
The Pennsylvania State University
The Graduate School

UNDERSTANDING AND MITIGATING NEURAL BACKDOORS

A Dissertation in
Informatics

by
Ren Pang

© 2024 Ren Pang

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 2024

The dissertation of Ren Pang was reviewed and approved by the following:

Ting Wang
Associate Professor of College of Information Sciences and Technology
Dissertation Advisor
Chair of Committee

Fenglong Ma
Assistant Professor of College of Information Sciences and Technology

Xiang Zhang
Associate Professor of College of Information Sciences and Technology

Sencun Zhu
Associate Professor of Computer Science and Engineering
Outside Member

Dongwon Lee
Professor of College of Information Sciences and Technology
Director of Graduate Programs

ii

Abstract
The rapid progress in deep learning has led to significant breakthroughs in various
machine learning tasks. Despite the remarkable success of deep learning models across
domains, the intensive research has produced a plethora of backdoor attacks/defenses,
resulting in a constant arms race. However, previous studies have highlighted the
intricate trade-offs and complexities involved, yet a fundamental understanding of the
connections between different attack vectors remains elusive. Furthermore, the lack of
standardized evaluation benchmarks has hindered comprehensive research from multiple
critical research questions.

To address these limitations, we present three significant contributions in this disser-
tation. (i) We propose Imc, which enhances conventional backdoor attacks by jointly
optimizing triggers and trojaned models, uncovering intriguing mutual reinforcement
effects between the two attack vectors. (ii) We introduce TrojanZoo, an open-source
platform designed to evaluate neural backdoor attacks and defenses holistically. Through
systematic analysis, TrojanZoo reveals key insights into the design spectrum of existing
attacks and defenses. (iii) We extend the scope of backdoor attacks to AutoML by intro-
ducing Evas, a novel attack leveraging neural architecture search to discover architectures
with inherent vulnerabilities. According to extensive evaluation, Evas demonstrates high
evasiveness, transferability, and robustness, raising important considerations for future
defense strategies.

iii

Table of Contents

List of Figures viii

List of Tables xii

Acknowledgments xv

Chapter 1
Introduction 1
1.1 Overview of Neural Backdoors . 1
1.2 Contributions . 3
1.3 Roadmap . 4

Chapter 2
Background 5
2.1 Fundamentals . 5

2.1.1 Deep Neural Networks . 5
2.1.2 Attack Vectors . 5

2.1.2.1 Adversarial Inputs . 6
2.1.2.2 Poisoned Models . 6

2.1.3 Neural backdoor attacks . 7
2.1.4 Neural Architecture Search . 8
2.1.5 Other Attack Vulnerabilities . 9

2.2 Related Work . 11
2.2.1 ML Security . 11

2.2.1.1 Adversarial Inputs . 11
2.2.1.2 Poisoned Models . 12

2.2.2 Backdoor Benchmarks . 12
2.2.3 Neural Architecture Search . 13

Chapter 3
IMC: Input Model Co-optimization Attack 15
3.1 Introduction . 15

3.1.1 Our Work . 15
3.1.2 Threat Models . 16

iv

3.2 A Unified Attack Framework . 17
3.2.1 Attack Objectives . 17
3.2.2 Attack Implementation . 19

3.2.2.1 Reformulation . 19
3.2.2.2 Optimization . 20
3.2.2.3 Analysis . 21

3.3 Mutual Reinforcement Effects . 22
3.3.1 Study Setting . 22
3.3.2 Effect I: Leverage Effect . 24

3.3.2.1 Disproportionate Trade-off 24
3.3.2.2 Empirical Implications 26

3.3.3 Effect II: Amplification Effect . 27
3.3.3.1 Mutual Amplification 27
3.3.3.2 Empirical Implications 28

3.3.4 Analytical Justification . 29
3.3.4.1 Loss Measures . 29
3.3.4.2 Mutual Reinforcement Effects 30

3.4 IMC-Optimized Attacks . 32
3.4.1 Attack Optimization . 32

3.4.1.1 Basic Attack . 32
3.4.1.2 Enhanced Attacks . 33

3.4.2 Optimization against Human Vision 34
3.4.3 Optimization against Detection Methods 35

3.4.3.1 Backdoor Detection . 36
3.4.3.2 Attack Optimization . 37
3.4.3.3 Detection Evasiveness 37

3.4.4 Potential Countermeasures . 38
3.5 Conclusion . 39

Chapter 4
TrojanZoo: Unified Evaluation of Neural Backdoors 40
4.1 Introduction . 40
4.2 Platform . 42

4.2.1 Attack Library . 42
4.2.2 Attack Performance Metrics . 44
4.2.3 Defense Library . 46
4.2.4 Defense Utility Metrics . 47

4.3 Assessment . 49
4.3.1 Experimental Setting . 49
4.3.2 Attack Evaluation . 50

4.3.2.1 Effectiveness vs. Evasiveness (Trigger) 50
4.3.2.2 Effectiveness vs. Evasiveness (Model) 52
4.3.2.3 Effectiveness vs. Transferability 53

4.3.3 Defense Evaluation . 55

v

4.3.3.1 Robustness vs. Utility 55
4.3.3.2 Detection Accuracy of Different Attacks 56
4.3.3.3 Detection Accuracy vs. Recovery Capability 57

4.4 Exploration . 59
4.4.1 Attack – Trigger . 59
4.4.2 Attack – Optimization . 60
4.4.3 Defense – Evadability . 63
4.4.4 Defense – Interpretability . 64

4.5 Conclusion . 65

Chapter 5
The Security Risks of AutoML 66
5.1 Introduction . 66
5.2 Measurement . 68

5.2.1 Experimental Setting . 68
5.2.2 Experimental Results . 70

5.3 Analysis . 78
5.3.1 Architectural Properties of Trainability 78
5.3.2 Explanations of Attack Vulnerability 81
5.3.3 Connections of Various Attacks 84

5.4 Discussion . 84
5.4.1 Architectural Weaknesses . 84
5.4.2 Potential Mitigation . 86
5.4.3 Limitations . 89

5.5 Conclusion . 90

Chapter 6
EVAS: Exploitable and Vulnerable Arch Search 91
6.1 Introduction . 91
6.2 Evas . 92

6.2.1 Threat Model . 92
6.2.2 Input-Aware Triggers . 94
6.2.3 Exploitable arches . 94
6.2.4 Search without Training . 95

6.3 Evaluation . 97
6.3.1 Experimental Setting . 97
6.3.2 Q1: Does Evas work? . 98
6.3.3 Q2: How does Evas work? . 99
6.3.4 Q3: How does Evas differ? . 100

6.4 Conclusion . 104

vi

Chapter 7
Conclusion 105
7.1 Conclusion . 105
7.2 Future Works . 106

Bibliography 108
.1 Education . 122
.2 Selected Publications . 122

vii

List of Figures

1.1 “Duality” of adversarial inputs and poisoned models. 2

3.1 Adversary’s multiple objectives. 18

3.2 Imc alternates between two operations: (i) input perturbation to update
the adversarial input x, and (ii) model perturbation to update the poisoned
model θ. 20

3.3 Disproportionate trade-off between attack fidelity and specificity. 23

3.4 Detection rates of input anomaly (by manifold projection [1]) and model
anomaly (by curvature profile [2]). 25

3.5 Average misclassification confidence (κ) as a function of fidelity and
specificity losses. 25

3.6 Accuracy and robustness (with respect to PGD and Imc) of adversarially
re-trained models. 27

3.7 Comparison of the adversarial, poisoning, and Imc attacks under fixed
attack efficacy. 27

3.8 Leverage effect with respect to the relative fidelity loss z and the minimum
radius r (with d = 50). 32

3.9 Attack efficacy of TrojanNN∗ as a function of trigger size and transparency. 34

3.10 Sample triggers generated by TrojanNN (a), TrojanNN∗ optimizing opacity
(b) and optimizing size (c). 35

3.11 ASR of TrojanNN and TrojanNN∗ as functions of trigger size. 36

viii

3.12 ASR of TrojanNN and TrojanNN∗ as functions of trigger transparency. . 36

3.13 Detection of TrojanNN and TrojanNN∗ by NeuralCleanse and STRIP on
CIFAR10 and GTSRB. 37

3.14 Detection of basic and ensemble STRIP against TrojanNN∗ on CIFAR10
and GTSRB. 38

4.1 Overall system design of TrojanZoo. 42

4.2 ASR and TMC with respect to trigger size (α= 0.8). 50

4.3 ASR with respect to trigger transparency (|m| = 3×3). 51

4.4 Trade-off between attack effectiveness and model evasiveness (|m| = 3×3,
α= 0.8). 53

4.5 TPR of Neo and Strip under varying trigger definition (left: |m| = 3×3,
right: |m| = 6× 6; lower: α = 0.0, upper: α = 0.8). 56

4.6 Impact of DNN architecture on attack efficacy. 61

4.7 ASR improvement by reducing skip-connection gradients (α= 0.9). . . . 62

4.8 Impact of trigger optimization. 63

4.9 Performance of non-adaptive and adaptive Imc against representative
defenses (α= 0.0). 64

4.10 Sample attribution maps of clean and trigger inputs with respect to benign
and trojan models (α= 0.0, ImageNet). 65

5.1 Cell-based neural architecture search. 66

5.2 Performance of adversarial evasion (PGD) against NAS and manual
models under the least and most likely settings. 70

5.3 Impact of perturbation threshold (ϵ) on the vulnerability of different
models with respect to PGD on CIFAR10. 71

5.4 Distribution of inputs with respect to the number of successfully attacked
models (PGD with ϵ = 4/255 on CIFAR10). 72

ix

5.5 Performance of adversarial evasion (NES) against NAS and manual models
under the least and most likely settings. 73

5.6 Performance of model poisoning against NAS and manually designed
models under varying poisoning fraction ppos. 73

5.7 Performance of backdoor injection (TrojanNN) against NAS and manually
designed models. 74

5.8 Impact of the number of target neurons (nneuron) on the vulnerability of
different models with respect to TrojanNN on CIFAR10. 74

5.9 Performance of functionality stealing against NAS and manually designed
models under the victim architecture-aware setting. 76

5.10 Performance of label-only membership inference attacks against NAS and
manually designed models. 76

5.11 Loss contours of NAS-generated models (DARTS, ENAS) and manually
designed ones (ResNet, DenseNet) in (a) parameter space and (b) input
space. 78

5.12 Gradient variance of NAS-generated and manually designed models before
and after training. 79

5.13 Illustration of the HopSkipJump attack. 83

5.14 Effectiveness of adversarial training on various models over CIFAR10. . 87

5.15 Illustration of cell structures of DARTS, DARTS-i, DARTS-ii, and DARTS-
iii. 87

5.16 Vulnerability of DARTS and its variants to model extraction on CIFAR10. 89

5.17 Vulnerability of DARTS and its variants to model poisoning on CIFAR10. 89

6.1 Attack framework of Evas. (1) The adversary applies NAS to search for
arches with exploitable vulnerability; (2) such vulnerability is retained
even if the models are trained using clean data; (3) the adversary exploits
such vulnerability by generating trigger-embedded inputs. 93

6.2 The conditional number of NTK versus the model performance (ACC)
and vulnerability (ASR). 96

x

6.3 Sample arch identified by Evas in comparison of two randomly generated
arches. 98

6.4 Sample clean and trigger-embedded inputs as well as their GradCam
interpretation by the target model. 99

6.5 Landscape of candidate arches surrounding exploitable arches with their
ASR, ACC, and scores. 100

6.6 Model performance on clean inputs (ACC) and attack performance on
trigger-embedded inputs (ASR) of Evas as a function of poisoning ratio. 102

xi

List of Tables

3.1 Accuracy of benign DNNs on reference datasets. 23

3.2 Specificity losses (average accuracy drop) caused by poisoning attacks on
reference datasets. 24

3.3 Maximum input perturbation magnitude for PGD and Imc. 28

4.1 Summary of representative neural backdoor attacks currently implemented
in TrojanZoo (– full optimization, G# – partial optimization, # – no
optimization) . 43

4.2 Summary of representative neural backdoor defenses currently imple-
mented in TrojanZoo (A – backdoor attack, x – clean input, x∗ – trigger
input, f – benign model, f ∗ – trojan model, t – target class) 45

4.3 ACC of benign models over different datasets. 49

4.4 Impact of data complexity on ASR and TMC. 52

4.5 Impact of fine-tuning and downstream-classifier selection. 53

4.6 ASR and TMC of transfer attacks across CIFAR10 (C) and ImageNet (I)
(|m|= 3×3, α= 0.0). 54

4.7 ARD and TMC of attack-agnostic defenses against various attacks. . . . 54

4.8 Impact of defenses on classification accuracy (−: clean model without
attack/defense). 55

4.9 TPR of Neo and Strip (FPR = 0.05, α= 0.0). 57

4.10 AIV of clean models and trojan models by various attacks. 57

xii

4.11 MLN and MJS of triggers recovered by model-inspection defenses with
respect to various attacks (Note: as the trigger position is randomly
chosen in Tb, its MJS is un-defined). 58

4.12 ASR and TMC of single-pixel triggers (α= 0.0, CAD ≤ 5%). 59

4.13 Comparison of regular and random triggers. 59

4.14 NSR of benign and trojan models before and after Fp. 60

4.15 ASR of trojan models by training from scratch and re-training from benign
models. 61

4.16 Impact of mixing strategies on attack efficacy (α= 0.0, λ= 0.01). 62

4.17 Heatmap difference of clean and trigger inputs (α= 0.0). 65

5.1 Accuracy of representative NAS-generated and manually designed models
on benchmark datasets. 69

5.2 Performance of functionality stealing against NAS and manual models
under the victim architecture-agnostic setting. 76

5.3 The cell depth and width, and the number of skip connects of represen-
tative NAS-generated models (the width of each intermediate node is
assumed to be c). 85

5.4 Vulnerability of DARTS and its variants to adversarial evasion (M - most
likely case, L - least likely case), backdoor injection, and membership
inference on CIFAR10. 88

6.1 Model performance on clean inputs (ACC) and attack performance on
trigger-embedded inputs (ASR) of Evas, ResNet18, and two random
arches. 99

6.2 Model performance on clean inputs (ACC) and attack performance on
trigger-embedded inputs (ASR) of Evas, ResNet18, and two random
arches after fine-tuning. 101

6.3 Model performance on clean inputs (ACC) and attack performance on
trigger-embedded inputs (ASR) of Evas, ResNet18, and two random
arches after re-training from scratch. 102

xiii

6.4 Detection results of NeuralCleanse and STRIP for Evas. NeuralCleanse
shows the MAD score and STRIP shows the AUROC score of binary
classification. 103

6.5 Model performance on clean inputs (ACC) and attack performance on
trigger-embedded inputs (ASR) of Evas and ResNet18 after Fine-Pruning. 103

xiv

Acknowledgments

First and foremost, I extend my sincere gratitude to my Ph.D. advisor, Prof. Ting Wang.
He introduced me to the realm of computer security research and initiating the academic
journey of my life. His guidance encouraged me to approach problems with a broader
perspective, fostering numerous insightful discussions. Prof. Wang’s supervision was
pivotal to the successful completion of the projects in this dissertation, and without
his support, the advancements made in the technical committee would not have been
possible.

I also want to convey my appreciation to the other esteemed members of my committee,
namely include Prof. Fenglong Ma and Prof. Xiang Zhang from IST, as well as Dr. Sencun
Zhu from the College of Engineering. Their constructive feedback on my proposals and
engaging discussions played a significant role in shaping this dissertation and preparing
for my final defense.

Throughout my Ph.D. program, I received invaluable advice from my lab mates
both academically and personally. Special thanks go to Xinyang Zhang, Zhaohan
Xi, and Changjiang Li for their technical insights and critiques in the realm of deep
learning security and model interpretability. I am also grateful to Zheng Zhang, a crucial
collaborator who provided substantial support for my projects.

In conclusion, I want to express my deepest appreciation to friends, family, and
everyone else who contributed to making this journey enjoyable and exciting. Their
kindness and emotional support were indispensable in achieving success during the Ph.D.
program.

This work was partially supported by NSF 1846151, NSF 1910546, NSF 1953813, and
NSF 1953893. The findings and conclusions in this dissertation do not necessarily reflect
the view of the funding agency.

xv

Chapter 1 |
Introduction

The abrupt advances in deep learning have led to breakthroughs in a number of long-
standing machine learning tasks (e.g., image classification [3], natural language pro-
cessing [4], and even playing Go [5]), enabling scenarios previously considered strictly
experimental. Today’s deep learning (DL) systems are large, complex software artifacts.
With the increasing system complexity and training cost, it becomes not only tempting
but also necessary to exploit pre-trained deep neural networks (DNNs) in building DL sys-
tems. It was estimated that as of 2016, over 13.7% of DL-related repositories on GitHub
re-use at least one pre-trained DNN [6]. On the upside, this “plug-and-play” paradigm
greatly simplifies the development cycles [7]. On the downside, as most pre-trained DNNs
are contributed by untrusted third parties [8], their lack of standardization or regulation
entails profound security implications. It is now well known that deep learning systems
are inherently vulnerable to adversarial manipulations, which significantly hinders their
use in security-critical domains, such as autonomous driving, video surveillance, web
content filtering, and biometric authentication.

Throughout my doctoral research, my colleagues and I made significant strides in
comprehending and addressing neural backdoors. Within this dissertation, I aim to
elucidate the core principles surrounding neural backdoors and delineate our contributions
toward resolving existing challenges pertaining to the security of DL systems.

1.1 Overview of Neural Backdoors
Two primary attack vectors have been considered in the literature. (i) Adversarial inputs
– typically through perturbing a benign input x, the adversary crafts an adversarial
version x∗ which deceives the target DNN f at inference time [9–12]. (ii) Poisoned
models – during training, the adversary builds malicious functions into f , such that the

1

f

Input Space Output Space

Output SpaceInput Space

Adversarial

Poisoned

Input

Model f∗

f(x∗)x∗

x
f∗(x)

Figure 1.1: “Duality” of adversarial inputs and poisoned models.

poisoned DNN f∗ misbehaves on one (or more) pre-defined input(s) x [6, 13–15]. As
illustrated in Figure 1.1, the two attack vectors share the same aim of forcing the DNN
to misbehave on pre-defined inputs, yet through different routes: one perturbs the input
and the other modifies the model. There are attacks (e.g., backdoor attacks [16, 17])
that leverage the two attack vectors simultaneously: the adversary modifies f to be
sensitive to pre-defined trigger patterns (e.g., specific watermarks) during training and
then generates trigger-embedded inputs at inference time to cause the poisoned model f∗

to malfunction.
Prior work has intensively studied the two attack vectors separately [6,9–15]; yet, there

is still a lack of understanding about their fundamental connections. First, it remains
unclear what the vulnerability to one attack implies for the other. Revealing such
implications is important for developing effective defenses against both attacks. Further,
the adversary may exploit the two vectors together (e.g., backdoor attacks [16, 17]),
or multiple adversaries may collude to perform coordinated attacks. It is unclear how
the two vectors may interact with each other and how their interactions may influence
the attack dynamics. Understanding such interactions is critical for building effective
defenses against coordinated attacks. Finally, studying the two attack vectors within a
unified framework is essential for assessing and mitigating the holistic vulnerabilities of
DNNs deployed in practice, in which multiple attacks may be launched simultaneously.

In particular, pre-trained DNNs can be exploited to launch neural backdoor attacks
[16,18,19], one primary threat to the security of DL systems. In such attacks, a maliciously
crafted DNN (“trojan model”) forces its host system to misbehave once certain pre-defined

2

conditions (“triggers”) are met but to function normally otherwise, which can result in
consequential damages in security-sensitive domains [20–22].

Motivated by this, intensive research has led to a plethora of attacks that craft trojan
model via exploiting properties such as neural activation patterns [14, 16, 18, 23–25] and
defenses that mitigate trojan models during inspection [26–31] or detect trigger inputs
at inference [32–35].

1.2 Contributions
Following the fundamental background on neural backdoor security, this dissertation
presents a series of contributions, each detailed in its own chapter:

• Imc Attack. In Chapter 3, we propose Imc, a new class of attacks that co-
optimizes inputs and models simultaneously. Specifically, (i) we develop a new
attack model that jointly optimizes adversarial inputs and poisoned models; (ii)
with both analytical and empirical evidence, we reveal that there exist intriguing
“mutual reinforcement” effects between the two attack vectors – leveraging one
vector significantly amplifies the effectiveness of the other; (iii) we demonstrate
that such effects enable a large design spectrum for the adversary to enhance
the existing attacks that exploit both vectors (e.g., backdoor attacks), such as
maximizing the attack evasiveness with respect to various detection methods; (iv)
finally, we discuss potential countermeasures against such optimized attacks and
their technical challenges.

• TrojanZoo. In Chapter 4, we demonstrate TrojanZoo, the first open-source
platform for evaluating neural backdoor attacks/defenses in a unified, holistic,
and practical manner. Thus far, focusing on the computer vision domain, it
has incorporated 8 representative attacks, 14 state-of-the-art defenses, 6 attack
performance metrics, 10 defense utility metrics, as well as rich tools for in-depth
analysis of the attack-defense interactions. Leveraging TrojanZoo, we conduct a
systematic study on the existing attacks/defenses, unveiling their complex design
spectrum: both manifest intricate trade-offs among multiple desiderata (e.g., the
effectiveness, evasiveness, and transferability of attacks). We further explore
improving the existing attacks/defenses, leading to a number of interesting findings:
(i) one-pixel triggers often suffice; (ii) training from scratch often outperforms
perturbing benign models to craft trojan models; (iii) optimizing triggers and

3

trojan models jointly greatly improves both attack effectiveness and evasiveness;
(iv) individual defenses can often be evaded by adaptive attacks; and (v) exploiting
model interpretability significantly improves defense robustness.

• AutoML Vulnerabilities. In Chapter 5, we show that compared with their
manually designed counterparts, NAS-generated models tend to suffer greater
vulnerability to various malicious attacks (e.g., adversarial evasion, model poisoning,
and functionality stealing). Further, with both empirical and analytical evidence,
we provide possible explanations for such phenomena: given the prohibitive search
space and training cost, most NAS methods favor models that converge fast at
early training stages; this preference results in architectural properties associated
with attack vulnerability (e.g., high loss smoothness and low gradient variance).
Our findings not only reveal the relationships between model characteristics and
attack vulnerability but also suggest the inherent connections underlying different
attacks. Finally, we discuss potential remedies to mitigate such drawbacks, including
increasing cell depth and suppressing skip connects.

• Evas Attack In Chapter 6, we present Evas, a new attack that leverages NAS to
find neural architectures with inherent backdoors and exploits such vulnerability
using input-aware triggers. Compared with existing attacks, Evas demonstrates
many interesting properties: (i) it does not require polluting training data or
perturbing model parameters; (ii) it is agnostic to downstream fine-tuning or even re-
training from scratch; (iii) it naturally evades defenses that rely on inspecting model
parameters or training data. With extensive evaluation on benchmark datasets, we
show that Evas features high evasiveness, transferability, and robustness, thereby
expanding the adversary’s design spectrum. We further characterize the mechanisms
underlying Evas, which are possibly explainable by architecture-level “shortcuts”
that recognize trigger patterns.

