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Abstract
Generalized Multivariate Dynamic Linear Models (GMDLMs) are a flexible class of
multivariate time series models well-suited for non-Gaussian observations. They represent
a special case within the more widely recognized multinomial logistic-normal (MLN)
models. They are effective for analyzing sequence count data due to their ability to handle
complex covariance structures and provide interpretability/control over the structure
of the model. However, their current implementations are limited to small datasets,
primarily because of computational inefficiency and increased variance in parameter
estimates. Our work addresses the need for scalable Bayesian inference methods for these
models. We develop an efficient method for obtaining a point estimate of our parameter
by using the Kalman Filter and calculating closed-form gradients for our optimizer.
Additionally, we provide uncertainty quantification of our parameter using Multinomial
Dirichlet Bootstrap and refine these estimates further with Particle Refinement. We
demonstrate that our inference scheme is considerably faster than STAN and provides a
reliable approximation comparable to results obtained from MCMC.
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Chapter 1 |
Introduction

Our research aims to analyze and create models for data that can be represented as a
Multinomial Time Series, as shown in Figure 1.1. We possess a dataset Y which contains
T observations of D-dimensional count vectors. The counting process for each observation
is modeled as a multinomial. Each count vector has a total of nt = ∑

i Yit counts. This
type of data is commonly found in various real-world applications, such as predicting
the flow of students in the Italian school system (Cargnoni et al., 1997), constructing
topic models in natural language processing (Glynn et al., 2019; Blei and Lafferty, 2006),
and more recently for time series modeling of microbiome data (Silverman et al., 2018).
Our research is specifically focused on microbial data, particularly microbial data in the
human gut.

Human gut microbiota is dynamic, changing on daily time-scales in response to
various factors such as disease, diet, or drugs (David et al., 2014). Because of its dynamic
nature, there has been a substantial focus on longitudinal studies, leading to abundant
time-series data. However, the sequencing-based measurement process by which this
data is obtained is non-trivial: it can roughly be thought of as a random sample of the
bacteria in the gut with the size of the sample being arbitrary and unrelated to total
microbial load. As a result, many authors model this data as multinomial and focus on
estimating dynamic changes in microbial proportional abundances (Silverman et al., 2018,
2022). As this data is zero-laden (often with over 50% zero values), Bayesian methods
are increasingly preferred to account for the limited observations present for many taxa.
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Figure 1.1. Multinomial Time Series Data

D: Number of taxa Yit: Count of ith taxa at tth timepoint
T: Number of timepoints nt: summation of all counts at tth timepoint

While Bayesian Multinomial-Dirichlet models are the most common form of Bayesian
multinomial model in many fields, these models can perform poorly when exist substantial
correlations between multinomial categories. Especially in the human gut, phylogenetic
relationships between bacteria can lead to substantial positive and negative correlations,
making Multinomial-Dirichlet models sub-optimal (Silverman et al., 2022). An alternative
to the Multinomial-Dirichlet is the Multinomial Logistic-Normal, the logistic-normal
distribution relaxes the independence assumption inherent in the Dirichlet distribution.
In application to multinomial time series, Multinomial Logistic-Normal Dynamic Linear
Models have become increasingly popular (Silverman et al., 2018, 2022; Cargnoni et al.,
1997). Yet the lack of conjugacy between the multinomial and the logistic-normal makes
these models computationally intractable for many real-world applications. In this work,
we aim to solve those issues by building an optimized and fast method to calculate
Maximum A Posteriori (MAP) estimates of the parameters of the GMDLM and then
use Multinomial Dirichlet Bootstrapping with parallelized particle refinement to produce
an uncertainty quantification of the parameters in a computationally efficient manner.

