
The Pennsylvania State University
The J. Jeffrey and Ann Marie Fox Graduate School

USING AI TECHNOLOGIES TO SOLVE SOFTWARE SECURITY

CHALLENGES

A Dissertation in
Informatics

by
Haizhou Wang

© 2024 Haizhou Wang

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

December 2024



The dissertation of Haizhou Wang was reviewed and approved by the following:

Peng Liu
Raymond G. Tronzo, MD Professor of Cybersecurity
Dissertation Advisor
Chair of Committee

Sharon Xiaolei Huang
David Reese Professor of Information Sciences and Technology
Major Program Committee Member

Suhang Wang
Associate Professor of Information Sciences and Technology
Major Program Committee Member

Minghui Zhu
Professor of Electrical Engineering
Outside Field Committee Member

Dongwon Lee
Professor of Information Sciences and Technology
Director of Doctoral Program

ii



Abstract
Artificial intelligence (AI) has been a trending topic in recent years due to the technical
breakthroughs in computer vision (CV) and natural language processing (NLP) where
many tasks are nearly impossible to be solved by traditional engineering and algorithmic
efforts, due their difficulties in generalizing patterns. In the field of software security,
such tasks are not uncommon. For example, many tasks require high-level semantic
program comprehension, such as code clone detection and logic bug detection. These
tasks are similar to NLP tasks to a certain extent, so that existing methods such as
static or dynamic program analysis are very ineffective in understanding the programs
in terms of the business logic. For another example, information and data available in
many software security tasks such as reverse engineering are not human-friendly, which
may lead to generating explicit rules or heuristics extremely challenging. Therefore, it is
crucial to explore what tasks in software security could be solved or solved better using
modern AI technologies.

In this dissertation, we aim to adopt AI technologies in three software security sub-
fields: exploitation defense, vulnerability analysis and reverse engineering. In particular,
we have researched three problems: 1) defending return-oriented-programming (ROP)
attacks using deep learning, 2) finding user privilege related (UPR) variables using LLM
workflow, and 3) pinpoint the implementation of anti dynamic analysis techniques in the
binary program using LLM. The common characteristics of all three problems are the
fuzziness of input and the difficulty to generalize common patterns, which are the key
motivations of us adopting AI technologies and data driven methods.
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Chapter 1 |
Introduction

1.1 The Motivation: AI Is Helpful For Software Security
Many software security tasks involve "dirty works": excessive amount of human labor
may be necessary to create, maintain and improve the system providing the software
security solutions. This is particularly true when generic patterns cannot be extracted to
construct algorithmic solutions for the problems, ending up making specific rules and
heuristics that hyper-targeting single cases. One of the major causes of this high labor
requirement in software security is from its subject: software programs. Specifically,
describing program in a formal and automatic way is extremely difficult [1], so that
human is usually involved while solving problems related to program understanding.
Here we use 3 sub-fields to illustrate the labor requirements in software security.

The first field is exploitation defense. As an classical software security problem, the
exploitation defense has been studied for extended period of time, yet industry systems
still leverage exploit and vulnerability signatures that are written by human to detect the
exploit payloads [2, 3]. The development of exploit signatures involves understanding the
vulnerabilities and the purposes of the exploit, to extract the patterns in the payload that
is special enough to be a signature. This is extremely time consuming and oftentimes,
multiple signatures and rules may need to be created. Once a rule is deployed, it could
also suffer from evasion from the attackers, demanding the development of the updated
versions.

The second field is code information security and vulnerability analysis. Information
security is a common requirement for most organizations, and one of the requirement is
vulnerability-free programs. Many of the information security and vulnerability analysis
is still partially or fully manual [4]. For instance, the very first blocker of vulnerable code
is code review, which is a fully manual process that requires peer developers to dedicate
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time in looking at the code directly. Needless to say, being a code reviewer is extremely
time-consuming. Indeed, there are semi-automated tools that can do code auditing (e.g.
Semgrep), but the rules need to be manually crafted.

The third field is reverse engineering, which is quite infamous for its labor-intensity [5].
Reverse engineering is a perfect example of high labor requirement due to needs of
understanding the program: by definition reverse engineering is to understand the
program. Whenever reverse engineering is mentioned, it is always assumed to be time-
consuming, labor-intense, and only limited amount of automation is available.

Fortunately, with the recent advances in artificial intelligence (AI), we can see the
new opportunity of reducing the labor requirements in the field of software security,
altering the way we approach software security problems. While the current data-driven
AI technologies such as deep learning (DL) and large language models (LLM) have shown
their ability to generalize patterns in the field of computer vision (CV) and natural
language processing (NLP), they may also solve the challenges of extracting generic
patterns from software programs.

1.2 The Challenge: Data Generation and Pre-processing
Looking at other fields in the cybersecurity, one can observe that AI has been well-studied
and widely adopted in some fields [6–14], where high quality structured data are available.
Generally speaking, it is favorable that data could be easily generated and pre-processed.
Data with good quality is usually considered to be large in quantity and balanced in label
distribution. Data that is easy to pre-process is usually considered to be at a similar
abstraction level, which can be used without further in-depth analysis and transformation
by the AI model.

In software security, both data generation and pre-processing could be challenging.
For example, when solving exploit detection using AI, the raw data could be binary
hex strings, which obviously need extensive amount of feature engineering in order to
leverage the AI models. In addition, at network level, it is common that malicious traffic
carrying the exploit payload is significantly less than the benign traffic. Exploit detection
is merely one example of software security problems, and many other software security
problems are facing similar data challenges when adopting AI.
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1.3 This Dissertation: Using AI in Software Security
Despite the data challenges, the motivation and merit of adopting AI in software security
is evident. This dissertation presents three works in three sub-field of software security,
respectively. The first work is Return-oriented-programming (ROP) Payload Detection
Using Deep Learning. This is a work in exploit defense, which faces the challenge of binary
data pre-processing and imbalanced data issues. The second work is Identifying Privilege
Related Variables in Programs Using LLM. This is a work in vulnerability analysis, which
faces the challenge of long input data. The third work is Pinpoint the Implementations
of Anti Dynamic Analysis Techniques in Malware Using LLM. This is a work in reverse
engineering, which faces the challenge of misaligned abstraction level between raw data
and the problem.
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Chapter 2 |
ROP Payload Detection Using Deep
Learning

2.1 Executive Summary
Return-oriented programming (ROP) is a code reuse attack that chains short snippets
of existing code to perform arbitrary operations on target machines. Existing detection
methods against ROP exhibit unsatisfactory detection accuracy and/or have high runtime
overhead.

This chapter introduces DeepReturn, a ROP payload detector which combines
address space layout guided disassembly and deep neural networks. The deployed detector
treats application input data as code pointers and aims to find any potential gadget
chains, which are then classified by a deep neural network as benign or malicious. Our
experiments show that DeepReturn has high detection rate (99.3%) and a very low
false positive rate (0.01%). DeepReturn successfully detects all of the 100 real-world
ROP exploits that are collected in-the-wild, created manually or created by ROP exploit
generation tools.

Despite the promising result, the disadvantage of DeepReturn is that the model
trained can be only used to protect a single program. Furthermore, generating training
data is very costly, because DeepReturn treats all input data to the application as code
pointers of potential gadget chains, and a sequence of valid code pointers is extremely
rare if the input data is benign. Accordingly, we expect the deep learning model in
DeepReturn is typically trained using imbalanced data in real-world, where the number
of benign data is substantially less than the number of malicious data. Unfortunately,
under this situation, our experiments show that the false positive rate increases from
0.01% to 8.81% if the training data is 1:100 imbalanced, leading to a F1-score of 0.95.

4



To alleviate this limitation, this chapter also introduces a transfer learning, specifically
domain adaptation based method so that a model trained for one program could be
used for another program, effectively reducing the number of expensive data needed. We
achieved 2.90% average false positive rate, 0.9705 average F1 score and 95.21% average
detection rate on 3 different target domain programs using 2 different source domain
programs, with 0 benign training data sample in the target domain.

2.2 Introduction
Due to broad deployment of W⊕X or Data Execution Prevention (DEP) [15,16], code
injection attacks (e.g., shellcode injection) are no longer very viable. Code reuse attacks,
especially return-oriented programming (ROP) attacks [17–19], have risen to play the
role code injection attacks used to play. An ROP attack proceeds with two phases. First,
the attacker identifies a set of particular machine instruction sequences (i.e., “gadgets")
that are elaborately selected from a binary executable or a shared library. Each gadget
typically ends in a return instruction. Second, enabled by exploiting a (buffer overflow)
vulnerability, the attacker overwrites part of the stack with the addresses of these gadgets;
the addresses and register operands are placed at particular locations (on the stack) so
that these gadgets will be executed sequentially if the control flow is directed to the
first one. By chaining gadgets together, the attacker is often able to perform arbitrary
operations on the target machine [19].

Since ROP attacks are major threats to business-critical server programs, extensive
researches have been conducted to defend against ROP attacks. The existing defenses
focus on two perspectives, namely prevention and detection. ROP prevention methods
aim to make launching a ROP attack itself very difficult. For example, ASLR (Address
Space Layout Randomization) randomizes the memory addresses to make it difficult
for an attacker to accurately locate any ROP gadgets. However, ASLR suffers from
various forms of information leakage [20–22], code inference [23] and indirect profiling
attacks [24], which significantly undermine the protection.

On the other hand, ROP detection methods aim to catch the ROP attack in action
and then stop it. For example, CFI (Control Flow Integrity) checks whether a control flow
transfer in a running program violates the CFG (Control Flow Graph). If so, the program
is terminated. Existing ROP detection methods can be divided into six classes: (1A)
Heuristics-based detection [25–27]. (1B) Fine-grained CFI [28–30]. (1C) Signature-based
detection [31]. (1D) Speculative code execution [32]. (1E) Searching code pointers in the
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Detection Methods R1 R2 R3 R4
Heuristic-based × X X ×
Control Flow Integrity (CFI) X X × ×
Signature-based × X X X
Speculative code execution X X × ×
Searching code pointers in the data region × X X X
Statistical-based detection × X X ×

Table 2.1. Limitations of existing detection methods against ROP attacks.

data region [33]. (1F) Statistical-based detection [34,35].
Unfortunately, these methods are still quite limited in meeting four highly-desired

requirements: (R1) high detection rate for ROP attacks; (R2) close to zero false positive
rate; (R3) acceptable runtime overhead; (R4) minimal changes to protected programs
and running environments.

In fact, (a) Class 1A and 1C detection methods could result in low detection rates;
many heuristics or signatures are found not very hard to bypass. (b) Class 1B and 1D
detection methods could cause substantial runtime overhead. (c) Class 1A, 1B, 1D, and
1F detection methods may cause substantial changes to existing (legacy) application
software and even the running environment, thus they are not transparent. Therefore, as
shown in Table 2.1, none of the existing ROP detection methods satisfy the above four
requirements.

In recent years, deep neural network sees applications in the security field, e.g.,
fuzzing [36], log analysis [37], memory forensic [38], etc. Deep neural network has several
clear advantages over traditional machine learning methods, for example it provides
better accuracy than conventional models such as Support Vector Machine (SVM); it does
not require expert knowledge to set thresholds for classification (detection) criteria; it
requires less efforts on feature engineering and can be trained end-to-end using minimally
pre-processed data.

In this chapter, we introduce an ROP payload detection method, DeepReturn,
which is the first to satisfy all of the above four requirements via deep learning. Specifically,
DeepReturn is a "classification engine" as the integrated part of a network Intrusion
Detection System (IDS). It can be deployed in the same way as a conventional network
IDS such as Snort. Once deployed, DeepReturn works in the following manner:
when network packets arrive and a reassembled protocol data unit (PDU) is obtained,
DeepReturn first performs ASL (Address Space Layout) guided PDU (i.e., application
input data) disassembly and obtains a set of potential gadget chains. Then the potential
gadget chains are fed into a neural network classifier. The classifier identifies each
potential gadget chain as either "ROP payload" or "bogus data".
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As we will show shortly in Section 2.5, DeepReturn achieves very high detection rate
(99.3%) and very low false positive rate (0.01%), which satisfy R1 and R2. Meanwhile,
since DeepReturn can be deployed on a separate machine other than the protected
server, it requires no changes to the protected program or the running environment (R4).
DeepReturn also has no runtime overhead for the protected program (R3), which is
an advantage over many other methods.

Despite the successful applications of deep neural network in other security prob-
lems [36–38], DeepReturn still faces several challenges. Firstly, a deep neural network
must be trained with proper data. Since ROP payloads only contain addresses of ROP
gadget chains (please refer to Section 2.3), we should not train a classifier to directly
distinguish ROP payloads from benign data. Otherwise, the signal-to-noise ratio is so
low that the accuracy can be very poor where low signal-to-noise ratio means that most
of the bytes in a packet payload are actually noise and have nothing to do with the
ROP attack. Instead, we propose ASL-guided disassembly (Section 2.4.3) and create
gadget-chain-like instruction sequences based on the addresses identified in benign data.
In Section 2.4.4, we also propose a viable method to generate sufficient real gadget chains.
Simply put, the two datasets are both a set of instruction sequences and we train a
classifier to distinguish the two. Also, to obtain comprehensive and representative benign
training samples, we do ASL-guided disassembly on TB-level amount of raw input data
(HTTP traffic, images, PDFs). We obtain 26k-105k benign training samples for different
programs.

Secondly, we need to design the deep learning training workflow for the detection of
ROP payloads. We propose to use a convolutions neural network (CNN) as our classifier
as it is good at capturing spatial structure and local dependencies, and the input data
will be byte sequences represented in one-hot vectors. This corresponds to the nature of
a ROP gadget chain that gadgets are chained with orders and adjacent instructions in
a chain have meaningful connections with each other. These orders and connections in
turn indicate whether an instruction sequence is indeed a real gadget chain or is formed
merely due to the coincidental addresses in the data.

Thirdly, as will be discussed later in Section 2.5, generating negative (benign) samples
for training the deep learning model is very expensive in DeepReturn. Consequently,
to use DeepReturn in real-world, the training dataset will be typically imbalanced,
which substantially deteriorate the performance of the DeepReturn. Our experiments
show that the false positive rate increases from 0.01% to 8.81% if the training data is
1:100 imbalanced, leading to a F1-score of 0.95.
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ffdd17c3:

add esp, 0xc

mov eax, edi

pop ebx

pop esi

pop edi

pop ebp

ret

fe2893f5:

push cs

sub al, 0x41

push cs

xor byte ptr [ebp + 0xe], dl

adc al, 0x41

ret

6335cf19

ffdd17c3

…

fe2893f5

09184ff9

…

Stack Gadgets in Memory

Payload in 
Stack

Figure 2.1. Workflow of ROP Attacks

2.3 Background

2.3.1 Return-Oriented Programming

Return oriented programming (ROP) [19] and its variants [17, 18,21] are still popular
exploit methods today, which provide attackers turing-complete functionalities without
inject any code. The attackers use the instruction sequences that end with an ret
instruction to construct the code for their malicious purposes, which are called gadgets.
In a typical ROP attack, by overwriting the return address of the executing function and
loading all the addresses of gadgets needed onto the stack, the attacker will be able to
execute a sequence of gadgets, which is called gadget-chain. Figure 2.1 shows a synthetic
example of the ROP exploit process on X86 instruction set architecture (ISA). In this
example, the payload arrives at the host and is loaded into a buffer on the stack. This
malicious payload segment contains two addresses, 0xffdd17c3 and 0xfe2893f5, which
are addresses in the code segment (i.e. .text segment) of the beginning of gadgets. If
the address 0xffdd17c3 overwrites the original return address in the stack frame, it will
cause the whole gadget-chain to be executed and the program will be exploited by the
attacker. Since there are abundant instruction sequences (and thus gadgets) available in
the memory when the program is loaded in modern operating systems, virtually ROP is
turing-complete programming technique.

In practice, one important aspect of an ROP payload is the layout of the gadgets’
addresses. In the simplest scenario, the attacker needs to ensure the value stored in the
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%esp register is the address of the beginning of the next gadget when ret is executed.
For example, pop instructions are important for the gadget layout. In X86, if the distance
of the addresses of two adjacent gadgets in the memory is 4 bytes, then a pop instruction
is needed to fix the offset. Since it is not common to have many pop instructions in a
roll, the addresses of adjacent gadgets are usually not far away in the payload.

2.3.2 Traditional ROP Detection Methods

The majority of the traditional ROP detection methods can be categorized into 2 kinds:
heuristic-based, and CFI-based. Heuristic-based methods use heuristics and hard coded
rules to find ROP gadgets. DROP [25] checks the frequency of executed return or
jump instructions. kBouncer [27] and ROPecker [26] check indirect branches, and issue
an alarm if certain abnormal patterns are found. As mentioned in Section 2.2, these
heuristics could be bypassed if the attackers know them, which results in lower detection
rate.

CFI-based methods [39–43] use CFI to assist ROP detection. There are two disad-
vantages when using CFI: difficulties in building accurate fine-grained control flow graph
(CFG) and causing high overhead on the program. On one hand, it is shown that building
complete and accurate fine-grained CFG is very challenging [44], and in fact many works
shows that attackers can circumvent CFIs using imperfect CFGs [41, 45–47]. On the
other hand, CFI may introduce significant overhead to the program [29, 30], which is not
acceptable for performance critical services.

There are other methods that are neither heuristic-based nor CFI-based. [31] intro-
duced n-ROPDetector, which checks whether a set of function addresses are presented in
the payload. Since the method focuses on the payload, attackers can insert obfuscation to
avoid being detected. [32] proposed an ROP detection method based on speculative code
execution, which will issue the alarm if four identified gadgets are executed. However,
this could cause a high FPR, since normal instruction sequences can contain more than
four gadgets, as shown by [33]. There are also statistical-learning-based methods [34, 35],
which usually cannot handle large datasets and need handcrafted features.

2.3.3 Transfer Learning in Cybersecurity

In transfer learning, by convention, the domain where knowledge is transferred from is
called source domain, and where knowledge is transferred to is called target domain.
According to the survey by [48], two major categories of transfer learning are inductive

9



learning and transductive learning. Inductive learning focuses on task knowledge transfer,
whereas transductive learning focuses on data domain (representation) transfer. Notice
that inductive learning assumes labels in the target domain, whereas transductive learning
assumes no label in the target domain. In this paper, we focus on data domain transfer
and data representation.

Recently, there are transfer learning applications in intrusion detection [49–51], vul-
nerability detection [52,53], and IoT attack detection [54]. However, none of the existing
works focus using transfer learning and domain adaptation to tackle the imbalanced data
issue.

2.3.4 Domain Adaptation

Domain adaptation is a subfield of transfer learning, which is used to solve transductive
transfer learning problems. One common strategy to do domain adaptation is constructing
common representation (i.e. with the same underlying distribution) for source and target
domain data. This can be achieved by using a very popular metric called Maximum Mean
Discrepancy (MMD) proposed by [55], which can be used to determine if sets of samples
are from the same distribution. In other words, a small MMD indicates the samples are
from the same distribution. Many researchers [56–58] found that a neural network can
be trained using MMD as a part of the loss function to learn representation from data of
both domains, so that the representation learned follows the same distribution.