1.3 Roadmap
The remainder of this dissertation is structured as follows. Chapter 2 reviews introduces
essential concepts and relevant literature on the security of DL systems. In Chapter 3,
Chapter 4, Chapter 5 and Chapter 6, we delve into the contributions outlined in § 1.2.
Finally, Chapter 7 provides the concluding remarks for this dissertation.

4

Chapter 2 |
Background

2.1 Fundamentals
We begin by introducing a set of fundamental concepts and assumptions.

2.1.1 Deep Neural Networks

Deep neural networks (DNNs) represent a class of machine learning models to learn
high-level abstractions of complex data using multiple processing layers in conjunction
with non-linear transformations. We primarily consider a predictive setting, in which a
DNN f (parameterized by θ) encodes a function f : X → Y. Given an input x ∈ X , f
predicts a nominal variable f(x; θ) ranging over a set of pre-defined classes Y .

We consider DNNs obtained via supervised learning. To train a model f , the training
algorithm uses a training set D, of which each instance (x, y) ∈ D ⊂ X × Y comprises
an input x and its ground-truth class y. The algorithm determines the best parameter
configuration θ for f via optimizing a loss function ℓ(f(x; θ), y) (e.g., the cross entropy
of y and f(x; θ)), which is typically implemented using stochastic gradient descent or its
variants [36].

2.1.2 Attack Vectors

DNNs are inherently susceptible to malicious manipulations. In particular, two primary
attack vectors have been considered in the literature, namely, adversarial inputs and
poisoned models.

5

2.1.2.1 Adversarial Inputs

Adversarial inputs are maliciously crafted samples to deceive target DNNs at inference
time. An adversarial input x∗ is typically generated by perturbing a benign input x◦ to
change its classification to a target class t desired by the adversary (e.g., pixel perturbation
[37] or spatial transformation [38]). To ensure the attack evasiveness, the perturbation
is often constrained to a feasible set (e.g., a norm ball Fϵ(x◦) = {x|∥x − x◦∥∞ ≤ ϵ}).
Formally, the attack is formulated as the optimization objective:

x∗ = arg min
x∈Fϵ(x◦)

ℓ(x, t; θ◦) (2.1)

where the loss function measures the difference between f ’s prediction f(x; θ◦) and the
adversary’s desired classification t.

Eq. 2.1 can be solved in many ways. For instance, FGSM [10] uses one-step descent
along ℓ’s gradient sign direction, PGD [37] applies a sequence of projected gradient descent
steps, while C&W [12] solves Eq. 2.1 with iterative optimization.

2.1.2.2 Poisoned Models

Poisoned models are adversely forged DNNs that are embedded with malicious functions
(i.e., misclassification of target inputs) during training.

This attack can be formulated as perturbing a benign DNN θ◦ to a poisoned version
θ∗.1 To ensure its evasiveness, the perturbation is often constrained to a feasible set Fδ(θ◦)
to limit the impact on non-target inputs. For instance, Fδ(θ◦) = {θ|Ex∈R[|f(x; θ) −
f(x; θ◦)|] ≤ δ} specifies that the expected difference between θ◦ and θ∗’s predictions
regarding the inputs in a reference set R stays below a threshold δ. Formally, the
adversary attempts to optimize the objective function:

θ∗ = arg min
θ∈Fδ(θ◦)

Ex◦∈T [ℓ(x◦, tx◦; θ)] (2.2)

where T represents the set of target inputs, tx◦ denotes x◦’s classification desired by the
adversary, and the loss function is defined similarly as in Eq. 2.1.

In practice, Eq. 2.2 can be solved through either polluting training data [14–16] or
modifying benign DNNs [6,17]. For instance, StingRay [14] generates poisoning data by
perturbing benign inputs close to x◦ in the feature space; PoisonFrog [15] synthesizes

1Note that below we use θ◦ (θ∗) to denote both a DNN and its parameter configuration. Also note
that the benign model θ◦ is independent of the target benign input x◦.

6

poisoning data close to x◦ in the feature space but perceptually belonging to t in the
input space; while ModelReuse [6] directly perturbs the DNN parameters to minimize
x◦’s distance to a representative input from t in the feature space.

2.1.3 Neural backdoor attacks

With the increasing use of DNN models in security-sensitive domains, the adversary
is strongly incentivized to forge malicious FEs as attack vectors and lure victim users
to re-use them during system development [16]. Specifically, through a malicious FE,
the backdoor attack infects the target model with malicious functions desired by the
adversary, which are activated once pre-defined conditions (“triggers”) are present. We
refer to such infected models as “trojan models”. Typically, a trojan model reacts to
trigger-embedded inputs (e.g., images with specific watermarks) in a highly predictable
manner (e.g., misclassified to a target class) but functions normally otherwise.

Next we present a unified attack model that subsumes most existing neural backdoor
attacks and discuss the adversary’s design spectrum.

Trigger mixing operator – For given trigger r, the operator ⊕ mixes a clean input
x◦ ∈ Rn with r to generate a trigger input x◦ ⊕ r. Typically, r comprises three parts:
(i) mask m ∈ {0, 1}n specifies where r is applied (i.e., x◦’s i-th feature x◦i is retained if
mi is on and mixed with r otherwise); (ii) transparency α ∈ [0, 1] specifies the mixing
weight; and (iii) pattern p(x◦) ∈ Rn specifies r’s color intensity, which can be a constant,
randomly drawn from a distribution (e.g., by perturbing a template), or dependent on
x◦ [39]. Formally, the trigger embedding operator is defined as:

x◦ ⊕ r = (1−m)⊙ [(1− α)x+ αp(x◦)] +m⊙ x◦ (2.3)

where ⊙ denotes element-wise multiplication.
Attack objectives – The trojan model satisfies that with high probability, (i) trigger

inputs are classified to the target class desired by the adversary and (ii) clean input are
still correctly classified. Formally, the adversary forges the malicious FE by optimizing
the following objective:

min
r∈R,θ

E(x,y)∈T [ℓ(fθ(x⊕ r), t) + λℓ(fθ(x), y)] (2.4)

where T represents the training set, t denotes the target class, and trigger r is selected from
the feasible set R (which constrains r’s shape, transparency, and/or pattern). Intuitively,

7

the first and second terms describe (i) and (ii), respectively, and the hyper-parameter λ
balances the two objectives.

Adversary’s knowledge – If the downstream classifier h is known to the adversary,
f shares the same architecture with the model h ◦ g used by the victim; otherwise,
the adversary may resort to a surrogate classifier h∗ (i.e., h∗ ◦ g) or re-define the loss
ℓ(f(x ⊕ r), t) in terms of latent representations [19, 25] as ∆(g(x ⊕ r), ϕt), that is,
the difference(e.g., MSE loss) between g(x ⊕ r) and ϕt, where ϕt is the average latent
representation of class t.

Malicious FE training – To optimize Eq. 2.4, one may perturb a benign FE [14,18]
or train the malicious FE from scratch (details in § 4.4). To satisfy the trigger constraint,
r can be fixed [16], partially defined [18] (e.g., with its mask fixed), or optimized with f
jointly [19].

2.1.4 Neural Architecture Search

Deep neural networks (DNNs) represent a class of ML models to learn high-level abstrac-
tions of complex data. We assume a predictive setting, in which a DNN fθ (parameterized
by θ) encodes a function fθ : Rn → Sm, where n and m denote the input dimensionality
and the number of classes. Given input x, f(x) is a probability vector (simplex) over m
classes.

In this dissertation, we mainly focus on one primary task of AutoML, neural architec-
ture search (NAS), which searches for performant DNN architectures for given tasks [40].
Formally, let D be the given dataset, ℓ(·, ·) be the loss function, F be the functional space
of possible models (i.e., search space), the NAS method A searches for a performant
DNN f ∗ via minimizing the following objective:

f ∗ = arg min
f∈F

E(x,y)∼D ℓ(f(x), y) (2.5)

The existing NAS methods can be categorized according to their search spaces and
strategies. In the following, we focus on the space of cell-based architectures [41–45],
which repeat the motif of a cell structure in a pre-specified arrangement, and the strategy
of differentiable NAS [43, 46, 47], which jointly optimizes the architecture and model
parameters using gradient descent, due to their state-of-the-art performance and efficiency.
Nevertheless, our discussion generalizes to alternative NAS frameworks.

Without loss of generality, we use DARTS [43] as a concrete example to illustrate
differentiable NAS. At a high level, DARTS searches for two cell structures (i.e., normal

8

cell and reduction cell) as the basic building blocks of the final architecture. As shown
in Figure 5.1, a cell is modeled as a directed acyclic graph, in which each node x(i) is a
latent representation and each directed edge (i, j) represents an operation o(i,j) applied
on x(i) (e.g., skip connect). Each node is computed based on all its predecessors:

x(j) =
∑
i<j

o(i,j)(x(i)) (2.6)

Each cell contains nin input nodes (often nin = 2), nout output nodes (often nout = 1), and
nmid intermediate nodes. Each input node takes the output from a preceding cell, the
output node aggregates the latent representations from intermediate nodes, while each
intermediate node is connected to m preceding nodes (typically m = nin).

To enable gradient-based optimization of the architecture, DARTS applies continuous
relaxation on the search space. Letting O be the set of candidate operations, the
categorical choice of an operation is reduced to a softmax over O:

ō(i,j)(x) =
∑
o∈O

exp(α(i,j)
o)∑

o′∈O exp(α(i,j)
o′)

o(x) (2.7)

where α(i,j)
o represents the trainable weight of operation o. At the end of the search,

a discrete architecture is obtained by replacing ō(i,j) with the most likely operation
arg maxo α

(i,j)
o .

The search is thus formulated as a bi-level optimization objective function:

min
α
Lval(θ∗(α), α) s.t. θ∗(α) = arg min

θ
Ltrn(θ, α) (2.8)

where Ltrn and Lval are the training and validation losses, and α = {α(i,j)} and θ denote
the architecture and model parameters, respectively. To handle the prohibitive cost of
the nested optimization, single-step gradient descent is applied to avoid solving the inner
objective exactly.

2.1.5 Other Attack Vulnerabilities

It is known that DNN models are vulnerable to a variety of attacks at both training and
inference phases. Here, we highlight the following major attacks.

Adversarial evasion – At inference time, the adversary generates an adversarial
input (x+ δ) by modifying a begin one x with imperceptible perturbation δ, to cause
the target model f to misbehave [10]. Formally, in a targeted attack, letting t be the

9

target class desired by the adversary, the attack crafts (x+ δ) by optimizing the following
objective:

min
δ∈Bϵ

ℓ(f(x+ δ), t) (2.9)

where Bϵ specifies the set of allowed perturbation(e.g., a ℓ∞-norm ball of radius ϵ). Eq. 2.9
is often solved using projected gradient descent [48] or general-purpose optimizers [49].

Model poisoning – The adversary aims to modify a target model f ’s behavior (e.g.,
overall performance degradation or misclassification of specific inputs) via polluting its
training data [50]. For instance, to cause the maximum accuracy drop, letting Dtrn and
Dtst be the training and testing sets and f be the target model, the attack crafts a set of
poisoning inputs Dpos by optimizing the the following objective (note: the adversary may
not have access to Dtrn, Dtst, or f):

max E(x,y)∼Dtstℓ(fθ∗(x), y)

s.t. θ∗ = arg min
θ

E(x,y)∼Dtrn∪Dposℓ(fθ(x), y)
(2.10)

Backdoor injection – During training, via perturbing a benign model f , the
adversary forges a trojan model fθ∗ sensitive to a trigger pattern r∗, which is used in the
downstream task by the victim; at inference time, the adversary invokes the malicious
function by feeding trigger-embedded input x+ r∗. Formally, letting Dtrn be the training
data and t be the target class desired by the adversary, the attack generates a trojan
model parameterized by θ∗ and its associated trigger r∗ by optimizing the following
objective:

min
r∈Rγ ,θ

E(x,y)∼Dtrn [ℓ(fθ(x), y) + λℓ(fθ(x+ r), t)] (2.11)

where r∗ is selected from a feasible set Rγ (e.g., a 3× 3 patch with transparency γ), the
first term enforces all clean inputs to be correctly classified, the second term ensures all
trigger inputs to be misclassified into t, and the hyper-parameter λ balances the two
objectives.

Functionality stealing – In functionality stealing [51], the adversary aims to
construct a replicate model f̂ (parameterized by θ∗) functionally similar to a victim
model f via probing f through a black-box query interface. Notably, it is different from
model stealing [52] that aims to re-construct f in terms of architectures or parameters.
Formally, letting D be the underlying data distribution, the attack generates the query-
prediction set Q (note: the adversary may not have the labeling of D, has only query

10

access to f , and is typically constrained by the number of queries to be issued), which
optimizes the following objective:

min Ex∼D ℓ(f̂θ∗(x), f(x))

s.t. θ∗ = arg min
θ

E(x,f(x))∼Q ℓ(f̂θ(x), f(x))
(2.12)

Different functionality stealing attacks differ in how Q is constructed (e.g., random
or adaptive construction).

Membership inference – In membership inference [53], given input x and model’s
prediction f(x), the adversary attempts to predict a binary variable b indicating whether
x is included in f ’s training data: b← A(x, f). The effectiveness of membership inference
relies on f ’s performance gap with respect to the training data Dtrn and testing data
Dtst. The adversary may exploit this performance gap by thresholding the confidence
score of f(x) if it is available, or estimating other signals (e.g., x’s distance to the nearest
decision boundary) if only the label of f(x) is provided [54].

2.2 Related Work

2.2.1 ML Security

With their increasing use in security-sensitive domains, DNNs are becoming the new
targets of malicious manipulations [55]. Two primary attack vectors have been considered
in the literature: adversarial inputs and poisoned models.

2.2.1.1 Adversarial Inputs

The existing research on adversarial inputs is divided in two campaigns.
One line of work focuses on developing new attacks against DNNs [9–12], with the aim

of crafting adversarial samples to force DNNs to misbehave. The existing attacks can be
categorized as untargeted (in which the adversary desires to simply force misclassification)
and targeted (in which the adversary attempts to force the inputs to be misclassified
into specific classes).

Another line of work attempts to improve DNN resilience against adversarial attacks
by devising new training strategies (e.g., adversarial training) [56–59] or detection mech-
anisms [1, 60–62]. However, the existing defenses are often penetrated or circumvented
by even stronger attacks [63,64], resulting in a constant arms race between the attackers

11

and defenders.

2.2.1.2 Poisoned Models

The poisoned model-based attacks can be categorized according to their target inputs.
In the poisoning attacks, the target inputs are defined as non-modified inputs, while
the adversary’s goal is to force such inputs to be misclassified by the poisoned DNNs
[6, 13–15, 65]. In the backdoor attacks, specific trigger patterns (e.g., a particular
watermark) are pre-defined, while the adversary’s goal is to force any inputs embedded
with such triggers to be misclassified by the poisoned models [16,17]. Note that compared
with the poisoning attacks, the backdoor attacks leverage both adversarial inputs and
poisoned models.

The existing defense methods against poisoned models mostly focus on the backdoor
attacks, which, according to their strategies, can be categorized as: (i) cleansing potential
contaminated data at the training stage [66], (ii) identifying suspicious models during
model inspection [26, 27, 67], and (iii) detecting trigger-embedded inputs at inference
time [68–71].

Despite the intensive research on adversarial inputs and poisoned models in parallel,
there is still a lack of understanding about their inherent connections. This work bridges
this gap by studying the two attack vectors within a unified framework and providing a
holistic view of the vulnerabilities of DNNs deployed in practice.

2.2.2 Backdoor Benchmarks

Some recent studies have surveyed neural backdoor attacks/defenses (e.g., [72]); yet,
none of them provides benchmark implementation or empirical evaluation to explore their
strengths/limitations. Compared with the rich collection of platforms for adversarial
attacks/defenses (e.g., CleverHans [73], DeepSec [64], and AdvBox [74]), only
few platforms currently support evaluating neural backdoors. For instance, Art [75]
integrates 3 attacks and 3 defenses.

In comparison, TrojanZoo differs in major aspects: (i) to our best knowledge, it
features the most comprehensive library of attacks/defenses; (ii) it regards the evaluation
metrics as a first-class citizen and implements 6 attack performance metrics and 10
defense utility metrics, which holistically assess given attacks/defenses; (iii) besides
reference implementation, it also provides rich utility tools for in-depth analysis of attack-
defense interactions, such as measuring feature-space similarity, tracing neural activation

12

patterns, and comparing attribution maps.
The work closest to ours is perhaps TrojAI [76], which is a contest platform for

model-inspection defenses against neural backdoors. While compared with TrojanZoo,
TrojAI provides a much larger pool of trojan models (over 10K) across different
modalities (e.g., vision and NLP), TrojanZoo departs from TrojAI in majors aspects
and offers its unique value. (i) Given its contest-like setting, TrojAI is a closed
platform focusing on evaluating model-inspection defenses (i.e., detecting trojan models)
against fixed attacks, while TrojanZoo is an open platform that provides extensible
datasets, models, attacks, and defenses. Thus, TrojanZoo may serve the needs ranging
from conducting comparative studies of existing attacks/defenses to exploring and
evaluating new attacks/defenses. (ii) While TrojAI focuses on model-inspection defenses,
TrojanZoo integrates four major defense categories. (iii) In TrojAI, for its purpose,
the concrete attacks behind the trojan models are unknown, which makes it challenging
to assess the strengths/limitations of given defenses with respect to different attacks,
while in TrojanZoo one may directly evaluate such interactions. (iv) As the attacks
are fixed in TrojAI, one may not evaluate adaptive attacks. (v) The main metric
used in TrojAI is the accuracy that defenses successfully detect trojan models, while
TrojanZoo provides a much richer set of metrics to characterize attacks/defenses.

2.2.3 Neural Architecture Search

The existing NAS methods can be categorized along three dimensions: search space,
search strategy, and performance measure.

The search space defines the possible set of candidate models. Early NAS methods
focus on the chain-of-layer structure [77], consisting of a sequence of layers. Motivated
by that hand-crafted models often consist of repeated motifs, recent methods propose to
search for such cell structures, including the connection topology and the corresponding
operation on each connection [41–45].

The search strategy defines how to efficiently explore the pre-defined search space.
Early NAS methods rely on either random search [78] or Bayesian optimization [79],
which are often limited in terms of search efficiency and model complexity. More
recent work mainly uses the approaches of reinforcement learning (RL) [77] or neural
evolution [43,45]. Empirically, neural evolution- and RL-based methods tend to perform
comparably well [45].

The performance measure evaluates the candidate models and guides the search
process. Recently, one-shot NAS has emerged as a popular performance measure. It

13

considers all candidate models as different sub-graphs of a super-net (i.e., the one-shot
model) and shares weights between candidate models [42–44]. The differentiable NAS
methods considered in this dissertation belong to this category. Different one-shot
methods differ in how the one-shot model is trained. For instance, DARTS [43] optimizes
the one-shot model with continuous relaxation of the search space.

14

Chapter 3 |
IMC: Input Model Co-optimization
Attack

3.1 Introduction
In this chapter, we seek to answer the following research questions.

• RQ1 – What are the fundamental connections between adversarial inputs and poisoned
models?

• RQ2 – What are the dynamic interactions between the two attack vectors if they are
applied together?

• RQ3 – What are the implications of such interactions for the adversary to optimize
the attack strategies?

• RQ4 – What are the potential countermeasures to defend against such enhanced attacks?

3.1.1 Our Work

This work represents a solid step towards answering the key questions above. We cast
adversarial inputs and poisoned models within a unified framework, conduct a systematic
study of their interactions, and reveal the implications for DNNs’ holistic vulnerabilities,
leading to the following interesting findings.

RA1 – We develop a new attack model that jointly optimizes adversarial inputs and
poisoned models. With this framework, we show that there exists an intricate “duality”
relationship between the two attack vectors. Specifically, they represent different routes
to achieve the same aim (i.e., misclassification of the target input): one perturbs the
input at the cost of “fidelity” (whether the attack retains the original input’s perceptual

15

quality), while the other modifies the DNN at the cost of “specificity” (whether the
attack influences non-target inputs).

RA2 – Through empirical studies on benchmark datasets and in security-critical
applications (e.g., skin cancer screening [80]), we reveal that the interactions between
the two attack vectors demonstrate intriguing “mutual-reinforcement” effects: when
launching the unified attack, leveraging one attack vector significantly amplifies the
effectiveness of the other (i.e., “the whole is much greater than the sum of its parts”).
We also provide analytical justification for such effects under a simplified setting.

RA3 – Further, we demonstrate that the mutual reinforcement effects entail a large
design spectrum for the adversary to optimize the existing attacks that exploit both
attack vectors (e.g., backdoor attacks). For instance, leveraging such effects, it is
possible to enhance the attack evasiveness with respect to multiple defense mechanisms
(e.g., adversarial training [37]), which are designed to defend against adversarial inputs
or poisoned models alone; it is also possible to enhance the existing backdoor attacks
(e.g., [16,17]) with respect to both human vision (in terms of trigger size and transparency)
and automated detection methods (in terms of input and model anomaly).

RA4 – Finally, we demonstrate that to effectively defend against such optimized at-
tacks, it is necessary to investigate the attacks from multiple complementary perspectives
(i.e., fidelity and specificity) and carefully account for the mutual reinforcement effects in
applying the mitigation solutions, which point to a few promising research directions.

To our best knowledge, this work represents the first systematic study of adversarial
inputs and poisoned models within a unified framework. We believe our findings deepen
the holistic understanding about the vulnerabilities of DNNs in practical settings and
shed light on developing more effective countermeasures.1

3.1.2 Threat Models

We assume a threat model wherein the adversary is able to exploit both attack vectors.
During training, the adversary forges a DNN embedded with malicious functions. This
poisoned model is then incorporated into the target deep learning system through either
system development or maintenance [6, 17]. At inference time, the adversary further
generates adversarial inputs to trigger the target system to malfunction.

This threat model is realistic. Due to the increasing model complexity and training
cost, it becomes not only tempting but also necessary to reuse pre-trained models [6,16,17].

1The source code and data are released at https://github.com/alps-lab/imc.

16

https://github.com/alps-lab/imc

Besides reputable sources (e.g., Google), most pre-trained DNNs on the market (e.g., [8])
are provided by untrusted third parties. Given the widespread use of deep learning in
security-critical domains, adversaries are strongly incentivized to build poisoned models,
lure users to reuse them, and trigger malicious functions via adversarial inputs during
system use. The backdoor attacks [16,17,25] are concrete instances of this threat model:
the adversary makes DNN sensitive to certain trigger patterns (e.g., watermarks), so
that any trigger-embedded inputs are misclassified at inference. Conceptually, one may
regard the trigger as a universal perturbation r [81]. To train the poisoned model θ∗, the
adversary samples inputs T from the training set D and enforces the trigger-embedded
input (x◦ + r) for each x◦ ∈ T to be misclassified to the target class t. Formally, the
adversary optimizes the objective function:

min
r∈Fϵ,θ∈Fδ(θ◦)

Ex◦∈T [ℓ(x◦ + r, t; θ)] (3.1)

where both the trigger and poisoned model need to satisfy the evasiveness constraints.
Nonetheless, in the existing backdoor attacks, Eq. 3.1 is often solved in an ad hoc manner,
resulting in suboptimal triggers and/or poisoned models. For example, TrojanNN [17]
pre-defines the trigger shape (e.g., Apple logo) and determines its pixel values in a
preprocessing step. We show that the existing attacks can be significantly enhanced
within a rigorous optimization framework (details in § 3.4).