2



Chapter 2 |
Background

2.1 Multinomial Logistic-Normal(MLN) Models
This class of models is extensively used for analyzing Multinomial Time Series data.
Each count vector in the data is modeled as coming from a multinomial distribution, and
any time-varying stochastic process with parameters can characterize the probability
vector. We define the MLN model as a multinomial transformed-multivariate normal
model as:

Y.t ∼ Multinomial(nt, π.t)

π.t = ϕ−1(η.t)

η.t ∼ N (µ.t, Σ)

(2.1)

In our study, we represent ϕ−1 as an inverse log-ratio transform, such as the Inverse
ALR (Inverse additive log-ratio) transform given by the following equation

ALR−1
D (ηj) =

(
eη1j

1 +∑D−1
i=1 eηij

, . . . ,
eη(D−1)j

1 +∑D−1
i=1 eηij

,
1

1 +∑D−1
i=1 eηij

)
(2.2)

The parameter η.t is modeled as a multivariate normal distribution, providing the
flexibility to utilize pre-existing multivariate normal models. This substitution allows for a
seamless integration of well-established multivariate techniques within this compositional
framework.

2.2 Generalized Multivariate Dynamic Linear Models(GMDLM)
Analyzing time series data often presents a challenge due to having only a single realization
of the process, the properties of which may not be fully understood at a given time point.
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This limitation leads to the assumption that certain distribution properties of the process
generating the observations remain constant over time, making it difficult to pinpoint
the exact causes of observed data variability. To address these challenges, one can adopt
a state space framework, where observations are generated by applying a function to
the hidden state of the system. This hidden state evolves over time with each new data
point, offering increased flexibility in modeling data variability.

In this framework, the focus is on the underlying model itself, represented as a
dynamic linear model (DLM) when the system’s operators are linear. The model captures
the process’s evolution and its dependency on previous states, allowing for a detailed
analysis of time series data. DLMs are categorized based on the dimensionality of the
observations: univariate DLMs for 1-dimensional vectors and multivariate DLMs for
higher dimensions (Laine, 2019).

Generalized Multivariate models are an extension and a flexible class of multivariate
DLMs for non-Gaussian observations. These were first introduced in Quintana and West
(1987) and developed further in West and Harrison (2006). As per the notations in
Silverman et al. (2022); West and Harrison (2006) these models are defined as

Y.t ∼ f(π.t)

π.t = ϕ−1(η.t)

η
⊺
t = F

⊺
t Θt + vt v ∼ N (0, γtΣ)

Θt = GtΘt−1 + Ωt, Ωt ∼ N (0, WtΣ)

Θ0 ∼ N (M0, C0, Σ)

Σ ∼ IW(Ξ, ν)

(2.3)

Y is a D × N matrix, and f is any function that maps probability vectors to Y . In
our experiments, Y represents count data; hence, f is a multinomial distribution. ϕ

is any log-ratio transform to convert from simplex space of π to a real valued space
of η. Each ηt is a P-dimensional vector, Ft is a Q × 1 vector called the observation
matrix describing a linear model connecting the latent state space to the parameter ηt,
θt is a Q × P matrix describing the state of our time series at time t, Gt is the state
transition matrix of size Q × Q, Σ is a P × P covariance matrix depicting the covariation
between the P-dimensional time series, Wt is Q × Q covariance matrix describing the
covariation between the perturbations influencing the latent states, and γt is just a scalar
hyperparameter to change the importance of the observation at time t (usually set to 1).
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2.3 Collapse-Uncollapse (CU) Sampler
In Silverman et al. (2022), they proposed this sampling algorithm to sample from the
posterior of relevant parameters of any probabilistic model represented by p(Ψ, η, Y )
where Ψ and η are the parameters of the models and can be decomposed into marginals
of the form:

p(η, Ψ|Y ) = p(Ψ|η, Y )p(η, Y )
p(Y ) (2.4)

