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Abstract
Cislunar space is a growing area of interest as several countries plan missions to explore
the moon and its surrounding regions for scientific, economical and national security
reasons. With this increased interest, there is an apt need to accurately track spacecraft
in the cislunar regime. This thesis develops an optimal sensor tasking approach to track
space objects in the cislunar regime with the help of space-based sensors. The developed
approach utilizes the non-product quadrature method known as the Conjugate Unscented
Transform (CUT) to accurately and efficiently propagate the state uncertainty through
the chaotic Circular Restricted Three Body Problem (CR3BP). The CUT approach
further leads to the design of a higher order Kalman filter to fuse the model predictions
with sensor observations.

An information theoretic metric, Mutual Information (MI), also known as the Kullback-
Leibler divergence metric, is used to assess the quality of a sensor observation. The
MI provides the ratio between the prior and posterior probability density functions,
which gives a quantitative assessment of the reduction in uncertainty due to sensing
decisions. An exhaustive search algorithm is used to maximize mutual information over
all objects, sensors, and time steps for a given problem. Given the combinatorial growth
associated with the exhaustive search, sub-optimal sequential algorithms are designed
while exploiting the submodularity property of the MI metric. Different variants of the
sequential algorithms (e.g. receding horizon window or sequential-in-time) are discussed
depending on the size of the problem. A receding horizon approach solves the sensor
tasking problem for a given subset of time steps before moving on to the next subset.
This is done until the entire time span has been solved, meaning the sensors are tasked
for each time step of the time span.

Numerical results are shown for the receding horizon window applied to two examples
of an Earth-based space object tracking problem and a cislunar object tracking problem.
The results show that the implementation of the receding horizon window approach was
a success as the tasking provides the desired reduction in uncertainty of all objects over
the time span. Specifically, the state errors are statistically analyzed and shown to not
significantly impact the object tracking over time.
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Chapter 1 |
Introduction

1.1 Introduction
Since the Apollo era, space has become an increasingly valuable domain for national
security, diplomatic, informational, and economic reasons. Space research has spurred
socio-economic development, enabled scientific discoveries and advanced communications,
remote sensing, geophysical, and astrophysical applications. The number of space objects
launched within the last few years has grown exponentially. Missions that yield successful
lunar resource extraction, including water, helium-3, regolith, and rare earth metals,
will be foundational to the future multi-trillion-dollar space economy [2]. Establishing
infrastructure in cislunar space also allows for increased surveillance capabilities and
utilizing a currently unmonitored zone for accomplishing national security objectives. It
is clear that space is emerging as an important civil, commercial, and military domain,
and nations and industry partners are taking notice. The “New Space Race” has begun.

While only two nations had hopes of operating in the cislunar realm during the Apollo
era, several nations and private industries are aiming for the Moon in the Artemis era.
China launched the 2nd most satellites in 2021, outside of Starlink, and is planning
to launch a constellation of satellites to support lunar exploration [3]. Counterspace
capabilities allow militaries to either defend their space assets or attack others’ assets, and
the number of these counterspace tests and incidents increased dramatically within the
past five years [4]. Similarly, the Artemis program has been envisioned with the intention
of exploring cislunar space with long-term interest in conducting scientific analysis on
the lunar landscape. Currently, plans for up to 10 missions have been proposed to the
moon within the next decade [5]. In near-Earth regimes, the Orbital Sustainability Act
of 2023 [6] directs specified agencies to take actions to remediate orbital debris in Earth
orbit. However, as the number of missions increase, a natural increase in the number of
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spacecraft and debris in cislunar space will also occur. If this growth is left unchecked,
then the number of these objects will become unmanageable. Hence, there is a need to
extend space situational awareness (SSA) capabilities beyond the geosynchronous Earth
orbit (GEO) domain, i.e., XGEO.

The perturbed two-body (Keplerian) framework has led to extensive modeling, pro-
viding various approximate solutions of increasing fidelity and analysis of representative
behaviors to investigate spacecraft motion in orbits around Earth. The propagation of
state errors through the orbit dynamical models and navigation in orbits around Earth
are well studied [1,7–11]. However, beyond GEO (XGEO), the fundamental structure
of space trajectories can be and typically are radically different. Potential orbits and
trajectories do not simply consist of the conic sections that typiy orbits nearer to Earth.
The challenges that limit the transferability of tools and techniques from the GEO to
XGEO region are primarily due to non-Keplerian dynamics, data sparsity from limited
coverage, and frequent unavailability of sensors for absolute and relative navigation.
While conic sections in the two-body problem enable relatively straightforward initial
orbit determination (IOD) for a variety of measurement types in GEO, there is currently
no known IOD analog for the cislunar regime, even for the foundational circular restricted
three body problem (CR3BP). Currently, for near-Earth orbits, spacecraft orbits are
characterized using traditional Two-Line Elements (TLEs). However, this TLE-based
structure is not adequate to characterize cislunar orbits. It is entirely possible that a
global structure equivalent to TLEs does not even exist for the CR3BP framework. In
addition, outside the range of the Global Positioning System (GPS), it is a challenging
affair to get accurate guidance and navigation capabilities in cislunar space. Gravitational
acceleration in cislunar space from the Earth and moon is typically an order of magnitude
smaller than in low Earth orbit (LEO). For certain situations, this is beneficial since less
propulsion is needed to make large state changes. For example, the ∆v, or change in
velocity needed to make a trajectory maneuver, required to move from the lunar surface
to a low lunar orbit (LLO) is approximately one-fifth of the ∆v required to move from
the Earth’s surface to a LEO [12]. However, this simple fact also means an increased
sensitivity to state errors once on a designated nominal trajectory. The presence of errors
in models, navigation, and control can more easily cause significant disturbances.

Monte Carlo (MC) simulations can be used to propagate the uncertainty in the state
vector through the nonlinear system [13]. However, these simulations are computationally
expensive since the convergence of the MC is inversely proportional to the square root
of the number of sample points. This means that, to gain one decimal place accuracy,
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the number of samples needs to be increased a hundredfold. This leads to pursuing
deterministic methods, such as the Gaussian quadrature scheme. However, this method
suffers from the curse of dimensionality as the number of samples required grows ex-
ponentially. The Conjugate Unscented Transform (CUT) of the Kalman Filter is a
non-Gaussian quadrature scheme that has been previously successfully used for various
SSA applications, including cislunar applications [1, 14].

To understand the necessity of the CUT filter, the general state estimation methodol-
ogy as applied to a cislunar application must be understood. Starting from the dynamical
model, "accurately" representing the system physics is not a simple task as discussed
with the high sensitivities to errors in the state. To help this cause, different sensors
can be used based on the application to predict the current state of the physical system.
However, simply relying on sensor data can be inaccurate as noise can corrupt the quality
of the measurements, once again introducing uncertainty. This means that regardless
of the approach, uncertainty must be considered in the model simulation. Typically,
uncertainty is modeled using probability density functions (PDF), which allows for
propagation of the uncertainty to be governed by the Chapman-Kolmogorov Equation
(CKE) for a discrete-time system and the Fokker Planck Kolmogorov Equation for a
continuous system [15]. For this thesis, discrete time systems will be considered and the
PDFs will be Gaussian. Using Bayes’ theorem [15] along with the CKE, the propagation
of the uncertainty can be accurately modeled and sensor data can be fused with the
expected state model to generate an accurate update of the state PDF.

For a given linear state model, the optimal solution is given by the Kalman Filter [16].
However, cislunar space cannot be approximated well as a linear system similar to
many other real world applications, hence a solution methodology for nonlinear systems
must be developed. Since obtaining exact solutions for nonlinear systems is usually
practically infeasible or impossible, approximate solutions have been developed. Several
different solution frameworks have been developed, including the Extended Kalman Filter
(EKF) [17], which involves using the Jacobian to linearize the nonlinear state model
and finding the optimal solution to the linearized problem. However, this approach
only provides an accurate answer for systems that the linearization provides a good
approximation for, so different methods must be explored for the cislunar case. Using
the Gaussian PDF to represent the uncertainty, the problem can be transformed into
evaluating expectation integrals that appear in the definitions of the statistical moments
of the PDF. The primary method of computing these expectation integrals is the Un-
scented Transform (UT) of the Kalman Filter [18]. This method involves generating
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points that reproduce the statistical moments of the PDF up to 3rd order. This means
that highly nonlinear systems, such as the cislunar model, will yield large errors as the
approximation does not accurately capture the nonlinearity. Hence, the UT will also not
work for cislunar state estimation purposes. To tackle these highly nonlinear systems, an
extension of the UT was developed known as the CUT. This extends the UT to higher
orders, the highest being CUT8, which is accurate up to 8th order statistical moments.

Assuming the data fusion with the state model can accurately predict the state vector,
the next challenge that needs to be addressed is sensor tasking and measurement quality.
For a given sensor, the sensor parameters can be modified such that measurements can be
made. If considering the problem of sensors being used to track space targets, modeling
of sensors typically involves defining a field of view (FOV) that limits the area in which
a measurement can be made on a given target. Additional constraints in the form of
distance from the sensor to the target can be enforced to affect the detection probability
of the target. This is applicable to cislunar space as there are significantly larger distances
when comparing to the GEO domain, meaning the detection probability of a target can
be severely affected. Given these constraints, pointing a sensor in only one direction
could lead to high uncertainty in a target’s state vector as determined by the nature of
the target’s orbit. Certain orbits could cause a target to be seen for a short time and
not be seen for a significant portion of time after the initial measurement, which will
lead to large uncertainties. This problem leads to the natural solution of dynamically
reorienting sensors to keep targets within the field of view for longer, thus reducing the
overall uncertainty for the target’s state vector. However, constantly reorienting one
sensor to track one target is not an efficient allocation of resources since the number
of possible targets far exceed the number of sensors available for tracking. So with the
goal of tracking multiple targets using a select few sensors, a sensor performance metric
can be introduced to determine an optimal method for tasking sensors to track certain
targets at certain times.

The Fisher Information Matrix (FIM) is one sensor performance metric that can
be utilized to provide the information gained by a sensor tracking a target. The FIM
is the inverse of the Cramer-Rao Lower Bound (CRLB), which is the lower bound of
the covariance matrix. This means that maximizing the FIM is desired. However, the
FIM is obtained for nonlinear systems through linearizations, meaning the information
is obtained using an estimate of the uncertainty [19]. So, for a cislunar case, the FIM
might not properly define the information in the system. Thus, the concept of mutual
information can be used to develop a sensor scheduling algorithm [20]. The general idea
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of the mutual information (MI) approach involves comparing the prior and posterior
covariance for a given sensor tasking schedule and maximizing the reduction between the
two covariance matrices, or minimizing the posterior covariance. The sensor schedule
that minimizes the posterior covariance is considered to be the optimal solution. This
MI approach can be applied to tracking the targets in cislunar space given a select few
sensors for a given discretized time span, as the CUT Filter allows for the nonlinearities
in cislunar space to be taken into account accurately. Typically, the MI approach solves
the problem at each step of the time span. However, a receding horizon window approach
can be implemented, which creates subsets of time steps in the time span and solves the
problem for each of those subsets before moving on to the next one.

