MARKET-BASED DYNAMIC CONTROL OF
VEHICLE DEPLOYMENT AND SHIPMENT LOAD MAKEUP
IN RFID-ENABLED ENVIRONMENTS

A Thesis in
Industrial Engineering

by

Jindae Kim

© 2008 Jindae Kim

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

May, 2008
The thesis of Jindae Kim was reviewed and approved* by the following:

Soundar R.T. Kumara
Allen E. and Allen M. Pearce Professor of Industrial Engineering
Thesis Advisor
Chair of Committee

A. Ravi Ravindran
Professor of Industrial Engineering

M. Jeya Chandra
Professor of Industrial Engineering

Susan H. Xu
Professor of Management Science and Supply chain management

Shang-tae Yee
Program Manager, General Motors R&D Center
Special Member

Richard J. Koubek
Professor of Industrial Engineering
Head of the Department of Industrial and Manufacturing Engineering

*Signatures are on file in the Graduate School
ABSTRACT

For the past several decades, advances in manufacturing and supply chain management have improved the business environment. Nonetheless, dynamics, such as various unexpected disruptions and uncertainties, in business operations have significant impact on decision-making efficiency. Adoption of wireless communication and sensor technologies has facilitated real-time visibility of the operational dynamics in manufacturing and supply chains. The availability of real-time information requires that new decision-making strategy design should consider: (1) constantly changing operational environment and (2) large amount of distributed information.

This thesis is motivated by a real world example relating to outbound logistics of an automobile manufacturers’ supply chain. In specific, this thesis addresses the shipment yard operations, such as vehicle deployment and shipment load makeup, where an RFID-based wireless tracking system provides real-time information of vehicles. In order to investigate the impact of RFID-based wireless tracking on the shipment yard operations, new operational processes and corresponding decision-making models, which can effectively utilize real-time vehicle information, are designed.

To support and solve new decision-making models for vehicle deployment and shipment load makeup, this research introduces a market-based control mechanism, which is supported by a multiagent-based information system architecture. As a market-based control mechanism for vehicle deployment, an ascending price iterative auction mechanism is designed. For shipment load makeup, two different market structures, called a two-tier auctioning process and a single-tier auctioning process, are designed. In order to control each local market in these auctioning processes, an iterative bundle auction mechanism and an iterative high-bid auction mechanism are developed. The performance of the market-based mechanisms is verified through intensive empirical analysis supported by optimal solutions obtained by solving the mathematical programming models. The results support point to high levels of solution quality and
computational efficiency of the proposed market-based mechanism. Finally, the proposed decision-making models and market-based control mechanisms improve the operational performance of vehicle deployment and shipment load makeup by effectively responding to the operational dynamics and incorporating the real-time information from the RFID-based wireless tracking system.
Table of Contents

List of Tables ... xi

List of Figures ... xiii

Acknowledgements .. xvii

Chapter 1. Introduction ... 1

1.1 Problem Domain Discussion .. 2

1.1.1 Automobile Shipment Yard ... 2

1.1.2 Radio Frequency Identification .. 5

1.2 Market and Multiagent-based Approach to Decision-making for Shipment Yard Operations .. 6

1.3 Research Objectives ... 7

1.4 Organization of the Thesis ... 7

Chapter 2. Problem I: Vehicle Deployment - Preliminaries 10

2.1 Description of Vehicle Deployment Operations ... 10

2.2 Performance Measure for Vehicle Deployment .. 12

2.3 Dynamic Characteristics of Vehicle Deployment Planning 13

2.4 Current Best Vehicle Deployment Practice ... 15

Chapter 3. Problem II: Shipment Load Makeup – Preliminaries 18

3.1 Shipment Load Makeup at Automobile Manufacturer ... 18

3.2 Specifications of Shipment Load Makeup Environment 20

3.2.1 Shipment Yard .. 20

3.2.2 Local Dealer .. 21
3.2.3 Transportation Resource Division ...22
3.2.4 Operational Facts in Shipment Load Makeup ..23
3.3 Shipment Load Makeup Planning ..23
 3.3.1 Unique Operational Characteristics of Shipment Load Makeup Planning ...24
3.4 Mathematical Model of Shipment Load Makeup Planning25
 3.4.1 Shipment Load Makeup Planning Environment ..25
 3.4.1.1 Planning Time Period ..25
 3.4.1.2 Set of Vehicles ...27
 3.4.1.3 Set of Trucks ...28
 3.4.1.4 Various Costs in Shipment Load Makeup ..28
 3.4.2 Integer Programming Models for Different Scenarios31
 3.4.2.1 Scenario 1: Vehicles are Indivisible ..31
 3.4.2.1.1 Decision Variables ...31
 3.4.2.1.2 Objective Function of Shipment Load Makeup Planning.................32
 3.4.2.1.3 Integer Programming Formulation for Scenario 134
 3.4.2.2 Scenario 2: Vehicles are Divisible ...36
 3.4.2.2.1 Decision Variables ...36
 3.4.2.2.2 Objective Function of Shipment Load Makeup Planning.................36
 3.4.2.2.3 Integer Programming Formulation for Scenario 237
3.5 Computational Complexity and Limitations in Real Environment39
 3.5.1 Computational Complexity of Shipment Load Makeup Planning39
 3.5.2 Limitations in a Real Shipment Yard Environment42

CHAPTER 4. BACKGROUND LITERATURE SURVEY ...44
4.1 RFID-enabled Applications ...44
 4.1.1 RFID in Various Business Areas ..45
 4.1.2 RFID in Supply Chains ..46
4.2 Management of Automobile Shipment Yard ...48
4.3 Market-based Control Mechanism for Resource Allocation52
CHAPTER 5. OVERALL SOLUTION APPROACH ..54
 5.1 Design of New Operational Process with Real-time Information from RFID54
 5.2 Design of Multiagent-based Decision-making Framework54
 5.3 Design of Market-based Control Mechanism55

CHAPTER 6. VEHICLE DEPLOYMENT – SOLUTION METHODOLOGY58
 6.1 Vehicle Deployment in RFID-enabled Shipment Yard58
 6.1.1 Initial Decision for Vehicle Deployment59
 6.1.2 Updating Vehicle Deployment Decisions61
 6.2 Multiagent-based Decision-making Framework63
 6.2.1 Design of Agents ...63
 6.3 Market-based Control Mechanism ...64
 6.3.1 Auction Heuristic Mechanism ...64
 6.3.2 Ascending Price Iterative Auction Mechanism67
 6.4 Design of Utility Function for Vehicle Agent70

CHAPTER 7. EMPIRICAL ANALYSIS OF VEHICLE DEPLOYMENT74
 7.1 Experimental Setup ..74
 7.1.1 Experimental Conditions ..75
 7.2 Consolidated Operational Time ..76
 7.3 Shipment Yard Utilization ..77
 7.3.1 Utilization Rate of Parking Slot ..78
 7.3.2 Frequency of Parking Slot Utilization ..81
 7.4 Labor Consumption ..85
 7.5 Summary of Empirical Analysis ..87

CHAPTER 8. SHIPMENT LOAD MAKEUP – SOLUTION METHODOLOGY I ..88
 8.1 Shipment Load Makeup in RFID-enabled Shipment Yard88
 8.2 Shipment Load Makeup Decision in RFID-enabled Shipment Yard90
8.2.1 Shipment Load Makeup Decision in Scenario 1...90
8.2.2 Shipment Load Makeup Decision in Scenario 2..92
8.3 Shortcomings of Shipment Load Makeup Decision Model in a Distributed Large
Scale Environment ...95
8.4 Multiagent Architecture for Shipment Load Makeup in RFID-enabled Shipment
Yard...95

CHAPTER 9. SHIPMENT LOAD MAKEUP – SOLUTION METHODOLOGY II
..99
9.1 The First Round Local Auction ...99
 9.1.1 Construction of the First Round Local Auction Market99
 9.1.2 Descriptions of Bundle Expression for Identical Items101
 9.1.3 Overall Procedure of Iterative Bundle Auction Mechanism......................105
 9.1.4 Dealer Agent Bidding Strategy ...106
 9.1.4.1 Exclusive-Or (XOR) Bid ...106
 9.1.4.2 Myopic Best-Response Bidding Strategy107
 9.1.4.3 Second-Chance Bidding Strategy ..108
 9.1.5 Temporary Allocation of Bundles ..110
 9.1.5.1 Winner Determination Problem ...110
 9.1.5.2 Refinement of Winner Determination Problem111
 9.1.5.3 Effective Winner Determination Algorithm113
 9.1.6 Strategy of BA for Updating Asking Price ...116
 9.1.7 Example of Iterative Bundle Auction ...118
9.2 Design of Utility Function for Dealer Agent ...121
9.3 The Second Round Central Auction ...122
 9.3.1 Structure of the Second Round Central Auction Market122
 9.3.2 Utility Value for Block Agent ..124
 9.3.3 Block Agent Bidding Strategy ..125
 9.3.4 Updating Temporary Allocation ..125
 9.3.5 Updating Asking Price for Truck ...126
CHAPTER 10. SHIPMENT LOAD MAKEUP –SOLUTION METHODOLOGY III
..128
10.1 Dealer Agent in Single-Tier Auctioning Process..128
10.2 Construction of the Direct Local Auction Market ..128
10.3 Iterative High-Bid Auction Mechanism...131
 10.3.1 Dealer Agent Bidding Strategy ...132
 10.3.2 Utility Value for Dealer Agent ...133
 10.3.3 Winner Determination at Each Iteration ...134
 10.3.4 Revenue of Proxy Agent from Auction Market135
 10.3.5 Example of Iterative High-Bid Auction ...135
10.4 Determination of Final Allocations of Items ...138

CHAPTER 11. EMPIRICAL ANALYSIS OF SHIPMENT LOAD MAKEUP140
11.1 Experimental Setup ..140
 11.1.1 Simulator for Shipment Load Makeup ..140
 11.1.2 Generation of Shipment Load Makeup Instances143
11.2 Performance of Market-based Approach for Shipment Load Makeup146
 11.2.1 Performance of Two-tier Auctioning Process for Scenario 1147
 11.2.2 Performance of Single-tier Auctioning Process for Scenario 2151
11.3 Scalability of Market-based Decentralized Approach155
 11.3.1 Effect of Number of Blocks ...157
 11.3.2 Effect of Number of Dealers ...161
 11.3.3 Effect of Number of Vehicles ..165
 11.3.4 Effect of Number of Vacancies on a Truck ...169
11.4 Summary of Empirical Analysis ...173

CHAPTER 12. CONCLUSIONS AND FUTURE RESEARCH175
12.1 Contributions ..175
12.2 Managerial Implications ... 178
12.3 Future Research .. 179

BIBLIOGRAPHY .. 183
LIST OF TABLES

Table 6.1: Auction heuristic mechanism for updating vehicle deployment decision .. 66
Table 6.2: Ascending price iterative auction mechanism for updating vehicle deployment decisions ... 70
Table 6.3: Instance of a shipment loading schedule that follows a high-priority-first-loaded (HPFL) rule .. 72
Table 7.1: Classification of vehicle deployment models .. 75
Table 7.2: Average operational time (unit time) for deployment of a single vehicle ... 77
Table 9.1: DA valuations for vacancies on a truck .. 102
Table 9.2: New representations of DA valuations for identical vacancies (items) .. 103
Table 9.3: DAs with their bidding information: bidding price and bundle size .. 115
Table 9.4: The sorted list of the DAs by STEP-1 ... 116
Table 9.5: The number of vehicles and a value of each bundle .. 118
Table 9.6: Example of the iterative bundle auction mechanism: For the first round local auction market, where minimum bidding price increment ϵ is 10 .. 120
Table 10.1: The fixed cost for visiting and unloading and the values of vehicles .. 136
Table 10.2: Small size example of the iterative high-bid auction mechanism .. 137
Table 11.1: Controllable shipment load makeup configuration parameter .. 144
Table 11.2: Controllable shipment load makeup cost parameter ... 145
Table 11.3: Random generation of vehicles in a shipment yard .. 146
Table 11.4: Input parameters values used for generating shipment load makeup instances .. 147
Table 11.5: Description of each column in the experiment result table .. 148
Table 11.6: Experimental results of the two-tier auctioning process for the shipment load makeup scenario 1 .. 149
Table 11.7: Experimental results of the single-tier auctioning process for the shipment load makeup scenario 2 ... 153

Table 11.8: Experiment results of testing the effect of varying number of blocks on the performance of the local auction mechanism in two-tier auctioning process (scenario 1) ... 158

Table 11.9: Experiment results of testing the effect of varying number of blocks on the performance of the local auction mechanism in single-tier auctioning process (scenario 2) ... 160

Table 11.10: Experiment results of testing the effect of varying number of dealers on the performance of the local auction mechanism in two-tier auctioning process (scenario 1) ... 162

Table 11.11: Experiment results of testing the effect of varying number of dealers on the performance of the local auction mechanism in single-tier auctioning process (scenario 2) ... 164

Table 11.12: Experiment results of testing the effect of varying number of vehicles on the performance of the local auction mechanism in two-tier auctioning process (scenario 1) ... 166

Table 11.13: Experiment results of testing the effect of varying number of vehicles on the performance of the local auction mechanism in single-tier auctioning process (scenario 2) ... 168

Table 11.14: Experiment results of testing the effect of varying number of vacancies on a truck on the performance of the local auction mechanism in two-tier auctioning process (scenario 1) ... 170

Table 11.15: Experiment results of testing the effect of varying number of vacancies on a truck on the performance of the local auction mechanism in single-tier auctioning process (scenario 2) ... 172
LIST OF FIGURES

Figure 1.1: Shipment yard of an automobile manufacturer ..3
Figure 1.2: Research road map and thesis organization ...9
Figure 2.1: Illustration of elementary operations for deployment of vehicle \(i \)11
Figure 2.2: Current best vehicle deployment practice ...16
Figure 3.1: Supply chains of an automobile manufacturer ..19
Figure 3.2: Key participants and their managerial objectives in shipment load makeup ..20
Figure 3.3: Local dealers clustered into a number of blocks ...21
Figure 3.4: Shipment load makeup planning time period ...26
Figure 3.5: Dwell time of a vehicle ...28
Figure 3.6: Costs in shipment yard ...29
Figure 3.7: Costs for vehicle \(v \) in local dealer \(d_v \) ...30
Figure 3.8: The growth of solution space as the average number of vehicles \(|\mathcal{V}_r| \) increases (\(\mathcal{R} = \{1, 2, 3\} \) and \(\mathcal{P}_r = 4, \forall r \in \mathcal{R} \)) ..40
Figure 3.9: The growth of solution space as the number trucks \(R \) increases (\(|\mathcal{V}_r| = 8 \) and \(\mathcal{P}_r = 4, \forall r \in \mathcal{R} \)) ..41
Figure 5.1: Overall solution approach ...57
Figure 6.1: Information architecture for RFID-enabled shipment yard59
Figure 6.2: The set of available parking slots for a vehicle deployment decision in (a) the current best vehicle deployment model, and (b) the initial vehicle deployment decision model ..61
Figure 6.3: Illustration of design for ascending price iterative auction mechanism which includes a dummy vehicle agent ..68
Figure 7.1: Structure and size of the shipment yard use for the experiments76
Figure 7.2: Utilization rate of parking slot in CVD ...79
Figure 7.3: Utilization rate of parking slot in RVD \(^{1D} \) ...79
Figure 7.4: Utilization rate of parking slot in RVDID+AH ...80
Figure 7.5: Utilization rate of parking slot in RVDID+IA ...80
Figure 7.6: Average utilization rate of the parking slots (50 parking slots) in each parking slot column ...81
Figure 7.7: Frequency of parking slot utilization in CVD ...82
Figure 7.8: Frequency of parking slot utilization in RVDID ..83
Figure 7.9: Frequency of parking slot utilization in RVDID+AH ...83
Figure 7.10: Frequency of parking slot utilization in RVDID+IA ...84
Figure 7.11: Average number of vehicles moved into the parking slots (50 parking slots) in each parking slot column ...85
Figure 7.12: Average labor consumption of a yard operator with different vehicle deployment models ...86
Figure 7.13: Average labor consumption of a trucker with different vehicle deployment models ...87
Figure 8.1: Illustrative comparison between shipment load makeup planning model and real-time shipment load makeup decision model ...89
Figure 8.2: Interaction among the YA, the RFID data server, and DAs ...97
Figure 9.1: Construction of the first round local auction markets ...100
Figure 9.2: Growth of the maximum number of possible bundles ...105
Figure 9.3: Overall procedure of the iterative bundle auction mechanism for the first round local auction market ...106
Figure 9.4: Fundamental procedure of the second-chance bidding strategy in the first round local auction market ...110
Figure 9.5: Structure of the second round central auction market ...124
Figure 9.6: The overall procedure of the auction mechanism in the second round central auction market ...127
Figure 10.1: Construction of a temporary economy and multiple direct local auction markets ...130
Figure 10.2: Overall procedure of the iterative high-bid auction mechanism132
Figure 10.3: RA’s final allocations determined by results of all the local auction markets

Figure 11.1: Structure of shipment load makeup simulator

Figure 11.2: Example of LINDO input for Scenario 1, which is automatically generated by problem instance generator (5 blocks, 5 dealers per block, and 50 vehicles)

Figure 11.3: Example of LINDO input Scenario 2, which is automatically generated by problem instance generator (5 blocks, 5 dealers per block, and 50 vehicles)

Figure 11.4: Optimality of the two-tier auctioning process solution varying the average number of dealers per block and the average number of vehicles per dealer: (a) the average optimality, (b) ANo_D = 10, (c) ANo_D = 20, (d) ANo_D = 30, (e) ANo_D = 40, and (e) ANo_D = 50

Figure 11.5: Computational efficiency of the two-tier auctioning process varying the average number of dealers per block

Figure 11.6: Optimality of the single-tier auctioning process solution varying the average number of dealers per block and the average number of vehicles per dealer: (a) the average optimality, (b) ANo_D = 10, (c) ANo_D = 20, (d) ANo_D = 30, (e) ANo_D = 40, and (e) ANo_D = 50

Figure 11.7: Computational efficiency of the single-tier auctioning process varying the average number of dealers per block and the average number of vehicles per dealer

Figure 11.8: Effect of the number of blocks on the performance of the local auction mechanism for scenario 1: (a) average number of iterations, (b) average computation time, and (c) average computation time per iteration
Figure 11.9: Effect of the number of blocks on the performance of the local auction mechanism for scenario 2: (a) average number of iterations, (b) average computation time, and (c) average computation time per iteration161

Figure 11.10: Effect of the number of dealers on the performance of the local auction mechanism for scenario 1 ..163

Figure 11.11: Effect of the number of dealers on the performance of the local auction mechanism for scenario 2 ..165

Figure 11.12: Effect of the number of vehicles on the performance of the local auction mechanism for scenario 1 ..167

Figure 11.13: Effect of the number of vehicles on the performance of the local auction mechanism for scenario 2 ..169

Figure 11.14: Effect of the number of vacancies on a truck on the performance of the local auction mechanism for scenario 1 ..171

Figure 11.15: Effect of the number of vacancies on a truck on the performance of the local auction mechanism for scenario 2 ..173
ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Soundar Kumara, for his direction, assistance, and encouragement throughout my Ph.D. study at the Pennsylvania State University. He is an enthusiastic researcher, a patient teacher, and most of all a warm-hearted person. I have tried to learn all of his virtues and insightful perspectives for the last five years since I started working with him. I also wish to thank Dr. A. Ravi Ravindran, Dr. M. Jeya Chandra, Dr. Susan H. Xu, and Dr. Shang-tae Yee, for their intellectual guidance and suggestions during my research.

In finishing my Ph.D. study, I would like to give special thanks to Dr. Honghee Lee (at the Inha University). The work experience with him in my M.S. study indeed made a great contribution and motivation toward my finishing Ph.D. study. Thanks are also due to my senior, Dr. Yonghan Lee, Dr. Seogcheon Lee, Dr. Younho Hong, and Mr. Changsoo Ok, for their invaluable comments and encouragement. Special thanks should be given to my student colleagues who have been with me all the way and helped me in many ways.

I am especially indebted to my wife Junghwa and my sons Minwoo and Minsuh for their patience. They had to sacrifice many aspects of their lives due to my Ph.D. study in the U.S. Words alone cannot express how much I feel sorry and how much I love them. I also would like to thank my parents, sister, and brother in law, from the bottom of my heart, for their prayers and confidence in me. I am really proud of them all. Finally, I want to praise God for His blessing me.
Chapter 1

Introduction

For the past several decades, advances in manufacturing and supply chain management have improved to a great extent the business performance of companies. Nonetheless, a gap, still exists between plan and execution because of dynamics, such as various unexpected disruptions and uncertainties, in business operations. Two important capabilities are essential to fill this gap: One is to quickly detect the operational dynamics in business operations, and the other is to effectively share that information with business partners.

Huang et al. (2003) contend that many problems in dynamic operational environments have their resolutions in timely information sharing among operational members. For the dimension of timeliness, lateness and inaccuracy in sharing information are identified as one of the major causes of performance degradation in decision-making for manufacturing companies (Lee et al., 1997; Hong-Minh et al., 2000), while the information exchange in real-time has been proposed to improve operational performance (Karaesmen, 2002). Thus, the requirements for decision-making systems in order to achieve management goals are that they should be adaptable and flexible enough to process real-time information and responsive to the dynamic environment.

Recently, as a result of adoption of wireless communication and sensor technologies in various real-world environments of manufacturing and supply chains, real-time visibility of the operational dynamics improves and the enhanced visibility allows the design of new decision-making strategies. Due to real-time information availability, new decision-making strategy design should consider: (1) constantly changing operational environments, (2) large amounts of distributed information processing, (3) flexibility, and (4) real-time visibility of information on inventories, resources, etc.
1.1 Problem Domain Discussion

This thesis addresses the decision-making problems of vehicle deployment and shipment load makeup in an automobile shipment yard where wireless tracking is enabled. The formal problem specifications, including optimization models, for vehicle deployment and shipment load makeup are discussed in Chapters 2 and 3, respectively. This section introduces a shipment yard of an automobile manufacturer and a Radio Frequency IDentification (RFID)-enabled real-time wireless tracking system.

1.1.1 Automobile Shipment Yard

In the supply chains of automobile manufacturers, management of shipment yard operations is a very important activity. Everyday, thousands of vehicles are produced at an assembly plant. Once a vehicle is completely assembled, it passes through required inspection in an inspection area and moves into a corresponding buffer area in a shipment yard as shown in Figure 1.1. The shipment yard stores a number of finished vehicles until they are shipped for delivery. The vehicles in the shipment yard are delivered via various transportation modes, such as truck with trailer\(^1\) or train, to numerous local dealers throughout the nation and regional vehicle distribution centers.

\(^1\) For this research, “truck” is the term of convenience for “truck with a trailer.”
Fig. 1.1: Shipment yard of an automobile manufacturer.

The main operations in the shipment yard, vehicle deployment and shipment load makeup, are basically subsidiary or supportive processes of the automobile manufacturer’s outbound logistics. Based on an understanding of automobile manufacturer’s shipment yard operations, vehicle deployment and shipment load makeup are defined as:

Definition 1.1. (vehicle deployment) Vehicle deployment in an automobile shipment yard consists of the operations of (1) moving vehicles released from an assembly plant to available parking slots in a general truck or train buffer of the shipment yard and then, (2) moving vehicles in the general buffer into designated loading locations based on a shipment loading schedule. Decision-making in vehicle deployment is to assign a vehicle released from the assembly plant to one of the available parking slots in the general buffer in order to achieve a required managerial objective in the shipment yard.
Definition 1.2. (shipment load makeup) Shipment load makeup in an automobile shipment yard is the operation of loading a set of vehicles from a general truck or train buffer of the shipment yard onto a truck or a train for delivering vehicles to their destinations. Decision-making in shipment load makeup involves assigning a set of vehicles to a set of available vacancies on a truck or a train without violating any operational constraint while obtaining multiple managerial objectives predefined from related functional divisions, such as the shipment yard, local dealers, and transportation resource division.

The unique characteristics of the operational and decision-making environments for vehicle deployment and shipment load makeup are:

- **Inevitable dynamics:** Due to frequent changes and uncertainties in vehicle production, transportation resources, and market situations, available vehicles and parking slots in the shipment yard and a transportation resource’s schedule frequently change. As a result, original plans, based on estimation, are seldom accomplished as planned.

- **Large amounts of distributed information:** As functional entities in vehicle deployment and shipment load makeup, such as vehicles, shipment yard, local dealers, and transportation resource division, are distributed organizationally, geographically, and/or computationally, these local entities maintain their own local information. Consequently, as the scale of shipment yard operations grows, more and more information must be managed and processed.

- **Self-interestedness:** A shipment yard management goal is achieved throughout a series of functional entities, such as shipment yard, dealers, and transportation resource division. Usually these entities have their own objectives in the shipment yard operations. As a result, coordination is necessary to solve conflicts among self-interested entities.
Frequent and prompt decision-making: Decision-making in vehicle deployment and shipment load makeup is required frequently and should provide adaptable solutions promptly.

1.1.2 Radio Frequency Identification

Radio Frequency IDentification (RFID) is a sensor technology that enables wireless data communication for automatic identification of objects. An RFID system consists of two basic components: the RF tag and the RFID reader. The RF tag, also known as a transponder, typically contains a silicon chip that can hold a certain amount of data and an antenna that broadcasts the data to a remote reader device. The RFID reader, sometimes referred to as an interrogator, communicates with multiple RF tags by means of sending and receiving radio frequency waves. Finally, the RFID reader sends the data collected from RF tags to an RFID data server that compiles the information (Gaukler, 2005; Holler, 2007).

Recently, owing to the driving forces of the U.S. Department of Defense and Wal-Mart Inc., Radio Frequency IDentification (RFID) and wireless communication technologies have been widely introduced into real-world supply chains. Also, the EPCglobal consortium (http://www.epcglobalinc.org/), transferred from the Auto-ID Center, has been playing a key role in stimulating the use of RFID for supply chains (Sbihli, 2002; Paqani, 2005).

RFID technology, leveraged with other wireless technologies like wireless local area network (WLAN), provides a real-time visibility of dynamics by enabling to identify and track all the entities, including resources and finished products from supply chains, and by allowing instant identification and automatic information transfer of object-states (Karkkajnen and Holmstrom, 2002; Karkkajnen and Holmstrom, 2004; Angeles, 2005). Providing visibility of the dynamics of supply chain entities to decision-making systems in an automated and timely manner results in several advantages: (1) provides new opportunities to better control the supply chain, (2) allows performing routine and manual tasks more efficiently at much lower cost, and (3) offers real-time information of
operational-level transactions to corporate-level information systems to better shape supply chain planning and execution, in particular, production and scheduling (Datta and Viguier, 2000; Hanebeck and Tracey, 2003; Walker, 2005).

This thesis introduces an RFID technology for an automobile shipment yard and investigates the impact of the RFID technology on traditional operations in that shipment yard. By virtue of the RFID technology, the product information including its current location is provided in real-time, and the lack of communication problems among the supply chain members related to the shipment yard operations become resolved. For the new shipment yard environment, where the RFID technology is in place and the enhanced operations are allowed, new decision-making strategies should be considerations for achieving better shipment yard management goals.

1.2 Market and Multiagent-based Approach to Decision-making for Shipment Yard Operations

Due to the unique characteristics of the decision-making environment for the shipment yard operations and the availability of large amounts of real-time information, as discussed in the previous Sections 1.1.1 and 1.1.2, respectively, modeling the decision-making processes for vehicle deployment and shipment load makeup as a market-based negotiation process is very attractable. The market-based negotiation process is facilitated by the introduction of a multiagent-based computational framework. The important aspects regarding the market and multiagent-based approach are:

- The market-based control mechanism and multiagent-based architecture are well known as they inherently follow a decentralized framework in nature. Thus, the decision-making processes for large scale vehicle deployment and shipment load makeup can be naturally modeled by these approaches.
- Each functional entity in vehicle deployment and shipment load makeup can easily be modeled as an autonomous agent that maintains its local information and tries to achieve its own objective.
The market and multiagent-based approach is suitable for modeling and processing a large amount of information in a distributed manner, so the decision-making processes that should incorporate a large amount of real-time information provided by an RFID system can be efficiently implemented.

The market and multiagent-based approach is adaptable and flexible, thereby reducing the implementation effort in response to the frequently changing shipment yard operational environment (Lee, 2002).

1.3 Research Objectives

This research studies automobile manufacturer’s shipment yard operations where an RFID system provides enhanced visibility of operational dynamics and uncertainties by providing real-time information of vehicles in the shipment yard. The main goal of the research is to investigate the impact of RFID technology on shipment yard operations and corresponding decision-making strategies. Achieve this goal requires addressing the following main research objectives.

- Define decision-making models for optimizing an automobile manufacturer’s shipment yard operations, vehicle deployment and shipment load makeup, by designing mathematical programming models.
- Design new shipment yard operational processes and corresponding decision-making models, which can effectively utilize real-time information obtained from an RFID system.
- Design a multiagent-based information system architecture to support the new decision-making models in the RFID-enabled shipment yard.
- Develop auction mechanisms as a market-based control approach to solve the new decision-making models (i.e., optimization problems) for vehicle deployment and shipment load makeup processes in the RFID-enabled shipment yard.

1.4 Organization of the Thesis
The operational specifications and related decision-making models for vehicle deployment and shipment load makeup are discussed in Chapters 2 and 3, respectively. Chapter 4 briefly reviews the related background literature, and Chapter 5 discusses the design of an overall solution methodology. Chapter 6 presents a new vehicle deployment process in the RFID-enabled shipment yard and a market-based mechanism for the new process. The computational experiments with the results analysis appear in Chapter 7. Chapter 8 presents a shipment load makeup process and a multiagent-based information framework in the new shipment yard environment. Two different market-based control mechanisms for the new shipment load makeup processes are presented in Chapters 9 and 10, and Chapter 11 discusses the computational experiments with the results. Finally, conclusions and possible extensions of this research work are the subject of Chapter 12. Figure 1.2 summarizes the road map of the research and this thesis’s organization.
Fig. 1.2: Research road map and thesis organization.
Chapter 2

Problem I: Vehicle Deployment - Preliminaries

This chapter details the vehicle deployment process in a shipment yard of an automobile manufacturer by describing the operations and defining an associated performance measures. In order to discuss dynamic characteristics of the vehicle deployment process, the mathematical model for vehicle deployment is presented along with the limitations for applying the model to a real shipment yard environment. At the end of this chapter, the best available vehicle deployment practice in a current shipment yard environment is presented for the purpose of comparing vehicle deployment performance.

2.1 Description of Vehicle Deployment Operations

Once a vehicle is released from an assembly plant, it stays at a temporary buffer of a shipment yard as illustrated in Figure 1.1. Subsequently, the vehicle moves to a general truck buffer or a general train buffer according to its pre-determined delivery transportation mode. The general buffers store a number of vehicles until they move to loading buffers where they are loaded onto trucks or trains for delivery. In fact, every finished vehicle has its delivery destination, with a corresponding transportation mode, assigned by a delivery schedule. Since train transportation limits delivery destinations, and consequently, the nature of the vehicle deployment process is relatively less dynamic, this study focuses on truck transportation only. Before actual loading onto trucks, the vehicles first move from the general buffer to a truck loading buffer consisting of many loading locations. The truck in each loading location has a particular delivery destination, e.g., Philadelphia, PA.

Vehicle deployment consists of two main operations: (1) yard operators move vehicles from the temporary buffer to available parking slots in the general buffer, and
(2) truckers move vehicles from the general buffer to designated loading locations in the loading buffer. For a single vehicle deployment, these two main operations are further divided into four elementary operations. Figure 2.1 illustrates these elementary operations where operations, EO-I and EO-II, are performed by yard operators, and EO-III and EO-IV, are performed by truckers.

![Diagram](image)

Fig. 2.1: Illustration of elementary operations for deployment of vehicle i.

EO-I: Driving vehicle i from vehicle pick up point Q in the temporary buffer to allocated parking slot b_i in the general buffer.

