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ABSTRACT 

Numerical reservoir simulators are commonly used to simulate the water-alternating-gas 

process for hydrocarbon reservoir. However, a reservoir simulation study can only provide 

information about the expected reservoir performance and also be time-consuming work. This 

research presents a screening tool to suggest a set of design parameters that can optimize the 

WAG process. A commercial reservoir simulator and the neural network toolbox of publicly 

available software are used in the study. 

A number of different five spot scenarios were simulated using a commercial program. 

These scenarios are associated with different reservoir conditions that include initial water 

saturation, formation thickness, porosity and permeability. They are also involved various design 

parameters, that is, well spacing, water-gas ratio, alternating frequency, alternating slug size and 

bottom hole pressure. The reservoir performance is expressed with recovery efficiency and 

abandonment time. These simulation results and functional links are used to build an artificial 

neural network of water-alternating-gas process. 

In this study, an artificial neural network is implemented to construct neuro-simulation 

tools for screening and designing water-alternating-gas process. These tools generated in this 

study are effectively able to recognize the connection between the reservoir characteristics and 

hydrocarbon production performance of the WAG process in order to forecast proper operating 

conditions. They can also serve to provide a relatively narrow range of possible scenarios and 

reduce the time for conventional reservoir simulations.  
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Chapter 1 

 

INTRODUCTION 

Primary recovery is oil production by only natural reservoir energy sources such as water 

drive, solution gas drive, fluid expansion, gas-cap drive and gravity drainage. The amount of oil 

produced from primary recovery mainly depends on different types of the reservoir but, recovery 

efficiency is mostly small. Several enhanced oil recovery (EOR) methods have been studied and 

applied to improve oil production. These methods typically refer to injecting agents like water, 

steam or gas into the reservoir for increasing oil displacement efficiency. However, each process 

has couple of disadvantages that still decrease the overall oil recovery efficiency. Unfavorable 

mobility ratio between oil and water on the displacement front results in low sweep efficiency in 

the traditional water flooding method. And also strong capillary forces leave high residual oil 

saturation in the reservoir. The mobility ratio between injected gas and the displaced oil in gas 

injection method is even worse than that of water flooding process resulting in reduced sweep 

efficiency and viscous fingering. Water-Alternating-Gas (WAG) injection technique was 

introduced to solve these problems. The combined mobility of water-gas system is lower than that 

of injected water or even gas alone. Therefore, the mobility ratio between displacing agent and 

displaced oil in the WAG process is improved. In this technique water injection reduces viscous 

fingering and early breakthrough, and gas injection decreases residual oil saturation of water 

injection process.  

Reservoir simulation has played an important role to evaluate an operational scheme of 

oil recovery and to assess its economic value. The estimation of reservoir performance from 

simulation studies suggests a good selection of operating conditions under specific reservoir 

characteristics. However, the simulation result from the given oil field cannot be universally 

applicable to other fields because reservoir characteristics or conditions are different in each field. 
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Furthermore, conducting extensive simulation runs is a highly time-consuming task and also 

needs well-trained simulation engineers. Therefore, it is almost infeasible for every candidate 

reservoir to be evaluated by traditional numerical simulators for the purpose of proposing 

appropriate reservoir developing schemes owing to limited time and experts.  

An artificial neural network (ANN) is developed in order to overcome such difficulties of 

common reservoir simulations and also to provide a practical and divert access to the solutions. 

An ANN is an adaptive system in which its structure can be changed through training period like 

biological neural networks. In this study, ANN technology is considered to find out the 

complicated connection between inputs and outputs of reservoir performance mechanism. An 

inverse application of the universal expert system is constructed to provide proper field 

development plan and design parameters for a given reservoir with certain characteristics. This 

inverse looking ANN can reduce time and energy involved in evaluating the candidate reservoirs.  

  



3 

 

 

Chapter 2 

 

LITERATURE REVIEW 

2. 1 Enhanced Oil Recovery (EOR) 

  Enhanced oil recovery (EOR) is oil production normally by injecting certain agents into 

the reservoir to increase recovery efficiency. EOR includes all kinds of oil recovery methods such 

as drive, push-pull and well treatment. EOR also covers all three stages of oil recovery from 

primary to secondary and tertiary recovery. Primary recovery typically means the oil production 

by natural forces such as water drive, solution gas drive, fluid expansion, gas-cap drive and 

gravity drainage. Secondary recovery involves water flooding, gas injection to maintain reservoir 

pressure after primary recovery. Tertiary recovery refers to any techniques implemented, for 

example solvent injection, chemicals, and/or thermal energy after secondary recovery [Lake, 

1989].   

Increasing demands of petroleum related energy suggest a strong reason to develop advanced 

EOR technologies. The possibility of producing substantial amount of additional oil from EOR 

has been proven through various studies. One of the researches studied from U.S. National 

Petroleum Council shows potential of the enhanced oil recovery processes which could enlarge 

the current domestic hydrocarbon reserves by approximately 40 per cent and increase the 

production rate by almost 2 times [Stosur, J. J. George, 2007]. Table 2-1 illustrates three stages of 

oil recovery processes [Green & White, 1998]. 
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Table 2- 1: Three stage of enhanced oil recovery (reproduced from Green & White, 1998) 

Hydrocarbon Recovery Process 

Primary Recovery 

Solution Gas Drive 

Gas Cap Drive 

Natural Water Drive 

Gravity Drainage 

Fluid and Rock Expansion 

Secondary Recovery 

Gas Injection 

Water flooding 

Tertiary Recovery 

Thermal 

Steam Injection 

In Situ Combustion 

Hot Water Injection 

Chemical 

Polymer Flooding 

Surfactant Flooding 

Carbonated Water Flooding 

Solvent 

Hydrocarbon Miscible Flooding 

CO2 miscible Flooding 

CO2 Immiscible Flooding 

Nitrogen Flooding 

Flue Gas Injection 
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2. 1. 1 Mobility Effect 

If two fluids exist in the reservoir such as oil and gas, there are two properties to 

determine relative flowing rates of both phases. The effective permeability of oil and gas is 

directly proportional to each flowing rates, whereas the viscosity inversely affects each of the 

flowing rates. Therefore, flowing rates is clearly described by calculating effective permeability 

ratio and viscosity ratio which is expressed as a mobility ratio [Craft and Hawkins, 1959]. The 

definition of mobility ratio is given by Eq. 2.1: 

= Mobility Ratio (M)                            (2.1) 

Favorable mobility ratio refers to the case that mobility ratio is less than one, whereas 

unfavorable mobility ratio indicates that mobility ratio is more than one. The mobility ratio 

between injected gas and displaced oil in gas injection method is usually unfavorable to sweep 

efficiency since most gases have such low viscosities as compared to that of oil. The viscosity of 

CO2, for example, is about 0.03 cp at 1,500 psia and at 110 °F [Green & White, 1998]. The 

viscosity of volatile oils typically ranges from 0.25 to 3 cp and the viscosity of black oils reach up 

to 100 cp [Abhijit Y. Dandekar, 2006]. The mechanism of displacement process is dramatically 

different according to whether the mobility ratio is greater or smaller than one. If the mobility 

ratio is less than one, there is almost no penetration of displacing agents into the displaced oil 

bank resulting in stable fronts and also efficient displacing process. However, large mobility ratio 

allows the displacing solvents to penetrate into the displaced oil causing unstable zones and 

viscous fingering which reduce oil displacement [Green & White, 1998].   
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2. 1. 2 Miscible Displacement Processes 

Two components are miscible if they can mix completely without forming an interface 

between them [Lake, 1989]. The displacement efficiency primarily depends on miscibility 

between oil and displacing materials in the miscible displacement processes [Green & White, 

1998]. Main purpose of the miscible displacement processes is to reduce interfacial tension 

between oil and displacing solvents to its lowest possible extent bringing minimum residual oil 

saturations.  

Miscible displacement processes are subdivided into two categories which are first-

contact-miscible (FCM) and multiple-contact-miscible (MCM) with respect to its miscibility. 

