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Abstract
In this dissertation, we study the small x resummation in perturbative Quantum Chro-
modynamics (QCD). In the past decades, the particle accelerators with increasing center
of mass energies have opened up the so-called small Bjorken x regime. We are interested
in the small x evolution of gluon density, which is described by the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) equation. Currently, the BFKL kernel eigenvalue is known
up to the next-to-leading logarithm (NLL) accuracy. However, it leads to instabilities
in calculations and indicates the necessity of resummation of higher order terms. We
present the BFKL formalism, parton evolution, and QCD in general in the introductory
Chapter 1 of this dissertation.

In Chapter 2, we introduce the kinematical constraints and renormalization group
improved resummation. We analyze the different types of kinematical constraints in
the BFKL equation and show their impact on the BFKL effective eigenfunction and
gluon density by numerical calculations. Furthermore, we describe the scale changing
transformation in the renormalization group improved resummation and the corresponding
expansion technique. We demonstrate the pole structure of the BFKL equation with
kinematical constraints in Mellin space in BFKL up to NLL and in N = 4 supersymmetric
Yang-Mills theory (sYM) up to next-to-next-to leading logarithmic level (NNLL). We
investigate the scale changing transformations and give proof of the vanishing sub-leading
poles in N = 4 sYM to all orders.

In Chapter 3, we present a more detailed description of the renormalization group
improved resummation. We perform the numerical calculation of the structure function
F2 in Deep Inelastic Scattering (DIS) and subsequently a fit to the data from HERA
collider. We achieve a very good description of the structure function F2 and its charm
component F c

2 simultaneously. The resulting unintegrated gluon density is consistent
with the calculations based on similar approaches available in the literature.

In Chapter 4, we perform the renormalization group improved resummation of the
photon-gluon impact factors. We construct the resummed cross section for virtual photon-
photon scattering which incorporates the resummed impact factors and BFKL gluon
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Green’s function up to the NLL. Conditions on the resummed cross section are constructed
by requiring consistency with standard high energy factorization in the collinear limits.
Our result is consistent with previous impact factor calculations at the next-to-leading
order (NLO), apart from a new term proportional to CF for the longitudinal photon
polarization. We compute the resummed cross section and compare it with the LEP data
and previous calculations. Our result is lower than the LL approximation but higher
than the pure NLL one, being more consistent with the experimental data.
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Chapter 1 |
Introduction to the Small x Physics
in QCD

1.1 Introduction
Quantum chromodynamics (QCD) is a well-established quantum field theory developed
to describe strong interactions. QCD is regarded as a cornerstone of the Standard
Model of particle physics, which also includes the theories of electromagnetic and weak
interactions. The fundamental objects in QCD are quarks and gluons which make up
the composite particles called hadrons. Hadrons can be divided into two main categories:
baryons, which usually have three, so called valence, quarks, and mesons which have a
valence quark-antiquark pair. Examples of baryons are protons and neutrons, which are
the main building blocks of nuclei in all atoms. An example of a meson is a pion, first
discovered in cosmic rays [1]. In recent years more exotic hadrons have been discovered
in accelerators: tetraquarks (formed by 2 quarks and 2 anti-quarks) and pentaquarks
(formed by 4 quarks and 1 anti-quark), see review in [2, 3].

QCD is an SU(Nc) non-Abelian theory, where the Nc = 3 is the number of colors.
The prefix ‘chromo’ stands for the color, parallel to the prefix ‘electro’ of the quantum
electrodynamics (QED), while the color is loosely analogous to the electric charge. Similar
to the photon propagating the electromagnetic force in QED, the gluon is the force
carrier in QCD. However, unlike photons, gluons are allowed to self-interact through
fundamental 3- or 4- gluon vertices. This is the consequence of the non-Abelian nature
of QCD.

There are several important features of QCD:

• Asymptotic freedom: Experiments at SLAC in the late 60s showed that the quarks
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in the proton behave as if they were free. That suggested that the strong interaction
is weak at high energy (or short distance). Theoretically, the asymptotic freedom is
a consequence of the non-Abelian nature of QCD. The strong interaction coupling is
not constant but decreases for higher energy. This feature allows to use calculational
techniques based on the perturbative expansion in small values of strong coupling,
when high energy scales are present in the process. The magnitude of the running
coupling at different scales denotes the division of perturbative and non-perturbative
QCD.

• Color confinement: This feature refers to the phenomenon that the quarks and
gluons cannot be isolated from the hadrons. Outgoing quarks and gluons produced
in scatterings need to undergo color rearrangement to produce colorless hadrons in
the final state, through the non-perturbative process called hadronization. Although
the color confinement has not been proven in analytical QCD, it is well established,
e.g., in lattice QCD simulations [4].

• Chiral symmetry breaking: In QCD, this feature refers to the spontaneous breaking
of a chiral symmetry associated with massless fermions. It is regarded as the source
of the most masses of the hadrons, whose masses are significantly larger than the
simple summation of masses of the quarks.

It would seem at first glance that computing any observable quantity in QCD using
perturbative methods is an impossible task due to the fact that the quarks and gluons are
confined in hadrons and never observed as asymptotic free states. However, computations
can be made in the cases when there is a large scale in the process. In such a case, the cross
section will contain regions dominated by large and small values of the strong coupling,
and it can be shown that it can be computed through means of the so-called factorization
theorems [5]. The factorization in QCD means that the observable cross section can be
represented as the convolution of contributions from short distance (perturbative part)
and long distance interactions (non-perturbative part). For the short distance part, which
is the cross section on the level of partons, one can employ the rigorous techniques of
perturbative QCD. On the other hand, the non-perturbative quantity cannot be usually
directly computed in QCD since it involves long-distance, strong coupling phenomena1.

The main idea of the factorization is to renormalize a quantity at a factorization scale
µ2, where certain singularities (for example so called collinear singularities which appear

1Other methods might be suitable for computations of these objects like numerical approaches of
lattice QCD
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in the calculation of the field theory diagrams) are factorized into the non-perturbative
part of this quantity. While the non-perturbative part cannot be calculated from first
principles, and requires an experimental input, its evolution with the scale µ2 can be
treated perturbatively. The non-perturbative parts of the cross sections, which we
shall focus on in this work, are called parton distribution functions. They describe the
distribution in momenta (for example longitudinal and/or transverse ) of the partons in
the proton or more generally in the hadronic target. They depend on the long distance
physics of the proton, but at high scales, their evolution can be computed by means
of perturbative QCD, through the evolution equations. These parton distributions are
also universal, that means, once extracted from a particular process, for example, Deep
Inelastic Scattering of electron on a proton described below. They can be used in a
calculation of different observable, like for example Higgs boson production at the Large
Hadron Collider. In that case, one can make precise predictions for various cross sections
in QCD.

It is thus of fundamental importance to understand in detail the behavior of the
parton distribution functions, and in particular the correct structure of the equations that
govern their evolution with scales in QCD. Of particular interest is the regime of high
energies, since it is probed in the current accelerators like LHC as well as in ultrahigh
energy cosmic interactions. As described below this regime is dominated by the gluon
distribution.

Deep Inelastic Scattering (DIS) is the process of scattering of leptons off protons and
the most precise way to explore the nucleon structure and extract the parton distribution
functions. The pioneering DIS experiment at SLAC [6] unraveled for the first time a
partonic structure of hadrons. The parton model was established to explain the observed
behavior of the cross section. In the simplest parton model, the structure function F2

(the quantity which is proportional to the total cross section in DIS) tends to be only
dependent on the so called Bjorken x. This variable can be interpreted as the fraction of
the longitudinal momentum of the proton carried by the struck parton. The DIS cross
section is typically described as a function of two variables: the Bjorken x and the hard
scale, the (negative) virtuality Q2 of the momentum transferred between the leptons
and protons. The observed independence of the structure function on the variable Q2,
consistent with the predictions of the parton model, is called the Bjorken scaling.

In later DIS experiments, however, mild scaling violation was observed. The structure
function turned out to be also Q2 dependent. The hard scale means the scale Q2 is much
larger than the non-perturbative scale associated with the proton Q2

0. Theoretical calcula-
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tions of the amplitudes find that for a certain order of the strong coupling αs, the dominant
contribution comes with the same order of the large logarithm ln(Q2/Q2

0). Therefore even
for the small, perturbative values of the strong coupling αs, we have αs ln(Q2/Q2

0) ∼ 1,
and thus these logarithms need to be resummed. The Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [7–10] resums all orders of αn

s lnn(Q2/Q2
0) and gives the Q2

evolution for the parton distribution functions. In the partonic language, these evolution
equations resum multiple splittings of partons into other partons when the scale Q2 is
increased.

As the center of mass energy of the accelerators has grown larger, new phenomena
were discovered in this high energy regime. The electron-proton collider at HERA was
the highest energy DIS experiment constructed so far. This experiment has opened up
the regime of the small x physics in DIS. This is because, as we shall see later, the high
energy regime corresponds to the small values of Bjorken x. One of the most important
discoveries at HERA was the strong rise of the structure function F2 at small x [11, 12].
The experimental data at HERA could be well described by the DGLAP evolution,
and it was understood that the strong rise of the structure function is driven by the
increasing gluon density with decreasing value of Bjorken x. However, in the regime of
small x or high energy, another large logarithms appear and need to be resummed. To be
precise, in the high energy regime corresponding to very small x, the dominant logarithm
is ln(1/x). The Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [13–20] resums all
orders of the leading logarithm (LL) αn

s lnn(1/x) and corresponds to the evolution of the
gluon density with x. The BFKL evolution predicts a power like increase of the gluon
density in the form x−λ. This behavior is reminiscent of the power growth with the
energy of the amplitudes in the so-called Regge theory, which was a pre-QCD framework.
This approach was based on the universal assumptions about the scattering matrix, like
unitarity, analyticity, and Lorentz invariance. In this approach the behavior of the total
cross sections was assumed to be governed by the exchange of the object, called the
Pomeron, which would lead to the slow increase with the energy of the observable cross
sections. Thus the solution to the BFKL equation, which exhibits the power like behavior
with the decreasing x (and thus increasing energy s) is often referred as the hard BFKL
Pomeron.

The LL BFKL predicted the sharp increase of F2 at small x, ∼ x−λ. However, a
known issue of the LL BFKL is that it leads to a hard Pomeron intercept λ = 4 ln 2 αs,
which is too large for experimental data. Decades of effort were put into the calculation of
the next-to-leading logarithm (NLL) BFKL eigenfunctions [21,22]. The NLL results tame
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the LL growth, but at the same time, are large and negative and can make calculations
unstable [23–25].

Thus, an important problem in the description of the small x Bjorken regime arises.
On one hand, the DGLAP evolution successfully describes the experimental data on
structure function at HERA. On the other hand, the BFKL framework, which should
be suitable for the description of the small x regime seemed to be unstable. Therefore
resummation of higher orders in BFKL was motivated and developed to stabilize the
expansion [26–40] and provide appropriate matching between the two approaches.

The main objective of this dissertation is to investigate and improve the resummation
in the small x regime, both in the evolution equation and in the partonic cross sections, the
so called impact factors as well as to provide applications of this improved resummation
to the phenomenology.

The structure of this dissertation is as follows:

In the remaining part of Chapter 1 we introduce the basics of QCD, Deep Inelastic
Scattering, and parton evolution. We discuss the main building blocks of the BFKL
equation and the factorization.

In Chapter 2 we analyze the kinematical constraint in the BFKL equation. The
idea of the kinematical constraints was first proposed in [41–44]. It was introduced to
modify the real gluon emission of the BFKL equation with improved kinematics. It comes
from the limit that the four-momentum of the real gluon is dominated by its transverse
components. As shown in [43] different forms of this constraint can be imposed depending
on the approximations. We study in detail the effects of these different constraints in
the BFKL equation. To this aim, we utilize Mellin space, where it is easier to analyze
the pole structure of the corrections. We show that all forms of constraints correctly
reproduce the leading corrections to NLL BFKL in QCD and up to NNLL in N=4 super
Yang-Mills theory. We also provide proof of the vanishing of a certain class of subleading
poles in N=4 sYM to all orders. In addition, we study the impact of different forms
of kinematical constraint on the gluon density by solving the equation numerically in
momentum space. The idea of the renormalization group constraints is also introduced
in Chapter 2.

Chapter 3 is focused on the phenomenological applications of the Ciafaloni-Colferai-
Salam-Staśto (CCSS) resummation [33,34,45]. This resummation features the renormal-
ization group improved small x equation. The CCSS resummation is constructed based
on the collinear DGLAP splitting function and exact BFKL up to the NLL accuracy.
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It also includes the effect of the kinematical constraint. Appropriate subtractions are
formed in the Mellin space to avoid double counting. We compute the structure function
following the approach in [44] and fit it to the DIS HERA data. The calculation of the
structure function receives the input of the unintegrated gluon density, where we solve
the BFKL equation with the implementation of the CCSS resummation. We achieve a
great fit to the structure function F2 and its charm component F c

2 simultaneously. In
addition, we also fit only to the structure function F2 which results in similar agreements
and fit parameters.

In Chapter 4, we extend the idea of the renormalization group improved resummation
into the impact factors. Since the observable quantities are cross sections, the resummation
needs to be consistently performed for all the building blocks of this quantity. In the
high energy limit, the cross sections are obtained through the high energy factorization.
In this framework, cross section includes not only the gluon Green’s function, which is
the solution to BFKL, but also the process-dependent impact factors, which also need to
be evaluated in the appropriate order of perturbation theory. In particular, we study
the virtual photon-photon high energy scattering where such measurements were carried
out in LEP e+e− collider [46, 47]. We construct the resummed photon-gluon impact
factors by performing the collinear analysis on the resummed cross section in the Mellin
space. We perform a numerical computation and achieve a consistent description of the
LEP data, in contrast to previous calculations which undershoot the experimental data
significantly.

Chapters 2,3 and 4 are based on the publications [48–50].

1.2 Basics of the Quantum Chromodynamics

1.2.1 Asymptotic freedom

Asymptotic freedom means that the coupling between the particles involved in the strong
interaction is zero at zero distance, i.e. asymptotically close to zero at larger energies.
Before the foundation of QCD, researchers had already observed this important feature in
the deep inelastic scattering (DIS) that the strong interaction is weak at short distances.

Coleman and Gross [51] demonstrated that a field theory with solely Abelian fields
cannot be asymptotic free. Indeed, the QCD is established as a gauge theory based
on a non-abelian SU(3) color group. The color is an intrinsic property of the quarks
and gluons. Gluon, a spin 1 boson, propagates strong interactions between the spin 1/2
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fermion quarks. A crucial characteristic of the non-abelian fields is that their nature
enables gluons to self-interact.

An intuitive explanation of the asymptotic freedom comes from this self-interacting
nature of the gluon fields which mediate between the colored charges (quarks). A color
source can emit virtual gluons into the surrounding vacuum. Consequently, the color
charges spread out, causing an anti-shielding effect similar to the phenomenon in the
dielectric. When two color sources get close, their color “clouds” overlap and result in a
smaller coupling strength.

Asymptotic freedom describes the behavior of a vital quantity, the strong coupling
constant αs, and thus highlights a major difference between the approaches in QCD, either
perturbative or non-perturbative. In Quantum Electrodynamics (QED), the perturbation
theory is a powerful and dominant approach that allows for an expansion of an observable
into a series of terms in different orders of the fine structure constant α ≈ 1/137. One
can compute the QED expansions order by order perturbatively since the fine structure
constant is small. In contrast, the QCD strong coupling constant αs can be relatively
large at low energies, making higher order terms not necessarily smaller than the lower
order terms. Moreover, series expansion of observables sometimes is accompanied by
some large logarithm featured with different scales, e.g., lnQ2, ln(1/x). These scales can
jeopardize the reliability of the direct αs expansion. With such a challenging characteristic
of the expansions, various resummation techniques have been developed to address these
logarithm series. For the non-perturbative QCD, one would turn to process-dependent
models or the lattice QCD which prescribes and simulates a grid in the spacetime.

A renormalization group analysis gives a more quantitative description of the strong
coupling constant αs. The αs runs with a energy scale Q2,

Q2∂αs(Q2)
∂Q2 = β(αs). (1.1)

Where the β function can be expanded as

β(αs) = −b0α
2
s (1 + b1αs + · · · ) , (1.2)

where

b0 = 11Nc − 2Nf

12π ,

b1 = 17N2
c − 5NcNf − 3CFNf

2π (11Nc − 2Nf ) , (1.3)
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with CF = (N2
c − 1)/2Nc, Nc the number of colors, and Nf the number of flavors. One

can quickly see at the leading order β < 0 if Nf ≤ 16. Neglecting the b1 and higher order
terms, the solution to eq. (1.1) is

αs(Q2) = αs (µ2)
1 + bαs (µ2) lnQ2/µ2 , (1.4)

where µ is a reference energy scale. In the Nf = 6 Standard Model, the negativity of β
guarantees that at very large Q2, αs ≪ 1. This also implies that perturbation theory
works well in the limit of high energy QCD. We show the running coupling as a function
of energy Q in fig. 1.1. A typical reference value as αs(M2

z ) ≈ 0.118 at mass of the Z
boson Mz ≈ 91.2 GeV.

Figure 1.1. Running strong coupling extracted from various experiments. Figure from Review
of Particle Physics [52]

At low Q2, the running coupling is stronger at long distance. At a distance long
enough, the strong interaction exhibits color confinement. The color confinement is a
phenomenon that quarks and gluons are confined inside hadrons. All isolated particles we
observed are colorless compositions, e.g., mesons, and baryons. When quarks or gluons
are produced in a collision, they are separated by enough distance in the outgoing states.
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Subsequently, they combine with the new quark-antiquark pairs that appeared from the
gluon field and cluster and form jets. This process is called hadronization.

1.3 Deep inelastic scattering and parton model

1.3.1 Deep inelastic scattering

Figure 1.2. Schematic representation of
the DIS process ep → eX. Incoming(blue)
electron(e) and proton(p) scatter into outgo-
ing(red) electron(e) and hadrons(X).

Figure 1.3. HERA e − p scattering event
observed in the H1 detector [53].

Deep inelastic scattering is one of the most important processes to test the precision
of QCD theory and probe the structure of the hadrons. From this process, information
about the distribution of quarks and gluons can be extracted, which then can be used for
the calculation of cross sections for other high energy scattering processes which involve
hadrons. In fig. 1.2, an incoming electron collides with the proton target, resulting in
an outgoing electron and a hadronic state, denoted by X. In practice, experiments like
HERA configure a beam of electrons of four-momentum p1 to collide with the target
protons of four-momentum p2, to produce the outgoing electrons of four-momentum p′

1

and the hadrons X in the final state. An example of a DIS event at HERA collider is
shown in fig. 1.3.

The diagrammatic representation of the DIS process is shown in fig. 1.4. We consider
here single boson exchange, is mostly dominated by the photon exchange process. In
the following, we also assume that the initial particles are unpolarized. The exchanged
virtual photon four-momentum is q.

The following useful variables are usually considered in the context of the Deep

9



Figure 1.4. Diagram of the Deep Inelastic e − p Scattering.

Inelastic Scattering, illustrated in fig. 1.4

Q2 = −q2,

x = Q2

2p2 · q
,

y = q · p2

p1 · p2

s = (p1 + p2)2

W 2 = (p2 + q)2, (1.5)

with Q2 ≥ 0 the minus photon virtuality, x the Bjorken variable, y the inelasticity, s the
center of mass energy squared and W 2 the invariant mass squared of the hadron state X.
The unpolarized differential cross section is

d2σ

dxdQ2 = 4πα2

Q4

{[
1 + (1 − y)2

]
F1(x,Q2) + 1 − y

x

[
F2(x,Q2) − 2xF1(x,Q2)

]}
, (1.6)

where the structure functions F2, F1 parametrize the inner structure of the target proton
probed by the virtual photon. Such two terms correspond to the absorption of virtual
photons with transverse FT = 2xF1 or longitudinal (FL = F2 − 2xF1) polarizations.

1.3.2 Structure functions in the parton model

Historically, the idea of the parton model was proposed before the underlying theory of
the strong interactions was understood. It was formulated [54–56] to explain the DIS
experiments, especially the short-distance observations. The essence of the model is that
in a high energy electron-hadron collision, it is a good approximation to neglect the
interactions between the hadron constituents(partons) and treat the electron coupling to
a single target constituent, which can be treated as almost free, via the photon vertex.
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A simplification of this dynamics relies on the relativistic view of the high energy
collisions as illustrated in fig. 1.5. A fast-moving proton will be affected by both Lorentz
time dilation and length contraction. Qualitatively speaking, the time dilation signifies
that the interaction between the constituent partons happens on time scales much longer
than the interaction of the electron with the parton. Meanwhile, length contraction
makes the ‘travel’ time of the electron through the proton much shorter. In the parton
model, one thus assumes that the electron interacts with a single parton, which can be
treated as a free particle. As a result, the whole cross section is the summation of all the
subprocesses given by the partonic cross section, weighted by the probabilities of finding
the different types of partons inside the proton.

Figure 1.5. Relativistic view of the scattering of incoming(blue) electrons(e) and protons(p)
scatters into outgoing(red) electrons(e) and hadrons(X).

In QCD literature, the term ‘parton’ commonly refers to the different elementary
particles like gluons, quarks, and antiquarks. The more formal mathematical treatment

—the QCD factorization theory—will be introduced later in section 1.4.5 to explain the
separation of the long- and short-distance effects of QCD.

We start the quantitative introduction to the parton model with the kinematics
of a simple model. In the infinite momentum frame, a proton with four-momentum
pµ is moving fast enough so that we can neglect its mass. A point-like quark inside
this proton with four-momentum lµ = zpµ carries a fraction z of the parental proton
momentum. Neglecting the complicated interaction between the partons, the goal is to
find the differential cross section when a virtual photon emitted by an electron probes
the constituent quark inside the proton.

Consider the simple scattering of charged spin 1/2 particles, e(k)+q(l) → e(k′)+q(l′).
The differential cross section due to the exchange of a single photon is well known

dσ
dt = 1

16πs2

∑
|A|2 =

e2
qe

4

8πs2
s2 + u2

t2
, (1.7)
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with A the amplitude, eq the electric charge of a quark and e the electric charge of an
electron, and, s = (k+ l)2, u = (l− k′)2 and t = (k− k′)2 the Mandelstan variables. Now
for a constituent quark, with the Mandelstan variables in the deep inelastic scattering
from s = zQ2/xy, u = s(y − 1) and t = −Q2, we have

dσ
dQ2 =

2πα2e2
q

Q4

[
1 + (1 − y)2

]
. (1.8)

In this massless limit, it holds

0 = (zp+ q)2 = q2 + 2zp · q. (1.9)

This implies that x = z = Q2/2p · q. In order to compare eq. (1.6) and eq. (1.8), we can
rewrite eq. (1.8) as

dσ
dxdQ2 =

2πα2e2
q

Q4

[
1 + (1 − y)2

]
δ(x− z), (1.10)

where we note that
∫ 1

0 dxδ(x− z) = 1. In this naive model, we conclude

F2 = xe2
qδ(x− z) = 2xF1. (1.11)

The physical meaning of the above result is that the structure function F2 provides
information about the quark in the proton with momentum fraction z = x.

However, it is well known from experiments that the structure function is a continuous
distribution instead of a delta function in x, see for example fig. 1.6. This is a consequence
of the fact that the distribution of the quarks inside the proton does not follow the
discrete pattern in x but rather is a continuous distribution over a range of momentum
fractions x. This motivates us to define a probability distribution q(z) to represent the
quark density such that

F2(x) =
∑
q,q

∫ 1

0
dzq(z)e2

qxδ(x− z)

=
∑
q,q

e2
qxq(x). (1.12)

This relation between the structure function F2 and parton density q(x) is valid at O(1)
order.

In fig. 1.7 we schematically illustrate how different assumptions about the parton
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Figure 1.6. The F2 structure function from various experiments. Left: as a function of Q2 for
fixed x, right: as a function of x for fixed Q2 (figure from [52]).

composition of the proton affect the parton density q(x) fig. 1.7:

• (1) The proton is assumed to be a single point-like particle without any content
inside. The only particle carries all the momentum and the distribution is described
by the Dirac delta δ(x− 1).

• (2) The proton is solely made up of three valence quarks without any interactions
between them. Each valence quark carries 1/3 of the proton momentum, i.e.,
q(x) = δ(x− 1/3).

• (3) The proton is made up of three valence quarks, but they also interact with each
other via the gluons. The gluons redistribute the momentum of the quarks and
thus the distribution is continuous as a function of x and peaked in the vicinity of
1/3.

• (4) The proton is made up of three valence quarks. They interact with each other
via the gluons. Furthermore, the gluons split into pairs of quarks and antiquarks
(sea quarks). The gluon emission is associated with lower momentum than the
valence quarks and leads to the rise of the q(x) at x < 1/3.
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Figure 1.7. The parton densities arising due to different assumptions of the parton configuration
and dynamics inside the proton.

Figure 1.8. The O(αs) level diagrams of the real gluon emission contribution to DIS.

The relation F2 = 2xF1 is called the Callan-Gross relation, it holds in the parton
model and it is accurate up to O(1), the order of unity. It is the consequence of the
fact that the quarks have spin 1/2. At the order O(αs), we follow the approach in [57].
The one-gluon real emission contributions are derived by the calculation of the diagrams
in fig. 1.8. The rule of calculation through the diagram cut will be introduced later in
section 1.4.2.1. The eq. (1.11) is revisited at O(αs),

F2 = xe2
q

{
δ(x− z) + αs

2π

[
P (x) ln Q

2

κ2 + C(x)
]}

, (1.13)

where κ is a small cut-off momentum to regulate the momentum divergence, the function
C(x) stands for the non-divergent terms, and

P (x) = CF
1 + x2

1 − x
, (1.14)
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is called called splitting function. The constant CF is defined as CF = (N2
c − 1)/2Nc

Another part of the O(αs) contributions is from the virtual one-gluon emission
diagrams. They are either self-energy corrections to the quark lines or the one-loop
photon vertex corrections. We omit the detailed calculations here. But it is worth noting
that these loop diagrams are associated with the infrared divergence at x → 1 [58]. The
virtual diagrams further modify the P (x),

P (x) = CF

[
1 + x2

(1 − x)+
+ 3

2δ(1 − x)
]
, (1.15)

Where the ‘+’ distribution is defined to compensate the endpoint (x = 1) singularity,

∫ 1

0
dx f(x)

(1 − x)+
=
∫ 1

0
dxf(x) − f(1)

1 − x
. (1.16)

and
1

(1 − x)+
= 1

1 − x
, for x ̸= 1. (1.17)

The divergent term P (x) ln Q2

κ2 arises only from the first diagram in the fig. 1.8, when the
gluon is emitted parallel to the quark in the limit gluon transverse momentum kt → 0.

With these corrections it turns out that F2 also depends on Q2, breaking the sole
dependency on x in O(1) order, i.e. the Bjorken scaling. Similar to how we extend
eq. (1.11) to eq. (1.12), we can convolute the eq. (1.13) with the quark density q0(x),

F2(x,Q2) = x
∑
q,q

e2
q

{
q0(x) + αs

2π

∫ 1

x

dz
z
q0(z)

[
P
(
x

z

)
ln Q

2

κ2 + C
(
x

z

)]}
. (1.18)

Yet eq. (1.18) comes with an inconvenience. The momentum cut-off κ is a signal for
the existence of the long-range (small momentum) interaction, and such long-range
contribution isn’t available in perturbation theory by its nature.

A solution to this problem is to separate the long and short-range contributions by
factorization. Here, we can introduce a ‘renormalized’ quark distribution q(x, µ2) at a
factorization scale µ2, comparing with the ‘bare’ quark distribution q0(x),

q(x, µ2) = q0(x) + αs

2π

∫ 1

x

dz
z
q0(z)

[
P
(
x

z

)
ln µ

2

κ2 + C
(
x

z

)]
. (1.19)
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Therefore,

F2(x,Q2) = x
∑
q,q

e2
q

∫ 1

x

dz
z
q(x, µ2)

[
δ
(

1 − x

z

)
+ αs

2πP
(
x

z

)
ln Q

2

µ2

]
, (1.20)

where the finite term C(x) has been absorbed into the q(x, µ2).

1.3.3 DGLAP equation

Let t = µ2 and take the ln t partial derivative of eq. (1.19), we get the famous Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [7–10],

t
∂q(x, t)
∂t

= αs(t)
2π

∫ 1

x

dz
z
P
(
x

z

)
q(z, t). (1.21)

The physical interpretation of this evolution equation is that it resums all the large
logarithms of lnµ2 stemming from the QCD emissions of the partons.

Figure 1.9. The O(αs) level diagrams with initial gluons in DIS.