EO-II: Riding back to the temporary buffer from parking slot b_i. Since the distance between the temporary buffer, located near the assembly plant, and the general buffer located in the shipment yard is quite long, a yard operator comes back to the temporary buffer via a transportation utility like a van.

EO-III: Walking from loading location L_i for vehicle i in the loading buffer to parking slot b_i to pick up the vehicle i. Since the general buffer and the loading buffer adjoin, a trucker moves from the loading buffer to the general buffer by walking.

EO-IV: Driving vehicle i from parking slot b_i to its loading location L_i.
2.2 Performance Measure for Vehicle Deployment

A vehicle deployment problem is a problem of allocating one of the available parking slots in the general buffer to a newly produced vehicle by minimizing handling time, i.e. a consolidated operational time, defined as the total time required for the four elementary operations listed earlier.

The consolidated operational time mainly depends on driving, riding, and walking distance matrices between every pair of locations in the shipment yard. However, the matrices cannot be easily generated by hand due to the size of a typical shipment yard which may have more than a thousand parking slots. Because of that, a model may consist of an approximation of driving, riding, and walking distances (i.e., rectilinear distance for driving and riding, and Euclidian distance for walking).

Driving and riding distances can be approximately calculated by rectilinear distance because the general buffer is filled with vehicles, and both vehicles and the van can move only along accessible roads in the shipment yard. For example, driving and riding distances between two locations \(m \) and \(n \), denoted by \(D_d(m, n) \) and \(D_r(m, n) \), are calculated by:

\[
D_d(m, n) = D_r(m, n) = |x^m - x^n| + |y^m - y^n|
\]

(2.1)

where \(x^i \) and \(y^i \) denote an \(x \)-coordinate and a \(y \)-coordinate of location \(i \), respectively.

Computation of walking distance between two locations \(m \) and \(n \), as \(D_w(m, n) \) uses Euclidian distance:

\[
D_w(m, n) = \left((x^m - x^n)^2 + (y^m - y^n)^2 \right)^{1/2}
\]

(2.2)

Using the approximated distance matrices, operational times for a yard operator and a trucker for deployment of vehicle \(i \) are calculated as:
where \(s_d, s_r, \) and \(s_w \) are unit speeds for driving, riding, and walking, respectively. In \(\text{Equation (2.3)} \) \(t_{\text{wait}} \) denotes the amount of time for a yard operator to wait for a van, and \(t_{\text{load}} \) in \(\text{Equation (2.4)} \) denotes the time a trucker uses to load a vehicle onto a truck.

Finally, the consolidated operational time for deployment of vehicle \(i \), \(\text{\textit{COT}} (L_i, b_i) \), is defined as the sum of operational times for both a yard operator and a trucker.

\[
\text{\textit{COT}} (L_i, b_i) = \text{\textit{OT}}_d (b_i) + \text{\textit{OT}}_L (L_i, b_i)
\]

\[
= \left(\frac{D_d \langle Q, b_i \rangle}{s_d} + t_{\text{wait}} + \frac{D_r \langle b_i, Q \rangle}{s_r} \right) + \left(\frac{D_w \langle L_i, b_i \rangle}{s_w} + \frac{D_d \langle b_i, L_i \rangle}{s_d} + t_{\text{load}} \right)
\]

(2.5)

2.3 Dynamic Characteristics of Vehicle Deployment Planning

Because release of finished vehicles from the assembly plant to the temporary buffer is sequential, over time, the decisions for corresponding parking slot allocations are also made by solving a series of vehicle deployment problems, and each vehicle deployment decision should be made interactively with other vehicle deployment decisions. In other words, a vehicle deployment decision made in the current decision epoch affects later decisions, and in addition, the overall status of the yard could become uncertain, over time, due to changes in vehicle production schedules, truck arrival schedules, and the immediate yard status.

To present a sequence of interrelated vehicle deployment decisions, \(f_{i^*} (B') \) is the minimum value of the total consolidated operational time for the vehicles released, where \(B' \) represents the set of available parking slots in the general buffer at time \(t \). The
recursive relationship for the deployment planning problem, which provides a systematic representation for determining the optimal combination of vehicle deployment decisions, is modeled as:

$$f_t^*(B') = \min_{b \in B'} \{COT(L_t, b_t) + f_{t+1}^*(B'^{t+1})\}, \quad \forall t$$ \hspace{1cm} (2.6)

where decision epoch t implies the time when the assembly plant releases a newly finished vehicle to the temporary buffer. Since it is assumed that vehicles are released to the temporary buffer one-by-one, an index t can be interpreted as an index for a vehicle. The decision variable b_t is the allocated parking slot for vehicle t and L_t denotes the designated loading location for that vehicle (i.e. the vehicle released to the temporary buffer at time t). The dynamics of the set of available parking slots is represented as:

$$B'^{t+1} = \left[B' \setminus \{ b_t^* \} \right] \cup \tilde{B}'^{t+1}, \quad \forall t$$ \hspace{1cm} (2.7)

where b_t^* is the parking slot allocated to the vehicle t, and \tilde{B}'^{t+1} is the set of parking slots newly emptied between time t and $t+1$.

In the shipment yard, newly emptied parking slots in the general buffer appear because: (1) A parking slot in the general buffer becomes empty as the vehicle parked in this parking slot moves to a loading location for shipment based on shipment load makeup schedules, and (2) vehicles in the general buffer can be put on hold and/or returned to the plant due to unexpected product quality abnormalities. Once a quality problem for the vehicles that already moved to the general buffer is reported, quality inspectors hold the vehicles or move them to the plant for investigation and/or corrective action. Those unexpected events affect not only vehicle shipment schedules, but also availability of parking slots in the general buffer.

Furthermore, the vehicle shipment schedule cannot be exactly predicted due to various shipment scheduling environment dynamics, such as changes in delivery orders, delays in truck arrivals, human errors, etc.

Due to these primary reasons, the set of available parking slots continuously changes throughout the planning time horizon. These inherent dynamics in the vehicle
deployment environment lead consideration of an adaptable and flexible decision-making approach which can handle the inevitable dynamics.

2.4 Current Best Vehicle Deployment Practice

This section deals with the current best vehicle deployment practice in response to the dynamic shipment yard environment in the absence of real-time tracking. This deployment practice is the basis line for validating a new vehicle deployment model with an RFID-enabled shipment yard and for analyzing the value of RFID technology.

In the current shipment yard, the status of the available parking slots in the general buffer is periodically updated, perhaps once a day, by a manual reporting process. Yard operators and truckers manually inform a yard manager of the availability of parking slots after moving vehicles from the temporary buffer to the general buffer, or from the general buffer to loading locations. Since this manual reporting and updating process takes a certain amount of time, immediate updating of the availability of parking slots in the general buffer is not possible. Figure 2.2 illustrates a vehicle-parking slot allocation for the current best vehicle deployment practice.
At the beginning of a certain time period, the set of available parking slots, \mathcal{B}, is given for the allocations of vehicles that will be released from the assembly plant to the temporary buffer during this time period. Since accuracy of a vehicle production schedule is unpredictable, the allocation of a vehicle to a parking slot occurs at the actual release of a finished vehicle to the temporary buffer, and each subsequent allocation in this period occurs only on the basis of the set of available parking slots, \mathcal{B}, provided at the beginning of this period. In other words, even though some parking slots may become empty during this period, this information is not reflected for the decision during this period, due to the nature of manual updating process. By solving Problem (2.8), one of the available parking slots \mathcal{B} is assigned to vehicle i released during this period in order to minimize the consolidated operational time.
where binary decision variable x_b^i is 1 if vehicle i is allocated to parking slot b, $b \in B^i$, otherwise 0. In this formulation, B^i, the set of available parking slots for vehicle i, is obtained from B by excluding \overline{B}^i, $\overline{B}^i \subset B$, where \overline{B}^i denotes the set of parking slots that are already allocated to the vehicles released to the temporary buffer earlier than vehicle i during this period.
Chapter 3

Problem II: Shipment Load Makeup - Preliminaries

This chapter details the shipment load makeup process at an automobile manufacturer by describing the operational environment of shipment load makeup and providing a mathematical model for shipment load makeup planning. In addition, dynamic characteristics of the shipment load makeup process are discussed.

3.1 Shipment Load Makeup at Automobile Manufacturer

In an automobile manufacturer’s supply chain, as illustrated in Figure 3.1, vehicles produced from an assembly plant are temporarily stored at a shipment yard until they are shipped for delivery. The vehicles in the shipment yard are delivered to numerous dealers throughout the nation and regional distribution centers via transportation carriers, such as trucks or trains. Typically this activity is labeled “outbound logistics,” and is an important component of the supply chain.

\[\text{In the case of train transportation, the delivery destinations of vehicles are very limited, and the nature of the shipment load makeup process is relatively straightforward. Thus, this study considers truck transportation only.}\]
The shipment yard, local dealers, and transportation resource divisions play key roles in the shipment load makeup process. Thus, a shipment load makeup decision is made with respect to the different participants’ managerial objectives. Figure 3.2 shows the key role participants in the shipment load makeup process and their managerial objectives. The following section discusses the details.
3.2 Specifications of Shipment Load Makeup Environment

3.2.1 Shipment Yard

Everyday, an assembly plant produces thousands of vehicles. Once an assembly work finishes, the vehicle passes through a required inspection area and proceeds to the assembly plant’s shipment yard. The vehicle stays in the shipment yard until it is shipped out via one of the transportation modes, such as a truck or a train.

From shipment yard management’s point of view, vehicles in the yard are considered as inventory, thus, each vehicle creates a holding cost based on its dwell time in the shipment yard. The dwell time of a vehicle is the amount of time the vehicle stays in the shipment yard subsequent to its release from the assembly plant. For the purposes of assuring product quality, the shipment yard sets up a maximum allowed dwell time for any given vehicle. If the dwell time of a vehicle exceeds this maximum allowable dwell
time, the vehicle should be returned to the assembly plant or inspection area to be overhauled, and this process contributes to additional re-processing costs.

The managerial objective of the shipment yard in the shipment load makeup process is to minimize total holding and re-processing costs by controlling the amount of time the vehicles remain in inventory before they are shipped by transportation carriers.

3.2.2 Local Dealer

As explained earlier, the vehicles in the shipment yard are delivered to thousands of local dealers via trucks. For example, as of December 31, 2006, there were approximately 7000 General Motors dealers in the United States. For the shipment load makeup process, these local dealers are clustered into a number of blocks based on their geographical adjacency and demand for vehicles, which is shown in Figure 3.3.

Fig. 3.3: Local dealers clustered into a number of blocks.

3 http://stocks.us.reuters.com/stocks/fullDescription.asp?symbol=GM&WTmodLOC=C5-Profile-1
In automobile manufacturer’s supply chains, an end-customer places an order for a vehicle with a local dealer directly or through a web-based online system, and receives the order at the local dealer as soon as the vehicle is ready. To this end, a local dealer places an order for vehicle(s) with a manufacturer to maintain a profitably safe inventory level that can meet end-customers’ demands. However, if the vehicle, an end-customer ordered, is not currently in the inventory of a local dealer, the local dealer places an order for the vehicle on behalf of the end-customer.

The concept of order-to-delivery (OTD) in automobile manufacturer’s supply chains is for delivering the vehicles to customers with speed and reliability after processing the order. The amount of time a vehicle stays at the shipment yard accounts for large portion of the total OTD lead-time. Thus, reducing the time spent in the shipment yard is important for achieving the goal of OTD lead-time reduction (Yee et al., 2007). The managerial objective of a dealer, related to the shipment load makeup process, is to increase customer fulfillment by reducing OTD lead-time.

3.2.3 Transportation Resource Division

To manage and operate transportation carriers, an automobile manufacturer has its own transportation resource division or contracts with third party transportation companies as outsource vendors. From the management perspective of an automobile manufacturer, these vendors can also be regarded as an internal transportation resource division.

Transportation carriers such as trucks for delivering vehicles to their destinations are transportation resources for the shipment load makeup process. Everyday, a number of trucks arrive sequentially at the shipment yard based on a pre-defined schedule. A truck takes charge of one of the block areas for delivery of vehicles. This implies that a truck travels only one block area for delivery of the vehicles ordered from the dealers located in that block area. Since the dealers located in the same block are geographically close to each other, it can be reasonably assumed that the traveling sequence of dealers a truck needs to visit is ignored, and the traveling distance of a truck to a block is regarded
as the distance from the shipment yard to the center of the block area. However visiting a dealer and unloading vehicles at the dealer accrue operational costs whenever a truck visits a dealer to unload vehicles. For these reasons, the selection of dealers for delivery affects the utilization of a truck more than just the traveling sequence to dealers.

The managerial objective of the transportation resource division in the shipment load makeup process is to increase the utilization of a truck by reducing the corresponding operational costs of delivery, such as traveling cost from the shipment yard to a block, the total cost for visiting and unloading at dealers, and unutilized truck capacity cost.

3.2.4 Operational Facts in Shipment Load Makeup

Two operational facts help to describe shipment load makeup operations: information delay and frequent decision-making environment.

- **Information delay:** Vehicle information in the shipment yard, including locations of vehicles, is periodically updated by a manual reporting process. For example, once a yard operator moves a finished vehicle into the shipment yard, the yard operator informs the yard manager of the information of the vehicle and its location. By gathering manually reported information, the yard manager updates the vehicle information for shipment load makeup. Since the manual reporting and updating processes take a certain amount of time, the vehicle information is not updated immediately, but at certain time periods, for example, once a day.

- **Frequent decision-making:** Everyday a number of trucks arrive sequentially at the yard to load vehicles. Thus, shipment load makeup decisions for a truck are required to be made frequently, and each decision should be made in time to avoid delaying the shipment load makeup operations.

3.3 Shipment Load Makeup Planning
From the definition of shipment load makeup given in Chapter 1 and the understanding of the shipment load makeup environment explained previous sections, shipment load makeup planning is defined as:

Definition 3.1. (Shipment load makeup planning) The planning for periodic or sequential shipment load makeup decisions through the planning-time horizon is shipment load makeup planning. Shipment load makeup planning consists of a set of shipment load makeup decisions that are decisions for assigning a set of vehicles in the shipment yard to a set of available spaces on a truck without violating any operational constraint while achieving the objectives of different functional participants, such as the shipment yard, local dealers, and the transportation resource division.

3.3.1 Unique Operational Characteristics of Shipment Load Makeup Planning

The unique operational characteristics of shipment load makeup planning are:

- **Inevitable dynamics**: Because of the dynamics in the market, production, and a company’s strategy, the schedules of vehicle production and transportation carrier’s arrival and the managerial objectives of the key participants in shipment load makeup frequently change. As a result, original shipment load makeup plans, made on the basis of a static environment, are rarely executed as planned, and dynamic shipment load makeup planning becomes a dominant managerial activity (Lee, 2002)

- **Conflicting objectives from self-interested participants**: The aim of shipment load makeup planning is achieved throughout the functional key participants who are self-interested for fulfilling their own objectives. These objectives often conflict with each other. Therefore, a coordination mechanism is necessary to reconcile the conflicts among the self-interested participants.

- **Distributed environment**: Since the key participants involved in the shipment load makeup process are organizationally and/or geographically distributed, local
participants can make better decisions for their own objectives with more accurate and recent information from their local environment.

- **Sequential decision-making environment:** Because the decisions in the planning period must be made sequentially, the decisions made in the present may impact future decisions. Thus, overall long-term effects and expected performance are consideration throughout the planning period.

3.4 Mathematical Model of Shipment Load Makeup Planning

As defined in the previous section, the set of shipment load makeup decisions for the planning time period are made together, in advance, with the given schedules of vehicle production and truck arrival. Shipment load makeup planning is mathematically formulated using the vehicle information and forecasts of truck availability. The most common strategy to combine current vehicle information with the forecasted information, obtained from the schedules of vehicle production and truck arrival, is to use a point forecast of future events, which produces a rolling horizon procedure. Rolling horizon procedures have the primary advantages of using classical optimization modeling and algorithmic technologies. In addition, point forecasts are the easiest for the business community to understand (Powell et al., 2007). This section, using the rolling horizon procedure, builds two different mathematical models for different shipment load makeup planning scenarios in a current shipment yard environment.

3.4.1 Shipment Load Makeup Planning Environment

The shipment load makeup planning environment consists of four main components: planning time period, set of vehicles, set of trucks, and various costs related to shipment load makeup.

3.4.1.1 Planning Time Period
A shipment load makeup plan, consisting of the set of shipment load makeup decisions, is made for a certain planning time period. For computational reasons, it is common to model planning problems of supply chains in discrete time (Wolsey and Nemhauser, 1999). Thus, the shipment load makeup planning is modeled in discrete time that can be fixed time periods. Let \mathcal{T} be the planning time period represented as a set of discrete unit time instants.

$$\mathcal{T} = [T_{\text{begin}}, T_{\text{end}}] = \{0, 1, 2, \ldots, T-1, T\}$$ (3.1)

where $T_{\text{end}} (t=T)$ is the length of the planning horizon. The length of the planning time horizon is determined based on following information: time period for updating information of available vehicles in the shipment yard, available truck arrival schedule, and available vehicle production schedule. Figure 3.4 illustrates the shipment load makeup planning period in discrete time. In this convention, time $T_{\text{begin}} (t=0)$ refers to “here and now,” while discrete time period t refers to the time interval between $t-1$ and t.

![Fig. 3.4: Shipment load makeup planning time period.](image-url)
This modeling of the planning time period views information as arriving continuously over time, while a shipment load makeup decision will be made at a discrete time point. Since the decisions in the shipment load makeup planning are made at discrete time point, information required to support making the decisions, such as state variables and cost functions, are also represented in discrete time.

3.4.1.2 Set of Vehicles

The set of vehicles available for shipment load makeup planning is represented as:

$$\mathcal{V} = \mathcal{V}_0 \cup \mathcal{V}_{[0,T]}^p$$, where $$\mathcal{V}_0 \cap \mathcal{V}_{[0,T]}^p = \emptyset$$ \hspace{1cm} (3.2)

in which, $$\mathcal{V}_0$$ denotes the set of vehicles in the shipment yard at time $$t=0$$ (where shipment load makeup plan is made), and $$\mathcal{V}_{[0,T]}^p$$ is the set of vehicles scheduled to be produced during the given planning time period.

A vehicle $$v, v \in \mathcal{V}$$, has the following attributes that support shipment load makeup planning.

- $$b_v$$: A block index of vehicle $$v$$, $$b_v \in \mathcal{B}$$, where $$\mathcal{B}$$ is the set of blocks.
- $$d_v$$: A dealer index of vehicle $$v$$, $$d_v \in \mathcal{D}$$, where $$\mathcal{D}$$ is the set of dealers.
- $$\omega_v$$: A shipment time commitment for vehicle $$v$$. This attribute represents an order priority.
- $$p_v$$: A production time for vehicle $$v$$ \((v \in \mathcal{V}_{[0,T]}^p)\), $$p_v \in \mathcal{P} = \{1, 2, 3, \ldots, T - 1\}$$.
- $$l_v$$: A dwell time for vehicle $$v$$, $$l_v \in \mathcal{L} = \{0, 1, 2, 3, \ldots, L\}$$, where $$L$$ is the maximum allowed dwell time for vehicles. At a certain time $$t$$, a dwell time of a vehicle $$v$$, $$l'_v$$, is illustrated in Figure 3.5 and computed by:
\[l^t_v = \begin{cases}
 l^0_v + t, & \text{for } \forall v \in \mathcal{V}_o \\
 t - p_v, & \text{for } \forall v \in \mathcal{V}_{[0,T]}^P \text{ and } p_v < t
\end{cases} \]

where \(l^0_v \) is a dwell time of a vehicle \(v \) at \(t = 0 \).

Fig. 3.5: Dwell time of a vehicle.

3.4.1.3 Set of Trucks

The set of trucks scheduled to arrive at the shipment yard during the shipment load makeup planning time period is denoted as:

- \(r \): A truck index, \(r \in \mathcal{R} \), where \(\mathcal{R} = \{1, 2, \cdots, R-1, R\} \) is the set of trucks scheduled to arrive at the shipment yard during the planning time period, and \(R \) is the total number of trucks.
- \(t_r \): A scheduled arrival time for truck \(r \), where \(t_r < t_{r+1} \), \(\forall r \in \{1, 2, \cdots, R-1\} \) and \(t_R < T \).
- \(\Psi_r \): The maximum capacity (vacancies) on truck \(r \).

3.4.1.4 Various Costs in Shipment Load Makeup

With respect to shipment load makeup planning, various costs are considered from the shipment yard, local dealers, and the transportation resource division.
From the shipment yard’s point of view, following two costs are considered.

- $c^{hd}(l)$: Vehicle holding cost during time period $[l-1, l]$, represented as a monotonically increasing function.

- $C_{[t_1,t_2]}^{HD}(v)$: Holding cost for vehicle v during time period, $[t_1, t_2]$, computed by:

$$C_{[t_1,t_2]}^{HD}(v) = \sum_{l=t_1+1}^{t_1+t_2} c^{hd}(l)$$

- c^{rp}: Re-processing cost (i.e. extra treatment cost) for over-dwelled vehicle.

- $C_{[t_1,t_2]}^{RP}(v)$: Re-processing cost for vehicle v during time period, $[t_1, t_2]$, computed by:

$$C_{[t_1,t_2]}^{RP}(v) = \begin{cases}
 c^{rp}, & \text{if } l_\nu \in [L-(t_2-t_1)+1, L] \\
 0, & \text{otherwise}
\end{cases}$$

The vehicle holding cost and the re-processing cost are combined as shown in Figure 3.6(a), and Figure 3.6(b) illustrates a cumulative holding cost for a vehicle as dwell time increases.

![Fig. 3.6: Costs in shipment yard.](image_url)

From the local dealers’ point of view, following customer fulfillment related costs are considered.
\(c_v^{dl}(l) \): Order delay cost for vehicle \(v \) during time period, \([l-1, l]\), represented as a monotonically increasing function.

\(C_{[t_1, t_2]}^{DL}(v) \): Order delay cost for vehicle \(v \) during time period, \([t_1, t_2]\), computed by:
\[
C_{[t_1, t_2]}^{DL}(v) = \sum_{l=|t_0|+1}^{l_0+t_2-t_1} c_v^{dl}(l)
\]

\(c_v^{lt} \): Lost order cost for vehicle \(v \).

\(C_{[t_1, t_2]}^{LT}(v) \): Lost order cost for vehicle \(v \) during time period, \([t_1, t_2]\), computed by:
\[
C_{[t_1, t_2]}^{LT}(v) = \begin{cases}
 c_v^{lt}, & \text{if } l_0^v \in [L-(t_z-t_1)+1, L] \\
 0, & \text{otherwise}
\end{cases}
\]

The order delay cost and the lost order cost for vehicle \(v \) are combined as shown in Figure 3.7(a), and Figure 3.7(b) illustrates a cumulative order delay cost for vehicle \(v \).

Fig. 3.7: Costs for vehicle \(v \) in local dealer \(d_v \).

In the above figures, \(\omega_v \) denotes a commitment to an order shipment time for vehicle \(v \) to dealer \(d_v \), where \(\omega_v \in \{\omega_v | \omega_v \in \mathcal{L} \text{ and } \omega_v < L\} \).
For the transportation resource division, truck utilization related costs are considered.

- $C_{TR}^{r,b}$: Traveling cost of truck r from the shipment yard to block b.
- $C_{UL}^{r,b,d}$: Visiting and unloading cost of truck r at dealer d in block b.
- C_{UR}^{r}: Unutilized capacity cost per vacancy for truck r.

3.4.2 Integer Programming Models for Two Different Scenarios

This section builds the mathematical models for two different shipment load makeup scenarios in a current shipment yard environment. According to divisibility of vehicles involved in the same dealer, two different shipment load makeup scenarios are defined as:

- Scenario 1: The vehicles involved in the same dealer are *indivisible* through shipment load makeup planning.
- Scenario 2: The vehicles involved in the same dealer can be *divisible* through shipment load makeup planning.

The mathematical models for scenario 1 and 2 are formulated in Sections 3.4.2.1 and 3.4.2.2, respectively.

3.4.2.1 Scenario 1: Vehicles are Indivisible

3.4.2.1.1 Decision Variables

The two binary decision variables for the shipment load makeup planning are defined as:
\[
\delta_b^r = \begin{cases}
1, & \text{if truck } r \text{ is assigned to block } b \text{ for delivering vehicles} \\
0, & \text{otherwise}
\end{cases}
\]

\[
x_{bd}^r = \begin{cases}
1, & \text{if vehicles of dealer } d \text{ in block } b \text{ chosen for shipment by truck } r \\
0, & \text{otherwise}
\end{cases}
\]

3.4.2.1.2 Objective Function of Shipment Load Makeup Planning

The objective function of the shipment load makeup planning is an integrated framework for simultaneously optimizing three sub-objective functions, which are for the shipment yard, local dealers, and the transportation resource division, respectively. Each sub-objective function computes the shipment load makeup related cost. Thus, the goal of shipment load makeup planning is for minimizing the total shipment load makeup cost, and the objective function, required to be minimized, is stated as:

\[
F \left(x_{bd}^r \right) = F_S \left(x_{bd}^r \right) + F_D \left(x_{bd}^r \right) + F_T \left(\delta_b^r, x_{bd}^r \right)
\] (3.3)

where, \(F_S \left(x_{bd}^r \right) \), \(F_D \left(x_{bd}^r \right) \) and \(F_T \left(\delta_b^r, x_{bd}^r \right) \) denote objective functions of the shipment yard, local dealers, and the transportation resource division, respectively.

A. Objective Function of Shipment Yard: \(F_S \left(x_{bd}^r \right) \)

Based on understanding the managerial objective for the shipment yard in shipment load makeup planning, explained in Section 3.2.1, the objective function of the shipment yard is mathematically formulated as:
In the above objective function, \mathcal{V}_b^d denotes the set of available vehicles for dealer d in block b when truck r arrives at the shipment yard and t_{b+1} implies T.

B. Objective Function of Local Dealers: \(F_D(x^c_{bd}) \)

As described in Section 3.2.2, the managerial objective of local dealers is to enhance customer fulfillment by reducing OTD lead time. Now the objective function for local dealers is designed as:

\[
F_D(x^c_{bd}) = \sum_{r \in R} \sum_{b \in B} \sum_{d \in D_b} (1 - x^c_{bd}) \cdot \sum_{v \in \mathcal{V}_b^d} \left[C_{[v', t_{v'+1}]}^{DL}(v) + C_{[v', t_{v'+1}]}^{LT}(v) \right]
\]

where \(C_{[v', t_{v'+1}]}^{DL}(v) = \min\{l'_v + (t_{v'+1} - t_r), L\} \cdot \sum_{l = t_{v'+1} + 1}^{\min\{l'_v + (t_{v'+1} - t_r), L\}} c^d_v(l) \), if \(l'_v \in [L - (t_{v'+1} - t_r) + 1, L] \)

\[C_{[v', t_{v'+1}]}^{LT}(v) = \begin{cases}
 c^l_v, & \text{if } l'_v \in [L - (t_{v'+1} - t_r) + 1, L] \\
 0, & \text{otherwise}
\end{cases} \]

C. Objective Function of Transportation Resource Division: \(F_T(\delta_b^c, x^c_{bd}) \)
The objective function of the transportation division is the sum of the shipment load makeup related costs, such as traveling cost, visiting and unloading cost, and an unutilized truck capacity cost:

\[
F_T (\delta^r_b, x^r_{bd}) = \sum_{r \in R} \sum_{b \in B} \delta^r_b \cdot C^{TR}_{rb} + \sum_{r \in R} \sum_{b \in B} \sum_{d \in D_b} x^r_{bd} \cdot C^{UL}_{rbd} \\
+ \sum_{r \in R} \left(\Psi^r_r - \sum_{b \in B} \sum_{d \in D_b} x^r_{bd} \cdot \left| V^b_{tr} \right| \right) \cdot C^{UR}_{r}.
\]

(3.6)

3.4.2.1.3 Integer Programming Formulation for Scenario 1

This study formulates the shipment load makeup planning for minimizing the sum of the planning related costs through an Integer Programming (IP) model. As shown in the following formulation, the number of variables increases rapidly according to the increase in the planning time horizon, the number of blocks, the number of dealers in each block, and the number of trucks. This formulation is basically a centralized decision-making formulation, and it may not directly apply to shipment load makeup planning in a real shipment yard environment. Instead this formulation serves the purposes of value analysis of introducing RFID in the shipment yard.

As explained in Section 3.4.2.1.2, the objective function consists of three sub-objective functions. In Equation (3.7), sub-objective function \(F_S (x^r_{bd}) \) represents the sum of total holding and re-processing costs incurred during the planning period, \(F_D (x^r_{bd}) \) represents the sum of total order delay and lost order costs incurred during the planning period, and \(F_T (x^r_{bd}) \) represents the sum of total traveling, visiting and unloading, and unutilized capacity costs. In the IP formulation, constraint (3.8) ensures a single truck can take charge of only one block area for the delivery. Constraint (3.9) presents all the local dealers selected for delivery by a certain truck must be included in the same block. In this equation, \(M \) is an extremely large positive number that exceeds the maximum feasible
value of any \(\sum_{d \in D_b} x_{bd}^r \) (\(\forall r \in \mathcal{R}, \ b \in \mathcal{B} \)). Constraint (3.10) ensures the number of vehicles loaded onto a truck can not exceed the maximum capacity of the truck, where \(\mathcal{V}_{t_r}^{bd} \) is the set of vehicles ordered from the dealer \(d \) in block \(b \) and available when truck \(r \) arrives. Equation (3.11) represents the dynamics of the set of available vehicles in the shipment yard. In this equation, \(\mathcal{V}_{(t_1, t_2)}^{E} \) represents the set of vehicles that become unavailable for the delivery during time period, \([t_1, t_2] \), due to maximum allowed dwell time, \(\mathcal{V}_{(t_1, t_2)}^{P} \) denotes the set of vehicles produced during the time period, \([t_1, t_2] \), and \(\mathcal{V}_{r}^{S} \) is the set of vehicles loaded onto truck \(r \) for delivery.

\[
\text{Minimize} \quad F(x^r_{bd}) = F_S(x^r_{bd}) + F_D(x^r_{bd}) + F_T(\delta_b^r, x^r_{bd}) \quad (3.7)
\]

subject to:

\[
\sum_{b \in \mathcal{B}} \delta_b^r = 1, \quad \forall r \in \mathcal{R} \quad (3.8)
\]

\[
\sum_{d \in D_b} x^r_{bd} - M \cdot \delta_b^r \leq 0, \quad \forall r \in \mathcal{R}, \ b \in \mathcal{B} \quad (3.9)
\]

\[
\sum_{b \in \mathcal{B}} \sum_{d \in D_b} x^r_{bd} \left| \mathcal{V}_{t_r}^{bd} \right| \leq \Psi_r, \quad \forall r \in \mathcal{R} \quad (3.10)
\]

\[
\mathcal{V}_r = \begin{cases}
\left[\mathcal{V}_0 \setminus \mathcal{V}_{[0, t_1]}^{E} \right] \cup \mathcal{V}_{[0, t_1]}^{P}, & \text{for} \ r = 1 \\
\left[\mathcal{V}_{t_r-1} \setminus \left(\mathcal{V}_{r-l} \cup \mathcal{V}_{[t_{r-l}, t_{r-1}]}^{E} \right) \right] \cup \mathcal{V}_{[t_{r-l}, t_{r-1}]}^{P}, & \text{for} \ \forall r \in \{2, \ldots, R-1, R\}
\end{cases} \quad (3.11)
\]

\[
\delta_b^r \in \{0, 1\}, \quad \forall r \in \mathcal{R}, \ b \in \mathcal{B}
\]

\[
x^r_{bd} \in \{0, 1\}, \quad \forall r \in \mathcal{R}, \ b \in \mathcal{B}, \ d \in \mathcal{D}_b
\]
3.4.2.2 Scenario 2: Vehicles are Divisible

3.4.2.2.1 Decision Variables

The three binary decision variables for the shipment load makeup planning are defined as:

- \(\delta_r^v \) = \begin{cases} 1, & \text{if truck } r \text{ is assigned to block } b \text{ for delivering vehicles} \\ 0, & \text{otherwise} \end{cases}

- \(\mu_{rd}^r \) = \begin{cases} 1, & \text{if truck } r \text{ visits dealer } d \text{ in block } b \text{ for delivering vehicle} \\ 0, & \text{otherwise} \end{cases}

- \(x_r^v \) = \begin{cases} 1, & \text{if vehicle } v \text{ is chosen for shipment by truck } r \\ 0, & \text{otherwise} \end{cases}

3.4.2.2.2 Objective Function of Shipment Load Makeup Planning

The objective function, required to be minimized, is stated as:

\[
F(x_r^v) = F_S(x_r^v) + F_D(x_r^v) + F_T(\delta_r^v, \mu_{rd}^r, x_r^v)
\]

where, \(F_S(x_r^v) \), \(F_D(x_r^v) \), and \(F_T(\delta_r^v, \mu_{rd}^r, x_r^v) \), denote objective functions of the shipment yard, local dealers, and the transportation resource division, respectively.