3.2 A Unified Attack Framework
Despite their apparent variations, adversarial inputs and poisoned models share the
same objective of forcing target DNNs (modified or not) to misclassify pre-defined inputs
(perturbed or not). While intensive research has been conducted on the two attack
vectors in parallel, little is known about their fundamental connections.

3.2.1 Attack Objectives

To bridge this gap, we study the two attack vectors using input model co-optimization
(Imc), a unified attack framework. Intuitively, within Imc, the adversary is allowed
to perturb each target input x◦ ∈ T and/or to poison the original DNN θ◦, with the
objective of forcing the adversarial version x∗ of each x◦ ∈ T to be misclassified to a
target class tx◦ by the poisoned model θ∗.

17

Formally, we define the unified attack model by integrating the objectives of Eq. 2.1,
Eq. 2.2, and Eq. 3.1:

min
θ∈Fδ(θ◦)

Ex◦∈T

[
min

x∈Fϵ(x◦)
ℓ (x, tx◦; θ)

]
(3.2)

where the different terms define the adversary’s multiple desiderata:

• The loss ℓ quantifies the difference of the model prediction and the classification desired
by the adversary, which represents the attack efficacy – whether the attack successfully
forces the DNN to misclassify each input x◦ ∈ T to its target class tx◦.

• The constraint Fϵ bounds the impact of input perturbation on each target input, which
represents the attack fidelity – whether the attack retains the perceptual similarity of
each adversarial input to its benign counterpart.

• The constraint Fδ bounds the influence of model perturbation on non-target inputs,
which represents the attack specificity – whether the attack precisely directs its influence
to the set of target inputs T only.

Specificity

Efficacy

Fidelity

Figure 3.1: Adversary’s multiple objectives.

This formulation subsumes many attacks in the literature. Specifically, (i) in the case
of δ = 0 and |T | = 1, Eq. 3.2 is instantiated as the adversarial attack; (ii) in the case of
ϵ = 0, Eq. 3.2 is instantiated as the poisoning attack, which can be either a single target
(|T | = 1) or multiple targets (|T | > 1); and (iii) in the case that a universal perturbation
(x− x◦) is defined for all the inputs {x◦ ∈ T } and all the target classes {tx◦} are fixed as
t, Eq. 3.2 is instantiated as the backdoor attack. Also note that this formulation does
not make any assumptions regarding the adversary’s capability or resource (e.g., access
to the training or inference data), while it is solely defined in terms of the adversary’s
objectives.

Interestingly, the three objectives are tightly intertwined, forming a triangle structure,
as illustrated in Figure 3.1. We have the following observations.

18

• It is impossible to achieve all the objectives simultaneously. To attain attack efficacy
(i.e., launching a successful attack), it requires either perturbing the input (i.e., at the
cost of fidelity) or modifying the model (i.e., at the cost of specificity).

• It is feasible to attain two out of the three objectives at the same time. For instance, it
is trivial to achieve both attack efficacy and fidelity by setting ϵ = 0 (i.e., only model
perturbation is allowed).

• With one objective fixed, it is possible to balance the other two. For instance, with
fixed attack efficacy, it allows to trade between attack fidelity and specificity.

Next, by casting the attack vectors of adversarial inputs and poisoned models within
the Imc framework, we reveal their inherent connections and explore the dynamic
interactions among the attack efficacy, fidelity, and specificity.

3.2.2 Attack Implementation

Recall that Imc is formulated in Eq. 3.2 as optimizing the objectives over both the input
and model. While it is impractical to exactly solve Eq. 3.2 due to its non-convexity and
non-linearity, we reformulate Eq. 3.2 to make it amenable for optimization. To ease
the discussion, in the following, we assume the case of a single target input x◦ in the
target set T (i.e., |T | = 1), while the generalization to multiple targets is straightforward.
Further, when the context is clear, we omit the reference input x◦, benign model θ◦, and
target class t to simplify the notations.

3.2.2.1 Reformulation

The constraints Fϵ(x◦) and Fδ(θ◦) in Eq. 3.2 essentially bound the fidelity and specificity
losses. The fidelity loss ℓf(x) quantifies whether the perturbed input x faithfully retains its
perceptual similarity to its benign counterpart x◦ (e.g., ∥x−x◦∥); the specificity loss ℓs(θ)
quantifies whether the attack impacts non-target inputs (e.g., Ex∈R [|f(x; θ)− f(x; θ◦)|]).
According to optimization theory [82], specifying the bounds ϵ and δ on the input and
model perturbation amounts to specifying the hyper-parameters λ and ν on the fidelity
and specificity losses (the adversary is able to balance different objectives by controlling
λ and ν). Eq. 3.2 can therefore be re-formulated as follows:

min
x,θ

ℓ(x; θ) + λℓf(x) + νℓs(θ) (3.3)

19

Nonetheless, it is still difficult to directly optimize Eq. 3.3 given that the input x
and the model θ are mutually dependent on each other. Note that however ℓf does not
depend on θ while ℓs does not depend on x. We thus further approximate Eq. 3.3 with
the following bi-optimization formulation: x∗ = arg minx ℓ(x; θ∗) + λℓf(x)

θ∗ = arg minθ ℓ(x∗; θ) + νℓs(θ)
(3.4)

3.2.2.2 Optimization

This formulation naturally leads to an optimization procedure that alternates between
updating the input x and updating the model θ, as illustrated in Figure 3.2. Specifically,
let x(k) and θ(k) be the perturbed input and model respectively after the k-th iteration.
The (k + 1)-th iteration comprises two operations.

Input Perturbation

θ(k+1)

Classification Boundary

x(k)x(k+1)

θ(k)

Model Perturbation

Classification Boundary

x(k+1)

θ(k)

∆x
∆θ

Figure 3.2: Imc alternates between two operations: (i) input perturbation to update the
adversarial input x, and (ii) model perturbation to update the poisoned model θ.

Input Perturbation – In this step, with the model θ(k) fixed, it updates the perturbed
input by optimizing the objective:

x(k+1) = arg min
x

ℓ(x; θ(k)) + λℓf(x) (3.5)

In practice, this step can be approximated by applying an off-the-shelf optimizer (e.g.,
Adam [83]) or solved partially by applying gradient descent on the objective function.
For instance, in our implementation, we apply projected gradient descent (PGD [37]) as
the update operation:

x(k+1) = ΠFϵ(x◦)
(
x(k) − α sign

(
∇xℓ

(
x(k); θ(k)

)))

20

where Π is the projection operator, Fϵ(x◦) is the feasible set (i.e., {x|∥x− x◦∥ ≤ ϵ}), and
α is the learning rate.

Model Perturbation – In this step, with the input x(k+1) fixed, it searches for the model
perturbation by optimizing the objective:

θ(k+1) = arg min
θ

ℓ(x(k+1); θ) + νℓs(θ) (3.6)

In practice, this step can be approximated by running re-training over a training set
that mixes the original training data D and m copies of the current adversarial input
x(k+1). In our implementation, m is set to be half of the batch size.

Algorithm 1: Imc Attack
Input: benign input – x◦; benign model – θ◦; target class – t; hyper-parameters – λ, ν
Output: adversarial input – x∗; poisoned model – θ∗

// initialization
1 x(0), θ(0), k ← x◦, θ◦, 0;

// optimization
2 while not converged yet do

// input perturbation
3 x(k+1) = arg minx ℓ(x; θ(k)) + λℓf(x);

// model perturbation
4 θ(k+1) = arg minθ ℓ(x(k+1); θ) + νℓs(θ);
5 k ← k + 1;
6 return (x(k), θ(k));

Algorithm 1 sketches the complete procedure. By alternating between input and
model perturbation, it finds approximately optimal adversarial input x∗ and poisoned
model θ∗. Note that designed to study the interactions of adversarial inputs and poisoned
models (§ 3.3), Algorithm 1 is only one possible implementation of Eq. 3.2 under the
setting of a single target input and both input and model perturbation. To implement
other attack variants, one can adjust Algorithm 1 accordingly (§ 3.4). Also note that it
is possible to perform multiple input (or model) updates per model (or input) update to
accommodate their different convergence rates.

3.2.2.3 Analysis

Next we provide analytical justification for Algorithm 1. As Eq. 3.3 is effectively equivalent
to Eq. 3.2, Algorithm 1 approximately solves Eq. 3.3 by alternating between (i) input
perturbation – searching for x∗ = arg minx∈Fϵ(x◦) ℓ(x; θ∗) and (ii) model perturbation
– searching for θ∗ = arg minθ∈Fδ(θ◦) ℓ(x∗; θ). We now show that this implementation

21

effectively solves Eq. 3.3 (proof deferred to Appendix A).

Proposition 1. Let x∗ ∈ Fϵ(x◦) be a minimizer of the function minx ℓ(x; θ). If x∗

is non-zero, then ∇θℓ(x∗; θ) is a proper descent direction for the objective function of
minx∈Fϵ(x◦) ℓ(x; θ).

Thus, we can conclude that Algorithm 1 is an effective implementation of the Imc
attack framework. It is observed in our empirical evaluation that Algorithm 1 typically
converges within less than 20 iterations (details in § 3.3).

3.3 Mutual Reinforcement Effects
Next we study the dynamic interactions between adversarial inputs and poisoned models.
With both empirical and analytical evidence, we reveal that there exist intricate “mutual
reinforcement” effects between the two attack vectors: (i) leverage effect – with fixed attack
efficacy, at slight cost of one metric (i.e., fidelity or specificity), one can disproportionally
improve the other metric; (ii) amplification effect – with one metric fixed, at minimal
cost of the other, one can greatly boost the attack efficacy.

3.3.1 Study Setting

Datasets

To factor out the influence of specific datasets, we primarily use 4 benchmark datasets:

• CIFAR10 [84] – It consists of 32 × 32 color images drawn from 10 classes (e.g.,
‘airplane’);

• Mini-ImageNet – It is a subset of the ImageNet dataset [3], which consists of 224×224
(center-cropped) color images drawn from 20 classes (e.g., ‘dog’);

• ISIC [80] – It represents the skin cancer screening task from the ISIC 2018 challenge,
in which given 600× 450 skin lesion images are categorized into a 7-disease taxonomy
(e.g., ‘melanoma’);

• GTSRB [85] – It consists of color images of size ranging from 29 × 30 to 144 × 48,
each representing one of 43 traffic signs.

Note that among these datasets, ISIC and GTSRB in particular represent security-
sensitive tasks (i.e., skin cancer screening [80] and traffic sign recognition [86]).

22

DNNs

We apply ResNet18 [87] to CIFAR10, GTSRB and ImageNet and ResNet101 to ISIC
as the reference DNN models. Their top-1 accuracy on the testset of each dataset is
summarized in Table 3.1. Using two distinct DNNs, we intend to factor out the influence
of individual DNN characteristics (e.g., network capacity).

CIFAR10 ImageNet ISIC GTSRB

Model ResNet18 ResNet18 ResNet101 ResNet18

Accuracy 95.23% 94.56% 88.18% 99.12%
Table 3.1. Accuracy of benign DNNs on reference datasets.

Attacks

Besides the Imc attack in § 3.2.2, we also implement two variants of Imc (with the same
hyper-parameter setting) for comparison: (i) input perturbation only, in which Imc is
instantiated as the adversarial attack (i.e., PGD [37]), and (ii) model perturbation only,
in which Imc is instantiated as the poisoning attack. The implementation details are
deferred to Appendix B.

κ = 0.75
κ = 0.90

(a) CIFAR10

Poisoning Attack

Adversarial Attack

S
p

e
ci

fi
ci

ty
 L

o
ss

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

(b) ImageNet

0.0 0.2 0.4 0.6 0.8 1.0

(c) ISIC

0.0 0.2 0.4 0.6 0.8 1.0

(d) GTSRB

0.0 0.2 0.4 0.6 0.8 1.0

Fidelity Loss

Figure 3.3: Disproportionate trade-off between attack fidelity and specificity.

Measures

We quantify the attack objectives as follows.
Efficacy – We measure the attack efficacy by the misclassification confidence, ft(x∗; θ∗),

which is the probability that the adversarial input x∗ belongs to the target class t as pre-
dicted by the poisoned model θ∗. We consider the attack successful if the misclassification
confidence exceeds a threshold κ.

Fidelity – We measure the fidelity loss by the Lp-norm of the input perturbation
ℓf(x∗) ≜ ∥x∗ − x◦∥p. Following previous work on adversarial attacks [10,12,37], we use
p =∞ by default in the following evaluation.

23

Specificity – Further, we measure the specificity loss using the difference of the benign
and poisoned models on classifying a reference set R. Let Iz be the indicator function
that returns 1 if z is true and 0 otherwise. The specificity loss can be defined as:

ℓs(θ∗) ≜
∑
x∈R

If(x;θ◦)̸=f(x;θ∗)

|R|
(3.7)

With fixed attack efficacy κ, let (x∗, θ∗) be the adversarial input and poisoned model
generated by Imc, and x̄∗ and θ̄∗ be the adversarial input and poisoned model given by
the adversarial and poisoning attacks respectively. Because the adversarial and poisoning
attacks are special variants of Imc, we have x∗ = x̄∗ if θ∗ = θ◦ and θ∗ = θ̄∗ if x∗ = x◦.
Thus, in the following, we normalize the fidelity and specificity losses as ℓf(x∗)/ℓf(x̄∗) and
ℓs(θ∗)/ℓs(θ̄∗) respectively, both of which are bound to [0, 1]. For reference, the concrete
specificity losses ℓs(θ̄∗) (average accuracy drop) caused by the poisoning attack on each
dataset are summarized in Table 3.2.

κ CIFAR10 ImageNet ISIC GTSRB

0.75 0.11% 2.44% 1.53% 0.25%

0.9 0.12% 3.83% 1.62% 0.27%
Table 3.2. Specificity losses (average accuracy drop) caused by poisoning attacks on reference
datasets.

3.3.2 Effect I: Leverage Effect

In the first set of experiments, we show that for fixed attack efficacy, with disproportionally
small cost of fidelity, it is feasible to significantly improve the attack specificity, and vice
versa.

3.3.2.1 Disproportionate Trade-off

For each dataset, we apply the adversarial, poisoning, and Imc attacks against 1,000
inputs randomly sampled from the testset (as the target set T), and use the rest as the
reference set R to measure the specificity loss. For each input of T , we randomly select
its target class and fix the required attack efficacy (i.e., misclassification confidence κ).
By varying Imc’s hyper-parameters λ and ν, we control the importance of fidelity and
specificity. We then measure the fidelity and specificity losses for all the successful cases.
Figure 3.3 illustrates how Imc balances fidelity and specificity. Across all the datasets
and models, we have the following observations.

24

First, with fixed attack efficacy (i.e., κ = 0.9), by sacrificing disproportionally small
fidelity (i.e., input perturbation magnitude), Imc significantly improves the attack
specificity (i.e., accuracy drop on non-target inputs), compared with required by the
corresponding poisoning attack. For instance, in the case of GTSRB (Figure 3.3 (d)), as
the fidelity loss increases from 0 to 0.05, the specificity loss is reduced by more than 0.48.

Second, this effect is symmetric: a slight increase of specificity loss also leads to
significant fidelity improvement, compared with required by the corresponding adversarial
attack. For instance, in the case of CIFAR10 (Figure 3.3 (a)), as the specificity loss
increases from 0 to 0.1, the specificity loss drops by 0.37.

Third, higher attack efficacy constraint brings more fidelity-specificity trade-off.
Observe that across all datasets, GTSRB shows significantly larger curvature, which might
be explained by the higher model accuracy(99.12%) and larger number of classes(43).

Leverage Effect

There exists an intricate fidelity-specificity trade-off. At disproportionally small
cost of fidelity, it is possible to significantly improve specificity, and vice versa.

(a) CIFAR10

In
p

u
t

A
n

o
m

a
ly

 D
e

te
ct

io
n 1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0

(b) ImageNet (c) ISIC (d) GTSRB

1.00.80.60.40.20.0 1.00.80.60.40.20.0 1.00.80.60.40.20.0

Fidelity Loss

M
o

d
e

l A
n

o
m

a
ly

 D
e

te
ctio

n

1.0

0.8

0.6

0.4

0.2

0.0

Manifold Transformation

Curvature Profiling

Randomized Smoothing

Figure 3.4: Detection rates of input anomaly (by manifold projection [1]) and model anomaly
(by curvature profile [2]).

Fidelity Loss

Specificity Loss

M
is

cl
a

ss
if

ic
a

ti
o

n
 C

o
n

fi
d

e
n

ce

(b) ImageNet (d) GTSRB(c) ISIC(a) CIFAR10

Fidelity Loss

Specificity Loss Fidelity Loss

Specificity Loss Fidelity Loss

Specificity Loss

Figure 3.5: Average misclassification confidence (κ) as a function of fidelity and specificity
losses.

25

3.3.2.2 Empirical Implications

The leverage effect has profound implications. We show that it entails a large design
spectrum for the adversary to optimize the attack evasiveness with respect to various
detection methods (detectors). Note that here we do not consider the adversary’s
adaptiveness to specific detectors but rather focus on exposing the design spectrum
enabled from a detection perspective. In § 3.4, we show that Imc also allows to enhance
the attacks by adapting to specific detectors. To assess Imc’s evasiveness, we consider
three complementary detectors.

Input Anomaly – From the input anomaly perspective, we apply manifold transforma-
tion [1] as the detector. At a high level, it employs a reformer network to project given
inputs to the manifold spanned by benign inputs and a detector network to differentiate
benign and adversarial inputs. Besides, we apply randomized smoothing [34] as another
detector, which transforms a given DNN into a “smoothed” model and considers a given
input x∗ as adversarial if the probability difference of x∗’s largest and second largest
classes exceeds a threshold.

Model Anomaly – From the model anomaly perspective, we apply curvature profiling
[2] as the detector. Recall that the poisoning attack twists the classification boundary
surrounding the target input x∗; thus, the loss function tends to change abruptly in
x∗’s vicinity. To quantify this property, we compute the eigenvalues of the Hessian
Hx(x∗) = ∇2

xℓ(x∗). Intuitively, larger (absolute) eigenvalues indicate larger curvatures
of the loss function. We define the average (absolute) value of the top-k eigenvalues of
Hx(x∗) as x∗’s curvature profile: 1

k

∑k
i=1 |λi(Hx(x∗))|, where λi(M) is the i-th eigenvalue

of matrix M (details in Appendix B). We compare the curvature profiles of given inputs
and benign ones, and use the Kolmogorov–Smirnov statistics to differentiate the two sets.

We apply the above detectors to the adversarial inputs and poisoned models generated
by Imc under varying fidelity-specificity trade-off (κ fixed as 0.75). Figure 3.4 measures
the detection rates for different datasets. We have the following observations.

The detection rate of input anomaly grows monotonically with the fidelity loss (i.e.,
input perturbation magnitude); on the contrary, the detection rate of model anomaly
drops quickly with the fidelity loss (i.e., disproportionate specificity improvement due to
the leverage effect). For instance, in the case of ImageNet (Figure 3.4 (b)), as the fidelity
loss varies from 0 to 0.35, the detection rate of input anomaly increases from 0.17 to 0.53
by manifold transformation and from 0.16 to 0.47 by randomized smoothing, while the
detection rate of corresponding model anomaly drops from 0.63 to 0.44.

26

Moreover, across all the cases, Imc is able to balance fidelity and specificity, leading
to high evasiveness with respect to multiple detectors simultaneously. For instance, in
the case of CIFAR10 (Figure 3.4 (a)), with the fidelity loss set as 0.23, the detection rates
of manifold transformation, randomized smoothing, and curvature profiling are reduced
to 0.29, 0.43, and 0.29 respectively.

A
tt

a
ck

 S
u

cc
e

ss
 R

a
te

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) CIFAR10 (b) ImageNet (c) ISIC (d) GTSRB

S
p

e
cificity

 L
o

ss

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

IMC
PGD
Specificity Loss

Fidelity Loss

1

0.8

0.6

0.4

0.2

0

Figure 3.6: Accuracy and robustness (with respect to PGD and Imc) of adversarially re-trained
models.

(a) Adversarial Attack (b) Poisoning Attack (c) IMC Attack

x̄∗

θ̄∗

θ◦

x◦

θ◦ θ◦

x◦ x◦

ℓf (x̄∗)
ℓs(θ̄∗)

ℓs(θ∗)

ℓf (x∗)x∗

Figure 3.7: Comparison of the adversarial, poisoning, and Imc attacks under fixed attack
efficacy.

3.3.3 Effect II: Amplification Effect

Next we show that the two attack vectors are able to amplify each other and attain
attack efficacy unreachable by each vector alone.

3.3.3.1 Mutual Amplification

We measure the attack efficacy (average misclassification confidence) attainable by the
adversarial, poisoning, and Imc attacks under varying fidelity and specificity losses. The
results are shown in Figure 3.5 We have two observations.

First, Imc realizes higher attack efficacy than simply combining the adversarial and
poisoning attacks. For instance, in the case of ISIC (Figure 3.5 (c)), with fidelity loss
fixed as 0.2, the adversarial attack achieves κ about 0.25; with specificity loss fixed as
0.2, the poisoning attack attains κ around 0.4; while Imc reaches κ above 0.8 under
this setting. This is explained by that Imc employs a stronger threat model to jointly
optimize the perturbations introduced at both training and inference.

27

Second, Imc is able to attain attack efficacy unreachable by using each attack vector
alone. Across all the cases, Imc achieves κ = 1 under proper fidelity and specificity
settings, while the adversarial (or poisoning) attack alone (even with fidelity or specificity
loss fixed as 1) is only able to reach κ less than 0.9.

Amplification Effect

Adversarial inputs and poisoned models amplify each other and give rise to attack
efficacy unreachable by using each vector alone.

3.3.3.2 Empirical Implications

This amplification effect entails profound implications for the adversary to design more
effective attacks. Here we explore to use adversarial training [37,88], one state-of-the-art
defense against adversarial attacks [63], to cleanse poisoned models. Starting with the
poisoned model, the re-training iteratively updates it with adversarial inputs that deceive
its current configuration (i.e., adversarial “re-training”).

Dataset
Maximum Perturbation

PGD Imc

CIFAR10 3× 10−2 2× 10−3

ImageNet 4× 10−3 1× 10−3

ISIC 3× 10−2 1× 10−3

GTSRB 3× 10−2 3× 10−2

Table 3.3. Maximum input perturbation magnitude for PGD and Imc.

We perform adversarial re-training on each poisoned model θ∗ generated by Imc under
varying fidelity-specificity trade-off (implementation details in Appendix B). We evaluate
the re-trained model θ̃∗ in terms of (i) the attack success rate of PGD (i.e., θ̃∗’s robustness
against regular adversarial attacks), (ii) the attack success rate of θ∗’s corresponding
adversarial input x∗ (i.e., θ̃∗’s robustness against Imc), and (iii) θ̃∗’s overall accuracy over
benign inputs in the testset. Note that in order to work against the re-trained models,
PGD is enabled with significantly higher perturbation magnitude than Imc. Table 3.3
summarizes PGD and Imc’s maximum allowed perturbation magnitude (i.e., fidelity loss)
for each dataset.

