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ABSTRACT 

In this study, we evaluated the ability of a simple ecosystem carbon dioxide (CO2) flux 

model, the Vegetation Photosynthesis and Respiration Model (VPRM), to capture the complex 

CO2 background conditions observed in Indianapolis, IN. Using simulated biogenic CO2 fluxes in 

conjunction with mole fraction tower influence functions, we estimated biogenic CO2 mole 

fractions at three background towers in the Indianapolis Flux Experiment (INFLUX) network for 

three years (April 2017 to March 2020). From the simulated biogenic CO2 mole fractions, we 

estimated CO2 differences between two of the background towers compared to a third tower, 

which we call CO2 enhancements. We compared modeled and observed afternoon average CO2 

enhancements at daily and monthly time scales for both towers. We evaluated the random errors 

introduced by the model for daily, monthly, seasonal, and yearly averaging periods. Additionally, 

we compared modeled and observed average daily cycles of CO2 fluxes during the growing 

season at agricultural eddy covariance flux sites surrounding Indianapolis. Monthly mean model-

observation residuals rarely differed significantly from zero (only 7 of 72 site-months), indicating 

that the model can capture afternoon average CO2 enhancements at a monthly time scale with no 

significant bias. We found that the random error was smaller than 1 ppm for monthly, seasonal, 

and yearly averaging periods. When compared to the average observed daily cycles of CO2 fluxes 

during the growing season at corn and soybean sites, the modeled CO2 fluxes captured the site-to-

site differences well. For 9 out of 14 site-months, the modeled maximum afternoon CO2 

drawdown was within 25% of the observed peaks despite the observed maximum drawdowns 

ranging from -8 µmol m-2s-1 to -66 µmol m-2s-1. The model had a harder time capturing the peak 

nighttime respiration, with the modeled peaks differing from the observed peaks by between 22% 

to 81%. Although not central to our intended application, the model-observation residuals for 

CO2 enhancements at a daily time scale were on the same order of magnitude as the observed 
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enhancements themselves; therefore, the model could not capture the observed day-to-day 

variations of afternoon average CO2 enhancements. The results of this study indicate that the 

simple and computationally inexpensive VPRM can be effectively used in urban CO2 inversions 

to represent complex seasonal variations in background conditions observed in Indianapolis. 

Indianapolis, a modest-size city surrounded by strong ecosystem fluxes, represents a rigorous test 

for the VPRM system; these results are thus encouraging for the use of VPRM in other urban 

settings.   
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Chapter 1 

 

Introduction  

From 2015 to 2020, the contribution of urban areas to total global greenhouse gas (GHG) 

emissions have risen from an estimated 62% to roughly 70%, with this contribution predicted to 

increase further through 2050 (Lwasa et al., 2022). Urban areas around the globe are working 

towards mitigation of climate change and adaptation to its impacts. In recent years, cities have 

made commitments to addressing climate change and to reducing GHG emissions; efforts include 

C40 Cites and the Global Covenant of Mayors for Climate and Energy (https://www.c40.org/; 

https://www.globalcovenantofmayors.org/). However, to assess the effectiveness of these efforts, 

we must quantify and understand urban GHG emissions.  

Urban GHG emissions are quantified using “top-down” or “bottom-up” methods. 

“Bottom-up”, or inventory, estimates are created with accounting-based methods where local 

activity information, such as traffic data, and models, such as building energy simulations, are 

combined to quantify the GHG fluxes in the chosen domain (Gurney et al., 2012). Bottom-up 

emissions estimates can be created at fine spatial (building/road level) and temporal scales with 

source sectors separated (Gurney et al., 2012). However, bottom-up estimates are often difficult 

to develop due to limited access to consumption data (Gurney et al., 2012). Additionally, it is 

difficult to quantify the uncertainties associated with bottom-up emissions estimates (Turnbull et 

al., 2019). “Top-down” estimates are created using atmospheric observations of GHGs (Verhulst 

et al., 2017; Miles et al., 2017; Mitchell et al., 2022). There are a variety of platforms used to 

observe atmospheric GHGs including, but not limited to, satellite, aircraft, building-, and tower-

based measurements. In situ urban GHG monitoring networks have been established in a number 

of cities, including Indianapolis (Davis et al., 2017), Boston (Sargent et al., 2018), Los Angeles 
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(Verhulst et al., 2017), Salt Lake City (McKain et al., 2012), San Francisco (Shusterman et al., 

2016), Toronto (Vogel et al., 2012), Portland (Rice and Bostrom, 2011), Washington, 

DC/Baltimore (Karion et al., 2020), and Paris (Staufer et al., 2016). These atmospheric 

observations of GHGs combined with inversion models provide independent methods to assess 

the accuracy of bottom-up inventory estimates of urban emissions. To estimate spatially and 

temporally resolved urban emissions, inversion models use a combination of atmospheric GHG 

observations, atmospheric transport models, and inventory products (Lauvaux et al., 2016; Wu et 

al., 2018; Turnbull et al., 2019). When solving for carbon dioxide (CO2) emissions, uncertainties 

in the spatial structure of prior emissions estimates, atmospheric transport, and biogenic CO2 

fluxes have been shown to poorly impact an inversion’s ability to estimate urban emissions (Wu 

et al., 2018).  

Accurate representation of the spatially resolved biological background is critical for 

inverse estimates of urban anthropogenic CO2 emissions, especially for cities with significant 

amounts of vegetation within or surrounding the urban area. Sargent et al., (2018), found that 

representations of urban biological CO2 fluxes were necessary for accurate calculations of urban 

CO2 emissions using inverse methods during the growing season in the Boston, Massachusetts, 

region. Lauvaux et al., (2020), found that the estimation of urban emissions calculated using 

inverse methods in Indianapolis, Indiana, was sensitive to the estimates of biological CO2 fluxes. 