A. Objective Function of Shipment Yard: \(F_S(x_r^v) \)

\[
F_S(x_r^v) = \sum_{r \in R} \sum_{v \in \mathcal{V}_r} (1 - x_r^v) \left[C_{HD}^{\mathcal{V}_r}(v) + C_{RP}^{\mathcal{V}_r}(v) \right]
\]

where \(\mathcal{V}_r \) denotes the set of available vehicles when truck \(r \) arrives at the shipment yard and \(t_{R+1} \) implies \(T \).
B. Objective Function of Local Dealers: $F_D(x'_v)$

$$F_D(x'_v) = \sum_{r \in R} \sum_{v \in V_r} (1 - x'_v) \cdot \left[C_{DL}^{[t_x,t_{v,1}]}(v) + C_{LT}^{[t_x,t_{v,1}]}(v) \right]$$ (3.14)

C. Objective Function of Transportation Resource Division: $F_T(\delta^r_b, \mu'_{bd}, x'_v)$

$$F_T(\delta^r_b, \mu'_{bd}, x'_v) = \sum_{r \in R} \sum_{b \in B} \sum_{v \in V_r} C_{rb}^{TR} + \sum_{r \in R} \sum_{b \in B} \sum_{d \in D_r} \sum_{v \in V_r} C_{rbd}^{UL}$$

$$+ \sum_{r \in R} \left(\Psi_r - \sum_{v \in V_r} x'_v \right) \cdot C_r^{UR}$$ (3.15)

3.4.2.2.3 Integer Programming Formulation for Scenario 2

This section formulates the shipment load makeup planning, where the vehicles ordered from the same local dealer can be divisible. As shown in the following formulation, the number of variables increases significantly according to the increase of the planning time horizon, the number of vehicles, the number of blocks, the number of dealers in each block, and the number of trucks, and it may not directly apply to a real shipment yard environment.

In the IP formulation, constraint (3.17) ensures that a single truck can take charge of only one block area for the delivery. Constraint (3.18) presents all the vehicles selected for delivery by a certain truck must be included in the same block, where $\mathcal{V}_{t_r}^b$ is the set of vehicles ordered from the local dealers in block b and available when truck r arrives at the shipment yard. In this equation, M_1 is an extremely large positive number that exceeds the maximum feasible value of any $\sum_{v \in V_r} x'_v$ ($\forall r \in R$, $b \in B$). Constraint (3.19) determines that a truck should visit a dealer if any vehicle ordered by the dealer is loaded onto the truck, where $\mathcal{V}_{t_r}^{bd}$ is the set of vehicles ordered by the dealer d in block b and available when truck r arrives. As explained in Constraint (3.18), M_2 is an extremely
A large positive number that exceeds the maximum feasible value of any \(\sum_{v \in V_r} x_v' \) \((\forall r \in R, b \in B, d \in D_b)\). Constraint (3.20) ensures the number of vehicles loaded onto a truck cannot exceed the maximum capacity of the truck. Equation (3.21) represents the dynamics of the set of available vehicles.

\[
\text{Minimize} \quad F(x_v') = F_S(x_v') + F_D(x_v') + F_T(\delta_b', \mu_{bd}', x_v')
\]

subject to:

\[
\sum_{b \in B} \delta_b' = 1, \quad \forall r \in R \tag{3.16}
\]

\[
\sum_{v \in V_r} x_v' - M_1 \cdot \delta_b' \leq 0, \quad \forall r \in R, \ b \in B \tag{3.17}
\]

\[
\sum_{v \in V_r} x_v' - M_2 \cdot \mu_{bd}' \leq 0, \quad \forall r \in R, \ b \in B, \ d \in D_b \tag{3.18}
\]

\[
\sum_{v \in V_r} x_v' \leq \psi_r, \quad \forall r \in R \tag{3.19}
\]

\[
\forall r \in \mathcal{V}_r, \quad \delta_b' \in \{0, 1\}, \forall r \in R, \ b \in B \tag{3.20}
\]

\[
\forall r \in \mathcal{V}_r, \quad \mu_{bd}' \in \{0, 1\}, \forall r \in R, \ b \in B, \ d \in D_b \tag{3.21}
\]

\[
x_v' \in \{0, 1\}, \forall r \in R, \ v \in V
\]
3.5 Computational Complexity and Limitations in Real Environment

This section discusses the computational complexity of the shipment load makeup planning models and presents limitations to a real shipment yard environment in applying these models, which are formulated as a centralized decision-making process.

3.5.1 Computational Complexity of Shipment Load Makeup Planning

The shipment load makeup planning formulated in Section 3.4.2 is a problem of deterministic sequential decision-making. Florian et al. (1980) investigate the computational complexity of deterministic sequential decision-making problems and established NP-hardness for such problems.

Dynamic programming (DP), originally proposed by Bellman (1957), has been a useful mathematical technique for making a sequence of interrelated decisions and provides a systematic procedure for determining the optimal combination of decisions (Hiller and Lieberman, 1995). All applications of DP, however, have the restriction of “curse of dimensionality,” i.e. the extremely fast growth of solution space (and computational time), as the problem size increases (Steiner, 1990). In order to show the curse of dimensionality, even in the simplified case\(^4\) in which only one block area exists, investigation of the number of feasible solutions which may represent the solution space for the IP model is conducted. The number of feasible solutions for a simplified case of shipment load makeup planning is computed by:

\[
\left| V_{t_1} \right|^{\Psi_1} \times \left| V_{t_2} \right|^{\Psi_2} \times \cdots \times \left| V_{t_k} \right|^{\Psi_k} = \frac{\left| V_{t_1} \right|!}{\Psi_1! \left(\left| V_{t_1} \right| - \Psi_1 \right)!} \times \frac{\left| V_{t_2} \right|!}{\Psi_2! \left(\left| V_{t_2} \right| - \Psi_2 \right)!} \times \cdots \times \frac{\left| V_{t_k} \right|!}{\Psi_k! \left(\left| V_{t_k} \right| - \Psi_k \right)!}
\]

(3.22)

\(^4\) Since the shipment load makeup planning where the vehicles can be divisible (Scenario 1) is more general scenario, we investigate the curse of dimensionality for this scenario.
where $|\mathcal{V}_r|$ is the number of available vehicles when truck r arrives. For example, the solution space of the small size shipment load makeup planning, where $|\mathcal{V}_r| = 15$ and $\Psi_r = 5$, $\forall r \in \mathcal{R} = \{1, 2, 3\}$, is obtained as:

$$\binom{15}{5}^3 = \left(\frac{15!}{5!(15-5)!}\right)^3 \approx 2.708 \times 10^{10}$$ \hspace{1cm} (3.23)

For a simplified case of shipment load makeup planning, Figures 3.8 and 3.9 show the extremely fast growth of the solution space as the average number of available vehicles when a truck arrives increases and as the number of trucks increases, respectively. In Figure 3.8 the number of trucks $|\mathcal{R}|$ and the maximum capacity of each truck Ψ_r are set to 3 and 4, respectively, and the average number of available vehicles $|\mathcal{V}_r|$ and the maximum capacity of each truck Ψ_r are set to 8 and 4, respectively, in Figure 3.9.

![Graph showing the growth of solution space](image)

Fig. 3.8: The growth of solution space as the average number of vehicles $|\mathcal{V}_r|$ increases ($\mathcal{R} = \{1, 2, 3\}$ and $\Psi_r = 4$, $\forall r \in \mathcal{R}$).
Fig. 3.9: The growth of solution space as the number trucks R increases ($|\mathcal{V}_r|=8$ and $\Psi'=4$, $\forall r \in \mathcal{R}$).

In addition to the curse of dimensionality, the mathematical model of shipment load makeup planning, where the vehicles ordered from the same dealer are not divisible (Scenario 1), is \textit{NP}-complete.

\textbf{Proposition:} \textit{Shipment load makeup where the vehicles are not divisible (Scenario 1) is \textit{NP}-complete:}
Consider a 0/1 knapsack problem with item $j \in J$, $J = \{1, 2, 3, \ldots, J\}$ where J is the total number of items. Each item j has a profit p_j and weight w_j and the total weight (or capacity) of a knapsack is C. The 0/1 knapsack problem can be generally formulated as:

Maximize $\sum_{j=1}^{J} p_j \cdot x_j$

subject to: $\sum_{j=1}^{J} w_j \cdot x_j \leq C$

$x_j \in \{0, 1\}, \quad \forall j \in J$
Proof: Consider a very simplified version of shipment load makeup planning problem, where only one truck and one block area are considered, while the objective function of transportation resource division is ignored. Then truck index \(r \), block index \(b \), binary decision variable \(\delta^r_b \), and constraints (3.8), (3.9) and (3.11) can be removed from the mathematical formulation provided in Section 3.4.2.1.3. Since only one truck and one block area are considered, now the original binary decision variable, \(x'_{bd} \), can be simplified as \(x_j \), where index \(j \) represents a local dealer. Now the corresponding formulation is:

\[
\sum_{v \in V^j} [C^{HD}(v) + C^{RP}(v)] + \sum_{v \in V^j} [C^{DL}(v) + C^{LT}(v)] = p_j \\
|V^j| = w_j \\
\Psi = C
\]

From the above formulation, it is clear that the simplified version of shipment load makeup planning problem is formulated as a 0/1 knapsack problem.

Since the 0/1 knapsack problem is known as \(NP \)-complete, by induction the shipment load makeup planning problem where the vehicles are not divisible (Scenario 1) is also \(NP \)-complete.

3.5.2 Limitations in a Real Shipment Yard Environment

Shipment load makeup planning is formulated on the basis of centralized information processing and decision-making, where a decision maker should have all business and operational information for numerous local dealers and the transportation resource division. In the supply chains of an automobile manufacturer, this business and
operational information changes frequently as business strategies and environments of local dealers and the transportation resource division change.

In this centralized shipment load makeup planning the decision maker should be aware of all the vehicle information in the shipment yard. However, the set of available vehicles in the shipment yard, when a shipment load makeup plan is made, can change throughout the planning period. For example, vehicles in the shipment yard can be put on hold and/or returned to the assembly plant or the inspection area due to unexpected product quality abnormalities. For that reason, a vehicle, planned to be loaded onto a certain truck, can be unavailable for the delivery when the truck actually arrives at the shipment yard.

Furthermore shipment load makeup planning formulation assumes that the decision maker receives 100% accurate vehicle production and truck arrival schedules for the planning time period when the plan is made at the beginning of the planning period. For that reason, possibly, the shipment load makeup plan could recommend loading a vehicle that has been scheduled but has not really been produced or, loading the set of vehicles onto a truck that has been scheduled but has not really arrived on time.

As dynamics and uncertainties in the shipment load makeup planning environment increase, the centralized decision-making approach becomes inadequate in processing all the distributed information from the shipment yard, local dealers, and the transportation division. These dynamics create an inability to provide adaptable plans in response to uncertain vehicle production and truck arrival schedules. Moreover, even assuming that the decision maker has all the distributed information and precisely forecasted schedules, applying shipment load makeup planning model directly to large scale real shipment load makeup environments is practically and computationally unsuitable.
Chapter 4

Background Literature Survey

As discussed in Chapter 1, the main objective of this study is to develop decentralized decision-making approaches for the vehicle deployment and the shipment load makeup in an RFID-enabled shipment yard environment. This chapter reviews some background literature which is related to the current problem domains and methodologies, such as RFID-enabled applications, management of shipment yard in an automobile industry, and market-based control mechanism.

4.1 RFID-enabled Applications

An RFID is one type of wireless automatic identification technology that uses radio waves to identify the location and the presence of an individual physical object when the object is in a readable range. Two primary components of RFID applications are RF tags and the RFID reader. An RF tag consists of a microchip and an antenna. The microchip stores information of object such as a unique identification number. The antenna in an RF tag enables the microchip to transmit information of object to an RFID reader, which communicate with RF tags and transforms the information on the RF tag to a format understandable by application hosts (Angeles, 2005).

This emerging technology is able to identify and detect the location and the presence of an object in an automated and timely manner when the object is in a readable range. By virtue of these abilities, the RFID-enabled systems promise to provide near-perfect information visibility throughout the business process by tracking all the entities, including resources and finished products, and allowing instant identification and automatic information transfer of the entities’ status. Providing real-time information visibility and the status of business entities may bring up new opportunities to improve
business efficiency and value addition (Datta and Viguer, 2000; Hanebeck and Tracey, 2003; Walker, 2005).

4.1.1 RFID in Various Business Areas

In recent years, RFID technologies have been widely introduced into various real-world business environments, such as retail, agriculture, healthcare, transportation service, construction, supply chains, etc., and several companies are investigating how RFID can be used for improving their business performance and how it can help in value addition for them.

Kourouthanassis and Roussos (2003) and Jones et al. (2005) discuss the implementation and impact of an RFID-enabled retail system. The adoption of RFID technologies enhances structural integration within the retail sector of the economy and provides wide range of benefits throughout retail operations at shop floor level and the customers’ shopping experience.

Watts et al. (2002) present a need for automatic identification and data transfer in agricultural environment where the incorrect application of chemicals could have significant environmental impacts, and Ng et al. (2005) and Trevarthen (2007) present how RFID technologies can be utilized on the livestock farming industry where livestock is required to be controlled and tracked for disease control, breeding management, and stock management.

As RFID-enabled applications in the healthcare area, Li et al. (2004), Wang et al. (2006), Ho et al. (2005) introduce a mobile healthcare service system that adopts RFID technologies for tracking and identifying patients and objects for inside and outside hospital. This RFID-enabled mobile healthcare service system has the potential to contribute to hospital operating efficiency, good medical service and patient safety. This study also demonstrates how an RFID-enabled healthcare system enables hospital and government to effectively conduct real-time infection control.

Blythe (1999) provides an insight into the use of RFID technologies to facilitate roadside to vehicle data communications for automatic tolling and road use pricing
systems. This study also discusses RFID technologies have potentials to allow a high performance road to vehicle two way communications which can offer value added services, such as driver information and trip planning, parking reservation and payment, dynamic route guidance, and vehicle monitoring. Cerino and Walsh (2000) and Legner and Thiesse (2006) present implementation of RFID prototype systems to support integrated facility management processes in the aviation industry.

For the construction area Moy (2007) and Jaselskis et al. (1995) discuss how RFID technologies can help construction and property organizations to manage assets, workforces, and operations more effectively and to optimize the use of property portfolio and associated real estate assets effectively.

Due to a result of global competition, the automobile industry has always held a leading position in the adoption of new technologies to improve their processes and products. Srinivasan et al. (1994) argue that accurate, frequent, and timely exchange of information enables higher information integration between an assembly plant and its suppliers in supply chains of the automobile industry. This study provides empirical evidence that the information integration enhances shipment performance of suppliers in a Just-in-Time environment of the automobile industry. Strassner and Fleisch (2003) and Strassner et al. (2005) discuss RFID technologies utilized in a wide range of applications in the automobile industry, including container tracking, work-in-progress tracking, vehicle identification and access control, etc.

4.1.2 RFID in Supply Chains

The adoption of RFID technologies is especially prevalent within management of supply chains where limitations exist due to the inaccuracies and delays of product identification throughout the product life cycle (McFarlane et al., 2003; Saygin, 2007).

A supply chain is defined as a network of all of functional stages and organizations involved in fulfilling a customer request. The functions involved in filling a customer request include development of new product, procurement of materials, transformation of the materials into finished products, distribution of the finished
products, finance, marketing, and customer service (Ganeshan and Harrison, 1995; Chopra and Meindl, 2001).

The RFID technologies hold the promise of closing the information gaps in the supply chains, and these new technologies are effectively adopted in various functional operations in supply chains, such as inventory control, resource management, shipment operation, warehouse management, recycling, and disposal management, etc.

Saygin (2007) presents RFID-enabled inventory management models for time-sensitive materials on a shop floor. Using the simulation studies, the impact of integrating RFID technologies with inventory control is analyzed. The experiment results show that the RFID-enabled inventory model can effectively adapt to dynamics in shop floor inventory control environment. In this study Saygin (2007) emphasize a need for RFID-enabled effective decision-making algorithms that can lead benefits in introducing RFID technologies.

Ford Motor Co.’s facility in Mexico has adopted RFID for automatic and real-time identification of auto and truck parts as they went through the plant floor production line (Johnson, 2002). In this RFID-enabled production line, an RF tag attached on a part includes information of specific operations that need to be done at each station. By enabling updates or changes in operational information to be recorded to the RF tag, operational processes in the production line are constantly being updated without risk of operator error.

Angeles (2005) illustrates the significant potential of the RFID technology in logistics operations. A specific RFID technology implementation is described to demonstrate the benefits being realized with the RFID technology. Chow et al. (2006) present the RFID-enabled resource management system where the case-based reasoning technology is integrated to improve warehouse operating performance by tracking and optimizing resource (material handling equipments) utilization. Liu et al. (2006) discuss RFID-enabled resource management system. The results of this study show that the RFID technology enhances the performance of warehouse operations by increasing rack space utilization and loading speed and decreasing work-related errors and operational costs.
Kim et al. (2005) examine the feasibility of adopting RFID technology to enhance the efficiency and productivity of two major operations in container terminals, such as the gate and storage operations. The results of this study imply that the real-time information of containers provided by the RFID system enables terminal operators to plan the gate and storage operations more efficiently by reducing the operational processing time and re-handling work and improving the reliability of container information. Park et al. (2006) propose RFID-enabled real-time location system (RTLS) to improve the performance of container terminal operation system. This study suggests that the RFID-enabled RTLS system enables the effective planning of container loading sequence. In addition, the RFID system can support operations of gantry cranes and yard tractors, and shorten ship turnaround time, more efficiently. Finally it can accomplish the reduction of whole lead-time of port logistics.

The lack of lifecycle information about returned products is known as a major obstacle to efficient product recovery and disposal management. Kulkarni et al. (2005) examines the benefits of networked RFID systems which can allow automatically tracking and transferring item level product information. These benefits enable to improve decisions and processes occurred in product recovery and disposal stages.

4.2 Management of Automobile Shipment Yard

In the United States, non-military logistics costs are estimated to be over 11% of the Gross National Product (GNP) and constitute about 30% of the cost of the products sold (Thomas and Griffin, 1996). Hence the coordination of logistics operations and the design of effective distribution models have been extensively studied for various industry areas.

The outbound logistics for finished vehicles has grown significantly during the last decade, and the oligopolistic structure of the market has led to an impressive increase in competition among the vehicle transshipment hubs, such as shipment yard, vehicle distribution centers or port. Thus, the management of a transshipment hub is one of the most important activities in outbound logistics of an automobile industry. To survive
from this competitive environment, management of a vehicle transshipment hub must meet to highly demanded and dynamic market environment and provide reliable service while enhancing managerial or operational efficiency (Mattfeld and Kopfer, 2003).

The managerial or operational decision-making models related to vehicle transshipment hub of automobile industry can depend on methodological support offered by general approaches for decision-making models in hub management, such as facility location and layout (Domschke and Krispin, 1997; Owen and Daskin, 1998; Klose and Drexel, 2005), routing, scheduling, and planning (Hariga and Jackson, 1996; Berg, 1999; Vis and Koster, 2003; Christiansen et al., 2004), the design of storage space allocation (Iranpour and Tung, 1989; Cassady and Kobza, 1998; Kim and Park, 2003; Gue, 2006), and shipment loading issues (Agbegha et al., 1998; Nishimura et al., 2001; Tadei et al., 2002; Attanasio et al., 2007). However there are limited literatures which directly address the management or operational decision-making models in a shipment yard of an automobile manufacturer.

Mattfeld and Kopfer (2003) report on the development of an automated planning and scheduling system intended to support operations for the transportation of finished vehicles in a transshipment hub. They address current terminal operational processes and model an integral decision-making problem for manpower planning and inventory control in a vehicle transshipment hub. In order to alleviate the complexity of the decision-making problem, they develop a two-stage hierarchical decision-making problem. In the iterative decision support framework, the heuristic solution procedures are proposed to solve the decomposed sub-stage problems.

Mattfeld and Orth (2006) address the planning model of transportation and storage capacity in a vehicle intermodal transshipment terminal, which consists of spatially distributed storage areas of limited capacity interconnected by travel ways. In order to improve the operational efficiency of the vehicle transshipment terminal, they develop the optimization model of the multi-period-capacitated storage space allocation problem. The evolutionary algorithm developed in this study evolves a period-oriented capacity utilization strategy. This capacity utilization strategy controls a construction
heuristic (greedy approach) which efficiently assigns vehicle movements to periods and vehicles to storage locations.

Eskigun (2002) and Howard et al. (2005) address an important development in the automobile industry in recent years has been an increased interest in reducing the lead-time required to deliver finished vehicles from the assembly plants to local dealers or the customer, and the lead-time significantly influences the distribution costs and the make-to-order policy that most automakers try to achieve.

Jin et al. (2007) study an automobile distribution network with a strategic transportation mode selection. Because transportation lead-time influences the turnaround rate of transportation mode and shipment volume largely impacts on the total lead-time, the study addresses quantity discount model for transportation cost structures. In the strategic decision-making point of view, this study proposes a management strategy based on Integer Programming (IP) model to minimize the total distribution costs by making a transportation mode selection decision.

Eskigun (2002) and Eskigun et al. (2005) propose a large-scale network design model for the outbound logistics of an automobile industry, which consists of the operations involved in delivering finished vehicles from an assembly plant to local dealers. In this study, the potential benefits of lead-time reduction in outbound logistics are defined as responsiveness to dynamic market environment, reduced inventory and improved customer fulfillment. The lead-time required to move vehicles through the outbound supply chain is the sum of the lead times at the nodes of the network (plants, shipment yard, and vehicle distribution centers) and the transportation time. They study the network model that considers lead-time related costs as well as the traditional fixed costs of locating vehicle distribution centers (VDCs) and selecting transportation mode. Finally this study design the large-scale IP model in order to minimize total cost, given by the sum of delivery cost, lead-time cost and fixed costs, and proposes a Lagrangian heuristic approach to solve the large-scale IP model in practice.

As more related works that address the decision-making models in an automobile shipment yard, Agbegha et al. (1998) present the vehicle shipment problem in an automobile shipment yard and develop the methodology to solve the problem. In this
study, they restricted the load makeup problem to the case where delivery destination of a vehicle is not considered, and dwell time related constraints are relaxed by forcing the shipment of the oldest vehicles first. Tadei et al. (2002) propose a heuristic algorithm for the vehicle shipment load makeup problem formulated as binary multiple knapsack problems. The problem is modeled from the transportation company’s point of view only, so the objective function in this problem considers only maximizing profit of the transportation company. Profit of the transportation company depends on the quantity and different revenues of loaded vehicles, while the costs are incurred due to the number of destinations to stop and late delivery penalty. Savelsberg and Sol (1995) discuss several characteristics that distinguish load pickup and delivery problems from standard vehicle routing problems, and they present a survey of the problem types and solution methodologies. All these studies mainly consider, through the shipment load makeup decision, a management of transportation method only. The operational and managerial objectives of the vehicle shipment yard and local dealers, which are important participants in shipment activities in an automobile industry, are not taken into account.

Yee et al. (2007) and Kim et al. (2007) present an automobile shipment yard decision-making framework that is developed on top of an RFID-enabled wireless communication system. The RFID-enabled decision-making framework innovates the vehicle shipment chain from assembly plants to local dealers as well as accomplishes the objective of order-to-delivery. The decision-making framework addressed in these studies consists of a simulator module which simulates the operational details in shipment yard, and a decision module which captures the associated decision logics. This framework also investigates the performance of vehicle delivery processes with consideration of the dynamics involved in vehicle deployment and shipment.

With respect to the shipment load makeup decision-making model, Tang et al. (2007) propose a market based heuristic method as a dynamic optimization technique for the shipment load makeup problem in an RFID-enabled shipment yard. In this work, the shipment load makeup problem is modeled to minimize the traveling distance of a transportation carrier and average dwell time of a vehicle in the shipment yard. However, dealers’ managerial aspects and objectives are not considered in this study.
4.3 Market-based Control Mechanism for Resource Allocation

Market-based control mechanism for distributed resource allocation problems is discussed in this section. Market-based control mechanism, such as auction mechanism, is well known as it can be efficiently embedded in properly designed decentralization schemes and completely applicable to distributed resource allocation problems with autonomous and self-interested agents (Parkes and Ungar, 2000; Guo et al., 2007). Auction mechanism is a paradigm for controlling centralized complex systems that would otherwise be very difficult to control, maintain, or expand, by taking advantage of some desirable features of a market including decentralization, interacting agents, and some notion of resources (or tasks) that need to be allocated (McAfee and McMillan, 1987; Clearwater, 1996). This approach has been applied to a wide range of applications, such as supply chain management (Hinkkanen et al., 1997; Sauter et al., 1999; Fan et al., 2003), logistics and procurement of transportation service (Elmaghraby and Keskincocak, 2002; Ledyard et al., 2002; Caplice and Sheffi, 2003; Sheffi, 2004), task assignment (Walsh and Wellman, 1998), manufacturing scheduling (Morley, 1996; Walsh et al., 1998), project planning and control (Lee and Kumara, 2000), and telecommunication network routing and control (Waldspurger et al., 1992; Gibney and Jennings, 1998; Prouskas et al., 2000). Compared to the classical techniques for decentralizing and solving distributed resource allocation problems, auction mechanism has following advantages. First, through practical implementation, auction mechanism provides better adaptability and scalability by accommodating operational dynamics and processing a large amount of distributed information (Hinkkanen et al., 1997). Second, information in an auction market system, such as demand and resource availability, is distributed and exchanged more efficiently and under this environment, coordination mechanism could be developed to encourage participants in a market to reveal their true valuations (Fan et al., 2003).

As more closely related works, which help us to build foundations of the proposed auction mechanisms for vehicle deployment and shipment load makeup processes,
Bertsekas (1988) proposes the iterative auction algorithm as the prototype method for the assignment problem which is important in many practical contexts, such as resource allocation problems. The proposed auction algorithm is an intuitive approach that follows a real auction process where bidders compete for achieving resources by increasing their asking prices through competitive bidding. This study shows the auction algorithm performs very well for several important types of problems, both in theory and in practice, and it is also well suited for parallel computational environments. This prototype auction algorithm is extended to other network flow problems such as transportation, transshipment, and shortest path problems (Bertsekas, 1990; Bertsekas, 1992).

Pakrkes (1999) and Parkes and Ungar (2000) propose an iterative combinatorial auction mechanism, called iBundle, that allows bidders placing a bid on bundles of resources and uses non-linear prices of items. iBundle is the first attempt to design an ascending price bundle auction mechanism that is guaranteed to compute optimal bundle allocations with a myopic best-response bidding strategy. At each iteration of this auction mechanism the auctioneer announces asking prices for subsets of bundles and then, based on given bids, the auctioneer solves a winner determination problem, which remains NP-complete, to temporarily assign the resources. The asking prices on each bundle are updated based on the results of temporary allocation. Empirical results of these studies confirm that the proposed iterative combinatorial auction mechanism provides computationally efficient allocations in a reasonable number of rounds for hard resource allocation problems.

This chapter summarizes key research works related to the current problem. However additional references are introduced as needed in the subsequent chapters.
Chapter 5

Overall Solution Approach

This chapter presents the approach for an overall solution for vehicle deployment planning and shipment load makeup planning in an RFID-enabled shipment yard.

5.1 Design of New Operational Process with Real-time Information from RFID

Introducing RFID technology enhances visibility of the dynamics of a shipment yard operational environment by providing vehicle real-time information. Thus, designing new operational processes for the current vehicle deployment and shipment load makeup is necessary. These new processes can effectively utilize real-time information to improve shipment yard performance. The information required to be stored in an RFID tag and transmitted to decision-making systems in real-time is determined by understanding current shipment yard operations and their limitations in a dynamic environment.

In contrast to current shipment yard operational processes where vehicle deployment and shipment load makeup plans are made for a certain planning time period, described in Chapters 2 and 3, the design of new operational processes in an RFID-enabled shipment yard allows a decision maker to make vehicle deployment or shipment load makeup decisions from real-time accurate information, whenever the decision-making is required. To this end, corresponding decision-making models for new operational processes are mathematically formulated by utilizing real-time vehicle information.

5.2 Design of Multiagent-based Decision-making Framework
Operational environment of vehicle deployment and shipment load makeup, discussed in previous chapters, are characterized by a large amount of distributed information processing and multiple entities’ participation. In such an environment a centralized decision-making framework is not adaptable due to the need for current information from all entities’ decision-making environments. Furthermore, a decision-making system for the new operational processes in an RFID-enabled environment should provide an adaptable solution in a timely manner, since decisions are required to be made frequently at every given point in time.

To overcome the limitations of the centralized decision-making framework, a multilagent-based decision-making framework is designed for processing a large amount of distributed information and handling multiple entities that change dynamically in the decision-making environment. Multiagent-based framework is a well known technique that follows the nature of decentralization and has been suggested as an alternative for a centralized decision-making framework.

To design a multiagent-based decision-making framework, how to convert operational processes with corresponding decision-making models to multiagent framework is important. Since a large number of physical entities, such as vehicles, block areas, dealers, and trucks, are involved in shipment yard operations, a design approach for agents should be suitable for modeling such operational environment, and enable an individual agent to manage its own local information efficiently with limited interactions.

5.3 Design of Market-based Control Mechanism

In the multiagent-based decision-making framework, a market-based control mechanism is facilitated in order to handle vehicle deployment and shipment load makeup problems which involve multiple distributed entities which have their own information processing. As surveyed in Chapter 4, a market-based control is a well known approach for controlling a distributed and dynamic system by taking advantage of desirable features of a market, including decentralization, interacting agents, and the notion of required allocation of resources (Clearwater, 1996). Due to the nature of the
operational processes for vehicle deployment and shipment load makeup, it is very natural to model these processes as a negotiation process among competitive participants who try to obtain some resources to achieve their individual goals.

An auction mechanism is one popular form of market-based control. Auctions have been defined as “a market institution with an explicit set of rules determining resource allocation and prices on the basis of bids from the market participants” (McAfee and McMillan, 1987). For the purpose of handling the decision-making processes of vehicle deployment and shipment load makeup in an RFID-enabled shipment yard, auction algorithms are introduced.

The overall solution approach is described in Figure 5.1. The following Chapter 6 details the solution approach for vehicle deployment, and Chapters 8, 9, and 10 detail the solution approach for shipment load makeup.
Fig. 5.1: Overall solution approach.
Chapter 6

Vehicle Deployment – Solution Methodology

RFID-enabled real-time location tracking makes the vehicle deployment process more reliable and visible. In the suggested, RFID-enabled, shipment yard, a vehicle deployment planner can have real-time awareness of vehicle information in the shipment yard and the state of parking slots. In order to incorporate real-time information and handle the dynamics in a vehicle deployment environment, a new operational process for vehicle deployment and a corresponding mathematical programming model are designed in this section. As a solution approach for vehicle deployment, this study presents a multiagent-based decision-making framework which facilitates a market-based control mechanism.