In fig. 1.8, we calculate the evolution with an initial quark. For a complete evolution
with initial gluon, one must include the O(αs) level contribution in fig. 1.9. The γ∗g → qq

scattering gives structure function F g
2 (x,Q2) in the gluon channel, similar to eq. (1.13),

F g
2 (x,Q2) = x

∑
q,q

e2
q

αs

2π

(
Pqg(x) ln Q

2

κ2 + Cg(x)
)
. (1.22)

Note again, that the divergent logarithm comes from the vanishing quark virtuality limit
|k2| → 0. More generally, with quark flavor number Nf , the DGLAP equation is

t
∂

∂t

qi(x, t)
g(x, t)

 = αs(t)
2π

∑
qj ,qj

∫ 1

x

dz
z

Pqiqj

(
x
z

)
Pqig

(
x
z

)
Pgqj

(
x
z

)
Pgg

(
x
z

)qj (z, t)
g (z, t) .

 (1.23)

The splitting function Pab can be interpreted as the probability of finding a parton of type
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a in a parton of type b when the parton of type b carries a fraction x of the longitudinal
momentum of the parental parton. In other words, the splitting function Pab describes
the probability of a parton of type b ‘splits’ into a parton of type a. Since the total
number of quarks minus antiquarks is conserved, we have such a sum rule

∫ 1

0
dxPqq(x) = 0. (1.24)

Considering the total momentum of the proton is also conserved, two more sum rules
hold

∫ 1

0
dx x [Pqq(x) + Pgq(x)] = 0,∫ 1

0
dx x [2NfPqg(x) + Pgg(x)] = 0. (1.25)

The splitting function Pab can be calculated by perturbation expansion in series of αs

Pab(x, αs) = P
(0)
ab (x) + αs

2πP
(1)
ab (x) + · · · . (1.26)

The splitting functions in QCD are known at next-to-leading order (NLO) [59–61] and
up to the next-to-next-to-leading order (NNLO) [62, 63]. The expressions for the leading
order (LO) DGLAP splitting functions are

P (0)
qq (x) = CF

[
1 + x2

(1 − x)+
+ 3

2δ (1 − x)
]

P (0)
qg (x) = TR

[
x2 + (1 + x)2

]
, TR = 1

2

P (0)
gq (x) = CF

[
1 + (1 − x)2

x

]

P (0)
gg (x) = 2CA

[
x

(1 − x)+
+ 1 − x

x
+ x(1 − x)

]
+ δ(1 − x)11CA − 4NfTR

6 (1.27)

where CA = Nc.

1.3.4 Anomalous dimensions

As evident from eq. (1.21), DGLAP evolution is given by integro-differential equations.
The convolution in the z variable can be cast into multiplication utilizing the Mellin

17



transform. It is defined by

fω
j (ω, t) =

∫ 1

0
dx xω−1fj(x, t) (1.28)

for a parton of type j. The Mellin transform expresses the parton density in terms of
its Mellin moments. This mathematical tool provides a more convenient and analytical
framework for studying the evolution of parton distributions. We define singlet quark
density

Σ(x, t) =
∑

i

[qi(x, t) + qi(x, t)] , (1.29)

and in Mellin space, the DGLAP equation reads

t
∂

∂t

Σ(ω, t)
g(ω, t)

 = αs(t)
2π

γqq (ω) 2Nfγqg (ω)
γgq (ω) γgg (ω)

Σ(ω, t)
g(ω, t)

 , (1.30)

where the anomalous dimensions γab is given by Mellin transform of the splitting function

γab(ω) =
∫ 1

0
dxxω−1Pab(x). (1.31)

We see from eq. (1.30) equation in Mellin space becomes a differential equation. The
LO anomalous dimensions have the following expression

γ(0)
qq = CF

[
3
2 + 1

(ω)(ω + 1) + 2ψ(1) − 2ψ(ω + 1)
]

γ(0)
gq = CF

ω2 + ω + 2
ω(ω2 − 1)

γ(0)
qg = TR

ω2 + ω + 2
(ω)(ω + 1)(ω + 2)

γ(0)
gg = 2CA

[
11
12 + 1

ω(ω − 1) + 1
(ω + 1)(ω + 2) + ψ(1) − ψ(ω + 1)

]
− Nf

3N2
C

(1.32)

To better understand the connection between the DGLAP calculation and the anomalous
dimensions obtained from the renormalization group equations, we will explore collinear
factorization in the section 1.4.5.
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1.4 Gluon evolution at small x
Before entering the discussion at small x region, we need to clarify the complicated
situation of different variables involved in various evolutions. We start this section with a
schematic description of the relevant dominant series expansions and outline the general
picture, leaving the detailed calculation to the following subsections.

As we introduced in the DGLAP evolution, the divergent term in eq. (1.18) arises
when a gluon is emitted parallel to the quark with transverse momentum (kT → 0), this
singularity is then referred to as the collinear divergence. Accompanied by the splitting
functions Pab, the divergence is the main construct of the DGLAP equation kernel. We
say the DGLAP equation is the consequence of the collinear limit.

From a kinematical perspective, the collinear limit corresponds to a strong ordering
on the transverse momenta of the gluons exchanged in the gluon ladder when Q2 → ∞,
see fig. 1.10,

Q2 ≫ k2
1⊥ ≫ k2

2⊥ ≫ · · · ≫ k2
n⊥. (1.33)

One can perform integration over the transverse momenta in the n-rung ladder. Taking
into account the strong ordering in the transverse momenta, this results in the nested
integrals, which can be performed to obtain the leading logarithmic contribution

∫ Q2

µ2

dk2
1⊥

k2
1⊥

αs

∫ k2
1⊥

µ2

dk2
2⊥

k2
2⊥

αs

∫ k2
2⊥

µ2

dk2
3⊥

k2
3⊥

αs · · ·
∫ k2

n−1⊥

µ2

dk2
n⊥

k2
n⊥

αs ∼
(
αs ln Q

2

µ2

)n

. (1.34)

in the large Q2 limit, where we adopt the a frozen αs for simplicity. We see that the
large logarithms

(
αs ln Q2

µ2

)n
are the dominant terms in the collinear limit. This is an

important observation. As we discussed briefly in section 1.2.1 on the asymptotic freedom,
we see this large logarithm lnQ2 appears with coupling constant αs. In collinear limit
αs lnQ2 ∼ 1, we need to include all the terms (αs lnQ2), (αs lnQ2)2, (αs lnQ2)3, . . . .
The resummation is developed to account for such behavior and probes the all-order
structure of this expansion. The leading order (LO) DGLAP evolution resums the series
(αs lnQ2)n and the next-to-leading order (NLO) DGLAP is responsible for the series
αs(αs lnQ2)n.

However, now we also can spot the existence of a 1/x term in Pgg function eq. (1.27),
what would happen if we investigate the evolution behavior when x → 0?

In order to study limit x → 0, it is useful to examine the DGLAP equation in terms
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Figure 1.10. A strong ordering on the trans-
verse momenta of the gluon ladder in the
collinear limit.

Figure 1.11. A strong ordering on the lon-
gitudinal momentum fractions of the gluon
ladder in the high energy limit.

of the derivative of xg(x,Q2) over Q2,

f(x,Q2) = x
dg(x,Q2)

dQ2 . (1.35)

The function f(x,Q2) is referred to as the unintegrated gluon density. We follow [64] for
the derivation of the logarithm series below. We start to solve the gluonic part of the
DGLAP equation in the differential form

Q2x
dg(x,Q2)

dQ2 = αs

∫ 1

x
dzPgg(z)x

z
g
(
x

z
,Q2

)
. (1.36)

By iterating from a simple initial condition

f (0)(x,Q2) = 1
Q2 Θ(1 − x)Θ(Q2 − µ2), (1.37)

we obtain the first order iteration result

Q2f (1)(x,Q2) = αs

∫ 1

x
dzPgg(z)

∫ Q2

dk2f (0)
(
x

z
, k2

)
≈ αs

∫ 1

x

dz
z

∫ Q2

dk2f (0)
(
x

z
, k2

)
= αs ln 1

x
ln Q

2

µ2 , (1.38)

where αs = αsCA/π. The approximation in the second line is a direct result of the small
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x limit. The second-order contribution by iteration is

Q2f (2)(x,Q2) = αs

∫ 1

x

dz
z

∫ Q2

dk2f (1)
(
x

z
, k2

)
= α2

s

(2!)2 ln2 1
x

ln2 Q
2

µ2 . (1.39)

Eventually, we get the nth-order contribution

Q2f (n)(x,Q2) = 1
(n!)2

(
αs ln 1

x
ln Q

2

µ2

)n

. (1.40)

A direct observation is that large logarithm ln 1/x contributes along with running coupling
αs and another large logarithm lnQ2/µ2. Such behavior is named a double-logarithmic
(DL) series.

In the massless case of DIS, when the center of mass energy squared W 2 of the
photon-proton subprocess is high enough (W 2 ≫ Q2),

W 2 = Q2(1 − x)
x

≃ Q2

x
=⇒ x ≃ Q2

W 2 ≪ 1, (1.41)

we enter the small x regime. Now with the small x evolution we discussed above and
also eq. (1.27) in mind, we see Pqq is constant but Pgg grows as 1/x. A gluon ladder with
gluon splittings dominates over the quark ladders (with gluon rungs) in such a process
and we have a strong ordering on the longitudinal momentum fraction x, see fig. 1.11,

x ≪ x1 ≪ x2 ≪ · · · ≪ xn. (1.42)

We will see the calculation of the ladder in section 1.4.2.3 and the reason why the ladder
is of particular interest later in this section.

A rough schematic division of various dominant evolutions is shown in fig. 1.12.

• The DGLAP equation is responsible for the Q2 evolution from the low to high Q2

in the diagram.

• The BFKL equation, which will be the main focus for the rest of the section,
corresponds to the small x evolution.

• The double leading logarithm approximation (DLLA), which combines both loga-
rithm series in the leading order, is in the diagonal direction in the figure.

• At low Q2, we have the non-perturbative region. In perturbative QCD phenomenol-
ogy, this long range contribution is usually renormalized into a quantity in the
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factorization scale as we discussed for eq. (1.19).

• The saturation region [65] is where gluons are highly squeezed in a confined nucleus.
Besides the common g → gg splitting, they also start to overlap and recombine
and thus lead to non-linear dynamics. This is out of the scope of our discussion in
this work.

Figure 1.12. Schematic representation of different types of evolutions in (x, Q2) space.

1.4.1 Regge theory and Pomeron

As we briefly discussed for fig. 1.12, at small x, the dominant evolution is the BFKL
equation. Historically, the BFKL formalism is motivated by a pre-QCD theory, the Regge
theory, that was developed with scattering matrices and was a prevailing approach to
describe experimental observations. It is useful to introduce the Regge theory and the
Regge limit, before we apply the idea into BFKL. The Regge region refers to the high
energy region, where the center of mass energy s ≫ |t|. Again, we show the definitions
of the Mandelstan variables here with notations consistent to fig. 1.13,

s = (p1 + p2)2

u = (p1 − p4)2

t = (p1 − p3)2 (1.43)

In a t channel scattering like fig. 1.13, we call the intermediate exchanged particle with
mass M and spin J reggeized if the amplitude A is related to the center of mass energy
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Figure 1.13. Diagrams corresponding to different channels in 2 particle scattering.

s as
A ∝ sα(t), (1.44)

where the function α(t) is called the Regge trajectory and is often a linear function of
t with α(M2) = J . A Pomeron, named after the inventor Pomeranchuk, refers to a
trajectory corresponding to the exchange of the quantum numbers of the vacuum and
the intercept α(0) > 1. The corresponding cross section has the power growth in energy

σ ∼ sα(0)−1. (1.45)

In the following discussions, we will not burden the readers with topics or observations
based on these Regge trajectories. Instead, we’d like to focus on the derivations and
properties of the scatterings based on reggeized gluons, to see especially the dominant
contribution with the large logarithm term ln(1/x) (or equivalently, ln s), that leads us
to the famous Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [13–20]. In the next
subsection, we will explore the all order structure of (αs ln s)n series, i.e., the calculation
on the diagram set including an infinite number of all contributing Feynman diagrams,
following the derivation in [66].

1.4.2 From the tree diagram to the ladders of gluons

1.4.2.1 The Cutkosky rule

Before moving to investigate the actual scattering diagrams, we need to prepare ourselves
with some basic knowledge of the scattering amplitude. Suppose we have the in-state |a⟩
and the out-state |b⟩, the unitary Lorentz invariant S matrix is defined as

Sab = ⟨b|a⟩ (1.46)
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The scattering amplitude A is related to the S-matrix by

Sab = δab + i(2π)4δ4
(∑

a

pa −
∑

b

pb

)
Aab, (1.47)

where pa and pb are the momenta of the incoming and outgoing particles respectively.
The Cutkosky rule is then given by the unitarity of the S-matrix,

2ℑmAab = (2π)4δ4
(∑

a

pa −
∑

b

pb

)∑
c

AacA
†
ab. (1.48)

Figure 1.14. The Cutkosky rule for two-to-two particles scattering. The + signs denote the
hermitian conjugate to the amplitude.

The visualization of the Cutkosky rule is shown in the fig. 1.14. The dashed cut in the
figure means that we take intermediate particles on-shell and perform the integral over
their phase space. When we consider the forward elastic amplitude, Aaa, we immediately
see the optical theorem that relates the imaginary part of the forward scattering amplitude
to the total cross section σtot,

2ℑmAaa = (2π)4∑
n

δ4

∑
f

pf −
∑

a

pa

 |Aa→n|2 = Fσtot, (1.49)

where the F is the flux factor and F ≃ 2s in the high energy limit.

1.4.2.2 The tree, O(αs) and O(α2
s) diagrams

We begin with the first few lowest level diagrams of the elastic quark-quark scattering
to see the αs or αs ln(1/x) contributions. In terms of the setup of the calculation, we
shall use the Sudakov parameters which are widely used in the high energy calculations.
Sudakov parameters ρ and λ parameterize the momentum k as

kµ = ρpµ
1 + λpµ

2 + kµ
⊥, (1.50)
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where kµ
⊥ is the momentum transverse to the incoming quarks momenta p1 and p2 which

are lightlike.
From now on, we note this type of two-dimensional vector as the boldface k. In the

center-of-mass frame, the relevant four momenta are just

pµ
1 =

(√
s

2 ,

√
s

2 ,0
)

pµ
2 =

(√
s

2 ,−
√
s

2 ,0
)

kµ =
(

(ρ+ λ)
√
s

2 , (ρ− λ)
√
s

2 ,k
)
. (1.51)

We note the convention of the four vectors as follows. The first component is energy;
the second component is longitudinal (the direction of the parental hadron) in the 3
direction; the last two is the transverse component.

Figure 1.15. The born level diagram of the quark-quark elastic scattering.

As in fig. 1.15, the incoming quarks carry the helicities λ1, λ2, with a gluon exchanged
with momentum q. The outgoing quarks carry the momentum p1 − q, p2 + q and helicities
λ1′ , λ2′ . To brief the calculation rules, we take the upper line of the fig. 1.15 for an
example

−iguλ′
1
(p1 − q)γµuλ1(p1)τa

ij, (1.52)

where τa is the generator of the color group in the fundamental representation and
g2 = 4παs. With the Gordon identity, this yields

− ig

2mp

uλ′
1
(p1 − q) [(2p1 − q)µ + 2iSµνqν ]uλ1(p1)τa

ij, (1.53)

where the normalization is uλ′
1
(p)uλ1(p) = 2mpδλ′

1λ1 and the spin matrix Sµν = i[γµ, γν ]/4.
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The Regge limit, s ≫ −t = −q2, implies we can approximate that pµ
1 ≫ qµ

1 , thus

−iguλ′
1
(p1 − q)γµuλ1(p1)τa

ij ≃ −2igpµ
1δλ′

1λ1τ
a
ij. (1.54)

Therefore, we can derive the amplitude of the Born diagram

A(8)
0 = 2g2pµ

1
gµν

q2 2pν
2δλ1′ λ1δλ2′ λ2G

(8)
0

= 8παs
s

t
δλ1′ λ1δλ2′ λ2G

(8)
0 , (1.55)

where the coupling on the vertex g2 = 4παs and the color octet factor G(8)
0 = τa ⊗ τa.

However, the Pomeron is only realized in QCD from color singlet exchanges, which can
be achieved in QCD starting from a two-gluon exchange. To regularize the infra-red
divergence, we shall abide by the on-shell condition and color confinement of the incoming
quarks and thus a colorless state is required.

Figure 1.16. The O(αs) box diagram. Figure 1.17. The O(αs) crossed box dia-
gram.

The lowest-order contribution to the color singlet exchange comes from the box and
crossed-box diagrams with two gluons being exchanged as shown in figs. 1.16 and 1.17.

A1 = 4iα2
ssδλ1′ λ1δλ2′ λ2G0

∫ d2k
k2 (k − q)2

= 16iπ2

NC

αs
s

t
δλ1′ λ1δλ2′ λ2G0ϵG(t) (1.56)

where ϵG(t) is define as

ϵG(t) = NCαs

4π2

∫ d2k t

k2 (k − q)2 , (t = −q2). (1.57)

Notice this is infra-red divergent. This divergence arises from the underlying condition
that the external quarks are on mass-shell. However, in practice, this is not concerning
as the quarks are only scattered while bounded inside hadrons and the quarks are slightly
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off-shell. Nevertheless, it turns out the integral equation in section 1.4.2.3 of our vital
interest is free from singularities. Therefore, we will not regularize this term explicitly.
In addition, we note that there is no ln s term associated in eq. (1.56).

Figure 1.18. The O(α2
s) gluon-splitting diagrams. The blob on the left-hand side represents

the effective vertex, it is the summation of all contributions from the ride-hand side diagrams.

The two-loop amplitude with two gluon exchanges consists of 25 (5 × 5) diagrams.
From the Cutkosky rule, it is just the product of all five diagrams with an extra gluon
emission in the r.h.s of fig. 1.18, and their conjugate (the momentum of the emitted
gluon is q). Leaving the color factor aside for now, we can obtain the amplitude from all
the diagrams where two incoming particles scatter into three outgoing particles,

Aσ
2→3 = −2isg3 δλ1′ λ12pµ

1

k2
1

Γσ
µν(k1, k2)

δλ2′ λ2p
ν
2

k2
2

(1.58)

The gauge-invariant Lipatov effective vertex Γσ
µν(k1, k2) sums the effects of all types of

gluon emission, as depicted in fig. 1.18

Γσ
µν(k1, k2) = 2p2µp1ν

s

[(
2p2k1

s
+ 2k2

1
p1k2

)
pσ

1 +
(

2p1k2

s
+ 2k2

2
p2k1

)
pσ

2 − (k1 + k2)σ

]
(1.59)

The idea of the effective vertex is an important step towards our goal of probing the
all order structure of (αs ln s)n series. It helps us reduce the efforts on counting and
computing different gluon emission diagrams significantly. It is the starting point of the
later discussion on the n-gluon ladder emissions.

From the above one can obtain the imaginary part of the amplitude is

A2a = i
gστ

2

∫
d
(
P.S.3

)
Aσ

2→3(k1, k2)A†τ
2→3(k1 − q, k2 − q)
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= −i2Ncα
3
s

π2 δλ1′ λ1δλ2′ λ2G0s ln
(
s

k2

) ∫
d2k1d2k2

·
[

q2

k2
1k2

2 (k1 − q)2 (k2 − q)2 − 1
k2

1 (k1 − k2)2 (k2 − q)2 − 1
k2

2 (k1 − k2)2 (k1 − q)2

]
.

(1.60)

where the color factor is

1
N

Tr(τaτb)Tr(τcτd)facdfbde = NcG0, (1.61)

with the facd the color constants of the SU(3) color group.
The phase-space integral is given by

d
(
P.S.3

)
= 1

(2π)5

(
s

2

)2
dρ1dρ2dλ1dλ2δ

(
−λ1s− k2

1

)
δ
(
ρs− k2

2

)
δ
(
−ρ1λ2s− (k1 − k2)2

)
,

(1.62)
Note the ρ and λ are the Sudakov parameters. It is worth our notice that the amplitude
includes ln s term starting from this order as evident from eq. (1.60).

Figure 1.19. The O(α2
s) three gluon exchange diagrams.

In addition to the real emissions, one needs to compute the virtual contributions.
The three gluon exchange diagrams in fig. 1.19 give the virtual piece of contribution to
the two-loop level

A2b = −iNCα
3
s

π2 δλ1′ λ1δλ2′ λ2G0s ln
(
s

k2

) ∫
d2k1d2k2

1
k2

1 (k1 − k2)2 (k2 − q)2 . (1.63)

The total imaginary amplitude with the above two contributions from real and virtual
emissions combined is then

ℑmA2 = −2NCα
3
s

π2 sδλ1′ λ1δλ2′ λ2G0s ln
(
s

k2

) ∫
d2k1d2k2
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·
[

q2

k2
1k2

2 (k1 − q)2 (k2 − q)2 − 1
2k2

1 (k1 − k2)2 (k2 − q)2 − 1
2k2

2 (k1 − k2)2 (k1 − q)2

]
.

(1.64)

It is proven to be convenient to work in the Mellin space with the function G(ω,k1,k2,q)
as the Mellin conjugate to the amplitude

∫ ∞

1
d
(
s

k2

)(
s

k2

)−ω−1 A (s, t)
s

= 4iα2
sδλ1′ λ1δλ2′ λ2G0

∫ d2k1d2k2

k2
2 (k1 − q)2 G(ω,k1,k2,q).

(1.65)
Therefore, we can derive the leading order result

G(0)(ω,k1,k2,q) = 1
ω
δ2(k1 − k2), (1.66)

and the next-to-leading order

G(1)(ω,k1,k2,q) = − αs

2πω2

[
q2

k2
1 (k2 − q)2 − 1

2 (k1 − k2)2

(
1 + k2

2 (k1 − q)2

k2
1 (k2 − q)2

)]
, (1.67)

where αs = αsNc/π.

1.4.2.3 The 2 → n+ 2 diagram and the integral equation

We now have all the necessary ingredients to be able to approach the calculation of the
higher order diagrams and extract the dominant (αs ln s)n terms.

The small x or high energy limit implies the following strong ordering of the Sudakov
parameters in the gluon ladder, see fig. 1.20

1 ≫ ρ1 ≫ ρ2 ≫ · · · ≫ ρn+1 ≫ k2/s,

1 ≫ |λn+1| ≫ |λn| ≫ · · · ≫ |λ1| ≫ k2/s, (1.68)

The amplitude of the 2 → 2 + n amplitude in fig. 1.20 is given by

A2→n+2 = i2sgn+2δλ1′ λ1δλ2′ λ2G0
i

k2
1

(
1
ρ1

)ϵG(k2
1)

·
n∏

i=1

2pµi
1 p

νi+1
2
s

Γσi
µiνi+1

(ki, ki+1)
i

k2
i+1

(
ρi

ρi+1

)ϵG(k2
i+1)

, (1.69)
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Figure 1.20. 2 → 2 + n ladder diagram.

This ladder diagram is a critical step in the derivation. However, the rigorous
calculation of this amplitude tends to be challenging and would take a great volume. We
only summarize the pivot ideas and show comments as follows:

• In order to take all types of gluon exchanges into account, fig. 1.20 features effective
replacements both for the vertices and gluon propagators.

• The blob in the ladder represents the Lipatov effective vertex, as we discussed in
the last subsection. The amplitude for the ladder diagram with Lipatov effective
vertices and bare gluons are given in [65].

• Furthermore, one also needs to include the loop corrections. The loop corrections
are realized by replacing the bare gluon in the ladder with a nested superposition of
the ladder with effective vertices and effective gluon propagators. For comparison,
the bare gluon propagator in the Feynman gauge is given by

Dµν(k2
i ) = −igµν

k2
i

. (1.70)

The gluon propagator as the ith section of the ladder that accounts for the loop
corrections is

D̃µν(si, k
2
i ) = igµν

k2
i

(
si

k2

)ϵG(k2
i )

≃ igµν

k2
i

(
ρi−1

ρi

)ϵG(k2
i )

, (1.71)
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where we take the approximation

s

k2 = (ki−1 − ki+1)2

k2 ≃ −−ρi−1λi+1s

k2 = ρi−1

ρi

(ki+1 − ki−1)2

k2 ≃ ρi−1

ρ
. (1.72)

This above procedure is called the reggeization and corresponding gluons are
reggeized gluons.

• The eq. (1.69) is called the multi-Regge exchange amplitude. This calculation is
performed in [67] and also outlined in [68].

• Above is a remarkable result, in the sense that every vertex in the gluon ladder
is the Lipatov effective vertex and the exchanged gluons in the t channel are all
reggeized gluons. It represents an effective summation over a huge number of
Feynman diagrams with all sorts of gluon exchanges at the order of (αs ln s)n.

Figure 1.21. 2 → 2 + n ladder with its conjugate separated by the Cutkosky cut.

The imaginary part of the 2 → 2 + n amplitude, with a Cutkosky cut and the
conjugate of a single ladder as illustrated in fig. 1.21, is then

ℑmA = 1
2

∞∑
n=0

(−1)n
∫

d
(
P.S.(n+2)

) [
A2→n+2 (k1, . . . , kn) A†

2→n+2 (k1 − q, . . . , kn − q)
]
,

(1.73)
where d

(
P.S.(n+2)

)
means the integral over the phase space of the 2 quark lines and n

gluon lines that go through the Cutkosky cut,
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∫
d
(
P.S.(n+2)

)
= 1

24n+3π3n+2

n∏
i=1

∫ 1

ρi+1

dρi

ρi

n+1∏
j=1

d2kj dρn+1 δ
(
sρn+1 − k2

)
. (1.74)

Figure 1.22. A Graphical depiction of the integral equation.

Now we are equipped with the knowledge of the contribution from the lowest order
to the nth order. However, it is not practical to just sum them straightforwardly. Again,
it turns out to be useful to work in the Mellin space and construct the integral evolution
equation

[
ω − ϵG(−k2

1) − ϵG(−(k1 − q)2)
]

G(ω,k1,k2,q)

=δ2(k1 − k2) − αs

2π

∫
d2k′

[
q2

k2
1 (k′ − q)2 − 1

(k1 − k′)2

(
1 + k′2 (k1 − q)2

k2
1 (k′ − q)2

)]
G(ω,k′,k2,q).

(1.75)

This integral equation is schematically represented in fig. 1.22. The first term on the
right hand side stands for the case with no rungs on the ladder and the second term
represents the effect of adding one extra rung to the ladder with the effective vertices
embedded. One can check that the cancellation between the ϵG functions eliminates the
infrared singularities. With replacing k′ → (k1 − k′), we can rewrite eq. (1.75) as

ωG(ω,k1,k2,q) = δ2(k1 − k2) + αs

2π

∫
d2k′

{
−q2

(k′ − q)2 k2
1
G(ω,k′,k2,q)

+ 1
(k′ − k1)2

[
G(ω,k′,k2,q) − k2

1G(ω,k1,k2,q)
k′2 + (k1 − k′)2

]
(1.76)
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+ 1
(k′ − k1)2

[
(k1 − q)2 k′2G(ω,k′,k2,q)

(k′ − q) k2
1

− (k1 − q)2 G(ω,k1,k2,q)
(k′ − q)2 + (k1 − k′)2

]}
.

(1.77)

This is the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [13–20] for non-forward
scattering (q ̸= 0). It is also very useful to show the BFKL in forward scattering (q = 0),

ωG(ω,k1,k2,0) = δ2(k1 − k2) + αs

π

∫ d2k′

(k1 − k′)2

·
[
G(ω,k′,k2,0) − k2

1

k′2 + (k1 − k′)2 G(ω,k1,k2,0)
]
. (1.78)

The above equations can be regarded as equations for the Green’s function.
In the following, we shall be mostly interested in the forward case, q = 0. It will be

useful to introduce the notation which uses the kernel K(k′,k1) in the integral equation,
i.e.

ωG(ω,k1,k2,0) = δ2(k1 − k2) +
∫

d2k′K(k′,k1)G(ω,k′,k2,0), (1.79)

where the kernel includes namely both virtual and real part

K(k′,k1) = Kvirtual(k′,k1) + Kreal(k′,k1)

= ϵG(k1)δ2(k1 − k′) + αs

π

1
(k′ − k1)2 . (1.80)

1.4.3 The solution to the BFKL equation

1.4.3.1 The solution formed in the Mellin space

In this subsection, we will show how to obtain the solution of the BFKL equation.
But before we start the derivation, we shall introduce the BFKL equation in a slightly
different context. The BFKL equation in the last subsection governs over the gluon
Green’s function G. Whereas we intend to extend the objects to the unintegrated gluon
density f which can receive more contribution from process-dependent experimental
input.

For a typical two particles (A and B) scattering with scales Q1, Q2 , the high energy
factorization allows us to write the cross section, as illustrated in fig. 1.23, in the form

σ =
∫ dω

2πi

∫ d2k1

k2
1

d2k2

k2
2

(
s

s0

)ω

ϕA(Q1,k1)G(ω,k1,k2)ϕB(Q2,k2), (1.81)
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where s0 is the energy scale by choice (for symmetric choice, s0 = Q1Q2). We will
elaborate more on the high energy factorization in section 1.4.5. For a quick summary
now, the impact factors ϕA and ϕB (A,B = q, q, g, γ) stem from the all the couplings
between the Pomeron and the incoming partons, i.e. partons in the incoming hadron.
Meanwhile, the Green function G(ω,k1,k2) represents the Pomeron effect, i.e. all the
exchanges and emissions of the reggeized gluons. Note we have omitted the possible
polarizations of particles A and B here for convenience.

