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ABSTRACT 

The understanding of guided wave propagation characteristics, source influence, 

and mode control in hollow cylindrical structures is crucial for guided wave 

nondestructive evaluation of pipelines. This thesis reviews the previous guided wave 

theories on single elastic hollow cylinders and develops their application in pipe imaging 

and defect circumferential sizing. Motivated by the fact that most pipelines are coated 

with viscoelastic materials, the thesis establishes a systematic procedure targeting on 

solving the problem of guided wave propagation, source influence, as well as focusing in 

multilayered hollow cylindrical structures containing viscoelastic materials.  

A suitable Semi-Analytical Finite Element (SAFE) formulation is first developed 

to solve the dispersion curves (including axisymmetric and non-axisymmetric guided 

wave modes) and wave structures in viscoelastic multilayered hollow cylinders. Stress 

distributions across pipe thickness and the cross sectional deformations for different 

guided wave modes are illustrated to help interpret modal behavior.  

A general orthogonality relation applicable for both single-layered and 

multilayered, elastic and viscoelastic hollow cylindrical structures is then derived. This 

orthogonality relation is subsequently implemented to sort guided wave modes obtained 

from the SAFE calculation. Numerical results show that all the guided wave modes are 

successfully sorted. The mode sorting enables us to trace the modal behavior evolving 

with frequency for any guided wave mode. It also provides the basis for solving source 

influence in viscoelastic multilayered hollow cylinders. 
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The guided wave field generated by a specific source loading on a viscoelastic 

multilayered hollow cylinder is tackled by the employment of the Normal Mode 

Expansion (NME) technique. Different from the source influence in an elastic single-

layered hollow cylinder, the displacement and stress continuity condition must be 

incorporated in deriving the amplitude factors of the generated normal modes. The 

displacement angular profiles of a certain loading are consequently obtained by the 

superposition of all the excited modes with appropriate amplitudes. After the angular 

profiles are obtained, the focusing deconvolution algorithm is incorporated to provide the 

amplitude factors and time delays for guided wave phased array focusing in viscoelastic 

multilayered hollow cylinders. 

To visualize the focusing in a viscoelastic multilayered hollow cylinder, a 

viscoelastic coated pipe is taken as an example to build in ABAQUS. Finite Element 

Modeling (FEM) of guided wave focusing in the coated pipe is conducted. The FEM 

results agree well (5% difference in focal amplitudes) with the theoretical calculations. 

Finally, guided wave synthetic focusing experiments are designed to verify the 

theories. The guided wave synthetic focusing methodology and experiment procedure are 

introduced in detail. Data are taken on a steel pipe coated with 0.4-mm bitumastic 50. 

Four channel guided wave synthetic focusing is performed in post processing. Both the 

theoretical predictions and the experimental results show that the focal amplitudes under 

such a relatively thin coating are of less than 10% difference for the bare pipe focusing 

parameters and the coated pipe focusing parameters at the designed focal location.  
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Chapter 1 
 

Introduction 

1.1 Problem Statement 

Millions of miles of pipes are used in the US for the transportation of gas, 

chemicals, and other products. Most of these pipes and pressure vessels have been used 

for a very long time and are encountering the problem of aging. The steam pipe explosion 

on July 18, 2007 in Jolts Midtown resulted in one person’s death and more than 30 hurt. 

Total replacement of these pipes and pressure vessels are too expensive. Therefore, 

regular inspection and monitoring using Non-Destructive Evaluation (NDE) methods are 

needed to guarantee the integrity and safety of these pipelines. 

Bulk waves are commonly used in conventional ultrasonic NDE because they are 

easy to implement. Other methods such as X-ray [Ong 1994], eddy current [Sun 1992], 

and magnetic flux [Plotnikov 2002] are also used in NDE. The disadvantage of using 

these methods is that inspections are usually done on a point-by-point basis, which takes 

a long time to finish an inspection of the entire structure.   

The pig method [Cordell 1994] [Williamson 1994] is a fast, long distance pipe 

inspection technique utilizing ultrasonic bulk waves. The equipment needs to move inside 

the pipe in order to test it. This technique is expensive. Moreover, once the equipment 

gets stuck inside the pipe, it is fairly costly to cut the pipe and to remove the equipment. 

Also, this technique is not suitable for smaller pipes, pipes carrying chemicals, and those 
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having complex structures, such as elbows. The so called “unpiggable lines” represents 

forty percent of the pipelines that should be inspected.  

Guided waves are ultrasonic waves traveling in bounded waveguides, such as 

plates, rods, and pipes. Compared to bulk waves, guided waves propagate long distances 

and have the potential to go beyond complicated structures, for example, elbows. 

Therefore, it is excellent for long-range nondestructive evaluation (NDE). The utilization 

of guided waves in NDE and structural health monitoring (SHM) makes it possible to 

inspect the entire structure from a single probe position without the removal of soil or 

insulation. Due to these advantages, guided wave techniques can provide us with a faster 

and more economical way for structure inspections and defect screening. 

In applications, most pipelines are covered by various viscoelastic coatings for 

protection purposes. The existence of coatings alters the boundary conditions and the 

wave propagation characteristics in pipes. As a result, previous theories on bare elastic 

pipes [Gazis 1959; Ditri et al. 1992] may not be valid in viscoelastic coated pipes. This 

makes guided wave mode control and mode selection difficult in coated pipe testings. 

Therefore, the understanding of coating influence and the full exploration of guided wave 

modes in viscoelastic multilayered structures is crucial for providing the guidance for 

pipeline maintenance.  
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1.2 Literature Review 

1.2.1 Guided wave propagation theories 

Guided wave theories have been studied extensively for decades. As early as the 

beginning of last century, [Rayleigh 1945] described the free waves traveling on the 

surface of a semi-infinite solid. [Stoneley 1924] studied free waves that occur at an 

interface between two media. [Lamb 1917] investigated the wave propagation in an 

elastic isotropic plate with traction free boundary conditions. [Viktorov 1970] also gave a 

remarkable contribution to the understanding of guided waves in plates. 

Wave propagation in multiple layers was first studied in [Thomson 1950]. In this 

study, a transfer matrix was introduced to describe the displacements and stresses at the 

bottom of a layer with respect to those at the top of the layer. In this way, the 

displacements and stresses at the bottom of a multi-layered system could be related to 

those at the top of the system through interface conditions. Then, the transfer matrix of 

the system could be solved by applying appropriate boundary conditions of the system. A 

problem of the transfer matrix approach was that the matrix became ill-conditioned at 

high frequencies and therefore, solutions are difficult to obtain. 

The global matrix method was developed by [Knopoff 1964]. Knopoff provided 

an alternative way to tackle wave propagation problems. In his method, the determinant 

of a global matrix must equal zero by satisfying all of the interface and boundary 

conditions, which therefore became the characteristic equation of an eigenvalue problem. 

The roots of the characteristic equation were the eigenvalues of the system, which gave 
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the modes that could exist in the system. The eigenvectors of the system associate with 

the wave structures of the modes. 

The problem of ultrasonic wave propagation through a hollow cylinder can also 

be solved using the above techniques. Ghosh got the first mathematical solution for the 

longitudinal, axisymmetric wave modes in a rod with co-axial annulus [Ghosh 1923]. 

Gazis [Gazis 1959] obtained the first complete solution to harmonic guided wave modes 

propagating in an infinite hollow cylinder. His solution treated both longitudinal and 

torsional axisymmetric wave modes as well as non-axisymmetric wave modes. Based on 

Gazis’ work, Ditri and Rose [Ditri et al., 1992] showed that the double infinite number of 

wave modes in the infinite hollow cylinder were all normal modes, whose orthogonality 

relation could be derived from the complex reciprocity relation [Auld 1990]. 

Subsequently, a Normal Mode Expansion (NME) technique was used to determine the 

amplitude of each normal mode generated by the source loading on an infinite hollow 

cylinder. Li and Rose [2001] did numerical computations for the wave propagation of the 

partial loading case according to the analytical results given by Gazis and Ditri. They 

found that the non-axisymmetric circumferential energy distribution varied as a function 

of the axial distance and they verified the energy distribution by experiments.  

1.2.2 Phased array focusing techniques 

Althoug the phased array focusing technique has been widely used in such fields 

as electromagnetic waves, for example, radar and conventional ultrasonic bulk waves, it 

was rarely seen in guided wave applications due to the complexity of guided waves. In 
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2002, Li and Rose reported that if the angular profile for a single channel loading is 

known, the total guided wave angular profile can be controlled and thus focused at any 

predetermined circumferential location by a circumferentially placed phased array with 

appropriate voltage amplitude and time-delay inputs. With the guided wave phased-array 

focusing technique in pipes, a strong and narrow focused beam could be achieved. It was 

proven to provide better circumferential resolution and higher penetration power than 

axisymmetric waves in defect detection. As a result, the circumferential location of a 

defect can be determined. It also provided better potential in defect sizing. Sun et al. 

[2003] extended the guided wave phased-array focusing technique further by utilizing 

torsional waves. 

Another focusing technique that is receiving more and more attention is the time-

reversal focusing technique [Ing et al., 1998]. This technique reverses the received 

signals in time domain and utilizes these time-reversed signals as transmitting signals to 

focus at the largest reflector. The advantage of this technique is that there is no 

computation complexity. Only hardware with an arbitrary function generator is needed. 

Another advantage is that this technique is applicable in various media, such as 

inhomogenous material, for example, human body, and complex wave guide structures, 

for instance, pipe elbows. 

The above focusing techniques are usually referred to as real time focusing, where 

the wave energy is actually tuned to focus at a predetermined location by sending signals 

from the phased-array transducers with different amplitude factors and time delays. In 

applications, the hardware that is capable of accurately controlling time delays are often 

expensive. In addition, a phased array with a large number of channels or transducers can 
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be costly too. These are the cases where synthetic focusing techniques are employed 

instead of real time focusing. In synthetic focusing, signals are sent and received by 

different transducer pairs and the focal waveforms are obtained by signal processing in 

post processing procedure. Several ways of achieving synthetic focusing in bulk waves 

are commonly used: the Common Source Method (CSM), the Synthetic Aperture 

Focusing Technique (SAFT), and the Total Focusing Method (TFM). A brief review can 

be found in [Davies et al., 2005]. Synthetic focusing is also used in guided waves. Some 

excellent work can be found in [Wilcox 2003], [Giurgiutiu et al., 2004] and [Hayashi et 

al., 2005]. Different from the synthetic focusing using bulk waves, dispersion associated 

with multiple mode propagation has to be taken into account in guided wave synthetic 

focusing. Compared to real-time focusing, synthetic focusing may offer less penetration 

power because of the existence of noise, but it is more cost effective in some cases.  

1.2.3 Numerical methods used in wave propagation analysis 

With the development of modern computers that are capable of handling 

enormous computational tasks, numerical methods become more and more prevalent in 

solving problems dealing with complex structures. Especially, for the problems 

associated with wave propagation, reflection and scattering in wave guides with complex 

geometries, such as elbows and bare or multilayered pipes, analytical solutions are often 

difficult to find. Therefore, various numerical methods have been developed to provide 

information on wave propagation characteristics in these complicated situations. 

Numerical methods that are commonly used in solving problems related to guided waves 
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include Boundary Element Method (BEM), Finite Difference Method (FDM), Finite 

Element Method (FEM), and Semi-Analytical FEM (SAFEM). 

BEM simplifies volume integrals to surface integrals by applying Green’s 

function. Thus, a 3-dimensional problem is reduced to a 2-dimentional problem. 

However, BEM is not as flexible as FEM in that the surface integrals are intricate and 

have to be derived according to a particular geometry for a problem. In addition, solving 

the surface integrals do not necessarily save much time in a 3-dimensional problem with 

complex geometries compared to FEM. Some studies of wave propagation using BEM 

can be found in [Achenbach 1992] and [Cho 1996]. 

FDM is a simple and efficient method for solving ordinary differential equations 

(ODEs) in simple geometries. The differential equations are simplified to finite difference 

equations by discretizing the region. FDM is easy to be implemented in numerical 

calculations but a disadvantage of FDM is that it requires the velocity distribution at 

boundaries. 

In FEM, a structure is divided into a finite number of elements with finite size and 

boundaries. Elements satisfy the same governing equation and their own boundary 

conditions. The FEM is a good choice for solving partial differential equations over 

complex domains (like bridges and pipelines) or when the desired precision varies over 

the entire domain. Both implicit and explicit time integration analyses can be used to 

obtain the nodal displacements in FEM. Explicit analysis obtains a kinematical state by 

direct calculation from a previous state, while implicit analysis employs iteration to get a 

convergent solution for each state. Explicit analysis is a simple and clear choice for linear 
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wave propagation problems, whereas implicit analysis may be more suitable for nonlinear 

problems.  

FEM modeling of wave propagation problems have been widely investigated by 

many researchers, [Koshiba 1987], [Moser 1999], [Demma 2003], [Luo 2005], and [Li 

2005]. In order to guarantee convergent solutions in time domain and adequately accurate 

solutions in spatial domain during wave propagation simulations, two important criteria 

must be pointed out 

1) The maximum length of each element ΔLmax should be smaller than a tenth 

of the smallest wave length, i.e. ΔLmax
10

minλ
≤ . 

2) The time step Δt has to be selected according to Δt
max

minL
C
Δ

< , where ΔLmin 

is the smallest element length and Cmax is the fastest wave velocity that 

exists in the problem. 

The Semi-Analytical Finite Element (SAFE) method is a technique that combines 

analytical and finite element methods in solving problems. In the SAFE method, the 

wave guides are discretized in their cross sections, but analytical solutions are employed 

in the wave propagation direction. In this way, harmonic waves can be easily represented 

in the analytical solution, while complex cross section geometries can be meshed into 

finite elements. This technique has the advantage of handling wave guides with complex 

geometries as FEM does. In the mean time, it also reduces the dimensions in finite 

element computation by incorporating analytical solutions in one or more dimensions. 

Therefore, compared to FEM, less computation time and space are needed for SAFEM. 
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In some literature, the SAFE method is also referred to as the Strip Element method 

(SEM) [Cheung 1976]. In recent years, SAFE has been widely adopted in solving wave 

propagation problems in waveguides with complex cross sections, for instance, rail 

[Hayashi 2003] and laminates with complex material properties [Shorter 2004]. The 

criteria in SAFE discretization are the same as those used in FEM. Due to these benefits, 

the SAFE method is adopted in this thesis to tackle the wave propagation problem in 

viscoelastic multilayered hollow cylindrical structures. The SAFE method will be 

discussed further in Chapter 5. 

1.2.4 Guided wave propagation in multilayered cylindrical structures 

Some researchers have studied plate or plate-like structures with viscoelastic 

properties, for example, [Simonetti 2004] and [Predoi et al., 2007]. These plate solutions 

may be safely used to approximate hollow cylinders with thickness to radius ratio less 

than 10% [Luo, et al., 2005]. Beard and Lowe [2003] used guided waves to inspect the 

integrity of rock bolts. They provided the dispersion curve of rock bolts with 

aixsymmetric modes and 3 lower order (circumferential order equals 1) flexural modes in 

their study at a relatively low frequency range. Ma, et al. [2006] investigated the 

fundamental torsional mode scattering from an axisymmetric sludge layer inside a pipe. 

In his study, the sludge layer is considered to be an elastic epoxy layer. Elvira-Segura 

[2000] investigated the axisymmetric mode propagation in a cylindrical elastic tube filled 

with viscous liquid. Pavlakovic et al. [2001] analyzed the axisymmetric longitudinal 

modes in embedded bars and experimentally verified the theories. The axisymmetric 
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guided wave mode solutions in viscoelastic coated pipes have been obtained by 

Barshinger and Rose [2004] using the analytical global matrix method. However, due to 

the fact that the matrix is ill-conditioned and gets bigger for solving non-axisymmetric 

modes, the root searching becomes more computationally costly and the non-

axisymmetric mode solutions remain unexplored. 

 

1.3 Objectives 

Based on the pipe inspection problem statement and literature review, guided 

waves modes have been well investigated and successfully focused in bare elastic pipes. 

Nevertheless, many critical subjects still remain largely unexplored, such as guided wave 

pipe imaging and defect sizing capabilities, guided wave propagation characteristics and 

focusing possibility in pipes with viscoelastic coatings. The objectives of the thesis are to 

solve guided wave propagation and to achieve guided wave focusing in viscoelastic 

multilayered hollow cylinders. To realize these objectives, the following major tasks are 

taken: 

1. To investigate the long range guided wave imaging potential in pipe inspections 

based on the guided wave focusing technique in elastic bare pipes. 

2. To overcome the difficulty in guided wave computation and testing caused by the 

existence of viscoelastic coatings, SAFEM can be adopted to analyze the non-

axisymmetric mode propagation characteristics including dispersion curves and 

wave structures in viscoelastic multilayered hollow cylinders. 
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3. To accomplish guided wave mode control, the dispersion curves should be sorted. 

This enables us to trace the modal behavior of a specific guided wave mode with 

frequency. 

4. To develop a suitable orthogonality relation applicable for viscoelastic multilayered 

hollow cylinders is necessary for further analysis of source influence in viscoelastic 

multilayered hollow cylinders. 

5. To analyze the source influence in viscoelastic multilayered hollow cylinders on 

the basis of Normal Mode Expansion (NME). However, the interfacial conditions 

between different layers have to be taken care of. 

6. Based on source influence analysis, a focusing algorithm, as those used for the bare 

pipes, can be implemented to obtain the time delays and amplitude factors 

customized for a viscoelastic coated pipe. 

7. To carry out finite element modeling in Abaqus to visualize the focusing effect in 

viscoelastic multilayered hollow cylinders and confirm the theories. 

8. To design experiments to focus guided waves in coated pipe and validate the 

theoretical derivations and numerical computations. 

  



 

 

Chapter 2 
 

Guided Wave Propagation in Bare Pipes 

2.1 Dispersion Curves 

The guided waves that can propagate in a free elastic single-layered hollow 

cylinder are represented by the dispersion curves for such a structure. The dispersion 

curves can be obtained by solving the governing equations together with the boundary 

conditions. The governing equations of motion in an isotropic, homogeneous, elastic 

solid are the Navier governing equations [Kolsky 1963, Pollard 1977, Gazis 1959].  

where u is the displacement vector, ρ represents the density, t is the time, µ and λ are 

Lamé constants, and 2∇  is the three-dimensional Laplace operator. 

The basic computational process for dispersion curves can be found in [Rose 

1999]. A conventional way of presenting the solutions in vector form is to use the 
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Figure 2-1: Cylindrical coordinates 
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Helmholtz method [Malvern 1969], in which longitudinal waves are described by a scalar 

potential function φ and shear waves by a vector potential function H whose direction is 

normal to both the direction of wave propagation and the direction of particle motion:  

An additional constraint is added by satisfying the gauge invariance 

Substituting Eq. 2.2 into Eq. 2.1 yields 

and 

where v1 is the longitudinal wave velocity and v2 is the transverse wave velocity in the 

medium. 

By applying the method of separation of variables in cylindrical coordinates 

(Figure 2-1), the solutions to the above two equations can be assumed as 

where k denotes the wave number and n is the circumferential order of the wave mode. 

)(rf  and  )(rgξ  (ξ = r, θ, 3) are unknown functions with respect to r. Substituting 

Eq. 2.6 into Eq. 2.4 and Eq. 2.5, the unknown function in Eq. 2.6 can be solved. They 

have the following forms 

Hu ×∇+∇= φ . 2.2

0=⋅∇ H  2.3

tv 2222
1 / ∂∂=∇ φφ  2.4

tv 2222
2 / ∂∂=∇ HH , 2.5

)](exp[cos)( wtkzinrf −= θφ , 
)](exp[sin)( wtkzinrgH rr −= θ , 
)](exp[cos)( wtkzinrgH −= θθθ , 
)](exp[sin)(3 wtkzinrgH z −= θ . 

2.6
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Where rr αα =1 , rr ββ =1 , 2
2
1

2
2 k

v
−=

ωα , 2
2
2

2
2 k

v
−=

ωβ , A, B, A1, B1, A2, B2, A3, and 

B3 are unknown coefficients, Z  denotes a Bessel function J  or modified Bessel function 

I  function, and W  denotes a Bessel function Y  or modified Bessel function K  function, 

according to Table 2-1 . 

Substituting the general solution Eq. 2.7 back into Eq. 2.2, one obtains the 

displacement expression in terms of Z and W 

)()( 11 rBWrAZf nn αα += , 
)()( 13133 rWBrZAg nn ββ += , 

)(2)(22 1111111 rWBrZAggg nnr ββθ ++ +=−= , 
)(2)(22 1121122 rWBrZAggg nnr ββθ −− +=+= .

2.7

Table 2-1: Parameters and functions. 

Interval Functions used 

k
v

>
1

ω  i.e. 1vv > , 0,0 22 >> βα  )(),(),(),( rYrJrYrJ ββαα  

12 v
k

v
ωω

>>  i.e. 

21 vvv >> , 0,0 22 >< βα  

)(),(),(),( 11 rYrJrKrI ββαα  

2v
k ω

>  i.e. vv >2 , 0,0 22 << βα  )(),(),(),( 1111 rKrIrKrI ββαα
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From the strain-displacement relations and the constitutive equations, the stress 

field can be obtained 

The traction free boundary conditions for a hollow cylinder can be expressed as 

0=== θσσσ rrzrr  at inner surface ar =  and outer surface br = . Thus, the Navier 

governing equations with unknown wave number k (or frequency ω and phase velocity c) 

and the homogeneous boundary conditions as well as the gauge invariance form an 

eigenvalue problem [Gazis 1959]. The boundary conditions and gauge invariance can be 

written in the following matrix form: 

)](exp[cos][ 3 tkzinikgg
r
nfur ωθθ −−+′= , 

)](exp[sin][ 3 tkzingikgf
r
nu r ωθθ −′−+−= , 

)](exp[cos]1[ tkzing
r
ngg

r
ikfu rz ωθθθ −−′++= . 

2.8

)](exp[cos]}[2)({ 332
22 tkzingikg

r
ng

r
nffkrr ωθμαλσ θ −′−′+−′′++−= , 

)](exp[cos}1

)1(2)({

2

2
2

3

tkzing
r
ng

r
ngg

r

g
r

kfkirg
r
nik

rr

rz

ωθ

μσ

θθ

θ

−′−+′′+′+

−+′+=
, 

)](exp[sin)]}()([

]22[][1{

3

323

tkzinrikgrg
r
n

r
n

ggikf
r
nf

r
ngikg

r rrr

ωθ

μσ

θ

θ

−−−

′′−′+′−+′−−=
. 
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In order to get a non-trivial solution of this problem, the determinant of the matrix 

[C] must equal to zero, which gives the characteristic equation of the eigenvalue problem. 

