parameters [36, 72] on
relative permeability. Although the use of PNM presents a disadvantage in terms of
losing the authenticity of real porous media due to the simpli�ed assumption of pore
space [12] and some other approximations to the physical processes, PNM can be used to
study the quantitative trends of relative permeability. Consequently, in this research, the
pore network modeling approach is chosen as the primary simulation tool implemented
using open-source software OpenPNM [74] written in Python. This software is used
owing to its rapid computational speed and adaptable features for performing sensitivity
analysis.

In this chapter, our primary objective is to examine the impact of pore structure
parameters, such as porosity (� ), permeability (k), and pore-pore connectivity (� ), on
phase-related variables including relative permeability (kr ), phase connectivity (� s),
and �uid-�uid interfacial area ( As). We will begin by de�ning these pore structure
parameters, followed by a sensitivity analysis of these parameters within the context of
relative permeability modeling. As the main focus of this dissertation is to investigate the
relationship between �eld-scale pore structure parameters and relative permeability, we
assume a capillary-dominated �ow regime (lowNca) and strong water wettability ( � = 00),
and we do not perturb the capillary number and contact angle.
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3.1 Pore Scale Parameters Introduction

Porosity is a porosity media attribute that is frequently used to characterize the pore
space. It is expressed as a fraction or percentage and calculated by dividing the volume
of void space by the total volume of rock or sediment. Rock samples with high porosity
are typically more porous and store more �uid. They also in general are more permeable,
and it is easier to extract �uids from them. Porosity is also an important hydraulic
parameter for multiphase �ow processes, although its relationship to �ow functions such
as relative permeability is not universal [42].

To characterize pore-scale heterogeneity, pore-to-pore connectivity is an important
parameter. Connectivity metrics can be classi�ed into four main groups: static, dynamic,
global, and local metrics [75]. Static metrics depend only on the connectivity structure of
micro-CT images, while dynamic metrics are related to the connectivity of �uid phases
following a multiphase �ow process. Euler characteristics (� ) can be used to quantify
both pore-to-pore connectivity (� p) and phase connectivity (� s) [15]. Static pore-to-pore
connectivity can be calculated in micro CT images of dry rock samples, which is described
in equation 3.1 whereN represents the number of isolated objects,L represents the
redundant loop andO represents the number of cavities.

� = N � L + O (3.1)

As previously mentioned in Chapter 2, there is evidence to suggest that static pore-pore
connectivity is an in�uential parameter determining the shape of thekr � S relationship,
although additional data would be required to make a more certain and quantitative
conclusion [76]. Another important topological connectivity metric is coordination
number, which refers to the number of interconnected pore throats that are directly
connected to a particular pore. Coordination number can be easily perturbed and
obtained from pore network models [72] and has a big in�uence on relative permeability
characteristics and other pore-scale parameters such as absolute permeability etc. The
relationship between coordination number and relative permeability will be discussed in
this section.

Phase connectivity has also been shown to be an important parameter for modeling
relative permeability using state function approaches in several studies [36] [15] [6]. The
Euler characteristics of a certain phase can be calculated during the invasion percolation
process in a pore network model using equation 3.2. Here,n1 represents the number of
non-wetting pore bodies,n2 represents the number of non-wetting phase-occupied pore
throats connected to two wetting phase-�lled bodies, andn3 represents the number of
non-wetting phase-�lled throats connected to two non-wetting phase-�lled pore bodies.

� = n1 + n2 � n3 (3.2)

Phase connectivity can be normalized using equation 3.3, where� max = Np and
� min = Np � N t . Np represents the number of pores andN t represents the number of
throats in a representative volume. These attributes can be calculated by modeling the
pore network model within a corresponding REV. However, if the objective is to compare
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phase connectivity corresponding to di�erent sizes of simulation domains, it is intuitive
to also normalize phase connectivity to image size:� n = chi norm

I s
, where I s represents

the size of simulation domain [15]. In micro CT image,I s corresponds to image size at
the same voxel resolution. A deep dive into phase connectivity measures can be seen in
Appendix A.

� norm =
� � � max

� min � � max
(3.3)

Aside from � p, uniformity coe�cient Cu = D60=D10 can also be used as a measure of
the heterogeneity of the sample at a macroscopic scale.D60 and D10 refer to the particle
size corresponding to60%and 10%cumulative probability values respectively [77]. By
combining the uniformity coe�cient with pore and throat size distribution, we can derive
REVs classi�cation metrics for sedimentary environments

Figure 3.1: Lognormal Pore and Throat Size Distribution of Berea, BanderaGray, and
Bentheimer Sandstones

As discussed in Chapter 1, this dissertation aims to bridge the gap between �eld-
scale geological characterization and pore-scale multiphase �ow physical simulation. To
establish this connection, we �rst identify the key pore-scale parameters most relevant
to �eld-scale geological properties: porosity, permeability, and pore connectivity. Our
initial approach involves systematic sensitivity analyses using pore network models with
perturbed pore structure parameters derived from MicroCT imaging data. Based on
these simulations, we will investigate the relationships between pore structure parameters
and multiphase �ow properties, including e�ective permeability, relative permeability,
and phase connectivity, in the following section.

3.2 Sensitivity analysis using pore network models

The pore structure parameters, such as pore size distribution, throat size distribution,
and coordination number, can be easily perturbed in pore network models extracted
from micro-CT images. The perturbed values of pore and throat diameters can be used
to study the sensitivity of multiphase �ow functions to pore and throat size distribution.
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Figure 3.2: Family curves of drainage relative permeability

The coordination number can be perturbed and gradually reduced by cutting existing
throats.

f (x; �; � ) =
1

x�
p

2�
� exp(�

(ln( x
� )2)

2� 2
) (3.4)

For this study, three base pore network models were extracted from 3D Micro-CT
images of Berea, BanderaGray, and Bentheimer sandstones [78]. These models can be
downloaded from the Digital Rock Portal and have a sample size of 1000 cubic voxels
with a resolution of approximately 2.65�m . The pore and throat size distribution
parameters were �tted using log-normal distribution (as shown in Figure 3.1), described
by equation 3.4. By perturbing the scale parameter� and variance� , di�erent pore and
throat size distribution parameters were assigned to the original pore network models
and the pore and throat sizes were sampled from the perturbed distributions.

Figure 3.3: Air phase connectivity pro�le constrained by di�erent coordination numbers

A total of 66 realizations of �uid simulations corresponding to drainage conditions
were performed, with perturbations made to the pore and throat size and coordination
number of the network. The family of curves of relative permeability for the non-wetting
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phase are plotted in Figure 3.2. The perturbation of coordination number and pore
and throat size parameters cause corresponding changes in absolute permeability and
porosity. Through these variations, the qualitative in�uence of pore structure parameters
on multiphase �ow processes such as relative permeability and phase connectivity can be
observed.

�gure 3.3 shows that phase connectivity is also a�ected by coordination number.
Each coordination number appears to have a uniqueS � � path. Surprisingly, a lower
coordination number tends to produce a higher phase connectivity trajectory. This occurs
because changes in coordination number cause� min � � max to vary more than � � � max .
It is possible to have a highly connected path through the medium when the coordination
number is low, whereas when the coordination number is higher, the �uid distribution is
more dispersed.

The impact of these perturbations on relative permeability remains unclear, as shown
in Figure 3.4 and Figure 3.5. Figure 3.4 depicts the relative permeability to air at a
non-wetting phase saturation of 0.3. No consistent trend in relative permeability is
observed with changes in pore size and porosity. For the most part, relative permeability
characteristics remain stable across a range of coordination numbers, though occasional
abrupt changes are noted at speci�c values. This behavior highlights the complexity of
relative permeability, which is a normalized ratio and inherently more challenging to
predict compared to e�ective permeability. It is important to note that the simulation
domain is limited to the pore scale (approximately 0.2 mm), meaning thatkr may be
in�uenced by local pore heterogeneity. Consequently, these results may not fully capture
the behavior of relative permeability at larger scales. Further scaling analyses and
simulations are required to better understand the relationship between perturbations in
pore structure parameters and the evolution ofkr � S.

Figure 3.4: Relative permeability
of air (Snw = 0:3) with respect to
pore size distribution, porosity, and
coordination number

Figure 3.5: The e�ect of coordina-
tion Number on Relative Permeabil-
ity of Air: The results suggest unex-
pected jumps in relative permeabil-
ity characteristics corresponding to
certain coordination numbers.
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Figure 3.6: Predicted relative per-
meability versus simulated relative
permeability

Figure 3.7: Feature importance gen-
erated by random forest

3.2.1 Prediction models for relative permeability

These observations have led to further experiments aimed at establishing a quantitative
relationship between pore topological parameters and dynamic �ow characteristics, such
as relative and e�ective permeability. To achieve this, a random forest regressor [79] was
trained based on the perturbation results, with input features including the mean pore
and throat size distribution, porosity, absolute permeability, coordination number, and
saturation level, while the output/target variables were relative and e�ective permeability.
However, as shown in Figure 3.6, the performance of the regressor to predict relative
permeability was suboptimal. There was a large deviation in most prediction results,
regardless of the state of the non-wetting phase endpoint saturation or at any �uid
saturation during the process. More importantly, through feature importance analysis,
it was revealed that the random forest model attempted to �t a regressor exclusively
using only saturation as the predictor variable while failing to incorporate static factors,
such as porosity or pore and throat size distribution, into the prediction process. This is
evident in Figure 3.7.

The feature importance analysis results are not surprising, given that only drainage
relative permeability (kr ) simulations were performed, which follow a monotonic increasing
saturation path that may be important. The random forest regressor fails to e�ectively
incorporate other important rock properties to di�erentiate between di�erent rock curves,
instead treating saturation as the only signi�cant predictor variable forkr prediction.

These results demonstrate that even sophisticated machine learning models like
random forest, which typically excel at capturing non-linear relationships between input
and predictive variables, are inadequate for e�ectively incorporating pore structure
parameters (such as porosity� , connectivity � , etc.) to accurately predict multiphase
�ow properties (kr ). While modest improvements in model performance were achieved
through feature engineering techniques, such as coordination number categorization,
these limitations reveal that the inherent complexity ofkr cannot be captured through
direct modeling of pore structure parameters alone. This challenge becomes even more
pronounced when considering more complex factors such as spatial property distributions
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and �ow-related parameters like capillary number.
The fundamental challenge lies in the fact that relative permeability is a dynamic

multiphase �ow state variable, while pore topology and structure parameters are static or
extensive parameters. It is theoretically impossible to accurately predict such a dynamic
quantity solely from extensive variables. Furthermore, the implemented pore network
perturbations are ad hoc and may introduce spurious alterations in pore morphology,
as evidenced by the counterintuitive relationship observed between� s and coordination
number.

Nevertheless, these investigations into pore structure-relative permeability relation-
ships establish a foundation for an alternative work�ow, which will be detailed in
Chapters 4 to 6. Given these constraints, particularly those imposed by scaling considera-
tions, there is a pressing need to develop more comprehensive approaches for integrating
pore structure and geological parameters, including their spatial heterogeneity, into
multiphase �ow process modeling. However, before developing more systematic solutions,
scaling analysis is essential to investigate the scaling behavior of both multiphase �ow
properties and pore structure parameters. Furthermore, to e�ectively predict multiphase
�ow properties like kr , we require not just a "static" interpolation system, but one that is
su�ciently �exible to accommodate upscaling requirements.

3.3 Preliminary Analysis of Scaling

Multiscale modeling of hydraulic properties of subsurface porous media requires
information from both micro scale and macro scale domains [80] [77] [81]. However, since
heterogeneity is common at both scales, knowing the transition from micro-scale behavior
to macro-scale characteristics is the prerequisite for upscaling hydraulic properties. One
potential avenue to investigate this transition is using the notion of representative
elementary volume (REV).

Figure 3.8: Schematic �gure [2] of the investigated ROI sizes anchored at the upper right
corner of the imaged volume.

The representative elementary volume (REV) is the volume support at which pertur-
bations observed at a micro-scale is stabilized such that it can represent the properties
of a speci�c sample or region in the subsurface [2]. The REV is valid within a certain
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Figure 3.9: REV modeling of porosity in Berea Sandstone

size range, between a lower boundaryVmin and an upper boundaryVmax . Volumes
smaller than Vmin are a�ected by small and rapid variations in the property values due
to small-scale spatial heterogeneity at the scale of individual pores [81]. On the other
hand, volumes larger thanVmax are subject to additional large-scale variability due to
macroscopic trends in the variation of properties [81]. It is di�cult to observe these
large-scale trends in a micro CT cube [2]. The existence ofVmax is more apparent at the
well or inter-well scale provided by reservoir characterization data,Vmin can be obtained
at the micro-scale through modeling using micro CT cubes. In this dissertation, the
focus is on interpolating �ow functions from the pore scale to the well/�eld scale, and
a critical assumption is made that there is consistency between the pore and the �eld
scale, without worrying about the existence ofVmax . However, it is important to note
that such an assumption may not be accurate or practical in some scenarios (e.g. when
fractures exist at scales beyond the Micro-CT scanning scale) and it may be necessary to
subdivide the macro scale domain into multiple REV volumes. However, for simplicity's
sake, this dissertation focuses on upscaling a single REV system instead of multiple REV
systems.