Figure 1.23. The high energy factorization cross section for scattering of two particles A and
B. The unintegrated gluon density f in particle B is the convolution between the gluon Green’s
function and one of the impact factors.

The unintegrated gluon density f(ω, k) is defined as the convolution between the
Green function and one of the impact factors, as depicted by the box in fig. 1.23,

f(ω,k) =
∫ d2k2

k2
2

G(ω,k,k2)ϕB(Q2,k2). (1.82)

We can replace the dependency of the center-of-mass energy s in f with x and apply
the the Mellin transform,

f (ω) =
∫ 1

0

dx
x
xωf(x). (1.83)

Rewriting the BFKL equation in (x,k) space, with the assumptions that f(x,k) is
independent of the angular position of the transverse momentum k, we get the BFKL
equation that appears more frequently in the literature,

f(x, k2) = f (0)(x, k2) + αs

∫ 1

x

dz
z

∫ d2q

πq2

[
f
(
x

z
, k′2

)
− Θ(k2 − q2)f

(
x

z
, k2

)]
, (1.84)
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where k′ = k + q as illustrated by the gluon splitting in fig. 1.24, with a notation for
the squared transverse momentum k2 = k2. Θ(k2 − q2) is the Heaviside function. The
f (0)(x, k2) is a process-dependent input function and is usually fitted to obtain the best
description of the experimental data. We shall discuss the forms of the input and the
comparison with the experimental data in chapter 3. Note also that sometimes in the
literature, one can also encounter the rescaled unintegrated gluon density F̂ (x, k2) =
f(x, k2)/k2.

Figure 1.24. The gluon splitting on the gluon ladder.

To solve the BFKL equation, we begin by going back to the (ω, k2) space,

f(ω, k2) = f
(0)(ω, k2) + αs

∫ d2q

πq2

∫ 1

0

dz
z
zω
[
f
(
ω, k′2

)
− Θ(k2 − q2)f

(
ω, k2

)]
. (1.85)

where the integration
∫ 1

0
dz
z
zω in this case simply gives the result 1/ω. Similar to ω is

a Mellin conjugate to x, we can take the Mellin transform of the k2 and introduce its
Mellin conjugate variable γ,

f(ω, k2) = 1
2πi

∫ c+∞

c−i∞
dγ
(
k2
)γ−1

f̃(ω, γ). (1.86)

Consequently, the BFKL equation is unfolded in an algebraic form,

f̃(ω, γ) = f̃ (0)(ω, γ) + αs

ω
χ(ω, γ)f̃(ω, γ), (1.87)

where the kernel in double Mellin space has the form

χ(ω, γ) =
∫ d2q

πq2

(k′2

k2

)γ−1

− Θ
(
k2 − q2

) . (1.88)
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Performing the substitution k2 = q2u when k2 ⩾ q2 and q2 = k2u when k2 < q2, we get

χ =
∫ dϕ

2π

∫ 1

0

du
u

[(
1 + 2

√
u cosϕ+ u

)γ−1
(1 + u1−γ) − 1

]
=
∫ 1

0

du
u

[
2F1(1 − γ, 1 − γ; 1;u)(1 + u1−γ) − 1

]
= 2ψ(1) − ψ(γ) − ψ(1 − γ). (1.89)

Here, the 2F1 is the hypergeometric function and ψ is the polygamma function. This
function χ(γ) is the well-known LL BFKL eigenvalue.

Note that the LL BFKL eigenvalue only depends on the variable γ, since this is the
consequence of the fact that the BFKL kernel only depends on the transverse momenta
and not the longitudinal momentum fractions. We shall see that if one considers the
effects of the energy scale s0 effects or the kinematic constraints on gluon splitting, the
ω dependency will be included in the kernel eigenvalue. We will discuss this in the later
chapters when we introduce the concept of the resummation.

The LL solution to the BFKL equation in the Mellin space is thus given by

f̃(ω, γ) = ωf̃ (0)(ω, γ)
ω − αsχ(γ) . (1.90)

Figure 1.25. The real part of the LL BFKL kernel χ(γ) in complex plane of γ. The blue
curve indicates the integration contour through the saddle point.

Realizing that denominator in eq. (1.90) clearly indicates a singularity in the ω
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integration, we can inverse the Mellin transform to the (x, k2) space,

f(x, k2) =
∫ dγ

2πi exp
[
αsχ(γ) ln 1

x
+ γ ln k

2

s0

]
· αsχ(γ)f̃ (0)(γ). (1.91)

In the small x limit, the ln 1/x dominates and the saddle point at γ = 1/2 makes the
major contribution to the integration as illustrated in fig. 1.25, thus in the saddle point
approximation,

f(x, k2) ∼ x−αsχ( 1
2). (1.92)

This exponential behavior corresponds to the Reggeized cross section in eq. (1.45) The
ω0 = αsχ

(
1
2

)
= 4 ln 2 αs plays a role as the intercept of the Regge trajectory.

The next-to-leading order kernel in QCD is known, [21,22]

χ1(γ) = − b

2χ
2
0(γ) − 1

4χ
′′
0(γ) − 1

4

(
π

sin πγ

)2 cos πγ
3(1 − 2γ)

·
[
11 + 4TRNf

N3
c

+ (1 + 2TRNf/N
3
c )γ(1 − γ)

(1 + 2γ)(3 − 2γ)

]

+
(

67
36 − π2

12 − 5TRNf

9Nc

)
χ0(γ) + 3

2ξ(3) + π2

4 sin πγ − Φ(γ) , (1.93)

where
b = 11Nc − 4TRNf

12π ≡ CA

π
b , (1.94)

is the first beta-function coefficient, Nf the number of active quark flavors, TR = 1/2 and

Φ(γ) =
∞∑

n=0
(−1)n

[
ψ(n+ 1 + γ) − ψ(1)

(n+ γ)2 + ψ(n+ 2 − γ) − ψ(1)
(n+ 1 + γ)2

]
. (1.95)

There is no complete calculation on the NNLO kernel in QCD available, but the NNLO
kernel in the N = 4 super Yang-Mills has been derived in [69–71].

1.4.3.2 The pole structure of the LL BFKL eigenfunction

In this subsection, we will elaborate more on the structure of the BFKL eigenfunction
in the Mellin space, especially its poles in the collinear limit. In principle, the BFKL
only imposes the strong ordering on the longitudinal momentum fraction x and does
not require any strong ordering on the transverse momentum squared k2, like the case
in DGLAP. Nevertheless, it won’t stop us from analyzing how much the collinear limit
contributes to the LL BFKL kernel.
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The general form of BFKL equation in (x, k2) space with kernel K(k, k′) is

f(x, k2) = f (0)(x, k2) + αs

∫ 1

x

dz
z

∫
dk′2K(k, k′)f

(
x

z
, k′2

)
. (1.96)

In the collinear limit k2 ≫ k′2, the major contribution to the BFKL kernel is

K(k, k′) ≃ 1
k2 Θ(k2 − k′2). (1.97)

The corresponding Mellin space χ(γ) is given by

χ(γ) =
∫

dk′2
(
k′2

k2

)γ−1

K(k, k′) ≃
∫

dk′2
(
k′2

k2

)γ−1 1
k2 Θ(k2 − k′2) = 1

γ
. (1.98)

On the other hand, the kernel with both the collinear limit k2 ≫ k′2 and the anti-collinear
limit k′2 ≫ k2 is

Kcoll(k, k′) ≃ 1
k2 Θ(k2 − k′2) + 1

k′2 Θ(k′2 − k2). (1.99)

Therefore, the BFKL kernel in Mellin space with complete collinear and anti-collinear
limits is

χcoll(γ) = 1
γ

+ 1
1 − γ

. (1.100)

For simplicity, we will refer to both the collinear and anti-collinear limit as the collinear
limit in the later text, as the LL BFKL includes both the strong and reverse strong
ordering on transverse momentum. In fact, the collinear limit reproduce the poles at
γ = 0, 1 of the LL BFKL kernel χ0(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ), see fig. 1.26 for a
numerical comparison for the real γ ∈ (0, 1). We comment that the collinear limit makes
the major contribution to the LL BFKL kernel.

We note that there are more poles at other integer values of γ other than the collinear
poles, see fig. 1.27. The LL BFKL kernel χ(γ) has more poles at integer values of the
real γ.

1.4.4 Other diagrams

In section 1.4.2, we calculated the amplitude for the gluon ladder and derived the BFKL
equation. However, there could be some remaining problems in the computation. At
first sight, apparently, some potential diagrams are missing in the computation, e.g., the
self-interaction or vertex corrections, and quarks emissions. Additionally, we mentioned
the strong ordering on x or the collinear limit many times, how valid are they compared
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Figure 1.26. The complete LL BFKL χ(γ) compared with approximation due to the leading
poles at γ = 0, 1.

Figure 1.27. The LL BFKL χ(γ) in expanded range of real values of γ.

with a non-strong ordering gluon ladder? We will address these problems in the following
subsections briefly.

1.4.4.1 The ordering on the gluon ladder

We imposed the strong ordering on the gluon ladder and saw the amplitude under this
limit. But one may ask, how would a non-strong ordering ladder contribute? Here, we
argue that for the leading logarithm ln (1/x) or equivalently ln (s/k2) approximation,
a strong ordering gives the dominant contribution and thus can replace any random
ordering.
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Figure 1.28. One rung ladder diagram.

As in the fig. 1.28, we take the one rung ladder as an example. A general form of the
ordering stems from the kinematic constraint on the ladder,

1 > ρ1 > ρ2 > 0,

1 > |λ2| > |λ1| > 0. (1.101)

Note here the λ1, λ2 are negative. The three-body phase space integral is

∫
d
(
P.S.3

)
= s2

128π5

∫
dρ1dλ1d2k1dρ2dλ2d2k2

· δ
[
−s (1 − ρ1)λ1 − k2

1

]
δ
[
s (1 + λ1) ρ2 − k2

2

]
· δ
[
s (ρ1 − ρ2) (λ1 − λ2) −

(
k2

1 − k2
)2
]
. (1.102)

Since for the on-shell quarks p2
1 = p2

2 = 0, we expect the transverse momentum k1,k2 to
be in the same order of magnitude. It is usually convenient to approximate

k2
1 ≃ k2

2 ≃ (k1 − k2)2 ≃ k2. (1.103)

Thus under the strong ordering

1 ≫ ρ1 ≫ ρ2,

1 ≫ |λ2| ≫ |λ1|, (1.104)

the phase space integral becomes

∫
d
(
P.S.3

)
≃ s2

128π5

∫
dρ1 dλ1 d2k1 dρ2 dλ2 d2k2

· δ
(
−sλ1 − k2

)
δ
(
sρ2 − k2

)
δ
(
sρ1λ2 − k2

)
= 1

128π5

∫ 1

ρ2

dρ1

ρ1
dρ2 d2k1 d2k2 δ

(
sρ2 − k2

)
. (1.105)
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Once we finish the integral over ρ2, the only ln s term left is
∫ 1

k2/s

dρ1

ρ1
. (1.106)

With the strong ordering 1 ≫ ρ1 ≫ k2/s, we see that the strong ordering gives the
dominant ln (s/k2) contribution in the high energy limit.

1.4.4.2 Quark loops in the ladder

The QCD tells us the allowed strong interaction vertices include not only the gluons
vertex, but also the quark-gluon vertex. We will demonstrate the contribution of the
diagram with quarks lines, see fig. 1.29, comparing them with the gluon ladder diagram
fig. 1.30 with two Lipatov effective vertices.

Figure 1.29. The ladder diagram with quark lines.

Figure 1.30. The ladder diagram with two Lipatov effective vertices.

In fig. 1.30, the two effective gluon vertices gives

Γσ1
µτ (k1, k2)Γτσ1

ν (k2, k3). (1.107)
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Its contribution proportional to kσ1
1⊥k

σ2
2⊥ is

∼ 2p2µp1ν

s
kσ1

1⊥k
σ2
2⊥. (1.108)

Meanwhile, the quark lines can appear in different diagrams as in fig. 1.29. Take
the first diagram on the left of the figure for instance. Such a diagram contains terms
proportional to

1
ρ1λ3s

u(k1 − k2)γ · k1⊥γ · k2γ · k3⊥u(k3 − k2). (1.109)

Again we note the scalar products k1 · k2 ≃ k2 · k3 ≃ k2
2 ≃ k2. Therefore, this produces a

term in the order of
k2

ρ1λ3s
k2. (1.110)

Knowing the onshell condition gives

ρ2λ3s ≃ −k2, (1.111)

we see the first quark lines diagram comes with a suppression factor ρ2/ρ1 ≪ 1, compared
with the gluon ladder contribution eq. (1.108). The second and the third diagrams in
fig. 1.29 face similar suppressions. In addition, the crossed and other possible gluon
ladder diagrams with Lipatov effective vertices are also suppressed by a least one power
of ρ2/ρ1, see details in [66].

1.4.4.3 Gluon loop corrections to the vertex

The remaining types of diagrams we omitted on leading logarithm approximation BFKL
derivation are the vertex correction diagrams, see fig. 1.31.

Figure 1.31. Gluon loop correction to the vertex diagrams.

For the first diagram in fig. 1.31 in the Feynman gauge, the on-shell condition of the
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top quark line that goes through the cut prevents the strong ordering of ρ, λ on the gluon
ladder. In other words, the incoming squared momentum going to the vertex is either 0
or k2, but not s. Although a new gluon contributed a power of αs to the diagram, it does
not come with ln s in the leading logarithm approximation. Therefore, we can neglect
this vertex correction. This is exactly the same case for the second diagram in fig. 1.31
and all self-energy insertion diagrams.

1.4.5 QCD factorization

In the previous subsection, we introduced the cross section within the framework of the
high energy factorization. In this subsection, we aim to provide a clarification of both
collinear and high energy factorization theory shortly and offer a brief context of the
DGLAP and BFKL equations.

1.4.5.1 Collinear factorization

Collinear factorization, named after the treatment of collinear singularities, arises from
field theory calculations in perturbative QCD, where two distinct infra-red divergences
(usually 1/k2 terms) —soft and collinear singularities—necessitate some careful consider-
ation,

• Soft singularity: emission of gluon with vanishing four-momentum.

• Collinear singularity: emission of massless quarks (or gluons) which are collinear
to the incoming parton.

These singularities correspond to the long-range (non-perturbative) interactions.
Factorization is then developed to separate (or say factorize) the long- and short-distance
effects of QCD.

For scatterings at the hard scale (the momentum transfer Q2 ≫ µ2 ), the collinear fac-
torization asserts that all long-distance effects can be factorized into process-independent
parton densities, so that the observables can be calculated perturbatively. We refer
the readers to [59, 72–78] for detailed studies. The structure function in the collinear
factorization is given by

F
(H)
i (x,Q2) =

∑
a

∫ 1

x
dz f (a/H)

(
x

z
,Q2

)
F̂

(a)
i

(
x

z
, αs(Q2)

)
, (i = L, 2), (1.112)
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where f (a/H) is the process-independent parton density, which describes the probability
of finding a type a (a = q, q, g) parton inside the hadron H that carries a fraction z

of the parental hadron’s longitudinal momentum. The F̂ (a)
i is the process-dependent

partonic structure function that is available in the perturbative calculations. We note
that parton distributions must be taken from experiments, like DIS, and its evolution
above the factorization scale µ2 is governed by the DGLAP equation, as we discussed in
section 1.3.3.

1.4.5.2 High Energy (or kT ) factorization

In collinear factorization, we require the hard scale Q2 ≫ µ2. In the high energy limit
s ≫ Q2, the BFKL formalism emerges as the dominant factorization scheme governing
small x physics. To summarize the series resummation in different factorizations:

• In the collinear factorization, the DGLAP resums:
(αs lnQ2)n, n = 0, 1, . . . series in the leading-logarithmic (LL) approximation,
αs(αs lnQ2)n series in the next-to-leading-logarithmic (NLL) approximation, etc.

• In the high energy physics, the BFKL resums:
(αs ln 1/x)n series in Lx approximation,
αs(αs ln 1/x)n in NLx approximation, etc.

Figure 1.32. Factorized structure of the photoproduction cross section in the high energy
limit.

The high energy factorization [79] states that the cross section (or consequently, the
structure function F2(x,Q2)) in fig. 1.32 can be written in the following factorized form,

F2(x,Q2) =
∫ 1

x

dz
z

∫
d2k σ̂

(
x

z
,

k2

Q2

)
f(z,k), (1.113)
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where the σ̂ is the high energy partonic cross section for the subprocess γ + g(k) → qq

and two-momentum k is the transverse part of the off-shell gluon momentum k. The
unintegrated gluon density f of the incoming parental hadron, as we introduced shortly
at the beginning of the section 1.4, is related to the parton density function g(x,Q2) by
the kT integration

xg(x,Q2) =
∫ Q2

d2k f(z,k). (1.114)

The evolution of the unintegrated gluon density f is governed by the BFKL equation,
while the experimental input shall serve as its initial condition and consequently, the
non-perturbative contribution is factorized.

Comparing eq. (1.112) with eq. (1.113), we can get a quick observation that the high
energy factorization further decomposes the k integration of the structure function. Such
a factorization is, in a sense, more general than the collinear factorization. However, We
note there is a different convention of the high energy factorization used in literature, for
instance in [80].

Here the process-dependent function, impact factor ϕ(ω, γ), is given by the kT -
transform of the partonic cross section σ̂,

ϕ(ω, γ) = γ
∫ dk2

k2

(
k2

Q2

)γ ∫ 1

0

dz
z

(
x

z

)ω

σ̂

(
x

z
,

k2

Q2

)
, (1.115)

The leading twist partonic cross section σ̂ turns to be weakly ω-dependent [81]. We
present the well-known LO photon impact factors as follows,

ϕ
(T )
0 (γ) = ααs

(∑
q

e2
q

)
TR

√
2(N2

c − 1) π2
(1 + γ)(2 − γ)Γ2(γ)Γ2(1 − γ)
(3 − 2γ)Γ(3/2 + γ)Γ(3/2 − γ) , (1.116a)

ϕ
(L)
0 (γ) = ααs

(∑
q

e2
q

)
TR

√
2(N2

c − 1) π Γ(1 + γ)Γ(2 − γ)Γ(γ)Γ(1 − γ)
(3 − 2γ)Γ(3/2 + γ)Γ(3/2 − γ) , (1.116b)

where
(∑

q e
2
q

)
sums over the quark flavors involved. We note that there are different

conventions on the normalization of the impact factors in the literature [79,82,83].
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Chapter 2 |
Improvements to the Gluon Evo-
lution in BFKL Equation

In chapter 1, we showed the LL and NLL eigenfunctions of the BFKL equation. It is well
known that the LL result is too large and indicates uncontrolled growth [84]. Meanwhile,
the NLL eigenfunction can lead to instabilities in the computation [23–25], sometimes
even with negative cross sections. A brief illustration of the ω intercept at LL and NLL
is in fig. 2.1.

Figure 2.1. The LL and NLL ω intercept in function of αs.

In order to better describe the experimental data, one must stabilize these results by
higher order calculations or a resummation. There are various resummation approaches
developed in the literature [26–40]. In this chapter, we will focus on two types of
improvements. Firstly, we introduce the kinematical constraints and compute their effect
on the BFKL solution in section 2.1. Secondly, we study the scale effect in the BFKL
solution and investigate the renormalization group improvements (RGI) . After that, we
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proceed to study the analytical structure of the BFKL kernel to different orders in Mellin
space with the ω expansion, in particular, in the context of N = 4 sYM. Note that these
two types of improvements are well-related. The complete framework of renormalization
group improved resummation in QCD, where the idea of ω expansion that originated
from, will be formulated with more details in chapter 3.

2.1 Kinematical constraints
First, we recall the BFKL equation eq. (1.84) in (x, k2) space and the gluon splitting as
illustrated in,

f(x, k2) = f (0)(x, k2) + αs

∫ 1

x

dz
z

∫ d2q
πq2

[
f
(
x

z
, k′2

)
− Θ(k2 − q2)f

(
x

z
, k2

)]
, (2.1)

with a notation k2 = k2.
The momenta are indicated in the diagram fig. 2.2, corresponding to the gluon

splitting.

Figure 2.2. Gluon splitting in the BFKL diagram. The exchanged gluons carry the longitudinal
momentum fractions x and x/z of the parental hadron. k, k′, and q are the transverse momenta
of the exchanged gluons and emitted gluons respectively.

A starting observation is that the integral over the transverse momentum in the
above equation is unbounded. However, in reality there needs to be restriction on the
integration of the transverse momentum, stemming from the fact that in the high energy
limit the virtuality of the exchanged momenta has to be dominated by the transverse
components. Also the outgoing gluon should be put on-shell.

The idea of implementing the kinematic constraints to the BFKL evolution was
proposed and studied in [41–44]. Meanwhile, the kinematic constraints are also relevant
in the studies of Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equation [41,85–88], where
the color coherence in the form of angular ordering on the gluon ladder is asserted [89].
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We note that there are different types of kinematic constraints used in literature and
we will derive them by following the approach in [43]. We start with the light cone and
transverse decomposition of a four-momentum kµ

kµ = (k+, k−,k), (2.2)

where the light cone components k± = k0 ± k3. The exchanged gluon virtuality is

kµkµ = k+k− − k2. (2.3)

In the context of small x physics, we are interested in a domain that the longitudinal
components contribute to the gluon virtuality much less than the transverse components,
this is translated to

k2 > |k+k−|. (2.4)

The strong ordering on the longitudinal momentum fraction of the gluon ladder gives
k ≫ k′, thus,

k− = k′− − q− ≈ −q−. (2.5)

The last necessary condition is the on-shellness of the gluon emission that goes through
the Cutkosky cut,

qµqµ = q+q− − q2 = 0 =⇒ q− = q2

q+ . (2.6)

Using eqs. (2.4) to (2.6), we get

k2 > |k+k−| ≈
∣∣∣k+q−

∣∣∣ =
∣∣∣∣∣k+ q

2

q+

∣∣∣∣∣ = z

1 − z
q2, (2.7)

or as a limit on q2 integration,
q2 <

1 − z

z
k2. (2.8)

Note there are several approximations appeared in the literature.

• In the small z limit, eq. (2.8) is approximated to

q2 <
1
z
k2. (2.9)
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• For a given k2, the high value of q2 also implies a high value of k′2,

k′2 <
1
z
k2. (2.10)

A nice feature of eq. (2.10) is that it shifts the BFKL kernel in Mellin space with only
a simple change of the argument to one of the Polygamma functions. We will show it in
the next subsection.

2.1.1 The BFKL kernels with kinematical constraints in Mellin space

In this subsection, we will investigate how the different kinematic constraints affect the
BFKL evolution in Mellin space. The BFKL equation in momentum space with the
constraint eq. (2.8) is,

f(x, k2) = f (0)(x, k2)

+ αs

∫ 1

x

dz
z

∫ d2q
πq2

[
f
(
x

z
, k′2

)
Θ
(
k2 − z

1 − z
q2
)

− Θ(k2 − q2)f
(
x

z
, k2

)]
, (2.11)

where the kinematical constraint is implemented onto the real emission term in the form
of the Heaviside function. Performing the Mellin transformation as the same procedures
in section 1.4.3, we have

f̄(ω, k2) = f̄ (0)(ω, k2)

+ αs

∫ 1

x

dz
z
zω
∫ d2q
πq2

[
f̄
(
ω, k′2

)
Θ
(
k2 − z

1 − z
q2
)

− Θ(k2 − q2)f̄
(
ω, k2

)]
. (2.12)

Continuing the other Mellin transformation from k2 to γ, we arrive at the same algebraic
form of the BFKL equation

f̃(ω, γ) = f̃ (0)(ω, γ) + αs

ω
χ(γ, ω)f̃(ω, γ) , (2.13)

where the kernel is now modified to

χ(γ, ω) =
∫ d2q
πq2

(1 + q2

k2

)−ω (
k′2

k2

)γ−1

− Θ(k2 − q2)
 . (2.14)

Note, that the kernel acquires additional ω dependence. Performing the angular integra-
tion and taking the substitution k2 = q2u when k2 ⩾ q2 and q2 = k2u when k2 < q2, we
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obtain,

χ(ω, γ) =
∫ 1

0

du
u

[
(1 + u)−ω

(
1 + uω+1−γ

)
2F1(1 − γ, 1 − γ; 1;u) − 1

]
. (2.15)

Here 2F1 is hypergeometric function. Meanwhile, the BFKL kernel with the constraint
k2 > zq2 is given by, see also [43],

χ(ω, γ) =
∫ 1

0

du
u

[(
1 + uω+1−γ

)
2F1(1 − γ, 1 − γ; 1;u) − 1

]
. (2.16)

Unfortunately, we don’t find any widely used functions to conclude these integrations
into any convenient form. For comparison, the constraint k2 > zk′2 gives the kernel

χ(ω, γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ + ω). (2.17)

We see the constraint k2 > zk′2 bring a nice feature that only shifts one Polygamma
function and consequently the pole position by ω.

For every option of the kinematical constraints, their leading pole positions are given
by the solution to

ω = αsχ(ω, γ) . (2.18)

With the complicated ω dependence inside the kernel, we cannot solve the transcendental
equation analytically. Nevertheless, one can formulate the numerical solution to give a
formal ‘effective’ kernel

ω = χeff(γ, αs) . (2.19)

These kernels are important as they indicate the residue when we inverse the Mellin
transform to compute the solution of unintegrated gluon density in momentum space
and similarly the high energy factorization cross section with ω integration. In order
to obtain the χeff we have solved the eq. (2.18) numerically for all three versions of the
kernel with constraints eqs. (2.8) to (2.10), as shown in fig. 2.3. Here we choose two
different values of the strong coupling constant, αs = 0.1, 0.2

An obvious observation is that all the effective kernels are strongly reduced in the
large γ region (corresponding to k′2 > k2) compared to the standard LL BFKL kernel.
Furthermore, we can decipher more information from the behaviors of these functions in
different regions.

• The region at γ → 1. We find that the results from the constraints eqs. (2.8)
and (2.10) are close to each other. This is realized by seeing that at γ = 1,
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Figure 2.3. The effective BFKL kernel χeff in Mellin space for the three different versions of
the kinematical constraints eqs. (2.8) to (2.10). Left: αs = 0.1, right: αs = 0.2. The curves are
red: q2 < (1 − z)k2/z, green: q2 < k2/x, black: k′2 < k2/z.

eq. (2.14) is simplified to

χ(γ, ω)|γ=1 =
∫ d2q
πq2

(1 + q2

k2

)−ω (
k′2

k2

)γ−1

− Θ(k2 − q2)


γ=1

=
∫ 1

0

du
u

[
(1 + u)−ω (1 + uω) − 1

]
= ψ(1) − ψ(ω)

= [2ψ(1) − ψ(γ) − ψ(1 − γ + ω)]γ=1 . (2.20)

We see the kernels from eqs. (2.8) and (2.10) are identical for any value of ω now.
In a more kinematical perspective, for z → 1, both eqs. (2.8) and (2.10) leads to a
strong suppression of the anti-collinear phase space (k2 < k′2), while the eq. (2.9)
still give some phase space for the integration.

• The region at at γ → 0. We see that the curves from the constraints eqs. (2.9)
and (2.10) are close, where eq. (2.8) is smaller in this range. This is understood
from the fact that the constraint eq. (2.8) is stronger at the collinear region k2 > k′2,
particularly if z is large. The notable difference here is that compared with the
other two constraints, eq. (2.8) lacks the collinear pole in γ.

Now we can revisit the fig. 2.1 with the kinematically constrained kernel. Note the
saddle points are no longer at γ = 1

2 for these shifted kernels. From χeff , one can compute
the leading behavior as x → 0. The intercepts ω0 are now given by

dχeff(γ, αs)
dγ |γ=γM

= 0 , ω0 = χeff(γM , αs) , (2.21)
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and the results are plotted in Fig. 2.4. We see all three constraints stabilize the intercepts,
compared with LL and NLL results in QCD. What’s more, for αs up to about 0.2, the
discrepancies between the curves are minimal. When αs is larger, the constraint eq. (2.9)
is comparably larger than the other two constraints. This is consistent with the shape of
the kernel discussed before.
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Figure 2.4. The values of the intercept ω0 = χeff(γM , αs), Eq. (2.21), as a function of ᾱs for
different choices of the kinematical constraint.

2.1.2 Differential form of the BFKL equation with kinematical con-
straints

In the previous subsection, we investigated the behaviors of the kernels with kinematical
constraints. In this subsection, we will present numerical solutions for the unintegrated
gluon density.

There are different techniques utilized to solve the BFKL equation in the past. One
approach we have introduced is the inverse Mellin transform. The advantage of this
approach is that it empowers more insights into the analytical structure, in particular,
the collinear and anti-collinear poles at LL, NLL, or resummed calculation.