1.2 Objective of Thesis
The main objective of this thesis is to utilize CUT based uncertainty propagation in
conjunction with information theory to task space based sensors to accurately track
targets in the cislunar regime. In this respect, the previous work [14] will be leveraged
and adopted for cislunar target tracking.

The thesis first discusses the theory behind the sensor tasking algorithm and then
apply it to specific situations. Chapter 2 formulates the Kalman Filter, both the linear
and nonlinear versions, starting from first principles. As it is typically infeasible or
impossible to obtain the exact solutions for a nonlinear system, approximate solution
frameworks are introduced. The concept of sigma points is discussed and the merits of
using the CUT version of the Kalman Filter compared to the UT version are shown with
an example. Specifically, the example compares the UT, which is 3rd order accurate, to
CUT4, CUT6, and CUT8, which are 4th, 6th, and 8th order accurate, respectively.

Chapter 3 begins by defining mutual information generally as a sensor performance
metric and explaining how the concept of mutual information relates to sensor tasking.
Then, the expression for mutual information is formulated and the computation of the
joint mutual information for a system is discussed. Sub-optimal methods are discussed
to alleviate computational expense for minor accuracy reduction. Examples are shown
for both an Earth and cislunar space target tracking example and a general discussion of
the results is be provided.

Chapter 4 summarizes the contents of this thesis and provide general ideas for future
work.
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Chapter 2 |
Dynamical System State Estima-
tion

2.1 Introduction to State Estimation
The primary objective of state estimation is to estimate the state of a dynamical
system through the fusion of dynamical model prediction with sensor observation while
accounting for errors in both. Dynamical models are often an approximate representation
of a physical process and hence have uncertainties associated with them known as process
noise. Generally, they are derived making use of physical laws, such as Newton’s laws of
motion, and the model error can result from several sources, such as approximating the
underlying physics or unknown disturbances or parameters. The use of sensor data to
correct and refine the dynamical model prediction to reduce the associated uncertainties
is a logical improvement over purely model-based prediction. However, mathematical
models for various sensors are generally based upon the “usefulness” rather than the
“truth.” Hence, not all information that one would like to know is provided.

To accurately capture the system state uncertainty, probabilistic means are explored.
More specifically, a PDF is assumed to quantify the uncertainty in the state model,
along with the process noise and measurement noise. Given the prior information about
the initial state of the system, the dynamical model is used to propagate the state
uncertainty until the observation time and then a Bayesian formulation is used to fuse
model prediction with the observation data. The Bayesian approach had its birth with
the development of the Kalman Filter [16].

Using the state, measurement, and noise info, an estimate of the state vector at each
time step can be determined by generating a posteriori PDF. The a posteriori PDF at
time step k can be considered as the a priori PDF at time step k + 1, and the process can
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be iterated through the entire time span. This process lends itself to a filtering algorithm.
In the following sections of Chapter 2, the derivation of the Kalman filter update

equations for both linear and nonlinear systems will be shown. However, analytically
computing the nonlinear update equations is often unviable and necessitates developing
an approximate solution. Thus, a general outline for applying the Kalman filter at each
time step will be shown along with discussing various approximate solution frameworks
and the general similarities/differences. The chapter will conclude with providing an
approximate solution framework known as the CUT formulation for the Kalman filter,
as well as implementing the filter to an example problem to showcase the benefits of the
higher-order filter.

2.2 Maximum Likelihood Estimate
Before deriving the Kalman update equations, one can derive an optimal solution for the
state vector given solely sensor measurement data. This can be achieved by maximizing
the likelihood function, p(y|x), which describes the probability of observation data
according to a given measurement model

max
x

p(y|x) ≡ max
x

ln p(y|x) (2.1)

where y ∈ Rm is the measurement vector, x ∈ Rn is the state vector, and p(y|x) is the
conditional PDF that represents the likelihood of y given x. The measurement model
for y is assumed to be linear, i.e.,

y = Hx + ν (2.2)

where H is the linear measurement model, and ν is the measurement noise modeled as a
Gaussian random variable with zero mean and a covariance matrix R. This results in
the following expression for p(y|x):

p(y|x) = 1√
2π|R|

e− 1
2 (y−Hx̂)T R−1(y−Hx̂) (2.3)

A primary assumption is that no previous information is known so as to not introduce
bias, meaning the PDF of the state will be assumed to be unknown. Now, substituting
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for the likelihood function in (2.1) results in a weighted cost function J

min
x

J = 1
2(y − Hx̂)T R−1(y − Hx̂) (2.4)

where x̂ is the expected value of the state vector. The cost function J is subject to the
necessary condition

∂J

∂x

∣∣∣∣
x=x̂

= 0 (2.5)

Using matrix properties and applying the derivative constraint, the cost function con-
straint in Equation (2.5) turns into

HT R−1y = HT R−1Hx (2.6)

Since HT R−1H is a linearly independent square matrix, the inverse can be taken of the
entire quantity to solve for the optimal x

x = (HT R−1H)−1HT R−1y (2.7)

This result is defined to be the maximum likelihood estimate and is one method of
computing the state vector at a given time step. The result provides the best minimum
variance unbiased estimator for a linear system. However, if prior information exists
about the state, one could achieve a better state estimate by including the information
in the estimation process.

2.3 Maximum A-Posteriori Estimate
The maximum a-posteriori (MAP) estimate involves maximizing the posterior PDF

max
x

p(x|y) ≡ max
x

ln p(x|y) (2.8)

According to Bayes’ Theorem, the posterior PDF is proportional to the product of the
likelihood and prior PDF. This effectively weights the likelihood using the prior PDF to
produce a better state estimate using known information. The cost function shown in
Equation (2.8) can be simplified using Bayes’ Theorem.

p(x|y) = p(y|x)p(x)
p(y) (2.9)
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where p(x) is the prior PDF representing state uncertainty, p(y) is the total probability
of observation data of y, and p(x|y) represents the likelihood of x given y or the posterior
PDF. The denominator of Equation (2.9) can be written in integral form and substituted.

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x)dx

(2.10)

Assuming the PDFs are Gaussian, expressions for the Gaussian PDF can be defined using
the following p(x) ∼ N (x : x̂, P ) and p(y|x) ∼ N (y : Hx̂, R). The full expressions for
the two Gaussian PDFs are shown.

p(x) = 1√
2π|P |

e− 1
2 (x−x̂)T P −1(x−x̂) (2.11)

p(y|x) = 1√
2π|R|

e− 1
2 (y−Hx)T R−1(y−Hx) (2.12)

Multiplying the two PDFs together produces

p(y|x)p(x) = 1√
2π|R|

1√
2π|P |

e− 1
2 (y−Hx)T R−1(y−Hx)− 1

2 (x−x̂)T P −1(x−x̂) (2.13)

Consider the exponent in Equation (2.13).

D = −1
2(y − Hx)T R−1(y − Hx) − 1

2(x − x̂)T P −1(x − x̂) (2.14)

D can be further simplified to the following expression.

D = −1
2(yT R−1y + x̂T P −1x̂ + xT (HT R−1H + P −1)x − 2(yT R−1H + x̂T P −1)x) (2.15)

From Equation (2.15), the following expressions can be defined

A = HT R−1H + P −1 (2.16)

bT = yT R−1H + x̂T P −1 (2.17)

Substituting Equations (2.16) and (2.17) into Equation (2.15), the exponent can be
written as

D = −1
2(yT R−1y + x̂T P −1x̂ + xT Ax − 2bT x) (2.18)
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Going back to Bayes’ theorem, by substituting Equation (2.18) into Equation (2.13) the
numerator of the cost function can be written as

p(y|x)p(x) = 1√
2π|R|

1√
2π|P |

e− 1
2 (yT R−1y+x̂T P −1x̂+xT Ax−2bT x) (2.19)

Similarly, the denominator is the integral of the numerator and is given as
∫

p(y|x)p(x)dx =
∫ 1√

2π|R|
1√

2π|P |
e− 1

2 (yT R−1y+x̂T P −1x̂+xT Ax−2bT x)dx (2.20)

Taking out the terms that are constant with respect to x and evaluating the remaining
integral, Equation (2.20) can be simplified to the following expression

∫
p(y|x)p(x)dx =

√
2π|A−1|√

2π|R|
√

2π|P |
e− 1

2 (yT R−1y+x̂T P −1x̂−bT A−T b) (2.21)

Dividing the numerator in Equation (2.19) by the denominator in Equation (2.21), the
posterior PDF becomes

p(x|y) = 1√
2π|A−1|

e− 1
2 (x−A−1b)T A(x−A−1b) (2.22)

Comparing the final expression in Equation (2.22) to a general Gaussian formula, it is
clear that for the posterior PDF p(x|y), the mean vector and covariance are

µ = A−1b (2.23)

Σ = A−1 (2.24)

where µ is the posterior state mean and Σ is the posterior state covariance. Now, the
matrix inversion lemma can be used to find the inverse of A. The matrix inversion lemma
is as follows

G−1 =
(
B−1 + CT DC

)−1

G−1 = B − BCT (CBCT + D−1)−1CB

10



Applying this to A, the resultant expression with B = P , C = H, and D = R−1 is

A−1 = P − PHT (HPHT + R)−1HP (2.25)

From Equation (2.25), the matrix K can be defined as

K = PHT (HPHT + R)−1 (2.26)

Substituting into Equation (2.25)

A−1 = P − KHP (2.27)

Equations (2.17) and (2.27) can be substituted into µ in Equation (2.23)

µ = (P − KHP )(HT R−1y + P −1x̂) (2.28)

Expanding Equation (2.28) and simplifying using matrix properties, the following ex-
pression is obtained.

µ = Ky + x̂ − KHx̂ (2.29)

Now, the Kalman update equations for a linear system can be defined as

µ = x̂ + K(y − Hx̂) (2.30)

Σ = P − KHP (2.31)

As mentioned previously, the update equations can be used with the measurement data
at each time step k to update the prior PDF and obtain a posterior PDF. The posterior
PDF can then be used as the prior PDF for the next time step k + 1 and the process can
be iterated through the entire time span.

2.4 Linear Uncertainty Propagation
Before proceeding to the nonlinear Kalman Update Equations, it is important to confirm
that propagating a Gaussian PDF modeling uncertainty remains Gaussian, so that using
the posterior PDF as the prior PDF in the next time step is valid.