FCM process means that injected fluids can be blended directly with reservoir oils in all 

proportions and their mixture maintains single phase. On the other hand, MCM process yields 

two phases and forms a transition zone between oil and displacing fluids. However, all fluid 

compositions in the transition zone keep their miscibility by repeated contact of oil and injected 

solvents [Stalkup, 1983].  

Research to find out optimal injecting agents tested several materials such as natural gas, 

flue gas, nitrogen or mixture of these. Relatively high injection pressure and the composition 

requirement for miscibility restrict the number of possible reservoir where miscible displacement 

processes can be applied. Carbon dioxide (CO2) is quite a proper agent for this process since CO2 

requires lower injection pressures and easily available [Carcoana, 1992].  

2. 1. 3 The Water-Alternating-Gas Process (WAG) 

The WAG process was originally developed to increase recovery efficiency of gas 

injection by mostly injecting water. Unfavorable mobility ratio between injected gas and the 
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displaced oil in the miscible displacement processes result in viscous fingering and unstable zone 

on the flood front. The traditional water flooding also has disadvantages which are unfavorable 

mobility ratio and strong capillary forces causing high residual oil saturation. Injecting water and 

gas in an alternative manner can generate reduced mobility of two phases which is even lower 

than water mobility. High residual oil saturation from water injection can be avoided by using 

miscible gas owing to phase transitions and inter phase mass transfer between oil and gas 

[Bedrikovetsky et al, 1996 ; Christensen et al, 2001].  

2. 1. 3. 1 Classification of WAG Process 

WAG process can be conveniently divided according to miscibility and/or operating 

method as well. Most of this process has been found to be miscible displacement process, but 

there exists uncertainty to distinguish between miscible and immiscible WAG. Miscible WAG 

process should use relatively high injection pressure to maintain the reservoir pressure above the 

minimum miscibility pressure (MMP). Most miscible WAG has a close well spacing and has 

been implemented onshore field. Immiscible WAG injection can be useful to the reservoir where 

gravity-stable gas injection is not possible due to limited gas availability or some reservoir 

properties such as low dip or strong heterogeneity [Christensen, 2001].   

Hybrid WAG injection refers to the process in which a large amount of gas is first 

injected and then typical WAG operations are followed. Simultaneous water-gas injection called 

SWAG has been introduced to improve injectivity problems which occurred in high injection rate 

and/or high permeability reservoir [Rogers & Grigg, 2000].  
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2. 1. 3. 2 Analysis of WAG Performance with Different Water-Gas Ratio (WGR) 

Optimum injection rate of both phases in WAG process has been studied on the miscible 

water-CO2 process. There are five different regimes for water-gas injection depending on 

different water-gas (CO2) ratio which makes different structure of mixture zones and also 

different displacement mechanisms. Studies show that injecting high rates of water, that is, higher 

Water-Gas-Ratio (WGR) results in more favorable mobility ratio. On the other hand, lower WGR 

reduces the residual oil saturation and the velocity of the front which extends waterless 

production period. Based on these results, there should be optimum WGR that provides the more 

stable displacement front and better recovery factor at the same time.   

If the WGR is the highest, it is called carbonized water flooding in which all the gas 

injected is dissolved into water. The structure of mixing zone is such that there is displaced oil 

bank followed by CO2 free water-oil bank and then carbonized water. This regime has advantages 

over the conventional water flooding like the lower residual oil saturation due to the solubility of 

CO2. The longer waterless production time and increased oil production after breakthrough are 

other factors to contributing to the better performance than the water flooding.  

When the WGR is less than the one in carbonized water flooding called piston-like 

displacement, some of the injected CO2 is dissolved in water and some maintains gas phase 

resulting in two phase’s fluid. The residual oil saturation becomes even lower since free CO2 

works as a solvent. Furthermore, the velocity of the front is reduced making longer waterless 

production period.  

As decreasing more water injection rate, oil saturation on the front is increased and the 

waterless production period is extended so that the recovery factors are improved.  
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As the WGR comes close to the lowest value, fluid acts like miscible gas injection 

process. Displacement instability and viscous fingering occur due to unfavorable mobility ratio. 

Figure 2-1 shows the displacement mechanism of five regimes.  

Flow Direction 

WGR  

Displaced Oil Water-Oil Bank Carbonized Water-Oil fluid 

Displaced Oil Water-Oil Bank Carbonized Water-Oil fluid Water- CO2 mixture 

Displaced Oil Water-Oil Bank Water- CO2 mixture 

Displaced Oil Water- CO2 Bank Water- CO2 mixture 

Displaced Oil CO2 Bank or CO2 Bank with little water 

 

Figure 2- 1: The displacement mechanism of five regimes (adapted from Bedrikovetsky, 1996) 

 

 According to this study, the upper value of WGR can be calculated from the fact that the 

higher the WGR the more favorable mobility ratio. The lower value of WGR can be estimated 

observing that the lower the WGR the higher the recovery factor [P. Bedrikovetsky et al, 1996].  

2. 2 Reservoir Simulation using Computer Programming 

Reservoir simulation has been developed to forecast the hydrocarbon reservoir 

performance combining physics, mathematics, reservoir engineering and computer programming. 

Petroleum engineers need to calculate performance of oil and gas reservoir under different 
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characteristics and various operating conditions. It is necessary to estimate the ultimate recovery 

and total operating period of the candidate reservoir before developing since the capital cost of 

project can reach hundreds of millions of dollars. Reservoir simulation investigates the economic 

development scheme reducing the risk related to expensive investment and maximizing profits. 

There has been considerable growth of the reservoir simulation technology with advance 

of computing powers which broaden applicability of simulation, improve reservoir 

characterization techniques and upgrade complicated oil recovery techniques. Mathematical 

equations in the form of partial-differential equations are used to calculate the performance of the 

reservoir. These equations used in the simulator are formulated in an attempt to incorporate the 

most important physical phenomena taking place in the reservoir, for example, the flow of fluids 

separated into as many as three phases (oil, water and gas), mass transfer between phases and the 

effects of viscous, capillary and gravity forces. This method also takes into account various rock 

properties, fluid properties and relative permeability effects as well. 

If the problems that the reservoir simulator deals with are simple enough to be solved 

analytically (exactly), the solution would provide exact value of the pressure and production rates 

with continuous function of time and position. Because most reservoir analysis involves 

complicated problems, numerical (approximate) solutions are more efficient than analytical 

approach. Numerical methods produce the approximate solutions which give reservoir 

performance prediction at discrete locations in the reservoir. 

There are several ways to categorize the reservoir simulators. According to the type of 

reservoir and fluids, reservoir simulators can be divided into two categories namely as black-oil 

and compositional models. In black-oil models, compositional changes of the reservoir fluids are 

considered not to have influence on recovery and mass transfer is an exclusive function of 

pressure. Compositional simulators are applicable to the reservoir which is responsive to 
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compositional changes such as primary depletion of volatile oil and gas condensate reservoir, 

pressure maintenance processes and multi-contact miscible displacement.  

Reservoir simulators can also be classified with regard to recovery processes. Primary 

and secondary recovery processes are simulated using black-oil models. Tertiary recovery 

methods such as chemical flooding can be modeled by specialized compositional simulators that 

have conservation equations for individual chemical components. Thermal processes are 

investigated using thermal recovery simulators that solve energy balance equation along with the 

mass balance equations [Ertekin et al., 2001].   

2. 3 Overview of an Artificial Neural Network (ANN) 

An artificial neural network is a signal processing technology that imitates the operation 

of a biological neural system. Although computer power is tremendously developed, there are 

certain limits by which the need of an artificial neural network is underlined. An artificial neural 

network has several advantages over the conventional data processing methods based on 

computer programming. An ANN can solve the problems that a sequential program cannot take 

care of. An ANN learns through training period just like a biological organism so that it does not 

need to be reprogrammed. Traditional computer programming is typically useful to specific 

problems and it should be changed according to each different problems. But an ANN can be 

implemented in wide range of application to produce solutions for various problems saving time 

and personnel.  
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2. 3. 1 The Structure of an Artificial Neuron 

A biological neuron has three main components of its structure, that is, the cell body or 

soma, the dendrites and the axon. The cell body is the center of the cell. Many dendrites stem 

from the cell body receiving signals from other neurons. The axon delivers electric signals 

produced at the axon hillock down its length. Neuron uses these electric signals called action 

potentials to carry information to the brain. Figure 2-2 shows schematic of biological neurons 

[Hagan et al., 1996]. 