2.4 Method

2.4.1 Overview

A main challenge for detecting ROP payloads in real-time is that most suspicious incoming
PDUs are in fact benign, because a PDU is suspicious as long as it contains data that
can be interpreted as a pointer pointing to an instruction. However, since creative
zero-day ROP attack scripts could be invented at any time, no IDS knows all the essential
features of ROP attacks. This key observation reveals a fundamental limitation of the
ROP detection methods that rely on known features (e.g., abnormal patterns of indirect
branches, addresses of API functions being contained in a PDU), and therefore, deep
learning is motivated.

Overall, our approach has two phases: the training phase and the production phase.
To help reader better understand our approach, we first elaborate how DeepReturn
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Figure 2.2. Workflow of DeepReturn

is used during production phase, which is shown in Figure 2.2. After a PDU from the
network data is obtained, we first identify any valid addresses in the PDU. Then we use
the addresses to perform ASL-guided disassembly, which will result in a set of potential
gadget chains. After that, we use a trained deep learning model to classify whether
each of the potential gadget chains are real gadget chains that can be used in real ROP
attacks. If any of these potential gadget chains is classified as a real gadget chain, a
warning will be raised. Conversely, if the ASL-guided disassembly does not produce a
potential gadget chain, or the chain is classified as benign by the model, the input data
is considered benign.

According to the workflow shown in Figure 2.2, for the deep learning model, what it
sees is either real gadget chains, which can be used for ROP attacks, or the gadget-chain-
like instruction sequences, which are just sequence of instructions formed "accidentally".
Therefore, to train the model, we first need to build a binary classification dataset, whose
labels are the gadget-chain-like instruction sequences (benign input data) and the real
gadget chains (malicious input data). On one hand, we can get the gadget-chain-like
instruction sequences (benign) by Address Space Layout (ASL)-guided disassembly (of
the protected program’s memory dump) based on the valid addresses identified in the
any normal benign input data without any ROP payloads; on the other hand, we can
extract real gadget chains (malicious) from the protected program by chaining individual
gadgets using existing ROP gadget tools. Figure 2.3 shows the procedure of building the
dataset.

After collecting the data, we then train a deep neural network to classify between
the two classes. Specifically, we choose to use a three-layer convolutional neural network
(CNN) and represent the instructions byte-by-byte using one-hot encoding.

One obvious advantage of our design is that there will be no overhead on the production
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Figure 2.3. The flow diagram for the data Preparation process in DeepReturn

server. Since each trained deep learning model are deployed to achieve Intrusion Detection
instead of Intrusion Prevention, it does not introduce any delay to network packets if a
(HTTPS) reverse proxy forwards a copy of each decrypted payload to the IDS VM that
runs the deep learning model.

2.4.2 Intuition of Our Design

On one hand, we need a deep learning classifier as part of the DeepReturn because if
we treat all of the inputs that have addresses in it as ROP payloads, we can cause high
false positive rate. On the other hand, the ASL-guided disassembly is also necessary
because otherwise the signal-to-noise ratio is very low. For example, consider an HTTP
request with a 2MB image. Suppose there is an ROP gadget chain with 20 gadgets
hiding in the image, then only 80 bytes (in case of 32-bit) out of 2 megabytes are gadget
addresses. If we treat a whole payload as a training sample, then any trained neural
network will very likely be primarily capturing the features of the irrelevant "noises",
which can seriously deteriorate the performance.

We choose CNN as the classifier because ASL-guided disassembly outputs instruction
sequences which have strong spatial structures and local dependencies. The appearance
of pairs of instructions and the orders of instructions could indicate different nature of an
instruction sequence. CNN can represent the abstract nature (e.g., benign or real gadget
chain) into compositions of simpler concepts (e.g., locations of instructions), which is
important for the classification.

This unique combination of ASL-guided assembly and CNN enables us to solve the
ROP payload detection problem without any software instrumentation. The only thing
that the DeepReturn needs to know about is a memory dump of the protected program.
If we train a classifier to distinguish ordinary execution trace from ROP gadget chain
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execution trace, we need software instrumentation to monitor the execution trace, which
is against our goal.

2.4.3 ASL-Guided Disassembly

This section describes the details about the ASL-guided disassembly, which is used
during production and generating benign training data. ASL-guided disassembly treats
bytes in data as addresses and checks if they point to gadget-like or gadget-chain-like
instruction sequences. In the training phase, we use ASL-guided disassembly to collect
gadget-chain-like instruction sequences as training data for the neural network. In the
production phase, we use ASL-guided disassembly to identify any potential gadget chain
in input data.

It is important that ASL-guided disassembly reflect how ROP attacks work as much
as possible. Recall that ROP attacks work by chaining multiple gadgets together. Each of
these gadgets ends in an indirect branch, i.e., ret, jmp, or call, which starts the execution
of the next gadget. Accordingly, the proposed ASL-guided disassembly examines the
given payload data, and checks if they can form a valid gadget chain.

Since we do not know where the first address of the gadget starts in the data, we
process every byte and interpret the starting four bytes as an address, and check if it
points to a valid gadget. It is important to remember the fact that the stack layout
during ROP attacks contains no instructions, but only addresses of gadget chains and
constant values needed for the attacks, as shown in Figure 2.1. Based on this fact, we
designed a heuristic-based process to check whether a four-byte-data could be the starting
address of an (gadget), which is introduced in Section 2.4.3.1.

After we identify an address and the corresponding valid gadget, we need to look
for other ones which could be used to form potential gadget chains. Intuitively one can
track the stack pointer to find the next possible address, but it is impractical while we
try to build potential gadget chain statically, as an ROP attack is capable of leveraging
indirect function calls, e.g., call eax. Instead, we consider every four bytes following the
identified address in the given data to see if it points to another gadget. If the payload
indeed is a ROP payload, then all the gadgets in the gadget chain will be found. The
details of forming gadget chain are discussed in Section 2.4.3.2.
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2.4.3.1 Disassembly of Individual Addresses

We first create a memory dump of the protected program, which contains the addresses
and contents of all memory pages that are marked as executable. Typically, these pages
are mapped from the text segment of the protected program or any loaded shared libraries
(e.g., libc.so, etc). The ROP gadgets must fall inside the memory dump, otherwise it is
not executable and the attack will fail.

Then we consider every four bytes (on 32-bit system)1 in the input data as an address.
If an address does not appear inside any one of the dumped pages, we ignore it because
it cannot be the start of a ROP gadget. Here we do not limit our search space to
non-randomized modules because attackers can bypass the ASLR in multiple ways.

We start disassembling from any identified addresses using Capstone [59]. The
disassembling can stop in two ways: (1). An invalid or privileged instruction is encountered
or the disassembly reaches the end of code segment. In this case, the current address
is ignored in subsequent analysis. (2). An indirect branch, i.e., ret, jmp, or call is
encountered. If the dissembling is successful, the resulting instruction sequence can be
potential gadget, namely gadget-like instruction sequence.

2.4.3.2 "Chaining" Gadget-Like Instruction Sequences

Having obtained the set of gadget-like instruction sequences, we need to find how they
could be chained together, in a similar way as an attacker chains gadgets into a gadget
chain. Specifically, if we find an address at offset n in the data which points to a gadget-
like instruction sequence, we check if any one of the next ten addresses, i.e., address at
n+ 4, n+ 8, n+ 12,...,n+ 40 in the data also points to a gadget-like instruction sequence.
If an address corresponds to another gadget-like instruction sequence, we add it into the
chain and repeat the process, until we exhaust the ten addresses.

For any “chain” that has at least two addresses, we collect the corresponding gadget-
like instruction sequences and concatenate them into a gadget-chain-like instruction
sequence.

Note the maximum ten is determined by the observation that most gadgets in our
dataset only pop less than five integers from the stack to the registers, and all of them
pop less than ten integers; so ten is sufficient to capture the next address in a “chain”.

In other words, a ROP attack cannot spread the addresses of gadget chains in
the payload arbitrarily; otherwise, even if the control flow is successfully hijacked, the

1We only consider 32 bit systems and leave it for a future work to experiment with 64 bit systems.
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subsequent gadgets will not execute one by one � because upon return from the previous

gadget, the address of the next address is not on the top of the stack.

When we look for the next �chain�, we skip the addresses and the corresponding

instruction sequences that are already part of a �gadget chain�. For example, if a �chain�

contains �ve �gadgets�, next we start from the sixth address and repeat the �chaining�

process. We repeat the process on every address to collect all possible gadget-chain-like

instruction sequence.

It is noteworthy that we start ASL-guided disassembly from EVERY byte of the input

data. This is because we are dealing with data, so code or memory alignment actually

does not apply, and any four-bytes can be an address.

To e�ciently implement the above algorithm, we start multiple parallel threads to

analyze di�erent addresses. Moreover, if an address is already examined and found to

be pointing to a gadget-like instruction sequence, we cache it in a global table. In this

way, the disassembly and analysis is not repeated on the same address. Besides, we also

process multiple inputs simultaneously to utilize all CPU cores.

2.4.4 Real Gadget Chain Generation

The real gadget chains, which are used as malicious training data, are created by

chaining real individual gadgets together. Essentially, we �rst generate all possible

gadget candidates, and then �lter out those invalid ones. We use ROPgadget to extract

individual gadgets from the program binary. Then the gadgets are added to the chain

in such a way that every register is initialized before the chain dereferences it, as the

execution may otherwise lead to a crash. To avoid crashes, we have to solve the side

e�ect of gadgets. Take two gadgets �mov [esi], 0x1; ret;� and �mov eax, 0x1; jmp [esi];�

for instance. There exists a side e�ect caused by the gadget �mov eax, 0x1; jmp [esi];�

unintendedly changing the value of EAX, and a register usage con�ict for ESI, which is

used for setting a memory as 0x1 and setting the target address for jump instructions.

To solve the side e�ects, we remove all the gadgets that contain the memory usages, and

make sure that no two gadgets read one register without write operation between them.

To make the dataset more comprehensive, we also combine both short and long gadgets.

After that, we leverage the CPU emulator Unicorn to validate the generated gadget

chains. In essence, we are trying to simulate the ROP attack that may be achieved by the

testing gadget chains. We arrange the addresses of gadgets on the stack inside Unicorn

according to their stack interaction. Then, we start emulation from the �rst gadget and

observe if the gadgets can be executed one-by-one correctly. If not, this gadget chain
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is �ltered out. One exception to the emulation is all function calls (e.g.call eax ) are

assumed successful and the corresponding function call is skipped. In this way, we make

sure the generated gadget chains are all valid (note that they are not necessarily useful

for attackers).

We make sure the length (in bytes) distribution of the real gadget chain datasets is

similar to that of the gadget-chain-like instruction sequence dataset; otherwise, even if

the classi�er does a good job to distinguish the two datasets, it may leverage the length

information too much rather than learn anything about the data.

2.4.5 Neural Network Classi�cation

The goal of the neural network inDeepReturn is to discriminate ROP gadget chains

from gadget-chain-like instruction sequences. In this section, the details of training such

a neural network is disccussed.

2.4.5.1 Data Representation and Preprocessing

The instruction are binary data by nature, and therefore, we decide to have the neural

network to read sequence of bytes as input. We �rst convert every byte in an instruction

sequence into its hex value (0-255). For example, the instruction sequence "mov eax,

0x1; pop edx; ret" is converted to "[0xb8, 0x01, 0x00, 0x00, 0x00, 0x5a, 0xc3]". Then we

transform the hex values into one-hot encoding, so that the implicit numerical relationship

between di�erent bytes will be eliminated.

In other words, an instruction sequence that hasn bytes is represented byX =

f
�!
X 1;

�!
X 2; :::;

�!
X ng, where

�!
X i is a 256� 1 one-hot vector. Alternatively, one can view the

input as a n by 256 matrix.

Since instruction sequences usually have di�erent lengths, padding is applied to make

them have the same length. We �rst �nd the longest instruction sequence (in bytes). For

shorter ones, we append the one-bytenop (0x90) instruction at the end of them until

they all reach the same length.

2.4.5.2 Neural Network Architecture

After the data preprocessing, we use a customized neural network to classify whether a

potential gadget chain is benign or real. The architecture of our neural network (shown

in Fig. 2.5) is a convolutional neural network (CNN), which is a feed-forward neural

network that is good at learning data with spatial structures and capturing their local
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Figure 2.4. Data Representation and the �rst 1D Convolution Layer

dependencies. Typically, a CNN has one input layer, multiple convolution layers, multiple

activation layers, and one output layer. In particular, all of the convolution layer in the

network is 1D convolution layer which is shown in Figure 2.4.

The 1D convolution layer involves a operation calledconvolution . SupposeX

represents the one-hot encoded instruction bytes,w represents the convolution kernel

(weight vector) whose length ism. Then the convolution betweenX and w is a matrix

X � w, whoseith column can be written as:

(X � w) i =
mX

j =1

X i � j + m=2 � wj (2.1)

The convolution aggregates information from adjacent bytes. This information

includes certain byte values, the ordering of bytes, etc. The convolution layer is followed

by a nonlinear activation layer (e.g., ReLU) to denote whether certain information is

present or not. We stack three layers of convolution and activation to gradually capture

higher level of information of the input bytes, e.g. the presence of a certain gadget, the

ordering of di�erent gadgets, the repetition of certain patterns, etc. The higher level of

information is more abstract and di�cult to extract or represent (similar to the case in

image classi�cation), but it is more related to the classi�cation task, i.e., whether the

chain is benign or real. The last activation layer is followed by a fully connected layer

and another activation layer output to give a classi�cation output, benign (0) or real (1).

Since the input X is �xed, only the weights w in�uence the output. These values are

not determined via heuristics or expert knowledge, as in many previous ROP detection

methods. Instead, they are trained (recursively updated) by minimizing the di�erences

between the true labels and the network's outputs. For details about CNN, please refer

to [60,61].

17



Figure 2.5. Architecture of the CNN used in DeepReturn

The details of our neural network is illustrated in Figure 2.5. We �rst use a convolu-

tional layer with 64 convolution �lters with the kernel size of 7 (length of the convolution

�lter is 7). Then we perform batch normalization (BN) before a nonlinear activation

function, which in this case is a recti�ed linear unit (ReLU). ReLU is a simple recti�er

with the form of f (x) = max (x; 0). After the ReLU activation, we apply a 50% dropout

to prevent over�tting. Then we repeat this Convolution-BN-ReLU-Dropout structure for

two more times. In particular, we use 32 convolutional kernels with the size of 5 and 16

convolutional kernels with size 3 for the next two layers. Then the output from the last

Convolution-BN-ReLU-Dropout structure is feed into a fully connected layer. Finally, we

use the softmax activation function as a classi�er. It is worth mentioning that we do not

include pooling layers which are widely used in image classi�cation tasks, because our

entire input is meaningful and downsampling our input vector would yield a completely

di�erent gadget chain.

We use a grid search [62] to �ne-tune the above con�gurable hyper-parameters (e.g.,

dropout rate, the �lter sizes, etc) in our model and �nd the best set of values. Details

are provided in Section 2.5.

The neural network is trained using stochastic gradient descent (SGD).

2.5 Evaluation with Balanced Training Data

In this section, we evaluateDeepReturn using real-world programs. Note that we will

make sure the trianing data is balanced during all the experiments. To evaluate our

method comprehensively, each of the following subsections in this section will evaluate

one aspect ofDeepReturn .

We train the model and build the DeepReturn work�ow for each of the �ve tested
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programs: nginx 1.4.0, apache 2.4.18, proftpd 1.3.0a, vsftpd 3.03, ImageMagcik 7.08,

respectively. The tested programs are widely adopted server-side applications (i.e., web

servers, ftp servers, image processor). Although we ensured the trainig data for the CNN

is balanced, the cost of generating benign samples and malicious samples are at di�erent

magnitudes. In particular, in order to obtain the benign training data examples for the

�ve applications, around 1TB data are being processed in the ASL-guided disassembly

stage of our work �ow. We paid around $1,000 to rent around 100 virtual CPU cores

from a cloud service provider, so that the data can be processed using reasonable amount

of time. In contrast, building malicious samples only takes minutes for each program

on a local machine from decades ago. This extremely imbalanced cost of generating

data of di�erent class labels will eventually lead to imbalanced dataset in real-world, and

therefore motivate us to further explore how our method could tackle the imbalanced

data issue. This additional research will be discussed later in Section 2.6.

All the program used for testing are compiled and deployed on an Ubuntu 16.04 32bit

server. Note one speci�c CNN should be trained for one program because the (training +

testing) dataset for one program is di�erent from that for other programs. We collect and

create 20 working ROP exploits for each of the �ve tested programs andDeepReturn

successfully detects all of them.DeepReturn can also detect all 10 ROP exploits that

bypass CFI.

2.5.1 How Big is the Data Used to Generate Benign Training

Dataset?

Collecting abundant training data is one of the most challenging tasks when utilizing the

neural network. We use the following three data sources to generate the gadget-chain-like

instruction sequences: (A) a medium size HTTP tra�c dataset in [63]; (B) all images

in ImageNet (1.2 TB in total); (C) PDF �les from arXiv (800 GB in total). We use all

(A)(B)(C) for the two web servers, i.e., nginx and apache, to do ASL-guided disassembly

(described in Section 2.4.3) and generate gadget-chain-like instruction sequences. Similarly,

we use all (B) for the image processor (i.e., ImageMagick), and all (B)(C) for the two ftp

servers (i.e., proftpd and vsftpd) to do the same job. In essence, we consider all valid

inputs for the target program. For example, all three datasets all typical tra�c that pass

web servers; image processor, however, only deals with images.

To quickly process the huge amount of data, we use a Google Cloud Platform instance

with 96 vCPUs. The memory dump size, input data, generation time, and the number
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Program
Memory
Dump
Size

HTTP
Data

ImageNet
arXiv
PDF

Input
Data
Size

Generation
Time

# of Gadget-
Chain-Like
Instruction
Sequences

# of Real
Gadget
Chains

nginx 1.4.0 3.2 MB X X X 2 TB 7 hours 40,674 40,674
apache 2.4.18 3.7 MB X X X 2 TB 7 hours 81,127 81,127
proftpd 1.3.0a 2.4 MB � X X 2 TB 7 hours 26,020 26,020

vsftpd 3.03 4.5 MB � X X 2 TB 7 hours 105,057 105,057

ImageMagick 7.08 8.5 MB � X �
1.2
TB

4 hours 46,224 46,224

Table 2.2. Generation of Gadget-Chain-Like Instruction Sequences

of generated gadget-chain-like instruction sequences are shown in Table 2.2. As a brief

summary, we generate 26k to 105k gadget-chain-like instruction sequences for di�erent

programs, respectively.