Using the Chapman-Kolmogorov equation (CKE) shown, one can use the relation of
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the prior and posterior state PDF to show that the posterior PDF does remain Gaussian.

p(xk+1) =
∫

p(xk+1|xk)p(xk)dxk (2.32)

For a discrete-time, linear system, the dynamical model can be represented by the
following expression

xk+1 = Fkxk + ωk (2.33)

where Fk is the constant, linear state matrix, xk is generated from the Gaussian
PDF p(x) ∼ N (x : x̂, P ), and ωk is generated from the Gaussian distribution ωk ∼
N (ωk : 0, Qk). The conditional likelihood function p(xk+1|xk) = p(xk+1 − Fkxk) for the
linear system. Now, the full expression for the conditional likelihood function and the
prior PDF can be written:

p(xk) = 1√
2π|Pk|

e− 1
2 (xk−x̂k)T P −1

k
(xk−x̂k) (2.34)

p(xk+1|xk) = 1√
2π|Qk|

e− 1
2 (xk+1−Fkxk)T Q−1

k
(xk+1−Fkxk) (2.35)

Substituting the expressions into the CKE, the following expression is obtained.

p(xk+1) =
∫ 1

2π
√

|Pk||Qk|
e− 1

2 [(xk−x̂k)T P −1(xk−x̂k)+(xk+1−Fkxk)T Q−1
k

(xk+1−Fkxk)]dxk (2.36)

The exponent, shown below,

D = −1
2
[
(xk − x̂k)T P −1(xk − x̂k) + (xk+1 − Fkxk)T Q−1

k (xk+1 − Fkxk)
]

(2.37)

can be expanded and grouped, similar to the previous section, such that new quantities
can be defined, as shown

D = −1
2
(
xT

k Bxk − 2gT xk + c
)

(2.38)

where the terms B, gT , and c are defined in the following expressions.

B = P −1
k + F T

k Q−1
k Fk (2.39)

gT = x̂T
k P −1

k + xT
k+1Q

−1
k Fk (2.40)
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c = xT
k+1Q

−1
k xk+1 + x̂T

k P −1
k x̂k (2.41)

Substituting in these definitions and taking out the constant terms and the c term from
the integral since they do not depend on xk explicitly, the following expression for p(xk+1)
is obtained

p(xk+1) = 1
2π
√

|Pk||Qk|
e(− 1

2 c)
∫

e− 1
2(xT

k Bxk−2gT xk)dxk (2.42)

The integral can now be taken and simplified into the following expression for p(xk+1)

p(xk+1) =

√
|B−1|√

2π|Pk||Qk|
e

[
− 1

2

(
c+gT (BT )−1

g
)]

(2.43)

Finally, the definitions of B,gT , and c can be re-substituted and the expression for the
propagated prior PDF can be simplified.

p(xk+1) = 1√
2π|FkPkF T

k + Qk|
e− 1

2 (xk+1−Fkx̂k)T (FkPkF T
k +Qk)−1

(xk+1−Fkx̂k) (2.44)

Analyzing Equation (2.44), it is obvious that the propagated prior PDF remains Gaussian
as it retains the general form of a Gaussian distribution, where the mean and covariance
are shown below.

x̂k+1 = Fkx̂k (2.45)

Pk+1 = FkPkF T
k + Qk (2.46)

This confirms the validity of the step of making the posterior PDF at one time step equal
to the prior PDF at the next time step.

2.5 Linear Kalman Filter Summary
The linear Kalman update equations were generated using the MAP formulation. These
equations provide a basis for updating the state mean and covariance from one time step
to the next given sensor measurement data for a linear state and measurement model.
This process can be iterated through the entire time span for given sensor measurements.
However, to confirm the propagated PDF can be used as the prior PDF of the next time
step, the CKE was used to prove that the propagated PDF remains Gaussian and that
the assumption is valid.
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2.6 Minimum Variance Estimate
Another method of deriving the Kalman filter update equations is by minimizing the
posterior variance. This differs from the previous method that maximized the posterior
PDF. This is important as now, no assumptions about the measurement model have to
be made, specifically the measurement model can be nonlinear. The result will provide
the equivalent of the maximum likelihood estimate.

2.6.1 Defining the Nonlinear Problem

The minimization problem of the posterior variance can be setup as follows

min
x̂

Tr[E[(x − µ)(x − µ)T ]] (2.47)

In Section 2.3, an expression for µ was obtained assuming a linear measurement model.
Removing that assumption would yield the following expression

µ = x̂ + K(y − ŷ) (2.48)

In Equation (2.48), the expression for K is unknown as the previous expression assumed
a linear measurement model. Assuming y = h(x) + ν, a new general expression has to
be derived. By substituting Equation (2.48) into the minimization problem in Equation
(2.47), the following is obtained

min
K

Tr[E[((x − x̂) − K(y − ŷ))((x − x̂) − K(y − ŷ))T ]] (2.49)

By applying properties of matrices and the expected value and by selectively grouping
terms, the expression can be turned into

min
K

Tr[J ] (2.50)

where

J = E[(x − x̂)(x − x̂)T ] − KE[(y − ŷ)(x − x̂)T ] − E[(x − x̂)(y − ŷ)T ]KT

+ KE[(y − ŷ)(y − ŷ)T ]KT (2.51)
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From this expression and the expected value definition of covariance, the following
covariance matrices can be defined

Px = E[(x − x̂)(x − x̂)T ] (2.52)

Pxy = E[(x − x̂)(y − ŷ)T ] (2.53)

Pyx = E[(y − ŷ)(x − x̂)T ] (2.54)

Py = E[(y − ŷ)(y − ŷ)T ] (2.55)

These definitions can be substituted into Equation (2.50) turning it into

min
K

Tr[Px − KPyx − PxyKT + KPyKT ] (2.56)

Now the necessary condition can be implemented to Equation (2.56) to find an analytic
expression for K

∂J

∂K
= 0 (2.57)

Substituting in Equation (2.56) to Equation (2.57), the following expression is obtained

∂

∂K
[Tr[Px − KPyx − PxyKT + KPyKT ]] = 0 (2.58)

Using matrix properties and the facts that Pxy = (Pyx)T and Px does not depend on K,
the derivative can be taken and the resultant equation is

−2Pxy + PyK + KT Py = 0 (2.59)

Furthermore, Equation (2.59) can be solved to obtain an analytical expression for K.

K = Pxy(Py)−1 (2.60)

As stated before, K does not assume a measurement model and thus is a generalized form
of the expression. Now that a general expression for K has been found, the nonlinear
covariance update equation for the Kalman Filter can be written generally as

Σ = P − KP T
xy (2.61)
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Equations (2.48) and (2.61) together provide the framework for the updating process for
the general, nonlinear Kalman Filter.

2.6.2 Linearization of the Problem

One method of simplifying the nonlinear solution of the Kalman Filter would be to
linearize about the mean state vector. Although the measurement model is not considered
to be linear, the general measurement equation can be linearized to

h(x) = h(x̂) + H
∣∣∣∣
x=x̂

(x − x̂) (2.62)

where the matrix H consists of the partials of the measurement model.

H = ∂h

∂x

∣∣∣∣
x=x̂

(2.63)

Substituting Equation (2.62) into the expected value definitions for the cross-covariance
and measurement covariance as shown in Equations (2.55) and (2.53), the following
linearized definitions are obtained.

Py = HPHT + R (2.64)

Pxy = PHT (2.65)

Substituting Equations (2.64) and (2.65) into Equation (2.60), the matrix K formulated
for the linear Kalman Update Equations is retained, as shown in Equation (2.26). The
update equations would use the nonlinear mean update from Equation (2.48) and the
linear covariance update from Equation (2.31). The update equations formulated using
the matrix H defined in Equation (2.63) are known as the EKF update equations.

2.6.3 Nonlinear Uncertainty Propagation

Analyzing the propagated state mean and covariance equations from Section 2.4, it is
clear that the propagated mean and covariance are equivalent to the expectation value
definitions of the posterior mean and covariance.

x̂k+1 = E [xk+1] = Fkx̂k (2.66)

Pk+1 = E
[
(xk+1 − x̂k+1) (xk+1 − x̂k+1)T

]
= FkPkF T

k + Qk (2.67)
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where xk+1 = Fkxk + ωk. For the nonlinear Kalman filter, the same propagation method
can be followed and the assumption that the posterior PDF is Gaussian remains valid,
however, the expectation values are general and cannot be simplified since the state
model is nonlinear. The prior mean and covariance equations in expectation value form
are:

x̂k+1|k = E [f(xk)] (2.68)

Pk+1|k = E
[(

f(xk) + ωk − x̂k+1|k
) (

f(xk) + ωk − x̂k+1|k
)T
]

(2.69)

Equation (2.69) can be expanded and the expected value can be appropriately distributed
to simplify the equation into

Pk+1|k = E
[(

f(xk) − x̂k+1|k
) (

f(xk) − x̂k+1|k
)T
]

+ E
[
ωkωT

k

]
(2.70)

The last simplification that can be done is that the process noise covariance matrix can
be substituted.

Pk+1|k = E
[(

f(xk) − x̂k+1|k
) (

f(xk) − x̂k+1|k
)T
]

+ Qk (2.71)

Comparing Equation (2.71) to Equation (2.46), the equations are the same, however the
linear state model allows the expectation value to be simplified.

Similar to the derivation of the EKF update equations, the uncertainty propagation
equations can be derived by linearizing the state model

f(xk) = f(x̂k) + F
∣∣∣∣
xk=x̂k

(xk − x̂k) (2.72)

where the matrix F consists of the state model partials.

F = ∂f

∂x

∣∣∣∣
xk=x̂k

(2.73)

Substituting Equation (2.72) into Equation (2.71), the following expression is obtained.

Pk+1|k = E
[(

f(x̂k) + F (xk − x̂k) − x̂k+1|k
) (

f(x̂k) + F (xk − x̂k) − x̂k+1|k
)T
]

+ Qk

(2.74)
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Simplifying the expression in Equation (2.74) using

x̂k+1|k = f(x̂k) (2.75)

and Equation (2.52), Equation (2.46) is retained. Equations (2.75) and (2.46), which
were formulated using the Jacobian linearization of the state model as shown in Equation
(2.73), are the EKF uncertainty propagation equations.

2.7 Comparing Linear and Nonlinear Formulations
To compare the linear and nonlinear formulations of the Kalman filter, the purpose of
each one must be understood. While each one suits the type of measurement model it is
reflecting, both require the use of computing multi-dimensional expectation integrals with
respect to a PDF. For a linear system, these integrals yield closed-form solutions. For a
nonlinear system, however, an approximate solution usually must be formulated as the
integrals often do not have a closed-form solution. So, while nonlinear Kalman update
equations can be written, obtaining expressions for each of the covariance matrices is
not always possible. Thus, the linearization method described is one of the approximate
solutions used to obtain the required covariance matrices.

2.8 Kalman Filter Algorithm
Various approximate solution frameworks exist for the Kalman Filter for nonlinear
systems. Sampling based approaches approximate the multi-dimensional expectation
integrals as a sum of a finite number of weighted points within the domain. The points
are computed by evaluating the integrand at specific locations. The difference in the
solution frameworks is how the location and weights of these points are determined. For
a general framework of selected points and given discretized time span, the steps of
performing the Kalman Filter algorithm is as follows:

1. For a given Gaussian distribution, an associated state mean vector and covariance
matrix are given. For all the frameworks, the locations of the points depend on the
mean and covariance. So, the first step would be to generate the locations of the
points,i.e. the state vector of each point.

2. Using the dynamical state model, propagate each point’s state vector forward by
one time step.
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3. Compute the state mean and covariance of the propagated points , where N is the
number of points. For the state covariance matrix, if applicable, the process noise
Q can be included in the calculation.

x̂k+1|k =
N∑

i=1
(wixi) (2.76)

Px(k+1|k) =
N∑

i=1

(
wi

(
xi − x̂k+1|k

) (
xi − x̂k+1|k

)T
)

+ Q (2.77)

4. Generate the locations of the new points using the propagated state mean and
covariance. This is also called resampling.