 

 

 

Figure 2- 2: Schematic of biological neurons (adapted from Hagan et al., 1996) 

 

 There are also three main elements to build an artificial neural network which has 

similarity with a biological network. First of all, the synapses of the neuron are represented as 

weights which describe how strongly the connection is made between an input and a neuron. 



13 

 

 

Each input X shown in Figure 2-3 is multiplied by a weight W which is determined during an 

iterative training process. Next, summarizing junction 'Σ' collects all the inputs 'X*W+b'. Finally, 

transfer function 'F' decides magnitude of the output of the neuron 'y' through modification of 

those inputs. These outputs indicate electrical signals called action potentials [Fausett, 1994]. 

 

 

     

 

Figure 2- 3: Schematic of an artificial neuron  

 

2. 3. 2 The Structure of Networks 

The structure of an artificial neural network commonly falls into two kinds which are 

single-layer and multilayer networks. In a single-layer network, there is only one input and one 

output layer that are linked to each other with one layer of connection weights. The multilayer 

system has one input and one output layer and several internal layers called hidden layers. It is 

true that more layers the network has the more complicated problems to be solved. However, 

y0, y1, y2 

 

 

Input Signal 

 

 

Summing 

Junction 

 

Output 

 

Transfer 

Function 

 

Χ0 

Χ1 

Χ2 

Χ0*W0 +b0  

Σ 

 

 

F 

 

Χ1*W1+b1 

Χ2*W2+b2 
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multilayer systems need relatively longer periods for training compared to single layer 

counterpart [Minakowski, 2008]. Figure 2-4 shows each structure of a single-layer and a 

multilayer network.  

 

 

 

Figure 2- 4: Structures of single-layer and multilayer networks (adapted from Minakowski, 2008) 

2. 3. 3 Transfer Functions 

The transfer functions yield the action potentials by responding artificial neurons. A pure 

linear transfer function generates output of a neuron "a" which is equal value of its input "n" as 

given in Eq. 2-2: 

 

                                                                     (2. 2) 
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 A threshold or bias is sometimes involved in this linear transfer function. The bias "b" 

constantly adds another weight to the input of the neuron [Fausett, 1994]. The linear transfer 

function is applied to the output layer because it allows the network to generate its output within 

the desired limits without de-normalizing them. Figure 2-5 shows two types of linear functions.  

 

 

 

Figure 2- 5 : Linear transfer function (reproduced from Hagan et al., 1996) 

 

Sigmoid functions are nonlinear transfer functions that deals with more complicated 

problems compared to linear functions. The log-sigmoid and the hyperbolic tangent sigmoid 

function are the typical ones applying back propagation training method.  

The log-sigmoid function reads the input signal, which can be any values between 

positive and negative infinity, activates neurons and generates its output at the range of 0 and 1. 

The output of the log-sigmoid transfer functions is given in Eq. 2.3 and Figure 2-6. 

 

 

                                                                       (2.3) 
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Figure 2- 6: Log-sigmoid transfer function (reproduced from Hagan et al., 1996) 

 

The hyperbolic tangent sigmoid transfer functions, shown in Eq. 2.4 and Figure 2.7, 

produce its outputs with value between -1 and 1.  

 

 

                                                                 (2.4) 

 

 

 

Figure 2- 7: Hyperbolic tan-sigmoid transfer function  
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2. 3. 4 Training of an Artificial Neural Network 

The weights express the strength of the connection between an input and a neuron, for 

instance, negative value of weights for inhibitory connections and positive values for excitatory 

connections. These weights are decided through an iterative training session.   

In general, network training process can be classified into two categories which are 

supervised learning and unsupervised learning. In supervised learning, pattern or input vector is 

provided with an associated target or output vector. The weights are initially set to zero or to a 

small value. Then, these weights are changed iteratively by a learning algorithm until the 

calculated output target is close to the given target. Unsupervised learning refers output unit is 

trained by reacting to clusters of pattern within the input. The network has to find out statistically 

clear characteristics of the input on its own. The difference between those two training methods is 

the existence of a priori set of categories into which the patterns are to be classified [Minakowski, 

2008]. For the present study, supervised learning is used with sets of input pattern and output 

target produced using a commercial reservoir simulator.  

2. 3. 5 Multilayer Feedforward Networks with Back Propagation 

Multilayer feedforward network with back propagation is the most common learning 

process in neural network [Maren et al., 1990 & Patterson, 1995]. This type of network always 

connects neurons of each layer in forward direction. The back propagation refers to a supervised 

learning process which is utilized in this multilayer networks. The learning mechanism of the 

back propagation process is the Generalized Delta Rule, a generalized form of the Least Mean 

Squared (LMS) rule. This rule applies the optimization of the weights and biases of each layer for 

the purpose of reducing the difference between the network outputs and the desired targets.      
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Three main stages are involved in this feedforward back propagation method. The 

forward feeding of the input through the network is the first stage in which input pattern is 

introduced to the input layer and the information flow through the hidden layers to the output 

layer. Transfer functions modify the information in each layer. Back propagation is the next stage 

in which network response is compared to the desired output to estimate the gradient of the error 

of the network. The errors calculated are then propagated from the output layer to the inner layer, 

and finally these errors allow proper adjustment of the connection weights. Several iterations of 

this process decrease the error of the network [Ali, 1994]. 

2. 3. 6 Convergences and Training Efficiency 

Convergence problems occur when the network calculates a lower value of total error 

than the one in the previous iteration without achieving an overall minimum error. As a result, the 

network memorizes the training data sets and cannot generate appropriate outputs. Early stopping 

is a typical method to avoid the network memorization related problems. In this method 

validation data set is provided into the network along with the training data set. Thus, the network 

can be trained independently while the error of the validation set is monitored. When the 

networks begin overtraining, the validation error starts increasing and the training error keeps 

decreasing. The training process is then stopped [Demuth et al., 2007 & Maren et al., 1990].  

There are several ways to improve learning efficiency. One common method is to 

optimize the number of neuron in hidden layers. Also, applying functional links to the input 

and/or output layer allows the network to interpret the data through various angles and thus help 

to improve the training efficiency. The learning rate can also have influence on the training 

efficiency. Large learning rates result in faster training with some fluctuation and small learning 
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rates decrease learning speed with more stabilization. A high momentum parameter is another 

way for increasing the speed of convergence.   
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Chapter 3 

 

STATEMENT OF THE PROBLEM 

 

 The water-alternating-gas (WAG) process is developed to overcome several individually 

characteristic disadvantages of water injection and gas injection methods. Unfavorable mobility 

ratio between oil and water or gas on the displacement front reduces sweep efficiency. Injected 

water formulates strong capillary forces leaving high residual oil saturation. Low viscous gases 

involve viscous fingering and early breakthrough. Alternative injection of two phases results in 

improved mobility ratio between displaced oil and injected fluids. Thus stable displacement front 

of WAG can effectively increase the ultimate recovery efficiency.    

Reservoir simulations are commonly utilized to evaluate different field development 

plans with field data for given reservoirs. However, the simulation results generated for a specific 

oil field are not readily applicable to other reservoirs since reservoir characteristics and operating 

conditions are different. Reservoir assessment using simulation techniques even requires 

significant amount of time and well-trained experts. Furthermore, available guidelines for WAG 

process do not propose detailed operating conditions for various candidate reservoirs. 

In this study, an artificial neural network is brought to overcome such difficulties of 

common reservoir simulation as time and expert limitation allowing easy access to the solutions. 