Mathematically, let Y(x; Vt ) be the value of pore structure parameters measured on a
volume Vi within a volume centered atx. Within the range of REV size, the following
condition (equation 3.5) should be met:

�Y (x; Vi )
�V

= 0; Vmin < V i < Vmax (3.5)

One way to determine the lower threshold is to treat the mean of each REV scale
variable as a random variable and compute the autocorrelation function between variables
(X ) at di�erent scales [82]. The variance of the REV variable at di�erent scales can
be expressed analytically using equation 3.6, whereD represents the observation scale
and � k de�nes the scale of variability. The REV varianceV ar( �z) decreases as the scale
increases. At the REV scaleVmin , the slope of the normalized variance versus volume
scale curve should attain a value of -1, indicating that the�X at volume scales beyond
that are independent [82].
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Figure 3.10: REV analysis of phase con-
nectivity when gas saturation is 0.1

Figure 3.11: REV analysis of phase con-
nectivity when gas saturation is 0.5

Figure 3.12: REV analysis of phase con-
nectivity when gas saturation is 0.7

Figure 3.13: REV analysis of phase con-
nectivity when gas saturation is 0.9

V ar(�z) =
2� 2

V

k= kX

k=0

f k � k(1 �
� k

D
[1 � e� L=� k ]) (3.6)

To determine the REV lower threshold of pore-scale properties, a sampling strategy
was employed based on the methodology proposed by [78]. This approach involved
concurrent sampling of di�erent volumes at di�erent centroids, with the REV typically
assumed to be cubic in shape. To facilitate this, eight regions of interest (ROIs) were
selected as sampling regions. The sampling process began by selecting a starting ROI,
with the sample size increasing from 10 voxels up to the size of the original Micro-CT
image, which was 1000 voxels. Until the sampling scale reached 500 voxels, each ROI
was independent and did not overlap with any other ROI. From 500 voxels onwards, the
eight ROIs began to overlap until they were completely overlapping at a sampling scale
of 1000 voxels.

Experiments were conducted to determine the representative elementary volume
(REV) for porosity analysis on a single cube of micro CT image of Berea sandstone [78].
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The initial REV modeling was focused on porosity as it is the most common parameter for
REV analysis [80] [77] [81] and is abundantly available from �eld and well interpretations.
Figure 3.9 illustrates that the change in porosity stabilizes (variance decrease) when the
sampled scaleV exceeds250microns. This modeling result suggests that porosity over
any sampled volumeV equal to or larger than250microns (approximately111voxels)
will be a representative elementary volume for the porosity of the medium.

Performing REV analysis for multiphase �ow properties such as phase connectivity
is complex as the value ofVmin may be di�erent at incremental saturation steps. We
performed a similar procedure for REV analysis of phase connectivity, and the scaling
characteristics of normalized phase connectivity at di�erent saturation levels. Figure 3.10
to Figure 3.13 show that for a �xed porous media, the REV scale of phase connectivity
at di�erent saturation levels follows a systematic trend: as saturation increases, the REV
length scale increases. At approximately 900 microns (approximately 400 voxels), the
phase connectivity tends to stabilize for most of the saturation steps. This observation
highlights the complex scaling behavior of relative permeability at di�erent saturation
levels, which requires a more �exible and robust approach to infer relative permeability
from pore-scale instead of relying on building an empirical statistical or machine learning-
based approach.

3.4 Discussion and Conclusion

In this chapter, we perform two sets of pore network model analyses. The �rst set
investigates the sensitivity relationship between multiphase �ow properties (relative
permeability and phase connectivity) and static pore structure parameters (pore and
throat size distribution). We developed non-linear machine learning models (random forest
regressors) to establish mappings between static parameters and dynamic multiphase
�ow properties. Our analysis reveals that multiphase �ow properties are sensitive
to coordination number, which closely relates to phase connectivity as described in
Appendix A. However, establishing a direct mapping from static properties to multiphase
�ow properties proves challenging, as even non-linear regressors like random forest fail to
e�ectively incorporate static pore structure parameters. This limitation demonstrates
the complexity of kr behavior. Furthermore, direct empirical relative permeability
interpolation models struggle to incorporate other in�uential factors such as the wettability
of the porous medium or �ow-related variables like capillary number, let alone account
for spatial heterogeneity of these properties and their interactions.

The second set of analyses reveals that multiphase �ow properties are signi�cantly
in�uenced by the simulation domain scale. Our REV analysis of phase connectivity
demonstrates that di�erent saturation states exhibit distinct scaling behavior pro�les,
as shown in �gures 3.10 to 3.13. As saturation increases, the REV scale of phase
connectivity (� s) requires larger scales to stabilize compared to low saturation states.
Previous sensitivity analyses and predictions ofkr tend to be disproportionately in�uenced
by local pore structure parameters and fail to account for more global spatial features of
the porous medium, compromising interpolation accuracy.
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Through these empirical statistical analyses, we identi�ed several key limitations:
insu�cient predictive power of simplistic machine learning based schemes to capture
non-linear relationships betweenkr and the pore structural parameters, lack of �exibility
to incorporate various in�uential factors, and inability to robustly account for scaling
behavior of multiphase �ow properties due to local pore structure in�uences. These
limitations necessitate more systematic approaches to interpolate general �ow function
properties across multiple scales while maintaining �exibility to incorporate diverse
factors. We address these challenges through two deep learning solutions integrated with
pore-scale simulation, as illustrated in chapters 4 to 6.
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Chapter 4 |
Using Physics Informed Genera-
tive Adversarial Networks to Model
3D porous media

4.1 Abstract

Micro-CT scanning of rocks signi�cantly enhances our understanding of pore-scale
physics in porous media. With advancements in pore-scale simulation methods, such as
pore network models and the Lattice Boltzmann method, it is now possible to accurately
simulate multiphase �ow properties, including relative permeability, from CT-scanned
rock samples. These physical properties are crucial for describing the multiphase �ow
behavior of CO2-brine systems during CCUS CO2 storage. However, the limited number
of CT-scanned samples and the di�culty in linking the pore-networks to �eld-scale rock
properties often renders it di�cult to use pore-scale simulated properties in realistic
�eld-scale reservoir simulations. Deep learning-driven approaches to construct synthetic
3D rock microstructures make it possible to simulate variability in CT rock structures,
which can be subsequently used to compute representative rock properties and �ow
functions. Nonetheless, most current deep learning-based 3D rock structure synthesis is
unconstrained by any rock properties that may be derived from well observations, thereby
lacking a direct link between 3D pore-scale structures and �eld-scale observations. We
present a method to construct 3D rock structures constrained to observed rock properties
using generative adversarial networks (GANs) with conditioning accomplished through a
gradual Gaussian deformation process.

We begin by pre-training a Wasserstein GAN to reconstruct 3D rock structures.
Subsequently, we use a pore network model simulator to compute rock properties.
The latent vectors for image generation in GAN are progressively altered using the
Gaussian deformation approach to produce 3D rock structures constrained by well-
derived conditioning data. This GAN and Gaussian deformation approach enables
high-resolution synthetic image generation and reproduces user-de�ned rock properties
such as porosity, permeability, and pore size distribution. Our research provides a novel
way to link GAN-generated models to �eld-derived quantities, o�ering a signi�cant step
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towards designing a systematic machine-learning work�ow that interpolates subsurface
properties by combining both pore-scale and �eld-scale data. These are important
steps towards the upscaling of crucial multiphase physical properties such as relative
permeability or capillary pressure from pore scale to �eld scale.

4.2 Introduction

The analysis and reconstruction of 3D micro-CT porous media is crucial for numer-
ous engineering applications, particularly in digital rock analysis and material science
applications. For instance, in geologic carbon sequestration (GCS), understanding the
multiphase interaction between CO2 and brine is vital for predicting �ow behavior of
the gas plume and the long-term storage potential of the reservoir. Traditionally, the
acquisition of physical properties such as relative permeability has relied on laboratory
measurements or physical simulations on 3D CT images. While laboratory measurements
are generally accurate, they are labor-intensive, time-consuming, and often represent
only a speci�c rock type found in the subsurface [12]. In contrast, direct pore-scale
simulations on 3D micro-CT images o�er a more �exible and varied approach, allowing for
the manipulation of di�erent physical characteristics (e.g., capillary number, wettability)
to better observe the sensitivity to di�erent physical factors [15].

According to results obtained using micromodels (miniaturized arti�cial pore network
models) [43,44] and from laboratory experiments [83], pore structure properties such as
pore throat ratio, coordination number, shape factors, and pore throat orientation, as well
as porosity have a signi�cant impact on relative and absolute permeability. Moreover, the
spatial distribution of porosity will in�uence the macro scale characteristics of relative and
absolute permeability. Representations of porous media using PNMs lack the authenticity
to represent property variations in real subsurface formations and thus cannot be used for
practical applications. One potential solution is to develop models of porous media that
re�ect realistic porosity or permeability distribution so that multiphase �ow properties
simulated using such a medium can be utilized at �eld scale more consistently. However,
micro-CT measurements are typically sparse and underrepresent features at larger scales,
such as �eld-scale observations.

This limitation has driven research e�orts towards developing models for synthetic
porous media that can represent pore features accurately and have the ability to model
increased variability in pore characteristics, with the ultimate goal of improving our
ability to interpolate and upscale multiphase �ow process properties while honoring data
at di�erent scales. Statistical-based reconstruction such as using multiple-point-statistics-
based method (MPS) is able to generate certain geology realizations using training image
template that match with production response or post simulation results [18, 84] and
has been applied for porous media reconstruction [17,19] with varying degree of success.
Recent advancements in deep learning o�er potentially more comprehensive solutions to
reconstruct complex target distributions while assimilating data from di�erent sources
by using deep generative neural networks. Some successful examples include using
AttentionGAN in image synthesis [64], 2D/3D image rendering [58], scene reconstruction
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[85]. These approaches have primarily focused on building generative models conditioned
to semantic meanings, especially prompts, and tokens. Compared with MPS, deep
learning-based generative models have a faster reconstruction speed once training has
been completed and may be more capable of capturing complex random functions from
training data [20], because they have a larger parameter space.

Generative Adversarial Networks (GANs) are two-network systems that learn data
representation through an adversarial training process [59]. During the training process,
the generator is used to synthesize images while the discriminator's objective is to
distinguish the di�erence between the synthesized image and the real image. This
adversarial training process signi�cantly improves image quality compared to other
generative models, such as Variational Autoencoders (VAEs) [86]. In terms of image
reconstruction, GANs can be combined with CNNs to reconstruct complex image features.
For instance, in subsurface imaging, Deep Convolutional GAN (DCGAN) has been used
to reconstruct 3D MicroCT images of rocks [20, 27]. However, training of GANs is
notoriously unstable [31]. To address this, various GAN variants have been developed in
recent years, featuring di�erent neural network structures and loss functions to stabilize
training and evaluation. For example, by replacing the binary entropy loss function of the
original GAN with a Wasserstein distance based loss function the resultant Wasserstein
GAN with gradient penalty (WGAN-GP) signi�cantly improves and stabilizes the GAN
training process [31,32]. Moreover, style is injected in the form of progressive training
strategies [60], to produce high-�delity, high-resolution images, such as synthetic human
faces [61,62] using StyleGAN.

Utilizing a GAN-based deep learning approach to reconstruct porous media o�ers
several advantages. Several GAN-based applications have demonstrated promising results
for capturing complex 2D and 3D subsurface spatial relationships. For instance, GANs
can be employed to reconstruct high-resolution channel facies [22] while accounting for
varying spatial proportions of channels. In the realm of digital rocks, DCGAN has been
utilized to reconstruct 2D and 3D micro-CT images of Berea sandstone, bead packs,
and oolitic Ketton limestone [20,27,28], while honoring petrophysical and Minkowski
functional statistical distributions from training samples. While GAN-based approaches
demonstrate high-�delity reconstruction capabilities, the challenge of constraining these
methods to honor physical conditional data from diverse sources remains an active area
of research.

There are generally two ways to control GAN generation. The �rst involves embedding
conditional vectors in the training image space and latent vector space (z ), as originally
implemented by the conditional GAN algorithm [30]. In subsurface modeling, similar
ideas have been applied to develop earth models conditioned to 3D sparse rock facies data
using GANSim-3D [25,26], and to reconstruct 3D micro-CT images from 2D slices [87,88].
Another conditional generation approach involves manipulating the latent space (z )
directly [89,90] to �nd the target structure. By establishing a mapping function between
the latent space (z) and physical properties, di�erent realizations of 3D Micro-CT images
can be generated, constrained by observation properties. Building on this principle,
Markov Chain Monte Carlo (MCMC) sampling algorithms have been utilized to search
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for appropriate latent vectors for conditionally reconstructing speci�c geostatistical
realizations within an inversion algorithm [91]. However, MCMC is computationally
expensive [26] for �nding the target latent vector. One potential solution is to train
another ML model to parameterize the mapping between latent space and target physical
properties [92]. These kinds of approaches generally require a second stage of training
and prede�ned physical attributes for e�ciently performing the training.

Figure 4.1: Work�ow of controllable generation using GAN and physics informed Gradual
Gaussian Deformation

Inspired by ideas of working on latent space for conditioning the GAN models,
approaches to concatenate data generated by physical simulation directly into the latent
space within an inversion framework has become more popular recently. By integrating
a di�erentiable physical simulator on top of GAN-generated subsurface realizations, the
mismatch error between the GAN-derived physical responses and the observed data can
be directly backpropagated to the generator and into the latent vectorz. Building on
this idea, GANs are used to derive forward and inverse solutions of partial di�erential
equations [67] or to construct hybrid physics-based and data-driven models for solving
inverse problems by manipulating the latent space [23]. More recently, a GAN and actor
critic reinforcement learning framework (GAN-AC) was developed to search for stochastic
parameters to control user-de�ned GAN generation [24]. The reinforcement learning
agent receives feedback from a physical simulator to gradually calibrate the model using
injected random noise that have been used to �ne tune the reconstruction process.