Observe that adversarial re-training greatly improves the robustness against PGD,
which is consistent with prior work [37, 88]. Yet, due to the amplification effect, Imc
retains its high attack effectiveness against the re-trained model. For instance, in the

28

case of ISIC (Figure 3.6 (c)), even with the maximum perturbation, PGD attains less than
40% success rate; in comparison, with two orders of magnitude lower perturbation, Imc
succeeds with close to 80% chance. This also implies that adversarial re-training is
in general ineffective against Imc. Also observe that by slightly increasing the input
perturbation magnitude, Imc sharply improves the specificity of the poisoned model (e.g.,
average accuracy over benign inputs), which is attributed to the leverage effect. Note
that while here Imc is not adapted to adversarial re-training, it is possible to further
optimize the poisoned model by taking account of this defense during training, similar
to [25].

3.3.4 Analytical Justification

We now provide analytical justification for the empirical observations regarding the
mutual reinforcement effects.

3.3.4.1 Loss Measures

Without loss of generality, we consider a binary classification setting (i.e., Y = {0, 1}),
with (1 − t) and t being the benign input x◦’s ground-truth class and the adversary’s
target class respectively. Let ft(x; θ) be the model θ’s predicted probability that x belongs
to t. Under this setting, we quantify the set of attack objectives as follows.

Efficacy – The attack succeeds only if the adversarial input x∗ and poisoned model θ∗

force ft(x∗; θ∗) to exceed 0.5 (i.e., the input crosses the classification boundary). We thus
use κ ≜ ft(x◦; θ◦)− 0.5 to measure the current gap between θ◦’s prediction regarding x◦

and the adversary’s target class t.
Fidelity – We quantify the fidelity loss using the Lp-norm of the input perturbation:

ℓf(x∗) = ∥x∗ − x◦∥p. For two adversarial inputs x∗, x
′
∗, we say x∗ < x′

∗ if ℓf(x∗) < ℓf(x′
∗).

For simplicity, we use p = 2, while the analysis generalizes to other norms as well.
As shown in Figure 3.7 (a), in a successful adversarial attack (with the adversarial

input x̄∗), if the perturbation magnitude is small enough, we can approximate the fidelity
loss as x◦’s distance to the classification boundary [89]: ℓf(x̄∗) ≈ κ/∥∇xℓ(x◦; θ◦)∥2, where
a linear approximation is applied to the loss function. In the following, we denote
h ≜ ℓf(x̄∗).

Specificity – Recall that the poisoned model θ∗ modifies x◦’s surrounding classification
boundary, as shown in Figure 3.7 (b). While it is difficult to exactly describe the
classification boundaries encoded by DNNs [90], we approximate the local boundary

29

surrounding an input with the surface of a d-dimensional sphere, where d is the input
dimensionality. This approximation is justified as follows.

First, it uses a quadratic form, which is more expressive than a linear approximation
[89]. Second, it reflects the impact of model complexity on the boundary: the maximum
possible curvature of the boundary is often determined by the model’s inherent complexity
[90]. For instance, the curvature of a linear model is 0, while a one hidden-layer neural
network with an infinite number of neurons is able to model arbitrary boundaries [91].
We relate the model’s complexity to the maximum possible curvature, which corresponds
to the minimum possible radius of the sphere.

The boundaries before and after the attacks are thus described by two hyper-spherical
caps. As the boundary before the attack is fixed, without loss of generality, we assume it
to be flat for simplicity. Now according to Eq. 3.7, the specificity loss is measured by the
number of inputs whose classifications are changed due to θ. Following the assumptions,
such inputs reside in a d-dimensional hyper-spherical cap, as shown in Figure 3.7 (b).
Due to its minuscule scale, the probability density pdata in this cap is roughly constant.
Minimizing the specificity loss is thus equivalent to minimizing the cap volume [92],
which amounts to maximizing the curvature of the sphere (or minimizing its radius). Let
r be the minimum radius induced by the model. We quantify the specificity loss as:

ℓs(θ) = pdata
π

d−1
2 rd

Γ
(

d+1
2

) ∫ arccos(1− h
r)

0
sind(t) dt (3.8)

where Γ(z) ≜
∫ ∞

0 tz−1e−t dt is the Gamma function.

3.3.4.2 Mutual Reinforcement Effects

Let x̄∗, θ̄∗ be the adversarial input and poisoned model given by the adversarial and
poisoning attacks respectively, and (x∗, θ∗) be the adversarial input and poisoned model
generated by Imc. Note that for fixed attack efficacy, x∗ = x̄∗ if θ∗ = θ◦ and θ∗ = θ̄∗ if
x∗ = x◦.

Leverage Effect – We now quantify the leverage effect in the case of trading fidelity
for specificity, while the alternative case can be derived similarly. Specifically, this effect
is measured by the ratio of specificity “saving” versus fidelity “cost”, which we term as
the leverage effect coefficient:

ϕ(x∗, θ∗) ≜
1− ℓs(θ∗)/ℓs(θ̄∗)
ℓf(x∗)/ℓf(x̄∗)

(3.9)

30

Intuitively, the numerator is the specificity “saving”, while the denominator is the
fidelity “cost”. We say that the trade-off is significantly disproportionate, if ϕ(x∗, θ∗)≫ 1,
i.e., the saving dwarfs the cost. It is trivial to verify that if ϕ(x∗, θ∗)≫ 1 then the effect
of trading specificity for fidelity is also significant ϕ(θ∗, x∗)≫ 1.2

Consider the Imc attack as shown in Figure 3.7 (c). The adversarial input x∗ moves
towards the classification boundary and reduces the loss by κ′(κ′ < κ). The perturbation
magnitude is thus at least κ′/∥∇xℓ(x◦; θ◦)∥2. The relative fidelity loss is given by:

ℓf(x∗)/ℓf(x̄∗) = κ′/κ (3.10)

Below we use z = κ′/κ for a short notation.
Meanwhile, it is straightforward to derive that the height of the hyper-spherical cap

is (1− z)h. The relative specificity loss is thus:

ℓs(θ∗)/ℓs(θ̄∗) =
∫ arccos(1− h

r
+z h

r)
0 sind(t) dt∫ arccos(1− h

r)
0 sind(t) dt

(3.11)

Instantiating Eq. 3.9 with Eq. 3.10 and Eq. 3.11, the leverage effect of trading fidelity
for specificity is defined as:

ϕ(x∗, θ∗) =

∫ arccos(1− h
r)

arccos(1− h
r

+z h
r) sind(t) dt

z
∫ arccos(1− h

r)
0 sind(t) dt

(3.12)

The following proposition justifies the effect of trading fidelity for specificity (proof in
Appendix A). A similar argument can be derived for trading specificity for fidelity.

Proposition 2. The leverage effect defined in Eq. 3.12 is strictly greater than 1 for any
0 < z < 1.

Intuitively, to achieve fixed attack efficacy (κ), with a slight increase of fidelity loss
ℓf(x∗), the specificity loss ℓs(θ∗) is reduced super-linearly.

Figure 3.8 evaluates this effect as a function of relative fidelity loss under varying
setting of h/r. Observe that the effect is larger than 1 by a large margin, especially for
small fidelity loss κ′/κ, which is consistent with our empirical observation: with little
fidelity cost, it is possible to significantly reduce the specificity loss.

2If (1− x)/y ≫ 1 then (1− y)/x≫ 1 for 0 < x, y < 1.

31

5

10

15

20

25

L
e
v

e
ra

g
e
 E

ff
e
ct

0 0.1 0.2 0.3 0.4 0.5

Relative Fidelity Loss

0

Figure 3.8: Leverage effect with respect to the relative fidelity loss z and the minimum radius r
(with d = 50).

Amplification Effect – From Proposition 2, we can also derive the explanation for the
amplification effect.

Consider an adversarial input x∗ that currently achieves attack efficacy κ′ with
relative fidelity loss κ′/κ. Applying the poisoned model θ∗ with relative specificity loss
(1 − κ′/κ)/ϕ(x∗, θ∗), the adversary is able to attain attack efficacy κ. In other words,
the poisoned model θ∗ “amplifies” the attack efficacy of the adversarial input x∗ by κ/κ′

times, with cost much lower than required by using the adversarial attack alone to reach
the same attack efficacy (i.e., 1− κ′/κ), given that ϕ(x∗, θ∗)≫ 1 in Proposition 2.

3.4 IMC-Optimized Attacks
In this section, we demonstrate that Imc, as a general attack framework, can be exploited
to enhance existing attacks with respect to multiple metrics. We further discuss potential
countermeasures against such optimized attacks and their technical challenges.

3.4.1 Attack Optimization

3.4.1.1 Basic Attack

We consider TrojanNN [17], a representative backdoor attack, as the reference attack
model. At a high level, TrojanNN defines a specific pattern (e.g., watermark) as the
trigger and enforces the poisoned model to misclassify all the inputs embedded with this
trigger. As it optimizes both the trigger and poisoned model, TrojanNN enhances other
backdoor attacks (e.g., BadNet [16]) that employ fixed trigger patterns.

32

Specifically, the attack consists of three steps. (i) First, the trigger pattern is partially
defined in an ad hoc manner; that is, the watermark shape (e.g., square) and embedding
position are pre-specified. (ii) Then, the concrete pixel values of the trigger are optimized
to activate neurons rarely activated by benign inputs, in order to minimize the impact
on benign inputs. (iii) Finally, the model is re-trained to enhance the effectiveness of the
trigger pattern.

Note that within TrojanNN, the operations of trigger optimization and model re-
training are executed independently. It is thus possible that after re-training, the neurons
activated by the trigger pattern may deviate from the originally selected neurons, resulting
in suboptimal trigger patterns and/or poisoned models. Also note that TrojanNN works
without access to the training data; yet, to make fair comparison, in the following
evaluation, TrojanNN also uses the original training data to construct the backdoors.

3.4.1.2 Enhanced Attacks

We optimize TrojanNN within the Imc framework. Compared with optimizing the
trigger only [93], Imc improves TrojanNN in terms of both attack effectiveness and
evasiveness. Specifically, let r denote the trigger. We initialize r with the trigger
pre-defined by TrojanNN and optimize it using the co-optimization procedure. To this
end, we introduce a mask m for the given benign input x◦. For x◦’s i-th dimension
(pixel), we define m[i] = 1 − p (p is the transparency setting) if i is covered by the
watermark and m[i] = 0 otherwise. Thus the perturbation operation is defined as
x∗ = ψ(x◦, r;m) = x◦ ⊙ (1−m) + r ⊙m, where ⊙ denotes element-wise multiplication.
We reformulate the backdoor attack in Eq. 3.3 as follows:

min
θ,r,m

Ex◦∈T [ℓ(ψ(x◦, r;m), t; θ)] + λℓf(m) + νℓs(θ) (3.13)

where we define the fidelity loss in terms of m. Typically, ℓf(m) is defined as m’s L1

norm and ℓs(θ) is the accuracy drop on benign cases similar to Eq. 3.7.
Algorithm 2 sketches the optimization procedure of Eq. 3.13. It alternates between

optimizing the trigger and mask (line 4) and optimizing the poisoned model (line 5).
Specifically, during the trigger perturbation step, we apply the Adam optimizer [83].
Further, instead of directly optimizing r which is bounded by [0, 1], we apply change-of-
variable and optimize over a new variable wr ∈ (−∞,+∞), such that r = (tanh(wr)+1)/2
(the same trick is also applied on m). Note that Algorithm 2 represents a general
optimization framework, which is adaptable to various settings. For instance, one may

33

specify all the non-zero elements of m to share the same transparency or optimize
the transparency of each element independently (details in § 3.4.2 and § 3.4.3). In the
following, we term the enhanced TrojanNN as TrojanNN∗.

Algorithm 2: TrojanNN∗ Attack
Input: initial trigger mask – m◦; benign model – θ◦; target class – t; hyper-parameters

– λ, ν
Output: trigger mask – m; trigger pattern – r, poisoned model – θ∗

// initialization
1 θ(0), k ← θ◦, 0;
2 m(0), r(0) ← m0, TrojanNN(m0);

// optimization
3 while not converged yet do

// trigger perturbation
4 r(k+1),m(k+1) ← arg minr,m Ex◦∈T [ℓ(ψ(x◦, r;m), t; θ(k))] + λℓf(m);

// model perturbation
5 θ(k+1) ← arg minθ Ex◦∈T [ℓ(ψ(x◦, r

(k);m(k)), t; θ)] + νℓs(θ);
6 k ← k + 1;
7 return (m(k), r(k), θ(k));

3.4.2 Optimization against Human Vision

We first show that TrojanNN∗ is optimizable in terms of its evasiveness with respect to
human vision. The evasiveness is quantified by the size and transparency (or opacity) of
trigger patterns. Without loss of generality, we use square-shaped triggers. The trigger
size is measured by the ratio of its width over the image width.

(b) GTSRB(a) CIFAR10

Trigger Transparency Trigger Size

M
is

cl
a

ss
if

ic
a

ti
o

n
 C

o
n

fi
d

e
n

ce

Trigger Transparency Trigger Size

Figure 3.9: Attack efficacy of TrojanNN∗ as a function of trigger size and transparency.

Figure 3.9 illustrates TrojanNN∗’s attack efficacy (average misclassification confidence
of trigger-embedded inputs) under varying evasiveness constraints. Observe that the

34

efficacy increases sharply as a function of the trigger size or opacity. Interestingly, the
trigger size and opacity also demonstrate strong mutual reinforcement effects: (i) leverage
- for fixed attack efficacy, by a slight increase in opacity (or size), it significantly reduces
the size (or opacity); (ii) amplification - for fixed opacity (or size), by slightly increasing
size (or opacity), it greatly boosts the attack efficacy.

TrojanNN TrojanNN* (opt. w.r.t. opacity) TrojanNN* (opt. w.r.t. size)

IS
IC

G
T

S
R

B

Figure 3.10: Sample triggers generated by TrojanNN (a), TrojanNN∗ optimizing opacity (b) and
optimizing size (c).

To further validate the leverage effect, we compare the triggers generated by TrojanNN
and TrojanNN∗. Figure 3.10 shows sample triggers given by TrojanNN and TrojanNN∗

under fixed attack efficacy (with κ = 0.95). It is observed that compared with TrojanNN,
TrojanNN∗ significantly increases the trigger transparency (under fixed size) or minimizes
the trigger size (under fixed opacity).

To further validate the amplification effect, we measure the attack success rate (ASR)
of TrojanNN and TrojanNN∗ under varying evasiveness constraints (with κ = 0.95), with
results shown in Figure 3.11 and 3.12. It is noticed that across all the datasets, TrojanNN∗

outperforms TrojanNN by a large margin under given trigger size and opacity. For
instance, in the case of GTSRB (Figure 3.11 (d)), with trigger size and transparency fixed
as 0.4 and 0.7, TrojanNN∗ outperforms TrojanNN by 0.39 in terms of ASR; in the case of
CIFAR10 (Figure 3.12 (a)), with trigger size and transparency fixed as 0.3 and 0.2, the
ASRs of TrojanNN∗ and TrojanNN differ by 0.36.

We can thus conclude that leveraging the co-optimization framework, TrojanNN∗ is
optimizable with respect to human detection without affecting its attack effectiveness.

3.4.3 Optimization against Detection Methods

In this set of experiments, we demonstrate that TrojanNN∗ is also optimizable in terms
of its evasiveness with respect to multiple automated detection methods.

35

A
tt

a
ck

 S
u

cc
e

ss
 R

a
te

Trigger Size

1.0

0.8

0.6

0.4

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.05 0.1 0.15 0.2 0.25 0.30.05 0.1 0.15 0.2 0.25 0.3

0.0

(a) CIFAR10 (b) ImageNet (c) ISIC (d) GTSRB

TrojanNN (α = 0.0)
TrojanNN (α = 0.7)
TrojanNN* (α = 0.0)
TrojanNN* (α = 0.7)

Figure 3.11: ASR of TrojanNN and TrojanNN∗ as functions of trigger size.
1.0

0.8

0.6

0.4

0.2

Trigger Transparency

(a) CIFAR10 (b) ImageNet (c) ISIC (d) GTSRB

0.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.8

0.0

A
tt

a
ck

 S
u

cc
e
ss

 R
a
te

TrojanNN (size = 0.3)
TrojanNN (size = 0.4)
TrojanNN* (size = 0.3)
TrojanNN* (size = 0.4)

TrojanNN (size = 0.12)
TrojanNN (size = 0.21)
TrojanNN* (size = 0.12)
TrojanNN* (size = 0.21)

TrojanNN (size = 0.12)
TrojanNN (size = 0.21)
TrojanNN* (size = 0.12)
TrojanNN* (size = 0.21)

TrojanNN (size = 0.3)
TrojanNN (size = 0.4)
TrojanNN* (size = 0.3)
TrojanNN* (size = 0.4)

Figure 3.12: ASR of TrojanNN and TrojanNN∗ as functions of trigger transparency.

3.4.3.1 Backdoor Detection

The existing backdoor detection methods can be roughly classified in two categories
based on their application stages and detection targets. The first class is applied
at the model inspection stage and aims to detect suspicious models and potential
backdoors [26, 27, 67]; the other class is applied at inference time and aims to detect
trigger-embedded inputs [68–71]. In our evaluation, we use NeuralCleanse [26] and
STRIP [70] as the representative methods of the two categories. In Appendix C, we also
evaluate TrojanNN and TrojanNN∗ against Abs [27], another state-of-the-art backdoor
detector.

NeuralCleanse – For a given DNN, NeuralCleanse searches for potential triggers in
every class. Intuitively, if a class is embedded with a backdoor, the minimum perturbation
(measured by its L1-norm) necessary to change all the inputs in this class to the target
class is abnormally smaller than other classes. Empirically, after running the trigger search
algorithm over 1,600 randomly sampled inputs for 10 epochs, a class with its minimum
perturbation normalized by median absolute deviation exceeding 2.0 is considered to
contain a potential backdoor with 95% confidence.

STRIP – For a given input, STRIP mixes it up with a benign input using equal
weights, feeds the mixture to the target model, and computes the entropy of the prediction
vector (i.e., self-entropy). Intuitively, if the input is embedded with a trigger, the mixture
is still dominated by the trigger and tends to be misclassified to the target class, resulting
in relatively low self-entropy; otherwise, the self-entropy tends to be higher. To reduce

36

variance, for a given input, we average its self-entropy with respect to 8 randomly sampled
benign inputs. We set the positive threshold as 0.05 and measure STRIP’s effectiveness
using F-1 score.

NeuralCleanse STRIP
(a) CIFAR10

A
n

o
m

a
ly

 M
e

a
su

re

5

4.3

3.6

2.9

2.2

1.5

TrojanNN
TrojanNN*

0.9

0.72

0.54

0.36

0.18S
T

R
IP

 F
1

 S
co

re
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

NeuralCleanse STRIP

A
n

o
m

a
ly

 M
e

a
su

re

S
T

R
IP

 F
1

 S
co

re

0.9

0.75

0.6

0.45

0.3

0.15

5

4

3

2

1

0

Trigger Size
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(b) GTSRB

0

TrojanNN
TrojanNN*

TrojanNN
TrojanNN*

TrojanNN
TrojanNN*

Figure 3.13: Detection of TrojanNN and TrojanNN∗ by NeuralCleanse and STRIP on CIFAR10
and GTSRB.

3.4.3.2 Attack Optimization

We optimize TrojanNN∗ in terms of its evasiveness with respect to both NeuralCleanse
and STRIP. Both detectors aim to detect anomaly under certain metrics, which we
integrate into the loss terms in Algorithm 2.

Specifically, NeuralCleanse searches for potential trigger with minimum L1-norm,
which is related to the mask m. We thus instantiate the fidelity loss ℓf(m) as m’s
L1-norm and optimize it during the trigger perturbation step. To normalize ℓf(m) to
an appropriate scale, we set the hyper-parameter λ as the number of pixels covered by
the trigger. Meanwhile, STRIP mixes adversarial and benign inputs and computes the
self-entropy of the mixtures, which highly depends on the model’s behaviors. We thus
instantiate the specificity loss ℓs(θ) as Ex,x′∈R [−H(f(x∗

2 + x′

2 ; θ))], in which we randomly
mix up an adversarial input x∗ (via perturbing a benign input x) and another benign
input x′ and maximize the self-entropy of their mixture.

3.4.3.3 Detection Evasiveness

We apply the above two detectors to detect TrojanNN and TrojanNN∗, with results
summarized in Figure 3.13. We have the following observations. First, the two detectors
are fairly effective against TrojanNN. In comparison, TrojanNN∗ demonstrates much
higher evasiveness. For instance, in the case of GTSRB (Figure 3.13 (b)), with trigger
size fixed as 0.4, the anomaly measures of TrojanNN∗ and TrojanNN by NeuralCleanse
differ by over 2, while the F-1 scores on TrojanNN∗ and TrojanNN by STRIP differ by
more than 0.3. We thus conclude that TrojanNN∗ is optimizable in terms of evasiveness

37

with respect to multiple detection methods simultaneously.

3.4.4 Potential Countermeasures

Now we discuss potential mitigation against Imc-optimized attacks and their technical
challenges. It is shown above that using detectors against adversarial inputs or poisoned
models independently is often insufficient to defend against Imc-optimized attacks, due
to the mutual reinforcement effects. One possible solution is to build ensemble detectors
that integrate individual ones and detect Imc-optimized attacks based on both input
and model anomaly.

To assess the feasibility of this idea, we build an ensemble detector against TrojanNN∗

via integrating NeuralCleanse and STRIP. Specifically, we perform the following detection
procedure: (i) applying NeuralCleanse to identify the potential trigger, (ii) for a given
input, attaching the potential trigger to a benign input, (iii) mixing this benign input
up with the given input under varying mixture weights, (iv) measuring the self-entropy
of these mixtures, and (v) using the standard deviation of the self-entropy values to
distinguish benign and trigger-embedded inputs.

Intuitively, if the given input is trigger-embedded, the mixture combines two trigger-
embedded inputs and is thus dominated by one of the two triggers, regardless of the
mixture weight, resulting in a low deviation of self-entropy. In comparison, if the given
input is benign, the mixture is dominated by the trigger only if the weight is one-sided,
resulting in a high deviation of self-entropy.

0.1 0.2 0.3 0.1 0.2 0.3

(a) CIFAR10 (b) GTSRB

STRIP
Ensemble STRIP

S
T

R
IP

 F
1

 S
co

re

0.6

0.5

0.4

0.3

0.2

0.1

0

Trigger Size

0.8

0.6

0.4

0.2

0

Figure 3.14: Detection of basic and ensemble STRIP against TrojanNN∗ on CIFAR10 and
GTSRB.