Lauvaux et al., (2020), assert that careful estimations of biological CO2 fluxes are required for 

accurate calculations of urban CO2 emissions. A number of studies make use of a simple 

ecosystem CO2 flux model, the Vegetation Photosynthesis and Respiration Model (VPRM), to 

represent biological CO2 fluxes for urban inversions (e.g., Lauvaux et al., 2020; Wu et al., 2018). 

The mole fraction enhancement due to urban GHG emissions can be calculated using in 

situ tower-based observations of atmospheric GHG mole fractions, but to do so we must separate 

the enhancements due to local emissions occurring within the urban domain from the GHG mole 



3 

 

fraction of air masses entering the domain (Karion et al., 2021; Turnbull et al., 2015). We refer to 

the GHG mole fraction of air masses entering the domain as the background. There are a variety 

of methods, ranging in complexity, that have been applied to separate these signals and calculate 

the subsequent urban GHG enhancements (Karion et al., 2021). Recent efforts have focused on 

evaluating the impacts of different background choices on enhancement calculations (e.g., Karion 

et al., 2021; Miles et al., 2021; Mueller et al., 2018). Mueller et al., (2018), used statistical 

methods to identify four potential background tower locations outside of the Northeastern 

Corridor-Baltimore/Washington, DC, area that best capture the variability of CO2 mole fractions 

outside of their urban domain. Karion et al., (2021), evaluated a number of methods for 

representing background CO2 conditions outside of the Washinton, DC, and Baltimore area, 

including methods that rely on upwind observations of CO2 and methods that rely on models. 

Both of these studies noted the significant impacts of biogenic CO2 fluxes on background 

atmospheric CO2 mole fractions.  

Miles et al., (2021), used the Indianapolis Flux Experiment (INFLUX) in situ tower-

based GHG observing network to evaluate the impact of background tower choice on the 

subsequent urban CO2 enhancement. The authors found that the choice of background tower 

significantly impacted the calculated urban enhancement. During the growing season, the 

observed differences in CO2 mole fraction between three background towers were on the same 

order of magnitude as the urban enhancements themselves. The authors compared CO2 mole 

fraction observations to simple predictions based on landcover types surrounding the towers as 

well as to estimates created with a more complicated method of using both modeled biological 

and estimated fossil fuel fluxes. Miles et al., (2021), determined that differing CO2 fluxes due to 

vegetation type (forest vs. agriculture) explained some differences in CO2 mole fraction 

observations. However, two towers surrounded by the same vegetation type (agriculture) 

observed significantly different CO2 mole fractions. Miles et al., (2021), assert that biological 
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CO2 fluxes must be quantified and understood to interpret tower-based CO2 mole fraction 

measurements in cites surrounded by considerable vegetation.  

In this study, we evaluate the ability of a simple ecosystem CO2 flux model, VPRM, to 

capture the complex CO2 background conditions previously observed in Indianapolis (Miles et 

al., 2021). VPRM’s skill in replicating the complex CO2 background conditions in Indianapolis is 

of particular interest because of its previous use as a biological prior in CO2 inversions. Using the 

simulated biogenic CO2 fluxes in conjunction with mole fraction tower influence functions, we 

estimate differences in CO2 mole fractions between background towers, which we refer to as CO2 

enhancements, using the INFLUX network. We assess the model’s ability to capture observed 

afternoon average CO2 enhancements at daily and monthly time scales. We also evaluate the 

random errors introduced by the model for daily, monthly, seasonal, and yearly averaging 

periods. Further, we test the model’s ability to simulate site-to-site differences in CO2 fluxes 

using a network of eddy covariance flux towers. This study presents a rigorous method for 

evaluating biological CO2 flux estimates that could be applied to any city network that includes 

multiple background towers.  
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Chapter 2 

 

Methods 

Indianapolis Flux Experiment (INFLUX) Measurement Network 

INFLUX is a testbed for developing, evaluating, and improving methods for measuring 

urban GHG emissions (Davis et al., 2017). INFLUX has quantified urban emissions using a 

variety of methods, including, but not limited to, tower-based measurements of CO2 mole 

fraction, CO2 flux measurements, atmospheric transport models, aircraft-based measurements, 

and activity-based GHG inventory products (Davis et al., 2017). Indianapolis, Indiana, is a 

medium-sized city with an estimated population of about 880,000 people (U.S. Census Bureau, 

2022). The city of Indianapolis was chosen as the study site for INFLUX because it is generally 

isolated from other major GHG sources, it is surrounded by terrain that can be easily simulated by 

meteorological models, and it is one of the few cities with a high-resolution inventory product 

available for comparison (Davis et al., 2017).  

The in situ communication tower-based GHG mole fraction measurement network 

consists of fourteen total measurement locations, however, not all locations are currently active. 

At these sites, wavelength-scanned cavity ring down spectroscopic instruments (Picarro, Inc., 

models G1301, G2301, G2302, and G2401) measure GHG mole fractions (Miles et al., 2017; 

Richardson et al., 2017). All 14 tower sites include CO2 mole fraction measurements, while a 

subset of them include additional measurements of carbon monoxide and methane (Miles at al., 

2017). The CO2 mole fractions are on the x2019 WMO CO2 scale and the estimated uncertainty 

based on flask to in-situ comparisons and round-robin style testing is 0.17 ppm (Richardson et al., 
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2017). Locations of the INFLUX CO2 mole fraction observation towers are shown in Figure 2-1. 