There are some limitations facing current approaches to condition GAN models
to data. The conditional GAN (cGAN) work�ow is straightforward but often not
feasible for reconstructing multivariate physically-driven realizations, especially when
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involving multiple, inter-correlated physical parameters. However, the cGAN-based
approach necessitates labeling conditioning data for each training image, which is both
computationally expensive and render the approach in�exible in real practice due to the
need to pre-de�ne conditional variables during GAN training. In contrast, manipulating
the GAN's latent space or stochastic parameters directly during the post-training process
o�ers greater �exibility for reconstructing 3D objects. However, the challenge remains in
identifying and searching for these parameters. The GAN-AC framework that utilizes a
reinforcement learning feedback loop can perform an e�ective searching process. However,
that necessitates a post-training process and a �xed physical simulator to train the
reinforcement learning agent. However, most commercial physical simulation software
are non-di�erentiable, rendering it hard to incorporate into a di�erentiable inversion
framework such as in [23]. Given the existence of multiple physical simulation approaches,
such as Pore Network Modeling (PNM) or the Lattice Boltzmann Method, each capable
of incorporating varied physical factors like wettability and capillary number, a more
�exible and controllable generation framework is necessary to work harmoniously with
physical simulation software. This approach should e�ciently optimize the latent vector
in GAN without extensive dependence on a �xed post-training environment, thereby
balancing accuracy with �exibility.

To address the above challenges, we propose a two-stage approach to generate 3D
micro-structure of sandstone, conditioned to target rock properties. Initially, we pretrain
a Wasserstein GAN with gradient penalty (WGAN-GP) to generate 3D binary (consisted
only by black and white voxels)�CT images. In the subsequent stage, we employ a
gradual Gaussian perturbation approach combined with a physical simulator such as Pore
Network Modeling (PNM) to directly optimize the Gaussian-based latent spacez. This
optimization ensures that the generated rock structures align with physical simulation
outputs. Our method guarantees that the optimized latent vectors can produce 3D
porous media consistent with user-de�ned rock properties. This approach e�ectively
controls GAN generation to preserve critical pore structure parameters, such as porosity
� , permeability k, mean pore and throat size diameter during the generation process.
Porosity and permeability are common attributes that can be derived at well or �eld
scale, thus our approach serves as a fundamental stepping-stone to upscaling multiphase
transport properties from pore-scale to �eld scale simulation.

4.3 Methods

4.3.1 Generative Adversarial Networks

GAN consists of a discriminator (D) and a generator (G). The goal of the discriminator
is to evaluate and distinguish between generated samplesŷ (fake) and real training samples
y (real). The generator aims to generate sampleŝy, decoded from a latent vectorz � pz(z),
so that ŷ can deceive the discriminator into incorrectly classifying fake generated images
ŷ as real. This min-max competition betweenG and D is mathematically characterized
by the adversarial loss [59] described in equation 4.1, whereE denotes the expectation
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(average) operator over the distributionsy � p(y), representing the training image space.
Parameters� and ! represent the generator's and discriminator's parameter spaces,
respectively.

The discriminator D ! aims to minimize the binary cross-entropy loss on its predictions,
as described in Equation 4.2. A lower binary cross-entropy loss indicates a more con�dent
discriminator that can e�ectively distinguish real samples from fake ones. Conversely,
the generator training objective is equivalent to minimizing the loss function described in
equation 4.3, which is akin to maximizing the probability that the discriminator classi�es
fake sampleŝy as real. Theoretically, the optimal stopping criterion for the GAN training
process is reached when the generator loss and discriminator loss are approximately
equal, a state known as Nash equilibrium [53]. However, in practice, training GANs to
this point can be challenging and often relies on other metrics, such as reconstruction
quality, to evaluate progress.

min
�

max
!

L (D ! ; G� ) = Ey� p(y) [log(D ! (y))] + Ez� pz (z) [log(1 � D ! (G� (z)))] (4.1)

L (D ! ) = �
h
Ey� p(y) [log(D ! (y))] + Ez� pz (z) [log(1 � D ! (G� (z)))]

i
(4.2)

L (G� ) = � Ez� pz (z) [log(D ! (G� (z)))] (4.3)

This adversarial training scheme can be customized for di�erent applications. In the
context of image generation, the Deep Convolutional Generative Adversarial Networks
(DCGAN) architecture is often utilized, where both the generator and discriminator are
Convolutional Neural Networks (CNNs), which are well-suited for processing grid-based
data such as images. The generator aims to upsample a Gaussian-based latent vectorz
to obtain synthetic images, whereas the discriminator aims to downsample the training
image into a critic score. In the generatorG� , the Gaussian vectorz is non-linearly
transformed into a synthetic imageŷ to deceive the discriminator into misclassifying the
synthetic image as real.

The original GAN, which utilized binary cross-entropy loss, often su�ers from insta-
bility and mode collapse during training [31]. To address these issues, a variant called
Wasserstein GAN with Gradient Penalty (WGAN-GP) is applied in this paper [32].
WGAN-GP uses a di�erent loss function based on the Wasserstein distance, leading to
more stable training and better convergence properties. The loss function of WGAN-GP
is shown in Equation 4.4, whereEy� p(y) [D ! (y)] represents average critic score correspond
to real samples, which is supposed to be minimized by discriminator.Ez� pz (z) [D ! (G� (z))]
represents average critic score assigned to generated samplesŷ by discriminator, which
should be maximized by discriminator and minimized by generator.

min
�

max
!

L (D ! ; G� ) = Ez� pz (z) [D ! (G� (z))] � Ey� p(y) [D ! (y)]

+ � Eŷ� pŷ

h
(kr ŷD ! (ŷ)k2 � 1)2

i (4.4)
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The Wasserstein distance termEz� pz (z) [D ! (G� (z))] � Ey� p(y) [D ! (y)] measures the
average di�erence between the critic scores assigned to generated samples and real
samples. Speci�cally, it evaluates how far the distribution of generated samples is from
the distribution of real samples by comparing their critic scores. Here,Ey� p(y) [D ! (y)]
is the average score given by the critic to real samples, representing how "real" the
critic perceives actual data, whileEz� pz (z) [D ! (G� (z))] is the average score assigned to
generated samples, re�ecting the critic's assessment of the generated data's quality. The
di�erence between these averages serves as an approximation of the Wasserstein distance.
Unlike traditional GAN losses that rely on binary classi�cation, the Wasserstein distance
provides smooth and continuous gradients that guide the generator towards producing
more realistic samples, making training more stable and less prone to issues like mode
collapse.

The term kr ŷD ! (ŷ)k2 represents theL2 norm of the gradients of the discriminator
with respect to interpolated sampleŝy. These interpolated samples are linearly mixed
between real and generated data, ensuring that the gradient penalty applies along the
path connecting these distributions. The signi�cance of theL2 norm being close to 1
lies in enforcing the Lipschitz continuity constraint�a mathematical condition necessary
for the Wasserstein distance to be a valid approximation. This helps prevent unstable
training dynamics by controlling the range of the discriminator's gradients, avoiding
issues where gradients become too large (exploding) or too small (vanishing). The
hyperparameter � controls the weight of this gradient penalty term, balancing how
strictly the model enforces this constraint. A higher� emphasizes maintaining the norm
close to 1, which is critical for stability and ensures the critic does not overly exaggerate
di�erences between real and generated data.

In this paper, we utilize a WGAN-GP variant combined with a DCGAN architecture
speci�cally tailored for reconstructing 3D micro-CT images. This combination leverages
the stable training properties of WGAN-GP and the convolutional strengths of DCGAN to
e�ectively handle complex, grid-based data like volumetric images. Detailed descriptions
of the generator and discriminator architectures, including parameter settings and layer
con�gurations, can be found in the appendix B.

We set the gradient penalty term,� , to 10, consistent with the original WGAN-GP
paper by Gulrajani et al. [32]. For optimization, we used the Adam (Adaptive Moment
Estimation) optimizer [93]. The discriminator's learning rate was set to1e � 4, while
the generator's learning rate was set to5e � 4. A larger learning rate was assigned to
the generator to expedite convergence and encourage the exploration of the generation
distribution. In each training iteration, the discriminator was trained �ve times for every
single training step of the generator. Training the discriminator more frequently allows
it to better approximate the Wasserstein distance, providing more accurate gradients
that guide the generator's updates. This increased frequency helps the discriminator
stay ahead of the generator, preventing the generator from exploiting weaknesses in the
discriminator that could arise if both networks were trained equally often. This approach,
recommended by Arjovsky et al. [31] and Gulrajani et al. [32], enhances the stability of
the training process, reduces the likelihood of mode collapse, and ensures the generator
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receives meaningful feedback, leading to improved generation quality.

4.3.2 Gradual Perturbation

As mentioned in section 4.3.1, the Gaussian-based latent vectorz is upsampled by
the generator to produce a synthetic imagêy. Thus, many GAN-based conditional
generation research e�orts focus on building a secondary model, such as a neural network,
to create a mapping between the latent space and image attributes [92]. Another option
is to perform a search process using a Markov chain or reinforcement learning (RL),
to �nd the latent vector or stochastic injection parameter that imparts the correct
conditioning characteristics to the resultant image. However, conditional generation can
be accomplished more easily through a simpler approach that utilizes the characteristics
of Gaussian random variables. Any mixture of Gaussian variables itself results in a
Gaussian random variable .The traditional Gaussian-based geostatistical model calibration
technique - the gradual Gaussian deformation approach, cleverly utilizes this property of
Gaussian variables. Embedding this approach within the WGAN process results in a
conditioning approach that is more �exible compared to RL but not as computationally
expensive as Markov chain Monte Carlo (MCMC) methods. Within an inversion work�ow,
Hu (2000) [94] proposed gradual deformation and iterative calibration of Gaussian-related
stochastic geology models to yield reservoir models that match with �nal production
response. A perturbation combines two independent Gaussian random functions (z1 and
z2) with an identical covariance function, as described in equation 4.5. The combined
random function z(t) can be considered a new Gaussian realization, with a tuning
parameter t that can be calibrated by de�ning an objective functionO = f (z(t)) � R,
whereR is our real observation response andf (z(t)) is the response obtained by applying
a forward physical model.

z(t) = z1cos(t) + z2sin(t) (4.5)

GAN training is completed in the �rst stage. The second stage involves using the
gradual Gaussian deformation to perturb the Gaussian latent vector to generate 3D
synthetic microstructures that match the target physical properties. The general work�ow
of such controllable generation is depicted in �gure 4.1. The target physical properties
can be derived from well logs or �eld scale geologic characterization models so that
conditional generation of 3D microstructures is consistent with the variations in larger-
scale geological properties. The physical properties of the micro-scale model can be
easily calculated using a forward physical simulator such as a pore network model. In
the context of GAN-based generation,z(t) becomes the Gaussian latent vector for the
generator during the optimization process, and our forward physical modelf (z(t)) is
a pore network model that can simulate multiple rock properties from reconstructed
3D porous media, such as porosity, permeability, mean pore size distribution, etc. The
calculated properties are compared against those derived from well logs.

Minimizing the objective function using a single epoch is insu�cient; instead, an
iterative approach must be implemented to obtain a continuous chain of realizations
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zn (t), as described in equation 4.6, wheret is the perturbation parameter. The iteration
will continue until the target physical property is achieved. In reality, it's not possible
to generate porous media that exactly match the user input property, thus a certain
error threshold needs to be de�ned for di�erent physical attributes. The iterations are
continued until this threshold is reached. To ensure a more e�cient iteration process,
stochastic gradient descent is used to calibrate perturbation. The simulation mismatch
error e = R � R̂ will be directly backpropagated to the Gaussian vector under the
assumption that vector is fully responsible for the sensitivity of physical simulation
results. The step-by-step calibration process in our case is comprehensively delineated in
Algorithm 1.

zn (t) = zn� 1cos(t) + unsin(t) (4.6)

Algorithm 1 Gradual Gaussian Perturbation Guided by Physical Forward Model

Ensure: G� is a pretrained model of WGAN-GP
1: f (G� ): pore network model on generated images byG�

2: Initialize Gaussian vectorzn� 1 � N (0; I )
3: De�ne target physical property asR
4: De�ne �nal error acceptance threshold as threshold

5: Initialize error to be Inf
6: Initialize learning rate to be �
7: De�ne objective function O = 1

2(R � R̂)2

8: while e > 
 do
9: Sample parameter t fromU(0; 2� )

10: In step n, sample random Gaussian vectorun � N (0; I )
11: In step n, Obtain perturbed Gaussian vectorzn (t) = zn� 1cos(t) + unsin(t)
12: Generate imagêy = G� (zn (t)) based on perturbed Gaussian vectorzn (t)
13: Forward model on generated image to obtain estimated propertŷR = f (ŷ)
14: Calculate error ase = abs(R � R̂)
15: Gradient calculation @O

@f
@zn
@t and update t using gradient descentt = t � � @O

@f
@zn
@t

16: Update zn (t)
17: Replacezn� 1 with updated zn

18: end while

We used OpenPNM [74], a Python-based pore network model simulation package, to
build the physical simulator. However, this framework can be used with any physical
simulation approach such as the Lattice Boltzmann method as long as it is computationally
e�cient enough to go through several iterations (you can check the number of iterations
for di�erent physical properties in section 6.4). This optimization framework does not
require a fully di�erentiable physical model concatenated with our pretrained generator
to gradually calibrate generative realizations since the Gaussian realizations of latent
vectors in GAN can be directly calibrated by physical simulation responses. Meanwhile,
any physical attributes simulated by the pore network model can be used to generate
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corresponding matched porous media. These rock properties-constrained porous media
can serve as representative porous media which share similar attributes compared to
larger-scale models, such as well or �eld scale models, and multiphase �ow properties
can potentially be upscaled through this process.