It can be veri�ed here that we do need a classi�er inDeepReturn . Otherwise, if we

simply do ASL-guided disassembly on input data and treat all potential gadget chains

as real gadget chains, all gadget-chain-like instruction sequences generated above will

become false positives. Once a deep learning model is trained for a program we intend

to protect, its deployment will assume a representative server setup in practice. However,

it should be noticed that the model training stage is a separate o�ine machine learning

process, where the training data is prepared in advance.

As explained in Section 2.4.4, for each program, we generate the same number of real

gadget chains as gadget-chain-like instruction sequences. The generation is rapid and

is done on a local workstation. Now that we have �ve datasets for the �ve programs,

respectively. Each of them contains two smaller datasets: the gadget-chain-like instruction

sequences and the real gadgets chains, which have the same number of samples.

2.5.2 Tuning the hyper-parameters of DeepReturn

Hyper-parameter tuning is a very important aspect of deep learning applications. Di�erent

hyper-parameter sets can lead to very di�erent results. In this subsection, we use grid

search [62] to empirically �nd the best hyper-parameters for our CNN. Grid search

exhaustively searches the hyper-parameter space to look for the combination of hyper-

parameters that yields the best result. InDeepReturn , we have a handful of hyper-

parameters and the grid search works well.

We implement our model using Keras and run it on NVIDIA Tesla P100 GPU.

We ran the experiment under each setting for three times and take the average value

of the accuracy. This averaged accuracy is the primary factor to compare di�erent
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hyper-parameter settings. However, simply rely on accuracy leads to a problem. For

example, let us assume 128 convolution �lters already leads to the best result. Doubling

the number and make it 256 is likely to be a waste of training time � but the accuracy

might see a tiny increase, say 0.05%. So we also consider how fast the hyper-parameters

lead to the convergence of error rate, measured in training epochs. If hyper-parameter

set a is less than 0.05% better than set b in accuracy, but at the same time the training

epochs is 20% more, we favor set b. In this way, we can not only get high accuracy, but

also avoid unnecessary training time.

We use the nginx dataset to �ne-tune the hyper-parameters. We split the whole

dataset into two subsets: a training dataset that is 80% of the whole dataset (80%

of the samples from both labels), selected at random; a test dataset that is the rest

20% of the samples. We use the training dataset to train the model and �ne-tune the

hyper-parameters.

The parameters we aim to tune and their corresponding candidate values are listed

in Table 2.3. After a grid search, we �nd the best set of hyper-parameters, which is

highlighted in Table 2.3 (these are also the values included in Section 2.4.5). We achieve

99.6% accuracy under this best setting.

Hyper-parameters Candidate Values
# of �lters (32, 16, 8)2 , (48, 24, 12), (64, 32, 16) ,

(96, 48, 24), (128, 64, 32)
�lter size (3, 3, 3), (5, 3, 3), (5, 5, 3) , (7, 5, 3),

(9, 5, 3), (9, 7, 5)
dropout rate 0.2, 0.5 , 0.8
learning rate 1, 0.1 , 0.01, 0.001

Table 2.3. Candidate values and the best value of hyper-parameters forDeepReturn

We also consider using word embedding to preprocess the data, which works very

well in NLP. But it does not help in our task. It produces similar accuracy to one-hot

encoding but the required training time is 30% longer. The longer training time can be

explained by the fact the embedding layer itself needs to be trained along with the deep

neural network. Also, instruction sequences are inherently di�erent from language data,

so the embedding is unable to improve the result.

Note that we did not use grid search to �nd the best penalizing factor. In fact, we not

only want to minimize the false positive rate, we also want to maintain a high accuracy.

However, using penalizing factor to decrease false positive rate inevitably increase false

negative rate and may impact the overall accuracy, so a decision on the balance is better

2This means the �rst layer has 32 �lters, the second has 16, and the third has 8. The notation for
�lter size is interpreted in the same way
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made manually. To illustrate this, we test an extremely large penalizing factor, 100,

and the false positive rate is 0. However, the false negative rate is high and the overall

accuracy drops to 92%, which is undesirable. On the other hand, if we use a trivial

penalizing factor 1, the false positive is 0.1%. After manually testing several penalizing

factors, we �nd a factor of 5 to be a good balance, where the false positive rate is 0.01%

and the detection rate is 99.3%. Since we have same amount of samples for the two

labels, soaccuracy = ( detection rate + (1 � false positive rate))=2, thus the overall

accuracy is still 99.6%.

A quick estimation demonstrates what 0.01% false positive rate means in real world.

Suppose a web server receives 10TB incoming tra�c per day, since the number of potential

gadget chains is rather small (40674 out of 2TB benign data), it is estimated only 20

false positives will be reported in 24 hours. Note the 10TB incoming tra�c is equivalent

to 1Gbps all the time during 24 hours, which is not a trivial amount, so the estimation

is not under-estimating.

2.5.3 Can DeepReturn Accurately Detect Gadget Chains in the

Test Dataset?

In this subsection, we evaluate the accuracy ofDeepReturn against the �ve commonly

used programs.

For every program, we select80%of the dataset as training data the rest 20% as test

data. We use the best hyper-parameters from the previous subsection, make 5-fold cross

validation and the evaluation result is shown in Table 2.4. We reach 99.3% detection

rate and 0.01% false positive rate for nginx 1.4.0, 98.7% detection rate and 0.04% false

positive rate for apache 2.4.18, 98.3% detection rate and 0.05% false positive rate for

proftpd 1.3.0a, 99.5% detection rate and 0.02% false positive rate for vsftpd 3.03, and

98.1% detection rate and 0.02% false positive rate for ImageMagick 7.08, respectively.

As we can see from the results,DeepReturn has very high detection rates and very

low false positive rates, and work well on di�erent programs.

The high accuracy shows that roughly 50k-100K samples are su�cient to train an

accurate classi�er for potential gadget chains. In contrast, for image classi�cation, millions

of samples are required to train neural networks.

Besides CNN, there are also other candidate classi�ers, e.g., RNN (LSTM), MLP and

SVM. Our evaluation shows that the CNN is best suitable for this particular task. Due

to space limitation, detailed comparisons are shown in Appendix A.
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Program CVE-ID
# of

Chains for
Training

Detection
Rate

False
Positive

Rate
Training Time Classi�cation Speed

nginx 1.4.0 2013-2028 65,078 99.3% 0.01% 45min 27,116 chains/s
apache 2.4.18 N/A 129,803 98.7% 0.04% 94min 27,120 chains/s
proftpd 1.3.0a 2008-2950 41,632 98.3% 0.05% 31min 26,730 chains/s

vsftpd 3.03 N/A 168,091 99.5% 0.02% 118min 26,020 chains/s
ImageMagick 7.08 N/A 73,958 98.1% 0.02% 55min 27,231 chains/s

Table 2.4. Evaluation results on �ve tested programs

It is also noteworthy that the best hyper-parameters tuned on nginx dataset work

well across di�erent programs. This indicates although the speci�c instruction sequences

are di�erent in di�erent programs (thus a dedicated CNN is needed), it has something in

common across di�erent programs.

We observe that the training time roughly increases linearly proportional to the size

of the training data. However, once the neural network is trained, the test speed is fast

and less sensitive to the amount of test data. In the �rst row, it only takes 0.6 seconds

to classify all test data for nginx (20% of all samples, 16,270 in total).

We also test what would happen if the amount of training data is small. In particular,

we train the same model with 5% of the nginx data (4K samples). We achieve 95.1%

detection rate and 1.2% false positive rate. They are considerably inferior to the best

achievable result. It validates that deep neural networks work better with larger training

data since the networks can discover intricate features in large data sets instead of

over-�tting small training data and missing key features.

2.5.4 Can DeepReturn Accurately Detect Real-World ROP Ex-

ploits?

In this subsection, we testDeepReturn against real-world ROP exploits that are

collected in-the-wild or generated by ROP exploit generation tools (i.e., Ropper and

ROPC).

The motivations behind these experiments are two-fold. Firstly, in the previous

subsection, we show that the trained deep neural network ofDeepReturn is an accurate

classi�er with a high detection rate and low false positive rate. However, despite our

e�orts to make the real gadget chains valid, they are not necessarily useful from an

attacker's point of view. Therefore, we need a more direct evaluation here to show

DeepReturn is able to detect real-world ROP exploits (that are not part of the training

data). Secondly, since the real gadget chains are directly generated (not from ASL-guided
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disassembly), we also need to show the ASL-guided disassembly is capable of correctly

identify the addresses of gadgets in a real gadget chain, which is the basis for our

approach.

Among the �ve tested programs, nginx and proftpd have known vulnerabilities and

we directly exploit them with ROP attack. For the rest three, we use the latest version

so there is no known vulnerability. Instead, we inject a trivial stack bu�er over�ow

vulnerability into each of them to make the exploiting possible. In fact, as long as the

exploit is a ROP attack, the underlying detail of the vulnerability has nothing to do

with the e�ectiveness of our method, so the injected vulnerabilities do not undermine

our evaluation.

For each vulnerable program, we �rst obtain one ROP exploit that leads to a shell.

For nginx, we use the attack script published in BROP [64]. For proftpd, we use the

attack script published in Exploite-DB but change it to launch a ROP attack. For

each of the rest three, we create a working exploit that leads to a shell. After that, we

manually mutate the exploit to generate 4-5 more samples for testing. For example, we

can exchange the order of several ROP gadgets without changing the behavior of the

exploit. We also substitute gadgets with new gadgets that have the same e�ects.

To further create test samples, we use Ropper to generate ROP exploits that execute

mprotect or execve. Ropper can generate di�erent exploits because we can block the

used gadgets and force it to generate new ones. Meanwhile, we create ROP exploits with

ROPC, which is a ROP compiler that can compile scripts written in a special type of

language (ROP Language, ROPL) into a gadget chain. Note that, although directly

adopting these tools is not appropriate to generate training data for our CNN model, it

can generate su�cient number of samples to evaluateDeepReturn against real ROP

attacks.

To sum up, for each of the �ve vulnerable programs, we collect and create 20 ROP

exploits. All of them are manually veri�ed to be working. i.e., achieving their designed

functionality, for example getting a shell or executing mprotect.

We then test DeepReturn against all of the 100 exploits. We �rst observe that

the ASL-guided disassembly successfully extracts the gadget addresses embedded in

the payload and obtains the corresponding instruction sequences. Subsequently, the

DNN correctly classi�es all of the potential gadget chains as real gadget chains. This

demonstrates the ASL-guided disassembler and the neural network synergize well and

the system works as designed.DeepReturn is able to detect real-world ROP exploits.

Thanks to the generalization capacity of DNN, the detection capacity ofDeepReturn
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Accuracy False Positive Rate CPU Time for Training
Train from scratch before updating 99.366% 0.017% 13 minutes
Incrementally train after updating 99.396% 0.017% 1.5 minutes

Table 2.5. Results of incremental training on proftpd with 90%-10% split

is not restricted to the ROP attacks it sees during training. In fact, it detects the blind

ROP attack which is not part of the training data. Furthermore, ROP exploits generated

by ROPC can have more than 100 gadgets, which are three times longer than the longest

one in the training dataset. They are also correctly detected.

2.5.5 Could Incremental Learning Be Leveraged to Reduce the Cost

of Retraining When a Program Is Updated?

If a protected program is updated (e.g. patched), then there could be new instruction

sequences available for attackers to utilize. Thus, we design an experiment to see whether

DeepReturn could be trained using incremental training. In particular, we want to

see if incremental training could signi�cantly reduce the cost of model retraining. It

should be noticed that this evaluation question is clearly related to the practicality of

the DeepReturn approach.

In our experiment, the data of proftpd are divided into two parts. To simulate the

software update scenario, one major part of the data will hold over 90% of all data. The

other minor part is then considered as the new instruction sequences from patching,

which is signi�cantly smaller. We conducted the experiment with two di�erent splitting

ratios: 90%-10% and 95%-5%, respectively.

After we train the model from the scratch using majority of the data, the weights in

the convolutional layers as well as the parameters in the batch normalization layers will

be �xed. Therefore, when we do incremental training later, only weights in the dense

layer of the neural network are updated to speed up the training process. This is a very

common technique in incremental training.

As shown in Table 2.5, the result shows that the performance is neither downgraded

nor improved much, which implies that incremental training for software updates is

feasible. In our experiment, since only dense layer(s) need to be incrementally trained,

the training time for newly added data is about 88% less than the time needed for

training �rst time from scratch. Therefore, we conclude that for minor software updates,

incremental training could be an ideal and cost-e�ective solution.
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1:1 Balanced 1:100 Imbalanced

False Positive Rate 0.399% 8.806%
F1-Score 0.997 0.949

Table 2.6. E�ect of Imbalanced Dataset In DeepReturn

2.6 The Imbalanced Training Data Issue

As elaborated in Section 2.5, the cost of generating training data of benign label is orders

of magnitudes greater than that of generating malicious ones. Speci�cally, it would

take more than 7 hours on average to generate bengin data for a single program on a

cloud cluster. In other words, based on the resources used to generate the benign data

introduced in Section 2.5.1, whenever the model needs to be trained, 96 vCPUs are needed

and kept running for 7 hours. Consequently, in large-scale scenarios,DeepReturn

becomes less practical, because there are many programs that can su�er from ROP

attacks so that many models need to be trained. Besides, it is widely agreed that

programs should be kept updated for security patches, so the number of training sessions

will further increase.

In the cases ofDeepReturn and any other deep learning applications in cybersecurity,

the essence of the imbalanced data issue is the trade-o� between cost and security. For

example, the model maintainer can choose to train the model with the imbalanced

dataset, which can cause the model to be biased. To illustrate this idea in terms of

DeepReturn , we trained the CNN model using a dataset with 100 times more (still

much less extreme than the ratio between the costs) malicious samples than that of

benign samples.

As shown in Table 2.6, the results essentially illustrate a trade-o� between cost and

security: choosing imbalanced data will leave the system to be inadequately protected

(up to 8.8% false positive rate, whereas choosing to use balanced data can increase the

cost signi�cantly.

Therefore, mitigating the imbalanced data issue can avoid such di�cult cost vs.

security trade-o�s for DeepReturn . We observe that in our case, not all data is hard to

generate, and accordingly we propose a transfer learning method that can fully leverage

the data only with the labels that are easy to generate, and requires a minimal number

of hard-to-generate data.
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2.7 Tackle Imbalanced Data Issue Using Domain Adapta-

tion

To alleviate the imbalanced data issue inDeepReturn , we adopted domain adaptation,

a kind of transfer learning, for the CNN model used. In essence, we train a model using

data from two domains (i.e. data from two di�erent programs): source domain and target

domain. The data in the source domain is balanced; whereas the data in the target

domain is imbalanced. The goal is to train a model to perform well on target domain

data.

From the perspective of transfer learning, the imbalanced data issue inDeepReturn

can be modeled as a transductive learning problems where the data domains are di�erent,

but the tasks are the same. In particular, since the gadgets available can be di�erent

in di�erent programs, the underlying distribution of the training data extracted from

di�erent program will be di�erent. This observation motivate us to use domain adaptation

to solve this transductive learning problem.

We adopted a domain adaptation method based on Maximum Mean Discrepancy

(MMD), which is introduced by [55]. MMD can be used as a distance between two

distributions, given samples retrieved from each distribution. Formally, MMD is de�ned in

reproducing kernel Hilbert space (RKHS), denoted asH . Let the backbone of our neural

network be f � (x), where� are model parameters. Then, given two random variablesX

and Y with probability distributions p and q, respectively, the MMD is de�ned as:

MMD (f � ; p; q) = k E
x
[f � (X )] � E

y
[f � (Y)]kH (2.2)

Here for Ex [f � (X )] and Ey[f � (Y)], we use Monte Carlo estimation, so thatEx [f � (X )] =
1
m

P m
i =0 k(�; f � (x i )) . The kernel k used is the Gaussian kernel, which is de�ned as:

k(x ; y ) = exp

 

�
kx � yk2

2� 2

!

(2.3)

We �rst formally de�ne our deep domain adaptation layer, and then illustrate the

whole architecture in Figure 2.6. Let the source domain data beX , and target domain

data to be Y, MMD then can be obtained using Equation 2.2, which will be one of the

loss functions. In our case, random variableX and Y represent the data generated from

two di�erent programs. By minimizing the MMD, we ensure that f � (X ) and f � (Y) will

have similar underlying distributions, so that the classi�cation performance could be
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Figure 2.6. Architecture of the Deep Domain Adaptation Model

more accurate for the target domain data. The other part of the loss function will be

the regular entropy loss. To calculate the entropy loss, extra layers after thef � (X ) and

f � (Y) are added. Let the extra layers to beg� 0, then using all data samplesZ in both

domain, whereZ = X [ Y, the cross entropy loss can be computed.

As shown in Figure 2.6, both source and target domain data are needed during the

training process. The �nal outputs from the source domain data and their labels will be

used to construct the entropy loss; whereas the output of the MMD layer,intermediate

output 5, will be used to calculate the MMD loss using Equation 2.2. To obtain the

MMD loss, the output of the MMD layer from both source domain and target domain

data are needed in one training step. Note that we do not form one single loss function

by summing up the cross entropy loss and MMD loss. In each training step, although

the gradients of both losses with respect to the model parameters are computed in one
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backpropagation iteration, but the gradients are applied separately. The details are

shown in Section 2.8.

Algorithm 1 Customized Training Loop for Imbalanced Data
Require: Maximum epochE

1: BackboneConvolutional layers f �

2: Top Fully-Connected layers g� 0

3: Current epoche = 0
4: Best model(f best

� , gbest
� 0 )

5: Best accuracyaccbest = 0
6: while e < E do
7: Update f � and g� 0 using balanced data from source domain
8: Update f � using Eq. 2.2 and malicious data samples from both domains
9: Validate the model and get the validation accuracyacc

10: if acc > accbest then
11: f best

� = f �

12: gbest
� 0 = g� 0

13: accbest = acc
14: end if
15: e = e+ 1;
16: end while
17: return (f best

� , gbest
� 0 )

2.8 Training Using No Benign Data in Target Domain

Recall in our problem, benign data is very di�cult to generate. In other words, the

target domain could be extremely imbalanced, and in fact, it is preferred thatno benign

training data is needed in the target domain. However, if one only includes benign

data in a dataset, the underlying distribution will be also changed. Consequently, if

we still directly adopt a regular training method using MMD and entropy loss, we are

inappropriately trying to create a similar distribution for two datasets with di�erent

numbers of classes. Also, di�erent from the regular transductive learning, the label

information is known in the target domain, which should be leveraged.

Therefore, we introduce our customized training loop, which is shown in Algorithm 1.

For each epoch, the entropy loss will �rst be calculated and minimized using the balanced

data from the source domain, and then the MMD will be calculated and minimized using

only malicious data in both domains. The bene�ts are: 1) the model will not be biased to

any class for the classi�cation task, and 2) the MMD loss will not force the intermediate
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Train Validation Test

Number of M Samples (Source) 20000 - -
Number of B Samples (Source) 20000 - -
Number of M Samples (Target) 20000 1750 7500
Number of B Samples (Target) - 1750 1200

Table 2.7. Number of Data Samples Used During Training, Validation and Testing

outputs of the benign data to be similar to those of the malicious data.