We compare the performance of the basic and ensemble STRIP against TrojanNN∗.
As shown in Figure 3.14, the ensemble detector performs slightly better across all the
cases, implying the effectiveness of the ensemble approach. However, the improvement
is marginal (less than 0.2), especially in the case of small-sized triggers. This may be

38

explained by the inherent challenges of defending against Imc-optimized attacks: due to
the mutual reinforcement effects, TrojanNN∗ attains high attack efficacy with minimal
input and model distortion; it thus requires to carefully account for such effects in order
to design effective countermeasures.

3.5 Conclusion
This work represents a solid step towards understanding adversarial inputs and poisoned
models in a unified manner. We show both empirically and analytically that (i) there
exist intriguing mutual reinforcement effects between the two attack vectors, (ii) the
adversary is able to exploit such effects to optimize attacks with respect to multiple
metrics, and (iii) it requires to carefully account for such effects in designing effective
countermeasures against the optimized attacks. We believe our findings shed light on
the holistic vulnerabilities of DNNs deployed in realistic settings.

This work also opens a few avenues for further investigation. First, besides the
targeted, white-box attacks considered in this dissertation, it is interesting to study
the connections between the two vectors under alternative settings (e.g., untargeted,
black-box attacks). Second, enhancing other types of threats (e.g., latent backdoor
attacks) within the input-model co-optimization framework is a direction worthy of
exploration. Finally, devising a unified robustness metric accounting for both vectors
may serve as a promising starting point for developing effective countermeasures.

39

Chapter 4 |
TrojanZoo: Unified Evaluation of
Neural Backdoors

4.1 Introduction
With the rapid development of new attacks/defenses, a number of open questions have
emerged:

RQ1 – What are the strengths and limitations of different attacks/defenses?
RQ2 – What are the best practices (e.g., optimization strategies) to operate them?
RQ3 – How can the existing backdoor attacks/defenses be further improved?
Despite their importance for assessing and mitigating the vulnerabilities incurred

by pre-trained DNNs, these questions are largely under-explored due to the following
challenges.

Non-holistic evaluations – Most studies conduct evaluation with a fairly limited set of
attacks/defenses, resulting in incomplete assessment. For instance, it is unknown whether
STRIP [32] is effective against the newer Abe attack [94]. Further, the evaluation
often uses simple, macro-level metrics, failing to comprehensively characterize given
attacks/defenses. For instance, most studies use attack success rate (ASR) and clean
accuracy drop (CAD) to assess attack performance, which is insufficient to describe the
attack’s ability of trading between these two metrics.

Non-unified platforms – Due to the lack of unified benchmarks, different attack-
s/defenses are often evaluated under inconsistent settings, leading to non-comparable
conclusions. For instance, Tnn [18] and Lb [25] are evaluated with distinct trigger
definitions (i.e., shape, size, and transparency), datasets, and DNNs, making it difficult
to directly compare their assessment.

40

Non-adaptive attacks – The evaluation of the existing defense [26, 29, 31, 32] often
assume static, non-adaptive attacks, without fully accounting for the adversary’s possible
countermeasures, which however is critical for modeling the adversary’s optimal strategies
and assessing the attack vulnerabilities in realistic settings.

Our Work

To this end, we design, implement, and evaluate TrojanZoo, an open-source platform
for assessing neural backdoor attacks/defenses in a unified, holistic, and practical manner.
Our contributions are summarized in the following three aspects.

Platform – To our best knowledge, TrojanZoo represents the first open-source plat-
form designed for evaluating neural backdoor attacks/defenses. To date, TrojanZoo has
incorporated 8 representative attacks, 14 state-of-the-art defenses, 6 attack performance
metrics, 10 defense utility metrics, as well as a benchmark suite of 5 DNN models, 5
downstream models, and 6 datasets. Further, TrojanZoo implements a rich set of tools
for in-depth analysis of the attack-defense interactions, including measuring feature-space
similarity, tracing neural activation patterns, and comparing attribution maps.

Assessment – Leveraging TrojanZoo, we conduct a systematic study on the
existing attacks/defenses, unveiling the complex design spectrum for the adversary and
the defender. Different attacks manifest trade-offs among effectiveness, evasiveness,
and transferability. For instance, weaker attacks (i.e., lower ASR) tend to show higher
transferability. Meanwhile, different defenses demonstrate trade-offs among robustness,
utility-preservation, and detection accuracy. For instance, while generally effective against
a variety of attacks, model sanitization [31, 37] also incur a significant accuracy drop.
Such observations also imply the importance of using comprehensive metrics to evaluate
neural backdoor attacks/defenses.

Exploration – We further explore improving existing attacks/defenses, leading to a
number of previously unknown findings including (i) one-pixel triggers often suffice (over
95% ASR); (ii) training from scratch often outperforms perturbing benign models to forge
trojan models; (iii) leveraging DNN architectures (e.g., skip connects) in optimizing trojan
models improves the attack effectiveness; (iv) most individual defenses are vulnerable to
adaptive attacks; and (v) exploiting model interpretability significantly improves defense
robustness. We envision that the TrojanZoo platform and our findings will facilitate
future research on neural backdoors and shed light on designing and building DL systems
in a more secure and informative manner.

41

4.2 Platform

Defense Library

(14 Defense Methods)

Attack Library

(8 Attack Methods)

(10 Defense Metrics)

Defense Metrics

Clean Inputs

Benign Models

FilteringTransformation

Input Defense

Attack-Defense
Analysis

Attack Performance
Analysis

Analysis Engine

Sanitization Inspection

Model Defense

Trojan Models

Trigger Inputs

Defense Utility
Analysis

Utility Tools

(6 Attack Metrics)

Attack Metrics

Figure 4.1: Overall system design of TrojanZoo.

As illustrated in Figure 4.1, TrojanZoo comprises three major components: (i) the
attack library integrates a set of representative attacks that, for given benign models and
clean inputs, are able to generate trojan models and trigger inputs; (ii) the defense library
integrates a set of state-of-the-art defenses that are able to provide model- and input-
level protection against trojan models and trigger inputs; and (iii) the analysis engine,
equipped with attack performance metrics, defense utility metrics, and feature-rich utility
tools, is able to conduct unified and holistic evaluation across different attacks/defenses.

In its current implementation, TrojanZoo has incorporated 9 attacks, 14 defenses, 6
attack performance metrics, and 10 defense utility metrics, which we systemize as follows.

4.2.1 Attack Library

While neural backdoor attacks can be characterized from a number of aspects, here we
focus on 4 key design choices by the adversary that directly impact attack performance.
Table 4.1 summarizes the representative neural backdoor attacks currently implemented
in TrojanZoo, which are characterized along the above 4 dimensions. More specifically,

Non-optimization – The attack simply solves Eq. 2.4 under pre-defined triggers
(i.e., shape, transparency, and pattern) without optimization for other desiderata.

– BadNet (Bn) [16], as the representative, pre-defines trigger r, generates trigger
inputs {(x⊕ r, t)}, and crafts the trojan model f ∗ by re-training a benign model f with
such data.

Architecture modifiability – whether the attack is able to change the DNN
architecture. Being allowed to modify both the architecture and the parameters enables
a larger attack spectrum, but also renders the trojan model more susceptible to certain

42

Attack
Architecture Trigger Fine-tuning Defense

Modifiability Optimizability Survivability Adaptivity

Bn [16] # # # #

Esb [95] # # #

Tnn [18] # G# # #

Rb [96] # G# # #

Tb [23] # G# # #

Lb [25] # # #

Abe [94] # # #

Imc [19] #

Table 4.1. Summary of representative neural backdoor attacks currently implemented in
TrojanZoo (– full optimization, G# – partial optimization, # – no optimization)

defenses (e.g., model specification checking).
– Embarrassingly-Simple-Backdoor (Esb) [95], as the representative, modifies f ’s

architecture by adding a module which overwrites the prediction as t if r is recognized.
Without disturbing f ’s original configuration, f ∗ retains f ’s predictive power on clean
inputs.

Trigger optimizability – whether the attack uses a fixed, pre-defined trigger or
optimizes it during crafting the trojan model. Trigger optimization often leads to stronger
attacks with respect to given desiderata (e.g., trigger stealthiness).

– TrojanNN (Tnn) [18] fixes r’s shape and position, optimizes its pattern to activate
neurons rarely activated by clean inputs in pre-processing, and then forges f ∗ by re-
training f in a manner similar to Bn.

– Reflection-Backdoor (Rb) [96] optimizes trigger stealthiness by defining r as the
physical reflection of a clean image xr (selected from a pool): r = xr ⊗ k, where k is a
convolution kernel, and ⊗ is the convolution operator.

– Targeted-Backdoor (Tb) [23] randomly generates r’s position in training, which
makes f ∗ effective regardless of r’s position and allows the adversary to optimize r’s
stealthiness by placing it at the most plausible position (e.g., an eyewear watermark over
eyes).

Fine-tuning survivability – whether the backdoor remains effective if the model is
fine-tuned. A pre-trained model is often composed with a classifier and fine-tuned using
the data from the downstream task. It is desirable to ensure that the backdoor remains
effective after fine-tuning.

– Latent Backdoor (Lb) [25] accounts for the impact of downstream fine-tuning

43

by optimizing g with respect to latent representations rather than final predictions.
Specifically, it instantiates Eq. 2.4 with the following loss function: ℓ(g(x ⊕ r), t) =
∆(g(x ⊕ r), ϕt), where ∆ measures the difference of two latent representations and ϕt

denotes the average representation of class t, defined as ϕt = arg minϕ E(x,t)∈T [g(x)].
Defense adaptivity – whether the attack is optimizable to evade possible defenses.

For the attack to be effective, it is essential to optimize the evasiveness of the trojan
model and the trigger input with respect to the deployed defenses.

– Adversarial-Backdoor-Embedding (Abe) [94] accounts for possible defenses in
forging g∗. In solving Eq. 2.4, Abe also optimizes the indistinguishability of the latent
representations of trigger and clean inputs. Specifically, it uses a discriminative network
d to predict the representation of a given input x as trigger or clean. Formally, the loss
is defined as ∆(d ◦ g(x), b(x)), where b(x) encodes whether x is trigger or clean, while g∗

and d are trained using an adversarial learning framework [97].
Multi-optimization – whether the attack is optimizable with respect to multiple

objectives listed above.
– Input-Model Co-optimization (Imc) [19] is motivated by the mutual-reinforcement

effect between r and f ∗: optimizing one amplifies the effectiveness of the other. Instead
of solving Eq. 2.4 by first pre-defining r and then optimizing f ∗, Imc optimizes r and
f ∗ jointly, which enlarges the search spaces for r and f ∗, leading to attacks satisfying
multiple desiderata (e.g., fine-tuning survivability and defense adaptivity).

4.2.2 Attack Performance Metrics

Currently, TrojanZoo incorporates 6 metrics to assess the effectiveness, evasiveness, and
transferability of given attacks.

Attack success rate (ASR) – which measures the likelihood that trigger inputs are
classified to the target class t:

Attack Success Rate (ASR) = # successful trials
total trials

(4.1)

Typically, higher ASR indicates more effective attacks.
Trojan misclassification confidence (TMC) – which is the average confidence score

assigned to class t of trigger inputs in successful attacks. Intuitively, TMC complements
ASR and measures attack efficacy from another perspective.

44

Neural Backdoor Defense Category Design Rationale

Randomized-Smoothing (Rs) [34]
Input

Reformation

A’s fidelity (x’s and x∗’s surrounding class boundaries)

Down-Upsampling (Du) [98] A’s fidelity (x’s and x∗’s high-level features)

Manifold-Projection (Mp) [99] A’s fidelity (x’s and x∗’s manifold projections)

Activation-Clustering (Ac) [33]

Input

Filtering

distinct activation patterns of {x} and {x∗}

Spectral-Signature (Ss) [100] distinct activation patterns of {x} and {x∗} (spectral space)

STRIP (Strip) [32] distinct self-entropy of x and x∗ mixtures with clean inputs

NEO (Neo) [35] sensitivity of f ∗’s prediction to trigger perturbation

Adversarial-Retraining (Ar) [37] Model A’s fidelity (x’s and x∗’s surrounding class boundaries)

Fine-Pruning (Fp) [31] Sanitization A’s use of neurons rarely activated by clean inputs

NeuralCleanse (Nc) [26]

Model

Inpsection

abnormally small perturbation from other classes to t in f

DeepInspect (Di) [28] abnormally small perturbation from other classes to t in f ∗

TABOR (Tabor) [29] abnormally small perturbation from other classes to t in f

NeuronInspect (Ni) [30] distinct explanations of f and f ∗ w.r.t. clean inputs

ABS (Abs) [27] A’s use of neurons elevating t’s prediction
Table 4.2. Summary of representative neural backdoor defenses currently implemented in
TrojanZoo (A – backdoor attack, x – clean input, x∗ – trigger input, f – benign model, f∗ –
trojan model, t – target class)

Clean accuracy drop (CAD) – which measures the difference of the classification
accuracy of benign and trojan models; CAD measures whether the attack directs its
influence to trigger inputs only.

Clean classification confidence (CCC) – which is the average confidence assigned to
the ground-truth classes of clean inputs; CCC complements CAD by measuring attack
specificity from the perspective of classification confidence.

Efficacy-specificity AUC (AUC) – which quantifies the aggregated trade-off between
attack efficacy (measured by ASR) and attack specificity (measured by CAD). As revealed
in [19], there exists an intricate balance: at a proper cost of specificity, it is possible to
significantly improve efficacy, and vice versa; AUC measures the area under the ASR-CAD
curve. Intuitively, smaller AUC implies a more significant trade-off effect.

Neuron-separation ratio (NSR) – which measures the intersection between neurons
activated by clean and trigger inputs. In the penultimate layer of the model, we find Nc

and Nt, the top-k active neurons with respect to clean and trigger inputs, respectively,

45

and calculate their jaccard index:

Neuron Separation Ratio (NSR) = 1− |Nt ∩Nc|
|Nt ∪Nc|

(4.2)

Intuitively, NSR compares the neural activation patterns of clean and trigger inputs.

4.2.3 Defense Library

The existing defenses against neural backdoors, according to their strategies, can be
classified into 4 major categories, as summarized in Table 4.2. Notably, we focus on the
setting of transfer learning or outsourced training, which precludes certain other defenses
such as purging poisoning training data [101]. Next, we detail the 14 representative
defenses currently implemented in TrojanZoo.

Input reformation – which, before feeding an incoming input to the model, first
reforms it to mitigate the influence of the potential trigger, yet without explicitly detecting
whether it is a trigger input. It typically exploits the high fidelity of attack A, that is, A
tends to retain the perceptual similarity of a clean input x and its trigger counterpart x∗.

– Randomized-Smoothing (Rs) [34] exploits the premise that A retains the similarity
of x and x∗ in terms of their surrounding class boundaries and classifies an input by
averaging the predictions within its vicinity (via adding Gaussian noise).

– Down-Upsampling (Du) [98] exploits the premise that A retains the similarity
of x and x∗ in terms of their high-level features while the trigger r is typically not
perturbation-tolerant. By downsampling and then upsampling x∗, it is possible to
mitigate r’s influence.

– Manifold-Projection (Mp) [99] exploits the premise that A retains the similarity of
x and x∗ in terms of their projections to the data manifold. Thus, it trains an autoencoder
to learn an approximate manifold, which projects x∗ to the manifold.

Input filtering – which detects whether an incoming input is embedded with a
trigger and possibly recovers the clean input. It typically distinguishes clean and trigger
inputs using their distinct characteristics.

– Activation-Clustering (Ac) [33] distinguishes clean and trigger inputs by clustering
their latent representations. While Ac is also applicable for purging poisoning data, we
consider its use as an input filtering method at inference time.

– Spectral-Signature (Ss) [100] exploits the similar property in the spectral space.
– Strip [32] mixes a given input with a clean input and measures the self-entropy of

46

its prediction. If the input is trigger-embedded, the mixture remains dominated by the
trigger and tends to be misclassified, resulting in low self-entropy.

– Neo [35] detects a trigger input by searching for a position, if replaced by a “blocker”,
changes its prediction, and uses this substitution to recover its original prediction.

Model sanitization – which, before using a pre-trained model f , sanitizes it to
mitigate the potential backdoor, yet without explicitly detecting whether f is trojaned.

– Adversarial-Retraining (Ar) [37] treats trigger inputs as one type of adversarial
inputs and applies adversarial training over the pre-trained model to improves its
robustness to backdoor attacks.

– Fine-Pruning (Fp) [31] uses the property that the attack exploits spare model
capacity. It thus prunes rarely used neurons and then applies fine-tuning to defend
against pruning-aware attacks.

Model inspection – which determines whether f is a trojan model and, if so,
recovers the target class and the potential trigger, at the model checking stage.

– NeuralCleanse (Nc) [26] searches for potential triggers in each class t. If t is
trigger-embedded, the minimum perturbation required to change the predictions of the
inputs in other classes to t is abnormally small.

– DeepInspect (Di) [28] follows a similar pipeline but uses a generative network to
generate trigger candidates.

– Tabor [29] extends Nc by adding a new regularizer to control the trigger search
space.

– NeuronInspect (Ni) [30] exploits the property that the explanation heatmaps of
benign and trojan models manifest distinct characteristics. Using the features extracted
from such heatmaps, Ni detects trojan models as outliers.

– Abs [27] inspects f to sift out abnormal neurons with large elevation difference
(i.e., active only with respect to one specific class) and identifies triggers by maximizing
abnormal neuron activation while preserving normal neuron behaviors.

4.2.4 Defense Utility Metrics

Currently, TrojanZoo incorporates 10 metrics to evaluate the robustness, utility-
preservation, and genericity of given defenses. The metrics are tailored to the objectives
of each defense category (e.g., trigger input detection). For ease of exposition, below we
consider the performance of a given defense D with respect to a given attack A.

47

Attack rate deduction (ARD) – which measures the difference of A’s ASR before and
after D. Intuitively, ARD indicates D’s impact on A’s efficacy. Intuitively, larger ARD
indicates more effective defense. We also use A’s TMC to measure D’s influence on the
classification confidence of trigger inputs.

Clean accuracy drop (CAD) – which measures the difference of the ACC of clean
inputs before and after D is applied. It measures D’s impact on clean inputs. Note that
CAD here is defined differently from its counterpart in attack performance metrics. We
also use CCC to measure D’s influence on the classification confidence of clean inputs.

True positive rate (TPR) – which, for input-filtering methods, measures the perfor-
mance of detecting trigger inputs.

True Positive Rate (TPR) = # detected trigger inputs
total trigger inputs

(4.3)

Correspondingly, we use false positive rate (FPR) to measure the error of misclassifying
clean inputs as trigger inputs.

Anomaly index value (AIV) – which measures the anomaly of trojan models in model-
inspection defenses. Most existing methods (e.g., [26–29]) formalize finding trojan models
as outlier detection: each class t is associated with a score (e.g., minimum perturbation);
if its score significantly deviates from others, t is considered to contain a backdoor. AIV,
the absolute deviations from median normalized by median absolute deviation (MAD),
provide a reliable measure for such dispersion. Typically, t with AIV larger than 2 has
over 95% probability of being anomaly.

Mask L1 norm (MLN) – which measures the ℓ1-norm of the triggers recovered by
model-inspection methods.

Mask jaccard similarity (MJS) – which further measures the intersection between
the recovered trigger and the ground-truth trigger (injected by the adversary). Let mo

and mr be the masks of original and recovered triggers. We define MJS as the Jaccard
similarity of mo and mr :

Mask Jaccard Similarity (MJS) = |O(mo) ∩O(mr)|
|O(mo) ∪O(mr)| (4.4)

where O(m) denotes the set of non-zero elements in m.
Average running time (ART) – which measures D’s overhead. For model sanitization

or inspection, which is performed offline, ART is measured as the running time per model;
while for input filtering or reformation, which is executed online, ART is measured as the

48

execution time per input.

4.3 Assessment
Leveraging TrojanZoo, we conduct a systematic assessment of the existing attacks and
defenses and unveil their complex design spectrum: both attacks and defenses tend to
manifest intricate trade-offs among multiple desiderata. We begin by describing the
setting of the evaluation.

4.3.1 Experimental Setting

Dataset # Class # Dimension Model ACC

CIFAR10 10 32×32
ResNet18 95.37%

DenseNet121 93.84%

VGG13 92.44%

CIFAR100 100 32×32

ResNet18

73.97%

GTSRB 43 32×32 98.18%

ImageNet 10 224×224 92.40%

VGGFace2 20 224×224 90.77%
Table 4.3. ACC of benign models over different datasets.

Datasets – In the evaluation, we primarily use 5 datasets: CIFAR10 [84], CIFAR100
[84], ImageNet [3], GTSRB [85], and VGGFace2 [102], with their statistics summarized
in Table 4.3.

Models – We consider 3 representative DNN models: VGG [103], ResNet [87], and
DenseNet [104]. Using models of distinct architectures (e.g., residual blocks versus skip
connections), we factor out the influence of individual model characteristics. By default,
we assume the downstream classifier comprising one fully-connected layer with softmax
activation (1Fcn). We also consider other types of classifiers, including Bayes, SVM,
and Random Forest. The ACC of benign models is summarized in Table 4.3.

Attacks, Defenses, and Metrics – In the evaluation, we exemplify with 9 attacks in
Table 4.1 and 12 defenses in Table 4.2, and measure them using all the metrics in § 4.2.2
and § 4.2.4. In all the experiments, we generate 10 trojan models for a given attack under
each setting and 100 pairs of clean-trigger inputs with respect to each trojan model. The
reported results are averaged over these cases.

49

4.3.2 Attack Evaluation

We evaluate the existing attacks under the vanilla setting (without defenses), aiming
to understand the impact of various design choices on the attack performance. Overall,
different attacks manifest intricate trade-offs among effectiveness, evasiveness, and
transferability, as detailed below.

4.3.2.1 Effectiveness vs. Evasiveness (Trigger)

We start with the effectiveness-evasiveness trade-off. Intuitively, the effectiveness measures
whether the trigger inputs are successfully misclassified into the target class, while the
evasiveness measures whether the trigger inputs and trojan models are distinguishable
from their normal counterparts. Here, we first consider the evasiveness of triggers.

A
S

R
 (

%
)

Trigger size ()

BN LBTNN IMCRB TB ESB ABE

T
M

C

0

20

40

60

80

100

0.0

1.0

2 2 3 3 4 4 5 5

Figure 4.2: ASR and TMC with respect to trigger size (α= 0.8).

Trigger size – Recall that the trigger definition comprises maskm, transparencyα,
and pattern p. We measure how the attack effectiveness varies with the trigger size |m|.
To make fair comparison, we bound the clean accuracy drop (CAD) of all the attacks
below 3% via controlling the number of optimization iterationsniter. Figure 4.2 plots
the attack success rate (ASR) and trojan misclassification confidence (TMC) of various
attacks under varying |m| (with fixed α = 0.8).

Observe that most attacks seem insensitive to |m|: as |m| varies from 2×2 to 5×5,
the ASR of most attacks increases by less than 10%, except Rb with over 30% growth.
This may be attributed to its additional constraints: Rb defines the trigger to be the
reflection of another image; thus, increasing |m| may improve its perturbation spaces.
Compared with other attacks, Tb and Esb perform poorly because Tb aims to force

50

inputs with random triggers to be misclassified while Esb is unable to account for trigger
transparency during training. Also observe that the TMC of most attacks remains close
to 1.0 regardless of |m|.