6.1 Vehicle Deployment in RFID-enabled Shipment Yard

In the RFID-enabled shipment yard shown in Figure 6.1, a vehicle has an active RF tag attached before release to the shipment yard. The attached RF tag transmits real-time information about the vehicle and its location to RFID readers. RFID data server receives all data collected by the RFID readers. Yard operators obtain work orders via wireless devices, such as Personal Digital Assistants (PDAs) or tablet PCs. The work order includes information about the vehicle to be retrieved from the temporary buffer and its assigned parking slot in the general buffer.
The vehicle deployment planner can track currently available parking slots and vehicles waiting for allocation in real-time. To utilize this information obtained from the RFID data server, a new vehicle-parking slot allocation strategy needs to consider: (1) the method for utilizing the real-time information about the vehicles and the available parking slots to assign initial parking slots to the vehicles released from the plant; (2) the method for updating the initial vehicle deployment decision to reflect dynamic changes, as the set of available parking slots changes.

6.1.1 Initial Decision for Vehicle Deployment

Whenever a newly produced vehicle is released to the temporary buffer, the yard manager obtains the vehicle’s information, such as its delivery destination and loading location, from a vehicle production information system linked to the vehicle deployment planner through an interface. The RFID tracking system automatically updates the currently available parking slots in real-time, and a parking slot allocation decision for newly produced vehicle i can be made by solving:
subject to

\[\sum_{b \in B^i} x^i_b = 1 \] \hspace{1cm} (6.2)

\[B^i = B^i_E \setminus B^i_C \] \hspace{1cm} (6.3)

\[x^i_b \in \{0, 1\}, \quad \forall b \in B^i \]

where a binary decision variable, \(x^i_b \), is 1 if parking slot \(b, b \in B^i \), is allocated to vehicle \(i \), otherwise 0. In the above formulation, the set of available parking slots for vehicle \(i \), \(B^i \), is obtained from the RFID system that detects two sets of parking slots, \(B^i_E \) and \(B^i_C \). \(B^i_E \) is the set of all empty parking slots upon release of vehicle \(i \) and \(B^i_C \) is the set of empty parking slots allocated to other vehicles currently in the shipment yard but not completely moved into the assigned parking slots. Figure 6.2 compares the set of available parking slots for the initial decision model in the RFID-enabled shipment yard with that for the current best decision model explained in Section 2.4.
6.1.2 Updating Vehicle Deployment Decisions

A vehicle released into the temporary buffer requires a certain amount of time until its movement to a parking slot in the general buffer is complete. Two types of operational delays explain this amount of time. One is that a vehicle has to stay in the temporary buffer until a yard operator becomes available to move it, and the other is the time required to move the vehicle from the temporary buffer to an assigned parking slot in the general buffer. As discussed in Section 2.3, the set of available parking slots continuously changes during this time period due to dynamic events. Thus, the initial deployment decisions made in the previous section should be updated in response to those changes that may lead to improvement or deterioration of deployment performance. Huang et al. (2005) emphasize that updating an initial decision should be performed to

Fig. 6.2: The set of available parking slots for a vehicle deployment decision in (a) the current best vehicle deployment model, and (b) the initial vehicle deployment decision model.
improve the adaptiveness and competitiveness of decision-making strategies in a dynamic environment.

The RFID tracking system can monitor the real-time availability of parking slots by capturing unexpected events in the shipment yard. Whenever a newly emptied parking slot is detected, the allocated parking slots for the vehicles not completely moved into the parking slots can be changed. The problem of updating currently allocated parking slots is mathematically formulated as:

Minimize \[\sum_{v \in V^p} \sum_{b \in B^p \cup \{b_{new}\}} \left(\frac{D_d \langle Q, b \rangle}{s_d} + t_{wait} + \frac{D_f \langle b, Q \rangle}{s_r} \right) + \left(\frac{D_w \langle L_q, b \rangle}{s_w} + D_d \langle b, L_q \rangle + t_{load} \right) \cdot x_b^i \]

subject to

\[\sum_{b \in B^p \cup \{b_{new}\}} x_b^i \leq 1, \quad \forall b \in B^p \cup \{b_{new}\} \quad (6.5) \]

\[\sum_{b \in B^p \cup \{b_{new}\}} x_b^i = 1, \quad \forall i \in V^p \quad (6.6) \]

\[x_b^i \in \{0, 1\}, \quad \forall i \in V^p, \ b \in B^p \cup \{b_{new}\} \]

In this formulation, \(V^p \) denotes the set of vehicles not completely moved into currently allocated parking slots in the general buffer yet, \(B^p \) denotes the set of parking slots allocated to the vehicles in \(V^p \), and \(b_{new} \) is the newly detected empty parking slot in the general buffer. Since the number of vehicles in \(V^p \) is the same as the number of bays in \(B^p \), \(|V^p| = |B^p| \), the problem is formulated as an allocation problem of \(n \) vehicles (jobs) to \(n+1 \) parking slots (resources), including \(b_{new} \). Constraint (6.5) ensures a parking slot in \(B^p \cup \{b_{new}\} \) is assigned to at most one vehicle, and Constraint (6.6) ensures a vehicle in \(V^p \) is allocated to only one parking slot from those available parking slots.
Finally a binary decision variable x_{ib} is 1 if parking slot b is allocated to vehicle i, otherwise 0.

6.2 Multiagent-based Decision-making Framework

The problem of updating vehicle deployment decisions, discussed in Section 6.1.2, is formulated on the basis of centralized information processing and decision-making in which the vehicle deployment planner should be aware of all deployment related information, such as vehicles’ current locations and loading locations, availability of parking slots, and other dynamic events. Moreover, the above decision problem should be solved repeatedly upon detection of a new empty parking slot. When the number of vehicles in the yard increases a great deal and dynamic uncertainties grow, the centralized decision-making approach may not be adequate for processing a large amount of distributed information and may be unable to provide prompt decisions.

To overcome the limitations of the centralized decision-making approach, this study proposes a multiagent-based decision-making framework in which a market-based control mechanism is facilitated to accommodate the dynamics associated with different participants and to process large amounts of distributed information.

6.2.1 Design of Agents

The essential issue of designing a multiagent-based decision-making framework is to define the individual agent. In this case, the updating process of vehicle deployment decisions requires defining two main agent classes: vehicle agent and yard manager agent. The fundamental roles of these agents and key information they maintain are as follows:

- **Vehicle Agent**: A vehicle agent represents an individual vehicle in the shipment yard and is responsible for obtaining an available resource, such as a parking slot in the general buffer. Each vehicle agent maintains vehicle deployment related
information, such as current location, loading location, and currently allocated parking slot.

- **Yard Manager Agent**: The yard manager agent is responsible for managing and coordinating a set of parking slots in the general buffer, and interacts with vehicle agents to update deployment decisions by allocating appropriate parking slots. The yard manager agent can monitor the state of parking slots in the general buffer by accessing the RFID data server.

6.3 Market-based Control Mechanism

Due to the nature of the updating process of vehicle deployment decisions, discussed in the beginning of this section, it is very natural to model the updating process as a negotiation process between competitive participants (vehicles) which need to acquire some resources (parking slots) to achieve their individual goals. An auction is one popular form of market-based control mechanism. For the purpose of handling the process of updating vehicle deployment decisions in the multiagent decision-making framework, this study designs two different auction mechanisms: an auction heuristic mechanism and an ascending price iterative auction mechanism.

6.3.1 Auction Heuristic Mechanism

Once a newly emptied parking slot \(b_{new} \) is detected, the yard manager agent opens an auction market by sending a request for bid (RFB) message to the vehicle agents that represent the vehicles in \(\mathcal{V}^p \), the set of vehicles not completely moved into currently allocated parking slots. The RFB message includes information of parking slot \(b_{new} \). In the auction heuristic mechanism, a vehicle agent would update the currently allocated parking slot if a new allocation would provide better utility value. Section 6.4 explains the details of utility value for a vehicle agent.
Let \(u_i(b) \) be the utility value of parking slot \(b \) for vehicle agent \(i \). A vehicle agent, after receiving the RFB message from the yard manager agent, computes the utility value of parking slot \(b_{new} \) to determine whether or not the vehicle agent should participate in the auction market. For example, if vehicle agent \(i \) can expect better utility by taking \(b_{new} \) than by keeping the currently allocated parking slot \(b_i \), i.e., \(u_i(b_{new}) \geq u_i(b_i) \), then vehicle agent \(i \) decides to participate in the auction market to obtain \(b_{new} \) by submitting a bidding price for \(b_{new} \), as defined by:

\[
p_i(b_{new}) = u_i(b_{new}) - u_i(b_i)
\]

(6.7)

However, if no vehicle agent can expect the larger or equal utility value by taking \(b_{new} \), the market automatically closes.

Once vehicle agents finish submitting their bidding prices for \(b_{new} \), the yard manager agent determines a winning vehicle agent \(i^* \) that the one who submitted the highest bidding price:

\[
i^* = \arg \max_{i \in \mathcal{V}^p} p_i(b_{new})
\]

(6.8)

Now the yard manager agent allocates \(b_{new} \) to the winning vehicle agent \(i^* \) and consequently opens another market by sending a new RFB message to the remaining vehicle agents in \(\mathcal{V}^p = \mathcal{V}^p \setminus \{i^*\} \). The new RFB message includes information of parking slot \(b_i \), which is released from vehicle agent \(i^* \). The same bidding price submission and winner determination processes continue, as shown in Table 6.1, and this auction process repeats until no vehicle agent can achieve better utility value from a parking slot broadcasted to vehicle agents by an RFB message, or no vehicle agent in \(\mathcal{V}^p \) remains.
Table 6.1: Auction heuristic mechanism for updating vehicle deployment decisions

[STEP 1] Yard manager agent - Opening auction market

DO Send RFB message including b_{new} to vehicle agents in \mathcal{V}^p
GO TO STEP 2

[STEP 2] Vehicle agents - Submitting bidding price

FOR vehicle agent i, $i \in \mathcal{V}^p$

IF $u_i(b_{\text{new}}) - u_i(b_i) \geq 0$ THEN
Submit bidding price $p_i(b_{\text{new}})$
ELSE
Leave auction market
END IF
END FOR
GO TO STEP 3

[STEP 3] Yard manager agent - Determining winning vehicle agent

IF there exists any bidding price $p_i(b_{\text{new}})$ from vehicle agent i THEN
Find i^*, $i^* = \arg \max_{i \in \mathcal{V}^p} p_i(b_{\text{new}})$
Allocate b_{new} to vehicle agent i^*
GO TO STEP 4
ELSE
Close auction market
END IF

[STEP 4] Yard manager agent - Initializing succeeding auction market

SET $b_{\text{new}} = b_i$
SET $\mathcal{V}^p = \mathcal{V}^p \setminus \{i^*\}$
IF $\mathcal{V}^p = \emptyset$ THEN
Close auction market
ELSE
GO TO STEP 1
END IF
6.3.2 Ascending Price Iterative Auction Mechanism

The fundamental idea of the proposed ascending price iterative auction mechanism is from an ϵ-complementary slackness iterative auction, developed by Bertsekas (1990) to originally solve n to n allocation problems by matching n jobs to n resources on a one-to-one basis. Since the problem of updating vehicle deployment decisions, formulated in Section 6.1.2, is an n vehicles to $n+1$ parking slots allocation problem, a dummy vehicle agent is added to an auction market to re-design the problem as a one-to-one matching allocation problem.

Once a newly emptied parking slot b_{new} is detected, the yard manager agent calls all the vehicle agents in V^p in order to request information of parking slots currently allocated to vehicle agents. Now, vehicle agent $i, i \in V^p$, responds to the yard manager agent by sending information of its currently allocated parking slot b_i. After collecting information of the set of currently allocated parking slots B^p, the yard manager agent opens an auction market by sending and RFB message to vehicle agents in V^p. The RFB message includes information of the set of all available parking slots including b_{new}, $B^p \cup \{b_{\text{new}}\}$.

In this auction mechanism, it is supposed that parking slot b has a price $p(b)$ and the vehicle agent who takes this parking slot must pay that. Net profit value of parking slot b for vehicle agent i is the difference between the utility value and the price, that is, $u_i(b) - p(b)$. Through the ascending price iterative auction, parking slots are allocated to vehicle agents to maximize the total summation of utility values.

The ascending price iterative auction proceeds in iterations starting with current allocations, where b_{new} is initially allocated to dummy vehicle agent v_d and initial prices of parking slots are set to zero as shown in Figure 6.3.
Fig. 6.3: Illustration of design for ascending price iterative auction mechanism which includes a dummy vehicle agent.

Each iteration starts with the allocation result and the set of prices taken from the previous iteration, and the iteration continues until all vehicle agents are satisfied with the results of allocation.

\[
 u_i(b_i) - p(b_i) \geq \max_{b \in \mathcal{B}^p \cup \{b_{\text{new}}\}} \{u_i(b) - p(b)\} - \epsilon
\]

(6.9)

As shown in Equation (6.9), vehicle agent \(i\) would be satisfied if the net profit value of allocated parking slot \(b_i\) is within \(\epsilon\) (the minimum price increment) of the maximum net profit value. However, the assumption is that the dummy vehicle agent is always satisfied with any result of allocation through all iterations.

At the beginning of each iteration, if is any vehicle agent \(i\) is not satisfied with the previous result of parking slot allocation, this vehicle agent finds parking slot \(b_i^*\) that provides the maximum net profit value:

\[
 b_i^* = \arg \max_{b \in \mathcal{B}^p \cup \{b_{\text{new}}\}} \{u_i(b) - p(b)\}
\]

(6.10)
Once vehicle agent i finds the parking slot b_i^*, the agent exchanges parking slots with the vehicle agent currently allocated to b_i^* by submitting a new price for parking slot b_i^*. If $p_{\text{new}}(b_i^*)$ is the new price for parking slot b_i^*, then in this auction market, $p_{\text{new}}(b_i^*)$ is set to a level where vehicle agent i is indifferent between b_i^* and the second best parking slot, as computed by:

$$p_{\text{new}}(b_i^*) = p(b_i^*) + (\alpha_i - \beta_i + \varepsilon)$$ \hspace{1cm} (6.11)

where α_i denotes the net profit value of the best parking slot for vehicle agent i and β_i represents the net profit value of the second best parking slot. The α_i and β_i, are computed as:

$$\alpha_i = \max_{b \in B^* \cup \{b_{\text{new}}\}} \{u_i(b) - p(b)\}$$ \hspace{1cm} (6.12)

$$\beta_i = \max_{b \in [B^* \cup \{b_{\text{new}}\}] \setminus \{b_i^*\}} \{u_i(b) - p(b)\}$$ \hspace{1cm} (6.13)

By the above definition, the price increment (bidding increment) is always at least equal to ε.

As described in Table 6.2, the above process in the ascending price iterative auction mechanism repeats in a sequence of iterations until all vehicle agents are satisfied with the results of parking slot allocation. The strength of the ascending price iterative auction market is in computational efficiency and the optimal property of an ε - complementary slackness auction algorithm (Bertsekas, 1990). When the auction market terminates, an allocation result is in almost equilibrium and the total sum of utility values of the final parking slot allocation is within $(n + l) \cdot \varepsilon$ of being optimal, where n is the number of vehicle agents in \mathcal{V}^p.
Table 6.2: Ascending price iterative auction mechanism for updating vehicle deployment decisions.

[STEP 1] Yard manager agent - Opening auction market

DO Request currently allocated parking slot b_i to vehicle agent i, for $\forall i \in V^p$
DO Send RFB message including $B^p \cup b_{new}$ to vehicle agents in V^p
GO TO STEP 2

[STEP 2] Vehicle agents - Submitting bidding price

FOR Vehicle agent i, $\forall i \in V^p$

IF $u_i(b_i) - p(b_i) \geq \max_{b \in B^p \cup \{b_{new}\}} \{ u_i(b) - p(b) \} - \epsilon$

THEN

Submit new bidding price $p_{new}(b_i^*)$ for b_i^*
Exchange parking slots with vehicle agent assigned to b_i^*
SET $p(b_i) = p_{new}(b_i^*)$
ELSE

DO Nothing
END IF
END FOR
GO TO STEP 3

[STEP 3] Yard manager agent - Terminating auction market

IF $u_i(b_i) - p(b_i) \geq \max_{b \in B^p \cup \{b_{new}\}} \{ u_i(b) - p(b) \} - \epsilon$, for $\forall i \in V^p$ THEN

Close auction market
ELSE

GO TO STEP 2
END IF

6.4 Design of Utility Function for Vehicle Agent

Design of the utility function of a vehicle agent for a parking slot considers two principal factors in the vehicle deployment operational environment: consolidated operational time and shipment loading schedule. Since a vehicle agent has a preference
for the parking slot requiring less consolidated operational time, as defined in Equation (2.5), it makes clear to define the utility value of parking slot b for vehicle agent i, $u_i(b)$, as a reciprocal form of the consolidated operational time for vehicle i to parking slot b.

$$u_i(b) = \left(COT(L_i, b) \right)^{-1}$$ \hspace{1cm} (6.14)

In the shipment yard, vehicles in the general buffer move to designated loading locations based on a predefined shipment loading schedule. In general, the shipment loading schedule primarily considers a vehicle’s delivery priority. For example, a vehicle with a high delivery priority is expected to be shipped earlier than a vehicle with a lower delivery priority. Table 6.3 describes a simple instance of creating a shipment loading schedule that follows a high-priority-first-loaded (HPFL) rule. As a result of the HPFL-based loading schedule, the amount of time a vehicle with a higher delivery priority stays in a general buffer before moving to a designated loading location is likely to be shorter than the amount of time a vehicle with a lower delivery priority stays.
Table 6.3: Instance of a shipment loading schedule that follows a high-priority-first-loaded (HPFL) rule.

\[
\text{FIND } \mathcal{V}^k = \{ j \mid j \in \mathcal{V} \text{ and } L_j = k \}, \text{ where } \mathcal{V} \text{ is the set of all vehicles in general buffer}
\]

\[
\text{FOR } m = 1 \text{ TO } T_{\text{capa}} \text{ (} T_{\text{capa}} \text{ is the maximum capacity of a truck)}
\]

\[
\text{FIND } J^* = \left\{ j^* \mid j^* = \arg \max_{j \in \mathcal{V}^a} (\omega_j) \right\}, \text{ where } \omega_j \text{ is delivery priority of vehicle } j.
\]

\[
\text{IF } |J^*| = 1 \text{ THEN}
\]

Load vehicle \(j^* \)

\[\mathcal{V}^k = \mathcal{V}^k \setminus \{ j^* \} \]

\[
\text{ELSE IF } |J^*| > 1 \text{ THEN}
\]

\[
\text{FIND } j^* = \arg \max_{j \in J^*} (p_j), \text{ where } p_j \text{ is production time of vehicle } j.
\]

Load vehicle \(j^* \)

\[\mathcal{V}^k = \mathcal{V}^k \setminus \{ j^* \} \]

\[
\text{END IF}
\]

\[m = m + 1 \]

\[
\text{END FOR}
\]

In order to reduce the overall consolidated operational time during a planning time period, the parking slot that creates lower consolidated operational time should be highly utilized by allocating vehicles to the parking slot, as many as possible, during the planning time period. This goal is achieved by decreasing the amount of time a vehicle stays in this parking slot. For this reason, a vehicle agent with a higher delivery priority has greater utility value of a parking slot than a vehicle agent with a lower delivery priority. Finally the utility value of parking slot \(b \) for vehicle agent \(i \), \(u_i(b) \), is computed by:
\[u_i(b) = (1 + \omega_i) \cdot \left\{ \text{COT}(L_i, b) \right\}^{-1} \]

\[= (1 + \omega_i) \cdot \left\{ \left(\frac{D_d(Q_i, b)}{s_d} + t_{\text{wait}} + \frac{D_r(b, Q_i)}{s_r} \right) + \left(\frac{D_w(L_i, b)}{s_w} + \frac{D_d(b, L_i)}{s_d} + t_{\text{load}} \right) \right\}^{-1} \]

(6.15)

where \(\omega_i \) denotes delivery priority of vehicle \(i \). The value of \(\omega_i \) is set within 0 to 1, \(0 < \omega_i < 1 \), and larger \(\omega_i \) implies higher delivery priority.
Chapter 7

Empirical Analysis of Vehicle Deployment

Computational experiments conducted with simulation validated the new design of the market-based control for the vehicle deployment process in the RFID-enabled shipment yard. This chapter presents the experimental setup followed by the experimental analysis results.

7.1 Experimental Setup

Computational experiments compare four different vehicle deployment models, classified in Table 7.1, are compared in terms of consolidated operational time, shipment yard utilization, and labor consumption. Vehicle deployment models considered in the experimentation are:

- **CVD**: Current best vehicle deployment practice model, described in Section 2.4.
- **RVDID**: RFID-enabled vehicle deployment model with initial deployment decision only, described in Section 6.1.1.
- **RVDID+AH**: RFID-enabled vehicle deployment model with updating initial deployment decisions using the auction heuristic, described in Section 6.3.1.
- **RVDID+IA**: RFID-enabled vehicle deployment model with updating initial deployment decision using the ascending price iterative auction, described in Section 6.3.2.
Table 7.1: Classification of vehicle deployment models.

<table>
<thead>
<tr>
<th>Description</th>
<th>Vehicle deployment model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CVD</td>
</tr>
<tr>
<td>RFID tracking system</td>
<td>No</td>
</tr>
<tr>
<td>Initial decision for vehicle deployment</td>
<td>Yes</td>
</tr>
<tr>
<td>Updating vehicle deployment decision</td>
<td>No</td>
</tr>
<tr>
<td>Market-based control</td>
<td>-</td>
</tr>
</tbody>
</table>

7.1.1 Experimental Conditions

An illustration of the structure and the size of the shipment yard considered through the experiments appears in Figure 7.1. The size of the general buffer in the shipment yard is a grid of 50×100 slots, where the total number of parking slots is 5,000, and the number of loading locations in the loading buffer is 50. An assembly plant releases a finished vehicle to the temporary buffer, every 2 time units on average (uniform distribution on the interval [1.8, 2.2]), and a truck arrives at the loading buffer every 16 time units, on average (uniform distribution on the interval [14.4, 17.6]). The number of vehicles a truck can load is set to 8. The vehicle loading sequence follows the HPFL (high-priority-first-loaded) rule, explained in Section 6.4., and the delivery priority for each vehicle is randomly selected from a uniform distribution on the interval [0, 1]. It is assumed that the unit speeds of driving and riding are 10 and 8 times higher than that of walking. Waiting time for a yard operator, \(t_{\text{wait}} \), and vehicle loading time for a trucker, \(t_{\text{load}} \), are randomly generated from uniform distributions on the interval [7.0, 9.0] and [8.0, 12.0], respectively. For each vehicle deployment model, simulation continues for a total of 20,000 vehicles loaded onto trucks, and a total of 20 simulation runs for each vehicle deployment model are repeated to reduce random effects.
7.2 Consolidated Operational Time

It is obvious that the consolidated operational time depends on the vehicle’s allocated parking slot in the general buffer. Table 7.2 shows the experimental results for the average operational times for each elementary operation and the average consolidated operational times for the different vehicle deployment models. The average operational times for the operations EO-I and EO-II, conducted by a yard operator, are slightly increased in RVD, RVD+AH, and RVD+IA, as compared to the operational times in CVD. However, the average operational time for EO-III, the walking operation from a loading location to a parking slot by a trucker, is considerably decreased to 45.03%, 55.67%, and 57.40%, in RVD, RVD+AH, and RVD+IA, respectively. As a result, the average consolidated operational time for a single vehicle is reduced to 20.15% in RVD, 25.75% in RVD+AH, and 26.84% in RVD+IA when compared to CVD. These results indicate that real-time information on vehicles and the availability of parking slots, provided by the RFID tracking system, creates a significant decrease in a

5 The elementary operations for a yard operator (EO-I and EO-II) and a trucker (EO-III and EO-IV) are described in Section 2.1.
trucker’s operational time, which is a dominant factor of the consolidated operational time. This fact is quite reasonable because walking from a loading location to a parking slot is the most time-consuming operation in vehicle deployment.

Table 7.2: Average operational time (unit time) for deployment of a single vehicle.

<table>
<thead>
<tr>
<th>Operation name</th>
<th>Vehicle deployment model</th>
<th>CVD</th>
<th>RVD<sup>ID</sup></th>
<th>RVD<sup>ID+AH</sup></th>
<th>RVD<sup>ID+IA</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations for yard operator</td>
<td></td>
<td>56.31</td>
<td>66.59</td>
<td>67.99</td>
<td>68.06</td>
</tr>
<tr>
<td>EO-I</td>
<td></td>
<td>21.45</td>
<td>26.04</td>
<td>26.69</td>
<td>26.73</td>
</tr>
<tr>
<td>EO-II</td>
<td></td>
<td>26.86</td>
<td>32.55</td>
<td>33.30</td>
<td>33.33</td>
</tr>
<tr>
<td>Operations for trucker</td>
<td></td>
<td>108.17</td>
<td>64.74</td>
<td>54.14</td>
<td>52.28</td>
</tr>
<tr>
<td>EO-III</td>
<td></td>
<td>88.81</td>
<td>48.82</td>
<td>39.37</td>
<td>37.83</td>
</tr>
<tr>
<td>EO-IV</td>
<td></td>
<td>9.36</td>
<td>5.92</td>
<td>4.77</td>
<td>4.45</td>
</tr>
<tr>
<td>COT</td>
<td></td>
<td>164.48</td>
<td>131.33</td>
<td>122.13</td>
<td>120.34</td>
</tr>
</tbody>
</table>

a For the ascending price iterative auction algorithm, the value of ε is set to 10⁻⁵.

It is also shown that a vehicle deployment decision made by RVD^{ID} improves with updating the vehicle deployment decision using the proposed auction mechanism. In terms of the average operational time for EO-III, 19.36% and 22.51% are the improvements for RVD^{ID+AH} and RVD^{ID+IA}, respectively, as compared to RVD^{ID}, and the average consolidated operational time is enhanced to 7.01% and 8.37% for RVD^{ID+AH} and RVD^{ID+IA}, respectively.

7.3 Shipment Yard Utilization

As explained in Chapter 2, the operational time for a trucker depends mainly on the distance from a vehicle in the general buffer to its loading location. From this fact, it is clearly noticeable that increasing the utilization of the parking slots near loading
locations is important and may result in a reduction of the operational time for a trucker and, consequently, the consolidated operational time. Investigation of the utilization of a parking slot in different vehicle deployment models introduces two different performance measures: a utilization rate of parking slot and a frequency of parking slot utilization.

7.3.1 Utilization Rate of Parking Slot

The utilization rate of a parking slot is defined as the ratio of the time that the parking slot is occupied by the vehicles during the total simulation time period. Let $UR(b)$ be the utilization rate of parking slot b. From the result of the simulation study, $UR(b)$ is computed by:

$$UR(b) = \frac{\sum_{v \in \mathcal{V}} t(v_b)}{\text{Total simulation time period}} \quad (7.1)$$

where \mathcal{V} is the set of total vehicles moved into the general buffer during the simulation time period, and $t(v_b)$ denotes the time period vehicle v has occupied parking slot b.

The following Figures 7.2, 7.3, 7.4, and 7.5 show the utilization rates of parking slots in CVD, RVDID, RVD$^{ID+AH}$, and RVD$^{ID+IA}$, respectively.
Fig. 7.2: Utilization rate of parking slot in CVD.

Fig. 7.3: Utilization rate of parking slot in RVDID.
Fig. 7.4: Utilization rate of parking slot in RVD^{ID+AH}.

Fig. 7.5: Utilization rate of parking slot in RVD^{ID+IA}.
As shown in the above figures, RFID-enabled vehicle deployment models, RVDID, RVDID+AH, and RVDID+IA, significantly increase the utilization rate of parking slots near loading locations as compared to CVD. It is obviously shown in Figure 7.6 that vehicle deployments by RVDID+AH and RVDID+IA considerably enhance the utilization rate of parking slots near loading locations.

Fig. 7.6: Average utilization rate of the parking slots (50 parking slots) in each parking slot column.

7.3.2 Frequency of Parking Slot Utilization

The utilization rate of a parking slot itself does not accurately reflect the utilization of a parking slot. For example, if a certain vehicle occupies the parking slot preferred for other vehicles for a long time period, this increases the utilization rate of the parking slot defined in Equation (7.1). However, from the perspective of vehicle
deployment, it is desirable that the parking slot preferred for most vehicles is utilized (occupied) by vehicles as much as possible in order to achieve a higher vehicle deployment performance. To this end, the frequency of parking slot utilization becomes a complementary performance measure for examining the utilization of a parking slot. The frequency of parking slot utilization is defined as the number of vehicles allocated into the parking slot during the simulation time period. Let $F(b)$ be the frequency of parking slot b’s utilization. From the result of the experimentation, $F(b)$ is computed by:

$$F(b) = \sum_{v \in \mathcal{V}} x_b^v$$

(7.2)

where x_b^v is 1 if vehicle v is allocated to parking slot b, otherwise 0.

The following Figures 7.7, 7.8, 7.9, and 7.10 show the frequency of parking slot utilization in CVD, RVD$^\text{ID}$, RVD$^{\text{ID+AH}}$, and RVD$^{\text{ID+IA}}$, respectively.

![The number of vehicles: $F(b)$](image)

Fig. 7.7: Frequency of parking slot utilization in CVD.
Fig. 7.8: Frequency of parking slot utilization in RVDID.

Fig. 7.9: Frequency of parking slot utilization in RVDID+AH.
As shown in the previous figures, RFID-enabled vehicle deployment models, RVDID, RVDID+AH, and RVDID+IA, significantly increase the number of vehicles allocated to the parking slots near loading locations. In other words, the parking slots providing high vehicle deployment performance are utilized by a significantly larger number of vehicles compared to CVD. To clarify this result, Figure 7.11 shows the average number of vehicles deployed into the parking slots in each parking slot columns (50 parking slots in each parking slot column). The average number of vehicles parked near loading locations is considerably more in RVDID+AH and RVDID+IA. This suggests that parking slots near loading locations are highly utilized by moving vehicles into these slots as much as possible, resulting in reduction of consolidated operational time. This result also indicates that the RFID-enabled vehicle deployment models provide a yard manager with an opportunity to reduce the size of the general buffer while enhancing the performance of vehicle deployment.
7.4 Labor Consumption

From a shipment yard management point of view, a yard manager is often more interested in reducing the labor time for a trucker than that for a yard operator. Loading a vehicle onto a truck requires more advanced skills, and the labor cost per unit time for a trucker is much higher than for a yard operator. Furthermore, the operational time for a trucker directly affects the amount of time a truck spends in the shipment yard to load a set of vehicles. If a truck spends more time than usual, this causes a delay in loading operations for the trucks coming next and, consequently, results in delays in delivery of vehicles.

This section analyzes the average labor consumption of a yard operator and a trucker for deployment of a single vehicle. Labor consumption is defined as the time required to conduct an assigned operation. By adjusting the labor consumption in CVD up to 100%, the labor consumption for RFID-enabled vehicle deployment models are...
relatively calculated. For example, the labor consumption of a yard operator in vehicle deployment model \(m \), \(LC_{yo}(m) \), is computed by:

\[
LC_{yo}(m) = \frac{SOT_{yo}(m)}{SOT_{yo}(CVD)} \times 100
\]

(7.3)

where \(SOT_{yo}(m) \) denotes the sum of the operational times required for a yard operator to conduct deployment of a single vehicle in vehicle deployment model \(m \).

As shown in Figures 7.12 and 7.13, although the labor consumption of a yard operator slightly increases, the labor consumption of a trucker significantly decreases with the RFID-enabled vehicle deployment models, which leads a reduction of total labor costs and avoid delays in vehicle loading operations and deliveries.