5. Use the measurement model to generate the measurement vector for each propagated
state point.

6. Using the newly generated measurement points, compute the measurement mean,
measurement covariance and the cross-covariance. If applicable, the measurement
noise covariance matrix R can be included in the computation of the measurement
covariance.

ŷk+1 =
N∑

i=1
(wiyi) (2.78)

Py(k+1|k) =
N∑

i=1

(
wi (yi − ŷk+1) (yi − ŷk+1)T

)
+ R (2.79)

Pxy(k+1|k) =
N∑

i=1

(
wi

(
xi − x̂k+1|k

)
(yi − ŷk+1)T

)
(2.80)

7. Now that the covariance matrices have been computed, the general Kalman update
equations can be applied to compute the posterior state mean and covariance.

This entire process can be iterated through the time span by simply using the posterior
state mean and covariance generated at time step k as the initial mean and covariance
at time step k + 1.

2.8.1 Sigma Point Filters

As mentioned in the last section, the different filter frameworks all share the similarity
that the expectation integrals are approximated using a selected set of weighted sigma
points. The difference is how these points and weights are specifically selected. The
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general idea follows reproducing statistical moments of the assumed PDF. The moments
can be mathematically constrained by first assuming that the expectation integral of a
given function can be written as the finite summation of a number of weighted function
values.

E [f(x)] ≈
N∑

i=1
wif(xi) (2.81)

where N is the finite number of function values used for the approximation of the function,
xi are the sigma points, wi represent the weights corresponding to each sigma point. A
Taylor series approximation can be used to model the function up to a certain degree d,
as shown below

f(x) = f(x∗) + ∂f(x∗)
∂xN1

δxN1 + · · · + 1
d!

∂df(x∗)
∂xN1 . . . ∂xNd

δxN1 . . . δxNd
(2.82)

Substituting Equation (2.82) into Equation (2.81) and simplifying by factoring out
constant terms from the expectation integrals and comparing the left and right-hand
sides, the following set of equations can be obtained.

N∑
i=1

wi = 1

N∑
i=1

wiδxi
N1 = E [δxN1 ]

...
N∑

i=1
wiδxi

N1 . . . δxi
Nd

= E [δxN1 . . . δxNd
]

(2.83)

These equations are known as the moment constraint equations (MCEs). Although there
are an infinite number of moments for a given PDF, sigma points and weights often only
need to be chosen to satisfy up to an order r. This means that if a given problem had
f(x) as a polynomial function with the highest degree d ≤ r, then the sigma points and
weights that can reproduce up to order d moments would provide an exact computation of
the expectation integral. If f(x) is not a polynomial function, then it would be expected
due to the nature of Taylor series approximations that the more statistical moments
that the sigma points can reproduce, the more accurate the computation will be for the
expectation integral. The two most used quadrature schemes are the Smolyak quadrature
scheme and the Unscented Transform (UT). The Smolyak quadrature scheme, although
used frequently, is not attractive as the weights for the sigma points can be negative,
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which could cause stability problems that could result in larger errors when computing
the integrals.

2.8.2 Unscented Transform

The UT selects points that are symmetric about the mean of the Gaussian PDF and
lie on orthogonal axes defined by the columns of the covariance matrix. The UT points
also only capture up to 3rd order statistical moments. Due to the symmetry, the odd
moments are equal to 0 and already satisfied. So, only the even moments need to be
satisfied in the selection of the sigma points and weights. For a given initial mean µ0

and initial state covariance (Px)0, the sigma points and weights are generated using the
following expressions

x0 = µ0 , w0 = κ
n+κ

xi = µ0 +
√

(n + κ)(Px)0 , wi = 1
2(n+κ)

x0 = µ0 −
√

(n + κ)(Px)0 , wi+n = 1
2(n+κ)

(2.84)

where κ is a tuning parameter to adjust the location and weights of the points. Increasing
κ will lead to an increase in distance from the mean and decrease the weights [8].
Implementing the UT version of the Kalman Filter is known as the Unscented Kalman
Filter (UKF) [21]. The next section will discuss the CUT, which was developed to capture
higher-order moments and hence provide more accurate computation of the expectation
integral by using a higher-order Taylor series approximation.

2.8.3 Conjugate Unscented Transform

The primary aim of the CUT is to select points that continue to be symmetric about
the mean, like the UT, but capture higher order moments, meaning they can satisfy
the MCEs up to a larger degree d. The CUT incorporates more axes, called conjugate
axes, to determine more optimal locations for the points to be placed such that higher
order moments are captured as well as capturing cross moments. Figure 2.1 from [1]
depicts the use of conjugate axes to construct a distribution of points such that higher
order moments and cross moments are captured in n-D space, specifically 2-D and 3-D.
The current set of CUT points generated go up to 8th order meaning they can capture
up to 8th order moments. This also means that the maximum degree polynomial the
CUT points generated can exactly evalute the expectation integral for is 8. Due to the
symmetric nature of the points chosen, the odd moments all equal zero, so only the even
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Figure 2.1: Conjugate Axes for 2-D and 3-D CUT Point [1]

moments need to be considered for determining values of weights and scaling distances.
For a general n × 1 state vector, CUT points up to 8th order have been pre-computed

as long as n ≤ 6. Using the pre-computed CUT points and the given initial mean and
covariance, one can convert the CUT points to be centered around the state vector using

x0 = µ0 +
√

(Px)0 (xCUT) (2.85)

where the spread of the points around the state vector is determined by the state
covariance matrix. The conversion process to a given mean and covariance is valid
since the pre-computed CUT points were derived using a zero mean vector and identity
covariance matrix. Equation (2.85) can be used as the framework for deciding the location
of the points in the Kalman Filter algorithm and the entire algorithm can be implemented
given the necessary information. This process is known as a CUT Filter. More details
regarding the CUT derivation and methodology can be found in [1, 22–25]

2.8.4 Comparison of UKF and CUT

The benefits of implementing the CUT Filter as opposed to the UKF lies in data
acquisition. For measurement data that is acquired at a high frequency, there is not
significant data accuracy gain by implementing a CUT Filter over the UKF. As data
measurements become more sparse, the CUT Filter performs better over time in terms
of relative error compared to the UKF, at the cost of computational expense.
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2.8.5 Air Traffic Tracking Example

To prove the claim about data acquisition, a general air traffic tracking problem can be
posed. The equations of motion for the problem are given below.

xk+1 =



1 sin ΩT
Ω 0 −1−cos ΩT

Ω 0
0 cos ΩT 0 − sin ΩT 0
0 1−cos ΩT

Ω 1 sin ΩT
Ω 0

0 sin ΩT 0 cos ΩT 0
0 0 0 0 1


xk + ω (2.86)

where xk is the state vector at time step k, Ω is the turn rate of the target, T is the time
step, and ω is the state noise, which is characterized by the Gaussian PDF N (ω : 0, Q).
The state vector consists of [x, vx, y, vy, Ω], which provides the 2-D position and velocity
in meters and meters per second respectively and the turn rate in radians per second.
The state noise covariance Q is defined as

Q = L1



T 3

3
T 2

2 0 0 0
T 2

2 T 0 0 0
0 0 T 3

3
T 2

2 0
0 0 T 2

2 T 0
0 0 0 0 L2

L1
T


(2.87)

where L1 = 0.16 and L2 = 0.01. Furthermore, the target undergoes controlled trajectory
changes: flying west for 125 seconds at 120 m

s
, turning 90◦ towards south over a period of

90 seconds, flying south for 125 seconds at 120 m
s

, turning 90◦ towards west over a period
of 30 seconds, and finally flying west for 125 seconds at 120 m

s
. Two stationary sensors

are also used to make measurements on the target. More specifically, the measurement
model is given by:

yj =
√(x(1) − sj(1))2 + (x(2) − sj(2))2

arctan
(

x(2)−sj(2)
x(1)−sj(1)

)  (2.88)

where x is the state vector of the object and sj is the jth sensor. The initial mean
vector is given by µ0 = [25000, −120, 10000, 0, 1 × 10−200]T and the initial covariance
matrix is (Px)0 = diag([10002, 102, 10002, 102, ( π

180)2]). For the simulation, the initial
condition is randomly generated from a Gaussian distribution using the initial mean and
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covariance and the time step used for all filters is 5 seconds. Given this information, one
can implement the CUT Filter and the UKF to compare the accuracy of the methods.
The standard deviation error bound plots for each method are shown in Figures 2.2-2.5.

Figure 2.2: CUT8 State Error Performance

Figure 2.3: CUT6 State Error Performance
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Figure 2.4: CUT4 State Error Performance

Figure 2.5: UKF State Error Performance

Only the error for the first four state variables are shown as the turn rate is manually
changed at points in time, introducing an inherent error which will be prevalent throughout
the time error plot. Also, following the times of the trajectory changes, the effect of the
turn rate changing can be seen in the velocity error for the different filters. As can be
seen from the axis limits, the higher-order filters perform better in terms of the error
bounds and handling the changes. To further analyze the effects of the turn rate, the
position estimate obtained from each filter can be superimposed compared to the true
trajectory to visually analyze the performance of each filter, as shown in Figure 2.6. The
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Figure 2.6: Filters’ Position Estimate vs True Trajectory

position plot further shows that the UKF starts to diverge from the true trajectory by
the end of the time span resulting in larger errors.

As the time between measurements gets larger, the CUT Filter performs better
for accurately estimating the state. However, since the initial condition is generated
randomly, one run might not exactly represent the capabilities of each filter for sparse
data estimation. Thus, the performance of each of the four filters for 4 values of time
steps is averaged over 100 runs to better represent each filter’s capabilities. The root
mean squared error (RMSE) plots are shown in Figures 2.7, 2.8, and 2.9 to showcase the
improved performance.
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Figure 2.7: Position RMSE for Different Filters

Figure 2.8: Velocity RMSE for Different Filters

Comparing the different filters, for a data acquisition time of 1 second, all the filters
perform the same in tracking the position, velocity, and turn rate. However, as the
time step between measurements increases, the CUT8 filter does the best at tracking
followed by CUT6, CUT4, and UKF. For the 5 second case, even though CUT8 is more
computationally expensive than the other filters, the error produced by the others makes
those tracking algorithms completely unviable as the order of magnitude of the error is
relative or greater than the order of magnitude of the state vector. This is important for
cislunar space as several reasons can cause measurements to be infrequent or qualitatively
poor, hence a CUT Filter will provide better implementation results than the UKF.
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Figure 2.9: Turn Rate RMSE for Different Filters

2.9 Summary
This chapter outlined the general formulation of a Kalman Filter by first breaking
down the general idea of state estimation and listing the required information to start
state estimation. The maximum likelihood estimate was introduced to discuss the best,
unbiased state estimator as well as set up the foundations of the state estimation problem.
For a linear system, the maximum likelihood estimate was expanded upon by introducing
bias in the form of a prior PDF weighting the likelihood function. This resulted in the
linear Kalman Filter update equations. To confirm the propagation of a Gaussian PDF
resulted in the posterior PDF remaining Gaussian, the CKE was used.