To prevent over�tting and achieve the best test accuracy, we use early stopping. Note

that the validation dataset for the early stopping purpose contains benign target domain

data. Although the benign data should be avoided in the target domain, we emphasize

the importance of a balanced validation dataset for an appropriate early stopping point

to prevent over�tting, and will discuss the number of validation data samples required in

Section 2.9.

In our experiments, we use Adam optimizer [65] with a learning rate of 0.001; the

maximum epochE is 25, and the batch size is 32.

2.9 Evaluation of DeepReturn with Domain Adaptation

In this evaluations, the baseline is de�ned as the performance ofDeepReturn trained

using one program performing ROP detection tasks on a di�erent program. To make the

comparison fair, architectures and the training hyperparameters are as close as possible.

We �rst introduce the imbalanced dataset used for evaluation. Table 2.7 summarizes

the number of data samples used during training, validation and testing. Note that M is

for malicious, and B is for benign. The maximum length of the raw instruction sequence

is 128 bytes long, and gadget chains contain gadgets end with not onlyret instructions

but also jmp instructions.

Both benign and malicious data are generated in the same ways as described in

Section 2.5.1. To generate benign data, about 2 TB PDF documents and image data are

used as inputs for source domain programs. There are 20,000 benign data samples and

20,000 malicious data samples for source domain programs; there are 20,000 malicious

data samples for target domain. For validation, there are 1750 benign and 1750 malicious

target domain program data samples available. Then for the test, there are 1200 benign

and 7500 malicious target domain program data samples. Note that for programs only

used as a target domain program, only a very few number of benign data samples for

30



Source Target
FPR F1 DR

Baseline Ours Baseline Ours Baseline Ours

proftpd nginx 0.0217 0.0192 0.9941 0.9881 0.9957 0.9829
proftpd httpd 0.0167 0.0183 0.9923 0.9843 0.9904 0.9754
proftpd vsftpd 0.0392 0.0125 0.9484 0.9709 0.9142 0.9475
vsftpd nginx 0.0500 0.0475 0.9735 0.9732 0.9649 0.9635
vsftpd httpd 0.0283 0.0333 0.9508 0.9601 0.9151 0.9339
vsftpd proftpd 0.0708 0.0433 0.9733 0.9452 0.9713 0.9096

Average 0.0378 0.0290 0.9723 0.9705 0.9586 0.9521

Table 2.8. Performance of the ROP Detection on Target Domain Programs using Source
Domain Model and Domain Adaptation Model

validation and testing are prepared.

Accuracy is not selected as one of the performance metrics, because the test data in

the target domain is extremely imbalanced. Instead, we use F1 score, false positive rate

(FPR), and detection rate (DR). FPR is important because false positives are one of the

most important concerns in the industry for cyber-attack detection systems.

We use 4 server-side programs to evaluate our method. The 4 programs are proftpd

1.3.0a, vsftpd 3.03, nginx 1.4.0 and Apache httpd 2.2.18. Only proftpd 1.3.0a and vsftpd

3.03 are used as source domain programs.

In the following subsections, we will answer following research questions in the

following subsections:

2.9.1 Can our method provide improvement, compared to directly applying source domain

model to target domain data?

2.9.2 Can our method be adopted to other model architectures?

2.9.3 How is our method compared to the original model?

2.9.4 What is the minimum amount of validation data needed?

2.9.5 How is the knowledge being transferred?

2.9.1 Can Our Method Provide Improvement Across Domains?

An important questions is whether our model can perform better than directly applying

a model trained using one program to another program. In this evaluation, the original
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CNN model used in DeepReturn is adopted, and we have conducted 6 experiments using

di�erent setups, as shown in Table 2.8.

In Table 2.8, the performance metrics that have improvement with respect to the

baseline are in bold. It is observed that when transfer learning is not used (i.e. baseline),

the FPRs are usually higher. Among the six scenarios, there are 3 cases where the F1

score improved, 4 cases where the FPR improved, and 3 cases where the DR improved.

The best result achieved is when using proftpd as the source domain program and

vsftpd as the target domain program. The improvement of the FPR is from 0.0392 to

0.0125 and the DR is from 0.9142 to 0.9475. Meanwhile, we also observe cases where

the performance is not improved, such as when proftpd is the target domain program

and vsftpd is the source domain program, where the DR dropped from 0.9713 to 0.9096.

One observation is that whenever proftpd is used as a source domain program, the

performance is already fairly good without using the domain adaptation (2 out of 3 cases).

In contrast, when vsftpd is used as a source domain program, the domain adaptation

seems e�ective and improves the performance. One potential reason for the observation

is that proftpd data may include many useful features for the ROP detection.

Source Target
TP FP

Baseline Ours Baseline Ours

vsftpd nginx 3329 3324 60 57
vsftpd httpd 3157 3222 34 40
vsftpd proftpd 3351 3138 85 52
proftpd nginx 3435 3391 26 23
proftpd httpd 3417 3365 20 22
proftpd vsftpd 3154 3269 47 15

Total 19843 19709 272 209

Table 2.9. Number of True Positives and False Positives of Domain Adaptation Model

Table 2.9 shows the comparison between the number of detected positives (ROP

attacks) and that of false positives. According to the results, we found that the total

number of false positives is reduced by more than 20%, but the total number of detected

positives is only reduced by less than 0.01%. Therefore, we argue that our method can

signi�cantly improve the FPR with a small amount of trade-o� on the DR.

Regarding the problem to answer, the performance of the model is largely depending

on the programs in both domains. In cases where the source domain program can provide

e�ective features for ROP detection for the target domain program, our model may

be less e�ective; however, whenever the model trained using source domain program
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performs poorly on target domain program, our model performs well. In most cases, the

FPRs are signi�cantly lower.

Lastly, our domain adaptation model sometimes make things worse. To explain, it

is important to remember source domain models are trained using balanced data, so

from their perspectives, our method will cause a sub-e�ect: making the data imbalanced.

Therefore, in case when two programs contain similar gadgets, this sub-e�ect may

dominate the performance, as the source model already can do detection on the target

program.

2.9.2 Can Our Method Be Adopted to Other Model Architectures?

Although DeepReturn adopted CNN, in fact it can use any model architectures if

they perform better. Accordingly, we want to evaluate the domain adaptation strategy

on other model architectures. To verify, we selected two di�erent models: RNN and

Hierarchical RNN proposed in DeepVSA [66]. In this experiment, we have made the

instruction sequences shorter, since RNN model usually perform poorly on long sequences.

Source Target
DR FPR

Baseline Ours Baseline Ours

RNN proftpd nginx 0.9800 0.9899 0.1292 0.0758
proftpd httpd 0.9887 0.9646 0.0867 0.0717
proftpd vsftpd 0.9226 0.9675 0.1192 0.1833

Hierarchical proftpd nginx 0.9064 0.7948 0.1575 0.1033
RNN proftpd httpd 0.8623 0.8096 0.0800 0.0800

proftpd vsftpd 0.8446 0.7203 0.2283 0.0967

Total 0.9174 0.8744 0.1335 0.1018

Table 2.10. Performance on RNN and Hierarchical RNN

For each model, we have done 3 experiments in di�erent setups. The result shows

that for both models, similar to the results shown in Section 2.9.1, the FPR usually

will have improvement, with little DR sacri�ce. This trade-o� pattern is clearly shown

in the last row in Table 2.10. In Hierarchical RNN, where the baseline is worse, this

trade-o� pattern is even more common. For example, although our approach achieves

lower detection rate than the baseline, it reduces the FPR of vsftpd from 0.2283 to

0.0967, and reduces the FPR of nginx from 0.1575 to 0.1033.

Since we can observe similar trade-o� pattern in di�erent models, we argue that our

method can be adopted to di�erent models.
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Program Orig. Balanced Ours Orig. Imbalanced

nginx 0.0001 0.0284 0.2201
httpd 0.0004 0.0258 0.2530
vsftpd 0.0002 0.0125 0.0857
proftpd 0.0002 0.0433 0.0904

Average 0.0003 0.0275 0.1623

Table 2.11. False Positive Rate Comparison with Model Trained Using Balanced Data

2.9.3 Compared to Original Models Trained Using Balanced and

Imbalanced Data

It is also important to see the comparison to an original classi�cation model trained

using a balanced or an imbalanced dataset. Intuitively, the original model trained using

balanced dataset should outperform our method, and the original model trained using

imbalanced dataset should perform worse. Using FPR as the major metric, this section

evaluates such scenarios in detail.

The comparison is shown in Table 2.11. In the experiments of the original model

using imbalanced data, the number of negative samples to the number of positive samples

is 1:100. Note that since we may have multiple results for one target program (as shown

in Table 2.8), the FPRs for our model (second column) in the tables are the average of

all results for each program.

Compared to the original model trained using balanced data, the average FPR has

increased from 0.0003 to 0.0275. The performance deterioration in FPR is very signi�cant,

because the FPR when balanced data are provided is very low. For example, the FPR in

this case for proftpd reaches 0.0904.

Compared to the original model trained using imbalanced data, we can see very

signi�cant deterioration in the FPR, which is expected. Since there are 100 times more

positive samples than negative ones in the training data, the trained model is biased and

tends to predict positive in most of the cases. In the worst case here, the httpd, the FPR

is 0.2530, so that about 1/4 of the negative test samples are misclassi�ed.

In conclusion, the shown result follows the intuition: the original model trained

using balanced dataset performs better, and the original model trained using imbalanced

dataset performs worse.
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Figure 2.7. FPR & F1 VS. Number of Validation Data

2.9.4 What is the minimum number of validation data needed?

As explained in Section 2.5, generating benign data is expensive, and should be avoided

as much as possible. Therefore, one important concern is the number of validation data

needed during the training phase, because some benign data samples in the target domain

are needed for validation.

Extra experiments are conducted to �nd an appropriate amount of validation data

needed. The source domain program is proftpd and target domain program is vsfptd.

The result is shown in Figure 2.7. In Figure 2.7, the test FPR has a decreasing trend

when the number of validation data increases. However, F1 score does not has a clear

trend. For example, within 100 validation data, FPR could be as high as 0.13; however,

after increasing the number of validation data to over 600, the highest FPR is only about

0.03. In contrast, the F1 score does not show any trends as the validation data increases,

which is still mostly between 0.92 to 0.96.

Though the FPR has a decreasing trend while the validation data size increases, the

trend is far from signi�cant and the improvement is very limited. It is important to point

out that requiring few validation data does not mean no validation data needed at all.

In fact, from our experiment, it is extremely important to have validation data and early

stopping during the training phase. The MMD loss is very vulnerable to over�tting, and

can result in very bad test performance.
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2.9.5 How is the knowledge being transferred?

An interesting question is whether the knowledge is actually transferred, and how the

knowledge is transferred. In this section, we investigate the questions using proftpd as

the source domain program and vsfptd as the target domain program.

Starting with a machine learning perspective, one important factor to consider is

the MMD value. Remember MMD can be used as a distance metric for distributions,

so that a small value of MMD indicates the model can learn similar representations for

data from two domains. Since MMD is part of the loss function, the gradient descent

algorithm can guarantee the decrease of the MMD.

Next we dig deeper into this question. We �rst propose two hypotheses:

H1: Transfer learning helps the model to capture knowledge in target domain and

discard features that are not shared by two domains.

H2: Transfer learning will not make the model discard source domain knowledge that is

useful.

To test H1 , we �rst identify a sample from the target domain that is correctly

classi�ed by our model and incorrectly classi�ed by the baseline model. Listing 2.1 shows

the disassembly of the selected sample. By evaluating the semantics of this gadget-chain

snippet, it contains many gadgets for manipulating the stack for jumping to other gadgets

(e.g. sequence ofpops), which could be very program-speci�c because of the di�erent

address space layout for di�erent programs. Since this gadget-chain is target-domain-

speci�c, it is not very surprising that the model completely trained using the source

domain data incorrectly classi�es it.

1 ; Stack Manipulat ion Gadgets
2 . . .
3 xor eax , eax
4 pop ebx
5 pop e s i
6 pop ed i
7 r e t
8 . . .
9 add esp , 0x50

10 pop ebx
11 pop e s i
12 pop ed i
13 r e t

Code 2.1. Selected Sample Snippet for H1
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We also evaluate the uniqueness of the gadget-chain quantitatively by calculating

the dissimilarity between the instruction sequences using Longest Common Subsequence

(LCS) of opcodes. We �rst �nd a baseline by calculating the combination pairwise

average LCS between source domain and target domain instruction sequences, which is

18.35; then we �nd the average LCS of the sample in Listing 2.1 and all other data in

source domain, which is 19.42. From this result, we conclude that the selected sample

shown in Listing 2.1 is fairly target domain speci�c, and we expect the extracted feature

from this example using our transfer learning model and baseline model should be more

di�erent than average. The intuition is that target domain special cases should be treated

specially, and our model will capture di�erent features to make the classi�cation correct.

The similarity between the extracted features can be measured by calculating the

euclidean distances between the intermediate outputs from two models. Since the

baseline model and our model are trained separately, it is not appropriate to make

direct comparison between the intermediate outputs from two models. Instead, we �rst

estimate the distance between two intermediate output spaces as baseline by averaging

the combination pairwise distances of all intermediate outputs from both domains, which

turns out to be 1.26. Then the average distance between the intermediate output of the

selected sample and all source domain samples is calculated, which is 1.38. This result

shows that compared to most of the other samples in the target domain, the intermediate

output of the selected target domain sample is fairly distinct from the intermediate

outputs of the source domain.

To test H2 , we want to �nd two similar instruction sequences, one from each domain,

and see if their intermediate outputs are similar as well. The intuition is that since

the transferred model can inherit the useful features, it can extract similar features

from two similar instruction sequences from di�erent domains. Listing 2.2 and Listing

2.3 show two similar data samples (i.e. instruction sequences) from the two domains,

respectively. We �rst show the similarity between the two gadget-chain snippets using

semantic explanation. As shown in the code snippets, both gadget-chain snippets are

trying to �rst manipulate the stack for the next gadget, and then manipulate theeax

register to initialize system calls. However, since it is from di�erent programs, we can see

that the actual instructions are di�erent, but some common gadgets can still be found.

Then, we use a quanti�ed distance measure to show the similarity. First, the baseline

distance is the average euclidean distance of every possible pair of source and target

domain intermediate outputs from our trained model (i.e. the combination of the set).

Note that di�erent from what has been done in H1, this time all the intermediate outputs
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1 ; Manipulate the Stack
2 add esp , 0xc
3 mov eax , ed i
4 pop ebx
5 pop e s i
6 pop ed i
7 pop ebp
8 r e t
9

10 ; I n i t i a l i z e System Cal l
11 push cs
12 sub al , 0x41
13 push cs
14 xor byte pt r . . .
15 adc al , 0x41
16 r e t
17 . . .
18 inc e s i
19 push cs
20 xor byte pt r . . .
21 adc al , 0x45
22 r e t

Code 2.2. Selected Sample Snippet From
Source Domain (proftpd) For H2.

1 ; Manipulate the Stack
2 add esp , 0xc
3 pop ebx
4 pop e s i
5 pop ed i
6 pop ebp
7 jmp eax
8
9 ; I n i t i a l i z e System Cal l

10 add eax , 0 xc0310001
11 r e t
12
13 push cs
14 mov al , byte pt r . . .
15 add dword pt r . . .
16 push cs
17 adc al , 0x41
18 r e t

Code 2.3. Selected Sample From Target
Domain (vsftpd) For H2

are from our trained transfer learning model. The baseline distance is 0.0141, and the

distance between the intermediate outputs of the two code snippets in Listing 2.2 and

Listing 2.3 is 0.0054. The distances show that the two code snippets selected have similar

intermediate outputs.

2.10 Final Remark: Comparing to Traditional Methods

There are many existing traditional ROP detection methods. Compared to them, the

deep learning based methods have two major advantages: 1) minimal or no overhead

and 2) less human e�ort on identifying heuristics. However, the assumption for the two

advantages is that the deep learning methods have comparable performances.

In Table 2.12, we have selected three traditional methods to do comparisons on

di�erent aspects, where two of them are heuristic-based, and one of them is CFI-based.

For the two heuristic-methods, DROP and kBouncer, both FPRs are 0, and the

DRs are not reported. The overheads of kBouncer and DROP are about 4% and 500%,

respectively. Heuristic-based methods usually have extremely low FPR, but as a trade

o�, their DR may not be satisfying and could have substantial overhead. Besides,

heuristic-based methods may need extra human labor to craft heuristics and attributes.
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Method Detection Performance Overhead

DROP [25] 0% FPR; � 500%
kBouncer [27] 0% FPR; � 4%;

CFI [43] N/A 0% - 5% majority; � 20% worst case
DeepReturn 0.01% FPR 99.30% DR 0%;

DeepReturn (DA) 2.90% FPR 95.21% DR 0%;

Table 2.12. Comparison Between Di�erent ROP Detection Methods

CFI-based methods are considered as very accurate in detection, but the overhead

cannot be avoided. In [43], the majority of reported programs have overhead about 0%

to 5%. Furthermore, usually the overhead varies signi�cantly on di�erent programs,

because any compiler optimizations, obfuscations, and/or even program semantic (i.e.

needs of frequent branching) will a�ect the overhead. As a result, the reported worst

case overhead in [43] is about 20%. Regarding the performance, although detection

performance is not measured in [20], it is mentioned in [20] that"the protection is only

as good as the control �ow graph being enforced", and the approach proposed in [20] can

only handle a portion of the security-relevant indirect control �ow transfers. For the

indirect �ow transfers yet to be handled, it is stated in [20] that they might be handled

if "the programmer or higher-level language provided more precise insight."

Finally, regarding our proposed method, we evaluatedDeepReturn in two scenarios.

The �rst scenario is whenDeepReturn is used in ideal cases: balanced data can be

obtained for every program. The second one is whenDeepReturn is used in realistic

cases: balanced data only available for few programs, so that domain adaptation (DA)

is used. DeepReturn in ideal scenario has an FPR of 0.01% and a DR of 99.30%.