A
S

R
 (

%
)

0

20

40

60

80

100

Trigger transparency ()
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BN LB

TNN

IMC

RB

TB

ESB

ABE

Figure 4.3: ASR with respect to trigger transparency (|m| = 3×3).

Trigger transparency – Under the same setting, we evaluate the impact of trigger
transparencyα. Figure 4.3 plots the ASR of various attacks as a function of α (|m| =
3×3).

Compared with trigger size, α has a more profound impact. The ASR of most attacks
drops sharply once α exceeds 0.6, among which Tb approaches 10% if α ≥ 0.8, and Esb
works only if α is close to 0, due to its reliance on recognizing the trigger precisely to
overwrite the model prediction. Meanwhile, Lb and Imc seem insensitive to α. This may
be attributed to that Lb optimizes trojan models with respect to latent representations
(rather than final predictions), while Imc optimizes trigger patterns and trojan models
jointly. Both strategies may mitigate α’s impact.

Data complexity – The trade-off between attack effectiveness and trigger evasiveness
is especially evident for complex data. We compare the ASR and TMC of given attacks
on different datasets, with results in Table 4.4.

We observe that the class-space size (the number of classes) negatively affects the
attack effectiveness. For example, the ASR of Bn drops by 7.9% from CIFAR10 to
CIFAR100. Intuitively, it is more difficult to force trigger inputs from all the classes to
be misclassified in a larger output space. Moreover, it tends to require more significant
triggers to achieve comparable attack performance on more complex data. For instance,
for Imc to attain similar ASR on CIFAR10 and ImageNet, it needs to either increase
trigger size (from 3×3 to 7×7) or reduce trigger transparency (from 0.8 to 0.0).

51

Attack
CIFAR10 CIFAR100 ImageNet

|m|= 3, α= 0.8 |m|= 3, α= 0.8 |m|= 3, α= 0 |m|= 7, α= 0.8

Bn 72.4 (0.96) 64.5 (0.96) 90.0 (0.98) 11.4 (0.56)

Tnn 91.5 (0.97) 89.8 (0.98) 95.2 (0.99) 11.6 (0.62)

Rb 52.1 (1.0) 42.8 (0.95) 94.6 (0.98) 11.2 (0.59)

Tb 11.5 (0.66) 23.4 (0.75) 82.8 (0.97) 11.4 (0.58)

Lb 100.0 (1.0) 97.8 (0.99) 97.4 (0.99) 11.4 (0.59)

Esb 10.3 (0.43) 1.0 (0.72) 100.0 (0.50) N/A

Abe 74.3 (0.91) 67.9 (0.96) 82.6 (0.97) 12.00 (0.50)

Imc 100.0 (1.0) 98.8 (0.99) 98.4 (1.0) 96.6 (0.99)
Table 4.4. Impact of data complexity on ASR and TMC.

Remark 1 – There exists a trade-off between attack effectiveness and trigger evasiveness (in
terms of transparency), which is especially evident for complex data.

4.3.2.2 Effectiveness vs. Evasiveness (Model)

Further, we consider the evasiveness of trojan models, which is measured by their difference
from benign models in terms of classifying clean inputs. One intriguing property of
the attacks is the trade-off between maximizing the attack effectiveness with respect to
trigger inputs and minimizing the influence over clean inputs. Here, we characterize this
trade-off via varying the fraction of trigger inputs in the training data. For each attack,
we bound its CAD within 3%, measure its highest and lowest ASR (which corresponds to
its lowest and highest CAD respectively), and then normalize the ASR and CAD measures
to [0, 1].

Figure 4.4 visualizes the normalized CAD-ASR trade-off. Observe that the curves of all
the attacks manifest strong convexity, indicating the “leverage” effects [19]: it is practical
to greatly improve ASR at a disproportionally small cost of CAD. Also, observe that
different attacks feature varying Area Under the Curve (AUC). Intuitively, a smaller AUC
implies a stronger leverage effect. Among all the attacks, Imc shows the smallest AUC.
This may be explained by that Imc uses the trigger-model co-optimization framework,
which allows the adversary to maximally optimize ASR at given CAD.

Remark 2 – The trade-off between attack effectiveness and model evasiveness demonstrates
strong “leverage” effects.

52

BN (0.852) LB (0.850)

IMC (0.966)RB (0.931)

TB (0.852)

TNN (0.903) ABE (0.837)

N
o

rm
a
li

z
e
d

 A
S

R

0.0

0.2

0.4

0.6

0.8

1.0

Normalized CAD

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.4: Trade-off between attack effectiveness and model evasiveness (|m| = 3× 3, α= 0.8).

4.3.2.3 Effectiveness vs. Transferability

Next, we evaluate the transferability of different attacks to the downstream tasks. We
consider two scenarios: (i) the pre-training and downstream tasks share the same dataset;
and (ii) the downstream task uses a different dataset.

Transferability (classifier) – In (i), we focus on evaluating the impact of downstream-
classifier selection and fine-tuning strategy on the attacks. We consider 5 different
classifiers (1/2 fully-connected layer, Bayes, SVM, and Random Forest) and 3 fine-tuning
strategies (none, partial tuning, and full tuning). Notably, the adversary is unaware of
such settings.

Attack
Fine-Tuning Downstream Classifier

None Partial Full 2-FCN Bayes SVM RF

Bn 72.4 72.3 30.4 72.2 73.5 64.7 66.0

Tnn 91.5 89.6 27.1 90.8 90.3 82.9 81.1

Rb 79.2 77.0 12.4 78.3 76.8 61.5 63.7

Lb 100.0 100.0 95.3 99.9 99.9 99.9 99.8

Imc 100.0 99.9 88.7 99.9 100.0 99.9 99.8
Table 4.5. Impact of fine-tuning and downstream-classifier selection.

Table 4.5 compares the ASR of 5 attacks with respect to varying downstream classifiers
and fine-tuning strategies. Observe that fine-tuning has a large impact on attack
effectiveness. For instance, the ASR of Tnn drops by 62.5% from partial- to full-tuning.
Yet, Lb and Imc are less sensitive to fine-tuning, due to their optimization strategies.
Also, note that the attack performance seems agnostic to the downstream classifier.

53

This may be explained by that the downstream classifier in practice tends to manifest
“pseudo-linearity” [6].

Transferability (data) – In (ii), we focus on evaluating the transferability of the
attacks across different datasets.

Transfer Attack

Setting Bn Tnn Rb Lb Imc

C → C 94.5 (0.99) 100.0 (1.0) 100.0 (1.0) 100.0 (1.0) 100.0 (1.0)

C → I 8.4 (0.29) 7.8 (0.29) 8.6 (0.30) 8.2 (0.30) 9.4 (0.32)

I → I 90.0 (0.98) 95.2 (0.99) 94.6 (0.98) 97.4 (0.99) 98.4 (1.0)

I → C 77.0 (0.84)) 26.9 (0.72) 11.0 (0.38) 10.0 (0.38) 14.3 (0.48)
Table 4.6. ASR and TMC of transfer attacks across CIFAR10 (C) and ImageNet (I) (|m|= 3×3,
α= 0.0).

Defense
Attack

Bn Tnn Rb Tb Lb Esb Abe Imc

– 93.3 (0.99) 99.9 (1.0) 99.8 (1.0) 96.7 (0.99) 100.0 (1.0) 100.0 (0.86) 95.3 (0.99) 100.0 (1.0)

Rs -0.5 (0.99) -0.0 (1.0) -0.0 -(1.0) -0.3 (0.99) -0.0 (1.0) -89.1 (0.86) -0.5 (0.99) -0.0 (1.0)

Du -2.2 (0.99) -0.4 (1.0) -5.4 (1.0) -67.8 (1.0) -4.1 (1.0) -89.9 (0.86) -0.5 (0.99) -0.2 (1.0)

Mp -6.0 (0.99) -37.4 (1.0) -78.6 (1.0) -11.0 (0.99) -42.6 (1.0) -87.8 (0.86) -4.6 (0.99) -16.0 (1.0)

Fp -82.9 (0.60) -86.5 (0.64) -89.1 (0.73) -38.0 (0.89) -27.6 (0.82) -100.0 (0.81) -84.5 (0.64) -26.9 (0.83)

Ar -83.2 (0.84) -89.6 (0.85) -89.8 (0.62) -86.2 (0.63) -90.1 (0.83) -100.0 (0.86) -85.3 (0.81) -89.7 (0.83)
Table 4.7. ARD and TMC of attack-agnostic defenses against various attacks.

We evaluate the effectiveness of transferring attacks across two datasets, CIFAR10
and ImageNet, with results summarized in Table 4.6. We have the following findings.
Several attacks (e.g., Bn) are able to transfer from ImageNet to CIFAR10 to a certain
extent, but most attacks fail to transfer from CIFAR10 to ImageNet. The finding may
be justified as follows. A model pre-trained on complex data (i.e., ImageNet) tends
to maintain its effectiveness of feature extraction on simple data (i.e., CIFAR10) [80];
as a side effect, it may also preserve its effectiveness of propagating trigger patterns.
Meanwhile, a model pre-trained on simple data may not generalize well to complex data.
Moreover, compared with stronger attacks in non-transfer cases (e.g., Lb), Bn shows
much higher transferability. This may be explained by that to maximize the attack
efficacy, the trigger and trojan model often need to “over-fit” the training data, resulting
in poor transferability.

54

Remark 3 – Most attacks transfer across classifiers; however, weaker attacks demonstrate
higher transferability across datasets.

4.3.3 Defense Evaluation

As the defenses from different categories bear distinct objectives (e.g., detecting trigger
inputs versus cleansing trojan models), below we evaluate each defense category separately.

4.3.3.1 Robustness vs. Utility

As input transformation and model sanitization mitigate backdoors in an attack-agnostic
manner, while input filtering and model inspection have no direct influence on clean
accuracy, we focus on evaluating attack-agnostic defenses to study the trade-off between
robustness and utility preservation.

Robustness – With the no-defense (vanilla) case as reference, we compare different
defences in terms of attack rate deduction (ARD) and trojan misclassification confidence
(TMC), with results shown in Table 4.7. We have the following observations: (i) Mp and
Ar are the most robust methods in the categories of input transformation and model
sanitization, respectively. (ii) Fp seems robust against most attacks except Lb and Imc,
which is explained as follows: unlike attacks (e.g., Tnn) that optimize the trigger with
respect to selected neurons, Lb and Imc perform optimization with respect to all the
neurons, making them immune to the pruning of Fp. (iii) Most defenses are able to
defend against Esb (over 85% ARD), which is attributed to its hard-coded trigger pattern
and modified DNN architecture: slight perturbation to the trigger input or trojan model
may destroy the embedded backdoor.

Defense
Attack

– Bn Tnn Rb Tb Lb Esb Abe Imc

– 95.4 95.3 95.2 95.4 95.3 95.5 95.3 95.0 95.5

Rs -0.3 -0.6 -0.3 -0.4 -0.4 -0.3 -0.3 -0.4 -0.5

Du -4.0 -4.5 -4.5 -4.4 -4.3 -4.3 -4.0 -4.9 -4.6

Mp -11.2 -11.9 -11.3 -10.8 -11.3 -11.4 -11.2 -11.9 -11.0

Fp -0.1 -0.2 +0.0 +0.0 +0.0 -0.2 -0.2 +0.3 -0.4

Ar -11.1 -11.1 -10.4 -10.4 -10.4 -10.9 -10.9 -10.5 -11.4
Table 4.8. Impact of defenses on classification accuracy (−: clean model without attack/defense).

55

Utility – We now measure the impact of defenses on the accuracy of classifying
clean inputs. Table 4.8 summarizes the results. With the vanilla setting as the baseline,
most defenses tend to negatively affect clean accuracy, yet with varying impact. For
instance, across all the cases, Fp attains the least CAD across all the cases, mainly due
to its fine-tuning; Rs and Ar cause about 0.4% and 11% CAD, respectively. This is
explained by the difference of their underlying mechanisms: although both attempt to
alleviate the influence of trigger patterns, Rs smooths the prediction of an input x over
its vicinity, while Ar forces the model to make consistent predictions in x’s vicinity.
Notably, comparing with Table 4.7, while Mp and Ar seem generically effective against
all the attacks, they also suffer over 10% CAD, indicating the trade-off between robustness
and utility preservation.

Remark 4 – The design of attack-agnostic defenses faces the trade-off between robustness
and utility preservation.

0.0

0.2

0.4

0.8

0.6

Figure 4.5: TPR of Neo and Strip under varying trigger definition (left: |m| = 3× 3, right:
|m| = 6× 6; lower: α = 0.0, upper: α = 0.8).

4.3.3.2 Detection Accuracy of Different Attacks

We evaluate the effectiveness of input filtering by measuring its accuracy in detecting
trigger inputs.

Detection accuracy – For each attack, we randomly generate 100 pairs of trigger-
clean inputs and measure the true positive (TPR) and false positive (FPR) rates of Strip
and Neo, two input filtering methods. To make comparison, we fix FPR as 0.05 and
report TPR in Table 4.9.

We have the following findings. (i) Strip is particularly effective against Lb and
Imc (over 0.9 TPR). Recall that Strip detects a trigger input using the self-entropy
of its mixture with a clean input. This indicates that the triggers produced by Lb and
Imc effectively dominate the mixtures, which is consistent with the findings in other
experiments (cf. Figure 4.1). (ii) Neo is effective against most attacks to a limited

56

Defense
Attack

Bn Tnn Rb Tb Lb Esb Abe Imc

Strip 0.07 0.13 0.34 0.27 0.91 0.10 0.07 0.99

Neo 0.29 0.23 0.29 0.36 0.29 0.64 0.28 0.29
Table 4.9. TPR of Neo and Strip (FPR = 0.05, α= 0.0).

extent (less than 0.3 TPR), but especially effective against Esb (over 0.6 TPR), due
to its requirement for recognizing the trigger pattern precisely to overwrite the model
prediction.

Impact of trigger definition – We also evaluate the impact of trigger definition
on input filtering, with results in Figure 4.5. With fixed trigger transparency, Neo
constantly attains higher TPR under larger triggers; in comparison, Strip seems less
sensitive but also less effective under larger triggers. This is attributed to the difference
of their detection rationale: given input x, Neo searches for the “tipping” position in x

to cause prediction change, which is clearly subjective to the trigger size; while Strip
measures the self-entropy of x’s mixture with a clean input, which does not rely on the
trigger size.

Remark 5 – The design of input filtering defenses needs to balance the detection accuracy
with respect to different attacks.

Defense
Attack

Bn Tnn Rb Tb Lb Esb Abe Imc

Nc 3.08 2.69 2.48 2.44 2.12 0.04 2.67 1.66

Di 0.54 0.46 0.39 0.29 0.21 0.01 0.76 0.26

Tabor 3.26 2.49 2.32 2.15 2.01 0.89 2.44 1.89

Ni 1.28 0.59 0.78 1.11 0.86 0.71 0.41 0.52

Abs 3.02 4.16 4.10 15.55 2.88 8.45 3.15
Table 4.10. AIV of clean models and trojan models by various attacks.

4.3.3.3 Detection Accuracy vs. Recovery Capability

We evaluate model-inspection defenses in terms of their effectiveness of (i) identifying
trojan models and (ii) recovering trigger patterns.

Detection Accuracy – Given defense D and model f , we measure the anomaly
index value (AIV) of all the classes; if f is a trojan model, we use the AIV of the target
class to quantify D’s TPR of detecting trojan models and target classes; if f is a clean

57

model, we use the largest AIV to quantify D’s FPR of misclassifying clean models.

Defense
Attack

Bn Tnn Rb Tb Lb Esb Abe Imc

MLN MJS MLN MJS MLN MJS MLN MJS MLN MJS MLN MJS MLN MJS MLN MJS

Nc 4.98 0.55 4.65 0.70 2.64 0.89 3.53 7.52 0.21 35.16 0.00 5.84 0.42 8.63 0.13

Di 9.65 0.25 6.88 0.17 4.77 0.30 8.44 20.17 0.21 0.00 0.06 10.21 0.30 12.78 0.25

Tabor 5.63 0.70 4.47 0.42 3.03 0.70 3.67 7.65 0.21 43.37 0.00 5.65 0.42 8.69 0.13

Abs 17.74 0.42 17.91 0.55 17.60 0.70 16.00 17.29 0.42 17.46 0.31 17.67 0.31
Table 4.11. MLN and MJS of triggers recovered by model-inspection defenses with respect to
various attacks (Note: as the trigger position is randomly chosen in Tb, its MJS is un-defined).

The results are shown in Table 4.10. We observe: (i) compared with other defenses,
Abs is highly effective in detecting trojan models (with largest AIV), attributed to its
neuron sifting strategy; (ii) Imc seems evasive to most defenses (with AIV below 2),
explainable by its trigger-model co-optimization strategy that minimizes model distortion;
(iii) most model-inspection defenses are either ineffective or inapplicable against Esb, as
it keeps the original DNN intact but adds an additional module. This contrasts the high
effectiveness of other defenses against Esb (cf. Table 4.7).

Recovery Capability – For successfully detected trojan models, we further evaluate
the trigger recovery of various defenses by measuring the mask ℓ1 norm (MLN) of recovered
triggers and mask jaccard similarity (MJS) between the recovered and injected triggers,
with results shown in Table 4.11. While the ground-truth trigger has MLN = 9 (α= 0.0,
|m|= 3×3), most defenses recover triggers of varying MLN and non-zero MJS, indicating
that they recover triggers different from, yet overlapping with, the injected ones. In
contrast to Table 4.10, Nc and Tabor outperform Abs in trigger recovery, which may be
explained by that while Abs relies on the most abnormal neuron to recover the trigger,
the actual trigger may be embedded into multiple neurons. This may also be corroborated
by that Abs attains the highest MJS on Lb and Imc, which tend to generate triggers
embedded in a few neurons (Table 4.9).

Remark 6 – The design of model-inspection defenses faces the trade-off between the accuracy
of detecting trojan models and the effectiveness of recovering trigger patterns.

58

4.4 Exploration
Next, we examine the current practices of operating backdoor attacks and defenses and
explore potential improvement.

4.4.1 Attack – Trigger

We first explore improving the trigger definition by answering the following questions.
RQ1: Is it necessary to use large triggers? – It is found in § 4.3.2 that attack efficacy

seems insensitive to trigger size. We now consider the extreme case that the trigger
is defined as a single pixel and evaluate the efficacy of different attacks (constrained
by CAD below 5%), with results show in Table 4.12. Note that the trigger definition is
inapplicable to Esb, due to its requirement for trigger size.

Bn Tnn Rb Tb Lb Esb Abe Imc

95.1 98.1 77.7 98.0 100.0 90.0 99.7

(0.99) (0.96) (0.96) (0.99) (0.99) (0.97) (0.99)
Table 4.12. ASR and TMC of single-pixel triggers (α= 0.0, CAD ≤ 5%).

Interestingly, with single-pixel triggers, most attacks attain ASR comparable with the
cases of larger triggers (cf. Figure 4.2). This implies the existence of universal, single-pixel
perturbation [81] with respect to trojan models (but not clean models!), highlighting the
mutual-reinforcement effects between trigger inputs and trojan models [19].

Remark 7 – There often exists universal, single-pixel perturbation with respect to trojan
models (but not clean models).

RQ2: Is it necessary to use regular-shaped triggers? – The triggers in the existing
attacks are mostly regular-shaped (e.g., square), which seems a common design choice.
We explore the impact of trigger shape on attack efficacy. We fix |m|= 9 but select the
positions of |m| pixels independently and randomly. Table 4.13 compares ASR under the
settings of regular and random triggers.

Trigger Bn Tnn Rb Lb Imc

Regular 72.4 91.5 79.2 100.0 100.0

Random 97.6 98.5 92.7 97.6 94.5
Table 4.13. Comparison of regular and random triggers.

Except for Lb and Imc which already attain extremely high ASR under the regular-

59

trigger setting, all the other attacks achieve higher ASR under the random-trigger setting.
For instance, the ASR of Bn increases by 25.2%. This may be explained by that lifting
the spatial constraint on the trigger entails a larger optimization space for the attacks.

Remark 8 – Lifting spatial constraints on trigger patterns tends to lead to more effective
attacks.

RQ3: Is the “neuron-separation” guidance effective? – A common search strategy
for trigger patterns is using the neuron-separation guidance: searching for triggers that
activate neurons rarely used by clean inputs [18]. Here, we validate this guidance by
measuring the NSR (§ 4.2.2) of benign and trojan models before and after Fp, as shown
in Table 4.14.

Fine-Pruning – Bn Tnn Rb Lb Abe Imc

Before 0.03 0.59 0.61 0.65 0.61 0.54 0.64

After 0.03 0.20 0.19 0.27 0.37 0.18 0.38
Table 4.14. NSR of benign and trojan models before and after Fp.

Across all the cases, compared with its benign counterpart, the trojan model tends
to have higher NSR, while fine-tuning reduces NSR significantly. More effective attacks
(cf. Figure 4.1) tend to have higher NSR (e.g., Imc). We thus conclude that the neuron-
separation heuristic is in general valid.

Remark 9 – The separation between the neurons activated by clean and trigger inputs is an
indicator of attack effectiveness.

4.4.2 Attack – Optimization

We now examine the optimization strategies used by the existing attacks and explore
potential improvement.

RQ4: Is it necessary to start from benign models? – To forge a trojan model, a common
strategy is to re-train a benign, pre-trained model. Here, we challenge this practice
by evaluating whether re-training a benign model leads to more effective attacks than
training a trojan model from scratch.

Table 4.15 compares the ASR of trojan models generated using the two strategies.
Except for Lb and Imc achieving similar ASR in both settings, the other attacks observe
marginal improvement if they are trained from scratch. For instance, the ASR of Tnn
improves by 7.4%. One possible explanation is as follows. Let f and f ∗ represent the

60

Training Strategy Bn Tnn Rb Lb Imc

Benign model re-training 72.4 91.5 79.2 100.0 100.0

Training from scratch 76.9 98.9 81.2 100.0 100.0
Table 4.15. ASR of trojan models by training from scratch and re-training from benign models.

benign and trojan models, respectively. In the parameter space, re-training constrains
the search for f ∗ within in f ’s vicinity, while training from scratch searches for f ∗ in the
vicinity of a randomly initialized configuration, which may lead to better starting points.

Remark 10 – Training from scratch tends to lead to more effective attacks than benign-model
re-training.

RQ5: Is it feasible to exploit model architectures? –Most attacks train trojan models
in a model-agnostic manner, ignoring their unique architectures (e.g., residual block).
We explore the possibility of exploiting such features.

ASR (%)
80 84 88 92 96 100

BN

LB

TNN

IMC

RB

TB

ESB

ABE

A
a
tt

a
c
k

ResNet DenseNet VGG

Figure 4.6: Impact of DNN architecture on attack efficacy.