The roots of the characteristic equation are the eigenvalues, which give the 

possible wave modes (shown as dispersion curves) that exist in an infinite hollow 

cylinder. 

The process of the derivation of the dispersion curves is summarized in Figure 2-

2. As an illustrative example, the phase velocity dispersion curves for a 16 in. schedule 

30 pipe for both longitudinal and torsional wave groups are shown in Figures 2-3 to 2-4. 

The corresponding group velocity dispersion curves are shown in Figures 2-5 and 2-6.  

0),(
88

=
×

cC ω  2.11
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Figure 2-2: The derivation of dispersion curves and wave structures. 

Navier governing equation 

Helmholtz decomposition

Separation of variables (assumed harmonic solutions) 

Gauge invariance + boundary conditions (homogeneous equations) 

Nontrivial solution: Characteristic equations (eigenvalue problem) 
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Eigenvectors (Wave structures) 
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Figure 2-3: The phase velocity dispersion curve of longitudinal groups in a 16 in.
schedule 30 steel pipe including axisymmetric modes L(0,n) and flexural modes L(m,n) 
(m=1,2,3,…). 
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Figure 2-4: The phase velocity dispersion curve of torsional groups in a 16 in. schedule 
30 steel pipe including axisymmetric modes T(0,n) and flexural modes T(m,n)
(m=1,2,3,…). 
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Figure 2-5:  The group velocity dispersion curve of longitudinal groups in a 16 in.
schedule 30 steel pipe including axisymmetric modes L(0,n) and flexural modes L(m,n)
(m=1,2,3,…). 
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Figure 2-6: The group velocity dispersion curve of torsional groups in a 16 in. schedule 
30 steel pipe including axisymmetric modes T(0,n) and flexural modes T(m,n)
(m=1,2,3,…). 
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2.2 Wave Structures 

As can be seen from the dispersion curves shown above, guided wave modes are 

much more complicated than bulk wave modes. There are an infinite number of mode 

groups in either the longitudinal or torsional type of guided wave modes. There are also 

an infinite number of modes in each mode group. They form the so called doubly infinite 

number of guided wave modes in a pipe [Ditri, et al., 1992] and they can be classified 

into different categories according to different criteria as shown in Figure 2-7. 

Guided wave modes in a cylindrical wave guide can be represented by two indices, 

for example T(n,m) or L(n,m), where },2,1,0{ L∈n  is the index of circumferential order, 

},2,1{ L∈m  is the mth root of the characteristic equation of circumferential order m for 

torsional type (denoted by T) and longitudinal type (denoted by L) of mode respectively. 

Guided wave modes

Axisymmetric modes

Flexural modes
(Non-axisymmetric modes)

L(0,m) T(0,m)

L(n,m) T(n,m)

 
Figure 2-7: Guided wave mode category in a pipe [Sun et al., 2005] 
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Conventionally, modes with the same circumferential order n are often called a mode 

group or a mode family. In this thesis, a mode group or family refers to longitudinal or 

torsional type of modes of the same m but with different circumferential orders. The 

reason to do this lies in the fact that an L or T type of modes with the same m but 

different circumferential orders bear similar modal characteristics, such as phase 

velocities, attenuation and wave structures. 

According to symmetry, these guided wave modes can be separated into 

axisymmetric (n=0) and flexural modes ( 0≠n ). Based on the characteristics of wave 

structure, they are classified into longitudinal type of modes, which have dominant 

displacement in radial and axial directions, and torsional type of modes, whose dominant 

displacement is in circumferential direction. 

In order to understand the behavior of guided wave modes, it is quite 

indispensable to study the wave structures. Some sample wave structures are shown in 

Figure 2-8 to Figure 2-11. Figure 2-8 and Figure 2-9 illustrate the wave structures in the 

second longitudinal mode group L(n,2) with circumferential order n varying from 0 to 10 

at a frequency of 50 kHz in a 16 in. schedule 30 steel pipe. As can be seen in Figure 2-8, 

the axisymmetric mode L(0,2) has no displacement in circumferential direction. L(0,2) 

has almost uniform displacement distribution in axial direction and nearly antisymmetric 

displacement distribution in thickness direction. Such a displacement distribution 

characteristic is very similar that of the S0 mode in an elastic, homogeneous plate. The 

flexural modes L(n,2) where 0≠n  share similar characteristics for the displacement 

distributions in the thickness and axial directions as L(0,2). However, they all have 

nonzero displacement in the circumferential direction. Most importantly, their 
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circumferential displacement increases with the increase of circumferential order. Notice 

that in the last two plots in Figure 2-9 the circumferential displacement is even larger 

than the axial displacement for L(9,2) and L(10,2). 

The wave structures of the modes in the first torsional mode group T(n,1) are 

shown in Figures 2-10 and 2-11. As can be observed from the previous phase velocity 

and group velocity dispersion curves, the axisymmetric mode T(0,1) is nondispersive 

over the whole frequency range. In addition, its nonzero displacement is only in the 

circumferential direction. These characteristics are also found in the model behavior of 

the SH mode in a plate. The higher order flexural modes in this mode group have very 

similar circumferential displacement distribution as that of the T(0,1) mode, while their 

displacement in the axial and thickness direction increases with the increase of 

circumferential order n.  
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Figure 2-8: Wave structures of guided wave modes L(n,2) in a 16 in. schedule 30 steel 
pipe.  Circumferential order n varies from 0 to 5. 
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Figure 2-9: Wave structures of guided wave modes L(n,2) in a 16 in. schedule 30 steel 
pipe.  Circumferential order n varies from 6 to 10 
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Figure 2-10: Wave structures of guided wave modes T(n,1) in a 16 in. schedule 30 steel 
pipe.  Circumferential order n varies from 0 to 5. 
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It is easily seen that guided wave modes are much more complex than bulk wave 

modes. This complexity makes it difficult to study and utilize guided waves. However, 

there are also benefits. Since different modes have different characteristics, they can be 

used for different inspection purposes. For example, wave modes that have dominant in-
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Figure 2-11: Wave structures of guided wave modes T(n,1) in a 16 in. schedule 30 steel 
pipe.  Circumferential order n varies from 6 to 10. 
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plane displacements are suitable for water loaded pipe inspection because energy leakage 

into water can be effectively avoided. The key point is how to control all of these modes. 

The utilization of guided waves in pipe inspection is basically an issue of mode control. 

How well guided wave modes can be used depends on how well we are able to control 

them. This is an inverse problem and it will be discussed in details in the following 

sections and chapters. 

2.3 Normal Mode Expansion and Source Influence 

The first step in mode control is to study source influence. That is to say, if a 

certain type of transducer with its size known is applied to the pipe surface (as shown in 

Figure 2-12), what kind of wave field distribution is produced in the pipe. There are 

many ways to tackle this problem, such as using the virtual work principle, variational 

method, integral transform method, normal mode expansion technique, and finite element 

method. Among all of these, the one that is the most straightforward and the easiest to 

interpret a physical meaning is the normal mode expansion technique. The normal mode 

expansion is used on the basis of guided wave mode orthogonality. Therefore, it is 

essential to find the orthogonality relation between the wave modes in order to solve the 

source influence problem. 
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The orthogonality of the modes in a typical dispersion curve of an elastic, 

isotropic, homogeneous pipe was first proved by Ditri and Rose [1992]. The 

orthogonality relation is given by 

where dVe
D z

M
n

N
m

N
m

M
n

MN
nm ∫ ∫ ⋅⋅+⋅−=Ρ v)(

4
1 ** TvTv  and where v and T are the particle 

velocity vector and stress tensor of the nth or mth circumferential order, i.e. the order of 

the Bessel functions, and the Mth or Nth root of the corresponding Bessel functions, i.e. 

the Mth or Nth mode group. 

This orthogonality relationship shows that the guided wave modes in an infinite 

elastic, isotropic hollow cylinder are all orthogonal to each other. On the basis of this 

orthogonality relation, the Normal Mode Expansion (NME) can be carried out to 

determine how much amplitude of each normal mode must be generated by a known 
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partial loading. For a source loading shown in Figure 2-12, the loading condition can be 

described as 

where n is the normal vector of the loading surface. 

The amplitude of the L(n, M) mode generated by the above source is then given 

by 

where )(rR M
nr  is the wave structure in the r direction for mode L(n, M). )( θnn

rΘ  is the 

circumferential displacement distribution, which is basically a sinusoidal function. As can 

be observed from Eq. 2.14, when the source loading is axisymmetric, which can be 

represented by 1)(1 =θp  for πθ 20 <≤ , the first integral in Eq. 2.14 vanishes except for 

n=0. This explains quite well the fact that only axisymmetric modes will be generated in 

the case of axisymmetric source loading. 

Typical amplitude factor distributions for 45° and 60° shear source loading is 

shown in Figure 2-13 and Figure 2-14. The amplitude factors for the first 16 modes 

generated in a 16 in. schedule 30 steel pipe at a frequency of 50 kHz are calculated and 

displayed. Notice that the first several modes are generated with significant amplitude 

factors and the other higher order modes have significantly less amplitudes. 
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Figure 2-13: Normalized amplitude factors of the T(n,1) mode group when 45° normal
loading is applied to a 16 in. schedule 30 steel pipe at a frequency of 50 kHz. 
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Figure 2-14: Normalized amplitude factors of the T(n,1) mode group when 60° normal
loading is applied to a 16 in. schedule 30 steel pipe at a frequency of 50 kHz. 
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Summing up the above generated modes weighted by their corresponding 

amplitude factors and phases yields the guided wave displacement distribution or 

interference pattern in the specific pipe. A polar plot illustrates the displacement 

distribution around the pipe circumference at a certain axial distance from the transducer 

location; this distribution is called an angular profile. The angular profiles of the L(n,2) 

mode group at different axial distances for the 45° source loading on the 16 in. schedule 

30 steel pipe at 50 kHz are demonstrated in Figure 2-15. It can be clearly seen from 

Figure 2-15 that the energy is concentrated on the top of the pipe when the axial distance 

is close to the transducer (Figure 2-15(a)). Then, the energy spreads out as the axial 

distance increases (Figure 2-15(b)-(f)).  
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Figure 2-15: The angular profiles of the L(n,2) mode group at different axial distances for
45° source loading on a 16 in. schedule 30 steel pipe at a frequency of 50 kHz. 
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Figure 2-16 illustrates the guided wave interference pattern (unwrapped) of the 

L(n,2) mode group by 45° source loading on a 16 in. schedule 30 steel pipe at a 

frequency of 50 kHz. The horizontal axis represents the axial distance and the vertical 

axis is the circumferential angle. The source loading is centered at 0° as can be seen in 

Figure 2-16. The propagation distances used in the angular profile calculation in 

Figure 2-15 are also marked in Figure 2-16 by vertical magenta lines. It can be clearly 

seen that Figures 2-15 and  2-16 agree quite well. The interesting phenomenon of guided 

wave natural focusing is clearly shown in Figure 2-16 at about 46 ft. in axial distance. 

The first natural focusing happens at angle 180°, opposite to the source loading position 

in the circumference. It agrees very well with the angular profile shown in Figure 2-15(f). 

Two more examples of partial loading source influence of the unwrapped pipe for 

60 and 70 kHz are shown in Figures 2-17 and 2-18 respectively. As can be observed from 

Figure 2-16 to Figure 2-18, the 45° source influence of the pipe shares similar 

constructive and destructive interference patterns at different frequencies. The 

constructive and destructive interference pattern moves toward +∞=z  with the increase 

of frequency. This agrees with Li and Rose [2006], who pointed out that the distance of 

the first natural focal point increases with the decrease of wavelength and the increase of 

pipe diameter. 
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Figure 2-16: Guided wave interference pattern of the L(n,2) mode group by 45° source 
loading on a 16 in. schedule 30 steel pipe at a frequency of 50 kHz. 



 

 

 

 

 

0 10 20 30 40 50
0

60

120

180

240

300

360

distance z (ft)

θ  
(d

eg
re

e)

Harmonic partial loading

 

 

0.2

0.4

0.6

0.8

1

Figure 2-17: Guided wave interference pattern of the L(n,2) mode group by 45° source 
loading on a 16 in. schedule 30 steel pipe at a frequency of 60 kHz. 
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Figure 2-18: Guided wave interference pattern of the L(n,2) mode group by 45° source 
loading on a 16 in. schedule 30 steel pipe at a frequency of 70 kHz. 



 

 

Chapter 3 
 

Phased array focusing techniques and its application to defect imaging in pipes 

3.1 Guided wave focusing theories 

Angular profiles from sensors around the circumference of a pipe can be used to 

produce focusing with appropriate amplitudes and time delays. By summing up the 

appropriate amount of each mode that can be generated by a certain type of source 

loading, Li and Rose [2001] numerically calculated the particle displacement distribution 

around the circumferential direction (angular profile) at any given axial distance for 

waves propagating in a hollow cylinder under source influence. They also verified their 

numerical calculations by experimental measurement of angular profiles. As a partial 

loading element generates non-axisymmetric angular profiles along the axial distance in a 

pipe, the angular profiles resulting from a number of sensors can be tuned with a 

circumferentially distributed phased array with different amplitude and time-delay inputs 

to each channel. In 2002, Li and Rose utilized a deconvolution algorithm to generate the 

appropriate amplitudes and time-delays that are needed for the phased-array to focus on a 

predetermined position in a pipe.  
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Figure 3-1: The resulting focused angular profiles of the L(n,2) mode group at different 
axial distances for 45° source loading on a 16 in. schedule 30 steel pipe at a frequency of 
50 kHz, when using appropriate time delays and amplitudes to the channels around the 
circumference of the pipe. 
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The focused angular profiles corresponding to the partial loading angular profiles 

in Figure 2-15 are shown in Figure 3-1. Table 3-1 lists the amplitude factors and time 

delays used to achieving the focused profiles in Figure 3-1 (e) and (f). The amplitude 

factors and time delays are usually different for focusing at different axial distances. At 

some focal distances, for example 16 ft., the guided waves are more focused than others. 

Figure 3-2 shows two focused profiles for the same pipe at frequencies 50 and 65 kHz. It 

can be seen that the focused profile at 65 kHz provides better penetration power with 

relatively smaller side lobes. In general, the frequency can be tuned to achieve a better 

focused profile with smaller side lobes. 

 

Table 3-1: Amplitude factors and time delays for obtaining the focused profiles in
Figure 3-1 (e) and (f). 

Channel no. 1 2 3 4 5 6 7 8 
Amplitude 

factor 0.72 0.40 0.16 0.28 1.00 0.28 0.16 0.40 Figure 3-
1 (e) Time delay 

(μs) 4.1 19.2 6.9 11.9 17.9 11.9 6.9 19.2 

Amplitude 
factor 0.20 0.11 0.09 0.11 1.00 0.11 0.09 0.11 Figure 3-

1 (f) Time delay 
(μs) 4.8 14.0 17.5 5.4 12.5 5.4 17.5 14.0 
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As an illustrative example, the focused angular profiles for different number of 

channels are shown in Figure 3-3. It can be seen that the size of a focused beam is 

reduced with an increase in the number of channels. A narrower focused beam width is 

good because it will give higher circumferential resolution in defect sizing. However, the 

cost also increases with an increase in channel numbers because scanning completely 

around the circumference becomes more difficult.  
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Figure 3-2: The focused angular profiles of the L(n,2) mode group at different axial 
distances for 45° source loading on a 16 in. schedule 30 steel pipe at a frequency of 50 
kHz for two different frequencies 50 and 65 kHz, showing that focused profile changes
with frequency. 



41 

 

The computational process of achieving phased-array focusing in pipes is 

summarized in Figure 3-4. The problem starts from a separation of variables in the 

governing equations. The normal modes in the dispersion curves are obtained by 

applying gauge invariance and boundary conditions. The waves generated by a certain 

source loading are represented in terms of these normal modes. A deconvolution 

algorithm is then involved to calculate the time delays and amplitude factors to focus at a 

specific location in a pipe. 
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Figure 3-3: Focused angular profiles by using phased-array focusing techniques for 
different number of channels. Torsional modes T(n,1) at 40 kHz are used to focus at 11 
ft. axial distance in a 16 in. schedule 30 steel pipe. 
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3.2 Finite element simulation of guided wave focusing 

FE modeling is increasingly used in various fields because of its flexibility. It is 

suitable for problems with complex structures and can also be used as a tool to verify 

 
Figure 3-4: The Phased-array focusing technique in pipes 

h(θ)                H(ω) 
g(θ)                G(ω) 

Governing equation 

Helmholtz decomposition 

Separation of variables 

Gauge invariance + boundary conditions (homogeneous equations) 

Nontrivial solution: Characteristic equations (eigenvalue problem) 

Eigenvalues: Dispersion curves 

Eigenvectors: Wave structures

Source influence 

Angular profile h(θ) at a predetermined distance for a single channel loading 
Expected focused angular profile g(θ) 

A(ω) = H(ω) / G(ω) 
Weighting function a(θ) = FFT-1(A(ω))

Amplitude: abs(a(θ)) 
Time delay: -phase(a(θ)) / (2πf) 
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theories and to visualize physical phenomenon. Many commercial software codes are 

currently available in the market place that are easy to use. In this study, Abaqus is 

adopted to simulate wave propagation in pipes. The maximum length of the elements is 

chosen to be no more than one-eighth of a wavelength. The time steps in calculation are 

automatically decided by Abaqus. If chosen manually, the time steps should be at least 

several times less than the period of the input signal and less than the time ultrasonic 

wave propagates from one end of the element to the other end. 

For comparison purposes, axisymmetric wave propagation in a pipe is also 

computed and given in Figure 3-5 to compare with the focusing case. Axisymmetric 

waves are generated by an axisymmetric source loading at one end of the pipe. In 

Abaqus, it can be simulated by using axisymmetric boundary conditions at one end of the 

pipe. As can be seen from Figure 3-5, the generated waves stay axisymmetric as they 

propagate along the pipe. 

 

 
Figure 3-5: T(0,1) axisymmetric wave at a frequency of 45kHz propagating in a 16 in.
schedule 30 steel pipe. The transducers are located at the left end of the pipe. 



44 

 

Guided wave focusing by using 4 and 8 channels is also simulated and shown in 

Figure 3-6(a) and Figure 3-7(a). Figure 3-6(b) and Figure 3-7(b) are their corresponding 

focused profiles obtained from both theoretical calculation and FEM simulation. It can 

been seen that compared to the axisymmetric wave in Figure 3-5, the guided waves in 

Figure 3-6 and Figure 3-7 are effectively focused. It is also clear from both the focusing 

simulations and focused angular profiles that 8-channel focusing provides a much 

narrower focal beam than 4-channel focusing. The focal beam width is usually about the 

same as the circumferential length of each channel in the phased array. Therefore, the 

greater the number of channels one uses, the narrower the focal beam that one can obtain. 
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                                         (a)                                                                       (b) 

Figure 3-6: Torsional waves at 35kHz are focused at 3.35 m. axial distance in a 16 in.
schedule 30 steel pipe. 4 channels are used to achieve focusing. 
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3.3 Focusing application in defect detection and pipe imaging 

The multi-channel commercial system TeleTest®, as shown in Figure 3-8, was 

used to apply the phased array focusing technique. The system has 44 modules that can 

be segmented over four quadrants or eight octants as indicated in Figure 3-8. Different 

time delays and amplitude factors can be input to the system in order to tune the guided 

wave energy to focus at different positions in a pipe. In each module, 3 piezoelectric 

transducers are mounted in the axial direction. With 44 modules mounted on the 

circumference of the pipe, three rings of transducers are obtained. In experiments, these 

three rings are input with different time delays, so that the ultrasonic energy can be sent 

to only one direction (either forward or backward) from the transducer array only. 
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                                     (a)                                                                       (b) 

Figure 3-7: Longitudinal waves L(m,2) at 50kHz are focused at 3.35 m. axial distance in
a 16 in. schedule 30 steel pipe. 8 channels are used to achieve focusing. 
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In a circumferential scan, the time delays and amplitude factors are calculated for 

multiple focal positions around the circumference in order to spin the focal beam around 

the pipe at each focal distance. A full scan of the pipe is achieved by carrying out 

circumferential scans at different distances. On the receiving side, a time gate is set for 

each received waveform and the maximum amplitude within the time gate is recorded 

according to the axial length of the focal zone. These maximum amplitude values can be 

plotted with respect to the focal positions in displaying the final image of the pipe by a 

focal scan. They can also be plotted according to the focal angles in the circumference at 

each distance in obtaining a circumferential profile. The circumferential profiles illustrate 

the circumferential distribution of the anomaly located inside the focal zone. When an 

anomaly is located in the focal zone, a large reflection can be expected. For an anomaly 

with a non-axisymmetric feature, for example, a defect, the circumferential profile will be 

nonaxisymmetric. However, if the anomaly has an axisymmetric feature, such as a weld, 

the circumferential profile is approximately axisymmetric. In this way, defects can be 

differentiated from welds quite easily. In the following, field test results are provided to 

 

 
Figure 3-8: TeleTest® tool mounted on a pipe. 
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illustrate defect detection as well as pipe imaging using the real-time phased array 

focusing technique.  

A guided wave focal scan field test was conducted on a 20 in. schedule 40s 80 ft. 

long steel cased pipe as shown in Figure 3-9. In the test, the phased array was segmented 

into 4 channels. Theoretically, the 4 channel focused profile in general covers about 90° 

and scanning 4 equally spaced positions around the pipe circumference for each focal 

distance should be enough to cover the whole circumference. However, in order to make 

sure the full coverage of energy on the circumference, 8 equally spaced positions are 

scanned at each focal distance with the 4 channel focusing to achieve overlap focusing. 

Longitudinal L(m,2) and torsional T(m,1) wave modes are sent from both sides of the 

pipe with the transducer array being placed 4’ 9” from either pipe end. Some sample 

waveforms from the test and their corresponding circumferential reflection profiles are 

provided and discussed next. Figure 3-10 shows the waveforms received by the phased 

array when torsional waves T(m,1) were focused at 20’ 9’’ from pipe end 1. The 

waveforms are displayed in such a way that the zero distance in each plot represents pipe 

end 1. The focal zone is the region indicated between the two red vertical lines in each 

 

Figure 3-9: Schematic of the field test on a 20 in. schedule 40s steel cased pipe. 