Meanwhile, DeepReturn in realistic scenario where domain adaptation is used has an

FPR of 2.90% and a DR of 95.21%. Regarding the overhead, since the detection system

will be deployed outside the protected program, there is therefore no overhead.
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Chapter 3 |
Identifying Privilege Related Vari-
ables in Programs Using LLM

3.1 Executive Summary

Many programs involves operations and logic manipulating user privileges, which is

essential for the security of an organization. Therefore, one common malicious goal of

attackers is to obtain or escalate the privileges [67, 68], causing privilege leakage. To

protect the program and the organization against privilege leakage attacks, it is important

to eliminate the vulnerabilities which can be exploited to achieve such attacks. Unfor-

tunately, while memory vulnerabilities are less challenging to �nd, logic vulnerabilities

are much more imminent, harmful and di�cult to identify. Accordingly, many analysts

choose to �nd user privilege related (UPR) variables �rst as start points to investigate

the code where the UPR variables may be used to see if there exists any vulnerabilities,

especially the logic ones. In this paper, we introduce a large language model (LLM)

work�ow that can assist analysts in identifying such UPR variables, which is considered

to be a very time-consuming task. Speci�cally, our tool will audit all the variables in a

program and output a UPR score, which is the degree of relationship (closeness) between

the variable and user privileges, for each variable. Those variables with high UPR scores

are essentially potential UPR variables, which should be manually investigated. Our

experiments show that using a typical UPR score threshold (i.e., UPR score> 0.8), the

false positive rate (FPR) is only 13.49%, while UPR variable found is signi�cantly more

than that of the heuristic based method.
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3.2 Introduction

Many organizations and companies run server-side programs to provide services to

various users, and therefore, it is necessary to properly control the privileges each user

may possess. Typically, user privileges related operations implemented in a server-side

program include but not limited to authentications and authorizations (e.g., the mapping

between user IDs and �le/data permissions). Such user privilege related operations

are often critical in terms of the security of the programs, the servers, and the service

providers. Speci�cally, service providers need to carefully control the privileges granted to

users, preventing the privilege leakage risks. Thus, in ideal cases, these privilege related

operations should be implemented carefully (by very experienced programmers) to guard

these operations from being a�ected by memory corruptions (e.g., bu�er over�ows) and

exploitations of logic vulnerabilities. However, it is observed in the real world that many

privilege related operations are not adequately guarded.

Since many privilege related operations are not yet adequately guarded, many service

providers regularly review and analyze their source code to �nd vulnerabilities that may

cause user privilege leakage. In general, the relevant vulnerabilities can be categorized

into two types: memory corruption vulnerabilities and logic vulnerabilities. Memory

corruptions at runtime, such as bu�er over�ows and integer over�ows, are regularly

exploited by attackers. By providing crafted payload can an attacker modify certain

values in the program memory, and therefore launch various attacks, including control

data attacks (e.g. ROP [18,19]) and non-control data attacks (e.g. DOP [69]). Logic

vulnerabilities are vulnerabilities related to the program logic only, and the corresponding

exploitations usually do not result in any memory corruption errors. One type of logic

vulnerability of privilege leakage is hard-coded secrets, such as API keys, tokens, etc.

Some hard-coded secrets can be very inconspicuous. For example, if a programmer

logs the plaintext passwords into the log �le, then the passwords can be seen by any

person who has access to this log �le, essentially causing privilege leakage. Code 3.1

illustrates such a case, which we will discuss in detail in Section 3.4. Another type of logic

vulnerability is related to web resource access in which a portion of a URL represents the

location of a �le/resource on a web server. This vulnerability makes the path traversal

attack possible so that an attacker can manipulate the path in a URL to access �les or

directories that they shouldn't have access to.

Although service providers are strongly motivated to identify such logic vulnerabilities,

this is not a trivial task. On the one hand, the program's execution and functionality are
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not interrupted by such privilege-related logic bugs, which makes it very challenging to

detect them through automatic bug �nding tools (such as Fuzz testing tools) relying on

crashes or sanitizers to detect the abnormal program behaviors. On the other hand, since

such vulnerabilities are blended in the program logic, a good understanding of certain

higher-level program semantics is usually required. As a result, large tech companies still

rely on code review process to discover and eliminate such vulnerabilities.

In order to make the code review process successful, the very �rst challenge to solve is

to spot the privilege-related operations and code statements. As the privilege operation

logic is diverse, real-world analysts usually �nd user privilege related (UPR ) variables

�rst instead of directly spotting the code statements. Take the popular static analysis

tool semgrepused in industry as an example, more than 40% of their detection rules

focus on specifying the patterns that are related to UPR variables. Another merit of

�nding UPR variables instead of the code statements is that some variables contain

sensitive information, so that the variables themselves need to be investigated. However,

�nding UPR variables is not an easy task either, since there are still various types of

UPR variables, such as passwords, API keys, tokens, etc.

Although it is very important to identify UPR variables, existing works unfortunately

mainly rely on heuristic rules (such as regular expressions), whose scalability is limited

when screening large code bases or porting to new applications. For example, many

semgreprules leverage regular expressions to match the potential keywords that could

exist in UPR variables. When using regular expressions to discover UPR variables, one

can easily foresee that this approach is likely to su�er from a high false negative rate. In

addition, based on our experiments in Section 3.7.3, we also found that this approach could

su�er from a high false positive rate as well. The unsatisfying performance of heuristic-

based methods is mainly caused by the lacking of explicit patterns for UPR variables.

Speci�cally, there is no easy way to summarize all the features and characteristics of

UPR variables, as whether a variable is UPR largely depends on higher-level application

logic. For example, although HTTP servers often have �le and CGI paths, FTP servers

and SSH/Telnet servers don't.

Key Observation. Since user privileges are related to the logical level of program

understanding, it is necessary to analyze the application logic of the program before

accurately discovering UPR variables.

However, understanding the role of each variable in terms of the business/application

logic of the program is non-trivial. Several previous work [70� 72] strive to leverage pre-

trained language models to gain understanding of the program given the code; however,
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the gained understanding is not very satisfying. Fortunately, since the emergence of large

language models (LLM) such as ChatGPT, program comprehension tasks become less

challenging, and therefore it becomes more feasible to achieve AI-assisted UPR variable

identi�cation.

Despite the promising performance shown by LLMs, it is still non-trivial to build a

practical LLM work�ow to detect UPR variables. As we will shortly show in Section 3.4.3,

even for one of the most powerful LLMs, GPT-4, researchers will encounter challenges

when directly prompting a LLM to �nd UPR variables given the source code. Speci�cally,

it is widely observed that as the input context length grows, the performance of the LLM

deteriorates [73� 77], so that identifying UPR variables in long code snippets becomes

less e�ective.

In this paper, we propose a novel LLM work�ow that can help analysts to identify

UPR variables in a program with any size. Speci�cally,our approach combines static

program analysis and LLM to audit each variable in a program, so that each variable

will be given a UPR score, which can re�ect the degree of relevance of a variable to user

privileges. Our approach avoids the drawbacks introduced by directly prompting a LLM

to �nd UPR variables by focusing on leverage the LLM at statement level instead of

supplying LLM with very long code snippets. The UPR score will be scaled between

0 to 10, where 0 means the variable is completely not related to user privileges. After

the UPR scores are given to all the variables, analysts will be able to investigate those

variables with higher scores to con�rm whether a variable is UPR. To summarize, our

contributions include:

ˆ We propose a novel LLM work�ow that can help human analysts to identify UPR

variables in a program of any size.

ˆ We have evaluated the proposed method by investigating the reported potential

UPR variables manually. According to our experiments presented in Section 3.7.2,

when only investigating the top variables with highest UPR scores (> 8.0), only

13.49% false positive rate (FPR) is reported, and only less than 15% of the variables

need manual investigation. With that being said, analysts may save up to 85%

of the time comparing to manually checking all the variables in a program while

looking for UPR variables.

ˆ We have compare the proposed method with the widely-adopted heuristic based

method, whose heuristic rules are included. It is shown that our method can

identify signi�cantly more UPR variables while maintaining much less FPR.
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3.3 Background

3.3.1 Program Dependency Analysis

Program dependence analysis is fundamental for various program analysis tasks, such as

program slicing [78], and program comprehension [79]. It is used to identify the control

and data dependence relations between statements (at source code level) or instructions

(at binary level) in a program. Control dependence describes a situation in which whether

a statement will be executed is a�ected by another statement. If whether statement A

will be executed depends on the execution result of statement B, then statement A is said

to be control dependent to statement B. Data dependence describes a relation between

statements based on variable de�nition and usage. If statement A used a variable de�ned

at statement B, then statement A is data dependent on statement B.

Typically there exists numerous pairs of such dependence relations, and therefore

most program dependence analysis methods rely on the program dependence graph [80]

(PDG) to represent both control and data dependence. Each nodes in the source-code

level PDG could be either code statement, expressions, or variable. Intuitively, nodes

that are connected by an edge are considered to have very close relationship, so that

program dependence relations can be used to track the "side e�ect" of a code statement.

3.3.2 Large Language Model in Software Engineering and Security

Large language models (LLMs) have been attracting attentions from researchers of various

�elds, after the release of ChatGPT. Since then, researchers in the �eld of software security

and software engineering have started exploring how LLM may assist solving various

tasks, such as program repair [77,81], program testing [82], and fuzzing [83]. As more

and more researchers start working on this �eld, the contributions of most of works can

be categorized into 3 categories: 1) prompt engineering, 2) LLM �ne-tuning, and 3)

work�ow design.

Though LLMs are promising in helping solving software challegnes, adopting LLM

could be non-trivial. For example, despite the diversity of papers using LLM to solve

software challenges, many of them involve using LLM to generate code. Indeed LLM is

very powerful in generating code, but it is also true that the quality of generated code

snippets are usually unpredictable. Furthermore, the quality of the LLM output can be

greatly a�ected by the context length [73� 77], which introduces challenges when working

with long code snippets.
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3.4 Motivations and Problem Statement

3.4.1 Importance of UPR Variables

Many server side programs involves data operations, such as CRUD operations in web

servers. Since a great number of users may have the access to the server, it is necessary to

limit the privileges each user have, so that they are only allowed to access and/or modify

the data for which they have authorization. The simplest example is the credential

information of user accounts. If the the password of a user is leaked, an attacker can

easily get all the privileges that user bear.

Accordingly, goals of many cyberattack are essentially gaining or escalating privi-

leges (i.e. privilege leakage), and therefore it is crucial to patch vulnerabilities which

can be exploit to achieve privilege leakage. Since both memory [17� 19] and logical

vulnerabilities [69,84] may be exploit to achieve potential privilege leakage, �nding such

vulnerability in the program becomes non-trivial. In particular, while some existing

methods such as fuzzing may be used to �nd memory vulnerabilities automatically, there

is no e�ective ways to �nd logic bugs. In some cases, even inappropriate coding practices

may expose the privilege related information in danger, such as hard-coded tokens in

source code managed by version control systems (e.g., git). Code 3.1 and Code 3.2

1 // improper logging pract ice
2 logging . INFO("%s" , password )
3 ...

Code 3.1. An example of improper logging practice.

1 ...
2 # hardcoded secrets
3 api_key = " YOUR_OPENAI_API_KEY "
4 response_round_1 = openai . Complet ion . create (
5 engine =model ,
6 prompt = prompt_round_1 ,
7 max_tokens =150
8 )
9 ...

Code 3.2. An example of hardcoded secrets.

illustrates two simple cases where logic vulnerability may lead to privilege leak. In

Code 3.1, the program will log the plaintext password into the log �le, which may be
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accessed by other users. If the leaked password is obtained by an attacker, obviously

certain privilege will be available to the attacker. In Code 3.2, an API key is hardcoded

in the source code, which could be catastrophic if the source code is under version control.

In the events of the version control synchronizing with an remote server, many users will

be able to access this hardcoded API key.

Therefore, to e�ciently review the privileges handling logic in a program, real-world

analysts usually start from identifying those variables containing information related to

user privilege. However, it is impractical to manually analyze every single variables in

the programs, especially for organizations who have huge code bases.

3.4.2 Existing Methods to Identify UPR Variables

Only without considering the cost of time is it possible to have analysts manually identify

all the UPR variables. A medium size program (< 10K lines of code) may contain

thousands of variables, so that analyzing them one by one could be extremely time

consuming and exhausting.

On the other hand, automatically identifying UPR variables is very challenging,

because they are closely related to the high-level semantics of the program. In other

words, whether they are UPR is partially, if not completely, depending on the functionality

of the program. Therefore, no explicit general pattern can be found for the UPR variables.

Consequently, existing UPR variable detection methods are mostly heuristic-based,

and a typical strategy adopted by real-world companies is to implement such heuristics

using commercial static analysis tool, such asSemgrep, to handle their large-scale code

bases. For example, a very common heuristic is to detect UPR variables by investigating

the names of UPR variables, because UPR variables may contains certain user privilege

related keywords (e.g. key, token, password, etc.). According, this variable name matching

heuristic will be often implemented as regular expression.

Unfortunately, such heuristic-based methods can only cover cases which are speci�ed

in the heuristic rules. Using the variable name matching heuristic as an example, this

strategy obviously will omit those UPR variables with less informative names. In addition,

a variable containing user privilege related keywords is not necessarily a UPR variables.

For example, usually a variable namedtoken could be a UPR variable, but a variable

named token_type is not likely to be a UPR variable. Furthermore, creating such

heuristics requires human analysts to enumerate as many possibilities as possible, causing

scalability issues.

Another challenge is that the in�uence of a UPR variable could be propagated to
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other variables, making other variables to be UPR. This implies that the dependencies

between variables are also important when determine whether a variable is UPR. Thus,

there also exist taint-analysis based heuristics to detect UPR variable, which set user

privilege related API calls (e.g.,setuid , setgid , etc.) as taint sinks. However, such

detection method can only be used to �nd UPR variables that will a�ect the UPR API

calls, leaving a substantial number of UPR variables undetected.

As a result, from analysts' perspective, it is desirable to have an automatic UPR

variable detection tool that can save them time and e�orts, while reporting as many

UPR variables as possible. Not only the name of the variables, but also the dependence

relationships in the program should an ideal UPR variable detection tool consider.

3.4.3 Using LLM Naively

As elaborated in Section 3.4.2, in order to identify UPR variables, it is important to take

the contexts of inter-variable dependencies and program functionalities into consideration.

As LLMs start showing their strength in understanding the natural language and program

code, they seem to be a potential solution to identify UPR variables automatically.

The very natural idea of �nding UPR variables using LLM would be simple: just

ask it. We have conducted preliminary experiments ofprompting the LLM directly to

�nd UPR variables. Speci�cally, the experiments are conducted using GPT-4, which

is considered to be the one of the most powerful LLM. To provide the GPT-4 with

all the contexts, the prompt starts with an initial prompt providing the instructions

and speci�cation of the UPR variable, followed by the related source code without any

modi�cations. In the experiments, we usedbftpd , an medium size open-source FTP

server, as the test program. We designed our initial prompt as follows:
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I want you to act as a security critical variable identi�er. I will type a code snippet

and you will tell me which variables are critical variables. Regarding what is a

critical variable, when it is tampered, it may result in:

1. One can bypass authentication and/or authorization

2. One can achieve behaviors that are being banned

3. One can gain elevated privileges (uid changes)

4. One can access �les/data that are not accessible (chown related)

5. One can steal secrets (keys, passwd, etc.)

We use the notion of "critical variable" along with a list of speci�cation criteria, in an

e�ort to clarify what is a UPR variable. For an FTP server, the listed 5 criteria should

cover most of the UPR variables. In this experiment, we decided to conduct analysis

at function level. We have manually tested roughly 25 functions, and the experiments

had mixed results. In particular, we observe for shorter functions (i.e., less than 50

lines) involving only a few variables, the results looks promising, so that all the UPR

variables are identi�ed with only very few false positives; however, when analyzing longer

functions, the result is not satisfactory. For example, when we ask GPT-4 to analyze the

function bftpd_login 1 in login.c of program bftpd , it replied:

1https://github.com/gamman/bftpd/blob/cc1df5805918f65f1f419cd79b228dc045f34e51/
login.c#L190
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The critical variables in this code snippet are:

1. password: This is the password provided by the user for authentication. If

tampered, it can lead to unauthorized access.

2. file_auth : This variable points to the �le used to authenticate users. If

tampered, it can lead to unauthorized access or bypassing of authentication.

3. home_directory : This variable holds the home directory retrieved from the

auth �le. If tampered, it can lead to unauthorized access to �les/data.

4. anonymous: This variable holds the con�guration option for anonymous user. If

tampered, it can lead to unauthorized access or bypassing of authentication.

5. change_uid_text : This variable holds the con�guration option for changing

user id. If tampered, it can lead to privilege escalation.

6. user : This variable holds the username of the user trying to login. If tampered,

it can lead to unauthorized access or bypassing of authentication.

7. userinfo.pw_uid and userinfo.pw_gid : These variables hold the user id and

group id of the user. If tampered, it can lead to privilege escalation.

8. str : This variable is used to store various critical information like root directory,

user name, etc. If tampered, it can lead to unauthorized access to �les/data.

9. config_getoption("DO_CHROOT"): This con�guration option decides whether

to change the root directory or not. If tampered, it can lead to unauthorized

access to �les/data.

In this response, in total 4 UPR variables are missing and 2 identi�ed are false

positives, including:

1. user is not UPR variable, marked in red.

2. config_getoption("DO_CHROOT") is not even a variable, marked in red.

3. state is missing, which is used to indicate the user is authenticated in this function.

4. change_uid and change_uid_text are missing, which is a con�guration that can

a�ect the home_directory and the execution ofset_uid call.

5. anon_okis missing, which is a con�guration to allow anonymous users.

Consequently, we have derived a very important observation:as the code snippet grows

longer, the capability of the LLM in detecting UPR variables will decrease. Unfortunately,
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GPT-4 is completely a blackbox, so that its parameters and meta-information are not

available. Nevertheless, our observation does echo with many previous works. According

to the experiments in previous works [73� 75] focusing open-sourced LLMs, their results

show that as the input length approach the context window size of an LLM, the perplexity

of the output will increase. In cases of normal chat, the perplexity can be viewed as

�uency, which may be less of an issue for the purpose of communication. However,

identifying UPR variable is a reasoning task, so that such "surprise" is not acceptable.

Another work [76] conclude that the LLMs arenot robust to changes in the position

of relevant information: speci�cally that LLM will fail to retrieve information if the

relevant information is in the middle of the input context. As the function length grows,

the potential UPR variables and its relevant code statements could "lost in the middle".

In the �eld of LLM assisted program analysis, similar observation could be found. In

SWE-Bench [77], authors also observe that when using LLMs to resolve GitHub issues

(i.e., code repair task), Claude 2 and other LLM's performance drops as the input context

length increases.

3.4.4 Problem Statement

Despite the mixed results shown in Section 3.4.3, it is clear that LLMs can help with

circumventing the challenge of lack of explicit pattern for UPR variables. However, as

shown in Section 3.4.3, the LLM is neither panacea nor silver bullets, so that adopting it

naively could lead to failure in real world settings.

We aim to develop a UPR variable detection method that can signi�cantly reduce the

amount of time needed to identify UPR variables. Speci�cally, to address the challenges

and issues mentioned in Section 3.4.2, our problem statement is as followed:Given a

program and a capable LLM, how to leverage the LLM to �nd the UPR variables in the

program, so that substantially more UPR variables could be identi�ed while maintaining

a reasonable false positive rate.

Based on our experiments and observations, the most imminent challenge when

adopting LLM to identify UPR variables is: when �nding UPR variables in large code

bases, the long input context length will deteriorate the robustness of LLM, leading to

false positives and false negatives.