Inverse application of ANN provides the optimized operating conditions to achieve certain 

reservoir performance for a given field.  
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Chapter 4 

 

RESERVOIR MODEL 

Numerical reservoir simulation is a common method to forecast oil and gas reservoir 

performance under various conditions. With simulation results, petroleum engineers can decide 

the most efficient way of developing the reservoir under consideration. Reservoir simulation can 

also serve to reduce the investment risk by optimizing production schemes.  

 There are two basic elements needed to build a reservoir simulation, which are design 

parameters and reservoir characteristics. Design parameters refers to well pattern, injection rates 

of injection wells and bottom hole pressure of a production well. In order to calculate injection 

rates, there are four parameters to be determined such as well spacing, alternating slug size, 

alternating frequency and water-gas ratio. These parameters can be determined by engineers 

according to development plans. On the other hand, reservoir characteristics indicate rock 

properties, fluid properties and hydrocarbon formation such as types of oil, initial water 

saturations, formation thickness, porosity and permeability. Reservoir characteristics are unique 

values for specific field and cannot be effectively modified.   

Since an artificial neural network demands a large number of data to increase prediction 

accuracy, various reservoir simulations were made using a commercial reservoir simulator. 

Homogeneous and isotropic conditions are applied for simplifications which do not reduce the 

accuracy for numerical model.  

4. 1 Fluid Types and Initial Reservoir Conditions 

 Black-oil formulation is chosen to develop this study. Black-oil models are often used in 

modeling the most common type of oil reservoirs. This type of oil normally contains heavy 



22 

 

hydrocarbon elements such as heptanes plus fraction. Table 4-1 shows PVT composition that was 

taken from the literature.  

 

Table 4- 1: Molar composition of typical black-oil (adapted from Minakowski, 2008) 

 
CO2 N2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 C7+ MW 

Black Oil 

(PVT#1) 

0.91 0.16 36.47 9.67 6.95 1.44 3.93 1.44 1.41 4.33 33.29 218 

 

  

Most of WAG process using CO2 has been reported as miscible drive from field 

experiences [Christensen, 2001]. Initial reservoir conditions should be determined to satisfy 

minimum miscible pressure and temperature. In general, deeper reservoirs tend to involve high 

pressure and temperature which maintain miscible displacement conditions. This study utilizes 

the temperature profile of the reservoirs in the Malay Basin to decide initial reservoir 

temperature. Figure 4-1 shows the frequency of reservoir temperature measured in the Malay 

Basin. Since 220°F has the highest frequency, the reservoir temperature of this research is all 

fixed at 220°F.      
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Figure 4- 1: Reservoir temperature in the Malay basin (from Teletzke et al., 2005) 

 

The initial reservoir pressure should then correspond with keeping miscible displacement 

conditions at the temperature of 220°F. In order to decide minimum miscible pressure (MMP) of 

CO2, this study applies the results obtained using slim-tube test that generates minimum miscible 

pressure as a function of temperature. This test introduces a correlation to predict CO2 MMP and 

suggests that only temperature has crucial influence on CO2 MMP. Figure 4-2 shows CO2 MMP 

[Yellig & Metcalfe, 1980]. According to the graph below, minimum miscible pressure is about 

2900 psia at the temperature of 220°F. The initial reservoir pressure of this study is set at 5000 

psia so that pressure drop around producing wells does not affect miscible conditions.   
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Figure 4- 2: CO2 MMP (from Yellig & Metcalfe, 1980) 

4. 2 Well Pattern 

Most of field application of WAG process chooses 5-spot pattern because this well 

pattern makes a fairly close well spacing and is effective to maintain miscible drive operations. It 

is true that off-shore reservoir utilizes relatively spare well pattern since drilling related cost is 

expensive. However, off shore WAG is still considered pilot project and onshore WAG is a 

routine operation [Christensen, 2001]. Thus, five-spot well pattern is fixed for the present study.  

Figure 4-3 gives a good example of popularity of 5-spot pattern for onshore WAG operations. 
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Figure 4- 3: The number of field operations utilizing WAG according to well patterns 

(reproduced from Christensen, 2001) 

4. 3 Grid Block Dimensions 

In order to decide the optimum number of grid blocks for numerical simulation, five 

different grid block sizes were tested. As the number of grid blocks is increased, the simulation 

takes the longer time. Thus, the number of grid blocks is attempted to be minimized without 

decreasing the accuracy of the runs. Tests were performed on three different well spacing which 

are 20, 104 and 200 acres for black-oil. The number of grid blocks tried was 9×9, 15×15, 25×25, 

35×35 and 45×45 with 4 layers. The properties used to produce these test are presented in Table 

4-2. 
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Table 4- 2: Simulation properties for optimum number of grid blocks 

Area (acres) 20 104 200 

WAG Ratio 0.6 1 3.1 

Alternating Frequency (days) 90 60 45 

Alternating CO2 Size (% PV) 1.5 1.4 0.4 

BHP Producer (psia) 3500 3000 3250 

Thickness (ft) 560 200 50 

Porosity (%) 15 40 25 

Permeability (md) 10 100 10 

Initial Water Saturation (%) 15 15 40 

 

  

Figure 4-4 shows the recovery efficiency and abandonment time with regard to the 

number of grid blocks utilized. It is noted that the results do not make noticeable difference 

between number of grid blocks 15×15 and 45×45 in each three tests. But, 9×9 grid dimension 

yields an obvious deviation for both the recovery efficiency. Thus, 15×15 grid block size is used 

for present study to reduce considerable amount of computational time without sacrificing the 

accuracy.  
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Figure 4- 4: Sensitivity analysis on the number of grid blocks used in describing the 

computational domain for different pattern sizes 

4. 4 Reservoir Layering and Well Completion 

In order to account for gravitational effects, all reservoir simulation models consist of 

four layers associated only with the hydrocarbon zone or pay zone. All the reservoirs are initially 

saturated with water and oil. Thus, initially free gas zone does not exist in the reservoir. There is 

no aquifer included in this model. Both production well and injection wells are completed in all 

four layers. Figure 4-5 illustrates a 3D grid model of 5-spot pattern having four layers.  
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Figure 4- 5: 3D grid model and layering 

4. 5 Relative Permeability and Capillary Pressure 

The relative permeability data for present study is the properties of sandstone rock which 

is the most common type of hydrocarbon formation applied WAG injection [Christensen, 2001]. 

Figure 4-6 indicates WAG applications according to rock types. The water-oil and gas-oil relative 

permeability curves are generated using Corey’s correlations [Corey, 1954]. This three- phase 

relative permeability curve shown in Figure 4-7 is fixed in all reservoir simulations. 
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Figure 4- 6: WAG field applications according to rock types (adapted from Christensen, 2001) 
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Figure 4- 7: Water-oil & gas-oil relative permeability curves 

4. 6 Operational Conditions of WAG Process 

The operational conditions refer to the parameters used to decide well performance. 

There are a couple of parameters such as well spacing, water-gas ratio, alternating frequency, 

alternating slug size and bottom hole pressure. It is true that a well can be operated by controlling 

either its pressure or flow rates. However, recovery efficiency and abandonment time mostly 

depend on injection rates in WAG process and minimum miscible pressure should be maintained 

around a producing well. Thus, an injection well is controlled by its injection rates and a 
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producing well is monitored by bottom hole pressure to achieve high performance for this WAG 

process.  

There are four different parameters utilized in deciding the injection rates. First of all, 

water-gas injection ratio for this study is fixed in the range of 0.5 to 4 representing the typical 

values from field experience. If water-gas ratio is too small, then unstable front and viscous 

fingering is problematic. If water-gas ratio is too large, then high residual oil saturations reduce 

the amount of cumulative oil production. Next, the slug size of alternating CO2 used changes 

from 0.1 to 2 % of pore volume which is also regular range from field experiences. In order to 

decide proper alternating slug size, abandonment time should be taken into account. When 

alternating slug size of both water and gas is too small, then obviously it would take relatively 

long time to reach ultimate recovery. The alternating frequency for water-gas injection can be 30, 

60 and 90 days. Too short frequency gives infeasible conditions from the perspective of field 

operations, whereas the WAG advantages would be lost by alternating both phases with a too 

long interval. Lastly, well spacing should be determined without losing miscible displacement 

conditions since a relatively close distance of wells provide a good control of reservoir pressure 

and thus WAG performance. Numerical simulations for this study are implemented on well 

spacing that ranges from 20 acres up to 200 acres.  