Pipe casing Transducer array 

Pipe end 1 Pipe end 2 
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waveform. It can be clearly seen from these waveforms that the biggest reflection inside 

the focal zone is received when focused at 270°. The axial location can also be precisely 

determined by the arrival time of the biggest reflection. Notice that there is an echo in 

front of the gate in the 0° focused waveform. This echo is caused by a defect and it is 

picked up in the 0° focused waveform because the focal zone is actually longer than the 

distance indicated by the two red vertical lines in the waveform. 

The maximum amplitude inside each focal zone is then recorded and plotted with 

respect to the focal angle in constructing a circumferential plot as shown in Figure 3-11. 

The profile clearly shows a defect located at about 270°. Note that the smaller reflection 

 
Figure 3-10: Waveforms received by torsional waves T(m,1) focusing at 8 different 
angles around the circumference at a focal distance of 20 ft. 9 in. from pipe end 1. The
red vertical lines gate the effective focal range. Note a defect echo is located at 270°. 
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at 315° is likely caused by the focal beam width being twice as large as our 

circumferentially scanning step. 

To illustrate the difference in reflection from different anomalies, Figure 3-12 

provide the waveforms from spacers located at 11 ft. from pipe end 1. Spacers are 

distributed around the pipe circumference to support the casing. The waveforms are also 

taken from torsional wave focus inspection from pipe end 1. Different from defects, 

spacers are distributed around the pipe circumference. Therefore, evident reflections may 

be expected at multiple focal angles when the focal beam moves around the pipe. This is 

well demonstrated in Figure 3-12. The corresponding circumferential profile is shown in 

Figure 3-13. It can be observed from Figure 3-13 that the amplitudes of the echoes 

reflected by the spacers are in general larger than the amplitudes of defect reflections. 

Possible explanations are as follows: first, multiple spacers may be located within the 

focal beam width; secondly, the spacers are located closer to the transducer array, thus 

 
Figure 3-11: The circumferential profile of the defect located at 20 ft. and 270° in the 
pipe. The unit of the amplitude is mV. 
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less attenuation of the focal beam, when focusing at the spacers compared to focusing at 

the defect shown in Figure 3-11. 

 

 
Figure 3-12: Waveforms received by focusing at 8 different angles around the 
circumference at a focal distance of 12.75 ft. from the pipe end. 
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Another interesting anomaly to investigate is a weld. A good weld can 

demonstrate fairly axisymmetric feature in reflecting ultrasonic waves. Figure 3-14 

shows the circumferential profile reflected by a weld located at 41ft.11in. inspected by a 

longitudinal wave L(m,2) focusing from pipe end 2. It can be seen that the 

circumferential profile is almost axisymmetric in this case. The defect can be well 

separated from spacers and welds by the circumferential plots of their reflections in a 

focal scan. 

 

 
Figure 3-13: The circumferential profile of spacers in the cased pipe located at 11 ft. 
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An image of the pipe can be obtained by combining the circumferential plots with 

focal distance. Figure 3-15 displays the image of the unwrapped pipe. The vertical axis in 

Figure 3-15 represents the circumferential direction of the pipe and horizontal axis 

denotes focal distance. The reflection amplitude is displayed in color as a third 

dimension. Interpolation is conducted in both the circumferential and axial directions to 

smooth the image. Since the pipe is inspected from both ends, the image is formed by 

superposition in combining torsional wave inspection from pipe end 1 and longitudinal 

wave inspection from pipe end 2. Thus, the image has a higher signal to noise ratio than 

that of using the inspection results from a single pipe end. Also, due to the fact that 

guided waves attenuate as they propagate along the pipe, the guided wave attenuation 

along the pipe is compensated by ze α2 , where α  is the attenuation factor and z is the 

focal distance. The attenuation factor can be measured experimentally from pipe end 

reflection or from the reflections of multiple welds. In this study, α  is estimated 

empirically to magnify the signal in the axial direction in the pipe image. 

 
Figure 3-14: The circumferential profile of the weld located at 41ft.11in. 
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The focus scan image of the pipe is quite clear as shown in Figure 3-15. Several 

anomalies are shown and marked in the pipe image. A summary of the axial and 

circumferential locations of these anomalies, as well as their types, are given in Table 3-

2. From the focus scan image, it is clear that anomalies 1, 2, and 5 are defects. Notice that 

anomalies 3 and 4 are actually one single defect. The reason is that after the transducer 

array receives the echo from a defect, the echo will continue to propagate till the end of 

the pipe, where the echo is reflected and received by the transducer array again. 

Sometimes this reverberation can be very large, as in this case, therefore, there appear to 
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Figure 3-15: Pipe focus scan image. (See Table 3-2.) 
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be two defects instead of one. This reverberation is difficult to eliminate completely. 

However, by inspecting the pipe from the other end, the echo caused by reverberation 

will change its axial location accordingly. In this way, the real location of the defect is 

revealed. Anomaly 6 is a weld due to its relatively uniform distribution in the 

circumferential direction as we discussed earlier. Anomaly 7 are spacers because of their 

large and nonuniform reflections around the circumference.  

 

Table 3-2: Anomaly location summary 

Anomaly 
index 

Axial position from pipe 
end 1 Circumferential position Anomaly type 

1 13’ 2” 0º (360°) Defect 
2 18’ 4’’ 0° (360°) Defect 
3 20’ 2” 270° Defect 

4 N/A N/A Reverberation from 
defect 3 

5 38’ 3” 90° Defect 
6 41’ 11” All angles Weld 
7 71’ 8” Multiple angles Spacers 



 

 

Chapter 4 
 

Focusing application in defect circumferential sizing 

4.1 Introduction 

Guided waves for pipe inspection have been widely used for over ten years. 

Guided waves can propagate long distances and are excellent in screening and defect 

location analysis. The state-of-the-art of guided wave utilization on defect sizing is 

limited. An excellent result for 2D defects in a plate has already been obtained [Zhao 

2003]. Similar results are also expected in pipes. However, defect sizing in pipes is more 

complicated due to the complicity of guided waves in pipe. The focusing technique 

developed by Li and Rose [2002] is used to increase the detection potential and to 

achieve a sizing possibility. 

In this section, guided wave experiments are carried out to analyze defect 

circumferential length. It is shown that three differently shaped defects (planar saw cuts, 

a volumetric through-wall hole, and a volumetric elliptical corrosion) can be effectively 

detected by using guided wave focusing techniques in pipe. The axial locations of the 

different defects are accurately measured by calculating the arrival time of the defect 

echoes in the A-scan results. In order to estimate defect circumferential length, the 

phased array focusing system [Li 2001, 2002] is utilized to focus on 44 circumferential 

positions (instead of 4 or 8 positions) around the pipe at a specific axial distance (defect 

location). This is called a circumferential scan. The pulse echo waveform for each 
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focused position in one circumferential scan is then recorded. Since there is a focal zone 

in axial direction, it is shown that multiple defects lying within this focal zone can be 

detected in one circumferential scan.  

Consequently, a time gate is set according to the focal zone in each 

circumferential scan. The maximum amplitude in the gate in each of these waveforms is 

plotted with respect to the circumferential focused position in producing an angular 

profile of the reflected wave. This produced an experimental circumferential profile. The 

maximum amplitude of this experimental circumferential profile occurs at the angle of 

the defect circumferential location. The profile, which contains the amplitudes of 

reflections from 44 circumferential positions, was further used to study the defect’s 

circumferential length. 

The reflected energy from a defect was considered to be proportional to the 

energy impinged onto that defect, although this really depends on defect shape and 

characterization, a subject for another day. For each focused position, the energy 

impinged onto and reflected from defects of different circumferential lengths was 

calculated through the focused angular profile, which was obtained through the Normal 

Mode Expansion (NME) computational technique [Ditri 1992]. In this way, the reflected 

energy was able to be plotted with respect to the circumferential focused position. This 

gave us a theoretical energy reflection profile. The theoretical profiles for defects of 

different circumferential lengths were then compared with the experimental pulse echo 

profiles. Thus, the circumferential size of the defect could be measured. 

The defects are listed in Table 4-1. Their shapes and corresponding 

circumferential locations are also illustrated in Figure 4-1. Ultrasonic energy was focused 
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at z1=10’-11’’, z2=15’-5’’ and z3=19’-3’’ by controlling input time delays and 

amplitudes for the 4 excitation channels, where z1, z2, and z3 are distances from the 

phased array transducer. The frequency of the ultrasonic guided waves considered in the 

study varied over 30 kHz to 45 kHz. 

 

Table 4-1: Descriptions of the defects used in the study 

Defect Type Position from 
transducer 

Circumferential 
position (CW) Depth Circumferential 

length Axial length Defect Type

Corrosion 1 131in. 
(10’11’’) 0° 90% 

2.51in. 

(18°) 
3.66in. Corrosion 1 

Through-wall 
hole 185in. (15’5’’) 220° 100% 0.5in. 0.5in. Through-wall 

hole 

Saw cut 1 231in. (19’3’’) 90° 73% (7mm) 119mm, 4.69in. 
(33.6°) 0.1in. Saw cut 1 

Saw cut 2 231in. (19’3’’) 90° 73% (7mm) 239mm, 9.4in. 
(66°) 0.1in. Saw cut 2 

Saw cut 3 231in. (19’3’’) 90° 73% (7mm) (93°) 0.1in. Saw cut 3 

Saw cut 4 231in. (19’3’’) 90° 73% (7mm) (123°) 0.1in. Saw cut 4 

 
Figure 4-1: The circumferential distributions of the defects in a 16 in. schedule 30 steel 
pipe. 
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4.2 Defect detection and axial location 

An A-scan pulse echo waveform for corrosion detection is shown in Figure 4-

2(a). The torsional wave group T(n,1) at a frequency of 30 kHz was used to achieve 

focusing at 131in. axial distance. The maximum defect echo as marked in Figure 4-2(a) is 

obtained when the phased array was focused at 0˚. The arrival time of the echo is about 

t=2100 μs and the velocity of the torsional wave group can be estimated as c=3.23 mm/μs 

in steel pipe. So the axial distance of the defect can be calculated by 1332/ ≈× ct  in. 

According to Table 4-1, this is where the corrosion is located. The corrosion was 

introduced by spherical indentation with randomly distributed machine simulated pits. A 

photo of the corrosion is given in Figure 4-2(b). The axial locations of the through-wall 

hole and the saw cuts were obtained similarly as shown in Figure 4-4. It was revealed that 

the axial distance of the different defects in the pipe could be measured quite accurately 

by using the guided wave focusing technique. 
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4.3 Locating Multiple Defects in One Circumferential Scan 

When ultrasonic guided wave energy is focused at a particular axial position, 

there is a focal zone, over which the energy is always focused at a predetermined 

circumferential location. For example, when we focus at 220˚ at the distance z=15’-5’’ 

using the T(m,1) wave group at 35 kHz, the ultrasonic energy is focused at 220˚ over the 

axial range: 11’-2’’~19’-6’’. If there are multiple defects located in this axial region, they 

can be detected in one circumferential scan. The axial distance between the through-wall 

hole (Figure 4-3(a)) and saw cut 1 (Figure 4-3(b)) is less than the length of the focal zone 

in a 16 in. pipe. In Figure 4-4, the torsional wave group T(M,1) at 40 kHz was used to 

focus at the saw cut distance over 44 circumferential locations. It can be seen that the 

 
                                          (a)                                                                      (b) 

Figure 4-2: (a). Sample waveform response when focusing with a 30 kHz T(m,1) wave group at 
the corrosion defect location of 131 in. 0˚ with a 4-channel phased array. (b). Photo of corrosion
simulation 
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through-wall hole echo and the saw cut echo show up when guided waves focus on their 

corresponding circumferential locations. A time gate was set for the received signals and 

the maximum amplitude within this gate was recorded for each focused circumferential 

angle. The variation of the maximum signal amplitude in the circumferential direction 

gives the circumferential locations of the defects located within the focal zone. In this 

multiple location study, a gate including signals arriving from the 12’-5’’~20’-8’’ range 

is set in the circumferential scan. By sweeping the focal point along the circumferential 

direction, the experimental data obtained clearly showed that two defects are located over 

this distance range (the simulated corrosion was introduced later): as shown in Figure 4-5 

and Figure 4-6 for two different frequencies focusing at the through-wall hole and the 

saw cut distances respectively. As can be verified in Table 4-1, the through-wall hole and 

the saw cut circumferential locations were measured very accurately. Hence, by sweeping 

the circumferential focal position, all defects within the focal zone were correctly located. 

 

  
                                    (a)                                                                 (b) 

Figure 4-3: (a). Through-wall hole in Table 3-1. (b). Saw cut 1 in Table 3-1. 
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Figure 4-4: Sample waveforms when focusing with the T(m,1) wave group at 40 kHz at
19’3’’ with a 4-channel phased array. An arrival time gate was set to monitor the signals 
from the range 12’-5’’~20’-8’’. Upper waveform: focus on the angle of the through-wall 
hole. Lower waveform: focus on saw cut 1. 
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Figure 4-5: Maximum reflected echoes within the distance range: 12’-5’’~20’-8’’. The 
T(m,1) wave group at 35 kHz was used to focus at 15’-4’’ at 44 different circumferential 
locations around the pipe. 4-channel phased-array was used. The circumferential length 
of each excitation channel was 90˚. 
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Figure 4-6: Maximum reflected echoes within the distance range: 12’-5’’~20’-8’’. The 
T(m,1) wave group at 40 kHz was used to focus at 19’-3’’ at 44 different circumferential 
locations around the pipe. 4-channel phased-array was used. The circumferential length 
of each excitation channel was 90˚. 



63 

 

4.4 Defect Circumferential Length Analysis 

When a 4-channel phased array is used to achieve focusing, the circumferential 

excitation length of each channel would be approximately 90°. If the focal position is 

swept along the circumferential direction, the profiles of the energy reflection from a 

defect versus the focal angle can be obtained theoretically via the focused angular profile 

by assuming that the defect is almost uniform in depth and considering the defect 

circumferential span only. Thus, a comparison of the experimental reflection profile and 

the theoretical energy reflection profiles provides us with the information on the 

circumferential size of the defect. The focused angular profile at 45 kHz is given in 

Figure 4-7(a) and the corresponding theoretical energy reflection profiles are given in 

Figure 4-7(b). It can be seen that the energy reflection profiles depend not only on the 

size of the defect but also on the shape of the corresponding focused angular profiles. 

Defect sizing potential is highly related to the resulting focused angular profile and the 

defect shape as well. A narrower focused angular profile is able to give a better 

circumferential resolution. Therefore, better sizing can be achieved. Usually, the width of 

a focused beam is reduced with an increase in the number of the excitation channels. 

However, the number of the excitation channels cannot be increased infinitely, since 

more excitation channels usually results in bigger side lobes and subsequent confusion.  
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In this study, by focusing on different positions around the circumferential 

direction, 44 echoes from a defect can be recorded. The maximum amplitudes of the 

echoes are plotted versus the focal angles. This experimental reflection profile gave the 

variation of the reflected energy with respect to the focusing angle. The experimental and 

theoretical profiles for saw cuts with different circumferential sizes were compared as 

shown in Figure 4-8(a). Torsional focusing was used. The maximum amplitudes of the 

theoretical and experimental profiles for the 33º circumferential length were normalized 

to the same value and the other profiles were also normalized by the same factor. It’s 

shown in Figure 4-8(a) that the profiles for the 66º circumferential length saw cut had 

larger amplitudes and wider circumferential coverage than that of the 33º circumferential 

length saw cut. This is obvious, since for a longer saw cut, more energy is reflected and 
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Figure 4-7: (a). Theoretical focused angular profile of 45kHz focusing at 231in. (saw cut 
distance). (b). The corresponding theoretical energy reflection profiles for saw cuts with 
different circumferential sizes. 
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the 66º circumferential length saw cut can be seen from more focal positions out of the 44 

compared than the 33º circumferential length saw cut. The corresponding normalized 

profiles of Figure 4-8(a) are shown in Figure 4-8(b). It can be seen that the profile 

broadening of the 66º circumferential length saw cut compared to the 33º one is not as big 

as the profiles shown in Figure 4-8(a). Normalization minimized the differences between 

the circumferential extents of the different profiles. However, the normalized theoretical 

profiles and the normalized experimental profiles still match very well as shown in 

Figure 4-8(b). A fairly good estimation of the circumferential size of a transverse crack 

can be made based on Figure 4-8(a) and (b). Note the slight irregularity on the right side 

of the experimental lobes in both Figure 4-8(a) and (b). This is because the experiments 

in Figure 4-8(a) and (b) were performed after the corrosion was introduced, and the 

corrosion lies between the transducer and the saw cut and is located on the right side of 

the saw cut (please refer to Table 4-1 to get the relative locations of the saw cut and the 

corrosion). All of the other experiments were done before the corrosion was introduced, 

so they do not have this problem. These results also revealed the exciting fact that guided 

wave focusing can be successfully achieved beyond defects and reasonably good 

circumferential sizing can still be obtained. 
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The experimental and theoretical profiles of the through-wall hole using torsional 

focusing were compared after normalization in Figure 4-9. It can be seen that the 

circumferential extent of the through-wall hole can be accurately determined by this 

technique. 
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                                      (a)                                                              (b) 

Figure 4-8: (a). Comparison between theoretical and experimental profiles. The 
experimental profiles were obtained by applying 4-channel phased-array focusing. The 
T(m,1) wave group at 45 kHz was focused on 44 different circumferential locations at 
231 in. (b). The experimental profiles of the defect echoes for saw cuts with different 
circumferential sizes are compared with the theoretical energy impingement profiles after 
normalization. 
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Volumetric types of defects are more difficult to detect and characterize, since 

they scatter waves more severely than planar defects do. Therefore, it is more difficult to 

obtain good experimental reflection profiles for corrosion. By focusing both longitudinal 

and torsional wave groups on corrosion, it is revealed that corrosion reflects longitudinal 

waves more than torsional waves given roughly the same focusing energy. This implies 

that longitudinal waves are more sensitive to corrosion. The theoretical and experimental 

profiles of corrosion with 18° circumferential length are compared in Figure 4-10(a)and 

Figure 4-10(b) for both torsional and longitudinal focusing respectively. It can be seen 

that reasonably good circumferential measurements are obtained for both torsional and 

longitudinal focusing. 
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Figure 4-9: Comparison between normalized theoretical and experimental profiles of a 
through-wall hole. The torsional T(m,1) wave group at 35 kHz was focused on 44 
different circumferential locations at 185 in. 
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As a result of this study, it is shown that the circumferential lengths of different 

kinds of defects can be effectively determined by comparing the experimental profile 

with the theoretical ones. Further comparisons among theoretical profiles of different 

types of defects reveal the fact that the theoretical profiles of the different defects at the 

same axial distance are very similar. This is good because it means that defect 

circumferential size can be determined without knowing any other characteristics of the 

defect. Therefore, circumferential sizing should be done as the first step in defect 

characterization. Also, only the peak values of the reflected defect echoes are used in the 

above circumferential sizing technique. Other defect echo characteristics will help further 

studies on shape determination. The inverse problem will then be considered. 
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                                   (a)                                                             (b) 

Figure 4-10: (a). Comparison between normalized theoretical and experimental profiles. 
The torsional T(m,1) wave group at 35 kHz was focused on 44 different circumferential 
locations at 131 in. (b). Comparison between normalized theoretical and experimental
profiles. The longitudinal L(m,2) wave group at 45 kHz was focused on 44 different 
circumferential locations at 131 in. 
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4.5 Summary 

In this study, a long range ultrasonic guided wave test system was used to detect 

and locate defects as well as to measure the circumferential size of a through-wall hole, 

transverse saw cuts, and corrsoion by sweeping the focal position around the pipe. The 

circumferential location was determined very accurately for all of the defects. Multiple 

defect locations can be achieved in one circumferential scan due to the natural properties 

of the focused beam. Circumferential length measurements can be obtained by comparing 

the experimental defect reflection profiles with the theoretical energy reflection profiles. 

Experiments have shown that this is an effective way to measure the circumferential 

length of defects and it gives us a very good estimation on different types of defects. 

However, since only 4 and 8 channels were used to focus, the resulting focused angular 

profile is relatively wide. This makes it difficult to tell the difference of circumferential 

lengths below 30°. A narrower focal beam could make circumferential sizing more 

accurate. It can be achieved by using more channels to focus. Both the shape of a defect 

and the shape of the angular profile influence the predicted sizing results. Angular 

profiles with large side lobes must be avoided.  



 

 

Chapter 5 
 

Guided wave propagation in multilayered hollow cylinders with viscoelastic 
materials 

5.1 Introduction 

The work on wave propagation in bounded structures by [Lamb 1917] and 

[Rayleigh 1945], etc. in early last century sparked the beginning of research on guided 

wave theories. Ever since then, it has been recognized that there exists many more wave 

modes in free wave guide structures than those in a bulk medium [Graff 1991; Rose 

1999]. These guided wave modes are in general much more complex than bulk waves, 

since they have to satisfy the boundary conditions of the wave guides. Around the 1950’s, 

accompanied with the rapid development of modern computers, there emerged a massive 

amount of research on guided wave dispersion curve computations on multilayered 

structures. The two computational methods that have been widely used till now are the 

transfer matrix approach developed by [Thomson 1950] and the global matrix method by 

[Knopoff 1964]. Generally speaking, the global matrix method is more stable 

computational wise than the transfer matrix technique. A good summary of the matrix 

techniques can be found in [Lowe 1995]. An important part of these matrix techniques is 

that a root searching routine has to be established in order to find the roots of the 

determinant associated with the set of homogeneous equations obtained by satisfying 

boundary conditions in the wave number and frequency domain. If there is viscoelastic 

material in the wave guide structure, then the root searching process has to be performed 
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on both real and imaginary wave number domains for each frequency. This 3-

dimensional root searching process can be very difficult and time-consuming. In addition, 

when the frequency gets higher or matrix size becomes larger due to an increase in the 

number of layers in the structure, roots are likely to be missed in the searching process.  

Gazis [1959] obtained the complete solution for harmonic guided wave modes 

propagating in an infinite hollow cylinder. This has been very beneficial for long range 

guided wave inspection on pipelines. In practice, however, most of the pipelines used in 

industry are covered with viscoelastic coatings for various protection purposes. Waves 

sent to the pipe will partially leak into the coating leading to a different wave field from 

that of a bare pipe. The wave fields in a coated pipe will be different from that of a 

corresponding bare pipe. As a result, bare pipe focusing parameters may not be valid for 

coated pipes. Therefore, the exploration of guided wave propagation in viscoelastic 

coated hollow cylinders becomes quite indispensable. 

