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Abstract
Models of the Martian atmosphere from Bass and Chambers [2001], Williams [2001]

and Petculescu [2016] predict that it absorbs sound more than Earth’s atmosphere. The
experiments that have been done with Ingenuity and are being done with the Persever-
ance microphone will begin to confirm the accuracy of such models [Maurice et al., 2022].
Because these models predict high sound absorption, even at short distances, only high
amplitude, low frequency sound waves will propagate well on Mars. Meteors are an
expected high amplitude sound source that have already been documented on Mars.

Presented is an analysis of simulation of the infrasound signature of a meteor blast
wave as it would be received after traveling through the Martian atmosphere. Starting
from replicating the absorption model from Bass and Chambers, a model of the Martian
atmosphere that includes nonlinear behavior was built up to simulate high amplitude
sound wave propagation. This work follows a similar approach that has been used to
validate and update models used to predict meteor blast waves in the Earth’s atmosphere
[Edwards, 2009], [Nemec et al., 2017]. The augmented Burgers’ solver developed by
Cleveland and Hamilton was verified for nonlinearity and absorption that describe the
Earth’s atmosphere and then used to simulate these parameters for a model Martian
atmosphere. A blast pulse for a meteor with a high Mach number is approximated as a
cylindrical sound source that is propagated through a homogeneous form of the Martian
atmosphere. The solver outputs the waveform as it would be received at a number of
distances from the source.

Understanding meteor blast waves on Mars will help distinguish ground excitation
by acoustic waves and meteorite impacts from seismic waves, improving study of Mars’
seismology [Garcia et al., 2022]. In certain situations, these sounds might be heard by
human visitors to Mars, so understanding the sounds will enhance astronaut safety and
well-being.

The current model sets the stage for future validation efforts when measured data
becomes available. In the future the model could be enhanced by utilizing a profile for
an inhomogeneous model of the Martian atmosphere to use for the same simulations.
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Chapter 1 |
Introduction

1.1 First Microhpone Sent to Mars
The Mars Polar Lander was the first Mars mission to include a microphone to take

sound recordings on the red planet [NASA/JPL, 1999]. Although the mission failed, it
sparked interest in the acoustics community to begin investigating how sound propagates
on Mars. Since the mission, there have been papers published on models that predict
the atmospheric absorption of sound, consideration of the characteristics of sound prop-
agation from characteristic impedance to nonlinearity, and simulation of high frequency
sound propagation in the Martian atmosphere. The work presented here aims to build
on the theoretical research that has been conducted over the last 25 years. Recent and
ongoing Mars missions have inspired this investigation of long range sound propagation
of sonic booms.

1.2 Current Microphones on Mars
The Perseverance mission landed on Mars in February of 2021. Perseverance is a

rover with the same type of microphone sent with the Mars Polar Lander built into the
SuperCam instrument and a microphone built into the Ingenuity helicopter [Mimoun
et al., 2023], [NASA/JPL, 2020]. Since the rover’s landing, these microphones have pro-
vided recordings of a handful of sound sources: the environmental noise, laser induced
spark sounds from Perseverance, and helicopter noise [Maurice et al., 2022]. A com-
parison of sound absorption models done by Maurice et al. is given in Figure 1.1 and
shows an absorption coefficient for three octave bands that represent the frequencies of
the laser source recorded by the Perseverance microphone. While they show there is
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strong similarity in the absorption coefficient from the data to one one of the absorption
coefficient models, more data in a larger frequency range is needed to get a clear picture
of the sound absorption on Mars. During the continuation of the Perseverance mission,
there will be opportunities for the SuperCam microphone to capture other sounds from
Mars, a meteor being a plausible example. In the event of a meteor passing through
the Martian atmosphere, recording the sound of the meteor and the meteorite impact
is likely because they would be high amplitude sounds. A meteor would create a pulse
wave that would have energy in a broadband frequency spectrum.

Figure 1.1: Comparison of two absorption coefficient models for Mars, the absorption
coefficient model for Earth, and the absorption coefficients calculated for three octave
bands from microphone data taken on Mars by the Perseverance rover [Maurice et al.,
2022].

1.3 Other Acoustic Measurements
The InSight Lander was sent to Mars to study the interior of the planet[NASA,

2018]. The two main scientific goals were to gain an understanding of the formation
and evolution of Mars, and to determine the level of tectonic activity of the planet. As
is common for NASA missions, any opportunities to conduct other experiments were
taken and Insight was used to study the atmosphere as well [Banfield et al., 2020].
Pressure sensors were among the data collection equipment on the InSight lander which
allowed for detection of acoustic waves in the atmosphere from meteors. Using both the
measured acoustic and seismic wave data, meteorite impact locations were estimated
and later confirmed by imagery from the Reconnaissance orbiter [Garcia et al., 2022].
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The Insight Lander was active on Mars for just over four years, and five impact events
were confirmed from seismic and image data making a meteor event a likely sound source
on the planet.

Being able to confirm seismic signatures of meteorite impacts allows for such activity
to be separated from potential tectonic activity of the planet. Having microphones
on Mars that could capture acoustic data from meteors would add more confidence to
determining seismic activity from meteoroid impacts versus tectonic activity. This work
presents a prediction of the propagation of a sonic boom from a meteor traveling through
the Martian atmosphere. To do so, we create an model of the Martian atmosphere, and
a model of a meteor blast wave to propagate through the modeled atmosphere.

1.4 Meteor Blast Waves
Meteors travel at speeds has high as Mach 74 in the Martian atmosphere, which is

about Mach 58 on Earth [Edwards, 2009]. For reference, super sonic aircraft travel at
Mach speeds in the single digits. With sounds sources traveling above the speed of sound,
assumptions that are made to use a linear wave equation are no longer valid. One form
of nonlinear behavior of high amplitude sound is energy that in linear behavior would be
attenuated, is cycled into the higher frequency content of the wave. The energy going
to the higher frequencies allows the high amplitude wave to propagate longer distances
than a wave that behaves linearly. One of the simplest nonlinear wave equations known
as the Burgers equation, is used in this work to model the propagation of a meteor blast
in both Earth’s atmosphere and the Martian atmosphere.

Meteor-generated blast waves have not yet been recorded on Mars. In order to
create a realistic blast pulse from one for the Martian atmosphere, models of meteor
behavior in Earth’s atmosphere were considered. Due to the implementation of the
International Monitoring System (IMS), there have been a number of meteor events
recorded as infrasound propagation through Earth’s atmosphere. Analytical models
have been made and improved upon throughout the years as more data from the IMS
has been analyzed [Edwards, 2009]. In the model, a meteor Mach cone is approximated
as a cylindrical sound source and nonlinear weak shock theory is used as shown in Figure
1.2.

In more recent years, numerical models have been used to simulate what the blast
pulse near the cylindrical meteor source might look like, including how much the pressure
might jump from the ambient pressure [Henneton et al., 2015], [Nemec et al., 2017].
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Figure 1.2: a) A diagram of a meteor Mach cone and b) the approximation of the meteor
Mach cone as a cylindrical line source with radius R0 and length L [Edwards, 2009].

Complex fluid dynamic computation was used in both of the referred models to predict
the behavior and amplitude of the initial blast pulse. Shown in Figure 1.3 is an example
of one of the blast pulses produced by Nemec et al. to propagate through a numerical
Burgers’ solver to compare to data collected from the IMS. The pressure axis is scaled by
the ambient pressure, p∞, where ∆p is the change in pressure from ambient due to the
meteor. For shocks from supersonic movement, the waveform is expected to have both
a front and back shock. While this is commonly seen with aircraft, a meteor’s speed is
so fast, the waveform resembles an explosion blast wave.

1.5 Overview
The purpose of this thesis is to present a model of high amplitude sound propagation

in the Martian atmosphere to show that nonlinear acoustic theory used for Earth applies
to Mars and can be used as tool in future missions to Mars. The model is built up
from the most simplified case of sound propagation in an atmosphere by adding realistic
complex properties one at a time and examining how each affects the sound propagation.
To start, the sound speed, impedance, and velocity and pressure relationship are defined
for Mars and compared to Earth. Sound absorption by the atmosphere is added next

4



Figure 1.3: Nearfield blast pulse prediction for Meteor 20090428 in Earth’s atmosphere
Nemec et al., 2017

and analyzed for plane wave propagation as there are no other attenuation effects that
have to be considered. The analysis of these properties shows that sounds on Mars are
quieter and only travel short distances. Nonlinear acoustics is investigated next because
signals that behave in a nonlinear manner on Earth travel greater distances than linear
signals. An analytical solution of the Burgers Equation is found using parameters of the
Martian atmosphere. This allows for a preliminary analysis of the nonlinearity of the
Martian atmosphere in comparison to the effect of sound absorption. Finally, a numerical
method is used to predict high amplitude wave propagation in an atmospheric model
that includes nonlinearity and molecular relaxation to show that a high amplitude signal
should propagate long distances. This is despite having a lower peak pressure than the
same signal would have on Earth and the high absorption by the atmosphere on Mars.
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Chapter 2 |
Characteristics of Mars

2.1 The Martian Atmosphere and Simplifications
Mars has an atmosphere the differs greatly from Earth, which drives the differences

in sound propagation. It has an ambient pressure at the surface of 6.36 mb (636 Pa) with
a range from 4 to 8.7 mb depending on the season. The surface density of the atmosphere
is roughly 0.020 kg/m3. The major composition consists of 95.1% carbon dioxide, 2.59%
nitrogen, 1.94% argon, and 0.016% oxygen, with trace amounts of water vapor [NASA,
2024]. This information is shown in Figure 2.1. For this work, the contributions of the
water vapor were not considered. The temperature range and sound speed used were
based on the same values used by Bass and Chambers in their model for atmospheric
absorption on Mars [2001]. This was the model used for absorption in this work. Bass
and Chambers calculated absorption coefficients for 200 K and 300 K, and values from
the 300 K case were used for comparison to a typical temperature on Earth of 293 K.
At 300 K the equilibrium sound speed on Mars is calculated to be 273.4 m/s using the
following equation,

c =
√

γRT/M (2.1)

where γ is the ratio of specific heats, R is the gas constant in J(kmol)−1K−1, and M is
the molecular weight in kg (kmol)−1.