Further details are documented by Miles et al., (2017) and Richardson et al., (2017).  

The INFLUX measurement network also includes eddy covariance CO2 flux towers that 

have been deployed at agricultural and urban sites around the city for varying lengths of time. 

CO2 eddy covariance flux measurements began at agricultural sites in 2017 and continued to the 

start of 2023. At these sites, open path CO2 flux sensors (LI-COR, model LI-7500) measure CO2 

mole fraction and sonic anemometers (Campbell, model CSAT3) measure three-dimensional 

wind components. These flux measurement sites were located at corn and soybean fields outside 

of Indianapolis. Locations of CO2 flux measurement sites in the INFLUX network used in this 

study are shown in Figure 2-1. For more information about the INFLUX CO2 flux measurement 

network see Horne et al., (in prep). 

 

 

 

Figure 2-1: INFLUX CO2 mole fraction observation tower locations (black triangles) and CO2 flux 

measurement sites (red diamonds) located at agricultural fields. Urban CO2 flux measurements at 

mole fraction Towers 02, 03, and 07 are not shown. 
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Modeled Biological CO2 fluxes with the Vegetation Photosynthesis and Respiration Model 

(VPRM) and Study Domain 

The Vegetation Photosynthesis and Respiration Model (VPRM) is a simple light-use 

efficiency model which simulates biological CO2 fluxes (Gourdji et al., 2022). We use the VPRM 

formulation and parameters from Gourdji et al., (2022), which improves upon the original model 

structure presented by Mahadevan et al., (2008). VPRM uses parameter sets optimized using eddy 

covariance CO2 flux observations to describe different vegetation or land cover types, which are 

referred to as Plant Functional Types (PFTs). Using VPRM, we calculated Gross Ecosystem 

Exchange (GEE, the ecosystem’s carbon uptake from photosynthesis), ecosystem respiration (R, 

the ecosystem’s carbon release from both autotrophic and heterotrophic respiration), and Net 

Ecosystem Exchange (NEE), which is the sum of the GEE and R (Gourdji et al., 2022). We 

implemented VPRM in a roughly 300 km by 300 km domain centered around Indianapolis. The 

model domain, along with National Land Cover Database (NLCD, Dewitz and U.S. Geological 

Survey, 2021) land cover information for 2019 and the locations of INFLUX background towers, 

is shown in Figure 2-2. The model was run at a roughly 1 km2 spatial resolution and hourly 

temporal resolution from 2017 through 2021.  

VPRM requires a few inputs: Photosynthetically Active Radiation (PAR), air 

temperature, Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI), and land 

cover information (Gourdji et al., 2022). EVI (a greenness index) and LSWI (a moisture index, 

calculated as a ratio of surface reflectance bands) are remotely sensed gridded products which 

were obtained from MODIS on the NASA Terra and Aqua satellites (Didan, 2015a; Didan, 

2015b; Vermote, 2015a; Vermote, 2015b). We used EVI (MOD13A2/MYD13A2) products at a 1 

km grid spacing and aggregated the surface reflectance products (MOD09A1/MYD09A1) used to 

calculate LSWI from a 500 m grid spacing to a 1 km grid spacing. EVI and surface reflectance 

products were interpolated from their native temporal resolution to a daily resolution following 
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the procedure in Gourdji et al., (2022). Air temperature and downward solar radiation were 

obtained from the Weather Research and Forecasting (WRF) Model (Deng et al., 2017). 

Temperature and downward solar radiation variables had temporal resolutions of 1 hour and were 

interpolated from grid spacings of roughly 3 km to roughly 1 km. PAR was calculated from 

downward solar radiation (Mahadevan et al., 2008). Two 30 m resolution land cover products 

were used: the Cropland Data Layer (CDL) and the NLCD Imperviousness (USDA NASS; 

Dewitz and U.S. Geological Survey, 2021). The NLCD Imperviousness product is not available 

yearly, so the closest available year was used in the model runs (products for 2013, 2016, and 

2019 were used). The NLCD Imperviousness product was aggregated to a spatial resolution of 

roughly 1 km2. The CDL product corresponding to each year of the model run was used. Using 

the CDL products, we calculated the fractional area of each model PFT within the approximately 

1 km2 resolution model grid cells. The total GEE, R, and NEE for each grid cell is based on the 

fractional area of each PFT within the roughly 1 km2 resolution cells, therefore, we account for 

the mixture of PFTs within each model cell.  

Corn, Other Crops, and Deciduous Broadleaf Forests (DBF) are the dominant PFTs 

within the model domain. The percentages of each of the nine model PFTs, as well as areas that 

are missing landcover data or are covered in water, are shown for all years of model runs in 

Figure 2-3. 
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Figure 2-2: Model domain (black outline) and background towers considered in this study (black 

triangles) along with National Land Cover Database (NLCD) land cover information for 2019 at a 

30 m grid spacing (Dewitz and U.S. Geological Survey, 2021). 

 

 

Figure 2-3: Percentage of each Plant Functional Type (PFT), along with missing data and water, 

derived from the Cropland Data Layer (USDA NASS) in the model domain for the years 2017 

through 2021.  
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CO2 Mole Fraction Observations at Background Towers and Enhancement Calculations 

 This study considered three potential background tower sites in the INFLUX network: 

Tower 01, Tower 09, and Tower 14. Tower 01 is located on the edge of the DBF southwest of the 

city (Figure 2-2). Tower 09 is located in an agricultural area east of the city. Tower 14 is located 

in an agricultural area northwest of the city. Towers 14 and 09 each have one sampling height, 76 

m AGL and 130 m AGL, respectively. Tower 01 has multiple sampling heights; we used 

observations from the highest level, 121 m AGL. CO2 mole fraction observations (in parts per 

million, ppm) were averaged to a temporal resolution of 1 hour.  