The other notable method [34,44,90] is to incorporate an interpolation to the evolution
equation in two variables x and k2 with orthogonal polynomials, such that the integral
equations can be transformed into a set of linear algebraic equations and solved by simply
inverting the large matrix. We will look into more details of the approach in the next
section.

In this subsection, we will introduce and utilize another method that transforms the
integral equation into a differential equation.

The motivation to differentiate the BFKL equation by x is that it could help reduce
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the computational complexity of the integral on the right-hand side of the equation. After
performing the derivative we find, regardless of the form of the kinematical constraint,
the resulting equation can be written in the differential form that shares two terms in
common - real emission term with shifted argument x and virtual correction term - under
the remaining integral over the emitted momentum q. We take a symbolic representation
of different kinematical constraints θ [kC (q,k) − z]. As a result, the argument of the
real emission term is shifted as

x → x max
{

1, 1
kC (q,k)

}
. (2.22)

Such reformulation of the BFKL equation with kinematical constraint was first proposed
in [42], and similar ideas were also discussed in [91] in the context of the Balitsky-
Kovchegov (BK) evolution equation in transverse coordinate space. We derive the
differential form of the BFKL equation for each kinematical constraint as follows,

• The kinematical constraint q2 < k2/z.

The differential equation in this case is given by

∂f(x, k2)
∂x

= ∂f (0)(x, k2)
∂x

+ ᾱs
∂

∂x

1∫
x

dx′

x′

∫ d2q
πq2

{
f
(
x′, k′2

)
Θ
(
k2 − x

x′ q
2
)

− Θ
(
k2 − q2

)
f
(
x′, k2

)}
.

(2.23)

where we performed the change of variable z → x′ = x/z. After performing the
direct calculation of the derivatives, we see

∂f(x, k2)
∂x

=∂f
(0)(x, k2)
∂x

− ᾱs

x

∫ d2q
πq2

{
f

(
x max

(
1, q

2

k2

)
, k′2

)
Θ
(
k2

q2 − x

)

− Θ
(
k2 − q2

)
f
(
x, k2

)}
,

(2.24)

where the expression x max (1, q2/k2) comes from two terms, as we see how deriva-
tive acts on the integral on the right-hand side of the (2.23). The first term that
comes from derivative on the boundary of the integral generates the term containing
f (x, k′2) Θ (k2 − q2), while the second term acts on the Θ-function from kinematical
constraint and produces a term containing f [xq2/k2, |k − q|2] Θ (q2 − k2).
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Now, rewriting the derivative equation as a derivative by ln 1/x instead of x, we get

∂f(x, k2)
∂ ln 1/x =∂f

(0)(x, k2)
∂ ln 1/x + ᾱs

∫ d2q
πq2

{
f

(
x max

(
1, q

2

k2

)
, k′2

)
Θ
(
k2

q2 − x

)

− Θ
(
k2 − q2

)
f
(
x, k2

)}
.

(2.25)

• The kinematical constraint k′2 < k2/z.

The differential equation now is derived in exactly the same way as in the last case,

∂f(x, k2)
∂ ln 1/x =∂f

(0)(x, k2)
∂ ln 1/x + ᾱs

∫ d2q
πq2

{
f

(
x max

(
1, k

′2

k2

)
, k′2

)
Θ
(
k2

k′2 − x

)

− Θ
(
k2 − q2

)
f
(
x, k2

)}
.

(2.26)

We see that the only difference between the two cases is solely on the factor in the
longitudinal component of the unintegrated gluon density f .

• The kinematical constraint q2 < (1 − z)k2/z.

This case is slightly different since now the term originating from the derivative
acting on the integral boundary is equal to 0. This is due to the fact that the
Θ-function is evaluated at −∞. This is manifested that the constraint x′ > xk′2/k2

is a stronger condition than x′ > x. Thus the boundary term no longer contributes
and the differential equation is eventually given by

∂f(x, k2)
∂ ln 1/x = ∂f (0)(x, k2)

∂ ln 1/x + ᾱs

∫ d2q
πq2

{
f

(
x
k2 + q2

k2 , k′2
)

Θ
(

k2

q2 + k2 − x

)

− Θ
(
k2 − q2

)
f
(
x, k2

)}
.

(2.27)

2.1.3 Numerical results

In this subsection, we present the numerical results for the solution of the BFKL equation
with different kinematical constraints. We propose the boundary condition for the
equations,

f (x, k) = exp
[
p0 log (k/µ)2 + p1 log2 (k/µ)2

]
(1 − x)p2 , (2.28)
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with p0 = p1 = −0.1 and p2 = 2 and µ = 1 GeV. Note here that we are not fitting the
boundary conditions to any experimental data. The following are for demonstration only
and not for phenomenology usage.

Our choice of k dependence is motivated by the analytical solution of the LL BFKL
equation and is proposed for faster convergence of the numerical solution. The term
(1 − x)p2 is widely used in the relevant phenomenology studies, as such, the gluon is
suppressed for large values of x, and as a result, we can safely extend the integral over
the kernel to large x values. Additionally, we introduce a lower cutoff onto the transverse
momenta Q0 = 0.1 GeV. All results are obtained for the fixed coupling αs = 0.2.
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Figure 2.5. Solutions of the BFKL equations with different forms of the kinematical constraint
as functions of kT for constant ᾱS = 0.2. Left plot: x = 10−2, right plot: x = 10−5.
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Figure 2.6. Solutions to the BFKL equation with three different forms of the constraint as a
function of x for constant ᾱS = 0.2. Left plot: k = 2 GeV, right plot k = 10 GeV.

In figs. 2.5 and 2.6 in logarithm scales on both axes, we present the solutions as a
function of the k2 (x) for fixed values of x (k2) with different kinematical constraints
respectively, compared with the standard LL BFKL solution.
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A major remark is that all kinematical constraints significantly reduce the solution
with respect the the LL BFKL unintegrated gluon solution, while the differences between
these kinematical constraints are non-negligible and could reach up to a factor of 2 ∼ 3
depending on the values of x and k2. Their magnitudes decrease in a fixed order for the
constraints: q2 < k2/z → k′2 < k2/z → q2 < 1−z

z
k2.

2.2 ω Expansion of the Kernel in QCD and N = 4 sYM
In this section, we review the effect of different choices of energy scale in the high energy
factorization cross section and propose the ω dependent BFKL kernel to abide by the scale
invariance requirements. Next, we introduce the technique of ω expansion in the context
of renormalization group constraints to construct the NLL and NNLL kernel and prove
an interesting feature of the structure of the collinear poles in N = 4 supersymmetric
Yang–Mills (sYM) theory.

In N sYM, N represents the number of independent supersymmetric operations that
transform the boson field into fermion field, where N = 4 is the maximal candidate.
Practically, N = 4 sYM is a toy model that does not fit into any exact physics. However,
N = 4 sYM shares the same gluon sectors with QCD, which includes the complicated
Feynman gluon diagrams, so that solutions to N = 4 sYM can also shed light into similar
problems in QCD. Meanwhile, the properties of the N = 4 sYM, e.g., the vanishing
beta function, more degrees of symmetries, make the solution more available than QCD.
Above all, N = 4 sYM is a helpful playground for the study of QCD and other theories.

2.2.1 Scale Effect and the ω Dependent BFKL Kernel in QCD

We start with the general formula in the high energy factorization for the process with
two hard scales Q1, Q2,

σ =
∫ dω

2πi

∫ d2k
k2

d2k′

k′2

(
s

s0

)ω

ϕA(Q1,k)G(ω,k,k′)ϕB(Q2,k′). (2.29)

As we are interested in the BFKL kernel, we can use the double Mellin transform to
write the azimuthally averaged gluon Green’s function as

G(s, k, k′) = 1
2πk2

∫ dω
2πi

(
s

s0

)ω ∫ dγ
2πi

(
k2

k′2

)γ

G(ω, γ) , (2.30)
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Here, we can use a symmetric choice of the energy scale s0 = kk′. However, the scale
choice can be also asymmetric. For example, the scales on the virtual photon and the
proton side are, in principle, very different in the Deep Inelastic Scattering. In this
case, the cross section is dominated by either collinear (anticollinear) configurations with
k2 ≫ k′2 (k′2 ≫ k2) so that the appropriate Bjorken evolution variable is k2/s (k′2/s),
corresponding to the asymmetric energy scale s0 = k2 (s0 = k′2).

An important comment is that such a change of energy scale in eq. (2.30) is equivalent
to a shift of γ by ±ω/2, relative to the symmetric energy choice s0 = kk′,

(
s

kk′

)ω(
k2

k′2

)γ

=
(
s

k2

)ω(
k

k′

)ω(
k2

k′2

)γ

=
(
s

k2

)ω(
k2

k′2

)γ+ω/2

, s0 = k2,

(
s

kk′

)ω(
k2

k′2

)γ

=
(
s

k′2

)ω(
k′

k

)ω(
k2

k′2

)γ

=
(
s

k′2

)ω(
k2

k′2

)γ−ω/2

, s0 = k′2. (2.31)

These corrections project into the simple LL BFKL kernel K(k, k′) with only collinear
and anti collinear poles as

Kω(k, k′) ≃ αs

[
1
k2

(
k′

k

)ω

Θ(k − k′) + 1
k′2

(
k

k′

)ω

Θ(k′ − k)
]
. (2.32)

In the Mellin space, it corresponds to ω shift poles at γ = 0 or γ = 1,

χ0(ω, γ) ≃ 1
γ + ω

2
+ 1

1 − γ + ω
2
. (2.33)

This indicates the scale-invariant LL BFKL kernel in symmetric energy choice s0 = kk′

would gain the ω dependency,

χS
0 (ω, γ) = 2ψ(1) − ψ(γ + ω

2 ) − ψ(1 − γ + ω

2 ). (2.34)

Furthermore, in symmetric energy choice s0 = kk′2, the ω shifted LL BFKL kernel reads,

χA
0 (ω, γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ + ω). (2.35)

This is exactly the same result we get under the kinematical constraint k′2 < k2/z.
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2.2.2 Renormalization group constraints

Now we proceed to see how we extend the ω dependency into NLL BFKL kernels and in
principle, the kernel in an arbitrary order. We follow the approach in [34].

The non-singular part of the singlet gluon anomalous dimension

γ̃ω = γgg − αs

ω
= αsA1(ω), (2.36)

where A1(ω) = −11/12 + O(ω) for Nf = 0. The singular part of the γgg has been taken
into account by the BFKL iteration itself. This is manifested in the discussion section 1.4
that the singular 1/x term from the splitting function Pgg contributes to the logarithm
ln(1/x) in the LL BFKL.

The BFKL kernel Kω(k, k′) in the collinear limit k2 ≫ k′2 acquires a form [92],

Kω(k, k′) ≈ αs(k2)
k2 exp

∫ t

t0
γ̃ω(αs(l2))d(ln l2)

= αs(k2)
k2

[
1 − bαs(k2) ln

(
k2

k′2

)]−A1(ω)/b

, (2.37)

where t = ln (k2/µ2) and t0 = ln (k′2/µ2). Now with the knowledge of the ω dependent
scale terms, we can construct the BFKL kernel with both collinear and anti-collinear
terms

Kω(k, k′) ≈ αs(k2)

 1
k2

(
k′

k

)ω [
αs(k2)
αs(k′2)

]− A1(ω)
b

Θ(k − k′)

+ 1
k′2

(
k

k′

)ω [
αs(k2)
αs(k′2)

]A1(ω)
b

−1

Θ(k′ − k)

 . (2.38)

Expanding in αs, we have the ω dependent kernel in the form

χω(γ) =
∞∑

n=0

[
αs(k2)

]n+1
χω

n(γ). (2.39)

Under the symmetric energy scale choice, eq. (2.38) allows us to obtain the

χω
n(γ) = 1 · A1(A1 + b) · · · [A1 + (n− 1)b](

γ + ω
2

)n+1 + 1 · (A1 − b)(A1 − 2b) · · · [A1 − nb](
1 − γ + ω

2

)n+1 . (2.40)
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In particular, the LL and NLL results are

χω
0 ≈ 1

γ + ω
2

+ 1
1 − γ + ω

2
,

χω
1 ≈ A1(ω)(

γ + ω
2

)2 + A1(ω − b)(
1 − γ + ω

2

)2 . (2.41)

We note that the second line in eq. (2.41) contributes to the full double poles in the
standard NLL BFKL kernel eq. (1.93). This is the effect of the above discussion involving
the running coupling effect and non-singular LO DGLAP splitting functions. Furthermore,
it indicates the way to construct the ω dependent NLL BFKL kernel by shifting the
double poles.

Next, notice that in the small ω limit, ω → αsχ
ω=0
0 . We see that each ω includes the

coefficient of running coupling αs. This implies that by expanding the LL BFKL kernel
on ω, we can get a new BFKL kernel that features the collinear and anti-collinear poles
up to NLL.

χcoll
1 =

[
αsχ

ω
0 (γ)∂χ

ω
0

∂ω
+ χω

1

]
ω=0

= − 1
2γ3 − 1

2(1 − γ)3 + A1(0)
γ2 + A1(0) − b

(1 − γ)2 + · · · . (2.42)

It turns out this NLL kernel in the collinear approximation reproduces the exact NLL
kernel up to 7% [33, 64]. This indicates that the collinear terms are the dominant
contribution in the NLL. Now we can propose an ω shifted NLL kernel [34],

χ1(ω, γ) = χ1(γ) + 1
2χ0(γ) π2

sin2 πγ

− A1(0)ψ′(γ) − [A1(0) − b]ψ′(1 − γ)

+ A1(ω)ψ′
(
γ + ω

2

)
+ [A1(ω) − b]ψ′

(
1 − γ + ω

2

)
− π2

6 [χ0(γ) − χω
0 (γ)] . (2.43)

We shall emphasize the role of every term in the subtraction introduced in eq. (2.43) as
follows.

• The first line: standard NLL BFKL χ1(γ) in QCD with the subtraction terms of
the cubic poles. The subtraction term is the outcome of the consideration of the
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energy scale effect and is straightforwardly generated by

χω
0 (γ)∂χ

ω
0

∂ω

∣∣∣∣∣
ω=0

= 1
2χ0(γ) π2

sin2 πγ
. (2.44)

• The second and third lines: the ω shifted double poles introduced from the above
collinear analysis. Note we only require the shift on the poles. Therefore, the
realization is not necessarily done only by subtracting ψ′ functions. There is
flexibility in the choice of the candidate functions.

• The last line: this shifts the single poles and appears as an artifact of the resum-
mation procedure.

2.2.3 NLL and NNLL of N = 4 sYM via ω expansion

It is certainly of interest to further investigate the NNLL BFKL kernel in QCD. However,
as we mentioned in section 1.4.3, there is no complete NNLL result available in QCD.
Nevertheless, it does not prevent us from probing the NNLL structure using the ω

expansion technique.
In particular, the N = 4 sYM eigenvalue at LL is the same as the QCD case, and

at NLL, both theories share identical leading cubic poles [93]. In addition, under the
symmetric choice of the energy scale, the N = 4 sYM NNLL kernel was derived originally
in [69,70]. It was later re-derived in [71] by investigating the correspondence between the
soft-gluon wide-angle radiation in jet physics and the BFKL physics. We are motivated
to test ω shifted kernels in the playground of N = 4 sYM and see if they can match the
known NLL and NNLL results.

To remain relevant to these existing results, we will keep a symmetric energy scale.
In this subsection, we shall perform a detailed comparison of leading and subleading
poles in the Mellin space up to NNLL N = 4 sYM.

The NLL poles [93] and NNLL poles [69–71] in N = 4 sYM at γ = 0 are

χsY M
1 = − 1

2γ3 − 1.79 + O(γ) , (2.45)

χsY M
2 = 1

2γ5 − ζ(2)
γ3 − 9ζ(3)

4γ2 − 29ζ(4)
8γ + O(1) . (2.46)

Note that, in the symmetric energy scale, the coefficients of the poles around γ = 0
and γ = 1 are identical. To keep a simple representation, we only show the expansion at
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γ = 0 in the following. We can retrieve the leading and the vanishing subleading poles
of the N = 4 sYM case by doing ω expansion of the shifted eigenvalue eq. (2.34) in the
same way as the QCD case,

χ(γ, ω) = 2ψ(1) − ψ(γ + ω

2 ) − ψ(1 − γ + ω

2 )

= χ0 + χ(1)ω

2 + 1
2!χ

(2)
(
ω

2

)2
+ . . . , (2.47)

where the χ(i) is the i-th derivative of χω with respect to ω. Provided that the LL relation
ω0 = αsχ0, the NLL term is identified to be

χ1(γ) = 1
2χ

(1)χ0 = 1
2
[
ψ(1)(γ) + ψ(1)(1 − γ)

]
[2ψ(1) − ψ(γ) − ψ(1 − γ)] . (2.48)

Expanding around γ = 0, one obtains the following NLL pole structure

χ1(γ) = − 1
2γ3 − ζ(2)

γ
+O(1) . (2.49)

Similarly, we can calculate the term contributing at NNLL from the ω expansion
to the second order by taking ω1 = αsχ0 + α2

sχ1, where the subscript on ω indicates
the order of expansion that we are interested in. Now we substitute ω1 into (2.47) and
extract the α2

s terms
χ2 = 1

4
[
χ(1)

]2
χ0 + 1

8χ
(2) (χ0)2 . (2.50)

Expanding at γ = 0 , we see the NLL pole structure

χ2 = 1
2γ5 + ζ(2)

γ3 + 2ζ(3)
γ2 +O

(
1
γ

)
. (2.51)

We observe that the leading pole −1/2γ3 in eq. (2.49) coincides with the exact result at
NLL in N = 4 SYM and in QCD. The NNLL leading pole 1/2γ5 in eq. (2.51) reproduces
the NNLL N = 4 SYM in eq. (2.46). This structure is consistent with the principle of
maximal transcendentality (complexity) [93], meaning that all special functions at the
NNLL correction contain only sums of the terms 1/γi (i= 3, 5).

In addition, another interesting feature is the absence of subleading poles, i.e. 1/γ2

and 1/γ4 vanish at NLL and NNLL respectively in both our expanded result and exact
N = 4 sYM (2.46). It is worth mentioning that we have checked numerically the
coefficients of the poles in 1 − γ for the BFKL kernels with kinematic constraints in the
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asymmetric scale. We found agreement between different forms of constraints in the
leading poles ∼ 1/(1 − γ)2k+1 and subleading poles ∼ 1/(1 − γ)2k when the kernels are
expanded out to NLL (k = 1) and NNLL (k = 2).

We shall see later soon in the next subsection that the pattern in the symmetric scale
of the leading and sub-leading poles holds to all orders in αs from the ω expansion. In
contrast, there are double poles 1/γ2 in NLL QCD, originating from the non-singular
parts of the QCD DGLAP anomalous dimension and the running coupling [21,22].

2.2.4 Leading and subleading poles to all orders in ω expansion

We see an interesting pattern on the leading and sub-leading poles in the NLL and
NNLL ω expansion kernel in the context of N = 4 sYM. In fact, this pattern is valid
for any arbitrary order of expansion, i.e., the χk has the leading pole ∼ 1

γ2k+1 , while the
subleading pole ∼ 1

γ2k vanishes. At NLL and NNLL order, both N = 4 sYM results and
QCD the kernel with kinematical constraint k′2 < k2/z agrees with the pattern. This
pattern can be proved by mathematical induction.

Let us assume that the kernel χk features the above-discussed properties, and we will
prove that the kernel χk+1 in one order higher also possesses the same properties. We
begin with writing the solution for the BFKL equation in Mellin space up to k + 1’th
power in αs (again, this is indicated by the subscript on ω)

ωk = αs

[
χ0 + αsχ1 + α2

sχ2 + ...+ αk
sχk

]
. (2.52)

Note that we are working under the context of ω dependent BFKL kernel,

ω = αsχ
ω(γ) , (2.53)

where it is always possible to introduce the ω dependency with the kinematical constraint.
We now move on to expand the kernel in ω and keep the format of the terms to find ωk+1

ωk+1 = αs

[
χ(0) + χ(1)ωk + 1

2!χ
(2)ω2

k + ...+ 1
k!χ

(k)ωk
k + 1

(k + 1)!χ
(k+1)ωk+1

k

]
, (2.54)

with the χ(i) is the i’th derivative of χω on ω set at ω = 0 and obviously χ0 = χ(0). Next,
we proceed to extract the αk+2

s term from (2.54). We note that one needs to keep the
terms up to ωk on the r.h.s which will contribute to ωk+1.
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For an arbitrary term in the [. . . ] bracket of (2.54) we can substitute the ωk and see

χ(i)

i! ω
i
k = αi

sχ
(i)

i!
(
χ0 + αsχ1 + α2

sχ2 + · · · + αk
sχk

)i
. (2.55)

In order to find the αk+2
s term in (2.54), we need to locate the αk+1−i

s term in

(
χ0 + αsχ1 + α2

sχ2 + · · · + αk
sχk

)i
. (2.56)

A general expansion of (2.56) could be formidably complicated. However, by just ignoring
their coefficients, we can express an arbitrary term in (2.56) in the following form

k∏
l=0

χjl
l = χj0

0 χ
j1
1 ...χ

jk
k , (2.57)

with automatically, a constraint associated with the powers {jl}

k∑
l=0

jl = i. (2.58)

Meanwhile, since a single χl term would bring a power of αl
s. If we ought to identify

the term with the order αk+1−i
s in (2.57) , we need a new constraint on that powers {jl},

which reads,
k∑

l=0
jll = k + 1 − i . (2.59)

Therefore, for a term like eq. (2.57), provided that the leading pole of χl ∼ 1
γ2l+1 together

with the constraints (2.58), (2.59), its leading pole is given by

k∏
l=0

(
1

γ2l+1

)jl

=
(

1
γ

)∑k

l=0(2l+1)jl

=
(

1
γ

)(2k+2−i)

. (2.60)

Furthermore, knowing that every χl in (2.57) doesn’t have a subleading pole, we conclude
that the subleading pole of this αk+1−i

s term also vanishes.
Above all, we can get back to expression (2.55). Seeing that the derivative χ(i) has

the leading pole ∼ γ−(1+i) and a vanishing subleading pole, we proved that the leading
pole in χk+1 is ∼ γ−(2k+3), and its γ−(2k+2) pole vanishes.
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2.2.5 Scale changing transformation at NLL and NNLL

In section 2.2.1, we introduced the energy scale effect from the BFKL kernel in the (ω, k2)
space and formulated the symmetric and asymmetric LL BFKL kernel in the (ω, γ) space,

χω,A(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ + ω) , (2.61)

χω,S(γ) = 2ψ(1) − ψ
(
γ + ω

2

)
− ψ

(
1 − γ + ω

2

)
, (2.62)

where A and S stand for symmetric and asymmetric respectively. It is rather obvious to
implement the scale changing transformation in the k2 space, see eq. (2.31). However, it
is worth more effort to investigate the scale changing transformation in the ω, γ space.

Before proceeding to NNLL, we shall see how the scale changing works at NLL. In
the following, we assume that the additional dependence on ω in the χ function. From a
symmetric case to an asymmetric case, we propose a shift to the argument γ → γ − ω/2
similar to the LL kernel,

χ0

(
γ − ω

2

)
+ αsχ1

(
γ − ω

2

)
. (2.63)

Using ω expansion and keeping terms up to NLL, we have

χ0(γ) − ω

2
∂χ0

∂γ
+ αsχ1(γ) . (2.64)

Comparing eq. (2.63) with eq. (2.64), we obtain the scale changing part as

TNLL(γ) = −ω

2
∂χ0

∂γ
, (2.65)

At this order, we only need to take leading order ω = αsχ0(γ), therefore scale changing
transformation in the argument of γ is

TNLL(γ) = −1
2αsχ0(γ)∂χ0

∂γ
, (2.66)

see [21, 22, 93]. In the following, we will focus only on the leading collinear and anti-
collinear poles in γ. The pole structure of the scale changing transformation at NLL is
given by

TNLL(γ) = −1
2αsχ0(γ)∂χ0

∂γ
∼ αs

2γ3 − αs

2(1 − γ)3 . (2.67)
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This scale change (2.67) agrees with the difference between the leading poles of symmetric
and asymmetric NLL kernels generated from the ω expansion of eq. (2.61) and eq. (2.62),

χS
1 ∼ − 1

2γ3 − 1
2(1 − γ)3 , (2.68)

χA
1 ∼ 0

2γ3 − 1
(1 − γ)3 . (2.69)

In NNLL order, it is necessary to expand (2.63) to the second order in ω of χ0 and
the first order in ω in χ1. We see

χ0(γ) − ω

2
∂χ0

∂γ
+ 1

2

(
ω

2

)2 ∂2χ0

∂γ2 + αsχ1(γ) − αs
ω

2
∂χ1

∂γ
. (2.70)

Now to find NNLL scale changing terms, we need to keep terms in the solution for the ω
at least up to NLL, i.e.,

ω = αs

[
χ0

(
γ − ω

2

)
+ αsχ1

(
γ − ω

2

)]
≈ αsχ0(γ) − 1

2α
2
sχ0

∂χ0

∂γ
+ α2

sχ1. (2.71)

Substituting the above expansion of ω into (2.70) and keeping terms up to NNLL, we
get for the scale changing transformation at NNLL (see also [94])

TNNLL(γ) = −1
2
∂χ0

∂γ

(
−1

2α
2
sχ0

∂χ0

∂γ

)
− 1

2α
2
sχ1

∂χ0

∂γ
+ 1

8(αsχ0)2∂
2χ0

∂γ2 − 1
2α

2
sχ0

∂χ1

∂γ
. (2.72)

We expand the TNNLL(γ) in γ and see its pole structure at γ = 0 and γ = 1 is

T (γ) ∼ − 1
2γ5 + 0

γ4 + O( 1
γ3 ) , (2.73)

T (γ) ∼ 3
2(1 − γ)5 + 0

(1 − γ)4 + O( 1
(1 − γ)3 ) . (2.74)

This result is unchanged whenever we use χ1 either from the exact N=4 sYM NLL kernel
or the NLL kernel derived from ω expansion. Note the scale changing does not introduce
any subleading poles 1/γ4, 1/(1 − γ)4 at NNLL. This is also consistent with the pattern
of vanishing subleading poles which was discussed in the last subsection.

The scale changing at NNLL (2.74) is consistent with the difference of the leading
poles of N = 4 sYM NNLL kernels. We can easily verify that by expanding (2.61) and
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(2.62)

χA
2 ∼ 0

2γ5 + 2
(1 − γ)5 , (2.75)

χS
2 ∼ 1

2γ5 + 1
2(1 − γ)5 . (2.76)

We note that despite it seems it is easier to apply a scale change in the momentum
space of k than the Mellin space of γ, as in eq. (2.31), the above scale transformation
can help us explore and verify the poles structure especially when the properties of the
kernel can be better understood in the Mellin space.

66



Chapter 3 |
Structure Functions from the small
x Evolution

In this section, we focus on Ciafaloni-Colferai-Salam-Staśto (CCSS) resummation and
recap some basic elements from [22, 33, 34]. We will compute the unintegrated gluon
density and structure function and perform the fits to HERA data based on CCSS
resummation.

As we discussed briefly in the last section, the CCSS resummation features the
renormalization group improved (RGI) small x equation. The CCSS resummation is
constructed based on the DGLAP collinear splitting function and the exact BFKL up
to the NLL accuracy. It contains the contribution from the kinematical constraint and
appropriate subtractions to avoid double counting. The above modifications ensure the
momentum conservation in this framework. The subtraction in the CCSS resummation is
introduced in the Mellin space and later realized in the momentum space. The sequential
computation of the unintegrated gluon density is formulated as an interpolation on the
expansion of the BFKL equation with triangular functions. The calculations of the
structure function and its charm component are carried out, using the perturbative
component from the box diagrams and supplemented by the non-perturbative inputs.

3.1 The CCSS resummation

3.1.1 Construction in the Mellin space

We have introduced some basis for the idea of the CCSS resummation in the last section.
However, we have not concluded them in a complete resummed “LL + NLL” form. We
will start the construction by resumming the collinear contribution and then move on to
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incorporate the exact BFKL NLL results with subtractions. This section is essentially a
recap of the resummation proposed in [34].

