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Abstract
The response of brittle materials subjected to dynamic thermomechanical loading
is investigated. In particular, simulations are used to determine the role of material
property dependence on the microstructure of a brittle material, and to determine
the viability of modeling thermal phenomena associated with brittle failure within
the framework of continuum damage mechanics (CDM). A system of equations
is derived via the theory of internal state variables that fully couples the elastic,
thermal, and microstructure evolution of a thermoelastic material with isotropic
damage. Dynamic effects in the equations of motion and the intrinsically local
nature of the constitutive equations are carefully studied.

A new implementation of the finite element method is proposed for finding
approximate solutions to the derived model. The damage variable is treated as a
field, as opposed to the common method of considering values of the damage at
the quadrature points. In this way, the damage is treated in the general framework
of finite element methods. A key element of the proposed numerical formulation is
the use of a piecewise constant approximate solution space for the damage variable.

This is physically motivated; not only is the damage variable local, it is most
often the result of homogenization over a representative volume element, and
therefore evolves in a piecewise constant manner according to the mesh. Adaptive
mesh refinement is implemented to keep the size of higher dimensional problems
reasonable, and also to properly resolve the morphology of the damage field. Brittle
behavior is captured by defining a minimum mesh size and allowing the damage
variable to grow rapidly, as is physically the case in fracture.

Failure induced thermal heating is observed in the simulations. To the author’s
knowledge, this is the first presentation of such a result in the context of CDM
for brittle materials. The specific heat and its dependence on the damage vari-
able/microstructure were found to play an extremely important role in this heating.
Therefore, further study (both theoretical and experimental) of the effects of failure
mechanisms on the specific heat appear to be particularly important to better
understand the failure of brittle materials subjected to thermomechanical loading.
Specific issues in the modeling of an intrinsically discontinuous phenomena like
fracture within a continuous theory are discussed.
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Chapter 1
Background and Introduction

The erosion and failure of carbon-carbon composite rocket nozzles is well known
to be an important and limiting factor in the design of solid fuel rockets (see,
e.g., Acharya and Kuo, 2007b; Cortopassi et al., 2008; Evans et al., 2007). The
nozzles are subjected to extreme loading conditions, both thermal and mechanical.
The loads are applied over very brief time intervals, giving rise to highly dynamic
motions on the same timescale as wave propagation in the nozzle. The range of
the thermal loading is often characterized by temperature differentials of over two
orders of magnitude above room temperature, and the mechanical loading includes
both pressures of three orders of magnitude above atmosphere in tandem with
extremely high velocity impacts from particulate matter in the fuel.

It has been observed that the nozzle operating environment often erodes the
nozzle throat (Evans et al., 2007), thus altering the nozzle geometry enough that
the nozzle is no longer able to withstand the loading and therefore suffers sudden
and catastrophic failure. While advances have been made in mitigating the throat
erosion problem (Acharya and Kuo, 2007a), stress analysis techniques remain
critical to the design process. Traditional stress analysis methods lack the fidelity
necessary for accurate quantification of failure mechanisms in complex composite
materials subjected to dynamic thermo-mechanical loading. In particular, there is
a need for incorporating into the model the lessons learned in the study of dynamic
fracture of materials.

In the study of dynamic fracture it is often the case that the propagation of cracks
causes local thermal softening due to adiabatic heating (see, e.g., Ravi-Chandar
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et al., 2000). Modeling of these phenomena is often performed by decoupling
the heat equation from the balance of linear momentum, mainly to simplify the
numerical analysis of the problem. However, Costanzo and Walton (2002) have
shown through analysis that accounting for the thermal dependence of the fracture
properties along with the full coupling between thermal and mechanical effects,
while not crucial in describing the behavior of the material away from the running
crack tip, might play an important role in determining the near crack-tip behavior.
In other words, since fracture is highly sensitive to the failure properties of the
material immediately surrounding the crack tip, it is important to properly account
for the interplay of fracture and temperature at the local level. In this thesis,
I intend to use Continuum Damage Mechanics (CDM) to model nucleation and
dynamic evolution of microcracks up to the development of macrocracks as shown,
for example, in Mazars (1996). In doing so, a damage model is derived that contains
full coupling of the damage evolution with the evolution of the thermo-mechanical
properties of the material.

This thesis is meant to explore the necessary modeling aspects one must account
for to properly predict stress fields, damage nucleation, crack growth, and failure
whenever combined thermal and mechanical effects are important. It is believed
that the key to any such modeling attempt is the inclusion of full coupling between
the mechanical and thermal response of the system via the balance of energy and
the accounting of damage evolution in the evolution of the material’s constitutive
response. Owing to the brittle nature of carbon-carbon composites, thermoelasticity
is selected as the framework for the model development. Failure mechanisms in
carbon-carbon composites are known to be matrix microcracking, fiber breaking, and
matrix-fiber debonding. A key assumption in this work is that the microstructure
evolution affects both the mechanical the thermal response of the material.

CDM models abound in the literature, including some that already consider
thermal phenomena and elastic-thermal-damage interaction (see, e.g., Stabler and
Baker, 2000, or Tenchev and Purnell, 2005). As mentioned earlier, we believe that
the nature of this problem requires a fully-coupled dynamic model via the inclusion
of the full form of the balance of energy rather than a one-way coupling between
temperature and stress. However, full thermo-mechanical-damage coupling has
often been overlooked. To this end, a full derivation of a thermoelastic material with
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damage is presented. In this thesis, the discussion is restricted to thermoelasticity
with isotropic scalar damage, i.e., to the case of a material that would behave
thermoelastically if the damage evolution were to be held frozen in a given state.
The choice of isotropic damage is reasonable as long as we wish to characterize only
bulk graphite, which is typically the matrix component of many carbon-carbon
composite components such as rocket nozzles. The generalization of damage models
applicable to composite materials is already described at length in the body of
literature that exists on the use of multiple damage variables (see, for example,
discussions on lists of/higher order damage variables in Voyiadjis and Kattan, 2005
or Lemaitre and Desmorat, 2005, or any textbook on CMD).

The dependence on damage of material parameters such as the specific heat,
thermo-mechanical coupling,∗ elastic moduli, and thermal conductivities has been
previously explored by Mazars and Pijaudier-Cabot (1989), and later by Stabler and
Baker (2000). In the latter it is shown that the specific heat should take a logarithmic
form to maintain thermodynamic consistency; however, we show that this constraint
is not necessary for the specific damage evolution law corresponding to brittle
fracture. Thermodynamic consistency of proposed damage models throughout the
literature is not always observed, if even considered. Therefore, in this thesis it is
specifically addressed as an important part of the model derivation.

An internal state variable (ISV) model, where the fields representing the state
of the microstructure are assumed to be hidden from an observer and for which an
evolution law must be prescribed, is employed in this dissertation.† This is done
for two reasons. The first is to develop a problem which can be used to assess the
performance of adaptive mesh techniques when confronted with localization of the
damage field, as well as the resulting mesh-dependency of the solution. The second
is to stay in context with a modeling approach that is more commonly used in the
field of engineering applications of composite materials.

An original numerical method is proposed for accurately and efficiently integrat-
ing the chosen class of dynamic damage models. An operator splitting approach,
such as those commonly used in plasticity damage models (see, e.g., Simo and
Hughes, 1998), is employed, resulting in an algorithm that is stable without relying

∗The thermomechanical coupling is related to the coefficients of thermal expansion (CTE).
See Appendix A for a complete explanation.

†Other approaches, such as the theory of configurational forces, are often used as well.
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on the addition of artificial stabilizing terms to the equations of motion. The
numerical methods for the proper implementation of CDM models is non-trivial,
and consequently a large portion of this thesis is devoted to the careful application
of numerical techniques. As an additional benefit, these techniques are generalizable
to many models with internal state variables.

The objectives of this thesis are the careful derivation of a constitutive framework
for the study of the interplay between the evolution of damage and corresponding
thermo-mechanical properties of the material, and the investigation into numerical
methods that can adequately produce approximate solutions in the context of
localization. The fundamental physical issues of constitutive linearization, elastic-
thermal-damage coupling, and dynamic effects are investigated thoroughly. The
included results simply serve the purpose of offering a “proof of concept” meant to
demonstrate some capabilities of the model, along with a basic parameter study to
identify which physical couplings are the most important. In this thesis, I do not
intend to set forth a new damage model for a specific material, nor make claims
that any one approach to modeling failure in solids is correct or superior to another.
Rather, I will focus on extending existing continuum models to include the full
balance of energy with dynamic effects, and demonstrate the proper derivation of
such models from the point of view of ISV theory.

This dissertation is organized as follows: Chapter 2 reviews phase-field damage
models, including their link to micromechanics and smaller scales, followed in
Chapter 3 by a derivation of the equations of motion for two distinct initial
boundary value problems. In Chapter 4 a detailed explanation of the algorithm
used to find approximate solutions to the derived equations is presented, including
a discussion of convergence and solution spaces for the damage variable. In Chapter
5, numerical experiments are conducted, and ultimately the importance of various
physical couplings present in the model is investigated. Chapter 6 contains numerical
experiments demonstrating the functionality of the adaptive meshing algorithm.
A discussion of conclusions and possible extensions is presented in Chapter 7,
including possible experiments for validating the implications of the work in this
dissertation.



Chapter 2
Literature Review

Failure analysis and life prediction of components and structures is a fundamental
responsibility of the engineering discipline. As society continues to demand safer,
more efficient and increasingly innovative products, the accurate quantification of
product life and design specifications becomes ever more relevant. The history of
such a broad subject, with efforts dating back to at least the work of Griffith (1921),
is due more consideration than allowed by the constraints to which this document
must conform. Therefore, the following literature review will be limited to the
background necessary for developing a continuum model describing the failure of
brittle materials (those materials which predominately fail via fracture), where
thermal effects are intrinsically included.

In continuum mechanics, phase-field methods use fields to describe additional
properties of the material,∗ such as the plastic strain, porosity, or grain size.
Furthermore, those models which use fields to describe some measure of damage
within the material are called continuum damage models. Continuum damage
mechanics (CDM) provides a framework for performing practical computations
while still accounting for the detailed failure of a body at smaller scales. Within
this paradigm, the additional physics of microstructure evolution are described in a
continuum manner by a collection of additional fields.

A primary claim of this dissertation that, in many cases, the coupling between
microstructure evolution and thermal processes cannot be ignored. As such, the

∗In this thesis, additional properties are those not usually attributable to a body in general,
e.g., fields other than the displacement, temperature, stress, etc. . . .



6

focus here is on the inclusion of thermal processes as an intrinsic part of the
model, and not on the traditional topics dedicated to the development of phase-
field damage models. Specifically, no original claims or presentations are made
regarding the fundamental definition of damage fields or their evolution; however,
the effects of considering the problem in a thermoelastic setting as opposed to an
isothermal elastic one are explored in depth. An enormous body of literature has
been generated detailing the process by which continuous fields that describe the
discreet microstructure of a material are derived. Because of this, we are able to
borrow from the work of others who have thoroughly investigated the nature of
phase-field damage models for brittle materials. Entire monographs exist on this
topic, and are founded on well-tested methods of micromechanical analysis and
experiment. Thus, the work in this dissertation exists only due to the fact that
such fundamental work is readily available.

At the outset of this project, the author surveyed the literature to determine
what models, if any, were available for application to the problem of rocket nozzle
throat erosion. Specifically, we wanted to find models that included brittle failure
mechanisms, dynamic terms, and full coupling with thermal phenomena. Finally, we
of course wanted to employ models that were based on accepted physical principles,
such as thermodynamic consistency.∗ However, we quickly realized that very few,
if any, such models were already proposed.

The large majority of the damage models in the literature are quasi-static in
nature. While this itself is not intrinsically negative, it is not what we needed for
this project. It is probable that the tendency toward quasi-static formulations is
a result of the culture of presenting stress-strain curves as an end result in many
works. Knowledge of the material response is important, and useful for validation of
damage models, but does not advance our needs. Thermal effects in existing models
are almost without exception included only as temperature dependence of the
material properties. Hence, a fixed temperature is prescribed, and the appropriate
material properties (e.g., the elastic moduli) are selected. No existing models where
found that have two-way coupling between damage and thermal phenomena. No
models were found in which dynamic thermal events are present.

∗A model is thermodynamically consistent if the formulation does not violate the second law
of thermodynamics.
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Perhaps the most unsettling fact about the current state of the literature is the
lack of attention paid to scientific principles in many of these models. Some models
were found which are not thermodynamically consistent, and even more were found
which were simply ‘ad-hoc’ in nature. It is the point of view of the author that
well-tested theoretical frameworks should be followed from the beginning when
deriving a new model, and that simplifying assumptions have solid footings and
clear consequences for the applicability of the model. It is the opinion of the author
that in the engineering community, these principles have often and widely been
overlooked. Thus, it is necessary for us to begin ‘from scratch’, and derive a suitable
continuum model.

The remainder of this chapter proceeds as follows: an overview of CDM as
applied to brittle materials, including a brief background of the development of the
simple damage model employed throughout this dissertation, is given first. The
methods used to provide physical meaning to the damage field are discussed, as well
as the concepts needed for understanding the corresponding evolution equation. The
context of the larger class of phase-field damage models, to which the model in this
dissertation belongs, is presented. The efforts of others to include thermal effects
in phase-field damage models and explore the coupling of thermoelastic-damage
quantities are reviewed. A summary of the contribution of this dissertation to the
current state of knowledge is given at the end of this chapter.

2.1 Brittle Damage Models

Clearly, the definition of a new field describing the microstructure of a body must be
grounded in the physical reality of the material from which that body is constructed.
Krajcinovic (1996) provides an enlightening and directing phrase in his monograph:

“Micromechanical damage models . . . should be viewed as a foundation
on which the continuum damage theories must be constructed to be
considered general, reliable, and rational.”

From this point, we will discuss briefly the efforts of other authors to construct a
link between the discreet micromechanical and continuum models. The basic tasks
necessary for implementing a model describing brittle failure within the framework
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of CDM are:

• Defining a damage field consistent with the physics of brittle solids (see, e.g.,
Krajcinovic, 1996).

• Determining the manner in which the damage field evolves, consistent with
the framework of rational thermodynamics (see, e.g., Truesdell and Noll, 1965
and Coleman and Noll, 1963).

2.1.1 Definition of Damage Field

It is well known that the predominant failure mechanism in brittle materials is
fracture; damage begins with the nucleation of microcracks, and ultimately ends
with their coalesence into one or more macrocracks. Budiansky and O’Connell
(1976) provide one of the first definitions of a continuous field describing damage
due to microcracking in a brittle material. In its general form, this relation is

E∗ = E(1− φ), where φ = 2N 〈a3〉
15 [3 〈f(ν)〉+ 2 〈g(ν, θ)〉] , (2.1)

and φ is a scalar field representing the extent of microcracking on a pointwise basis.
Here E is the elastic modulus of an undamaged isotropic material and E∗ is the
effective elastic modulus. Considering the case of irreversible damage (the material
is never self-healing), one always expects the effective modulus to be less than or
equal to the undamaged modulus. The additional parameters in Equation (2.1) are
the number of microcracks per unit volume (N), the characteristic crack dimension
(a), the effective poisson’s ratio (ν), a crack orientation angle (θ), and two crack
geometry functions (f, g). The angle brackets 〈·〉 denote the average value of the
parameter over a representative volume element.

Equation (2.1) provides an example of a direct link from a micromechanics-based
approach of tracking each defect to a phase-field mesoscale continuum model at
the representative volume element (RVE) level. This result is achieved by applying
the self-consistent method to the free energy of the system (see also Zimmerman,
1985, Horii and Nemat-Nasser, 1983 and Aboudi, 1991) which, in general, is meant
to quantify how microcracking affects the free energy of a body. An important
observation about (2.1) is that the damage parameter will be constant over a RVE,
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as all of the functions pertaining to the direction and orientation of the cracks are
averaged and N is assumed to be uniform over a given RVE. This point will prove
critical in later discussions about finding approximate numerical solutions to these
problems (see Chapter 4).

The variable φ introduced in (2.1) is a new field, referred to synonymously as
either a damage variable or damage parameter (depending on the author), that
quantifies the effects of microcracks on the elastic modulus. The range of the
damage parameter can be deduced from (2.1) as well. Clearly, if there are no
microcracks per unit volume, φ = 0, and φ→∞ as N →∞. Additionally, after
some rearrangement we see that:

φ = 1− E∗

E
, which implies φ→ 1 as E∗ → 0. (2.2)

Therefore, the physically relevant upper bound for the damage parameter is 1.
Thus, as is common in the field of damage mechanics, the damage variable φ is
restricted to the range φ ∈ [0, 1], where φ = 0 corresponds to a material point at
which there are no microcracks, and φ = 1 corresponds to a material point at which
the material has totally failed, i.e., a macrocrack is present (see Figure 2.1).

The brief outlining here of results from the application of the self-consistent
method by Budiansky and O’Connell (1976) is meant to demonstrate that it is

B

No Microcracks
φ = 0

Failed
φ = 1

Some Microcracks
0 < φ< 1

Figure 2.1. Definition of the damage field, demonstrating what the bounds on the field
correspond to in the material.
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possible to derive a physically reasonable definition of a damage parameter. Due to
the maturity of this subject, many other definitions for damage variables describing
cracking in brittle materials have been proposed (see, for example, Kachanov, 1987,
and Bažant, 1986). The forthcoming chapters do not mention this material in a
rigorous fashion, not because it is irrelevant, but rather because the goal of this
work is to study the behavior of continuum damage models when thermal processes
are introduced rather than contribute to the development of continuum damage
fields from micromechanical (or smaller scale) theories.

2.1.2 Damage Field Evolution

The remainder of this section is devoted to deriving an evolution equation for the
damage variable described in Section 2.1.1. Krajcinovic (1996) discusses general
evolution equations for various damage models and materials, but in this thesis
we have selected to use a simple, well known definition for a damage parameter.
As such, we also seek to use a simple evolution equation, while simultaneously
retaining concepts from fracture mechanics for brittle materials.

In this dissertation, we adapt the general evolution law describing the evolution
of microcracking discussed in Caiazzo and Costanzo (2000) to obtain one that is
relevant for our needs. The constitutive equation they propose has a form inspired
from the field of elastic fracture mechanics,

φ̇ = ηC 〈G−GCR〉 , (2.3)

where the energy release rate, G, is defined as

G = −∂ψ
∂φ

. (2.4)

Here ηC > 0 is the crack propagation parameter, GCR is a critical energy release
rate, ψ is the Helmholtz free energy of the body, and 〈·〉 is defined as

〈ζ〉 =

ζ for ζ > 0,

0 for ζ ≤ 0.
(2.5)
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Physically, this constitutive equation states that if the energy release rate with
respect to the damage variable reaches some critical value, then the damage variable
will increase. Likewise, it is impossible for the damage variable to decrease, and
hence preserves the non-healing nature of microcracking in this model. This
equation has a built-in nucleation criterion that clearly draws on the well known
Griffith criterion from linear elastic fracture mechanics. Assuming the damage
variable is directly related to the number of microcracks per unit volume (density)
in a body, Equation (2.3) states that if the energy release rate with respect to the
number of microcracks reaches a critical level, then the microcracks will begin to
grow again at some rate proportional to the excess energy release rate.

The evolution equation (2.3) suits our needs well as it is defined via the Helmholtz
free energy, which provides a general coupling to the theory of thermoelasticity.
Therefore, if we define the free energy in terms of the thermomechanical and damage
fields, then we will automatically have an evolution equation for the damage field
that is fully coupled to the rest of the problem. Further comments about the
physical and mathematical implications of this constitutive equation are given
during the model derivation in Chapter 3 and derivation of numerical methods
detailed in Chapter 4.

2.2 Model Context

In this section, the placement of this work into the larger field of CDM is identified.
This is important, because different classes of models have distinct concerns during
the derivation of the theory and subsequent implementation into numerical codes.
Also, it is important to identify what other options are available and used in the CDM
community, although not implemented in this thesis. In general, damage models
can be classified by two qualities: 1) The dimension of the damage variable(s), and
2) The mathematical characteristics of the evolution equation(s).

CDM provides a framework for including the discrete microstructure of a body
via a homogenized, continuous damage field, beginning with the works of Kachanov
(1958) and Rabotnov (1963), both of whom developed the use of an order parameter
to characterize the creep behavior of metals subject to the formation of voids. An
order parameter is an additional unknown, which accounts for some additional
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quality of the material. Order parameters are most often associated with phase
transitions, where extrema values of the range indicate different phases of a material.
For example, if for a solid-liquid phase transition problem an order parameter has
the range [0, 1], then the value of zero may indicate the material is in the solid
phase, and the value of one would indicate that the material is in the liquid phase.
Note that the concept of an order parameter is more general than that of the
damage variable, as it may not have relevance to specific physical quantities, but
instead is more of a pointwise indicator for the state of the system. The language
in the literature is not always clear about the distinction between order parameters
and damage variables/parameters; depending on the author or specific sub-field,
one may find the terms used interchangeably.

A myriad of damage mechanisms have been described in this manner, and the
reader is directed to the works of Capriz (1989), Lemaitre and Sermage (1997),
and Voyiadjis and Kattan (2005) for an extensive listing. A survey of these works
shows that the field of damage mechanics is rich in concepts and applications;
however, there is a lack of communication about the scientific worthiness of the
overall approach. While many articles can be found that show good performance
of these models when compared to specific experiments, there is a distinct lack of
validation for the overall approach. For more background information, the reader
is directed to the excellent reviews of the history and theory of the subject that
can be found in Chaboche (1988a,b), Kachanov (1986), Krajcinovic (1996), and
Lemaitre (1996).

The damage variable defined in Section 2.1 is scalar in nature, but this is
not always the case in CDM. A scalar damage variable is often referred to as an
isotropic measure of damage, that is, microcracks are counted, but no preferred
directionality in their orientation is assumed.∗ Various authors have proposed
methods for introducing higher dimensional damage parameters. In particular,
Ladevéze (1983), Voyiadjis and Kattan (2005), and Lemaitre et al. (2000) are among
those who have discussed the concept of tensor valued damage variables to capture
anisotropic damage phenomena (e.g., microcracks with preferred orientation). It
is not immediately clear, however, that these matrix representations of multiple

∗However, if one where to take the variables on the right-hand side of Equation (2.1) as the
damage variables, then one would have a description of isotropic damage with more than one
damage variable.
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damage variables are in fact tensors in the strict sense, or rather just a list of order
parameters as described in other works (see, for example, Fried and Gurtin, 1994
and Fried and Gurtin, 1993). This thesis does not employ lists of, or higher-ordered
damage variables. Instead, a scalar damage variable is used to preserve simplicity
for the sake of studying the fundamental coupling of thermoelasticity and damage.

Damage evolution equations are typically derived by either the application of the
theory of internal state variables (ISV) (see, e.g., Bowen, 1989), or via an additional
balance law as a result of considering the theory of configurational forces (see, e.g.,
Gurtin, 2000). In the theory of ISV, additional fields (such as the damage variable)
are considered to be additional hidden state variables for which an evolution law
must be specified. That is, they are added to the list of state variables upon
which the constitutive quantities depend, and they are not directly observable or
controlled via experimentation. In the theory of configurational forces, a parallel
set of balance laws are employed for the forces and kinematics of physics assumed
to occur at smaller scales. The behavior of the resulting equations can be grouped
into two distinct classes, those which are an ordinary differential equation (ODE)
with respect to time, and those which are a partial differential equation (PDE) in
both time and space. Clearly, the choice of an evolution law is based on the physics
of the problem, and must be made in a careful and consistent manner to ensure
that thermodynamic constraints are observed. Note that either the theory of ISV
or configurational forces can lead to evolution equations that are either an ODE or
PDE, but some distinctions can be made.

The use of ISV methods is widespread throughout the engineering and applied
sector of the CDM research community. ISV models are attractive to the engineering
community because there exist very few constraints on the form which a damage
evolution equation may have, making the machinery of damage mechanics applicable
to a large number of problems. However, even though there are fewer restrictions
on the form of the damage evolution law, abuses still occur, resulting in models that
are not thermodynamically admissible (obey the second law of thermodynamics).

In the theory of internal state variables, the damage variable is considered an
additional state variable, and the corresponding evolution equation an additional
constitutive relation (see Bowen, 1989 and Coleman and Gurtin, 1967). In an
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elastic material, simple constitutive evolution equations typically have the form

φ̇ = f(F, φ, t), (2.6)

where F is the deformation gradient, φ is the scalar damage variable, and t is the
time. The fact that (2.6) is an ordinary differential equation in φ immediately leads
to issues of localization and mesh-dependence of the solution φ. (see, e.g., Mariano,
2000a). Noticeably absent from the right-hand side of (2.6) is the gradient of the
damage variable, which would make (2.6) a PDE and alleviate the issue of solution
localization by introducing a spatial operator. While there is nothing in the theory
of ISV preventing one from considering ∇φ as an additional state variable, it is not
always clear how to reconcile this choice with the consequences of the principle of
equipresence∗ during the Coleman-Noll procedure (see Coleman and Noll, 1963),
and as such including the gradient of the damage variable as an additional state
variable is often forgone in damage models when using the theory of internal state
variables.

The localization resulting from this class of models is often dealt with numerically
via specialized techniques. For example, the use of a minimum mesh size is widely
known to be a simple method for obtaining repeatable results. Also, additional
physical arguments, such as non-local gradient methods have been proposed, but
are not explored in this work (see, for example, Zbolt and Bazant, 1996, Pijaudier-
Cabot and Bazant, 1988, or Voyiadjis et al., 2001). Such models are representative
of the many ad-hoc gradient schemes implemented to control the localization of the
damage variable. Within such schemes, gradient terms are included in the evolution
equations, often with a tuning parameter to determine a region over which strain
and/or damage values are averaged before use in the evolution. The definition of
a tuning parameter, or characteristic length, is akin to the notion of defining a
minimum mesh size.