Simplifications of the atmosphere were made to make all calculations feasible and
timely. The atmosphere was considered homogeneous, meaning it does not change in
density nor pressure for the propagation distances used. For both analytical and nu-
merical solutions, a sonic boom from a meteor was considered at near surface altitude,
received as a horizontal and one-dimensional propagation. The pressure and density of
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Figure 2.1: Comparison of the gaseous mixtures of Earth and Mars’ atmospheres. Earth
is predominately nitrogen and oxygen gas. Mars is predominately carbon dioxide.

the atmosphere are representative of an altitude near the planet’s surface, the analysis
was done as for a free field, without any reflections. A sonic boom from a meteor is the
sound source considered in this work.

In previous work done to study acoustics on Mars, the atmosphere was modeled
directly as particles to simulate their motion and collisions because it is valid for all
Knudsen numbers [Hanford and Long, 2009]. The Knudsen number is defined as the
ratio of the mean free path to the length scale of the system being modeled. This is
necessary for high frequency signals and dilute gases where the continuum theory breaks
down. The continuum theory works on the assumption that the media being modeled
entirely fills the space it occupies. This assumption becomes problematic for the higher
altitudes of atmospheres and for frequencies that have wavelength at or smaller than the
length scale of the system. The system being considered for this work is for very low
Knudsen numbers (large wavelengths) making use of continuum theory valid.

The next section discusses how the density, temperature, and pressure of the Martian
atmosphere affect sound propagation. The pressure amplitude of a plane sound wave is
affected by the characteristic acoustic impedance of the atmosphere.

2.2 Impedance in the Atmosphere
Impedance in acoustics is defined as the pressure divided by velocity, which can be

volume or particle velocity. For a plane wave the ratio between pressure and particle
velocity equals the density of the medium times the sound speed in that medium. This
is called the characteristic impedance, z and takes the form

7



z = ρc (2.2)

The density and sound speed are dependent only on the properties of the medium,
so the characteristic impedance describes how well the medium responds to pressure
fluctuations. The characteristic impedance of Earth’s atmosphere at sea level and ambi-
ent temperature is 415.03 rayls, and the characteristic impedance of Mars’ atmosphere
with the density and sound speed described in the previous section is 5.468 rayls. The
density of the Earths atmosphere is significantly larger than that of Mars, making the
characteristic impedance for Mars about 1% of Earth’s.

To think of the effect this has on a real system, it can be helpful to use specific
radiation impedance. Specific radiation impedance relates the pressure a mechanical
system has to the particle velocity it creates in a medium. The real part of radiation
impedance (Re{Zrad}) is the energy being removed from the system, in this case it is the
power radiated as sound [Pierce, 1981, Sec 3.5, Eq. (3.5.11)]. Re{Zrad} is proportional
to the characteristic impedance, so the sound power a mechanical system radiates on
Earth would be reduced by a factor of 100 on Mars. This is a 20 dB reduction in sound
pressure level [Sparrow, 1999]. For example, vibrating machinery such as an air handling
unit on a building, could have a sound pressure level on Earth near 80 dB. The same
equipment would have a sound pressure level of 60 dB on Mars while working in the
same manner. Psychoacoustics points out that a 10 dB drop in sound level is perceived
by most people as being half as loud, making a 20 dB drop in sound level correspond
to a perception of a sound being a quarter as loud [Begault, 1994]. Sounds on Mars are
about a quarter as loud as sounds on Earth.

2.2.1 Velocity and Pressure

For Earth and Mars, the relationship of acoustic pressure and velocity of a plane wave
stays the same, the velocity is related to the pressure by the characteristic impedance

v = pE

ρEcE

= pM

ρMcM

(2.3)

where the subscripts denote for Earth and for Mars. A vibrating source on both planets
has the same power supply and would create the same velocity in each atmosphere with
the force it exerts. Because the characteristic impedance on Mars is smaller, the pressure
on Mars must also be smaller in order for the velocity to stay the same. A blast pulse
from a meteor will have the same reduced pressure amplitude. In Chapter 5, a meteor
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event recorded on Earth with the pressure scaled by the characteristic impedance of
Mars is used as basis to create an appropriate initial blast pulse to propagate through a
model of the Martian atmosphere.

2.3 Summary
A lot can be determined about sound propagation on Mars from looking at the

simplest case: a plane wave traveling through the open atmosphere, ignoring attenuation,
wind, and nonlinear acoustics. Due to the low temperatures and very low density of the
Martian atmosphere, any kind of sounds will have a 20 dB lower sound pressure level
than they would have on Earth. Sounds on Mars start off quieter than on Earth, and it
will be shown in the next chapter, that higher frequencies are quickly attenuated by the
atmosphere as well.
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Chapter 3 |
Sound Absorption on Mars

3.1 Current Models
The absorption of sound in the atmosphere is a defining characteristic of sound

propagation on Mars, with all models predicting that sound will be attenuated more
severely on Mars than it is on Earth. Petculescu and Lueptow [2007] used an eigenvalue
method to solve for an effective wavenumber, from which an absorption coefficient can
be backed out. This model was not used for the work presented, but it is noted that the
results agree with the Bass and Chambers model.

Williams published an overview of acoustics on Mars [2001] to discuss what work
could have been done in the field, if the Mars Polar Lander had been a successful
mission. As part of this overview, they derived a model for the sound absorption. This
model used experimental data for the thermal relaxation of carbon dioxide in Earth’s
atmosphere to derive an equation for the relaxation absorption on Mars as well as a
different formulation for the viscous absorption coefficient. It differs greatly from the
models for all frequencies, and predicts a higher absorption overall than the other models.
Figure 3.1 shows a comparison of the three absorption models versus frequency.

The absorption model that was verified and used for this work is from Bass and
Chambers [2001]. It was chosen because it follows the same process that is used by Bass
et al. for the model of sound absorption on Earth for lower altitudes and it has the
closest match to the preliminary data from the Perseverance mission, shown earlier in
Figure 1.1 [Maurice et al., 2022].

This section will discuss the methods used to replicate the results of the Bass and
Chambers model. The thermovicous absorption equation is defined. Absorption from
both vibrational and rotational relaxation are considered separately. All three forms of
absorption are compared to evaluate which type has the greatest effect on the overall
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(a) (b)

(c)

Figure 3.1: Plots of absorption coefficient versus frequency from (a) Petculsescu and
Lueptow [2007], showing total sound absorption for Mars (b) Bass and Chambers [2001]
showing the vibrational relaxation absorption, rotational relaxation absorption, and the
classical absorption (for a temperature T = 300 K), and (c) Williams [2001] showing
absorption for thermal, molecular, and viscous absorption as well as the sum of the
three.

sound absorption. The absorption coefficient for two low frequencies are used from this
model to visualize the propagation of a sinusoidal plane wave in the Martian atmosphere.
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3.2 Calculation of Absorption
The model of sound absorption by a fluid used in this work for both Mars and

Earth considers absorption from thermoviscous properties and the relaxation processes
of the components of the fluid. For Earth, this is the vibrational relaxation processes
of nitrogen and oxygen. For Mars, thermoviscous absorption, virbational and rotational
relaxation of carbon dioxide are compared to discern which process has the greatest
effects over a range of frequencies from infrasound to the audible range. The equation
for classical absorption (also referred to as the thermoviscous absorption) remains the
same for Earth and Mars. The atmosphere of Mars can be considered an ideal gas, so
use of this method is valid. There are a few formulations of the classical absorption and
the following equation was used for the absorption coefficient α:

αcl = [ω2/(2ρ0c3)][4µ/3 + (γ − 1)κ/(γCv)] (3.1)

where ω is the angular frequency, ρ0 is the equilibrium density in kg/m3, c is is the speed
of sound in m/s, µ is the coefficient of viscosity in kg/m, γ is the ratio of specific heats,
κ is the coefficient of thermal conductivity in J(kg kmol)−1K−1kg m−1 s−1, and Cv is
the specific heat at constant volume in J(kg kmol)−1K−1 [Bass and Chambers, 2001].

The molecular relaxation of carbon dioxide was the only relaxation process considered
for the calculation because it makes up 95% of the atmosphere of Mars. The equation
for the absorption coefficient from rotational relaxation is

αrot = [2π2f 2/(γPc)]µ[γ(γ − 1)R/(1.25C0
P )]Zrot (3.2)

where P is the atmospheric pressure, f is the frequency in hertz, c is the sound speed
calculated with a ratio of specific heats that excludes the vibrational contribution, R is
the gas constant, C0

P is the specific heat at a constant pressure for a frequency that is
above the relaxation frequency for vibration, and Zrot is the rotational collision number
for carbon dioxide. A collision number is the rate of collisions between two molecule in a
volume, and the rotational collision number depends upon the rotational energy spacing.
It was assumed that the rotational collision number for carbon dioxide, oxygen, and
nitrogen would be very similar and the equation for Zrot was based off of measurements
for oxygen and nitrogen [Bass and Chambers, 2001].

Zrot = 61.1 exp(−16.8/T 1/3) (3.3)
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The equation used to calculate the absorption from vibrational relaxation is

αvib = (πs/c)(f 2/fr)/[1 + (f/fr)2] (3.4)

where s is the relaxation strength, and fr is the relaxation frequency. The relaxation
strength compares the specific heat at constant volume for each molecular species to
the specific heat at constant pressure and volume well above the relaxation frequency
for carbon dioxide. The relaxation frequency is the reciprocal of the relaxation time,
tr, which is the time it takes for the molecule to return to equilibrium. The relaxation
time is found by calculating the rate at which the doubly degenerate bending mode of
carbon dioxide will transfer vibrational energy to other molecules in the atmosphere,
denoted as k. For Mars, Bass and Chambers considered collisions with carbon dioxide
(CO2), nitrogen (N2), argon (Ar), and water vapor (H2O). The total forward rate is the
sum of the rate of transfer to each type molecule multiplied by the mole fraction for
each type of molecule. The difference in the forward rate of the reaction, k, and the
reverse rate of the reaction, kb, is the inverse of the relaxation time at a constant volume
and temperature. To get the relaxation time for a single energy transfer, the relaxation
time at constant volume and temperature is multiplied by a ratio of the specific heat at
constant pressure for frequencies well above the relaxation frequency to the specific heat
at constant pressure for frequencies far below the relaxation frequency.