Figure 4.2: 2D Slices of Synthetic Images vs. 2D Slices of Original Training Images
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4.3.3 Evaluation Criteria

There are mainly two ways to assess the performance of our modeling framework.
Firstly, we evaluate the quality of the reconstruction in terms of the connectivity of
the resultant models. Secondly, we assess how accurately and e�ciently the Gradual
Gaussian Perturbation can control the GAN generation process given user-de�ned rock
properties.

To evaluate reconstruction quality, besides visual inspection, we have devised a set of
metrics that compare the physical statistics of training images with those of synthetic
images. These metrics are similar to the evaluation metrics used by Mosser, 2017 [20]. The
physical properties associated with the pore network pertain to the intrinsic characteristics
of porous media, that can be described using Minkowski functionals that can be used to
characterize the topology of the pore structure, such as porosity (� ), average curvature,
and Euler characteristics (� ) [40].

a. Porosity �

The �rst Minkowski functional of order zero is porosity, which is de�ned as the
ratio of the void space volume to the bulk volume of porous media, as described in
Equation 4.7. This property is also very commonly observed at both well and �eld scales
and can be considered as one of the key attributes to link pore-scale models and �eld-scale
observations. We will use this variable to evaluate both GAN generation quality and the
ability to condition the models.

� =
Vp

V
(4.7)

b. Speci�c area

The speci�c surface area, which represents the �rst-order Minkowski functional, can
be calculated using Equation 2, whereSv denotes the void-solid interface. This parameter
plays a critical role in characterizing the morphological properties of porous media and
is related to absolute permeability through the Carman-Kozeny equation.

Ap =
S
V

(4.8)

Sv =
1
V

Z
dS (4.9)

c. Euler Characteristic � p

The Euler characteristic represents the third-order Minkowski functional and can
be employed to quantify static pore-to-pore connectivity. It can be calculated from
micro-CT images or reconstructed models using Equation 4.10, whereN denotes the
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number of isolated objects,L signi�es redundant loops, andO represents the number of
cavities.

� p = N � L + O (4.10)

d. Absolute permeability kabs

The absolute permeability (kabs) is determined using Darcy's Law, as outlined in the
system of equations given by 6.9 through stokes �ow simulation. It is a crucial parameter
to quantify transport properties in a porous medium. Like porosity, it is also a crucial
parameter to link pore-scale models to �eld-scale characterization.

r � u = 0

�r p + � r 2u = 0
�LQ
A� P

= kabs

(4.11)

whereu is the �uid velocity, p is the pressure,� is the �uid viscosity, L is the length
of the porous medium,Q is the volumetric �ow rate, A is the cross-sectional area, and
� P is the pressure drop. The �rst equation in the system represents the continuity
equation for incompressible �ow, stating that the divergence of the velocity �eld is zero.
The second equation is the Stokes equation, which describes the balance between pressure
gradient and viscous forces in low Reynolds number �ow. The third equation is the
expression for Darcy's Law that expresses absolute permeability as a parameter relating
the �ow rate to pressure drop, and �uid properties.

e. Mean pore size �Dp and mean throat size D̂ t

Mean pore size and mean throat size are crucial pore structure parameters that
in�uence relative permeability. They will be used as important reconstruction evaluation
metric as well as for conditional model generation.

4.4 Results

4.4.1 Reconstruction Quality

The dataset used for training and evaluating the GAN is pore scan data for Berea
sandstone [78], which is an open-source dataset provided by IBM research. The original
size of the scan image is10003 voxels with a resolution of2:25�m . However, training
a GAN model on a scale of10003 voxel image is not e�cient in terms of computation
and availability of training samples. Thus, the original 3D cube is cropped into smaller
3D subvolumes on a scale of1283 voxels. At that scale, porosity variations between
approximately 0:15 � 0:3 can be observed across the sub-volumes. A scale larger than128
would result in less variability in the porosity of samples, increase the computational cost
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of training the GAN, and e�ectively decrease the number of training samples. To ensure
that the number of training samples is large enough, they are sampled as overlapping
volumes with a shift of approximately30 voxels to generate a total of 23,8391283 3D
volumes. The training history and hardware information can be found in the appendix B.

(a) � (b) kabs (c) � p

(d) Speci�c area (f) �Dp (g) �D t

Figure 4.3: Box plots of statistics showing the spread in properties over the original
training set (left) as well as the constructed synthetic samples (right).

Figure 4.4: Correlation map be-
tween pore properties calculated on
the trining set.

Figure 4.5: Correlation map be-
tween pore properties calculated on
the generated images.

The following section will focus on evaluating the quality of the GAN-reconstructed
3D volumes. We �rst assess the reconstruction quality by visually comparing synthetic
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Figure 4.6: Porosity vs permeability (md)

images with original training images, as demonstrated in Figure 4.2. GAN-generated
3D microstructure images are post-processed through a median �lter and Multi-Otsu
Thresholding image processing technique to convert the generated image tensor to a
boolean matrix for pore network modeling [95]. The synthetic images appear remarkably
similar to the training images, although with some tiny fragments observed in the
synthetic generated samples. Overall, the synthetic images successfully capture the voxel
patterns of the Berea sandstone microstructure.

To further quantitatively evaluate the reconstruction quality, we compare the physical
properties of the training images with those of the synthetic images (300 samples). As
described in Section 6.3, the physical properties considered include porosity (� ), speci�c
surface area (Ap), Euler characteristic (� p), absolute permeability (kabs), mean pore size
( �Dp), and mean throat size (�D t ). These properties are calculated for both the training
and synthetic images, and their distributions are compared using box plots, as shown in
Figure 4.3. We observe that the properties computed on synthetic images exhibit slightly
broader variability compared to those computed using the training samples. In terms
of mean, quartile, and extreme values, the synthetic statistics and original statistics
generally fall within the same range for most physical properties. However, the synthetic
kabs distribution appears to be consistently lower than the originalkabs distribution, as
does the speci�c surface area. This discrepancy may be attributed to the GAN-based
algorithm's limitations in reconstructing the curvature and shape of pore surfaces, which
can impact derived properties such askabs and speci�c surface area. Reconstructing
the correct curvature is more challenging than accurately reproducing pore volume, as
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Figure 4.7: Scatter plot of synthetic
porosity versus target porosity with nor-
malizedRMSE = 0:04. Each realization
takes approximately 13.2 seconds to gen-
erate a 3D microstructure that preserves
the target porosity.

Figure 4.8: Scatter plot of synthetic
permeability versus target permeability
with normalized RMSE = 0:05. Each
realization takes approximately 42 sec-
onds to generate a 3D microstructure
that preserves the target permeability.

Figure 4.9: Scatter plot of synthetic
mean pore size versus target mean pore
size with normalized RMSE = 0:04.
Each realization takes approximately
102 seconds to generate a 3D microstruc-
ture that preserves the target mean pore
size.

Figure 4.10: Scatter plot of synthetic
mean throat size versus target mean
throat size with normalized RMSE =
0:05. Each realization takes approxi-
mately 5 minutues to generate a 3D mi-
crostructure that preserves the target
mean throat size.

re�ected in properties like porosity. This discrepancy also points to a future research
direction that focuses on the coherency of voxel patterns when reconstructing the porous
media.

It is essential not only to examine the quality of the reconstructed pore models in
terms of the closeness of the computed properties to the original statistics but also to
investigate whether correlations among these physical properties have been preserved.
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We analyze and plot the correlation matrix for both the training samples and synthetic
samples by calculating the Pearson correlation coe�cient, as described in Equation 4.12.
In this equation, x i and yi represent the individual values for propertiesx and y, while
�x and �y denote the means of propertiesx and y, respectively. The corresponding
correlation matrix heatmaps for the original and synthetic physical properties can be
found in Figure 4.4 and Figure 4.5.

r =
P

i (x i � �x)(yi � �y)
q P

i (x i � �x)2 �
q P

i (yi � �y)2
(4.12)

When comparing the property correlation matrices for the synthetic and original pore
networks, most properties exhibit similar correlation trends. It is encouraging to observe
that the relationship between porosity and absolute permeability has been well preserved:
originally at 0.78 and at 0.77 for the synthetic models. We also create a scatter plot to
compare the porosity and permeability relationships both among the training samples
and the synthetic samples, as shown in Figure 4.6. Thek-� trend is mostly well preserved,
except for a slightly smaller spread of values observed in the original training set.

4.4.2 Conditional results

Based on previous results and evaluations of the pretrained Wasserstein DCGAN-GP,
most physical attributes and the correlations between them have been well preserved
leading us to conclude that the quality of reconstruction is good. In this section, we
evaluate the accuracy and e�ciency of implementing the Gradual Gaussian Deformation
approach to condition the GAN to user speci�ed rock properties as described in Section 6.3.
Our generated images are constrained based on four physical attributes: porosity� ,
absolute permeabilitykabs, mean pore size parameterDp, and mean throat size parameter
D t . We reconstruct approximately a hundred 3D microstructure models conditioned on
these properties within certain ranges and optimization thresholds. The optimization
thresholds (which serve as stopping criteria for gradual perturbation of the GAN's latent
vector) and target ranges for various geological properties are de�ned as follows:

ˆ Porosity: � � 0:01 within a uniform distribution range U(0:14; 0:30)

ˆ Absolute permeability: kabs� 15mD within a uniform distribution range U(100; 300)

ˆ Mean pore size diameter: �Dp � 1 � 10� 7 m within a uniform distribution range
U(0:95� 10� 5; 1:1 � 10� 5)

ˆ Mean throat size parameter: �D t � 5 � 10� 8 m within a uniform distribution range
U(3:6 � 10� 6; 4:2 � 10� 6)

We generated synthetic porous media using gradual Gaussian perturbation based on
the above conditioning criteria, and the comparison between the simulated properties and
the target conditioning values are shown in Figures 4.7 to 4.10. We used OpenPNM as
our pore network modeling simulation software [74] and PoreSpy as our image processing

46



tool [3]. The Gaussian deformation approach can accurately reconstruct porous media
conditioned to target property ranges with quite low RMSE, which has been normalized
by the range of the target property. In terms of e�ciency, porosity-driven microstructure
generation has the lowest time per sample to generate target porous media. This
is because porosity calculation does not require pore network modeling simulation.
The generation driven by other physical properties all require pore network modeling,
which is more computationally expensive. However, overall the method remains very
e�cient, as even the permeability-constrained microstructure generation only takes 42
seconds per optimization. For all four properties, this framework requires an average of
approximately 15 epochs of pore network modeling or image processing to �nd the target
properties. These results indicate that by employing a physics-informed gradual Gaussian
perturbation approach, we can successfully perturb porous media while conditioning
them to speci�c user-de�ned physical properties.

4.5 Conclusion

We have successfully implemented an unsupervised learning GAN-based 3D porous
media reconstruction work�ow that learns information from segmented micro-CT image
cubes. The GAN model is trained using a pair of Deep Convolutional Generative
Adversarial Networks. The Wasserstein distance is used as the discriminator loss function
while forcing the gradient of the discriminator's output with respect to its input to
have a norm close to 1. We developed several physical evaluation metrics to compare
the reconstruction quality. The results show that the GAN-based reconstructions agree
well with the training images in terms of the statistics of rock and pore-scale properties
computed on the training and synthetic images. The correlations between properties are
also well reproduced in the synthetic images. Although the GAN may not perfectly learn
the curvature of pore shapes from training images, the results show that the reconstructed
images are of good overall quality.

For controllable generation, we introduced a Physics-Informed Gradual Gaussian
Deformation approach that gradually perturbs the latent space within Wasserstein
DCGAN. The reproduction of the target property is evaluated using a pore network
model embedded within an optimization loop. The established conditioning scheme can
control GAN generation constrained by any physical property extracted from the pore
network model. In our case, we use porosity, absolute permeability, mean pore size,
and mean throat size of pores as our physical constraints. The results, as illustrated
in Figures 4.7 to 4.10, demonstrate the e�ectiveness of the method for reconstructing
3D porous media. There are several advantages to using the physics-informed iterative
Gaussian perturbation approach to control GAN generation of the 3D micro-structures
in rocks:

ˆ The proposed conditioning scheme can be used to condition the pore-scale models
to any physical property that can be extracted from a forward model, such as a pore
network model. The whole process requires no post-training e�orts. This framework
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does not modify the original base model based on Wasserstein DCGAN-GP. Once
the generator is trained successfully, the process of conditioning can be achieved
using any forward modeling process, such as direct image simulation using the
Lattice Boltzmann method.

ˆ The proposed conditioning approach does not require a di�erentiable physical
simulator, although having one could increase the optimization e�ciency within
the gradual deformation scheme.

4.6 Limitation

Despite the success of our GAN-based approach for porous media reconstruction,
there are several limitations that need to be addressed:

ˆ Fixed reconstruction size: The current implementation generates synthetic sam-
ples at a �xed size, which is determined by the architecture of the GAN. Although
current scale (1283) may be at the representative elementary volume (REV) scale
for porosity, it may be too small for reliable prediction of more complex �ow func-
tions such as permeability and relative permeability that tend to have larger REV
scales [10]. The computational cost constrains our ability to produce larger-scale
reconstructions or to adapt the output size based on di�erent representative scales
physical properties. Future work could explore techniques such as auto-regressive
based multi-scale architectures to overcome this limitation.

ˆ Lack of heterogeneity control: While our approach successfully reproduces
various physical properties, it is not easy to extend the method to re�ect spatial
heterogeneity within the porous media. The generated samples maintain statistical
similarity to the training data but may not capture larger-scale variations or speci�c
spatial patterns that may be observed in real rock formations.