![Fig. 7.12: Average labor consumption of a yard operator with different vehicle deployment models.](image)
Summary of Empirical Analysis

The experimental results demonstrate that the RFID-enabled vehicle deployment models, RVD^ID, $\text{RVD}^\text{ID+AH}$, and $\text{RVD}^\text{ID+IA}$, outperform the current vehicle deployment model, CVD, with respect to the selected performance measures. This proves that applying the RFID technology to a current shipment yard can significantly improve the performance of vehicle deployment by: (1) reducing the consolidated operational time, (2) increasing shipment yard utilization, and (3) decreasing labor consumption. Further, the proposed market-based approach, using the multiagent computational architecture, improves system performance because this approach can effectively capture and respond to the dynamic changes in the shipment yard environment by incorporating the large amount of real-time distributed vehicle location information.
Chapter 8

Shipment Load Makeup – Solution Methodology Part I

In the RFID-enabled shipment yard, the shipment load makeup process can be more reliable and visible in response to dynamics and uncertainties in the shipment load makeup operational environment. Incorporating the real-time information from an RFID system into the shipment load makeup process involves designing a new operational process and a corresponding mathematical programming model for shipment load makeup. As a foundation of the solution approach for the new shipment load makeup process, this chapter presents a multiagent-based decision-making framework.

8.1 Shipment Load Makeup in RFID-enabled Shipment Yard

As explained in Chapter 3, a manual reporting process periodically updates information on the vehicles in the shipment yard. Yard operators and truckers manually inform a yard manager of the available vehicles in the shipment yard and their current locations. Since these manual reporting and updating processes take a certain amount of time, the availability of vehicles in the shipment yard is not updated immediately and it is inevitable to make a shipment load makeup plan for a certain time period in advance.

By introducing RFID technology, a shipment load makeup planner receives real-time information on currently available vehicles and their locations in the shipment yard. This can make the shipment load makeup process more reliable and adaptable in response to dynamics and uncertainties. Since the shipment load makeup planner’s information on all the vehicles is in real-time, the planner can determine the set of vehicles to be loaded onto a truck just before or when a truck arrives at the yard. In addition, real-time tracking of vehicle location in the shipment yard eliminates time consumed searching for a misplaced vehicle.
Availability of information on vehicles and their locations in real-time enables the shipment load makeup planner to decompose a shipment load makeup planning model, into a set of shipment load makeup decision models, which facilitates a set of decisions for a certain planning time period. The goal of a shipment load makeup decision model is to provide a shipment load makeup plan for a single truck whenever that truck actually arrives at the shipment yard. The real-time shipment load makeup decision model is illustratively compared to the planning model in Figure 8.1.

As illustrated in Figure 8.1, the changes in the set of available vehicles during the planning time period can be fully reflected through the new shipment load makeup process in the RFID-enabled shipment yard. In the new shipment load makeup process, each shipment load makeup decision is made with real-time information on available vehicles, and uncertain schedules for vehicle production and truck arrivals, which may degrade performance of the shipment load makeup planning model, are eliminated from a decision-making process. Thus the new shipment load makeup process, enabled by real-time information from the RFID system, is more adaptable and flexible in response to the inevitable dynamics and uncertainties in shipment load makeup operational environment.
8.2 Shipment Load Makeup Decision in an RFID-enabled Shipment Yard

In the RFID-enabled shipment yard, the shipment load makeup plan no longer specifies a certain time period, but specifies a single decision epoch in which a truck actually arrives at the shipment yard. Based on the new shipment load makeup process, the shipment load makeup decision for each load makeup scenario presented in Chapter 3 (Section 3.4.2) is formulated as an Integer Programming (IP) model.

The IP formulation for the shipment load makeup decision, easily configured from the formulation for the shipment load makeup planning, presented in Chapter 3, occurs by reducing the number of trucks and the number decision epochs.

8.2.1 Shipment Load Makeup Decision in Scenario 1

The two binary decision variables are defined as:

\[
\delta_b = \begin{cases}
1, & \text{if truck is assigned to block } b \text{ for delivering vehicles} \\
0, & \text{otherwise}
\end{cases}
\]

\[
x_{bd} = \begin{cases}
1, & \text{if the vehicles of dealer } d \text{ in block } b \text{ is chosen for shipment} \\
0, & \text{otherwise}
\end{cases}
\]

Similar to the shipment load makeup planning, the objective function shown in Equation (8.1) is a consolidated form of three different objective functions for the shipment yard, dealers, and the transportation division.

\[
F(x_{bd}) = F_S(x_{bd}) + F_D(x_{bd}) + F_T(\delta_b, x_{bd})
\]

The objective function for the shipment yard, dealers, and the transportation division appear in Equations (8.2), (8.3), and (8.4), respectively.
The objective function of the shipment yard:

\[F_s(x_{bd}) = \sum_{b \in B} \sum_{d \in D_b} (1 - x_{bd}) \cdot \sum_{v \in V^b_d} \left[C^{HD}_\Delta (v) + C^{RP}_\Delta (v) \right] \]

where \(C^{HD}_\Delta (v) = \sum_{l=\min[l+1, l+\Delta]} c^{bd}_l(l) \), \(C^{RP}_\Delta (v) = \begin{cases} c^{rp}, & \text{if } l_v \in [L-\Delta+1, L] \\ 0, & \text{otherwise} \end{cases} \) \((8.2) \)

In the above equation, the set of available vehicles ordered from dealer \(d \) in block \(b \), \(V^{bd} \), is provided from the RFID data server in real-time, and \(\Delta (\Delta = t_n - t_c) \) denotes the length of the discrete time period between the making of a decision, \(t_c \), and the arrival of the next truck, \(t_n \).

The objective function of dealers:

\[F_d(x_{bd}) = \sum_{b \in B} \sum_{d \in D_b} (1 - x_{bd}) \cdot \sum_{v \in V^b_d} \left[C^{DL}_\Delta (v) + C^{LT}_\Delta (v) \right] \]

where \(C^{DL}_\Delta (v) = \begin{cases} \sum_{l=\min[l+1, l+\Delta]} c^{dl}_v(l), & \text{if } l_v \in [\omega - \Delta+1, L-1] \\ 0, & \text{otherwise} \end{cases} \) \((8.3) \)

\(C^{LT}_\Delta (v) = \begin{cases} c^{lt}_v, & \text{if } l_v \in [L-\Delta+1, L] \\ 0, & \text{otherwise} \end{cases} \)

The objective function of the transportation division:

\[F_T(\delta_b, x_{bd}) = \sum_{b \in B} \delta_b \cdot C^{TR}_b + \sum_{b \in B} \sum_{d \in D_b} x_{bd} \cdot C^{DL}_b + \left(\Psi - \sum_{b \in B} \sum_{d \in D_b} x_{bd} \cdot |V^{bd}| \right) \cdot C^{LR}_\Delta \]

\((8.4) \)

Finally the shipment load makeup decision is formulated as follows:
Minimize \[F(x_{bd}) = F_S(x_{bd}) + F_D(x_{bd}) + F_T(\delta_b, x_{bd}) \] (8.5)

subject to:

\[\sum_{b \in B} \delta_b = 1 \] (8.6)

\[\sum_{d \in D_b} x_{bd} - M \cdot \delta_b \leq 0, \quad \forall b \in B \] (8.7)

\[\sum_{b \in B} \sum_{d \in D_b} x_{bd} \cdot |V_{bd}| \leq \psi \] (8.8)

\[\delta_b \in \{0, 1\}, \quad \forall b \in B \]

\[x_{bd} \in \{0, 1\}, \quad \forall b \in B, \ d \in D_b \]

Constraint (8.6) ensures the truck can take charge of only one block area for delivery. Constraint (8.7) presents that all the dealers chosen for delivery by the truck should be included in the same block, where \(M \) is a sufficiently large positive number that exceeds the maximum feasible value of any \(\sum_{d \in D_b} x_{bd} \ (\forall b \in B) \). Finally, Constraint (8.8) ensures the number of vehicles chosen for delivery can not exceed the maximum capacity of the truck.

8.2.2 Shipment Load Makeup Decision in Scenario 2

The three binary decision variables are defined as:

\[\delta_b = \begin{cases}
1, & \text{if truck is assigned to block } b \text{ for delivering vehicles} \\
0, & \text{otherwise}
\end{cases} \]
\[\mu_{bd} = \begin{cases}
1, & \text{if truck visits dealer } d \text{ in block } b \text{ for delivering vehicle} \\
0, & \text{otherwise}
\end{cases} \]

\[x_v = \begin{cases}
1, & \text{if vehicle } v \text{ is chosen for shipment (delivery)} \\
0, & \text{otherwise}
\end{cases} \]

The objective function is a consolidated form of three sub-objective functions for the shipment yard, dealers, and the transportation division:

\[F(x_v) = F_S(x_v) + F_D(x_v) + F_T(\delta_b, \mu_{bd}, x_v) \quad (8.9) \]

The objective function for the shipment yard, dealers, and the transportation division appear in Equations (8.10), (8.11), and (8.12), respectively.

\[F_S(x_v) = \sum_{v \in V} (1 - x_v) \cdot \left[C_{HD}^S(v) + C_{RP}^S(v) \right] \quad (8.10) \]

\[F_D(x_v) = \sum_{v \in V} (1 - x_v) \cdot \left[C_{DL}^D(v) + C_{LT}^D(v) \right] \quad (8.11) \]

\[F_T(\delta_b, \mu_{bd}, x_v) = \sum_{b \in B} \delta_b \cdot C_{TR}^T + \sum_{b \in B} \sum_{d \in D_b} \mu_{bd} \cdot C_{UL}^{T, b} + \left(\Psi - \sum_{v \in V} x_v \right) \cdot C_{UR} \quad (8.12) \]

In the above equations, the set of available vehicles in the shipment yard, \(V \), is provided from the RFID data server in real-time. Finally the shipment load makeup decision is formulated as:
Minimize \[F(x_v) = F_s(x_v) + F_D(x_v) + F_T(\delta_b, \mu_{bd}, x_v) \] (8.13)

subject to:

\[\sum_{b \in B} \delta_b = 1 \] (8.14)

\[\sum_{v \in \mathcal{V}^b} x_v - M_1 \cdot \delta_b \leq 0, \quad \forall b \in B \] (8.15)

\[\sum_{v \in \mathcal{V}_{bd}} x_v - M_2 \cdot \mu_{bd} \leq 0, \quad \forall b \in \mathcal{B}, \quad d \in \mathcal{D}_b \] (8.16)

\[\sum_{v \in \mathcal{V}} x_v \leq \Psi \] (8.17)

\[\delta_b \in \{0, 1\}, \quad \forall b \in \mathcal{B} \]

\[\mu_{bd} \in \{0, 1\}, \quad \forall b \in \mathcal{B}, \quad d \in \mathcal{D}_b \]

\[x_v \in \{0, 1\}, \quad \forall v \in \mathcal{V} \]

Constraint (8.15) presents that all the vehicles chosen for delivery by the truck should be included in the same block, where \(\mathcal{V}^b (\mathcal{V}^b \subset \mathcal{V}) \) is the set of vehicles ordered from dealers in block \(b \), and \(M_1 \) is a sufficiently large positive number that exceeds the maximum feasible value of any \(\sum_{v \in \mathcal{V}^b} x_v \ (\forall b \in \mathcal{B}) \). Constraint (8.16) ensures the truck visits the dealer if it carries any vehicle ordered from the dealer, where \(\mathcal{V}_{bd} (\mathcal{V}_{bd} \subset \mathcal{V}^b \subset \mathcal{V}) \) is the set of vehicles ordered from the dealer \(d \) in block \(b \). In this equation, \(M_2 \) is an extremely large positive number that exceeds the maximum feasible value of any \(\sum_{v \in \mathcal{V}_{bd}} x_v \ (\forall b \in \mathcal{B}, \quad d \in \mathcal{D}_b) \). Finally, Constraint (8.17) ensures the number of vehicles chosen for delivery can not exceed the maximum capacity of the truck.
8.3 Shortcomings of Shipment Load Makeup Decision Model in a Distributed Large Scale Environment

Similar to the shipment load makeup planning, the IP programming of the shipment load makeup decision has it’s formulation based on centralized information processing and decision-making. Even though the RFID system provides a decision maker with real-time information on all the vehicles in the shipment yard, the decision maker still needs to have shipment load makeup related operational information about local dealers and the transportation resource division, such as a dealer’s shipment time commitment for a vehicle, various operational cost functions, etc. Furthermore this operational information changes frequently as managerial and market environments for local dealers and the transportation resource division change. With increasing dynamics and uncertainties in the shipment load makeup environment, the centralized decision-making approach becomes inadequate in processing all the distributed information and is unable to provide an adaptable decision in response to the dynamics and uncertainties.

From a computational complexity perspective, even though the shipment load makeup decision is relatively less complex as compared to the shipment load makeup planning, the computational complexity of the problem is still significant. In the IP formulation for the shipment load makeup decision, the number of variables increases rapidly in relationship to the increase in the number vehicles in the shipment yard, the number of block areas, and the number of local dealers. Moreover the shipment load makeup decision is an operational problem addressed on a frequent basis whenever a truck arrives, and should provide an adaptable solution in time. Thus, it is inevitable to consider other alternatives rather than a global optimization model, in order to handle the shipment load makeup decision on a large scale real shipment yard environment.

8.4 Multiagent Architecture for Shipment Load Makeup in an RFID-enabled Shipment Yard
Due to the limitations of a centralized decision-making approach and computational inefficiency, implementing a global optimization model for shipment load makeup decisions is inadequate. To overcome these shortcomings when applying the IP formulation of the shipment load makeup decision to a large scale shipment yard environment, this study proposes a design for a multiagent-based decision-making architecture.

The core issue in designing the multiagent architecture for the shipment load makeup process is defining the individual agent in this architecture. Two major approaches for defining an agent are possible: (i) function-oriented approach, where agents represent some functions such as order acquisition, planning, material handling, and product distribution, or (ii) physical entity-oriented approach, in which agents represent physical entities such as manager, workers, machines, and components (Shen and Norrie, 1999). Since the second approach enables an individual agent to manage efficiently individual local information with limited interactions, the physical entity-oriented approach is more suitable for modeling a supply chain environment, involving a large number of physical entities (Lee, 2002). On the basis of this argument, the following main agent classes are defined: dealer agent (DA), yard agent (YA), block agent (BA), resource manager agent (RM), resource agent (RA), and market coordinator agent (MC). The first five agent types embody approximately physical shipment load makeup organizations, while the MC is a virtual entity for market establishment’s purpose. The fundamental roles of these agents and the key information entities they maintain are:

1. **Dealer Agent** (DA): a DA class agent represents a local dealer and is responsible for obtaining an available resource, such as a set of vacancies in a truck. The number of total DAs is equal to the number of local dealers and the set of DAs, \(\mathcal{DA} \), is represented as \(\mathcal{DA} = \{ \text{DA}_{bd} \mid b \in B, \text{ and } d \in D_b \} \). Each DA maintains managerial and operational information of a local dealer, and also has information on the set of currently available vehicles ordered by a dealer that a DA represents. For example, \(\text{DA}_{bd} \) has information on \(\mathcal{V}^{bd} \).
\[V^{\text{avl}} = \{ v | b_v \in B \text{ and } d_v \in D_b \}. \]

2. **Yard Agent (YA):** the YA is responsible for managing information about the vehicles in the shipment yard by accessing the RFID data server. The YA interacts with a DA to provide information on the available vehicles ordered by a DA. Figure 8.2 illustrates the interaction among the YA, the RFID data server, and DAs.

![Diagram of interaction among the YA, the RFID data server, and DAs.](image)

Fig. 8.2: Interaction among the YA, the RFID data server, and DAs.

3. **Block Agent (BA):** a BA class agent is designed to represent a block area, and the set of BAs, \(B.A \), is represented as \(B.A = \{ BA_b | b \in B \} \). A BA is in charge of coordinating a set of DAs included in its own block area, and interacts with a market coordinator agent for temporary economy initiation and clearing. Each BA maintains information on dealers included in its own block area.

4. **Resource Manager Agent (RM):** the RM is responsible for representing the transportation resource division, managing a set of resource agents, and interacting with the market coordinator agent for temporary economy initiation.
and clearing. The RM maintains the managerial and operational information of the transportation resource division.

5. **Resource Agent (RA):** an RA class agent is responsible for a single transportation resource, such as a truck, belonging to the transportation resource division. An RA, as a seller, interacts with BAs or DAs in an auction market. Each RA maintains information on a truck.

6. **Market Coordinator Agent (MC):** the MC is responsible for coordinating multiple auction markets in the temporary economy. The MC is a permanent agent, while other agents are dismissed from system after achieving their goals.

According to the role definitions of each agent class, the design of an auctioning process embodies auction mechanisms to handle shipment load makeup decision in the RFID-enabled shipment yard. This study introduces two different auctioning processes to handle different shipment load makeup scenarios presented in Chapter 3 and to address impact of communicational and computational aspects of agents on designing an auction mechanism. The details of the auctioning processes with corresponding auction mechanisms follow in Chapters 9 and 10, respectively.
Chapter 9

Shipment Load Makeup – Solution Methodology Part II

As explained in Chapter 8, the design of the multiagent-based auctioning process handles the shipment load makeup decisions in an RFID-enabled shipment yard. For the shipment load makeup decision in Scenario 1, explained in Section 8.2.1, this chapter presents the two-tier auctioning process consisting of two different types of auctions, the first round local auction and the second round central auction. The following sections present the two-tier auctioning process by detailing market organizations and auction mechanisms for the first round local auction and the second round central auction.

9.1 The First Round Local Auction

9.1.1 Construction of the First Round Local Auction Market

Once a truck arrives at the shipment yard for the delivery of vehicles, i.e., one of RAs becomes available, the RM which manages RAs informs the MC of the availability of an RA (a truck). At this point, the MC initiates a temporary economy for the two-tier auctioning process. In the temporary economy, each BA establishes the first round local auction market by sending a request for bid (RFB) message to the corresponding DAs. Thus, the first round local auction market is established for each block area, and total \(B \) auction markets, where \(B \) is the number of block areas, are constructed simultaneously. Figure 9.1 describes the initiation of a temporary economy and the multiple first round local auction markets.
In the first round, each auction market proceeds independently to determine a set of provisional winning DAs (buyers) which will advance to the second round central auction market, and DAs only belonging to the same local auction market compete with each other. Virtually allocating a set of vacancies on the truck to a set of DAs determines provisional winning DAs for each local auction market.

An iterative bundle auction mechanism, which maximizes the sum value across the agents in the market, is developed for an auctioning process for each first round local auction market. The proposed auction mechanism is applied independently to all the local auction markets in the first round. This section presents the iterative bundle auction mechanism by detailing the auction process in a certain first round local auction market, M_{b}^{1st} ($b \in B$).
9.1.2 Descriptions of Bundle Expression for Identical Items

In the delivery chains of an automobile manufacturer, the transportation resource division desires that the vehicles, currently available for delivery and ordered from the same dealer, are shipped together to reduce operational cost by reducing the number of dealers the truck visits. A dealer also may want all of the available vehicles ordered to be shipped together in that it is much efficient for the dealer to track orders and to build or update an inventory plan. Furthermore, in order to design an efficient auction mechanism for a large scale shipment load makeup environment, considering a set of vehicles ordered from the same dealer together as one entity will be computationally efficient.

Based on these operational reasons, the design requires that a DA requests a bundle of vacancies on the truck to allow all the available vehicles the DA has to load on the truck. In the iterative bundle auction mechanism, DAs are supposed to have non-additive values for individual vacancies. For example, each DA requires a bundle of vacancies, which allow of loading all the vehicles it has, while receiving an insufficient number of vacancies has no value. Vacancies on a truck are regarded as items allocated (or sold) to DAs through an auction market.

Let G be the set of vacancies on the truck, and D_b represents the set of DAs participating in the first round local auction market for block area b, M_b^{1st}. As a matter of convenience for representing the index, D and M^{1st} are used rather than D_b and M_b^{1st} in this chapter.\(^6\)

Let $u_i(J)$ be the utility value of the bundle of vacancies J ($J \subseteq G$) for dealer agent i, DA$_i$ ($i \in D$). Since DAs are supposed to have non-additive value for vacancies that are regarded as identical items through an auction market, DA$_i$ has a certain positive

\(^6\) Since each local auction market established in the first round proceeds independently with the same auction mechanism, this chapter presents the auction mechanism in the domain of a certain first round local auction market, and omits the block index b ($b \in B$) for convenience in mathematical presentation.
value μ_i for bundle J, only if the number of vacancies in the bundle J, $|J|$, is greater than or equal to the number of vehicles DA$_i$ has, $|\mathcal{V}_i|$, otherwise $u_i(J)$ is zero as shown in Equation (9.1):

$$u_i(J) = \begin{cases}
\mu_i, & \text{if } |J| \geq |\mathcal{V}_i| \text{ and } J \subseteq \mathcal{G} \\
0, & \text{otherwise}
\end{cases} \quad (9.1)$$

From the definition of the utility value of the bundle of vacancies J for DA$_i$, the implication is that DA$_i$ is interested in taking only the bundles where the number of vacancies is greater than or equal to $|\mathcal{V}_i|$ for μ_i, and DA$_i$ is free to dispose of unnecessary vacancies. For this reason, the utility value of the bundle where the number of vacancies is greater than $|\mathcal{V}_i|$ might also be set to μ_i. Table 9.1 shows the small size instance of DA valuations for vacancies on a truck.

Table 9.1: DA valuations for vacancies on a truck.

<table>
<thead>
<tr>
<th>Agent</th>
<th>{A}</th>
<th>{B}</th>
<th>{C}</th>
<th>{A, B}</th>
<th>{A, C}</th>
<th>{B, C}</th>
<th>{A, B, C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA$_1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>DA$_2$</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>DA$_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
</tr>
</tbody>
</table>

There are three available vacancies (A, B, and C) on a truck and three DAs (DA$_1$, DA$_2$, and DA$_3$), with the number of vehicles DA1, DA2, and DA3 have are 2, 1, and 3, respectively. In this table, the utility value for each DA is arbitrarily given.

Since every DA has a non-additive value for an individual vacancy and each vacancy is an identical item, it is useful to explicitly represent the above table for DA valuations as Table 9.2, where DA valuations for the bundles can be concisely implicated as the valuation for the set of bundles which have the same number of vacancies. In this table bundle J is represented as $J \in \{\{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\}$.
Table 9.2: New representations of DA valuations for identical vacancies (items).

| Agent | $|J|=1$ | $|J|=2$ | $|J|=3$ |
|-------|--------|--------|--------|
| DA$_1$ | 0 | 70 | 70 |
| DA$_2$ | 30 | 30 | 30 |
| DA$_3$ | 0 | 0 | 90 |

From DAs’ valuations for items and the auction mechanism perspectives, the proposed maximum number of possible bundles considered through the auction mechanism can be significantly reduced compared to the number considered through the general bundle auction. In general, bundle auction models are designed to trade non-identical items between sellers and buyers.

If G is the set of items, and a total G number of items exists, then in general bundle auction models where each item is regarded as non-identical, the set of possible bundles, J, and the maximum number of possible bundles, $|J|$, are computed by:

$$J = J_1 \cup J_2 \cup \cdots \cup J_G$$

$$|J| = |J_1| + |J_2| + \cdots + |J_G|$$

$$= \binom{G}{1} + \binom{G}{2} + \cdots + \binom{G}{G}$$

$$= \frac{G!}{1! \cdot (G-1)!} + \frac{G!}{2! \cdot (G-2)!} + \cdots + \frac{G!}{G! \cdot (G-G)!}$$

$$= 2^G - 1$$

(9.3)
where J_k ($J_k \subset J$) denotes the set of bundles that include k items. As derived in Equation (9.3), if the number of items increases in a general bundle auction model, the maximum number of possible bundles increases exponentially. For that reason, general bundle auction models are not practically applicable for real-world large scale problems where the number of items required to be allocated is significantly large.

Through the auction mechanism for the shipment load makeup decision, a vacancy on a truck, allocated (or sold) to DAs, is regarded as an identical item. This fact enables design of a new bundle expression which makes the auction mechanism computationally efficient and applicable to large scale real-world problems. The key idea of the new bundle expression is that the bundles having the same number of items are regarded as identical bundles through the auction mechanism. Thus, the maximum number of possible bundles considered in the new bundle expression is computed by:

$$|J_k| = |J_1| + |J_2| + \cdots + |J_G| = G$$

(9.4)

Figure 9.2 shows the growth of the maximum number of possible bundles in a general bundle auction model and for the proposed auction model. As the number of items required to be traded increases, the maximum number of possible bundles considered in the proposed auction model becomes considerably smaller compared to a general bundle auction model.
9.1.3 Overall Procedure of Iterative Bundle Auction Mechanism

The iterative bundle auction mechanism proceeds in iterations starting with any allocation. The asking prices from an auctioneer are initially set to zero for every bundle in a market. As defined in Chapter 8, a BA plays the role of auctioneer in charge of controlling the first round local auction market and coordinating the DAs participated in the market. At the beginning of each iteration, the BA announces to DAs the asking prices for the bundles. Based on the asking prices, each DA decides whether to place a bid or not. If a DA decides to place a bid, the DA submits bidding prices for the bundles. Once the BA receives all of the bids from DAs, the BA determines a temporary allocation of bundles, and then updates the asking prices for bundles based on the result of the temporary allocation. At the beginning of the next iteration, the BA informs DAs of the result of the temporary allocation from the previous iteration and of the new asking prices. The auction market terminates when all the DAs who placed bids are “satisfied.” A DA is “satisfied” at the end of an iteration if the DA receives one of the bundles as a result of a bid. The overall procedure of the iterative bundle auction mechanism appears in Figure 9.3.
9.1.4 Dealer Agent Bidding Strategy

9.1.4.1 Exclusive-Or (XOR) Bid

The iterative bundle auction mechanism allows a DA to place a bid for multiple bundles. Since a DA wishes to obtain only one bundle from a set of bundles, a DA places an exclusive-or (XOR) bid for a set of bundles. For instance, Equation (9.5) indicates an XOR bid placed by DA$_i$ for bundles, J_1 and J_2, at bidding prices, $\text{bid } p_i(J_1)$ and $\text{bid } p_i(J_2)$, respectively:

\begin{equation}
\text{bid } p_i(J_1) \quad \text{and} \quad \text{bid } p_i(J_2),
\end{equation}

Fig. 9.3: Overall procedure of the iterative bundle auction mechanism for the first round local auction market.
The above XOR bid implies that DA \(i \) desires to obtain, at most, one of bundles \(J_1 \) and \(J_2 \) at corresponding bidding prices.

9.1.4.2 Myopic Best-Response Bidding Strategy

In the first round local auction market, a DA follows the myopic best-response bidding strategy introduced by Parks and Ungar (2000). With this bidding strategy, a DA submits an XOR bid for the bundles for which (1) every bundle has non-negative profit value, and (2) every bundle has profit value that is within \(\epsilon \) of maximum profit. The profit value of a bundle is the difference between utility value and price. For example, the set of bundles in XOR bid from DA \(i \), \(\Pi_i^{\text{XOR}} \), is represented as:

\[
\Pi_i^{\text{XOR}} = \left\{ \langle J, \ \text{bid} P_i(J) \rangle \mid u_i(J) - \text{bid} P_i(J) \geq 0 \quad \text{and} \right. \\
\left. u_i(J) - \text{bid} P_i(J) \geq \max_{J \in J} \left[u_i(J) - \text{bid} P_i(J) \right] - \epsilon \right\}
\]

(9.6)

where \(u_i(J) \) denotes the utility value of bundle \(J \) for DA \(i \), and \(J \) is the set of all possible bundles. The second condition, remaining within \(\epsilon \) of maximum utility, assures that the increment of bidding price is always at least equal to \(\epsilon \).

In order to set the bidding price for bundle \(J \) as low as possible, a DA submits a bidding price for bundle \(J \) that is equal to the asking price announced by the BA at the beginning of the iteration. However, if a DA received any bundle thorough a temporary allocation at a certain iteration \(t \), the DA must repeat the same bid with the same bidding price at the iteration \(t+1 \) even if the asking price for the bundle has increased. By this agreement, the BA is guaranteed to receive monotonically increasing revenue at each iteration. For every DA, the rule of setting the bidding price for bundle \(J \) is represented as:

\[
\left\{ \langle J_1, \ \text{bid} P_i(J_1) \rangle \ X \ OR \ \langle J_2, \ \text{bid} P_i(J_2) \rangle \right\}
\]

(9.5)
108

where $\text{ask}_{t} p_{J}(J)$ denotes the asking price for bundle J announced from the BA at iteration t.

9.1.4.3 Second-Chance Bidding Strategy

To enhance the performance of the proposed auction mechanism by increasing DAs’ profits and BA’s revenue, the design for the second-chance bidding strategy supports the myopic best-response bidding strategy. At a certain iteration t, if DA$_i$ has negative profit values for all of bundles that DA$_i$ is interested in, $u_i(J) - \text{ask}_{t} p_{J}(J) < 0$, $\forall J \in J_i$, where J_i denotes the set of bundles that DA$_i$ is interested in, DA$_i$ does not place a bid for any bundle. In this situation, the second-chance bidding strategy allows DA$_i$ to remain in the auction market until the next iteration $t+1$, instead of letting DA$_i$ leave the market directly. This is called as the “stay” state of DA$_i$. Now, DA$_i$ investigates changes of an asking price for any bundle in J_i at iteration $t+1$. Depending on the changes in asking prices, the second-chance bidding strategy allows DA$_i$ to response as follows:

CASE 1: If an asking price of any bundle $J (J \in J_i)$ at iteration $t+1$ drops from the asking price at iteration t and DA$_i$ has a non-negative profit value for the bundle J, according to:

$$[\text{ask}_{t+1} p_{J}(J) < \text{ask}_{t} p_{J}(J)] \land [u_i(J) - \text{ask}_{t+1} p_{J}(J) \geq 0], \text{ for any } J \in J_i$$
then DA_i places the bid again for the bundle J at iteration \(t+1 \) at the asking price for the bundle J. Once a DA previously in a “stay” state at iteration \(t \) joins the auction market again by placing a bid at iteration \(t+1 \), the DA should keep its state as a “satisfied” throughout the remaining iterations regardless of the results of temporary allocations.

CASE 2: If an asking price of any bundle \(J \ (J \in J_i) \) at iteration \(t+1 \) does not drop from the asking price at iteration \(t \) and DA_i has negative profit values for all of bundles, according to:

\[
[\text{ask } p_t^{t+1} (J) \geq \text{ask } p_t (J)] \land [u_t (J) - \text{ask } p_t^{t+1} (J) < 0], \quad \forall J \in J_i
\]

then DA_i leaves the auction market directly. This implies that there is at least one DA who wants to achieve the same bundle and has a higher utility value than DA_i has.

Figure 9.4 illustrates the fundamental procedure of the *second-chance bidding strategy* for DAs in the first round local auction market.
Fig. 9.4: Fundamental procedure of the *second-chance bidding strategy* in the first round local auction market.

9.1.5 Temporary Allocation of Bundles

Once a BA receives all of the bids from DAs, the BA determines a temporary allocation of bundles to the DAs by solving a winner determination problem. Through the temporary allocation of bundles, at most, one bundle can be allocated to each DA and no item (vacancy on a truck) is allocated more than once. The total number of items in the bundles allocated to DAs can not exceed the number of available items (the number of available vacancies on a truck).