Vibrational and rotational relaxation processes were calculated and compared with
the classical absorption. The comparison shows that vibrational relaxation of carbon
dioxide molecules are responsible for most of the atmospheric absorption for frequencies
below 103 in magnitude. Figure 3.2 shows that the absorption is considerably lower for
low frequencies. In the next section, the effect of the absorption on Mars is compared
to the effect on Earth.
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Figure 3.2: Sound absorption coefficient by the atmosphere as a function of frequency
from classical absorption, rotational and vibrational relaxation of carbon dioxide.

3.3 Comparison to Earth
To visualize the difference of absorption from Earth to Mars, a simple model of a

plane wave source was made in each atmosphere. A plane wave has no attenuation from
spreading, and shows only the effect of the atmospheric absorption on the sound level
as the receiver gets further away from the source. The source has a sound pressure level
(SPL) of 90 dB. The SPL per distance from sources with two different frequencies are
shown in Figure 3.3 and Figure 3.4. For a source emitting a 100 Hz plane wave, there
is no change in sound level on Earth at 400 meters distance from the source, whereas
on Mars the sound can no longer be heard. For a source that emits a 10 Hz frequency,
the absorption is much lower and it can be seen that for both Earth and Mars, the
signal travels significantly farther. For this reason, infrasound was chosen as the region
of sound to focus on when studying sound propagation on Mars. A shock wave from a
meteor will produce sound in all frequencies, and it is plausible that the lower frequency
content could reach a microphone hundreds to thousands of meters away.

14



10
0

10
2

10
4

10
6

distance from source [m]

20

40

60

80

100

S
P

L
 [
d
B

 r
e
 2

0
 

P
a
]

100 Hz plane wave

SPL Earth

SPL Mars

Figure 3.3: Comparison of the sound pressure level (SPL) as a function of distance for
a source producing a 100 Hz plane wave in Earth’s atmosphere and Mars’ atmosphere.
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Figure 3.4: Comparison of the sound pressure level (SPL) as a function of distance for
a source producing a 10 Hz plane wave in Earth’s atmosphere and Mars’ atmosphere.

3.4 Summary
In order to understand the sound propagation in any media, the properties of the

media must first be well defined. For acoustics in fluid media, the absorption of sound by
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the fluid is a critical parameter for sound propagation. For highly absorbing fluids, like
the Martian atmosphere, if the absorption is not properly calculated, experimental setups
could be affected because the sound might not reach the receiver. As daily observers
of atmospheric acoustics on Earth, it is easy to make assumptions based on experience.
The comparison of the SPL of a sinusoidal source in each atmosphere provides a more
intuitive visualization of the sound absorption on Mars and confirms that only low
frequency sound waves will travel long distances on Mars. A source such as a sonic
boom from a meteor emits a large amount of energy in the low frequency part of the
spectrum. With high amplitude sound sources, linear acoustics does not accurately
predict the behaviour of the sound. The next section will discuss the nonlinearity of the
Martian atmosphere, which is integral to modeling sonic boom propagation.
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Chapter 4 |
Burgers’ Equation: Analytical So-
lution

For high amplitude sounds, the assumption of linearity of the wave equation is no
longer valid, and certain nonlinearities must be considered to accurately calculate the
pressure and velocity of such sounds. This chapter focuses on the the formulation of the
wave equation known as the Burgers Equation which has solutions that can be found
analytically. Using the properties of the Martian atmosphere in this calculation provides
a preliminary look at whether the behavior of a meteor blast wave on Mars would be
the same as expected on Earth.

4.1 The Burgers Equation
The Burgers Equation is used for comparing the effects of nonlinearity and dissipa-

tion. It is the simplest form of a nonlinear wave equation and can be solved without
numerical methods for certain situations such as the case of an initially sinusoidal wave.

∂p

∂x
− δ

2c3
0

∂2p

∂τ 2 = βp

ρ0c3
0

∂p

∂τ
(4.1)

It describes the pressure changes over space and time with x for distance, p for
pressure, and τ for retarded time. Retarded time is defined as τ = t−x/c0, the difference
in a moment in time and the time it takes for the sound to travel to the point in space
at that time. The affects of thermoviscous absorption are included as a dissipation
coefficient

δ = ρ−1
0 [4

3
µ + µB + κ(C−1

v − C−1
p )] (4.2)

where µ is the shear viscosity, µB is the bulk viscosity, κ is thermal conductivity.
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The right hand side of equation 4.1 is the nonlinear component, and β is the co-
efficient of nonlinearity. As previously mentioned, the Maritain atmosphere can be
considered an ideal gas, which allows β to be defined as

β = (γ + 1)
2

(4.3)

Because of the importance of the molecular relaxation of carbon dioxide to the sound
absorption on Mars, a more complex form of the Burgers Equation that include the
affects of the molecular relaxation processes is needed. For this step of modeling the
Martian atmosphere, it is assumed that it is entirely carbon dioxide which allows for
the molecular relaxation to be considered while solving the simpler form of the Burgers
Equation given in Equation 4.1. The thermoviscous absorption is significantly smaller
than the relaxation absorption from carbon dioxide so the dissipation from thermoviscous
absorption was considered negligible for this model.

4.2 Monorelaxing Fluid
Assuming that the Martian atmosphere is only carbon dioxide, it can be modeled as

a monorelaxing fluid in order to solve for the solution of the Burgers Equation directly.
The example of a monorelaxing fluid presented in the Hamilton and Blackstock book on
nonlinear acoustics was used as a comparison for this model [1998]. They introduce an
important parameter, D, which is defined as the ratio of relaxation effects to nonlinear
effects,

D = mρ0c
2
0

2βp0
(4.4)

where m is the dispersion parameter, ρ0 is the ambient density of the atmosphere, c0

is the equilibrium sound speed, β is the coefficient of nonlinearity, and p0 is the initial
peak amplitude of the shock. The ratio is a quick way to determine whether the effects
of nonlinearity or absorption will be dominant in shaping the waveform. When D > 1,
absorption is dominating nonlinearity and the wavefront with have a longer rise time and
shock thickness. The wavefront has a smooth behavior when it reaches the peak negative
and positive pressures. When D = 1, absorption and nonlinearity are equally affecting
the shock. The rise time and shock thickness are shorter, but a discontinuity jump has
not appeared yet. Once D < 1, the nonlinearity begins to dominate absorption and a
discontinuity appears because the pressure wave cannot be multi-valued. This behavior
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is shown in the results section of this chapter.
The dispersion parameter, m, is the square difference between the frozen speed (the

sound speed at high frequencies), c∞, and equilibrium sound speed (the sound speed
at low frequencies), c0, relative to the square of the equilibrium sound speed. It is an
indicator of how influential the molecular relaxation process is to the absorption of sound
by considering how large the dispersion is.

m = (c2
∞ − c2

0)/c2
0 (4.5)

The only value of D that changes with time or space in a homogeneous atmosphere
is the peak pressure amplitude of the shock wave. For an atmosphere that has higher
dispersion, only large shocks will have a D value greater than 1. Table 4.1 shows pressure
amplitude values and their corresponding ratio of absorption to nonlinearity for carbon
dioxide under the conditions of the Martian environment.

Table 4.1: The relationship of acoustic pressure amplitude and the ratio of relaxation
effects to nonlinear effects (D) of the Martian atmosphere; as described as a monorelax-
ing fluid.

Pressure [Pa] D
1 50.45
2 25.22
5 10.10
20 2.52
50 1.00
100 0.51

In Chapter 5 of Nonlinear Acoustics [Hamilton and Blackstock, 1998], they present
waveforms in a non-specified monorelaxing fluid for values of D = 2, D = 1, and D = 0.5.
Once the nonlinearity of the fluid starts to out compete with absorption (D < 1),
the solution to the Burgers Equation will become multivalued, or have two values for
pressure, for some values of τ . This is not physically possible, and a mathematical
correction known as weak shock theory is used to evaluate the Burgers Equation near
the shock. Weak shock theory is used to find the pressures just before, and just after
the shock which determines the final waveform. The solution to the Burgers Equation
given by Hamiliton and Blackstock is

τ = trln
(1 + p/p0)D−1

(1 − p/p0)D+1 (4.6)
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where τ is retarded time, tr is the relaxation time of the monorelaxing fluid, p is the
pressure of the waveform at any point, and p0 is the peak pressure amplitude. For
D ≫ 1, Equation 4.6 can be rearranged to have pressure as a function of retarded time,

p = p0tanh(τ/2Dtr) (4.7)

For D = 1 Equation 4.6 simplifies to

p = p0[1 − exp(−τ/2tr)] (4.8)

When D ≤ 1, Equation 4.6 is evaluated using weak shock theory. For a shock modeled
as an instantaneous pressure jump, the sound speed just before and after the jump is

c∞ = (1 + m/2)c0 (4.9)

and the shock must propagate with a speed of

dxsh

dt
= c∞ + β(psh − p0)/2ρ0c0 (4.10)

The shock is stationary in the retarded time frame meaning that dxsh

dt
= co. When

setting these equations equal to each other, they can be rearranged to get an expression
for the pressure of the shock, psh [Hamilton and Blackstock, 1998].

psh = (1 − 2D)p0, 0 ≤ D ≤ 1 (4.11)

The pressure at the shock is used in Equation 4.6 to calculate the point in time, τsh,
of the discontinuity.