A straightforward solution would be trimming the input function body by using, for

example, information retrieval [77,85]. But it is di�cult to decide what and how much

code to be removed so that enough information is left to determine whether a variable

is UPR. Furthermore, even if there exists a perfect trimming strategy, the remaining
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Figure 3.1. Work�ow of using LLM to audit UPR scores

context of a variable could be already too long for an LLM to perform robustly.

In this paper, we propose a novel LLM-assisted work�ow, which can output theUPR

score of a variable, to assist a human analyst in identifying UPR variables. The UPR

score is a quantitative metric assessing the degree of relationship between a variable

and user privileges. To alleviate LLMs' performance deterioration issue related to the

input context length, we only leverage LLMs to generate theUPR ratings for code

statements instead of whole chunks of code, so that the input context length of the

prompts could be minimized. Other necessary aspects to determine the UPR score

of a variable are addressed by traditional program analysis techniques, speci�cally by

constructing the program dependence graph (PDG) [80,86] at code statement level.

3.5 Method

3.5.1 Issue of Binary Verdict

Before introducing the detail of our work�ow, we would like �rst elaborate the reasons

why we choose to output a UPR score instead of a UPR verdict. Essentially, the diversity

among the UPR variables are substantial, which implies that they may have di�erent

degrees of relationship to the user privileges. Therefore, some variables in a program

may be at the borderline, meaning that they could be either UPR or not, depending on

the context of the program/function as well as the stored values at runtime.

Code 3.3 shows an example of such cases. In an FTP server, a common utility function

is to read thestat information of �les, including uid and gid. Unlike passwords, uids are
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1 int get_f i le_uid ( char * f i lename ) {
2 int f i le_uid ; // Is this UPR?
3 ...
4 return f i le_uid ;
5 }
6 int do_ls ( char * cmd) {
7 ...
8 int uid = get_f i le_uid ( fname );
9 ...

10 }
11 int do_chown (char * cmd) {
12 ...
13 int uid = get_f i le_uid ( fname );
14 if (uid == current_uid ) {
15 ...
16 chown (pathname , new_uid , new_gid ) ;
17 ...
18 }
19 ...
20 }

Code 3.3. An example of a borderline UPR variable.

less sensitive and just leaking the values of the uids may not cause severe consequences.

Typically, a variable saving uids is UPR only when it is used as the argument of function

calls such aschownor setuid . Let us assume a function calledget_file_uid , whose

returned value is going to be stored in a local variable calledfile_uid . This function

could be used by both thels command to list the dir for the user, and thechown

command to change the owner for a �le. Needless to say, only in case ofchowncommand

will the variable file_uid be UPR. In this case, it is very di�cult to make a UPR verdict

for the local variablefile_uid in function get_file_uid .

Although the borderline cases are relatively rare, they can distract the analysts if not

being properly handled. By outputting a score rather than a verdict would alleviate this

issue, and fortunately, the powerful LLMs make this possible.

3.5.2 Work�ow Overview

Figure 3.1 illustrates the complete work�ow of our approach, which include 6 major steps.

Starting from the source code of a target program as input, the work�ow eventually

output the UPR scores for all variables in the program.

1 First, from the source code �les, we generate the PDG for each function through

static analysis. Each nodes in the PDG corresponds to a statement expression.2 The

PDGs are then sliced into variable subgraphs, each of which corresponds to a single
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variable in the program. 3 Next, based on the variable subgraphs, we collect the code

statements, creating a set of code statements that are either control and data dependent

on or by the variables. 4 This set of code statements are subsequently rated by an LLM,

using an initial prompt that is designed upon the purpose of the target program. The

ratings shall re�ect the signi�cance of the statements in terms of their impacts toward

potential non-control data attacks against the target program.5 Then, the statement

ratings will be used to update the variable subgraphs, serving as node score.6 Finally,

we compute the score of the variable by aggregating the node scores using a aggregation

algorithm based on the graph topology. To con�rm a UPR variable, subsequent manual

review is necessary for those with highest ratings.

3.5.3 PDG Generation

Since source code level PDGs are very well de�ned [80], we adopt the well-known de�nition

of PDG and will not reiterate any formal de�nitions and speci�cations.

Essentially, we parse the source code �les and generate a PDG for each function. As

discussed in Section 3.4, to control the length of the input length of the prompts as well

as to balance the information carried by the graph topology and nodes, our PDG is

designed to only havesimple statements as nodes, includingassignment, (function)

call , assertion , goto, and return . In cases of a compound statement (i.e.,block of

simple statements), includingfor , while , do loops,switch , if , else branches, etc., the

condition is treated as a single node (i.e., simple statement), and each simple statement

in the block will also be a single node, with an control dependence edge connected to the

condition node.

3.5.4 Variable Subgraph Extraction

From the function PDGs, we then extract variable subgraphs for each referred variable

in the function, including global variables and local variables. Operating on the PDG,

the extraction process essentially can be viewed as a customized program slicing [78]

process, so that we slice the PDG in both backward and forward directions from the

criterion nodes.

First, we identify all the variables referred in the function through AST analysis.

For each variable, we then mark all the nodes corresponding to the statements referring

it as criterion node (for program slicing). Since a variable could be referred multiple

times in the function, intuitively each variable could have multiple criterion nodes, so
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Figure 3.2. A pruned variable subgraph for a criterion node of variablecleartxt_passwd in
program proftpd .

that between a variable and its criterion nodes is there a one-to-many relation, as shown

in Figure 3.1. Next, we extract the variable subgraph for each variable by exclusively

including only immediate (i.e., 1-hop) neighbors of the corresponding criterion nodes,

regardless the direction. One one hand, both directions are imperative, as whether a

variable is UPR depends not only on its depender statements, but also on the dependee

statements; on the other hand, statements that are not immediate depender/dependee

of the criterion nodes are trivial, if not detrimental, to determine whether a variable is

UPR, as further dependency relations are more noisy and less relevant. Figure 3.2 shows

an pruned example of the extracted variable subgraphs, which only contains a single

criterion node. Note that nodes are represented in di�erent colors, where orange ones

are criteria nodes. The variable subgraphs are extracted from the PDG, and therefore

they have two types of edges: control and data dependence edges.

Since nodes in the PDG are statements, it is completely possible that two variables are

referred by a same set of statements, rendering identical variable subgraphs for di�erent

variables. In case one of them were UPR but the other were not, either false positive

or false negative will present. This issue is observed in our experiments, and we have it

discussed in Section 3.7.2
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3.5.5 Code Statement UPR Rating Using LLM

After variable subgraphs are constructed, we collect code statements from all the sub-

graphs, creating a set of statements to be rated by the LLM. To clarify, since the

statements are collected from the variable subgraphs, there is no sequential order between

the statements in the set. The LLM will evaluate and rate the statements one after

another, so that the ratings of the statements are independent to each other. Each

statement in the set is unique, so that the cost of using the LLM can be minimized.

To instruct the LLM with necessary information and context, our prompts consist

two parts: an initial prompt consist of instructions, and the code statement to be rated.

The initial prompt serves for two goals: 1) prompt the LLM to generate ratings for each

statements; and 2) provide the speci�cations of the UPR property. The detail of the

prompt design will be discussed in Section 3.6.

Indeed, LLM is built upon neural networks after all, and thus it is a black-box.

Therefore, the ultimate UPR ratings for code statement given by the LLM may be based

on not only the criteria in the initial prompt, but also LLM's own "interpretations". With

that being said, the code statement UPR ratings given by the LLM could be disagreed by

a human analyst, so that our work�ow need to be designed to tolerate this inconsistency.

After the code statements are rated, e�ectively their corresponding nodes in the

variable subgraphs will receive UPR ratings, which can be further used to determine the

UPR scores of the variables.

3.5.6 Generating Variable UPR Score

The output of our work�ow is a UPR score for each variable, which is obtained by

aggregating the node scores in the updated variable subgraph. Recall that our variable

subgraph is essentially a pruned PDG, so that the topology of the graph implies the

dependence relationships between the code statements. As discussed in Section 3.4.2,

whether a variable is UPR pivots on not only the how the variable is used and de�ned,

but also how the variable will a�ect other part of the program. Thus, the UPR score is

computed by considering all the nodes in the updated variable subgraph.

We formalize the procedure of generating UPR scores for variables: Given a updated

variable subgraphG = ( N; E ) of variable v, whereN is the set of nodes andE is the

set of edges in the graph, and a parameter� weighing between the node score and its

neighbors' score, we can compute the UPR score of a variable, as shown in Algorithm 2.

Algorithm 2 is essentially a aggregation process, whose most important operation is
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Algorithm 2 Compute UPR score
Require: G = ( N; E ), � 2 [0; 1]

1: S = fg . Array to store aggregated score of all criteria nodes
2: for n 2 N do
3: if n is criterion nodethen
4: R = fg . Array to store score of neighbors
5: sc = get_node_score(n)
6: V = �nd_neighbor_nodes(n)
7: for v 2 V do
8: R = f R; get_node_score(v)g . Append
9: end for

10: sv = max(R)
11: sn = Normalize(sc + �s n ) . Aggregated score
12: S = f S; sng . Append
13: end if
14: end for
15: return max(S)

at line 10, 11 and 15. There are two aggregating operations. The �rst one is at line 11 of

Algorithm 2, where we compute the aggregated score of each criterion node. Do note

that this score of a criterion node is a�ected by both the criterion node itself and its

neighbors. Here, the value of� is between 0 and 1, and the larger the more important

neighbor score is. The normalize function ensures �nal UPR score is in a �x range, that

is, between 0 to 10. The second aggregating operation is at line 15, so that we obtain a

single UPR score for a variable from scores of multiple criteria nodes. It is worthwhile

to note that, as mentioned in Section 3.5.5, our work�ow needs to tolerate potential

inconsistent ratings with human. Based on the principle of reduce false negatives, we use

maxas our aggregation function.

3.6 Prompting LLM

A fundamental component of our work�ow is an LLM, which helps rate a code statement

in terms of the degree of the relationship between the code statement and user privileges.

Obviously, the quality of the rating result is one of the most important factors toward

generating appropriate UPR scores and therefore helping analysts to identify UPR

variables. However, there is no principled method to design prompts, due to the black-

box nature of LLM. Therefore, we designed our prompt based on empirical case studies:

we have selected 30 code statements from di�erent programs of di�erent lengths, and
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then gradually improve the prompt based on the human feedback of how well the UPR

ratings are for the selected code statements.

As brie�y introduced in Section 3.5.5, the prompt consists of two parts: initial prompt

and the code statement to be rated. Since the code statement has to be presented as it

is, the prompt engineering e�ort is mainly for the initial prompt. Eventually, we decide

to adopt the following template for initial prompt:

I want you to act as a security critical code statement identi�er. I will type a

code statement and you will reply with a criticalness rating from 0 to 10 of the

code statement. 0 is the least level of criticalness. Only reply with the criticalness

rating and do not write explanation. Regarding what is a critical code statement,

when it is tampered, it may result in:

1. **Malicious Goal 1**

2. **Malicious Goal 2**

3. ...

In this design, after describing our request to the LLM, we include a list of potential

malicious goals that an attacker may be interested related to the user privileges. The list

of malicious goals can be compiled based on the target programs, as di�erent programs

may have di�erent kinds of user privilege related issues. In this paper, we compiled a list

of common user privilege security incidents, generating a list of malicious goals used in

the prompt:

1. One can bypass authentication and/or authorization

2. One can achieve behaviors that are being banned

3. One can gain elevated privileges (uid changes)

4. One can access �les/data that are not accessible (chown related)

5. One can steal secrets (keys, passwd, etc.)

As will discussed shortly in Section 3.7, the UPR security incidents in selected

programs in our experiments can be mostly covered by this list. In addition, the e�ect of

the prompt design will be also studied and discussed in Section 3.7.5
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3.7 Experiments and Evaluation

We evaluate our approach in terms of both practicality and reliability, proposing 4

research questions: 1) How practical our approach is in terms of the false positive rate?

2) Can our approach �nd more UPR variables than heuristic-based method? 3) How

to interpret distribution of the rating spectrum? 4) What is the e�ect of the prompt

design? 5) How does it perform on proprietary programs? These research questions will

be answered in later sub-sections.

Our evaluation uses a code base constructed using in total 7 programs:bftpd ,

proftpd , vsftpd , ghttpd , nginx , sshd, sudo. The programs are selected to ensure

diversity in both program functionality (i.e., business logic) and size (i.e., lines of code).

To reduce both time cost and economical cost of our experiments, we did not analyze

all the variables in the selected program. Speci�cally, for programs with a small code

base, we run all variables though our method; whereas for larger programs, we only

include variables in the core modules (so that a minimum functional binary can be

compiled). For example,sshd is one of the binary in theOpenSSHcode base, so that in

our experiments, all the variable in modules for other binaries (e.g.,ssh, ssh-keygen,

scp, etc.) are excluded.

3.7.1 Experiment Setup and Implementation

The prototype of our tool leverages several existing tools. From the source code, the

raw PDG is extracted usingJoern. The extracted raw PDG is further processed using

Python scripts to generate variable subgraphs. Subsequently, we use GPT-4 as the LLM

code statement rater, as it is one of the best LLMs available. We send each statement

along with the initial prompt discussed in Section 3.6 to the GPT-4, and collect the UPR

ratings evaluated by the LLM. Finally, the UPR score of the variable is computed based

on Algorithm 2 implemented in Python.

To reduce the number of variables may be missed, we conduct static analysis to

identify variables in the program using both LLVM (at LLVM IR level) and Joern (at

AST level). In total, the prototype of our tool used in the experiments are implemented

in more than 1600 lines of code in Python and 1300 lines of code in C/C++.
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3.7.2 How practical is our approach regarding FPR?

It would be meaningless if the proposed method could not reduce manual e�orts of the

analyst. In particular, we want the analyst to �nd as many UPR variables as possible by

examining as less variables as possible. Thus, without an adequate false positive rate

(FPR) will never our approach be practical.

We evaluate the practicality of our approach in terms of the FPR by experiments.

Simulating how our proposed tool may be used in real world, we �rst take the target

program and evaluate the variables using our work�ow discussed in Section 3.5.2. After

obtaining the UPR scores of each variable, we set up a rating threshold of 9.0 (recall

that the output UPR scores are between 0 and 10), above which are considered as UPR

variable candidates. Then, the UPR variables are going through a manual analysis:

only those variables which contain sensitive information, or/and can be exploited to

cause security incidents (e.g., bypass authentication, gain additional privileges, etc.) are

marked as UPR.

Analyzed Detected FPR

bftpd 551 60 0.1500
proftpd 1153 235 0.1069
vsftpd 829 73 0.1311
ghttpd 71 3 0.0000
nginx 708 15 0.1333
sshd 679 195 0.1485
sudo 464 64 0.1905

All 4455 645 0.1349

Table 3.1. False Positive Rate of Our UPR Variable Detection

The experimental results are shown in Table 3.1. Since the selected programs are

diverse regarding both their functionalities and their size, it is not surprising that the

number of UPR variables varies between programs. We only conduct false positive

analysis because manually identifying UPR variable is extremely time-consuming. By

only focus on false positives can we only inspect 645Detectedvariables. Were we to

compute the false negative rate, instead 4455Analyzed variables need to be inspected.

The results suggest that the FPRs are 13.49% on average. In other words, for every

100 of variables reported, less than 14 of them will be false positive. Nevertheless, when

we take a glance at the number of variableanalyzedin Table 3.1, without our tool, in

total 4455 of variables will need to be manually checked comparing only 645 are now
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need to be checked. Thus, we believe our tool can signi�cantly reduce the manual e�orts

required from the human analysts.

After careful analysis of the false positives, we found that the most common cause for

false positives is due to the granularity of the PDG. As mentioned in Section 3.5.4, it is to-

tally possible that two variables have almost or exactly identical variable subgraphs. Using

an example shown in Figure 3.2,cleartxt_passwd and cleartxt_passwd_len (abbrevi-

ated in Figure 3.2 to save space). In code statements wherecleartxt_passwd_len is used,

many of them also will usecleartxt_passwd . Eventually, after the variable subgraph

extraction, the variable subgraph forcleartxt_passwd and cleartxt_passwd_len is

similar. Unfortunately, though the password itself is clearly a UPR variable, the length

of it is not, and therefore the similar variable subgraphs will cause the false alarm.

3.7.3 Can our approach �nd more UPR variables than heuristic-based

method?

One key motivation of our method is to identify more UPR variables than heuristic-based

methods. To answer this research question, we design an experiment to compare our

method with heuristic-based methods commonly adopted in the industry. Speci�cally,

heuristic-based methods usually adopt two kinds of heuristics: 1) code pattern matching []

and 2) taint analysis [].

Accordingly, we design a set of heuristic rules that can be applied usingSemgrep

framework, which is an open-source static analysis tool to �nd bugs and security vulner-

abilities in the source code. It allows developers to write custom rules using a simple

syntax to search for patterns in codebases. Since it supports syntax matching and taint

analysis, we develop two rules containing several heuristics to discover UPR in the source

code, as shown in Code 3.4 and Code 3.5.

1 patterns :

2 - pattern - either :

3 - pattern - inside : |

4 if ( ... )

5 - pattern - inside : |

6 switch ( ... )

7 - pattern : $VARIABLE

8 - metavariable - regex :

9 metavariable : $VARIABLE

10 regex : . *(? <![A-Za -z ]) ( auth | authent icate | login | admin |

authorize | banned | al lowed |uid |gid | username | permission |
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chown |key | passwd | password ) (?![A-RT -Za -rt -z ]) . *

Code 3.4. Syntax based detection rules for UPR.

1 mode : taint

2 pattern - source :

3 - patterns :

4 - pattern - either :

5 - pattern - inside : |

6 $IOFUNC ( ... )

7 - pattern - inside : |

8 $VAR = $IOFUNC ( ... )

9 - metavariable - regex :

10 metavariable : $IOFUNC

11 @\ Hi l ightc@regex : scanf | gets | fscanf | fgetc | fgets | getchar |

fread

12 pattern - sinks :

13 - patterns :

14 - pattern - inside : |

15 seteuid ( ... )

16 - pattern - inside : |

17 setuid ( ... )

18 ...

Code 3.5. Taint analysis based detection rules for UPR.

Both rules are straightforward, so we only provide brief explanations. Speci�cally,

the rule shown in Code 3.4 detects the variables that contain privilege-related keywords.

The most important item in this rule is the regular expression at line 10 matching

privilege-related keywords in the variable names:

. *(? <![A-Za -z ]) ( auth | authent icate | login | admin | authorize | banned |

al lowed |uid |gid | username | permission | chown |key | passwd | password )

(?![A-RT -Za -rt -z ]) . *

The rule in Code 3.5 is essentially taint analysis, which speci�es the taint source and

taint sinks. It can detect variables whose taint comes from inputs that are used in user

privilege related function calls.