On the other hand, in order to evaluate the optimum bottom hole pressure of a producing 

well, miscible displacement process should be considered. Bottom hole pressure of a producing 

well should be below the initial reservoir pressure to produce oil by pressure drawdown and also 

more than minimum miscibility pressure to reduce detrimental effect on miscible conditions. 

Bottom hole pressure of a producing well is fixed at the range of 3000-4000 psia since minimum 

miscible pressure of CO2 is about 2900 psia at the temperature of 220°F according to the Figure 

4-2.  
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  The abandonment condition is set at the time when the water cut reaches 90 % at the 

producing well.  
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Chapter 5 

 

DEVELOPMENT OF AN ANN BASED PREDICTION TOOL 

A series of WAG process scenarios are simulated for black-oil using properties within 

certain ranges. This information is utilized in designing and training different architectures to 

construct an artificial neural network. Three considerations are discussed in this chapter: selection 

of inputs and outputs, training of the artificial neural network, and finally the accuracy analysis to 

evaluate the performance of networks.   

5. 1 Inputs and Outputs  

While reservoir performance depends on the reservoir characteristics such as fluid 

properties and rock properties, production of oil is furthermore controlled by different operating 

schemes such as well pressures and/or flow rates. A commercial simulator predicts the reservoir 

performance of a specific hydrocarbon field using reservoir natural characteristics and field 

development plans. Forward looking ANN also forecasts the reservoir performance by feeding 

the reservoir characteristics and field operating schemes. However, the main purpose of this study 

is to establish a screening tool to evaluate WAG process by the inverse application of ANN. 

Thus, the accomplishment of this purpose is based on suggesting a good selection of design 

parameters to achieve certain reservoir performance from given reservoir natural characteristics.  

There are two different groups of input variables to build the inverse neural network. One 

is the reservoir characteristics that are summarized in Table 5-1. The rock properties are 

permeability, thickness and porosity. The fluid properties are type of oil that is black-oil for this 
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study. Reservoir temperature, initial reservoir pressure and initial water saturation are also 

included in the reservoir characteristics.  

 

Table 5- 1: Reservoir characteristics as input variables 

 min mid max 

Type of Oil Black-oil (PVT #1) 

Formation Thickness (ft) 50 200 560 

Porosity (%) 15 25 40 

Permeability (md) 10 100 500 

Initial Reservoir Pressure (psia) 5000 

Reservoir Temperature (°F) 220 

Initial Water Saturation (%) 15 - 40 

 

The other group of input is reservoir performances that are obtained from a commercial 

simulator. Simulations provide cumulative oil production curve as a function of time. The 

reservoir performance can be expressed by recovery efficiency that is the cumulative oil 

production divided by original oil in place. One significant observation is that abandonment time 

can be different for given reservoir even though the recovery efficiency is similar. Thus, recovery 

efficiency and abandonment time consist of this group of input. Figure 5-1 shows one of the oil 

production curves.  
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Figure 5- 1: Oil production curve 

 

The inverse neural network is then constructed to yield the field development plans called 

design parameters which consist of well spacing, water-CO2 injection ratio, alternating frequency, 

alternating slug size and bottom hole pressure of a producing well. This study generates three 

respective networks according to 30, 60 and 90 days of alternating frequency. Table 5-2 shows 

output variables and each ranges. 
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 Table 5- 2: Design parameters as outputs 

 min max 

Well Spacing (Acres) 20 200 

WAG Ratio 0.5 4 

Alternating Frequency (Days) 30, 60, 90 

Alternating CO2 Size (% of PV) 0.1 2 

Producing Well BHP (psia) 3000 4000 

 

5. 2 Training an Artificial Neural Network and the Accuracy Analysis 

The construction of WAG ANN was conducted in two stages in order to simplify the 

design process. In the first stage, expert system was built for only 60 days with fixed alternating 

CO2 size. This network architecture provides the foundation to build more complicated networks 

which are universal expert systems in the second stage. In both stages, forward looking neural 

networks are also built along with inverse looking neural networks.     

5. 2. 1 Stage-One: Expert System with Fixed Alternating Slug Size 

A simple problem is studied in the first stage of the network construction. This network is 

developed with only 60 days alternating frequency maintaining unchanged alternating CO2 size, 

1% of pore volume. In order to train an ANN successfully, it is necessary to provide the network 

with as many data that cover most of reasonable scenarios as possible. But, generating these 

voluminous data using a commercial simulator requires tremendous computational time. This 
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network utilizes 239 cases that can include some of the most probable combinations of each 

variable.  

Different network architectures were tried in this stage for the purpose of finding the 

most effective architecture for the WAG process. The networks utilize the multilayer cascade 

feed forward back propagation algorithm (newcf). The networks are also designed using the 

conjugate gradient back propagation with Fletcher-Reeves training function (traincgf) and the 

gradient descent with momentum weight and bias learning function (learngdm). Both forward and 

inverse networks utilize four hidden layers to deal with the complexity of problems. Transfer 

functions used in each hidden layers are in the order of tansig, logsig, tansig, and logsig while the 

purelin transfer function was used in the last layer.  

Generated data are divided into three groups for the purpose of training, validation and 

testing. A total of 239 cases are separated in the following manner: 193 cases for training, 23 

cases for testing, and another 23 cases for validation.    

Forward looking neural network uses four reservoir characteristics and three design 

parameters as inputs to predict abandonment time and recovery efficiency. Table 5-3 and Figure 

5-2 shows forward looking neural network architecture of the first stage.  
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Table 5- 3: Inputs and outputs of “stage-one” forward looking neural network 

Inputs Outputs 

Reservoir 

Characteristics 

Formation Thickness (h) 

Porosity (Ø) 

Permeability (k) 

Initial Water Saturation (Swi) Reservoir 

Performance 

Abandonment Time (A.T.) 

Recovery Efficiency (R.E.) 

Design  

Parameters 

Well Spacing  

WAG Ratio  

Producing Well BHP 

 

 

Four functional links are added to the output layer to improve the accuracy of the 

network. This network is trained with 45 neurons in the first hidden layer, 30 neurons in the 

second layer, 20 neurons in the third layer and 15 neurons in the forth layer. 
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Figure 5- 2: Forward looking network architecture built in “stage-one” 

 

This network cannot achieve the desired mean squared error of 10
-4

 and the overall 

performance or LMS error is 0.00118. The accuracy of the network is then analyzed by 

comparing the simulation outputs with the predicted ones. One of testing data sets of forward 

application is compared with the simulation results shown in Figure 5-3.  
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Figure 5- 3: “Stage-one” forward neural network performance 
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The absolute error is then calculated for each variable. The predicted abandonment time 

presents 0.35% of minimum and 12.6% of maximum error while recovery efficiency presents 

0.008% of minimum and 2.4% of maximum error, respectively. Given similarity of values 

between simulation results and expected counterparts, this network can efficiently capture the 

relationships between oil recovery profile and two groups of inputs, which are the reservoir 

characteristics and design parameters.  

 

For inverse neural network, inputs consist of four reservoir characteristics, two oil 

production profiles. This network predicts three design parameters that are well spacing, water-

gas ratio and bottom hole pressure of a producing well. Inverse neural network architecture is 

shown in Table 5-4 and Figure 5-4.  

 

Table 5- 4: Inputs and output of  “stage-one” inverse looking neural network 

Inputs Outputs 

Reservoir 

Characteristics 

Formation Thickness (h) 

Porosity (Ø) 

Permeability (k) 

Initial Water Saturation (Swi) 

Design  

Parameters 

Well Spacing  

WAG Ratio  

Producing Well BHP 
Reservoir 

Performance 

Abandonment Time (A.T.) 