τsh = −trln[4D1+D(1 − D)1−D] (4.12)

Before the arrival time of the shock, pressure is equal to the negative peak pressure,
and at the arrival time and after, it is described by Equation 4.6. To evaluate Equation
4.6 for pressure, a solver for the zeros of nonlinear equations was used. More detail on
this process is given in Appendix B. The next section discusses the results of this process
in the context of Mars.
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4.3 Results
The values of D chosen for evaluation were 2.5, 1, and 0.5 to compare to the example

from Hamilton and Blackstock and were first presented at the 184th conference of the
Acoustical Society of America [Hetherington and Sparrow, 2023]. The peak pressure
amplitudes corresponding to these values are possibly larger than would be realistic on
Mars; the next chapter includes consideration of what a realistic pressure value would
be for a meteor blast on Mars.

The rise time and shock thickness of each wavefront are show in Table 4.2. The
rise time used here is the time it takes for the pressure to rise from 10% of the shock
jump pressure to 90% of the shock jump pressure. The shock thickness is the distance in
space of the shock. As D decreases, both the shock thickness and rise time decrease. The
peak amplitude is increasing, so a louder shock has a smaller rise time and a smaller
thickness. This behavior is seen in Table 4.2 for D values calculated with the sound
speed and density of the Martian atmosphere.

Table 4.2: The rise time and shock thickness of the initial rise of a blast in the Martian
atmosphere as a function of D.

D Rise time [s] Shock thickness [m]
2.5 0.081 22.1491
1 0.033 9.0237

0.5 0.018 4.9220

Figures 4.1, 4.2, and 4.3 show the change in wavefront behavior as D decreases. When
D = 2.5, a shock has not yet formed as there is a smooth transition from negative to
positive peak pressure, and a longer rise time. The energy of the shock is spread out over
time and space by the absorption of the atmosphere. When D = 1, both nonlinearity
and absorption affect the behavior. A pressure jump has not yet occurred, but the
transition from the negative pressure in no longer smooth. The asymmetric behavior is
a result of the molecular relaxation. For D = 0.5, the nonlinearity dominates and there
is an obvious jump in pressure. The vertical jump is a result of the analytical solution.
Using a numerical solver would have more resolution near the shock itself. Figure 2
from Chapter 5 of Hamilton and Blackstock’s book has both a normalized pressure axis
and time axis, but the behavior of each wavefront is comparable. With the agreement
of these results to the example of a shock in a monorelaxing fluid from Hamilton and
Blackstock, it is reasonable to continue with nonlinear acoustic theory to build a more
accurate model of a shock wave in the Martian atmosphere.
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Figure 4.1: Pressure wavefront for D = 2.5, no shock has formed.
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Figure 4.2: Pressure wavefront for D = 1, a slope discontinuity has formed but the
pressure is not yet multivalued.
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weak shock theory.
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4.4 Summary
When the Martian atmosphere is modeled as a homogeneous monorelaxing fluid

made up entirely of carbon dioxide, there is good reason to believe that shock waves
will propagate through it in an expected way. The wavefronts calculated match the
comparison with a general monorelaxing fluid. By confirming that nonlinear acoustic
theory should work for the Martian atmosphere, a numerical method can be employed to
create a more accurate model of shock wave propagation. The next chapter discusses the
augmented Burgers Equation and the numerical methods used to solve it and simulate
wave propagation for an actual meteor blast.
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Chapter 5 |
Burgers’ Equation: Numerical So-
lution

Modeling the Martian atmosphere using the Burgers Equation allows for fast cal-
culation, but is not necessarily realistic because it oversimplifies the atmosphere by
excluding many of its properties. Using numerical methods to solve an augmented form
of the Burgers Equation can confirm how accurate the analytical solution is, and allows
for complexities of an atmosphere to be included in the model. This chapter describes
the augmented Burgers Equation, the solver used to compute wave propagation, model a
realistic meteor blast wave, and compare to other acoustic models for wave propagation.

5.1 Augmented Burgers’ Equation
The form of the Burgers Equation used for the rest of this work is taken from Cleve-

land et al. which they derived from Pierce [1981].

∂p

∂x
− δ

2c3
0

∂2p

∂τ 2 = βp

ρ0c3
0

∂p

∂τ
+

∑
ν

c′
ν

c2
0

∫ τ

−∞

∂2p

∂t′′2 e−(τ−t′′)/tν dt′′ (5.1)

The formulation is the same as the Burgers Equation from Chapter 4 with the ad-
dition of a sum that takes into account the effects of molecular relaxation. The sum
allows for ν number of relaxation processes, with c′

ν being a small-signal sound speed
increment, tν is the relaxation time, and t′′ a place holder variable for integration. The
small-signal sound speed increment is the change in sound speed with frequency due to
the relaxation processes in an atmosphere. This change in sound speed with the change
in frequency is known as dispersion. In the Earth’s atmosphere at 20 °C, cν = 0.11 m/s
for the relaxation of oxygen and cν = 0.0217 m/s for the relaxation of nitrogen [Pierce,
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1981], [Blackstock, 2000]. In the Martian atmosphere at 26 °C, cν = 10.40 m/s for the
relaxation of carbon dioxide. Because of the sum term included in Equation 5.1, it can
only be solved numerically. A code developed at the University of Texas by Cleveland,
Hamilton, and Blackstock was used for solving the augmented Burgers Equation.

5.2 Numerical Burgers’ Solver
Cleveland, Hamilton, and Blackstock built a Fortran numerical solver that is used

for "time-domain modeling of finite-amplitude sound in relaxing fluids" [1996]. It is
capable of of accounting for nonlinear, thermoviscous, and relaxation effects, and an
inhomogeneous medium. Up to five relaxation effects can be input. It will model plane,
cylindrical and spherical propagations. The code is based on a nondimensionalized form
of Equation 5.1.

∂P

∂σ
= P

∂P

∂t′ + 1
Γ

∂P 2

∂t′2 +
∑

ν

Dν

∫ t′

−∞

∂2P

∂t′′2 e−(t′−t′′)/θν dt′′ (5.2)

Γ = 1/αtv
0 x̄ is the the Gol’berg number, αtv

0 is the thermoviscous absorption coeffi-
cient, x̄ is the shock formation distance, Dν = ρ0c0c

′
ν/βp0, is the ratio of absorption to

nonlinearity in a different formulation, θν = ω0tν is the nondimensionalized relaxation
time, t′ = ω0τ is the nondimensionalized retarded time, σ = x/x̄ is the nondimensional-
ized distance, and P = p/p0 is the nondimensionalized pressure with p0 being a reference
pressure and ω0 being a reference frequency. For a plane wave, the shock formation dis-
tance is x̄ = ρ0c

3
0/βω0p0. The relaxation time and ratio of absorption to nonlinearity are

the main components used to describe the atmosphere the wave propagates through for
this code when considering homoegeneous atmospheres.

The code takes an input file that describes the waveform at the source, or can generate
a sinusoidal waveform. It outputs an array of waveforms as pressure versus retarded time
at values of σ that are chosen upon input.

5.2.1 Code Verification

Provided with the code were text files that list the parameters used by Cleveland
et al. to create the plots published in their paper on the solver. Recreating these plots
was the first step in verifying the the code functioned and produces expected results.
Figure 1 from Cleveland et al., shows comparisons of the numerical results of the solver
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with the initial waveform, the multi-valued solution, and with weak shock theory. It
shows the same behavior as was found for Mars in the previous chapter.

The next verification of the code was to compute waveforms of a sinusoid at a handful
of distances from the source to compare to Cleveland’s Figure 2. The top left hand plot
of Figure 5.1 shows the results of this calculation. Once it was verified that the code
would run these simple scenarios correctly, the parameters were changed to simulate
the Earth and Mars. A sinusoid with an a reference frequency, ω0, was used for all
calculations shown in Figure 5.1. Each column of Figure 5.1 has the same ratio of
absorption to nonlinearity, and each row has the same relaxation time. The plot in
the center of the figure is the representation of Earth with the relaxation processes of
nitrogen and oxygen. The bottom right hand corner plot is the representation of Mars
with the relaxation process of carbon dioxide. The rest of the plots show how relaxation
time and the ratio of absorption to nonlinearity affect the behavior of the waveforms at
different distances. For example from the top right hand corner plot of Figure 5.1, if the
relaxation time for carbon dioxide was significantly larger, a large amplitude waveform
would not form into a sawtooth form, but the nonlinearity would still create the peak
shift behavior that leads to shocks. Instead what is seen in the bottom right hand corner
of the figure, for this scenario a sinusoid on Mars would have minimal decrease in peak
amplitude even at a great distance, though a shock still has not quite formed. This is
because the ratio of absorption to nonlinearity is very high for this example.

Because the code requires nondimensional parameters, the relaxation time and the
retarded time are always multiplied by a reference frequency even though for an actual
blast, there would not be a single frequency. This is a scaling that is undone once the
output of the solver is scaled to have dimesions again. The results from Chapter 4 were
replicated with the numerical solver as another check that the code worked. Figure 5.2
shows the results of this verification. A peak pressure amplitude of 20 Pa was chosen
for Mars for both a sinusoid and a shock front for this comparison. The impedance
difference from Earth to Mars discussed in Chapter 2 is how the equivalent peak pressure
was determined for Earth.