For an easier reach, we present the collinear contributions here again,

χω
n(γ) = 1 · A1(A1 + b) · · · [A1 + (n− 1)b](

γ + ω
2

)n+1 + 1 · A1(A1 − b) · · · [A1 − nb](
1 − γ + ω

2

)n+1 . (3.1)

At the LL and NLL, we note

χω
0 ≈ 1

γ + ω
2

+ 1
1 − γ + ω

2
,

χω
1 ≈ A1(ω)(

γ + ω
2

)2 + A1(ω − b)(
1 − γ + ω

2

)2 . (3.2)

We define
χω

c = χω
1
χω

0
≃ A1(ω)
γ + ω

2
+ A1(ω)

1 − γ + ω
2
. (3.3)

where the second approximation is derived in the sense for collinear poles (γ + ω
2 → 0

and 1 − γ + ω
2 → 0). Note that we have ignored the running of the coupling at this point

and apply the frozen αs where b = 0. The nth order collinear contribution is

χω
n ≃ χω

0 (χω
c )n . (3.4)

Thus this allows us to resum the all-order collinear contribution

χω ≃
∞∑

n=0
αn

sχ
ω
0 (χω

c )n

= χω
0

1
1 − αsχω

c

≃ χω
0 + ωχω

c , (3.5)

where we have used the replacement ω = αsχ
ω
0 . This is the collinear contribution we

shall apply to the complete resummed LL + NLL kernel.
Now we proceed to incorporate the exact NLL BFKL kernel in the resummation. To

take a better care of running coupling, we first propose a general form in the momentum
space of the resummed kernel Kω

Kω = αs(q2)Kω
0 + ωαs(k2

>)Kω
c + α2

s(k2
>)K̃ω

1 , (3.6)
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with k> = max(k, k′) and k< = min(k, k′). The argument q2 = |k − k′|2 of the running
coupling of the LL kernel is the usual choice from the LL BFKL equation. The correspon-
dence between the kernels in the momentum and Mellin space is χω

0 → Kω
0 , χω

c → Kω
c ,

while K̃ω
1 represents everything else that shall be introduced in the resummation and will

be determined later.
Now we expand the eq. (3.6) at ω = 0 and adjust the running coupling to the same

argument k2,

Kω ≃ αs(k2)
(

Kω
0 |ω=0 + ω

∂Kω
0

∂ω

∣∣∣∣∣
ω=0

+ ωKω
c |ω=0

)
+ α2

s(k2)
(
K̃0

1 + Krun
0

)
, (3.7)

where we have taken K̃0
1 = K̃ω

1 |ω=0 as we do not have an explicit form of the ω dependency
of K̃ω

1 yet. The Kω
0 |ω=0 = K0

0 corresponds to the standard LL BFKL kernel in Mellin
space χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ). The running coupling term Krun

0 is

Krun
0 (k,k′) = −b

[
ln q

2

k2 K0(k,k′)
]
. (3.8)

The corresponding χrun
0 in Mellin space is given by

χrun
0 = − b

2(χ′
0 + χ2

0). (3.9)

This term is given in the sense of regularization [22,95,96] (also see more comments for
this term in [34]). The last condition we need is to ensure our resummation can lead
back to ω-independent LL and NLL gluon Green’s function which we have inversed for
convenience,

G−1
ω = ω−Kω = ω−αs(k2)

(
K0

0 + ω
∂Kω

0
∂ω

∣∣∣∣∣
ω=0

+ ωKω
c |ω=0

)
+α2

s(k2)
(
K̃0

1 + Krun
0

)
. (3.10)

For comparison, the inverse of the ω-independent LL and NLL gluon Green’s function is
simply

G−1 = ω − αs(k2)K0 + α2
s(k2)K1, (3.11)

where K0 and K1 are the LL and NLL ω-independent BFKL kernel respectively. Now,
we can recognize the resummed kernel K0

0 and K0
1 accordingly,

K0
0 = K0,
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K̃0
1 = K1 − K0

0

(
∂Kω

0
∂ω

∣∣∣∣∣
ω=0

+ Kω
c |ω=0

)
− Krun

0 . (3.12)

In Mellin space, the resumed NLL kernel is

χ̃1(γ) = χ1(γ) + 1
2χ0(γ) π2

sin2(πγ) − χ0(γ) A1(0)
γ(1 − γ) + b

2(χ′
0 + χ2

0) , (3.13)

3.1.2 The CCSS kernel in the momentum space

With the Mellin transformation,

f(ω, k2) =
∫ 1

0

dx
x
xω f(x, k2) , (3.14)

f̃(ω, γ) =
∫ ∞

0
dk2

(
k2
)−γ

f(ω, k2) . (3.15)

we summarize the CCSS resummed kernel with three main contributions in (x, k2) space,

Kkc
0 (z; k,k′)

z,q
⊗ f(x

z
, k′2) + Kcoll

0 (z; k,k′)
z,k′

⊗ f(x
z
, k′2)

+ Ksubtr
1 (z; k,k′)

z,k′

⊗ f(x
z
, k′2) , (3.16)

where Kkc
0 is the LL BFKL kernel with kinematical constraint, Kcoll

0 is the collinear
contribution, and Ksubtr

1 is the NLL part with subtractions. The convolution with
transverse momentum is performed by either q or k′ for computational convenience.

• The first term in eq. (3.16) is

Kkc
0 (z; k,k′)

z,q
⊗ f(x

z
, k′2)

=
∫ 1

x

dz

z

∫ d2q
πq2 ᾱs(q2)

[
f(x
z
, |k + q|2) Θ(k

2

z
− k′2) − Θ(k − q)f(x

z
, k2)

]
, (3.17)

with the kinematical constraint in DIS

k′2 ≤ k2

z
. (3.18)

• The second term in eq. (3.16) is

Kcoll
0 (z; k,k′)

z,k′

⊗ f(x
z
, k′2) =

∫ 1

x

dz

z

∫ k2

0

dk′2

k2 ᾱs(k2)zP̃gg(z)f(x
z
, k′2)
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+
∫ 1

x

dz

z

∫ k2/z

k2

dk′2

k′2 ᾱs(k′2)zk
′2

k2 P̃gg(zk
′2

k2 )f(x
z
, k′2) .

(3.19)

It is responsible for the collinear and anti-collinear contributions with the non-
singular part of the splitting function to avoid double counting, since the 1/z term
in DGLAP has already been incorporated in the LL BFKL,

P̃ (0)
gg = P (0)

gg − 1
z
, (3.20)

where the P (0)
gg is the DGLAP gluon-gluon splitting function in LO.

• The last term in eq. (3.16) is the NLL part of the BFKL with appropriate subtrac-
tions (corresponding to expression in eq. (3.13)),

∫ 1

x

dz

z

∫
dk′2 ᾱ2

s(k2
>)Ksubtr

1 (z; k,k′)f(x
z
, k′2)

= 1
4

∫ 1

x

dz

z

∫
dk′2 ᾱ2

s(k2
>)
{(

67
9 − π2

3

)
1

|k′2 − k2|

[
f(x
z
, k′2) − 2k2

<

(k′2 + k2)
f(x
z
, k2)

]

+
[

− 1
32

(
2
k′2 + 2

k2 +
( 1
k′2 − 1

k2

)
log

(
k2

k′2

))
+ 4Li(1 − k2

</k
2
>)

|k′2 − k2|

−4A1(0)sgn(k2 − k′2)
(

1
k2 log |k′2 − k2|

k′2 − 1
k′2 log |k′2 − k2|

k2

)

−
(

3 +
(

3
4 − (k′2 + k2)2

32k′2k2

))∫ ∞

0

dy

k2 + y2k′2 log |1 + y

1 − y
| + 1

k′2 + k2(
π2

3 + 4Li
(
k2

<

k2
>

))]
f(x
z
, k′2)

}
+ 1

46ζ(3)
∫ 1

x

dz

z
ᾱ2

s(k2)f(x
z
, k2) , (3.21)

where the sgn(k2 − k′2) is the sign function that returns the sign of its argument.

We further note that the subtracted kernel eq. (3.13) is free of cubic and double
poles in γ = 0, 1. However, there are still some residual single poles that come from the
expansion of

−1
2χ0(γ) π2

sin2(πγ) − χ0(γ) A1(0)
γ(1 − γ) = χ0(γ)

[
− 1

2γ2 + A1(0)
γ

+ A1(0) − π2

6 + O(γ)
]
.

(3.22)
The O(1) term in the [. . . ] in the above expression eq. (3.22) corresponds to the single
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pole O(1/γ) in NLL subtracted kernel χ̃1(γ),
[
A1(0) − π2

6

]
1
γ
, (3.23)

together with the O(1) term in the expansion of the LL kernel

χω
0 + ωχω

c ≃ 1 + ωA1

γ + ω
2

− ωC(ω) + O(γ + ω

2 ). (3.24)

By defining

C(ω) = −A1(ω)
ω + 1 + ψ(1 + ω) − ψ(1)

ω
,

C(0) = π2

6 − A1(0), (3.25)

we have the two-loop anomalous dimension γNLL,

γNLL ≃ α2
s

ω
C(0) − αsC(ω)γLL

≃ α2
s

ω
{C(0) − C(ω) [1 + ωA1(ω)]} , (3.26)

where we have used the LL anomalous dimension γLL = αs [1 + ωA1(ω)] /ω from the
LO DGLAP anomalous dimension. This shows a violation of the momentum sum rule
γNLL(ω = 1) = 0. Therefore, we introduce the following subtraction to the NLL kernel,

χ̃ω
1 (γ) = χ̃1(γ) −

(
1
γ

+ 1
1 − γ

)
C(0) +

(
1

γ + ω
2

+ 1
1 − γ + ω

2

)
C(ω) [1 + ωA1(ω)] . (3.27)

where its form in the momentum space is calculated in eq. (3.27). We note there is
another subtraction scheme introduced to cancel the single pole in the NLL in [34]. We
shall apply the scheme above in eq. (3.27) for the following calculations.

The solution to the unintegrated gluon density in the resumed BFKL equation is
formed with the interpolation with triangular functions on variables x and k2 as in [34].
We leave the relevant transformation and definitions to the appendix A, together with
some details on dealing with boundary terms.
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3.2 Structure function from the CCSS resummation
Prepared with the calculation of the unintegrated gluon density in the CCSS resummation,
we proceed to obtain the structure function F2 to test if we can fit the DIS experimental
data well. The kT factorization theorem, which involves an off-shell matrix element and
the unintegrated gluon density, gives the perturbative part of the structure function F2.
We present the general expressions of the perturbative contribution in the section 3.2.1.

Meanwhile, the non-perturbative, or soft, regime contribution to the structure function
F2 tends to be large and necessary. We parametrize it as the calculation in low momenta
of the gluon k2 with the addition of the soft Pomeron contribution. The setup is, in
general, similar to the [44], without however the matrix formulation that involves the
evolution of quarks (see also [97]). The main difference and improvement with respect to
the calculation in [44] and [97] is the implementation of the CCSS resummation in the
unintegrated gluon density. For clearer clarification, in [44] and [97], the gluon density
was computed from the unified DGLAP and BFKL evolution with kinematical constraint.
The CCSS resummation features the improvements by further including the full NLL
BFKL with appropriate subtractions.

3.2.1 Perturbative contribution

The perturbative contribution to the structure function is given by the kT factorization
theorem [81,98,99], with the unintegrated gluon density from section 3.1 being served as
the input. The general expressions for the structure function F2 from the kT factorization
is

F2(x,Q2) =
∑

q

e2
q Sq(x,Q2) , (3.28)

where the sum is over the quark flavors involved and Sq(x,Q2) is given by

Sq(x,Q2) =
∫ 1

x

dz

z

∫ dk2

k2 Sq
box (z,m2

q, k
2, Q2) f

(
x

z
, k2

)
, (3.29)

where Sq
box is an off-shell photon-gluon partonic cross section. By convoluting with the

unintegrated gluon density f
(

x
z
, k2

)
, the Sq

box is obtained [44,100](see also for detailed
derivation in [101]),

Sq(x,Q2) = Q2

4π2

∫ dk2

k4

∫ 1

0
dβ
∫
dκ′αs

{[
β2 + (1 − β2)

]
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(
κ

D1q

− κ − k

D2q

)2

+
[
m2

q + 4Q2β2(1 − β)2
]

(
1
D1q

− 1
D2q

)2
 f

(
x

z
, k2

)
Θ
(

1 − x

z

)
. (3.30)

Here, the κ and k are quark and gluon transverse momenta respectively, and β is the
variable defined in the Sudakov decomposition of the quark momentum (longitudinal
momentum fraction of the photon carried by the quark, see [100]). In addition, it is
useful to define the shifted quark transverse momentum κ′ = κ − (1 − β)k. The energy
denominators are defined as

D1q = κ2 + β(1 − β)Q2 +m2
q , (3.31)

D2q = (κ − k)2 + β(1 − β)Q2 +m2
q . (3.32)

The unintegrated gluon density f is evaluated from Eqs. (3.16),(3.17),(3.19),(3.21).
The argument of the unintegrated gluon density is equal to x/z with

z =
[
1 +

κ′2 +m2
q

β(1 − β)Q2 + k2

Q2

]−1

. (3.33)

This stems from the exact kinematics in the photon-gluon fusion process, see [100]. The
argument of the strong coupling αs is taken to be (k2 + κ2 +m2

q) in our calculation. The
masses of quarks are taken to be mu = md = ms = 0 GeV and mc = 1.4 GeV.

In principle, the integration over the transverse momenta in the kT factorization
formula formally extends down to zero into the non-perturbative region. However, it
is usually beneficial in phenomenology studies [44, 97] to separate perturbative and
non-perturbative regions by introducing the cutoff boundary k2

0. We propose the validity
of the formula (3.29) and (3.30) only for the transverse momenta k2, κ2 > k2

0. The
contributions in other regions are introduced in the next subsection. We took the typical
cutoff value of k2

0 = 1.GeV2.

3.2.2 Non-perturbative contribution

The structure function F2 receives large soft contribution which is analyzed and modeled
in different literature. For instance, [102] simply parametrizes the soft contribution as a
constant background term in addition to the perturbative small x part. Meanwhile, in
the dipole model, the non-perturbative contribution is usually included automatically
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by an integration over the large dipole sizes with the flat dipole cross section, for
example, [103,104].

Here we follow the approach of [44]. The non-perturbative contribution is from the
low gluon and quark transverse momenta can be parametrized according to the relation
between k2, κ′2 and k2

0.

• When both quark momenta and gluon momenta are small k2, κ′2 < k2
0, we assume

that light quark contribution is phenomenologically evaluated as the soft Pomeron
exchange [105]. The soft Pomeron contribution for u, d, s quark flavors is modeled,

S(a) = Sp
u + Sp

d + Sp
s , (3.34)

with
Sp

u = Sp
d = 2Sp

s = Cp x
−λ (1 − x)8, (3.35)

where coefficient Cp is a free parameter independent of Q2 and 0 ≲ λ ≲ 0.1 is the
soft-Pomeron power.

• When the quark momenta are still high but the gluon momenta are rather low, i.e.,
k2 < k2

0 < κ′2, we propose the strong ordering approximation at quark-gluon vertex
and make use of the collinear approximation

Sbox → S
(b)
box (z, k2 = 0, Q2), (3.36)

therefore,

S(b) =
∫ 1

x

dz
z
S

(b)
box (z, k2 = 0, Q2)

∫ k2
0

0

dk2

k2 f
(
x

z
, k2

)
=

∫ 1

x

dz
z
S

(b)
box (z, k2 = 0, Q2) x

z
g
(
x

z
, k2

0

)
, (3.37)

where xg(x, k2
0) is the non-perturbative input collinear gluon density at the scale

k2
0. We will specify the form of its parametrization in section 3.3.

In summary, the complete contribution of the light quarks is,

S(a)
q + S(b)

q + S(c)
q , (3.38)

where the last, perturbative contribution S(c)
q is computed as the eq. (3.30).
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3.2.3 Charm quark contribution

Besides the light quarks, one needs to include the contribution from the charm quark.
The evaluation is again from the kT factorization.

For the gluon transverse momenta larger than the cutoff k2 > k2
0, we compute the

charm contributions perturbatively in eq. (3.30). In the region k2 < k2
0, we use on-shell

approximation k2 = 0 and obtain

S(b)
c =

∫ a

x

dz
z
Sbox(z, k2 = 0, Q2;m2

c)
∫ k2

0

0

dk2

k2 f
(
x

z
, k2

0

)
=

∫ a

x

dz
z
Sbox(z, k2 = 0, Q2;m2

c)
x

z
g
(
x

z
, k2

0

)
, (3.39)

where a = (1 + 4m2
c/Q

2)−1 and from [106],

Sbox(z, k2 = 0, Q2;m2
c)

= zαs

2π

{
ln 1 + ξ

1 − ξ

[
z2 + (1 − z)2 + z(1 − 3z)4m2

c

Q2 − z2 8m4
c

Q4

]

+ ξ

[
−1 + 8z(1 − z) − z(1 − z)4m2

c

Q2

]}
, (3.40)

where ξ2 = 1 − (4m2
c/Q

2)z(1 − z)−1. There are two contributions from the charm quark
that are dynamically generated from the photon-gluon fusion. We do not consider any
contributions from the additional charm quark that are not generated from the gluon.

3.3 Fits to HERA data
In this subsection, we present the results of the fits to the structure functions and the
properties of the extracted unintegrated gluon distribution function. We perform the fits
to the DIS HERA F2 [107] and its charm component data F c

2 [108], as they have already
extracted the structure functions from the reduced cross sections.

3.3.1 General setup

In this analysis we focus on high energy or low-x physics, therefore we impose the cuts
on the data: Q2 > 2 GeV2, x < 0.01. With these cuts, we include 170 points for F2 data
and 24 points for F c

2 data.
The initial condition f (0)(x, k2) for the BFKL equation with the CCSS resummation
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is given by the convolution of the integrated gluon density with the DGLAP splitting
function as in [44]

f (0)(x, k2) = αS(k2)
2π

∫ 1

x
dzPgg(z)x

z
g
(
x

z
, k2

0

)
, (3.41)

where the Pgg is the LO DGLAP splitting function and xg (x, k2
0) is the integrated gluon

density at scale k2
0. The scale is fixed to avoid explicit parametrization of the initial term

for the unintegrated gluon density in the non-perturbative region k2 < k2
0. In the case of

the unified DGLAP and BFKL calculation, it proved to be very successful and the input
could be parametrized with only a few free parameters [44].

The fitted parameters come from either the input gluon distribution xg, or the soft
Pomeron contribution S(a)

q . For the integrated input gluon distribution we consider the
form

xg(x, k2
0) = N(1 − x)β [1 +D (x+ ϵ)α] , (3.42)

where ϵ is manually set to be a small positive number, to prevent potential negativity of
the gluon input function when D < 0 and α < 0.

The detailed approach of the solution to the resummed BFKL equation is presented
in the appendix A, see also [34]. The fitting parameters are powers α and β, the
normalizations N and D in the input gluon distribution eq. (3.42) and the power λ and
normalization Cp for the soft Pomeron part in eq. (3.34).

The powers α and β in the gluon distribution enter non-linearly in eq. (3.42), as
a result, their variation requires resolving the resummed equation. The fitting to the
powers α and β is thus most time consuming. Meanwhile, other parameters are either
normalizations or in the modeled soft contribution which does not need integration.
Notice that the BFKL equation is in fact additive to the input integrated gluon density
xg (x, k2

0). Consequently, the fitting of the parameters other than the non-linear powers
is performed quickly.

The charm quark mass mc is not a free fit parameter in principle. Nevertheless, we
have tested the sensitivity of the results to their value by performing several fits with
different charm quark masses. We found that the best description of the data is achieved
with the charm quark mass mc = 1.4 GeV.

3.3.2 The fit to the structure function

We are interested in two different scenarios for our fitting.
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• In the first one, the fit has been performed to both F2 and F c
2 data simultaneously.

• In the second one, we fit only F2 data, thus the charm structure function F c
2 is left

as a prediction.

The resulting parameters of the fit are shown in table 3.11 with the chi-squared (χ2)
of the fit. We see that the quality of the fits is great and similar in both scenarios. In
addition, the values of the parameters in different scenarios tend to be very close, which
demonstrates the stability of the approach.

Table 3.1. Fitting parameters for the gluon distribution input and the soft Pomeron contribu-
tion.

Data Range χ2 Cp λ N β α D ϵ
Fit F2,F c

2 0.9900 0.4420 0.01562 3.894 4.951 -0.4402 -0.0281 0.0003
Fit F2 1.052 0.4427 0.01557 3.887 4.950 -0.4413 -0.0279 0.0003

As the fitting results of the two scenarios are very close, in the following, we only
present the results obtained when both F2 and F c

2 are fitted.
In fig. 3.1, we plot the structure function F2(x,Q2) as a function of x for selected values

of Q2 = 2, 15, 35, 90, 150, 250 GeV2. We see that the fit agrees with the experimental
data very well. In fig. 3.2, the calculation is shown for the charm structure function
F c

2 . The red points are the charm component extracted from the experiment assuming
extrapolating factors to the full phase space in the HVQDIS scheme and black points in
the CASCADE scheme, as proposed in [108]. Again, we see the successful description
of the experimental data on the charm structure function. As mentioned earlier, the
quality of this description is comparable to the case when the charm is not fitted, but is
a prediction.

Note that we only include the data with low inelasticity y, when the longitudinal
structure function contribution is negligible. In principle, One can include the data on FL

in the calculation. Although their error bars are much larger, we expect them to be much
less significant in the fitting. Nevertheless, FL is still important in further investigation,
especially for the low x dynamics of the gluon density. See [109], the improved description
of FL was achieved with low x resummation.

In figs. 3.3 to 3.5, we show the structure function with its separate components
F

(a)
2 , F

(b)
2 , F

(c)
2 as in eq. (3.38) as a function of x for selected values of Q2 = 150, 15, 5 GeV2

respectively. The perturbative component, indicated as F (c)
2 in figures 3.4 and 3.3

1The value of D is corrected compared with our publication [49], where the D is mistaken and the
presented value is actually ND.
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Figure 3.1. Structure function F2(x, Q2)
as a function of x for fixed values of Q2 =
2, 15, 35, 90, 150, 250 GeV2 (with the vertical
offsets 0.2 between each curve), indicated next
to the curves. Solid red lines correspond to a
fit with the CCSS resummed scheme. Experi-
mental data are from Ref. [107].

Figure 3.2. Charm structure function
F c

2 (x, Q2) as a function of x for fixed values of
Q2 = 6.5, 12, 20, 35, 60 GeV2 (with the vertical
offsets 0.2 between each curve), indicated next
to the curves. Solid blue curve indicates a fit
using the CCSS resummed scheme. The ex-
perimental data using different phase space ex-
trapolations based on theoretical calculations
CASCADE and HVQDIS are from Ref. [108].

dominates at large values of Q2 and small x. The two non-perturbative components have
very flat dependence on x and contribute to most of the cross section at moderate x and
lower Q2. We see that the non-perturbative contribution due to the soft Pomeron is also
substantial. For example, it is about 25% at small x ≃ 5 × 10−4 and Q2 = 15 GeV2.
Even at high Q2 the soft component is still non-negligible. In the low Q2 region, see
fig. 3.5, the non-perturbative components dominate the structure function in a very wide
range of x, down to x ∼ 3 × 10−4. Meanwhile, the perturbative component starts to
dominate only at the smallest x for low Q2 = 5 GeV2.

3.3.3 The extracted unintegrated gluon density

In figs. 3.6 and 3.7 we show the unintegrated gluon distribution for two fixed values of
x = 0.01, 0.001 as a function of transverse momentum squared k2. The present calculation
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Figure 3.3. Structure function F2(x, Q2)
as a function of x for fixed value of Q2 =
150 GeV2 broken down into various contribu-
tions. Red dashed: F

(a)
2 , Eq. (3.34); pink

dotted F
(b)
2 , Eq. (3.37); blue dashed-dotted

F
(c)
2 , Eq. (3.29). Finally, black solid indicates

the sum of all contributions.

Figure 3.4. Structure function F2(x, Q2)
as a function of x for fixed value of Q2 =
15 GeV2 broken down into various contribu-
tions. Red dashed: F

(a)
2 , Eq. (3.34); pink

dotted F
(b)
2 , Eq. (3.37); blue dashed-dotted

F
(c)
2 , Eq. (3.29). Finally, black solid indicates

the sum of all contributions.

Figure 3.5. Structure function F2(x, Q2) as a function of x for fixed value of Q2 = 5 GeV2

broken down into various contributions. Red dashed: F
(a)
2 , Eq. (3.34); pink dotted F

(b)
2 ,

Eq. (3.37); blue dashed-dotted F
(c)
2 , Eq. (3.29). Finally, black solid indicates the sum of all

contributions.

based on the CCSS resummation is compared with the extracted gluon distribution from
Kutak-Sapeta calculation [97] (called KS for short here) in the linear and non-linear case.
The non-linear case refers to the scenarios in which the additional gluon recombinations
lead to the non-linear term of the gluon density in the gluon evolution. The KS calculation
is similar in its philosophy to the one presented here and is widely used in phenomenology,
and thus it is interesting to compare it with the current extraction. The KS calculation
is based on the LL BFKL with kinematical constraint and includes DGLAP terms, so
the main difference is the NLL part of the BFKL and the type of subtractions performed.
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The overall shape in k2 is similar to the CCSS and KS calculation.

Figure 3.6. Unintegrated gluon distribution
function extracted from the fit as a function
of the transverse momentum squared k2 for
fixed x = 0.01. Unintegrated gluon from this
work based on CCSS resummation (red solid)
is compared with the other two models, from
Ref. [97], KS linear (dashed orange) and KS
non-linear (dashed-dotted blue).

Figure 3.7. Unintegrated gluon distribution
function extracted from the fit as a function
of the transverse momentum squared k2 for
fixed x = 0.001. Unintegrated gluon from this
work based on CCSS resummation (red solid)
is compared with the other two models, from
Ref. [97], KS linear (dashed orange) and KS
non-linear (dashed-dotted blue).

In figs. 3.8 and 3.9 the unintegrated gluon density is shown as a function of x for
fixed values of k2 = 10, 100, 1000 GeV2, again compared with the KS-linear and KS-
nonlinear calculation. Unsurprisingly, the small x behavior of the CCSS calculation
is very close to the KS-linear, whereas both calculations differ substantially from the
nonlinear calculation at low x and low Q2 where the saturation corrections are the
strongest. There are however some subtle differences between the KS-linear and CCSS
calculations which indicate somewhat stronger small x behavior in the CCSS scenario.

The differences between linear and non-linear scenarios are also visualized by taking
the ratios between the calculations shown in figs. 3.10 to 3.12. To be precise the ratios
CCSS/KS-linear and CCSS/KS-nonlinear are shown as a function of x for three different
values of the momentum squared k2 = 10, 100, 1000 GeV2. We see that the CCSS/KS-
linear ratio is close to unity, for most values of x, whereas the ratio to the calculation
which includes the nonlinear effects deviates substantially from unity at low x and low
k2. Still, we see again a marked difference, the CCSS calculation tends to have a slightly
faster rise towards small x. The small x behavior is also illustrated in Figs. 3.13, 3.14
and 3.15, where the effective Pomeron intercept is shown by performing the logarithmic
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Figure 3.8. Unintegrated gluon distribution
function extracted from the fit as a function of
x for a fixed value of the transverse momentum
squared k2 = 10 GeV2. Unintegrated gluon
from this work based on CCSS resummation
(red solid) is compared with the other two
models, from Ref. [97], KS linear (dashed or-
ange) and KS non-linear (dashed-dotted blue).

Figure 3.9. Unintegrated gluon distribution
function extracted from the fit as a function of
x for a fixed value of the transverse momentum
squared k2 = 1000 GeV2. Unintegrated gluon
from this work based on CCSS resummation
(red solid) is compared with the other two
models, from Ref. [97], KS linear (dashed or-
ange) and KS non-linear (dashed-dotted blue).

derivative of the unintegrated gluon distribution

λeff = ∂ ln f(x, k2)
∂ ln 1/x . (3.43)

It is seen from all plots that the effective power is very close, especially at low x to the
linear KS calculation, which is expected, and differs from the non-linear KS, for low x and
lowest value of k2. We also see that the power is larger for the CCSS calculation than for
the linear KS calculation, which is consistent with previous observations. Asymptotically,
for low x and low to moderate k2 the value of the power approaches about 0.3 which is
the power observed in HERA data.
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Figure 3.10. Ratios of unintegrated gluon
distributions as a function of x for fixed value
of the transverse momentum k2 = 10 GeV2.
Red solid: ratio of the gluon extracted in this
work to the KS linear; blue dashed, ratio of
the gluon extracted in this work to the KS
non-linear.

Figure 3.11. Ratios of unintegrated gluon
distributions as a function of x for fixed value
of the transverse momentum k2 = 100 GeV2.
Red solid: ratio of the gluon extracted in this
work to the KS linear; blue dashed, ratio of
the gluon extracted in this work to the KS
non-linear.

Figure 3.12. Ratios of unintegrated gluon
distributions as a function of x for fixed value
of the transverse momentum k2 = 1000 GeV2.
Red solid: ratio of the gluon extracted in this
work to the KS linear; blue dashed, ratio of
the gluon extracted in this work to the KS
non-linear.

Figure 3.13. Effective power λeff from
Eq. (3.43) of unintegrated gluon distribution
as a function of x for fixed value of the trans-
verse momentum squared k2 = 10 GeV2. Solid
red, this work; orange dashed, KS linear; blue
dashed-dotted KS non-linear.

83



Figure 3.14. Effective power λeff from
Eq. (3.43) of unintegrated gluon distribution
as a function of x for fixed value of the trans-
verse momentum squared k2 = 100 GeV2.
Solid red, this work; orange dashed, KS linear;
blue dashed-dotted KS non-linear.