Concepts from the theory of configurational forces have also been integrated with
∗The principle of equipresence states that every constitutive relation must initially be con-

sidered to be a function of all of the state variables. For example, if the state variables are the
deformation gradient and damage variable, then all of the constitutive relations need to be assumed
to be functions of both state variables before the consequences of material frame indifference
are realized. In this case, if the gradient of the damage is considered to be an additional state
variable, then an evolution law would also need to be specified for it.
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CDM, resulting in a class of models with different characteristics from those based
on ISV. Generally (but not strictly), CDM models resulting from configurational
force balances have evolution equations that are PDE, i.e., for an elastic material
they generally have the form

φ̇ = f(F, φ,∇φ, t). (2.7)

This is due to the balance-law structure relating the micro-stresses and micro-
kinematics (see Gurtin, 2000). Many authors have explored damage models and
microcracking in the setting of configurational forces, including Agiasofitou and
Dascalu (2007), Augusti and Mariano (1999), Mariano (2000b), Gurtin and Podio-
Guidugli (1996), and Capriz (1989). Another effect usually present in models
derived via the theory of configurational forces (but again, in no manner prohibited
from models derived via ISV methods) is microinertia, which is considered an
important physical effect (see, e.g., Capriz, 1989 and Cermelli and Fried, 1997)
when describing the material motion of the system, and leads to evolution laws of
the form

φ̈ = f(F, φ,∇φ, φ̇, t). (2.8)

In summary, it must be stressed that it is possible to obtain evolution equations
which are either ODE or PDE from either the theory of internal state variables or
configurational forces, or even other methods in mechanics. However, in general,
evolution equations which are ODE typically arise from the theory of internal state
variables and evolution equations which arise from a balance of configurational
forces are often PDE with second derivatives of the damage variable with respect
to time, accouting for the microinertia. In this thesis, we have chosen to use the
simplest model possible, that is, a scalar damage variable that evolves according to
an ODE, within the theory of ISV. This preserves the clarity of the thermal-damage
relationships in the results, as well as allows us to maintain relevance to the broader
engineering community.
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2.3 Thermal-Damage Relationships

To date, only a few works in the literature resembling the following presentation
on elastic-thermal-damage coupling have been uncovered. The current search
has focused on previous manuscripts detailing the constitutive quantities for a
thermoelastic body with isotropic damage, and on any works which include the
dynamic balance of energy.

A model detailing the application of a fully coupled thermoelastic theory with
multiple damage parameters to the high temperature response of concrete is given
by Tenchev and Purnell (2005). The authors provide for the dynamic change in
temperature in the rate dependent constitutive equations for the stress, and also
account for it in the local evolution equation of the damage parameter. Additionally,
a particular form of the specific heat is considered, to preserve thermodynamic
consistency. The entire work is limited to the framework of linear thermoelasticity,
and the details of the numerical methods employed are not well described.

Both Nechnech et al. (2002) and Gawin et al. (1999) also present detailed
damage models for describing the behavior of concrete of high temperatures. These
articles are instructive to us in some aspects, for example Nechnech et al. (2002)
gives specific information about the time stepping and radial return algorithms
employed to implement the theory, and Gawin et al. (1999) discusses the boundary
conditions of the problem in a proper mathematical setting. However, the theory
presented in both of these works does not consider dynamic thermal effects and
their effects on damage evolution. That is, they do not account for a full coupling
of the temperature and damage evolution, but rather the one-way coupling of
temperature into the damage evolution.

The theory applied by Tenchev and Purnell (2005) is derived in detail by Stabler
and Baker (2000). Their work considers two damage variables, one representing
the ‘mechanical damage’ and one describing the ‘thermal damage’. For a system
with different damage mechanisms at different temperatures, this approach may
be relevant, but it is not clear that their approach is consistent with the principle
of equipresence (see, e.g., Bowen, 1989). The work of Stabler and Baker (2000)
discusses many of the same points as this dissertation, the most important of which is
the concept that all of the constitutive properties may depend on both temperature
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and damage, and the correct forms that they must have to be thermodynamically
admissible. Additionally, a generalization of the theory to include high temperature
effects is discussed. The derivation is very thorough, and to this date is the only
article found which explicitly outlines the fully coupled equations of motion. The
motivation cited by Stabler and Baker (2000) is their observation that previous
works, which assumed a constant specific heat, let to a violation of the dissipation
inequality (and hence the second law of thermodynamics). Perhaps the only
overriding concern with this article is that the authors have approached the problem
from the point of view that this must be corrected, and a specific resolution to the
problem was devised. However, no mention of the effects of evolving microstructure
on the heat flux, and subsequently the coefficients of thermal conductivity, is given.
Our work aims to be more general and complete, and start with the basic principles
of CDM and derive a model with only the most general thermodynamic constraints.

2.4 Summary of Contribution

The primary contribution of this work is the development of a general, fully
coupled, dynamic, and thermodynamically consistent thermoelastic-damage model.
Specifically, a total derivation of the equations of motion for a thermoelastic material
with damage, from the first principles of continuum mechanics with ISV is presented,
so that the full extent of the physical coupling can be realized. Additionally, we
take the most general view possible when considering the constitutive properties,
allowing for damage dependence of any or all of them as necessary to be compatible
with experiment. It is demonstrated that this model is more general than most of
those already proposed in the literature, which often take an ‘ad-hoc’ approach to
implementing the effects of damage.

The second contribution of this work is the investigation into proper numerical
methods for modeling continuum bodies with local constitutive equations. As
stated previously, the mathematical problems encountered can be so treacherous
that many researchers have focused on theories which eliminate them all together,
or address them through various numerical techniques. This dissertation aims to
demonstrate that by coupling carefully selected numerical methods with physically
based parameters and techniques, one is able to find relatively reliable approximate
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solutions for local constitutive equations. Specifically, we treat the entire IBVP in
the general framework of the finite element method, as opposed to simply accounting
for the damage variable at quadrature points, and employ adaptive mesh techniques
to address the localized nature of the damage solution.



Chapter 3
Physical Model Derivation

The goal of this chapter is to derive an initial boundary value problem (IBVP)
describing the motion of a body consisting of a brittle material with evolving
microstructure, subjected to dynamic thermomechanical loading. Two non-linear
systems of equations are derived. In the first model, we linearize the constitutive
relations and the balance laws about a displacement gradient and temperature
gradient free configuration which is also at a uniform reference temperature. This
results in a formulation that, when the microstructure of the system is fixed,
is simply linear thermoelasticity. In the second model, we do not linearize the
constitutive relations and balance laws about a reference temperature, leading
to a formulation that is non-linear due to the presence of damage and due to
higher-order terms intrinsic to the thermoelastic nature of the problem. The
latter formulation is necessary to develop an IBVP for a thermoelastic material
where the material properties may be functions of both temperature and damage.
Comparisons between the final equations of motion for each case are discussed.

Permanent deformation and viscous dissipation have been neglected, primarily
because the material presented is interesting in its own right, but also because the
inclusion of such effects has already been well studied. Throughout the following
derivation, various assumptions are used to either permit the derivation to proceed,
or simplify the problem without losing physical insight. For example, as is often
the case in the study of brittle materials, it is appropriate to limit our model to
small-strain elastic deformations. The only mode of failure considered at this time is
brittle fracture resulting from the coalescence of microcracks, which is modeled via
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a continuous damage variable. No healing is considered; microcracking is assumed
to be irreversible and isotropic. The extension to anisotropic damage models can be
carried out in a rigorous way, following well documented approaches throughout the
literature (see, for example, Voyiadjis and Kattan, 2005 or Lemaitre and Desmorat,
2005).

Throughout much of the following, we will assume that various quantities are
small, and through expansion of the constitutive equations into generalized series,
we will arrive at linear or non-linear PDE. In both the theory which is linear
when the microstructure is fixed and the one which is not, it is assumed that the
temperature gradients are small, resulting in the traditional theory of Fourier heat
conduction. This allows for the use of standard thermal conductivity material
properties, and is necessary for the application of the model developed herein to
practical problems. Secondly, the displacement gradient, and its time derivative,
will always be assumed to be small, giving rise to the use of standard elastic moduli.

The difference between the two forthcoming formulations is the nature of the
difference between the temperature of the body and some reference temperature.
The formulation which is fully linear when the damage is fixed assumes that the
difference between the temperature and the chosen (fixed) reference temperature
is small, while the other does not. Due to this, the latter formulation is often
referred to in this work as the ‘high-temperature’ theory. Note that while one
derivation will be called ‘linear’, and the other ‘high-temperature’, both will be
non-linear due to the presence of the damage variable, which in turn makes the
material properties time dependent. Both formulations conform to the theory of
internal state variables (see, e.g., Bowen, 1989), and follow the derivation of linear
thermoelasticity presented in (Carlson, 1972).

This chapter is organized as follows: a description of the kinematics and damage
model is presented first, followed by a derivation of the general governing equations
for a thermoelastic material with isotropic damage. Subsequently, the discussion
diverges; first the formulation for linear thermoelasticity with damage is presented,
followed by the derivation of the high-temperature formulation. The chapter
concludes with a note on boundary and initial conditions.
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3.1 Kinematics

Let B ⊂ E3 be a continuous body embedded in a three-dimensional Euclidean
point space. The reference configuration is chosen so as to coincide with the initial
configuration at time t = 0, and is denoted by Bκ. The deformed configuration
at time t > 0 is denoted by Bt. Material points in the reference configuration are
denoted by X ∈ Bκ and points in the deformed configuration are denoted by x ∈ Bt.
Let χ(X, t) be the motion of B, which consists of the collection of configurations
over the interval 0 ≤ t ≤ T (where T is some end time). The quantities necessary
to describe the motion at time t are:

χ(X, t) = [u(X, t), θ(X, t), φ(X, t)]T , (3.1)

where
u(X, t) = x−X, (3.2)

u ∈ R3 is the displacement field, θ ∈ R is the absolute temperature field, and
φ ∈ R is a “hidden” internal state variable ISV that denotes the extent of the
microcracking at a point in the reference configuration. For the purposes of this
work, it is not necessary to provide a full accounting of the link between this
damage parameter and a specific micromechanical model. The aim here is to
study the behavior of phase-field models, and in particular the issues arising in
the numerical implementation of appropriate solution schemes. Therefore, the
precise nature of the homogenization techniques used to develop the phase field
from the micromechanics is not needed, but the reader is referred to Chapter 2 for
an overview of techniques and philosophies on the subject.

As is common in CDM, admissible values of φ are restricted to the interval
0 ≤ φ ≤ 1, where φ = 0 corresponds to a pristine, un-microcracked material point,
and φ = 1 denotes total pointwise failure in the material at X ∈ Bκ. The scalar
nature of the ISV chosen here is the result of assuming that microcracking occurs
in an isotropic fashion; that is, microcracks are assumed to occur equally in any
orientation. Clearly this model is not sufficient for some bulk materials or composite
bodies; however, it can be assumed for the following without loss of generality. The
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Figure 3.1. Diagram of Kinematic Quantities

deformation and displacement gradients are defined in the usual manner as

F = ∂χ

∂X
= I + H and H = ∇u, (3.3)

respectively. Here I is the second order identity tensor and ∇(·) denotes the gradient
relative to the reference configuration. The body has a mass density in the reference
configuration, ρκ(X), with units of mass/volume. Note that the spatial dependence
of the density is explicitly declared, as modeling bodies with varying density is
anticipated. Finally, define θR to be a constant uniform reference temperature over
the body B.

3.2 Governing Equations

A Lagrangian formulation is used throughout the derivation of the equations of
motion. For the sake of brevity, take as given the well known balance laws of
momenta and energy in referential form

ρκü = Div S + bκ, (3.4)

SFT = FST , (3.5)

ėκ + Div qκ = S · Ḟ + rκ. (3.6)
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Here, S is the first Piola-Kirchhoff stress tensor∗, and qκ is the material heat flux.
The body force and heat supply per unit volume are denoted by bκ(X, t) and
rκ(X, t), with units of force and power per unit volume, respectively. Define the
Helmholtz free energy density per unit volume of the body as:

ψκ = eκ − ηκθ, (3.7)

where eκ is the internal energy density and ηκ is the entropy density, both per unit
volume. A thermodynamically consistent model is desired, and as such we demand
that for closed systems the second law of thermodynamics be satisfied:

η̇κ ≥
rκ
θ
−Div

(qκ
θ

)
. (3.8)

Substituting the definition of the free energy in (3.7) and the balance of energy in
(3.6) into the inequality in (3.8), the well-known dissipation inequality is obtained
(see Bowen, 1989 and Carlson, 1972):

ψ̇κ + ηκθ̇ − S · Ḟ + 1
θ
qκ · ∇θ ≤ 0. (3.9)

The principle of equipresence (see, e.g., Bowen, 1989 and Truesdell, 1965) requires
that all of the constitutive response functions depend on the same state variables.
It may turn out, due to physical constraints, that some constitutive quantities do
not depend on some of the state variables, but this should not be assumed a priori
to the identification of such constraints. In thermoelasticity with an ISV, the state
variables are F, θ, ∇θ, and φ. The constitutive equations of the model can now be
written formally as:

(
ψκ, ηκ,S,qκ, φ̇

)
= f (F, θ,∇θ, φ,X) , (3.10)

where the evolution of the ISV representing damage will be discussed shortly (see
Section 3.3). More specifically, the constitutive response functions are defined as:

ηκ = η̂κ (F, θ,∇θ, φ,X) , (3.11)
∗For general definitions, see any text on continuum mechanics, e.g., Gurtin (1981) or Liu

(2002).
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ψκ = ψ̂κ (F, θ,∇θ, φ,X) , (3.12)

qκ = q̂κ (F, θ,∇θ, φ,X) , (3.13)

S = Ŝ (F, θ,∇θ, φ,X) , (3.14)

φ̇ = ˙̂
φ (F, θ,∇θ, φ,X) . (3.15)

The use of a caret, (̂·), denotes the constitutive response function of a given
quantity. Note again that the evolution of the damage is described by an additional
constitutive response function; this is a defining characteristic of treating the
damage as an internal state variable. Here, all of the response functions are
permitted to be dependent on position; however, henceforth the writing of the
explicit dependence on X will be dropped for notational convenience, unless it is
critical to the presentation. Differentiating the free energy response function with
respect to time yields

˙̂
ψκ = ∂ψ̂κ

∂F
· Ḟ + ∂ψ̂κ

∂θ
θ̇ + ∂ψ̂κ

∂(∇θ) · ∇θ̇ + ∂ψ̂κ
∂φ

φ̇. (3.16)

Substituting (3.16) into the dissipation inequality in (3.9) along with the rest of
the constitutive response functions, gives:(

∂ψ̂κ
∂F
− Ŝ

)
· Ḟ +

(
∂ψ̂κ
∂θ

+ η̂κ

)
θ̇ + ∂ψ̂κ

∂(∇θ) · ∇θ̇ + ∂ψ̂κ
∂φ

φ̇+ 1
θ
q̂κ · ∇θ ≤ 0. (3.17)

Since F, θ, and ∇θ are independent controllable variables in our formulation, we
conclude that in order for the above variational inequality to be satisfied at all
times for all admissible motions, the coefficients of the first three terms must vanish
(for a formal proof of this claim, see either Bowen, 1989 or Gurtin, 1981). The
result is the usual set of thermodynamic restrictions on a thermoelastic material
with an ISV, namely,

ψ̂κ = ψ̂κ (F, θ, φ) , η̂κ = −∂ψ̂κ
∂θ

, (3.18)

Ŝ = ∂ψ̂κ
∂F

,
∂ψ̂κ
∂φ

φ̇ ≤ −1
θ
q̂κ · ∇θ. (3.19)
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A full derivation of the consequences of material frame indifference is omitted
here, and instead we refer the reader to the results in Carlson (1972). However, the
most important consequence of material frame indifference is that the dependence of
the response functions on the deformation gradient can be reduced to a dependence
on the finite strain, E, where

E = 1
2

(
FTF− I

)
= 1

2

(
H + HT + HTH

)
. (3.20)

In most of the response functions, this reduces to a simple substitution, i.e.,

η̂κ (F, θ, φ,X) = η̃κ (E, θ, φ,X) , (3.21)

ψ̂κ (F, θ, φ,X) = ψ̃κ (E, θ, φ,X) , (3.22)

q̂κ (F, θ,∇θ, φ,X) = q̃κ (E, θ,∇θ, φ,X) , (3.23)
˙̂
φ (F, θ,∇θ, φ,X) = ˙̃φ (E, θ,∇θ, φ,X) . (3.24)

However, special care must be taken when finding the appropriate relation for the
stress,

Ŝ = ∂ψ̃κ(E, θ, φ,X)
∂F

, (3.25)

which is computed using the definition of the derivative and the chain rule for
tensors:

DFψ̃κ[dF] = ∂ψ̃κ
∂F
· dF (3.26)

= DEψ̃κ[DFE[dF]] (3.27)

= ∂ψ̃κ
∂E
· 1

2(dFTF + FTdF) (3.28)

= 1
2
∂ψ̃κ
∂E
· dFTF + 1

2
∂ψ̃κ
∂E
· FTdF (3.29)

= 1
2
∂ψ̃κ
∂E

FT · dFT + 1
2F

∂ψ̃κ
∂E
· dF (3.30)

= F
∂ψ̃κ
∂E
· dF, (3.31)

where we have taken advantage of the fact that AT ·BT = A ·B for any tensors A
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and B, and that ∂ψ̃κ/∂E is a symmetric tensor. Thus,

Ŝ = FS̃, where S̃ = ∂ψ̃κ
∂E

. (3.32)

Here S̃ is the Second Piola-Kirchhoff stress tensor. Note that because E is symmetric,
(3.32) causes the balance of angular momentum (3.5) to be automatically satisfied.

The complete set of non-linear governing field equations has now been derived,
and consists of :

1. The kinematic relations:

F = I + H, (3.33)

E = 1
2
(
FTF− I

)
. (3.34)

2. The balance laws, see (3.4–3.6).

3. The constitutive response functions:

ηκ = η̃κ (E, θ, φ) , (3.35)

ψκ = ψ̃κ (E, θ, φ) , (3.36)

qκ = q̃κ (E, θ,∇θ, φ) , (3.37)

S = FS̃ (E, θ, φ) , (3.38)

φ̇ = ˙̃φ (E, θ,∇θ, φ) , (3.39)

eκ = ψ̃κ − η̃κθ. (3.40)

4. The thermodynamic restrictions

η̃κ = −∂ψ̃κ
∂θ

, S̃ = ∂ψ̃κ
∂E

, and ∂ψ̃κ
∂φ

˙̃φ+ 1
θ
q̃κ · ∇θ ≤ 0. (3.41)

A precise set of governing equations can now be obtained by specifying forms
for the frame-indifferent free energy (ψ̃κ), the material heat flux (q̃κ), and damage
evolution ( ˙̃φ). However, there is no a priori reason to suspect any specific form of
the aforementioned quantities.
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The balance of energy given in (3.6) can be rewritten using the results of the
second law and the definition of the free energy. Recalling the definition of the
internal energy

ẽκ = ψ̃κ + η̃κθ, (3.42)

the time derivative can be computed directly as

˙̃eκ = ˙̃ψκ + ˙̃ηκθ + η̃κθ̇. (3.43)

Taking the total time derivative of the thermodynamically constrained version of the
free energy density (3.18), and considering the other thermodynamic constraints,
yields the following expression for the time derivative of the internal energy:

˙̃eκ = S · Ḣ− η̃κθ̇ + ∂ψ̃κ
∂φ

˙̃φ+ ˙̃ηκθ + η̃κθ̇. (3.44)

Substituting this into the balance of energy (3.6), and dropping the tilde, leads to
a convenient alternative expression for the balance of energy

∂ψκ
∂φ

φ̇+ η̇κθ = Div qκ + r. (3.45)

3.3 Damage Variable Evolution

The development of an evolution law for the damage variable begins with the
assumption that microcracking is an irreversible phenomenon, and thus the rate of
change of the damage variable must always be non-negative:

φ̇ ≥ 0. (3.46)

The energy release rate, with respect to the damage variable, is defined as:

G = −∂ψκ
∂φ

. (3.47)

This is simply the rate at which the free energy changes with respect to the change
in damage on a pointwise basis, and it is a measure of the energy (per unit volume)
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available for damage growth. Because it is presumed that the damage will always
increase, and that the formation of microcracks requires energy as a dissipative
process with respect to the underlying thermoelastic nature of the material, the
free energy will always be decreasing with respect to growing damage, and hence
to have G be a positive value, we need the minus sign in (3.47).

Inspired by the Griffith criterion (see Griffith, 1921), we define GCR(E, θ,∇θ, φ)
to be the critical energy release rate that must be met before the damage variable
can grow. Thus, we have a criterion for when the damage variable can grow, but
not at what rate it will grow. An elementary evolution equation for φ that answers
this question is

φ̇ = ηC 〈G−GCR〉 , (3.48)

where ηC(E, θ,∇θ, φ,X) is a constitutive response function that relates the excess
energy release rate G−GCR to the time rate of microcrack growth φ̇. For a more
detailed discussion of this evolution law, see Caiazzo and Costanzo (2000). Clearly,
ηC > 0 and GCR > 0 are additional constitutive quantities, and their proper forms
are still open for debate. The effects of both damage and temperature dependence
of these quantities are investigated in Chapter 5, where the specific forms are
defined.

Note that ηC has a direct influence on the behavior of the model. If this value
is very small, then one is essentially assuming that the damage will grow slowly.
This is appropriate for materials with a high fatigue life, over-which microcracking
densities grow very slowly. However, the topic of this work is brittle fracture, and
as such requires that damage grows very quickly. Therefore, the focus from this
point forward will be on the aspects of using very large values of ηC . To further
emphasize this point, observe that as ηC →∞, the damage will jump to φ(X, 0) = 1
for each X ∈ Bκ where G > GCR the instant that the loading exceeds the critical
threshold.

The preservation of thermodynamic consistency is considered to be of paramount
importance during this work, and as such we check that the damage evolution
equation in (3.48) satisfies the thermodynamic constraints. Recalling the relevant
constraint in (3.19),

∂ψ̃κ
∂φ

φ̇ ≤ 0 (3.49)
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must hold for all admissible motions. Clearly, because the damage variable will
never decrease, there are two distinct scenarios for this term:

1. The damage variable is not evolving (φ̇ = 0). Thus, (3.49) is trivially satisfied.

2. The damage variable is evolving (φ̇ > 0). If φ̇ > 0, then G > GCR > 0,
regardless of the forms of either G or GCR, as long as ηC > 0. Thus, since
G = −∂ψ̃κ/∂φ, ∂ψ̃κ/∂φ < 0, and (3.49) is satisfied.

Therefore, this evolution law preserves the thermodynamic consistency of the model.

3.4 Linear Thermoelasticity with Damage

The special case of linear thermoelasticity with damage is so important to this
work that its derivation is now presented in full. This particular model will be very
useful for preliminary analysis and eventually may be employed for preconditioning
and/or predictor/corrector schemes for numerically solving the high-temperature
problem. Following the traditional theory of linear thermoelasticity, we consider
motions such that

‖H‖, ‖∇θ‖, ‖ϑ‖, ‖Ḣ‖ v O(δ) (3.50)

where ϑ = θ−θR and δ << 1. Following Carlson (1972), we expand the constitutive
response functions about the appropriate reference state (H = 0, ∇θ = 0, Ḣ = 0,
and ϑ = 0) up to terms of order δ. We then substitute the resulting linearized
response functions into the balance laws and drop all of the terms of order greater
than δ.

In this process, it is convenient to define the symmetric small strain tensor, E ,
as the linear part of the finite strain E with respect to the displacement gradient
H, i.e.,

E = 1
2
(
H + HT + HTH

)
= 1

2
(
H + HT

)
+O(δ2) = E +O(δ2). (3.51)

3.4.1 Heat Flux Linearization

The standard procedure for linearizing the heat flux about the reference temperature
gradient (∇θ = 0) yields the familiar Fourier Law of heat conduction. When
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expanded about E = 0, θ = θR, and ∇θ = 0, the heat flux takes the form:

q̃κ(E, θ,∇θ, φ) ≈ q̃κ(0, θR,0, φ) + ∂q̃κ(0, θR,0, φ)
∂E

· E

+ ∂q̃κ(0, θR,0, φ)
∂θ

· ϑ+ ∂q̃κ(0, θR,0, φ)
∂(∇θ) · ∇θ. (3.52)

Assuming that q̃κ is a smooth function of its arguments, it is possible to show that
consistency with the dissipation inequality in (3.9) demands that the heat flux
must vanish when the temperature gradient is zero (see Bowen, 1989) for any value
of E and θ. In turn, this yields

q̃κ = −K[∇θ], (3.53)

where the second-order heat conductivity tensor, K, is given as:

K(φ,X) = −∂q̃κ(0, θR,0, φ,X)
∂(∇θ) . (3.54)

The dependence of the thermal conductivity values on the damage variable is
discussed shortly.

3.4.2 Free Energy Linearization

We now wish to expand the free energy about E = 0 and θ = θR, and retain up
to and including terms that are of second order in E and ϑ. This form of the free
energy is subsequently used to calculate the entropy and stress, which are then
reduced to contain terms of only order δ. To expand and reduce the free energy to
retain terms of only order δ2 at this point is premature, and results in confusion
for subsequent calculations.

ψ̃(E, θ, φ) ≈ ψ̃(0, θR, φ) + ∂ψ̃(0, θR, φ)
∂E

· E + ∂ψ̃(0, θR, φ)
∂θ

ϑ

+ 1
2
∂2ψ̃(0, θR, φ)

∂E∂E
[E] · E + 1

2
∂2ψ̃(0, θR, φ)

∂E∂θ
ϑ · E + 1

2
∂2ψ̃(0, θR, φ)

∂θ2 ϑ2.

(3.55)
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Traditionally, by assuming that there is no stored energy when the body is strain
free and at the reference temperature, the first term of the expansion is set to
zero. However, we must make the additional assumption that the damage variable,
and hence a non-uniform density of microcracks, does not give rise to recoverable
mechanical energy. Furthermore, the partial derivatives present in the second and
third terms in (3.55) are the stress and entropy of the undeformed body at the
reference temperature, which are assumed to be zero for any given distribution of
damage. Therefore, the free energy, up to and including terms of O(δ2) is:

ψ̂(E , θ, φ) = 1
2C[E ] · E + Mϑ · E − c

2θR
ϑ2, (3.56)

where
C(φ,X) = ∂2ψ̃(0, θR, φ)

∂E∂E
(3.57)

is the fourth-order elasticity tensor,

M(φ,X) = 1
2
∂2ψ̃(0, θR, φ)

∂E∂θ
(3.58)

is the second-order thermo-mechanical coupling tensor, and

c(φ,X) = −θR
∂2ψ̃(0, θR, φ)

∂θ2 (3.59)

is the specific heat capacity at constant volume. The choice of these expressions
may seem arbitrary, and again the reader is referred to Carlson (1972) for further
explanation.