Due to the afore mentioned computation difficulties encountered in matrix 

methods, theoretical calculation of the wave modes in hollow cylinders with viscoelatic 

coatings is very difficult. Some researchers have studied plate or plate-like structures 

with viscoelastic properties, for example, [Simonetti 2004] and [Predoi, et al., 2007]. 

These plate solutions may be safely used to approximate hollow cylinders with thickness 

to radius ratio less than 10% [Luo, et al., 2005]. Therefore, it is still valuable to search for 

a complete solution to wave propagation in multilayered viscoelastic cylinders. The 

axisymmetric wave modes of such a structure have been provided by Barshinger, et al., 

[2004] using the global matrix method, but he did not provide the flexural modes in his 

paper. Ma, et al. [2006] investigated the fundamental torsional mode scattering from an 
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axisymmetric sludge layer inside a pipe. In his study, the sludge layer is considered to be 

an elastic epoxy layer. Beard and Lowe [2003] used guided waves to inspect the integrity 

of rock bolts. They provided 3 lower order (circumferential order equals 1) flexural 

modes in their study at relatively low frequency range (less than 300 kHz). To the 

author’s best knowledge, such a complete solution including both axisymmetric and non-

axisymmetric modes (flexural modes with circumferential orders equal or larger than 

one) in multilayered hollow cylindrical structures covering a relative wide frequency 

range (up to mega Hertz) has never been reported in the literature before. Our goal in this 

chapter is to understand and seek the complete solution to this problem using appropriate 

techniques.  

The Semi-Analytical Finite Element Method (SAFEM) was developed as an 

alternative way to solve wave propagation problems. In the SAFEM, the wave guide is 

discretized in the cross section, while an analytical solution is adopted in the wave 

propagation direction. In this way, the SAFEM is able to solve problems of wave 

propagation in wave guides with complex cross sections, for example, rails and 

multilayered cylinders, where it might be difficult to obtain analytical solutions. It is also 

superior to pure FEM since exact analytical representations are used for one or two 

dimensions of the wave guide. In this way, computational cost is reduced. In the mean 

time, the characteristic wave modes that can propagate in a waveguide can still be 

obtained. Early employment of SAFEM in solving guided wave propagation problems 

can be found in [Nelson, et al., 1971] and [Dong, et al., 1972]. In recent years, SAFEM 

was also applied to the analysis of wave modes across a pipe elbow [Hayashi, et al., 

2005] and in materials with viscoelastic properties [Shorter, 2004; Bartoli, et al., 2006]. 
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SAFEM is adopted here to generate phase velocity and attenuation dispersion 

curves including both axisymmetric and flexural modes in hollow cylinders with 

viscoelastic coatings. Modal characteristics such as wave structures and attenuation 

properties are provided and discussed. Furthermore, driven by the fact that the wave 

modes obtained from SAFE calculations are difficult to differentiate from each other, a 

mode sorting algorithm based on modal orthogonality is developed. An orthogonality 

relation based upon the SAFE formulation for elastic wave guides is developed by 

[Damljanović, et al., 2004]. Different from Damljanović, the orthogonality relation 

derived in this study is valid for both elastic and viscoelastic materials. It can be used in 

either single-layered or multilayered cylindrical structures. It is applicable not only for 

dispersion curve calculations by SAFE formulations but also for those obtained from 

analytical derivations. 

5.2 SAFE formulation 

Let us start with the governing equation provided by the virtual work principle for 

a stress free hollow cylinder as in [Hayashi 2003, Sun 2004]. Only linear elastic and 

viscoelastic material behaviors are considered here. 

where T represents matrix transpose, ρ  is density and u&&  is the second derivative of 

displacement u with respect to time t. ∫
Γ

Γd  and ∫
V

dV  are the surface and volume 

0=⋅+⋅ ∫∫
V

T

V

T dVdV σεuu δρδ && , 5.1
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integrals of the element respectively. In cylindrical coordinates, dzrdrddV θ= . The first 

and second terms on the left-hand side are the corresponding increment of kinetic energy 

and potential energy.  

Sun [2004] used 2-D SAFE to calculate the flexural modes in a single elastic 

cylinder. He meshed the cross section of the cylinder in both the thickness direction r  

and circumferential direction θ . Due to the fact that he used finite elements to represent 

the circumferential direction θ , the flexural mode of the highest circumferential order he 

could obtain in his dispersion curve is limited by the number of elements in the 

circumferential direction divided by 2. As a result, for calculating dispersion curves of 

higher circumferential orders, more elements have to be considered in the circumferential 

direction, which results in an increase in matrix size and computational cost. In order to 

overcome this limitation and also to save computational cost, we adopted an exact 

analytical solution θine  in the circumferential direction. In this way, the exact 

representations are used in both the θ  and z directions. The finite element approximation 

reduces to only one dimension r. This 1-D SAFE formulation does not only improve the 

accuracy in our calculation for flexural modes with higher circumferential orders, but 

also greatly reduces the computational cost compared to 2-D SAFE. For a harmonic wave 

propagating in the z direction, the displacement at any point ),,,( tzr θu  can be 

represented by 

( ) ( )∑
=

−+=
2

1
),,,(

j

tnkzij ertzr ωθθ UNu , 5.2
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where jU  is the nodal displacement vector at the jth element and )(rN  is the shape 

function in the thickness direction r. For a 2 node element, jU  is a 6 element vector and 

)(rN  is a 3×6 matrix. The shape function matrix is chosen as follows,  

using linear shape functions 

where 11 ≤≤− ξ  is the natural coordinate in the r direction. The strain-displacement 

relations are 

Substituting Eq. 5.2 to Eq. 5.4 into the strain-displacement relationship Eq. 5.5, 

the six strain components can be express as  
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where  
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Substituting the strain components obtained in Eq. 5.6 into the constitutive 

relation for strain and stress yields the expression for stress components. 

where C is the stiffness matrix. The values in the matrix C are real for elastic materials 

and complex for viscoelastic materials according to the correspondence principle 

[Christensen 1982].  

Substituting the displacements Eq. 5.2, strains Eq. 5.6, stresses Eq. 5.11 into the 

governing equation Eq. 5.1, one obtains Eq. 5.12 for element j after simplification. 

where 
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Assembling Eq. 5.12 for all elements in the r direction, the equation for the whole 

system can be written as 

where 1K ,  2K , 3K , and M are the MM ×  matrices where M is three times the 

number of nodes. Before solving this eigenvalue problem for k, the order of k in Eq. 5.14 

 can be further reduced by the following manipulation 

where 

At any given frequency ω , the the wave number k can be obtained by solving the 

eigenvalue problem in Eq. 5.15 using a standard eigenvalue routine. Then, the phase 

velocity and attenuation dispersion curves can be calculated from the real part and 

imaginary part of k. The corresponding wave structure U is obtained from the upper half 

of the eigenvector Q, as can be seen from Eq. 5.16. 
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5.3 Orthogonality and mode sorting 

A common difficulty in producing dispersion curves calculated from the SAFE 

formulation is modal differentiation. The order of the guided wave modes obtained by 

solving Eq. 5.15 can be different for different frequencies. In producing dispersion 

curves, a starting frequency fstart, an ending frequency fend, and a frequency step ∆f are 

first chosen. The selected frequency f varies from fstart to fend at an increment of ∆f. If the 

order of the wave modes obtained at each frequency f is different, the resulting dispersion 

curves are difficult to be plotted by lines. Most dispersion curves provided in previous 

SAFE studies are plotted by dots [for example, Sun 2004; Hayashi, et al., 2003]. Modal 

differentiation is tremendously helpful for us to track the behavior of a certain mode with 

respect to frequency change. It also forms the basis of thinking critically and conceptually 

for problems like wave scattering and source influence. In previous analytical matrix 

techniques, mode tracking is usually achieved by performing extrapolation (also called 

curve tracing) during root searching. In the curve tracing process, the value of a 

dispersion curve at a new frequency is first predicted by extrapolation based on its 

previous values. Then, the root searching is conducted in the neighborhood of the 

predicted value. A detailed discussion can be found in [Lowe 1995]. Conducting 

extrapolation saves time in dispersion curve root searching. It also provides the 

possibility of tracing a specific mode. The drawback of this extrapolation technique is 

that it is not robust. Extrapolation makes the curve tracing sensitive to the changes in the 

previous values. In analytical matrix approaches, roots can be missing during root 

searching. If one or two roots are missing at the previous frequencies, the curve tracing 
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can fail. Most importantly, different guided wave modes can cross each other in the 

dispersion curves. It is difficult to predict the cross modes accurate enough simply by 

extrapolation and curve fitting.  

Of particular importance in mode sorting is to find the distinctive characteristics 

between different modes. A natural way of accomplishing this goal is to utilize the modal 

orthogonality. Damljanović, et al., [2004] presented an orthogonality relation based on 

SAFE formulation for elastic waveguides and used it to solve a point source loading 

problem. Loveday, et al., [2007] also employed this relation to sort the guided wave 

modes in a rail. Another way of sorting wave modes can be realized by identifying the 

similarity between wave modes at adjacent frequencies, which will be discussed in detail 

later. Here, we prefer using orthogonality not only due to the fact that orthogonality is a 

natural attribute of guided wave modes but also because orthogonality can be used in our 

future research of wave scattering and source influence in multilayered cylinders. 

The analytical orthogonality relations have been studied and used by researchers 

for decades. The orthogonality relation for the Rayleigh-Lamb modes of a 2-dimensional 

plate was obtained by Fraser [1976]. Later, orthogonality relations of guided wave modes 

have been used as a powerful tool in the study of wave scattering [Kino, 1978; Engan, 

1998; Shkerdin, et al., 2004, 2005; Vogt, et al., 2003] and source influence [Ditri 1992, 

1994b] analysis. In these studies, orthogonality relations are derived from either real or 

complex reciprocity relations. As has been pointed out by Auld [1990], both real and 

complex reciprocity relations are valid for elastic wave guides. However, only the real 

reciprocity relation is valid for viscoelastic materials. If we set out from the real 

reciprocity relation, we will reach an orthogonality relation stating that the mode is 
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orthogonal to all the other modes except a mode with the same modal behavior but 

incoming from the opposite propagating direction, which is the case in this paper. On the 

other hand, starting out from the complex reciprocity relation yields an orthogonality 

relation stating that the mode is orthogonal to all the other modes except itself. Like the 

two reciprocity relations, these two orthogonalities are both valid for elastic wave guides. 

Likewise, to obtain an orthogonality relation that is applicable for viscoelastic wave 

guides, it is necessary to start out from the real reciprocity relation. Although there exist a 

general ‘form’ of the orthogonality relation [Auld 1990], the utilization of orthogonality 

relations is associated with guided wave modes and, therefore, is dependent on wave 

guide geometries. The previous orthogonality relations for 3-dimensional solid cylinders 

and hollow cylinders have been provided by Vogt, et al., [2003], Engan [1998], and Ditri 

[1992] by using the stress free boundary conditions under cylindrical coordinates. Here, 

for a multilayered viscoelastic cylinder, we prove that the orthogonality relation is still 

valid by taking into account both the interface continuity conditions and stress free 

boundary conditions.  

In this section, the analytical derivation of orthogonality of the modes in 

multilayered cylindrical structures containing both elastic and viscoelastic materials will 

be given. Different from the orthogonality relation developed in [Damljanović et al., 

2004], the orthogonality developed in this paper can be applied to multilayered wave 

guides containing any combination of elastic and viscoelastic materials. In addition, since 

the following orthogonality relation is derived analytically, it can be applied to dispersion 

curves obtained from either the SAFE formulation or from the matrix methods. In the 

following, the mode sorting process will be discussed accordingly. 
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The orthogonality of normal modes in an elastic hollow cylinder was first 

developed by [Ditri, et al., 1992]. Different from the complex reciprocity relation used in 

the paper, we start with the real reciprocity relation, which is valid for both elastic and 

viscoelastic materials (Auld 1990) 

where 1v , 2v  and 1T , 2T  are the particle velocities and stresses for two different wave 

modes (either torsional or longitudinal type) in a multilayered hollow cylinder. Without 

loss of generality, 1v , 2v  and 1T , 2T  can be represented as 

where N and M denote circumferential orders, n and m are indices of mode group, and β  

denotes the wave number of mode (M, n) or (N, m). So we have 

Substituting Eq. 5.19 into Eq. 5.17 yields 

where θr∇  is the 2-D divergence operator in cylindrical coordinates. 

By integrating both sides of Eq. 5.20 over the cross section D of the viscoelastic 

coated hollow cylinder, we obtain 
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where 

The left hand side of Eq. 5.21 can be written as 

where D1 and D2 denote the cross sections of the elastic hollow cylinder and the 

viscoelastic coating respectively as shown in Figure 5-1. 

 Applying the Gauss divergence theorem to the right hand side of Eq. 5.23, we have 
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Figure 5-1: Illustration of the cross sections  D1 and D2, inner boundary D1∂ , interface 

D2∂ , and outer boundary  D3∂ . 
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where D1∂  represents the inner boundary of D1, D2∂  represents the interface between 

D1 and D2, and D3∂  represents the outer boundary of D2. The unit vectors 1n̂  and 2n̂  are 

defined as  

Noting the identities 

 

and the fact that the displacements and normal stresses are continuous at the interface 

D2∂ , by summing up Eq. 5.26 and Eq. 5.27, we simplify Eq. 5.24 to 

Incorporating the interfacial conditions is important for the development of the 

orthogonality relation in multilayered structures. This is different from the previous 

orthogonality development for single layered structures [Ditri, et al., 1992]. Once again, 
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by applying identities Eq. 5.26 and Eq. 5.27 and by noticing that the tractions produced 

by the modes (M, n) and (N, m) vanish at the free boundaries of the wave guides, we get 

Combining Eq. 5.21 and Eq. 5.29, we finally obtain 

Direct evaluation of NM
mnP  using the orthogonality of the angular eigenfunctions 

cos(Nθ) and sin(Mθ) also shows that 

To summarize, the orthogonality relation in multilayered hollow cylinders 

containing viscoelastic material is 

From the above analysis, it can be seen that the orthogonality derivation for 

multilayered viscoelastic hollow cylinders is different from that in an elastic hollow 

cylinder in two aspects. First, we started from the real reciprocity because only the real 

reciprocity is valid for viscoelastic materials. Second, we utilized the interfacial 

displacement and normal stress continuity conditions in order to validate the 

orthogonality relation in multilayered waveguides. Although the derivation is given for a 

two layered case, it can be easily generalized to the orthogonality for the N (N>2) layered 

case.  
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Once the orthogonality relation is reached, guided modes can be sorted by 

calculating NM
mnP  between the modes of adjacent frequencies. For instance, solving 

Eq. 5.15 yields N1 modes at frequency 1ω  and N2 modes at the adjacent frequency 2ω , 

where ωωω Δ=− 12  is the frequency step. NM
mnP  is then calculated between each mode at 

2ω  and all of the modes at 1ω  using Eq. 5.22 to obtain N1 results. The biggest value in 

the N1 results indicates the two modes used for this orthogonality calculation belonging 

to the same mode in the dispersion curves. In fact, the other values will be very close to 

zero. Here, we do not have to know the values of m, n, and M, N. We only need to utilize 

the wave structures obtained from Eq. 5.15 for the two modes under concern, calculate 

their corresponding stress components, and input these stress and displacement 

components into Eq. 5.22 to calculate NM
mnP . It can be seen from this procedure that the 

orthogonality computation is performed 21 NN ×  times for the two adjacent frequencies. 

Strictly speaking, the orthogonality relation is valid between the modes under any single 

arbitrary frequency. However, we are performing it between two adjacent frequencies 1ω  

and 2ω  as an approximation. Since the behavior of the wave modes in the dispersion 

curves varies continuously, this approximation holds well for relatively small frequency 

steps. The frequency step used in our calculation is 10 kHz and the mode sorting 

procedure worked effectively. 
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5.4 Dispersion curves and wave structures 

5.4.1 Low viscous material: E&C 2057 Cat9 expoxy 

In order to verify our calculation, the dispersion curves for a 4 in. schedule 40 

steel hollow cylinder coated with 0.02 in. E&C 2057 / Cat9 epoxy are calculated and 

compared with previous axisymmetric results given by Barshinger [2004]. Nevertheless, 

the formulation provided in this chapter is general. It is applicable to other pipe sizes and 

other viscoelastic and elastic cylinders. The materials that can be used in the analytical 

matrix method can also be implemented in our calculations. It is simply a different input 

for material and pipe size, the solving procedure remains the same. Even more complex 

material properties, for example, experimental properties varying nonlinearly with 

frequency can be easily implemented. However, this is beyond the scope of this thesis 

and will not be addressed in detail here. The number of elements used in our calculation 

for the elastic and viscoelastic layers are 24 and 4 respectively. The material properties 

are listed in Table 5-1, where LC  and SC  are the longitudinal and shear bulk wave 

velocities respectively. The terms Lα  and Sα  are attenuation parameters associated with 

longitudinal and shear bulk waves. They are frequency dependent. The viscoelastic 

material properties are experimentally measured. Details can be found in Barshinger 

(2001). Based on the correspondence principle (Christensen 1981), wave propagation 

problems in elastic materials can be converted to those in viscoelastic materials by simply 

using complex material parameters. This is quite beneficial for our study, since SAFE 
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calculations for both elastic and viscoelastic cases are essentially the same, except that 

the input parameters are different. 

For comparison purposes, the same dispersion curves for longitudinal and 

torsional modes are also calculated from the analytical formulation developed in 

[Barshinger, et al., 2004]. Compared to Barshinger’s algorithm, the SAFE formulation 

calculates dispersion curves 10 times faster without the mode sorting process and twice 

as fast with the mode sorting process. Barshinger’s algorithm based upon the analytical 

global matrix method calculates only the axisymmetric waves.  

It can be seen from the SAFE formulation in this chapter that the dispersion 

curves can be calculated for any selected circumferential order n. However, for each 

circumferential order (including the axisymmetric case, where n=0), the longitudinal and 

the torsional modes are not separated. In the global matrix method, the axisymmetric 

longitudinal and axisymmetric torsional wave solution can be decomposed from each 

other. Therefore, they are calculated separately [Barshinger, et al., 2004]. The 

comparison of phase velocity and attenuation dispersion curves of the axisymmetric wave 

modes obtained from SAFE and the axisymmetric longitudinal wave modes from 

Table 5-1: Material properties 

Material 
LC  

(mm/µs) 

ω
α L  

( s
mm
dB μ× ) 

SC  

(mm/µs) 

ω
α S  

( s
mm
dB μ× ) 

ρ  (g/cm3) 

Steel 5.85 - 3.23 - 7.86 

E&C 2057 / 

Cat9 expoxy 
2.96 0.0047 1.45 0.0069 1.6 
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analytical formulations are shown in Figure 5-2 and Figure 5-3, where the solid lines 

represent results obtained from the SAFE formulation while the dotted lines are results 

from analytical formulation. The comparison of phase velocity and attenuation dispersion 

curves of the axisymmetric wave modes obtained from SAFE and the axisymmetric 

torsional wave modes from analytical formulations are shown in Figure 5-4 and Figure 5-

5, where the solid lines represent results obtained from the SAFE formulation while the 

dotted lines are results from analytical formulation. As can be seen in these four figures, 

the phase velocity and attenuation dispersion curves generated by the two different 

methods are in excellent agreement at low frequency. At very high frequency (higher 

than 1 MHz), there exists small discrepancies due to relatively large mesh sizes compared 

to wave length. This can be improved by increasing the number of elements for the 

discretization in the r direction. Since the frequency range used in guided wave 

applications is usually lower than 1 MHz, the current mesh configuration will be used 

throughout the thesis unless otherwise stated. 

 



 

 

 

 
Figure 5-2: Comparison of phase velocity dispersion curves obtained from analytical and SAFE formulations. Dotted line:
longitudinal modes from analytical formulation; solid line: longitudinal and torsional modes from SAFE formulation. 
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Figure 5-3: Comparison of attenuation dispersion curves obtained from analytical and SAFE formulations. Dotted line:
longitudinal modes from analytical formulation; solid line: longitudinal and torsional modes from SAFE formulation. 
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Figure 5-4: Comparison of phase velocity dispersion curves obtained from analytical and SAFE formulations. Dotted lines: 
torsional modes from analytical formulation; solid lines: longitudinal and torsional modes from SAFE formulation. 
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Figure 5-5: Comparison of attenuation dispersion curves obtained from analytical and SAFE formulations. Dotted line: Torsional
modes from analytical formulation; solid line: longitudinal and torsional modes from SAFE formulation. 



 

 

Mode sorting is tremendously helpful when using guided wave modes. Especially 

when the number of wave modes is large (for example, more than 20 modes), there may 

be multiple mode crossings or mode branches, which makes it difficult to identify the 

trend of a specific mode under investigation. For well sorted wave modes, it will be very 

convenient to analyze the behavior of a specific mode with respect to frequency. On one 

hand, the orthogonality between different modes in natural wave guides provides us with 

a natural way of mode sorting. On the other hand, mode sorting can also serve as an 

effective means of verifying the derivation and calculation of dispersion curves. 

The dispersion curves of the longitudinal mode group (denoted by L) and the 

torsional mode group (denoted by T) after mode sorting for axisymmetric 

(circumferential order n equals zero) and flexural modes (circumferential order n ranging 

from one to ten) are displayed in Figure 5-6 and Figure 5-7 respectively. For clarity, a 

magnified figure for wave attenuation at low frequencies (below 300 kHz) is also shown 

in Figure 5-7.In these two figures, the different modes are sorted beautifully with respect 

to frequency. The results in Figure 5-6 and Figure 5-7 validate our theory of 

orthogonality. This orthogonality mode sorting method is fairly powerful and can be 

applied to various wave guides such as multilayered plates, beams, rods, rails, and so on.
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Figure 5-6: Phase velocity dispersion curves for guided wave modes with circumferential order n from 0 to 10 in a 4 in. schedule 
40 steel hollow cylinder coated with 0.02 in. thick E&C 2057 Cat9 expoxy. 
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Figure 5-7: Attenuation dispersion curves for guided wave modes with circumferential order n from 0 to 10 in a 4 in. schedule 40 
steel hollow cylinder coated with 0.02 in. thick E&C 2057 Cat9 epoxy. 
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It can be observed from Figure 5-7 that guided wave mode attenuation is quite 

complicated. However, with careful observation, several characteristics can be noticed:  

1) The most striking characteristic in Figure 5-7 is that the mode group L(n,2) has 

low attenuation over almost the whole frequency bandwidth. Especially for frequency 

higher than 1.2 MHz, the attenuation of the mode group L(n,2) converges to zero 

asymptotically. This advantage makes the L(n,2) mode group a suitable choice for a large 

frequency bandwidth in practical applications.  