The bottom right hand corner plot of Figure 5.2 is the replication of Figure 4.1. The
length in time and behavior of the deformation of the wavefront matches in these plots
which provides confidence that the code can accurately compute high amplitude wave
propagation with Martian parameters. With confirmation that the solver can simulate
nonlinear wave propagation on Mars, a model of a realistic meteor blast is needed to be
the input for the solver.
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Figure 5.1: Calculation matrix of sinusoidal waves with a reference frequency of ω0 = 10, for different relaxation values. τ is
retarded time, θ is the nondimensionalized relaxation time, and D is the ratio of absorption to nonlinearity for a fluid.
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Figure 5.2: Calculation matrix of a step function pressure jump with a reference frequency of ω0 = 10, for different relaxation
values. τ is retarded time, θ is the nondimensionalized relaxation time, and D is the ratio of absorption to nonlinearity for
a fluid.
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5.3 A Realistic Meteor Blast Pulse Model
The blast pulse predicted by Nemec et al. shown in Figure 1.3 was used as basis for

creating the initial blast pulse. An ideal blast, based on work from Sparrow and Raspet
was used as the initial input to the Cleveland Burgers’ solver. This pulse uses the ratio
of ∆p/p∞ of meteor 20090428 from Nemec et al., nearly one half, to create a blast pulse
that would have an accurate amplitude in the Martian atmosphere. p∞ is the ambient
atmospheric pressure. On Mars near the surface it is in the range of 600 Pa, so the peak
pressure of the pulse is around 300 Pa. Figure 5.3 shows the blast pulse used as the
initial waveform input for the Burgers’ solver. This plot is scaled by a reference pressure
equal to the peak pressure so as to be nondimensionalized for use with the solver. All
outputs are multiplied by the reference pressure to get accurate pressure amplitudes.
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Figure 5.3: Initial blast pulse in the nearfield of a meteor passing through the Martian
atmosphere. The pressure has been scaled by a reference pressure to make it nondimen-
sional.
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5.4 Results
The trajectory of the meteor considered in the calculations presented below is per-

pendicular to the ground surface, such that sound rays would be travelling parallel to the
ground. Since the calculations use a homogeneous atmosphere, the meteor as a source
is considered to be at a low altitude.

5.4.1 Propagation through Earth’s atmosphere

The first calculations were done using the Earth’s atmosphere, to assess if the results
are realistic. The propagation distance from Meteor 20090428 to the IMS receiver was
greater than 100 km [Nemec et al., 2017]. For this check, shorter distances were evaluated
to analyze the changing wave behavior. Figures 5.4 and 5.5 show the comparison of the
blast pulse modeled as a plane wave and as a cylindrical wave. It is clear that at
any distance, the cylindrical spreading greatly changes the amplitude and waveform.
Modeling the meteor as a cylindrical source is necessary for accurate predictions of wave
propagations. σ = 20 corresponds to 51.8 m, and σ = 200 corresponds to 518.1 m from
the source on Earth, where σ is the distance, x, from the source that the waveform is
recorded at, divided by the shock formation distance, x̄.
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Figure 5.4: Meteor blast wave propagated through Earth’s atmosphere to σ = 20 or 51.8
m as a plane wave and as a cylindrical wave. σ is the nondimensional distance from the
source.

A comparison of the sound pressure level for this model confirms the need to use the
augmented Burgers Equation to model the meteor blast. Figure 5.6 shows the sound
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Figure 5.5: Meteor blast wave propagated through Earth’s atmosphere to σ = 200 or
518.1 m as a plane wave and as a cylindrical wave. σ is the nondimensional distance
from the source.

pressure level prediction of a meteor blast wave using only linear acoustic theory with
cylindrical spreading, the same theory with the absorption coefficient for a frequency of
4000 Hz, an the sound pressure level at each range point output from the Burgers’ solver.
The nonlinear model agrees well with the linear model with absorption for distances close
to the source, but at larger distances, the linear absorption model predicts a steady
decrease in sound level. The nonlinear model includes the energy transfer from the
fundamental frequencies of the wave into the harmonics, which keeps the sound level
from decaying as fast as a linear sound. With the high pressure amplitude and the
energy redistribution during propagation, blast waves travel extremely far distances on
Earth, especially the low frequency content because it is absorbed less by the atmosphere.
The expectation is that the same is true for Mars, despite the atmosphere being more
absorbent overall.

5.4.2 Propagation through the Martian atmosphere

The ambient pressure of the Martian atmosphere near the the surface is 636 Pa. The
peak pressure amplitude for the blast pulse on Mars was determined by using the peak
from Figure 1.3 with 636 Pa as p∞. The blast pulse in Figure 5.3 was used with the
new pressure amplitude and the absorption processes of Mars for a number of distances
to analyze the waveform transformation and the sound pressure level. Figure 5.7 shows
the waveform at σ = 10 or 34.2 m and σ = 20 or 68.5 m from the source on Mars.
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Figure 5.6: Comparison of the sound pressure level using three acoustic models of meteor
blast wave propagation on Earth: linear propagation with cylindrical spreading attenu-
ation (blue), linear propagation with cylindrical spreading attenuation and atmospheric
absorption (orange), nonlinear propagation with cylindrical spreading attenuation and
atmospheric absorption (purple).

The immediate observation from Figure 5.7 is that the shape of the waveform is much
smoother spread over time than for the same blast wave on Earth at a much farther
distance. This confirms what the previous chapters discussed about the absorption and
the effect it has on sound propagation on Mars. Having a pressure change to ambient
pressure ratio near 0.5 is very high though, and the pressure amplitude for Mars is still
very large at almost 70 m away from the source.
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Figure 5.7: Meteor blast wave propagated through the Martian atmosphere to σ = 10
or 34.2 m and σ = 20 or 68.5 m. σ is the nondimensional distance from the source.
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In Chapter 3, the sound pressure level for sinusoidal plane waves on Mars was mod-
eled considering only the sound absorption. A comparison of sound pressure level for
three models of acoustics on Mars for the blast wave shows how the simplified case for
a plane wave tells an incomplete story of sound propagation on Mars. Figure 5.8 shows
the sound pressure level prediction of a meteor blast wave using only linear acoustic
theory with cylindrical spreading, the same theory with the absorption coefficient for
a frequency of 100 Hz, an the sound pressure level at each range point output from
the Burgers’ solver. It is expected that linear acoustic theory without absorption pre-
dicts levels that are far too high. The comparison of linear acoustic propagation with
absorption to nonlinear acoustic propagation shows that the absorption on Mars only
significantly reduces propagation distance for sounds that behave linearly. Based on the
results presented here, meteor blast waves should travel hundreds of meters farther from
the source than linear acoustic calculations predict. With the likelihood of more mete-
oroids passing through the Martian atmosphere in the future, there will be opportunities
to record sonic blast waves.
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Figure 5.8: Comparison of the sound pressure level using three acoustic models of meteor
blast wave propagation on Mars: linear propagation with cylindrical spreading attenua-
tion (blue), linear propagation with cylindrical spreading attenuation and atmospheric
absorption (orange), nonlinear propagation with cylindrical spreading attenuation and
atmospheric absorption (purple).
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5.5 Summary
An augmented Burgers Equation solver can be used to model meteor blast waves

on Mars. Cylindrical spreading needs to be taken into account for accurate waveform
predictions, but despite the high atmospheric absorption and the attention from cylin-
drical spreading, sound from a meteor should travel great distances on Mars. The next
section discusses how this work could be improved upon and what applications it has to
the study and exploration of Mars.
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Chapter 6 |
Conclusion

The goal of this thesis was to apply nonlinear acoustic theory to show that meteor
blast waves will propagate significant distances on Mars. Models of the atmosphere
suggest that due to the molecular relaxation of carbon dioxide at the temperatures and
density found on Mars, sound at all frequencies will be more absorbed by the Martian
atmosphere than Earth’s. With high amplitude sounds, a nonlinear wave equation
is used to predict sound propagation. These sounds generally travel longer distances
because energy is stored in the wave longer. Since there have been recent documented
meteorite impacts on Mars, a meteor blast is a realistic high amplitude source to be
found in the Martian atmosphere. It was shown that in both analytical and numerical
models, nonlinearity will not be completely dominated by the high absorption from the
atmosphere, even when considering cylindrical wave attenuation. The sharp N-waves
heard as two consecutive booms on Earth are not expected to appear as such on Mars, but
the collection of infrasound data from meteor blasts can be utilized. Infrasound sensing
would aid in distinguishing seismic activity from meteorite impacts as the sound data can
be correlated with seismic and visual data. This is useful in the goal of understanding
the evolution of Martian geological systems. Infrasound sensing is also a tool that can be
applied to human exploration missions for safety and study of human wellness. Knowing
what sounds will be heard by humans on Mars, especially low frequencies that can travel
through spacesuits, will inform training for psychological preparedness.

6.1 Future Work
Continuation of this work would include increasing the complexity of the model of

the Martian atmosphere and of the meteor blast to make each more realistic. To improve
the model of the Martian atmosphere, an inhomogeneous atmospheric profile could be
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implemented. The Burgers’ solver used for this work allows for an inhomogeneous at-
mosphere, as do other numerical solvers. This profile would add wind, a temperature
gradient with altitude, and possibly a density gradient with altitude. The atmosphere
was modeled as pure carbon dioxide, but the solver used allows for up to five relaxation
processes. More accurate models could include the relaxation process of other gases in
the Martian atmosphere. Reflections from the ground were not included in any mod-
els discussed. Mars does not have have the same amount of variety in ground surfaces
as Earth, and a simple model of the ground could be included to determine if ground
reflections would have an impact on the propagation of meteor blast waves.

A further analysis of the blast wave could be done in the future. Creating a blast
wave that better matches those that have been predicted on Earth would improve the
accuracy of propagation predictions. With more time, more analysis of the waveform
transformation at even longer distances would allow for better comparison to examples
from meteors on Earth.

36



Appendix A|
MATLAB code for Bass and Cham-
bers Absorption Model

Below is the MATLAB code written to recreate the plots from Bass and Chambers.
All values are pulled from the Mars fact sheet [NASA, 2024], Sutherland and Bass, or
Bass and Chambers. What is shown is for the absorption coefficients at a temperature
of 300 K. Changing the T variable at the beginning to 200 K will produce the other plot
from the paper.