9.1.5.1 Winner Determination Problem

\[
\text{IF } u_i(J) - \text{ask } p^*(J) < 0, \text{ for } \forall J \in J_i \\
\]

"Stay"

Investigate asking price

[CASE 1]

\[
\begin{align*}
\text{[ask } p^{i+1}(J) < \text{ask } p^*(J)] \land \\
[u_i(J) - \text{ask } p^{i+1}(J) \geq 0], \text{ for any } J \in J_i
\end{align*}
\]

Place a bid

[CASE 2]

\[
\begin{align*}
\text{[ask } p^{i+1}(J) \geq \text{ask } p^*(J)] \land \\
[u_i(J) - \text{ask } p^{i+1}(J) < 0], \text{ for } \forall J \in J_i
\end{align*}
\]

Leave auction market
At the end of every iteration, the BA faces solving the winner determination problem which maximizes a BA’s revenue. The winner determination problem is mathematically formulated as an IP, in which constraint (9.9) ensures a DA can receive at most one bundle of all the bundles included in its XOR bid, and constraint (9.10) ensures the number of items included in the bundles, allocated to DAs, cannot exceed the total number of available items. Accordingly:

\[
\text{Maximize } \sum_{i \in \mathcal{D}} \sum_{J \in J_i^t} p_i^t(J) \cdot x_i^t
\]

subject to

\[
\sum_{J \in J_i^t} x_i^J \leq 1, \quad \forall i \in \mathcal{D}
\]

\[
\sum_{i \in \mathcal{D}} \sum_{J \in J_i^t} |J| \cdot x_i^J \leq \Psi
\]

\[
x_i^J \in \{0, 1\}, \quad \forall i \in \mathcal{D}, \quad J \in J_i^t
\]

\[
J_i^t = \{ J \mid J \in \Pi_i^t \text{ and } J \in J \}
\]

where \(\mathcal{D} \) denotes the set of DAs that place bids at iteration \(t \) and \(J_i^t \) represents the set of bundles included in the XOR bid placed from DA \(i \) at iteration \(t \). \(|J| \) is the number of items in bundle \(J \) and \(\Psi \) denotes the number of available items, i.e., the maximum capacity of the truck. A binary decision variable \(x_i^J \) is 1 if bundle \(J \) is allocated to DA \(i \), otherwise 0.

9.1.5.2 Refinement of Winner Determination Problem
The original winner determination problem formulated in the previous section can be refined by studying the characteristics of the auction market in the first round, where each item is identical with others and a DA has non-additive value for an item.

In the original winner determination problem, the BA investigates all of the bundles included in a DA’s XOR bid. However the full investigation procedure can be refined by allowing the BA to examine only the bundle with the smallest number of items in a DA’s XOR bid. The basic idea for this refinement of the winner determination procedure is to provide the BA with an opportunity to increase revenue by allocating surplus items to other DAs.

The refined winner determination procedure also enables a DA to receive a greater profit by obtaining a bundle at a lower bidding price. The DA’s bidding strategy, explained in Section 9.1.4, induces the following conditional statement is always true:

\[
\text{If } J_m, J_n \in \Pi_i \text{ and } |J_m| < |J_n| \Rightarrow \text{bid } p_i(J_m) \leq \text{bid } p_i(J_n) \quad (9.13)
\]

This statement guarantees that the bidding price for the bundle including the smallest number of items among all of bundles in an XOR bid is always smaller than or equal to those for other bundles in this XOR bid. From this fact, it is clear that the refined procedure provides a DA with an opportunity to receive a greater profit by obtaining a bundle at a lower bidding price, while the bundle gives the DA the same utility value with other bundles in a DA’s XOR bid.

Finally this refined winner determination procedure will promise an allocative efficiency, which provides the result of allocation that maximizes the sum of the revenue for the BA (virtual seller) and the profit values for DAs (buyers) in the market. Based on the refined winner determination procedure, a new winner determination problem is formulated as:
subject to

\[\sum_{i \in D} \left| J_{i^*} \right| \cdot x_i \leq \Psi \]
(9.15)

\[x_i \in \{0, 1\}, \quad \forall i \in D' \]
(9.16)

\[J_{i^*} = \arg \min_{J \in J_i^*} |J| \]
(9.17)

where \(J_{i^*} \) represents the bundle that includes the smallest number of items among all of bundles in a DA_i ’s XOR bid. Constraint (9.15) ensures the total number of items allocated to DAs can not exceed the total number of available items and a binary decision variable \(x_i \) is 1 if bundle \(J_{i^*} \) is allocated to DA_i , otherwise 0.

9.1.5.3 Effective Winner Determination Algorithm

At the end of every iteration the BA must determine a temporary allocation of bundles by solving the winner determination problem formulated in Section 9.1.5.2. Providing an adaptable temporary allocation of bundles to DAs in time is an important issue in implementing the iterative bundle auction mechanism in real-world applications, where an auction market is established frequently and the market is supposed to be closed on time. Introduction of a greedy approach accomplishes the adaptable temporary allocation of bundles. It provides efficiency for both in solution quality and implementation. Many studies have shown that a greedy approach offers a satisfactory performance for large-scale winner determination problems occurring in practical applications, where multiple items are sold simultaneously and a large number of bidders, who can express complementarity among these items, participate (Sakurai et al., 2000; Bassamboo et al., 2001).
The greedy approach to the winner determination problem in the iterative bundle auction consists of two steps.

STEP-1: With a set of DAs who submit bids at a certain iteration, the greedy approach initially sorts all the DAs according to their bidding prices to bundle size ratio:

\[
\frac{\text{bid} p_1(J_{i^1})}{|J_{i^1}|} \geq \frac{\text{bid} p_2(J_{i^2})}{|J_{i^2}|} \geq \cdots \geq \frac{\text{bid} p_N(J_{i^N})}{|J_{i^N}|}
\]

where \(|J_{i^r}| \) is the number of items in bundle \(J_{i^r} \) for which DA \(i \) places a bid, and \(N \) denotes the total number of DAs placing bids at this iteration. During the sorting process, the tie-breaking occurs by the rule:

- If \(\frac{\text{bid} p_i(J_{i^r})}{|J_{i^r}|} = \frac{\text{bid} p_j(J_{i^r})}{|J_{i^r}|} \) and \(|J_{i^r}| < |J_{j^r}| \)
 \(\Rightarrow \) then DA \(j \) places above DA \(i \)

- If \(\frac{\text{bid} p_i(J_{i^r})}{|J_{i^r}|} = \frac{\text{bid} p_j(J_{i^r})}{|J_{i^r}|} \) and \(|J_{i^r}| = |J_{j^r}| \)
 \(\Rightarrow \) then DA \(i \) and DA \(j \) place randomly

STEP-2: In this step the BA chooses the set of DAs from the sorted list in STEP-1 using a greedy algorithm that proceeds in a straightforward recursive manner.

Let \(SL = \{ \text{DA}^1, \text{DA}^2, \cdots, \text{DA}^N \} \) be the sorted list of DAs by STEP-1. In \(SL \), DAs are listed in descending order of their bidding price to bundle size ratios. Subsequently, the BA chooses the DAs with the largest bidding price to bundle size ratio, until the BA reaches the \(k \)th DA in \(SL \), \(\text{DA}^k \), which first exceeds the number of available items \(\Psi \). Let \(\text{DA}^k \) be a boundary DA, defined as:

\[
\text{DA}^k = \minimize \left\{ k \mid \sum_{n=1}^{k} |J_{i^r}| \geq \Psi \right\}
\]

Once the \(\text{DA}^k \) is found, the DAs from \(\text{DA}^1 \) to \(\text{DA}^{k-1} \), that is from \(1 \)st to \((k-1) \)th DAs in the sorted list \(SL \), are selected as the fixed winners in the winner determination problem. Now the BA investigates the remaining DAs, from
can be allocated to any other DAs. To facilitate the listing of the pseudo code for this procedure, some notations are defined. If S is the set of the selected DAs and R denotes the available number of items, then the pseudo code of the greedy algorithm for selecting the DAs (winners) from the sorted list SL is:

\[
\begin{align*}
&\text{SET } S = \emptyset, \ R = \Psi, \ n = 1; \\
&\text{WHILE } SL \neq \emptyset \text{ or } R \neq 0 \{ \\
&\quad \text{IF } |J^*_n| \leq R \text{ THEN} \\
&\quad \quad S = S \cup \{\text{DA}^n\}; \ R = R - |J^*_n|; \\
&\quad \text{ELSE} \quad \text{Do nothing}; \\
&\quad \text{END IF} \\
&\quad SL = SL \setminus \{\text{DA}^n\}; \\
&\quad n = n + 1; \\
&\}\end{align*}
\]

To show the implementation of the greedy approach for the winner determination problem, a small-size instance, where 6 DAs (bidders) place bids and the number of available items is equal to 10, is presented. Table 9.3 shows the DAs with their bidding information, such as bidding price and bundle size, at a certain iteration.

<table>
<thead>
<tr>
<th>DA (Bidder)</th>
<th>DA₁</th>
<th>DA₂</th>
<th>DA₃</th>
<th>DA₄</th>
<th>DA₅</th>
<th>DA₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>bid $p_{i} (J^*_i)$</td>
<td>39</td>
<td>20</td>
<td>80</td>
<td>64</td>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>$</td>
<td>J^*_i</td>
<td>$</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

By STEP-1, the DAs are sorted by descending order of their bidding price to bundle size ratios as shown in Table 9.4.
Table 9.4: The sorted list of the DAs by STEP-1.

<table>
<thead>
<tr>
<th>Order in SC</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA (Bidder)</td>
<td>DA3</td>
<td>DA2</td>
<td>DA5</td>
<td>DA4</td>
<td>DA1</td>
<td>DA6</td>
</tr>
</tbody>
</table>

\[
\frac{\text{bid } p_i(J_{i^*})}{|J_{i^*}|} = \begin{array}{cccccc}
20 & 20 & 18 & 16 & 13 & 12 \\
\end{array}
\]

From the sorted list of DAs, the BA determines the set of DAs using the greedy algorithm described in STEP-2. In this completed example, DA3, DA2, and DA5 are selected as fixed winners first, and DA4 is determined as a boundary DA. Since there are still three remaining items, the BA examines the remaining DAs, such as DA1 and DA6, except the boundary DA in order to increase its revenue by allocating the remaining items. Finally the set of the selected DAs and the BA’s revenue at this iteration are:

\[
S = \{\text{DA}_3, \text{DA}_2, \text{DA}_5, \text{DA}_1\}
\]

\[
R_{BA} = \text{bid } p_3(J_{3^*}) + \text{bid } p_2(J_{2^*}) + \text{bid } p_5(J_{5^*}) + \text{bid } p_1(J_{1^*})
\]

\[
= 80 + 20 + 36 + 39 = 175
\]

After solving the winner determination problem, if multiple allocations of bundles that provide the same revenue to the BA exist, the BA breaks the tie by the following rules in that order: (1) allocating bundles to a fewer number of DAs, which reduces the number of local dealers the truck needs to visit, (2) allocating bundles to DAs, which minimizes the remaining items, and (3) allocating bundles to DAs randomly.

9.1.6 Strategy of BA for Updating Asking Price

If any DA that is “unsatisfied” with the result of a temporary allocation at a certain iteration \(t\) exists, the BA updates asking prices for bundles and the auction market proceeds to the next iteration \(t+1\) with the updated asking prices and the result of the
temporary allocation made at the iteration t. DA is “unsatisfied” with the result of allocation of bundles at a certain iteration if the DA places a bid but receives no bundle at that iteration.

The fundamental idea of the strategy of the BA for updating asking prices for bundles is investigating the bidding price for the bundle submitted from an “unsatisfied” DA. The asking price for bundle J is updated if the highest bidding price for bundle J, among the bidding prices submitted from “unsatisfied” DAs, is within ε (the minimum bidding price increment) of the current asking price for bundle J. If $\text{bid}_i p^t(J)$ is the bidding price for bundle J from DA$_i$ at iteration t and $\text{ask}_i p^t(J)$ denotes the asking price for bundle J from the BA at iteration t, then the new asking price for bundle J at iteration $t+1$ is basically determined by:

$$
\text{ask}_{t+1} p^t(J) = \begin{cases}
\text{ask}_i p^t(J) + \varepsilon, & \text{if maximize}_{i \in \mathcal{U}} \text{bid}_i p^t(J) + \varepsilon > \text{ask}_i p^t(J) \\
\text{ask}_i p^t(J), & \text{otherwise}
\end{cases}
$$

(9.18)

where \mathcal{U} denotes the set of DAs that are “unsatisfied” with the temporary allocation determined at iteration t and ε is the predefined minimum bidding price increment.

However, if a certain DA who placed a bid for only bundle \hat{J} at iteration $t-1$ ($t > 1$) does not submit any bid at iteration t due to $u(\hat{J}) - \text{ask}_{t-1} p^t(\hat{J}) < 0$, and no DA places a bid for bundle \hat{J} at iteration t, the BA decreases the asking price for bundle \hat{J} at iteration $t+1$ as the asking price at iteration $t-1$. In this case the asking price for bundle \hat{J} is now fixed as $\text{ask}_{t+1} p^t(\hat{J})$ throughout the remaining iterations. Equation (9.19) shows this strategy.

$$
\text{ask}_{t+1} p^t(\hat{J}) = \text{ask}_i p^t(\hat{J}) - \varepsilon = \text{ask}_{t-1} p^t(\hat{J}), \text{ if } \mathcal{D}^t(\hat{J}) \neq \emptyset \text{ and } \mathcal{D}^t(\hat{J}) = \emptyset
$$

(9.19)

where $\mathcal{D}^t(\hat{J})$ denotes the set of DAs that place bids for bundle \hat{J} at iteration t.
From the above asking price strategy, it is always guaranteed that the DA having the highest utility value for a certain bundle, among all the DAs, is automatically reserved for the winner determination processes in the auction market.

Finally the BA’s asking price strategy not only enables the BA to increase its revenue by reserving any DA submitting the highest bidding prices, but also provides a DA with the second chance to obtain a bundle at the DA’s maximum bidding price by decreasing the asking price for the bundle. Therefore, it is clear that the BA’s asking price strategy encourages the proposed auction mechanism to promise allocative efficiency in the auction market.

9.1.7 Example of Iterative Bundle Auction

This section presents a small size example of the proposed iterative bundle auction mechanism for the first round local auction market. Suppose there are three dealer agents, DA$_1$, DA$_2$, and DA$_3$, in the market. The number of vehicles each DA has and value of each bundle for DAs are given in Table 9.5. In this example the number of available items (vacancies on a truck) is three.

<table>
<thead>
<tr>
<th>Dealer agent</th>
<th>The number of vehicles</th>
<th>Value of bundle J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>J</td>
</tr>
<tr>
<td>DA$_1$</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>DA$_2$</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>DA$_3$</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 9.6 records the asking prices, bids placed from the DAs, and the temporal allocation at each iteration of the iterative bundle auction mechanism where DAs place XOR bids. In this example, minimum bidding price increment ϵ is set at 10. For each iteration, the table records: (1) the asking prices for bundles at the beginning of the iteration, (2) the XOR bids placed by the DAs, and (3) the result of temporal allocation with the corresponding revenue for BA at the end of the iteration. The bids that maximize
the BA’s revenue are determined by solving the winner determination problem (indicated with *).

In this example, the auction terminates at the end of iteration 13 where all DAs are “satisfied” with the result of the temporary allocation of bundles. Thus, the allocation of bundles at iteration 13, \{[DA_1, 1], [DA_2, 2]\}, becomes the final allocation. This represents that a bundle, including one item, \(|J|=1\), is sold (allocated) to DA_1 at the price \(p(J) = 20\), and a bundle, including two items, \(|J|=2\), is sold to DA_2 at the price \(p(J) = 50\). Finally the BA’s revenue is equal to 70.
Table 9.6: Example of the iterative bundle auction mechanism: For the first round local auction market, where minimum bidding price increment ε is 10.

| Iteration | Asking price for $|J|$ | XOR Bid : ($|J|$, bidding price for J) | Temporary allocation | Revenue |
|-----------|------------------|-------------------------------|---------------------|---------|
| 1 | 0 | DA$_1$: (0, 0) (2, 0) (3, 0) | DA$_1$: (2, 0) (3, 0) (3, 0)* | [DA$_3$, 3] | 0 |
| 2 | 10 | DA$_2$: (1, 10) (2, 10) (3, 10) | DA$_2$: (2, 10) (3, 10) (3, 0) | [DA$_1$, 1] [DA$_2$, 2] | 20 |
| 3 | 10 | DA$_2$: (1, 10) (2, 10) (3, 10) | DA$_2$: (2, 10) (3, 10) (3, 10) | [DA$_1$, 1] [DA$_2$, 2] | 20 |
| 4 | 10 | DA$_2$: (1, 10) (2, 10) (3, 10) | DA$_2$: (2, 10) (3, 10) (3, 20) | [DA$_1$, 1] [DA$_2$, 2] | 20 |
| 5 | 10 | DA$_2$: (1, 10) (2, 10) (3, 10) | DA$_2$: (2, 10) (3, 10) (3, 30)* | [DA$_3$, 3] | 30 |
| 6 | 20 | DA$_1$: (1, 20) (2, 20) (3, 20) | DA$_1$: (2, 20) (3, 30) (3, 30) | [DA$_1$, 1] [DA$_2$, 2] | 40 |
| 7 | 20 | DA$_1$: (1, 20) (2, 20) (3, 20) | DA$_1$: (2, 20) (3, 30) (3, 40) | [DA$_1$, 1] [DA$_2$, 2] | 40 |
| 8 | 20 | DA$_1$: (1, 20) (2, 20) (3, 20) | DA$_1$: (2, 20) (3, 30) (3, 50)* | [DA$_3$, 3] | 50 |
| 9 | 30 | StayA | (2, 30) | (3, 50)* | [DA$_3$, 3] | 50 |
| 10 | 20B | DA$_1$: (1, 20) (2, 20) (3, 20) | DA$_1$: (2, 40) (3, 50) | [DA$_1$, 1] [DA$_2$, 2] | 60 |
| 11 | 20 | DA$_1$: (1, 20) (2, 20) (3, 20) | DA$_1$: (2, 40) (3, 60)* | [DA$_3$, 3] | 60 |
| 12 | 20 | DA$_1$: (1, 20) (2, 20) (3, 20) | DA$_1$: (2, 50) (3, 60) | [DA$_1$, 1] [DA$_2$, 2] | 70 |
| 13C | 20 | Stay | (2, 50)* | Stay | [DA$_1$, 1] [DA$_2$, 2] | 70 |

A. Since the asking price for J is greater than the utility value of DA$_1$ for J, the DA$_1$ stays in the market (become “stay” state) to see if the asking price drops in the next iteration.

B. Since no DA places a bid for the bundle J ($|J|=1$) at iteration 10, the BA decreases the asking price of J to the price at iteration 9.

C. Since all DAs are “satisfied” with the result of the temporary allocation, the auction terminates. (By definition, a DA that is in a “stay” state is always “satisfied”.)
9.2 Design of Utility Function for Dealer Agent

Once a DA receives a request for bid (RFB) message from the BA, the DA prepares an XOR bid by determining utility values of the bundles. Through the first round local auction market, a DA seeks to achieve a bundle of vacancies on a truck in order to ship the set of vehicles the DA has. For that reason, determination of the utility value of a bundle of vacancies for a DA is based on the value of the set of vehicles the DA currently has.

In the multiagent architecture for the shipment load makeup decision, the YA provides a BA with cost information regarding the shipment yard, such as, holding costs and re-processing costs. The RM also provides a BA with the arrival time of the next truck. Finally, each BA provides this cost and operational information to the corresponding DAs through an RFB message. The utility value of a bundle for a DA is computed by information provided thorough the RFB message as well as the DA’s local information.

A dealer agent \(i \), \(\text{DA}_i \), computes the value for the set of vehicles, \(\mathcal{V}_i \), using the DA’s local information and the information provided by the RFB message from the BA. If \(\Delta (\Delta = \tilde{t} - t) \) is the discrete time interval between the current time \(t \) and the arrival time of the next truck \(\tilde{t} \), then the value of \(\mathcal{V}_i \) for \(\text{DA}_i \), \(v_i (\mathcal{V}_i) \), is represented as:

\[
v_i (\mathcal{V}_i) = v_i^S (\mathcal{V}_i) + v_i^P (\mathcal{V}_i)
\]

(9.20)

where \(v_i^S (\mathcal{V}_i) \) and \(v_i^P (\mathcal{V}_i) \) denote the values of \(\mathcal{V}_i \) in the shipment yard and local dealer \(i \), respectively. The values of \(\mathcal{V}_i \) in the shipment yard and local dealer \(i \) are defined as:

\[
v_i^S (\mathcal{V}_i) = \sum_{v \in \mathcal{V}_i} \left[C_{\Delta}^{HD} (v) + C_{\Delta}^{RP} (v) \right]
\]

(9.21)

\[
v_i^P (\mathcal{V}_i) = \sum_{v \in \mathcal{V}_i} \left[C_{\Delta}^{DL} (v) + C_{\Delta}^{LT} (v) \right]
\]

(9.22)
From the above definitions, clearly $v_i(\mathcal{V}_i)$ implies the total inevitable cost created since the set of vehicles for DA$_i$ is not shipped by the truck at time t. As represented in Equation (9.20), the total inevitable cost is calculated by subtracting a fixed visiting and unloading cost for dealer i from the sum of the costs created by the shipment yard and local dealer i during the time interval Δ. Finally a utility value of bundle J for DA$_i$ is defined as:

$$u_i(J) = \begin{cases} v_i(\mathcal{V}_i), & \text{if } |J| \geq |\mathcal{V}_i| \\ 0, & \text{otherwise} \end{cases}$$ (9.23)

9.3 The Second Round Central Auction

Once the set of winning DAs is determined from each first round local auction market, the winning DAs proceed to the second round central auction market. In the second round central auction market, the winning DAs in the same block do not compete with each other any more, but they cooperate with each other to achieve their common goals to obtain all the vacancies on the truck by competing with other sets of DAs determined from other blocks, i.e., other first round local auction markets. In other words, a competition occurs among different sets of DAs. To this end, instead, the set of winning DAs joins directly the second round central auction market, a BA participates in the auction market as a proxy agent who is in charge of representing the set of winning DAs in its block, and the BA competes with other BAs to achieve all the vacancies on the truck. Thus, the role of the second round central auction market is to allocate all the vacancies on the truck to one of BAs in order to maximize the revenue for the RA (seller) and the profit values for BAs (buyers) in the market.

9.3.1 Structure of the Second Round Central Auction Market
Once every BA is ready to join the second round central auction market by determining the set of winning DAs in its own first round local auction market, the RM sends an RFB message to BAs to initiate the auction market. Through the RFB message, the RM requests every BA to respond to the RM. The response from each BA includes an operational requirement for delivery, such as information on the set of winning DAs (dealers needed to visit) and the total number of vehicles included in the winning DAs (the total number of required vacancies). Based on the response, the RM determines an operational cost of the RA (the truck) for each BA, meaning that the RA has a different operational cost for every BA. For example, the operational cost of truck r for BA$_i$, $c_i(r)$, is computed by:

$$c_i(r) = C_i^{TR} + \sum_{j \in W_i} C_{ij}^{UL} + \left(\Psi - \sum_{j \in W_i} |J_j| \right) \cdot C^{UR}, \quad \text{for } \forall i \in \mathcal{BA}$$ (9.24)

where \mathcal{BA} is the set of BAs joining the auction market and W_i denotes the set of winning DAs for BA$_i$. In this equation, $|J_j|$ denotes the size of the bundle J_j finally allocated to DA$_j$ from the result of the first round local auction market. Thus $|J_j|$ implies the number of vehicles included in DA$_j$.

Once the RM determines operational costs for all BAs, the RM sends this information to the RA. Figure 9.5 shows the structure of the second round central auction market.
The fundamental process of the second round auction mechanism follows the ascending price iterative auction mechanism, introduced in Chapter 6. However, the second round auction mechanism allows the RA (seller) to adopt different asking prices for BAs (buyers) in order to consider the different operational costs for BAs.

9.3.2 Utility Value for Block Agent

In the second round central auction market, the utility value of truck r for BA$_i$, $u_{i}^{BA}(r)$, is computed by following Equation (9.25), where \mathcal{W}_i denotes the set of winning DAs in the first round local auction market for block i, $M_i^{\prime\prime}$, and $u_j(J_j)$, defined in Section 8.2, is the utility value of bundle J_j for DA$_j$ that was finally allocated to DA$_j$ from the result of the first round local auction market.

Fig. 9.5: Structure of the second round central auction market.
In the second round central auction market, the profit value of truck \(r \) for \(\text{BA}_i \) is a difference between the utility value and the price, \(u_{i}^{\text{BA}}(r) - p(r) \).

9.3.3 Block Agent Bidding Strategy

An auction mechanism for the second round central auction market proceeds in iterations starting with initial asking prices and random allocations. An initial asking price the RA offers to every BA is set at zero. Each iteration starts with the temporary allocation of the truck, determined at the end of previous iteration, and a set of asking prices for BAs.

In each iteration, if any BA is not “satisfied” with the temporary allocation determined at the previous iteration, this BA submits a bidding price to achieve the truck. In this auction market, \(\text{BA}_i \) would be “satisfied” with the allocation if \(\text{BA}_i \) achieves space on the truck or if the profit value of truck \(r \) is less than or equal to \(\varepsilon \) as shown in Equation (9.26).

\[
 u_{i}^{\text{BA}}(r) - \text{ask } p_i(r) \leq \varepsilon
\]

9.3.4 Updating Temporary Allocation
If any BA, submits a bidding price, \(bid_p_i(r) \), the RA updates the current allocation of the truck so as to increase the revenue. The RA now takes the truck from the BA to which the truck was originally allocated at the beginning of the iteration, and then allocates the truck to BA,.

9.3.5 Updating Asking Price for Truck

If BA, receives the truck at the end of iteration \(t \) by placing bidding price \(bid_p_i(r) \) that is equal to \(ask_p_i(r) \), the RA sets the price for the truck, \(p'(r) \), to \(bid_p_i(r) \), and updates asking prices to other BAs except BA, at the next iteration \(t+1 \). A new asking price to each BA is determined as:

\[
ask_p_{j+1}(r) = ask_p_j(r) - c_i(r) + c_j(r) + \epsilon, \quad \text{for } \forall j \in BA \setminus \{i\}
\]

where \(c_i(r) \) and \(c_j(r) \) denote the operational cost of truck \(r \) for BA, and BA, respectively. By this definition of updating asking prices, the RA’s revenue increment is always equal to \(\epsilon \).

9.3.6 Market Termination

Figure 9.6 shows the overall procedure of the auction mechanism in the second round central auction market. As shown in this figure, the auction proceeds in a sequence of iterations until all BAs are “satisfied” with the allocation results. If all BAs are “satisfied” with the temporary allocation determined at a certain iteration, the second round central auction market terminates promptly by settling this result as the final allocation.
Fig. 9.6: The overall procedure of the auction mechanism in the second round central auction market.
Chapter 10

Shipment Load Makeup – Solution Methodology Part III

For the RFID-enabled shipment load makeup decision in Scenario 2, explained in Section 8.2.2, this study proposes the single-tier auctioning process which facilitates multiple direct local auction markets. This chapter presents the single-tier auctioning process by detailing a market organization and an auction mechanism for a direct local auction market.

10.1 Dealer Agent in Single-Tier Auctioning Process

The fundamental ideas in designing the single-tier auctioning process are from consideration of enhanced abilities of a dealer agent (DA) in a multiagent-based auction market. Compared to DAs in the two-tier auctioning process, explained in Chapter 9, the DAs in the single-tier auctioning process are regarded to have the following communicational and computational abilities:

- A DA is able to negotiate for items (vacancies on a truck) directly with a resource agent (RA). This direct negotiation procedure enables a DA to obtain a part of the RA’s local information through the advanced communication during an auctioning process.
- A DA has an advanced computational ability for individually controlling the vehicles included in the DA. This enables a DA to place a bid to obtain a single item (a single vacancy) for each individual vehicle during an auctioning process.

10.2 Construction of the Direct Local Auction Market
Once a truck arrives at the shipment yard to load vehicles, i.e., one of RAs becomes available, the RM informs the MC of the availability of the RA. Now, the MC initiates a temporary economy for direct local auction markets. The design of the single-tier auctioning process requires defining a proxy agent (PA) class. A PA class agent is a virtual entity for the market mechanism’s purpose, and the fundamental role of a PA class agent is:

- **Proxy Agent** (PA): a PA class agent is responsible for establishing and coordinating a direct local auction market on behalf of the RA, and the set of PAs is \(\mathcal{PA} = \{PA_b \mid b \in B\} \). A PA, as a virtual seller, interacts with DAs (buyers) in a direct local auction market.

In the temporary economy initiated by the MC, each PA establishes a direct local auction market by sending an RFB message to each corresponding DA. The RFB message for a DA includes the partial local information on the RA (the truck), such as the visiting and unloading cost at the DA for the truck. Since a direct local auction market is established for each block area, total \(B \) auction markets, where \(B \) is the number of block areas, are constructed simultaneously. Figure 10.1 describes the construction of temporary economy and multiple direct local auction markets.
Fig. 10.1: Construction of a temporary economy and multiple direct local auction markets.

In the single-tier auctioning process, each direct local auction market proceeds independently to determine the set of provisional winning vehicles by virtually allocating vacancies on the truck to the vehicles included in DAs.

The design of an auction mechanism for each direct local auction market is an iterative high-bid auction mechanism, which is basically a type of *first-price sealed-bid auction mechanism*\(^7\). The designed auction mechanism is applied independently to all the direct local auction markets. This chapter presents the iterative high-bid auction

\(^7\) A first-price sealed-bid auction mechanism is also known as sealed high-bid auction mechanism or sealed-bid first-price auction mechanism. In this type of auction, potential bidders (buyers) simultaneously place sealed bids so that no bidder knows the bid of any other participant. The highest bidder is awarded the item at the price he or she placed (McAfee and McMillan, 1987).
mechanism by detailing the auctioning process in a certain direct local auction market $M_{b}^{DL} \ (b \in B)$. Let G be the set of vacancies on the truck, and D_{b} represents the set of DAs participating in the direct local auction market for block area b, M_{b}^{DL}. As a matter of convenience in representing the index, D and M^{DL} are used rather than D_{b} and M_{b}^{1st} in this chapter.

10.3 Iterative High-Bid Auction Mechanism

At each iteration, a single item (a vacancy) is allocated to a DA. Thus, each iteration implies an auction market for a single item, and the number of iterations required is always less than or equal to the number of available items (the number of available vacancies on the truck). On behalf of the RA, the PA plays an auctioneer as well as a seller who controls the direct local auction market. Each iteration is initiated by sending RFB messages to DAs. The RFB message for a DA includes announcement of the availability of an item, the partial local information on the RA, such as the visiting and unloading cost related to the DA, and the allocation result of the previous iteration. Once a DA receives an RFB message, the DA decides whether to place a bid or not. If a DA decides to place a bid, the DA submits a bidding price for the item. By receiving all of the bids from DAs, the PA determines an allocation of the item. Based on the result of the allocation, if required, each DA updates the bidding price at the beginning of next iteration. The auction market terminates when all available items are allocated to DAs or no DA places a bid for an item. The overall procedure of the iterative high-bid auction mechanism appears in Figure 10.2.

8 Since each direct local auction market proceeds independently with the same auction mechanism, the auction mechanism is presented in the domain of a certain direct local auction market, and the block index $b \ (b \in B)$ is omitted for the convenience of mathematical presentation.
10.3.1 Dealer Agent Bidding Strategy

A DA is designed to request a single vacancy on a truck to load one of available vehicles the DA has. Vacancies on a truck are items allocated to DAs through an auction market. In the iterative high-bid auction mechanism, a DA places a bid by submitting a bidding price for an item to the PA., and the bidding price is basically determined by the utility value of the item for the DA. Let $p_i^{t_b}$ be the bidding price of dealer agent i, DA$_i$, at iteration t, which is represented as:

$$
bid p_i^t = u_i^t - \frac{C_i^{UL}}{\lambda_i^t + 1}
$$ (10.1)
where u_i^t denotes the utility value of an item for DA$_i$ at iteration t, C_{i}^{UL} is the visiting and unloading cost at DA$_i$, and λ_i^t represents the number of items DA$_i$ has obtained before iteration t. This definition guarantees that: (1) the visiting and unloading cost at DA$_i$ is distributed to the items allocated to DA$_i$, and (2) a DA that has obtained more items through the previous iterations has more chance to obtain an item by submitting a higher bidding price for the item. This also enables a truck to reduce its operational cost for deliveries by reducing the number of dealers the truck needs to visit for unloading vehicles.