 Data points for which any of the three potential background towers are in the urban 

plume, i.e., downwind of the urban area, were excluded from the analysis. Following Miles et al., 

(2021), data points were excluded when the wind directions were 20° to 65° or 235° to 280°. 

Wind direction data were obtained from two Automated Surface Observing Systems stations, 

IND and EYE, which are located at airports within the model domain 

(https://www.weather.gov/asos/). Wind data at the end of each hour at the IND station was 

selected to represent the wind direction for each hour. Hours missing wind direction data in the 

IND data set were filled with data from the EYE station, if available. We additionally excluded 

CO2 mole fraction data points from all towers for any hour during which any one of the three 

towers was missing wind direction or CO2 mole fraction observations.  

 The enhancement, i.e., the difference of CO2 mole fractions between the background 

towers was calculated. Note that the enhancement in this case does not represent the impact of 

urban emissions, instead it represents spatial structure in the background mole fraction values. 

This enhancement can be either positive or negative. We calculated hourly enhancements for 

Towers 01 and 14, with respect to Tower 09. Note that in this analysis we compared CO2 mole 



11 

 

fractions across towers at the same time of day, which is consistent with past INFLUX studies 

(e.g., Miles et al., 2017). In this study, we focused on observations from April 27, 2017, through 

March 9, 2020. This period was chosen because all three background towers were operational, 

and we wanted to exclude any times where observations could be impacted by the COVID-19 

lockdowns beginning in March 2020 (King, 2021). 

 We focused our analysis of CO2 enhancements on afternoon average enhancements, 

where afternoon hours are defined as 1700-2200 UTC (1200-1700 LST). One reason we focus on 

afternoon hours is that the atmospheric boundary layer is typically well mixed during this time, 

making interpretation of measurements simpler (e.g., Bakwin et al., 1998; Miles et al., 2017). 

Note that the afternoon enhancements are affected by fluxes in the domain several hours prior to 

the tower measurement time.   

Modeled Biogenic CO2 Mole Fractions for Background Towers and Enhancement 

Calculations 

 In order to test VPRM’s ability to simulate the spatial and temporal structure in 

background CO2 mole fractions, we estimated the biogenic contribution to total CO2 mole 

fraction at each of the three background towers by convolving VPRM NEE outputs, which 

represent the surface biogenic CO2 fluxes, with tower influence functions. The influence 

functions were generated with a Large Particle Dispersion Model (Uliasz, 1994) using WRF input 

data (Deng et al., 2017) for the three background towers for a roughly 300 km by 300 km domain 

around Indianapolis with a grid spacing of 3 km. The influence functions used account for surface 

impacts in the 72 hours prior to the observation hour. Before convolving with the tower influence 

functions, VPRM NEE estimates were aggregated to a grid spacing of roughly 3 km to match the 

influence function resolution. Note that the CO2 mole fraction estimates resulting from this 
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convolution can be positive or negative because they represent only the biogenic contribution to 

the total CO2 mole fraction at each tower.  

 We calculated the modeled biogenic contribution to CO2 mole fraction at each 

background tower from April 27, 2017, through March 9, 2020. From this, we calculated the 

model-predicted enhancement between towers as for the observed enhancements. 

Estimation of Total Tower Influence and Plant Functional Types within Tower Influence 

 We determined the dominant PFT within the surface area influencing each of the towers 

by calculating the total afternoon influence due to Corn, Other Crops, and DBF for Towers 01, 

09, and 14 during the month of July 2018. July 2018 was chosen as a representative growing 

season month. Further, we evaluate differences in total surface influence for each of the towers by 

calculating the total influence during the afternoon in July 2018. To calculate the contribution to 

the total influence from each PFT, we convolved the influence functions for each tower with a 

map representing the fractional area of the PFT of interest within each approximately 3 km grid 

cells. To calculate the total influence for each tower, we summed the influence functions over 

time (72 hours back in time) and space. For these calculations, we consider only afternoon hours 

during which we had an associated mole fraction observation. 

Model-Observation Comparison: Afternoon Average CO2 Enhancements 

 To evaluate VPRM’s ability to represent the complex background CO2 conditions 

observed, we compared the observed afternoon average CO2 mole fraction enhancements for 

Towers 01 and 14 to the modeled afternoon average enhancements and assessed model 

performance at multiple time scales. We compared modeled and observed enhancements at each 
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tower because we modeled only the impacts of biological fluxes on the CO2 mole fraction within 

the model domain (Figure 2-2), and not the total mole fraction. To model total CO2 mole fraction, 

anthropogenic CO2 sources and inflow from outside of the domain would also need to be 

considered. Our approach assumes that the impact on CO2 mole fraction from outside the model 

domain (Figure 2-2) is nearly uniform across the towers; we assert that the major differences in 

biogenic CO2 influence on the background towers are contained within the model domain. We 

calculated modeled and observed afternoon average CO2 enhancements at Towers 01 and 14 for 

each day in the time series, along with the associated residuals, where the residual is the modeled 

minus the observed value for each afternoon average enhancement. We calculated the mean 

monthly afternoon average enhancements, the mean monthly residuals, and the associated 

standard errors of the residuals for Towers 01 and 14 for every month in the time series 

considered. Additionally, we evaluated the impact of averaging time period length on random 

error magnitude by calculating the mean absolute error of the residuals for daily, monthly, 

seasonal, and yearly averaging periods. For this calculation of mean absolute error of the 

residuals, we include the residuals for both Towers 01 and 14 in the same data pool.    