Next, the same problem was approached from a different route in minimizing the
variance as opposed to maximizing the posterior PDF. The goal of this method was
to provide a general set of Kalman update equations that did not rely on a linear
measurement model.Using the result from the maximum a posteriori as a foundation, an
expression for K was developed that allowed for the nonlinear Kalman update equations
to be formulated.

Once the general update equations were derived, a linearization problem centered
around the mean state vector was also presented to introduce the concept of approximate
solutions for nonlinear systems in the form of the EKF update equations. Similar to
the linear uncertainty propagation, the nonlinear uncertainty propagation was discussed.
A brief comparison between the linear and nonlinear formulations was presented along
with practicality constraints of the nonlinear method. The necessity of approximate
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solutions was further established. For any given approximate solution framework, a
general algorithm for the Kalman Filter was given and the key difference of generating
the locations of points was stated. Then the general framework of the approximate
solutions was discussed, which involves selecting sigma points to reproduce statistical
moments of the PDF. The Smolyak quadrature scheme and UT were discussed, with
more focus on the UT as it uses positive weights for the sigma points.

Finally, the CUT Filter was introduced as an approximate solution to the nonlinear
Kalman Filter update equations and will be the filter used in the rest of this thesis.
CUT points are generated to satisfy statistical moments up to a certain order while
being symmetrically distributed and hold positive weights. For orders up to CUT8, the
points have been pre-computed for up to 6-dimensional state models. These points can
be converted to a given Gaussian PDF using the mean and covariance. Using those
converted points, one can run through the Kalman Filter algorithm. For comparison, the
UT and CUT were applied to an air traffic tracking problem. The results show clearly
that for more sparse data, the CUT Filter does a better job in minimizing error.
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Chapter 3 |
Sensor Tasking

3.1 Introduction to Mutual Information
The concept of mutual information (MI) relates to the information gain from observing a
given set of random variables simultaneously. For example, given two random variables,
the MI can be defined as the amount of information that can be gained about one
random variable from the other. This concept can be applied to tracking targets in a
sensor tasking problem. A typical tasking problem consists of using multiple sensors to
optimally track a group of targets, where optimality is defined by maximum reduction of
system uncertainty. In order to reduce the system uncertainty, the sensor’s ability to
observe a target, or the sensor performance, has to be quantified. Using the concept of
MI, the sensor network can be scheduled ahead of time to track targets in such a way
that over time, the individual uncertainty of each target will be reduced. In this regard,
MI can be defined as reducing system uncertainty, and maximizing the MI of a given
system will minimize the uncertainty.

The following sections will first discuss the mutual information connection to the
previous chapter’s topic of filtering. Then, the MI will be considered as a sensor
performance metric and compared to other performance metrics, specifically the Fisher
Information Matrix (FIM) [26]. The general derivation of the mutual information
expression will be provided for a singular time step. Since MI can be extended to multiple
time steps, the formulation of the exhaustive search algorithm will be shown. As the
exhaustive search is computationally expensive for larger state and measurement models
or for several time steps, a sub-optimal solution is provided that limits the domain of
possible schedules to each time step iteration. The idea is expanded to a receding horizon
window approach. An example is shown for tracking targets around the Earth and in
cislunar space.
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3.1.1 Connecting CUT Filter to Mutual Information

As discussed in the previous chapter, the CUT Filter relates to using measurements to
estimate the state vector at a given time step. However, the filter assumes measurements
are readily available. For tracking one particular target, one can dynamically reorient the
sensor to track the target as soon as it is visible to reduce the uncertainty in the target’s
state vector. However, using one sensor to track one target is not an efficient method
of resource allocation. The number of space targets far exceeds the number of sensors
available for tracking, so the problem arises of tracking multiple targets with a select few
sensors. This means that unless some of the targets follow similar trajectories and can be
captured in the same field of view, at a given time step, not all targets will be observed.
Taking this into consideration, one can employ the concept of mutual information to
generate the optimal sensor tasking schedule for a given number of sensors and targets
such that over time, the uncertainty of all targets will decrease.

3.1.2 Sensor Performance Metric

The foundation of mutual information applied to a target tracking application stems
from being a sensor performance metric. For the general optimization problem, the
cost function is a function of the states of all targets at all time steps as well as all
possible measurements from all sensors, or J = J(X(0:NT S−1)Y(0:NT S−1)), where J is the
cost function and NT S is the total number of time steps. In regards to the optimization
problem, the cost function is also defined as a sensor performance metric and is highly
problem dependent. The choice of sensor performance can be based on several factors,
such as measurement model type, estimation algorithm, and filtering framework chosen.
For example, for a linear measurement model, the FIM can be used as the inverse provides
the Cramer-Rao lower bound (CRLB), which is the minimum state error covariance
matrix that can be achieved. Since the measurement model is linear, the CRLB is
guaranteed. For nonlinear systems, the FIM can be used iff the linearized model of
the nonlinear measurement model is reasonably accurate. This is important since the
FIM for a nonlinear system is only an approximation that comes from the Taylor series
expansion of the Kullback-Leibler (K-L) Divergence [27, 28]. If the approximation is
reasonably accurate, then the FIM is a viable sensor performance metric, otherwise it is
infeasible. The mutual information, however, is a function of the entire pdf and is not an
approximation like the FIM.
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3.1.3 Kullback-Leibler Divergence

The K-L Divergence is a quantitative measure of the difference between two pdfs,
sometimes referred to as the relative entropy of a system [29]. Taking an example for
a random variable r with two events H1 and H2 each with a respective pdf f1(r) and
f2(r), the prior and posterior probability of Hi can be defined as p(Hi) and p(Hi|r = x),
respectively, where i = 1, 2 and x is the observation made for r. The posterior probability
of each event can be defined as follows:

p(Hi|r = x) = p(Hi)fi(r)
p(H1)f1(r) + p(H2)f2(r) (3.1)

The relation between the two pdfs and the event probabilities can be expressed as shown.

log f1(r)
f2(r) = log p(H1|r = x)

p(H2|r = x) − log p(H1)
p(H2)

(3.2)

The left-hand-side of Equation (3.2) represents the information gained making the
observation r = x in favor of event H1 compared to event H2. Using this, an expression
for the mean information favoring H1 in terms of H2 can be obtained.

I(1 : 2) =
∫

f1(r) log f1(r)
f2(r)dr (3.3)

Similarly, the mean information favoring H2 in terms of H1 can be expressed as shown.

I(2 : 1) =
∫

f2(r) log f2(r)
f1(r)dr (3.4)

Finally, a definition for the divergence can be written as the sum of the mean information
expressions.

DKL(1, 2) = I(1 : 2) + I(2 : 1) =
∫

(f1(r) − f2(r)) log f1(r)
f2(r)dr (3.5)

Substituting Equation (3.2) into Equation (3.5), the following expression is obtained.

DKL(1, 2) =
∫

f1(r) log p(H1|r)
p(H2|r) −

∫
f2(r) log p(H1|r)

p(H2|r)dr (3.6)

Note that the logarithms corresponding to the prior probabilities are ignored. The
expression shown in Equation (3.6) is representative of the divergence between H1 and
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H2 and is known as the K-L Divergence. The mutual information can be considered as
the expected value of the K-L Divergence of the posterior pdf from the prior pdf. So
maximizing the mutual information of a given system would mean the posterior pdf of the
system achieves the maximum divergence from the prior pdf. Since the covariance update
equation uses measurements to decrease the state covariance matrix, the maximum
divergence would result in a minimization of the posterior pdf, which is equivalent to
minimizing the system uncertainty.

3.2 Derivation of Mutual Information Expression
Given two random vectors x and y, one can write the MI expression between both as

I(x; y) =
∫ ∫

p(x, y) ln
(

p(x, y)
p(x)p(y)

)
dxdy (3.7)

For application to state estimation, x can be considered to be the state vector and y is
the measurement vector. As used in Chapter 2, Bayes’ theorem can be used to modify
Equation (3.7). The previous Bayes’ theorem can also be written as

p(x|y) = p(x, y)
p(y) (3.8)

Substituting Equation (3.8) into Equation (3.7), the following equation is obtained

I(x; y) =
∫ ∫

p(x, y) ln
(

p(x|y)
p(x)

)
dxdy (3.9)

Further analyzing Equation (3.9), it can be noted that the expression can be interpreted
as the expected value with respect to the measurement vector of the K-L divergence of
the posterior pdf from the prior pdf as mentioned previously. From this, it is obvious
that the more the posterior pdf is different, or diverges, from the prior pdf, the more
information that is gained about the system from certain measurement-state pairings,
which in term leads to less uncertainty in the system.

∫ ∫
p(x, y) ln

(
p(x|y)
p(x)

)
dxdy = Ey[DKL(p(x|y)||p(x))] (3.10)

Although the approach can be applied to linear systems, the initial motivation was to
provide a sensor performance metric that is feasible for nonlinear systems. As discussed

33



in the last chapter, several nonlinear systems do not yield closed-form analytic solutions
and hence the expectation integrals must be evaluated numerically. Assuming the state
can be modeled accurately by a Gaussian pdf, the following can be defined

p(x, y) ∼ N

x
y

 :
µx

µy

 , P

 (3.11)

where P is the joint covariance matrix of the states and measurements. The matrix P can
be broken down into the state covariance, measurement covariance, and cross-covariance
matrices.

P =
Px Pxy

P T
xy Py

 (3.12)

Applying this to the MI expression, the following expression is obtained.

I(x; y) = 1
2 ln

(
|Px||Py|

|P |

)
(3.13)

The determinant of the joint covariance matrix P requires using the formula for determi-
nants of block matrices, which is acceptable since the state and measurement covariance
matrices are invertible. Since the formula has two forms for the determinant, the following
two expressions are obtained.

I(x; y) = 1
2 ln

(
|Px|

|Px − PxyP −1
y P T

xy|

)
(3.14)

I(x; y) = 1
2 ln

(
|Py|

|Py − P T
xyP −1

x Pxy|

)
(3.15)

Both are valid expressions for the MI, however Equation (3.14) compares the prior
state covariance in the numerator to the posterior state covariance in the denominator,
which is computed using the Kalman covariance update equation, whereas Equation
(3.15) maximizes the likelihood of making a measurement by reducing the measurement
covariance. For any time step k, the MI at time step k + 1 can be computed using the
following expressions

I(x; y) = 1
2 ln

 |Px(k+1|k)|
|Px(k+1|k) − Pxy(k+1|k)P

−1
y(k+1|k)P

T
xy(k+1|k)|

 (3.16)
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I(x; y) = 1
2 ln

 |Py(k+1|k)|
Py(k+1|k) − P T

xy(k+1|k)P
−1
x(k+1|k)Pxy(k+1|k)|

 (3.17)

For a given number of targets and sensors, these MI expressions can be used to determine
at each time step which sensors should look at which targets and the entire process can
be iterated through the time span.