2) The attenuation of mode groups L(n,1) and T(n,1) increases monotonically 

with an increase in frequency. This feature also holds for ultrasonic waves in bulk media, 

which are more attenuative at higher frequencies. The attenuations with these modes 

below 0.2 MHz are less than 1dB/m. As a result, the wave modes in this region are good 

choices for nondestructive testing.  

3). Generally speaking, for almost all of the other mode groups having cutoff 

frequencies in the corresponding bare hollow cylinder problem, very high attenuation 

occurs close to their cutoff frequencies. This makes sense, since they become 

nonpropagating modes for frequencies lower than their cutoff frequencies in a hollow 

cylinder without viscoelastic coatings. As the frequency increases, the attenuation (the 

absolute value of attenuation in Figure 5-7) decreases and reaches its minimum at a 

certain frequency for a certain mode. After that, the attenuation increases with an increase 

in frequency like that of bulk waves. This is a significant characteristic since it occurs in 

almost all of the wave modes. Finding out where the minimal attenuation values occur for 

the different wave modes is crucial for NDE applications and would be an interesting 

subject for future work. 
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Wave structures are displacement amplitude distributions along the thickness 

direction for certain guided wave modes. The behavior of a specific guided wave mode is 

highly related to its wave structure. Therefore, it is valuable to check the wave structures 

of different modes. Some sample wave structures of wave modes L(n,2), L(n,1) and 

T(n,1) for circumferential orders n=0 and n=5 are shown from Figure 5-8 through 

Figure 5-13. The coated hollow cylinder size and material parameters are the same as in 

the previous sections. 
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Figure 5-8: Normalized displacement distribution across hollow cylinder thickness for the
L(0,2) mode at 0.2 MHz and 1.4 MHz. 
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From the above analysis regarding the phase velocity and attenuation dispersion 

curves, it is natural to consider the mode group L(n,2) of most interest, since this group is 

the least attenuative at both low (<0.32 MHz) and high (>1 MHz) frequencies. Sample 

wave structures of L(0,2) (axisymmetric mode) and L(5,2) (flexural mode) at 0.2 MHz 

and 1.4 MHz are shown in Figure 5-8 and Figure 5-9 respectively. It can be seen that the 

wave structure of L(0,2) at low frequency (0.2 MHz) has a similar distribution as the S0 

mode in a plate. The wave structure changes with frequency. At a frequency of 1.4 MHz, 

the wave structure of L(0,2) changes to become similar to that of a surface wave. In 

addition, the displacement is mostly concentrated on the inner surface of the two layered 

hollow cylinder. This phenomenon explains why the attenuation of L(0,2) approaches 

zero at high frequencies. Comparison of wave structures from L(0,2) and L(5,2) reveals 

that the displacements in the radial and axial directions ( rU  and zU ) have very similar 

distributions for axisymmetric modes and flexural modes in a mode group. However, the 

displacements in the circumferential direction for L(0,2) and L(5,2) are similar at high 

frequency but different at low frequency. This can be expected because the wave 

-1 -0.5 0 0.5 1
51

52

53

54

55

56

57

58

R
ad

ia
l p

os
iti

on
 (m

m
)

Normalized displacement

0.2 MHz

 

 

Ur
U

θ

Uz

 
-1 -0.5 0 0.5 1

51

52

53

54

55

56

57

58

R
ad

ia
l p

os
iti

on
 (m

m
)

Normalized displacement

1.4 MHz

 

 

Ur
U

θ
Uz

Figure 5-9: Normalized displacement distribution across hollow cylinder thickness for the
L(5,2) mode at 0.2 MHz and 1.4 MHz. 
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velocities of the modes with different circumferential orders in a mode group are quite 

different at low frequency, but approach each other at high frequency. 

 

Similar phenomena are also observed for the L(n,1) mode group too. At low 

frequency (0.2 MHz), the wave structure of L(0,1) is similar to that of the Lamb wave 

mode A0. At high frequency, L(n,1) tends to a surface wave. Contrary to L(n,2), most 

energy of L(n,1) propagates in the coating layer in a high frequency range, which 
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Figure 5-10: Normalized displacement distribution across hollow cylinder thickness for
the L(0,1) mode at 0.2 MHz and 1.2 MHz. 
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Figure 5-11: Normalized displacement distribution across hollow cylinder thickness for
the L(5,1) mode at 0.2 MHz and 1.2 MHz. 
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indicates that the attenuation of the mode group L(n,1) increases with an increase in 

frequency. This increase in attenuation can be clearly observed from the attenuation 

dispersion curves in Figure 5-7. In a similar fashion to L(5,2), L(5,1) also has a bigger 

displacement in the circumferential direction at low frequency, but very small 

displacement in the circumferential direction at high frequency. The wave structures of 

the longitudinal modes L(0,2) and L(0,1) agree quite well with the analytical results in 

[Barshinger, et al., 2004].  

 

-1 -0.5 0 0.5 1
51

52

53

54

55

56

57

58

R
ad

ia
l p

os
iti

on
 (m

m
)

Normalized displacement

0.2 MHz

 

 

Ur
U

θ
Uz

 
-1 -0.5 0 0.5 1

51

52

53

54

55

56

57

58
R

ad
ia

l p
os

iti
on

 (m
m

)

Normalized displacement

1.2 MHz

 

 

Ur
U

θ
Uz

Figure 5-12: Normalized displacement distribution across hollow cylinder thickness for
the T(0,1) mode at 0.2 MHz and 1.2 MHz, showing that most energy of T(0,1) is 
concentrated in the coating layer at high frequency. 
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The T(n,1) mode group behaves like the SH waves in a plate. For the 

axisymmetric mode T(0,1), only the displacement in the circumferential direction exists. 

Both T(0,1) and T(5,1) have almost all of their energy contained in the coating layer. 

Correspondingly, the attenuation of T(n,1) is very high at high frequency. The increase in 

attenuation for T(n,1) with respect to frequency can also be observed in Figure 5-7.  

From the above discussion, it can be summarized and concluded that, in general, 

wave mode attenuation in a multilayered hollow cylinder is greatly related to its energy 

concentration in the viscoelastic layer. The more the energy is concentrated in the 

viscoelastic layer, the greater the attenuation for the wave mode. This conclusion is also 

drawn in Simonetti (2004) to approximate the guided wave attenuation by calculating the 

portion of energy contained in the viscoelastic layer of a multilayered plate structure. 

 

Sample cross sectional deformations of the above wave modes are given in 

Figure 5-14 to Figure 5-19. Figure 5-14 to Figure 5-16 are for axisymmetric modes, as 

can be directly seen from the deformation in these figures. Figure 5-17 to Figure 5-19 are 
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Figure 5-13: Normalized displacement distribution across hollow cylinder thickness for
the T(5,1) mode at 0.2 MHz and 1.2 MHz, showing that most energy of T(5,1) is 
concentrated in the coating layer at high frequency. 
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for flexural modes with a period of 5 in the circumferential direction. In order to get 

better visualization of the cross sectional deformation, the displacements in r, θ, and z 

directions are magnified by different factors. Therefore, the ratios among the 

displacement components may differ from those given in the corresponding wave 

structures. Also, in viscoelastic wave guides, the phases of the displacement components 

can be any angles in the range of [0, 2π]. Wave structures are displacement amplitude 

distributions across thickness. When plotting wave structures, the phases of the 

displacement components distributed in a 2D plane are mapped to two signs ‘+’ for [0, π] 

and ‘-’ for [π, 2π]. So the relative phases between the displacement components in the 

cross sectional deformation may not match exactly those given in the wave structures. In 

all cross sectional deformations, color is used to represent the magnitude of the total 

displacement. The magnitude of the total displacement can be arbitrary for each mode, so 

the detailed color scales of the cross sectional deformations are not provided. However, 

all the color scales are linear and the red color denotes the highest amplitude, while the 

blue color denotes the lowest amplitude.  

Figure 5-14 shows the cross section deformation of mode L(0,1) at a frequency of 

200 kHz. Comparing with the wave structure of L(0,1) at 200 kHz in Figure 5-10, it can 

be seen that the cross section expands (and contracts) in the r direction. At a certain 

distance, the inner surface and outer surface of the coated pipe expand (and contract) 

simultaneously. On the contrary, the displacement uz are out of phase on the inner and 

outer surfaces. When the outer surface moves in the +z direction, the inner surface moves 

towards the –z direction and vice versa. These characteristics can be clearly observed in 

Figure 5-14.  
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Figure 5-15 shows the cross sectional deformation of mode T(0,1) at a frequency 

of 200 kHz. As can be seen from Figure 5-12, the only nonzero displacement component 

is uθ with the highest amplitude concentrated in the coating layer and the lowest 

amplitude at the inner surface. This can also be verified by the red color at the coating 

region and the blue color at the inner surface in Figure 5-15.  

Figure 5-16 is the cross sectional deformation of mode L(0,2) at 200 kHz. For this 

mode, the cross section moves up and down in the z direction. In the mean time, it also 

expands and shrinks in the radial direction. In Figure 5-16, the cross section is moving up 

towards the +z direction and expanding in the radial direction. The expanding and 

shrinking in the radial direction is caused by the out of phase movement of the inner and 

outer surfaces in the r direction as shown in Figure 5-8. 

The cross sectional deformations given in Figure 5-17 to Figure 5-19 can easily 

be interpreted from their corresponding wave structures in a similar way as have been 

done for the previous figures, so they will not be described in detail here. The only 

difference is that, now the displacements are in all three directions. Therefore, expanding 

and contracting are expected in both radial and circumferential directions. In z direction, 

the movement is up and down. In addition, all movements vary periodically in the 

circumferential direction. 
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Figure 5-14: Cross sectional deformation of L(0,1) at a frequency of 0.2MHz 
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Figure 5-15: Cross section deformation of T(0,1) at a frequency of 0.2MHz 
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Figure 5-16: Crosss section deformation of L(0,2) at a frequency of 0.2MHz 
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Figure 5-17: Cross sectional deformation of L(5,1) at a frequency of 0.2MHz 
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Figure 5-18: Cross sectional deformation of T(5,1) at a frequency of 0.2MHz 
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Figure 5-19: Cross sectional deformation of L(5,2) at a frequency of 0.2MHz 
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5.4.2 Highly viscous material: Bitumastic 50 

The properties of Bitumastic 50 are given in Table 5-2. The properties are taken 

from Barshinger [2004]. It can be seen from Table 5-2 that Bitumastic 50 is much more 

attenuative, especially for shear waves, compared to E&C 2057 / Cat9 epoxy.   

The phase velocity dispersion curves and attenuation curves for a 4 in. schedule 

40 steel pipe coated with 0.02 in Bitumastic 50 are calculated and shown in Figure 5-20 

and Figure 5-21. A threshold is set for displaying the dispersion curves, so that the modes 

with an imaginary part of wave number larger than 0.5 are not shown in Figure 5-20. 

Comparing the phase velocity dispersion curves in Figure 5-20 and Figure 5-6, two major 

differences can be observed. First, the phase velocities of certain modes groups L(n,3) 

and L(n,6) decrease at their low frequencies. Secondly, at relatively high frequencies, 

some modes experience non-monotonic variation with an increase of frequency, for 

example, modes L(n,3) and L(n,5) in the circled areas B and A. Non-monotonic change 

of phase velocity with frequency is also found in the dispersion curves of highly 

attenuative plates [Chan, et al., 1998]. In this paper, the dispersion curves of highly 

attenuative plates are solved by the partial wave technique. The author calculated the 

Table 5-2: Material properties 
 

Material 
LC  

(mm/µs) 

ω
α L  

( s
mm
dB μ× ) 

SC  

(mm/µs) 

ω
α S  

( s
mm
dB μ× ) 

ρ  (g/cm3) 

Bitumastic 

50 
1.86 0.023 0.75 0.24 1.5 
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ratio between the longitudinal and shear partial waves for different modes. They found 

that the rise in phase velocity with an increase in frequency may be associated with the 

amplitude ratio between the longitudinal and shear partial waves in the wave guide. It is 

also pointed out in the paper that in these rising regions of phase velocities, the 

conventional way of calculating group velocity dispersion curves by using the formula 

dk
dcg

ω
=  is likely to fail. 

Figure 5-21 shows the wave modes whose attenuations are smaller than 100 

dB/m. A comparison between the attenuation curves in Figure 5-21 and Figure 5-7 

reveals that, overall, the mode groups in a 4 in. schedule 40 pipe coated with Bitumastic 

50 are more attenuative than the same mode groups in a 4 in. schedule 40 pipe but coated 

with E&C 2057/Cat9 epoxy of the same thickness. This agrees with the material 

properties of the two coatings. 

 



 

 

 
Figure 5-20: Phase velocity dispersion curves for guided wave modes with circumferential order n from 0 to 10 in a 4 in. schedule 
40 steel hollow cylinder coated with 0.02 in. thick Bitumastic 50, showing that modes L(n,5) and L(n,3) experience non-
monotonic change with frequency in the circled area A and B. 
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Figure 5-21: Attenuation curves for guided wave modes with circumferential order n from 0 to 10 in a 4 in. schedule 40 steel 
hollow cylinder coated with 0.02 in. thick Bitumastic 50. 



 

 

Figure 5-22 shows the magnified axisymmetric phase velocity dispersion curves 

in the circled area A in Figure 5-20. The modal behavior in this region is relatively more 

complex compared to that in the other regions. In Figure 5-22, several modes cross each 

other and mode L(0,5) changes non-monotonically with an increase in frequency. Eight 

points are chosen on the three guided wave modes shown in Figure 5-22 for more 

analysis. They are labeled from A to H. The detailed information of the chosen modes 

including frequency, phase velocity values, and attenuation values are listed in Table 5-3. 

It may be noticed from Table 5-3 that the attenuation values of mode L(0,5) at points A, 

B, and C are much higher than the attenuation at point D. An inspection of the other 

guide wave modes reveals that the modes are generally more attenuative in the regions 

where the phase velocity rise with the increase in frequency than the surrounding regions. 

This could be the reason why the conventional way of calculating group velocity 

dispersion curves by using 
dk
dcg
ω

=  fails in these regions.  

The wave structures of the four points A to D on the mode L(0,5) are plotted in 

Figure 5-23. It can be seen from the figure that the four wave structures are very similar 

to each other, which verifies that they are from the same mode and the mode L(0,5) does 

evolve non-monotonically with frequency in this region. The wave structures of E and F 

on the mode L(0,6) are plotted in Figure 5-24. It can be seen that they are from the same 

mode too. The wave structures of G and H on the mode T(0,4) are plotted in Figure 5-25. 

It can be seen that the wave structures of the three modes are quite different from each 

other, while the wave structure of a single mode evolves continuously. This verifies that 

our mode sorting technique is quite effective. 
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Figure 5-22: Magnified axisymmetric phase velocity dispersion curves in the circled area 
A in Figure 5-20. 

Table 5-3: List of selected modes 

Label Mode Frequency (MHz) Phase Velocity (mm/μs) Attenuation (dB/m)
A L(0,5) 0.888 6.6802 -698.95 
B L(0,5) 0.902 6.7590 -875.21 
C L(0,5) 0.926 7.001 -797.84 
D L(0,5) 0.964 6.8276 -392.48 
E L(0,6) 0.904 6.9608 -71.052 
F L(0,6) 0.934 6.6752 -62.535 
G T(0,4) 0.904 7.0852 -98.064 
H T(0,4) 0.918 6.7044 -98.052  
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Figure 5-23: The wave structures of A, B, C, and D on mode L(0,5) in Figure 5-22. 
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Figure 5-24: The wave structures of E and F on mode L(0,6) in Figure 5-22 
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5.5 Summary 

This chapter solves the problem of guided wave propagation in viscoelastic 

multilayered hollow cylinders. The Semi-Analytical Finite Element (SAFE) method is 

adopted to solve this problem. A suitable SAFE formulation is developed. The SAFE 

formulation enables us to solve the dispersion curves and wave structures of the modes 

that exist in multilayered hollow cylinders containing viscoelastic materials.  

In order to separate different modes and to build the foundation for further 

research on source influence, the orthogonality relation between the guided wave modes 

in viscoelastic multilayered hollow cylinders are derived. The orthogonality relation 

basically means that all the wave modes in a viscoelastic multilayered hollow cylinder 

are orthogonal to each other. They are all normal modes. The orthogonality relation 
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Figure 5-25: The wave structures of G and H on mode T(0,4) in Figure 5-22 
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derived here is valid in both single-layered and any number of multilayered hollow 

cylinders with either viscoelastic or elastic materials. Therefore it is more general than 

the orthogonality relation that has been given by Ditri [1992], which only applies to a 

single-layered elastic hollow cylinder. 

The orthogonality relation is then used to sort all the wave modes. Excellent mode 

sorting results are obtained. All the normal modes are well separated. This mode sorting 

enables us to trace the behavior of a specific mode with the change in frequency. It is also 

the basis of further calculation on source influence and guided focusing in multilayered 

hollow cylinders. 

Finally, numerically results of pipes coated with different viscoelastic materials 

are given in detail and compared with the axisymmetric modes given by Barshinger 

[2004]. The flexural modes of higher circumferential orders are first obtained for such 

coated pipe structures. The numerical mode sorting results validate the analytical 

derivation of the orthogonality relation. Examples of multiple wave structures are given 

to show that mode sorting is effective. The cross sectional deformations of various modes 

are also illustrated to help understand the vibration characteristics of different normal 

modes. 



 

 

Chapter 6 
 

Guided wave focusing in viscoelastic multilayered hollow cylinders 

The problem of free waves in viscoelastic multilayered hollow cylinders now has 

been solved. In many practical problems, transducers have to be mounted on the surface 

in order to send ultrasonic energy into the cylinders. Changing surface conditions affects 

the ultrasonic energy source and hence mode types; commonly known as “source 

influence.” Similar to the source influence problem in single-layered elastic hollow 

cylinders, Normal Mode Expansion (NME) can be used as a potent tool to solve the 

source influence problem in viscoelastic multilayered hollow cylinders. The process of 

solving the source influence problem in multilayered hollow cylinders is similar to that in 

a single layered elastic hollow cylinder. The difference lies in the fact that the whole 

derivation is based upon the real reciprocity relation and one needs to make use of the 

interfacial displacement and normal stress continuity conditions for the viscoelastic 

multilayered case, while the derivation for the single-layered elastic case is based on the 

complex reciprocity relation but no interfacial conditions are considered. These 

differences also correspond to the differences in the derivation of the orthogonality 

relations for viscoelastic multilayered cylinders and single-layered elastic cylinders. 
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6.1 Source influence 

Consider the wave field generated by a finite source to be a superposition of all 

the normal modes in a viscoelastic coated hollow cylinder. This generated wave field is 

chosen to be solution “1” in the reciprocity relation (Eq. 5.17). The displacement vector 

and stress tensor of the generated wave field can be expanded as follows 

and 

where N is the circumferential order, μ  is the group index, and )(zAN
μ  is the amplitude 

of the normal mode (N, μ ) obtained from NME method. The normal mode n of 

circumferential order M is chosen to be solution “2” in the reciprocity relation. The 

expressions are given in Eq. 6.3 and Eq. 6.4. 

Then we have 

Subtracting Eq. 6.6 from Eq. 6.5 gives 
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Substituting Eq. 6.7 into the reciprocity relation Eq. 5.17, we obtain 

Integrating the preceding equation over the cross section of the cylinder D and 

making use of the definition of NM
nPμ , Eq. 6.8 becomes 

Eq. 6.9 can be convert to 

Letting 

the left hand side of Eq. 6.10 becomes Eq. 6.12 and after some mathematical 

manipulation as done in the previous chapter for the derivation of orthogonality, 

In Eq. 6.12, D1 and D2 denote the cross sections of the elastic hollow cylinder and 

the viscoelastic coating respectively. D1∂  represents the inner boundary of D1, D2∂  
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represents the interface between D1 and D2, and D3∂  represents the outer boundary of 

D2. The direction vectors 1n̂  and 2n̂  are defined in Eq. 5.25.  

Making use of the identities 

and noticing that the displacements and normal stresses are continuous at the interface 

D2∂ , Eq. 6.12 is simplified to 

Also notice that the tractions produced by the normal modes vanish at the inner and outer 

boundaries, Eq. 6.15 can be further reduced to 

From Eq. 6.10 and Eq. 6.16, we obtain 

From the orthogonality relation Eq. 5.32, the only non-zero term on the left hand 

side of Eq. 6.17 is 
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where MM
nnP−  is from the two modes with wave numbers M

nβ  and M
nβ− . For traction 

loading on the inner boundary, we obtain 

For convenience, interchange n and –n, M
nβ  and M

nβ− , we get 

Solving the above equation yields the amplitude factors of the generated normal 

modes 

 

6.2 Focusing in multilayered viscoelastic hollow cylinders 

After the source influence problem is solved, the computation of focusing 

parameters in multilayered viscoelastic hollow cylinders follows closely to that in single 

layered hollow cylinders as described in Chapter 3. The transducer location for the source 

influence in the previous section was assumed to be the inner surface of the pipe. In 

applications, guided wave focusing in pipes is usually conducted at relatively low 

frequencies. It is found that, at low frequencies, the dominant displacement and stress 

distribution are mostly uniform across the thickness. Applying the traction on either the 

inner surface, outer surface or the interface of the coated pipe does not make a significant 
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influence in resulting angular profiles and focusing parameters. What is needed to be 

pointed out here is that the outer surface of the pipe section corresponds to the interface 

between the pipe and the coating. Sometimes if the coating is very viscous, a small area 

of the coating can be removed from the pipe to get better coupling between the transducer 

arrays and the pipe. In this case, part of the energy excited in the bare pipe will be 

reflected when impinged onto the coated pipe. However, the angular profiles in this work 

are assumed not to be affected by the reflection between the bare pipe and the coated pipe. 

The displacement and stress field distribution in bare pipes are almost the same as the 

displacement and stress field distribution in the pipe section in a coated pipe over low 

frequency range. This can be observed from the previous calculation on wave structures 

of the same mode (for example, L(0,2)) in bare pipes (Figure 2-8 in Chapter 2) and in 

coated pipes (Figure 5-8 Chapter 5). Because of the match in the field distributions 

between bare pipes and the coated pipes, the influence of reflection on the wave incident 

from a bare pipe into a coated pipe can be neglected. 