With this decomposition, we can sample first from the posterior of the collapsed p(η, Y )
and then use that sample of η and Y; we can get a sample of Ψ using the conditional
distribution of p(Ψ|η, Y ). Together the sample of η and Ψ then represents a single sample
from our model. Also, since the sampling process is split into two separate processes, after
generating samples from the collapsed form, we can generate samples of the uncollapsed
part in a parallelized paradigm to further speed up the entire process. For most common
models, we have an exact solution to map samples from the collapsed part to the other
parameters in the uncollapsed part of the CU sampler, again helping to make sampling
more efficient. The unique two-step structure of this sampler makes it particularly useful
when partial conjugates exist in the probabilistic models similar to the partial conjugacy
found in the Multinomial-Logistic Normal defined before.
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Chapter 3 |
Related Work

Early work of modeling multinomial time series data as GMDLM used Metropolis within
Gibbs samplers (Cargnoni et al., 1997) but could scale to a few multinomial categories.
Polya-Gamma data augmentation and Variational Inference have been used recently, but
Silverman et al. (2022) have found them to be computationally expensive and perform
poorly. Silverman et al. (2018) have found Hamiltonian Monte Carlo(HMC) provides a
more scalable approach for modeling the data, but they also suffer from scaling beyond
ten multinomial categories and 800 time points. Most recently, Silverman et al. (2022)
proposes a class of models called Latent Matrix-T Processes(LTPs), which are shown to
generalize Matrix-T processes to handle a wider variety of data types like count data. It
is proven that many popular MLN models are special cases of these models, including
GMDLMs. Being the current state-of-the-art, we delve deeper into these models, their
problems, and how they can be solved.

3.1 Latent Matrix-T Processes (LTP)
In this paradigm, Y is presented as a hierarchical process formulated by process f , which
has parameters that, after log-ratio transformations, follow a matrix-t process. The
model form of LTPs looks like this :

Y ∼ f(π)

π = ϕ−1(η)

η ∼ T (ν, B, K, A).

(3.1)

Where B, K, and A are real-valued matrices representing the mean and covariance
structure of the Matrix-T processes. ϕ−1 is usually a log-ratio transformation from the
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real-valued space to the probability space Π.
In their research, Silverman et al. (2022) introduced a larger class of models called

Marginally LTP models. These models are essentially those whose marginal is an
LTP. They derived this form for common MLN models like the Generalized Multivariate
Conjugate Linear model (GMCL), Generalized Multivariate Gaussian Processes (GMGP),
and GMDLMs. Representing these in the Marginal LTP form enables us to use the
Collapse-Uncollapse sampler for efficient posterior inference. This is made possible
because all of these models have a closed-form posterior conditional (facilitating the
’uncollapse’ phase) and the joint marginal (enabling the ’collapsed’ phase) of the sampler.

For GMDLM, we can write it as a model with joint distribution p(Θ, Σ, η, Y ) and
factored as p(Θ, Σ|η, Y )p(η, Y ) with Ψ = {Θ, Σ}. Then p(η, Y ) could be presented as an
LTP with the following B, K, and A matrices -

B =


| | |

α1 αt · · · αT

| | |


αt = (F ⊺

t G
⊺
t:1M0)⊺

K = Ξ

At,t−k =

γt + F ⊺
t

[
Wt +∑2

l=t Gt:lWl−1G
⊺
l:t + Gt:1C0G

⊺
1:t

]
Ft if k = 0

F ⊺
t

[
Gt:t−k+1 Wt−k +∑2

l=t−k Gt:l Wl−1 G⊺
l:l−k + Gt:1 C0 G⊺

1:t−k

]
Ft−k if k > 0

(3.2)
But to make the sampling from p(η|Y ) possible due to the computationally expensive

nature of the problem, they also provide a Laplace approximation for the density. The
approximation is defined as q(η|Y ) = N(vec η̂, H−1(vec η̂)) where H−1(vec η̂) denotes the
inverse Hessian matrix of log p(η|Y ) evaluated at the point vec η̂ and η̂ denotes the MAP
estimate of p(η|Y ).