Figure 3.15. Effective power λeff from
Eq. (3.43) of unintegrated gluon distribution
as a function of x for fixed value of the trans-
verse momentum squared k2 = 1000 GeV2.
Solid red, this work; orange dashed, KS linear;
blue dashed-dotted KS non-linear.
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Chapter 4 |
Resummation of Impact Factors

In chapter 2, we introduced the idea of renormalization group improvements (RGI)
motivated by the observation of the dependence on the energy scale choice s0 in the
high energy factorization. The scale effect makes up the leading poles contribution
∼ 1/γ3 to the NLL BFKL eigenfunction in the Mellin space. Later in chapter 3, we
further formulated the complete CCSS resummation, which incorporates the kinematical
constraints and exact NLL BFKL kernel.

In this chapter, we will consider extending the renormalization group improved
resummation to the impact factors ϕ. This generalization is realized as we notice that the
energy scale choice s0 enters the whole high energy factorization cross section integration
with both the impact factors and gluon Green’s function(GGF).

In particular, we investigate the photon impact factors from the virtual photon-photon
scattering. Currently, the photon impact factor is known up to NLO [80,110] and the
corresponding NLO cross section computed has underestimated the experimental data
from LEP e+e− collider, especially at high rapidity region [83,110,111]. In this chapter,
we will focus on the improvements to the virtual photon-photon scattering cross section
using small x resummation and construct the resummed impact factors accordingly.

4.1 From the e+e− to γ∗ γ∗ scattering
The experimental data we shall use later are from L3 and OPAL collaboration at LEP
collider [46,47]. Although we are interested in the high energy factorization of virtual
photon-photon scattering cross section, it is beneficial to see the general picture of
scattering in these experiments.

In [46,47], the incoming positron e+(p1) and electron e−(p2) with the center of mass
energy √

se+e− = 189 − 209 GeV, scatter into the outgoing positron e+(p′
1), electron
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e−(p′
2), and the hadron state X, as depicted in fig. 4.1.

Figure 4.1. Diagrammatic representation of the e+ e− → e+ e− X scattering.

Some important kinematics are as follows:

• The virtual photons γ∗ are emitted from the positron and electron. They undergo
scattering into the hadron state X. It is this subprocess γ∗ γ∗ → X that is of
particular interest here, as depicted by the box in fig. 4.1. The momenta of the
photons are q1 and q2 and the minus virtualities of the photons are defined as

Q2
1 = −q2

1, Q2
2 = −q2

2. (4.1)

• Taking the direction of the electron beam (with the energy Eb) as the z axis, we
label the polar angles of the outgoing positron (with energy E ′

1) and electron (with
energy E ′

2) as θ1 and θ2, i.e., the scattering is double-tagged.

• We use a convention that defines

y1 = q1q2

p1q2
= 1 − E ′

1
2Eb

cos2 θ

2 ,

y2 = q1q2

p2q1
= 1 − E ′

2
2Eb

cos2 θ

2 , (4.2)

where the masses of the positron and electron are ignored. Note there are different
conventions used in literature, we use the same convention as see [112].
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• We denote the hadronic invariant mass squared by sγ∗γ∗ = (q1 + q2)2. The rapidity
Y that measures the length of the gluon ladder in the BFKL approach is defined as

Y = ln
(
se+e−y1y2

s0

)
≃ ln

(
sγ∗γ∗

s0

)
(4.3)

where a symmetric choice of the energy scale is again s0 = Q1Q2. The second
approximation is taken with the limit sγ∗γ∗ ≫ Q2

1, Q
2
2.

Figure 4.2. The lowest order diagram that contributes the subprocess γ∗ γ∗ scattering.

The lowest order diagram of γ∗ γ∗ → X scattering is realized as in fig. 4.2, where
it only emits a quark and an antiquark. This diagram is computed with the Cutkosky
rule that we introduced in section 1.4.2.1, see fig. 4.3. We refer to the contribution from

Figure 4.3. The lowest order diagram computed with the Cutkosky cut.

these diagrams as the quark box contribution in the later text. The expression for this
contribution was derived in [113], see also [114].

Nevertheless, we emphasize the phases characterized by the scales involved in the
scattering:

• Q2
1 ∼ Q2

2 ≫ µ2, when sγ∗γ∗ is not a hard scale,:
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Here, the typical hadronic scale µ2 straightly indicates that this is a perturbative
process. We note that the comparable virtualities Q2

1 ∼ Q2
2 yield no large logarithm

ln(Q2
1/Q

2
2) in the fixed order calculation. The same goes for the energy sγ∗γ∗ and

corresponding the logarithm ln sγ∗γ∗ , when sγ∗γ∗ is not hard scale. Therefore, the
resummation of the higher order terms is less considered in this regime. The
dominant contribution comes from the quark box diagrams in fixed orders.

• Q2
1 ≫ Q2

2 ≫ µ2:

Q2
1 ≫ Q2

2 characterizes the collinear limit of the process (or anti-collinear when
Q2

2 ≫ Q2
1). Fixed order calculation comes with the large logarithm ln(Q2

1/Q
2
2),

and thus renormalization group improvements and DGLAP shall be considered to
resum the all-order terms.

• sγ∗γ∗ ≫ Q2
1, Q

2
2 ≫ µ2:

Figure 4.4. Diagrammatic representation of high energy factorization of the virtual photon-
photon scattering.

The high energy limit (or the high rapidity Y ) signals the large logarithm ln sγ∗γ∗

and thus the BFKL dynamics. This is the part we shall focus on and improve in
the rest of this chapter. For simplicity, we note s = sγ∗γ∗ . The cross section in the
high energy factorization can be written into the form of the impact factors ϕ and
gluon Green’s function G, as illustrated in fig. 4.4,

σ(ji)(s,Q1, Q2) =
∫

d2k d2k′ ϕ(j)(Q1,k) G(s,k,k′)ϕ(i)(Q2,k’) , (4.4)

where j, i is the polarization of the external photons and k, k′ denotes the transverse
momenta of the internal upper and lower gluons. Again, we use the notation k2 = k2.
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The related Mellin transform of the azimuthally averaged gluon Green’s function is
given by

G(s,k,k′) = 1
2πk2

∫ dω
2πi

(
s

s0

)ω ∫ dγ
2πi

(
k2

k2
0

)γ

G(ω, γ) , (4.5)

• Other regimes, for example, the non-perturbative regime, see discussions in [114].

Besides the quark box and BFKL contributions, the Bremsstrahlung QED radiation
diagrams also contribute to the total cross section, as depicted in fig. 4.5. Note that the

Figure 4.5. The Bremsstrahlung radiation e+ e− → e+ e− f f diagram in the t-channel (left)
and s-chennel (right). f is a fermion and f is an anti-fermion.

radiation in fig. 4.5 is allowed on any leg in the diagram. QED radiation is an important
factor in the double-tagged e+e− scattering in the experiment, especially at the high
rapidity. However, it is well modeled and has been subtracted from the experimental
group and thus not our focus.

4.2 BFKL vs RGI factorization formula
In this section, we shall compare the factorization formulae of the cross section between
the pure BFKL formalism and the RGI approach. We aim to derive the compatibility
conditions on the respective impact factors and gluon Green’s functions, thus preparing
us with the prerequisite for the derivation of the RGI impact factors.

The high energy factorization formula for γ∗γ∗ scattering in the Mellin representation
with respect to transverse momenta (or virtualities) Q1, Q2 and the energy scale s0:

σ(ji)(s,Q1, Q2) = 1
2πQ1Q2

∫ dω
2πi

(
s

s0(p)

)ω ∫ dγ
2πi

(
Q2

1
Q2

2

)γ− 1
2

ϕ(j)(γ; p) G(ω, γ; p)ϕ(i)(1 − γ; −p) , (4.6a)

89



G(ω, γ; p) = 1
ω − ᾱsχ(γ; p) , (4.6b)

we introduce an additional parameter p to characterize the variance of the energy scale
choice s0(p) = Q1+p

1 Q1−p
2 . By changing the parameter p from -1 to 1, we can switch from

the symmetric scale s0 = Q1Q2 (p = 0), to the asymmetric “upper” scale s0 = Q2
1 (p = 1)

or to “lower” scale s0 = Q2
2 (p = −1).

In eq. (4.6), both impact factors ϕ and eigenvalue function χ are computed pertur-
batively with the expansion in running coupling αs. In principle, from next-to-leading
order on, they also depend on the choice of the energy scale s0:

ϕ(j)(γ; p) = ϕ
(j)
0 (γ) + ᾱsϕ

(j)
1 (γ; p) + O(ᾱ2

s) , (4.7)

χ(γ; p) = χ0(γ) + ᾱsχ1(γ; p) + O(ᾱ2
s) . (4.8)

In contrast, the renormalization-group improved (RGI) high-energy factorization is

σ(ji)(s,Q1, Q2) = 1
2πQ1Q2

∫ dω
2πi

(
s

s0(p)

)ω ∫ dγ
2πi

(
Q2

1
Q2

2

)γ− 1
2

Φ(j)(ω, γ; p)G(ω, γ; p) Φ(i)(ω, 1 − γ; −p) (4.9a)

G(ω, γ; p) = 1
ω − ᾱsX(ω, γ; p) . (4.9b)

Notice that we introduced some new notations to differentiate the objects in the BFKL
and RGI approach, see summary in table 4.1.

Table 4.1. Notations of the objects in the standard BFKL and RGI approach respectively.

BFKL eigenfunction gluon Green’s function impact factor
BFKL χ G ϕ
RGI X G Φ

The new notation ω-dependent BFKL kernel X(ω, γ) in the RGI factorization (4.9b)
is introduced to clearly distinguish it from the BFKL kernel χ(γ) in the standard high-
energy factorization, eq. (4.6b). Compared with the standard BFKL expansion, both
resummed impact factors Φ and eigenfunction X are ω-dependent, for two purposes:

• to agree with the known results of χ and ϕ in the collinear limit, at least in the
leading logarithmic log(Q1/Q2) approximation;
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• to resum into a smoother behavior of the subleading contributions which are singular
in some region of the complex γ-plane.

Actually, the two issues are strictly related, as explained in [34].
Following the scale changing effect illustrated in the LL BFKL kernel eqs. (2.61)

and (2.62), a change of the asymmetric energy scale s0 to the symmetric scale with p = 0
leaves the cross section (4.9a) invariant under the transformation of the RGI impact
factor Φ and eigenfunction X,

Φ(j)(ω, γ; p) = Φ(j)
(
ω, γ − ω

2 p; 0
)
, X(ω, γ; p) = X

(
ω, γ − ω

2 p; 0
)
. (4.10)

For the ω-independent BFKL impact factors ϕ and eigenfunction χ of eq. (4.6), the scale
change would feature more complicated changes.

4.2.1 The equivalence between the two factorizations

Prepared with the two factorization formulas, we shall establish the consistency condition
between the two approaches. The first step is to evaluate the ω-integrals and require the
remaining γ-integrand to be equivalent (up to higher order terms suppressed by powers
of s).

In eq. (4.6a) the ω integration is straightforward: for s/s0 > 1, one can finish the
ω-integration via residue theorem and pick up the simple pole of the gluon Green’s
function G at ω = ᾱsχ(γ)

σ(ji)(s,Q1, Q2) = 1
2πQ1Q2

∫ dγ
2πi

(
s

s0

)ᾱsχ(γ)
(
Q2

1
Q2

2

)γ− 1
2
ϕ(j)(γ)ϕ(i)(1 − γ) . (4.11)

In eq. (4.9a), in principle, there can be many ω-poles. The position of the rightmost
pole is derived in the same way as in section 2.1.2. It provides the leading high-energy
behavior of the cross section and again is determined by,

ω = ᾱsX(ω, γ) ≡ ωeff(γ, ᾱs) ≡ ᾱsχ
eff(γ, ᾱs) , (4.12)

where the last expressions ωeff = ᾱsχ
eff represent the solution as effective function χeff

of γ and ᾱs. Therefore, the ω-integral singles out the residue from the gluon Green’s
function G,

Resω=ωeff [ω − ᾱsX(ω, γ)]−1 = [1 − ᾱs∂ωX(ωeff , γ)]−1 , (4.13)
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Consequently, the leading term of the cross section with the effective χeff is

σji(s,Q1, Q2) = 1
2πQ1Q2

∫ dγ
2πi

(
s

s0

)ᾱsX(ωeff ,γ)
(
Q2

1
Q2

2

)γ− 1
2 Φ(j)(ωeff , γ) Φ(i)(ωeff , 1 − γ)

1 − ᾱs∂ωX(ωeff , γ) + · · · ,

(4.14)

where the dots indicate the higher order terms suppressed by powers of s. Therefore, for
any choice of energy scale,

χ(γ) = X(ωeff , γ) (4.15a)

ϕ(j)(γ)ϕ(i)(1 − γ) = Φ(j)(ωeff , γ)Φ(i)(ωeff , 1 − γ)
1 − ᾱs∂ωX(ωeff , γ) . (4.15b)

By expanding eq. (4.15) in ᾱs as in eqs. (4.7) and (4.8), we obtain the consistency
condition that relates the RGI eigenvalue and impact factors (with their derivatives in
ω) at ω = 0 with the BFKL ones:

ωeff = ᾱsχ0(γ) + O(ᾱ2
s) (4.16)

χ0(γ) = X0(0, γ) (4.17)

χ1(γ) = X1(0, γ) + χ0(γ)∂ωX0(0, γ) (4.18)

ϕ
(j)
0 (γ)ϕ(i)

0 (1 − γ) = Φ(j)
0 (0, γ)Φ(i)

0 (0, 1 − γ) (4.19)

ϕ
(j)
0 (γ)ϕ(i)

1 (1 − γ) + ϕ
(j)
1 (γ)ϕ(i)

0 (1 − γ) = Φ(j)
0 (0, γ)

[
Φ(i)

1 (0, 1 − γ) + χ0(1 − γ)∂ωΦ(i)
0 (0, 1 − γ)

]
+
[
Φ(j)

1 (0, γ) + χ0(γ)∂ωΦ(j)
0 (0, γ)

]
Φ(i)

0 (0, 1 − γ)

+ Φ(j)
0 (0, γ)Φ(i)

0 (0, 1 − γ)∂ωX0(0, γ) . (4.20)

We note that eqs. (4.16) to (4.18) are well known from the first studies on RGI BFKL [34].
Equation (4.19) simply gives ϕ(j)

0 (γ) = Φ(j)
0 (0, γ) for any polarization j.

4.2.2 Known results and conventions

To reduce the confusion on the conventions, we note that eqs. (4.6a) and (4.9a) comes
with the following normalization for the LO impact factors, compared to those in different
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literature [79,82,83]:

ϕ
(j)
0 (γ) =

2π
√

2(N2
c − 1)α

Nf

(∑
q

e2
q

)
γ hj(γ) (hT = h2

γ
− hL) ref [79] Catani et al.

(4.21)

=
TR

√
2(N2

c − 1)
2 Fj(ν) (γ = 1

2 + iν) ref [83] Ivanov et al.

(4.22)

=
TR

√
2(N2

c − 1)
π

(∑
q

e2
q

)
Sj(N = 0, γ) (N = ω) ref [82] Białas et al. ,

(4.23)

where ∑q denotes the sum over quark flavors and eq is the electric charge of quark q in
units of the minus electron charge.

It is worth noting that the values of Nc = 3 and TR = 1/2 are usually substituted in.
However, we will try to keep them as it can help keep track of the color structure in the
later collinear analysis. We present the explicit form of the LO impact factors

ϕ
(T )
0 (γ) = ααs

(∑
q

e2
q

)
TR

√
2(N2

c − 1) π2
(1 + γ)(2 − γ)Γ2(γ)Γ2(1 − γ)
(3 − 2γ)Γ(3/2 + γ)Γ(3/2 − γ) , (4.24a)

ϕ
(L)
0 (γ) = ααs

(∑
q

e2
q

)
TR

√
2(N2

c − 1) π Γ(1 + γ)Γ(2 − γ)Γ(γ)Γ(1 − γ)
(3 − 2γ)Γ(3/2 + γ)Γ(3/2 − γ) , (4.24b)

Both LO impact factors have poles at γ = 0 and γ = 1, similarly to the eigenvalue
functions χ0 and χ1, provided with the Γ functions in the numerators.

These poles emerge from the QCD dynamics which, in the collinear limit Q1 ≫ Q2

(o anti-collinear limit Q1 ≪ Q2), generates the logarithmic term ∼ lnn(Q2
1/Q

2
2). They

correspond to poles of n+ 1th order at γ = 0 (γ = 1) in Mellin space. More precisely,
the RGI impact factors and eigenvalue function have poles whose order increases as the
perturbative order, also see example eq. (2.40),

Φ(T )
n (ω, γ; 1) ∼ 1

γ2+n
, Φ(L)

n (ω, γ; 1) ∼ 1
γ1+n

, Xn(ω, γ; 1) ∼ 1
γ1+n

, (4.25)

On the contrary, the corresponding quantities in the standard BFKL with the symmetric
energy scale choice s0 = Q1Q2 have poles that increase twice as much:

ϕ(T )
n (γ; 0) ∼ 1

γ2+2n
, ϕ(L)

n (γ; 0) ∼ 1
γ1+2n

, χn(γ; 0) ∼ 1
γ1+2n

. (4.26)
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This has been already observed at leading and next-to-leading order for the eigenvalue
functions χ0 and χ1 in section 2.2. The collinear poles of the NLO impact factors can be
derived from the expressions computed in [83]:

ϕ
(T )
1 (γ; 0)
ϕ

(T )
0 (γ)

= χ0(γ)
2 ln s0

Q2 + b̄ ln µ
2
R

Q2

+ 3CF

4NC

− 5
9
TRNf

NC

+ π2

4 + 85
36 − π2

sin2(πγ) − 1
γ (γ − 1) + 3χ0(γ)

2 (γ + 1) (2 − γ)

+ 1
4(1 − γ) − 1

4γ − 7
36(1 + γ) + 5

3(1 + γ)2 − 25
36(γ − 2)

+ 1
2χ0(γ) [ψ (1 − γ) + 2ψ (2 − γ) − 2ψ (4 − 2γ) − ψ (2 + γ)] , (4.27)

ϕ
(L)
1 (γ; 0)
ϕ

(L)
0 (γ)

= χ0(γ)
2 ln s0

Q2 + b̄ ln µ
2
R

Q2

+ 3CF

4NC

− 5
9
TRNf

NC

+ π2

4 + 85
36 − π2

sin2(πγ) − 1 − 4γ
2γ2(γ2 − 1) + 1

1 − γ2χ0(γ)

+ 1
2χ0(γ) [ψ (1 − γ) + 2ψ (2 − γ) − 2ψ (4 − 2γ) − ψ (2 + γ)] , (4.28)

where b̄ is defined in eq. (1.94), µR is the argument of the running coupling αs, and
Q2 = Q1Q2.

4.3 Resummation of the LO transverse impact factor
We shall make use of eq. (4.20) to derive the NLO RGI impact factors. However, the
standard BFKL does not provide the LO ω-dependent eigenvalue and impact factors as
well as their derivatives on ω. In this section, we shall use the collinear analysis to obtain
the improved LO eigenvalue and impact factors.

4.3.1 LO TT cross section in the collinear limits

Collinear analysis can help us find the collinear poles of the cross section, even with ω

dependency as we will see later. The collinear limit of the γ ∗ γ∗ scattering is realized
with two photons with vastly different virtualities, e.g., Q1 ≫ Q2. This dynamics is well
described by effective ladder diagrams, as illustrated in fig. 4.6, where the intermediate
propagators are strongly ordered in virtuality (without losing any generality, we assume
they decrease from left to right).
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We brief the rules of calculation at each QCD vertex as follows:

• The strong coupling is evaluated at a scale given by the largest virtuality of the
connected propagators;

• A splitting function Pba(zb/za) describes the fragmentation of the parent parton
a (to the right) into a child parton b (to the left) and an emitted on-shell parton
(vertical line).

The integrals over the ordered longitudinal momentum fractions x are convolutions,
which can be cast into products by a Mellin transform in 1/x = s/Q2

1 = s/s0 for p = 1,

σ(ji)(s,Q1, Q2) = 1
2πQ1Q2

∫ dω
2πi

(
s

Q1+p
1 Q1−p

2

)ω

σ̃(ji)(ω,Q1, Q2; p) . (4.29)

which agrees with the structure of eqs. (4.6a) and (4.9a).

Q1 Q2l1 l2k

Figure 4.6. Ladder diagram depicting collinear limit contributing to the LO BFKL factoriza-
tion.

The collinear integrand σ̃(T T ) for two transverse photons at O(α2α2
s ) — corresponding

to the four-rungs LO BFKL diagram with two QCD vertices and two QED vertices — is
obtained as

σ̃(T T )(ω,Q1, Q2; 1) = (2π)3α
(

2
∑
q∈A

e2
q

)
×

∫ Q2
1

Q2
2

dl21
l21

αs(l21)
2π Pqg(ω)

∫ l21

Q2
2

dk2

k2
αs(k2)

2π Pgq(ω)
∫ k2

Q2
2

dl22
l22

α

2π

(
2
∑
q∈B

e2
q

)
Pqγ(ω) .

(4.30)

where l1, k, and l2 are the momenta of the t-channel quark, gluon, and quark respectively,
as depicted from left to right in fig. 4.6, A and B denote the sets of active quarks of
momenta l1 and l2 respectively, while Pab(ω) denotes the one-loop splitting function in
the Mellin space. The running coupling at scale k2 can be expressed in terms of the
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renormalized coupling αs at the given scale µR:

αs(k2) = αs(µ2
R)

1 + αs(µ2
R)b ln k2

µ2
R

≃ αs(µ2
R)
(

1 − αs(µ2
R)b ln k2

µ2
R

+ · · ·
)
, (4.31)

Substituting the above expansion for αs(l21) and αs(k2) in eq. (4.30) and using the
following logarithmic variables Li := ln Q2

i

µ2
R

, λi := ln l2i
µ2

R
, λk := ln k2

µ2
R

, we have

σ̃(T T ) = (2π)3α
2

2π

(
αs(µ2

R)
2π

)2 (
2
∑
q∈A

e2
q

)(
2
∑
q∈B

e2
q

)
Pqg(ω)Pgq(ω)Pqγ(ω)

×
∫ L1

L2
dλ1

∫ λ1

L2
dλk

∫ λk

L2
dλ2

[
1 − αs(µ2

R)b(λ1 + λk) + O(α2
s )
]
. (4.32)

The 3-dimension integral in the second line of eq. (4.32) can be calculated up to O(αs),

∫∫∫
= (L1 − L2)3

3!
[
1 − αs(µ2

R)b(L1 + L2)
]

− αs(µ2
R)b(L1 − L2)4

4! + O(α2
s ) .

Notice that

α2
s (µ2

R)
[
1 − αs(µ2

R)b(L1 + L2)
]

= α2
s (Q1Q2) + O(α4

s ) ,

by including the α2
s (µ2

R) in the first line of eq. (4.32) with 3-dimension integral, we obtain

α2
s (µ2

R)
∫∫∫

≃ α2
s (Q1Q2)

[
(L1 − L2)3

3! − αsb
(L1 − L2)4

4! + O(α4
s )
]
, (4.33)

≃ α2
s (Q1Q2)

[
1
3! log3 Q

2
1

Q2
2

− αsb
1
4! log4 Q

2
1

Q2
2

+ O(α4
s )
]
. (4.34)

Knowing that (L1 − L2)n = lnn Q2
1

Q2
2

becomes n!
γn+1 under Mellin transform, we have

α2
s (Q1Q2)

1
γ4

[
1 − αsb

1
γ

]
. (4.35)

The first term O(α2
s/γ

4) could have been obtained even if we use a fixed coupling constant
in eq. (4.30). The running coupling is then responsible for the second (b-dependent) term
O(α3

s/γ
5). This will be important term in the later analysis of the NLO impact factors.1

Finally, by restoring all the factors of eq. (4.32), i.e., the splitting functions and other
1If one chooses a different scale for the running coupling, the coefficient of the b-dependent term in

eq. (4.35) would change accordingly.
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coefficients, we obtain σ̃(T T ) in the Mellin space of eq. (4.30) (the Mellin transform with
respect to the variable Q2

1/Q
2
2), expanded at order α2

s ,

˜̃σ(T T )
0 (ω, γ; 1)

∣∣∣coll
= Φ(T )

0 G0 Φ(T )
0

∣∣∣coll

p=1

= (2π)3α
(

2
∑
q∈A

e2
q

)1
γ

· αs

2π
Pqg(ω)
γ

· αs

2π
Pgq(ω)
γ

· α

2π

(
2
∑
q∈B

e2
q

)
Pqγ(ω)
γ

.

(4.36)

This is the integrand of the RGI factorization formula (4.9a) in the collinear limit γ → 0.
Some remarks are as follows:

(i) The collinear analysis of the cross section is essentially based on the DGLAP chain,
from the above analysis, it singles out the leading logarithmic behavior in the ratio
Q1/Q2. As we expected, eq. (4.36) agrees with the leading γ-pole structure of the
RGI integrand at γ → 0.

(ii) The above pole structure correspond to p = 1, i.e., energy scale s0 = Q2
1. If we

adopt the symmetric energy scale s0 = Q1Q2 (p = 0), according to eq. (4.10),
we need to shift the pole at γ = 0 to γ = −ω/2, while the coefficient remains
unchanged.

(iii) In the anti-collinear limit Q1 ≪ Q2, one can obtain the same result of eq. (4.36),
with the replacement of γ → 1 − γ and p → −1, i.e., s0 = Q2

2.

At the symmetric energy scale s0 = Q1Q2, the pole at γ = 1 is shifted at γ = 1+ω/2.

In collinear limit p = 1, i.e., s0 = Q2
1, the pole at γ = 1 is shifted at γ = 1 + ω.

(iv) The two sums with electric charges eq are over quark flavors (q ∈ {u, d, . . . }), while
a factor of 2 is associated with each sum to take account of both the quark and
antiquark contributions.

Therefore, with energy scale s0 = Q2
1 (p = 1) and including both collinear and

anti-collinear contributions, the pole structure at LO of the RGI improved cross section
is

˜̃σ(T T )
0 (ω, γ; 1)

∣∣∣2×coll
= (2π)3α

(
2
∑

q

e2
q

)1
γ

· αs

2π
Pqg(ω)
γ

· αs

2π
Pgq(ω)
γ

· α2π

(
2
∑

q

e2
q

)
Pqγ(ω)
γ

+
(
γ → 1 + ω − γ

)
. (4.37)
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We present the expressions of the splitting functions in Mellin space with powers
expansion series in ω as follows:

Pqq(ω) = CF

(
5
4 − π2

3

)
ω + O(ω2) (4.38)

Pgq(ω) = 2CF

ω
[1 + ωAgq(ω)] Agq(0) = −3

4 (4.39)

Pqg(ω) = 2
3TR [1 + ωAqg(ω)] Aqg(0) = −13

12 (4.40)

Pgg(ω) = 2CA

ω
[1 + ωAgg(ω)] Agg(0) = −11

6 + b̄ , b̄ = 11
12 − TRNf

3Nc

(4.41)

Pqγ(ω) = Nc

TR

Pqg(ω) . (4.42)

Note that Pqg refers to the process where a gluon produces a single quark emitting an
antiquark, or vice versa. Therefore, a gluon splitting into a quark or antiquark of a
given flavor requires a factor of 2. If the (anti-) quark splits into a gluon, an additional
factor Nf shall be present accounting for the sum over flavors. On the other hand, if the
(anti-)quark couples to a photon, the sum over flavors gives a factor ∑q e

2
q. eq. (4.42)

stems from the fact that, if a gluon of color c splits into a quark-antiquark pair with
colors a, b, then the squared matrix element contains ∑ab t

c
abt

d∗
ab = tr(tctd) = TRδcd, where

t is the matrix in the fundamental and adjoint representations of the SU(3) color group.
Meanwhile, when a photon splits into a quark-antiquark pair, the sum over colors is∑

ab δabδab = ∑
a δaa = Nc.