Recovery Efficiency (R.E.) 
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Figure 5- 4: Inverse looking network architecture built in “stage-one” 
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validation set. When the validation error is constant or grows after 1.0×10
5
 of epochs or the mean 

squared error reaches the goal of 1.0×10
-4

, then network training procedure is stopped to avoid 

overtraining.  

Inverse network was trained with 60 neurons in the first layer, 40 neurons in the second 

layer, 25 neurons in the third layer and 20 neurons in the forth layer. Different numbers of 

neurons and hidden layers were tested to determine optimum values. Too many numbers of 

neurons and hidden layers may result in over training.  
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The six utilized inputs are relatively small in order to predict three outputs compared to 

forward applications that utilize seven inputs to generate two outputs. Even if network should be 

able to recognize an interaction between output variables, more functional links need to be used 

for both input and output layers to improve the network accuracy due to the complexity of 

problems. Functional links used are summarized in Table 5-5. 

 

Table 5- 5: Input and output layer functional links of “stage-one” inverse looking neural network 

Inputs Outputs 

Abandonment time × Recovery efficiency × 0.1 

Porosity × Initial water saturation 

Permeability × Formation thickness 

Recovery efficiency × Formation thickness 

(Permeability×Porosity×Thickness×Initial water 

saturation)^1/2 

 

Well spacing × Abandonment time 

Well spacing × Recovery efficiency 

Well spacing × Permeability 

Well spacing × Formation thickness 

Well spacing × Initial water saturation 

WAG ratio × Abandonment time 

WAG ratio × Permeability 

Well spacing / WAG ration 

Well spacing × BHP 

 

 

One of testing sets of inverse application is compared with simulations inputs and 

illustrated in Figure 5-5. 



44 

 

  

 

 

Figure 5- 5: “Stage-one” inverse neural network performance 
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Inverse network of this stage cannot also obtain the desired goal of 10
-4

 and LMS error is 

0.016 which is more than one measured from forward network. The performance of the network 

is then evaluated by comparing the suggested development plans with the simulation inputs. The 

absolute error is calculated for each variable. The predicted well spacing presents 2.8% of 

minimum and 104.1% of maximum error while WAG ratio presents 0.48% of minimum and 

42.7% of maximum error, respectively. Bottom hole pressure of a producing well shows 0.03% of 

minimum and 12.8% of maximum error that indicates higher accuracy compared to other two 

parameters. Based on LMS error and the absolute error compared to forward networks, inverse 

neural networks do not seem to effectively predict the operating conditions.  

However, absolute errors cannot be the only criteria to evaluate the accuracy of the 

networks since they sometimes bring wrong conclusions. For instance, the range of well spacing 

is between 20 – 200 acres for this study. If the neural network forecasts a value of 40 for the 20 

acres, that represents 100% of absolute error that is considered as a poor performance. 

Conversely, if the network predicts a value of 220 for the 200 acres, that represents only 10% of 

absolute error that is interpreted as a relatively good performance. The difference of absolute 

errors between two cases is 90% even though both cases have exactly same deviation of 20 acres.  

Furthermore, respective outputs of inverse neural network do not always represent the 

overall performance of the networks since injection rates should be calculated using well spacing, 

WAG ratio, alternating frequency and alternating slug size. In other words, prediction of injection 

rates can be precise with good combination of those predicted four variables even though some of 

the variables have large absolute error. This observation implies that there should be other criteria 

to compensate a weak point of absolute error method.      

Accordingly, network performance is further assessed by protocol implemented accuracy 

analysis based on abandonment time and recovery efficiency. These two variables are used as 

inputs of an inverse neural network, and then forward neural network re-predicts these two 
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variables using proposed operating schemes that were already generated from inverse application. 

Input variables of forward neural network are then directly utilized to run a commercial simulator 

to yield another pair of abandonment time and recovery efficiency. Protocol implemented 

accuracy analysis is schematically illustrated in Figure 5-6.  

 

 

Figure 5- 6: Protocol implemented accuracy analysis purposes  
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inputs of forward application, the accuracy of forward neural network is proportional to the 

closeness of those two variables between inverse and forward application expressed by blue and 

red columns in Figure 5-7.  

In the same manner, the performance of inverse application can also be evaluated by the 

deviation of abandonment time and recovery efficiency. Those two variables are inputs of inverse 

network and compared against simulator outputs obtained using design parameters previously 

predicted from inverse applications. The suggested operating schemes from inverse neural 

network can be verified according to the similarity of abandonment time and recovery efficiency 

between inverse application and simulator illustrated by blue and green columns in Figure 5-7. 

Thus, inverse network performance can be reasonably analyzed in this way although the 

individual design parameters can present relatively large difference between real and predicted 

results. Once the network performance is confirmed by repeating a couple of times protocol 

implemented analysis, then design parameters of WAG process can successfully be forecasted 

from the inverse expert systems without any further recourse to accuracy analyses.    
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Figure 5- 7: Results of accuracy analysis  
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5. 2. 2 Stage-Two: Universal Expert System 

In the second stage, the complexity of the network is increased by changing the 

alternating slug size. Three different networks are constructed for 30 days, 60 days and 90days of 

alternating frequency. As before, forward neural networks are also built along with inverse neural 

networks. Similar network architectures from previous stage are brought up to construct both 

forward and inverse neural networks.  

In order to achieve better performance of this stage of networks, two different strategies 

are implemented. The first strategy is to introduce some functional links that help the networks 

find out more detailed connection between inputs and outputs. Different combinations of 

functional links are utilized for each three networks.  

Another strategy is to decide the optimum number of cases used to train each network. 

Even though the networks seem to predict more accurate outputs with as many cases that cover 

almost all scenarios as possible, there exists the optimum number of cases in each three networks 

to avoid memorizing problems and also to make training process efficiently. 30 days network 

utilizes 145 cases that are divided in the following form: 117 cases for training, 14 cases for 

testing and another 14 cases for validation. 60 days network uses 192 cases that are divided into 

154 cases for training, 19 cases for testing and another 19 cases for validation. 90 days network 

utilizes 155 cases that are divided into 125 cases for training, 15 cases for testing and another 15 

cases for validation. 
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Table 5- 6: Inputs and outputs of “stage-two” forward looking neural network 

Inputs Outputs 

Reservoir 

Characteristics 

Formation Thickness (h) 

Porosity (Ø) 

Permeability (k) 

Initial Water Saturation (Swi) 
Reservoir 

Performance 

Abandonment Time (A.T.) 

Recovery Efficiency (R.E.) 

Design  

Parameters 

Well Spacing  

WAG Ratio  

Alternating CO2 Size 

Producing Well BHP 

 

 

Forward neural networks use four reservoir characteristics and four design parameters as 

inputs to predict abandonment time and recovery efficiency. Table 5-6 and Figure 5-8 illustrates 

forward neural network architecture commonly used in all three networks of this stage. 
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Figure 5- 8: Forward looking network architecture built in “stage-two” 

 

Three networks present similar value of the least mean squared (LMS) error, 

0.0007~0.0008. The accuracy of forward neural network is then evaluated based on abandonment 

time and recovery efficiency. One of testing data sets of each three forward neural networks is 

shown in Figure 5-9, 5-10 and 5-11 respectively. 
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Figure 5- 9: 30 Days forward neural networks performance 
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Figure 5- 10: 60 Days forward neural networks performance 
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Figure 5- 11: 90 Days forward neural networks performance 
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The absolute errors of the predicted abandonment time and recovery efficiency are 

summarized in Table 5-7. The absolute error indicates that three networks achieve similar extent 

of the accuracy. 