It is important to note that while our generator can produce physically reasonable
synthetic samples that are constrained to user-de�ned or �eld inferred rock properties, it
may not be adequate for completing more complex tasks such as performing scale up
of rock properties. In order to perform such complex tasks, further development may
be needed to condition the pore model generation process to available �eld-scale data
incorporating larger-scale spatial variability that may be observed in subsurface geologic
formations.
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Chapter 5 |
Flow Functions Upscaling Using
GAN-Based Approach and Its Lim-
itations

5.1 Introduction

In Chapters 1 and 2, we discussed the importance of rock property heterogeneity and
its in�uence on multiphase �ow properties such as relative permeability. The GAN-based
approach introduced in Chapter 4 provides a method for reconstructing 3D porous media,
signi�cantly increasing the variety of available porous media structures while maintaining
physical constraints and honoring rock properties such as porosity and permeability. With
this capability to generate accurate, controllable synthetic porous media constrained by
rock properties, we can perform multiphase �ow simulations on these synthetic structures
to establish upscaling relationships between pore-scale multiphase �ow properties and
�eld-scale rock property models.

The objective becomes constructing a general function capable of interpolating relative
permeability based on multiple geological property inputs. This conceptual function
can be described by Equation 5.1. For inputs requiring speci�c spatial distributions or
perturbations, the general function can be reformulated as Equation 5.2, where� x may
represent spatially distributed porosity adhering to a particular variogram model,
 (h),
or a speci�c Representative Elementary Volume (REV) segmentation derived from well
log pro�les.

Building upon our previous development, the Wasserstein DCGAN-GP can e�ectively
generate porous media constrained by geological properties through Physics Informed
Gradual Gaussian Perturbation, as introduced in Chapter 4. The relative permeability
interpolation function can be reformulated as Equation 5.3, wheret � represents the
optimized latent space perturbation parameter that minimizes the dissimilarity between
generated and target physical properties, as described in Equation 5.4. The parameter
R represents the vector space of physical parameters in�uencing relative permeability.
While R can encompass multiple physical variables, in this chapter we consider only a
single variable during the interpolation process to demonstrate the overall work�ow.
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Figure 5.1: Relative permeabil-
ity of air interpolation based
on porosity perturbation. Low
� � U(0:15; 0:17); High � �
U(0:24; 0:26)

Figure 5.2: Relative permeability of
air interpolation based on pores con-
nectivity perturbation. Low � p �
U(� 22; � 18); High � p � U(20; 24)

Figure 5.3: Relative permeability
of air interpolation based on per-
meability perturbation. Low k �
U(100; 130); High k � U(280; 310)

Figure 5.4: Relative permeability of
air based on pore size perturbation.
Low �D � U(1:05e� 05; 1:07e� 05);
High �D � U(1:17e� 05; 1:19e� 05)

kr = f (�; k abs; � p; :::) (5.1)

kr = f (� (x); kabs(x); � p(x); :::) (5.2)

kr = f (G� (zn (t � ))) (5.3)

t � = arg min
t

O(R; f (G� (zn (t)))) (5.4)

To upscalekr as interpolated in function 5.3, the generated porous media can be
stitched on a spatial scale. Assuming the interpolation of relative permeability is
conditioned on a speci�c spatial distribution of porosity, denoted as� (x), the parameter
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Figure 5.5: Relative permeabil-
ity of water interpolation based
on porosity perturbation. Low
� � U(0:15; 0:17); High � �
U(0:24; 0:26)

Figure 5.6: Relative permeability of
water interpolation based on pores
connectivity perturbation. Low
� p � U(� 22; � 18); High � p �
U(20; 24)

Figure 5.7: Relative permeability
of water interpolation based on per-
meability perturbation. Low k �
U(100; 130); High k � U(280; 310)

Figure 5.8: Relative permeability of
water based on pore size perturba-
tion. Low �D � U(1:05e� 05; 1:07e�
05); High �D � U(1:17e� 05; 1:19e�
05)

t can be optimized at each spatial locationx as described in equation 5.6. In this case,
location x i represents a spatial location characterized by the coordinate(i; j; k ). After
optimizing the set of parameterst i at di�erent spatial locations with respect to the
spatial distribution � x , the generated components from the GAN can be stitched into
an upscaled synthetic porous media that preserves the spatial distribution of porosity
� x . This process is described by equation 5.5, whereA denotes the assembly of images
spatially according to the distributed order of porosity.

kr = f (A(G� (zn (t � (x1))) ; G� (zn (t � (x2))) ; :::; G� (zn (t � (xn ))))) (5.5)

t � (x i ) = arg min
t

O(� (x i ); f (G� (zn (t(x i ))))) (5.6)
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In this chapter, we �rst introduce our work�ow for interpolating relative permeability
on a single GAN-generated component without any spatial perturbation, as described in
Equation 5.3. Subsequently, we upscale relative permeability by creating a synthetic spa-
tial map of geological properties and pore structure parameters. Utilizing Equations 5.5
and 5.6, spatial synthetic porous media can be generated and stitched, preserving the spa-
tial perturbation of geological properties and pore structure parameters. For each relative
permeability interpolation, we consider the optimization of a single conditional geological
property. The conditional geological properties include porosity (� ), permeability (k),
mean pore size diameter (�D), and pore-pore connectivity (Euler characteristics,� p). In
this Chapter, the multiphase �ow simulation focuses solely on the drainage process.

5.2 Relative permeability interpolation without upscaling

We �rst implement the relative permeability interpolation without any upscaling.
Essentially, we sample some pore structure parameters to optimize the latent space
z, as described in Equation 5.4, to ensure that the generated porous media preserves
these input values. We sequentially generate conditional porous media constrained by
low and high � values, low and highkabs values, low and high� values, and low and
high mean pore size (�D) values. Then, we perform pore network modeling, percolation
processes, and Stokes �ow simulations on the generated porous media to obtain relative
permeability data, as described in Equation 5.3. We analyze the relationship between
di�erent pore structure parameter perturbations and the relative permeability of air, as
shown in Figures 5.1 to 5.4. We observe that porosity has no in�uence on the relative
permeability of air, while lower Euler characteristics (higher pore connectivity), higher
permeability, and larger mean pore sizes all have a positive in�uence on the relative
permeability of air. At the same saturation,kr air with positive in�uences tends to be
larger than kr air with negative in�uences.

However, the above observations regarding the relative permeability of water do not
reveal a discernible relationship between pore structure parameters and the relative
permeability of water. As shown in Figures 5.5 to 5.8, only the mean pore size parameter
has a subtle in�uence onkr water , while other parameters do not exhibit signi�cant
contributions.

5.3 Relative permeability upscaling

5.3.1 Upsacle to 2 � 4 � 2 domain

As observed in the previous section, signi�cant variations exist among thekr � s values
due to the in�uence of local pore structure heterogeneity. To obtain a more representative
and less �uctuated relative permeability at a larger scale, we upscale relative permeability
by assembling generated porous media into a2� 4� 2 domain. The original reconstructed
3D Micro-CT images have a size of1283 voxels (13 domain), while the stitchd porous
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media have dimensions of256(i ) � 512(j ) � 256(k) voxels (2� 4� 2 components domain).
Each dimension of the simulation domain represents GAN generated component, which
is 1283 voxels. The stitched porous media are generated based on perturbed spatial
geological variables:� (x), kabs(x), �D(x), and � (x), as illustrated in Figures 5.9, 5.12,
5.15, and 5.18. For each geological property, two perturbations are created, with one
sampled from a lower value range and the other from a higher value range.

For each spatial geological perturbation, pore network modeling and multiphase
�ow simulations are performed on the stitched porous media to obtain the relative
permeabilities of air and water. Figures 5.10 and 5.11 present the results of upscaled
relative permeabilities of air and water a�ected by lower and larger spatial porosity values,
respectively. While the discrepancies are not noticeable for the relative permeability
of air, a distinct boundary is observed for the relative permeability of water. Larger
porosity spatial con�gurations tend to yield higher relative permeability of water at
similar saturation levels.

Similarly, when perturbing the Euler characteristics (Figures 5.16 and 5.17) and mean
pore size (Figures 5.19 and 5.20), the in�uence is more pronounced for the relative perme-
ability of water compared to that of gas. Lower spatial Euler characteristics distributions
or higher spatial pore size distributions result in increased relative permeability of water
at similar saturation levels. However, this observation does not hold for permeability
perturbations (Figures 5.13 and 5.14), as both higher and lower spatial permeability
distributions yield relatively similar relative permeability responses for both water and
gas.

5.3.2 Upscale to 43 domain

Following a similar numerical experimentation logic as in the previous section with
a simulation domain of 2 � 4 � 2, we further upscale the relative permeability to a
simulation domain of 43, representing5123 voxels. This is illustrated in Figures 5.21,
5.24, 5.27, and 5.30, where each grid represents a GAN-generated 3D component with a
size of1283 voxels. Likewise, we perform two distinct spatial perturbations (high values
and low values) for each geological property.

As depicted in Figures 5.22 and 5.23, the shape of the relative permeability of
water is more sensitive and easily in�uenced by porosity perturbation. A higher porosity
perturbation tends to produce higher waterkr values at similar saturation levels. However,
the relative permeability of air appears to be una�ected by such perturbations. Similar
conclusions can be drawn from the remaining geological property perturbations, including
permeability (Figures 5.25 and 5.26), mean pore size (Figures 5.28 and 5.29), and Euler
characteristics (Figures 5.31 and 5.32). It is worth noting that the spatial perturbation
of Euler characteristics seems to exert a more sensitive control over thekr air than other
geological attributes.

The shape of upscaled relative permeability at the43 scale becomes much smoother
with fewer zig-zags and variations compared to the relative permeability at the13

domain (1283 voxels) and2 � 4 � 2 domain. This suggests that relative permeability is
less in�uenced by local pore structure heterogeneity at larger scales. Due to the high
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computational cost (both optimization and pore network modeling) at the scale of43,
we only produce one realization for sensitivity analysis.

5.4 Discussion

We have successfully developed a work�ow that interpolates relative permeability
based on the inputs of geological properties and pore structure parameters integrated
with GAN-based generation. Additionally, we extended this work�ow to upscale relative
permeability based on the spatial perturbation of geological properties and pore structure
parameters at the domain of2 � 4 � 2 and 43. From these experiments, we can make
several observations:

ˆ Relative permeability interpolation at the 13 domain tends to be somewhat fuzzy
and noisy due to the in�uence of local pore structure heterogeneity. The relationship
between relative permeability and geological conditional parameters is obscured.
However, permeability, mean pore size, and pore connectivity have a slight in�uence
on the shape of the relative permeability of air. Such constraints are not evident in
the relative permeability of water.

ˆ Relative permeability interpolation and upscaling based on the spatial perturbation
of geological properties at the2� 4� 2 domain produce better-constrained behavior
for the relative permeability of water. All spatial perturbations of geological
properties in�uence the shape of the relative permeability of water. However, these
spatial perturbations have a limited impact on the shape of the relative permeability
of air

ˆ Relative permeability interpolation and upscaling based on the spatial perturbation
of the geological model at the43 domain yield well-constrained behavior for the
relative permeability of water. Similar to upscaling at the2 � 4 � 2 domain, the
43 upscaling of the relative permeability of air appears to be less sensitive than
that of water in terms of spatial variations. At this scale, the relative permeability
curve becomes smoother

ˆ As the relative permeability is interpolated on a larger scale, porosity becomes
more in�uential than at smaller scales. This observation is logical, as a higher
porosity at larger scales indicates that a greater number of pores are available for
percolation

5.5 Limitations

However, the current deep convolutional Generative Adversarial Network-based re-
construction approach has two major limitations: it is static, and its reconstruction size
is constrained to the scale of training images (1283 voxels). This scale falls below the
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typical REV scale of �ow properties, as described in Chapter 3, making it challenging to
incorporate spatial models of rock properties. Although we attempted to address this
limitation by stitching individually generated porous media into larger domains (e.g.,
5123) to accommodate the spatial distribution of rock properties and achieve domains
equal to or larger than the REV scale of �ow properties, the generated spatial subvolumes
remain spatially independent from each other. While additional e�orts can be made to
smooth boundaries between individual generated blocks to reduce artifacts [96], global
spatial coherency in the porous medium cannot be adequately preserved during gener-
ation. This global spatial continuity is particularly crucial for preserving pore-to-pore
connectivity and shape alignment�critical characteristics for accurately representing
percolation processes and multiphase �ow simulation.