By substituting eqs. (4.39) to (4.42) and CFNc = (N2
c −1)TR, we can rewrite eq. (4.37)

as

˜̃σ(T T )
0 (ω, γ; 1) =

[
ααs

(∑
q

e2
q

)
2Pqg(ω)

√
2(N2

c − 1)
(

1
γ2 + 1

(1 + ω − γ)2

)]2

× 1
ω

(
1 + ωAgq(ω)

)
+ O(γ−3) + O((1 + ω − γ)−3) , (4.43)

where we are only interested in the quartic poles in γ.
The term in square brackets agrees exactly with the ω-dependent LO impact factor

derived from eq. (4.23) in the collinear limit, i.e., it represents the double poles of Białas,
Navelet and Peschanski (BNP) impact factor [82] for a transverse photon with their full
ω-dependent coefficient:

Φ(T )
BNP(ω, γ) = ααs

(∑
q

e2
q

)
TR

√
2(N2

c − 1) πΓ(γ + δ)Γ(γ)
Γ(ω)

1
(δ2 − 1) (δ2 − 4)
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·
{
ψ(γ + δ) − ψ(γ)

δ

ω2 [3(ω + 1)2 + 9] − 2ω (δ2 − 1) + (δ2 − 1) (δ2 − 9)
4ω

− 3(ω + 1)2 + 3 + (δ2 − 1)
2

}
(4.44)

= C0

[
1 + ωAqg

γ2 + D(ω)
γ

+ O(γ0)
]

+ (γ → 1 + ω − γ) (4.45)

C0 = ααs

(∑
q

e2
q

)4
3TR

√
2(N2

c − 1),

D(ω) = 7
6 + O(ω) , δ ≡ ω + 1 − 2γ . (4.46)

The factor 1/ω — stemming from Pgq(ω) — in the second line of eq. (4.43) represents the
gluon Green’s function eq. (4.9b) at lowest order (αs → 0), while the finite part ∝ Agq

provides an NLL correction, to be taken into consideration later.2

Above all, the pole structure of the integrand reads,

˜̃σ(T T )
0 (ω, γ; 1) = C2

0
1
ω

[
(1 + ωAqg)2 (1 + ωAgq)

γ4 + O(γ−3)
]

+ (γ → 1 + ω − γ) . (4.47)

4.3.2 LO RGI transverse impact factor

With the knowledge of the pole structure in the last subsection, we proceed to construct
“full” LO impact factors. By “full”, we mean that we shall supplement the lower order
terms besides the poles, possibly by topping the known result with the improvements
from the collinear analysis.

The improved term is evident from eq. (4.43). If we expand the LO transverse BNP
impact factors [82] times the LL gluon Green’s function in the collinear limit, we see that
it is exactly the same as eq. (4.43) expect for an extra factor Pgq(ω)/Pgq(0) = (1 +ωAgq).
Thus the full integrand of the resummed cross section can be constructed as

(1 + ωAgq)Φ(T )
BNP G Φ(T )

BNP. (4.48)

The next step is to attribute the improvement term (1+ωAgq) to either impact factors
or the gluon Green’s function. Since this factor stems from the quark-gluon interaction,
while the LL GGF is determined by pure gluon dynamics in BFKL, it is natural to
associate such a factor to the impact factors. For each resummed impact factor, with the

2In the ω → 0 limit, eq. (4.43) reduces to the product of the LL GGF 1/ω with the LO impact factors
ϕ

(T )
0 (γ)ϕ(T )

0 (1 − γ) of Catani et al. as in eq. (4.21) — restricting ϕ
(T )
0 to the double poles in γ.
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improving factor expanded up to O(ω), we can build the resummed transverse impact
factor in the simplest way,

Φ(T )
0 (ω, γ; 1) = Φ(T )

BNP(ω, γ)
[
1 + ω

2Agq(ω)
]

(4.49)

However, it shall be noted that the attribution of the improvements is, in principle,
ambiguous. We shall explore the general rules for the flexibility as the collinear analysis
only provides constraints for the leading twist poles, i.e., for γ ≃ 0 and γ ≃ 1 + ω, of
their products. We start by parametrizing the leading-twist poles of Φ(T )

0 as follows:3

Φ(T )
0 (ω, γ; 1) = C0

[
1 + ωB(ω)

γ2 + D(ω)
γ

+ 1 + ωB̄(ω)
(1 + ω − γ)2 + D̄(ω)

1 + ω − γ

]
+ r(ω, γ) . (4.50)

Here r(ω, γ) collects the remaining terms and has no leading-twist poles. The integrand
for the cross section, for γ ≃ 0, is then

˜̃σ(T T )
0 (ω, γ; 1) = Φ(T )

0 (ω, γ; 1) 1
ω

Φ(T )
0 (ω, 1 + ω − γ; 1)

= C2
0

1
ω

[
(1 + ωB)(1 + ωB̄)

γ4 + O(γ−3)
]

+ (γ → 1 + ω − γ) . (4.51)

Comparing the above expression with eq. (4.47) we get a constraint from our parametriza-
tion

(1 + ωB)(1 + ωB̄) = (1 + ωAqg)2(1 + ωAgq) (4.52a)

=⇒ B + B̄ = 2Aqg + Agq + O(ω) . (4.52b)

In the following, we often neglect the subleading terms O(ω) in eq. (4.52b) for simplicity.
Unfortunately, the coefficients D(ω) and D̄(ω) of the simple poles are not available

in the present LO collinear analysis. However, their value at ω = 0 can be determined
from the explicit expression of eq. (4.24a) in ref. [79]: D(0) = D̄(0) = 7/6 [cfr. eq. (4.46)].
The simplest and more natural choice for us is to adopt D(ω) = D̄(ω) as in the impact
factor Φ(T )

BNP of eq. (4.44).
According to the constraints previously derived, we present some possible choices

of the transverse LO RGI impact factor, whose differences have to be considered a
3We use the convention of parametrizing coefficients of the collinear and anti-collinear poles with the

same letter, but with a bar over the coefficients of the anti-collinear poles.

100



resummation-scheme ambiguity: 4

Φ(T )
0 (ω, γ; 1) = Φ(T )

BNP(ω, γ)
[
1 + ω

2Agq(ω)
]

(scheme I) (4.53a)

Φ(T )
0 (ω, γ; 1) = Φ(T )

BNP(ω, γ) + C0
ω

2Agq(ω)
[

1
γ2 + 1

(1 + ω − γ)2

]
(scheme II) (4.53b)

Φ(T )
0 (ω, γ; 1) = Φ(T )

BNP(ω, γ) + C0 ωAgq(ω) 1 + ωAqg

(1 + ω − γ)2 (scheme III) . (4.53c)

The remarks about these schemes are as follows:

• Scheme I is an overall renormalization of the impact factor, as we introduced earlier
for an example.

• Scheme II just modifies the coefficient of the (leading-twist) double poles.

• Scheme III is motivated by the fact that the Pgq vertex is attached to the impact
factor to the right, thus providing a 1/γ pole only to Φ0(ω, 1 − γ).

• The Schemes I and II preserve the γ ↔ 1 − γ symmetry of the impact factor, while
scheme III does not. In particular B = B̄ = Aqg +Agq/2 in schemes I and II, while
B = Aqg, B̄ = Aqg +Agq +ωAqgAgq in scheme III (which fulfills exactly eq. (4.52a)).

4.4 Resummation of the NLO transverse impact factor

4.4.1 NLO TT cross section in the collinear limit

In this section, we shall determine the transverse impact factors at NLO. Specifically, we
want to construct a function Φ(T )

1 (ω, γ) such that

• the RGI cross section (4.9a) agrees with the NLL BFKL one (4.6a);

• the same RGI cross section agrees with the DGLAP cross section in the collinear
limits Q1 ≫ Q2 and Q1 ≪ Q2 up to α∋

s .

The first condition has already been considered by comparing the equivalence of the
BFKL and RGI approaches. It is formulated as the constraint in eq. (4.20) at ω = 0.

The second condition determines the structure of the collinear poles (γ ≃ 0 and
γ ≃ 1 + ω) of the impact factors where we have chosen the asymmetric energy scale. We

4Other schemes can be considered, see sec. 4.4.1.
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start by investigating the O(α3
s ) integrand, i.e., generalizing the eq. (4.37) with diagrams

with more emissions. The relevant ladder diagrams with five splittings between the

(a)

Q1 Q2

(b)

Q1 Q2

Figure 4.7. Relevant ladder diagrams in the collinear limit in the NLO BFKL factorization.
We omit the third diagram that is the left-right symmetric of (b), i.e., with the gluon emitted
from the quark line on the right.

photons are illustrated in fig. 4.7. The vertices at the external photons are QED couplings
as in the LO case. Such diagrams, together with the running-coupling term of eq. (4.35),
provide the integrand of the RGI factorization formula at O(α3

s ) in the collinear limit

αs ˜̃σ(T T )
1 (ω, γ; 1) = ˜̃σ(T T )

0 (ω, γ; 1)
[
αs

2π
Pgg

γ
+ 2αs

2π
Pqq

γ
− αsb

γ
+ O(γ0)

]
, (4.54)

where ˜̃σ(T T )
0 is the LO (collinear) integrand defined in eq. (4.36).

The calculation rules are the same as the collinear analysis of the LO diagram. The
first term of eq. (4.54) stems from the diagram of fig. 4.7a which involves a Pgg splitting
function. According to the analysis of CCSS [34], this contribution can be entirely
associated with the gluon Green’s function.

Similar to eq. (3.5), at fixed αs, the iteration of the Pgg splitting function along the
gluon ladder provides a geometric series that is easily summed, yielding

ω G(ω, γ; 1)coll =
∞∑

n=0

(
αs

2π
Pgg(ω)
γ

)n

=
[
1 − ᾱs

ω

1 + ωAgg

γ

]−1

. (4.55)

Since ωG = [1 − ᾱs

ω
X]−1 [cfr. eq. (4.9b)], we conclude Xcoll

0 (ω, γ; 1) = [1 + ωAgg]/γ.
The second term in eq. (4.54) stems from the diagrams with a gluon emitted from

the quark lines, where an extra Pqq splitting function is produced, see fig. 4.7b and its
symmetric counterpart (thus a factor of 2 is accounted). As the gluon emitted from the
quark lines on the side, it is naturally associated with the impact factors. However, we
note that, since Pqq vanishes at ω = 0 (cfr. eq. (4.38)), these contributions are suppressed
by two powers of ω w.r.t. the diagram with Pgg, and thus are next-to-next-to-leading in
the BFKL hierarchy. Nevertheless, we keep them just to be accurate in the LO DGLAP
evolution.
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The third term in eq. (4.54) is the running coupling (b-dependent) contribution
derived in eq. (4.35), and there is flexibility to attribute it to either the impact factors
or the GGF, or even partially both. In the following section, we shall deal with this
flexibility more systematically, and propose some possible choices of transverse NLO RGI
impact factor.

4.4.2 NLO RGI transverse impact factor

In this subsection, We move on to determine the NLO RGI impact factor from the NLO
cross section derived in the previous subsection. We start by parametrizing the collinear
structure of RGI impact factors and kernel as follows, similar to the LO case but with
more parameters

Φ(ω, γ; 1) = Φ0(ω, γ; 1)
[
1 + ᾱs

(
M(ω)
γ

+ M̄(ω)
1 + ω − γ

+ r1(ω, γ)
)

+ O(ᾱ2
s)
]

(4.56)

X(ω, γ; 1) = 1 + ωU(ω)
γ

+ O(γ0) + ᾱs

(
V (ω)
γ2 + O(γ−1)

)
+ O(ᾱ2

s) , (4.57)

where r1 is regular at γ = 0, 1 +ω and we have taken into account that additional powers
of ᾱs involve additional powers of 1/γ and 1/(1 + ω − γ).5 We omit the superscript (T )
on the impact factors in the subsection for simplicity.

The integrand of the NLO cross section is, with the LO contribution Φ0 G0 Φ0 excluded,

αs ˜̃σ1(ω, γ; 1) = (Φ0 G1 Φ0 + Φ1 G0 Φ0 + Φ0 G0 Φ1) − Φ0 G0 Φ0

= ˜̃σ0(ω, γ; 1) ᾱs

[ 1
ω

+M + M̄ + U

γ
+ O(γ0)

]
. (4.58)

By comparing eq. (4.58) with eq. (4.54), we obtain a relation that works as a constraint
on our proposed parameterization,

M + M̄ + U = Agg + 2P̄qq − b̄ , (4.59)

with b̄ defined in eq. (1.94), P̄ab ≡ Pab/(2CA), and P̄gg = 1/ω + Agg [cfr. eq. (4.41)].
To check the compatibility of our collinear analysis with the known BFKL results,

and also to investigate the potential constraints on the RGI impact factors, we show the
5Recall that Φ(T )

0 has collinear poles of second order. As a result, we expect an improved NL impact
factor with cubic poles. In contrast, the collinear behavior of the BFKL impact factor ϕ

(T )
1 featuring

cubic and even quartic poles at γ = 0, 1, as it is apparent from eq. (4.61).
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collinear structure of the NLO BFKL transverse impact factor eqs. (4.24a) and (4.27)
and kernel eq. (1.93).6 At symmetric scales s0 = µ2

R = Q1Q2, i.e., p = 0:

ϕ0(γ) = ϕ0(1 − γ) = C0

(
1
γ2 + D(0)

γ
+ 1

(1 − γ)2 + D̄(0)
1 − γ

+ · · ·
)

(4.60)

ϕ1(γ) = ϕ0(γ)
(

−1
γ2 + η

γ
+ −3/2

(1 − γ)2 + η̄

1 − γ
+ · · ·

)
(4.61)

χ(γ) = 1
γ

+ ᾱs

(
−1/2
γ3 + A1(0) − b̄/2

γ2 + H1

γ
+ · · ·

)
(4.62)

η = −11
6 , η̄ = −7

4 , H1 = −TRNf

Nc

(
5
9 + 13

18N2
c

)
, (4.63)

where C0, D(0) and D̄(0) were already determined in eq. (4.46) and the full A1 reads

A1(ω) = − 1
ω + 1 + 1

ω + 2 − 1
ω + 3 − [ψ(2 + ω) − ψ(1)] + 11

12 − TRNf

3N3
c

. (4.64)

Thus the consistency condition on the kernel eq. (4.18) yields

A1 − b/2 = U + V . (4.65)

By noting that ϕ0(γ) = ϕ0(1 − γ) = Φ0(0, γ; p) for any p, eq. (4.20) is simplified,

ϕ1(γ) + ϕ1(1 − γ) = Φ1(0, γ) + Φ1(0, 1 − γ)

+ χ0(γ)[∂ωΦ0(0, γ) + ∂ωΦ0(0, 1 − γ)] + ϕ0(γ)∂ωX0(0, γ) , (4.66)

where Φ’s and X must be considered here at p = 0, i.e., by replacing γ → γ + ω/2 in
eqs. (4.56) and (4.57). From eq. (4.61) we can expand the l.h.s. of eq. (4.66) around the
collinear pole γ = 0:

ϕ1(γ) + ϕ1(1 − γ) = ϕ0(γ) ᾱs

[
−5/2
γ2 + η + η̄

γ
+ O(γ0)

]
. (4.67)

By expanding the r.h.s. of eq. (4.66) using eqs. (4.56) and (4.57) — with the replacement
γ → γ + ω/2 —, the coefficient −5/2 of the quadratic pole within square brackets in
NLO BFKL impact factors eq. (4.67) is correctly reproduced from the RGI approach,

6With running-coupling scale µ2
R = Q2

1, the double poles of χ1(γ) are A1/γ2 and (A1 − b̄)/(1 − γ)2.
With symmetric scale µ2

R = Q1Q2, the coefficients of both poles are equal to A1 − b̄/2.
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while the coefficients of the simple poles are equal if

η + η̄ = B + B̄ + 1
2D + 1

2D̄ +M + M̄ + U
∣∣∣
ω=0

. (4.68)

We can check that this is indeed the case. In fact, by exploiting eq. (4.52) and eq. (4.59),
we find the coefficient of the simple pole in the RGI approach is

B + B̄ + 1
2D + 1

2D̄ +M + M̄ + U
∣∣∣
ω=0

= 2P̄qq + 2Aqg + Agq + Agg + 1
2D + 1

2D̄ − b̄
∣∣∣
ω=0

(4.69a)

= −43
12 = η + η̄ , (4.69b)

thus proving the consistency of next-to-leading BFKL and leading-order DGLAP.
Of course, the constraints (4.65) and (4.69a) derived from eqs. (4.18) and (4.20)

respectively, can be fulfilled in different ways. In table 4.2 we present some choices that
we prefer on physical grounds.

scheme name U V B + B̄ M + M̄

collA Agg − b̄ ∆A+ b̄/2 2Aqg + Agq 2P̄qq

collB Agg ∆A− b̄/2 2Aqg + Agq 2P̄qq − b̄

zVnB A1 − b̄/2 0 2Aqg + Agq 2P̄qq − ∆A− b̄/2
zVnM A1 − b̄/2 0 2Aqg + Agq − ∆A− b̄/2 2P̄qq

zVzM A1 − b̄/2 0 2P̄qq + 2Aqg + Agq − ∆A− b̄/2 0
Table 4.2. Favourite scheme choices for defining the NLO RGI transverse impact factor.

For simplicity of the presentation, we introduced ∆A in the table, where

∆A = A1(ω) − Agg(ω) = CF

CA

2Nf P̄qg(0) =
(

1 − 1
N2

c

)
TRNf

3Nc

. (4.70)

Remarks on these schemes are as follows,

• Schemes “collA" and “collB" are motivated by the collinear analysis. They suggest
the value of B+ B̄ from eq. (4.52) and the values of M + M̄ and U from eqs. (4.55)
and (4.59).

• In the Scheme “collA", we assign the running-coupling term −b̄ to the kernel, while
in the Scheme “collB" to the impact factors.

• In the Schemes “zV. . . " we set the coefficient V of the double pole of X1 to zero ,
following the spirit of the RG improvement to transfer the most singular γ-poles of

105



NL objects into regular ω-corrections of leading-order terms. In this way, we assign
all the dependence of the kernel on the gluon anomalous dimension and running
coupling A1 − b̄/2 to the O(ω) term of the leading eigenvalue X0.

• The Scheme “zVnB" adopts the natural (i.e., collinearly motivated) choice for the
B’s coefficients.

• The Scheme “zVnM" adopts the natural choice for the M ’s coefficients.

• The Scheme “zVzM" sets the coefficients M of the cubic poles of the NLO impact
factors to zero, thus assigning all the residual dependence on the anomalous
dimensions to the O(ω) term of the leading impact factor Φ0.

In fact, each of the schemes in table 4.2 can be implemented with more flexibility
on how B, B̄, M and M̄ are individually specified, and also because the regular part of
impact factors is fully constrained only at ω = 0. For the leading impact factor Φ(T )

0 , we
propose the three sub-schemes of eq. (4.53), where B = B̄ in the sub-schemes I and II,
while B̄ = B + Agq in sub-scheme III, as in eqs. (4.53a) to (4.53c).

As for the LO eigenvalue function, we adopt the expression in [34]:

X0(ω, γ; 0) = 2ψ(1) − ψ(γ + ω

2 ) − ψ(1 − γ + ω

2 ) + ωU(ω)
(

1
γ + ω/2 + 1

1 − γ + ω/2

)
,

(4.71)
where U(ω) depends on the scheme choice as shown in table 4.2. Then, according to
eq. (4.18), the next-to-leading improved eigenvalue at ω = 0 is given by

X1(0, γ) = χ1(γ) + 1
2χ0(γ) π2

sin2 πγ
− U(0)

(
1
γ

+ 1
1 − γ

)
χ0(γ) . (4.72)

The above expression is free of cubic poles, but still contains simple poles and possibly
double poles, depending on the scheme choice:

X1(0, γ) =
(
A1 − b̄

2 − U(0)
)

1
γ2 +

(
H1 + π2

6 − U(0)
)

1
γ

+ · · · . (4.73)

According to the RGI method, we require the RGI eigenvalue function X1(ω, γ) to have
poles at the expected ω-shifted positions. Thus the complete expression for the RGI
eigenvalue function X1(ω, γ) is given by

X1(ω, γ) = X1(0, γ) +
A1(ω) − b̄

2 − U(ω)
(γ + ω

2 )2 −
A1(0) − b̄

2 − U(0)
γ2 + (γ ↔ 1 − γ)+
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+
(
H1 + π2

6 − U(0)
)

[X0(ω, γ) − χ0(γ)] . (4.74)

We can now exploit eq. (4.66) to constrain the NLO improved transverse impact
factor at ω = 0 and arbitrary γ. If we further require such impact factor to be symmetric
in γ → 1 − γ, we obtain7

Φ1(0, γ) = 1
2 [Φ1(0, γ) + Φ1(0, 1 − γ)]

= 1
2
[
ϕ1(γ) + ϕ1(1 − γ) − ϕ0(γ)∂ωX0(0, γ) − χ0(γ)

(
∂ωΦ0(0, γ) + ∂ωΦ0(0, 1 − γ)

)]
.

(4.75)

Its Laurent expansion around γ = 0 reads

Φ1(0, γ) = C0

[
M(0)
γ3 + M2

γ2 + M1

γ
+ O(γ0)

]
, (4.76)

where M2 and M1 depend on the scheme choice that defines the ω-dependence of Φ0(ω, γ)
and X0(ω, γ) in eqs. (4.53) and (4.71).

We extend Φ1 at ω ̸= 0 by requiring the collinear poles to be located at γ = −ω/2 and
γ = 1 + ω/2 and with ω-dependent leading coefficients M(ω) and M̄(ω) as in eq. (4.56).
This can be obtained in various ways, and we adopt the following choice:

Φ1(ω, γ; 0) = Φ1(0, γ)

+ C0


[
M(ω)

(γ + ω
2 )3 + M2

(γ + ω
2 )2 + M1

γ + ω
2

]
−
[
M(0)
γ3 + M2

γ2 + M1

γ

]
+
γ ↔ 1 − γ

M → M̄

 .

(4.77)

Having required Φ1 to be symmetric causes M(ω) = M̄(ω) equal to half the expression
in the last column of table 4.2.

7We note that, while ϕ0(γ) is symmetric in γ → 1 − γ, the NLO impact factor ϕ1(γ) is not. Actually,
since the latter has been derived [83] a cross section [115] which depends on the product ϕ(T )(γ)ϕ(T )(1−γ),
it is not clear to us how ϕ1 has been unambiguously derived, without imposing further requirements.
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4.5 Resummation of the LO and NLO longitudinal impact
factor

4.5.1 Cross section and impact factor at leading order

In this section, we proceed to derive the RGI longitudinal impact factors. Firstly, in
order to determine the LO longitudinal RGI impact factor, we first consider the cross
section σ(LT )(Q1, Q2) where the photon Q1 (on the left) has longitudinal polarization,
while the other one Q2 (on the right) is transverse.

We are interested in the collinear limit Q2
1 ≫ Q2

2, therefore we need the vertices
that describe how the longitudinal photon Q1 couples to quarks and gluons k where the
collinear strong ordering also specifies Q2

1 ≫ k2. The form of the coupling can be derived
from the longitudinal coefficient functions, as explained in appendix B.

Q1 Q2l2k

Figure 4.8. Diagramatics of collinear limit at leading order for the longitudinal impact factor.
The blob represents the gluonic contribution to the longitudinal coefficient function at the
lowest order in αs.

The lowest order ladder diagram of our interest involving a high-energy gluon exchange
is depicted in fig. 4.8. The shaded circle at the left represents the gluon contribution to
the longitudinal coefficient function Cg

L, while the two vertices on the right side represent
two splitting functions, as in the TT -case.

We can then repeat the collinear analysis of sec. 4.3.1 by replacing in eq. (4.36) the
“transverse” factor eq. (B.6) with the “longitudinal" factor eq. (B.8) (see Appendix),
thus obtaining the leading γ-pole structure of ˜̃σ(LT ):

˜̃σ(LT )
0 (ω, γ; 1)coll =

ααs
(∑

q e
2
q

)
8TR

√
2(N2

c − 1)
γ (2 + ω)(3 + ω)

1 + ωAgq(ω)
ω

ααs
(∑

q e
2
q

)
2Pqg(ω)

√
2(N2

c − 1)
γ2 + O

(
γ−2

)
= Φ(L)

BNP(ω, γ) 1 + ωAgq(ω)
ω

Φ(T )
BNP(ω, 1 + ω − γ) + O

(
γ−2

)
, (4.78)
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namely the product of the corresponding BNP impact factors with exact kinematics [82],
the LO GGF 1/ω and the same O(ω) correction ∝ Agq(ω). The second line of eq. (4.78)
follows from the collinear structure of the BNP impact factors, reported in eq. (4.45) for
the transverse polarization and in the following equation for the longitudinal polarization:

Φ(L)
BNP(ω, γ) = ααs

(∑
q

e2
q

)
TR

√
2(N2

c − 1) 4πΓ(γ + δ + 1)Γ(γ + 1)
Γ(ω)

1
(δ2 − 1) (δ2 − 4)

·
[
ψ(γ + δ) − ψ(γ)

δ
· 3ω2 − (δ2 − 1)

2ω − 3
]

(4.79)

= C0

[
1 + ωΛ(ω)

γ
+DL(ω) + O(γ) + (γ ↔ 1 + ω − γ)

]
(4.80)

1 + ωΛ(ω) = 6
(2 + ω)(3 + ω) , Λ(0) = −5

6 , DL(0) = −1
3 , δ ≡ 1 + ω − 2γ ,

(4.81)

where C0 is the same normalization coefficient of the transverse impact factor in eq. (4.46).
Similar to the TT -case, eq. (4.78) can be expanded at the pole of γ = 0, where the energy
scale is again asymmetric

˜̃σ(LT )
0 (ω, γ; 1) = C2

0
1
ω

[
(1 + ωΛ)(1 + ωAgq)(1 + ωAqg)

γ3 + O(γ−2)
]
. (4.82)

Taking inspiration from the parametrization procedure as eqs. (4.50) and (4.80), we
parametrize the collinear structure of the longitudinal LO RGI impact factor as

Φ(L)
0 (ω, γ; 1) = C0

[
1 + ωBL(ω)

γ
+DL(ω) + 1 + ωB̄L(ω)

1 + ω − γ
+ D̄L(ω)

]
+ rL(ω, γ) , (4.83)

where rL(ω, γ) vanishes at γ = 0 and γ = 1 + ω. By combining the above expression
with the analogue one in eq. (4.50), we obtain

˜̃σ(LT )
0 (ω, γ; 1) = Φ(L)

0 (ω, γ; 1) 1
ω

Φ(T )
0 (ω, 1 + ω − γ; 1)

= C2
0

1
ω

[
(1 + ωBL)(1 + ωB̄)

γ3 + O(γ−2)
]

+ (γ → 1 + ω − γ) . (4.84)

If we compare eq. (4.84) with eq. (4.82), we obtain a relation among BL, B̄ and the
known quantities Λ, Aqg, Agq. However, remembering that B and B̄ are constrained by
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eq. (4.52), we can actually relate BL and B:

1 + ωBL

1 + ωB
= 1 + ωΛ

1 + ωAqg

(4.85)

=⇒ BL = Λ +B − Aqg + O(ω) . (4.86)

The coefficient B̄L of the simple anti-collinear pole γ = 1 +ω can be determined anal-
ogously by considering the cross section for two longitudinal photons, i.e., by comparing
the two expansions for

˜̃σ(LL)
0 (ω, γ; 1) = Φ(L)

0 (ω, γ; 1) 1
ω

Φ(L)
0 (ω, 1 + ω − γ; 1)

= Φ(L)
BNP(ω, γ) 1 + ωAgq(ω)

ω
Φ(L)

BNP(ω, 1 + ω − γ) + O
(
γ−1

)
, (4.87)

yielding

(1 + ωBL)(1 + ωB̄L) = (1 + ωΛ)2(1 + ωAgq) (4.88a)

=⇒ BL + B̄L = 2Λ + Agq + O(ω) . (4.88b)

Note that the role played by Aqg for B and B̄ in the transverse case eq. (4.52) is now
played by Λ for BL and B̄L in longitudinal case eq. (4.88).

Again, similar to our proposed schemes in the transverse case, we can define the LO
RGI longitudinal impact factor by sharing the Agq correction term between the leading
collinear and anti-collinear poles:

Φ(L)
0 (ω, γ; 1) = Φ(L)

BNP(ω, γ)
[
1 + ω

2Agq(ω)
]

(scheme I) (4.89a)

Φ(L)
0 (ω, γ; 1) = Φ(L)

BNP(ω, γ) + C0
ω

2Agq(ω)
[

1
γ

+ 1
1 + ω − γ

]
(scheme II) (4.89b)

Φ(L)
0 (ω, γ; 1) = Φ(L)

BNP(ω, γ) + C0 ωAgq(ω) 1 + ωAqg

1 + ω − γ
(scheme III) . (4.89c)

Schemes I and II implement the choice BL = B̄L = Λ + Agq/2, giving rise to symmetric
impact factors, while scheme III has BL = Λ and B̄L = Λ + Agq + ωΛAgq, giving rise to
an asymmetric impact factor, but fulfilling exactly eq. (4.88a).
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4.5.2 Cross section and impact factor at next-to-leading order

In this subsection, we complete our analytical work by finishing the construction of the
RGI longitudinal impact factors at the next-to-leading order. The collinear analysis at
NLO for the longitudinal-transverse photon cross section involves the three diagrams
depicted in fig. 4.9 and can be presented in the following form:

αs ˜̃σ(LT )
1 (ω, γ; 1) = ˜̃σ(LT )

0 (ω, γ; 1)
[
αs

2π
Pgg

γ
+ αs

2π
Pqq

γ
+ CF

TR

3 + ω

2 · αs

2π
Pqg

γ
− αsb

γ
+ O(γ0)

]
,

(4.90)
where ˜̃σ(LT )

0 is the LO integrand defined in eq. (4.82).