Depletion in Atmospheric CO2 Mole Fraction Due to Individual Plant Functional Types 

 In order to assess the impacts of individual PFTs on total CO2 drawdown, we estimated 

the contribution of Corn, Other Crops, and DBF to the total biogenic CO2 mole fractions, which 

we refer to as the depletion in CO2 mole fraction caused by the individual PFTs, at Towers 01, 

09, and 14 for the month of July 2018. We performed a similar convolution to that discussed in 

the section titled Modeled Biogenic CO2 Mole Fractions for Background Towers and 

Enhancement Calculations, however instead of performing the convolution using total modeled 

NEE for each grid cell, we used NEE estimates for Corn, Other Crops, and DBF PFTs separately. 
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This allowed us to calculate the afternoon average biogenic depletion in CO2 mole due to each 

PFT at each tower. Then, we computed the average biogenic depletion in CO2 mole from each 

PFT over all afternoons during the month. 

Net Ecosystem Exchange (NEE) for Plant Functional Types within Tower Influence 

Functions 

 In order to assess productivity gradients across towers, we calculated the predicted 

productivity, i.e., CO2 drawdown as predicted by NEE, of Corn, Other Crops, and DBF PFT 

categories within the influence functions of each tower for the month of July 2018. For this 

analysis, we performed a similar convolution to what was described in the previous section, 

however, in this case we do not account for the fractional area of each PFT in each grid cell. This 

allowed us to directly evaluate predicted productivity differences in vegetation surrounding each 

tower. We calculated the afternoon average NEE for each tower and PFT combination and then 

the mean of afternoon averages over the month of July 2018. 

Rural CO2 Flux Observations and Vegetation Fraction Filtering 

 In this study, we evaluated VPRM’s ability to simulate site-to-site difference in CO2 

fluxes at agricultural sites using observations from the INFLUX network. For this evaluation, we 

considered CO2 flux observations at five agricultural sites in the model domain between the years 

2017 and 2021. These flux sites are summarized in Table 2-1. All flux towers considered had a 

measurement height of 3 meters AGL.  

 CO2 flux data were subject to a quality control process (Horne et al., in prep). CO2 flux 

observations were filtered using tests from Vickers and Mahrt (1997) and Foken (2008). 
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Additionally, we removed data when the friction velocity falls below a threshold value 

determined for each site.  

 CO2 flux observations were filtered to remove points when less than 90% of the flux 

footprint area was attributable to the vegetation type of interest. For this study, the vegetation of 

interest was either corn or soybean. We used the Flux Footprint Prediction (FFP) model by Kljun 

et al., (2015), to assess the fractional coverage of soy or corn within each half-hourly flux 

measurement. We used imagery from Google Earth and ArcGIS Pro software to visually select 

areas covered with the vegetation of interest. Areas with the vegetation type of interest were 

assigned a value of 1 while other areas were assigned a value of zero. For all half hours during 

which the required input data was available, we used the FFP climatology function to simulate 

footprints at a 1 m grid spacing for a 501 m by 501 m domain. We multiplied the simple site map 

that indicates landcover type with a footprint estimate to obtain a gridded map representing only 

the footprint attributable to the vegetation of interest. For every possible half hour, we computed 

two values using the predicted footprints: a value representing the footprint attributable to the 

vegetation of interest and a value for the total footprint. The former was calculated by summing 

over the footprint attributable to the vegetation of interest and the latter was calculated by 

summing the footprint over the entire domain. The ratio of these values represented the fraction 

of the footprint attributable to the vegetation of interest. We removed CO2 flux data points when 

this fraction was less than 0.90, i.e., when less than 90% of the predicted half hourly flux 

footprint was attributable to the vegetation of interest. Additionally, we removed CO2 flux data 

points when the fraction was not able to be calculated. 
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Model-Observation Comparison: Agricultural CO2 Fluxes 

 To evaluate VPRM’s ability to simulate agricultural CO2 fluxes, we compare the mean 

modeled daily cycle of CO2 fluxes, or NEE, to the mean observed daily cycle during the growing 

seasons months of July and August. Using the filtered flux data, we created hourly data sets from 

our half hour interval flux observations by averaging the two points within the hour. Observed 

fluxes from sites with corn are compared to modeled fluxes from the Corn PFT. Because there is 

no specific soybean PFT in our VPRM formulation, fluxes from sites with soybean are compared 

to modeled fluxes from the Other Crops PFT. For each site-month, for any hour when there was 

no observed CO2 flux, the corresponding NEE point was also removed. We calculated mean daily 

cycles of observed CO2 flux during July and August, separately, of each year. We compared the 

peak CO2 drawdown and peak respiration estimated by the model to the observation in order to 

assess the model’s ability to capture observed agricultural CO2 fluxes. 

Table 2-1: Summary of CO2 flux measurement sites in the Indianapolis Flux Experiment 

(INFLUX) network used in this study along with vegetation types for each site during the growing 

season. 

SITE NAME YEARS VEGETATION TYPES 

US-INd  

2018 

 

Soybean  

US-INe  

2018 

2019 

2020 

 

Corn 

Soybean  

Corn  

US-INi  

2019 

 

Soybean  

US-INj  

2020 

 

Corn  

US-INn  

2019 

2021 

 

Corn  

Corn  
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Chapter 3 

 

Results 

Model-Observation Comparison: Afternoon Average CO2 Enhancements 

 There is large day to day variation in both the modeled and observed afternoon average 

CO2 enhancements for Towers 01 and 14 (Figure 3-1a,b). There is also a seasonality in the 

magnitude of the enhancements for both Towers 01 and 14. The observed enhancements at both 

towers tend to be larger in magnitude during the growing season than during the dormant season. 