The stress can now be computed using the thermodynamic constraint and
expression for the free energy in (3.55):

Ŝ = F
∂ψ̃κ(E, θ, φ)

∂E
= (I + H) (C[E] + Mϑ)

= C[E ] + Mϑ+O(δ2)

≈ C[E ] + Mϑ. (3.60)
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Note that because S̃ is symmetric, M must be symmetric, and thus the first Piola-
Kirchhoff stress tensor is symmetric in the linearized theory. Furthermore, because
of the symmetry of the elasticity tensor, the small strain tensor can be replaced
with the displacement gradient. Considering these comments, the balance of linear
momentum becomes the familiar linear expression:

ρκü = Div [C(φ)[∇u] + M(φ)ϑ] + bκ. (3.61)

What remains now is to determine the linearized form of the balance of energy.
Considering the term representing the stress power and the previously derived
expression for the stress response function, we have

Ŝ · Ḟ = (I + H) [C(φ)[E] + M(φ)ϑ] · Ḣ

= −θRM(φ) · ∇u̇ +O(δ2)

≈ −θRM(φ) · ∇u̇. (3.62)

As far as the linearization of eκ is concerned, using the definition of the Helmholtz
free energy, we have

ẽκ(E, θ, φ) = ψ̃κ(E, θ, φ) + η̃κ(E, θ, φ)θ

≈ ψ̃κ(0, θR, φ) + η̃κ(0, θR, φ)θR + ∂ψ̃κ(0, θR, φ)
∂E

· E

+ θR
∂η̃κ(0, θR, φ)

∂E
· E + ∂ψ̃κ(0, θR, φ)

∂θ
ϑ+ θR

∂η̃κ(0, θR, φ)
∂θ

ϑ. (3.63)

Again considering that in a deformation-free configuration at the reference temper-
ature we expect no stored energy and no residual stress, the response function for
the internal energy reduces to

ẽκ(E, θ, φ) ≈ θR
∂η̃κ(0, θR, φ)

∂E
· E + θR

∂η̃κ(0, θR, φ)
∂θ

ϑ

≈ −θR
∂2ψ̃κ(0, θR, φ)

∂θ∂E
· E− θR

∂2ψ̃κ(0, θR, φ)
∂θ2 ϑ

≈ −2θRM(φ) · E + c(φ)ϑ. (3.64)

Using the symmetry of M allows the small strain tensor to be replaced with the
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displacement gradient, and the balance of energy takes the form:

ċ(φ)ϑ+ c(φ)θ̇ − 2θRṀ(φ) · ∇u−Div [K(φ)[∇θ]]−M(φ) · ∇u̇ = rκ. (3.65)

At this point, we have derived four material properties that are dependent
on damage, but have yet to specify that dependence. For the case of the elastic
moduli, there is overwhelming literature available supporting various forms of
this dependence (see Chapter 2), but for the additional material parameters of
thermoelasticity, there is very little precedence. However, for the purposes of
numerical experiments we must choose some concrete forms, under the constraint
that they do no violate thermodynamic admissibility or basic physical common
sense. In this thesis, the following expressions are assumed,

C(φ) = (1− φ)β C0, (3.66)

M(φ) = (1− φ)γ M0, (3.67)

K(φ) = (1− φ)α K0, (3.68)

c(φ) = (1− φ)τ c0, (3.69)

where α, β, γ, τ ∈ R, and C0, M0, K0, c0 are the material properties when the body
is undamaged. These exponents are new parameters, and serve to extend existing
theories which often assume only a linear dependence.

3.4.3 Equations of Motion for the Linearized Problem

Equations (3.61) and (3.65) together with the damage evolution equation given in
(3.48) give the following equations of motion for a linear thermoelastic material
with simple microcracking

ρκü−Div
[
(1− φ)βC0[∇u] + (1− φ)γM0ϑ

]
= bκ, (3.70)

c0(1− φ)τ θ̇ +
[
2θRγ(1− φ)γ−1M0 · ∇u− c0τ(1− φ)τ−1ϑ

]
φ̇

−Div [(1− φ)αK0∇θ]− θR(1− φ)γM0 · ∇u̇ = rκ,
(3.71)
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φ̇− ηC
〈
β

2 (1− φ)β−1C0[H] ·H + γ(θ − θR)(1− φ)γ−1M0 ·H

− c0τ

2θR
(1− φ)τ−1(θ − θR)2 −GCR

〉
= 0.

(3.72)

3.5 High Temperature Theory

A non-linear theory which allows for large temperature variations is presented in
this section. Here we relax the assumption that the temperature variation from
a reference temperature must be small, but still assume that the displacement
gradient, its time derivative, and the temperature gradient are small. These
assumptions retain the well documented behavior of Fourier heat conduction and
linear elasticity (specifically, the use of standard elastic moduli). An additional
consequence of allowing large temperature deviations from the reference temperature
is that the theory now allows for temperature dependent material properties. For
completeness, we assume that the displacement gradient, velocity gradient, and
temperature gradient are small,

||H||, ||Ḣ||, ||∇θ|| v O(δ), where δ << 1, (3.73)

3.5.1 Constitutive Theory

Expanding the heat flux in a Taylor series about E = 0 and ∇θ = 0 yields

q̃κ(E, θ,∇θ, φ) ≈ q̃κ(0, θ,0, φ)

+ ∂q̃κ(0, θ,0, φ)
∂E

· E + ∂q̃κ(0, θ,0, φ)
∂(∇θ) · ∇θ +O(δ2). (3.74)

The conditions placed on the material heat flux by the second law of thermodynamics
insist only that the heat flux satisfy the dissipation inequality in (3.19). Therefore,
after dropping the higher order terms and the first two terms of the expansion
(which are eliminated by equilibrium conditions in linear thermoelasticity), one
arrives at:

q̃κ = −K[∇θ], (3.75)
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where

K(θ, φ,X) = −∂q̃κ(0, θ,0, φ,X)
∂(∇θ) . (3.76)

Here K = K(θ, φ,X) is the second order heat conductivity tensor, the component
values of which are dependent on both the temperature and the damage on a
pointwise basis. Note that this immediately cause the equations of motion to be
non-linear in the temperature, but is able to capture the physics of temperature
and microstructure dependent Fourier heat conduction. The precise nature of these
dependencies is outlined shortly.

The free energy of the system is expanded following the same procedure used to
obtain (3.55), where first it is expanded about the finite strain, subsequently used
to calculated the stress, and then reduced to contain only terms of order δ2. Thus,
expanding about E = 0 yields

ψ̃κ(E, θ, φ) ≈ ψ0 + S0 · E + 1
2C[E] · E, (3.77)

where

ψ0(θ, φ,X) = ψ̃κ(0, θ, φ,X), (3.78)

S0(θ, φ,X) = ∂ψ̃κ(0, θ, φ,X)
∂E

, (3.79)

C(θ, φ,X) = ∂2ψ̃κ(0, θ, φ,X)
∂E∂E

. (3.80)

Here ψ0 is the part of the free energy which is solely dependent on temperature
and damage, S0 is a second order tensor expressing the temperature and damage
dependent response of the residual stress, and C is the fourth order tensor of the
temperature and damage dependent elastic moduli. Note that since the finite strain
tensor is symmetric, the residual stress must be symmetric and the elastic moduli
will have the usual major and minor symmetries.

The residual stress is assumed to vanish, on a pointwise basis, at a reference
temperature θR(X). Earlier, it was stated that the reference temperature must
be uniform, but in this case no such restriction is necessary. Which reference
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temperature is appropriate will be clear from context. Thus, if the residual stress
vanishes on a pointwise basis at a given reference temperature, it must have the
form

S0 = M(θ − θR), (3.81)

where M(θ, φ) is the temperature and damage dependent thermomechanical cou-
pling tensor.∗ Considering this form for the residual stress, the stress can be
calculated as

S = F
∂ψ̃κ
∂E

= (I + H) (M (θ − θR) + C[E])

= (I + H) M (θ − θR) + C[H] +O(δ2). (3.82)

The final simplification in (3.82) takes into account that the action of a symmetric
fourth order tensor on a second order tensor is the same as the action on the
symmetric part of the second order tensor. At this point, the balance of momenta
are fully determined.

As balance of energy, here we will use the expression in (3.45), which requires
us to first calculate an expression for the quantity η̇κ. Recalling that we have
ηκ = η̃κ(E, θ, φ), then η̇ can be written as

η̇ = ∂η̃κ
∂θ

θ̇ + ∂η̃κ
∂E
· Ė + ∂η̃κ

∂φ
φ̇,

= −∂
2ψ̃κ
∂θ2 θ̇ −

∂2ψ̃κ
∂θ∂E

· Ė− ∂2ψ̃κ
∂θ∂φ

φ̇. (3.83)

Recalling that

ψ̃κ = ψ0(θ, φ) + M(θ, φ)(θ − θR) · E + 1
2C(θ, φ)[E] · E, (3.84)

and retaining only the terms of O(δ), the following forms of the coefficents in (3.83)
are obtained

∂2ψ̃κ
∂θ2 = ∂2ψ0

∂θ2 + ∂2M
∂θ2 (θ − θR) ·H + 2∂M

∂θ
·H, (3.85)

∗Related to the Coefficients of Thermal Expension (CTE), see Appendix A.
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∂2ψ̃κ
∂θ∂E

= ∂M
∂θ

(θ − θR) + M + ∂C
∂θ

[H], (3.86)

∂2ψ̃κ
∂θ∂φ

= ∂2ψ0

∂θ∂φ
+ ∂2M
∂θ∂φ

(θ − θR) ·H + ∂M
∂φ
·H, (3.87)

where, for ‖H‖ v O(δ), M · E = M · H, C[E] · [E] v o(δ), and C[E] = C[H].
Provided with information about ψ0(θ, φ), M(θ, φ), and C(θ, φ) at the reference
state (E = 0), once could simply substitute (3.85)-(3.87) into the balance of energy,
and have a working equation of motion. However, this is not what we expect;
rather, we expect to be given information about c0(θ, φ), M(θ, φ), and C(θ, φ) at the
reference state, where c0(θ, φ) is the temperature and damage dependent specific
heat at constant volume at the strain-free reference state. Therefore, a bit more
work is necessary to deduce ψ0(θ, φ) from c0(θ, φ).

Formally, define the specific heat in the standard way (Carlson, 1972)

c(E, θ, φ) = −θ∂
2ψκ(E, θ, φ)

∂θ2 . (3.88)

Combining (3.85) and the definition of the specific heat in (3.88), one can define
the specific heat at the strain-free reference state as

c0(θ, φ) := c(0, θ, φ) = −θ∂
2ψκ(0, θ, φ)

∂θ2 = −θ∂
2ψ0(θ, φ)
∂θ2 . (3.89)

Observing that we can now deduce ψ0(θ, φ) from the given specific heat at the
reference configuration, and assuming that ψ0(θ, φ) is sufficiently smooth, we have

c0(θ, φ) = −θ∂
2ψ0(θ, φ)
∂θ2 , (3.90)

∂c0(θ, φ)
∂φ

= −θ ∂
∂φ

(
∂2ψ0(θ, φ)

∂θ2

)
, (3.91)

−1
θ

∂c0(θ, φ)
∂φ

= ∂

∂θ

(
∂2ψ0(θ, φ)
∂θ∂φ

)
, (3.92)

and hence
∂2ψ0(θ, φ)
∂θ∂φ

= −
∫ 1
θ

∂c0(θ, φ)
∂φ

dθ + f(φ), (3.93)

where f(φ) denotes a function dependent only on the damage. There is no a priori
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reason to suspect any particular form for f(φ). To gain some insight, if one assumes
that ∂ψ0/∂θ∂φ = 0 at the reference state (E = 0 and θ = θR), and that the specific
heat and thermomechanical coupling are only functions of damage, having been
measured at the reference temperature, then substituting (3.93) into (3.87) gives

∂2ψκ(θ, φ)
∂θ∂φ

= −∂c(θR, φ)
∂φ

∫ θ

θR

1
θ
dθ + ∂M(θR, φ)

∂φ
·H,

= −∂c(θR, φ)
∂φ

log θ

θR
+ ∂M(θR, φ)

∂φ
·H (3.94)

≈ −∂c(θR, φ)
∂φ

θ − θR
θR

+ ∂M(θR, φ)
∂φ

·H. (3.95)

Comparing this to the expression obtained when using the fully linear free energy
in (3.56), we see that the linear case has in fact been recovered,

∂2ψ̃κ(θ, φ)
∂θ∂φ

= ∂M(θR, φ)
∂φ

·H− ∂c(θR, φ)
∂φ

(θ − θR)
θR

, (3.96)

and thus we decide on the final form of (3.93) as

∂2ψ0(θ, φ)
∂θ∂φ

= −
∫ θ

θR

1
θ

∂c0(θ, φ)
∂φ

dθ. (3.97)

For completeness, after dropping the explicit dependence of the material properties
on the temperature and damage, (3.85-3.87) take the final form

∂2ψ̃κ
∂θ2 = −1

θ
c0 + ∂2M

∂θ2 (θ − θR) ·H + 2∂M
∂θ
·H, (3.98)

∂2ψ̃κ
∂θ∂E

= ∂M
∂θ

(θ − θR) + M + ∂C
∂θ

[H], (3.99)

∂2ψ̃κ
∂θ∂φ

= −
∫ θ

θR

1
θ

∂c0

∂φ
dθ + ∂2M

∂θ∂φ
(θ − θR) ·H + ∂M

∂φ
·H. (3.100)

Additionally, the derivative of the free energy with respect to the damage variable
is needed for the balance of energy given in (3.45). Because this expression will be
substituted directly into the balance of energy (3.45), we retain only the terms of
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order δ, to obtain

∂ψκ
∂φ

= ∂ψ0(θ, φ)
∂φ

+ M(θ, φ)
∂φ

(θ − θR) ·H. (3.101)

Again, we expect to be given an expression for c0(θ, φ), and not ψ0(θ, φ), so we
deduce ∂ψ0(θ, φ)/∂φ from c0(θ, φ). Recalling (3.90),

c0(θ, φ) = −θ∂
2ψ0(θ, φ)
∂θ2 ,

−1
θ

c0(θ, φ)
∂φ

= ∂

∂φ

(
∂2ψ0(θ, φ)

∂θ2

)
= ∂2

∂θ2

(
∂ψ0(θ, φ)

∂φ

)
, (3.102)

and therefore,
∂ψ0

∂φ
= −

∫ θ

θR

∫ θ

θR

1
θ

∂c0(θ, φ)
∂φ

dθ dθ. (3.103)

3.5.2 High Temperature Equations of Motion

Substituting (3.82) into (3.4), as well as (3.98-3.100) and (3.101) into (3.45), we
arrive at the full equations of motion for a thermoelastic material undergoing small
strains, small temperature gradients, and with evolving microstructure.

ρκü−Div [(I + H)M (θ − θR) + C[H]] = bκ,

(3.104)(
c− θ∂

2M
∂θ2 (θ − θR) ·H− 2θ∂M

∂θ
·H
)
θ̇ −

(
θ
∂M
∂θ

(θ − θR) + θM
)
· Ḣ

+
(
θ

∫ θ

θR

1
θ

∂c

∂φ
dθ −

∫∫ θ

θR

1
θ

∂c

∂φ
dθdθ −

(
∂M
∂φ

θR + θ
∂2M
∂θ∂φ

(θ − θR)
)
·H
)
φ̇

−Div [K[∇θ]] = rκ,

(3.105)

φ̇− ηC
〈∫∫ θ

θR

1
θ

∂c

∂φ
dθdθ − ∂S0

∂φ
· E− 1

2
∂C
∂φ

[E] · E−GCR

〉
= 0

(3.106)

The most important observation about (3.104)–(3.106) is that these equations
do contain terms of O(δ2) which have not been removed from the balance laws.
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This results in a semi-linear formulation, and is done for convenience. Comparing
the above to the equations of motion for the fully linear case, we notice that the
equations for the balance of momentum are of the same general form. In fact,
if one were to assume that the temperature variation is also small, and that the
thermomechanical coupling tensor and elastic moduli tensor are not functions of
temperature, but instead measured at the reference temperature, one would recover
the linear case.

To this point, the dependence of material properties on the temperature and
damage has been left in a general form. Commonly, experimental data for material
property dependence on temperature would be used to determine the proper relation,
but, owing to the general nature of this work, we do not consider a specific material.
Instead, we consider the fact that at a minimum, the material properties would
be given at discrete temperature values. If this information is available, a simple
piecewise linear interpolation function of temperature can be constructed for the
material property in question, thus we can define the following material parameters

K(θ, φ) = Ki(φ) + Ki+1(φ)θ, (3.107)

C(θ, φ) = Ci(φ) + Ci+1(φ)θ, (3.108)

M(θ, φ) = Mi(φ) + Mi+1(φ)θ, (3.109)

c0(θ, φ) = (c0)i(φ) + (c0)i+1(φ)θ, (3.110)

where the subscript i denotes the value of a constitutive property at the i-th
temperature value used in the experimental measurements. If the values of K are
known at θ1 and θ2, then (K0)ij and (K1)ij are computed via

(K1)ij = Kij(θ2)−Kij(θ1)
θ2 − θ1

and (K0)ij = Kij(θ2)− (K1)ijθ2. (3.111)

Note that this formulation assumes that each component of the various tensor-
valued material properties varies linearly, but this clearly may not be the case.
However, without a loss of generality we can proceed. The final question for the
constitutive quantities is the dependence on damage. Using the same argument as
in the linear theory, which assumes a simplest damage coupling, we arrive at the
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final form of the constitutive equations

K(θ, φ) = (1− φ)α (K0 + K1θ) , (3.112)

C(θ, φ) = (1− φ)β (C0 + C1θ) , (3.113)

M(θ, φ) = (1− φ)γ (M0 + M1θ) , (3.114)

c(θ, φ) = (1− φ)τ (c0 + c1θ) , (3.115)

With these relationships, Equations (3.104-3.106) are now fully defined.

3.6 Boundary and Initial Conditions

Boundary and initial conditions have been largely neglected to this point, but it is
important to mention them before moving forward with the numerical implemen-
tation. The boundary of the body B is denoted by ∂B and is partitioned in the
following manner

∂B = ΓDu ∪ ΓNu = ΓDθ ∪ ΓNθ . (3.116)

Here ΓD(·) denotes the portion of the boundary subject to Dirichlet conditions, and
ΓN(·) denotes the portion of the boundary subject to Neumann conditions for the
subscripted unknown. Note that there are no boundary conditions for the damage
parameter, as it is governed only by an ODE with respect to time. Physically, this
means that the damage on the boundary is treated in the same manner as the
interior, and will simply evolve as necessary.

Initial conditions for the displacement, velocity, and temperature are considered
to be smooth and compatible with the boundary conditions and loading at time
zero. Initial conditions for the damage are intentionally allowed to be discontinuous.
Finally, we require that any set of initial conditions corresponds to an equilibrium
state of the system so as not to induce discontinuities in the time dependent
response of the system.



Chapter 4
Numerical Methods

This chapter details the numerical techniques employed to find approximate solutions
to the initial boundary value problems derived in the previous chapter. Significant
care is required to develop an algorithm that will yield trustworthy solutions. Linear
thermoelasticity in itself is known to be challenging when solved numerically, as
it consists of a very stiff set of partial differential equations (PDE). The addition
of damage into the physics of the problem results in a non-linear system of PDE
coupled to an ordinary differential equation (ODE) which describes the evolution
of the damage. Furthermore, when the high-temperature theory is considered, the
problem gains extra complexity from the now nonlinear nature intrinsic to the
thermoelastic part of the problem.

The damage evolution ODE is of course free of spatial operators on the damage
variable, allowing for localization of the damage variable in the solution. While this
may be beneficial to the effort of modeling brittle fracture, it becomes somewhat
problematic for obtaining reliable calculations. The numerical solutions exhibit
a pathological dependence on the mesh used in the spatial discretization; that
is, different discretizations of the same domain may produce radically different
solutions. Further complicating the matter is that the right-hand side of the
damage evolution is continuous, but not always differentiable. These problems
are addressed through the judicious use of time stepping schemes, appropriate
approximate solution spaces, and adaptive mesh refinement (AMR).

In this thesis, the damage variable is truly considered to be an additional field
within the formulation. This differs significantly from many other implementations
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in the engineering community, where the damage variable is stored as an internal
variable defined at the quadrature point level. While this is familiar (the same
process is used through the field of computational plasticity to store the plastic
strain and hardening parameters), and permits easy implementation in commercial
codes via user defined constitutive routines, it does not treat the IBVP in a
manner consistent with a more general framework of finite element methods.
Commercial finite element packages lack the functionality to solve this problem in
the manner desired. The only commercial finite element analysis (FEA) software
package the author is aware of and has access to which permits the definition of
arbitrary equations of motion is Comsol Multiphysics. However, Comsol does not
support adaptive mesh refinement with a dynamic solver, and does not support
the time integration schemes and approximate solution spaces (i.e., discontinuous
finite elements) that will be shown to be critical to obtaining reliable calculations.
Therefore, we proceed with an original numerical formulation and subsequently
implement it into a custom computer program.

In this chapter, the application of the Finite Element Method (FEM) to the
IBVP resulting from the theory of the fully-linear thermoelastic material with
damage is detailed first, leading to a system of ODE. An original two-step staggered
algorithm for performing the time integration of the subsequent ODE is explained.
The necessary changes to handle the high-temperature theory are discussed. A
key point of the presentation is the selection of the approximate solutions spaces
(i.e., the specific finite elements) necessary to obtain a stable solution. An outline
of the computer implementation of the overall algorithm is given, summarizing
how parallel techniques are used to improve performance of the code. Convergence
results are given throughout the chapter.

4.1 Linear Thermoelastic-Damage IBVP

The theory that is fully-linear when damage is fixed at a given state, becomes
non-linear, solely because of the damage variable, when the damage is evolving.
Additionally, the damage variable will always be increasing. Therefore, it is natural
to look for an algorithm that will, with some trade-off, reduce the non-linear
problem into a series of linear ones, and ensure that the damage parameter will
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monotonically increase. To not design an algorithm in this manner can lead to
serious problems with the approximate solutions, as the author has discovered
through much trial and error.

For example, if one naively applies the well know Newton-Raphson method to
the entire system of equations, it is quite possible that the solutions which minimize
the residual may actual have the damage decrease from one time-step to the next.
While small fluctuations may be acceptable, there is not room for decreases that
lead to negative values of the damage, which is what the author has encountered.
Additionally, the use of inappropriate time-stepping schemes or combinations of
finite elements can lead to instability in the solution, usually manifesting themselves
in non-physical temperature variations or non-physical damage evolutions. Thus,
while the approach described in this chapter may be able to be improved upon, it
was selected only after many failures were encountered, as the only one which met
the basic criteria of monotonically increasing temperature and stable solutions to
the thermoelastic fields.

A semi-discrete approach, where the finite element method is used to perform
the spatial integration, resulting in a system of ODE to be discretized by a finite
difference method, is used in this algorithm. The application of the finite element
method to the equations of motion is shown first. This is followed by the two step
operator-splitting style algorithm to perform the integration of the resulting ODE
in time. Key points are the selection of the approximate solution space for the
damage variable, and method of time integration.

4.1.1 Spatial Integration

Let us begin by restating the IBVP for the case of linear thermoelasticity with
damage. Throughout the following the velocity (v) has been introduced to convert
the system of PDE into a first order system in time. Let B be the domain, with
the boundary partitioned such that

∂B = ΓDu ∪ ΓNu = ΓDv ∪ ΓNv = ΓDθ ∪ ΓNθ . (4.1)

Here ΓD(·) denotes the portion of the boundary subject to Dirichlet conditions, and
ΓN(·) denotes the portion of the boundary subject to Neumann conditions for the
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subscripted unknown. Note that there are no boundary conditions for the damage
parameter, as it is governed only by an ODE with respect to time. The field
equations are:

u̇− v = 0 (4.2)

ρκv̇−Div
[
(1− φ)βC[∇u] + (1− φ)γM(θ − θR)

]
= bκ, (4.3)

c(1− φ)τ θ̇ +
[
2θRγ(1− φ)γ−1M · ∇u− cτ(1− φ)τ−1(θ − θR)

]
φ̇

−Div [(1− φ)αK[∇θ]]− (1− φ)γθRM · ∇v = rκ,
(4.4)

φ̇− ηC
〈
−∂ψ
∂φ
−GCR

〉
= 0, (4.5)

where

−∂ψκ
∂φ

= β

2 (1− φ)β−1C[∇u] · ∇u + γ(1− φ)γ−1(θ − θR)M · ∇u

− cτ

2θR
(1− φ)τ−1(θ − θR)2.

(4.6)

The initial conditions for the displacement, velocity, and temperature are smooth,
while the initial microstate may be anywhere from uniform to randomly distributed.

Let ξ(t) = [u(t),v(t), θ(t), φ(t)]T ∈ V × [0, T ] be a solution to the IBVP above,
where

V = H1
ΓDu (B)3 ×H1

ΓDu (B)3 ×H1
ΓDθ

(B)× L2(B), (4.7)

is an infinite dimensional function space and T is some fixed end time. Note that
this space is comprised of the cartesian product of Sobolev spaces, which conform
to the imposed Dirichlet boundary conditions for the associated unknown, and
the space of square integrable functions for the damage parameter. If we view the
system of equations (4.2)-(4.6) in the abstract form of the action of an operator on
ξ(t),

F(ξ(t)) = 0, (4.8)

we can then concisely write the problem’s weak form as: Find ξ(t) ∈ V × [0, T ]
such that:

(F(ξ(t)), ζ) :=
∫
B
F(ξ(t)) · ζ dB = 0 ∀ζ ∈ V , ∀t ∈ [0, T ], (4.9)
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where (·, ·) is the inner product on V. As is customary with the Ritz-Galerkin
Method (see, e.g., Brenner and Scott, 1994 or Eriksson et al., 1996), we now
introduce a finite dimensional space Vh ⊂ V , and let ξh ∈ Vh denote an element from
this space. We let Ξ = {

[
ϕi, ϕi, $i, ς i

]
} denote a basis for Vh (i.e., span(Ξ) = Vh),

where ϕi are vector valued with dimension equal to the physical space dimension,
and $i, ς i are scalar valued functions of position. Due to the nature of the physical
problem, we do not immediately expect that the same same basis functions will be
necessary, or even satisfactory, for the different equations of motion. Therefore, we
have left the definition of Ξ as general as possible, with the only assumption being
that the basis functions for the displacement and velocity will be the same. This is
done purely because it seems physically unreasonable to have them not be the same.
The precise definition of Ξ will be explored in Section 4.3, where it is demonstrated
that not every choice of solution space combinations results in a stable formulation.

We can now reformulate the weak form of the partially discretized problem:
Find ξh(t) ∈ Vh × [0, T ] such that:

(
F(ξh(t)),Ξi

)
= 0 ∀Ξi ∈ Ξ, ∀t ∈ [0, T ], (4.10)

where ξh(t) = [uh,vh, θh, φh]T and the trial functions have the form

uh = U j(t)ϕj(X), vh = V j(t)ϕj(X), (4.11)

θh = Θj(t)$j(X), φh = Φj(t)ςj(X). (4.12)

To perform concrete numerical simulations, we will have to determine the details of
Equation (4.10). This is achieved by substituting (4.2)-(4.6) and (4.11-4.12) into
(4.10). The result can be clearly summarized in matrix form.