After generating the samples from the collapsed LTP form, such as by sampling from
the Laplace approximation, they can be conditioned upon and samples of the remaining
parameters Σ and Θ can be obtained from the posterior by performing the uncollapse
step, which involves sampling from the posterior conditional p(Θ, Σ|η, Y ). For GMDLMs,
Silverman et al. (2022) have provided an efficient algorithm for uncollapsing through
filtering and smoothing recursions mentioned below.
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Filtering recursion:
(1) Posterior at t − 1:

p(Σ|H⊺
t−1) ∼ IW (Ξt−1, νt−1)

p(Θt−1|Σ, H⊤
t−1) ∼ N (Mt−1, Ct−1, Σ)

(3.3)

(2) Prior at t:
At = GtMt−1

Rt = GtCt−1G
⊤
t + Wt

p(Σ|H⊺
t−1) ∼ IW (Ξt−1, νt−1)

p(Θt|Σ, H⊤
t−1) ∼ N (At, Rt, Σ)

(3.4)

(3) One-step ahead forecast at t:

f
⊺
t = F

⊺
t At

qt = γt + F
⊺
t RT Ft

p(Σ|H⊺
t−1) ∼ IW (Ξt−1, νt−1)

p(ηt|Σ, H
⊺
t−1) ∼ N(ft, qtΣ)

(3.5)

(4) Posterior at t:
e
⊺
t = η

⊺
t − f

⊺
t

St = RtFt

qt

Mt = At + Ste
⊺
t

Ct = Rt − qtStS
⊺
t

νt = νt−1 + 1

Ξt = Ξt−1 + ete
⊺
t

qt

p(Σ|H⊺
t−1) ∼ IW (Ξt, νt)

p(Θt|Σ, H
⊺
t ) ∼ N (Mt, Ct, Σ)

(3.6)

Smoothing Recursion:

1. Sample Σ ∼ IW (ΞT , νT ) and then ΘT ∼ N(Mt, Ct, Σ).

2. For each time t from T − 1 to 0, sample p(Θt|Θt+1, H⊺) from N(M∗
t , C∗

t , Σ) where

Zt = CtG
⊺
t+1R

−1
t+1

8



M∗
t = Mt + Zt(Θt+1 − at+1)

C∗
t = Ct − ZtRt+1Z

⊺
t .

3.2 Issues with GMDLM modeled as Latent Matrix-T
Process
The approach of Modeling GMDLM as a Marginal LTP is mathematically sound and
allows for accurate parameter inference. However, it faces scalability issues when dealing
with a large number of multinomial categories and time points. This problem arises due
to the non-stationary priors frequently specified in GMDLM. To fit these priors in the
Marginal LTP form, we need to precompute the joint prior for the entire time series at
the initial time point. This precomputation, in the form of A parameter matrix of the
LTP, results in significant uncertainty in the states, which causes a numeric overflow.
Therefore, this approach is not practical for larger real-world datasets. We call this
phenomenon the "Bayesian Whip" and the following model shows a small simulation to
prove our point.

For simplicity purposes, if we consider Θ0 as a univariate variable with a value of 0,
the simulation produces Figure 3.1.

Θ0 ∼ N (0, 1)

Θt = GΘt−1 + Wt Wt ∼ N (0, 1)
(3.7)

recursive maths=⇒

Θt = GtΘ0 +
t∑

i=1
Gt−iWi (3.8)

As we see in the figure, as time increases, the variance of our state explodes, leading
to numerical overflow. As G increases, the variance blowup is more significant and occurs
for much smaller time points than 50.

9



G = 1.1

G = 1.5
Figure 3.1. Bayesian Whip phenomenon seen in the simulation
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Chapter 4 |
Proposed Method

4.1 General Idea
As mentioned above, the Marginal Latent Matrix-T process form for GMDLMs (Silverman
et al., 2022) can experience numerical instability and an explosion in state variance
as time points increase. This is primarily due to GMDLM often being specified with
non-stationary priors. To tackle these issues, our methodology differs from the practice
of reducing the entire time series into a Matrix-T process represented by pre-calculated
matrix parameters for the time series.