We first compare the attack performance on three DNN models, VGG, ResNet,
and DenseNet, with results shown in Figure 4.6. First, different model architectures
manifest varying attack vulnerabilities, ranked as ResNet>DenseNet>VGG. This may
be explained as follows. Compared with traditional convolutional networks (e.g., VGG),
the unique constructs of ResNet (i.e., residual block) and DenseNet (i.e., dense connection)
enable more effective feature extraction, but also allow more effective propagation of
trigger patterns. Second, among all the attacks, Lb, Imc, and Esb seem insensitive to
model architectures, which may be attributed to the optimization strategies of Lb and
Imc, and the direct modification of DNN architectures by Esb.

We then consider the skip-connect structures and attempt to improve the gradient

61

backprop in training trojan models. In such networks, gradients propagate through
both skip-connects and residual blocks. By setting the weights of gradients from skip-
connects or residual blocks, it amplifies the gradient update towards inputs or model
parameters [105]. Specifically, we modify the backprop procedure in Imc by setting a
decay coefficient γ = 0.5 for the gradient through skip connections, with ASR improvement
over normal training shown in Figure 4.7.

A
S

R
 i

m
p

ro
v

e
m

e
n

t
(%

)

2 2 3 3 4 4 5 51 1

Trigger size ()

0

1

2

0.69

1.80

0.06 0.01 0.00

Figure 4.7: ASR improvement by reducing skip-connection gradients (α= 0.9).

Observe that by reducing the skip-connection gradients, it marginally improves the
ASR of Imc especially for small triggers (e.g., |m|= 2×2). We consider searching for the
optimal γ to maximize attack efficacy as our ongoing work.

Remark 11 – It is feasible to exploit skip-connect structures to improve attack efficacy
marginally.

RQ6: How to mix clean and trigger inputs in training? – To balance attack efficacy
and specificity, the adversary often mixes clean and trigger inputs in training trojan
models. There are typically three mixing strategies: (i) dataset-level – mixing trigger
inputs Tt with clean inputs Tc directly, (ii) batch-level – adding trigger inputs to each
batch of clean inputs during training, and (iii) loss-level – computing and aggregating
the average losses of Tt and Tc. Here, we fix the mixing coefficient λ= 0.01 and compare
the effectiveness of different strategies.

Mixing Strategy Bn Tnn Rb Lb Imc

Dataset-level 59.3 72.2 46.2 99.6 92.0

Batch-level 72.4 91.5 79.2 100.0 100.0

Loss-level 21.6 22.9 18.1 33.6 96.5
Table 4.16. Impact of mixing strategies on attack efficacy (α= 0.0, λ= 0.01).

We observe in Table 4.16 that across all the cases, the batch-level mixing strategy
leads to the highest ASR. This can be explained as follows. With dataset-level mixing,

62

the ratio of trigger inputs in each batch tends to fluctuate significantly due to random
shuffling, resulting in inferior training quality. With loss-level mixing, λ= 0.01 results
in fairly small gradients of trigger inputs, equivalent to setting an overly small learning
rate. In comparison, batch-level mixing asserts every poisoning instance and its clean
version must share the same batch, making the model focus more on the trigger as the
classification evidence of target class.

Remark 12 – Batch-level mixing tends to lead to the most effective training of trojan models.

RQ7: How to optimize the trigger pattern? – An attack involves optimizing both the
trigger pattern and the trojan model. The existing attacks use 3 typical strategies: (i)
Pre-defined trigger – it fixes the trigger pattern and only optimizes the trojan model. (ii)
Partially optimized trigger – it optimizes the trigger pattern in a pre-processing stage and
optimizes the trojan model. (iii) Trigger-model co-optimization – it optimizes the trigger
pattern and the trojan model jointly during training. Here, we implement 3 variants of
Bn that use these optimization strategies, respectively. Figure 4.8 compares their ASR
under varying trigger transparency. Observe that the trigger-optimization strategy has a
significant impact on ASR, especially under high transparency. For instance, if α= 0.9,
the co-optimization strategy improves ASR by over 60% from the non-optimization
strategy.

Remark 13 – Optimizing the trigger pattern and the trojan model jointly leads to more
effective attacks.

Trigger transparency ()
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
S

R
 (

%
)

40

60

80

100

pre-defined trigger

partially optimized trigger

trigger-model co-optimization

Figure 4.8: Impact of trigger optimization.

4.4.3 Defense – Evadability

RQ8: Are the existing defenses evadable? – We now explore whether the existing
defenses are potentially evadable by adaptive attacks. We select Imc as the basic attack,

63

due to its flexible optimization framework, and consider Mp, Ar, Strip, and Abs as
the representative defenses from the categories in Table 4.2. Specifically, we adapt Imc
to each defense.

We compare the efficacy of non-adaptive and adaptive Imc, as shown in Figure 4.9.
Observe that across all the cases, the adaptive Imc significantly outperforms the non-
adaptive one. For instance, under |m|= 6×6, it increases the ASR with respect to Mp
by 80% and reduces the TPR of Strip by over 0.85. Also note that a larger trigger size
leads to more effective adaptive attack, as it entails a larger optimization space.

Remark 14 – Most existing defenses are potentially evadable by adaptive attacks.

Trigger size ()
6 63 3 6 63 3 6 63 3 6 63 3

ARMP STRIP ABS

A
C

C
 (

%
)

A
S

R
 (

%
)

A
IV

0

25

50

75

100

0

100

0

100 0

1

2

3

4

5

A
C

C
 (

%
)

A
S

R
 (

%
)

T
P

R

0

.2

.4

.6

.8

1

0

25

50

75

100

Figure 4.9: Performance of non-adaptive and adaptive Imc against representative defenses
(α= 0.0).

4.4.4 Defense – Interpretability

RQ9: Does interpretability help mitigate backdoor attacks? – The interpretability of
DNNs explain how they make predictions for given inputs [106, 107]. Recent studies
[108,109] show that such interpretability helps defend against adversarial attacks. Here,
we explore whether it mitigates backdoor attacks. Specifically, for a pair of benign-trojan
models and 100 pairs of clean-trigger inputs, we generate the attribution map [106] of
each input with respect to both models and ground and target classes, with an example
shown in Figure 4.10.

We measure the difference (ℓ1-norm normalized by image size) of attribution maps of
clean and trigger inputs. Observe in Table 4.17 that their attribution maps with respect
to the target class differ significantly on the trojan model, indicating the possibility of
using interpretability to detect the attack. Yet, it requires further study whether the
adversary may adapt the attack to deceive such detection [110].

Remark 15 – It seems promising to exploit model interpretability to enhance defense robust-
ness.

64

Benign model

C
le

a
n

 i
n

p
u

t
T

ri
g

g
e
r

in
p

u
t

 Trojan model

 Original
 class

 Target
 class

 Original
 class

 Target
 class

Figure 4.10: Sample attribution maps of clean and trigger inputs with respect to benign and
trojan models (α= 0.0, ImageNet).

Benign model Trojan model

Original class Target class Original class Target class

0.08% 0.12% 0.63% 8.52%
Table 4.17. Heatmap difference of clean and trigger inputs (α= 0.0).

4.5 Conclusion
We design and implement TrojanZoo, the first platform dedicated to assessing neural
backdoor attacks/defenses in a holistic, unified, and practical manner. Leveraging
TrojanZoo, we conduct a systematic evaluation of existing attacks/defenses, which
demystifies a number of open questions, reveals various design trade-offs, and sheds light
on further improvement. We envision TrojanZoo will serve as a useful benchmark to
facilitate neural backdoor research.

65

Chapter 5 |
The Security Risks of AutoML

5.1 Introduction
Automated Machine Learning (AutoML) represents a new paradigm of applying ML
techniques in real-world settings. For given tasks, AutoML automates the pipeline from
raw data to deployable ML models, covering model design [40], optimizer selection [111],
and parameter tuning [112]. The use of AutoML greatly simplifies the development of
ML systems and propels the trend of ML democratization. Many IT giants have unveiled
their AutoML frameworks, such as Microsoft Azure AutoML, Google Cloud AutoML,
and IBM Watson AutoAI.

Softmax

Reduction Cell

×n

×nNormal Cell

x

f(x)

Normal Cell

Reduction Cell

ck−1ck−2

ck

2 43

5

0 1

Skip Connect
Sep Conv

Dil Conv

Concat

Figure 5.1: Cell-based neural architecture search.

In this dissertation, we focus on one primary task of AutoML, Neural Architecture

66

Search (NAS), which aims to find performant deep neural network (DNN) architectures1

tailored to given tasks. For instance, as illustrated in Figure 5.1, cell-based NAS constructs
a model by repeating the motif of a cell structure following a pre-specified template,
wherein a cell is a topological combination of operations (e.g., 3× 3 convolution). With
respect to the given task, NAS optimizes both the topological structure and the operation
assignment. It is shown that in many tasks, NAS finds models that remarkably outperform
manually designed ones [42,43,46,47].

Yet, in contrast to the intensive research on improving the capabilities of NAS,
its security implications are fairly unexplored. As ML systems are becoming the new
targets for malicious attacks [55], the lack of understanding about the potential risks of
NAS is highly concerning, given its surging popularity in security-sensitive applications.
Specifically,

RQ1 – Does NAS introduce new weaknesses, compared with the conventional ML
practice?

RQ2 – If so, what are the possible root causes of such vulnerability?
RQ3 – Further, how would ML practitioners mitigate such drawbacks in designing

and operating NAS?
The answers to these key questions are crucial for the use of NAS in security-sensitive

domains (e.g., cyber-security, finance, and healthcare).
Our work – This work represents a solid initial step towards answering such questions.
A1 - First, through an extensive empirical study of 10 representative NAS methods,

we show that compared with their manually designed counterparts, NAS-generated
models tend to suffer greater vulnerability to various malicious manipulations such as
adversarial evasion [48,49], model poisoning [50], backdoor injection [16,18], functionality
stealing [51], and label-only membership inference [54]. The findings suggest that NAS
is likely to incur larger attack surfaces, compared with the conventional ML practice.

A2 - Further, with both empirical and analytical evidence, we provide possible
explanations for the above observations. Intuitively, due to the prohibitive search space
and training cost, NAS tends to prematurely evaluate the quality of candidate models
before their convergence. This practice favors models that converge fast at early training
stages, resulting in architectural properties that facilitate various attacks (e.g., high loss
smoothness and low gradient variance). Our analysis not only reveals the relationships
between model characteristics and attack vulnerability but also suggests the inherent

1In the following, when the context is clear, we use the terms of “model” and “architecture” exchange-
ably.

67

connections underlying different attacks.
A3 - Finally, we discuss potential remedies. Besides post-NAS mitigation (e.g.,

adversarial training [48]), we explore in-NAS strategies that build attack robustness into
the NAS process, such as increasing cell depth and suppressing skip connects. We show
that while such strategies mitigate the vulnerability to a certain extent, they tend to incur
non-trivial costs of search efficiency and model performance. We deem understanding
the fundamental trade-off between model performance, attack robustness and search
efficiency as an important topic for further investigation.

Contributions – To our best knowledge, this work represents the first study on
the potential risks incurred by NAS (and AutoML in general) and reveals its profound
security implications. Our contributions are summarized as follows.

– We demonstrate that compared with conventional ML practice, NAS tends to
introduce larger attack surfaces with respect to a variety of attacks, which raises severe
concerns about the use of NAS in security-sensitive domains.

– We provide possible explanations for such vulnerability, which reveal the relationships
between architectural properties (i.e., gradient smoothness and gradient variance) and
attack vulnerability. Our analysis also hints at the inherent connections underlying
different attacks.

– We discuss possible mitigation to improve the robustness of NAS-generated models
under both in-situ and ex-situ settings. This discussion suggests the necessity of improv-
ing the current practice of designing and operating NAS, pointing to several research
directions.

5.2 Measurement
To investigate the security risks incurred by NAS, we empirically compare the vulnerability
of NAS-generated and manually designed models to the aforementioned attacks.

5.2.1 Experimental Setting

We first introduce the setting of the empirical evaluation.
Datasets – In the evaluation, we primarily use 3 datasets that have been widely

used to benchmark NAS performance in recent work [42–44,46, 118]: CIFAR10 [84] – it
consists of 32× 32 color images drawn from 10 classes (e.g., ‘airplane’); CIFAR100 – it is
essentially the CIFAR10 dataset but divided into 100 fine-grained classes; ImageNet – it

68

Architecture CIFAR10 CIFAR100 ImageNet32

M
an

ua
lA

rc
hi

te
ct

ur
e

BiT [113] 96.6% 80.6% 72.1%

DenseNet [104] 96.7% 80.7% 73.6%

DLA [114] 96.5% 78.0% 70.8%

ResNet [87] 96.6% 79.9% 67.1%

ResNext [115] 96.7% 80.4% 67.4%

VGG [103] 95.1% 73.9% 62.3%

WideResNet [116] 96.8% 81.0% 73.9%

N
A

S
A

rc
hi

te
ct

ur
e

AmoebaNet [45] 96.9% 78.4% 74.8%

DARTS [43] 97.0% 81.7% 76.6%

DrNAS [47] 96.9% 80.4% 75.6%

ENAS [42] 96.8% 79.1% 74.0%

NASNet [41] 97.0% 78.8% 73.0%

PC-DARTS [117] 96.9% 77.4% 74.7%

PDARTS [118] 97.1% 81.0% 75.8%

SGAS [46] 97.2% 81.2% 76.8%

SNAS [44] 96.9% 79.9% 75.5%

Random [119] 96.7% 78.6% 72.2%
Table 5.1. Accuracy of representative NAS-generated and manually designed models on
benchmark datasets.

is a subset of the ImageNet dataset [120], downsampled to images of size 32× 32 in 60
classes.

NAS methods – We consider 10 representative cell-based NAS methods, which cover
a variety of search strategies: (1) AmoebaNet [45] applies an evolutionary approach to
generate candidate models; (2) DARTS [43] is the first differentiable method using gradient
descent to optimize both architecture and model parameters; (3) DrNAS [47] formulates
differentiable NAS as a Dirichlet distribution learning problem; (4) ENAS [42] reduces
the search cost via parameter sharing among candidate models; (5) NASNet [41] searches
for cell structures transferable across different tasks by re-designing the search space; (6)
PC-DARTS [117] improves the memory efficiency by restricting operation selection to a
subset of edges; (7) PDARTS [118] gradually grows the number of cells to reduce the
gap between the model depth at the search and evaluation phases; (8) SGAS [46] selects
the operations in a greedy, sequential manner; (9) SNAS [44] reformulates reinforcement
learning-based NAS to make it differentiable; and (10) Random [119] randomly samples
candidate models from the pre-defined search space.

69

NAS search space – We define the default search space similar to DARTS [43],
which consists of 10 operations including: skip-connect, 3× 3 max-pool, 3× 3 avg-pool,
3× 3 sep-conv, 5× 5 sep-conv, 7× 7 sep-conv, 3× 3 dil-conv, 5× 5 dil-conv, 1× 7 – 7× 1
conv, and zero.

WideResNetResNextDenseNet VGGDLA ResNetBiT

AmoebaNet DARTS DrNAS ENAS NASNet PC-DARTS PDARTS SGAS SNAS Random

60 70 80 90 100
Most Likely Case (%)

60

70

80

90

Le
as

t
Li

ke
ly

 C
as

e
(%

)

60 70 80 90 100
Most Likely Case (%)

40

60

80

100

75 80 85 90 95 100
Most Likely Case (%)

65

72

79

86

93

100
CIFAR10 CIFAR100 ImageNet32

Figure 5.2: Performance of adversarial evasion (PGD) against NAS and manual models under
the least and most likely settings.

Manual models – For comparison, we use 7 representative manually designed models
that employ diverse architecture designs: (1) BiT [113] uses group normalization and
weight standardization to facilitate transfer learning; (2) DenseNet [104] connects all the
layers via skip connects; (3) DLA [114] applies deep aggregation to fuse features across
layers; (4) ResNet [87] uses residual blocks to facilitate gradient back-propagation; (5)
ResNext [115] aggregates transformations of the same topology; (6) VGG [103] represents
the conventional deep convolution structures; and (7) WideResNet [116] decrease the
depth and increases the width of ResNet.

Training – All the models are trained using the following setting: epochs = 600,
batch size = 96, optimizer = SGD, gradient clipping threshold = 5.0, initial learning
rate = 0.025, and learning rate scheduler = Cosine annealing. The accuracy of all the
models on the benchmark datasets is summarized in Table 5.1. Observe that the NAS
models often outperform their manual counterparts.

5.2.2 Experimental Results

Next, we empirically compare the vulnerability of NAS-generated and manually designed
models to various attacks.

Adversarial evasion – We exemplify with the projected gradient descent (PGD)
attack [48]. Over each dataset, we apply the attack on a set of 1,000 inputs randomly

70

sampled from the test set and measure the attack success rate as:

Attack Success Rate (ASR) = # Successful trials
Total trials

(5.1)

A trial is marked as successful if it is classified as its target class within maximum
iterations.

Let fc(x) be the probability that model f assigns to class c with respect to input x.
To assess the full spectrum of vulnerability, we consider both “difficult” and “easy” cases
for the adversary. Specifically, given input x, we rank the output classes c’s according to
their probabilities fc(x) as c1, c2, . . . , cm, where c1 is x’s current classification; the difficult
case refers to that the adversary aims to change x’s classification to the least likely class
cm, while the easy case refers to that the adversary aims to change x’s classification to
the second most likely class c2.

Figure 5.2 illustrates the attack effectiveness against both NAS and manual models.
We have the following observations. First, across all the datasets, the NAS models
seem more vulnerable to adversarial evasion. For instance, on CIFAR10, the attack
attains over 90% and 75% ASR against the NAS models in the most and least likely
cases, respectively. Second, compared with the manual models, the ASR of NAS models
demonstrates more evident clustered structures, implying their similar vulnerability.
Finally, the vulnerability of NAS models shows varying patterns on different datasets.
For instance, the measures of NAS models show a larger variance on CIFAR100 compared
with CIFAR10 and ImageNet (especially in the least likely case), which may be explained
by that its larger number of classes results in more varying “degree of difficulty” for the
attack.

70

80

90

100

A
tt

ac
k

Su
cc

es
s

R
at

e
(%

)

Manual
NAS

3 6 9 12
Perturbation Threshold (/255)

Figure 5.3: Impact of perturbation threshold (ϵ) on the vulnerability of different models with
respect to PGD on CIFAR10.

71

We also evaluate the impact of perturbation threshold (ϵ) on the attack vulnerability.
Figure 5.3 shows the ASR of untargeted PGD as a function of ϵ against different models on
CIFAR10 (with perturbation step α = ϵ/3). We have the following observations. First,
across different settings, the manual models consistently outperform the NAS models
in terms of robustness. Second, this vulnerability gap gradually decreases with ϵ, as
the ASR on both NAS and manual models approaches 100%. Third, compared with the
manual models, the measures of NAS models show a smaller variance, indicating the
commonality of their vulnerability.

Further, by comparing the sets of adversarial examples to which different models are
vulnerable, we show the commonality and difference of their vulnerability. We evaluate
PGD (ϵ = 4/255) against different models on CIFAR10 in the least likely case. For
each model, we collect the set of adversarial examples successfully generated from 1,000
random samples. Figure 5.4 plots the distribution of inputs with respect to the number
of successfully attacked models.

0 1 2 3 4 5 6 7
0

70

140

210

280

350

N
um

be
r

of
 I

np
ut

s

0 1 2 3 4 5 6 7 8 9
Number of Successfully Attacked Models

Manual NAS

Figure 5.4: Distribution of inputs with respect to the number of successfully attacked models
(PGD with ϵ = 4/255 on CIFAR10).

Overall, PGD generates more successful adversarial examples against the NAS models
than the manual models. Moreover, there are more inputs that lead to successful attacks
against multiple NAS models. For instance, over 300 inputs lead to successful attacks
against 7 NAS models; in contrast, the number is less than 10 in the case of manual
models. We may thus conclude that the vulnerability of NAS models to adversarial
evasion seems fairly similar, pointing to potential associations with common causes.

We also consider alternative adversarial evasion attacks other than PGD. We use
natural evolutionary strategies (NES) [121], a black-box attack in which the adversary
has only query access to the target model f and generates adversarial examples using a
derivative-free optimization approach. Specifically, at each iteration, it generates nquery

symmetric data points in the vicinity of current input x by sampling from a normal

72

60 65 70 75 80
Most Likely Case (%)

0

10

20

30

Le
as

t
Li

ke
ly

 C
as

e
(%

)
WideResNet

ResNext
DenseNet

VGG

DLA ResNet

BiT

AmoebaNet DARTS
DrNAS

ENASNASNet

PC-DARTSPDARTS

SGAS

SNAS

Random

Figure 5.5: Performance of adversarial evasion (NES) against NAS and manual models under
the least and most likely settings.

CIFAR10 CIFAR100 ImageNet32

0 10 20 30 40

0

5

10

15

20

C
le

an
 A

cc
ur

ac
y

D
ro

p
(%

)

Manual
NAS

0 10 20 30 40
Poisoning Fraction (%)

0

7

14

21

28

0 10 20 30 40

0

10

20

30

Figure 5.6: Performance of model poisoning against NAS and manually designed models under
varying poisoning fraction ppos.

distribution, retrieves their predictions from f , and estimates the gradient ĝ(x) as:

ĝ(x) = 1
σnquery

⌈nquery/2⌉∑
j=1

(f(x+ σuj)− f(x− σuj))uj (5.2)

where each sample uj is sampled from the standard normal distribution N (0, I), and σ

is the sampling variance.
We evaluate the vulnerability of different models to NES under the same setting of

Figure 5.2 (with nquery = 400) on CIFAR10, with results shown in Figure 5.5. In general,
the NAS models show higher vulnerability to NES, especially in the least likely case,
indicating that the vulnerability gap between NAS and manual models also generalizes
to black-box adversarial evasion attacks.

Model poisoning – In this set of experiments, we evaluate the impact of poisoning
attacks on the performance of NAS and manual models. We assume that a fraction
ppos of the training data is polluted by randomly changing the class of each input. We

73

measure the performance of various models with respect to varying poisoning fraction
ppos, in comparison with the case of clean training data (i.e., ppos = 0). We define the
metric of clean accuracy drop:

Clean Accuracy Drop (CAD)

= Acc. of original model− Acc. of polluted model
(5.3)

Figure 5.6 compares the CAD of different models as ppos increases from 0% to 40%. The
results are average over the families of NAS and manual models. We have the following
observations. First, as expected, larger ppos causes more performance degradation on all
the models. Second, with fixed ppos, the NAS models suffer more significant accuracy
drop. For instance, on CIFAR100, with ppos fixed as 20%, the CAD of NAS models is
4% higher than the manual models. Further, the CAD gap between NAS and manual
models enlarges as ppos increases.

92 94 96 98 100
Attack Success Rate (%)

0

3

6

9

12

94 96 98 100
2

3

4

5

6

C
le

an
 A

cc
ur

ac
y

D
ro

p
(%

)

CIFAR10 CIFAR100 ImageNet32

VGGResNet WideResNetDenseNet ResNextDLA MobileNetBiT

AmoebaNet DARTS DrNAS ENAS NASNet PC-DARTS PDARTS SGAS SNAS Random

90 92 94 96 98 100
4

6

8

10

Figure 5.7: Performance of backdoor injection (TrojanNN) against NAS and manually designed
models.