M 0 0 0
0 Mρ 0 0
0 0 M c 0
0 0 0 Mφ



U̇ j

V̇ j

Θ̇j

Φ̇j

+


0 −M 0 0
AE 0 B 0
D −BT AK 0
0 0 0 0



U j

V j

Θj

Φj

 =


0
F v
i

F θ
i

F φ
i

 (4.13)

Mij = (ϕi, ϕj) Mρ
ij = (ρκϕi, ϕj) (4.14)
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Dij =
(
2θRγφ̇h(1− φ)γ−1M · ∇ϕj, $i

)
Mφ

ij = (ςj, ς i) (4.15)

AEij =
(
(1− φh)βC[∇ϕj],∇ϕi

)
Bij =

(
(1− φh)γM$j,∇ϕi

)
(4.16)

BT
ij =

(
θR(1− φh)γM · ∇ϕj, $i

)
M c

ij = (c(1− φh)τ$j, $i) (4.17)

AKij =
(
(1− φh)αK[∇$j],∇$i

)
−
(
cτ φ̇h(1− φh)τ−1$j, $i

)
(4.18)

F v
i = (b, ϕi) +

(
θR(1− φh)γM,∇ϕi

)
+
(
sp, ϕi

)
A

(4.19)

F θ
i =

(
r,$i

)
−
(
cτθRφ̇h(1− φh)τ−1, $i

)
+
(
qp, $i

)
A

(4.20)

Fϕ
i =

(
ηC 〈Gh −GCR〉 , ς i

)
(4.21)

where

Gh = β

2 (1− φh)β−1C[∇uh] · ∇uh

+ γ(1− φh)γ−1(θh − θR)M · ∇uh −
cτ

2θR
(1− φh)τ−1(θh − θR)2. (4.22)

Clearly, for a nonlinear system like the one presented in Chapter 3, there is no
unique way to write the system in matrix form. This particular organization has
been selected to benefit the decoupling of the problem for the time integration
scheme. Inspection of (4.13) reveals two sources of non-linearites. In the equations
relating to the thermoelastic part of the problem, the non-linearity is caused solely
by the damage parameter, while the damage evolution ODE is fully nonlinear in
both the damage parameter and thermoelastic quantities.

4.1.2 Time Integration

A staggered time integration algorithm is well suited for taking advantage of the
specific nonlinear properties of the system. The values of the unknowns for the next
time step are found sequentially, rather than simultaneously. In general, we will
explicitly calculate the values of the damage variable at the next timestep, and then
use these values to make an implicit calculation for the values of the thermoelastic
quantities at the next timestep. In this manner, the non-linear and monotonically
increasing nature of the damage evolution equation is addressed, and the need
for an energy preserving implicit method for the equations of thermoelasticity
is satisfied. Note that this approach is the reverse of many standard algorithms
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for integrating systems resulting from continuum models with internal variables,
such as plasticity (see, for example, Simo and Hughes, 1998), where an elastic
predictor-internal variable corrector scheme is often implemented. As mentioned
earlier, this approach is chosen over the application of a Newton-Raphson scheme,
which would require, at a minimum, the inclusion of constraints on the damage
parameter. This approach is likely to perform better and be less error-prone then
the coding of a constrained non-linear solver.

The overall approach of the time integration algorithm is to split the calculation
of the current time step values for the damage and thermoelastic quantities. The
algorithm is as follows, where n denotes the time step number. A flow-chart of the
algorithm is also given in Figure 4.2.

1. Solve explicitly for Φj,n+1 = F1(Φj,n;U j,n, V j,n,Θj,n) using the first order
accurate forward Euler method, where F1 is F when u̇, v̇, and θ̇ are set to
zero. A simple explicit algorithm is chosen because the right-hand side of the
damage evolution equation is non-smooth, as illustrated in Figure 4.1, and is
not captured appropriately by the use of higher order methods.

Additionally, it is expected that for brittle materials the damage will grow quickly,
such that in the course of a few timesteps the damage may evolve from its initial
value to its final value of φ = 1. The choice of a first order Euler method, and
the resulting stability and accuracy problems, are thus not a major concern. The
primary problem encountered with the use of higher order schemes is the artificial
decreasing of the damage variable, sometimes even into the realm of negative values.
Such non-physical behavior can be avoided by using this method; however, it is
certainly acknowledged that this procedure may not be the optimal or unique

t0

〈G − GCR〉

Figure 4.1. Illustration of the behavior of the damage evolution equation’s RHS.
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remedy.
The resulting linear system that is solved for the damage is

Mφ
ijΦj,n+1 = Mφ

ijΦj,n + ∆tF φ,n
i (4.23)

where

F φ,n
i =

(
ηnC 〈Gn

h −Gn
CR〉 , ς i

)
(4.24)

and

Gn
h = β

2 (1− φnh)β−1C[∇unh] · ∇unh + γ(1− φnh)γ−1(θnh − θR)M · ∇unh

− cτ

2θR
(1− φnh)τ−1(θnh − θR)2. (4.25)

This formulation allows for easy implementation of temperature or damage depen-
dence of ηnC and Gn

CR, which are of course both time dependent. An additional
consideration when using an explicit method for a field with a fixed range is that one
must be careful not to let the field deviate from the fixed range. In this situation, it
is possible that through either a slightly too large timestep or unexpected material
properties that the damage can ‘overshoot’ the upper limit of φ = 1. For this
reason, the algorithm must contain a check to see if damage has exceeded φ = 1
at any location, and if so, project it back into the realm of legitimate physical
meaning.

2. Solve implicitly for

[U j,n+1, V j,n+1,Θj,n+1]

= F2
(
U j,n+1, V j,n+1,Θj,n+1;U j,n, V j,n,Θj,n,Φj,n+1,Φj,n

)
, (4.26)

where F2 is F when φ̇ is set to zero.

Note that since we already have the values of Φj,n+1, the resulting system is
linear. However, in such a system the matrices and right-hand side are not constant,
so that some additional care must be exercised when implementing this process
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Calculate n+1 Damage Values Explicitly

Calculate n+1 Thermoelastic Values Implicitly

Assemble Damage RHS

Solve for n+1 Damage Values

Check Damage, Project Back

Did Damage Change?

Reassemble 
System Matrix

Solve for n+1 Solution

No

Yes

Exit

Given Solution at Timestep n

Reuse Previous
System Matrix

Assemble RHS

Figure 4.2. Flow-chart of the time-stepping algorithm for the theory which is fully-linear
when the damage is at a fixed state. The red background of a box indicates that it is a
logical step in the algorithm.

into a computer code. The system we wish to solve is:
M 0 0
0 Mρ 0
0 0 M c



U̇ j

V̇ j

Θ̇j

+


0 −M 0
AE 0 B

−D −BT AK



U j

V j

Θj

 =


0
F v

F θ

 , (4.27)

which can be more compactly written as:

Mξ̇ + Kξ = F, (4.28)

where M is the mass matrix on the left-hand side of (4.27), K is the stiffness
matrix on the left-hand side of (4.27), and where F = [0, F v, F θ]T . Applying the
Crank-Nicholson scheme (see, e.g., Quarteroni et al., 2000) to the above yields the
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discrete form of (4.27),(
Mn+1 + ∆t

2 Kn+1
)
ξn+1 =

(
Mn+1 − ∆t

2 Mn+1 (Mn)−1
Kn

)
ξn

+ ∆t
2
(
Fn+1 + Mn+1 (Mn)−1

Fn
)
. (4.29)

Note that the mass matrix (M) and the stiffness matrix (K) are dependent on the
time step only through the damage variable, which, due to the staggered solution
algorithm, is now simply a parameter. The difficulty in dealing with (4.29) lies in
the fact that it contains the term

Mn+1 (Mn)−1 , (4.30)

in which the inverse of the mass matrix must be known. Examining this product
more closely reveals the following simplification

Mn+1 (Mn)−1 =


I 0 0
0 I 0
0 0 (M c)n+1 ((M c)n)−1

 . (4.31)

In the most general situation, the inverse of the mass matrix for the balance of
energy would need to be computed at each timestep for which the damage is
evolving. In the calculations presented in this paper the specific heat was assumed
to be uniform over the chosen spatial domain. In this case, (4.31) takes on the
following simpler form

Mn+1 (Mn)−1 =


I 0 0
0 I 0
0 0 ceffI

 , (4.32)

where
ceff = cn+1

cn
=
(

1− φn+1

1− φn

)τ
. (4.33)

Therefore, so long as we assume uniformity of the specific heat over each cell, the
effect of this term will simply be a scalar multiplication against the necessary matrix
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blocks in the system matrix and right-hand side. Of course, if the specific heat is
free of dependence on the damage (i.e., τ = 0), then ceff is always one. Finally, the
time-step is chosen based on the concepts of the Courant-Friedrichs-Lewy (CFL)
limit (again, see Quarteroni et al., 2000); we employ the wavespeed to determine
the time-step via

∆t = min
K∈Th

hK
4

√
ρ(Xcenter

K )
µ(Xcenter

K ) . (4.34)

Here K denotes a cell in the triangulation, Th, or discretized form, of the domain
B, and µ is the shear modulus. For completeness, the final system matrix is

An+1 =
(
Mn+1 + σKn+1) =


M −σM 0
σAE Mρ σB

σD −σBT M c + σAK

 , (4.35)

where σ = ∆t/2. Only general preconditioning is implemented at this time, and
sparse direct linear solvers are used whenever possible, but it is clear that the
problem may benefit from a custom preconditioner. Additionally, the lower right
block of the system matrix, M c + σAK , will develop zero values as individual cells
become fully damaged, for values of τ > 0.

4.2 Non-Linear Thermoelasticity-Damage IBVP

The numerical methods for the high-temperature theory employ the operator-
splitting time-stepping algorithm detailed in the section for the fully-linear theory;
however, due to the now intrinsically non-linear nature of the thermoelastic part of
the problem, a Newton-Raphson like scheme must be added to the overall algorithm.
The nature of the governing equations and the Newton method add a considerable
amount of complexity to the algorithm. Recalling the equations of motion for the
high-temperature theory, we introduce the velocity (v), and convert the equations
to a first order system in time

u̇− v = 0 (4.36)

ρκv̇−Div [(I +∇u)M (θ − θR) + C[H]] = bκ, (4.37)
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(
c− 2θ∂M

∂θ
· ∇u

)
θ̇ −

(
θ
∂M
∂θ

(θ − θR) + θM
)
· ∇v−Div [K[∇θ]] +(

θ

∫ θ

θR

1
θ

∂c

∂φ
dθ −

∫∫ θ

θR

1
θ

∂c

∂φ
dθdθ −

(
∂M
∂φ

θR + θ
∂2M
∂θ∂φ

(θ − θR)
)
· ∇u

)
φ̇ = rκ, (4.38)

φ̇− ηC
〈∫∫ θ

θR

1
θ

∂c

∂φ
dθdθ − ∂M

∂φ
(θ − θR) · ∇u− 1

2
∂C
∂φ

[∇u] · ∇u−GCR
〉

= 0, (4.39)

where the material properties are

K(θ, φ) = (1− φ)α (K0 + K1θ) , (4.40)

C(θ, φ) = (1− φ)β (C0 + C1θ) , (4.41)

M(θ, φ) = (1− φ)γ (M0 + M1θ) , (4.42)

c(θ, φ) = (1− φ)τ (c0 + c1θ) , (4.43)

as defined in Chapter 3. Substituting the material properties into (4.36)-(4.39)
yields the equations of motion totally in terms of the unknowns, given body forces,
and given material properties

u̇− v = 0, (4.44)

ρκv̇−Div [(I +∇u)(1− φ)γ(M0 + M1θ)(θ − θR)

+(1− φ)β(C0 + C1θ)[∇u]
]

= bκ,
(4.45)

((1− φ)τ (c0 + c1θ)− 2θ(1− φ)γM1 · ∇u)θ̇

−Div [(1− φ)α(K0 + K1θ)[∇θ]]

− (θ(1− φ)γ(M0 + M1(2θ − θR))) · ∇v

+
(
γ(1− φ)γ−1(M0θR + M1θ

2) · ∇u
)
φ̇

−
(
τ(1− φ)τ−1(c0(θ − θR) + c1(θ2 − θ2

R)/2)
)
φ̇ = rκ,

(4.46)

φ̇− ηC
〈
−τ(1− φ)τ−1 [c0 (θ log (θ/θR)− (θ − θR)) + c1 (θ − θR)2 /2

]
+γ(1− φ)γ−1(θ − θR)(M0 + M1θ) · ∇u

+β2 (1− φ)β−1(C0 + C1θ)[∇u] · ∇u]−GCR

〉
= 0.

(4.47)
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Traditionally, to define a Newton-Raphson scheme for iteratively solving a non-
linear system of equations, one needs to define a residual as a function of a given
solution, and a corresponding jacobian that is also a function of the solution at the
current iteration.

4.2.1 Spatial Integration

To begin, we again treat (4.44)–(4.47) as an abstract operator F acting on the
solution ξ(t) = [u(t),v(t), θ(t), φ(t)]T ∈ V × [0, T ], where

V = H1
ΓDu (B)3 ×H1

ΓDu (B)3 ×H1
ΓDθ

(B)× L2(B), (4.48)

and write the equations of motion as

F(ξ(t)) = 0. (4.49)

The problem’s weak form can then be concisely written as: Find ξ(t) ∈ V × [0, T ]
such that:

(F(ξ(t)), ζ) :=
∫
B
F(ξ(t)) · ζ dB = 0 ∀ζ ∈ V , ∀t ∈ [0, T ], (4.50)

Again, introduce a finite dimensional space Vh ⊂ V, and let ξh ∈ Vh denote an
element from this space. We let Ξ = {

[
ϕi, ϕi, $i, ς i

]
} denote a basis for Vh (i.e.,

span(Ξ) = Vh), where ϕi are vector valued with dimension equal to the physical
space dimension, and $i, ς i are scalar valued functions of position. The discrete
version of the weak form of the problem is then: Find ξh(t) ∈ Vh × [0, T ] such that:

(
F(ξh(t)),Ξi

)
= 0 ∀Ξi ∈ Ξ, ∀t ∈ [0, T ], (4.51)

where ξh(t) = [uh,vh, θh, φh]T and the trial functions have the same form

uh = U j(t)ϕj(X), vh = V j(t)ϕj(X), (4.52)

θh = Θj(t)$j(X), φh = Φj(t)ςj(X). (4.53)
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Substituting (4.52)-(4.53) and (4.44)-(4.47) into (4.51), we arrive at a matrix form
of (4.51) 

M 0 0 0
0 Mρ 0 0
0 0 M c 0
0 0 0 Mφ



U̇ j

V̇ j

Θ̇j

Φ̇j

 =


Fu
i

F v
i

F θ
i

F φ
i ,

 (4.54)

where the matrix and vector blocks are defined as

Mij = (ϕi, ϕj), Mρ
ij = (ρκϕi, ϕj), Mφ

ij = (ςj, ς i), (4.55)

M c
ij = ([(1− φh)τ (c0 + c1θh)− 2θh(1− φh)γM1 · ∇uh]$j, $i), (4.56)

Fu
i = (vh, ϕi), (4.57)

F v
i = −

(
(I +∇uh)(1− φh)γ(M0 + M1θh)(θh − θR),∇ϕi

)
−
(
(1− φh)β(C0 + C1θh)[∇uh],∇ϕi

)
+ (bκ, ϕi) + (sp, ϕi)A, (4.58)

F θ
i = −

(
(1− φh)α(K0 + K1θh)[∇θ],∇$i

)
+ (θh(1− φh)γ(M0 + M1(2θh − θR)) · ∇v, $i)

−
(
γ(1− φh)γ−1(θRM0 + M1θ

2
h) · φ̇h∇uh, $i

)
+
(
τ(1− φh)τ−1(c0(θh − θR) + c1(θ2

h − θ2
R)/2)φ̇h, $i

)
+ (rκ, $i) + (qp, $i), (4.59)

F φ
i =

(
ηC

〈
−τ(1− φh)τ−1

[
c0

(
θh log θh

θR
− (θh − θR)

)
+ c1 (θh − θR)2 /2

]
+ γ(1− φh)γ−1(θh − θR)(M0 + M1θh) · ∇uh

+β2 (1− φh)β−1(C0 + C1θh)[∇uh] · [∇uh]−GCR

〉
, ς i
)
. (4.60)

Comparing (4.54) to its linear counterpart in (4.13), one sees that no stiffness
matrix has been defined in the non-linear case. This is because, as will be shown
shortly, it is not beneficial to the calculations.

4.2.2 Time Integration

A similar operator-splitting style time-stepping scheme is used to integrate the
ODE in (4.54). This is necessary because the nature of the thermoelastic-damage



56

Calculate n+1 Damage Values Explicitly

Calculate n+1 Thermoelastic Values Implicitly

Assemble Damage RHS

Solve for n+1 Damage Values

Check Damage, Project Back

Assemble Thermoelastic Residual

Check Convergence

Assemble Jacobian

Solve for Solution Update

Update Solution

No

Yes

Exit

Given Solution at Timestep n

Figure 4.3. Flow-chart of the time-stepping algorithm for the theory which is non-linear
when the damage is fixed. The red background of a box indicates a logical step in the
algorithm.

equations of motion has not changed, and their is still a need for different numerical
methods for the thermoelastic and damage parts of the system. Again, the values
of the unknowns for the next time step are found sequentially, first for the damage
variable and then for the thermoelastic quantities, rather than simultaneously. A
flow chart of the algorithm for finding the solution at the next timestep is given in
Figure 4.3. The algorithm is as follows, where n denotes the time step number. A
flow-chart of the algorithm is also given in Figure 4.2.

1. Solve explicitly for Φj,n+1 = F1(Φj,n;U j,n, V j,n,Θj,n) using the first order
accurate forward Euler method, where F1 is F when u̇, v̇, and θ̇ are set to
zero. As in the fully-linear theory, a simple explicit algorithm is chosen to
integrate the evolution equation for the damage variable.
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The resulting linear system that is solved for the damage variable at the n+ 1
timestep is

Mφ
ijΦj,n+1 = Mφ

ijΦj,n + ∆tF φ,n
i (4.61)

where

F φ,n
i =

(
ηnC 〈Gn

h −Gn
CR〉 , ς i

)
(4.62)

and

Gn
h = −τ(1− φnh)τ−1

[
c0

(
θnh log θ

n
h

θR
− (θnh − θR)

)
+ c1 (θnh − θR)2 /2

]
+ γ(1− φnh)γ−1(θnh − θR)(M0 + M1θ

n
h) · ∇unh

+ β

2 (1− φnh)β−1(C0 + C1θ
n
h)[∇unh] · [∇unh]. (4.63)

As with the linear theory, this part of the algorithm must also contain a check to
ascertain whether the value of the damage has exceed the physically reasonable
limit (φ = 1), and employ a mechanism for projecting the values back into the
proper range.

2. Solve implicitly for

[U j,n+1, V j,n+1,Θj,n+1]

= F2
(
U j,n+1, V j,n+1,Θj,n+1;U j,n, V j,n,Θj,n,Φj,n+1,Φj,n

)
, (4.64)

where F2 is F when φ̇ is set to zero.

Note that, unlike the linear theory, even though we already have the values of
Φj,n+1, the resulting system is still nonlinear in the thermoelastic unknowns:

M 0 0
0 Mρ 0
0 0 M c



U̇ j

V̇ j

Θ̇j

 =


Fu
i

F v
i

F θ
i

 . (4.65)
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Rewriting this system as
M(ξ)ξ̇ = F(ξ), (4.66)

where M(ξ) is the solution-dependent mass matrix on the left-hand side of (4.65),
F(ξ) = [Fu, F v, F θ]T is the solution-dependent right-hand side of (4.65), and
applying the Crank-Nicholson scheme (again, see, e.g., Quarteroni et al., 2000) to
(4.65) yields its fully-discrete form,

M(ξn+1)ξn+1 = M(ξn+1)ξn + ∆t
2 F(ξn+1) + ∆t

2 M(ξn+1)M−1(ξn)F(ξn). (4.67)

Equation (4.69) contains a similar problematic term, namely M(ξn+1)M−1(ξn), as
in its counterpart from the fully-linear theory (4.29). We can similarly simplify the
matrix to

M(ξn+1)M−1(ξn) =


I 0 0
0 I 0
0 0 M c(ξn+1)(M c(ξn))−1

 , (4.68)

but cannot further deduce that the term simplifies in the same manner as before.
Therefore, we are left with a more general solution, where (4.69) becomes

M(ξn+1)ξn+1 = M(ξn+1)ξn + ∆t
2 F(ξn+1) + ∆t

2 F̃(ξn+1, ξn), (4.69)

such that

F̃(ξn+1, ξn) =


Fu(ξn)
F v(ξn)

M c(ξn+1)F̃ θ(ξn)

 and F̃ θ(ξn) = (M c)−1(ξn)F θ(ξn). (4.70)

Equation (4.70) finalizes the assembly process for the overall system. First, F̃ θ(ξn)
is calculated by solving a small linear system, and then F̃(ξn) is determined by the
additional assembly of Fu(ξn) and F v(ξn) and the matrix-vector multiplication of
M c(ξn+1)F̃ θ(ξn).
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Clearly, the system defined in (4.69)-(4.70) is non-linear with respect to the
solution at the n+ 1 timestep (ξn+1). We therefore define a residual,

R(ξn+1
k , ξn) = M(ξn+1

k )
[
ξn+1
k − ξn

]
− ∆t

2
[
F(ξn+1

k ) + F̃(ξn+1
k , ξn)

]
, (4.71)

where ξn+1
k is the solution to the thermoelastic part of the problem at k-th Newton

iteration at the n + 1 timestep. Assembly of this residual is straight forward,
given the a solution at Newton iteration k, F̃(ξn+1

k , ξn) and F(ξn+1
k ) are calculated,

followed by M(ξn+1
k ). The residual in (4.71) is then found through a series of matrix-

vector multiplications and vector additions. As is customary in the linearization of
problems, the residual is expanded about the solution at iteration k, and truncated
after linear terms, and set to its ideal value of zero to obtain a linear system of the
type

J(ξn+1
k )

[
δξn+1
k

]
= −R(ξn+1

k , ξn). (4.72)

Here J(ξn+1
k ) is the jacobian of the system, defined as

J(ξn+1
k ) = ∂R(ξn+1

k , ξn)
∂ξn+1

k

. (4.73)

Detailed expressions for the jacobian are given in Appendix B, and the timestep is
chosen in the same manner as the linear model, in (4.34).

4.3 Solution Space Selection

A key point in the presentation of these numerical methods is the selection of
approximate solution spaces, in conjunction with the proper finite elements, for
the unknowns. The displacement, velocity, and temperature are treated in a
standard manner throughout this formulation, therefore it is natural to simply
select solution spaces that are rich enough to produce reasonable solutions. Shocks
and other discontinuous phenomena intrinsic to the thermoelastic fields have not
been explicitly considered in this model, and as such, we choose to use globally
continuous polynomials. To determine if a given combination of elements (solution
spaces) is appropriate for the thermoelastic fields, we choose a simplified set of
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material parameters for the fully linear problem over the domain B = [0, 1],

ρκ = 1, c = 1, M = −1, K = 1, α, β, γ, τ = 0, (4.74)

L = 1, E = 1, θR = 10, ηC = 0, GCR = 0, (4.75)

which reduces the equations of motion for the fully-linear problem to

u̇− v = 0, (4.76)

v̇ −Div [∇u− (θ − 10)] = bκ, (4.77)

θ̇ −Div[∇θ]− 10∇v = rκ, (4.78)

φ̇ = 0. (4.79)

Thus, the damage does not evolve, and we can study the choice of solution spaces
for the thermoelastic fields independently of damage evolution. This is important
as it will let us evaluate the performance of the integration of the thermoelasticty
model.

4.3.1 Thermoelastic Verification

Verification is the practice of determining whether or not the proposed algorithm
for finding an approximate numerical solution of a problem is indeed finding the
correct solution. In other words, we follow a procedure to determine if the algorithm
is solving the mathematical statement of the model correctly. This is disinctly
different from the concept of validation, which seeks to determine if the physical
model is correctly describing the natural world; one must be confident that the
IBVP is being solved reliably before any comparison of the model to experiments
or other analytical results can be made.

In the following procedure, a set of exact solutions are chosen and subsequently
substituted into the simplified equations of motion (4.76-4.79). The resulting
expressions are set equal to the body forces. These body forces, material properties,
and boundary conditions are implemented in the code, and the resulting approximate
solution is then compared to the exact solution. In this dissertation, the comparison
is performed by finding the L2, H1, and L∞ norms of the difference between the
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exact and computed solutions. For a function u(x), with a computed approximate
solution uh(x), these norms are defined over the K-th cell as (see, e.g., Quarteroni
et al., 2000)

‖u− uh‖L2(K) =
(∫

K

|u(x)− uh(x)|dx
)1/2

, (4.80)

‖u− uh‖L∞(K) = max
x∈K
|u(x)− uh(x)|, (4.81)

‖u− uh‖H1(K) =
(
‖u− uh‖2

L2(K) +
∫
K

|∇u(x)−∇uh(x)|2dx
)1/2

. (4.82)

In summary, this procedure determines if the finite element method and Crank-
Nicholson scheme are functioning correctly.

We select the following exact solutions,

u∗(x, t) = sin (5πx) (πt− sin πt) , (4.83)

v∗(x, t) = sin (5πx) (π − π cos πt) , (4.84)

θ∗(x, t) = cos (7πx) (π − π sin πt) + 10, (4.85)

φ∗(x, t) = 0.001. (4.86)

After substituting (4.83)-(4.86) into (4.76)-(4.79), one arrives at:

bκ = 25π2(πt− sin(πt)) sin(5πx) + π2 sin(πt) sin(5πx)

− 7π(πt− sin(πt)) sin(7πx), (4.87)

rκ = 50π(π − π cos(πt)) cos(5πx) + (π − π cos(πt)) cos(7πx)

+ 49π2 cos(7πx)(πt− sin(πt)), (4.88)

where the first two equations have been omitted because they are clearly automati-
cally satisfied by the choice of exact solution in (4.83)-(4.86). Boundary conditions
and initial conditions are the exact solutions evaluated at the boundaries and
t = 0, respectively. From here, the general procedure is to solve the problem on
successively uniformly refined grids, and observe the error at each calculation cycle.