3.3 Exhaustive Search
The exhaustive search algorithm consists of searching the entire domain of all time steps,
targets, and sensors for the optimal sensor tasking schedule. Starting from first principles,
several assumptions have been made to generate the MI expression. However, there is
still freedom for using this expression, specifically in the definition of the state vector
x and the measurement vector y. Instead of taking the state vector of a target at one
time step and iterating through the time span, the state vector could consist of the
target’s state vectors at all points in the given time span concatenated into one joint state
vector. The same concept can be applied to the measurement vector. To alleviate the
computational expense, the formulation for the Gaussian pdf will remain the same for the
state and measurement vector, meaning the joint vector of all states and measurements
for all targets will be approximated using a Gaussian pdf. For space-based targets, the
process noise is many times negligibly small and does not need to be considered. However,
measurement noise does need to be considered as several applications involve tracking
targets over large distances, which increase the chance of background noise diluting
measurements.

3.3.1 Formulation of Joint Mutual Information

For the joint state and measurement vector, the pdf in Equation (3.11) turns into

p
(
X1:NT

0:NT S−1, Y(1:NT ,1:NS)
0:NT S−1

)
(3.18)

where NT represents the total number of targets and NS represents the total number
of sensors. To compute the joint mutual information, the pdf in Equation (3.18) must
be used to derive the MI expression. However, the MI expression was derived generally,
so simply plugging in the joint state and measurement vectors will suffice. For this
thesis, the data association problem for measurements made on multiple targets will be
assumed to be solved, meaning the measurements made on each target can be resolved
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from each other. This assumption helps simplify the joint MI problem because instead of
considering all targets at once, the joint MI problem can be reduced to considering each
target individually and summing the MI of each target.

I
(
X1:NT

0:NT S−1; Y(1:NT ,1:NS)
0:NT S−1

)
=

NT∑
i=1

I
(
X(i)

0:NT S−1; Y(i,1:NS)
0:NT S−1

)
(3.19)

Applying this to the MI expressions previously developed in Equations (3.14) and (3.15),
the joint mutual information expression for the ith target can be formulated as shown in
the two following expressions

I
(
X(i)

0:NT S−1; Y(i,1:NS)
0:NT S−1

)
=

1
2 ln


∣∣∣S(i)

(0:NT S−1)

∣∣∣∣∣∣∣S(i)
(0:NT S−1) − Γ(i,1:NS)

(0:NT S−1)

(
Ξ(i,1:NS)

0:NT S−1

)−1 (
Γ(i,1:NS)

(0:NT S−1)

)T
∣∣∣∣
 (3.20)

I
(
X(i)

0:NT S−1; Y(i,1:NS)
0:NT S−1

)
=

1
2 ln


∣∣∣Ξ(i,1:NS)

(0:NT S−1)

∣∣∣∣∣∣∣Ξ(i,1:NS)
(0:NT S−1) −

(
Γ(i,1:NS)

(0:NT S−1)

)T (
S

(i)
0:NT S−1

)−1
Γ(i,1:NS)

(0:NT S−1)

∣∣∣∣
 (3.21)

where S
(i)
(0:NT S−1) is the state covariance matrix for all states of the ith target at all time

steps, Ξ(i,1:NS)
(0:NT S−1) is the measurement covariance matrix for the measurements made by

all sensors of the ith target at all time steps, and Γ(i,1:NS)
(0:NT S−1) is the cross-covariance of all

the states of the ith target with measurements made by all the sensors at all time steps.
To compute the joint mutual information given an initial mean estimate, with size

n × 1, and covariance, with size n × n, for the state of each target, one can implement the
use of sigma points to numerically compute the required covariance matrices. Using the
initial mean and covariance, the sigma points can be generated and propagated through
the entire time span using the dynamical model with state vectors being recorded at
each time step. For each sigma point, all the state vectors can be stacked as one column
vector of length n × NT S.

Similarly, the measurement model can be used to make measurements of each state at
each time step with each sensor. For the concatenation process, the measurement vectors
are first stacked by all sensors at each time step and then by all time steps. So if given
NS sensors each with measurement vector of size m × 1, the joint measurement vector
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would be of length m × NT S × NS. Once this process is extended to all sigma points,
the following summation expressions can be used to generate the respective covariance
matrices that are part of the joint MI expression.

X̂ =
N∑

b=1
(wbXb) (3.22)

S =
N∑

b=1

(
wb

(
Xb − X̂

) (
Xb − X̂

)T
)

(3.23)

Ŷ =
N∑

b=1
(wbYb) (3.24)

Ξ =
N∑

b=1

(
wb

(
Yb − Ŷ

) (
Yb − Ŷ

)T
)

+ R (3.25)

Γ =
N∑

b=1

(
wb

(
Xb − X̂

) (
Yb − Ŷ

)T
)

(3.26)

Note that for the state covariance matrix sigma point computation, the process noise
matrix was ignored as mentioned previously, however, to include process noise, simply
adding the process noise covariance matrix to the state covariance matrix can incorpo-
rate the process noise. The process noise covariance matrix would simply need to be
constructed as a joint noise covariance matrix for all time steps.

Since the covariance matrices were constructed using the measurements of each sensor
for each target, the matrices are "over-constructed," meaning since each sensor is not
guaranteed to see all targets at all time steps, when computing the MI value, only the
respective rows and columns corresponding to a given sensor observing a target need to
be considered and the other rows and columns can be removed so that they don’t impact
the MI calculation.

3.3.2 Maximizing Mutual Information

Now that the mutual information for a given set of measurements can be computed,
the next step is to determine, for the entire span, which sensors should look at which
targets and when. More generally, the sensor parameters primarily dictate the value
of the MI expression since that is the controllable part of the overall formula, meaning
for a given sensor schedule the only parts of the MI expression that will change are the
joint cross-covariance and the joint measurement covariance. Thus, optimizing the sensor
parameters such that the MI value is maximized is the main objective.
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For this thesis, the sensor parameters will be restricted to the pointing angle of the
sensors. Several factors can affect the pointing angle, however, such as the detection
probability of a target by a given sensor, which will depend on the field-of-view (FOV)
and the distance from the sensor to the target. In this case, optimizing sensor parameters
means determining which targets should be observed by which sensors at each time step.
Looking at a simple example of 2 sensors, 4 targets, and 3 time steps, the number of
different possibilities of sensors looking at targets, assuming each sensor has to observe
an object at each time step, is 42·3 = 4096. Generalizing this equation, the number
of different possibilities is (NT )NS∗NT S . For a low dimensional system, the number of
possibilities will not result in large computational expense and can be solved using
the exhaustive search algorithm. However, as can be seen from the general equation,
increasing the number of time steps will drastically increase the number of possibilities as
the exponent changes. For 10 time steps, the previous example results in over 1 trillion
possibilities, which is computationally infeasible. This means a sub-optimal method is
required to reduce computational costs while also providing a sensor schedule that can
be utilized to overall minimize the uncertainty in a system.

The next section will discuss introducing decision variables such that the problem of
searching an entire domain for the optimal sensor schedule can be transformed into a
rational function, which can be input into numerical solvers like GloptiPoly to obtain
the maximum solution while considering semi-definite programming (SDP) relaxations
to optimize the searching process. Note that using GloptiPoly does not reduce the
total number of possibilities but simply provides an efficient method for searching the
entire domain, which will be more useful for the sub-optimal methodology than for the
exhaustive search.

3.3.3 Decision Variables

As mentioned in Section 3.3.1, the covariance matrices are "over-constructed" and must
be reduced for a given sensor schedule, meaning certain rows and columns must be
removed based off whether a certain sensor is observing a certain target. This problem
can be defined as a binary integer optimization problem, where the decisions consist of
either including sensor measurements of a target at a given time step or not. The MI
expression defined in Equation (3.19) can be turned into a maximization problem

max
α

(i,j′)
k

:
NT∑
i=1

I
(

X(i)
(0:NT S−1); α

(i,1:N ′
S)

(0:NT S−1)Y
(i,1:N ′

S)
(0:NT S−1)

)
(3.27)

38



where α
(i,j′)
k represents the decision to have the j′ sensor observing the ith object at time

step k. The main difference between Equation (3.19) and (3.27) is that now there are
considered to be N ′

S sensors instead of NS sensors. The key difference is that instead
of considering each sensor as having multiple pointing angles as operating modes, now
each sensor at each of those operating modes is considered to be its own "sensor". For
example, if there are 2 sensors and 3 targets, each of the sensors can observe each of
the targets, assuming the targets are not blocked, meaning each of the sensors have 3
operating modes. So, NS would equal 2 since there are only two physical sensors, but
N ′

S would be 2 × 3 = 6 to represent each operating mode. For the problem setup so far,
this is more of a notation choice than re-structuring the framework.

To incorporate the decision variables into the MI calculation, one can introduce the
decision variables into the joint measurement and cross-covariance matrices computed.
Similarly, the decision variables can be introduced directly into the concatenated measure-
ment vectors of each sigma point. This can be achieved by multiplying the measurement
vector of the ith target by the jth sensor at time step k by α

(i,j′)
k . For a given target and

sensor at a given time step, α
(i,j′)
k turns into α

(i,j)
k since the number of operating modes

are dictated by the targets.
Once the decision variables are introduced into the covariance matrices, some math-

ematical precautions need to be enforced. Specifically in the measurement covariance
matrix, introducing the decision variables will lead to the multiplication of two separate
decision variables. For the general case of two decision variables α

(i,j′
1)

k1 and α
(i,j′

2)
k2 , if

k1 = k2 and j′
1 = j′

2, then α
(i,j′

1)
k1 α

(i,j′
2)

k2 = 1. This ensures that the determinant does not
equal 0 for any row and column deletion due to sensor removal.

Now, the MI expression, specifically the version in Equation (3.21), can be rewritten
using the optimization problem notation as

I : max
α

NT∑
i=1


∣∣∣Ξ(i)

∣∣∣∣∣∣Ξ(i) − (Γ(i))T (S(i))−1 Γ(i)
∣∣∣
 =

NT∑
i=1

(
pi(α)
qi(α)

)
= p(α)

q(α) (3.28)

Note that the 1
2 and the natural logarithm included in Equation (3.21) were discarded as

the overall optimality does not suffer and a rational function now lends itself to being
used in a binary-integer programming solvers. To constrain the values of the decision
variables to 0 or 1, the following constraint is enforced.

α
(i,j′)
k −

(
α

(i,j′)
k

)2
= 0 (3.29)
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Recalling the 2 sensors and 3 targets example and considering 2 time steps, the decision
variables can be listed out.α

(1,1)
1 α

(2,1)
1 α

(3,1)
1 α

(1,2)
1 α

(2,2)
1 α

(3,2)
1

α
(1,1)
2 α

(2,1)
2 α

(3,1)
2 α

(1,2)
2 α

(2,2)
2 α

(3,2)
2

 (3.30)

From the matrix shown, N ′
S can be understood to be the length of each row, which

represents the number of variables at each time step. In the first row, the first three
decision variables represent the first sensor looking at each of the three targets at the first
time step. Similar logic can be applied to the rest of the decision variables to multiply
them by the correct measurement vectors.