Observed enhancements have magnitudes as large as 20 ppm. The modeled enhancements at both 

towers also tend to be larger during the growing season than during the dormant season. 

However, the modeled enhancements tend to be smaller in magnitude and exhibit less variation 

compared to the observations during the dormant season.  

 The model is not able to capture the observed afternoon average CO2 enhancements on a 

daily time scale. For both Towers 01 and 14, the residuals (model – observations) are the same 

order of magnitude as the enhancements themselves (Figure 3-1c,d). During both the growing and 

dormant seasons, the magnitude of the residuals can be as large as 20 ppm. 
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 More important for the application of top-down urban emissions determination, the 

model captures the timing and magnitude in afternoon average CO2 enhancements at Towers 01 

and 14 when averaged over each month (Figure 3-2). Forested areas surrounding Tower 01 green 

up prior to the agricultural vegetation near Tower 09, resulting in persistent negative 

enhancements in June, both observed and modeled. During the peak of the growing season, the 

drawdown from the agricultural vegetation near Tower 14 is larger than that near Tower 09, again 

resulting in negative observed enhancements that the model correctly predicts. CO2 residuals do 

not differ significantly from zero for most months in the time series considered, as indicated by 

the zero falling within two times the standard error of the monthly mean residual for most 

months. For Tower 01, 3 months (June 2017, January 2018, and July 2019) have residuals 

significantly different from zero and for Tower 14, 4 months (June 2017, January 2018, May 

 

Figure 3-1: Observed (black circles) and modeled (red circles) afternoon average CO2 

enhancements relative to Tower 09 at Towers 01 (a) and 14 (b) between April 27, 2017, and March 

9, 2020. Residuals (model-observation) for the afternoon average CO2 enhancements at Towers 01 

(c) and 14 (d) for the same time period. Gray shading indicates July through September. 
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2018, and December 2019) have residuals significantly different from zero. Therefore, for most 

site-months considered, the modeled enhancement is not significantly different from the observed 

enhancement. For Tower 01, 28 out of 36 months have residuals less than 1 ppm and 27 out of 36 

months have residuals less than 0.5 ppm. For Tower 14, 25 out of 36 months have residuals less 

than 1 ppm and 29 out of 36 months have residuals less than 0.5 ppm. From this, we conclude 

that there is no seasonal bias and that the model error is random. 

 The magnitude of the typical random error, as represented by the mean absolute error of 

the residuals, decreases with increasing averaging periods (Figure 3-3). Note that the residuals 

here still refer to the difference between modeled and observed afternoon average CO2 

 

 

Figure 3-2: Observed (black) and modeled (red) monthly mean afternoon average CO2 mole 

fraction enhancements compared to Tower 09 for Towers 01 (a) and 14 (b) and the monthly mean 

afternoon average model-observation residuals (black triangles) for Towers 01 (c) and 14 (d) 

starting April 2017 and ending March 2020. Error bars are two times the standard error. Gray 

shading indicates July through September. 



20 

 

enhancements. The largest decrease in random error occurs when increasing the averaging period 

from a day to a month; the random error decreases by about 1.4 ppm if a month is chosen as the 

averaging period compared to a day. Increasing the averaging period to a season or year results in 

additional decreases in random errors, with both averaging periods resulting in random errors of 

less than 0.5 ppm. 

Depletion in Atmospheric CO2 Mole Fraction Due to Individual Plant Functional Types 

 The average estimated depletion in atmospheric CO2 mole fractions due to Corn, Other 

Crops, DBF, and all PFTs combined during the month of July 2018 vary in magnitude across 

background towers (Figure 3-4). The model total (i.e., all PFTs combined) magnitude of 

depletion in CO2 mole fractions caused by biology at Tower 14 is approximately 30% larger than 

 

 

Figure 3-3: Mean absolute error of model-observation residuals calculated for daily, monthly, 

seasonal, and yearly averaging periods for both Towers 01 and 14 combined. 
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the same depletion at Tower 09 and approximately 40% larger than the depletion at Tower 01. 

This indicates that, on average, there is a larger drawdown of CO2 within the area of influence at 

Tower 14 compared to the other two towers. Most of the modeled difference in CO2 depletion for 

Tower 14 compared to Tower 09 results from the difference in the drawdown by corn. However, 

this calculation does not distinguish between differences in the area of corn landcover versus 

more vigorous growth.    

Estimation of Total Tower Influence and Plant Functional Types within Tower Influence 

 Corn and Other Crop PFT categories dominate the influence functions for Towers 09 and 

14, while the DBF PFT category dominates the influence function for Tower 01 during afternoon 

 

 

Figure 3-4:  Afternoon average atmospheric CO2 mole fraction depletion due to biogenic CO2 

fluxes from Corn, Other Crops, and Deciduous Broadleaf Forest (DBF) Plant Functional Type 

(PFT) categories as well as the model total (all PFTs combined) predicted CO2 depletion for Towers 

01, 09, and 14 averaged for the month of July 2018. 
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hours of July 2018 (Figure 3-5). The relative influence of Corn, Other Crops, and DBF generally 

matches qualitative expectations based on the locations of the towers (Tower 01 has the most 

influence from DBF while Towers 09 and 14 have most influence from Other Crops and Corn). 

Tower 09 has the largest magnitude of influence, with Towers 14 and 01 following in magnitude. 