To address these limitations, our e�orts shift toward redesigning the deep learning
generation system by incorporating dynamic "upscaling and downscaling" elements into
the generation process. Recent successes of transformers in Natural Language Processing
have drawn signi�cant attention, leading researchers to explore their applications in other
domains. GPT-based transformers [70] fundamentally function as powerful autoregressors
that aggregate information from all previous sequence locations to predict outputs at the
current sequence position. This autoregressive feature can potentially be the deep learning
model for establishing spatial upscaling and downscaling work�ows. However, instead
of processing language tokens at each sequence position, we need to work with spatial
blocks (similar to the GAN-generated small blocks). Additionally, dimension reduction
and tokenization techniques must be employed to compress the image pixel space into a
latent feature token space, making transformer autoregression modeling computationally
feasible. We will explore the implementation of this approach in Chapter 6.
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Figure 5.9: Porosity spatial perturbation heatmap in the simulation domain of 2*4*2.
Left: � � U(0:15; 0:17); Right: � � U(0:24; 0:26)

Figure 5.10: Relative permeability
of air based on spatial porosity per-
turbation at the domain of 2*4*2

Figure 5.11: Relative permeability
of water based on spatial porosity
perturbation at the domain of 2*4*2
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Figure 5.12: Permeability spatial perturbation heatmap in the simulation domain of
2*4*2. Left: k � U(100; 130); Right: k � U(280; 310)

Figure 5.13: Relative permeability
of air based on spatial permeability
perturbation at the domain of 2*4*2

Figure 5.14: Relative permeability
of water based on spatial permeabil-
ity perturbation at the domain of
2*4*2
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Figure 5.15: Euler characteristics spatial perturbation heatmap in the simulation domain
of 2*4*2. Left: � � U(� 22; � 18); Right: � � U(20; 24)

Figure 5.16: Relative permeability
of air based on spatial Euler charac-
teristics perturbation at the domain
of 2*4*2

Figure 5.17: Relative permeability
of water based on spatial Euler char-
acteristics perturbation at the do-
main of 2*4*2
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Figure 5.18: Mean pore size spatial perturbation heatmap in the simulation domain of
2*4*2. Left: �D � U(1:05e � 05; 1:07e � 05); Right: �D � U(1:17e � 05; 1:19e � 05)

Figure 5.19: Relative permeability
of air based on spatial mean pore
size perturbation at the domain of
2*4*2

Figure 5.20: Relative permeability
of water based on spatial mean pore
size perturbation at the domain of
2*4*2
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Figure 5.21: Porosity spatial perturbation heatmap in the simulation domain of43. Left:
� � U(0:15; 0:17); Right: � � U(0:24; 0:26)

Figure 5.22: Relative permeability
of air based on spatial porosity per-
turbation at the domain of 44

Figure 5.23: Relative permeability
of water based on spatial porosity
perturbation at the domain of 44
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Figure 5.24: Permeability spatial perturbation heatmap in the simulation domain of
2*4*2. Left: k � U(100; 130); Right: k � U(280; 310)

Figure 5.25: Relative permeability
of air based on spatial permeability
perturbation at the domain of 43

Figure 5.26: Relative permeability
of water based on spatial permeabil-
ity perturbation at the domain of
43
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Figure 5.27: Mean pore size spatial perturbation heatmap in the simulation domain of
43. Left: �D � U(1:05e � 05; 1:07e � 05); Right: �D � U(1:17e � 05; 1:19e � 05)

Figure 5.28: Relative permeability
of air based on spatial mean pore
size perturbation at the domain of
43

Figure 5.29: Relative permeability
of water based on spatial mean pore
size perturbation at the domain of
43
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Figure 5.30: Euler characteristics spatial perturbation heatmap in the simulation domain
of 43. Left: � � U(� 22; � 18); Right: � � U(20; 24)

Figure 5.31: Relative permeability
of air based on spatial Euler charac-
teristics perturbation at the domain
of 43

Figure 5.32: Relative permeability
of water based on spatial Euler char-
acteristics perturbation at the do-
main of 43
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Chapter 6 |
Constrained Transformer-Based
Porous Media Generation to
Spatial Distribution of Rock Prop-
erties

6.1 Abstract

Pore-scale modeling of rock images based on information in 3D micro-computed
tomography (� CT) data is crucial for studying complex subsurface processes such as
CO2 and brine multiphase �ow during Geologic Carbon Storage (GCS). Deep learning-
based approaches can successfully generate large volumes of high-resolution 3D rock
microstructures such as observed in 3D micro-CT scans while honoring static rock
properties. However, current state-of-the-art deep learning generative models for synthetic
porous media fail to incorporate the spatial distribution of rock properties during the
generation process that can have an important in�uence on the �ow and transport
characteristics of the rock. Moreover, the microstructures generated using current machine
learning based approaches typically represent �ow properties such as permeability or
relative permeability at a scale typically below the representative elementary volume
(REV) scale for those properties. In order to represent those properties at a larger scale,
the spatial distribution of microstructures has to be carefully considered. Representing
the spatial distribution of microstructures' properties is also critical for conditioning the
models to large-scale data such as those recorded at well or �eld scale, which is necessary
for building a consistent work�ow between pore-scale analysis and �eld-scale modeling.

To address these challenges, we propose a two-stage modeling framework that combines
a Vector Quantized Variational Autoencoder (VQVAE) and a transformer model for
spatial upscaling and arbitrary-size 3D porous media reconstruction in an autoregressive
manner. Our approach �rst compresses and quantizes sub-volume training image patches
into low-dimensional image tokens using VQVAE and then trains a transformer to
spatially assemble these sub-volume quantized tokens into a larger image following a
certain spatial order. By employing a multi-token generation strategy, each image sub-
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volume is reconstructed with integrity leveraging on the transformer capabilities, and the
autoregression relationship between sub-volumes is well preserved. We demonstrate the
e�ectiveness of our multi-token transformer generation approach and validate it using
real data from a test well, showcasing its potential to generate models for the porous
media at the well scale using only a spatial porosity model. Compared with the reference
porous medium which are unconstrained by spatial rock properties, the interpolated
representative porous media that re�ect �eld-scale geological properties give more accurate
modeling of transport properties, including permeability and multiphase �ow relative
permeability of CO2 and brine, This approach helps bridge the gap between pore-scale
models and larger geological models and improves the understanding of multiphase �ow
in the subsurface.

6.2 Introduction

Developing an e�cient and accurate method for generating 3D micro-CT porous media
is crucial for numerous engineering applications, particularly for developing controllable
digital twins that can be used to analyze their varied material properties thoroughly
[78, 97] under prescribed �ow and transport conditions. For instance, in Geologic
carbon storage (GCS), understanding �ow dynamics of CO2 and brine phases is vital for
modeling the displacement of the CO2 plume in the subsurface and assessing long-term
subsurface storage potential of the reservoir [8]. Data acquisition to determine physical
properties such as relative permeability is typically done through laboratory experiments
or physical simulations on 3D CT images. Although laboratory measurements are
generally accurate, they are labor-intensive and time-consuming [12]. More critically,
they are only representative of the property at a small scale and to the speci�c rock type
sampled in the subsurface.

Performing direct pore-scale simulations on 3D micro-computed tomography (CT)
images o�ers a more �exible approach to studying multiphase behavior at the micron
scale. That approach also allows for manipulating di�erent physical factors, such as the
capillary number and viscosity, to study the sensitivity to various physical factors [14,15].
This in turn can yield more robust calculation of multiphase �ow process properties like
relative permeability using pore-scale simulation such as pore network model coupled
with Stokes �ow simulation [16]. However, micro-CT samples are expensive, sparse,
and representative of a small portion of the variations in subsurface geologic properties.
Simulation results on micromodels (miniaturized arti�cial pore network model) [43,44]
as well as laboratory experiment results [83] reveal that pore structure properties such as
pore throat ratio, coordination number, shape factors, and pore throat orientation, as
well as geological heterogeneity such as spatial porosity distribution, all have a signi�cant
impact on relative and absolute permeability. The pore-scale models constructed on
the basis of micro-CT scans, however, lack a direct connection to larger geological
models that incorporate �eld-scale geological properties variations. Therefore, building
a representative pore-scale model that can capture both pore-scale physics and can be
assembled to re�ect large-scale geological property variations found at well or even �eld
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scale is necessary for linking the pore scale observations to the �eld scale.
To address some of the above issues, research e�orts have focused on developing

synthetic models for porous media to alleviate the cost of acquiring micro-CT scans and to
increase the variability and abundance of pore-scale models. Statistics-based techniques
such as those based on multipoint statistics are able to generate models that preserve
the continuity of features such as pore throats [17� 19]. However, the disadvantage of
these approaches is that they are computationally expensive and are limited to the
reconstruction of complex and heterogeneous object patterns under the conditions of
statistical stationary and the availability of rich training data [20]. Recent advancements in
deep learning o�er potentially more comprehensive solutions to reconstruct complex target
distributions while assimilating di�erent data sources by using deep generative neural
networks. Some successful examples include using AttentionGAN in image synthesis [64],
2D/3D image rendering [58], scene reconstruction [85], and text-to-image/video models
driven by latent di�usion transformers [98,99]. These models have primarily focused on
building generative models conditioned on semantic meanings, especially prompts, tokens,
and spatial structure information. Compared with stochastic geostatistical reconstruction
methods such as those based on multiple-point statistics (MPS) [21], deep learning-based
generative models are more capable of capturing complex patterns from training data [20]
since they have a larger parameter space.

In the realm of subsurface properties reconstruction, deep learning approaches are
widely used in channel reconstruction [22], solving inverse problems [23,24], and condi-
tional reservoir model generation [25,26]. In the realm of digital rocks, GAN-based deep
learning models such as Deep Convolutional Generative Adversarial Networks (DCGAN)
have been utilized to reconstruct 2D and 3D micro-CT images of Berea sandstone,
bead packs, and oolitic Ketton limestone [20,27,28] while honoring petrophysical and
Minkowski functional properties from training samples. Recently, some novel frameworks
such as DiAGAN [100], SliceGAN [88], or denoising di�usion-based techniques [101] have
been used to generate 3D volumes using only 2D data sections. In these approaches, a 2D
convolutional discriminator is trained along with a 3D generator. However, building rep-
resentative porous media that re�ect certain geological properties requires more granular
control over stochastic processes in GAN. A GAN and actor-critic reinforcement learning
framework (GAN-AC) was developed to search for stochastic parameters to control
user-de�ned GAN generation [24]. Meanwhile, some other research focuses on deforming
GAN latent space to constrain GAN generation to physical simulation outputs [89,102].

These deep learning models achieve reconstruction authenticity while constraining the
neural network generation process to reproduce target rock properties such as porosity or
permeability. However, there are two main limitations to the above methods. First, most
existing research results focus on constraining 3D structures to static rock properties
such as porosity, whereas most �eld-scale geological models are rarely homogeneous.
Multiphase �ow functions like relative permeability shall be linked to spatial perturbation
of rock properties to perform more accurate upscaling of �ow functions. Secondly, the
scale of these reconstruction models tend to be restricted, mostly ranging from643 to
1283 voxels due to computational limits. With better computational resources, a2563
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voxel image can sometimes be achieved. However, as size increases, the computational
resources required for data processing in terms of the number of GPUs, and their memory
requirements increase, while at the same time, the number of training images becomes
smaller. Most current deep learning-based generators for pore-scale models are trained on
sub-volumes of a complete micro-CT data set, and larger training images result in fewer
sub-volumes for model training. More importantly, when the models are synthesized at
the scale of the sub-volume, most physical attributes simulated from these porous media
are below the Representative Elementary Volume (REV) scale. This is especially true
for transport properties such as relative permeability and permeability [10], whose REV
scale is larger than that of porosity. Analyzing transport properties below REV scale is
easily in�uenced by local pore structure, rendering them not representative of �eld-scale
quantities. A possible solution to the above limitation is to utilize a VQVAE-based model
to create larger rock images [96]. However, although this approach can yield large 3D CT
images, the reconstruction is predicated on the availability of 2D images while honoring
vertical porosity distribution instead of a more comprehensive 3D porosity model. Each
individual sub-volume is sampled independently and to impose spatial continuity, a
convolutional merging strategy is adopted to add each independent sampled sub-volume.
While this may solve the problem of boundary transition, the VQVAE itself doesn't
learn e�ective spatial dependencies (especially in terms of 3D positions) between di�erent
sub-volumes, thus the accuracy of reproduced features in the reconstructed models cannot
be ensured in those approaches. Therefore, an improved work�ow is needed for generating
representative porous media conditioned to 3D spatial variations of geologic properties
like porosity. These spatial variations may be re�ective of the variations at the �eld scale
and representing those variations while ensuring interconnectivity between generation
blocks can yield �ow properties more representative of �eld scale quantities.

To address some of the above challenges, we propose combining a generative-based
approach with an autoregressive-based model to develop a framework for reconstructing
binary 3D porous media with arbitrary size and �exibility to perform spatial upscaling
and downscaling. In this work�ow, the autoregressive-based model can dynamically
generate porous media much larger than the scale of the original training image with
spatial continuity. We start by compressing the smaller-size training images into low-
dimensional tokens using the VQVAE/VQGAN framework [33, 34]. In the VQGAN
framework [34], a transformer autoregressively generates each image token quantized by
the VQVAE model. However, in our framework, instead of focusing on a single image,
we subdivide a larger image into smaller sub-volumes matching the size of the VQVAE
training image. Subsequently, we quantize each image patch into tokens and train a
transformer to spatially assemble those low-dimensional codebook tokens constrained by
spatial rock properties. Inspired by multi-token transformer generation strategy [35], our
transformer model generates multiple tokens per image patch, preserving image integrity
and allowing the transformer to focus on �guring out the autoregression relationship
between patches.

The contributions of our work can be summarized as follows:
ˆ Develop and demonstrate a method based on VQVAE and transformer two-stage
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training framework for generating 3D porous medium that re�ects the spatial
variations in a 3D porosity model using autoregression.

ˆ We demonstrate that the transformer model can be very e�ective at the multi-
token generation task, especially for tokens that embody complete sub-image patch
features.

ˆ Our approach has been validated using real data from a well, showcasing its
potential to interpolate CT scans at the well scale using only a spatial porosity
model.

ˆ Our proposed work�ow can accurately interpolate and calculate representative
permeability and relative permeability values by incorporating spatial heterogeneity
of geological properties such as porosity.