 

Table 5- 7: The absolute error of forward neural network of “stage-two” 

(%) 

             Network 

Output 

30 Days 60 Days 90 Days 

Abandonment 

Time 

Min 0.2 1.1 0.7 

Max 38.9 36.8 30.5 

Ave 14.5 7.6 10.2 

Recovery 

Efficiency 

Min 0.2 0.01 0.05 

Max 3 4.6 4.6 

Ave 1.1 1.2 1.8 

 

 

Inverse neural network utilizes four reservoir characteristics, abandonment time and 

recovery efficiency as inputs in order to forecast four field operating parameters that are well 

spacing, WAG ratio, alternating CO2 size and bottom hole pressure of a producing well. This 

networks deal with more complicated problems due to increased number of outputs compared to 

previous stage inverse applications. Inverse neural network architecture is shown in Table 5-8 and 

Figure 5-12.  
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Table 5- 8: Inputs and output of “stage-two” inverse looking neural network 

Inputs Outputs 

Reservoir 

Characteristics 

Formation Thickness (h) 

Porosity (Ø) 

Permeability (k) 

Initial Water Saturation (Swi) Design  

Parameters 

Well Spacing  

WAG Ratio  

Alternating CO2 Size 

Producing Well BHP 

Reservoir 

Performance 

Abandonment Time (A.T.) 

Recovery Efficiency (R.E.) 

 

 

In all three networks, the ANN structure maintains the same format including the number 

of hidden layers, the number of neurons and transfer functions. Networks are trained with 60 

neurons in the first layer, 40 neurons in the second layer, 20 neurons in the third layer and 15 

neurons in the forth layer. Networks also utilize transfer function in the order of tansig, logsig, 

tansig, logsig and purelin. However, combinations of functional links used in three networks are 

different, and furthermore input layer functional links are added to help learning process. The 

appropriate selection of those functional links plays an important role to achieve good network 

performance of second stage.  
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Figure 5- 12: Inverse looking network architecture built in “stage-two” 
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Table 5- 9: Input and output layer functional links of inverse looking neural network 

 Input Layer Output Layer 

 

30 

Days 

 

 

Abandonment time × Recovery efficiency  

Abandonment time × Formation thickness 

Abandonment time × ( k×Ø×h×Swi )^1/2 

 

Well spacing × Abandonment time 

Well spacing × Recovery efficiency 

Well spacing × Permeability 

WAG ratio × Recovery efficiency 

WAG ratio × Permeability 

Alternating CO2 size × Abandonment time 

Abandonment time 

90 

Days 

 

Abandonment time × Recovery efficiency  

Abandonment time × ( k×Ø×h×Swi )^1/2 

Distance between injection wells 

Distance between injection and producing well 

Well spacing × Abandonment time 

Well spacing × Recovery efficiency 

Well spacing × Permeability 

WAG ratio × Abandonment time 

Alternating CO2 Size × Abandonment time 

Abandonment time 
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Table 5- 10: Input and output layer functional links of inverse looking neural network 

 Input Layer Output Layer 

 

60 

Days 

 

 

Abandonment time × Recovery efficiency 

 Abandonment time × Permeability 

Abandonment time × Porosity 

Abandonment time × Formation thickness 

Recovery efficiency × Permeability 

Recovery efficiency × Porosity 

Recovery efficiency × Formation thickness 

Abandonment time × ( k×Ø×h×Swi )^1/2 

 

Well spacing × Abandonment time 

Well spacing × Recovery efficiency 

Well spacing × Permeability 

Well spacing × Porosity 

Well spacing × Formation thickness 

Well spacing × Initial water saturation 

WAG ratio × Abandonment time 

WAG ratio × Recovery efficiency 

WAG ratio × Permeability 

WAG ratio × Porosity 

WAG ratio × Formation thickness 

WAG ratio × Initial water saturation 

Alternating CO2 size × Abandonment time 

Alternating CO2 size × Permeability 

Alternating CO2 size × Porosity 

Alternating CO2 size × Formation thickness 

Well spacing / WAG ratio  

Well spacing × WAG ratio  

Well spacing / Alternating  CO2 Size 

Well spacing × Prod BHP 

Alternating  CO2 size × WAG ratio  

WAG ratio × Prod BHP 
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The LMS error of inverse network is 0.015 ~ 0.027 that is larger than forward network. 

Since the LMS error is not the only criterion to determine the accuracy of networks, the 

performance of each inverse application is assessed by comparing the predicted operating 

conditions with the ones used for simulators shown in Figure from 5-13 to 5-18. It is observed 

that in some cases, predicted ones are above or below the limits when the actual operating 

parameters are close to either upper or lower limits. In each run, same network can produce little 

different results since they choose different data sets in a random way for the purpose of 

validation, training and test. But it is obvious that overall performance of each run is similar 

based on the accuracy analysis. Three more predictions from each inverse application are added 

in appendix A, B and C.   
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Figure 5- 13: 30 Days inverse neural networks performance 
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Figure 5- 14: 30 Days inverse neural networks performance 
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Figure 5- 15: 60 Days inverse neural networks performance 
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Figure 5- 16: 60 Days inverse neural networks performance 
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Figure 5- 17: 90 Days inverse neural networks performance 
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Figure 5- 18: 90 Days inverse neural networks performance 
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The absolute errors are then calculated for each four outputs and shown in Table 5-10. 

Based on the absolute errors, network prediction of BHP of a producing well has the smallest 

error and the rest of three outputs show similar range of error.  

 

Table 5- 11: The Absolute error of inverse neural network of “stage-two” 

(%) 

             Network 

Output 

30 Days 60 Days 90 Days 

Well Spacing 

Min 2.4 1.3 0.1 

Max 214.4 199.9 64.2 

Ave 51.6 36.5 33.4 

WAG Ratio 

Min 2.9 3.1 0.05 

Max 232.4 87.0 139.5 

Ave 58.6 30.3 30.1 

Alternating 

CO2 Size 

Min 3.8 2.1 1.5 

Max 190.4 84.6 63.7 

Ave 49.9 26.1 29.0 

BHP of a 

Producing 

Well 

Min 0.3 3.6 0.6 

Max 13.3 17.5 12.5 

Ave 5.4 9.5 5.7 

 

 

Compared to previous inverse application, the absolute errors tend to exhibit more wide 

range, for instance, the absolute error of WAG ratio in 30 days network varies from 2.9% up to 
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232.4 %. In order to further analyze the network performance, protocol implemented accuracy 

analysis is used based on abandonment time and recovery efficiency. In this method, forward 

neural network and a simulator regenerate abandonment time and recovery efficiency using the 

operating conditions that were previously predicted from inverse neural network. If forward 

neural networks can predict oil production profile that are similar to the input of inverse neural 

network, then the accuracy of forward neural network can be confirmed. In the same manner, the 

performance of inverse application can be verified by similarity of those two values between the 

input of inverse network and the results from a simulator. Figure 5-19 through 5-21 and Table 5-

11 through 5-13 shows the accuracy analysis of 30 days, 60 days and 90 days networks, 

respectively.     
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Figure 5- 19: Accuracy analysis on 30 days network performance 
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Table 5- 12: The accuracy analysis on 30 days network performance 

 

Deviations 

Forward Neural Network Inverse Neural Network 

Abandonment 

Time (years) 

Recovery 

Efficiency (%) 

Abandonment 

Time (years) 

Recovery 

Efficiency (%) 

1 1.7 1.3 3.5 0.7 

2 2.7 1.0 1.7 4.3 

3 0.7 1.2 3.1 0.8 

4 2.4 0.8 1.5 1.7 

5 1.3 0.5 0.2 0.3 

6 0.6 1.2 1 2.5 

7 1.5 1.7 5.7 1.9 

8 3.2 1.9 2 1.3 

9 0.6 0.7 0.1 0.5 

10 3.4 1.0 2.3 0.4 

11 0.4 0.9 0.3 0.04 

12 0.5 1.4 0.2 1.0 

Ave 1.6 1.1 1.8 1.3 
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Figure 5- 20: Accuracy analysis on 60 days network performance 
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Table 5- 13: The accuracy analysis on 60 days network performance 

 

Deviations 

Forward Neural Network Inverse Neural Network 

Abandonment 

Time (years) 

Recovery 

Efficiency (%) 

Abandonment 

Time (years) 

Recovery 

Efficiency (%) 