6.2.1 Focusing in a single layered elastic hollow cylinder: SAFE vs. analytical GMM 

Due to the fact that finite element approximation is used in at least one dimension 

or two over the cross section of the wave guide in the SAFE method, there have existed 

some doubts on how accurate the SAFE calculation can be in such a problem of guided 

wave propagation and focusing in hollow cylinders. Although we have showed by the 

dispersion curve figures in the previous chapter that the SAFE calculation of coated pipe 

dispersion curves match those calculated from the analytical global matrix method 



123 

 

(GMM) very well at low frequency. Quantitative comparison was not provided in the 

previous chapter. In this chapter, we will compare quantitatively the phase velocities, 

angular profiles, and focusing parameters calculated from both methods for a single 

layered elastic hollow cylinder to show that the SAFE method can provide enough 

accuracy in computing the wave propagation and focusing parameters in hollow 

cylindrical structures.  

The phase velocities of modes T(n,1) for n=0 to 10 in an 8 in. schedule 40 steel 

pipe at a frequency of 60 kHz calculated using the analytical GMM and the SAFE 

method are listed and compared in Table 6-1. 26 nodes are used in the radial direction 

across the pipe thickness in the SAFE calculation. Both methods are programmed in 

MATLAB® using double precision. It can be seen from Table 6-1 that the phase 

velocities calculated from both methods match each other up to 15 digits.  

Table 6-1: Phase velocity comparison using the Analytical GMM and the SAFE for 
modes T(n,1) in an 8 in. schedule 40 steel pipe at a frequency of 60 kHz. The unit of
phase velocity is mm/μs. 

Circumferential order n Analytical GMM SAFE 
0 3.229999999999498 3.229999999999498 
1 3.241024295421381 3.241024295421381 
2 3.274761185134115 3.274761185134115 
3 3.333318152134975 3.333318152134975 
4 3.420633969562764 3.420633969562764 
5 3.543289222538042 3.543289222538042 
6 3.712104504906446 3.712104504906446 
7 3.945415614923628 3.945415614923628 
8 4.276416296128982 4.276416296128982 
9 4.772104034238862 4.772104034238862 

10 5.594113921161920 5.594113921161920 
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The wave structures of the above torisonal flexural modes T(n,1) with n=1 to 6 

calculated from analytical GMM and SAFE method are plotted and compared in 

Figure 6-1. The displacement amplitudes in the r, θ, and z directions are plotted in blue, 

red, and green respectively. Also, different markers and line styles are used to represent 

the displacement components calculated by the two different methods as shown in the 

legend in each plot. It can be seen from Figure 6-1 that the wave structures calculated 

from the analytical GMM and the SAFE method agree with each other very well. 

The amplitude factors of the torsional modes group T(n,1) generated by a 45° 

shear source loading on the 8 in. schedule 40 steel pipe based on the phase velocities and 

wave structures calculated for the analytical GMM and the SAFE method are plotted in 

Figure 6-2. As can be seen from Figure 6-2, the amplitude factors calculated from both 

methods match very well. Only very slight difference can be observed for the amplitude 

factors of mode T(1,1) and T(2,1).  

Some sample angular profiles for the 45° shear source loading and their 

corresponding 8 channel focused angular profiles calculated based on analytical and 

SAFE methods are shown in Figure 6-3. The left column shows the partial loading 

angular profiles and the right column is the corresponding focused profiles at different 

axial distances in the 8 in. schedule 40 steel pipe at a frequency of 60 kHz. As can be 

observed from Figure 6-3, the final focused profiles calculated from both analytical and 

SAFE methods overlap, indicating they agree with each other quite well. A more 

quantitative comparison of the focusing parameters calculated from both methods for the 

focused profile at 0.5 m. in Figure 6-3 is given in Table 6-2. The largest difference 
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between the focusing parameters calculated from both methods is below 0.3% in this 

case. 
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Figure 6-1: Sample wave structure comparison. The wave structures are computed using
analytical GMM and the SAFE for modes T(n,1), where circumferential order n equals 1
to 6, in an 8 in. schedule 40 steel pipe at a frequency of 60 kHz. 
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Figure 6-2: Comparison of the amplitude factors computed from the analytical method
and SAFE method for a 45° shear partial loading on an 8 in. schedule 40 steel pipe in
generating the torsional mode group T(n,1) at 60 kHz. In the figure, the amplitude factors 
are plotted for circumferential order n from 0 to 10. 
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Figure 6-3: Angular profiles of 45° shear partial loading (left column) and their 
corresponding focused profiles (right column) at different axial distances in an 8 in.
schedule 40 steel pipe calculated from analytical and SAFE methods at 60 kHz. 
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The comparison of longitudinal focusing using the analytical method and the 

SAFE method is also given below. The phase velocities of modes L(n,2) for n=0 to 10 in 

an 8 in. schedule 40 steel pipe at a frequency of 95 kHz calculated using the analytical 

GMM and the SAFE method are listed in Table 6-3. 26 nodes (the same as the torsional 

case) are used in the radial direction across pipe thickness in the SAFE calculation. The 

phase velocities calculated by the two methods are still in very good agreement, although 

the accuracy is not as good as in the torsional case. The largest difference in the phase 

velocities calculated by the two methods is less than 0.0013%. 

The amplitude factors of the longitudinal modes group L(n,2) generated by a 45° 

source loading on the 8 in. schedule 40 steel pipe calculated for the analytical GMM and 

SAFE methods are plotted in Figure 6-4. As can be seen from Figure 6-4, the amplitude 

factors calculated from both methods match very well. 

Table 6-2: Comparison of 8 channel focusing parameters in an 8 in. schedule 40 steel
pipe at a focal distance of 0.5 m. for  torsional modes T(n,1) at 60 kHz. (The focusing
parameters correspond to the focused profile on the right hand side in the first row in 
Figure 6-3.) 

 Analytical SAFE 
Channel # Amplitude 

factors 
Time delays 

(μs) 
Amplitude 

factors 
Time delays 

(μs) 
1 1.000 14.928 1.000 14.926 
2 0.589 9.381 0.589 9.381 
3 0.244 5.992 0.244 5.989 
4 0.498 16.203 0.497 16.201 
5 0.622 6.578 0.621 6.579 
6 0.498 16.203 0.497 16.201 
7 0.244 5.992 0.244 5.989 
8 0.589 9.381 0.589 9.381 
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A sample angular profile for the 45° longitudinal source loading and its 

corresponding 8 channel focused angular profiles calculated based on analytical and 

SAFE methods are shown in Figure 6-5. The left plot in Figure 6-5 is the partial loading 

angular profile and the right one is the corresponding focused profile at an axial distance 

of 4.6 m. in an 8 in. schedule 40 steel pipe at a 95 kHz. As can be observed from 

Figure 6-5, the final focused profiles for the longitudinal case calculated from both 

analytical and SAFE methods agree quite well with each other. A comparison of the 

focusing parameters calculated from both methods for the focused profile in Figure 6-4 is 

given in Table 6-4. The largest difference between the focusing parameters calculated 

from both methods is less than 6%. 

 

 

Table 6-3: Phase velocity comparison using the Analytical GMM and the SAFE for 
modes L(n,2) in an 8 in. schedule 40 steel pipe at a frequency of 95 kHz. The unit is 
mm/μs. 

Circumferential order n Analytical GMM SAFE 
0 5.357340631484985 5.357365912407072 
1 5.376876831054688 5.376902395541808 
2 5.436795587539673 5.436822058343757 
3 5.541280241012573 5.541308335504786 
4 5.698246393203736 5.698277055756171 
5 5.921181259155273 5.921215842902375 
6 6.232908039093018 6.232948667164218 
7 6.673722028732300 6.673772352486621 
8 7.321066303253174 7.321133528599280 
9 8.346378173828125 8.346479261771242 

10 10.235868984401089 10.235868984401089 
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Figure 6-4: Comparison of the amplitude factors computed from the analytical method
and SAFE method for a 45° longitudinal partial loading on an 8 in. schedule 40 steel pipe
in generating the longitudinal mode group L(n,2) at 95 kHz. In the figure, the amplitude
factors are plotted for circumferential order n from 0 to 10. 
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6.2.2 Focusing in multilayered viscoelastic hollow cylinders using SAFE 

The comparison between the focusing in bare pipes using analytical and SAFE 

methods in the previous chapter shows that the SAFE method is an effective tool in 
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Figure 6-5: Angular profile of 45° longitudinal partial loading (left) and the
corresponding focused profile (right) at 4.6 m. in an 8 in. schedule 40 steel pipe
calculated from analytical and SAFE methods at 95 kHz. 

Table 6-4: Comparison of 8 channel focusing parameters in an 8 in. schedule 40 steel
pipe at a focal distance of 4.6 m. for longitudinal modes L(n,2) at 95 kHz. (The focusing
parameters correspond to the focused profile on the right hand side in Figure 6-5.) 

 Analytical SAFE 
Channel # Amplitude 

factors 
Time delays 

(μs) 
Amplitude 

factors 
Time delays 

(μs) 
1 0.617 6.535 0.611 6.589 
2 1.000 7.023 1.000 7.019 
3 0.933 2.963 0.921 3.025 
4 0.686 2.354 0.694 2.370 
5 0.678 5.149 0.640 5.065 
6 0.686 2.354 0.694 2.370 
7 0.933 2.963 0.921 3.025 
8 1.000 7.023 1.000 7.019 
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calculating the focusing amplitude factors and time delays. In this chapter, the SAFE 

method is used for the calculation of focusing parameters in viscoelastic coated pipes. 

The method can be generalized in calculating guided wave focusing in other viscoelastic 

multilayered cylindrical structures also. However, only the numerical calculation of 

focusing in coated pipes will be given here to demonstrate the technique. 

Consider a transducer array covering 45° in the circumferential direction vibrating 

in the axial direction on the outer surface of an 8 in. schedule 40 steel pipe (Figure 6-6). 

The pipe is coated with 2 mm thick E&C 2057 / Cat9 epoxy. The material properties can 

be found in Table 5-1. The total field generated by such a partial source loading can be 

calculated from the amplitude factors of the generated guided wave modes and their 

superposition. The generated guided wave modes in this case are mostly the longitudinal 

modes L(n,2). Theoretically speaking, the other longitudinal mode group L(n,1) (n>0), 

which has small displacement in the z direction, will be generated as well, but with much 

Pipe

Coating

45°

20 mm

r

θ

z
Transducer

 
Figure 6-6: Coated pipe with a source loading covering 45°in circumferential direction
and 20 mm. in axial direction. 
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smaller amplitudes compared to the generated L(n,2) modes. In addition, the group 

velocities of the L(n,1) and the  L(n,2) modes are very different from each other. In 

practice, most likely these two mode groups will not reach the focal position at the same 

time if the exciting signal is a toneburst. Therefore, the displacement angular profiles are 

only calculated based on the summation of the L(n,2) modes only. The particle 

displacement angular profiles of the generated field at the interface between the pipe and 

the coating are shown in the left column of Figure 6-7. Their corresponding 8 channel 

focused profiles are given in the right column respectively. As shown in Figure 6-7, the 

angular profiles are plotted at difference sample distances and at a frequency of 120 kHz.  

It can be observed from Figure 6-7 that, similar to bare pipes, the angular profile 

changes with distance in viscoelastic coated pipes due to the difference in phase 

velocities of the generated modes. Angular profiles are results of the constructive and 

destructive interference among the wave modes around the pipe circumference. Because 

the phase velocities vary with frequency, the angular profiles and focusing parameters 

change with frequency correspondingly.  

The angular profile tuning of the torsional modes T(n,1) can be achieved in the 

same way as longitudinal modes except that the transducer vibration direction should be 

in the circumferential direction in order to generate the T(n,1) modes. Using the 

transducers vibrating in the circumferential direction of the pipe coincides with the 

dominant displacement direction of the torsional modes T(n,1). Thus, the T(n,1) modes 

can be largely generated. The displacement angular profiles for the T(n,1) modes 

generated by 45° normal loading in an 8 in. schedule 40 steel pipe coated with 2-mm 

E&C 2057 / Cat9 epoxy are illustrated in the left column of Figure 6-8 for different 
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propagating distances. Their corresponding 8-channel focused profiles are shown in the 

right column of Figure 6-8. Similar to the longitudinal case, the angular profiles and 

focusing parameters change with propagating distance and operating frequency.  
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Figure 6-7: The particle displacement angular profiles (left column) and their 
corresponding focused profiles (right column) at different distances in an 8 in. schedule 
40 steel pipe coated with 2-mm E&C 2057 / Cat9 epoxy. L(n,2) modes are generated and 
8 channel focusing is used.  
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Figure 6-8: The particle displacement angular profiles (left column) and their
corresponding focused profiles (right column) at different distances in an 8 in. schedule 
40 steel pipe coated with 2-mm E&C 2057 / Cat9 epoxy. T(n,1) modes are generated and 
8 channel focusing is used. 
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6.2.3 Comparison of coated pipe and bare pipe focusing parameters 

In the previous chapter, it has been shown that the dispersion curve of a 

viscoelastic coated pipe is similar to that of a bare pipe, especially at low frequency. It 

would also be interesting to see how much difference there exists in comparing bare pipe 

parameters and coated pipe parameters used in coated pipe focusing. It can be easily 

understood that bare pipe focusing parameters probably work very well in coated pipes 

where the coatings are very thin compared to pipe thickness. When the coating gets 

thicker, a difference should exists in the focused profiles for the focusing parameters 

calculated from the bare pipe only and the pipe with coating taken into account. 

The comparison of 8 channel longitudinal focusing at 60 kHz using coated pipe 

parameters and the corresponding single layer bare pipe parameters are shown in 

Figure 6-9. The comparison for the 12 channel torsional focusing is given in Figure 6-

10. An 8 in. schedule 40 steel pipe coated with 1.5 mm Cat9 expoxy is used as an 

example here. In both figures, the comparison of the partial loading angular profiles at the 

focal distance is shown in the left. The partial loading angular profiles for the coated pipe 

are plotted using blue solid lines. The partial loading angular profiles for the 8 in. 

schedule 40 single layer steel pipe are plotted by red dash-dot lines. The focused profiles 

using the coated pipe parameters and the bare pipe parameters, as well as the 

axisymmetric wave profiles, are illustrated in the right columns of Figure 6-9 and 

Figure 6-10. The focused profiles using the coated pipe parameters are plotted using 
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blue solid lines. The focused profiles in the coated pipe but using the bare pipe 

parameters are denoted by red solid lines. The axisymmetric wave profiles at the 

propagating distances are represented by green solid lines.  

It can be seen from Figure 6-9 and Figure 6-10 that at these propagating 

distances the focusing parameters calculated from the coated pipe can provide 

significantly higher penetration power than the aixisymmetric waves. Also, the 

parameters calculated from the coated pipe focuses much better than the focusing 

parameters calculated from the corresponding bare pipe. In Figure 6-9, the parameters 

calculated from the bare pipe are still able to focus at the correct circumferential location. 

In Figure 6-10, the bare pipe focusing parameters completely fail to focus in coated 

pipe. These numerical examples demonstrate that calculation of the focusing parameters 

based on the coating pipe configuration is necessary. It is also revealed from numerical 

calculations that at other distances, it is possible that the bare pipe focusing parameters 

work almost as well as the coated pipe parameters in the coated pipe, particularly when 

the propagating distances are not too long. The reason lies in the deconvolution algorithm 

we use to calculate the focusing parameters. In the deconvolution algorithm, our goal of 

focusing is to achieve a constructive interference at 0º (the center of channel #1) while 

complete destructive interference at the center of the other channels. This is why a 4 

channel focused profile will always have 2 side lobes, while an 8 channel focused profile 

always has 6 side lobes. The smallest amplitude between two lobes is strictly controlled 

to be zero and the locations of these minima correspond to the center of channel #2 to #6. 

Due to the fact that the deconvolution algorithm strictly controls the amplitude at the 
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center of channel #2 to #6 to be zero, the focused amplitude in the channel #1 can be 

sacrificed. In other words, the focused amplitude and the focusing parameters from the 

deconvolution process may not be optimal in some cases. Therefore, in these cases, the 

bare pipe focusing parameters may work well in the coated pipe too, because the bare 

pipe focusing parameters do not control the side lobes in the coated pipes. In general, 

when the propagating distances are long enough and the coatings are thick enough, the 

bare pipe parameters may finally fail in the coated pipe. However, the relationship 

between the focal amplitude at a certain distance and the coating thickness may not be 

linear or monotonic. If bare pipe parameters are to be used in coated pipe inspection, a 

parametric study should be conducted to evaluate the distances and frequencies where the 

bare pipe parameters can fail.  

 

       
Figure 6-9: Longitudinal L(n,2) 8 channel focusing in an 8 in. schedule 40 steel pipe
coated with 1.5 mm Cat9 expoxy at 60 kHz. Left: partial loading profiles at 5.6 m. in the 
coated pipe (blue) and the corresponding bare pipe (red); right: axisymmetric(green),
focused profiles using bare pipe parameters (red) and coated pipe parameters (blue) at 5.6
m. 
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6.3 FE modeling of focusing in coated pipes 

FE modeling is now widely adopted as a suitable tool to analyze problems with 

complex structures. It is also convenient to use FEM in numerical experiments to 

visualize physical phenomenon and to verify theories. In this work, ABAQUS is used to 

simulate guided wave focusing in coated pipes. The process of modeling is discussed 

below.  

The modeled pipe is an 8 in. schedule 40 steel pipe with 1.5 mm thick bitumastic 

50 coating. The focal distance is designed to be 5.6 m. The focusing profiles are 

calculated for 8 channel phased array loading with longitudinal flexural wave modes 

L(n2) at a frequency of 60 kHz. The focused displacement profiles in the coated pipe are 

      
Figure 6-10: Torsional T(n,1) 12 channel focusing in an 8 in sch. 40 steel pipe coated
with 1.5 mm Cat9 expoxy at 60 kHz. Left: partial loading profiles at 7.2 m. in the coated 
pipe (blue) and the corresponding bare pipe (red); right: axisymmetric(green), focused
profiles using bare pipe parameters (red) and coated pipe parameters (blue) at 7.2 m. 
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illustrated in Figure 6-11. In Figure 6-11 the focusing profile using the coated pipe 

focusing parameter is plotted with blue dashed line and the focusing profile using the 

focusing parameter calculated from the bare 8 in. schedule 40 steel pipe is plotted with 

red dash-dot line. It can be seen from Figure 6-11 that using the coated pipe focusing 

parameters provides an increase in displacement amplitude at the focal position compared 

to using the bare pipe focusing parameters. The focused displacement amplitude of using 

coated pipe parameters is 0.67, whereas the focused displacement amplitude of using bare 

pipe parameters is 0.40. Therefore, the increase in displacement amplitude is 

approximately 67%. 
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In building the model, the whole cylindrical structure is first constructed. The 

cylinder is then partitioned into two sections, one pipe section and one coating section, as 

illustrated in Figure 6-12. In the modeling, the loading area is defined at the edge for 

convenience.  The partition for the 8 channel loading is also shown in Figure 6-12. The 

loading is in axial direction denoted by arrows in orange. The structure is meshed with 

the maximum length of the elements being less than one-eighth of the wavelength. The 

time steps in the calculation can be automatically decided by ABAQUS. If chosen 

manually, the time steps should be at least several times less than the period of the input 
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Figure 6-11: Theoretical calculation of the focused displacement profiles in an 8 in.
schedule 40 steel pipe coated with 1.5 mm. bitumastic 50 coating. Focused profile using 
coated pipe parameters: blue dashed line; focused profile using bare pipe parameter: red
dash-dot line. 
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signal and less than the time ultrasonic wave propagates from one end of the element to 

the other end.  

Luo et al. [2007] used finite elements to model guided wave focusing in coated 

pipes using bare pipe focusing parameters. They selected longitudinal waves to focus in a 

10 in. schedule 40 steel pipe with two different coatings (Mereco 303 epoxy and 

bitumastic 50). It is shown that for most of the cases he modeled, focusing parameters 

calculated based on bare pipes were able to focus in coated pipes too. The viscoelastic 

material property in his model was approximated by a single damping factor introduced 

from the complex elastic modulus and the material was defined as elastic. In fact, the 

viscoelastic material had different attenuation on shear and volumetric behavior, which 

are represented by the complex longitudinal velocity )(* ωLC  (Eq. 6.22) and the complex 

shear velocity )(* ωSC  (Eq. 6.23), as have been used in our SAFE calculation. 
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Figure 6-12: Illustration of the coated pipe configuration for FEM modeling purpose. 
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Here, )(ωLC  and )(ωSC  are the bulk longitudinal and shear velocity in the viscoelastic 

material. )(ωα L  and )(ωα S  are the attenuation associated with longitudinal and shear 

waves respectively. These parameters can all be frequency dependent. However, in many 

ultrasonic applications, )(ωLC , )(ωSC , 
ω

ωα )(L , and 
ω

ωα )(S  are measured to be almost 

constant [Barshinger 2004]. 

The complex longitudinal and shear velocities can be converted into complex 

shear modulus )(* ωG  and complex bulk modulus )(* ωK  via Eq. 6.24 and Eq. 6.25 

respectively. 

ρ  is the material density. The complex shear of the bulk moduli can be written as 

where )(ωG′  and )(ωG ′′ are the real and imaginary parts of the complex shear modulus; 

)(ωK ′  and )(ωK ′′ are the real and imaginary parts of the complex bulk modulus. )(ωG′ , 
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)(ωG ′′ , )(ωK ′ , and )(ωK ′′  can be converted to the long term shear modulus 
∞=t

tG )(  

and the long term bulk modulus 
∞=t

tK )(  by [Christensen 1981] 

The long term Young’s modulus and Poisson’s ratio can be calculated from the 

long term shear modulus )(∞G  and bulk modulus )(∞K . The long term Young’s 

modulus and Poisson’s ratio are input into ABAQUS to give the definition of the long 

term behavior of the viscoelastic material [ABAQUS Analysis User’s Manual version 

6.5]. The other variables that need to be input into ABAQUS to give the definition of 

viscoelastic behavior in frequency domain are )( *gRω , )( *gIω , )( *kRω , )( *kIω , 

which can be calculated from the following  

In our modeling, the finite element computation is conducted in time domain. 

Therefore, the viscoelastic material properties in frequency domain will be converted into 

the time domain by ABAQUS via a Prony series approximation before the computation 

[ABAQUS Analysis User’s Manual version 6.5].  