Figure 6.1: The work�ow of Vector Quantized Variational Autoencoder

6.3 Methods

6.3.1 Vector Quantized Variational Autoencoders

In order to have the ability to generate models for the porous media at any arbi-
trary scale, an autoregressive modeling framework is needed. Some well-known image
autoregression models such as PixelCNN [103] can generate pixel-by-pixel renditions in
sequential fashion. However, PixelCNN operates directly at the pixel scale, making the
generation of larger images challenging while maintaining global coherence [34]. This
limitation renders it a non-ideal candidate for generating 3D models of porous media
micro-structures at arbitrary scales. Building autoregressive models in the latent space
rather than at the pixel scale is more computationally feasible and facilitates control
over the coherency and conditioning of the resultant models, especially in the context of
video generation [98,99]. However, constructing a process for training within the latent
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space in order to develop image tokens and subsequently, feeding those image tokens
to autoregression models to ensure coordination between the image token compression
model and the autoregression model can be challenging.

A two-stage approach using Vector Quantized Variational Autoencoder (VQVAE)
is an ideal candidate to address these challenges [33, 34]. It uses a vector quantized
variational autoencoder to compress images to latent space and discretize latent space
using codebook indices. Autoregression-based models such as transformers can directly
model codebook indices instead of image tokens to build the autoregression process. In
our approach, we use VQVAE to compress 3D microstructures of rock into latent vector
spaceẑ (Equation 6.1), which consists of a set of latent feature vectorŝz = f ẑ1; ẑ2; :::; ẑtg,
wheret is the total number of feature vectors per image. The feature vectors are created
by applying the 3D Convolutional Neural Network (CNN) encoder functionE on the
array x of the 3D microstructures of voxel dimensionsl, w, and d.

ẑ = E(x) 2 Rl � w� d (6.1)

The VQVAE work�ow is described in Figure 6.1. After encoding the image to latent
vector space, all latent vectors insidêz are discretized by mapping onto the nearest
element of codebook(e) entry zk as described in Equation 6.2, where we useq(ẑ) to
represent the mapping process. Codebooke is an embedding spacee 2 RK � D , whereK
is the size of the embedding space andD is the dimensionality of each latent embedding
vector, which is the same as our compressed image latent vectorẑ.

zq = q(ẑ) = arg min
zk 2 e

jẑi � zk j (6.2)

The quantization process maps approximated latent spacêz to latent space zq =
f z1

q; z2
q; :::; zt

qg sampled from codebooke, with the corresponding codebook indices
S = f s1; s2; :::; stg. The mapped latent space should have the same number of latent vec-
tors and dimensions as the original̂z. The reconstruction of 3D rock microstructure will be
upsampled by a 3D Convolutional Neural Network (CNN) decoder:̂x = G(zq) = G(q(ẑ)) .
The loss function mainly comprises reconstruction loss and codebook regularization as
described in Equation 6.3, wheresg[�] denotes the stop-gradient operator. Loss terms
� jsg[E(x)] � zqj22 + � jsg[zq] � E(x)j22 ensure that the encoder outputs and codebook
vectors are close to each other. The latter loss term is also called commitment loss. The
VQVAE discretization procedure can compress and discretize image latent space, and
the compressed image tokens, which are the codebook indicesS set, are suitable for
autoregression-based models such as transformers to process, similar to natural language
processing tasks.

L V Q(E; G; q) = jx � x̂j2 + jsg[E(x)] � zqj22 + jsg[zq] � E(x)j22 (6.3)

6.3.2 Transformer

Transformer-based models are excellent at handling Natural Language Process-
ing (NLP) related tasks such as translation or language modeling, which require processing
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Figure 6.2: Work�ow of the spatially assembled transformer. This process models spatial
autoregression among patchesx, associated with coordinates(i; j; k ) within a large porous
medium X . The transformer is trained on both the compressed spatial image token set
S and corresponding rock properties, in this case porosity� . The transformer predicts
the last patch token setS given all current and previous porosity information and all
previous token setsSi =0 ;j =0 ;k=0 ; :::;Si = n;j = n;k = n� 1, where n is the dimension ofX . The
encoderE was pretrained during the VQVAE work�ow. Rock properties can be extracted
using either an image processing tool to extract static properties like porosity or a pore
network model to obtain �ow-related variables. For simpli�cation, we use the image
processing tool PoreSpy [3] to extract porosity.

or generating sequences of language tokens. A key advantage brought by transformer-
based models for processing sequential data is their self-attention mechanism, which
is adept at both parallel processing of di�erent positions in a sequence and handling
long-range dependencies [69]. Self-attention in transformers can e�ciently determine
which positions to focus on when predicting current outputs. The self-attention layer
primarily consists of three matrices: query (Q), key (K ), and value (V). The attention
features are calculated through a scaled dot product process as described in Equation 6.4,
where

p
dk is the scaling factor andsof tmax ( QK T

p
dk

) calculates the attention score or
weight that can be assigned to the value corresponding to every position combination.

Attention (Q; K; V ) = sof tmax (
QK T

p
dk

)V (6.4)

Self-attention computation can be repeated several times to form a multi-head attention
layer, which simply concatenates di�erent self-attention features to produce �nal outputs.
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This allows the transformer to attend to di�erent positions under di�erent contexts.
This mechanism is similar to how di�erent kernels in CNNs can extract various image
feature maps. In addition to the multi-head attention layer, a fully connected position-
wise feedforward neural network uses linear transformations to process each position
individually.

There are two main types of transformer models in terms of application: autoregressive-
based transformers (decoder-only) like the Generative Pretrained Transformer (GPT)
series [70] and bidirectional encoder representation from transformers like BERT [71].
Autoregressive-based transformers attempt to predict data in future positions given all
previously available sequential features. Famous applications such as GPTs are trained
to predict the last token of input language data. Due to their autoregressive nature, this
transformer architecture masks the attention matrix to the lower diagonal to prevent
future information from in�uencing current state predictions. In contrast, encoder-based
models like BERT are more suitable for processing entire sequences, such as language
translation or sentiment analysis of a sentence [71]. While transformers are primarily
used as processing language tokens for NLP tasks, they are also widely used in image
processing and generation [104]. However, a key drawback of using transformers for
image reconstruction is that computational costs increase quadratically with sequence
length [34]. Pixel-based image data typically have much longer sequences than a typical
English sentence, making transformers less favorable for modeling images.

6.3.3 Learning Spatial Assembled Multi-Token Transformer

The two-stage approach, combining VQVAE and transformer, addresses some of the
computational challenges associated with image reconstruction by training the transformer
on compressed image tokens (codebook indicess) rather than voxel space. The approach
involves using the transformer to autoregressively predict a sequence of codebook indices
p(s1; :::; st ) that have been quantized by the VQVAE model for a single image. This
requires maximizing the log-likelihood of the generated image tokens, as described in
Equation 6.5, wheret represents the total number of tokens in the sequence. That
amounts to minimizing the cross-entropy loss across all tokens in the sequence as given
by the objective function in Equation 6.5.

L Transformer = Ex� p(x)

"

�
tX

i =1

logp(si js<i )

#

(6.5)

In the original VQVAE-Transformer training framework, the transformer is typically
trained to predict the last token, which corresponds to only one feature vector̂zi . The
overall framework can e�ectively assemble latent features (total sequence features length
is t) for completely representing the 3D porous media. In our experiment, we set the
number of feature vectors as 64 (t = 64). However, as mentioned in section 6.2, our
goal is to reconstruct the spatial 3D microstructure of porous medium where a property
such as porosity changes throughout the volume of the media at an arbitrary scale.
Reconstructing a single image token sequence is not su�cient to perform systematic
spatial upscaling.
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Recently, multi-token transformers have gained popularity due to their better perfor-
mance and faster training speed compared with single-token transformers [35]. Instead of
generating an individual image tokensi , a multi-token transformer can generate multiple
image tokens per inference, which is de�ned asS of this set, whereS = f s1; s2; :::; stg.
Similarly, we designed a spatially assembled multi-token transformer that aims to learn
the autoregression relationship among di�erent individual subvolumes of 3D microstruc-
ture porous medium. We de�ne a large 3D porous medium asX which consists of
individual subvolumesx i 2 f x1; x2; :::; xng. In this scenario, the goal of the transformer
is to autoregressively generate a sequence of tokens setS1; S2; :::;Sn and modeling spatial
dependencies among the latent space representing image patches. Since we have a total of
n image patches per large imageX and each image can be quantized intot image tokens,
the total sequence length will bet � n. Thus, we are trying to predict p(s(i +1) � t :i � t jsj<i � t ),
wheret is the length of the image tokens sequence for one individual image patch andi
represents thei th image patch alongX . To simplify notation, we useS as a replacement
for the set of patch-based image tokens, then the target becomesp(Si jSj<i ), which we
can de�ne as our current transformer loss function in Equation 6.6.

L Transformer = EX � p(X )

"

�
nX

i =1

logp(Si jSj<i )

#

; Si = s1; :::; st (6.6)

6.3.4 Constraining generation to spatial rock properties

Constraining 3D porous media microstructure generation to spatial rock properties is
crucial to represent �ow functions at larger scales. We can simply append the conditioning
rock propertiesCi along with image tokens during the training process. This is represented
in Equation 6.7.

L Transformer = EX � p(X )

"

�
nX

i =1

logp(Si jS<i ; C� i )

#

; Si = s1; :::; st (6.7)

Each Ci is the constant conditioning information at a certain grid block expanded to
match with single subvolume token lengtht. The process for constraining transformer
generation to spatial rock properties can be described in Figure 6.2, where we use porosity
� as an example of the spatial conditioning dataCi . Any other �eld scale data that
relates to the characteristics of the porous media can be used as conditional informa-
tion. Each segmented subvolumex from X has associated grid coordinates(i; j; k ) and
conditioning information Ci will be appended to the image token sequence. For each
image subvolumex i , we use the pretrained VQVAE encoder to get the image tokens set
S. Along with conditioning data, we can get a long sequence of image tokens consisting
of di�erent S sets. The goal for the transformer is to predict the last image token set
Si = i max ;j = j max ;k= kmax , given previous token setsfS i =0 ;j =0 ;k=0

1 ; :::;Si = i max ;j = j max ;k= kmax � 1
n� 1 g

as well as all spatial conditional information (including current state conditional informa-
tion) fC i =0 ;j =0 ;k=0

1 ; :::;Ci = i max ;j = j max ;k= kmax
n g. Both input sequence vector and conditional

sequence vector have the same sequence lengtht � n, as we introduced in section 6.3.3.
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We append an SOS token setS0 to the beginning of the realS token set to initialize
inference. The structure of the input and output of our multi-token transformer can be
summarized in Equation 6.8.

tokens input = fS sos; S1; : : : ;Sn� 1g

cond input = fC1; C2; : : : ;Cng

output = p(Sn j S<n ); Sn = f sn
1 ; sn

2 ; : : : ; sn
t g i = imax ; j = j max ; k = kmax

(6.8)

6.3.5 Spatial Sliding Attention Window

The spatial information is incorporated into the transformer via positional embeddings
applied to the sequence positions, rather than directly appending the spatial coordinates
(i; j; k ) to the conditional vector Ci . The ordering of the token setfS 1; S2; : : : ;Sng follows
a deterministic spatial pattern based on the(i; j; k ) coordinates. Speci�cally, letimax ,
j max , and kmax denote the maximum values for each spatial dimension within the attention
window. The tokens are ordered according to a nested iteration over these dimensions:

1. Iterate i from 0 to imax ,

2. For eachi , iterate j from 0 to j max ,

3. For each(i; j ) pair, iterate k from 0 to kmax .

This sequence of nested loops ensures that all grid coordinates(i; j; k ) are systemati-
cally traversed in the speci�ed order using a sliding attention window. During training,
the transformer implicitly learns the spatial assembly of tokens following this ordering
of the token setfS 1; S2; : : : ;Sng. However, for reconstructing a porous medium at an
arbitrary scale, a single attention window is insu�cient due to the sequence length
limitations. This limitation can be addressed by using a dynamic spatial sliding attention
window, which moves across the spatial domain in the same traversal order as the token
sequence within a single attention window. As the attention window shifts to a new
position, the previously generated token sets from earlier attention windows serve as
spatial conditioning data, allowing the transformer to generate new tokens at the updated
location. This approach e�ectively extends the attention mechanism across larger spatial
regions, overcoming the inherent size constraints of a �xed attention window.

6.3.6 Evaluating work�ow for generating �ow functions

We use porosity as conditioning informationC to reconstruct porous media in this
experiment. Porosity is not only a common attribute in �eld-scale reservoir models
but also serves as a �rst-order Minkowski function for characterizing pore structure
parameters [40]. Thus, porosity acts as a key link in building models for porous media at
arbitrary scales for evaluating both permeability and relative permeability.

Our two-stage approach, comprising VQVAE and transformer, requires evaluation of
both neural networks' performance. The evaluation process consists of three main parts:

74



1. VQVAE Performance: We assess how accurately the VQVAE's quantized vectors
can reconstruct the original image representation. This involves visual inspection
and comparison of statistics of original and synthetic models.

2. Transformer Token Quality: Given our use of multi-token transformer training
and inference, we evaluate the quality of these �multi-tokens�. We examine whether
the transformer-sampled tokens, when decoded into 3D porous medium subvolumes,
are physically plausible and preserve the physical parameter distribution of the
training subvolumes.

3. Assembled Porous Media Evaluation: This more complex evaluation focuses
on the coherency of the porous media models constructed conditioned to spatial
properties. We conduct �ow simulations on the assembled porous medium to
compare our transformer-based predictions of transport properties with real data.
Additionally, we perform two-point correlation calculations on the assembled porous
media, comparing results with both real and reference data.