Because the total influence of Tower 09 is greater than that of Tower 14 during the afternoon 

hours, the greater drawdown observed at Tower 14 cannot be attributable to the difference in total 

influence between the two towers. Additionally, the corn contribution to the influence functions 

for Towers0 9 and 14 are similar and the other crops contribution is not different enough to 

explain the observed difference in CO2 drawdown at these agriculturally dominated towers.   

 

 

Figure 3-5: Contribution of Corn, Other Crops, and Deciduous Broadleaf Forests (DBF) Plant 

Functional Type (PFT) categories to the total influence as well as the total influence for Towers 01, 

09, and 14 during the afternoon hours of July 2018. Units are the same as those of the influence 

functions. Note that the sum of the influence for the three PFTs considered here does not equal the 

total summed influence for any tower because the surface area within the influence functions 

contains additional PFTs that are not considered here. 
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Net Ecosystem Exchange for Plant Functional Types within Tower Influence Functions 

 During July 2018, VPRM suggests that the vegetation upwind of Tower 14, regardless of 

PFT, is more productive than the vegetation upwind of Towers 01 and 09 (Figure 3-6). Tower 01 

has the next most productive vegetation upwind, and Tower 09 has the least productive 

vegetation upwind. This indicates that the larger magnitude of CO2 mole fraction depletion from 

Corn at Tower 14 is due to the higher predicted productivity. Across all towers, Corn is the most 

productive PFT, followed by Other Crops, and then followed by DBF. This is consistent with our 

understanding of these ecosystems and previous results (e.g., Miles et al., 2021). 

 

 

Figure 3-6: Afternoon average Net Ecosystem Exchange (NEE) within influence functions for 

Corn, Other Crops, and Deciduous Broadleaf Forest (DBF) Plant Functional Types (PFTs) for 

Towers 01, 09, and 14 averaged for the month of July 2018. 
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Model-Observation Comparison: Agricultural CO2 Fluxes 

 We have shown that VPRM is able to predict the differences in CO2 mole fraction 

enhancements at INFLUX background towers and now we further show that VPRM captures the 

site-to-site variability in the observed daily cycle of CO2 fluxes during the months of July and 

August (Figure 3-7). Across all the site-months, the modeled peak in afternoon CO2 drawdown 

was between 4% to 56% of the observed peak. The model had the most trouble capturing the CO2 

drawdown at the site US-INn during July 2019, when the model differed from the observed peak 

drawdown by 56% and the peak respiration by 67%. For 9 out of 14 site-months, the modeled 

peak afternoon CO2 drawdown was within 25% of the observed peak despite the observed peaks 

ranging from -8 µmol m-2s-1 to -66 µmol m-2s-1. The model had a harder time capturing the peak 

respiration, with the model peak differing from the observed peak by between 22% to 81%. The 

observed peak respiration varied across site-months from 4.1 µmol m-2s-1 to 40 µmol m-2s-1. 

Additionally, there does not appear to be a difference in the model’s ability to capture the 

observed trends in the CO2 drawdown for either corn or soybeans. 
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Figure 3-7: Mean daily cycles of CO2 fluxes calculated over July and August for each site and year. 

Observations are shown in black and model outputs are shown in red. Time in UTC. Error bars 

indicate the standard error. The top two rows (a, b, c, d, e, f) are soybean sites (Other Crops Plant 

Functional Type in model), the following rows (g, h, i, j, k, l, m, n) are corn sites. Site names, year 

and month, and number of points included in the cycle average are indicated on each panel. 
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Chapter 4 

 

Discussion 

With monthly or longer averaging periods, VPRM is able quantify differences in CO2 

mole fraction between background towers at a level sufficient for use in urban enhancement 

calculations. Overall, we have shown that differences between the modeled and observed CO2 

enhancements are random, and not a result of model bias. Miles et al., (2021), found that average 

urban CO2 enhancements were on the order of 3-5 ppm in Indianapolis (calculated during the 

dormant season using urban Tower 03 and background Tower 09 in the INFLUX network). A 

central goal of the INFLUX project is to quantify urban GHGs in Indianapolis with an accuracy 

of 10% or less (Davis et al., 2017). In order to quantify average Indianapolis urban enhancements 

within 10% accuracy, we aim to quantify CO2 enhancements with less than roughly 0.5 ppm 

error. Our results suggest that a monthly averaging period is generally useful for quantifying 

urban enhancements within 0.5 ppm. For 56 out of 72 site-months, the model-observation 

residual is less than 0.5 ppm. Further, only a few site-months considered had residuals 

significantly different from zero. The random errors associated with seasonal and yearly 

averaging times are less than 0.5 ppm, further supporting the model’s usefulness for accurately 

quantifying urban enhancements from Indianapolis. The error at a yearly averaging period is 

particularly relevant to city GHG mitigation efforts because these goals are typically set at time 

periods of a year longer. Furthermore, the urban CO2 enhancements of Indianapolis are relatively 

modest compared to larger cities; for cities with larger enhancements, the errors introduced by the 

model will be a smaller percentage of the overall urban enhancement. Given that the model is 

unbiased and the random errors at longer time spans are generally small relative to the impact of 
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urban emissions, we assert that VPRM is sufficient for representing biological CO2 fluxes for 

inverse estimates of urban CO2 emissions from Indianapolis.   

While it is not essential for our application, we found that at a daily time scale, the model 

is not able to capture the observed differences in CO2 mole fractions between background towers. 