Table 4.1 and Figure 4.4 show the errors and convergences rates when the
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approximate solution space is defined as

Vh = Q1(K)×Q1(K)×Q1(K)× P0(K), (4.89)

where QN (K) is the set of globally continuous polynomials resulting from the tensor
product of N -degree polynomials over the the Kth cell, and P0(K) is the set of
piecewise constant polynomials over each cell. More specifically,

uh, vh, θh ∈ Q1(K) and φh ∈ P0(K), (4.90)

where in our one-dimensional example Q1(K) is the space of linear polynomials.
Both spaces correspond to the use of Lagrange finite elements. Because the damage
is assumed to be uniform in the initial conditions, and is not evolving, the choice of
solution space for the damage variable is irrelevant at this point. The convergence
rates in Table 4.1 are calculated by comparing the error and mesh-size of successive
refinement levels. From the theory of finite element methods, (see Brenner and
Scott, 1994), the error (denoted by ‖e‖) using polynomials of degree p is related to
the mesh-size (denoted by h) as

‖e‖ = chp+a, (4.91)

where c is some constant and a is dependent on the nature of the selected norm.
For the L2 and L∞ norms, one expects that the optimal error is obtained if a = 1,
while for the H1 norm, one expects that a = 0 (see, e.g., Brenner and Scott, 1994
and Antonietti and Heltai, 2007). Taking the logarithm of this relation yields

log ‖e‖ = (p+ a) log ch, (4.92)

where p + a is the rate reported in Table 4.1. Following tradition, convergence
charts usually have negative slopes, and thus the comparison of the error and (1/h)
in Figure 4.4. Clearly, for Q1 elements we are achieving an optimal convergence
rate, which is encouraging considering that we have chosen very strong coupling
between the equations, however, better absolute error can be obtained with higher
order elements, thus we check these convergence cases as well.
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Figure 4.4. Log-Log plot of L2-error as a function of cell length for uh, vh, θh ∈ Q1(K).
The L2 error is converging quadratically, as is expected with the use of linear elements.

Table 4.1. Table of errors and convergence rates for uh, vh, θh ∈ Q1(K).
# cells # dofs ‖u− uh‖L∞ ‖u− uh‖L2 ‖u− uh‖H1

32 131 8.872e-02 - 4.726e-02 - 4.926e+00 -
64 259 2.242e-02 1.98 1.184e-02 2.00 2.470e+00 1.00
128 515 5.609e-03 2.00 2.961e-03 2.00 1.236e+00 1.00
256 1027 1.403e-03 2.00 7.405e-04 2.00 6.180e-01 1.00
512 2051 3.507e-04 2.00 1.851e-04 2.00 3.090e-01 1.00
1024 4099 8.769e-05 2.00 4.628e-05 2.00 1.545e-01 1.00

# cells # dofs ‖v − vh‖L∞ ‖v − vh‖L2 ‖v − vh‖H1

32 131 1.795e-01 - 9.663e-02 - 9.852e+00 -
64 259 4.548e-02 1.98 2.423e-02 2.00 4.940e+00 1.00
128 515 1.141e-02 1.99 6.061e-03 2.00 2.472e+00 1.00
256 1027 2.856e-03 2.00 1.515e-03 2.00 1.236e+00 1.00
512 2051 7.142e-04 2.00 3.789e-04 2.00 6.181e-01 1.00
1024 4099 1.786e-04 2.00 9.472e-05 2.00 3.090e-01 1.00

# cells # dofs ‖θ − θh‖L∞ ‖θ − θh‖L2 ‖θ − θh‖H1

32 131 2.217e-01 - 1.110e-01 - 9.649e+00 -
64 259 5.572e-02 1.99 2.791e-02 1.99 4.840e+00 1.00
128 515 1.400e-02 1.99 6.987e-03 2.00 2.422e+00 1.00
256 1027 3.502e-03 2.00 1.747e-03 2.00 1.211e+00 1.00
512 2051 8.751e-04 2.00 4.369e-04 2.00 6.057e-01 1.00
1024 4099 2.188e-04 2.00 1.092e-04 2.00 3.029e-01 1.00
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Table 4.2 and Figure 4.5 show the results of using quadratic elements, and hence
an approximate solution space of

Vh = Q2(K)×Q2(K)×Q2(K)× P0(K). (4.93)

We note that the convergence rates for the L∞ and L2 norms are not optimal, as
they are less than p+ a = 3, but still very good, while the H1 norm convergence
rates are optimal. As explained in Antonietti and Heltai, 2007, certain choices of
solution spaces, combined with non-symmetric system matrices, may result in less
than optimal convergence. To investigate this, the coupling between the elastic
and thermal equation is varied. As the coupling is decreased, the problem becomes
more symmetric in the sense that the elastic and thermal equations ‘see’ less of each
other, and hence their intrinsically symmetric nature dominates. Figure 4.6 shows
the L2 norm of the displacement error as the thermomechanical coupling is varied
from zero (totally decoupled) to minus one (coupling on the same order as the other
material properties). As expected, better convergence is obtained as the coupling
is decreased; however, comparison of the absolute error values in Tables 4.2 and
4.2 demonstrate that the use of Q2 solution space is still preferable. Additionally,
in practice, the thermomechanical coupling will be much smaller than the other
material properties, so we are encouraged that good convergence properties will be
present in later simulations.

It is important to remember that the convergence results here are also a function
of the error accrued from the finite difference time-stepping. As described earlier,
the timestep is chosen as a function of the mesh size∗, and we can be comfortable
with our choice based on the reasonable convergence rates just demonstrated. It is
clear that the choices of

Vh = Q2(K)×Q2(K)×Q2(K)× P0(K) (4.94)

as an approximate solution space, and the Crank-Nicholson finite difference timestep-
ping with CFL based timestep, are adequate for the linear thermoelastic problem.

For the high-temperature, nonlinear thermoelastic theory, we simply want to
∗A fixed CFL based time-step may not strictly be necessary, as adaptive time-stepping schemes

could be used.
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Figure 4.5. Log-Log plot of L2-error as a function of cell length for uh, vh, θh ∈ Q2(K),
when damage is fixed and uniform.

Table 4.2. Table of errors and convergence rates for uh, vh, θh ∈ Q2(K) .
# cells # dofs ‖u− uh‖L∞ ‖u− uh‖L2 ‖u− uh‖H1

32 227 3.106e-03 - 1.565e-03 - 3.123e-01 -
64 451 4.247e-04 2.87 2.078e-04 2.91 7.828e-02 2.00
128 899 6.461e-05 2.72 3.108e-05 2.74 1.958e-02 2.00
256 1795 1.194e-05 2.44 5.767e-06 2.43 4.896e-03 2.00
512 3587 2.636e-06 2.18 1.286e-06 2.16 1.224e-03 2.00
1024 7171 6.347e-07 2.05 3.111e-07 2.05 3.060e-04 2.00

# cells # dofs ‖v − vh‖L∞ ‖v − vh‖L2 ‖v − vh‖H1

32 227 1.683e-02 - 8.950e-03 - 6.363e-01 -
64 451 4.075e-03 2.05 2.192e-03 2.03 1.594e-01 2.00
128 899 1.011e-03 2.01 5.456e-04 2.01 3.988e-02 2.00
256 1795 2.521e-04 2.00 1.363e-04 2.00 9.971e-03 2.00
512 3587 6.301e-05 2.00 3.405e-05 2.00 2.493e-03 2.00
1024 7171 1.584e-05 1.99 8.513e-06 2.00 6.910e-04 1.85

# cells # dofs ‖θ − θh‖L∞ ‖θ − θh‖L2 ‖θ − θh‖H1

32 227 1.516e-02 - 6.169e-03 - 8.570e-01 -
64 451 2.878e-03 2.40 1.292e-03 2.26 2.153e-01 1.99
128 899 6.011e-04 2.26 3.055e-04 2.08 5.389e-02 2.00
256 1795 1.358e-04 2.15 7.526e-05 2.02 1.348e-02 2.00
512 3587 3.215e-05 2.08 1.874e-05 2.01 3.369e-03 2.00
1024 7171 7.819e-06 2.04 4.681e-06 2.00 8.424e-04 2.00
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Figure 4.6. Log-Log plot of L2-error of the displacement as a function of cell length
for uh, vh, θh ∈ Q2(K), with varying values of M . We see that increasing the strength of
the thermomechanical coupling decreases the convergence of the displacement field. This
is most likely due to an increase in numerical diffusion (damping) associated with the
dissipative nature of the thermoelastic equations.

verify that this element selection is also valid. For this model, we need values for
the material properties at two different temperatures, as described in Section 3.5.2.
Choosing the following values, where θ2 = 110 and θ1 = 10,

c|θ2 = 2 c|θ1 = 1, K|θ2 = 2 K|θ1 = 1, (4.95)

E|θ2 = 2 E|θ1 = 1 M |θ2 = −0.02 M |θ1 = −0.01, (4.96)

ηC |θ2 = 0 ηC |θ1 = 0, GCR|θ2 = 0 GCR|θ1 = 0 (4.97)

yields the values necessary for the equations of motion

ρκ = 1, θR = 10, GCR = 0, ηC = 0, L = 1, (4.98)

c0 = 0.9, c1 = 0.01, M0 = −0.009, M1 = −0.0001, α, β = 0 (4.99)

E0 = 0.9, E1 = 0.01, K0 = 0.9, K1 = 0.01, γ, τ = 0. (4.100)

The temperature dependence of the material properties given in (4.95)–(4.95)
can be considered to be quite strong. The material parameters for the bulk graphite
used in the rocket nozzle MURI project fluctuate only at most by 100% over a two
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Figure 4.7. Log-Log plot of the L2-error generated by the non-linear model as a function
of cell length for uh, vh, θh ∈ Q2(K). The error is shown for both the cases when the
material properties are not a function of temperature (solid lines), and when they are
strongly a function of temperature (dashed lines). The temperature loses at least an order
of convergence when the material properties are strongly dependent on the temperature;
however, this is not surprising given that the temperature field is the only field which
was not linearized in the derivation of the high temperature problem.

thousand degree change in temperature. Thus, the fact that here the change in the
material properties is assumed to be the same, but instead over only one hundred
degrees, will test the performance of the algorithm in Figrure 4.3 under a worst
case scenario.

Following the same procedure used for the linear problem, we substitute (4.44)–
(4.47) into the equations of motions, and subsequently implement the resulting
forcing functions (not shown) into the code, along with the exact solutions as the
boundary values and initial conditions, to obtain an approximate solution. The
numerical solution is compared to the exact solution, and the errors are given in
Figure 4.7.

4.3.2 Damage Variable Solution Space

The proper approximate solution spaces for the damage variable are investigated in
this section. While verifying that the thermoelastic part of the problem is being



68

solved corrected, we used the approximate solution spaces

Vh = Q1(K)×Q1(K)×Q1(K)× P0(K) (4.101)

and

Vh = Q2(K)×Q2(K)×Q2(K)× P0(K), (4.102)

where the approximate solution for the damage was constant and uniform, and
thus perfectly resolved in the piece-wise constant space of P0(K). We now seek to
explore the ability of various solution spaces when the more interesting situation of
non-uniform evolving damage is present. The material properties for this problem
are still idealized, similarly to those in (4.74)-(4.75) for the fully-linear problem,
and are given below in (4.103)-(4.104).

ρκ = 1, c = 1, M = −0.01, K = 1, α, γ, τ = 2, β = 1 (4.103)

L = 1, E = 1, θR = 10, ηC = 10, GCR = 0, (4.104)

The boundary conditions are different than those in the thermoelastic verification,
and consist of

u(0, t) = 0, v(0, t) = 0, qp(0, t) = qp(1, t) = 0, (4.105)

and the applied force

sκ(1, t) =

1
2s0 [1− cos (2πt/t0)] t < t0

0 otherwise
, (4.106)

where s0 = 1 and t0 = 0.1. The boundary conditions correspond to a bar which
is fixed on the left-hand side (X = 0), and subjected to a force applied on the
right-hand side (X = 1) for a relatively short time interval, all the while being
perfectly insulated. The initial conditions are

u(X, 0) = 0, v(X, 0) = 0, θ(X, 0) = θR, φ(X, 0) = 0.0001. (4.107)
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Table 4.3. Summary of damage approximate solution spaces and their level of function-
ality with approximate solution spaces for the thermoelastic problem. It is clear that
some sort of stability condition is present.

Thermoelastic Solution Space
Q1(K)×Q1(K)×Q1(K) Q2(K)×Q2(K)×Q2(K) Q3(K)×Q3(K)×Q3(K)

Q2(K) Not Functional Not Functional Unstable
Q1(K) Not Functional Functional Functional
P0(K) Stable Stable Stable
P1(K) Not Functional Functional Functional
P2(K) Not Functional Not Functional Unstable

Thus, in this simulation we see a wave travel from right to left across the bar,
and reflect back to the right-hand side. Because GCR = 0, we expect the damage
variable to increase all across the bar as the wave travels along it, as there is no
threshold for the damage to overcome before it starts to evolve. This particular
simulation is run for the amount of time necessary for the wave to traverse the bar
and back.

Table 4.3 lists the viability of using different combinations of thermoelastic
solution spaces (columns) with damage variable solution spaces (rows). An entry
of ‘Not Functional’ means that the solution space is so inappropriate that the
simulation fails, usually by means of the linear solver∗ not being able to invert
the system matrix. If the situation were such that damage values were very large,
we may have cause to suspect some other reason for the failure, but as shown in
Figure 4.8, the values of the damage variable are not exceeding even one-third
of the maximum value of φ. Such combinations, in the context of the algorithm
proposed here, are not viable for our purposes.

A combination of solution spaces with an entry of ‘Functional’ means that the
simulation is able to proceed, and the results are at least mathematically reasonable.
As shown in Figure 4.8 (right), when Q2-elements are used as a solution space
for the thermoelastic fields, the use of solution spaces of P1 and Q1, which are
piece-wise linear discontinuous and continuous polynomials respectively, can lead
to non-physical decreases in damage locally. While mathematically this is not a
problem, especially from the approximation theory point of view (see, e.g., Deutsch,

∗In this case, a direct linear solver is used, specifically UMFPACK (see Davis, 2004b and
Davis, 2004a), because of its advanced capabilities for inverting problematic matrices.
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Figure 4.8. Comparison of solutions for the damage variable in multiple approximate
solution spaces when the thermoelastic solution space is comprised totally of Q2-elements.
The entire domain is given (left), showing that in general, the solution is reasonably
similar; however, a zoom-in (right) reveals that the use of Q1 and P1 elements for the
damage results in oscillations of the solution. All simulations are performed with 256
cells in the triangulation.

2001), it is physically of significant concern for us. From the physical model, we
know that φ̇ < 0 corresponds to the healing of cracks, which have have explicitly
assumed does not occur. Therefore, even though these solution spaces are functional
and mathematically reasonable, we hesitate to use them because they may lead to
physical inconsistencies.

Finally, some combinations of spaces are labeled either ‘Stable’ or ‘Unstable’ in
Table 4.3. With all combinations of solutions spaces for the thermoelastic fields,
the use of piecewise constant discontinuous elements (P0) is non-oscillatory, and
produces solutions consistent with the physical nature of the system, as seen in
Figure 4.8 (right). The use of Q3-elements for the thermoelastic fields and Q2

or P2-elements for the damage solution space results in solutions that are highly
oscillatory, as seen in Figure 4.9, and hence the label ‘Unstable’. This behavior is
not reasonable, and rules out the use of quadratic-elements for the damage variable
approximate solution space.

In conclusion, the information in Table 4.3 clearly indicates that the piece-
wise constant, by cell, discontinuous approximate solution space is favored for
subsequent simulations. Physically, this may be reconcilable with the method in
which damage parameters are defined, namely homogenization over a representative
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volume element. This is the first known attempt to explore in any manner the
proper solution spaces for the damage variable, and is a significant departure from
the usual method of keeping track of the damage variable at the quadrature point
in, say, a tabular format.

There appears to be an intrinsic stability condition in the problem as well.
From the entries in Table 4.3, one can deduce that to at least have a functional
formulation, although possibly unstable, the dimension of the damage approximate
solution space must be at least one less than the approximate solution spaces for
the thermoelastic unknowns. This is like the well known inf-sup, or Babuška-Brezzi,
condition in mixed finite element methods (see, e.g., Babuška, 1971 and Brezzi,
1974); however, there is no proof at the current time to support a claim that it
is actually this effect. The results presented in this section should be regarded
as purely empirical, as additional analysis is necessary before more claims can be
made.
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4.4 Summary and Computer Implementation

The above numerical algorithms have been implemented into a custom C++ code.
The entire program relies heavily on the deal.ii finite element library (see Bangerth
et al., 2006) for most of the low level functions associated with implementing the
finite element method. A major benefit of using such a library is the ability to
write an extensible, dimension independent code. Element types are selected at run
time via a text input file, and boundary conditions that are functions of both time
and space are implemented into an input file as well. Additionally, the adaptive
meshing algorithms presented in Chapter 6 rely heavily on the implementation of
an adaptive triangulation in the deal.ii library.

Parallelization is supported natively in the deal.ii library through the use of the
PETSc parallel computing libraries distributed by Argonne National Laboratory
(ANL). These libraries are highly optimized, and are recognized by many for being
reliable and efficient. The largest single benefit from implementing parallel methods
is the distributed assembly and storage of the system matrix. Additional benefits
include distributed linear solvers and data file writing, but it must be emphasized
again that the run-time dominant part of the code is matrix assembly. When
adaptive meshing algorithms are introduced to dynamic, semi-discrete formulations,
most expectations of reasonable speedup are quickly disqualified.

As a final remark, we note that the decision to use P0 elements to approximate
the damage field is satisfactory in this instance, but may not be under all situations.
For example, all of the convergence analysis presented in this chapter is the result of
one-dimensional models. We make no claim that Table 4.3 is definitive or complete,
in the sense that there may be other dimensions to the table, such as the spatial
dimension of the problem. Perhaps in higher dimension problems the use of higher
order discontinuous elements for the damage field is possible and even preferable.
Due to these possibilities, the author feels that the study of solution spaces for the
damage variable is a step in the right direction, and hopes it will serve as a starting
point for future discussions.



Chapter 5
Numerical Experiments

During the derivation of both the linear and non-linear models, various parameters
and material properties have been introduced. Some of these quantities are familiar,
such as the elastic moduli (C), specific heat (c), thermomechanical coupling (M),
and thermal conductivity (K). Others are specific to the class of models and
constitutive relations we have chosen, such as the crack propagation parameter ηC
and critical energy release rate GCR, while yet others are intrinsic to this model,
even if only to offer a generalization from the previous work of other authors. The
new parameters are the exponents in the constitutive relations, α, β, γ, and τ .

The purpose of this chapter is to begin to understand how the material parame-
ters affect the motion of a thermoelastic material with damage. The dependence of
the model on the material parameters, especially those intrinsic to this dissertation,
is investigated. The resulting changes in behavior induced by the exponents α,
β, γ, and τ will provide insight into which quantities are most sensitive to the
damage evolution, and in turn reveal which quantities warrant further study of
their dependence on damage.

In this chapter, numerical complications are removed by reducing the domain
of the problem to one dimension (as has already been considered in Chapter 4 for
convergence studies). In this manner, the concerns with adaptive meshing and
varying mesh size can be isolated and ignored for the sake of clarifying the study of
the physics at hand. Because of the reduced size of the problem, a uniform mesh
with a sufficiently small element size can be used from the start of the simulation.
Not only does this mathematically reduce the complexity of the algorithm, it
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further reduces the computational overhead and programming complexity. This
simplification allows us to focus on the physical aspects of the model.

The fully linear model is used to determine the effect that the new parameters,
namely the exponents α, β, γ, and τ , in the constitutive equations have on the
resulting evolution of the system. A set of values for the exponents is chosen, and
then used in subsequent simulations. During the investigation of what values are
proper for the exponents, the material properties relevant to the damage evolution,
i.e., ηC and GCR, are chosen such that they are within a range that produces routine
motions, rather than ones where other phenomena may dominate the behavior, and
hence blur the affect on the model of the values of the exponents. For example, if
ηC is very large, the damage will grow very quickly, and the difference in damage
evolution caused by different values of the exponents may be indistinguishable.
Once a set of values for the exponents is chosen, a limited study of the effect the
damage evolution due to the temperature dependence of the material properties
(ηC and GCR) is examined. In all of the simulations presented, the thermoelastic
material parameters used are are those of brittle bulk graphite, as detailed in
Appendix A and summarized in Table 5.1.

Table 5.1. Representative material properties for high density graphite at room and
elevated temperature.

Quantity Symbol At 300 K At 2588.15 K
Mass Density ρκ 1.87× 103 kg/m3 1.87× 103 kg/m3

Elastic Modulus E 1.16× 1010 Pa 2.23× 1010 Pa
Bulk Modulus kbulk 9.65× 109 Pa 1.86× 1010 Pa
Lamé Parameter λ 6.68× 109 Pa 1.29× 1010 Pa
Lamé Parameter µ 4.45× 109 Pa 8.59× 109 Pa
Thermal Conductivity kth 1.74× 102 W/(m·K) 1.53× 102 W/(m·K)
Specific Heat c 1.31× 106 J/(m3 ·K) 1.49× 106 J/(m3 ·K)
Thermomechanical
Coupling βTM 3.13× 104 N/(m2 ·K) 1.81× 105 N/(m2 ·K)
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5.1 1D IBVP Description

The following numerical experiments are based of the problem of a one-dimensional
uniform bar subjected to an applied force at one end, and clamped on the other,
as show in Figure 5.1. More specifically, consider the domain B to be the interval
[0, L], with mechanical boundary conditions

u(0, t) = 0, v(0, t) = 0, σ(L, t) = F (t), (5.1)

where
σ = E(1− φ)βu′ +M(1− φ)γ(θ − θR) (5.2)

is the uniaxial stress, E is the scalar elastic modulus (for zero damage), M is the
thermomechanical coupling (for zero damage), and ()′ represents the derivative
with respect to the spatial coordinate. Additionally, we assume that the bar is
perfectly insulated, i.e.,

q(0, t) = q(L, t) = 0, where q = K(1− φ)αθ′. (5.3)

Here K is the scalar thermal conductivity usually associated with one-dimensional
isotropic models. For completeness, the equations of motion in one dimension for
the fully linearized model are

u̇− v = 0, (5.4)

ρκv̇ − (E(1− φ)βu′ +M(1− φ)γ(θ − θR))′ = bκ, (5.5)

X

X = 0 X = L

σ(L, t)u(0, t) = 0
v(0, t) = 0

Figure 5.1. The geometry and mechanical boundary conditions of the one dimensional
bar used in the numerical experiments presented in this chapter.
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c(1− φ)τ θ̇ +
[
2θRγ(1− φ)γ−1Mu′ − τc(1− φ)τ−1(θ − θR)

]
φ̇

−(K(1− φ)αθ′)′ − θR(1− φ)γMv′ = rκ,
(5.6)

φ̇− ηC
〈
β

2 (1− φ)β−1E(u′)2 + γ(1− φ)γ−1M(θ − θR)u′

− τc

2θR
(1− φ)τ−1(θ − θR)2 −GCR

〉
= 0.

(5.7)

The exact expressions for the critical energy release rate GCR and the crack
propagation parameter ηC will be defined when needed, but for the initial parameter
study they are assumed to be constant, and have the values ηC = 1× 10−2 m3/J·s
and GCR = 3× 105 J/m3. The thermoelastic material properties are those at room
temperature as given in Table 5.1. Initially, the bar is assumed to be at rest and at
the reference temperature, and as such the initial conditions are

u(X, 0) = 0 v(X, 0) = 0 θ(X, 0) = θR φ(X, 0) = φ0, (5.8)

where θR = 300 K and φ0 = 0.0001. We define the stress applied to the bar (see
Figure 5.1) to be

σ(L, t) =

1
2s0 [1− cos (2πt/t0)] t < t0

0 otherwise
, (5.9)

where s0 = 50 MPa and t0 = 20µs. The loading described by (5.9) corresponds to
a tensile force applied at the right end of the bar.

In Chapter 4, convergence was carefully checked for the thermoelastic fields.
Now, we check convergence of the damage evolution by running the same simulation
on successive refined meshes, and compare the damage temperature fields at a fixed
time into the simulation. This measure of convergence is not as strong as the use of
exact solutions detailed in Chapter 4, but is often used to gauge the performance of
formulations to which exact solutions would be difficult, if not impossible to devise
(see, e.g., Simo and Hughes, 1998). As shown in Figure 5.2, the temperature and
damage field vary only slightly with the use of 128, 256, or 512 cells (elements).
Thus, we can be reasonably satisfied that using 256 cells provides an acceptable
solution in the subsequent simulations.
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Figure 5.2. The temperature and damage fields at t = 352.8µs. For these simulations,
α = β = γ = 2, τ = 0.5, ηc = 1× 10−2 m3/J·s and GCR = 2× 105 J/m3. The images on
the left are the temperature (top) and damage (bottom) over the entire bar at the given
time, while the images on the right are zoom-in images of the temperature (top) and
damage (bottom) of the corresponding plot on the left. It is clear that the solution is
differing only slightly on refined meshes.

5.2 Exponent Parameter Study

Recalling the previous discussion in Chapter 3, the constitutive equations for the
fully-linear case, in one dimension, have the form

K(φ) = (1− φ)αK, E(φ) = (1− φ)βE, (5.10)

M(φ) = (1− φ)γM, c(φ) = (1− φ)τc. (5.11)
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Consequently, the free energy and the energy release can be written as

ψ = 1
2(1− φ)βE(u′)2 + (θ − θR)(1− φ)γMu′ − c

2θR
(1− φ)τ (θ − θR), (5.12)

G = βE

2 (1− φ)β−1(u′)2 + γ(1− φ)γ−1M(θ − θR)u′

− τc(1− φ)τ−1

2θR
(θ − θR)2

. (5.13)

Examining (5.10)-(5.13), we observe that there are critical values of each of the
exponents α, β, γ, and τ at zero and one. Setting any of these exponents equal
to zero effectively decouples some part of the physics from the problem. In this
manner, we can ‘turn off’ part of the problem to isolate the effects of another.
For example, if γ = 0, then the thermomechanical coupling will not be dependent
on the damage. Additionally, setting any of these values to unity preserves the
coupling of the damage into the thermoelastic nature of the problem, but creates
an energy release rate that is devoid of dependence on the damage with regards
to the term of that exponent. If all of the exponents are equal to one, and if the
crack propagation parameter and critical energy release rate are constants, then
the damage evolution itself ceases to be a function of the damage.