We utilize the concept of sequential filtering, which is popular in dynamic linear
models, to estimate our parameters η and Θ. This is done with the aid of Kalman filtering
and smoothing equations. By opting for sequential filtering, we avoid pre-computing
the entire joint prior and instead, we only compute one-step-ahead conditional priors,
which are based on the prior observations. Even for a non-stationary model, these
one-step-ahead priors are usually straightforward to represent numerically and are not
prone to numerical instability.

Our proposed method aims to get a feasible, computationally efficient way to find the
MAP estimate of η, build approximate posterior credible intervals around that estimate,
improve it using particle refinement, and then use closed-form posterior conditionals to
get estimates of Θ parameter. Hence, our proposed method is broken down into four
parts:

• Find the η̂ (MAP estimate)

• Generate samples of η by performing uncertainty quantification around η̂

• Improve estimate of η by performing particle refinement on samples

11



• Uncollapse to get estimates of the state Θ

4.2 MAP estimation
To obtain the Maximum A Posteriori (MAP) estimate of η, we solve the following
optimization problem:

η̂ = argmin
η∈RP ×N

[− log p(η | Y )] . (4.1)

This problem can be partitioned into two components: the log-likelihood contribution
from Y given the log-ratio transform of η and the prior contribution of η. This relationship
is expressed as:

− log p(η|Y ) ∝ − log f(Y |ϕ−1(η)) − log p(η) (4.2)

The initial step in this process involves computing the distribution of ηt dependent
only on previously occurred η values in the time series and marginalizing out the state
Θ. We achieve this by using the filtering recursive equations in Silverman et al. (2022).
These equations represent the three stages of the Kalman Filter, and are repeated for
every time point in the series :

• Prior of the state is forecasted one step ahead

• Forecast the observation based on the forecasted state

• Capture the observation and update our beliefs about the state at the time t

Leveraging the equations from the one-step ahead forecast, we can marginalize out Σ
to derive the distribution of ηt solely based on H⊺

t−1(η values till t − 1). By resolving this
relation, we obtain:

p(ηt|H
⊺
t−1) ∼ T (νt−1, ft, qtΞt−1) (4.3)

Now, we can calculate the log probability of η and the gradients to be fed into our
optimizer. Since η follows a multivariate T-distribution, its log probability is:

log p(ηt|H
⊺
t−1)) ∝ −(νt−1 + p)

2 log
(

1 + 1
νt−1

(ηt − ft)⊺(qtΞt−1)−1(ηt − ft)
)

(4.4)

12



And we get the following gradients derived in Appendix A :

d log p(ηt|H⊺
t−1)

dηt

∝ −(νt−1 + p)
2

1
S

dS

dηt

dS

dηt

= 2
νt−1

(η⊺
t − f

⊺
t )(qtΞt−1)−1

S = 1 + 1
νt−1

(ηt − ft)⊺(qtΞt−1)−1(ηt − ft)

(4.5)

4.3 Uncertainty quantification
In Silverman et al. (2022), a Laplace approximation is provided for uncertainty quan-
tification around the MAP estimate η̂, but calculating the Hessian matrix is complex
and computationally expensive. Hence, we utilize Multinomial Dirichlet Bootstrap in
this work to provide uncertainty quantification. It provides samples around our estimate,
which helps us get a mean estimate and 95% CI around the mean. We use the following
equation to generate the samples η̂.

ηS
t ∼ ϕ(Dir(ϕ−1(η̂t) ∗

∑
Yt + α)) (4.6)

Here, η̂t is the tth vector of η̂ matrix, S defines the number of Dirichlet samples
generated, α is the pseudocount to deal with 0 values and ϕ represents any log-ratio
transform. In our case, we have used the ALR transform.

4.4 Particle Refinement
We can improve our posterior estimates of η by performing particle refinement of the
Multinomial Dirichlet samples generated in the previous step. The particle refinement
allows us to better explore the posterior of p(η|Y ), giving better mean estimates and
credible intervals of the parameter.