The ABAQUS modeling results are shown in Figure 6-13 and Figure 6-14. The 

predetermined focal distance is pointed out by arrows in both figures. Figure 6-13 shows 
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the waves sent out from the left end of the coated pipe. A 6 cycle pulse is used as the 

driving signal. The bare pipe focusing parameters are used in the upper plot, while the 

coated pipe focusing parameters are used in the lower plot. The upper plot in Figure 6-14 

shows the static shot of waves at the focal distance in the coated pipe using bare pipe 

focusing parameters. The lower one is the static shot of wave focusing in the coated pipe 

using coated pipe focusing parameters. The focal position is indicated by the arrows in 

the figure. The color scale shows the displacement magnitude of the wave field in the 

coated pipe. As can be seen from the figure, both sets of focusing parameters work. 

However, the focused wave displacement magnitude in the upper static shot is much 

smaller than that in the lower one. The maximum focused displacement magnitude for the 

bare pipe parameters is found to be 7106.3 −× , while the maximum focused displacement 

magnitude using the coated pipe parameters is 7103.5 −× . The displacement input 

amplitude of the ABAQUS model is 6101 −×  for amplitude factor 1. The improvement in 

the focused displacement amplitude is about 47%. 

The difference in focused amplitudes between the theoretical calculations in 

Figure 6-11 and ABAQUS modeling is summarized in Table 6-5. It can be observed that 

the focused displacement amplitudes in the FE modeling are smaller than the theoretical 

Table 6-5: Comparison of focused amplitudes between theoretical calculation and
ABAQUS modeling driven by a 6 cycle pulse. 

Focused amplitudes Theoretical 
calculation 

ABAQUS modeling 
(6 cycles) 

Difference between 
theory and model 

Coated pipe 
parameters 0.67 0.53 26% 

Bare pipe 
parameters 0.40 0.36 11% 
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values. This difference is possibly caused by two reasons. First, the viscoelastic material 

properties are converted from frequency domain to time domain in the FE computation. 

In the conversion, approximately 10 terms are used in the Prony series. The truncation of 

the number of terms may lead to difference in the results. Second and more importantly, 

in our theoretical calculation, continuous waves at a single frequency are used. Therefore, 

all of the generated flexural modes in the theoretical calculations are continuous waves. 

However, in our modeling, the driving signal is a 6-cycle hanning windowed sinusoidal 

signal. This frequency bandwidth of such a signal will result in wave dispersion after 

propagating some distance. In other words, the generated flexural modes are not 

continuous waves anymore and will eventually separate from each other given a long 

enough propagation distance, because they all have different speeds. This dispersion will 

affect the focusing results. The dispersed part of the waves are of much smaller 

displacement amplitudes compared to the focused ones and are hidden in the figure by 

setting a threshold in the color scale in order to obtain a better view of the focused waves.  

To make sure dispersion is the reason that makes the focal amplitudes in the FE 

modeling less than those predicted by theories (Table 6-5), another FE model is 

constructed. The coated pipe configuration is the same. However, this time it is driven by 

a 12-cycle hanning windowed sinusoidal signal. The focused amplitudes driven by a 12 

cycle pulse are compared with the theoretical calculation in Table 6-6. It can be seen that 

the focused amplitudes are enhanced compared to those in the FE model driven by a 6 

cycle pulse. The difference between the FE modeling and theoretical predictions for both 

bare pipe and coated pipe focusing parameters are of only 5% difference for a 12 cycle 

driving signal. This difference is majorly caused by the material properties mentioned in 
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the previous paragraph. The FE modeling provides us excellent verification to the 

theories and can be taken as a convenient numerical experiment. 

 

Table 6-6: Comparison of focused amplitudes between theoretical calculation and 
ABAQUS modeling driven by a 12 cycle pulse. 

Focused amplitudes Theoretical 
calculation 

ABAQUS modeling 
(12 cycles) 

Difference between 
theory and model 

Coated pipe 
parameters 0.67 0.70 4.5% 

Bare pipe 
parameters 0.40 0.42 5.0% 
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Figure 6-13: The waves sent out from the end of the left pipe by using a 6 cycle driving signal. FE modeling of guided wave
focusing in a coated pipe using bare pipe parameters (upper) and coated pipe parameters. Pipe size: 8 in. schedule 40 steel.
Coating: 1.5-mm bitumastic 50. The designed focal distance is 5.6 m. 8 channel longitudinal focusing is used. 



 

 
Figure 6-14: The focused wave packages for a 6 cycle driving signal. FE modeling of guided wave focusing in a coated pipe using
bare pipe parameters (upper) and coated pipe parameters. Pipe size: 8 in. schedule 40 steel. Coating: 1.5-mm bitumastic 50. The 
designed focal distance is 5.6 m. 8 channel longitudinal focusing is used. 



 

 

 
Figure 6-15: The focused wave packages for a 12 cycle driving signal. FE modeling of guided wave focusing in a coated pipe
using bare pipe parameters (upper) and coated pipe parameters. Pipe size: 8 in. schedule 40 steel. Coating: 1.5-mm bitumastic 50. 
The designed focal distance is 5.6 m. 8 channel longitudinal focusing is used. 



 

 

6.4 Summary 

This chapter tackles the guided wave source influence problem in multilayered 

hollow cylindrical structures containing viscoelastic materials. The excited guided wave 

field of a specific source loading is composed of multiple normal modes. These normal 

modes are the characteristic solutions of the viscoelastic multilayered hollow cylinder. 

The amplitude factor of each generated normal mode is computed by the Normal Mode 

Expansion (NME) technique. By superimposing the generated normal modes with their 

corresponding amplitude factors, the total excited guided wave field is obtained. 

The focusing computation in viscoelastic multilayered hollow cylinders is 

handled in the same way as that in a single layered elastic hollow cylinder [Li, et al., 

2002]. Based on the displacement amplitude angular profile obtained from the source 

influence calculation, a deconvolution algorithm is incorporated to provide the amplitude 

factors and time delays to achieve guided wave focusing in multilayered pipes using a 

phased array.  

Since the whole derivation from dispersion curves to focus computation is general 

and applicable in either single-layered or multilayered cylinders. The derivation based on 

the SAFE method is first implemented to calculate the dispersion curve values, the 

focusing parameters, and angular profiles in a single layered hollow cylinder. The results 

are quantitatively compared with the previous calculation of a single layered hollow 

cylinder based on a pure analytical method [Li, et al., 2002]. Excellent agreement is 

achieved between the two methods for both longitudinal flexural waves and torsional 
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flexural waves. The largest difference in phase velocity for the two methods is less than 

0.01%. The comparison further validates the derivation based on the SAFE method. 

The calculation is then carried out on multilayered hollow cylinders with 

viscoelastic materials. Considering that, in applications, most pipes are coated with 

viscoelastic materials for protection purpose, the focused profiles in a coated pipe by 

using coated pipe focusing parameters and its corresponding bare pipe parameters are 

compared. It is revealed that the bare pipe focusing parameters focus effectively under 

the circumstances where low frequency and thin coating are used. When the coating gets 

thicker, using bare pipe focusing parameters in a coated pipe can fail. In this situation, the 

coated pipe focusing parameters must be used. 

Finally, a finite element model in ABAQUS is built to visualize the difference in 

focused energy by using coated pipe focusing parameters and the corresponding bare pipe 

focusing parameters in a pipe with relatively thick coating. The results show that the 

coated pipe parameters focus much better than the bare pipe parameters as have been 

predicted in the theoretical calculations. 

 



 

 

Chapter 7 
 

Experimental results 

The theories of guided wave propagation and focusing in multilayered hollow 

cylinders have now been developed through a combination of Semi-Analytical Finite 

Element (SAFE) modeling and an analytical derivation of modal orthogonality as well as 

source influence. Finite element modeling in Abaqus is also performed to visualize the 

focusing process in the time domain and to verify our theoretical calculations. Since the 

generation of guided wave focusing parameters in coated pipe is based on the dispersion 

curves, wave structures, modal orthogonality, and source influence calculations, it would 

be beneficial to conduct experiments to verify the coated pipe focusing parameters and to 

further validate our theories from the dispersion curves to focusing calculation. In the 

following, the coated pipe focusing experimental methodology, experiment process, and 

results will be discussed in detail.  

7.1 Synthetic focusing in pipes 

To better understand the guided wave synthetic focusing in pipes, let us start with 

the ultrasonic bulk wave phased-array focusing. Two focusing methods are commonly 

used in bulk wave phased-array focusing. One is the real-time phased-array bulk wave 

focusing. The other is the synthetic bulk wave focusing, which is often referred to as 

Synthetic Aperture Focusing Technique (SAFT) [Chiao, et al., 1994]. In the real-time 
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phased-array bulk wave focusing technique, the time delays are input into each 

transducer in the phased array. Then, the signals are excited with different time delays 

from the transducers in the phased array, these ultrasonic signals will form constructive 

interference at the focal region or direction is created, while destructive interference at 

other regions or directions. In synthetic bulk wave focusing, the signal is transmitted 

from each of the transducers without any time delay and received by a set of transducers. 

All the received signals are collected and put into a post processing scheme, where the 

time delays needed for focusing at different regions are compensated. 

Similar to bulk wave focusing, guided wave focusing in pipes can be realized both 

in real time and in post processing. For real-time guided wave focusing in pipes, 

appropriate amplitude factors (voltage levels) and time delays are applied to different 

channels in the phased array. The generated guided wave modes then form a constructive 

interference at the predetermined focal position, as described in our bare and coated pipe 

focusing calculations. For guided waves, the synthetic focusing used in our experiments, 

the signal is sent from each channel and received from all the channels without any added 

time delay and voltage control. For a 4-channel array, the signal is sent from channel 1 

and received by all 4 channels. The process is then repeated from channel 2 to 4. In this 

way, 16 (4×4) signals will be obtained for a 4-channel phased array. The time delays and 

amplitude factors are then applied to the 16 received signals in post processing.   

As can be expected, the signals transmitted from different channels will arrive at 

the defect with different phases and amplitudes. The difference in phases and amplitudes 

needs to be compensated in the synthetic focusing. On the other hand, any signal 

scattered from the defect will also arrive at the 4 channels with different phases and 
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amplitudes. The difference in phases and amplitudes upon receiving is associated with 

the displacement angular profile of the defect, which is unknown. The defect can be 

visualized as a source also. In our synthetic focusing, the angular profile of the defect is 

assumed to be approximately the same as the angular profile of a single channel. 

Therefore, the same amplitudes and time delays can be compensated in the receiving part 

as that done to the sending part. This forms exactly a convolution process which is the 

reverse process of the deconvolution algorithm used in the focusing parameter 

calculation. The convolution process for guided wave synthetic focusing is further 

illustrated in Figure 7-1. 

 

1, 2, …, N

1, 2, …, N

Sending Channels:

…
Time delays and 
amplitude factors

Receiving Channels:

Time delays and 
amplitude factors

…

∑

Focused signal
 

Figure 7-1: Guided wave synthetic focusing process, where N is the total number of
channels. 
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7.2 Experiment setup 

The system employed in the synthetic focusing experiments is the Power Focus 

system made by FBS Inc. As shown in Figure 7-2, a customized portable data acquisition 

system is used with software designed to control signal transmission and receiving. The 

guided wave phased array is wrapped around the circumference of the pipe. The phased 

array contains two rings of transducers, one for signal transmission, and the other for 

receiving. Each of the two rings is composed of 12 approximately equally spaced 

piezoelectric transducers. Each ring is also segmented into 4 channels with 3 transducers 

distributed in each channel. During experiments, the phased array is kept in tight contact 

with the pipe by pressure. The operative frequency range of the phased array is from 70 

kHz to 140 kHz. The synthetic focusing experiment is carried out from 70 kHz to 140 

kHz for every 5 kHz increment. In the following, only the experiment results for 

frequencies 75 kHz and 80 kHz will be discussed in detail because both theoretical 

calculation and experimental results reveal that the focusing effect is the strongest for 

these two frequencies. 
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The pipe utilized in the experiment is a 4 in. schedule 40 steel pipe coated with 

0.4 mm bitumastic 50. The properties of bitumastic 50 are listed in Table 5-2. Since 

bitumastic 50 is a very attenuative material, the coating is made relatively thin to reduce 

Soft ware

Phased array
on pipe end A

Saw cut

Pipe end B

Figure 7-2: Guided wave synthetic focusing pipe experiment setup. 

Saw cut
2.5% CSA

 
Figure 7-3: Saw cut with 2.5% cross sectional area (CSA) 
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attenuation to the guided wave signal. The pipe is 15 ft. long. A saw cut is machined on 

the pipe for the experiment with a cross sectional area of 2.5% as shown in Figure 7-3. 

The saw cut is 6 ft. and 6 in. from pipe end A.  

7.3 Coated pipe synthetic focusing experimental results 

Before conducting experiments, theoretical calculations are first performed. The 

transducer array is placed at 1.4 in to pipe end A. Therefore, the saw cut location is 

approximately 6.4 ft from the transducer array. The focused profiles of the torsional 

waves T(n,1) at the saw cut location using bare pipe focusing parameters and coated pipe 

focusing parameters are shown in Figure 7-4. The frequency is chosen to be 80 kHz, 

because at this frequency, the focused profiles appear to have small side lobes at the focal 

distance. It can be seen from Figure 7-4 that the focused profiles obtained from using 

both coated pipe focusing parameters and the corresponding bare pipe focusing 

parameters are almost the same. This is not surprising, since the coating is relatively thin 

and the operating frequency is low. The difference between the dispersion curves for a 

coated pipe and uncoated bare pipe are small at low frequency, but it increases with an 

increase in frequency.  
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The amplitude factors and time delays for focusing at the saw cut in the coated 

pipe and the corresponding bare pipe are listed in Table 7-1. It can be observed from 

Table 7-1 that the focusing parameters calculated from the coated pipe and the 

corresponding bare pipe are close to each other. The difference between the two sets of 

amplitude factors is small. The two sets of time delays should be compared by taking into 

account that the period of a tone burst signal at 80 kHz is 12.5μs. Therefore, the 

difference between the two sets of time delays is approximately 4.7μs for each channel, 

which means that the two sets of time delays are actually close to each other. The 

  0.5
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Figure 7-4: Torsional waves T(n,1) focusing in a 4 in. schedule 40 steel pipe coated with
0.4-mm bitumastic 50 at a frequency of 80 kHz. The focal distance is 6.4 ft counting 
from the location of the transducer array to the saw cut. 
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similarity between the two sets of parameters also reveals that the coating is relatively 

thin. 

Before the saw cut is machined, data were taken on the coated pipe with no defect 

to serve as a reference. The transducer array is placed at 1.4 in to pipe end A as shown in 

Figure 7-2. The transmitted signal is a 6 cycle hanning windowed tone burst at 80 kHz 

center frequency. 16 data sets were taken for the 4-channel synthetic focusing. The 4-

channel guided wave synthetic focusing was then performed using both the coated pipe 

parameters and bare pipe parameters listed in Table 7-1. The corresponding focusing 

results are plotted in Figure 7-5 and Figure 7-6 respectively. The zero distance in each 

figure denotes pipe end A. In each of the two figures, four waveforms are plotted. Each 

waveform represents the synthetic focused result at the focal angle written to the upper 

right hand side of the waveform. The focal zone is indicated by two vertical red lines 

covering from 6.5 ft. to 7.5 ft on every waveform in Figure 7-5 and Figure 7-6. The focal 

zone is approximately 1 ft. long. It can be observed from both figures that there is no 

clear echo within the focal zone in any of the waveforms, which means that there is no 

Table 7-1:  Coated pipe focusing parameters: Torsional waves T(n,1) focusing at 6.4 ft. in
a 4 in. schedule 40 steel pipe coated with 0.4 mm. bitumastic 50 at a frequency of 80
kHz.  Bare pipe focusing parameters: Torsional waves T(n,1) focusing at 6.4 ft. in a 4 in. 
schedule 40 steel pipe at a frequency of 80 kHz. 

 Bare pipe focusing parameters Coated pipe focusing parameters 

Channel index Amplitude 
factor 

Time delay 
(μs) 

Amplitude 
factor 

Time delay 
(μs) 

1 1.000 1.775 1.000 6.405 
2 0.655 9.572 0.640 1.782 
3 0.748 8.227 0.596 0.474 
4 0.655 9.572 0.640 1.782 
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defect detected within the focal region using either set of the focusing parameters in 

Table 7-1. 
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Figure 7-5: Guided wave synthetic focusing results in the coated pipe with no defect. 
Coated pipe focusing parameters in Table 7-1 are used. No defect is found in the focal 
region. 
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The above procedure is repeated to collect data after the saw cut is made. The 

other experiment settings remain to be the same. The saw cut is centered at 0º, which 

corresponds to the location of channel 1. The synthetic focusing results at the saw cut 

distance using coated pipe parameters and bare pipe parameters are shown in Figure 7-7 

and Figure 7-8 respectively. An echo shows up in the focal zone of the focused waveform 

at 0º for both Figure 7-7 and Figure 7-8. However, there are no echoes in the focal zones 

of the focused waveforms at the other focal angles. This means there is only one defect in 

the focal range and is located at 0º. No significant difference is observed between the 

focused defect echo amplitudes of the two cases, as have been indicated from the 
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Figure 7-6: Guided wave synthetic focusing results in the coated pipe with no defect.
Bare pipe focusing parameters in Table 7-1 are used. No defect is found in the focal 
region. 
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theoretical calculations in Figure 7-4. The defect axial location is determined to be 6.5 ft. 

according to the arrival time of the echoes in both figures. These experimental results 

verify that the coated pipe focusing parameters focus well at the designed location and 

correctly located the defect both axially and circumferentially. It is also confirmed that 

the bare pipe parameters work effectively in cases where thin coatings are used.  
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Figure 7-7:  Guided wave synthetic focusing results at the saw cut distance in the coated
pipe. Coated pipe focusing parameters in Table 7-1 are used. A defect is found at 0°. 
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Other frequencies have also been performed in the experiment. Similar synthetic 

focusing results are obtained. The experimental results agree well with the theoretical 

predictions using coated pipe focusing parameters. For brevity, only the synthetic 

focusing results at 75 kHz using the coated pipe focusing parameters are shown in 

Figure 7-9. Repeated tests show that the difference between different test results is less 

than 5%. 
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Figure 7-8:  Guided wave synthetic focusing results at the saw cut distance in the coated
pipe. Bare pipe focusing parameters in Table 7-1 are used. A defect is found at 0°. 
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7.4 Summary 

This chapter discussed the concept and process of guided wave synthetic focusing 

in pipes. Experiments are performed to validate the theoretical calculation of coated pipe 

focusing parameters. A saw cut is machined on a 4 in. schedule 40 steel pipe coated with 

0.4 mm bitumastic 50. Experiments are conducted and data are taken to synthetically 

focus at the saw cut location by applying both coated pipe focusing parameters and the 

bare pipe focusing parameters. The experimental synthetic focusing results show that the 

0 5 10 15
-0.1

0
0.1 0°

A
m

pl
itu

de

0 5 10 15
-0.1

0
0.1 90°

A
m

pl
itu

de

0 5 10 15
-0.1

0
0.1 180°

A
m

pl
itu

de

0 5 10 15
-0.1

0
0.1 270°

A
m

pl
itu

de

Distance (ft)
Figure 7-9: Guided wave synthetic focusing results at the saw cut distance in the coated
pipe at a frequency of 75 kHz. Coated pipe focusing parameters, calculated according to 
the coated pipe size and properties in the experiment, are used. 
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coated pipe parameters work very well and the focused results match that predicted by 

the theories. Since the focusing parameters are computed on the basis of dispersion 

curves, wave structures, and source influence calculation, the validation of coated pipe 

parameters also indirectly verifies the calculation on dispersion curves, wave structures, 

orthogonality, and source influence. The axial and circumferential locations of the saw 

cut are accurately determined in the experiment. It is also verified both theoretically and 

experimentally that the bare pipe focusing parameters also focus effectively for pipes 

with thin coatings. 



 

 

Chapter 8 
 

Concluding remarks 

8.1 Final Summary 

The purpose of the work in this thesis is to seek better understanding and full 

exploration of all of the possible guided wave modes including axisymmetric and flexural 

that can propagate in multilayered hollow cylindrical structures with elastic or 

viscoelastic materials. The work is initially motivated by the need to conduct 

nondestructive evaluation and testing on pipes with viscoelastic coatings. Viscoelastic 

coatings are widely used on pipes for various protection purposes. The existence of these 

viscoelastic coatings changes the guided wave modal behavior in pipes. Due to the fact 

that mode control is a critical issue in guided wave nondestructive evaluation, the 

investigation of guided wave propagation characteristics in such viscoelastic multilayered 

hollow cylindrical structures becomes indispensable and imperative. 

The thesis started by an introduction to the previous work on guided wave 

propagation [Gazis 1959], source influence [Ditri, et al., 1992] and focusing technique 

[Li, et al., 2002] in elastic bare pipes. Following these theories, the guided wave focusing 

technique was applied and extended to pipe imaging and circumferential sizing in the 

thesis. Guided wave long range pipe imaging is realized in the field test by scanning the 

pipe both circumferentially and axially with a focused guided wave beam. The imaging 

process was discussed and the final pipe image was displayed. All defects were 
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successfully found in the field test. After that, guided waves were used to focus at 44 

equally spaced locations around the pipe for defect circumferential size determination. 

The amplitude of the reflected wave from the defect is recorded for each focal angle to 

form a reflection profile. Based on the focused displacement amplitude profiles, the 

reflected energy profiles are calculated for defect with different circumferential lengths. 

These theoretical reflection profiles are then compared with the experimental ones to 

infer the circumferential length of the defect. The results are encouraging. 

The above investigation shows that guided wave focusing not only provides better 

penetration power than axisymmetric inspection but also produces direct circumferential 

resolution. However, with the existence of viscoelastic coatings on pipes, the 

performance of bare pipe focusing technique in coated pipe is uncertain. Therefore, the 

goal is to analyze the guided wave mode behavior in coated pipes and develop the 

focusing technique suitable for coated pipes.  

To tackle the problem of wave propagation in free viscoelastic multilayered 

hollow cylinders, the Semi-Analytical Finite Element (SAFE) method is adopted. The 

multilayered cylindrical waveguide is discretized in the radial direction, while analytical 

representations are adopted in the circumferential and axial directions. A suitable SAFE 

formulation is then developed based on the conservation of energy. A complex stiffness 

matrix is used to describe the viscoelastic behavior of the materials. After mathematical 

manipulation, a characteristic equation is assembled. The eigenvalues of the characteristic 

equation are the complex wave numbers for the selected frequency. The phase velocity 

and attenuation dispersion curves are obtained from the real and imaginary parts of the 



169 

 

complex wave numbers respectively. The eigenvectors of the equation provide the wave 

structures of the corresponding guided modes. 