A natural question to ask at this point is whether the exponents should be
positive or negative. The effect is clear, and is shown in Figure 5.3. If we desire a
constitutive relation where the constitutive property degrades as damage increases,
as in the case of the elastic moduli, then we need a positive value for the exponent.
Otherwise, we will have a material property that seems to increase as damage
increases. Additionally, if the exponent is negative, as φ → 1, the quantity
(1− φ)a →∞.

One fundamental assumption throughout the history of damage mechanics is
that as damage increases at a point, the body becomes less able to withstand stress
at that point, and via a decrease in the elastic modulus undergoes a larger strain to
maintain equilibrium. Following this concept, we can conclude that the exponent β
should be positive. Recalling that the stress is

σ = E(1− φ)βu′ +M(1− φ)γ(θ − θR), (5.14)



79

! !"# !"$ !"% !"& !"' !"( !") !"* !"+ #

!

!"$

!"&

!"(

!"*

#

#"$

#"&

#"(

#"*

$

,

,

!#"'

!#"!

!!"'

!!"$'

!

!"'

$"!

Damage, φ

(1− φ)a

Figure 5.3. The effect of the exponent on the quantity (1− φ)a, where the values of a
are given in the plot legend. Positive values yield a constitutive relation that diminishes
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we now investigate the domain of the exponent γ. If we consider that each term in
(5.14) should independently maintain its contribution to the total stress as damage
evolves, then, as damage increases, we have two options for the second term. Either
γ > 0, and we would expect to see a temperature increase, or, γ < 0, and we would
expect to see a corresponding temperature decrease. As we know from the empirical
observations of others (see, e.g., Ravi-Chandar et al., 2000), when microcracking is
evolving, we often expect to see an increase in the local temperature due to the
dissipation of energy, and as such we take γ > 0 for the rest of this document. At
this point, we have restricted the domain of the exponents β and γ, such that

β, γ ≥ 0. (5.15)

In summary, the above definition physically corresponds to a material that, given
a specified stress σ, will see the strain and temperature increase at a point where
damage is evolving. Note that no claim is being made that these exponents should
have any precise value for a specific material. We are simply positing that if the
assumptions in (5.15) are made, we then have consequently assumed a certain
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general physical behavior. There are four distinct cases for these values:

β, γ = 0 β, γ ∈ (0, 1) β, γ = 1 β, γ ∈ (1,∞). (5.16)

In selecting values for the upcoming parameter studies, we will use these ranges as
a starting point. For example, it is clearly important to observe the behavior of the
system at the critical points of zero and unity, as well as the range between them
and beyond them. How far beyond the value of unity is an interesting question,
which is answered as necessary by observation and common sense.

The exponent that affects the thermal conductivity, α, is also assumed to be
non-negative

α ≥ 0. (5.17)

Physically, this corresponds to a material that has a reduced capacity to conduct
heat as microcracking increases. Ultimately, when a point on the body is fully
damaged, that is, there is a macrocrack present, one would expect no heat to be
conducted through the point (if the crack is open and not filled with a gas or fluid),
so this appears to physically reasonable. With this in mind, it should be remarked
that any value of α will satisfy (3.41), and hence not violate the thermodynamic
admissibility of the model.

The final exponent to consider is the one related to the specific heat, τ . As
a thought experiment, if we consider a strain-free motion, i.e., where the strain
is zero but the temperature is not equal to the reference temperature, the energy
release rate given in (5.13) becomes

G = −τc(1− φ)τ−1

2θR
(θ − θR)2. (5.18)

Clearly, because θR > 0 and c > 0, the energy release rate will be negative, and
hence no damage evolution will occur if τ > 0, under the circumstances of strain
free motion. We then consider the following question: should purely thermal
events cause microstructural change, specifically an increase in the damage? Such a
situation is not unimaginable, if one heats a block of a material with an extremely
low CTE, while exerting no mechanical forces on it, one essentially has created
such an experiment. Thus, if τ < 0, then we presume to have a material and a
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theory under which microcracking is advanced by purely thermal events, and which
appears to suggest that the specific heat of a material grows with microcracking.

Realistically, even in the case of brittle materials with small coefficients of
thermal expansion, thermal shock is an important failure mechanism to recognize.
If τ is positive, then from the energy release rate in (5.13) we deduce that the damage
will only evolve after the thermally induced strain is large enough to counteract the
presence of elevated temperatures. Thus, τ > 0 implies that the material becomes
more resistant to fracture with an increase in temperature. Additionally, the free
energy (5.12) will go to zero as φ→ 1 and the ability of the material to store heat
will diminish as the material becomes more damaged. At this point, we turn to the
simulations to draw further conclusions.

As a preliminary study, we simply assume that all of the exponents take the
values

α = β = γ = τ = 2. (5.19)

The results are shown in Figures 5.4 and 5.5, in space-time format. The simulations
cover a relatively brief period of time of just over 500µs. Full coupling between the
elastic, thermal, and damage phenomena is clearly present. As the displacement
wave caused by the briefly applied force approaches the fixed end of the bar (left
side in Figures 5.4 and 5.5), one can clearly see that the strain increases to the point
where it surpasses the critical energy release rate, and damage starts to evolve.
Consequently, the temperature increases rapidly and in a very localized manner.
As the wave reflects and moves away from the fixed end, the strains decrease, the
damage stops growing, and the localized temperature reaches a steady, but slightly
decreasing value. The time scale of these simulations is small with respect to the
diffusion of thermal phenomena, thus, it appears in Figure 5.5 that the temperature
remains constant after damage evolution at a point, but this is only an artifact of
the difference in timescales.

Note that only after a few cycles of the wave reflecting off the fixed end, the
damage variable is already at about one-tenth of its maximum value. This indicates
that the combined values of ηC and the applied force are rather large compared to
those used for modeling high cycle fatigue. Additionally, we see in Figure 5.6 that
the damage is never decreasing. Given the nature of the algorithms described in
Chapter 4 and physical derivations in Chapter 3, this is appropriate. This particular
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Figure 5.4. The displacement (top), in millimeters, and velocity (bottom), in meters
per second, of the 1D bar subjected to the loading given in (5.9). The propagation of a
wave front is clearly visible, along with the reflections against the fixed end (left) and
free end (right).
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Figure 5.5. The absolute temperature (top) and damage variable (bottom) of the 1D
bar subjected to the loading given in (5.9). Notice that the increase in damage is localized
to the fixed (left) end of the bar and only evolves when the wave front strikes this end.
The corresponding heating generated by an increase in damage is clear, and is significant.
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Figure 5.6. Zoom-in of the damage evolution at the fixed end of the bar from Figure
5.5. Note that damage increases rapidly each time the wave strikes the fixed end of the
bar. The spatially-discontinuous nature of the damage is obvious in this figure. Each
cycle of wave incidence on the fixed end is clearly visible. Also, the largest values for
damage are at X = 0.

experiment was planned such that all of the interesting phenomena would happen
at the fixed end of the bar, where X = 0. Using this knowledge, we can compare
many simulations by looking at the time evolution of the fields at this location.
Because we are primarily concerned with the change in evolution of the damage
variable due to temperature, we will use the temperature and damage evolution as
the primary metric used to study the effects of varying α, β, γ, and τ .

How to proceed with adjusting the values of the aforementioned exponents is
an interesting problem unto itself. With four parameters, there is quite a large
parameter space that can be explored; however, we hope to abbreviate the process
in order to maintain clarity and to be able to draw useful conclusions. We begin
first by examining the purely elastic part of the problem, i.e., we set to zero α, γ, τ ,
and adjust β. From the equations of motion, it is clear that this will not result in
damage evolution induced heating, but will allow us to study the parameter space
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of β. After this study, a value of β is selected, and each of the thermal exponents is
adjusted independently, i.e., β is held fixed at a non-zero value, two of α, γ, τ are
zero, and the third is marched through the domain of previously discussed values.
We must have a non-zero value of β for the subsequent investigations because we
know that in reality, even in a purely elastic system, β will never be non-positive.
In this manner, we can determine which of α, γ, and τ matters most independently.
Should any particular values stand out as interesting choices, we can then proceed
to further explore the parameter space.

We first seek to see the effect that adjusting β has on this model. The parameter
is related to the purely elastic part of the system, and corresponds to the relations
most commonly used in the literature. Therefore, we set all other exponents to zero,
and vary β through the domains given in (5.16). Figure 5.7 shows the effect that
adjusting β has on the evolution of the damage. In this specific problem (which
has been chosen with the hope of preserving generality), values of β that are less
than one do not give rise to damage evolution.

For a one-dimensional model, a value of φ = 1 in the domain indicates complete
failure, and that the simulation is over. In Figure 5.7, we do not see this occur,
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Figure 5.7. The damage evolution at X = 0, the fixed end of the bar, when α = τ =
γ = 0 and β is varied. The value of β has a clear effect on the damage evolution. Larger
values of β result in more rapid damage evolution; however, if the value of β become “too
large” the model becomes unable to maintain physical relevance.
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but when β = 5 the model approaches but does not quite attain the value of φ = 1.
This behavior is due to the damage dependence of G, and is the direct result of the
fact that rapid damage increase causes a decrease in the energy release rate, and
hence a slowing of the damage evolution. This behavior demonstrates the two-way
coupling present in this model.

The values of β = 1, 2, 3 show the types of results that, in the opinion of the
author, are more interesting. Here, the damage variable evolves at different rates for
the same loading and material properties, and will eventually reach the maximum
value of φ = 1. For the subsequent simulations, we will choose the value of β = 2, so
that, given the material properties in Table 5.1 and loading in (5.9), the simulations
will span multiple loading cycles.

With a value of β selected, we now seek the effect of varying α and γ on the
temperature and damage evolution. Figures 5.8 and 5.9 show the effects of fixing
β = 2, τ = 0, and varying either α or γ. It is clear that neither of these exponents
independently affects the temperature or damage evolution at the fixed end of the
bar (this is also true of the rest of the bar) in an extreme manner; however, it is
observed that for large values of γ, the thermomechanical coupling is reduced so
much that it ceases to affect the motion of the system, leaving the slight temperature
increase it created to diffuse into the bar. This is not entirely surprising, as the
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Figure 5.8. The temperature (left) and damage evolution (right) at X = 0, the fixed
end of the bar, when β = 2, τ = γ = 0, and α = 0, 0.5, 1, 2, 10, 100. It is clear that α
is not independently responsible for causing temperature variations or changes in the
damage evolution. The oscillating temperature pattern is due to thermoelastic heating
and cooling.
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Figure 5.9. The temperature (left) and damage evolution (right) at X = 0, the fixed
end of the bar, when β = 2, τ = α = 0, and γ = 0, 0.5, 1, 2, 10, 100. As with α, it is
clear that γ is not independently responsible for causing large temperature variations or
changes in the damage evolution.

source terms (resulting from thermoelastic coupling) in the balance of energy
that pertain to the exponent γ are distinctly influenced by the thermomechanical
coupling, M , which as given in Table 5.1 is very small for brittle graphite. We
therefore can only conclude that, independently, these exponents have essentially
no direct influence on the damage-temperature relationship, although they may
have a more pronounced effect when τ 6= 0.

The final exponent to consider is τ , which is related to the specific heat of the
system. In Figure 5.10, the temperature and damage evolution at the fixed end
of the bar are shown when β = 2, α = γ = 0, and τ is varied through a range of
values. Compared to α and γ, the effect of adjusting τ on the evolution of both
the damage and temperature is substantial. We see that non-zero values of τ lead
to temperature increases at the fixed end of the bar. Experimental observations
have shown that crack growth results in crack tip heating (see Ravi-Chandar et al.,
2000), and as such, it is now reasonable to posit that τ should be non-negative in
this model.

The relation between damage growth and heating is observed by comparing the
evolution of both quantities in Figure 5.10. When damage growth is occurring, there
is a corresponding sudden increase in temperature at the same location. Due to the
boundary conditions of perfect insulation, as soon as the damage stops evolving, the
temperature begins to decrease as the energy dissipated during damage evolution
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Figure 5.10. The temperature (left) and damage evolution (right) at X = 0, the
fixed end of the bar, when β = 2, α = γ = 0, and τ = 0, 0.5, 1, 2, 3. It is clear that τ
is independently responsible for causing damage evolution induced heating. Also, the
damage evolution is affected by the value of τ , as it is clear that as τ is increased, more
energy is dissipated as heat rather than put towards damage evolution.

begins to diffuse into the rest of the bar; however, this occurs very slowly due to
the larger timescale of the thermal diffusion.

Figure 5.10 also demonstrates that while τ > 0 couples temperature increases to
damage growth, the damage growth is simultaneously influenced by the temperature.
As τ increases, the damage evolution appears to slow. This is due to the fact that
within the expression for the energy release rate in (5.13), a larger positive value of
τ will actually cause the energy release rate to decrease, and is demonstrating that
an increasing amount of energy is being dissipated as heat than is being consumed
to evolve microcracking.

The coupling is not this straightforward, however, as it is clear that a larger
value of τ may not always correspond to a larger increase in temperature. We
can observe that the temperature, in this particular simulation, actually begins
to fall again as τ > 0.5. This is due to the fact that the damage growth slows
considerably, and thus reduces the source term in the balance of energy. Therefore,
the value of τ is critical to capturing the amount and ratio in which energy is
dissipated via microstructure evolution or heat generation. The importance of this
point cannot be overstated—without an explicit inclusion of the balance of energy,
all other continuum damage models in pure elasticity assume that all energy is
dissipated only by microstructure evolution, but here we are able to account for
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Figure 5.11. The temperature (left) and damage (right) at t = 470.5µs, near the fixed
end of the bar, when β = 2, α = γ = 0, and τ = 0, 0.5, 1, 2, 3.

both thermal and damage energy dissipation and determine the proportions of each.
We conclude from this that the specific heat, and specifically its dependence on
the damage variable (microstructure), can play a critical role in thermomechanical
CDM models.

The effects of β and τ are clearly important individually, and we now return
to investigate further the effects of α and γ on the model. Selecting β = 2 and
τ = 0.5, we again search the spaces of α, γ > 0 and observe the results. Figure 5.12
shows the effect of varying α in the same range as previously studied. The effect is
measurable, although quite small. Increasing α results in slightly lower values of
the damage, although the difference is roughly only a fraction of a percent relative
to the value when α = 0. In order preserve generality in future simulations, we will
take a value of α = 2 in subsequent calculations, because we do not want to remove
the possibility that interesting phenomena may occur in other loading situations.

In Figure 5.13 we see virtually no effect on the temperature or damage evolution
when γ is adjusted through a range of positive values. This is not surprising, as
the thermomechanical coupling for this particular material is quite small. It is not
expected, however, that this will be the case for all materials, and consequently the
role of γ may be more important in later studies. In order not to lose generality in
the model, we select the value of γ = 2 for subsequent calculations. It is tempting to
simply use these results to consider γ = 0, but this could lead to a loss of generality
when unforeseen effects arise. Additionally, the coefficient of thermal expansion



90

0 50 100 150 200 250 300 350 400 450 500
298

300

302

304

306

308

310

312

314

316

435 440 445 450 455 460 465 470

315.5

315.55

315.6

315.65

315.7

315.75

315.8

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

435 440 445 450 455 460 465 470

0.0949

0.0949

0.0949

0.0949

0.0949

0.0949

0.0949

0.0949

0.0949

Time (µs)

Time (µs)Time (µs)

Time (µs)

D
am

ag
e

(φ
)

D
am

ag
e

(φ
)

A
bs

ol
ut

e
T
em

pe
ra

tu
re

(K
)

A
bs

ol
ut

e
T
em

pe
ra

tu
re

(K
)

α = 0, 1, 2, 10

α = 100

α = 100

α = 10

α = 2
α = 1
α = 0

Figure 5.12. Temperature (top) and damage evolution (bottom) at the fixed end of the
bar, X = 0, when β = 2, τ = 0.5, γ = 0, and α is adjusted. The dashed-line boxes on the
left indicate the enlarged region on the right. The effect is measurable, although not as
pronounced as when τ is varied in Figure 5.10.

is well known to often have significant dependence on temperature, and as such,
it may play a more interesting role in later simulations involving the non-linear
thermoelastic theory.

In conclusion, the exponents β and τ appear to play the most dominant roles
in this model. The effect of the former is well known, but the importance of τ ,
and more generally the importance of the dependence of the specific heat on the
damage variable is an important original finding of this thesis. The coupling of the
damage with the specific heat, which is ultimately derived from that part of the
free energy of the system which is not dependent on deformation, appears to have
a pronounced effect on what fraction of the energy dissipated during the evolution
of the microstructure is dissipated as heat. Consequently, the specific heat also
affects the rate at which damage grows, and alludes to a model capable of truly
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Figure 5.13. Temperature and damage evolution at the fixed end of the bar, X = 0,
when β = 2, α = 0, τ = 0.5 and γ is adjusted through the value γ = 0, 1, 2, 10, 100. For
both the temperature and damage, no noticeable effect is observed.

capturing the coupling between temperature and damage evolution.
All of the exponents have been postulated to be positive, through either physical

reasoning or observation of numerical experiments and qualitative reconciliation
with known experimental results. The final set of values for these exponents, to be
used in forthcoming simulations, is

α = 2, β = 2, γ = 2, τ = 0.5. (5.20)

It must be remembered that these values are material properties, and as such should
be determined empirically for individual materials. The purpose of this section is
to determine through physical reasoning, with the aid of simulations, if any specific
ranges for these exponents can be identified and to what extent each exponent may
be important. All of the results here are for brittle graphite, and hopefully may
aid the plight of an experimentalist working to better characterize such a material.

5.3 Damage Evolution Material Properties

This section briefly explores the effect that the temperature dependence of the
crack propagation parameter ηC and critical energy release rate GCR have on the
resulting behavior of the model, specifically with regards to the temperature and
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damage evolution. As has been discussed throughout this thesis, we are not as
concerned with a specific material as we are as the qualitative behavior of phase-
field damage models for general application to brittle materials in the context of
damage evolution, but more importantly, dynamic thermal phenomena. Thus, this
section should be considered a demonstration of the capabilities and flexibility of
the proposed model.

There is no a priori reason to assume that any specific forms for the temperature
dependence of ηC and GCR are universal, or generally representative of the natural
world. This is surely a question to be answered by careful analysis of the underlying
micromechanical models used to develop the damage variable and corresponding
evolution equation, and by experimental testing. Even by restricting the discussion
to situations where ηC and GCR, which will be referred to frequently as the damage
evolution material properties, increase or decrease monotonically with temperature,
one still is faced with four permutations where temperature could be causing either
ηC and/or GCR to increase or decrease.

Compounding the issue of temperature dependence is that the model is already
sensitive to the values of the damage evolution material properties. Figure 5.14
shows the result of varying the value of GCR slightly, and the resulting change in the
damage evolution, given the same loading. Again, this section can be viewed more
as a demonstration of how temperature affects the damage evolution in this model,
and is not meant to make broad claims about the behavior of brittle materials in
general.

While the dependence of ηC and GCR on the damage is also important, this topic
has been explored by other authors (see, e.g., the discussions in Krajcinovic, 1996),
the work of whom could be incorporated into this model if desired. For example,
one possible assumption is that the crack propagation parameter ηC increases with
an increase in the damage variable, which may correspond to a physical assumption
that microcracks will grow faster in the vicinity of each other due to phenomenon
associated with crack-tip interaction. However, assuming that microcracks grow
faster when in the vicinity of other microcracks does not mean that it will be
equally easy to have microcracking evolving. In fact, phenomena such as crack
shielding (see, e.g., Majumdar and Burns, 1981 and Hutchinson, 1987) have been
observed to reduce the load at the macrocrack-tip due to decreased stiffness of the
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Figure 5.14. The damage field when GCR = 1 × 105 J/m3 (top) and when GCR =
3× 105 J/m3 (bottom). Even values of the same order of magnitude can result in quite
different evolution of the damage.
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surrounding microcracked material. The damage dependence of both ηC and GCR

is often important, but for the purpose of clarity when studying the thermal effects,
we choose exclude it in this dissertation.

In the same manner as damage dependence, temperature may cause the material
to become embrittled or softened. High density graphite is known to increase in
stiffness as temperature increases (see Appendix A), which suggests that it becomes
more brittle as the temperature increases; however, it is also true that many
materials soften, or become more resistant to fracture, as they are heated. In order
to explore these possibilities, we posit that a simple temperature dependence for
the crack propagation parameter could be written as

ηC(θ) = η0
C

(
θ

θR

)a
. (5.21)

Note that this formulation assumes no change in ηC at the reference temperature.
It is stressed that the form of the crack propagation in (5.21) is merely postulated
for study of the qualitative nature of the model. For the critical energy release rate,
we assume a similar form, and as such also define its temperature dependence as

GCR(θ) = G0
CR

(
θ

θR

)b
. (5.22)

Here a and b are simply scalar parameters to adjust during the study, and we take
the constants in (5.21) and (5.22) as η0

C = 1×10−2 m3/J·s and G0
CR = 3×105 J/m3.

The exponents are the same as determined in the previous section, β = α = γ = 2
and τ = 0.5, for consistency of the presentation.

The effects of varying a and b independently are shown in Figures 5.15 and 5.16.
As expected, when the critical energy release rate is constant, and a is varied to
have the crack propagation parameter change with temperature, we see a direct
influence over the temperature and damage evolution at the fixed end of the bar.
In Figure 5.15, we see that if ηC increases with temperature (a > 0), then the
damage evolution occurs at an accelerated pace, and correspondingly so does the
temperature. However, this simulation shows that at some point, the combination of
damage and temperature is such that the initial loading does not cause a significant
increase in damage after a certain time. Over time, as the temperature falls, the
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energy release rate would again rise above the critical level, and we will see damage
grow at the fixed end of the bar once again. This is an excellent example of the
large parameter space of this model, and the unexpected coupling effects that can
be seen. Likewise, in Figure 5.16 we see that if the critical energy release rate is
diminished as temperature increases (b < 0), the damage and temperature growth
is accelerated. Note that in both cases, the trend for the damage and temperature
at the fixed end of the bar is the same (either increasing or decreasing), which is
markedly different from the case of the specific heat, where the coupling was much
more intricate. This is due to the fact that these parameters are only present in
the damage evolution, and not the rest of the model.

In conclusion, it is clear that many material responses may be explored by using
different combinations of temperature dependent forms of ηC and GCR. The focus
of this dissertation is on brittle materials, and as such we will examine a case where
the material becomes more brittle as the temperature increases, i.e., a > 0 and
b < 0. As a note, due to the chosen operator splitting scheme, changes to the
temperature dependence of ηC and GCR are very easy to implement.
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Figure 5.15. Temperature (left) and damage (right) evolution at the fixed end of the
bar, X = 0, when b = 0 and a is adjusted. Unlike the exponent for the specific heat,
as ηC increases, we see an increase in both the temperature and damage; likewise for a
decrease.



96

0 50 100 150 200 250 300 350 400 450 500

300

305

310

315

320

0 50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

D
am

ag
e

(φ
)

A
bs

ol
ut

e
T
em

pe
ra

tu
re

(K
)

Time (µs) Time (µs)

b = −50

b = −10
b = 0

b = 5

b = 20

b = −50

b = −10
b = 0

b = 5

b = 20

Figure 5.16. Temperature (left) and damage evolution (right) at the fixed end of the
bar, X = 0, when a = 0 and b is adjusted. An inverse relationship is present: as b
increases, so does GCR, leading to a decrease in damage evolution and subsequently a
decrease in temperature.

5.4 Brittle Fracture

This section demonstrates the capability of the proposed model to simulate brittle
fracture. Until this point, the numerical studies have only focused on brittle
behavior by using thermoelastic material properties for a common brittle material,
namely bulk high-density graphite. Now we will explore the damage evolution
material properties, focusing on values that are appropriate for modeling fracture,
i.e., the sudden localized failure at a point in the body.

Recalling the discussions in Chapter 2 and Chapter 3 regarding the damage
evolution equation, we will investigate brittle failure by increasing the crack prop-
agation parameter to the point that once damage is nucleated, it will grow very
quickly, resulting in almost immediate failure of the one-dimensional bar. Addi-
tionally, it is also assumed that ηC increases with temperature (a > 0) and that
GCR decreases with temperature (b < 0), corresponding to an embrittlement of the
material with an increase in temperature.

For the subsequent simulations, we will break from the previous sections, and
select different values for the exponents for the constitutive relations. This is
not because the previous values are incorrect, but rather to provide clarity in the
example calculations; this is done to minimize the complex coupling that may, as
demonstrated previously, prevent damage from growing to its maximum value due
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to complex couplings in the formulation. Thus, we choose β = 1, α = γ = 2 and
τ = 0.025. For the same reason, we also adjust the loading given in (5.9) to be

σ(L, t) =

1
2s0 [1− cos (2πt/t0)] t < t0/2

s0 otherwise
, (5.23)

where the loading is increasing smoothly, then held constant. Hence, rather than a
pulse, we now have what corresponds to a dead weight being applied to the left
end (X = L) of the bar. The applied force and its timescale are the same as given
in (5.9), as is the critical energy release rate G0

CR = 3 × 105 J/m3. However, we
now select a larger value of the crack growth parameter η0

C = 1× 101 m3/J·s, as
compared to the previous value of η0

C = 1× 10−2 m3/J·s.
The temperature and damage field resulting from this choice of material prop-

erties are shown in Figure 5.17. The first observation is that even though the
damage grows much faster, it still does not jump directly to φ = 1. This is due
to the selection of the timestep; even though the damage grows quickly we can
still characterize its growth. Figure 5.18 details the growth of the temperature and
damage fields through time. The high rate of the damage growth is clear from
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Figure 5.17. The temperature (left) and damage fields (right) when damage evolution
occurs very rapidly, i.e., brittle failure is being modeled. In this simulation, the constitutive
exponents are selected to provide maximum clarity in the results, and are β = 1, α = γ = 2,
and τ = 0.025. Additionally, temperature dependence of ηC and GCR are assumed, with
a = 10 and b = −10, corresponding to an embrittlement of the material as temperature
increases.
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the indicated times; only a tenth of a microsecond is passing between the damage
profiles shown.