A.1 MATLAB Code

1 %% Absorption Equations for Mars Atmosphere

2 clear variables

3 close all

4 clc

5

6 % Temp range: 140K - 300K

7 T = 300; % K

8

9 % frequency range:

10 f = (1:1:10000)'; % frequency in Hz

11 w = 2*pi.*f; % omega

12

13 % mean molecular weight

14 M = 43.34; % kg/kmol

15

16 % gas constant
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17 R = 8.31432E3; % J/kmol/K

18

19 % atmospheric pressure

20 P = 636; % N/m^2 - 6.36 mbar

21

22 % equilibrium density

23 p0 = 0.020; % kg/m^3

24

25 %% Classical Absorption:

26

27 % beta and S are emperical values for CO2

28 beta = 1.49E-6; % kg/m/sqrt(K)/s, Sutherland Equation

29 S = 217; % K

30

31 % viscosity, mu [kg/m]

32 mu = beta*T^(1/2)/(1+(S/T));

33

34 % Characterisitic Temperature of a vibrational mode for CO2 [K]

35 thetaj = 960;

36

37 % Cv/R for the PlankEinstein relation

38 CvR = 3/2 + 0.98 +(2*0.95*(960/T)^2*exp(-960/T))/(1-exp(-960/T))^2; % ...

Cv/R with Cj'/R

39

40 % Specific heat a constant volume [J (kg kmol)^-1 K^-1]

41 Cv = CvR*R;

42

43 % ratio of specific heats

44 gamma = (CvR+1)/CvR;

45

46 % speed of sound [m/s]

47 c0 = sqrt(gamma*R*T/M);

48

49 % Classical Absoprtion coeffiecient (Np/m)

50 alphacl = ...

(2*pi^2*f.^2/(gamma*P*c0))*mu*(4/3+((gamma-1)/gamma)*(15/4)*(4/15+3*R/5/Cv));

51

52 %% Rotational Relaxation Absorption

53

54 %rotational collision number

55 Zrot = 61.1*exp(-16.8/(T^(1/3)));

56
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57 % specific heat ratio excluding vibrational contribution

58 gammaex = 7/5;

59

60 % speed of sound with new gamma

61 cinf = sqrt(gammaex*R*T/M);

62

63 % specific heat at constant pressue for low freq, above relaxation freq

64 Cp0 = 7/2*R;

65

66 % rotational absorption coefficient (Np/m)

67 alpharot = ...

(2*pi^2*f.^2/(gammaex*P*cinf))*mu*(gammaex*(gammaex-1)*R/(1.25*Cp0))*Zrot;

68

69 %% Vibrational Absorption

70

71 % specific heats at frequency well above the relaxation frequency of CO2

72 Cvinf = 3*R;

73 Cpinf = Cvinf+R;

74

75 % rate of energy transfer from CO2 during collision with itself, N2, Ar,

76 % and H2O

77 kCO2 = 0.219*P/mu*exp(-60.75/T^(1/3));

78 kN2 = 1.44*P/mu*exp(-78.29/T^(1/3));

79 kAr = kN2;

80 kH2O = 6e-2*1.25*P;

81

82 % mole fraction of each component

83 XCO2 = 0.95;

84 XN2 = 0;%0.027;

85 XAr = 0;%0.016;

86 XH2O = 0;%0.021;

87

88 k = XCO2*kCO2+XN2*kN2+XAr*kAr+XH2O*kH2O; % [1/s] rate at which CO2(v2) ...

transfers vibrational energy (forward reaction rate)

89 kb = k*exp(-thetaj/T); % reverse reaction rate

90 tau_vT = 1/(k-kb); % relaxation time at constant volume and temparture

91 tau_vs = (Cpinf/Cp0)*tau_vT; % relaxation time for a single energy ...

transfer

92

93 % relaxation frequency

94 fr = 1/(2*pi*tau_vs);

95 %fr = 240;
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96

97 % Cj'/R for the PlankEinstein relation

98 CjR = (2*0.95*(thetaj/T)^2*exp(-thetaj/T))/(1-exp(-thetaj/T))^2;

99

100 % relaxation strength

101 s = CjR*R^2/(Cpinf*(Cvinf+CjR*R));

102

103 % vibrational relaxtion absorption coefficient (Np/m)

104 alphavib = (pi*s/cinf)*(f.^2/fr)./(1+(f/fr).^2);

105

106 % Total Absorption

107 alpha_tot = alphacl + alpharot + alphavib;

108

109 %% save absorptions

110 % output_filename = ['C:\Users\lrh5483\OneDrive - The Pennsylvania ...

State University\Documents\MATLAB\Mars Absorp' 'alphamars'];

111 % save(output_filename, 'alphavib', 'alpharot', 'alphacl' );

112 %

113 % output_filename = ['C:\Users\Lily\Documents\MATLAB\Mars\Mars ...

Absorp\' 'mars_T300K'];

114 % save(output_filename, 'alpha_tot', 'gamma', 'gammaex', 'Cpinf', ...

'Cp0', 'Cv', 'Cvinf', 'tau_vs', 'c0', 'cinf', 'p0', 'fr');

115

116 %% Graphing absoprtion coefficient

117

118 figure(1)

119 ax = gca;

120 loglog(f,alpharot, 'LineWidth', 2)

121 hold on

122 loglog(f,alphavib, 'LineWidth', 2)

123 loglog(f,alphacl, 'LineWidth', 2)

124 loglog(f, alpha_tot,'--', 'LineWidth', 2)

125 grid on

126 legend('Rotational', 'Vibrational', 'Classical', 'Total')

127 xlabel('Frequency [Hz]')

128 ylabel('Absorption [Np/m]')

129 title('Absorption coefficients of Mars')

130 plftsz(14, 16, 16, 18);
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Appendix B|
MATLAB code for the analytical
solution for Burgers’ Equation

The code shown below uses parameters for the Martian atmosphere (ratio of specific
heats, sound speed etc.) at 300 K. It is broken into three sections: solving for the
pressure of a wave front for D > 1, D = 1, and D ≤ 1. For the D ≤ 1, the fzero function
was used. It uses a collection of algorithms to find the zeros of a nonlinear equation. See
MATLAB help for more information on fzero.

B.1 MATLAB Code

1 %% Non-linear Mars

2 clear variables

3 close all

4 clc

5

6 %load in parameters of Martian atmosphere

7 mars = load('mars_T300K.mat');

8 gamma_0 = mars.gamma; % ratio of specific heat below relax freq

9 gamma_inf = mars.gammaex; % ratio of specific heat above relax freq

10 c0 = mars.c0; % speed of sound below molecular relaxtion ...

freq

11 cinf = mars.cinf; % speed of sound above mo relx freq

12 Cp0 = mars.Cp0; % specific heat at constant below

13 Cpinf = mars.Cpinf; % specific heat at constant above

14 rho0 = mars.p0; % atmospheric pressure of mars at surface

15 fr = mars.fr; % relaxation frequency of mars atm
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16 alpha = mars.alpha_tot; % total atm absorption

17

18 % time vector

19 t = -0.1:.001:0.1; % [s]

20

21 % frequency vector

22 f = (1:1:1000)'; % [Hz]

23 omega = 2*pi*f;

24

25 % distance

26 x = 0;

27

28 % retarded time [s]

29 tau = t-x/c0;

30

31 %% At temperature T = 300 K

32

33 tr = 1/fr; % relaxation time

34

35 % coefficient of nonlinearity (below relaxation frequency)

36 beta_0 = (gamma_0+1)/2;

37

38 % coefficient of nonlinearity (above relaxation frequency)

39 beta_inf = (gamma_inf+1)/2;

40

41 % Disperion parameter

42 m = (cinf^2-c0^2)/c0^2;

43

44 %% Calculation of waveform for D > 1

45 % Propagation pressure

46 p0 = 1:250; % pressure amplitude [Pa]

47 ndx = length(p0);

48

49 % pre-allocate D and pressure vectors

50 D = zeros(ndx, 1);

51 p = zeros(ndx, length(tau));

52

53

54 %calculate pressure

55 for n = 1:ndx

56

57 % ratio of relaxation effects to nonlinear effects
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58 D(n, :) = m*rho0*c0^2/2/beta_0/p0(n);

59

60 % pressure for D >> 1

61 p(n, :) = p0(n)*tanh(tau/2./D(n)/tr);

62

63 end

64

65 p_more_D1 = p(20,:);

66

67 %% Calculation of waveform for D = 1

68

69 % D = 1 at pressure amplitude 50 [Pa] for T = 300K

70 D1 = 1;

71

72 % retarded arrival time of the shock

73 tau_sh = -tr*log(4*D1^(1+D1)*(1-D1)^(1-D1));

74

75 % tau vector from tau, shock(tsh)

76 tsh = tau_sh:.001:0.1; % [s]

77 tauD1 = tsh-x/c0;

78 % tau start to tau, shock(tsh)

79 tau0 = -0.1:0.001:tau_sh;

80 tau_length = length(tau0);

81 pstart = zeros(tau_length,1)-50;

82

83 % pressure amplitude for D = 1

84 p0_D1 = p0(:,50);

85 pD1 = p0_D1*(1-exp(-tauD1/2/tr));

86

87 % combine pressure start and pressure shock

88 pD1 = [pstart; pD1'];

89 tauD1 = [tau0'; tauD1'];

90

91 %% Calculation of waveform for D < 1

92

93 % D_less_1 = D(51:end,:);

94 % dex = length(D_less_1);

95

96 D05 = 0.5; %D(100,:); % D = 0.5 roughly

97 p05 = p0(:,100);

98

99
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100 % tau vector

101 tau_D05_start = -0.1:0.001:0; % tau_shock = 0 for D = 0.5

102 tau_D05 = 0:0.001:0.006;

103 tau_D05_length = length(tau_D05_start);

104

105 % first interation of searching for the zeros of the nonlinear eq

106 for idx = 1:length(tau_D05)

107

108 % find when tau - ln(p/p) is zero

109 myfun = @(p, tau_f) tau_f - tr*log(((1+p/p05).^(D05-1))./((1-p/p05) ...