(a)

Q1 Q2

(b)

Q1 Q2

(c)

Q1 Q2

Figure 4.9. Diagramatics of collinear limit at next-to-leading order for the longitudinal impact
factor. (a) Photon-gluon coefficient function and gluon emission from gluon line; (b) Photon-
gluon coefficient function and gluon emission from quark line. (c) Photon-quark coefficient
function and quark emission from parent gluon;

We shall comment the contributions in the eq. (4.90) as follows:

• The first term in the r.h.s. of eq. (4.90) stems from the diagram of fig. 4.9(a)
involving a Pgg splitting function, and can be entirely associated with the GGF.

• The second term stems from the diagram of fig. 4.9(b), with a gluon emitted from
the quark line on the right, and it is naturally associated to the impact factor of
the transverse photon Q2.

• The third term stems from the diagram of fig. 4.9(c), which is genuinely different
from other diagrams, because it involves a coefficient function where the longitudinal
photon Q1 couples to a quark. As explained in appendix B.0.2, the photon-quark
coefficient function differs from the photon-gluon one by the multiplicative factor
CF (3 + ω)/(2TR) [cfr. eq. (B.13)]; just to the right of the blob, we find the vertex
with the Pqg splitting function. This contribution is naturally associated with the
impact factor of the longitudinal photon Q1.

• The fourth and last term in eq. (4.90) is the running coupling (b-dependent)
contribution derived in eq. (4.35), and can be incorporated into either the impact
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factors or the GGF, or partially both.

In order to determine the NLO RGI longitudinal impact factor from the NLO cross
section, we parametrize the collinear structure of the longitudinal impact factor exactly
as in eq. (4.56), by appending the subscript L to the various (unbarred) coefficients, e.g.,
M → ML. A straightforward calculation yields

αs ˜̃σ(LT )
1 (ω, γ; 1) = ˜̃σ(LT )

0 (ω, γ; 1) ᾱs

[ 1
ω

+ML + M̄ + U

γ
+ O(γ0)

]
. (4.91)

which is nothing but the result of eq. (4.58) with T → L in the first impact factor. We
then derive [cfr. eq. (4.59) and the subsequent definitions]

ML + M̄ + U = PL + P̄qq + Agg − b̄ , PL(ω) ≡ CF

TR

P̄qg
3 + ω

2 (4.92)

=⇒ ML −M = PL − P̄qq = CF

2CA

+ O(ω) . (4.93)

To check the compatibility of the collinear analysis with the known BFKL results,
We start from the collinear structure of the NLO BFKL longitudinal impact factors
[eqs. (4.24b) and (4.28)]:

ϕ
(L)
0 (γ) = ϕ

(L)
0 (1 − γ) = C0

(
1
γ

+DL(0) + O(γ)
)

(4.94)

ϕ
(L)
1 (γ) = ϕ

(L)
0 (γ)

(
−1/2
γ2 + ηL

γ
+ −1

(1 − γ)2 + η̄L

1 − γ
+ · · ·

)
, ηL = −7

3 , η̄L = −9
4 .

(4.95)

The next step, as what we did in the TT -case, is to expand eq. (4.20) around γ = 0 by
using eqs. (4.60) to (4.63), (4.94) and (4.95) for the l.h.s. and eqs. (4.56) and (4.57) for
the r.h.s.. As a result, the leading γ poles tends to match exactly, while the subleading
ones are equal if

ηL + η̄ = BL + B̄ + 1
2(DL + D̄) +ML + M̄ + U

∣∣∣
ω=0

. (4.96)

Subtracting 4.69a from the above equation, we obtain a relation among collinear coeffi-
cients:

ηL − η = BL −B + 1
2(DL −D) +ML −M . (4.97)

While the l.h.s. of the above relation evaluates to −1/2, the r.h.s. is equal to −1/2 +
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CF/(2CA). Therefore, we find agreement with the result of ref. [83], were it not for the
presence of a term proportional to CF Casimir in the collinear pole. It looks like their
impact factor misses the contribution from the diagram of fig. 4.9c.

Finally, by considering the cross section for two longitudinally polarized photons, we
obtain the result of eq. (4.96) with the barred (transverse) coefficients replaced by their
corresponding longitudinal counterparts:

ηL + η̄L = BL + B̄L + 1
2(DL + D̄L) +ML + M̄L + U

∣∣∣
ω=0

, (4.98)

which is satisfied only if ML + M̄L = O(ω). If we take M̄L = ML, as it is natural to
assume in the transverse case, then we disagree with the result of ref. [83] by a CF term
in the 1/γ pole of the ratio ϕ(L)

1 /ϕ
(L)
0 .

We collect our results for the longitudinal RGI impact factor in table 4.3.

scheme name U V BL + B̄L ML + M̄L

collA Agg − b̄ ∆A+ b̄/2 2Λ + Agq 2PL

collB Agg ∆A− b̄/2 2Λ + Agq 2PL − b̄

zVnB A1 − b̄/2 0 2Λ + Agq 2PL − ∆A− b̄/2
zVnM A1 − b̄/2 0 2Λ + Agq − ∆A− b̄/2 2PL

zVzM A1 − b̄/2 0 2PL + 2Λ + Agq − ∆A− b̄/2 0
Table 4.3. Favourite scheme choices for defining the NLO RGI longitudinal impact factor.
The values of U and V are the same as in table 4.2.

Once a scheme has been chosen, the LO impact factor Φ(L)
0 can be specified according

to one of the sub-schemes in eq. (4.89), with BL = B̄L in sub-schemes I and II, while
B̄L = BL + Agq in sub-scheme III.

The NLO impact factor Φ(L)
1 is constructed to be symmetric, as in the transverse

case: at ω = 0 eq. (4.75) holds unaltered, provided we add to ϕ1 the contribution

∆ϕ(L)
1 (γ) = PL(0)

(
1
γ

+ 1
1 − γ

)
ϕ

(L)
0 (γ) . (4.99)

The Laurent expansion around γ = 0 shows a double pole

Φ(L)
1 (0, γ) = C0

[
ML(0)
γ2 + ML,1

γ
+ O(γ0)

]
, (4.100)

where ML,1 depends on the scheme choice. We extend Φ1 at ω ≠ 0 by requiring the
collinear poles to be located at γ = −ω/2 and γ = 1 +ω/2 and with ω-dependent leading
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coefficients ML(ω) and M̄L(ω) as we did for the transverse impact factor:

Φ(L)
1 (ω, γ; 0) = Φ(L)

1 (0, γ)

+ C0


[
ML(ω)

(γ + ω
2 )2 + ML,1

γ + ω
2

]
−
[
ML(0)
γ2 + ML,1

γ

]
+
γ ↔ 1 − γ

M → M̄

 .

(4.101)

Having required Φ(L)
1 to be symmetric causes ML(ω) = M̄L(ω) equal to half the expression

in the last column of table 4.3.

4.6 Numerical results
In this section, we apply the factorization formula with renormalization-group improved
impact factors and Green’s function to compute the γ∗γ∗ cross section in phenomenologi-
cally relevant situations. The presented results contain the sum over all combinations of
photon polarizations:

σ = σ(T T ) + σ(LT ) + σ(T L) + σ(LL). (4.102)

For the NLL RGI calculation, the σ(T T ) is about 56% of the total cross section
on average at Q2 = 17 GeV2, while both σ(T L) and σ(LT ) about 19%, σ(LL) about 6%.
These percentages vary by about 2% for σ(T T ), and about 1% for other polarization
combinations upon changes of the scheme and varying rapidity Y ∈ [2, 7].

The numerical calculation is based on the following formulae:

• the cross section is calculated using eq. (4.14);

• the leading eigenvalue X0 is given in eq. (4.71);

• the NL eigenvalue X1 in eqs. (4.72) and (4.74) with χ1 in eq. (1.93); ωeff in eq. (4.12);

• the leading impact factors in eqs. (4.53) and (4.89);

• the NL impact factors in eq. (4.75) at ω = 0 and eqs. (4.77) and (4.101) at ω ̸= 0.

We shall compare our results with the experimental measurements of L3 [46] at
Q2 = 16 GeV2 and of OPAL [47] at Q2 = 17.9 GeV2, and also with previous calculations
of the same cross section. Since the values of Q2 in L3 and OPAL are close while their
error bars are relatively large, it is reasonable to compare the data from both experiments
with theoretical predictions at Q2 = 17 GeV2.
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In addition, We adopt the strong coupling value to be αs

(
Q2 = 17 GeV2

)
≈ 0.229 as

derived from the Particle Data Group [52].

Figure 4.10. The value of the γ∗γ∗ cross
section contribution from the BFKL exchange
for Q2 = 17 GeV2 as a function of rapidity Y .
All five schemes (see tables 4.2 and 4.3) for
the NLL RGI calculation are shown together
with the pure LL calculation (black solid and
rescaled with a factor 0.5) and pure NLL cal-
culation (green dot-dashed).

Figure 4.11. The value of the γ∗γ∗ cross
section contribution from the BFKL exchange
for Q2 = 17 GeV2 as a function of rapidity Y .
The scheme average band (blue-solid) repre-
sents the average value and standard deviation
of the five resummed schemes. The µR band
(yellow-dashed) is computed from average val-
ues of the five resummed schemes with half or
double µ2

R respectively.

In fig. 4.10 we show the results for the NLL RGI cross sections using scheme I for the
LO impact factors eqs. (4.53) and (4.89) and the five different schemes from tables 4.2
and 4.3 at NLO, and compare them with the pure LL and NLL cross sections.

All five NLL RGI cross sections are significantly reduced with respect to the LL
calculation, meanwhile, they are also significantly above the pure NLL calculation. We
observe that, the different schemes give very similar results. In order to present the
results more intuitively, we incorporate a band to represent the scheme ambiguity as
in fig. 4.11. The band size is defined as the standard deviation calculated from the
five schemes at each rapidity Y . In the following, if the improved NLL cross section
is presented as a single curve, then the curve is just the average for the five NLL RGI
schemes. Furthermore, we note that adopting schemes II and III for the LO impact
factors does not change significantly our estimates in our tests.

In fig. 4.11, we also test the stability of the improved NLL cross section calculation
with respect to the variation of the µR scale, the argument of the running coupling. The
upper and lower µR band is computed from average values of the five resummed schemes
with half or double µ2

R respectively. It turns out that the µR band size is slightly smaller
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than the scheme ambiguity band size. It is worth noting that besides the dependence
on µR of the NLO impact factor and the running coupling argument, the NLO BFKL
eigenfunction would also rely on µR when µ2

R ̸= Q1Q2,

X̃1(ω, γ) = X1(ω, γ) + b̄ X0(ω, γ) ln µ2
R

Q1Q2
. (4.103)

and the resummed effective ω after the NLO subtraction with µR dependency is then
the solution of

ω = ᾱs(µ2
R)X0(ω, γ) + ᾱ2

s(µ2
R)
[
X1(ω, γ) + b̄ X0(ω, γ) ln µ2

R

Q1Q2

]
. (4.104)

Figure 4.12. The value of the γ∗γ∗ cross
section contribution from the BFKL exchange
for Q2 = 17 GeV2 as a function of rapidity
in the logarithmic vertical scale. Pure LL is
shown in black-solid, NLL in green dashed-
dotted, LL improved in red-dotted and NLL
improved in blue-dashed. The NLL improved
curve is the average of our five resummed NLL
schemes (see text).

Figure 4.13. The value of the γ∗γ∗ cross
section contribution from the BFKL exchange
from NLL RGI calculation for Q2 = 5 (blue-
dashed), 17 (yellow-solid), 100 GeV2 (green-
dotted) as a function of rapidity Y in logarith-
mic vertical scale.

In fig. 4.12, we compare the pure LL and NLL results (the latter computed using
expressions from refs. [110,111]), with the improved LL and NLL cross sections. Note
the logarithmic vertical scale, which makes the characteristic exponential dependence of
the cross section on the rapidity clearly visible. The NLL improved curve is given as the
average of different schemes as explained above.

The improved LL and NLL calculations both tame the quick growth of the pure
LL cross section with rapidity. It is worth noting that the improvement at LL alone —
consisting in the ω shifted LO eigenfunction and LO impact factors — brings the curve
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down significantly. We also observe that, the improved NLL is higher than the improved
LL calculation, mostly because the improved NLO corrections bring a positive O(α2

s)
term to the impact factors. Finally, we observe that improved calculations (both at LL
and NLL) are above the pure NLL cross section.

In fig. 4.13, we compare NLL RGI cross sections for Q2 = 5, 17, 100 GeV2. The cross
section is strongly dependent on Q2. The tendency of the linear growth in the logarithm
scale is unchanged upon different values of Q2. The growth with rapidity is slowed down
with increasing Q2 due to the smaller value of the coupling constant, which affects the
value of the leading exponent in the gluon Greens’s function.

As introduced in the section 4.1, to compare with the experimental data, our resumed
cross section shall be accompanied by the fixed order contributions from the quark box
diagrams. This quark box contribution is dominant at low rapidities and decreases with
the increase of the rapidity, while the BFKL cross section is only dominant at high
rapidities. The total γ∗γ∗ cross section presented in the following includes both the quark
box and the BFKL contributions.

Figure 4.14. Cross sections for Q2 = 17 GeV2, compared with L3 (Q2 = 16 GeV2) [46] and
OPAL (Q2 = 17.9 GeV2) [47] data. The NLL improved curve is the sum of our averaged
NLL BFKL resummed scheme and LO quark box contribution. The band size represents a
combination of the scheme uncertainty and the µR band, i.e. δtotal =

√
δ2

scheme + δ2
µR

. The
calculation is done for Nf = 4 massless flavors. The Ivanov-Murdaca-Papa’s (IMP’s) PMS
optimized curve (solid-cyan) is from [83]. Separately shown is the quark box contribution
(dashed red).
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In fig. 4.14 we compare the results from NLL improved calculation with the experi-
mental measurements of L3 [46] at Q2 = 16 GeV2 and of OPAL [47] at Q2 = 17.9 GeV2,
and also with previous calculations of the same cross section from [83]. As mentioned
before, since the values of Q2 in L3 and OPAL are very close, and the errors on the data
points are such that Q2 dependence is not visible, it is reasonable to compare the data
from both experiments with theoretical predictions at Q2 = 17 GeV2. We also show the
LO quark box contribution in this figure. We observe from fig. 4.14 that the RGI NLL
improved calculation has a stronger increase over rapidities than the pure NLL one. We
also see that our result is significantly higher than the calculation from [83], particularly
at high rapidities. The RGI calculation is consistent with the experimental data from
LEP within the theoretical and experimental uncertainties.
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Chapter 5 |
Conclusions

We shall summarize the basic ideas of this work in this chapter and point out the outlook
to address some potential topics worth future investigation.

We are interested in the resummation in the BFKL framework. In particular, we
introduced the effects of the kinematic constraints and the renormalization group im-
provements formed in the CCSS resummation and later extended to the photon impact
factors.

The kinematical constraints stem from the fact that the gluon momentum in the
BFKL gluon ladder is dominant by its transverse component. It takes various forms due
to different levels of approximations and applies to the real gluon emission. While the
the LL BFKL yields a growth of the unintegrated gluon density that is too steep for the
experimental data, we show a tamed growth with kinematic constraints by numerical
calculations.

Later on, we start introducing the renormalization group improvements from the
observation of the dependency of the energy scale s0 in the high energy factorization
cross section. By requiring the scale invariance of the cross section, we are motivated to
bring the ω-dependency to the BFKL eigenfunction, where ω is conjugate to the center
of mass energy squared s (or equivalently 1/x) in the Mellin transform. While the scale
effect is well integrated into our resummed BFKL equation, we also give the explicit
expressions for the scale transformation up to NNLL.

It is quick to show that the collinear (and anti-collinear) poles are the main construct
of the LL BFKL eigenfunction. A collinear analysis shows that the collinear singularities
of the BFKL kernel are determined by the non-singular part of the gluon anomalous
dimension, while the singular part has already been counted in the LL BFKL. Such
renormalization group constrained kernel allows us to resum the ω dependency to all
orders and it prompts us to study the expansion on ω. What’s more, we can use the
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ω expansion to construct the resummed NLL kernel and predict the behaviors in even
higher orders. While the NNLL BFKL eigenfunction is not currently available, we tested
our approach in the N = 4 sYM and successfully reproduced the behavior of leading
and subleading poles in the Mellin space, followed by a discussion on its mathematical
structure to all orders.

The CCSS resummation takes various factors into considerations, i.e., the scale effect,
the LO DGLAP from the collinear analysis, the kinematical constraint, and the running
coupling, incorporated with the exact NLL BFKL eigenfunction. We compute the
unintegrated gluon density and perform the fit the structure function F2 and its charm
component F c

2 to the HERA data. We achieved great fits to the F2 with or without F c
2

and demonstrated the stability of our approach as their fitting parameters tend to be
almost the same.

We later extend the renormalization group improvements to the impact factors
by investigating the virtual photon-photon scattering cross section. We construct the
consistency condition between our resummed cross section and the BFKL one, then
derive resummed LO and NLO impact factors by the collinear analysis. At LO, our
resumed impact factors, whether in longitudinal or transverse polarization, are consistent
with the impact factors with exact kinematics computed in [82]. At NLO, the collinear
analysis provides an additional term proportional to the Casimir CF in the longitudinal
impact factor that is absent in the NLL BFKL. Note that our resummation has flexibility
on the scheme choices. This is because: firstly, there is no input from the long distance
contribution in this very framework; secondly, while the collinear analysis provides
corrections and constraints to the collinear poles in the Mellin space, the subleading
terms remain unspecified as they arise from the the case of comparable virtualities of the
exchanged partons. Therefore, We present several resummation schemes motivated by
different priorities in the factorization and treat them as an uncertainty when compared
with the cross section from HEP. We achieved a consistent description to the experimental
data as previous calculations in the literature are shown to be too small.

For the analysis of the resummation on the impact factors, we treat all quarks,
including charm quark, massless. Whereas if one can extract the massive impact factors,
a resummation can be performed accordingly. However, the extraction of the massive
NLO impact factors is rather challenging and left for future studies.

In addition, at an even smaller x regime, the dominant dynamics come from the
gluon saturation where the gluons start to recombine and thus form non-linear evolution.
One notable approach is the Balitsky-Kovchegov (BK) equation. We are interested in
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resuming some higher order corrections to the BK equation and forming a numerical
solution.
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Appendix A|
Numerical solution to the CCSS
resummation

In this appendix, we provide more details of the numerical approach to the CCSS
resummed unintegrated gluon density. The general procedures are introduced in [34]
and we will focus on the calculation of some boundary terms arising from the DGLAP
splitting function.

On recapping the procedures in CCSS resummation [34], one needs to solve for the
Green’s function G (Y ; k, k0)

G (Y ; k, k0) = G(0) (Y ; k, k0) Θ(Y )+
∫ Y

0
dy
∫ kmax

kmin

dk′2K (Y − y; k, k0) G (Y ; k′, k0) , (A.1)

with the initial condition

2πk2
0G(0) (Y ; k, k0) = δ

(
log k

k0

)
. (A.2)

A gird in rapidity Y and logarithm of momentum k is introduced in order to form a
numerical solution

G (Y ; k, k0) =
∑

i

∑
j

Ti(Y )Tj(k)G (Yi; kj, k0) . (A.3)

We note the spacing on the rapidity grid Y as ∆y with gird sites yn = n∆y. The test
function Ti(y) is a triangular function defined on the vicinity (yi−1, yi+1) of yi,
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Ti(y) =


1

∆y (y − yi−1) , y ∈ (yi−1, yi)
1

∆y (yi+1 − y) , y ∈ (y, yi+1) .
(A.4)

The kernel K can be factorized as

K (Y − y; k, k0) =
∑

α

Kα (Y − y; k, k0)

=
∑

α

Kα(k, k′)Pα(Y − y) · Θ
[
Y − y − max

(
log k

k′ , logk
′

k

)]
,(A.5)

where α stands for different contributions to CCSS resummation, i.e., LL and NLL BFKL,
DGLAP etc. The function P is the splitting function contribution with some subtraction
terms and Θ function ensures a kinematic constraint to the kernel.

Discretized in the grid, the contribution from the function P can be cast into the
BFKL integral equation,

∫ 1

x

dz
z
P (z)G(x

z
) =

∫ 1

x

dz′

z′ P ( x
z′ )G(z′)

=
∫ yi

0
dy′P (yi, y

′)
∑

k

Tk(y′)G(yk). (A.6)

Knowing that yi − y = ln(z′/xi) and replacing y with yi − y′, we obtain the kernel

Pα
i−k =

∫ yi

0
dyPα(y)Tk(yi − y). (A.7)

We note here the function Pα only depends on the index i− k and thus is only a vector.
Similarly,

Kα
n,j =

∫
dk′2 Kα(kn, k

′)Tj(k′) (A.8)

It is worth showing the calculations on some boundary terms arising from the non-
singular splitting function P̃gg = Pgg − 1/z and

Pgg = 2CA

[
x

(1 − x)+
+ 1 − x

x
+ x (1 − x)

]
+ δ(1 − x)11CA − 4nfTR

6 . (A.9)

Here, nf = 4, TR = 1/2, CA = 3. We are particularly interested in these two terms in
the splitting function,

x

(1 − x)+
and δ(1 − x). (A.10)
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Both terms need to be taken better care of, especially at x = 1, y = 0 and any other
terms can be just normally numerically integrated. We start with the x/(1 − x)+ term
and we shall introduce the following trick,

∫ 1

x
dz f(z)

(1 − z)+
=

∫ 1

0
dz f(z)

(1 − z)+
−
∫ x

0
dz f(z)

(1 − z)+

=
∫ 1

0
dz f(z) − f(1)

1 − z
−
∫ 1

x
dz f(z)

1 − z

=
∫ 1

x
dz f(z) − f(1)

1 − z
−
∫ x

0
dz f(1)

1 − z

=
∫ 1

x
dz f(z) − f(1)

1 − z
+ f(1) ln(1 − x). (A.11)

The only test function Ti has non-zero contribution to eq.(A.7) at x = 1 is T0(x), then
with T0(x)|x=1 = 1,

∫ 1

x1
dz zT0(z)

(1 − z)+
=

∫ 1

x1
dz zT0(z) − T0(1)

1 − z
+ T0(1) ln(1 − x1)

=
∫ 1

x1
dz zT0(z) − 1

1 − z
+ ln

(
1 − e−∆y

)
(A.12)

Otherwise, for anywhere else, we have

∫ 1

xi

dz zTk(z)
(1 − z)+

=
∫ 1

xi

dz zTk(z)
1 − z

. (A.13)

For δ(1 − x) term, ∫ 1

xk

dzδ(1 − z)Ti(z). (A.14)

Given that Ti(z)|z=1 = 0 unless i = 0, we get the only non-zero contribution,
∫ 1

x1
dzδ(1 − z)T0(z) = T (1) = 1. (A.15)

There is still a subtlety we want to clarify. From the calculation above, it seems that
the boundary terms are located at i = 0, k = 1 of Pi−k, where i− k = 1 .

This is not the full picture because we omit some contribution in (A.7) for simplicity
of the derivation above. In fact, one needs to investigate Tk(yi − y) instead of Tk(y).
Note that

T1(y1 − y) = T0(y), y ∈ [0, ∆y], (A.16)
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with y1 = ∆y. We see that the boundary terms are actually located at i = 1, k = 1 of
Pi−k, in other words, P0. In principle, one can also get this P0 from the case i = 0, k = 0,
yet the integration for (x0, 1) is unnecessarily improper for interpretation, as x0 = 1.
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Appendix B|
Lowest-order cross sections and
structure functions

In this appendix, we sketch the determination of the photon-parton cross sections at the
lowest order in perturbation theory, which is the basis of the analysis of the photon-photon
cross section in the collinear regime Q2

1 ≪ Q2
2. Such cross sections are proportional to

the corresponding partonic structure functions, which in turn can be derived by the DIS
coefficient functions.

B.0.1 Transverse photon

The cross section of a virtual photon with polarization λ scattering on a particle of
momentum P (e.g., a hadron) is given by (cfr. [82])

σ(λ)(P, q) = 4π2α

Q2 F (λ)(x,Q2) , x := Q2

2P · q
. (B.1)

where F (λ)(x,Q2) : λ = L, T, 2 are the standard structure functions with F (2) = F (L) +
F (T ). The integrand ˜̃σ(ω, γ; p) of the double Mellin representation (4.9a) can then be
written as

˜̃σ(ω, γ; 1) =
∫ ∞

Q2
1

ds
s

(
Q2

1
s

)ω ∫ dQ2
1

Q2
1

(
Q2

2
Q2

1

)γ− 1
2

2πQ1Q2 σ(s,Q2
1, Q

2
2)

=
∫ 1

0

dx
x
xω
∫ dQ2

1
Q2

1

(
Q2

2
Q2

1

)γ

(2π)3αF (x,Q2
1) . (B.2)

In the case of an incoming quark of flavour a and small offshellness Q2
2 ≪ Q2

1 ≡ Q2, the
partonic structure functions at lowest order are nothing but the corresponding coefficient
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functions:

F
(T,a)
0 (x,Q2) = F

(2,a)
0 (x,Q2) = x e2

a C
(2,q)
0 (x) = e2

aδ(1 − x) , F
(L,a)
0 (x,Q2) = 0 .

(B.3)
Therefore, at the lowest order only the transverse polarization is effective and we have

˜̃σ(T,a)
0 (ω, γ; 1) =

∫ 1

0

dx
x
xω
∫ dQ2

1
Q2

1

(
Q2

2
Q2

1

)γ

(2π)3αF
(T,a)
0 (x,Q2

1) = (2π)3α e2
a

1
γ

(B.4)

which is the first factor of the collinear chain (4.36), before summing over quark and
antiquark flavors. By taking the inverse Mellin transform with respect to γ, we have

˜̃σ(T,a)
0 (ω,Q2

1, Q
2
2; 1) = (2π)3α e2

a , (B.5)

representing the first factor in eq. (4.30) — again, before summing over quark and
antiquark flavors.

The first non-vanishing contribution of the photon-gluon structure functions starts at
O(αs). In the collinear limit, i.e., considering the strong ordering of partons’ momenta,
each rung provides a factor

∫ k2
i

k2
i−1

dk2

k2
αs(k2)

2π
Pab(ω). With fixed running coupling such a

factor reduces to αs
2π

log k2
i

k2
i−1
Pab(ω), which becomes αs

2π
Pab(ω)/γ in γ-space. Therefore, at

O(αs), for a transverse photon we have

˜̃σ(T,g)
1 (ω, γ; 1) =

∑
a

(2π)3α e2
a

1
γ

· αs

2π
P(q=a)g(ω)

γ
. (B.6)

in agreement with the first factors of eq. (4.36) since ∑a e
2
a = 2∑q e

2
q. The other factors

follow from the remaining two vertices.

B.0.2 Longitudinal photon

The longitudinal structure function starts at O(ααs) in perturbation theory, and receive
contributions from gluons and quarks. We start by considering the gluon-initiated
structure function, which is well known in the literature, and can be read, e.g., from
eq. (B.5) of ref. [116]

F
(L,g)
1 (x,Q2) = x

∑
a e

2
a

2Nf

C
(L,g)
1 (x,Q2/µ2

F ) = αs

2π
(∑

a

e2
a

)
TR 4x2(1 − x) . (B.7)
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The corresponding longitudinal photon-gluon cross section in Mellin space can then be
determined from eq. (B.2) and reads

˜̃σ(L,g)
1 (ω, γ; 1) =

16π2ααs
(∑

a e
2
a

)
TR

γ (2 + ω)(3 + ω) . (B.8)

It is straightforward to check that the r.h.s. of eq. (B.8) is proportional to the simple
pole at γ = 0 of the BNP longitudinal impact factor with exact kinematics with its full
ω-dependence, just like the r.h.s. of eq. (B.6) is proportional to the double pole of the
BNP transverse impact factor:

˜̃σ(T,g)
1 (ω, γ; 1) = 2π

(∑
a

e2
a

)
TR ST (ω, γ) + O(γ−1) (B.9)

˜̃σ(L,g)
1 (ω, γ; 1) = 2π

(∑
a

e2
a

)
TR SL(ω, γ) + O(γ0) . (B.10)

The quark-initiated structure function, is also well known in the literature, and can
be read, e.g., from eq. (B.1) of ref. [116]:

F
(L,a)
1 (x,Q2) = x e2

a C
(L,q)
1 (x,Q2/µ2

F ) = αs

2πe
2
a CF 2x2 (a = quark or antiquark) .

(B.11)

The corresponding longitudinal photon-quark cross section in Mellin space can then be
determined from eq. (B.2) and reads

˜̃σ(L,a)
1 (ω, γ; 1) = 8π2ααs e

2
a CF

γ (2 + ω) (a = quark or antiquark) . (B.12)

Summing over all quarks and antiquarks we get

∑
a

˜̃σ(L,a)
1 (ω, γ; 1) = CF

TR

3 + ω

2
˜̃σ(L,g)

1 (ω, γ; 1) . (B.13)

In practice, the blob connecting a longitudinal photon to all quarks and antiquarks
displayed in fig. 4.9(c) is equal to the blob connecting the longitudinal photon to a gluon
in fig. 4.9(a),(b) up to the additional multiplicative factor CF (3 + ω)/(2TR).
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