We then perform the UPR variable detection using the heuristic-based method on

exactly the same code base described at the beginning of this section. To make this

experiment practical, we only focus on positive variables that is either reported by our

method or the heuristic-based method. Those variables reported by neither methods

will be excluded from our analysis. In order to make a fair comparison, we divide the
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Figure 3.3. UPR positive variable reported by our method and the heuristic-based method.

detected positive variables into the following three sets: (Set A ) variables only reported

by heuristic-based method, (Set B ) variables only reported by our method, and (Set

C) variables reported by both methods. The result of analysis is shown in Figure 3.3.

According to the overlapped circles in Figure 3.3, it is clear that our method can �nd

substantially more variables than the heuristic-based method can, especially with a

signi�cantly lower false positive rate (13.49% vs. 54.53%). Do note that our method

detected 645 variables as positive, using a fairly conservative threshold (i.e., 9.0/10.0), out

of which 13.49% of them are false positives. In contrast, when we use the heuristic-based

method introduced above, out of 413 (126 + 287), more than half of them (53.44%)

are false positives. Indeed the heuristic-based method could be tweaked to be more

conservative and our method can be more aggressive, but the di�erences in performance

is apparent.

This experiment also exposes some false negative cases for our approach. A common

false negative reason is the quality of the UPR ratings for code statements from GPT-4,

speci�cally the mediocre UPR ratings. On one hand, the mediocre ratings may be caused

by limited capability of the GPT-4; on the other hand, they may be also due to the

insu�cient amount of the context. For example, considering following code statement:

if(!access_check_file(&s_filter_str))

Similar to the situation described in Section 3.5.1, this is a case of "borderline UPR

statement": whether it is UPR cannot be asserted without knowing the value may be

stored in s_filter_str . In our experiments, we only consider a variable as a UPR

candidate if the UPR score is at least 9, which is a relatively high threshold. Therefore,

a few variables with mediocre-rating code statement in their variable subgraphs are

missed. If such mediocre ratings are very common, it would indeed made our method

less practical. We will have more discussions about the UPR ratings from the GPT-4 in

Section 3.7.4.
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3.7.4 How well can an LLM rate the code statement?

Toward the core of our approach is the UPR rating of the code statements generated by

LLMs, which lead to a research question: how well can an LLM rate a code statement in

terms of their relationship with user privileges? Due to the blackbox nature of the LLM,

it is futile to inspect the LLM internally. Since there is no benchmark regarding the task

of rating a code statement for LLMs, instead of studying the question directly, we decide

to focus on the distribution of the ratings given by the GPT-4 in our experiments.

We �rstly set up a series of hypotheses to validate, based on the observations of the

UPR variables:

O1: UPR variables, especially those ones critically related to user privileges, are rare.

O2: The majority of variables arenot UPR.

O3: A few variables may or may not be UPR, depending on the context of the program.

(See Section 3.5.1)

Based on the above-mentioned observations of UPR variables, regarding the UPR scores

of code statements, we have following hypotheses:

H1 : Code statements with higher UPR scores are the minority.

H2 : The majority of code statements should receive low scores.

H3 : A few code statements should have mediocre UPR scores, because a single code

statement contains no context about the containing function, as well as the caller(s)

of the function.

Obviously, H1 is derived fromO1, and it is natural to believe that the number of

UPR variables and the number of high-UPR-score code statements are closely correlated.

After all, whether a variable is UPR is depending on whether it is directly or indirectly

related to a code statement related to user privileges (i.e. with a high UPR score). For

similar reasons,H2 is derived fromO2.

H3 is derived fromO3, which re�ect those variables whose UPR scores are depending

how they may be used in the program, as well as the business logic of the program. As

discussed in Section 3.5.1, though they are uncommon, when analysts encounter these

variables, it would be di�cult to make a verdict regarding whether the variables are

UPR variables. In our work�ow, only the code statement itself is given to the LLM when

generating the UPR ratings, so that the context of how the variable is de�ned and used
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Figure 3.4. Distribution of the statements UPR ratings from GPT-4

may be missing. We therefore expect the LLM may give mediocre ratings in these cases,

as a human analyst would also prefer to do so.

Figure 3.4 shows the distribution of the UPR ratings given by GPT-4. The area

marked blue are code statements with low UPR ratings, whereas the area marked in red

are those ones with high UPR ratings. The grey areas are considered as mediocre ratings.

According to Figure 3.4, it is evident that all three hypotheses are validated:

1. Only few statements have high UPR ratings (small red area).

2. Large number of statements have low UPR ratings (large blue area).

3. Only a few statements receive mediocre ratings (tiny grey area).

Analysis based on the distribution of the UPR ratings may neglect those corner cases.

Nevertheless, Figure 3.4 shows that the selected LLM, GPT-4, is capable of generating

appropriate UPR ratings for code statements.

3.7.5 What is the e�ect of the prompt design?

As discussed in Section 3.6, our prompt template include a list of malicious goals to

provide the LLM with more speci�cations about UPR variables. While the presence of

this list can improve the UPR ratings for the code statements, it is intriguing to study

whether the presence of this list would a�ect the�nal UPR scores for variables.

Accordingly, we evaluate our method using a modi�ed prompt template for code

statement UPR ratings acquisition. Speci�cally, the prompt template are modi�ed in
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two ways: one kind only contains partial list of the malicious goal; whereas the other

kind contains no list of malicious goals. In the modi�ed prompt template containing

partial list, two items in the original list are kept: 1) One can access �les/data that are

not accessible (chown related); 2) One can steal secrets (keys, passwd, etc.) We use the

two modi�ed prompts in our work�ow to re-detect the con�rmed UPR variables found in

previous experiment.

The experiment is evaluated by measuring the percentage of the con�rmed UPR

variables are re-detected using di�erent modi�ed prompts, which is shown below:

ˆ Prompt with partial list: 43.89%

ˆ Prompt with no list: 54.30%

It may seem to be unexpected that the result when using completely no list is better. As

mentioned in Section 3.5.5, LLM may have their own "interpretations" for some words or

phrases in the prompts. Therefore, if there is no given speci�cation for UPR variable,

the UPR ratings may become very unpredictable. For example, in the initial prompt,

we used the term "security critical", which is a rather broad phrase, so that GPT-4 can

have various interpretation of such a term. Nevertheless, it is still evident that providing

speci�cation such as a list of malicious goal de�nitely enables our method to uncover

more UPR variables.

3.8 Discussion and Limitation

3.8.1 Proprietary Programs

All the LLMs are trained on massive amount of data, which probably include almost all

the open source source code. Consequently, from machine learning perspective, essentially

the UPR rating for code statements in open source programs are in-distribution data

(as oppose to out-of-distribution data). Though it is believed that LLMs perform well

in term of the generalizability, nevertheless out-of-distribution data still may a�ect the

performance of the model. In our case, the out-of-distribution data is essentially the

code statement in proprietary programs.

Since it is not realistic to comprehensively evaluate our approach on proprietary

programs, we have conducted a simple experiment about using GPT-4 to re-rate the code

statements, but with the names in the statements changed. For example, a function in

vsftpd namedvsf_sysutil_read will be renamed asxyz_sysutil_read , pretending
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it is a function in di�erent program. We have randomly selected 30 code statements

to have the GPT-4 to re-rate, after renaming all the names. Our result shows that the

average di�erence between the ratings is -0.45 with a standard deviation of 0.94, which

implies that the UPR rating does change, but only moderately. Nevertheless, thought it

is di�cult to draw rigorous conclusion regarding the performance on proprietary program,

as LLMs are considered as black boxes, this may becomes a limitation when adopting

our method to some proprietary programs.

3.8.2 Cost of LLM Service

Our method will prompt LLM for each code statements, so that the number of token

used in the input is dominated by the length initial prompt. While the disadvantage in

terms of the cost is that every single statement will need to pay the price of the initial

prompt, the advantage is that the output token used, which is typically more expensive

than that of input, could be just 1 or 2, because we only want the LLM to output the

UPR ratings.

3.9 Conclusion

In this chapter, we introduce a large language model (LLM) work�ow that can assist

analysts in identifying such UPR variables, which is a very time-consuming task. Our

tool will analyze all the variables in a program to output a UPR score for each variable,

which is the degree of relationship between the variable and user privileges. When

our approach is used in real world, those variables with high UPR scores will then be

manually investigated by the analyst. Our experiments show that in a typical setting

(i.e., UPR score> 0.8), the false positive rate (FPR) is only 13.49%, while UPR variable

found is signi�cantly more than that of the heuristic based method.
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Chapter 4 |
Pinpoint the Implementations of
Anti Dynamic Analysis Techniques
in Malware Using LLM

4.1 Executive Summary

Sandboxes and other dynamic analysis processes are prevalent in malware detection

systems nowadays to enhance the capability of detecting 0-day malware. Therefore,

techniques of anti-dynamic analysis (TADA) are very common in modern malware samples,

and sandboxes can su�er from false negatives and analysis failures when analyzing the

samples with TADAs. In such cases, human reverse engineers will get involved to

conduct dynamic analysis manually (i.e., debugging, patching), where in turn also get

obstructed by TADAs. In this work, we propose a Large Language Model (LLM) based

work�ow that can pinpoint the location of the TADA implementation in the code, to

help reverse engineers placing breakpoints used in debugging. Our evaluation shows that

we successfully identi�ed the locations of 87.80% known TADA implementations adopted

from public repositories. In addition, we successfully pinpoint the locations of TADAs in

4 well-known malware samples that are documented in online malware analysis blogs.

4.2 Introduction

Malware detection in real-world is achieved through a complex system. In terms of

quantity, the majority of the malware samples are detected and blocked by �le signatures,

including inline �rewall blocking and anti-virus software. This is because most samples in
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the wild are 1-day or n-day samples, so that their �le signatures are already documented,

either automatically or manually. Obviously, any signature-based methods are vulnerable

to 0-day malware attack, and therefore di�erent methods need to be adopted to detect

and block 0-day malware. Although it is possible to detect 0-day malware through

advanced static analysis, in practice this strategy can su�er from non-scalability and false

negatives. For example, some samples are only at the initial stage of infection and will

do no harm unless subsequent payloads are downloaded, which can only be con�rmed

to be malicious by concretely executing the samples. Therefore, many industry-level

malware detection systems rely on automated dynamic analysis, or sandboxes [87,88], to

detect 0-day malware using behavior signatures and rules. Unfortunately, most malware

authors are fully aware of the existence of sandboxes and dynamic analysis e�orts, and

therefore many of them nowadays will implement techniques of anti-dynamic-analysis

(TADA) in their malware to evade dynamic analysis based detection.

As we will elaborate in Section 4.3.1, malware authors usually havetwo goals

with TADAs implemented: evading the dynamic analysis based detection and impeding

reverse engineering e�ort. These two goals are directly motivated by the process of

detecting malware samples in the real world, which are illustrated in Figure 4.1. The

top half of the �gure is fully automated, and the bottom half involves human labor.

When a sample arrives at the system, the �rst step is usually to check the existing

signature and hash databases to see if the sample is already known to be malicious.

If the signature or hash has a match, then the system can immediately conclude that

the sample is malicious. Despite the disadvantage of the �le signature based detection

(i.e. unable to handle 0-day), it is still worthwhile to have it in the detection system to

block 1-day and n-day malware, because it is extremely fast and a�ordable. To keep

the databases updated, whenever a malware verdict is generated in the later part of

the system (meaning that the sample has not been seen), it will be used to update the

databases. Subsequently, in cases that there is no match for the given sample, it will then

be transferred to a sandbox, where the sample will be dynamically analyzed. The sample

will be executed and monitored without human intervention. The sandbox analysis

usually has 3 outcomes: malware verdict, benign verdict, and analysis failure. Since

detection is achieved through conservative behavior heuristics and rules, the malware

verdict is usually true positive, meaning that false positives are less common. In contrast,

a benign verdict can be false negative, due to either TADAs or missing OS components

that cause the sample not to behave maliciously in the sandbox environment. These false

negatives are usually found later, and the system will receive a verdict �ip request. As
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Figure 4.1. Practical Malware Detection System

for analysis failures, they are the cases where the sample failed to launch at all or crashed

during the execution. The most common reason for false negative and analysis failures is

the presence of TADA, as sandboxes are usually virtual machines that will execute the

sample concretely. Consequently, at the point of failures or verdict �ip requests, human

intervention is necessary, and the sample is then sent to a reverse engineer for the �nal

verdict.

Back to the discussion of the goals of TADAs, the ultimate goal of the malware

authors is to delay the detection of their malware as much as possible, so that more

victims could be infected. Based on Figure 4.1, it is obvious that the best situation

for the author's interest is when a malware sample bypasses the signature database,

bypasses sandboxes, and eventually reaches the hands of the reverse engineer, being
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analyzed for an extended period of time. Consequently, the �rst goal of TADAs is to

bypass the sandbox detection, which is usually achieved by detecting the artifacts in the

sandbox. To �ght back, there are numerous previous works studying how to prevent

malware from bypassing the sandboxes in the �rst place [87� 92], most of which can be

summarized in one single word: transparency. The idea is simple: as long as the sandbox

is transparent (i.e., the sandbox is not discernible with real machine), the malware will

trigger malicious behaviors. As we will elaborate in Section 4.4.1, despite the theoretical

feasibility of complete transparency, in the real world pursuing transparency is essentially

a cost-e�ective problem. Therefore, it is very common that a malware sample eventually

will get to the hands of reverse engineer, which corresponds to the second goal of TADAs:

impeding the reverse engineering e�orts to delay the analysis. Thus, from the reverse

engineers' perspective, the faster they can �nd the TADA implementation (in the code),

the better, so that they can bypass or patch the TADAs during their dynamic analysis.

Although there are existing works studying detecting malware with TADA [92� 94], most

of them focus on the detection of TADAs rather than the location of TADAs.

As shown in Figure 4.1, the scope of this research is not to detect the malware with

TADAs (i.e., evasive malware) in general; rather we want to focus on helping reverse

engineers to reduce the time and labor e�orts. Speci�cally, this research aims to identify

the location of the TADA in the code for breakpoints used in manual dynamic analysis

(i.e. debugging) during the reverse engineering e�orts. However, pinpointing the location

of TADA implementation can be challenging. First, there are many di�erent techniques:

checking hardware (e.g., CPU cores, memory size, PCIe devices, power capabilities,

fans, etc.), checking running processes, checking �lesystems, checking user traces, etc.

Second, not only can malware adopt di�erent techniques, but also can they use di�erent

implementations. Taking CPU core check as an example, which could have excessive

number of possibilities (e.g., CPUID, WMI Query, di�erent APIs, etc.), all up to malware

authors creativity. This diversity of the TADA implementation essentially make the

detection very prone to false negative.

We present a work�ow that leverages advanced static analysis and Large Language

Model (LLM) to pinpoint the location of TADA in the code, given a malware binary

executable. Our major contributions are as follow:

ˆ Propose a LLM based work�ow that can pinpoint the location of the TADA in a

binary executable automatically.

ˆ Construct the useful features that can enable the LLM to do the detection.
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ˆ Evaluate our method in recent real-world malware samples of popular families.

Speci�cally, we successfully identify the locations of 87.80% of known TADA implementa-

tions adopted from public repositories. In addition, we successfully pinpoint the locations

of TADAs in 4 well-known malware samples that are documented in online malware

analysis blogs.

4.3 Background

4.3.1 Techniques of Anti Dynamic Analysis (TADA)

Anti dynamic analysis is a well studied topic, and there are previous works [95� 97] surveyed

this topic comprehensively. From an attacker perspective, the reason of implementing

TADA in their malware is two-fold: evade detection and analysis obstruction. Detection

evasion is straightforward: if the malware is blocked, then the malicious goals will not be

achieved. The detection targeted to be evaded is mainly automated dynamic analysis

(i.e. sandbox), which is usually designed for 0-day malware samples. Whereas analysis

obstruction is the e�ort in delaying the reverse engineer understanding the logic of the

malware as well as the root cause analysis for sandbox evasion. This is particularly useful,

as reverse engineering tasks involve large amount of repetitive labor, yet are di�cult to

fully automate.

Detecting malware dynamically usually happens in sandboxes based on Virtual

Machines (VM) and/or other monitored environment. To evade dynamic detection,

malware authors essentially want to detect the sandbox environment. [98] shows the

trend that �ngerprinting and artifact detection is becoming popular in sandbox evasion,

not only because it is highly e�ective, but also because the implementation could be

extremely diverse. Therefore, sandbox developers usually will try to hide the artifacts

indicating sandbox and VM environment [87� 91]. In other words, a good sandbox is

usually transparent, but the transparency is not free: the more transparent, the more

expensive. For example, cost-e�ective sandboxes are usually VM based, because VMs

are easy to create and destroy, no requirement of isolated hardware, and easy to scale.

However, VM based sandboxes are relatively less transparent, especially when necessary

monitoring tools need to be integrated into the guest OS. The most transparent sandboxes,

obviously, is baremetal hardware based, but that would cost much more than a VM

based sandbox. Thus, due to this real-world cost e�ectiveness issue, for malware authors,

implementing TADAs to evade detection is still a good deal.

71



Another reason of malware having TADA is to obstruct analysis. Failed analysis

and false negative could happen when detecting 0-day malware dynamically, either due

to the TADAs implemented by the malware author or missing runtime requirements.

Therefore, eventually manual analysis by reverse engineer is necessary to con�rm the

verdict of a sample for which automatic analysis failed. Reverse engineers usually rely on

the debuggers and other analysis software such asProcess Monitor to understand the

behavior of a sample. Accordingly, many TADA implemented is targeting to detect the

debuggers and analysis programs (i.e., anti-debugging) [99].

4.3.2 Categorization of TADAs

Depending on the context, analysts tend to categorize TADAs di�erently. There are

two major ways to categorize TADAs: by purpose or by implementations. For sandbox

builders, they often categorize TADAs by their purposes, because sandbox builders usually

focus on how to hide the sandbox artifacts and make their analysis tools more transparent.

For example, in [95], authors categorize the TADAs based on the evasion goals. Whereas

for reverse engineers, they tend to categorize TADAs by their implementations, because

reverse engineers usually need to identify the locations of the code implementing TADAs.

Categorization based on purposes. To categorize TADAs based on theirpurposes,

we can start with MITRE ATT&CKtactics. There are two sub-tactics in Defense Evasion

that is related to TADA:

ˆ T1622: Debugger Evasion

ˆ T1497: Virtualization/Sandbox Evasion

Both T1622 and T1497 aim to detect dynamic analysis e�orts, with slight di�erent

focuses. On one hand, T1622 is debugger evasion, which is usually aiming to detect

and impede human analysts reverse engineering e�orts (debuggers are usually used by a

human); on the other hand, T1497 is more about impeding automated dynamic analysis

for malware evasion and detection. For example, the most well-known debugger detection

on Windows platform is to check the Process Environment Block (PEB), where there

exists multiple indicators that may imply the presence of a debugger and tracer. In

general, we can categorize TADAs into 4 categories based on their purposes:debugger

evasion , sandbox evasion , VM evasion , and analysis tool evasion . Regarding the

di�erences between VM and sandbox evasion, a VM does not has to be a sandbox (e.g.