10.3.2 Utility Value for Dealer Agent

Once a DA receives an RFB message from the PA, the DA prepares a bid by determining a bidding price. As defined in Equation (10.1), a bidding price of a DA is determined based on the utility value of an item for the DA. Through the auction market, a DA seeks to achieve items representing vacancies on the truck in order to ship vehicles. For that reason, the utility value of an item for a DA is defined by the value of the vehicle the DA has.

At the beginning of the first iteration for the direct local auction market, a DA determines a value of each vehicle the DA currently has using information provided by the RFB message from the PA, as well as the DA’s local information. If $v(j)$ is the value of vehicle j for a DA, then $v(j)$ is defined as:

$$v(j) = v^S(j) + v^D(j)$$

where $v^S(j)$ and $v^D(j)$ denote the values of vehicle j in the shipment yard and the dealer that orders vehicle j, respectively, and they are defined as:

\[v^S(j) = S_v j j + D_{v j} \]

\[v^D(j) = 0\]

By this definition, the value of λ_i^t for all DAs is set to 0 at the first iteration ($t=1$).
From the above definition, it is clear that $v(j)$ implies the sum of the costs arising from the shipment yard and the dealer that orders vehicle j during the time interval Δ because vehicle j is not shipped by the truck.

In order to set a bidding price as high as possible at every iteration, a DA looks for the vehicle having the highest value among all the vehicles the DA has. This implies that a DA places a bid for an item so as to assign the item, if the DA obtains the item, to the vehicle having the highest value. Finally, the utility value of an item for DA i at iteration t, u^i_t, is defined as:

$$u^i_t = \max_{j \in V^i_t} \{ v(j) \}$$

(10.5)

where V^i_t is the set of available vehicles for DA i at iteration t. For all iterations t except the first iteration ($V^i_1 = V_i$), V^i_t is defined as:

$$V^i_t = \begin{cases} V^{t-1}_i \setminus \{ \tilde{j}^{t-1}_i \}, & \text{if DA}_i \text{ obtained an item at iteration } t-1 \\ V^{t-1}_i, & \text{otherwise} \end{cases}$$

(10.6)

In the above equation, \tilde{j}^t_i is the vehicle that has the highest value among the vehicles included in DA i at iteration t, that is, $\tilde{j}^t_i = \arg \max_{j \in V^i_t} \{ v(j) \}$.

10.3.3 Winner Determination at Each Iteration

10 As defined in Chapter 8, Δ ($\Delta = \tilde{t} - t$) is the discrete time interval between the current time t and the arrival time of the next truck \tilde{t}.
At the end of every iteration, the PA determines an allocation of an item to one of the DAs who placed bids. In the iterative high-bid auction mechanism, the PA allocates an item to the DA who submitted the highest bidding price. For instance, the winning DA awarded an item at iteration \(t \) is determined by:

\[
\text{DA}_t^* = \arg\max_{\text{DA}_n \in D^t} \{ \text{bid}_n^t \}
\]

(10.7)

where \(D^t \) denotes the set of DAs that place bids at iteration \(t \).

10.3.4 Revenue of PA from Auction Market

Once the auction market terminates, the PA informs the RA of the result of the auction market. The result of the auction market is represented as a form of \(\langle r_{PA}, DA^+, J^+ \rangle \), where \(r_{PA} \) denotes the revenue of the PA from the auction market, \(DA^+ \) denotes the set of DAs obtaining any item from the auction market, and \(J^+ \) denotes the set of vehicles to which each DA in \(DA^+ \) assigns its obtained item(s). The revenue of the PA from the auction market, \(r_{PA} \), is computed by:

\[
r_{PA} = \sum_{j \in J^+} v(j) - \sum_{i \in DA^+} C_i^{UL}
\]

(10.8)

10.3.5 Example of Iterative High-Bid Auction

This section presents a small size example of the iterative high-bid auction mechanism. For the example, four dealer agents, DA_1, DA_2, DA_3, and DA_4, are populated in the market. The fixed cost for visiting and unloading and the values of vehicles for each DA appear in Table 10.1. In this case the number of available items (vacancies on the truck) is seven.
Table 10.1: The fixed cost for visiting and unloading and the values of vehicles.

<table>
<thead>
<tr>
<th>Dealer agent</th>
<th>Fixed cost for visiting and unloading</th>
<th>Vehicle</th>
<th>Value of vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA₁</td>
<td>30</td>
<td>j₁₁</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>j₁₂</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>j₁₃</td>
<td>1</td>
</tr>
<tr>
<td>DA₂</td>
<td>20</td>
<td>j₂₁</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>j₂₂</td>
<td>14</td>
</tr>
<tr>
<td>DA₃</td>
<td>24</td>
<td>j₃₁</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>j₃₂</td>
<td>4</td>
</tr>
<tr>
<td>DA₄</td>
<td>28</td>
<td>j₃₁</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>j₃₂</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>j₃₃</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 10.2 records the bidding prices submitted from DAs, where the highest bidding price is indicated with *, and the results of allocations at each iteration of the iterative high-bid auction mechanism. For instance, at iteration 1, the PA allocates an item to DA₁ who submitted the highest bidding price, equal to -5, and DA₁ assigns the item to vehicle j₁₁ which has the highest value, 25, among all the vehicles DA₁ has. In this example, the auction terminates at the end of iteration 7 with allocation of the last item. The final result of allocations is \{[DA₁, j₁₁, j₁₂], [DA₂, j₂₁, j₂₂], [DA₄, j₄₁, j₄₂, j₄₃]\}, which represents that DA₁ achieves two items for vehicle j₁₁ and j₁₂, DA₂ obtains two items for vehicle j₂₁ and j₂₂, and DA₄ achieves three items for vehicle j₄₁, j₄₂, and j₄₃. In this example, J⁺ and DA⁺ are \{j₁₁, j₁₂, j₂₁, j₂₂, j₄₁, j₄₂, j₄₃\} and \{DA₁, DA₂, DA₄\}, respectively, and the revenue for the PA from the auction market is:

\[
r_{PA} = \{v(j₁₁) + v(j₁₂) + v(j₂₁) + v(j₂₂) + v(j₄₁) + v(j₄₂) + v(j₄₃)\} - \{C_{UL}^1 + C_{UL}^2 + C_{UL}^4\}
= \{25 + 2 + 10 + 14 + 12 + 16 + 18\} - \{30 + 20 + 28\} = 9
\]
Table 10.2: Small size example of the iterative high-bid auction mechanism.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>DA$_1$</th>
<th>DA$_2$</th>
<th>DA$_3$</th>
<th>DA$_4$</th>
<th>Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\max {25, 2, 1} - 30 = -5$*</td>
<td>$\max {10, 14} - 20 = -6$</td>
<td>$\max {6, 4} - 24 = -18$</td>
<td>$\max {12, 16, 8} - 28 = -12$</td>
<td>[DA1, $j{11}$]</td>
</tr>
<tr>
<td>2</td>
<td>$\max {2, 1} - 15 = -13$</td>
<td>$\max {10, 14} - 20 = -6$*</td>
<td>$\max {6, 4} - 24 = -18$</td>
<td>$\max {12, 16, 8} - 28 = -12$</td>
<td>[DA2, $j{22}$]</td>
</tr>
<tr>
<td>3</td>
<td>$\max {2, 1} - 15 = -13$</td>
<td>$\max {10} - 10 = 0$*</td>
<td>$\max {6, 4} - 24 = -18$</td>
<td>$\max {12, 16, 8} - 28 = -12$</td>
<td>[DA2, $j{21}$]</td>
</tr>
<tr>
<td>4</td>
<td>$\max {2, 1} - 15 = -13$</td>
<td>-</td>
<td>$\max {6, 4} - 24 = -18$</td>
<td>$\max {12, 16, 8} - 28 = -12$*</td>
<td>[DA4, $j{42}$]</td>
</tr>
<tr>
<td>5</td>
<td>$\max {2, 1} - 15 = -13$</td>
<td>-</td>
<td>$\max {6, 4} - 24 = -18$</td>
<td>$\max {12, 8} - 14 = -2$*</td>
<td>[DA4, $j{41}$]</td>
</tr>
<tr>
<td>6</td>
<td>$\max {2, 1} - 15 = -13$</td>
<td>-</td>
<td>$\max {6, 4} - 24 = -18$</td>
<td>$\max {8} - 9.33 = -1.33$*</td>
<td>[DA4, $j{43}$]</td>
</tr>
<tr>
<td>7</td>
<td>$\max {2, 1} - 15 = -13$*</td>
<td>-</td>
<td>$\max {6, 4} - 24 = -18$</td>
<td>-</td>
<td>[DA1, $j{12}$]</td>
</tr>
</tbody>
</table>
10.4 Determination of Final Allocations of Items

Once every PA completes sending a result of an auction market to the RA, the RA makes the final allocations of items by determining the target block area where the truck will travel for the delivery of vehicles. As illustrated in Figure 10.3, based on information of auction market results received from PAs, the RA decides the target block area by finding \(*PA_i* as Equation (10.9) defines:

\[
PA_i = \arg \max_{PA_i \in P_A} \left\{ r_{PA_i} - C_{TR}^i \right\} \tag{10.9}
\]

where \(C_{TR}^i\) is the traveling cost of the truck for block area \(i\).

Finally the RA assigns the truck to block area \(i^*\) for the delivery, and the vacancies on the truck are allocated to the DAs in \(D \mathcal{A}^*_i\) to load the vehicles in \(J^*_i\).
Fig. 10.3: RA’s final allocations determined by results of all the local auction markets.
Chapter 11

Empirical Analysis of Shipment Load Makeup

Experimental analysis and validation of the proposed approaches is important part of this research. However, testing and verifying the proposed approaches in a real shipment load makeup environment is very difficult due to large scale and variety of functional entities and managerial information in that environment. Thus, thorough testing and analysis is conducted in an experimental setting using a variety of shipment load makeup instances. In order to conduct experimental analysis, a simulator, which emulates shipment load makeup processes with the proposed auction mechanisms, is developed. This chapter presents the experimental setup and shipment load makeup instance generation followed by the experimental analysis results. The experimental analysis results demonstrate the proposed approaches accomplish high level of solution quality and computational efficiency.

11.1 Experimental Setup

11.1.1 Simulator for Shipment Load Makeup

This study develops and uses a simulator for a comprehensive experimental analysis of shipment load makeup processes with various auction mechanisms. As shown in Figure 11.1, the structure of the simulator primarily consists of three program components: problem instance generator, centralized planner, and market-based decentralized planner.
Problem instance generator: This program component generates a variety of shipment load makeup instances using input parameters given by users. For each shipment load makeup instance, the problem instance generator also creates an IP formulation of the instance, which is based on the centralized IP formulation explained in Sections 8.2.1 and 8.2.2.
Centralized planner: A centralized planner component uses LINDO (Linear Interactive Discrete Optimizer)\(^{11}\) to generate optimal solutions of shipment load makeup instances. An IP formulation generated from the problem instance generator is used as a LINDO input model. Figures 11.2 and 11.3 show examples of LINDO input generated for a small-size shipment load makeup instance.

Market-based decentralized planner: A market-based decentralized planner component is further decomposed into two sub-components, such as two-tier auctioning process (explained in Chapter 9) and single-tier auctioning process (explained in Chapter 10), which are designed for different shipment load makeup scenarios. The developed auction mechanisms for local auction market are embedded in corresponding sub-components to manipulate shipment load makeup instances in a decentralized manner and to provide solutions of the instances.

Fig. 11.2: Example of LINDO input for Scenario 1, which is automatically generated by problem instance generator (5 blocks, 5 dealers per block, and 50 vehicles).

\(^{11}\) LINDO is an interactive linear, quadratic, and integer programming package, http://www.lindo.com/
1.1.2 Generation of Shipment Load Makeup Instances

For the intensive computational experiments and analysis, a variety of different shipment load makeup instances are generated by defining various input parameters in the shipment load makeup environment. About twenty-five parameters are defined in the

Fig. 11.3: Example of LINDO input Scenario 2, which is automatically generated by problem instance generator (5 blocks, 5 dealers per block, and 50 vehicles).
input file by users to generate shipment load makeup instances. These input parameters are divided by two categories: configuration-related parameter group and cost-related parameter group. Tables 11.1 and 11.2 summarize the important input parameters to be controlled for generating shipment load makeup problem instances.

Table 11.1: Controllable shipment load makeup configuration parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLMsce</td>
<td>INDIV: shipment load makeup scenario 1 (Section 8.2.1) DIV: shipment load makeup scenario 2 (Section 8.2.2)</td>
</tr>
<tr>
<td>B</td>
<td>number of blocks</td>
</tr>
<tr>
<td>D_{min}</td>
<td>minimum number of dealers in a block</td>
</tr>
<tr>
<td>D_{max}</td>
<td>maximum number of dealers in a block</td>
</tr>
<tr>
<td>V</td>
<td>number of available vehicles in a shipment yard</td>
</tr>
<tr>
<td>Ψ</td>
<td>capacity (number of vacancies) of a truck</td>
</tr>
<tr>
<td>Δ</td>
<td>length of discrete time till arrival of the next truck</td>
</tr>
<tr>
<td>L</td>
<td>maximum allowed dwell time for a vehicle</td>
</tr>
<tr>
<td>α</td>
<td>dwell time control parameter</td>
</tr>
<tr>
<td>SC_{min}</td>
<td>minimum shipment commitment time for a vehicle</td>
</tr>
<tr>
<td>SC_{max}</td>
<td>maximum shipment commitment time for a vehicle</td>
</tr>
</tbody>
</table>

From the input parameters, D_{min} and D_{max}, listed in Table 11.1, the number of dealers in a certain block b, D_b, is randomly generated from a uniform distribution on the interval $[D_{\text{min}}, D_{\text{max}}]$.
Table 11.2: Controllable shipment load makeup cost parameter.

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipment yard</td>
<td>m</td>
<td>vehicle holding cost parameter 1</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>vehicle holding cost parameter 2</td>
</tr>
<tr>
<td></td>
<td>c<sup>rp</sup></td>
<td>re-processing cost for a vehicle</td>
</tr>
<tr>
<td>Dealer</td>
<td>p<sub>min</sub></td>
<td>minimum delayed order cost parameter 1</td>
</tr>
<tr>
<td></td>
<td>p<sub>max</sub></td>
<td>maximum delayed order cost parameter 1</td>
</tr>
<tr>
<td></td>
<td>q<sub>min</sub></td>
<td>minimum delayed order cost parameter 2</td>
</tr>
<tr>
<td></td>
<td>q<sub>max</sub></td>
<td>maximum delayed order cost parameter 2</td>
</tr>
<tr>
<td></td>
<td>c<sup>lt</sup> min</td>
<td>minimum lost order cost</td>
</tr>
<tr>
<td></td>
<td>c<sup>lt</sup> max</td>
<td>maximum lost order cost</td>
</tr>
<tr>
<td>Truck</td>
<td>C<sub>TR</sub> min</td>
<td>minimum traveling cost to a block</td>
</tr>
<tr>
<td></td>
<td>C<sub>TR</sub> max</td>
<td>maximum traveling cost to a block</td>
</tr>
<tr>
<td></td>
<td>C<sub>UL</sub> min</td>
<td>minimum visiting and unloading cost at a dealer</td>
</tr>
<tr>
<td></td>
<td>C<sub>UL</sub> max</td>
<td>maximum visiting and unloading cost at a dealer</td>
</tr>
<tr>
<td></td>
<td>C<sub>UR</sub></td>
<td>unutilized capacity cost per vacancy</td>
</tr>
</tbody>
</table>

Among the parameters listed in Table 11.2, the following parameters need to be explained in a little bit more:

- **Holding cost parameters** (*m* and *n*), are used to define a holding cost for time period \([l-1, l]\), \(c^{bd}(l)\), which is a monotonically increasing function as explained in Section 3.4.2. For the experimental analysis, this study uses a simple linear increasing function, such as \(c^{bd}(l) = m + n \cdot l\).

- **Delayed order cost parameters** (*p_{min}*, *p_{max}*, *q_{min}*, and *q_{max}*), are used to define a delayed order cost for vehicle *v* for time period \([l-1, l]\), \(c^{dl}_v(l)\), explained in Section 3.4.2. Similar to a holding cost, a simple linear increasing function is used for each vehicle, such as \(c^{dl}_v(l) = p_v + q_v \cdot l\). For each vehicle, the cost parameters,
p_v and q_v, are randomly generated from uniform distributions on the intervals $[p_{\min}, p_{\max}]$ and $[q_{\min}, q_{\max}]$, respectively.

Using the input parameters, the problem instance generator creates the vehicles currently available for the shipment load makeup, and values of vehicle attributes are randomly generated, as described in Table 11.3.

Table 11.3: Random generation of vehicles in a shipment yard.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_v</td>
<td>block area for vehicle v</td>
<td>uniform $[1, B]$</td>
</tr>
<tr>
<td>d_v</td>
<td>dealer for vehicle v</td>
<td>uniform $[1, D_v]$</td>
</tr>
<tr>
<td>l_v</td>
<td>dwell time for vehicle v</td>
<td>uniform $[1, DT_{\max}]$</td>
</tr>
<tr>
<td>ω_v</td>
<td>shipment commitment time for vehicle v</td>
<td>uniform $[SC_{\min}, SC_{\max}]$</td>
</tr>
<tr>
<td>c_v^{lt}</td>
<td>lost order cost for vehicle v</td>
<td>uniform $[c_{v, \min}^{lt}, c_{v, \max}^{lt}]$</td>
</tr>
<tr>
<td>p_v</td>
<td>delayed order cost parameter 1 for vehicle v</td>
<td>uniform $[p_{\min}, p_{\max}]$</td>
</tr>
<tr>
<td>q_v</td>
<td>delayed order cost parameter 2 for vehicle v</td>
<td>uniform $[q_{\min}, q_{\max}]$</td>
</tr>
</tbody>
</table>

The dwell time for each vehicle is randomly generated from a uniform distribution on the interval $[1, DT_{\max}]$, where upper bound of dwell time, DT_{\max}, is defined as:

$$DT_{\max} = L - \frac{\Delta}{\alpha}$$ \hspace{1cm} (11.1)

As the value of over-dwell control parameter, α, increases, the number of over-dwelled vehicles, whose dwell time will exceed the maximum allowed dwell time, L, during the time interval, Δ, also increases.

11.2 Performance of Market-based Approach for Shipment Load Makeup

In order to test the solution optimality and computational efficiency of the proposed market-based approach, total 40 small-size shipment load makeup instances (5
block areas) are investigated. For each of these shipment load makeup instances, a total of 5 simulation runs are repeated to reduce random effects. The input parameters used for generating these instances are shown in Table 11.4, and, for the experimentations of the two-tier auctioning process, the minimal bidding increment (ε) is set to 100.

Table 11.4: Input parameters values used for generating shipment load makeup instances.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ</td>
<td>12</td>
<td>m</td>
<td>0.05</td>
<td>c^{β}_{min}</td>
<td>80.0</td>
</tr>
<tr>
<td>Δ</td>
<td>20</td>
<td>n</td>
<td>0.005</td>
<td>c^{β}_{max}</td>
<td>120.0</td>
</tr>
<tr>
<td>L</td>
<td>150</td>
<td>c^{SP}</td>
<td>80.0</td>
<td>C^{TR}_{min}</td>
<td>500.0</td>
</tr>
<tr>
<td>α</td>
<td>1.5</td>
<td>p_{min}</td>
<td>0.05</td>
<td>C^{UL}_{max}</td>
<td>800.0</td>
</tr>
<tr>
<td>SC_{min}</td>
<td>15</td>
<td>p_{max}</td>
<td>0.15</td>
<td>C^{UL}_{min}</td>
<td>100.0</td>
</tr>
<tr>
<td>SC_{max}</td>
<td>120</td>
<td>q_{min}</td>
<td>0.02</td>
<td>C^{UR}_{max}</td>
<td>200.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>q_{max}</td>
<td>0.04</td>
<td>C^{UR}_{min}</td>
<td>100.0</td>
</tr>
</tbody>
</table>

11.2.1 Performance of Two-tier Auctioning Process for Scenario 1

Table 11.6 and Figures 11.4 and 11.5 summarize the experimental results of the two-tier auctioning process for shipment load makeup scenario 1, where the vehicles in the same dealer are not divisible during shipment load makeup process. In this result table, each column name is described as shown in Table 11.5.
Table 11.5: Description of each column in the experiment result table.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No_B</td>
<td>number of block areas</td>
</tr>
<tr>
<td>ANo_D</td>
<td>average number of dealers per block</td>
</tr>
<tr>
<td>TNo_D</td>
<td>total number of dealers</td>
</tr>
<tr>
<td>ANo_V</td>
<td>average number of vehicle per dealer</td>
</tr>
<tr>
<td>TNo_V</td>
<td>total number of vehicles</td>
</tr>
<tr>
<td>OptSol</td>
<td>optimal solution obtained from LINDO</td>
</tr>
<tr>
<td>CompT</td>
<td>computational time (second) in LINDO</td>
</tr>
<tr>
<td>M_Sol</td>
<td>solution obtained from the proposed market-based approach</td>
</tr>
<tr>
<td>M_CompT</td>
<td>computation time (second) in the proposed market-based approach</td>
</tr>
<tr>
<td>%Opt</td>
<td>optimality of the proposed market-based approach (optimal = 1.0)</td>
</tr>
<tr>
<td>%Eff</td>
<td>computational efficiency factor of the proposed market-based approach (= M_CompT / CompT)</td>
</tr>
</tbody>
</table>

As shown in Figure 11.4, the optimality of the solution is very high, ranging 93.2% to 99.9% of the optimal solution, which generated by LINDO, while the average computation time is about 45.5% of the LINDO solution. Figure 11.5 illustrates the computational efficiency of the two-tier auctioning process. As shown in this figure, the average value of computational efficiency factor, \(%Eff = \frac{M_CompT}{CompT} \), decreases almost linearly as the average number of dealers per block increases. In shipment load makeup scenario 1, the computation time for both approaches is significantly dependent on the average number of dealers per block. Especially for the IP formulation, the number of integer variables increases rapidly, as the number of dealers increases. The difference between computational times of the two-tier auctioning process and a centralized approach using the IP formulation will become bigger when the two-tier auctioning process is implemented in a multiagent system, where multiple local auction markets in the two-tier auctioning process are to be processed by corresponding block agents simultaneously in distributed local computers.
Table 11.6: Experimental results of the two-tier auctioning process for the shipment load makeup scenario 1.

<table>
<thead>
<tr>
<th>No_B</th>
<th>ANo_D</th>
<th>TNo_D</th>
<th>ANo_V</th>
<th>TNo_V</th>
<th>OptSol</th>
<th>CompT</th>
<th>M_Sol</th>
<th>M_ComT</th>
<th>%Opt</th>
<th>%Eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>50</td>
<td>2</td>
<td>100</td>
<td>-1611.12</td>
<td>0.6</td>
<td>-1609.73</td>
<td>0.401</td>
<td>0.992</td>
<td>0.668</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>200</td>
<td>2</td>
<td>200</td>
<td>-1724.96</td>
<td>0.6</td>
<td>-1713.39</td>
<td>0.425</td>
<td>0.993</td>
<td>0.708</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>300</td>
<td>2</td>
<td>300</td>
<td>-1705.54</td>
<td>0.8</td>
<td>-1703.39</td>
<td>0.531</td>
<td>0.998</td>
<td>0.664</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>400</td>
<td>2</td>
<td>400</td>
<td>-1910.89</td>
<td>0.6</td>
<td>-1894.31</td>
<td>0.517</td>
<td>0.991</td>
<td>0.861</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>100</td>
<td>2</td>
<td>200</td>
<td>-1713.44</td>
<td>1.6</td>
<td>-1678.14</td>
<td>0.533</td>
<td>0.979</td>
<td>0.333</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>400</td>
<td>2</td>
<td>400</td>
<td>-1949.84</td>
<td>1.4</td>
<td>-1920.01</td>
<td>0.749</td>
<td>0.984</td>
<td>0.535</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>600</td>
<td>2</td>
<td>600</td>
<td>-1953.03</td>
<td>1.6</td>
<td>-1894.05</td>
<td>0.909</td>
<td>0.969</td>
<td>0.568</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>800</td>
<td>2</td>
<td>800</td>
<td>-1856.54</td>
<td>1.8</td>
<td>-1818.48</td>
<td>1.186</td>
<td>0.975</td>
<td>0.659</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>150</td>
<td>2</td>
<td>300</td>
<td>-1649.41</td>
<td>2.4</td>
<td>-1597.77</td>
<td>0.756</td>
<td>0.964</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>600</td>
<td>2</td>
<td>600</td>
<td>-1998.77</td>
<td>2.6</td>
<td>-1961.52</td>
<td>1.087</td>
<td>0.981</td>
<td>0.418</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>900</td>
<td>2</td>
<td>900</td>
<td>-1961.29</td>
<td>2.8</td>
<td>-1944.07</td>
<td>1.203</td>
<td>0.992</td>
<td>0.430</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1200</td>
<td>2</td>
<td>1200</td>
<td>-2071.03</td>
<td>2.4</td>
<td>-2049.70</td>
<td>1.539</td>
<td>0.989</td>
<td>0.641</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>200</td>
<td>2</td>
<td>400</td>
<td>-1952.75</td>
<td>3.4</td>
<td>-1864.29</td>
<td>0.843</td>
<td>0.954</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>800</td>
<td>2</td>
<td>800</td>
<td>-1938.34</td>
<td>3.4</td>
<td>-1910.95</td>
<td>1.234</td>
<td>0.985</td>
<td>0.363</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1200</td>
<td>2</td>
<td>1200</td>
<td>-2100.65</td>
<td>3.6</td>
<td>-2058.59</td>
<td>1.456</td>
<td>0.979</td>
<td>0.404</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1600</td>
<td>2</td>
<td>1600</td>
<td>-2048.18</td>
<td>3.2</td>
<td>-1977.93</td>
<td>1.881</td>
<td>0.965</td>
<td>0.589</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>250</td>
<td>2</td>
<td>500</td>
<td>-2195.19</td>
<td>5.8</td>
<td>-2148.94</td>
<td>0.937</td>
<td>0.978</td>
<td>0.161</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1000</td>
<td>2</td>
<td>1000</td>
<td>-2088.11</td>
<td>5.2</td>
<td>-1946.56</td>
<td>1.998</td>
<td>0.932</td>
<td>0.384</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1500</td>
<td>2</td>
<td>1500</td>
<td>-2170.99</td>
<td>6.2</td>
<td>-2105.75</td>
<td>2.015</td>
<td>0.969</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2000</td>
<td>2</td>
<td>2000</td>
<td>-2112.91</td>
<td>5.8</td>
<td>-2075.17</td>
<td>2.556</td>
<td>0.982</td>
<td>0.441</td>
</tr>
</tbody>
</table>
Fig. 11.4: Optimality of the two-tier auctioning process solution varying the average number of dealers per block and the average number of vehicles per dealer: (a) the average optimality, (b) ANo_D = 10, (c) ANo_D = 20, (d) ANo_D = 30, (e) ANo_D = 40, and (e) ANo_D = 50.
11.2.2 Performance of Single-tier Auctioning Process for Scenario 2

Table 11.7 with Figures 11.6 and 11.7 shows the experimental results of the single-tier auctioning process for scenario 2, where the vehicles in the same dealer can be divisible during shipment load makeup process. As illustrated in Figure 11.6, the optimality of the single-tier auctioning process solution is high, ranging 91.8% to 98.4% of the optimal solution, while the average computation time of the single-tier auctioning approach is only about 8.23% of the LINDO solution. Figure 11.7 shows the computational efficiency of the single-tier auctioning process. As shown in this figure, the average value of computational efficiency factor, %Eff, decreases almost exponentially as the average number of vehicles per dealer increases. For shipment load makeup scenario 2, the number of integer variables in the IP formulation increases significantly, as the number of vehicles increases. Similar to the two-tier auctioning process, the gap between computational efficiencies of the single-tier auctioning process and the IP formulation approach will become larger if the auctioning process is
implemented in a multiagent system, where each local auction market is to be processed by corresponding proxy agent simultaneously in distributed local computers.
Table 11.7: Experimental results of the single-tier auctioning process for the shipment load makeup scenario 2.

<table>
<thead>
<tr>
<th>No_B</th>
<th>ANo_D</th>
<th>TNo_D</th>
<th>ANo_V</th>
<th>TNo_V</th>
<th>OptSol</th>
<th>CompT</th>
<th>M_Sol</th>
<th>M_ComT</th>
<th>%Opt</th>
<th>%Eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>50</td>
<td>2</td>
<td>100</td>
<td>-1630.66</td>
<td>1.0</td>
<td>-1605.12</td>
<td>0.160</td>
<td>0.984</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>200</td>
<td>-2112.62</td>
<td>1.4</td>
<td>-1987.54</td>
<td>0.265</td>
<td>0.941</td>
<td>0.189</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>300</td>
<td>-2309.92</td>
<td>1.4</td>
<td>-2216.68</td>
<td>0.343</td>
<td>0.959</td>
<td>0.245</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>400</td>
<td>-2362.25</td>
<td>2.8</td>
<td>-2224.41</td>
<td>0.484</td>
<td>0.942</td>
<td>0.173</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>100</td>
<td>2</td>
<td>200</td>
<td>-1879.13</td>
<td>1.6</td>
<td>-1740.78</td>
<td>0.312</td>
<td>0.926</td>
<td>0.195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>400</td>
<td>-2215.17</td>
<td>3.0</td>
<td>-2171.31</td>
<td>0.531</td>
<td>0.980</td>
<td>0.177</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>600</td>
<td>-2365.81</td>
<td>8.2</td>
<td>-2170.66</td>
<td>0.734</td>
<td>0.918</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>800</td>
<td>-2442.87</td>
<td>14.2</td>
<td>-2247.82</td>
<td>0.890</td>
<td>0.921</td>
<td>0.062</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>150</td>
<td>2</td>
<td>300</td>
<td>-1757.46</td>
<td>10.2</td>
<td>-1673.38</td>
<td>0.453</td>
<td>0.952</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>600</td>
<td>-2381.79</td>
<td>3.0</td>
<td>-2210.43</td>
<td>0.781</td>
<td>0.928</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>900</td>
<td>-2462.21</td>
<td>8.2</td>
<td>-2294.18</td>
<td>0.937</td>
<td>0.931</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>1200</td>
<td>-2534.36</td>
<td>359.6</td>
<td>-2337.84</td>
<td>1.125</td>
<td>0.922</td>
<td>0.003</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>200</td>
<td>2</td>
<td>400</td>
<td>-2050.08</td>
<td>18.2</td>
<td>-1926.73</td>
<td>0.484</td>
<td>0.941</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>800</td>
<td>-2178.34</td>
<td>136</td>
<td>-2043.51</td>
<td>1.015</td>
<td>0.938</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1200</td>
<td>-2457.27</td>
<td>424</td>
<td>-2274.17</td>
<td>1.062</td>
<td>0.925</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>1600</td>
<td>†</td>
<td>†</td>
<td>-2520.59</td>
<td>1.703</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>250</td>
<td>2</td>
<td>500</td>
<td>-2339.51</td>
<td>81.2</td>
<td>-2188.38</td>
<td>0.531</td>
<td>0.935</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1000</td>
<td>-2396.94</td>
<td>467</td>
<td>-2203.85</td>
<td>1.296</td>
<td>0.919</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1500</td>
<td>†</td>
<td>†</td>
<td>-2326.93</td>
<td>1.64</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>2000</td>
<td>†</td>
<td>†</td>
<td>-2578.30</td>
<td>2.328</td>
<td>†</td>
<td>†</td>
</tr>
</tbody>
</table>

†: LINDO fails to provide an optimal solution
Fig. 11.6: Optimality of the single-tier auctioning process solution varying the average number of dealers per block and the average number of vehicles per dealer: (a) the average optimality, (b) $\text{ANo}_D = 10$, (c) $\text{ANo}_D = 20$, (d) $\text{ANo}_D = 30$, (e) $\text{ANo}_D = 40$, and (f) $\text{ANo}_D = 50$.
Fig. 11.7: Computational efficiency of the single-tier auctioning process varying the average number of dealers per block and the average number of vehicles per dealer: (a) the average optimality, (b) ANo_D = 10, (c) ANo_D = 20, (d) ANo_D = 30, (e) ANo_D = 40, and (e) ANo_D = 50.