An important issue regarding the dispersion curves solved by the SAFE method is 

that the eigenvalue arrangement appears to be different for different frequencies. This 

makes it difficult to trace modal behavior along the frequency. It also makes it 

inconvenient to select the most excited guided wave modes under certain source loading. 

To resolve this problem, an orthogonality relation is developed based on the real 

reciprocity relation. This orthogonality relation is applicable to both elastic and 

viscoelastic, single-layered and multilayered hollow cylinders. The orthogonality relation 

is then implemented to sort the guided modes. The mode sorting enables the dispersion 

curves to be plotted using different colors and line styles for different modes and makes it 

clear how the modes evolve with frequency in the dispersion curves. The successful 

mode sorting also serves as verification to the theoretical derivation and the 

corresponding numerical computation. 

The axisymmetric modes obtained from the SAFE method were compared with 

that have been developed by Barshinger [2004] using an analytical matrix method. 

Excellent agreement was obtained between the dispersion curves given by the two 

different methods. In addition to axisymmetric modes, the SAFE formulation also 

provides the flexural mode solution. Flexural modes can be generated wherever the 

feature is non-axisymmetric in a pipe. They play an important role in source influence, 

focusing, and defect sizing. The wave structures are also calculated and compared to 

those in bare pipes. The cross sectional deformations of different guided wave modes are 

also plotted to help understand the guided wave modal behavior. 
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The source influence in a viscoelastic multilayered hollow cylinder is analyzed in 

a similar way as that in a single-layered elastic hollow cylinder. The generated guided 

wave field is composed of multiple guided wave modes. Normal mode expansion (NME) 

technique is employed to calculate the amplitude factors of the generated normal modes. 

The difference between the source influences in multilayered viscoelastic and single-

layered elastic hollow cylinders is that the derivation of amplitude factor for multilayered 

viscoelastic hollow cylinders are based on the real reciprocity relation, while the complex 

reciprocity relation is used for single-layered elastic hollow cylinders. Plus, to develop 

the orthogonality and source influence in multilayered viscoelastic hollow cylinders, the 

continuity conditions for displacement and normal stress components must be used in 

addition to the traction free surface at the inner and outer surfaces of the cylinders. 

Finally, the deconvolution algorithm is adopted to calculate the focusing 

parameters in viscoelastic multilayered hollow cylinders. To validate the algorithm, the 

whole formulation based on SAFE method is first used to compute the focusing 

parameters in a bare pipe. The results are compared to the focusing parameters obtained 

from Jian Li’s program, which is written based on the analytical matrix method. The bare 

pipe focusing parameters calculated from both methods match completely for both 

longitudinal and torsional mode focusing. Next, displacement amplitude angular profiles 

of partial source influence on coated and bare pipes are illustrated. Detailed comparisons 

are given to the focused profiles in coated pipes using coated pipe focusing parameters 

and bare pipe focusing parameters. It is found that the focusing ability of using bare pipe 

focusing parameters in coated pipes in general decreases with the increase of frequency 

and coating thickness. To visualize and verify the difference in focusing using coated 
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pipe and bare pipe focusing parameters, a finite element model is constructed with 

Abaqus. The process of modeling pipes with viscoelastic coatings is given in detail. The 

viscoelastic property definition in Abaqus is used to implement the complex stiffness 

matrix that has been used in our theoretical calculations. The modeling results clearly 

demonstrate the case where the focused amplitude of using the coated pipe focusing 

parameters can be significant higher than using the corresponding bare pipe focusing 

parameters in the coated pipe. The modeling results also match the theoretical 

calculations very well.  

To further verify the algorithm developed in the thesis, a guided wave synthetic 

focusing experiment is designed. The concept and process of guided wave synthetic 

focusing in pipes are introduced. The experiment is then conducted on a steel pipe coated 

with 0.4 mm. bitumastic 50. A saw cut is machined in the coated pipe at a predetermined 

distance. The theoretical calculation shows that the focusing effect using both coated pipe 

focusing parameters and the corresponding bare pipe focusing parameters should be 

similar in this case. 16 sets of data are taken for the 4-channel synthetic focusing at the 

machined saw cut in the experiment. The bare pipe focusing parameters and coated pipe 

focusing parameters are applied to these experimental data in post processing. The 

experimental synthetic focusing results show that both the coated pipe parameters and the 

bare pipe parameters focus well in this case. The focused side lobes are small and the 

focusing amplitudes are similar. The experimental results agree well with the theoretical 

calculations. 
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8.2 Contributions 

The major contributions of this thesis that go beyond previous work on guided 

wave propagation in hollow cylinders can be summarized as follows: 

1. The establishment of long range guided wave pipe imaging in field tests based on 

guided wave focusing technique in bare pipes. 

2. The development of guided wave circumferential sizing technique in pipes by using 

guided wave focusing technique in bare pipes. 

3. The development of a suitable Semi-Analytical Finite Element (SAFE) theory 

targeting on solving the guided wave propagation problem including dispersion 

curves, wave structures, stress distribution, etc. in multilayered hollow cylinders 

containing viscoelastic materials. 

4. The development of an analytical 3-Dimensional orthogonality relation that is 

generally valid in both elastic and viscoelastic multilayered hollow cylinders. 

5. The development of a mode sorting process that successfully separates all the 

modes in the dispersion curves based on the orthogonality relation developed in 

hollow cylinders.  

6. The development of source influence to calculate the phase velocity spectrum, i.e. 

the excitation amplitude factors of all guided modes in multilayered viscoelastic 

hollow cylinders. 

7. The implementation of the focusing algorithm into the multilayered viscoelastic 

hollow cylinders in order to realize guided wave focusing in viscoelastic coated 

pipes. 
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8. The design of Finite Element Modeling in Abaqus to visualize the guided wave 

focusing process in coated pipes and verify the theories. 

9. Synthetic focusing experiments are performed to verify the coated pipe focusing 

parameters and validate the guided wave focusing theories in viscoelastic coated 

pipes. 

10. The full decomposition of the scattered guided wave field from defects in pipes 

based on the modal orthogonality existing in hollow cylinders (please see Appendix 

A for detail). 

8.3 Future Directions 

Based on the understanding of guided wave mode characteristics to a focusing 

technique in viscoelastic multilayered hollow cylinders, the possible future directions are 

listed in the following. 

1. Defect sizing can be carried out in both bare and coated pipes. The orthogonality 

relation developed in this thesis can be employed to decompose all the normal modes 

(Normal Mode Decomposition, NMD) scattered from a defect. The NMD technique 

reveals the axisymmetric and flexural modes and their corresponding amplitudes 

scattered from a defect. The theoretical development of the NMD has been 

accomplished based on Abaqus finite element models (please refer to Appendix 1 for 

detail). 

2. Following the above decomposition of a scattered wave field, a pattern recognition 

program can be adopted to determine the defect size based on the pattern of the 
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decomposed normal modes. A large number of finite element models can be built in 

Abaqus with defects of different sizes and shapes. The NMD results of these models 

with known defects can be used to train the pattern recognition program. After the 

pattern recognition program is trained, experiments can be done to verify the results 

under certain wave incidence. 

3. Coating delamination is a common problem in application. Based on the coated pipe 

dispersion curves, guided wave modes with dominant displacement in the coating 

layer can be chosen to help detect coating delamination. 

4. The bonding can also be modeled by assuming an additional layer between the 

coating and the pipe. The properties of the bonding layer can be selected to represent 

the bonding condition between the coating and the pipe. In this way, bonding 

degradation can be analyzed. 

5. Suitable guided wave tools should be designed according to different application 

goals on the basis of guided wave mode characteristics in pipe NDE. 

6. Wave propagation characteristics beyond a pipe bend or elbow can be explored. 

Based on the wave propagation characteristics, defect size analysis base on normal 

mode expansion beyond a pipe elbow can be carried out. 
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Appendix A 
 

Defect wave scattering analysis by Normal Mode Decomposition 

A.1 Introduction 

Defect sizing has been a critical subject in Nondestructive Evaluation (NDE) for 

guiding the maintenance and replacement of pipelines. It has also been a challenging 

research area for the past few decades. Conventional bulk wave ultrasonic inspection of 

structures is conducted on a point-by-point basis. This makes the inspection time-

consuming. Therefore, it is usually used where small areas need to be inspected. For long 

range and large area inspections, guided wave techniques are potentially more attractive 

than conventional bulk wave techniques. Guided wave energy is confined in wave guides, 

so there is less attenuation with guided wave propagation. As a result, guided waves can 

travel very long distances. Guided wave techniques are increasingly employed in pipe 

inspections because of reduced cost and efficiency. 

Unlike bulk waves that contain only two modes, multiple modes exist at any 

given frequency for guided waves. The complexity regarding utilizing guided waves in 

defect sizing is the interpretation of the multiple guided wave modes scattered from the 

defect. Especially in pipes and cylinders, the existence of double infinite modes [Ditri, et 

al., 1992] makes the interpretation of the received signal even more difficult. Another 

issue is that most guided wave modes are dispersive, which means that different 

frequency components in the waveform travel at different phase and group velocities 
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along the propagation path. Consequently, the received signal will be distorted due to 

dispersion, which can make the received signal very different from the transmitted one. 

The dispersion effect makes signal interpretation become even more difficult. 

Some good work has been done towards signal interpretation in defect analysis. 

Alleyne and Cawley [1991], for example, presented a 2-Dimensional Fourier transform 

method to separate the multiple guided wave modes propagating in a plate structure. In 

the 2-D Fourier transform method, a series of equally spaced receivers are located along 

the wave propagating path on the surface of the plate. The time domain waveforms from 

all of the receivers are converted into frequency domain by a Fourier transform in the 

time domain. Followed by the time domain Fourier transform, a second Fourier transform 

is conducted in the space domain according to the locations of the receivers. The results 

of the 2-D Fourier transform process are the amplitudes distributed in the wave number (k) 

and frequency (f) domain, which can be directly matched to the dispersion curve of the 

plate to measure the generated guided wave modes.  

Another excellent effort for defect sizing in pipes is made by Hayashi and Murase 

[2005]. In this work, they used 8 sensors equally distributed in the circumference around 

the pipe. Based on the sinusoidal distributions of guided wave modes around the 

circumference of the pipe, they were able to decompose the guided wave modes with 

different circumferential orders. Then, they numerically back-propagated the decomposed 

guided wave modes and obtained the image of the defect. This method works well when 

there is only one guided wave mode group propagating in the pipe. It does not provide 

enough information on the existence of multiple propagating mode groups. 
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This work focuses on the full decomposition of guided wave modes scattered by a 

defect in a hollow cylinder. As pointed out in the thesis, the orthogonality relation exists 

in a wide variety of wave guides. Especially, the guided wave modes in single- or multi- 

layered hollow cylinders share the same orthogonality relation [Eq. 5.32]. Based on this 

orthogonality relation, a Normal Mode Decomposition (NMD) method will be used here 

to decompose the signal scattered by a defect into the doubly infinite guided wave modes 

in a hollow cylinder. FE modeling will be used as a numerical experiment to illustrate the 

NMD process in wave scattering analysis. 

A.2 Normal Mode Decomposition in hollow cylinders 

An 8 in. schedule 40 steel pipe with a notch defect is built into the FE model for 

NMD. The pipe schematic is shown in Figure A-1. The notch is 3 mm. wide. The depth 

of the notch is 50% through-wall thickness. The circumferential length of the notch is 

45º. In the FE model, axisymmetric longitudinal wave L(0,2) will be exited from pipe 

end B by imposing a uniform displacement in the z direction around the circumference of 

the pipe. The wave energy will be partially reflected when the generated wave impinges 

onto the defect. In order to make used of the orthogonality relations in the circumferential 

and axial directions, the receivers should be placed in both directions. The locations of 

the receivers are illustrated by yellow circles. A magnified view of the receiver 

distributions are shown in Figure A-2. The receiver locations are distributed evenly 

around the pipe circumference and along the axial direction of the pipe. As shown in 
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Figure A-2, 64 equally spaced rings of receivers are used in this FE modeling. There are 

16 receiving locations equally spaced on each of these rings.  

 

Notch Location

Receive
rs

Pipe end A

Pipe end B

 
Figure A-1: Pipe schematic showing the distribution of a notch defect and receivers. 
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Receiver locations

64 Rings

 
Figure A-2: A magnified view of the receiver distributions on the pipe. 

Notch

 
Figure A-3: A magnified view of the notch and the mesh. 
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A magnified view of the notch and the meshing in the FE model is shown in 

Figure A-3. The scattered waves from the defect will propagate through the receivers. 

Each of the receivers will receive a signal in time domain. These received signals are 

arranged according to their circumferential and axial locations as shown in Figure A-4, 

where θ and z represents the circumferential and axial location of the receivers; t is the 

time axis of the received signals. In this way, the received signals form a 3-dimensional 

data matrix. Considering that the normal modes propagating in cylinders have sinusoidal 

distributions in both circumferential and axial directions (Eq. 5.2), as well as in time 

domain. A 3-dimensional Fourier transform can be performed on the data matrix. By 

performing the 3-dimensional Fourier transform, the received time domain signals are 

entirely converted into the frequency domain, the axial location z and the circumferential 

location θ of the signals are converted into the wave number k and the circumferential 

order n respectively (Figure A-4). For each circumferential order n, the data in k-f 

domain are the decomposed guided wave modes. They can be compared to theoretical 

dispersion curves in measuring the scattered wave modes and their corresponding 

amplitudes. 

Kil et al. [1998] employed a similar method for wave field decomposition in 

shells. They developed a laser vibrometer to scan axially and circumferentially around 

the pipe surface. A Fourier transform is then conducted on the received signals in the 

circumferential direction and time domain, while an extended Prony method is used to 

predict the wave numbers in the axial direction. The advantage of using the Prony 

method is that the imaginary part of wave number can be predicted also. This makes it 

suitable for analyzing the wave field in coated pipes. Another advantage of using the 
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extended Prony method is that the number of receiver points in the axial direction can be 

reduced. However, the wave number prediction results depends on the number of terms 

used in the Prony series and the number of rings used for receiving. The prediction results 

may be indefinite and deviate from the actual wave numbers in the existence of noise or 

given inappropriate number of terms in the Prony series [Carriere, et al., 1992]. In 

addition, the wave number prediction needs to be conducted for each frequency, which 

can be computationally costly if the excitation signal is wide band in frequency domain. 

Compared to the Prony method, the Fourier transform provides definite results and the 

computational cost is the same for signals with different frequency bandwidths. Kil et al. 

investigated the wave field exited by a piezoelectric shaker on a shell. In this study, we 

analyze the wave field scattered by a defect. In order to obtain more information on the 

dispersion curve, we would like the driven signal to cover a relatively wide frequency 

range. In the modeling, a 2-cycled tone burst is used as our driven signal to excite the 

axisymmetric wave mode L(0,2). Therefore, we use the 3-D Fourier transform to 

decompose the normal modes in the scattered wave field. 
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A.3 Results and discussions 

A 2 cycle tone burst at a center frequency of 35 kHz is used as the driving signal 

in the FE modeling. The normal mode decomposition results from the scattered wave 

field generated by the notch are shown in Figures A-5 to A-13 for wave modes with 

different circumferential orders. The phase velocities of the decomposed normal modes 

are shown with their amplitudes in color scale in these figures. For comparison purpose, 

the theoretical phase velocity dispersion curves are superimposed in these figures as well. 

The theoretical phase velocity dispersion curves are calculated for the wave modes with 

circumferential orders from 0 to 16. The mode name is labeled accordingly for each 

theoretical phase velocity dispersion curve.  

θ (n)

z (k)

t (f)

0

…

…

 
Figure A-4: The 3-dimensional data matrix of the received signal. 
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As can be noticed in Figures A-5 to A-12, the guided wave modes of two different 

circumferential orders are plotted in each figure. This is because signals are received 

from 16 locations around the circumference, which means that the maximum 

circumferential order that can be resolved after the mode decomposition is 8. However, 

guided wave circumferential orders can go from 0 to infinity. If the flexural modes with 

circumferential orders higher than 8 are generated by the defect, they will be 

superimposed to the lower order guided wave modes by aliasing. Therefore, the scattered 

wave modes with circumferential order 16 will be superimposed to those with 

circumferential order 0, modes with circumferential order 15 will then be superimposed 

to those with circumferential order 1, and so on. This aliasing effect can be clearly 

identified in Figures A-5 to A-13. It can also be observed that some flexural modes with 

circumferential orders higher than 16 have also been generated, especially for the L(n,2) 

mode group (for example, Figures A-6 to A-9).  
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Figure A-5: Decomposed wave modes and the theoretical dispersion curves for
circumferential orders 0 and 16. 
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Figure A-6: Decomposed wave modes and the theoretical dispersion curves for
circumferential orders 1 and 15. 
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Figure A-7: Decomposed wave modes and the theoretical dispersion curves for 
circumferential orders 2 and 14. 

2 4 6 8 10
x 104

0

2000

4000

6000

8000

10000

Frequency (Hz)

P
ha

se
 v

el
oc

ity
 (m

/s
)

Circum. order = 3 and 13

 

 

L(3,1)

T(3,1)

L(3,2)

L(13,1)

T(13,1) L(13,2)

0

0.5

1

1.5

2

2.5

3

3.5

x 10
-13

 
Figure A-8: Decomposed wave modes and the theoretical dispersion curves for
circumferential orders 3 and 13. 
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Figure A-9: Decomposed wave modes and the theoretical dispersion curves for
circumferential orders 4 and 12. 
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Figure A-10: Decomposed wave modes and the theoretical dispersion curves for
circumferential orders 5 and 11. 
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Figure A-11: Decomposed wave modes and the theoretical dispersion curves for
circumferential orders 6 and 10. 

2 4 6 8 10
x 104

0

2000

4000

6000

8000

10000

Frequency (Hz)

P
ha

se
 v

el
oc

ity
 (m

/s
)

Circum. order = 7 and 9

 

 

L(7,1)

T(7,1)

L(9,1)

T(9,1) L(7,2) L(9,2)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
-13

 
Figure A-12: Decomposed wave modes and the theoretical dispersion curves for
circumferential orders 7 and 9. 
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A.4 Summary and future work 

The scattered wave field from a defect is now fully decomposed into guided wave 

normal modes by a 3-D Fourier transform. The phase velocities of the scattered wave 

modes and their corresponding amplitudes are obtained. The NMD results agree quite 

well with the phase velocity dispersion curves calculated theoretically. The patterns of 

the NMD results are highly related to defect shape and size. Future work on defect sizing 

can utilize the NMD method on the scattered wave fields of defects with different 

lengths, depths, and shapes in FE modeling. These NMD results with known defect sizes 
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Figure A-13: Decomposed wave modes and the theoretical dispersion curves for
circumferential orders 8. 
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and shapes can be used to train a pattern recognition program. The pattern recognition 

program should be validated by experiments. 

Considering the fact that receiving from a large number of locations, as used in 

our FE model, may be very costly and difficult to apply in practice, a short time Fourier 

transform (STFT) or wavelet transform may be used to substitute the Fourier transform in 

the axial direction of the pipe. In this way, only one ring of receivers is needed instead of 

the multiple rings for the Fourier transform. The group velocity dispersion curves will be 

obtained from the STFT instead of the phase velocity dispersion curves produced by the 

Fourier transform. Nevertheless, the group velocity dispersion curves can still be used to 

train the pattern recognition program in realizing defect sizing as well. 

 



 

 

Appendix B 
 

Nontechnical abstract 

Pipes are widely distributed around us. They go across mountains, underneath 

highways and buildings for the transportation of gas, oil, etc. The pipelines age after long 

time services. Catastrophic failures can be caused by corrosion developed in aged 

pipelines. Regular monitoring of these pipelines is indispensable for ensuring the safety 

of our everyday life.  

Ultrasonic waves can be used to inspect the integrity of pipelines. Wave 

propagation is a common phenomenon in nature. People may hear thunderstorms a few 

seconds after they see lightning, which is caused by the slower speed of sound in air 

compared to that of light. A spreading ripple is wave propagation in water. The difference 

of using ultrasonic waves to inspect pipes is that we are actively developing ways of 

sending ultrasonic waves in pipes and expecting waves bouncing back from defects. 

Unlike air and water, pipes have boundaries. Only those ultrasonic waves that 

satisfy the pipe boundary conditions are able to propagate in pipes. They are called 

ultrasonic guided waves, a term used for ultrasonic waves traveling in bounded 

structures, such as pipes, rails, plates, etc. Guided waves have the ability of propagating 

very long distances because their energy is confined in the structure. This makes guided 

wave a suitable choice for nondestructive evaluation of pipelines. 

The work in this thesis briefly introduces previous theories on guided wave 

propagation in elastic bare pipes and applies the theories to long range pipe imaging and 
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defect circumferential sizing. Taking into account the fact that many pipelines are 

covered with attenuative coatings for protection purposes, the thesis work mostly focuses 

on the full exploration of guided wave propagation characteristics in viscoelastic coated 

pipes. The guided wave modes that can propagate in a free viscoelastic coated pipe are 

solved by a special numerical method (semi-analytical finite element method), where 

finite element representation is used in the radial direction and analytical solutions are 

used in the circumferentially and axial directions of the coated pipe. The guided wave 

modes in coated pipes are proved to be orthogonal to each other, a nice mathematical 

condition simplifying studies of the many guided wave modes propagating in a structure. 

The guided wave field in a viscoelastic coate pipe created by a finite source loading (the 

geometrical loading position on the pipe) is obtained by expanding the wave field into the 

generated wave modes. With the complete understanding of the guided wave field 

generated by a source loading, guided waves are controlled and tuned to focus, where 

waves come together in phase to produce high energy, at any designed location in a 

viscoelastic coated pipe using a circumferentially distributed phase array. The focusing 

technique enhances guided wave penetration power, which is related to the distance a 

wave can travel, in coated pipe. Guided wave focusing effect in viscoelastic coated pipes 

and in elastic bare pipes are compared and discussed. Finite element modeling in 

ABAQUS, a commercially available computational program, is employed to visualize the 

focused energy enhancement in a viscoelastic coated pipe. Experiments are designed and 

conducted to verify the coated pipe focusing theories. Wave scattering from a defect is 

also analyzed by a new technique that decomposes the wave field into different guided 

wave modes. Future work on pipe inspection and defect sizing is discussed. 
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