Using this framework, once the polynomial expressions for the numerator and denom-
inator are determined, constraint equation (3.29) along with other problem-dependent
constraint equations can be formulated and passed through to a numerical solver to opti-
mize the sensor schedule for the given time span. As discussed before, the computational
expense remains low for low-dimensional problems. However, for higher dimensional
problems, a sub-optimal method must be implemented.

3.4 Sequential Computation
For a given tasking problem, the formulation of the exhaustive search measurement
covariance matrix depends on the number of states in the measurement model, the number
of sensors, and the number of time steps. For a simple case of a 3-state measurement
model for 2 sensors for 2 time steps, the resultant covariance matrix would be of size
12×12. Incorporating the decision variables, the problem turns into taking a determinant
of a 12×12 symbolic matrix. Although there are properties of the covariance matrix
that would speed up this computation time, it is still quite expensive for any realistic
scenario and gets worse once more time steps or sensors are introduced. For this reason,
a sub-optimal methodology can be utilized to reduce the computational expense. An
important note is that even though the sub-optimal method still produces a sensor
schedule that given a long enough time span will reduce the uncertainties of all targets,
the sub-optimality relates to maximizing a different cost function for each iteration that
will not produce the globally optimal solution that the exhaustive search algorithm will
provide. However, since the MI is nonnegative, nondecreasing, and submodular, the
property of diminishing returns can be utilized to obtain a sub-optimal solution that is
guaranteed to be within a bound of 1 − 1/e of the globally optimal solution. [20]
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3.4.1 Sequential-in-Time

The sequential-in-time method performs the optimization problem at a given time step.
Starting at the initial time step, the problem is formulated for a singular time step,
meaning the numerator and denominator of the mutual information expression are found
for the first time step. Next, the decision variables are solved for to maximize the mutual
information, while the decision variables at subsequent time steps are set as zero. For an
example of 2 targets, 2 sensors, and 3 time steps, the matrix shown shows the decision
variables for one of the targets.

α
(1,1)
1 α

(1,2)
1 α

(2,1)
1 α

(2,2)
1

α
(1,1)
2 α

(1,2)
2 α

(2,1)
2 α

(2,2)
2

α
(1,1)
3 α

(1,2)
3 α

(2,1)
3 α

(2,2)
3

 (3.31)

Applying the sequential-in-time methodology, for the first iteration, Equation (3.31)
would become 

α
(1,1)
1 α

(1,2)
1 α

(2,1)
1 α

(2,2)
1

0 0 0 0
0 0 0 0

 (3.32)

Once the initial time step is optimized, the next time step is solved for by first obtaining
the numerator and denominator for the first two time steps. The decision variables
optimized at the first time step are considered to be constant and substituted into
Equation (3.32). So, only the decision variables at the current time step are being
optimized again An example of solved decision variables is shown.

1 0 0 1
α

(1,1)
2 α

(1,2)
2 α

(2,1)
2 α

(2,2)
2

0 0 0 0

 (3.33)

This process can be iterated through the time span until all decision variables from the
exhaustive search optimization problem are determined.

3.4.2 Receding Horizon Window

For the sequential-in-time algorithm, at each iteration, one solves for the decision variables
by formulating the MI expression at the current time step and passing the function to
an optimization solver. However, one could instead formulate a filtering scheme similar
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to the CUT Filter that tests all possibilities at each time step to maximize mutual
information and iterate accordingly. For a given number of targets and a select few
sensors at one time step, the possibilities remain relatively low and computationally
feasible, especially if parallel processing is utilized. For this reason, instead of following a
sequential-in-time approach, a receding horizon window can be applied. This approach is
a sub-optimal method that extends the sequential-in-time method closer to the exhaustive
search algorithm. The primary difference is while the sequential-in-time method optimizes
the decision variables at one time step, the receding horizon window approach optimizes
the decision variables for a finite number of time steps that do not take up the whole time
span. An example would be optimizing the next 5 time steps of a time span consisting of
200 time steps. The objective of this approach is to strike a balance between increasing
optimality and getting closer to global optimal solution and alleviating computational
expense.

3.5 Numerical Results
The following examples will demonstrate the receding horizon window approach to a
mutual information based sensor tasking algorithm.

3.5.1 Example 1: Earth Target Tracking

Consider 5 targets in orbits around the Earth governed by 3-D two-body dynamics, where
the equations of motion are as follows:

r̈ = −



0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

GM
d3 0 0 0 0 0
0 GM

d3 0 0 0 0
0 0 GM

d3 0 0 0


r (3.34)

where r is the state vector [x, y, z, vx, vy, vz] representing the position and velocity of
each target, d is distance from the Earth to each target, G is the universal gravitational
constant expressed in kilograms, kilometers, and seconds, and M is the total mass of
each respective Earth-target system.
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3.5.1.1 Initial Conditions

Table 3.1 shows each targets’ orbital elements: semi-major axis a, eccentricity e, inclination
i, right ascension of the ascending node Ω, argument of periapsis ω, and true anomaly
θ. The orbital elements were used to compute the initial state vector consisting of the

Target 1 Target 2 Target 3 Target 4 Target 5
a (km) 6925 6925 6925 6707.5 6925

e 1.381 × 10−4 1.402 × 10−4 1.35 × 10−4 6.305 × 10−4 1.589 × 10−4

i (deg) 53.05 53.05 53.05 53.01 53.06
Ω (deg) 267.4028 267.799 267.2504 126.1677 267.1687
ω (deg) 89.6372 99.2824 91.3349 94.8006 115.197
θ (deg) 270.479 260.8327 268.7797 277.2313 244.9185

Table 3.1: Targets’ Orbital Elements

position and velocity for each target, which was used as the initial mean vector µ0. The
initial state covariance (Px)0 follows the general covariance matrix shown below



x2 0 0 0 0 0
0 x2 0 0 0 0
0 0 x2 0 0 0
0 0 0 ( x

100)2 0 0
0 0 0 0 ( x

100)2 0
0 0 0 0 0 ( x

100)2


(3.35)

where x for each respective target is [10, 11.25, 12.5, 13.75, 15]. As mentioned before, no
state noise was included as it can generally be neglected for space systems.

The measurement model for the ith target and the jth sensor consists of three values:
range, elevation, and azimuth, calculated as shown below.

y(i,j) =


√

(ri(1) − sj(1))2 + (ri(2) − sj(2))2 + (ri(3) − sj(3))2

arctan
(

ri(3)−sj(3)√
(ri(1)−sj(1))2+(ri(2)−sj(2))2

)
arctan

(
ri(2)−sj(2)
ri(1)−sj(1)

)
 (3.36)

For obtaining the measurements, two sensors orbiting Earth are considered with their
respective orbital elements shown in Table 3.2. Each sensor has a field of view (FOV)
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Sensor 1 Sensor 2
a (km) 6678 6778

e 0.01 0.002
i (deg) 2 70
Ω (deg) 38 20
ω (deg) 40 30
θ (deg) 111 5

Table 3.2: Sensors’ Orbital Elements

half-angle of 5 degrees. The measurement noise covariance for each sensor is shown.

R1 =


0.12 0 0

0 ( 2π
180)2 0

0 0 ( 2π
180)2




km2

rad2

rad2

 (3.37)

R2 =


0.052 0 0

0 ( 1π
180)2 0

0 0 ( 1π
180)2




km2

rad2

rad2

 (3.38)

The plot of the targets and sensors in orbit around the Earth is shown in Figure 3.1. The

Figure 3.1: Orbits of Sensors and Targets

sensor tasking was done every 5 minutes for a time span of 1000 minutes, however, to
incorporate the receding horizon window, groups of 4 time steps were optimized in each
iteration. So, instead of 200 iterations, only 50 iterations were done. Some assumptions
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that were enforced are: if multiple targets are in the sensor’s field of view at a given time
instant, the sensor can make a measurement and reduce the uncertainty on all targets,
sensors cannot see through the Earth to point at a target, and the distance from a target
to a sensor changes the noise covariance matrix, so a large distance will corrupt the
quality of the measurement.

3.5.1.2 Resultant Figures

Using the mutual information algorithm, the following sensor schedule was generated for
the two sensors, as shown in Figures 3.2 and 3.3. A noticeable pattern in the sensor

Figure 3.2: Sensor 1 Tasking Schedule for Earth Targets

Figure 3.3: Sensor 2 Tasking Schedule for Earth Targets

scheduling is that the sensors observe the same target for several time steps, specifically
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in the context of observing target 4. Looking at the initial conditions, target 4 has a
significantly different orbit trajectory than the other four targets. Analyzing the geometry
of the orbits and the effect of the Earth on obstructing the view on targets, since four of
the targets share similar trajectories, the sensors are looking at their only option when
observing sensor 4 for quite a few time steps. Applying the sensor schedule, a heatmap
of the trace of the position covariance can be generated for each target. Figure 3.4 shows
the covariance at each time step assuming no sensor tasking and Figure 3.5 shows the
covariance after the sensor schedule shown is applied. It seems that the sensor tasking

Figure 3.4: Uncertainty Propagation Without Sensor Tasking

Figure 3.5: Uncertainty Propagation with Sensor Tasking
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achieves the goal of reducing the uncertainty of all targets. To confirm that the sensor
tasking is working, the error in the mean state vector can be tracked and compared to
the bounds of ±3σ, where σ represents the standard deviation. The σ bounds for target
1 are shown in Figures 3.6-3.11 while target 1’s true trajectory compared to the sensor
tasking trajectory is shown in Figure 3.12.

Figure 3.6: Filter Bounds for Target 1 X-Position

Figure 3.7: Filter Bounds for Target 1 X-Velocity
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Figure 3.8: Filter Bounds for Target 1 Y-Position

Figure 3.9: Filter Bounds for Target 1 Y-Velocity

Figure 3.10: Filter Bounds for Target 1 Z-Position

48



Figure 3.11: Filter Bounds for Target 1 Z-Velocity

Figure 3.12: True Trajectory vs Filter Trajectory

As can be seen from the figures, the elements of the state vector converge to the mean
and the sensor tasking provides an accurate estimate of the true state at each time step.
So, the receding horizon window algorithm is functioning properly and can be applied to
the cislunar case.
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3.5.2 Example 2: Cislunar Target Tracking

Cislunar space involves more complex dynamics than the two-body dynamics employed
earlier, specifically the CR3BP dynamics. The CR3BP considers three bodies, where one
body is negligible in mass compared to the other two, often called primaries, and the
two primaries are restricted to circular orbits around their respective barycenter. More
details on the setup of the CR3BP framework can be found in [14] and the example from
that paper will be the same one explored here using a receding horizon window approach.
The equations of motion that can be found in [14] for the CR3BP dynamics are shown
below

q̈ + 2ω × q̇ = ∂Ω
∂q

(3.39)

where q = [x, y, z]T and ω = [0, 0, 1]T . Ω = 1
2 (x2 + y2) + 1−ρ

r1
+ ρ

r2
and represents the

pseudo-potential equivalent for the CR3BP, where ρ = m2
m1+m2

is a normalized mass
parameter, r1 =

√
(x + ρ)2 + y2 + z2, and r2 =

√
(x − 1 + ρ)2 + y2 + z2. Both r1 and r2

represent the distance from the third body to each respective primary. As is convention
to nondimensionalize CR3BP quantities [30,31], the characteristic distance is the distance
between the two primaries, the characteristic mass is the sum of the masses of the two
primaries, and the characteristic time is the time that yields the universal gravitational
constant to be unity when performing dimensional analysis.