11.3 Scalability of Market-based Decentralized Approach

Scalability is defined as the ability of an algorithm or system to continue to perform well as either the assigned tasks or the system is changed in size or volume (Lee,
Thus, the performance measure of scalability should be closely related to the concept of computational efficiency, which is the ability to do a task within certain constraints.

The performance of the auction mechanism used to control each local auction market critically affects to the overall performance, including scalability, of the proposed market based approaches. Thus, this section investigates scalability of the auction mechanism that is developed to control each local auction market. In the two-tier auctioning process, which is designed for the shipment load makeup scenario 1, the iterative bundle auction mechanism is used to control each local auction market. In the single-tier auctioning process, which is for the shipment load makeup scenario 2, the iterative high-bid auction mechanism is used to control each local auction market.

In order to study the scalability of the auction mechanism, changes in computational performance should be investigated as some of shipment load makeup configuration parameters – including the number of blocks, the number of dealers, the number of vehicles, and the number of vacancies on a truck – increases. To analyze experimental results with respect to scalability, the following metrics are used:

- **Convergence**: Since the developed auction mechanisms, iterative bundle auction mechanism and iterative high-bid auction mechanism, are proceeds in iterations, the convergence of the auction mechanism is measured by the number of iterations until the auction mechanism is completed.

- **Computational efficiency**: The computation time until the auction mechanism converges is measured. Investigating this local computation time is very important in that the developed auction mechanism will be carried out in a distributed computing environment in practice.

The remainder of this section investigates the effects of the shipment load makeup configuration factors on the above performance measures of the proposed auction mechanisms. Investigated factors with regard to shipment load makeup configuration include, the number of blocks, the number of dealers, the number of vehicles, and the
number of vacancies on a truck. These five factors define the overall size and the resource availability of a shipment load makeup configuration, and affect the size of the IP problem and the performance of its solution procedure.

11.3.1 Effect of Number of Blocks

In order to evaluate the effect of the number of blocks on the performance of the auction mechanism used to control each local auction market, 10 shipment load makeup instances are generated for each shipment load makeup scenario, where the levels of the number of blocks are 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Each instance has 20 dealers per block and 3 vehicles per dealer, and the other input parameters used for generating each instance are set to the values shown in Table 11.4. For each of these shipment load makeup instances, a total of 5 simulation runs are repeated to reduce random effects.

Table 11.8 and Figure 11.8 summarize the experiment results of testing the effect of varying the number of blocks on the performance of the local auction mechanism utilized in the two-tier auctioning process for scenario 1. In Table 11.8, A_{No_It} denotes an average number of iterations per local market, L_{Comp_T} is an average computation time per local market, and A_{comp_It} represents an average computation time per iteration. As shown in Table 11.8 and Figure 11.8, the effect of the number of blocks is not significant as far as the number of dealers per block and the number of vehicles per dealer remains same. This result is very reasonable in that the two-tier auctioning process, designed in Chapters 9, constructs a local auction market for each block.
Table 11.8: Experiment results of testing the effect of varying number of blocks on the performance of the local auction mechanism in two-tier auctioning process (scenario 1).

<table>
<thead>
<tr>
<th>No_B</th>
<th>ANo_D</th>
<th>ANo_V</th>
<th>TNo_D</th>
<th>TNo_V</th>
<th>ANo_It</th>
<th>computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L_CompT</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>3</td>
<td>200</td>
<td>600</td>
<td>8.30</td>
<td>0.1263</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>3</td>
<td>400</td>
<td>1200</td>
<td>8.55</td>
<td>0.1282</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>3</td>
<td>600</td>
<td>1800</td>
<td>9.33</td>
<td>0.1375</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>3</td>
<td>800</td>
<td>2400</td>
<td>8.90</td>
<td>0.1331</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>3</td>
<td>1000</td>
<td>3000</td>
<td>8.88</td>
<td>0.1322</td>
</tr>
<tr>
<td>60</td>
<td>20</td>
<td>3</td>
<td>1200</td>
<td>3600</td>
<td>9.11</td>
<td>0.1517</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
<td>3</td>
<td>1400</td>
<td>4200</td>
<td>8.81</td>
<td>0.1422</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>3</td>
<td>1600</td>
<td>4800</td>
<td>8.78</td>
<td>0.1476</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>3</td>
<td>1800</td>
<td>5400</td>
<td>8.93</td>
<td>0.1397</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>3</td>
<td>2000</td>
<td>6000</td>
<td>8.31</td>
<td>0.1195</td>
</tr>
</tbody>
</table>
Table 11.9 and Figure 11.9 summarize the experiment results of investigating the effect of varying the number of blocks on the performance of the local auction mechanism used in the single-tier auctioning process for scenario 2. Similar to the local auction mechanism used in the two-tier auctioning process, the overall performance (e.g., convergence and computational efficiency) are not different from each other. However, as designed in Chapter 10, the number of iterations for the iterative high-bid auction mechanism is always same as the number of items (e.g. the number of vacancies on a truck) to be sold in a local market. Finally, the above experimental results clearly show that the number of blocks does not affect to the performance of the auction mechanism as far as the number of dealers per block and the number of vehicles per dealer remains
same. This result is very reasonable in that a local auction market is constructed for each block in the single-tier auctioning process.

Table 11.9: Experiment results of testing the effect of varying number of blocks on the performance of the local auction mechanism in single-tier auctioning process (scenario 2).

<table>
<thead>
<tr>
<th>No_B</th>
<th>ANo_D</th>
<th>ANo_V</th>
<th>TNo_D</th>
<th>TNo_V</th>
<th>ANo_It</th>
<th>computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L_CompT</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>3</td>
<td>200</td>
<td>600</td>
<td>12</td>
<td>0.0729</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>3</td>
<td>400</td>
<td>1200</td>
<td>12</td>
<td>0.0760</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>3</td>
<td>600</td>
<td>1800</td>
<td>12</td>
<td>0.0752</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>3</td>
<td>800</td>
<td>2400</td>
<td>12</td>
<td>0.0720</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>3</td>
<td>1000</td>
<td>3000</td>
<td>12</td>
<td>0.0753</td>
</tr>
<tr>
<td>60</td>
<td>20</td>
<td>3</td>
<td>1200</td>
<td>3600</td>
<td>12</td>
<td>0.0741</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
<td>3</td>
<td>1400</td>
<td>4200</td>
<td>12</td>
<td>0.0734</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>3</td>
<td>1600</td>
<td>4800</td>
<td>12</td>
<td>0.0736</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>3</td>
<td>1800</td>
<td>5400</td>
<td>12</td>
<td>0.0735</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>3</td>
<td>2000</td>
<td>6000</td>
<td>12</td>
<td>0.0742</td>
</tr>
</tbody>
</table>
Fig. 11.9: Effect of the number of blocks on the performance of the local auction mechanism for scenario 2: (a) average number of iterations, (b) average computation time, and (c) average computation time per iteration.

11.3.2 Effect of Number of Dealers

In order to evaluate the effect of the number of dealers on the performance of the auction mechanism, 10 shipment load makeup instances are generated for each shipment load makeup scenario, where the levels of the number of dealers per block are 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200. Each instance has 10 blocks and 3 vehicles per dealer, and the other input parameters used for generating each instance are given as shown in Table 11.4. For each of these instances, a total of 5 simulation runs are repeated.

The experiment results of testing the effect of the number of dealers per block on the performance of the local auction mechanism for the two-tier auctioning process are
shown in Table 11.10 and Figure 11.10. As shown in the table and figure, according to the increase in the number of dealers per block, the convergence speed and computation time increases linearly, rather than exponentially.

Table 11.10: Experiment results of testing the effect of varying number of dealers on the performance of the local auction mechanism in two-tier auctioning process (scenario 1).

<table>
<thead>
<tr>
<th>No_B</th>
<th>ANo_D</th>
<th>ANo_V</th>
<th>TNo_D</th>
<th>TNo_V</th>
<th>ANo_It</th>
<th>L_CompT</th>
<th>Acomp_It</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>3</td>
<td>200</td>
<td>600</td>
<td>9.1</td>
<td>0.1339</td>
<td>0.0147</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>3</td>
<td>400</td>
<td>1200</td>
<td>9.7</td>
<td>0.2773</td>
<td>0.0285</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>3</td>
<td>600</td>
<td>1800</td>
<td>10.7</td>
<td>0.4287</td>
<td>0.0401</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>3</td>
<td>800</td>
<td>2400</td>
<td>9.9</td>
<td>0.5531</td>
<td>0.0559</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>3</td>
<td>1000</td>
<td>3000</td>
<td>10.2</td>
<td>0.7005</td>
<td>0.0687</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>3</td>
<td>1200</td>
<td>3600</td>
<td>10.4</td>
<td>0.8314</td>
<td>0.0799</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>3</td>
<td>1400</td>
<td>4200</td>
<td>10.5</td>
<td>0.9811</td>
<td>0.0934</td>
</tr>
<tr>
<td>10</td>
<td>160</td>
<td>3</td>
<td>1600</td>
<td>4800</td>
<td>10.7</td>
<td>1.1561</td>
<td>0.1081</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
<td>3</td>
<td>1800</td>
<td>5400</td>
<td>10.5</td>
<td>1.1954</td>
<td>0.1237</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>3</td>
<td>2000</td>
<td>6000</td>
<td>10.6</td>
<td>1.4258</td>
<td>0.1345</td>
</tr>
</tbody>
</table>
Table 11.11 and Figure 11.11 summarize the experiment results of the effect of the number of dealers per block on the performance of the local auction mechanism for the single-tier auctioning process. These results show that the computational complexity increases linearly, rather than exponentially, as the number of dealers per block increases for the tested range (20-200).
Table 11.11: Experiment results of testing the effect of varying number of dealers on the performance of the local auction mechanism in single-tier auctioning process (scenario 2).

<table>
<thead>
<tr>
<th>No_B</th>
<th>ANo_D</th>
<th>ANo_V</th>
<th>TNo_D</th>
<th>TNo_V</th>
<th>ANo_It</th>
<th>L_CompT</th>
<th>Acomp_It</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>3</td>
<td>200</td>
<td>600</td>
<td>12</td>
<td>0.0788</td>
<td>0.0066</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>3</td>
<td>400</td>
<td>1200</td>
<td>12</td>
<td>0.1535</td>
<td>0.0128</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>3</td>
<td>600</td>
<td>1800</td>
<td>12</td>
<td>0.2317</td>
<td>0.0192</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>3</td>
<td>800</td>
<td>2400</td>
<td>12</td>
<td>0.3026</td>
<td>0.0252</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>3</td>
<td>1000</td>
<td>3000</td>
<td>12</td>
<td>0.3822</td>
<td>0.0319</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>3</td>
<td>1200</td>
<td>3600</td>
<td>12</td>
<td>0.4475</td>
<td>0.0373</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>3</td>
<td>1400</td>
<td>4200</td>
<td>12</td>
<td>0.5171</td>
<td>0.0431</td>
</tr>
<tr>
<td>10</td>
<td>160</td>
<td>3</td>
<td>1600</td>
<td>4800</td>
<td>12</td>
<td>0.6111</td>
<td>0.0509</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
<td>3</td>
<td>1800</td>
<td>5400</td>
<td>12</td>
<td>0.6837</td>
<td>0.0569</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>3</td>
<td>2000</td>
<td>6000</td>
<td>12</td>
<td>0.7418</td>
<td>0.0618</td>
</tr>
</tbody>
</table>
11.3.3 Effect of Number of Vehicles

In order to investigate the effect of the number of vehicles on the performance of the auction mechanism, 8 shipment load makeup instances are generated for each shipment load makeup scenario. The levels of the number of vehicles per dealer are 1, 2, 3, 4, 5, 6, 7, and 8. Each shipment load makeup instance has 10 blocks and 50 dealers per block. Thus, the total number of vehicles used in this experimentation is ranging from 500 to 4000. For each of these instances, 5 simulation runs are repeated to decrease random effects.

Fig. 11.11: Effect of the number of dealers on the performance of the local auction mechanism for scenario 2.
Table 11.12 and Figure 11.12 summarize the experiment results of investigating the effect of varying the number of vehicles per dealer on the performance of the local auction mechanism used in the two-tier auctioning process for scenario 1. As shown in the table and figure, according to the increase in the number of vehicles per dealer, the number of iterations and computation time increases almost linearly.

Table 11.12: Experiment results of testing the effect of varying number of vehicles on the performance of the local auction mechanism in two-tier auctioning process (scenario 1).

<table>
<thead>
<tr>
<th>No_B</th>
<th>ANo_D</th>
<th>ANo_V</th>
<th>TNo_D</th>
<th>TNo_V</th>
<th>ANo_It</th>
<th>Computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L_CompT</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>1</td>
<td>500</td>
<td>500</td>
<td>6.2</td>
<td>0.1582</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>2</td>
<td>500</td>
<td>1000</td>
<td>7.3</td>
<td>0.2498</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>500</td>
<td>1500</td>
<td>9.3</td>
<td>0.3395</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>4</td>
<td>500</td>
<td>2000</td>
<td>11.5</td>
<td>0.4197</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>5</td>
<td>500</td>
<td>2500</td>
<td>12.5</td>
<td>0.4717</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>6</td>
<td>500</td>
<td>3000</td>
<td>13.4</td>
<td>0.5076</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>7</td>
<td>500</td>
<td>3500</td>
<td>14.9</td>
<td>0.5808</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>8</td>
<td>500</td>
<td>4000</td>
<td>14.8</td>
<td>0.5819</td>
</tr>
</tbody>
</table>
The effect of the number of vehicles per dealer on the performance of the local auction mechanism for the single-tier auctioning process is summarized in Table 11.13 and Figure 11.13. These experimental results show that the computational complexity increases linearly, rather than exponentially, as the number of vehicles per dealer increases for the tested range (1-8).
Table 11.13 Experiment results of testing the effect of varying number of vehicles on the performance of the local auction mechanism in single-tier auctioning process (scenario 2).

<table>
<thead>
<tr>
<th>No_B</th>
<th>ANo_D</th>
<th>ANo_V</th>
<th>TNo_D</th>
<th>TNo_V</th>
<th>ANo_It</th>
<th>Computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L_CompT</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>1</td>
<td>500</td>
<td>500</td>
<td>12</td>
<td>0.0904</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>2</td>
<td>500</td>
<td>1000</td>
<td>12</td>
<td>0.1424</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>500</td>
<td>1500</td>
<td>12</td>
<td>0.1938</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>4</td>
<td>500</td>
<td>2000</td>
<td>12</td>
<td>0.2454</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>5</td>
<td>500</td>
<td>2500</td>
<td>12</td>
<td>0.2904</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>6</td>
<td>500</td>
<td>3000</td>
<td>12</td>
<td>0.3460</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>7</td>
<td>500</td>
<td>3500</td>
<td>12</td>
<td>0.3942</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>8</td>
<td>500</td>
<td>4000</td>
<td>12</td>
<td>0.3904</td>
</tr>
</tbody>
</table>
11.3.4 Effect of Number of Vacancies on a Truck

The effect of the number of vacancies on a truck on the performance of the auction mechanism is evaluated by testing 6 shipment load makeup instances, where the levels of the number of vacancies on a truck are 8, 10, 12, 14, 16, and 18. Each shipment load makeup instance has 10 blocks, 50 dealers per block, and 3 vehicles per dealer, and other input parameters used in this experimentation are set to the values given in Table 11.4. For each of these instances, a total of 5 simulation runs are repeated.
As shown in Table 11.14 and Figure 11.14, the effect of the number of vacancies on a truck is not significant as far as the number of blocks, the number of dealers per block, and the number of vehicles per dealer remains same.

Table 11.14 Experiment results of testing the effect of varying number of vacancies on a truck on the performance of the local auction mechanism in two-tier auctioning process (scenario 1).

<table>
<thead>
<tr>
<th>No_B</th>
<th>ANo_D</th>
<th>ANo_V</th>
<th>number of vacancies</th>
<th>ANo_It</th>
<th>computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L_CompT</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>8</td>
<td>9.1</td>
<td>0.3307</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>10</td>
<td>9.1</td>
<td>0.0026</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>12</td>
<td>9.3</td>
<td>0.3472</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>14</td>
<td>8.9</td>
<td>0.3322</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>16</td>
<td>9.4</td>
<td>0.3361</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>18</td>
<td>9.3</td>
<td>0.3383</td>
</tr>
</tbody>
</table>
Table 11.15 and Figure 11.15 summarize the experiment results of testing the effect of varying the number of vacancies on a truck on the performance of the local auction mechanism used to control each local market in the single-tier auctioning process for scenario 2.

Since the iterative high-bid auction mechanism, used for the shipment load makeup scenario 2, is originally designed to have the fixed number of iterations, which is the same as the number of vacancies on a truck, it is very clear that the number of iterations increases linearly as the number of vacancies increases. However, as shown in Figure 11.15(b), the number of vacancies does not affect the computational efficiency of
the auction mechanism. Thus, the average computation time per iteration, shown in Figure 11.15(c), decreases linearly as the number of vacancies on a truck increases.

Table 11.15 Experiment results of testing the effect of varying number of vacancies on a truck on the performance of the local auction mechanism in single-tier auctioning process (scenario 2).

<table>
<thead>
<tr>
<th>No_B</th>
<th>ANo_D</th>
<th>ANo_V</th>
<th>number of vacancies</th>
<th>ANo_IT</th>
<th>L_CompT</th>
<th>Acomp_It</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>0.1938</td>
<td>0.0242</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>0.1942</td>
<td>0.0194</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>0.1713</td>
<td>0.0143</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>14</td>
<td>14</td>
<td>0.1727</td>
<td>0.0123</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>16</td>
<td>16</td>
<td>0.1907</td>
<td>0.0119</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>18</td>
<td>18</td>
<td>0.1945</td>
<td>0.0108</td>
</tr>
</tbody>
</table>
Fig. 11.15 Effect of the number of vacancies on a truck on the performance of the local auction mechanism for scenario 2.

11.4 Summary of Empirical Analysis

Experimental analysis and validation of the proposed market-based approach is important part of this study. This chapter presents the experimental analysis results with experimental setup and generation of a shipment load makeup instance. In order to conduct experimental analysis, a simulator, which emulates shipment load makeup processes with the proposed market-based mechanisms, is developed. Using the simulator, a variety of shipment load makeup instances are thoroughly tested and analyzed for verifying specific aspects of the market-based mechanism. The experimental
analysis results demonstrate the market-based decentralized approach for shipment load makeup achieves high level of solution quality and computational efficiency. The results of the experimental analysis are summarized as follows.

- The two-tier auctioning process, as a market-based approach for the shipment load makeup scenario 1, provides near optimal solution quality, ranging from 93.2% to 99.9% (average 97.8%) of the optimal solution generated by LINDO, while the average computation time is about 45.5% of the LINDO solution. As the number of dealers per block increases, the value of $%Eff$ (computation time in LINDO / computation time in the market-based approach) decreases.

- The single-tier auctioning process for the shipment load makeup scenario 2 shows a high level of computational efficiency, 8.23% of the LINDO solution, and solution quality, ranging 91.8% to 98.4% of the optimal solution. According to the increase in the number of vehicles, the computation time of the proposed auctioning process decreases almost exponentially.

- The difference between computational times of the proposed approaches (the two-tier auctioning process and the single-tier auctioning processes) and a centralized approach using the IP formulation will become larger when the proposed auctioning processes are implemented in a multiagent system, where multiple local auction markets are to be processed simultaneously in distributed local computers.

- As investigated in Section 11.3, according to the increase in the number of dealers, the computation time of the both local auction mechanisms (iterative bundle auction mechanism and iterative high-bid auction mechanism) increase linearly (see Figures 11.11 and 11.12). A similar result is shown for the effect of the number of vehicles on the performance of the local auction mechanism (see Figures 11.13 and 11.14). These results imply that the proposed local auction mechanisms are scalable and applicable to a practical size of the shipment load makeup problems and other real-time decision-making problems, because the computation time per each iteration varies within a second.
Chapter 12

Conclusions and Future Research

Dynamics in real-world business operations, such as various unexpected disruptions and uncertainties, have significant impact on the efficiency of supply chain management. Recently, as RFID technologies have been widely adopted in various supply chains environments, visibility of the dynamics in business operations improves, and allows designing efficient operational models and decision-making strategies.

This thesis is motivated by a real world example relating to outbound logistics of an automobile manufacturers’ supply chain. In specific, this thesis addresses the shipment yard operations, such as vehicle deployment and shipment load makeup, where an RFID-based wireless tracking system provides real-time information of vehicles. The first consideration is defining the operational specifications and decision-making problems for current vehicle deployment and shipment load makeup. An understanding of current operational processes and the RFID technology defines new operational processes for vehicle deployment and shipment load makeup and corresponding decision-making models in the RFID-enabled shipment yard. The fundamental change is that decentralized decision-making model becomes necessary. Multiagent-based information framework and various market-based control mechanisms deal with these decision-making models in a decentralized manner and provide adaptable solutions in time. The results of computational experiments demonstrate that the proposed approaches work effectively in the given context. The following sections review the major contributions from this research, identify the managerial implications, and suggest future research.

12.1 Contributions

The major contributions from this research work are as follows:
1. This research is among the first to deal with the operational problems in an RFID-enabled automobile shipment yard, and it identifies the significance and difficulty of operational problems for vehicle deployment and shipment load makeup. This study formally specifies these problems by defining the operational performance measures and constraints of shipment yard operations.

2. This research successfully combines a multiagent-based information architecture, various auction mechanisms as market-based control approaches, and mathematical programming models designed by operations research methodology for the decentralized operational problems in an RFID-enabled shipment yard. The auction mechanisms facilitated in a multiagent framework effectively support the distributed and dynamic nature of operational environment and efficiently process a large amount of distributed information provided from the RFID system. Furthermore, the proposed multiagent-based information architecture and market-based control approach allow building an efficient structure for sharing information collected from the RFID system with multiple supply chain partners, such as local dealers and transportation resource divisions or 3rd party logistics providers.

3. This study mathematically formulates the decision-making models for the shipment yard operations in an RFID-enabled environment. In that management of a shipment yard is a subsidiary activity of an automobile manufacturer’s outbound logistics, the mathematical programming model designed in this thesis successfully integrates the managerial objectives of the shipment yard and other functional organizations in outbound logistics, such as transportation resource divisions and numerous local dealers.

4. The proposed auction mechanisms, as a market-based control approach, are novel approaches that effectively incorporate the dynamic, coupled and distributed
nature of the shipment yard operational problems. Some of contributions regarding the auction algorithms proposed in this thesis are:

(i) Two-tier auctioning process (i.e., local auction markets and central auction market), designed for the shipment load makeup problem, is effective for decomposing the problem. Distributed local markets determine the set of potential winning dealer agents and the utility value of the resource, while in the central auction market the final winning dealer agents are determined by allocating the resources to block agents which provides maximum revenue for the resource agent.

(ii) The designed strategic bidding behavior, such as the second-chance bidding strategy, enhances performance of the auction mechanism by increasing allocation efficiency.

(iii) The proposed iterative bundle auction mechanism successfully provides an efficient solution in reasonable time. The winner determination problem in this auction mechanism is an NP-complete problem. The approximation algorithm, developed based on the problem structure, enhances computational performance of the auction mechanism by efficiently solving the winner determination problem in time.

5. This research investigates the impact of real-time information from the RFID system on the management of the automobile shipment yard. By designing the operational decision-making models for the RFID-enabled shipment yard and solving the models effectively, the value of the RFID system on the shipment yard’s operations is quantitatively evaluated. The proposed auction mechanisms under the multiagent computational architecture improve the operational performance because these auction mechanisms can effectively capture and respond to the dynamic changes in shipment yard’s operational environment by utilizing real-time information from the RFID system. Finally the RFID-enabled information systems, driven by intelligent algorithms, can innovate the
performance of supply chain operations with timely information and better
decision-making support.

6. Using the shipment yard operational environment generator, this study tests
various operational scenarios of shipment load makeup and different auction
mechanisms to solve shipment load makeup problems. The experimental analysis
procedure, using various operational scenarios and auction mechanisms, can
provide valuable principles for solution performance analysis models for
shipment load makeup.

12.2 Managerial Implications

One of the most important managerial concerns of the automobile manufacturer is
enhancing the efficiency of shipment yard operations and customer fulfillment by
reducing vehicle dwell time in the shipment yard. Delivering the vehicles to customers
with shorter lead-times can increase the competitiveness and attract potential customers.
Another important goal in managing a shipment yard is to determine the right size buffers
and the right number of yard operators to reduce or eliminate many of the problems that
result in cost overruns and loss of consumption. Excessive operational costs usually arise
when a labor over-supply or under-supply exists (Anderson et al, 1997). Finally,
determining appropriate decisions, under a variety of operational environments, enables
the shipment yard manager to reduce the dwell time of vehicles and increases labor
utilization. In addition, real-time information from the RFID system and advanced
decision-making mechanisms enables achieving enhanced shipment yard operations and
reducing operational costs for the shipment yard, for transportation resource divisions,
and for local dealers. The experimental analysis results clearly show that the RFID-
enabled decision-making system improves the performance of shipment yard operations
as well as accomplishes the objectives of enhancing customer satisfaction and reducing
total labor costs. Specifically, the following observations have meaningful implications:
1. Since the shipment yard is not a warehouse for holding inventory, vehicles are not supposed to stay in the shipment yard longer than expected and should be shipped within a predefined maximum allowed dwell time. The automobile manufacturer wishes to reduce the number of vehicles staying in the shipment yard for an unexpectedly long time. This leads to the reduction of customer waiting time and then, improves customer satisfaction through meeting order delivery expectations. Delivering vehicles to customers with shorter lead-times can increase competitiveness and attract potential customers.

2. The active RFID system reports the location of a vehicle along its movement flow in real time. This real-time movement information with current location enables speeding up vehicle deployment and load makeup processes, reducing dwell time by eliminating unnecessary time delays, and assisting dispatching labor to handle tasks more efficiently.

3. The operations in the shipment yard can be influenced by exceptions and disruptions, which the RFID-enabled flexible and adaptable decision-making can mitigate by quickly sensing and responding to the impact of those events on operational performance.

4. Under a variety of management circumstances, determining appropriate shipment yard operations and management parameters enables the shipment yard manager to optimize operational performance. What-if analysis can be performed by changing the operational parameters such as the number of block areas, the number of local dealers, various operational costs, etc.

12.3 Future Research
This section describes some possible future research extensions:

1. This research restricts the computational experiment of vehicle deployment to the case in which an experimental vehicle shipment schedule follows a high-priority-first-load (HPFL) rule. However the vehicle deployment operation is determined by considering the shipment load makeup decision made by solving shipment load makeup problems. To this end, the proposed shipment load makeup model needs to be integrated into vehicle deployment processes for implementing two major operational processes in a shipment yard as one integrated form. Effectively combining these two operational processes to obtain better performance of vehicle deployment is necessary.

2. The designed shipment load makeup problem, in this research, is restricted to the case in which a number of local dealers are clustered into a block, based on their geographical adjacency. In order to generalize the problem, the shipment load makeup problem can be analyzed without the blocking concept. Consequently, the problem would then include characteristics of the traveling salesman problem (TSP). Since TSP is an NP-hard problem, it is necessary to develop more effective auction mechanisms which can provide adaptable solutions.

3. Traditional auction mechanisms allow price only negotiations where a bid evaluation is a computationally simple task. However, the need for advanced auction mechanisms that allow complex bids such as multi-attribute bids has been raised in many situations (Parkes and Kalagnanam, 2004). Only a small but steadily growing number of academic papers have considered the multi-attribute auction. Che (1993) and Branco (1997) provide a thorough analysis of the design of multi-attribute auction. In an auction of this type, bidders are allowed to submit multi-attribute bids, and therefore negotiate not just on price but also on quantity and other qualitative attributes. Typical multi-attribute auctions describe a bid as a set of attribute value pairs. An approach to handling multiple attributes is to
convert qualitative attributes into price equivalents by using a certain set of rules. Another approach uses decision analysis techniques to assign preferences and individual value functions to the relevant attributes, and calculate the bid scores by aggregating attribute value scores (Bichler, 1998; Bichler et al., 1999). These techniques have their origin in multi-attribute decision analyses (Keeny and Raiffa, 1993; Bichler and Kalagnanam, 2002). From the understanding of shipment load makeup decision-making strategies, delivery destination, order priority, and dwelling time are known as key attributes of a vehicle in a shipment yard. In that sense, the set of vehicles involved in a dealer agent can be described by these key attributes and denoted as a multi-dimensional vector. In future studies, a local auction market for the shipment load makeup can be designed on the basis of a multi-attribute auction mechanism, and this mechanism can promise higher market efficiency through more effective information exchange between a bidder and an auctioneer.

4. Vehicle deployment and shipment load makeup operations are modeled as periodic or sequential decision-making processes where each decision is not made independently but made interactively. In other words, a decision made in the current decision epoch affects later decisions. Therefore, the objective of shipment yard management is to achieve better long term performance of operational processes by controlling vehicle deployment and shipment load makeup decisions in a dynamic environment. In this sense, a Markov decision process (MDP), widely used for devising optimal control policies in dynamic planning and sequential decision-making problems (Howard, 1960; Puterman, 1994), would be an effective approach for modeling shipment yard operations and for capturing the dynamics in an operational environment. Furthermore, an MDP-based operational model can dynamically build vehicle deployment and shipment load makeup decision policies using real-time information from the RFID-enabled system. However a well-known practical limitation exists, such as “curse of dimensionality.” This implies exponential growth in the time and space required
to compute an approximate solution to an MDP problem as the problem dimension (i.e. state and control spaces) increases (Rust, 1997). To overcome the “curse of dimensionality,” value function approximation techniques, such as multi-grid algorithms (Chow and Tsitsiklis, 1991; Rust, 1997), feed-forward neural networks (Lin and Mitchell, 1992; Bertsekas and Tsitsiklis, 1996), and gradient descent method (Sutton and Barto, 1998), can be introduced.

5. This thesis has dealt with sharing real-time information, provided from the RFID system, only for the shipment yard management and part of outbound logistics. However it could have significant worth for analyzing the value of real-time information exchange across whole supply chain, including inbound logistics, manufacturing, outbound logistics, and after-sales. Furthermore, diverse opportunities exist for leveraging the benefits from real-time information from an RFID system and intelligent decision-making algorithms, including inventory control, production scheduling, warehouse management, retailing, etc. The overall approach in this thesis can be useful as a basis to support such RFID-enabled decision-making problems.
BIBLIOGRAPHY

VITA

Jindae Kim

Jindae Kim was born in Korea in 1973. He received his B.S. and M.S. degrees in Industrial Engineering from Inha University in 1999 and 2001 respectively. During his B.S. and M.S. study his major research interest was in the area of computer aided manufacturing and distributed manufacturing systems. In 2001 fall, he enrolled in the Ph.D. program in Industrial Engineering at the Pennsylvania State University. During his Ph.D. study he was employed as a research assistant or a teaching assistant in the department of Industrial Engineering. As a research assistant, he participated in three major research projects: (1) “Vehicle Deployment and Load Makeup system (DLMS) in Wireless Environment” funded by General Motors Research and Development Center, (2) “Integrated Diagnostics into Ground Equipment Study” funded by United States Marine Corp., and (3) “Enabling Logistics with Portable and Wireless Technology Study” funded by United States Marine Corp., under supervision of Dr. Soundar Kumara. His current research interests include decentralized dynamic control using market-based mechanisms, multiagent-based information systems, and dynamic control for RFID-enabled computational models, all in the context of supply chain and logistics, communication and sensor networks, and service engineering. He is a member of Institute of Industrial Engineers (IIE) and Institute for Operations Research and Management Sciences (INFORMS).