In both Figure 5.17 and Figure 5.18, we see that the temperature field is also
growing quickly, and while not very smooth, is not necessarily demonstrating
instability in the solution. However, experience with this model has shown that as
the rate of damage growth increases, it becomes more difficult for the numerics to
cope with the nature of the equations. This is likely due to the fact that the change
in damage is what causes the problem to become non-linear in the first place, and
hence the larger the change in φ̇ the more severe the non-linearity in the problem.
Compounding this issue is the fact that as damage quickly approaches φ = 1, the
nature of the equations is locally altered.
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Figure 5.18. The temperature (left) and damage (right) fields when damage evolution
occurs very rapidly, i.e., brittle failure is being modeled at timesteps leading up to
failure. Note the rapid rise in damage and temperature, and how the temperature
struggles to cope with the localized nature of the damage field. In this simulation, the
constitutive exponents are selected to provide maximum clarity in the results, and are
β = 1, α = γ = 2, and τ = 0.025. Additionally, temperature dependence of ηC and
GCR are assumed, with a = 10 and b = −10, corresponding to an embrittlement of the
material as temperature increases.
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The careful interpretation of these results is critical to ascertaining the usefulness
of this model. From the outset of this dissertation, it has been stated that one of
our goals is to explore whether the modeling of brittle fracture is even viable in the
context of continuum damage mechanics, especially when dynamic and thermal
effects are explored. Clearly, Figure 5.18 demonstrates that both the physical model
and numerical methods proposed are capable of resolving and coupling the rapid
and localized failure and temperature increases associated with fracture; however,
since we are presenting this technique without rigorous validation we are not in a
position to make more specific claims about the data generated from the model.
For example, it may be very interesting to know if the damage and temperature
fields generated are qualitatively, if not quantitatively, representative of what is
observed empirically. Additionally, whether the rate of growth of these fields is
accurate is also an interesting question.

The number of assumptions necessary to get to this point prohibits a more
in-depth study of specific scenarios; however, the act of arriving at this point has
revealed in detail the key elements necessary to be able to make more specific
claims. Clearly, the dependence of the constitutive quantities on damage, especially
the thermal ones, needs to be quantified. We have shown in this chapter that, of
the thermal material properties, a primary focus should be the damage dependence
of the specific heat. Additionally, knowledge about the material’s response to heat,
i.e., whether it undergoes softening, embrittlement, or some combination of the
two is important to understanding the final motion of the body. With these topics
in mind, we hope to have narrowed the questions that need answered by future
research.



Chapter 6
Adaptive Mesh Refinement

This chapter details the development, implementation, and performance of a
proposed adaptive finite element method to solve the problems derived in Chapter 3.
Motivation for employing adaptive methods is presented first, followed by a brief
discussion of the nature and general structure of such algorithms. The development
of two original refinement indicators and the corresponding algorithms is detailed.
Finally, a demonstration of the current state of the algorithm’s performance is
given.

Like many numerical methods, the finite element method relies on the par-
titioning of a domain into a finite number of smaller, disjoint subdomains. An
approximate solution is then calculated using this partition, and some measure
of the error in the approximate solution is calculated. Decreasing the size of the
subdomains, or elements, in the partition is referred to as refinement, while an
increase in the size of the elements is called coarsening. Typically, one expects that
as the partition, or mesh, is uniformly refined, the error present in the approximate
solution should decrease correspondingly. In this thesis, we have already employed
this technique in Chapter 4, where convergence of the numerical formulations was
demonstrated. Well known relations between the size of the elements and the
error in the approximate solution have been developed and fully vetted by the
mathematical community (see, for example, Brenner and Scott, 1994).

While uniform refinement produces a reduction in error, and hence a more
accurate solution, it simultaneously results in a substantial increase in computational
cost. To this end, adaptive mesh refinement methods have been created to increase
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the refinement of the mesh locally instead of globally, such that the error in the
approximate solution can be reduced with a minimal increase in computational
cost. In this thesis, we posit that the level of mesh refinement necessary to resolve
the damage, and hence the morphology of the microstructure, is such that adaptive
mesh refinement will be crucial to containing the size of the calculations, in terms
of the total number of unknowns for which we are solving. We also have stated
that we desire an algorithm which has no a priori assumption of where damage will
occur within the domain, and hence, since we choose to forego uniform refinement
techniques, must develop an algorithm that is able to autonomously determine
where it is necessary to refine the mesh.

Adaptive methods in numerical analysis are those techniques and algorithms
which, through a series of calculations, automatically refine the space/time dis-
cretization underlying an approximate solution in a non-uniform manner. These
techniques grew out of the need to minimize the computational expense normally
associated with high-precision calculations. Whenever a domain discretization
method is used to find an approximate solution of some system, one must choose
a triangulation, that is, a decomposition of the domain into a finite number of
disjoint subdomains. If, after the calculation is performed, the approximate so-
lution obtained is not accurate enough by some method of error measurement,
then one may manually change the discretization according to either experience,
intuition, or at best an educated guess, with the hope of finding a more accurate
approximate solution. Clearly, this process could iterate indefinitely if one is either
unskilled, or unable to determine the root cause leading to the unacceptability of
the approximate solution. Therefore, algorithms were created which automatically
determine how the triangulation should be adjusted, perform such an adjustment,
and recalculate the solution.

In this thesis, a primary emphasis has been the application of the finite element
method to the problem of thermoelasticity with damage. Therefore, this chapter will
focus on the application of an adaptive scheme in conjunction with the particular
finite element method already presented. With this in mind, we begin by pointing
out that there are three general classes of adaptive finite element methods∗: h-

∗Recently, other methods have been proposed; we choose here to list only the methods
commonly in use by the broader community.
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adaptive schemes, where the mesh size is adjusted locally, resulting in an expanded
set of basis functions (although still all of the same type); p-adaptive schemes,
where the solution spaces are changed only by modifying the nature and number
of the basis functions; and hp-schemes, which combine both approaches (see, e.g.,
Pannwitz et al., 2003 and Bangerth et al., 2006). As already detailed in Chapter 4,
the selection of approximate solution spaces for the problem of thermoelasticity
with damage has been carefully studied, and as such it is not anticipated that
p-adaptive schemes are appropriate for the problem at hand. Therefore, we focus
on the use of h-adaptive schemes, which are also known more simply as adaptive
mesh refinement.

Adaptive mesh refinement (AMR) is critical to addressing the localization of
the damage solution while maintaining reasonable problem sizes, in terms of the
total number of unknowns. While it will be shown to be useful as a tool, it is not
a well defined procedure or miracle cure for problems of this nature. The use of
AMR does not remove the localization of, or intrinsic mesh dependent nature of
the damage solution. Rather, it provides a framework in which the localization
of the damage variable can be contained to a physically reasonable part of the
domain. We must recall that the damage variable represents the extent to which
microcracking is present in the body, on a pointwise basis. As damage evolves,
and reaches its maximal level at a point (φ = 1), we say the body is totally failed
at that point. In essence, this physically corresponds to the coalescence of the
microcracks into macrocrack, and hence the creation of a new surface in the body;
however, in this dissertation, cracks and the subsequent creation of new surfaces
are not modeled explicitly.

In one-dimensional calculations, the simulation ends whenever a single point in
the domain has a damage value of φ = 1. However, in two and three dimensional
calculations this is no longer the case. The issue of what it means to have material
in a domain with φ = 1 is discussed in Mazars (1996), among others, where it is
stated that such zones of fully-damaged material represent a macrocrack. One must
remember that we are simply creating a model for fracture, which is inherently
discontinuous, within a fully continuum framework. In this chapter, we explore
the possibility of using discontinuous finite element methods and AMR to help
determine if such an approach is feasible.
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6.1 h-adaptive Algorithm

Adaptive finite element methods are well developed, and have been studied ex-
tensively since the work of Babuška (1975), among others, resulting in a plethora
of techniques (see De et al., 1983). Intrinsically coupled to adaptive mesh refine-
ment is the study of error estimation. In this thesis, the widely used concept of a
posteriori error estimation and mesh refinement is employed (see, e.g., Babuška
and Rheinboldt, 1978 and Kelly et al., 1983). More recent advances in the field,
such as duality-based error estimation, can be found in Pannwitz et al. (2003),
and throughout the literature. AMR algorithms are not unique, and are highly
dependent on the mathematical and physical nature of the problem to be solved;
however, a general procedure is followed in most schemes.

The basic process of a posteriori driven adaptive mesh refinement is detailed
in Figure 6.1. The process begins with the selection of an initial triangulation, or
mesh, for a given domain. An approximate solution over this discretization is then
found using the finite element method. Subsequently, the global error present in
the approximate solution is calculated according to some measure (for examples of
such measures, see Section 4.3.1). If the magnitude of this error is not acceptable,
then error estimates per cell, denoted by eK (where K is a cell in the triangulation
Th), are calculated for each cell in the triangulation. The choice of eK is one of
the most important elements in the implementation of an AMR algorithm, and
is highly influenced by the choice of solution spaces, the nature of the equations
being solved, and the physical phenomena for which one wishes to increase the
accuracy of the solution. Following the calculation of the error estimates, a set
of refinement indicators is generated, which in turn determine where the mesh is
going to be refined. This is another crucial decision in the development of an AMR
algorithm, and is often something that must be tuned for the problem at hand.
The refinement indicators are often a function of the error estimates, as it is logical
to locally refine the mesh where the error in the solution is the highest; however, it
is not necessary that this be the case. For example, in this dissertation, we focus
on refining in the regions of the domain where damage is evolving, which may differ
from areas of the domain where the error in the thermoelastic fields is highest. At
all times, a distinction between the error estimates and refinement indicators must
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Given initial Triangulation

FEM solves for approx. solution

Calculate global error

Is global error acceptable?

Change Triangulation

Exit

Discard approx. solution
Yes

No

Determine refinement indicators

Calculate error estimates

Figure 6.1. Flowchart of a general a posteriori driven AMR scheme. Key parts to the
process are the choice of error estimates, definition of refinement indicators, and how to
change the triangulation.

be made. Finally, the previously calculated approximate solution is discarded, and
the process repeated until an acceptable level of error is reached.

In this thesis, the calculation of error estimates is bypassed in favor of using
physically motivated refinement indicators. Two methods for calculating the
refinement indicators are proposed. The first uses only the damage variable, and is
motivated by our interest in phenomena in the vicinity of where damage is growing
and where damage has changed from its initial state. The second relies on the
energy release rate, and is motivated by the fact that this quantity is a precursor
to the evolution of the damage variable, and may serve to preemptively refine the
mesh where necessary. In both cases, only refinement of the mesh is considered,
as opposed to the usual combined approach of coarsening and refinement. This is
because we want to study the morphology of the microstructure as it evolves, and
hence will be only refining the mesh in order to resolve this in more detail.

Finally, it is important to note that the simulations in this chapter are demon-
strative in nature. We wish to explore the effect that different refinement indicators
have on the resulting solution, and specifically do not make any claims about
validating the results. Such work is important, and necessary for the long term
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deployment of the model proposed here, but for reasons explained in Chapter 7, is
left for future studies.

6.1.1 Damage Derived Scheme

Let rK denote the refinement indicator for a cell K ∈ TK , where TK is a triangulation
of the domain. Simple damage based refinement indicators are computed according
to the following formula, where 0 ≤ εD ≤ 1 is a parameter selecting what ratio of
total damage to rate of damage growth should be used, and φ0 is the damage level
in the initial condition,

rK = εD
(
φn+1
K − φ0

K

)
+ (1− εD) φ

n+1
K − φnK

∆t K ∈ Th. (6.1)

Note that the damage variable has been subscripted by cell. This presents no
problem when elements such as piecewise constant polynomials (P0(K)) are used
to represent the damage variable, but if higher order elements are used a method
must be developed to clarify what is meant by φK . As detailed in Babuška and
Rheinboldt (1978), Kelly et al. (1983), and Pannwitz et al. (2003), a multitude
of formulas have been proposed for calculating error estimates and refinement
indicators, most of which are based on some sort of integration over the cell or its
faces.

Due to the pathological mesh dependence of this model, adaptive mesh refine-
ment must be used with care. For example, simply continuing to refine the mesh
at a location where damage is evolving may not result in a convergent sequence
of solutions. As discussed in Chapter 2 and Mariano (2000a), the volume of the
damaged cells will simply decrease until they are not physically reasonable, and
the dissipated energy will decrease to zero. Clearly, this is a primary motivator for
one to explore non-local theories, but we suggest that the issue can be addressed
reasonably well with a rather simple solution. As described in Lemaitre (1996), a
minimum mesh size can be implemented. Many physical rationales can be used to
justify such a minimum mesh size; however, due to the more general nature of this
dissertation, we simply pick a reasonable hmin.

The overall algorithm is detailed below, and a flow chart is depicted in Figure 6.2.
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1. Solve for new values of unknowns at the n+ 1 timestep. This is performed
according to the appropriate algorithm detailed in either Figure 4.2 or Figure
4.3, depending on whether the fully-linear or non-linear theory is being used,
respectively.

2. If damage has changed from the n to the n+ 1 timestep, continue; if not, go
to last step.

3. Compute the refinement indicators for each cell according to (6.1). Set to
zero all refinement indicators for cells with h ≤ hmin.

4. If at least one refinement indicator is greater than zero, continue; if not, go
to the last step.

5. Refine all cells with non-zero refinement indicators. Resize/rebuild matrices
and vectors. Discard new solution at the n + 1 timestep and interpolate
previous solution from timestep n to new mesh.

6. Go to Step 1.

7. Write data files and proceed to next time step.

Setup MPI
Create Grid

Setup & Reorder DoFs
Project Initial Conditions

Begin Time-step Loop

Compute Refinement Indicators
Compute New Solution

Advance Time-step

Write Data Files

Refine Grid
Resize Matrix/Vectors

Interpolate Previous Sol
Any non-zero Errors?

Re-Compute New Solution

Did Damage Change?

Yes

Yes
No No

Figure 6.2. Flowchart of the algorithm for AMR based on the refinement indicators
computed from the damage. Note that the mesh is refined multiple times per timestep,
and every timestep at which damage is evolving, leading to a higher calculation load.
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This algorithm contains a loop in which the mesh is refined until all of the cells with
non-zero refinement indicators are refined to their smallest size permissible by hmin.
Damage evolution therefore occurs only at the finest mesh level. Such a scheme
ensures that damage is localized to the smallest cell size permitted, and hence the
fraction of the domain which is fully damaged is kept to a minimum; however, we
note that this is a very demanding refinement scheme, as the mesh will be changed
at every timestep during which damage is evolving and with multiple refinement
cycles per timestep. Other schemes may require less effort, such as refining only
once per timestep, or even only every number of time steps. Such an approach is
unsuitable for our needs, as the scale at which the damage evolves has important
physical consequences, as discussed in Section 6.2. Additional examples are given
in subsequent sections of this chapter.

6.1.2 Energy Release Rate Derived Scheme

As an alternative to the simple damage based refinement indicators given in the
previous section, we now describe an algorithm for AMR based on the energy release
rate with respect to the damage variable. This quantity is a precursor to damage,
and it is supposed that by preemptively refining the mesh, one may be able to
better address the localization and mesh dependence of the damage solution. The
refinement indicators are calculated from the energy release rate according to

rK =
∫
K

〈G− εGGCR〉 dK K ∈ Th. (6.2)

Here εG is again a parameter for adjusting the values of rK . If εG = 1, then the
error indicators are the same as those defined in Section 6.1.1. However, if εG < 1,
we now will have non-zero error indicators, and hence mesh refinement, in parts of
the domain that do not have evolving damage. Correspondingly, if εG > 1, we can
force the algorithm to prevent refinement during damage evolution in parts of the
domain where G− εGGCR ≤ 0. Thus, via εG, we can study whether pre-emptively
refining the mesh has an impact on the damage evolution.

The overall algorithm is detailed below, and a flow chart is depicted in Figure 6.3.
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1. Solve for new values of unknowns at the n + 1 timestep. This is again
performed according to the appropriate algorithm detailed in either Figure
4.2 or Figure 4.3, depending on whether the fully-linear or non-linear theory
is being used, respectively.

2. Compute refinement indicators for each cell according to (6.2). Set to zero
all refinement indicators for cells with h ≤ hmin.

3. If at least one refinement indicator is greater than zero, then continue; if not,
go to the last step.

4. Refine all cells with non-zero refinement indiactors. Resize/rebuild matrices
and vectors. Discard new solution at the n + 1 timestep and interpolate
previous solution from timestep n to new mesh.

5. Go to Step 1.

6. Write data files and proceed to next time step.

Setup MPI
Create Grid

Setup & Reorder DoFs
Project Initial Conditions

Begin Time-step Loop

Compute Refinement Indicators

Compute New Solution

Advance Time-step

Write Data Files

Refine Grid
Resize Matrix/Vectors

Interpolate Previous Sol

Any non-zero indicators?
Yes

No

Figure 6.3. Flowchart of the algorithm for AMR based on the refinement indicators
computed from the energy release rate (G).



109

6.2 2D Compact Test Specimen

In this section, an idealized two-dimensional model of a compact test specimen is
employed to demonstrate the behavior of the proposed AMR schemes as applied
to the model for thermoelasticity with damage. This geometry is well known in
the field of fracture mechanics, and thus will allow us to qualitatively analyze the
results. All simulations in this section use the theory which is fully-linear when
the microstate is fixed, simply to remove further complexity from the simulations
and provide clarity in the results. The geometry and boundary condition setup of
the compact test specimen (CTS) are given in Figure 6.4. Let ∂B denote the entire
boundary of domain, where the boundary conditions are

sp(X, t) =

1
2s0 [1− cos (2πt/t0)] t < t0/2

s0 otherwise
X ∈ ΓN (6.3)

sp(X, t) = 0 X ∈ ∂B\ΓN , (6.4)

qp(X, t) = 0 X ∈ ∂B. (6.5)

Here s0 = [0, sy], where sy = 5×107 Pa, and τ0 = 20µs. These boundary conditions
correspond to the body being perfectly insulated boundary and subjected to an

L

L

b
2a

2a

ΓN

Figure 6.4. The geometry of an idealized 2D compact test specimen and identification
of faces on which traction boundary values are applied (denoted by ΓN ). L is taken to
be 5 cm, b is 2.5 cm, and a is 0.25 cm. No initial crack is presumed.



110

Figure 6.5. Initial meshes for the subsequent simulations. Both meshes were created in
Cubit,‡ with the ‘submap’ (left) and ‘pave’ (right) meshing algorithms. These meshes
are significantly different, and will serve as a method for comparison of the two AMR
schemes, and measure of each scheme in its ability to address the local nature of the
solution.

applied force in the vertical direction. Again, the loading happens very quickly,
and is held constant after it reaches its maximum value. The meshes we will use to
discretize these domains are given in Figure 6.5, and were chosen because one (left)
has symmetry about the horizontal axis of symmetry of the domain, while the other
does not. These two meshes will provide a measure for comparing the qualitative
morphology of the damage field. In this instance, comparing global error norms is
not appropriate, as we have not removed the underlying localization of the damage
field or its mesh dependent nature. Note that we will refer to these meshes by the
algorithms used to create them, as indicated in the caption of Figure 6.5.

As an initial demonstration of the localization problem in higher dimension
simulations, we run three simulations with manually refined versions of the submap
mesh, the results of which are shown in Figure 6.6. In these simulations, it is
clear that the damage localizes to individual cells along the axis of symmetry in
the problem. As an artifact of the visualization process, each cell is subdivided,
and hence appears as four cells in Figure 6.6; however, it is clear that the damage
solution is localizing to individual cells along the horizontal line of symmetry in

‡See http://cubit.sandia.gov for credit and technical reference.
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Figure 6.6. The damage field on three grids; one without refinement, and two with
manually refinement in the areas of interest. As an artifact of the visualization process,
each cell is subdivided once in each direction, and hence appears as four cells in the
above images; however, it is clear that the damage solution is localizing to individual cells
along the horizontal line of symmetry in the domain. The material properties for these
simulations are the same as those for brittle fracture in Section 5.4, i.e., β = 1, α = γ = 2,
τ = 0.025, a = 10, b = −10, η0

C = 1× 101 m3/J·s, except that now G0
CR = 3× 106 J/m3.
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the domain. The material properties for these simulations are the same as those
for brittle fracture in Section 5.4, i.e., β=1, α=γ=2, τ =0.025, a=10, b=−10,
η0
C = 1 × 101 m3/J·s, with the exception that now G0

CR = 3 × 106 J/m3. Again
we have employed P0 elements for the damage solution space, but compared to
the results in Chapter 5, we see that the localization is more severe in higher
dimensional problems.

As a first attempt at producing repeatable results under which physical studies
can be performed, we implement a minimum mesh size. If we choose hmin such
that the mesh will generally be refined twice in the area where damage is evolving,
employ the damage-based refinement algorithm in Section 6.1.1, and change the
critical energy release rate to G0

CR = 6× 106 J/m3, then we arrive at the damage
fields displayed in Figure 6.7. Such calculations are not necessarily encouraging,
as it is clear that the solution can display an extreme dependence on the mesh,
and even produce damage fields that seem somewhat physically unreasonable.
Here we have also changed G0

CR, simply by a factor of two, for the purpose of

Figure 6.7. The damage field on the meshes generated via the submap (left) and pave
(right) algorithm, for the same material properties and loading, using the damage-based
refinement scheme with εD = 0. The mesh dependence of the solution is clear, as well as
the fact that the solution generally looks unrealistic. As an artifact of the visualization
process, each cell is subdivided, and hence appears as four cells in the above images. The
material properties for these simulations are β=1, α=γ =2, τ=0.025, a=10, b=−10,
η0
C =1× 101 m3/J·s and G0

CR=6× 106 J/m3.
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comparing the damage on the submap-generated mesh (left) in Figure 6.7 and the
corresponding image with the highest level of refinement (bottom) in Figure 6.6.
We can immediately see the difference in the damage field from a relatively small
change in a single material parameter, and subsequently begin to understand that
the algorithm is not as robust as desired. At this time, with the current selection
of solution spaces and algorithms, the sensitivity to η0

C , G0
CR, and hmin is quite

high, and as such, we need to proceed with caution when making statements or
conclusions about future simulations.

We now compare the performance of the damage-based and energy release rate
based refinement algorithms presented in Sections 6.1.1 and 6.1.2, respectively. In
Figure 6.8, we see the difference in the damage fields generated using the damage
based refinement algorithm (Figure 6.8(a)), and the energy release rate based
algorithm (Figures 6.8(b)-6.8(d)). As expected, when comparing Figures 6.8(b)
and 6.8(d), we see a difference in the number of refined cells, as well as an obvious
difference in the damage profile. Although the damage profiles in Figure 6.8 are
generally the same, when εG = 0.1 there are many refined cells with no damage
growth, while when εG = 1.5, we see a smaller number of refined cells and even
cells that had evolving damage when their diameter was greater than hmin. Of the
presented images in Figure 6.8, it does appear that having a value of εG > 1 yields
results that are more qualitatively like those expected from an isotropic compact
test specimen under symmetric loading, and thus the remainder of the simulations
will use εG = 0.5.

The solutions in Figure 6.8 demonstrate that a considerable sensitivity exists
towards the chosen refinement scheme. This serves to only further aggravate our
situation: we are already faced with six parameters about which little or nothing
is known, namely, α, β, γ, τ , ηC(θ), and GCR(θ). We now have the additional
concerns about meshing, such as the nature of hmin, which refinement indicators to
use, how often to refine and so forth. Therefore, at this time it is not appropriate
to begin making statements about the specific predictions of the model, and we
are forced to accept that we can only make demonstrative claims at this time.
Thus, we look for a situation where the proposed adaptive meshing schemes can
be demonstrated to be effective, and if such a result is found, we can have some
confidence that this approach warrants further study, even if not for a general class
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(a) Damage refinement, εD = 0. (b) Energy release rate refinement, εG = 0.1.

(c) Energy release rate refinement, εG = 1.0. (d) Energy release rate refinement, εG = 1.5.

Figure 6.8. Zoom-in images of the damage field on the submap mesh for different cases
of the refinement indicators, as indicated below each image. Clearly, the solution behaves
differently for different schemes, but does appear to be the same in general. Comparing
6.8(b) with 6.8(d), we can clearly see a difference in the number of cells refined. The
material properties for these simulations are β=1, α=γ =2, τ=0.025, a=10, b=−10,
η0
C =1 m3/J·s and G0

CR=9× 106 J/m3.

of problems.
Damage fields are given in Figure 6.9 that, in general, show a solution which

appears to be less dependent on the mesh than previous results. Here, the minimum
mesh size has been reduced from previous simulations in this chapter, resulting
in more refinement. Additionally, the material properties ηC(θ) and GCR(θ) have
been altered as well, such that they are now constant and have the values η0

C =
1 × 10−1 m3/J·s and G0

CR = 8 × 106 J/m3. Note that this represents a significant
decrease in the value of the crack propagation parameter from the results relating
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Figure 6.9. The damage field on the meshes generated via the submap (left) and pave
(right) algorithm, for the same material properties and loading, using the energy-based
refinement scheme with εG = 0.5. In general, the damage solutions have the same pattern,
however, it is not appropriate to call them the same. As an artifact of the visualization
process, each cell is subdivided, and hence appears as four cells in the above images.
The material properties for these simulations are β= 1, α=γ = 2, τ = 0.025, a= b= 0,
η0
C =1× 10−1 m3/J·s and G0

CR=8× 106 J/m3.

to brittle fracture presented in Section 5; however, it is unclear that a direct
substitution of the values used in the one-dimensional model should be subsequently
employed in the higher dimensional models. At any rate, the damage field solutions
shown in Figure 6.9 are typical of those that are expected from this approach;
however, as has been discussed, the algorithm (including refinement techniques and
solution space choices) appears to be not as robust as hoped for in generating such
solutions.

Zoom-in images of the damage and temperature field for the simulations given
in Figure 6.9 are shown in Figure 6.10. Again, we can see that the damage
and temperature solutions are in general agreement on the different meshes, but
we certainly cannot make the claim that they are quantitatively the same. In
Figures 6.10(c)-6.10(d), we again see localized heating in the damage process zone,
but due to the piecewise constant nature of the damage evolution, we now see
that the largest amount of heating occurs in the interior of the cell. Due to the
difference in timescales between the dynamic fracture and thermal phenomena, we
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(a) Damage field, submap mesh. (b) Damage field, pave mesh..

(c) Temperature, submap mesh.

(d) Temperature, pave mesh.

Figure 6.10. Zoom-in images of the damage and temperature fields on the submap and
pave mesh. Again, in general the solutions are qualitatively similar; however, they are
certainly not the same. Damage induced heating is clear visible in the temperature plots.
The material properties for these simulations are β= 1, α=γ = 2, τ = 0.025, a= b= 0,
η0
C =1× 10−1 m3/J·s and G0

CR=8× 106 J/m3.
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do not see any diffusion of the temperature into the surrounding material.
Although it seems that reducing hmin has seemed to provide us with more

successful results, it is not always necessarily the case. We demonstrate this in
Figure 6.11, where the morphology of the damage field is clearly not the same for
the submap and pave meshed. The only difference between the images in Figure 6.9
and Figure 6.11, is that in the latter the value of the critical energy release rate
has been increased approximately 25 % to G0

CR=1× 107 J/m3.
In summary, we have been successful in creating an original adaptive meshing

scheme that certainly focuses on, and accordingly refines the mesh, in the areas
where damage is evolving. Therefore, it seems that we are able to address the
issue of localization of damage to single cells rather well; however it is clear that
the ability of this scheme to robustly address the mesh-dependent nature of these
damage models is not fully developed. Possible explanations for this are either yet
unquantified relations between the values of GCR, ηC , and hmin, or the fact that a
higher order solution space for the damage variable may be appropriate in higher
dimensional simulations. At any rate, the work presented in this chapter does
encourage us that these issues are worth investigating, and represents an original
step forward in the state of the art for dynamic damage model simulations.