3.5.2.1 Initial Conditions

There were 21 targets and 2 sensors considered for the cislunar example. The 21 targets
have corresponding Jacobi constants and time periods given in Table 3.3. The properties
for each target can be used to find the initial condition of each orbit. Each of the targets
was propagated for a random duration of their respective orbits using the initial condition
to obtain the initial state vector, which consists of position and velocity. The state
covariance matrix was also randomly chosen to be one of two possible choices as shown
below,

P1 =
5002I3 03

03 0.012I3

 , P2 =
10002I3 03

03 0.12I3

 (3.40)

where the units for the diagonal elements of the covariance matrices are [m2, m2, m2, m2

s2 , m2

s2 , m2

s2 ].
Process noise was again not included.

Both of the sensors are in-orbit in cislunar space with sensor 1 being in an L1 Halo
Orbit and sensor 2 being in a distant retrograde orbit (DRO). The initial conditions for
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Jacobi Constant Period (TU)
3.1514 3.4141
3.1492 3.41
3.1455 3.403
3.1406 3.3931
3.1344 3.3801
3.127 3.3638
3.1186 3.3438
3.1092 3.3193
3.0989 3.2895
3.0878 3.253
3.076 3.2074
3.0636 3.149
3.0505 3.0706
3.037 2.9562
3.0228 2.7522
3.0155 2.459
3.0158 2.2629
3.0194 2.0674
3.0257 1.8777
3.0344 1.6967
3.0661 1.2937

Table 3.3: Cislunar Targets’ Orbit Properties

both sensors are shown below.

rs1 =



0.48488929934701924
−1.2010474350815029 × 10−24

0.86292128804813717
−1.8187186251023278 × 10−12

0.50751582888526603
2.0848313835397631 × 10−12


, rs2 =



0.36386552085967916
−9.8705964471718881 × 10−23

2.8928226135819368 × 10−23

1.2142141762044615 × 10−12

1.7004305900973176
−2.7836838937168505 × 10−24


(3.41)

The initial conditions were generated using [32] by using an orbital period of 13.5639
days for the L1 Halo orbit and a Jacobi constant of 1.541 and orbital period of 27.38
days for the DRO. Each sensor has a FOV half-angle of 5 degrees. The measurement
model consists of range, elevation, and azimuth and is calculated in the same manner as
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Equation (3.36). The measurement noise covariance for each sensor is shown.

R1 =


(10−6)2 0 0

0 ( 2π
180)2 0

0 0 ( 2π
180)2



DU2

rad2

rad2

 (3.42)

R2 =


(5 × 10−7)2 0 0

0 ( 1π
180)2 0

0 0 ( 1π
180)2



DU2

rad2

rad2

 (3.43)

Figure 3.13 shows the targets’ 3-D orbits while Figure 3.14 shows the 3-D orbits of
the sensors compared to the orbits of the targets. The sensor tasking algorithm was

Figure 3.13: Cislunar 3-D Orbits of Targets

implemented for a 15 day period with measurements made every 3 hours. A receding
horizon window of 8 time steps was used to task sensors for each 24 hours, so a total of
15 iterations were done. The same assumptions from the previous example were enforced
meaning if multiple targets were observed in the FOV of a sensor, the sensor could
make a measurement on all of them, sensors cannot look through the moon to make
a measurement on a target, and large distances negatively impact the quality of the
measurements made by a sensor on a target.
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Figure 3.14: Cislunar 2-D Orbits of Targets and Sensors

3.5.2.2 Resultant Figures

Running the mutual information algorithm with the receding horizon window approach,
the schedules for both sensors were generated, as shown in Figures 3.15 and 3.16.

Figure 3.15: Sensor 1 Tasking Schedule for Cislunar Targets

Analyzing the initial orbit trajectories, the middle targets, such as 6-17, are expected
to be tasked more frequently as the uncertainty grows more rapidly than the other
trajectories. As can be seen from the scheduling, this seems to be the case, especially for
sensor 2, as the scheduling heavily prioritizes the middle targets for the first half of the
time span. So theoretically, the tasking algorithm is functioning properly. In another
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Figure 3.16: Sensor 2 Tasking Schedule for Cislunar Targets

regard, sensor 1 seems to track less objects overall. This could be due to the nature of its
orbit as the moon and larger distances could cause the sensor to look at certain targets
for multiple time steps, whereas sensor 2 could be able to view multiple targets at once
since its view is not always obstructed by the moon.

Similar to the Earth example, applying the sensor schedule can generate a heatmap
of the trace of the position covariance for each target along the time span. Figure 3.17
shows the uncertainty propagated without the sensor scheduling and Figure 3.18 shows
the sensor scheduling generated applied to the uncertainty propagation. A point to note
is that the units for the covariance is DU2 where 1 DU = 3.844 × 105 km.

Figure 3.17: Uncertainty Propagation Without Cislunar Sensor Tasking
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Figure 3.18: Uncertainty Propagation With Cislunar Sensor Tasking

As seen, the position covariance error for all targets does decrease and it seems that
the receding horizon window algorithm is working properly. To further guarantee the
scheduling is functioning, the filter standard deviation bounds can be plotted again
similar to the Earth example as well as the position estimate compared to the true
position. For the filter bounds, only the velocity plots will be shown as cislunar space
experiences large changes in the state from small changes in velocity. Also, the covariance
and position graphs will be used as primary analysis for the position uncertainty being
reduced. Figures 3.19 through 3.21 show the velocity filter bounds for Target 5, where 1
TU = 4.348 days.

Figure 3.19: Filter Bounds for Target 5 X-Velocity
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Figure 3.20: Filter Bounds for Target 5 Y-Velocity

Figure 3.21: Filter Bounds for Target 5 Z-Velocity

Similarly, Figures 3.22 through 3.24 show the velocity filter bounds for Target 21.

Figure 3.22: Filter Bounds for Target 12 x-Velocity
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Figure 3.23: Filter Bounds for Target 12 Y-Velocity

Figure 3.24: Filter Bounds for Target 12 Z-Velocity

Figures 3.25 and 3.26 show the position estimates of each of the two targets.

Figure 3.25: Cislunar Target 5 True Trajectory vs Filter Trajectory
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Figure 3.26: Cislunar Target 12 True Trajectory vs Filter Trajectory

As the figures show, the velocity error stays within the filter bounds while the filter
bounds decrease for both targets meaning that the errors are acceptable and decreasing.
The position graphs further prove this point as the filter and true trajectories are nearly
identical meaning that the tasking was able to successfully decrease the uncertainties
before the uncertainties became large enough to significantly affect the state estimate.
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3.6 Summary
This chapter introduced the concept of mutual information as a sensor performance metric
for state estimation. The connection between the CUT filter and mutual information
was detailed. A brief explanation of the relation between mutual information and the
Kullback-Leibler divergence was given. The mathematical framework for applying a
mutual information algorithm for all targets and all sensors over all time steps was
developed by deriving the joint mutual information expression. Decision variables were
introduced to represent the choice of picking certain sensors at each time step based
on which choice maximizes the mutual information expression. The expression was
developed so that it could be input into a binary integer programming solver to minimize
computation time. Since the exhaustive search is typically computationally expensive
and infeasible for large dimensional problems regardless of using a solver, a sub-optimal
method was discussed for ease of computational complexity. The sequential-in-time
method was introduced as a precursor to the receding horizon window approach, in
which the mutual information problem is reduced to being solved at each time step.
The receding horizon window approach is discussed by expanding the sequential-in-time
method to solving the mutual information problem at a subset of multiple time steps
in the entire time span instead of at a single time step. Finally, numerical simulations
were shown in two target tracking examples using the receding horizon window approach.
Analysis of the results for both the Earth and cislunar example was done by applying
the sensor schedule from the mutual information algorithm through a CUT filter. The
resultant state estimate was compared to the true trajectory and the error is shown to
decrease over the time span such that the state estimate can be considered accurate.
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Chapter 4 |
Conclusion

4.1 Summary
The objective of this thesis was to utilize CUT based uncertainty propagation in con-
junction with information theory to task space based sensors to accurately track targets
in the cislunar regime. This provides innovation to current implementation capabilities
relating to target tracking algorithms. As the number of cislunar missions increases
following the current trend, the need to enhance current space situational awareness
(SSA) capabilities is crucial so that the growth of the number of objects left by these
missions does not become unchecked. Specifically, this thesis implements the receding
horizon window approach to a mutual information algorithm. The mutual information
algorithm provides a sensor schedule for a given sensor/target problem that reduces the
state uncertainty for all targets over time. This is done by applying a Kalman Filtering
process over the entire time span to a full exhaustive search of which sensors should
observe which targets at each time step. For cislunar space, there is a need to deal
with highly nonlinear systems effectively, such as the circular restricted 3-body problem
(CR3BP). To tackle this foundational cornerstone problem, the Conjugate Unscented
Transform (CUT) of the Kalman Filter was implemented as non-product quadrature
scheme does not suffer from the curse of dimensionality.

Since the optimization process is combinatorial in nature as it depends on the number
of targets, sensors, and time steps, sub-optimal methods can be utilized to alleviate the
computational complexity of the exhaustive search. A common sub-optimal method that
is utilized is a sequential-in-time approach where the mutual information algorithm is
iteratively solved for each time step. The main innovation shown in this thesis is the
implementation of the receding horizon window, which serves as an intermediate between
the full exhaustive search and the sequential-in-time approach. The receding horizon
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window method optimizes subsets of time steps within the time span at a time to provide
faster reduction in uncertainty for all targets.

Numerical simulations demonstrated this method for two target tracking examples:
an Earth-based scenario and a scenario in the cislunar regime. The successful imple-
mentation of the approach was validated through the statistical analysis of the sensor’s
schedule effect on the state vector through time.

4.2 Future Work
The approach demonstrated in this thesis enhances current abilities to accurately track
several targets whose motion is dictated by extreme nonlinearities. However, further
research can further enhance its implementation. One such research avenue could focus
on applying more rigorous constraints to the algorithm to represent real-world sensors or
incorporating more space environment conditions such as the Sun or other light sources
affecting the tracking capabilities of the sensors in-orbit. Similarly, the CR3BP framework
was used to generate the trajectories, so future research could involve simulations using
higher fidelity dynamical models such as the general R3BP or the ephemeris model.

Another research direction could analyze the accuracy and the convergence of the
results to a greater extent. One example of this could be to compare the results obtained
from a sequential-in-t ime algorithm to the results for the receding horizon window,
specifically analyzing the effect on the convergence time and the overall accuracy. Further
analysis could be done on the specific number of time steps in each subset for the receding
horizon window approach and the effect on the convergence, specifically focusing on the
costs and benefits of increased number of time steps compared to increased computation
time.
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