The following sections detail the main physical metrics and �ow function calculations
used in these evaluations.

f. Two Point Probability Function

The two-point probability function S2(p(x ); p(x + h)) is the probability that two
randomly selected pointsx and x + h, separated by lag distanceh, belong to the
same phase. In porous media, phases refer to solid or void space voxels, thus it can
be referred to as pore-pore two-point correlation [105]. We compute the two-point
probability function omnidirectionally on assembled porous media using the PoreSpy [3]
package. The two-point probability function can e�ectively re�ect how an assembled
porous medium's spatial voxel pattern covariance function compares with the original
porous medium. However, while the two-point probability function provides valuable
insights into the spatial structure of porous media, it has limitations in fully characterizing
complex porous systems, especially in terms of representing complex spatial connectivity
that may a�ect transport processes.

g. Absolute permeability kabs

The absolute permeability (kabs) is determined using Darcy's Law, as outlined in the
system of Equations given by 6.9, whereu is the �uid velocity, p is the pressure,� is the
�uid viscosity, L is the length of the porous medium,Q is the volumetric �ow rate, A is
the cross-sectional area, and� P is the pressure drop. In pore network modeling, Stokes
�ow is simulated on the porous medium to obtain the aqueous phase �ow rates.

75



r � u = 0

�r p + � r 2u = 0
�LQ
A� P

= kabs

(6.9)

In this experiment, permeability serves not only as an evaluation metric but also
as an important outcome that our transformer-based framework is expected to predict
accurately while honoring spatial porosity distribution. This ability to model single-phase
permeability at any arbitrary scale is crucial, especially when core analysis or empirical
correlations such as the Kozeny-Carman Equation are not su�ciently representative of
spatial heterogeneity observed in real rocks. The pore network simulation to compute
the absolute permeability is performed using OpenPNM [74].

h. Relative Permeability kr

Relative permeability is an important parameter in reservoir simulation, used to model
�uid �ow and transport in subsurface reservoirs at �eld scale. For example, in Geological
Carbon Sequestration with CO2 and brine two-phase systems, relative permeability can
be described by Darcy's law (Equation 6.10), whereQnw and Qw represent the �ow
rates of CO2 (non-wetting phase) and brine (wetting phase), respectively,@P

@x represents
pressure gradient,� represents dynamic viscosity,g is the gravitational acceleration and
� is the angle of the �ow channel relative to the horizon, and that along with the density
of the phase� nw and � w regulates the e�ect of gravity along �ow direction. The relative
permeability K rnw and K rw are key parameters that characterize �ow behaviors between
these two phases in the porous medium. These dimensionless values, ranging from 0 to 1,
re�ect how the presence of one �uid a�ects the �ow of the other. As the saturation of
one phase increases, its relative permeability typically increases, while the other phase
decreases, thus capturing the complex interplay between the �uids in the pore space.
The characteristics of how these relative permeability change with saturation are a�ected
by factors such as pore space connectivity. In pore network modeling, Stokes �ow is
simulated on the percolation history of the porous medium to obtain �ow rates at each
saturation step, which we use to calculatekr through Darcy's Law in Equation 6.10.

Qnw =
� KK rnw A

� nw

 
@Pnw

@x
+ � nw gsin�

!

Qw =
� KK rw A

� w

 
@Pw
@x

+ � wgsin�

! (6.10)

As mentioned previously, relative permeability is in�uenced by a wide range of factors,
including the wettability of the grain surface, �ow regime factors such as capillary number,
phase-related variables (most notably saturation and phase connectivity [15,29]), and
geological properties. In terms of upscalingkr , understanding how geological properties
a�ect the scaling characteristics of relative permeability is a prerequisite. Geological
properties such as porosity are key parameters linking �eld-scale reservoir models with
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pore-scale models. Therefore, similar to permeability,kr not only serves as an evaluation
metric for assembled porous media but also as a key outcome that the transformer
expected to predict with the help of pore network modeling while considering spatial
heterogeneity of geological properties. In our experiment, we are evaluating the spatial
heterogeneity of porosity, the most common parameter used to characterize both porous
media and �eld-scale geology models. The relationship between single-phase permeability,
the trajectory of relative permeability, and the spatial distribution of porosity can be
conceptually expressed as:

f k; kr g = f (� (i; j; k )) (6.11)

where � (i; j; k ) is the spatial distribution of porosity at coordinates (i,j,k). This
conceptual function illustrates that kabs and kr depend on the spatial arrangement of
pores (represented by the porosity distribution). Other factors such as wettability that
can be manipulated during pore network modeling are not our focus in this experiment.
In addition, we only perform the drainage process (i.e. the displacement of the wetting
phase by the non-wetting phase in the porous medium similar to the displacement of
brine by CO2 during geologic sequestration) forkr simulation. In our transformer-based
framework, the model receives the spatial porosity distribution as input to assemble
a token set, which is then decoded by the VQVAE model to reconstruct the porous
medium. This reconstructed medium, with its spatially varying porosity, forms the basis
for predicting permeability and relative permeability through pore network modeling.

6.4 Results

6.4.1 Dataset introduction and training work�ow

The training and test dataset comprises computed tomography images from the One
Earth Energy Well #1 (OEE Well #1), which was drilled to characterize the Lower Mt.
Simon Sandstone and Eau Claire Formation in the Illinois Basin [106,107]. This test well,
part of the Illinois Storage Corridor CarbonSAFE project, aims to assess the feasibility
of safely injecting and permanently sequestering CO2 produced by One Earth Energy's
ethanol plant into the underlying Lower Mt. Simon Sandstone.

A total of 11 Micro-CT images were obtained using NETL's Zeiss Xradia micro-CT
scanner, with resolutions ranging from 3 to 7 microns per voxel. We selected 6 3D CT
volumes, all with the same voxel resolution of3:7564�m 3, as shown in Table 6.1. Our
dataset comprises CT scans from two depth ranges: the training set spans depths from
6356.9 ft to 6481.5 ft with porosity between 0.08 and 0.2, while the test sets cover depths
from 6344 ft to 6348 ft. For convenience, we rename the test sets as CT index 0 and 1,
corresponding to depths of 6344 ft and 6348 ft, respectively. The training set CT scans
are named as CT indices2; 3; 4; 5.

The training process involves two key components: VQVAE and transformer. For
VQVAE, we use643 subvolumes as training data (notationx i in Figure 6.2), which serve
as fundamental porous media components for further assembling. These sub-volumes
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Table 6.1: CT Data for Various Core Samples

Depth Sample Voxel Res. CT Bulk
(ft) Name ( � m 3) Index Porosity

6344.0 One Earth Core3 Box2 3.7564 0 0.15
6348.0 One Earth Core3 Box3 3.7564 1 0.20
6356.9 One Earth Core3 Box6 3.7564 2 0.16
6371.9 One Earth Core3 Box11 3.7564 3 0.19
6420.0 One Earth Core3 Box27 3.7564 4 0.14
6481.5 One Earth Core4 Box18 3.7564 5 0.09

Figure 6.3: Scatter plot of original in-
put porosity versus reproduced porosity
in VQVAE model. The mean absolute
error between the original porosity and
reproduced porosity is0:003

Figure 6.4: Scatter plot of original per-
meability versus reproduced permeabil-
ity in VQVAE model. The mean abso-
lute error between original permeability
and reproduced permeability is50 md

are cropped with overlap from6353 CT scans corresponding to indexed volumes 2-5,
yielding a total of 32000 training samples. For the transformer, we aim to capture
spatial autoregression dependencies among the smaller sub-volumes. To that end, we
crop 20000 relative larger1283 porous media volumes (corresponding toX in Figure 6.2).
Each 1283 volume is then quantized by the VQVAE's pretrained encoder into a set of 8
image tokens, along with their spatial(i; j; k ) coordinates in a23 grid con�guration. It
is important to note that each image token setS consists of 64 image tokenss, which
serve as feature vectors for a643 porous media subvolume. The detailed training process
and hyperparameter selection for both VQVAE and transformer are summarized in
appendices C.1 and C.2, respectively. All training was conducted using an NVIDIA
A6000 GPU.

In theory, our spatial assembled transformer can create an in�nitely large porous
medium representation. However, to make the reconstruction size comparable to the real
dataset, we assembled porous media patches at two scales for evaluation:63 subvolumes
(3843 voxels, total 216 porous medium meta subvolumes) and93 subvolumes (5763 voxels,
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Figure 6.5: Histogram of original image patch porosity (left) versus transformer sampled
image patch porosity (right)

Figure 6.6: Histogram of original image patch permeability (left) versus transformer
sampled image patch permeability (right)

total 729 porous medium meta subvolumes). It's worthwhile noting that a5763 voxel
reconstruction size is almost equivalent to an individual complete CT scan of sandstone
in One Earth Energy Well # 1. We aim to investigate whether the transformer assembler
trained on CT indices2; 3; 4; 5 can create reasonable representation interpolations of CT
indices 0-1 at scale3843 and 5763, given their extracted spatial porosity distribution. But
we will also evaluate the assembled reconstruction accuracy on the training CT indices
2; 3; 4; 5.

6.4.2 Evaluation of Quantized Vector

The foundation of our work�ow lies on the ability to construct high-quality sampled
image tokens, which are subsequently used to train the spatial assembled transformer.
To evaluate the quality of these image tokens, we assess the quality of quantized vectors
queried by their indices. We begin by inputting segmented image patches of size643

(x), cropped from the test set (CT index 0 and 1), into the VQVAE encoder to obtain
the approximated latent vector ẑ. This vector is then used to retrieve the most similar
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Figure 6.7: Conditional evaluation of transformer

Figure 6.8: Transformer assembled porous medium versus original volumes based on
the same porosity spatial map. Left: original volume5763 voxels; Right: same size
transformer assembled porous medium.

quantized latent vector. The quantized latent vectorzq is decoded by the pretrained
decoder to produce the approximated̂x.

We perform PNM simulations on both VQVAE-decoded image patches (300) and
original input image patches (300) to simulate permeabilitykabs. For porosity, we use
PoreSpy [3] to directly calculate the void space ratio in both synthetic and original porous
media. We compare the reproduced porosity� and absolute permeabilitykabs with the
original input data using scatter plots, as shown in Figures 6.3 and 6.4. The porosity
reconstruction proves to be highly accurate. A more scattered trend in permeability
reconstruction is observed and can be attributed to the wide variability shown by the
PNM simulations at this sub-REV scale (643). With only a few available percolation
paths in a small pore network model, minor changes in voxel patterns can lead to
dramatic changes inkabs, as evident in some samples. However, this discrepancy is less
concerning since most synthetickabs values align well with the originalkabs. Assembling
these porous media components into larger volumes will likely produce a more reasonable
kabs distribution, as larger PNM simulation domains yield more representativekabs values.

We also compared the synthetic image patches with the original image patches,
as displayed in Figure D.3 in appendix D. As we can see, VQVAE can successfully

80



Figure 6.9: Two point probability curves at di�erent CT index at volume dimension3843.
The green curves are two point probability curves that are not constrained by porosity,
the red curves are two point probability computed curves on synthetic porous medium
by transformer and the blue curve is computed on the ground truth samples

reconstruct most original image patch structures. The high agreement between original
and synthetic reconstruction porous media patches demonstrates that our codebook has
been well-trained to learn the generalized porous medium features in test set CT indices
0 and 1. A close physical similarity (� and kabs) betweenx and x̂ demonstrates the high
quality of image tokens and the pre-trained codebook, indicating comprehensive and
diverse porous media feature representation, particularly since the evaluation setx is not
part of the training set.

6.4.3 Evaluation of Multi-tokens Generated by Transformer

Unlike traditional transformer single-token generation, our approach adopts a multi-
token training and generation strategy. Moreover, each multi-token generation should
represent meaningful features of a real porous media sub-volume of size643. In other
words, we are evaluating the coherence of the volume generated by assembling patch-based
token featuresS = f s1; s2; :::; stg. We evaluate the reconstruction distribution of our
physical parameters porosity� and permeability kabs, as shown in Figures 6.5 and 6.6.
Both reconstructed porosity and permeability distributions agree well with real image
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Figure 6.10: Interpolated absolute permeabilitykabs versus ground truth value; Left:
volume dimension at3843, mean absolute error:55 md; Right: volume dimension at
5763, Mean absolute error:65 md.

patch distributions, although transformer-sampled blocks tend to have slightly higher
porosity compared to original statistics.

We observe similar "higher porosity" values when we assess the competency of the
data conditioning process. To evaluate the e�cacy of the transformer to constrain the
generated porous media to speci�c values of porosity, we let the transformer sample
series of token setsS conditioned on di�erent porosity values� and ultimately decode
the tokens to obtain reconstructed porous media porosity. The comparison between
decoded porosity and conditioned porosity is plotted in Figure 6.7. Although the mean
absolute error of conditioning is 0.04, which is an acceptable range for porosity constraints,
transformer-sampled images tend to generate slightly higher porosity. This may be due
to the fact that during transformer multi-token generation the process is also dependent
on other nearby spatial tokens setSi;j;k . During the process of assembling the porous
medium, the multi-task learner tries to balance between porosity and the coherency of
the reconstructed volume.

Visually, we can see that transformer-sampled images exhibit reasonable structure
along di�erent planes: XY, XZ, and YZ, as displayed in Figure D.4 at appendix D.
Despite a slight imperfection with respect to over-estimation of porosity during the
assembling process, the structure of 3D porous media is well preserved and shows a
reasonable reconstruction, both from visual inspection and by checking the reproduced
permeability distribution. Further evaluation and validation will be mainly discussed in
section 6.4.4.

6.4.4 Evaluation of Assembled Porous Medium

As mentioned above, transport properties simulated at a small scale (643) are noisy
and easily in�uenced by local pore structure, as we can observe from Figure 6.4, which
demonstrates the unpredictable behavior ofkabs at below-REV scale. However, local
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