In our experiments, we employ the Metropolis algorithm. Each sample of η from the
set S, generated in the previous step, serves as an initial state for our S chains. Given
that our initial states are close to the MAP of the posterior of η, we only need to run
each chain for a few iterations. Our target function is the probability density p(η|Y ), and
for the proposal generation distribution, we use a normal distribution. This distribution’s
mean is the current state in our chain, while the covariance follows a mixture of isotropic
normal Z and a normal with the covariance matrix over our Dirichlet samples:

13



ηproposal = V Z + (1 − V )U

Z ∼ N(ηk−1, δI)

U ∼ N(ηk−1, δΣ)

V ∼ Bernoulli(π)

(4.7)

Here, Σ represents the covariance matrix across the S Dirichlet samples. The
hyperparameter δ is used to scale the covariance matrices. The hyperparameter π

determines the likelihood of choosing between the scaled Identity matrix I and Σ. k is
simply the kth step out of the total K steps in each chain. We calculate the Σ using the
following equation:

ηS = vec(ηs)

Σ = Cov(η1, ..., ηS)
(4.8)

This setup allows for a nuanced exploration of the parameter space, balancing
exploration and exploitation in the Metropolis algorithm. Further, since running MCMC
chains is time-consuming, we can speed this up by running the chains together in a
parallelized paradigm. In principle, the most considerable speed bump would be if
we could run all S chains together simultaneously, but the number depends on the
computational resource being used.

4.5 State Θ Estimation
After improving our Dirichlet samples by particle refinement, we have completed the
collapsed part of the CU sampler of sampling from the posterior density p(η|Y ). Now,
we can use them to complete the uncollapse part of getting the state estimates of the
GMDLM model. We do that using the filtering and smoothing equations mentioned in
Silverman et al. (2022) and Prado and West (2010).

Since this procedure would give us S samples of Θ, we can also get mean and credible
intervals for Θ estimates.

14



4.6 Software Implementation
We implement GMDLM using C++ and utilize the Eigen and Boost libraries for optimized
matrix algebraic calculations. To run our model’s MAP estimation part, we code the
gradients in C++, create an R binding using Rcpp, and employ the LBFG-S optimizer
provided by RcppNumerical. We implement the Metropolis algorithm in C++ with
parallelization using OpenMP for faster particle refinement. This has been packaged as a
standalone general-purpose header library with R bindings, providing a more accessible
interface. Importantly, the particle refinement library we developed is versatile and can
be employed for a wide range of particle refinement or MCMC tasks, not limited to our
work on the GMDLM model

15



Chapter 5 |
Experiments

5.1 Simulation Dataset
We conducted experiments using simulated data based on the GMDLM model, explained
in Chapter 2. The data was generated by simulating a mean-reverting random walk.
This mean-reverting property was used to ensure that the data did not move too far
away from the long-term average, which is a common dynamic observed in natural and
economic systems.

In our simulation, we set the number of time points to N = 500 and the number of
rows in the state matrix to Q = 1. We varied the number of taxa (D) from 3 to 100. The
observation vector was used to convert the state matrix to the mean of observations (Ft),
which was set to 1. The state transition matrix (Gt) has a single element of 0.9 since
our Q was 1. The covariance matrix (Σ), which represents the variance of the model’s
states and observations over time, was generated by sampling from an Inverse-Wishart
distribution. The scale matrix for this distribution was an identity matrix I with D + 4
degrees of freedom.

For the initial state (Θ0), we used samples from a Matrix-Normal distribution, with a
mean of zero and identity matrix I, and Σ as the covariance matrices. The observation
noise was generated from a normal distribution with a mean of 0 and Σ as the covariance
matrix. The state noise was also from a Matrix-Normal distribution with zero mean.
However, it used Wt along with Σ for the covariance matrices. Wt in this simulation
was fixed and did not change over time. It was a single draw from the inverse gamma
distribution with a scale parameter of 2 and a rate of 1.
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Figure 5.1. Plot of two randomly selected η features from simulated data

5.2 Results
The results are divided based on the sequential steps of our proposed approach in
Chapter 4.

5.2.1 MAP estimation

Using the gradients and density function calculated for p(η|Y ) in the previous section,
we find η̂ (MAP estimate of η). As it is expected that the dimension of η would be
significant, we decided to use gradient-based optimization methods like L-BFGS over
Newtonian methods, which require computationally heavy and complex calculation of
Hessian’s.