VMs used by reverse engineer), and a sandbox does not has to be a VM (e.g. bare-metal

sandboxes, emulator sandboxes).

72



Categorization based on implementations. TADAs can be also categorized

based on theimplementations. Since the implementations of TADAs are not necessarily

correlated to their purposes, the implementations of TADA with di�erent purposes can

be extremely alike. For instance, by altering very little can a implementation of a running

debugger detection technique turn into a VM guest addition detection. If the running

debugger is detected by �nding well-known debugger process name, all malware writer

needs to do to detect VM guest addition is to switch the name of the process to detect.

From program analysis point of view, the code involving detecting running debugger

and detecting running virtual machine guest addition could be virtually identical, but

the purpose is very di�erent, which is purely based on the name of the process being

detected. By implementation, TADAs can be categorized into:assembly based ,

direct API based , and indirect API based . As the name suggested, assembly based

implementations usually achieve the TADA goals using several instructions. Usually this

kind of TADA is implemented by adding inline assembly code. Direct API based TADAs

leverage the APIs that can directly inform the program if it is executing under an analysis

environment, such as the famousIsDebuggerPresent API. Usually direct API based

TADA will not involve many API calls: one or few will be su�cient for the conclusion.

In contrast, indirect API based TADA use APIs that seem to not directly related to the

purpose of anti-dynamic-analysis (e.g. check the current username). Usually indirect

API based TADA implementation will involve a sequence of API calls, followed by logic

checking their return values.

4.3.3 LLM For Binary Analysis

LLMs we refered today are usually Generative Pre-trained Transformer (GPT) [100],

which take tokenized natural language inputs and generate language output. These

LLMs have been showing impressive performance source code analysis, as technically

programming language is just a more structured natural language that will only apply

to a limited scope. However, when applying LLMs for binary analysis, it is necessary

to conduct extensive amount of feature engineering, because raw binary code are very

di�erent from the natural language. Even disassembled binary code, or assembly language,

is signi�cantly di�erent.

There are few existing works have investigated the potential of LLMs assisting binary

analysis [101� 104]. Most of them adopted decompilation of the binary code, and use the

pseudo C code as the starting point to generate inputs for LLMs. Such strategy is very

e�ective, but could be still vulnerable to decompiling mistakes, such as incorrect type
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inference and broken data �ow. Therefore, it is a good tatic to rely on the decompiled

code as little as possible.

4.4 Motivation and Problem Statement

4.4.1 Motivation

Due to the diversity of TADAs and cost-e�ectiveness concerns when designing the

sandboxes, it is still common for malware to evade the sandbox detection and eventually

in need of manual reverse engineering. Common reverse engineering process for binary

executables involves two major steps: 1) advanced static analysis for indicators of

compromise and interesting breakpoints, and 2) dynamic analysis using debugger or

tracer for behavior study (using breakpoints found previously). Dynamic analysis using

debugger is usually necessary through out the reverse engineering e�orts, either to

search for malicious behaviors or con�rm conclusion drawn from advanced static analysis.

As described in Section 4.3.1, malware authors implement TADAs not only to evade

detection, but also impede and delay human reverse engineering analysis. Therefore, if a

malware sample is a false negative or an analysis failure, it is very likely that when a

reverse engineer investigate the sample, he/she will encounter TADAs stopping them

from properly analyze the sample.

This work is motivated by the fact that real-world malware detection system shown

in Figure 4.1 still requires signi�cant amount of human e�ort that can be tedious for the

reverse engineer, yet most parts of the system is already automated (top side in Figure

4.1). Based on the common two-step reverse engineering process, we aim to propose a

work�ow that can suggest a set of breakpoints near the implementation of TADA during

the advanced static analysis stage, so that the analysis can apply patches whenever these

breakpoints are triggered during the dynamic analysis stage.

4.4.2 Advantages of LLMs

As introduced in Section 4.3.2, the implementations of the TADAs can be categorized into

3 kinds. As we will shown later in Section 4.6, the majority of the TADAs are implemented

through indirect APIs, which are extremely tricky to defend against, because one will

never know what aspects of the runtime environment malware authors are checking.

Based on various analysis reports [96,97,105], malware may check username, folder and

�le names, disk volume number, recent �le used, number of CPU cores, current running
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process names, current running process command lines, etc. This list of artifacts being

checked keeps going, and obviously, it is not possible to cover all of them, as modern

computers and OSes are extremely complex. Hence, such diversity and complexity are

truly disasters for rule makers.

Fortunately, if we look at the implementations of malware writers evaluating the

runtime environment, it is notable that the majority of the runtime checks involve strings.

For example, �le names are string, user names are string, WMI (Windows Management

Instrumentation) queries for checking hardware are strings, etc. Although it is di�cult

to enumerate all the possible strings, people can understand the string. Despite the

controversy about LLM's ability to truly understand human, LLMs do show promising

enough ability in understanding the human languages, which makes them to be a perfect

candidate to digest the strings used in TADA implementations.

4.4.3 Problem Statement

As motivated in Section 4.4.1, our goal is to suggest a set of breakpoints "near" the

implementation of TADA, so that the reverse engineer can bypass the TADAs and

conduct root cause analysis on sandbox failures. Now we have our problem statement as

follow:

Given a malware sample with TADA, how to reduce the time and labor e�orts

of the reverse engineer by providing a set of breakpoints.

The idea of near is still abstract and it is still not clear on what entity in the program

we are going to conduct analysis. In this paper, we decide to perform our analysis at the

basic block (BB) level, and correspondingly, the concept of "near" will be a small the

number of BB away from the BB where the breakpoint locate, on the control �ow graph

(CFG). Speci�cally, we want to place the breakpoints at the BBs that are parts of the

TADA implementations.

4.5 Method

4.5.1 Overview

4.5.1.1 Design Decisions for Program Analysis

Since the goal is to identify the location of the TADA related code in the binary, we focus

more on the implementation aspects of the TADAs rather than the purposes and nature of
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the techniques.Our detection granularity is at BB level , so the feature constructed

is per BB based. Nevertheless, it does not mean that our analysis is at BB level only,

while we also conduct static control �ow and data �ow analysis to extract the features

we need. Our work�ow involves static analysis, which is driven by the common reverse

engineering practices mentioned at the beginning of Section 4.4.1. In addition, static

analysis is immune to the coverage issue caused by having multiple TADAs implemented

in one sample: the malware sample will exit or sleep after the �rst check failed, not

executing other TADAs it may have. If we had adopted dynamic analysis, we would

have had to patch the binary after detecting one TADA before detecting another.

4.5.1.2 Design Decisions for Prompts

Toward the core of our method is the feature extraction and construction, so that the

features used in the prompts need to be informative and digestible for the LLM. As we

have decided the granularity of the analysis would be at BB level, the �rst straightforward

option is to include the assembly code of the BB in the prompt. For example:

I want you to help me identify whether a basic block is related to anti-dynamic analysis....

add esi, 0xbc
mov dword [esp+0x3c], eax
...
push 0x489208
push ebx
call dword PTR ds:0x47b344

Unfortunately, when we tried to query the LLM using this strategy, it results in

many false negatives. The problem here is obvious: the information needs to �nd TADA

implementations is missing, and instead there are many addresses and immediate values

with no context.

Therefore, at a higher level, we �rst conduct program analysis to extract the features

that are needed to determine whether a BB is TADA related or not. The features are

selected based on domain knowledge, which will be explained in detail in the following

subsections. Those features will be then used to build prompts and subsequently sent to

LLM for the �nal output. Although the output of our work�ow is a binary decision for

each BB, we prompt the LLM so that a response of ratings (of how related the BB is to

TADA implementations) is generated for each BB.
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Figure 4.2. Overview of our work�ow

4.5.1.3 Work�ow

Our work�ow consists of two major parts: BB feature extraction and query to LLM.

The major steps are illustrated in Figure 4.2. Starting from a malware sample, we �rst

construct the control �ow graph (CFG) and extract all the BBs from the executable.

Note that the CFG may be used for other static analysis later. These are binary level

BBs consisting instructions, from which we extract three kind of features: assembly

features, API call features and string features. After the features are extracted, they will

be used to craft the prompt, which will be then sent to the LLM, querying for whether

the basic block is part of the implementation of TADA and suitable for a breakpoint.

4.5.2 Sample unpacking and BB extraction

Since the majority of the malware executable samples are Windows Portable Executable

(PE) �les, we mainly focus on PE in this work. However, it is very common to see a PE

malware is packed [106]. Without unpacking, one can never construct the CFG re�ecting

real malware logics. Therefore, the �rst step of our work�ow is to unpack the malware

samples and construct the CFG.

The topic of unpacking PE �les [107� 109] and constructing CFG has been well

studied and many techniques are available. For the purpose of self-containing, here we

only brie�y introduce the techniques adopted during our experiments when handling

real-world malware samples. Given a malware sample, we �rst check if it is a PE �le by

checking the magic bytes and parsing the header. If it is a valid PE �le, we will then

useDetect-It-Easy tool to �nd whether the �le is packed. In cases no known packer

is found, we will then check the Import Address Table (IAT). If there are less than 5

imported libraries or 15 imported functions, we will also view this sample as a packed

malware sample.

As for unpacking, if the malware is packed by UPX, we will just go ahead and unpack

it using the UPX utility. For other packers, we will do dynamic unpacking. We �rst will

try automatic unpacking usingPE-sieve tool. Essentially, after the malware is loaded in
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the memory, the tool will continuously scan the memory to check whether the executable

code is inconsistent with the copy on the disk. If any suspicious changes in executable

segments are detected, the tool will dump the executable, which is very likely to be the

unpacked malware sample. Unfortunately, in some cases this automatic unpacking will

fail due to corrupted IAT in the dump, and here our last try is to do manual unpack

using x64dbg, and �x the imports using Scylla plugin.

To this point, if the original IAT can be parsed, constructing CFG and dumping the

BBs are fairly straight forward. Existing tools includes but not limited to IDA, Angr, etc.

4.5.3 Feature Construction: Assembly Feature

Assembly features are features that can be extracted solely from the assembly language,

which can be acquired directly from the extracted BBs. In particular, we are looking for

two things: mnemonics of instructions and the memory accesses.

In assembly language, mnemonics of an instruction are the most semantic-rich

component, and therefore, the presence of certain mnemonics will be strong indicators

of TADAs. For example, if a BB contains bothpushf and popf instructions, then it

is extremely suspicious for detecting debugger. For another example, if a BB contains

hardware information instructions such ascpuid , then it could be detection if VM

exists. As for memory accesses, we particularly look for the memory accesses through

segment registers. In MS Windows, many processes related information can be accessed

through segment registers. For example, in Windows running on x86 CPUs, the process

environment block (PEB) can be accessed throughfs register, which contains various

information that can indicate whether a process is being debugged or traced.

Accordingly, for each BB, we iterate through each instruction and check whether the

instruction has uncommon, TADA-related mnemonics. In our experiments, we include in

total 15 uncommon mnemonics, which are shown in Appendix 4.10.1. If any uncommon

mnemonics are found, we will report this �nding in the prompt, such as:

Uncommon INS:<mnemonic>

We also check whether there is any segment register reference, if so, we will report the

�nding in the prompt in a similar manner:

Segment Register Access:<reg>:<o�set>

If LLMs are oracles working perfectly, the information provided above should be

su�cient for the assembly feature. Unfortunately, based on our experiment, the result
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Figure 4.3. Example of String Reference

was not so satisfying. From human analysts' perspective, interpreting and understanding

the assembly language features in the context of TADA identi�cation is not di�cult,

as long as the binary can be disassembled correctly (i.e. no sophisticated anti static

analysis). However, digesting the assembly features for LLMs can be challenging, because

most of the words and phrases in assembly language are abbreviated to an extremely

short and less informative form. This abbreviation is not an issue for human, because

once human analysts discover some uncommon mnemonics or register accesses, they will

be able to refer to other resources such as processor manual or OS manuals to �nd out

whether they are related to anti dynamic analysis. As for LLMs, if we do not provide

enough explanation in the prompt, LLMs are essentially seeing these information without

any context. During our experiments, we found that this could cause some of the phrases

are misinterpreted by the model. For instance,STRinstruction x86 is Store Task Register,

but when the phraseSTRpop up in any computer related discussion, it is almost certain

that the STRmeans strings.

Therefore, after collecting the reported mnemonics and segment register accesses, we

augmented the feature by including a explanatory description of the mnemonics and the

register accesses, such as:

Uncommon INS: <mnemonic>(explanations)

Segment Register Access:<reg>:<o�set >(explanations)

The details of the assembly feature augmentation are included in Appendix 4.10.1.

4.5.4 Feature Construction: String Feature

One key motivation of using LLM is that the string can carry many clues regarding

whether a BB is TADA related. For example, as shown in Figure 4.3, if a BB refers to a

string such asVirtualBox , then obviously the BB is very suspicious for involving TADA.

Accordingly we include string feature, such as:
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Figure 4.4. String Deobfuscation

String Reference: "STRING"

However, in the context of malware sample analysis, extracting strings through static

analysis could be challenging, because most of the malware, especially those sophisticated

ones such as ransomware, will try to hide and obfuscate the strings. Generally speaking,

there are two major ways to obfuscate strings: encoding and constructing string on

stack (stack strings). Accordingly, we consider following 4 situations: 1) string is not

obfuscated; 2) string is encoded; 3) string is constructed on stack and 4) string is encoded

and is constructed on stack.

Figure 4.4 shows the overall logic of our string deobfuscation process. First we check

whether the data reference is a plain string: string saved in plain text format with no

obfuscation. If not, we will emulate the function whenever we suspect the data reference

is referring to data that could be a string. We have two major criteria to determine

whether the emulation will be performed: 1) whether a loop, especially a single BB loop
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Figure 4.5. Example of API Call

is presented; and 2) whether there are consecutivemovinstructions (more than 5) that

is moving data from data sections to the stack. The intuitions behind the two criteria

are simple: for encoded strings, a loop is extremely likely to be presented, as decoding

data almost always require loops; for stack and stack encoded strings, there has to be

consecutivemovinstructions to set up the stack. If any of the criteria is met, we will

then do the emulation to �nd the strings. After a string is found, it will �rst be used to

construct a string feature as shown above, and then be recorded for later use.

4.5.5 Feature Construction: API Call Feature

As the name suggested, the API call feature of a BB re�ects all the API calls in the

BB. No need to mention, APIs called during malware execution is one of the most

important factors to understand the behavior of the sample. For our purposes, API

calls is indeed critical as well, as numerous number of TADAs can be implemented

through APIs. For example, the most famous single API that can be used to do anti

debugger isIsDebuggerPresent , which will return the value of the BeingDebugged�ag

in PEB 1. For another example, in many anti sandbox techniques, malware authors

will conduct detection based on computer and username, which can be very di�cult to

acquire without using the Windows APIs such asGetComputerName. Therefore, APIs is

extremely important for detecting TADA.

In our API call feature, we not only include the API name, but also the arguments

passed to the API. Shown in Figure 4.5, it is an example of API call in a BB calling

MessageBoxA. Since the call instruction refersDSregister, after checking the IAT, we

will be able to �nd out that this call is calling MessageBoxA. Subsequently, based on the

documentation of theMessageBoxA, we know that the 4 pushed data are the 4 arguments

of the call.

API Name To start, we �rst resolve the name of the API, which is very straightforward

1https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
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in cases of direct call. In particular, for eachcall instruction, we check if the callee is

referring to the import table. From the IAT, we will be able to resolve the API that is

being called easily.

As for indirect calls, since our feature extraction only uses static analysis, it would be

extremely challenging to handle those automatically, which is a common limitation of all

kinds of static analysis. However, there are still cases where calls may be resolved, as

long as the register value at the call site can be inferred. To do so, if we �nd an indirect

call instruction in a BB, we will construct the data �ow graph (DFG) for the function

containing the BB. Then we trace the data �ow backward from the indirect call site

to see if a live-variable with a concrete value can be found (e.g. value from static data

sections). If so, we will check if the value is a valid address for an API, in a similar way

as described earlier for direct calls.

Arguments Based on Windows__stdcall calling convention and API documentation,

it is not di�cult to resolve registers of arguments, but what is more important is the

values of the arguments. Similar to what we have done in resolving the API name, we

could �nd the immediate values if they are available. In addition, we also want to resolve

the static and stack strings if the immediate values of arguments are pointers pointing to

strings, because, similar to human, strings could provide a lot of information for LLMs,

which is also the key motivation of this work. If an argument's value appears to be a

valid address, we will check if any string is presented at the address.

The constructed API call feature will be in a similar form of calling a function in

programming languages, such as:

API_Name(arg1, arg2)

4.5.6 Prompt LLM

Our ultimate goal is to help the reverse engineers identify the location of the TADA

implementations, so that breakpoints can be properly set. It seems that the most

intuitive model of this problem is binary classi�cation: having the LLMs to output a

binary verdict of whether a BB is TADA related or not. However, as described in Section

4.4.2, identifying implementation of TADA is a very challenging task and is very prone to

false positive, so that the best scenario for a human analyst is to have quanti�ed results

which can give them a sense of which BB should be prioritized for investigation.

Accordingly, instead of prompting the LLM to output a binary result, we prompt for
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a rating. The LLM will essentially output a number from 0 to 10, re�ecting how related

a BB may be related to the implementation of TADA. An example of the prompts are as

follow:

I want you to help me identify whether a basic block in a binary program is related to anti

dynamic analysis techniques, such as detecting debugger, sandbox and/or VM. I will provide

some static analysis result of the basic block, including: 1) Called APIs (API), 2) Static Strings

referred, 3) Uncommon instructions (INS), and 4) Segment Register Reference (SegReg) Rate

from 0 to 10, how likely the code is related to anti-analysis.

I will use your answer to decide whether to put a breakpoint at the basic block, so try

to avoid false negatives, and DO NOT consider anti static analysis techniques. Please only give

the rating number, no explanation

ˆ Feature 1

ˆ Feature 2

ˆ ...

We set a threshold at 7 for positive result, that is, BBs that receive a rating of 7 is

considered to be related to TADA implementation.

4.6 Evaluation

As described in Section 4.4, the major goal of our work is to ease the human labor involved

in identifying the locations of TADA in a malware executable binary. Accordingly, we

want to focus on three research questions: 1) Can our method identify well-known

TADAs? 2) Can our method detect TADA in real-world samples? and 3) How much time

our method may save for the human analysts? The �rst two questions are essentially

evaluating the e�ectiveness of our method: whether our method could actually identify the

TADA after all; the third questions is evaluating the amount of time saved quantitatively.

Our implementation is based on the work�ow introduced in Section 4.5, which will

be elaborated in the next subsection. The output of our work�ow is binary for each of

the BB: whether a breakpoint should be placed at the beginning of the BB. Every BB

that receive an LLM rating of 7 or above is considered as positive BB and a breakpoint

shall be placed.
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