110 .^(D05+1)));

111 tau_f = tau_D05(idx);

112

113 fun = @(p) myfun(p, tau_f);

114 pD05(idx,:) = fzero(fun, [-17 50]);

115

116 end

117

118 %step in time

119 tau_D06 = 0.006:0.001:.047;

120 tau_D06_length = length(tau_D06);

121

122 % second interation of searching for the zeros of the nonlinear eq

123 for idx = 1:length(tau_D06)

124

125 % find when tau - ln(p/p) is zero

126 myfun = @(p, tau_f) tau_f - tr*log(((1+p/p05).^(D05-1))./((1-p/p05) ...

127 .^(D05+1)));

128 tau_f = tau_D06(idx);

129

130 fun = @(p) myfun(p, tau_f);

131 pD06(idx,:) = fzero(fun, [20 99]);

132

133 end

134

135 %step in time

136 tau_D07 = 0.048:0.001:0.1;

137 tau_D07_length = length(tau_D07);

138

139 % third interation of searching for the zeros of the nonlinear eq

140 for idx = 1:length(tau_D07)

141
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142 % find when tau - ln(p/p) is zero

143 myfun = @(p, tau_f) tau_f - tr*log(((1+p/p05).^(D05-1))./((1-p/p05) ...

144 .^(D05+1)));

145 tau_f = tau_D07(idx);

146

147 fun = @(p) myfun(p, tau_f);

148 pD07(idx,:) = fzero(fun, [80 99.9999]);

149

150 end

151

152 % add pressure at tau before tau_shock

153 pD05start = zeros(tau_D05_length,1)-p05;

154

155 %build pressure vector from nonlinear zeros searches

156 pD051 = [pD05start; pD05; pD06; pD07];

157 tau_D051 = [tau_D05_start tau_D05 tau_D06 tau_D07];

158

159

160

161 %% Rise Time (only works if x = 0, otherwise must create time vector)

162 % using tau vectors to find rise time with Tau = t - x/c, where x ...

= 0.

163

164 % D >> 1

165 p1 = 20 + p_more_D1;

166 p1_10 = 0.1*(max(p1));

167 p1_90 = 0.9*(max(p1));

168 t11 = find(p1 < p1_10);

169 t12 = find(p1 > p1_90);

170 tr1 = tau(min(t12)) - tau(max(t11)); % rise time [s]

171 lsh1 = c0*tr1; % shock thickness [m]

172

173

174 % D = 1

175 p2 = 50 + pD1;

176 p2_10 = 0.1*(max(p2));

177 p2_90 = 0.9*(max(p2));

178 t21 = find(p2 < p2_10);

179 t22 = find(p2 > p2_90);

180 tr2 = tau(min(t22)) - tau(max(t21)); % rise time [s]

181 lsh2 = c0*tr2; % shock thickness [m]

182
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183 % D < 1

184 p3 = 100 + pD051;

185 p3_10 = 0.1*(max(p3));

186 p3_90 = 0.9*(max(p3));

187 t31 = find(p3 < p3_10);

188 t32 = find(p3 > p3_90);

189 tr3 = tau(min(t32)) - tau(max(t31)); % rise time [s]

190 lsh3 = c0*tr3; % shock thickness [m]

191

192 rise_times = [tr1; tr2; tr3];

193 D_table = [2.5; 1; 0.5];

194 shock_thick = [lsh1; lsh2; lsh3];

195 %% figures

196

197 % D > 1

198 figure(1)

199 plot(tau, p_more_D1, 'LineWidth', 2)

200 xlabel('\tau [s]')

201 ylabel('Pressure [Pa]')

202 xlim([-0.1 0.1])

203 ylim([-30 30])

204 plftsz(18, 20, 20, 22);

205 title('Pressure wavefront for D = 2.5')

206 txt1 = {'shock thickness [m]: ', num2str(lsh1, '%.2f') };

207 text(0.02, 1, txt1);

208

209 % D = 1

210 figure(2)

211 plot(tauD1, pD1, 'LineWidth', 2)

212 xlabel('\tau [s]')

213 ylabel('Pressure [Pa]')

214 xlim([-0.1 0.1])

215 ylim([-60 60])

216 plftsz(18, 20, 20, 22);

217 title('Pressure wavefront for D = 1')

218 txt2 = {'shock thickness [m]: ', num2str(lsh2, '%.2f') };

219 text(0.02, 1, txt2);

220

221

222 % D < 1

223 figure(3)

224 plot(tau_D051, pD051, 'LineWidth', 2)
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225 xlabel('\tau [s]')

226 ylabel('Pressure [Pa]')

227 xlim([-0.1 0.1])

228 ylim([-110 110])

229 plftsz(18, 20, 20, 22);

230 title('Pressure wavefront for D = 0.5')

231 txt3 = {'shock thickness [m]: ', num2str(lsh3, '%.2f') };

232 text(0.02, 1, txt3);

233

234 % Nonlinear acoustics on Mars

235 Weak_Shock = table( D_table, rise_times, shock_thick );
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Appendix C|
Code for the numerical Burgers’
solver and meteor blast calcula-
tions

C.1 BurgersTX Code
This section contains the input parameters used in the BurgersTX Fortran code

developed at the University of Texas, Austin by Cleveland et al.. These are the param-
eter inputs used to simulate Earth’s atmosphere and Mars’ atmosphere as discussed in
Chapter 5. Also included in this appendix is the code to create the initial blast pulse
"int_blast.txt" file used as the input waveform and the code to create the acoustic model
comparison plots in Figure 5.6 and Figure 5.8.

Microsoft Visual Studio was used with the Intel Fortran Compiler to compile the
BurgersTX code and produce the executable file for the solver. The compiler is invoked
using the command "ifx" followed by the "BurgersTX.f" file to be compiled. Once the
executable file is made, it is run in the command prompt window. When the solver is
started it will ask for a number of parameters including choosing to include or exclude
nonlinear effects, thermoviscous effects, and so on. The following input parameters follow
the order and form in which the file requests the inputs. One and zero are yes and no
for prompts such as nonlinear effects. the file "int_blast.txt" is plain text taken from the
output of the initial blast pulse generated with the MATLAB code shown in Appendix
C.3.
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C.1.1 Input parameters for a meteor blast on Earth

1 #nonlinear effects
1 #thermoviscous effects
1 #relaxation effects
0 #inhomogeneous medium flag
0 #spreading (0:plane, 0.5:cylindrical, 1.0:spherical)
1 #Calculate (0) or load (1) waveform
int_blast.txt
1 #num cycles in wave
0 #num cycles before wave
1 #num cycles after wave
0 #num points (cuurently ignored for loaded waveforms)
0.001 #TV
2 #numRelax
0.00015 1.2566 #D theta
0.00080 0.015 #D theta
0.1 #start sigma
11 #num output locations
1
5
10
20
100
200
500
1000
1500
2000
2001
0.0012 #stepsize

C.1.2 Input parameters for a meteor blast on Mars

1 #nonlinear effects
1 #thermoviscous effects
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1 #relaxation effects
0 #inhomogeneous medium flag
0.5 #spreading (0:plane, 0.5:cylindrical, 1.0:spherical)
1 #Calculate (0) or load (1) waveform
int_blast.txt
1 #num cycles in wave
3 #num cycles before wave
3 #num cycles after wave
0 #num points (cuurently ignored for loaded waveforms)
0.0000015 #TV
1 #numRelax
0.0642 2.2729 #D theta
0.1 #start sigma
11 #num output locations
1
5
20
50
100
250
500
750
900
1000
1001
0.0012 #stepsize

C.2 Initial Blast Pulse

1 %% Initial Blast Pulse

2 clear variables

3 close all

4 clc

5 %%
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6 % initial conditions

7 scale = 500;

8 ∆p0 = 1; % Pa

9 tau = (40E-6)*scale; % seconds

10 t1 = 0.5E-6*scale; % seconds

11 tplus = 11.0326e-6*scale; % seconds

12 t2 = 0.502930e-6*scale; % seconds

13 t3 = 0.505859e-6*scale; % seconds

14

15 % time vecotor

16 time1 = linspace(0, t3, 10);

17 time2 = linspace(t3, t2+tau, 1538);

18 time3 = linspace(t2+tau, t2+tau+tplus, 500);

19

20 % pressure calculation

21 pt1 = ∆p0/2*(1-cos(pi.*time1./t1));

22 pt2 = ∆...

p0*(1-(time2-t2)./tplus).*(1-(time2-t2)./tau).*(1-((time2-t2)./tau).^2);

23 pt3 = 0*time3;

24

25 %plot

26 timetot = [time1, time2, time3];

27 ptot = ([pt1, pt2, pt3])';

28

29

30 figure(1)

31 plot(timetot, ptot, 'LineWidth', 1.5)

32 xlabel('Time [s]')

33 grid on

34 ylabel('Pressure')

35 plftsz(14, 16, 16, 18);

36

37 %% save vector

38 output_filename = ['C:\Users\lrh5483\OneDrive - The Pennsylvania State ...

University\Documents\MATLAB\Numerical\' 'initialblast'];

39 save(output_filename, 'ptot' );
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C.3 Meteor Propagation Plots

1 %% Refresh

2 clear variables

3 close all

4 clc

5

6 %% load data

7

8

9 NtND = readtable('Earth_D_theta_pulse1.txt');

10 mars_cyl = readtable('Mars_D_theta_pulse_cyl.txt');

11

12 % thermoviscous absoprtion for all: 0.001 np/m

13 % N2 relaxation frequency, 250 Hz; RH = 30%, T = 20 deg C

14 % p0 = 20 Pa at 60km

15

16 % Earth atmoshpere at 20 deg C

17 rho_0_E = 1.21; % density of air kg/m^3

18 c_0_E = 343; % speed of sound m/s

19 beta_E = 1.2; % coefficient of nonlinearity

20 cvN = 0.0217; % small-signal sound speed increment, nitogren

21 cvO = 0.115; % small-signal sound speed increment, oxygen

22 frN = 250; % relaxation frequency at 30% humidity, 20 deg C for nitorgen

23 frO = 21000; % relaxation frequency at 30% humidity, 20 deg C for oxygen

24 alpha_cl = 50^2*1.84e-11*sqrt(293/293.315); % classical abs for Earth ...

at 20 deg C

25

26 % Mars atmosphere at 300 K

27 mars = load(['C:\Users\Lily\OneDrive - ' ...