We ran the optimizer written in C++ and RcppNumerical with our gradients provided
and compared it to our version of the GMDLM model written in the STAN programming
language. To implement the STAN version, we replicated the model from the previous
chapter, which features an updated conditional distribution for ηt. However, unlike our
optimizer, STAN uses automatic differentiation to calculate gradients for its L-BFGS
optimizer, so we did not provide our own calculated gradients for this implementation.
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In Figure 5.2, we show that our optimizer reaches the same minimum as STAN’s
because the ratio of final log probabilities of the two models approaches 1. We ran
three simulations for each value of D varying from 3 to 100, as depicted in the figure.
Table 5.1 shows that our optimizer reaches the same optimal log probability as STAN
implementation in much fewer iterations.

D 3 25 50 75 100

Simulation I II III I II III I II III I II III I II III

Ours (C++) 11 14 13 16 19 20 20 20 19 28 26 19 74 81 66
STAN 20 24 21 61 87 97 224 240 242 417 432 286 2121 2342 1343

Table 5.1. Number of Iterations for Optimizers

Figure 5.2. Ratio of STAN and Our C++ log probabilities vs Number of Iterations

Figure 5.3 depicts the average wall time per iteration for both optimizers on different
D values. Our implementation takes much less wall time to optimize and is considerably
faster for larger values of D.

5.2.2 Uncertainty Quantification

We use the multinomial Dirichlet bootstrap with the equation described before for
uncertainty quantification. For our experiment, we take D as 10, N as 500, Q as 1, and
pseudocount α as 0.1. As shown in Figure 5.4, we get a mean estimate of our η samples
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Figure 5.3. Average Time per Iteration vs D Values

along with a 95 % Confidence Interval. It depicts that our mean is similar to STAN’s, and
our error bound perfectly encapsulates the STAN mean. The STAN mean is generated
from running 4 MCMC chains for 2000 steps, each with 2000 steps as warmup steps.

5.2.3 Particle Refinement

After obtaining our Multinomial Dirichlet Samples ηS
t , we further refine our estimates

using the Metropolis algorithm. To assess the quality and efficiency of the samples
produced, we calculate three key metrics: Effective Sample Size (ESS), Effective Samples
per second (ESS/s), and Seconds per Effective Sample (SpES). We compare our results
with those obtained from the MCMC run in STAN. The ESS metric determines the
number of independent samples among the autocorrelated samples generated by the
MCMC. It provides insights into the sampling efficiency and helps diagnose MCMC
chains’ convergence issues. ESS/s measures the rate at which independent samples
are generated, indicating the computational efficiency of the sampling process. On the
other hand, SpES highlights the computational effort required to achieve one effective
sample (Carpenter et al., 2017). Table 5.2 shows the results of our experiment with
D = 10, N = 500, and Q = 1. We adjust the hyperparameters of our proposal generating
distribution to δ = 0.003 and π = 0.5

As the table shows, we run more chains but only for a few steps. The reason is that
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Figure 5.4. η Prediction vs Timepoints. The plot shows the eta prediction of two randomly
selected taxa from D-1 η features evolving as the time series progresses.

our initial states for the chain are close to the MAP of the posterior of η, so we don’t
need to run many steps to get a better estimate. We note that our SpES is considerably
lower than STANs, which firstly makes our method fast and also gives us the chance to
run chains for more steps if required for the problem at hand.
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Method Num Chains Num Steps ESS ESS/s SpES
Our C++ 2000 40 1139.18 91.32 0.01
STAN 4 2000 6773.19 0.62 1.61