Figure 6.11. The damage field on the meshes generated via the submap (left) and pave
(right) algorithm, with everything the same as in the calculations shown in Figure 6.9,
except that the value of the critical energy release rate has been increased approximately
25 % to G0

CR=1× 107 J/m3.



Chapter 7
Conclusions and Future Work

In this chapter, a summary of the tasks completed and conclusions drawn is
given, followed by an outline of possible directions for extension. Throughout the
discussion, achievements and opportunities are highlighted from physical, numerical,
and philosophical points of view.

7.1 Summary of Work

In this thesis, a fully coupled theory of thermoelasticity with damage is derived in
the framework of continuum damage mechanics. Throughout the derivation of both
the theory that is linear when the microstructure is fixed, and the theory in which
the thermoelastic response is intrinsically non-linear when the microstructure is
fixed, an emphasis has been made on preserving the important coupling between
the constitutive equations and the damage variable. A primary contribution is
the idea that, even in linear thermoelasticity with damage, all of the material
properties can, and arguably should, be dependent on the damage. Adding to this
is the explicit inclusion of a damage evolution induced source term in the balance
of energy. To the best of the author’s knowledge, this is the first presentation of
such a model, in the context of continuum damage mechanics applied to brittle
materials.

Two-way coupling between the thermoelastic quantities and microstructure is
demonstrated in Chapter 5, and is considered a key result. Here it is shown that
heating due to the evolution of the microstructure and the associated dissipation of
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energy is present, and has an impact on the evolution of the microstructure as well.
It was found, in the context of the proposed physical model, that the dependence of
the specific heat on the damage plays a critical role in the thermal-damage coupling.
In fact, the role of the specific heat-damage relationship is much more pronounced
than that of either the thermal conductivity or thermomechanical coupling with
damage. Employing the model proposed in this dissertation allows one to see the
impact that dynamic thermal events have on damage evolution; this is an original
and important contribution.

The numerical methods proposed herein, where the damage variable is treated as
an additional field within the framework of discontinuous finite element methods, is
an original contribution to the field of numerical continuum damage modeling. An
original application of standard numerical techniques is proposed in this dissertation.
The proper solution space for the damage variable was studied, and we eventually
settled on piecewise-constant discontinuous finite elements. What could be a
stability condition, in terms of combinations of solution spaces in the theory of
mixed finite element methods, was empirically identified, and is considered a key
result from which future discussions can be launched. Additionally, the use of
higher order solution spaces was investigated, and although their performance over
all was satisfactory, the resulting non-physical decrease in damage that may occur
is highly undesirable. An operator-splitting scheme was introduced to integrate
the equations of motion in time. This approach is efficient, and less error-prone
then the traditional constrained optimization scheme necessary to properly address
the constraints on the damage evolution. Numerical implementations for both the
linear and non-linear theories were derived, and good convergence results were
achieved for each.

Adaptive mesh refinement (h-refinement) was studied as a potential method
for addressing the issues of localization and mesh dependency inherently found in
damage models where the damage evolution equation is an ordinary differential
equation. To this end, two original refinement indicators were proposed, and
implemented into the computer code. The nature of the work addressed in this
dissertation called for the construction of a custom adaptive meshing scheme for a
dynamic problem. The complexity of such a task is well known in the community
of numerical analysis, and as such new schemes and ideas are always considered
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important contributions.
In summary, a complete investigation of the necessary theory and numerical

techniques for modeling dynamic microstructure evolution within thermoelasticity
has been discussed in this thesis. This works fills an often overlooked segment of
the literature and knowledge regarding numerical continuum damage modeling. In
essence, this thesis provides an examination of the tools available for simulating
dynamic microstructure evolution, if one is provided with a detailed damage model
of a given material. Whatever this thesis may lack in specificity, in regards to a
microstructure-damage model for a specific brittle material, it makes up for in
applicability to a general class of models through the thorough consideration of full
physical coupling and general numerical methods.

7.2 Findings and Conclusions

This dissertation again confirms that the localization and mesh-dependence of the
damage variable fields in continuum damage models is an intrinsic quality of such
models, and not an artifact of either poor simulations or insufficient numerical
techniques. Throughout this dissertation, great care has been taken to include
all possible physical couplings in the equations of motion and to employ modern,
well founded numerical techniques. The implementation of these techniques was
carefully verified, and yet still we are left with the situation that this class of
damage models still exhibits a pathological dependence on the chosen discretization
of the domain and extreme sensitivity to loading, initial conditions, and material
properties. In addition, even the use of adaptive meshing techniques that are
specifically targeted at the damage field did not produce an algorithm which was
able to robustly yield repeatable results (i.e., the damage morphology) on different
meshes.

From this we can conclude that individual, deterministic simulations are not
sufficient for the study of a specific application of this model, and the broader
class of local damage models, as the solutions to these problems have shown to
be radically non-unique. Rather, statistical studies of aggregate data from many
simulations will need to be used to have confidence in a given prediction. This point
cannot be over emphasized—even with all of the care taken in this dissertation we
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must still resort to statistical studies to have confidence in our predictions. Even
then, we must always be mindful of the limits we place on the parameter spaces
and the implications that result.

The specific heat’s dependence on the damage variable was revealed to be the
critical relationship in regards to brittle damage induced heating. From this, we
have the most interesting physical prediction of the dissertation: brittle materials
in which adiabatic crack propagation is observed will have a specific heat which
is not affected by the state of the microstructure. Likewise, materials that posses
a specific heat that is dependent on the microstructure will see crack-tip heating
purely due to brittle fracture. This is a bold physical statement, and must be
viewed in the proper context of brittle failure induced heating (not to be confused
with heating due to permanent deformation or phase changes).

A final conclusion of this work is that internal state variables can be treated as
actual fields in the formulation, rather than simply as a list of parameters of the
material at each quadrature point of the simulation. This is what allowed us to
easily implement adaptive mesh refinement, and easily study to the selection of a
solution space for the damage field. In this manner, we have demonstrated that,
while more questions need to be answered, it is beneficial to regard the damage as
a field in some situations.

7.3 Possible Directions for Extension

There are two primary ways in which the work in this dissertation could be extended,
corresponding roughly to the point of view of either an engineer or a scientist.
From an engineering point of view, there exist a number of refinements of this work
that could be done with regards to a specific application. The mathematician may
see a number of new questions which may be answered by further analysis; and
from the scientist’s point of view, there are a number of predictions that have been
made in this work that could be cause for the creation of a research program and
subsequent validation. Each of these scenarios is explored below.
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7.3.1 Future Engineering Work

As stated previously in both the opening introduction and during the derivation of
the physical model, many simplifications were made for either ease of implementation
or for clarification in studying the behavior of phase-field damage models within
thermoelasticity. These assumptions can be relaxed to provide directions for future
study. For example, the phase-field damage variable was restricted to be a scalar
field and the model did not allow for the independent evolution of some of the
properties of the material, such as the individual elastic moduli. Clearly this is
only adequate for a limited class of materials. The removal of this limitation of the
model should be a priority, as it will be critical in the study of composite materials
during dynamic thermal events. Additionally, other well studied phenomena could
be included in the model, such as information about the phase of the material
and/or plasticity effects. The interplay between the damage variables and these
phenomena, in the context of dynamic thermal effects, is sure to be interesting.

Reducing simulation time is incredibly important in the engineering community,
and to this extent parallelization has been employed in this work for two and three
dimensional models. The main benefits of implementing distributed computing
techniques has been speed-up in the assembly of matrices, a decrease in memory
consumption per machine by storing the matrices and some vectors across all
the cluster nodes, and the use of distributed iterative linear solvers. While these
have all resulted in the ability to run larger simulations, there are still problems
that prevent the current computer codes from running on larger clusters. The
primary issue is that the deal.ii finite element library does not support distributed
triangulations,∗ and hence stores a copy of the entire triangulation per processes
that is launched. The nature of modern computing environments is such that each
cluster node is typically equipped with multiple cores and/or processors. Thus, in a
purely distributed code, which is what was implemented in this thesis, one process
per available core must be launched on each cluster node, resulting in multiple
copies of the triangulation being stored on each node. Clearly, this is undesirable,
but can be remedied by implementing hybrid parallel programming techniques.
This would result in a code that is distributed, but stores only one copy of the

∗This has both advantages and disadvantages.
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triangulation per machine on which it is launched while taking advantage of the
shared memory parallelization present within each cluster node. Again, developing
a framework for these problems would be highly beneficial to the computational
community, as this is an ongoing and active area of work.

Finally, perhaps the most practically useful extension of the work contained
in this dissertation would be the determination of the precise dependence of the
thermoelastic constitutive quantities on the damage field. One can imagine at least
three basic routes towards this end. First, analysis and physical reasoning could
be used to derive analytical or approximate relationships that are more accurate
than the simple ones given in this work. Perhaps more advanced homogenization
techniques could be explored towards this end. Second, experimental work could be
performed to determine such relationships; however, it is unknown by the author if
the complex nature of these measurements is even viable. Finally, a third route
could be modeling representative volume elements at the microscale. Necessary to
this approach is the detailed knowledge about the microstructure, and the ability
to model heterogenous materials and correlate discrete failure mechanisms with the
continuum damage field. Such approaches have been proposed and implemented in
the literature, and it seems this may be a promising technique for determining the
relationship between various material properties and the damage field. Whether
the approach be one of those just mentioned or something completely different, it
is clear from the work of this dissertation that the dependence of the specific heat
on the damage field is important, and is consequently due attention for this work
to be applicable to real world scenarios.

7.3.2 Future Scientific Studies

From the point of view of the numerical mathematician, various directions for
extension are available. An analytical study of the stability condition, relating to
the choice of solution spaces, would be an interesting and original contribution.
Further exploring this idea has broader implications for other models that use
internal variables, such as those derived via plasticity theories. Determining a
method of quantifying convergence, for the case of evolving damage would also be
very beneficial; however, at this time it is unclear to the author how to proceed
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with such a task. As stated previously, the development of a flexible and efficient
non-linear solution scheme for this class of problems would be an enormous benefit
to the numerical damage modeling community.

As discussed above, it is clear that single, deterministic simulations will not
suffice for making predictions on which design decisions can be based. Therefore,
it would be interesting to see what the effects of running many simulations, for
the same domain and loading, which randomly varied meshes would produce. One
could randomly choose the number of elements, average size of the elements, or even
orientation of the elements. The resulting damage morphology from each simulation
could be merged with the others, and an ensemble image could be generated which
would show what areas are more likely to develop damage than others. This type
of result, as opposed to an individual deterministic simulation, could be compared
to aggregate experimental data. Hence, this is a possible first step towards the
validation of such models.

Returning to the previous section, it would be very interesting to investigate if
the predicted relationship between the specific heat/damage and crack-tip heating
is true. This would involve a substantial experimental effort, in terms of seeking
materials which are brittle and show varying types of crack propagation (i.e., intense
heating at the crack tip, some heating, or no heating). Each of these materials
would of course have to be fractured, and the real-time dynamic displacement and
temperature fields measured. Clearly, this is quite a task. Finally, a concerted effort
to quantify the specific heat’s dependence on the damage field, for each material,
would need to be performed. It is anticipated that this would require theoretical,
modeling, and experimental work. Validating this prediction would require more
than a single researcher, and in fact would most likely need a devoted program of
science.



Appendix A
Thermoelastic Material Properties

The motivation to study the failure of brittle materials at high temperatures
in this dissertation is provided partially by the author’s involvement in a large
Multidisciplinary University Research Initiative (MURI) grant funded by the United
States Office of Naval Research (ONR). The topic of this MURI project is Rocket
Nozzle Erosion Mitigation (MURI-RNEM), which, as explained in Chapter 1 is
critical to the future design of many rocket systems. Sample nozzles have been
provided to various groups within the MURI-RNEM project, and these nozzles
have been constructed of bulk high density graphite. Thus, I have chosen to use
values representative of bulk graphite throughout this thesis.

While graphite is known to exhibit some anisotropic behavior, all of the material
data provided to us by the participants in the MURI-RNEM project, as well as
other generally available data, has led us to retain an isotropic view of the bulk
graphite. The author is aware of the possible shortcomings of this approach, but
for the purposes of this dissertation, assuming isotropy is sufficient. Throughout
the implementation of the models proposed in this dissertation, care has been taken
to allow for anisotropic and heterogenous materials, for the sake of generality that
may be required in the future.

Perhaps the most important effect ignored by assuming isotropy, in the context
of the graphite rocket nozzles provided to the experimental groups in the MURI-
RNEM project, is the aligning of graphite atoms into sheets during the manufacture
of the rocket nozzles. This manifests itself in anisotropic material properties,
most notably the thermal conductivity, which is higher in plane than out of plane.
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Additionally, at approximately 2900 K the graphite undergoes a phase change,
resulting in residual stresses and inelastic permanent deformation.

The sources for the material property data include manufacturer supplied
information, information available in the open literature, and the work of other
groups within the MURI-RNEM project. The high density graphite considered here
is the G90-grade material manufactured by Pyrotek∗. A table of material properties
is available for download on their website, and includes information about the bulk
modulus, coefficients of thermal expansion, thermal conductivity, and density at
room temperature and at 2315 ◦C. It does not, however, include information about
the specific heat capacity or Poisson’s ratio. Thus, for these quantities available
data from the open literature were used. Work of other groups in the MURI project
has focused on the temperature dependence of the of material properties, and for
applied calculations relating to the actual response of the graphite rocket nozzles
these data should be used.

Absent from any of these sources is information about the relationship between
the material properties and the microstructure of the G90-grade graphite. For
this reason, we have had to assume the constitutive response functions in Chapter
3, and explore their effects in the numerical experiments presented in Chapter 5.
Finally, as input to the computer codes, we desire all of the values in standard SI
units, in the mks system.

Mass Density

The mass density ρκ of G-grade high density graphite is given by the manufacturer
as 1.87 g/cc at room temperature and 1.86 g/cc at 2315 ◦C. This is a difference
of only about 0.537%, and for our purposes we will assume that the density is
constant with respect to temperature. Thus, we have

ρκ = 1.87 g/cc = 1870 kg/m3. (A.1)
∗Pyrotek Inc., 9503 E. Montgomery Ave., Spokane Valley, WA 99206. See http://www.

pyrotek.info/metaullics/ for more information.
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Elastic Moduli

The elastic moduli for G-grade high density graphite are determined in part from
information provided by the manufacturer and in part from generally available
information. The manufacturer provides the modulus of elasticity as “14 K 10−5 psi”
at room temperature and “27 K 10−5 psi” at 2315 ◦C. We interpret this as the bulk
modulus kbulk in pounds-per-square-inch multiplied by 10−5. Thus, we have the
bulk modulus as

kbulk = 14 K 10−5 psi = 9.65× 109 Pa at 300 K, (A.2)

kbulk = 27 K 10−5 psi = 1.86× 1010 Pa at 2588.15 K. (A.3)

While this information is useful, it does not provide all of the necessary information
about the elastic response of the material. For example, in order to calculate
the Lamé parameters we require one of either the elastic modulus or Poisson’s
ratio. If we assume a representative value for poisson’s ratio of ν = 0.3, then the
Lamé parameters can be calculated via the relations given in Sadd (2005), at room
temperature

λ = 3kbulkν

1 + ν
= 6.68× 109 Pa, (A.4)

µ = 3kbulk(1− 2ν)
2(1 + ν) = 4.45× 109 Pa, (A.5)

and at 2588.15 K

λ = 3kbulkν

1 + ν
= 1.29× 1010 Pa, (A.6)

µ = 3kbulk(1− 2ν)
2(1 + ν) = 8.59× 109 Pa. (A.7)

For one-dimension calculations, Young’s modulus is used, and is calculated as

E = 3kbulk(1− 2ν) = 1.16× 1010 Pa at 300 K, (A.8)

E = 3kbulk(1− 2ν) = 2.23× 1010 Pa at 2588.15 K. (A.9)
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For one-dimensional codes, the elastic modulus is entered directly into the code’s
parameter file. However, for higher dimension codes we enter the elastic moduli
in Voight notation (see, e.g., Malvern, 1969). For example, in two-dimensions this
becomes (for an isotropic material)

C =


λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 . (A.10)

Thermal Conductivity

The thermal conductivity of the high density G-grade graphite is given by the
manufacturer, at both room and elevated temperatures. We convert these values
directly into the desired units.

kth = 101 BTU/(hr·ft·◦F) = 1.74× 102 W/(m·K) at 300 K, (A.11)

kth = 89 BTU/(hr·ft·◦F) = 1.53× 102 W/(m·K) at 2588.15 K. (A.12)

For an isotropic material in our formulation, the thermal conductivity tensor takes
the form K = kthI, and hence the above values can be directly entered into the
code’s parameter file.

Specific Heat

The specific heat of high density graphite is not given by the manufacturer of the
G-grade material, but approximate ranges are available as general information
on various material property databases. Based on the ranges and values found
via a quick check of these databases, we select the representative value of cv =
700 J/(kg·K) at room temperature. Based on the discussions with other MURI-
RNEM groups, it appears the specific heat of high density graphite increases
with temperature, and we select the representative value of cv = 800 J/(kg·K) at
2588.15 K. We can then calculate the specific heat capacity per unit volume as

c = ρκcv = 1.31× 106 J/(K·m3) at 300 K, (A.13)

c = ρκcv = 1.49× 106 J/(K·m3) at 2588.15 K. (A.14)
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These values are entered directly into the code’s parameter file.

Thermomechanical Coupling

The coefficient of thermal expansion αCTE for high density G-grade graphite is
given by the manufacturer. The values are 6× 10−7 1/◦F at room temperature and
18× 10−7 1/◦F at 2588.15 K. Converting these values to SI units, we obtain

αCTE = 6× 10−7 1/◦F = 1.08× 10−6 1/K at 300 K, (A.15)

αCTE = 1.8× 10−6 1/◦F = 3.24× 10−6 1/K at 2588.15 K. (A.16)

For the formulation presented in Chapter 3, we need the thermomechanical coupling
tensor, rather than the coefficients of thermal expansion. Additionally, in the
formulation in this thesis, for an isotropic material that expands when heated
(heats when compressed), the thermomechanical coupling tensor takes the form

M = −βTMI, (A.17)

where βTM > 0 is related to the coefficients of thermal expansion by (see, for
example, Bowen, 1989)

βTM = αCTE (3λ+ 2µ) . (A.18)

Thus, we can calculate the thermomechanical coupling at both room and elevated
temperatures to be

βTM = 3.13× 104 N/(m2 ·K) at 300 K, (A.19)

βTM = 1.81× 105 N/(m2 ·K) at 2588.15 K. (A.20)

These values are entered directly into the code’s parameter file.



Appendix B
Non-Linear Numerical Details

In this appendix the details of the residual defined in (4.71), and the jacobian
defined in (4.73) are presented. Recalling the matrix equation in (4.65),

M 0 0
0 Mρ 0
0 0 M c



U̇ j

V̇ j

Θ̇j

 =


Fu
i

F v
i

F θ
i

 , (B.1)

where we define each block component as

Mij = (ϕi, ϕj), Mρ
ij = (ρκϕi, ϕj), Mφ

ij = (ςj, ς i), (B.2)

M c
ij = ([(1− φh)τ (c0 + c1θh)− 2θh(1− φh)γM1 · ∇uh]$j, $i), (B.3)

Fu
i = (vh, ϕi), (B.4)

F v
i = −

(
(I +∇uh)(1− φh)γ(M0 + M1θh)(θh − θR),∇ϕi

)
−
(
(1− φh)β(C0 + C1θh)[∇uh],∇ϕi

)
+ (bκ, ϕi) + (sp, ϕi)A, (B.5)

F θ
i = −

(
(1− φh)α(K0 + K1θh)[∇θ],∇$i

)
+ (θh(1− φh)γ(M0 + M1(2θh − θR)) · ∇v, $i)

−
(
γ(1− φh)γ−1(θRM0 + M1θ

2
h) · φ̇h∇uh, $i

)
+
(
τ(1− φh)τ−1(c0(θh − θR) + c1(θ2

h − θ2
R)/2)φ̇h, $i

)
+ (rκ, $i) + (qp, $i), (B.6)

F φ
i =

(
ηC

〈
−τ(1− φh)τ−1

[
c0

(
θh log θh

θR
− (θh − θR)

)
+ c1 (θh − θR)2 /2

]
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+ γ(1− φh)γ−1(θh − θR)(M0 + M1θh) · ∇uh

+β2 (1− φh)β−1(C0 + C1θh)[∇uh] · [∇uh]−GCR

〉
, ς i
)
. (B.7)

The resulting application of the Crank-Nicholson time integration scheme yields
the residual in (4.71),

R(ξn+1
k , ξn) = M(ξn+1

k )
[
ξn+1
k − ξn

]
− ∆t

2
[
F(ξn+1

k ) + F̃(ξn+1
k , ξn)

]
. (B.8)

As a first attempt at calculating the jacobian, we assume that the quantity
M c(ξn+1

k ) (M c(ξnk ))−1 ≈ I. This is not unreasonable, given that material parameters
M1 and c1 for brittle graphite are expected to be very small and the timestep-
ping can be adjusted to have small increases in damage, even for rapidly growing
damage scenarios. This is precisely what would occur if one were to implement
a semi-implicit scheme for finding M c(ξn+1

k ), and thus, the scheme about to be
described is still a stronger statement than if we were to simply ignore the time
dependence of the mass matrix entirely. Hence, the residual is reduced to

R(ξn+1
k , ξn) = M(ξn+1

k )
[
ξn+1
k − ξn

]
− ∆t

2
[
F(ξn+1

k ) + F(ξn)
]
. (B.9)

Since we have still retained the time-dependent nature of the mass matrix, the
jacobian of the system is

J(ξn+1
k ) = ∂R(ξn+1

k , ξn)
∂ξn+1

k

(B.10)

= ∂M(ξn+1
k )

∂ξn+1
k

[
ξn+1
k − ξn

]
+ M(ξn+1

k )− ∆t
2
∂F(ξn+1

k )
∂ξn+1

k

, (B.11)

where the jacobian has a block structure

J(ξn+1
k ) =


J00 J01 0
J10 J11 J12

J20 J21 J22

 , (B.12)
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and the entries are computed by:

J00 = (ϕj, ϕi) (B.13)

J01 = −∆t
2 (ϕj, ϕi) (B.14)

J10 = ∆t
2
(
(1− φn+1

h )γ(M0 + M1θ
n+1
h )(θn+1

h − θR)∇ϕj,∇ϕi
)

+ ∆t
2
(
(1− φn+1

h )β(C0 + C1θ
n+1
h )∇ϕj,∇ϕi

)
(B.15)

J11 = (ρκϕj, ϕi) (B.16)

J12 = ∆t
2
(
(I +∇un+1

h )(1− φn+1
h )γM1(θn+1

h − θR)$j,∇ϕi
)

+ ∆t
2
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)
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2
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h )βC1∇un+1
h $j,∇ϕi

)
(B.17)

J20 = ∆t
2
(
γ(1− φn+1

h )γ−1(θRM0 + M1(θn+1
h )2)φ̇n+1

h ∇ϕj, $i
)

(B.18)

J21 = −∆t
2
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)
(B.19)
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Appendix C
Non-Technical Abstract

The design of safe products and structures is a fundamental charge of the engineering
discipline. As society continues to demand safer, more efficient and increasingly
innovative products, the accurate prediction of product life becomes ever more
relevant. This thesis seeks to advance the knowledge available to designers by
introducing and analyzing a new model for predicting how brittle materials fail due
to a combination of high temperatures, and dynamical mechanical loads.

Brittle materials are those substances that, when they fail, do so by fracturing.
Examples of materials that can be considered brittle are glass, at room temperature,
and graphite, as found in refillable pencil leads. It has been observed that when
such types of materials break, a number of cracks propagate through the material
very quickly. At the heart of this crack motion is the physics occurring at the tip
of the crack. In particular, very localized heating has been observed, the effect of
which can not always be over looked, especially when the fracture occurs in a very
high temperature environment. One example of such a situation is that of rocket
nozzles constructed of graphite. A primary constraint in the design of such rocket
nozzles is that they can only withstand the force of the exiting rocket exhaust for a
finite period of time before breaking, and hence sending the rocket off course.

Building and testing rockets is an expensive task, and is detrimental to the
environment due to the toxicity of many of the fuel components. As such, it is very
beneficial to the design engineers to know what configurations of the rocket nozzle
will meet the design criteria before actually constructing the nozzle; however, there
currently are only a few methods for making such predictions. In this dissertation,
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physical principles are used to derive a new model, that is, a mathematical problem
that describes the response of the nozzle to the high-pressure and high-temperature
exhaust exiting the nozzle. Physically, we must consider many different processes
at work — the conduction of heat, the deformation of the nozzle, and change in the
nozzle at smaller scales. The last component is the most challenging, and includes
many different physical phenomena all the way down to the atomic scale. We are
most concerned with the breaking of the nozzle and therefore focus our attention
on the development and propagation of cracks.

Simulating every atom in a nozzle is not feasible given today’s current computing
resources. Therefore, we turn to physical paradigms and mathematical techniques
that allow us to transform the problem into one that can be more efficiently solved.
One such branch of study is called continuum damage mechanics, and allows us to
treat the nozzle, including information about how it is failing at small scales, as a
continuous object. The result is a mathematical problem which can be solved by
employing one of the many well known methods available for the solution of partial
differential equations, while using high performance computing techniques to solve
this problem efficiently. An original algorithm is developed in this dissertation for
the express purpose of correctly and efficiently representing damage growth.

The results of this dissertation indicate that the coupling of the physical processes
involved is crucial to properly predicting the response of brittle materials to external
loads. In particular, the relationship between formation and the subsequent growth
of cracks is highly influenced by temperature, and vice-versa, through specific
properties of the materials. This discovery can help direct experiments to further
determine the nature of brittle materials, as well as provide the design engineers
with more insight, and hopefully better designed products. A secondary result of
this dissertation is the application of various mathematical techniques to problems
not usually associated with them, resulting in an expanded set of options for
analysts when confronted with such tasks.
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