The model-observation residuals at a daily time scale are often on the same order of magnitude as 

the observed enhancements themselves. The random error, as represented by the mean absolute 

error, at a daily scale is about 2.2 ppm, which is more than 50% of the 5 ppm average urban 

enhancement previously observed in Indianapolis. The inability of the model to capture the 

afternoon average CO2 enhancements on a day-to-day basis may be due to transport error 

impacting the tower influence functions. Deng et al., (2017), documented day-to-day errors in 

wind direction in our atmospheric reanalysis on the order of 10 to 20 degrees. Transport errors 

like those described by Deng et al., (2017), could result in an incorrect estimation of surface 

influence for any particular hour, however, this would not bias the results over time.  

In this study, we expanded upon the modeling work in Miles et al., (2021) in a number of 

ways. Most notable is our use of an improved VPRM formulation and new PFT parameter set 

developed by Gourdji et al., (2022). The present study uses a domain of roughly 300 km by 300 

km, which includes the location of Tower 14, compared to the 87 km by 87 km domain used by 

Miles et al., (2021). Additionally, the influence functions used in this study include 72 hours back 

in time from the observation, while those used in Miles et al., (2021), include only 4 hours back 

in time. Another difference is that Miles et al., (2021), modeled both biological and 

anthropogenic impacts on the towers, while we evaluates only biological CO2 fluxes.  

Our evaluation of the differences in CO2 mole fractions between Towers 01 and 09 agree 

with those of Miles et al., (2021), who suggested that the differences between growing season 

CO2 mole fraction observations at Towers 01 and 09 can be attributed to the different 

predominant landcover types surrounding each tower (DBF at Tower 01 and agriculture at Tower 
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09). We determined that the dominant PFT within the influence area for Tower 01 is DBF, while 

the dominant PFT within the influence area for Tower 09 is Other Crops. Further, we found that 

the depletion of atmospheric CO2 due to DBF is larger at Tower 01 compared to Tower 09, while 

Tower 09 has a larger depletion due to Other Crops and Corn PFTs compared to Tower 01. 

The analysis presented in this study allowed us to further explore the potential causes of 

the differences in CO2 mole fractions at Towers 09 and 14, which are both predominantly 

surrounded by agriculture. Miles et al., (2021), suggested that the differences may be due to a 

combination of a higher percentage of corn within a 10 km radius around Tower 14 compared to 

Tower 09 and a more productive harvest in the county Tower 14 resides in compared to Tower 

09. In this study, we found that while Tower 14 does have more influence from corn compared to 

Tower 09, the influence from corn for each of the towers is too similar to account for the 

differences in CO2 mole fraction between the sites. The model results presented here suggest that 

the differences in CO2 mole fractions between Towers 09 and 14 are due to differences in corn 

productivity within the surface area influencing each tower (with the corn impacting Tower 14 

having a higher productivity than that impacting Tower 09). This result both supports the 

hypothesis proposed by Miles et al., (2021), and shows that VPRM is able to capture observed 

differences in productivity within a single PFT category.  

In addition to demonstrating VPRM’s skill in replicating observed CO2 mole fraction 

differences between background towers, we also found that VPRM is able to capture the large 

variability in the average daily cycle of CO2 fluxes during the growing season across agricultural 

sites and years. The 2019 growing season was an atypical year for agriculture in the area due to 

extensive flooding during the spring and early summer which delayed planting (Yin et al., 2020). 

The effects of the delayed planting can be seen in the observations, with CO2 drawdowns in July 

of that year being generally smaller than Julys of other years, with the exception of US-INn in 

2019. It is particularly encouraging that the model was able to capture the observations for this 
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unusual year with similar skill (differences between modeled and observed peak drawdown of 

less than 30%) to the more typical years for four out of the five site-months during 2019. The one 

site-month that sticks out is US-INn during July 2019, which still has relatively high drawdown 

of CO2. This site-month also sticks out because the model underestimates peak CO2 drawdown by 

more than 50%. Given the model’s ability to capture the observations during other site-months in 

2019 with similar skill to other years, the unusual flooding and associated delayed planting 

cannot explain the larger difference between the observations and the model. A potential cause of 

this large difference could be in-field variability of productivity. The yield within a single 

agricultural field can vary significantly, however, this is outside the prediction ability of our 

roughly 1 km2 resolution model.
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Chapter 5 

 

Conclusions 

This study conducted a rigorous test of VPRM, a relatively simple and computationally 

inexpensive ecosystem CO2 flux model, using the unique GHG observations available from the 

INFLUX network. We have shown that the model is able to capture observed differences in CO2 

mole fractions between INFLUX background towers without bias and with relatively small 

random errors when averaged over periods of a month or longer. This is particularly important 

given that VPRM has been used to represent biological CO2 fluxes for inverse estimates of CO2 

emissions in previous studies. These results indicate that VPRM can reproduce CO2 background 

conditions with an accuracy useful for long term monitoring of urban CO2 enhancements from 

Indianapolis. Indianapolis is a moderately sized city on the edge of the US corn belt, with 

relatively small urban CO2 enhancements compared to other larger cities, and strong ecosystem 

CO2 fluxes due to the surrounding agriculture. VPRM’s successful performance in this 

biologically active region is encouraging for the use of VPRM in other cities that may have larger 

CO2 enhancements or less active biology.  

We have presented an evaluation system that can be used to assess the performance of 

other ecosystem CO2 flux models and can be applied to any city with a similar GHG monitoring 

network. The assessment of VPRM in other cities and regions should be a topic of further study. 

A challenge in some regions for the use of VPRM could be a lack of CO2 flux observations for 

each region’s common vegetation types; VPRM depends on CO2 flux observations for 

parameterization of model PFTs, and this current study focuses on a region with a relative 

abundance of flux observations compared to other ecosystems around the globe.
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