Table 5.2. Comparison of MCMC metrics

5.2.4 State Θ estimation

Once we have the particle refined samples of η, we use the uncollapsing equations to get
state Θ estimates. Below in Figure 5.5, we get a mean estimate of our state Θ samples,
along with a 95% Credible Interval, and we compare our results with STAN’s mean
and 95% Credible Interval. But we note that our model massively underestimates the
uncertainty as compared to STAN and we plan to look further into the possible reasons
for this in our future work.
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Figure 5.5. State Θ Prediction vs Timepoints. The plot shows the prediction of two randomly
selected features of state Θ evolving as the time series progresses.
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Chapter 6 |
Conclusion and Future Work

Our work tackles the scaling problems faced by previous approaches when modeling
multinomial time series data. In particular, we solve the "Bayesian Whip" issue of
exploding variance and numerical overflow prevalent in GMDLMs representation as LTP
models using sequential filtering algorithms like Kalman Filter.

To form a complete solution for inferencing parameters of the GMDLM model, we
first develop a fast and efficient way to calculate the MAP estimate of the parameter η.
Our results show that we reach the same optimum as STAN with reduced computational
requirements. To provide an uncertainty quantification around our parameter estimate
η̂, we use the Multinomial Dirichlet bootstrap to generate samples around the MAP
estimate and further improve those samples by parallelized particle refinement. Using
the uncollapsing smoothing and filtering equations, we can map those samples to samples
depicting the estimates of the states Θ. With comparison to STAN’s result, we show
that our estimates are comparable and a good approximation to the true values.

In future work, we aim to refine the Multinomial Dirichlet bootstrap and particle
refinement components of our solution. Our current model tends to significantly un-
derestimate the uncertainty in the posterior distribution of the Θ parameter. This
underestimation could be attributed to the low variability in the samples generated from
the Multinomial Dirichlet process, which are too close to the MAP estimate of the η

parameter, leading to insufficient exploration of the posterior during particle refinement.
To address this, increasing the pseudocount parameter α may introduce more variability
into the samples. Additionally, the inefficacy in posterior estimation might stem from
the inadequacy of our particle refinement’s proposal-generating function. If the function
produces proposals too close to the current state, it restricts the exploration to a nearby
region of the posterior, failing to capture its full variability. Conversely, if proposals
are generated from regions too distant from the current state, the Metropolis algorithm
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may reject most proposals, again limiting the exploration of the posterior. Tuning the
hyperparameters δ and π of our proposal generating function, coupled with monitoring
the acceptance rate of proposals, could help remove the cause of inadequate variability
accounting and improve the exploration of the posterior landscape. Should these adjust-
ments prove insufficient, we will consider alternative methodologies for leveraging the
MAP estimate to achieve efficient approximate inference of our parameters.
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Appendix |
Gradient Calculation

Gradient for T-distribution of p(ηt|H⊺
t−1) :

log p(ηt|H
⊺
t−1)) ∝ −(νt−1 + p)

2 log
(

1 + 1
νt−1

(ηt − ft)⊺(qtΞt−1)−1(ηt − ft)
)

(.1)

Letting L = 1 + 1
νt−1

(ηt − ft)⊺(qtΞt−1)−1(ηt − ft), we would like to calculate d log|L|
dηt

:

d log|L|
dηt

= 1
L

dL

dηt

(.2)

dL = d

(
1

νt−1

[
(ηt − ft)⊺ X−1 (ηt − ft)

])

= 1
νt−1

[
dη

⊺
t (X−1ηt − X−1ft) + (η⊺

t X−1 − f
⊺
t X−1)dηt

]
= 1

νt−1

[
(η⊺

t X−1 − f
⊺
t X−1)dηt + (η⊺

t X−1 − f
⊺
t X−1)dηt

]
(.3)

dL

dηt

= 2
νt−1

(η⊺
t − f

⊺
t )X−1 (.4)

where X = (qtΞt−1)
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