28 'The Pennsylvania State University\Documents\MATLAB\' ...

29 'Mars Absorp\mars_T300K.mat']);

30 cvCO = 9;

31 frCO = mars.fr;

32 rho_0_M = 0.020; % density of atmos kg/m^3

33 c_0_M = 270; % speed of sound m/s

34 beta_M = 1.15; % coefficient of nonlinearity

35

36

37 % angular frequnecy
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38 omega = 100*pi;

39

40

41 % reference pressure/peak pressure

42 p0_E = 50000; % Pa

43 p0_M = 636/2; %p0_E/1.21/343*0.02*273.4; % Pa

44

45 % Relaxation processes

46

47 % relaxation of nitrogen on Earth

48 D_E_N = rho_0_E*c_0_E*cvN/beta_E/p0_E; % D for nitrogen on Earth

49 theta_E_N = omega*1/frN; % Theta for nitrogen on Earth

50

51 % relaxation of oxygen on Earth

52 D_E_O = rho_0_E*c_0_E*cvO/beta_E/p0_E; % D for oxygen on Earth

53 theta_E_O = omega*1/frO; % Theta for oxygen on Earth

54

55 % relaxation of carbon dioxide Mars

56 D_M_CO = rho_0_M*c_0_M*cvCO/beta_M/p0_M; % D for CO2 on Mars

57 theta_M_CO = omega/frCO; % Theta for CO2 on Earth

58

59 % shock formation distance

60 % peak source pressure: Mars 20 Pa, Earth 1520 Pa

61 % frequency: 1/(2pi) Hz -> angular frequency: 1 s^-1

62

63 % shock formation distance for Earth

64 x_bar_E = shock_f_distance(rho_0_E, c_0_E, beta_E, p0_E, omega);

65 x_E = [x_bar_E, 60000];

66 sigma_E = x_E./x_bar_E;

67

68 % shock formation distance for Mars

69 x_bar_M = shock_f_distance(rho_0_M, c_0_M, beta_M, p0_M, omega);

70 x_M = [x_bar_M, 60000];

71 sigma_M = x_M./x_bar_M;

72

73

74 %% plot

75

76 figure(2)

77 %plot((mars_cyl.Var1+pi)/omega, mars_cyl.Var2*p0_M,'LineWidth', 1.5)

78 hold on

79 %plot((mars_cyl.Var1+pi)/omega, mars_cyl.Var3*p0_M,'LineWidth', 1.5)
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80 plot((mars_cyl.Var1+pi)/omega, mars_cyl.Var5*p0_M, 'LineWidth', ...

1.5)%,'Color', [0.9290, 0.6940, 0.1250])

81 plot((mars_cyl.Var1+pi)/omega, mars_cyl.Var6*p0_M, 'LineWidth', 1.5)

82 legend('\sigma = 10','\sigma = 20');%, '\sigma = 200')

83 plftsz(14, 16, 16, 18);

84 grid on

85 xlabel('\tau [s]')

86 ylabel('Pressure [Pa]')

87 xlim([-0.05 0.05])

C.4 Meteor Sound Pressure Level

1 %% Nonlinearity of meteor blast

2

3 %% Refresh

4 clear variables

5 close all

6 clc

7

8 %% Levels for Earth Meteor

9

10 % Earth atmoshpere at 20 deg C

11 rho_0_E = 1.21; % density of air kg/m^3

12 c_0_E = 343; % speed of sound m/s

13 beta_E = 1.2; % coefficient of nonlinearity

14 cvN = 0.0217; % small-signal sound speed increment, nitogren

15 cvO = 0.115; % small-signal sound speed increment, oxygen

16 frN = 250; % relaxation frequency at 30% humidity, 20 deg C for nitorgen

17 frO = 21000; % relaxation frequency at 30% humidity, 20 deg C for oxygen

18 alpha_cl = 50^2*1.84e-11*sqrt(293/293.315); % classical abs for Earth ...

at 20 deg C

19

20 % Mars atmosphere at 300 K

21 rho_0_M = 0.020; % density of atmos kg/m^3

22 c_0_M = 270; % speed of sound m/s

23 beta_M = 1.15; % coefficient of nonlinearity

24

25 % reference pressure/peak pressure

26 p0_E = 50000; % Pa

27 pref = 20*10^-6; % Pa
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28 p0_M = 660; % Pa (658.74)

29

30 % frequency of initial blast

31 omega = 100*pi;

32

33

34 %% Earth

35 % output from BurgersTX

36 cyl_E = readtable('Earth_D_theta_pulse1.txt');

37

38 tau = (cyl_E.Var1+pi)/omega; % time vector from BurgersTX output

39 s1_E = cyl_E.Var2*p0_E; % wave form at sigma = 0

40 s2_E = cyl_E.Var3*p0_E; % wave form at sigma = 1

41 s3_E = cyl_E.Var4*p0_E; % wave form at sigma = 5

42 s4_E = cyl_E.Var5*p0_E; % wave form at sigma = 10

43 s5_E = cyl_E.Var6*p0_E; % wave form at sigma = 20

44 s6_E = cyl_E.Var7*p0_E; % wave form at sigma = 200

45 s7_E = cyl_E.Var8*p0_E; % wave form at sigma = 2000

46

47 ppeak_E = [max(abs(s2_E)); max(abs(s3_E)); max(abs(s4_E)); max(abs(s5_E));

48 max(abs(s6_E)); max(abs(s7_E))]; % peak pressure from each wave form

49 Lp_E = 20*log10(ppeak_E/pref); % sound pressure level with pressure peak

50 sigma = [1; 5; 10; 20; 200; 2000]; % sigma vector

51

52 % cylindrical spreading decay (3 db down)

53 for m = 1:14

54 m_lin(m) = 2^(m-1);

55 end

56

57 % shock formation distance

58 x_bar_E = shock_f_distance(rho_0_E, c_0_E, beta_E, p0_E, omega);

59 x_E = sigma*x_bar_E; % distance from meteor

60 alpha_E = 0.006; % dB/m

61

62 % SPL for linear acoustics models

63 for n = 1:length(m_lin)

64 linear(n) = 20*log10(ppeak_E(1)/pref./sqrt(m_lin(n)));

65 linear_abs(n) = 20*log10(ppeak_E(1)/pref./sqrt(m_lin(n)) ...

66 *exp(-alpha_E*m_lin(n)));

67 end

68

69 %% Mars
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70 cyl_M = readtable('Mars_D_theta_pulse_cyl1.txt');

71

72 tau = (cyl_M.Var1+pi)/omega; % time vector from BurgersTX output

73 s1_M = cyl_M.Var2*p0_M; % wave form at sigma = 0

74 s2_M = cyl_M.Var3*p0_M; % wave form at sigma = 1

75 s3_M = cyl_M.Var4*p0_M; % wave form at sigma = 5

76 s4_M = cyl_M.Var5*p0_M; % wave form at sigma = 20

77 s5_M = cyl_M.Var6*p0_M; % wave form at sigma = 50

78 s6_M = cyl_M.Var7*p0_M; % wave form at sigma = 100

79 s7_M = cyl_M.Var8*p0_M; % wave form at sigma = 200

80 s8_M = cyl_M.Var9*p0_M; % wave form at sigma = 500

81 s9_M = cyl_M.Var10*p0_M; % wave form at sigma = 1000

82

83 % peak pressure from each wave form

84 ppeak_M = [max(abs(s2_M)); max(abs(s3_M)); max(abs(s4_M)); max(abs(s5_M));

85 max(abs(s6_M)); max(abs(s7_M)); max(abs(s8_M)); max(abs(s9_M))];

86 Lp_M = 20*log10(ppeak_M/pref); % sound pressure level with pressure peak

87 sigmaM = [1; 5; 20; 50; 100; 200; 500; 1000]; % sigma vector

88

89 % shock formation distance

90 x_bar_M = shock_f_distance(rho_0_M, c_0_M, beta_M, p0_M, omega);

91 x_M = sigmaM*x_bar_M; % distance from meteor

92 alpha_M = 8.68*0.03; % dB/m

93

94 % SPL for linear acoustics models

95 for n = 1:length(m_lin)

96 linearM(n) = 20*log10((ppeak_M(1)/pref./sqrt(m_lin(n))));

97 linear_abs_M(n) = ...

20*log10(ppeak_M(1)/pref./sqrt(m_lin(n)))-alpha_M*m_lin(n);

98 end

99 %% plot

100 figure(1)

101 plot(m_lin, linear, m_lin, linear_abs, 'LineWidth', 1.3)

102 hold on

103 scatter(x_E, Lp_E,'filled', 'LineWidth', 1.3, 'MarkerFaceColor', ...

[0.4940 0.1840 0.5560])

104 plftsz(14, 16, 16, 18);

105 ylim([100 190])

106 xlim([1 1000])

107 xlabel('Range (m)')

108 ylabel ('Lp [dB re 20 \mu Pa]')

109 legend('Linear (cylindrical spreading)', 'Linear with absorption (f = ...
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4 kHz)', 'Nonlinear with absorption')

110 text(30, 110, 'Earth', 'FontSize', 14);

111

112

113 figure(2)

114 plot(m_lin, linearM, m_lin, linear_abs_M, 'LineWidth', 1.3)

115 hold on

116 scatter(x_M, Lp_M, 'filled', 'LineWidth', 1.3, 'MarkerFaceColor', ...

[0.4940 0.1840 0.5560])

117 plftsz(14, 16, 16, 18);

118 ylim([20 160])

119 xlim([1 1000])

120 xlabel('Range (m)')

121 ylabel ('Lp [dB re 20 \mu Pa]')

122 legend('Linear (cylindrical spreading)', 'Linear with absorption (f = ...

100 Hz)', 'Nonlinear with absorption')

123 text(15, 35, 'Mars', 'FontSize', 14);
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