1 1.4 0.1 0.1 0.6 

2 9.9 0.4 13.3 0.9 

3 2.9 2.5 1.2 2.6 

4 2.5 0.1 2.1 0.6 

5 1.2 0.2 1 0.4 

6 1.9 2.4 0 1.3 

7 0.2 0.2 0.8 0.7 

8 4.9 0.5 6.8 0.9 

9 0.7 0.8 4.7 0.9 

10 0.6 0.08 7.2 0.6 

11 0.5 0.4 0.4 0.3 

12 1.3 0.4 0.4 1.0 

13 1.8 2.3 2.9 1.0 

14 1.9 2.0 0.7 0.7 

15 0.9 0.7 0.1 1.4 
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Table 5-12: The accuracy analysis on 60 days network performance 

 

Deviations 

Forward Neural Network Inverse Neural Network 

Abandonment 

Time (years) 

Recovery 

Efficiency (%) 

Abandonment 

Time (years) 

Recovery 

Efficiency (%) 

16 0.4 0.8 0.3 0.4 

17 1.0 0.1 1.0 0.3 

18 2.8 0.01 0.7 0.6 

19 2.1 0.8 0.8 2.3 

Ave 2.0 0.8 2.3 0.9 
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Figure 5- 21: Accuracy analysis on 90 days network performance 
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Table 5- 14: The accuracy analysis on 90 days network performance 

 

Deviations 

Forward Neural Network Inverse Neural Network 

Abandonment 

Time (years) 

Recovery 

Efficiency (%) 

Abandonment 

Time (years) 

Recovery 

Efficiency (%) 

1 1.5 1.2 1.7 0.5 

2 1.6 0.5 1.7 0.3 

3 2.3 0.9 2.5 0.9 

4 0.2 0.3 2.7 0.3 

5 0.7 1.8 0.7 2.2 

6 1.7 1.6 2 1.0 

7 0.7 4.0 5 2.5 

8 3.8 1.9 5.2 0.8 

9 1.0 2.7 2.2 0.7 

10 1.6 0.8 1.3 0.3 

11 0.7 2.8 0.3 0.8 

12 1.3 0.9 0.7 0.01 

13 0.9 0.03 0.6 0.3 

14 1.3 1.15 2.2 0.9 

Ave 1.4 1.5 2.1 0.8 
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In general, the LMS error and the absolute error indicate that forward applications 

possess higher accuracy and inverse counterparts seem to have relatively low accuracy. However, 

based on results of the protocol implemented accuracy analyses, it is observed that two 

applications achieve similar network performance within acceptable margin of error. Therefore, 

suggested field operating schemes from inverse expert systems should be able to help the 

reservoir engineers find out the optimum production scenarios of water-alternating-gas processes.    
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Chapter 6 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The networks were constructed to suggest the optimum field operating parameters of 

water-alternating-gas process where three respective neural network architectures were trained 

using the data generated by a commercial simulator. Black-oil formulation was selected and 

minimum miscibility conditions were included in the model. Sensitivity analyses were 

implemented to minimize the numerical dispersion resulting in a 15×15 Cartesian grid with a five 

spot well pattern. 

 

The following observations and conclusions were made from this study: 

 Permeability has a strong influence on recovery efficiency in a WAG application. This 

study utilize 10 md as a low limit and 500 md as a high limit permeability 

- Reservoirs with a low limit permeability present higher recovery efficiency than ones 

with a high limit permeability  

- Reservoirs with a low limit permeability show consistent amount of recovery 

efficiency, while reservoirs with a high limit permeability generally exhibit high 

recovery efficiency when low value of WAG ratio is utilized 

- In reservoirs with a high limit permeability, the simulation model sometimes 

encounters in convergence problems  

 Recovery efficiency is directly proportional to porosity and inversely proportional to 

initial water saturation 

 Formation thickness does not affect the recovery efficiency even though gravitational 

effect is included from 4 layering in the model 
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 In general, shorter abandonment time is observed as injection rates of both phases are 

increased, but there exists an optimum value of injection rate 

- Excessive injection rate leads to operational problems 

- Minimal injection rate extends the life of the project 

 An artificial neural network was effectively constructed for WAG process using a 

multilayer cascade feed forward back propagation algorithm 

 This study suggests three respective networks with respect to 30 days, 60 days and 90 

days of alternating frequency 

 Each network was built using similar network architectures except functional links 

 Following strategies were implemented to decrease the error, to maximize the accuracy 

of the networks and to increase efficiency of training process:  

- Determining an optimum number of neurons and hidden layers in each networks 

        ·  Too many number of neurons and hidden layers do not improve network 

performance but require longer computational time 

       ·  Too small number of neurons and hidden layers deteriorate network accuracy 

- Selecting appropriate functional links for each three networks to find out the 

complicated relationship between inputs and outputs of networks 

- Deciding an optimum number of cases to avoid the memorization related issues  

 The performance of networks was evaluated based on three criteria 

- The least mean squared(LMS) error 

- The absolute error: comparing predicted results from networks with the ones from a 

simulator  

- Accuracy analysis: accuracy of the network performance is further analyzed based on 

recovery efficiency and abandonment time, which are regenerated from forward 

network and a simulator using design parameters previously predicted from inverse 
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applications.   Forward applications are assessed by closeness of two variables 

between inverse and forward applications. In the same manner, inverse applications 

are also evaluated by comparing those two variables used for inverse network with 

ones regenerated from a simulator 

 Generally the LMS error and the absolute error indicate that forward applications exhibit 

better performance than inverse counterpart. However, protocol implemented accuracy 

analysis show that there is no significant difference of accuracy between forward and 

inverse network. Thus, inverse expert systems are able to propose field development 

strategies of WAG processes within acceptable margin of error  

 

Following perspectives were generated during the study, which can help suggesting more 

flexible field development plans under diverse reservoir characteristics complementing the 

current work.  

 This study was only associated with one type of black-oil. But, different networks can be 

constructed according to different black-oil and volatile-oil systems. A similar procedure 

followed to train current networks can be effectively used for networks dealing with other 

types of oil 

 The relative permeability data for present study is one typical example of the sandstone 

rock properties. Network can be constructed using different water-oil and gas-oil relative 

permeability curves of several rock types 

 Even though 5-spot well pattern is typically utilized in WAG process, it is worth 

generating networks to study various well patterns such as 4-spot, inverted 5-spot, 9-spot 

and inverted 9-spot 

 Types of injection gas used in WAG process can include other gases such as hydrocarbon 

gases or N2 
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 The study can be expanded to include the simultaneous water alternating gas injection 

process (SWAG) 
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Appendix A 

 

Inverse Application for 30 Days 

 

 

 

Figure A- 1: 30 Days inverse neural networks performance 
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Figure A- 2: 30 Days inverse neural networks performance 
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Figure A- 3: 30 Days inverse neural networks performance 
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Figure A- 4: 30 Days inverse neural networks performance 
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Figure A- 5: 30 Days inverse neural networks performance 
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Figure A- 6: 30 Days inverse neural networks performance 

 

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

%

P

V

Alternating CO2 Size (30 days Network)

CMG

ANN

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P

s

i

a

Producer BHP (30 days Network)

CMG

ANN



90 

 

Appendix B 

 

Inverse Application for 60 Days 

 

 

 

Figure B- 1: 60 Days inverse neural networks performance 
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Figure B- 2: 60 Days inverse neural networks performance 
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Figure B- 3: 60 Days inverse neural networks performance 
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Figure B- 4: 60 Days inverse neural networks performance 
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Figure B- 5: 60 Days inverse neural networks performance 
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Figure B- 6: 60 Days inverse neural networks performance 
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Appendix C 

 

Inverse Application for 90 Days 

 

 

 

Figure C- 1: 90 Days inverse neural networks performance 
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Figure C- 2: 90 Days inverse neural networks performance 
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Figure C- 3: 90 Days inverse neural networks performance 
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Figure C- 4: 90 Days inverse neural networks performance 
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Figure C- 5: 90 Days inverse neural networks performance 
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Figure C- 6: 90 Days inverse neural networks performance 
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