B
iT

D
en

se
N

et
D

LA
R

es
N

et
R

es
N

ex
t

V
G

G
W

id
eR

es
ne

t

A
m

oe
ba

N
et

D
A

R
TS

D
rN

A
S

EN
A

S
N

A
SN

et
PC

-D
A

R
TS

PD
A

R
TS

SG
A

S
SN

A
S

85

90

95

100

A
tt

ac
k

Su
cc

es
s

R
at

e
(%

)

2

3

4

5C
le

an
 A

cc
ur

ac
y

D
ro

p
(%

)

B
iT

D
en

se
N

et
D

LA
R

es
N

et
R

es
N

ex
t

V
G

G
W

id
eR

es
ne

t

A
m

oe
ba

N
et

D
A

R
TS

D
rN

A
S

EN
A

S
N

A
SN

et
PC

-D
A

R
TS

PD
A

R
TS

SG
A

S
SN

A
S

B
iT

D
en

se
N

et
D

LA
R

es
N

et
R

es
N

ex
t

V
G

G
W

id
eR

es
ne

t

A
m

oe
ba

N
et

D
A

R
TS

D
rN

A
S

EN
A

S
N

A
SN

et
PC

-D
A

R
TS

PD
A

R
TS

SG
A

S
SN

A
S

B
iT

D
en

se
N

et
D

LA
R

es
N

et
R

es
N

ex
t

V
G

G
W

id
eR

es
ne

t

A
m

oe
ba

N
et

D
A

R
TS

D
rN

A
S

EN
A

S
N

A
SN

et
PC

-D
A

R
TS

PD
A

R
TS

SG
A

S
SN

A
S

1 2 4 8

Figure 5.8: Impact of the number of target neurons (nneuron) on the vulnerability of different
models with respect to TrojanNN on CIFAR10.

Backdoor injection – Next, we compare the vulnerability of NAS and manual
models to neural backdoor attacks [16,18,122]. Recall that in backdoor injection, the

74

adversary attempts to forge a trojan model f ∗ (typically via perturbing a benign model
f) that is sensitive to a specific trigger but behaves normally otherwise. We thus measure
the attack effectiveness using two metrics: attack success rate (ASR), which is the fraction
of trigger-embedded inputs successfully classified by f ∗ to the target class desired by the
adversary; clean accuracy drop (CAD), which is the accuracy difference of f ∗ and f on
clean inputs.

We consider TrojanNN [18], a representative backdoor attack, as the reference attack
model. By optimizing both the trigger r and trojan model f ∗, TrojanNN enhances other
backdoor attacks (e.g., BadNet [16]) that employ fixed triggers. Figure 5.7 plots the ASR
and CAD of all the models, in which the results are average over 1,000 inputs randomly
sampled from each testing set. Observe that the attack seems more effective against the
NAS models across all the datasets. For instance, on CIFAR10, the attack achieves close
to 100% ASR on most NAS models with CAD below 3%. Further, similar to adversarial
evasion and model poisoning, the measures of most NAS models (except Random) are
fairly consistent, indicating their similar vulnerability. Recall that Random samples
models from the search space; thus, the higher vulnerability of NAS models is likely to
be associated with their particular architectural properties.

We further evaluate the impact of the number of target neurons (nneuron) in TrojanNN.
Recall that TrojanNN optimizes the trigger with respect to nneuron target neurons. Fig-
ure 5.8 plots the ASR and CAD of TrojanNN against different models under varying
setting nneuron. First, across all the settings of nneuron, TrojanNN consistently attains
more effective attacks (i.e., higher ASR and lower CAD) on the NAS models than the
manual models. Second, as nneuron varies from 1 to 4, the difference of ASR between NAS
and manual models decreases, while the difference of CAD tends to increase. This may
be explained as follows: optimizing triggers with respect to more target neurons tends
to lead to more effective attacks (i.e., higher ASR) but also result in a larger impact
on clean inputs (i.e., higher CAD). However, this trade-off is less evident on the NAS
models, implying their higher capabilities to fit both poisoning and clean data.

From the experiments above, we may conclude that compared with manual models,
NAS models tend to be more vulnerable to backdoor injection attacks, especially under
more restricted settings (e.g., fewer target neurons).

Functionality stealing – We now evaluate how various models are subject to
functionality stealing, in which each model f as a black box only allowing query access:
given input x, f returns its prediction f(x). The adversary attempts to re-construct a
functionally similar model f ∗ based on the query-prediction pairs {(x, f(x))}.

75

CIFAR10 CIFAR100 ImageNet32

0 4 8 12 16
1

2

3

4

C
ro

ss
 E

nt
ro

py

Manual
NAS

0 4 8 12 16
3.5

4.5

5.5

6.5

0 4 8 12 16
Query Number (K)

4

5

6

7

Figure 5.9: Performance of functionality stealing against NAS and manually designed models
under the victim architecture-aware setting.

B
iT

D
en

se
N

et
D

LA
R

es
N

et
R

es
N

ex
t

V
G

G
W

id
eR

es
ne

t

A
m

oe
ba

N
et

D
A

R
TS

D
rN

A
S

EN
A

S
N

A
SN

et
PC

-D
A

R
TS

PD
A

R
TS

SG
A

S
SN

A
S

R
an

do
m

0.50

0.52

0.54

0.56

0.58

0.60

A
U

C

NAS
Manual

CIFAR10 CIFAR100 ImageNet32

B
iT

D
en

se
N

et
D

LA
R

es
N

et
R

es
N

ex
t

V
G

G
W

id
eR

es
ne

t

A
m

oe
ba

N
et

D
A

R
TS

D
rN

A
S

EN
A

S
N

A
SN

et
PC

-D
A

R
TS

PD
A

R
TS

SG
A

S
SN

A
S

R
an

do
m

0.50

0.55

0.60

0.65

0.70

B
iT

D
en

se
N

et
D

LA
R

es
N

et
R

es
N

ex
t

V
G

G
W

id
eR

es
ne

t

A
m

oe
ba

N
et

D
A

R
TS

D
rN

A
S

EN
A

S
N

A
SN

et
PC

-D
A

R
TS

PD
A

R
TS

SG
A

S
SN

A
S

R
an

do
m

0.50

0.54

0.58

0.62

0.66

0.70

Figure 5.10: Performance of label-only membership inference attacks against NAS and manually
designed models.

We consider two scenarios: (i) f and f ∗ share the same architecture; and (ii) the
adversary is unaware of f ’s architecture and instead uses a surrogate architecture in f ∗.
We apply Knockoff [51], a representative functionality stealing attack that adaptively
generates queries to probe f to re-construct f ∗. We evaluate the attack using the average
cross entropy (ACE) of f ’s and f ∗’s predictions on the testing set, with lower cross
entropy indicating more effective stealing.

Victim f

Replicate f∗ Manual NAS

ResNet DenseNet DARTS ENAS

Manual
ResNet 1.286 1.509 1.377 1.455

DenseNet 1.288 1.245 1.231 1.381

NAS
DARTS 1.272 1.115 1.172 1.125

ENAS 1.259 1.050 1.115 1.151
Table 5.2. Performance of functionality stealing against NAS and manual models under the
victim architecture-agnostic setting.

Figure 5.9 summarizes the attack effectiveness under the victim architecture-aware
setting. Across all the datasets, the attack achieves smaller ACE on the NAS models
with much lower variance, in comparison with the manual models. This implies that most

76

NAS models share similar vulnerability to functionality stealing. We further consider the
victim architecture-agnostic setting. For each pair of models, we assume one as f and
the other as f ∗, and measure the attack effectiveness. The results on CIFAR10 (with the
query number fixed as 8K) are summarized in Table 5.2. Observe that with the replicate
model f ∗ fixed, the NAS models as the victim model f result in lower ACE, implying
that it tends to be easier to steal the functionality of NAS models, regardless of the
architecture of the replicate model.

Membership inference – Recall that in membership inference, the adversary
attempts to infer whether the given input x appears in the training set of the target
model f . The inference accuracy serves as an indicator of f ’s privacy leakages. Next, we
conduct membership inference attacks on various models to assess their privacy risks.

There are two possible scenarios: (i) f ’s prediction f(x) contains the confidence score
fc(x) of each class c; and (ii) f(x) contains only the label c∗ = arg maxc fc(x). As (i)
can be mitigated by removing the confidence scores in f(x) [53], here, we focus on (ii).
Under the class-only setting, we apply the decision boundary-based attack [54], which
determines x’s membership (in the training data) by estimating its distance to the nearest
decision boundary using label-only adversarial attacks (e.g., HopSkipJump [123]). In
each case, we evaluate the attack over 2,000 inputs, half randomly sampled from the
training set and the other half from the testing set, and measure the attack effectiveness
using the area under the ROC curve (AUC), with the estimated distance as the control
of false and true positive rates.

Figure 5.10 compares the attack performance against different models. Notably, the
attack achieves higher AUC scores on the NAS models. For instance, the average scores
on the NAS and manual models on CIFAR100 differ by more than 0.05, while the scores
on the manual models are close to random guesses (i.e., 0.5). Moreover, most NAS
models (except Random) show similar vulnerability. Also, note that the manual models
seem more vulnerable on ImageNet, which may be explained as follows: compared with
CIFAR10 and CIFAR100, ImageNet is a more challenging dataset (see Table 5.1); the
models thus tend to overfit the training set more aggressively, resulting in their higher
vulnerability to membership inference.

Remark 1 – Compared with their manually designed counterparts, NAS-generated models
tend to be more vulnerable to various malicious manipulations.

77

5.3 Analysis
The empirical evaluation in § 5.2 reveals that compared with manually designed models,
NAS-generated models tend to be more vulnerable to a variety of attacks. Next, we
provide possible explanations for such phenomena.

5.3.1 Architectural Properties of Trainability

We hypothesize that the greater vulnerability of NAS models stems from their key design
choices.

Popular NAS methods often evaluate the performance of a candidate model prema-
turely before its full convergence during the search. For instance, DARTS [43] formulate
the search as a bi-level optimization problem, in which the inner objective optimizes a
given model; to save the computational cost, instead of solving this objective exactly, it
approximates the solution using a single training step, which is far from its full conver-
gence. Similar techniques are applied in other popular NAS methods (e.g., [42, 45]). As
the candidate models are not evaluated on their performance at convergence, NAS tends
to favor models with higher “trainability” – those converge faster during early stages –
which result in candidate models demonstrating the following key properties:

C
IF

A
R

10
C

IF
A

R
10

0
Im

ag
eN

et
32

-0.5

0.0

0.5

-0.5 0.0 0.5

ResNet DenseNet DARTS ENAS
-0.5 0.0 0.5 -0.5 0.0 0.5-0.5 0.0 0.5

-0.2

0.0

0.2

ResNet DenseNet DARTS ENAS

-0.2

0.0

0.2

-0.02 0.0 0.02
-0.02

0.00

0.02

-0.02 0.0 0.02 -0.02 0.0 0.02 -0.02 0.0 0.02

-0.2 0.0 0.2 -0.2 0.0 0.2 -0.2 0.0 0.2 -0.2 0.0 0.2
-0.5

0.0

0.5

-0.5

0.0

0.5

(a) (b)

Figure 5.11: Loss contours of NAS-generated models (DARTS, ENAS) and manually designed
ones (ResNet, DenseNet) in (a) parameter space and (b) input space.

High loss smoothness – The loss landscape of NAS models tends to be smooth, while the
gradient provides effective guidance for optimization. Therefore, NAS models are amenable to
training using simple, first-order optimizers.

78

Low gradient variance – The gradient of NAS models with respect to the given distribution
tends to have low variance. Therefore, the stochastic gradient serves as a reliable estimate of
the true gradient, making NAS models converge fast.

Note that the loss smoothness captures the geometry of the loss function in the
parameter space (or the input space), while the gradient variance measures the difference
between the gradients with respect to different inputs. While related, the former dictates
whether a model is easy to train if the gradient direction is known and the latter dictates
whether it is easy to estimate the gradient direction reliably.

B
iT

D
en

se
N

et
D

LA
R

es
N

et
R

es
N

ex
t

V
G

G
W

id
eR

es
ne

t

A
m

oe
ba

N
et

D
A

R
TS

D
rN

A
S

EN
A

S
N

A
SN

et
PC

-D
A

R
TS

PD
A

R
TS

SG
A

S
SN

A
S

0

1

2

3

4

B
ef

or
e

Tr
ai

ni
ng

 (
lo

g1
0)

0

1

2

3

4

A
ft

er
 T

ra
in

in
g

(l
og

10
)

CIFAR10

B
iT

D
en

se
N

et
D

LA
R

es
N

et
R

es
N

ex
t

V
G

G
W

id
eR

es
ne

t

A
m

oe
ba

N
et

D
A

R
TS

D
rN

A
S

EN
A

S
N

A
SN

et
PC

-D
A

R
TS

PD
A

R
TS

SG
A

S
SN

A
S

0

1

2

3

4

0

1

2

3

4

B
iT

D
en

se
N

et
D

LA
R

es
N

et
R

es
N

ex
t

V
G

G
W

id
eR

es
ne

t

A
m

oe
ba

N
et

D
A

R
TS

D
rN

A
S

EN
A

S
N

A
SN

et
PC

-D
A

R
TS

PD
A

R
TS

SG
A

S
SN

A
S

0

1

2

3

4

0

1

2

3

4

CIFAR100 ImageNet32

Figure 5.12: Gradient variance of NAS-generated and manually designed models before and
after training.

Next, we empirically validate the above hypotheses by comparing the gradient smooth-
ness and variance of NAS-generated and manually designed models.

Loss smoothness – A loss function L is said to have L-Lipschitz (L > 0) continuous
gradient with respect to θ if it satisfies ∥∇L(θ)−∇L(θ′)∥ ≤ L∥θ− θ′∥ for any θ, θ′. The
constant L controls L’s smoothness. While it is difficult to directly measure L of given
model f , we explore its loss contour [124], which quantifies the impact of parameter
perturbation on L. Specifically, we measure the loss contour of model f as follows:

Γ(α, β) = L(θ∗ + αd1 + βd2) (5.4)

where θ∗ denotes the local optimum, d1 and d2 are two random, orthogonal directions
as the axes, and α and β represent the perturbation steps along d1 and d1, respectively.
Notably, the loss contour effectively approximates the loss landscape in a two-dimensional
space [125].

79

Figure 5.11(a) visualizes the loss contours of NAS (DARTS and ENAS) and manual
(ResNet and DenseNet) models across different datasets. Observe that the NAS models
tend to demonstrate a flatter loss landscape. Similar phenomena are observed with
respect to other models. This observation may explain why the gradient of NAS models
gives more effective guidance for minimizing the loss function, leading to their higher
trainability.

Further, for the purpose of the analysis in § 5.3, we extend the loss smoothness in
the parameter space to the input space. We have the following result to show their
fundamental connections.

Theorem 1. If the loss function L has L-Lipschitz continuous gradient with respect
to θ and the weight matrix of each layer of the model is normalized [126], then L has
L/
√
n-Lipschitz continuous gradient with respect to the input, where n is the input

dimensionality.

Empirically, we define f ’s loss contour with respect to a given input-class pair (x, y)
as follows:

Γ(x,y)(α, β) = ℓ(f(x+ αd1 + βd2), y) (5.5)

where d1 and d2 are two random, orthogonal directions in the input space. Figure 5.11(b)
visualizes the loss contours of NAS and manual models in the vicinity of randomly
sampled inputs. It is observed that NAS models also demonstrate higher loss smoothness
in the input space, compared with the manual models.

Gradient variance – Meanwhile, the variance of the gradient with respect to inputs
sampled from the underlying distribution quantifies the noise level of the gradient estimate
used by stochastic training methods (e.g., SGD) [127]. Formally, let g be the stochastic
gradient. We define the gradient variance as follows (where the expectation is taken with
respect to the given distribution):

Var(g) = E
[
∥g − E [g] ∥2

2

]
(5.6)

Assuming g is an unbiased estimate of the true gradient, Var(g) measures g’s expected
deviation from the true gradient. Smaller Var(g) implies lower noise level, thereby more
stable updating of the model parameters θ.

In Figure 5.12, we measure the gradient variance of various models before training
(with Kaiming initialization [128]) and after training is complete. It is observed in all
the cases that at initialization, the gradient variance of NAS models is more than two

80

orders of magnitude smaller than the manual models and then grows gradually during
the training; in comparison, the gradient variance of manual models does not change
significantly before and after training. This observation may explain why the stochastic
gradient of NAS models gives a reliable estimate of the true gradient, making them
converge fast at early training phases.

5.3.2 Explanations of Attack Vulnerability

We now discuss how the vulnerability of NAS models to various attacks can be attributed
to the properties of high loss smoothness and low gradient variance.

Adversarial evasion – The vulnerability to adversarial evasion is mainly attributed
to the sensitivity of model prediction f(x) to the perturbation of input x. Under the
white-box setting, the adversary typically relies on the gradient to craft the adversarial
input x∗. For instance, PGD [48] crafts x∗ by iteratively updating the input using the
following rule:

xt+1 = Πx+Bϵ
(xt + α sign (∇x ℓ(f(xt), y))) (5.7)

where xt is the perturbed input after the t-th iteration, Π denotes the projection oper-
ator, Bϵ represents the allowed set of perturbation (parameterized by ϵ), and α is the
perturbation step. Apparently, the attack effectiveness relies on whether the gradient
∇x ℓ(f(xt), y) is able to provide effective guidance for perturbing xt.

As shown in § 5.2.2, compared with the manual models, due to the pursuit of higher
trainability, the NAS models often demonstrate a smoother loss landscape wherein
the gradient at each point represents effective optimization direction; thus, the NAS
models tend to be more vulnerable to gradient-based adversarial evasion. Notably, this
finding also corroborates existing studies (e.g., [10]) on the fundamental tension between
designing “linear” models that are easier to train and designing “nonlinear” models that
are more resistant to adversarial evasion.

The similar phenomena observed in the case of black-box attacks (e.g., NES) may be
explained as follows: to perform effective perturbation, black-box attacks often rely on
indirect gradient estimation, while the high loss smoothness and low gradient variance of
NAS models lead to more accurate and efficient (with fewer queries) gradient estimation.

Model poisoning – The vulnerability to model poisoning can be attributed to the
sensitivity of model training to the poisoning data in the training set. Here, we analyze
how the property of low gradient variance impacts this sensitivity.

For a given dataset D, let L(θ) be the loss of a model fθ parameterized by θ with

81

respect to D:
L(θ) ≜ 1

|D|
∑

(x,y)∈D
ℓ(fθ(x), y) (5.8)

Further, let θ∗ represent f ’s (local) optimum with respect to D. With θ initialized as θ0,
consider T -step SGD updates with the t-th step update as:

θt+1 = θt − αtgt (5.9)

where αt is the step size and gt is the gradient estimate. We have the following result
describing the convergence property of θt (t = 1, . . . , T).

Theorem 2 ([127]). Assuming that (i) L(θ) is continuous and differentiable, with
its gradient bounded by Lipschitz constant L, (ii) the variance of gradient estimate gt

(t = 1, . . . , T) is bounded by σ2, and (iii) θt is selected as the final parameters with
probability proportional to 2αt − Lα2

t . Then, the output parameters θt̄ satisfies:

E [L(θt̄)− L(θ∗)] ≤ ∥θ0 − θ∗∥2 + σ2∑T
t=1α

2
t∑T

t=1(2αt − Lα2
t)

(5.10)

where the expectation is defined with respect to the selection of t̄ and the gradient
variance.

Intuitively, Theorem 2 describes the properties that impact the fitting of model f to
the given dataset D. As shown in § 5.2.2, compared with the manual models, the NAS
models tend to have both higher loss smoothness (i.e., smaller L) and lower gradient
variance (i.e., smaller σ). Therefore, the NAS models tend to fit D more easily. Recall
that in model poisoning, D consists of both clean data Dtrn and poisoning data Dpos,
fitting to D more tightly implies more performance drop over the testing data, which
may explain the greater vulnerability of NAS models to model poisoning.

Backdoor injection – Recall that in backdoor injection, the adversary forges a
trojan model f ∗ that is sensitive to a trigger pattern r such that any input x, once
embedded with r, tends to be misclassified to a target class t: f ∗(x+ r) = t. To train f ∗,
the adversary typically pollutes the training data Dtrn with trigger-embedded inputs.

Intuitively, this attack essentially exploits the attack vectors of adversarial evasion
that perturbs x at inference time and model poisoning that pollutes Dtrn at training
time. Therefore, the vulnerability of NAS models to both attack vectors naturally results
in their vulnerability to backdoor injection. Due to the space limitations, we omit the
detailed analysis here.

82

Functionality stealing – Recall that in functionality stealing (e.g., Knockoff [51]),
the adversary (adaptively) generates queries to probe the victim model f to replicate a
functionally similar one f ∗. For instance, Knockoff encourages queries that are certain
by f , diverse across different classes, and disagreed by f ∗ and f .

The effectiveness of such attacks depends on f ’s loss landscape with respect to the
underlying distribution; intuitively, the complexity of the loss landscape in the input space
implies the hardness of fitting f ∗ to f based on a limited number of queries. Thus, given
their high loss smoothness, the NAS models tend to be more vulnerable to functionality
stealing.

Membership inference – It is shown in § 5.2 that the NAS models seem more
vulnerable to membership inference, especially under the label-only setting in which only
the prediction labels are accessible. The adversary thus relies on signals such as input
x’s distance to its nearest decision boundary dist(x, f(x)); intuitively, if x appears in
the training set, dist(x, f(x)) is likely to be below a certain threshold. Concretely, the
HopSkipJump attack [123] is employed in [54] to estimate dist(x, f(x)) via iteratively
querying f to find point xt on the decision boundary using bin search, walking along the
boundary using the estimated gradient at xt, and finding point xt+1 to further reduce the
distance to x, which is illustrated in Figure 5.13.

Decision Boundary
xxt

x̃t

x̃t+1

xt+1

Estimated Gradient

Figure 5.13: Illustration of the HopSkipJump attack.

The effectiveness of this attack hinges on (i) the quality of estimated gradient and
(ii) the feasibility of descending along the decision boundary. For the NAS models, the
gradient estimate tends to be more accurate due to the low gradient variance, while
the decision boundary tends to be smoother due to the high loss smoothness, which
may explain the greater vulnerability of NAS models to label-only membership inference
attacks.

Remark 2 – The high loss smoothness and low gradient variance of NAS-generated models
may account for their greater vulnerability to various attacks.

83

5.3.3 Connections of Various Attacks

It is shown above that the vulnerability of NAS models to various attacks may be
explained by their high loss smoothness and low gradient variance, which bears an
intriguing implication: different attacks may also be inherently connected via these two
factors.

Specifically, most existing attacks involve input or model perturbation. For instance,
adversarial evasion, regardless of the white- or black-box setting, iteratively computes
(or estimates) the gradient and performs perturbation accordingly; backdoor injection
optimizes the trigger and model jointly, requiring to estimate, based on the gradient,
how the model responds to the updated trigger.

The effectiveness of such attacks thus highly depends on (i) how to estimate the
gradient at each iteration and (ii) how to use the gradient estimate to guide the input or
model perturbation. Interestingly, gradient variance and loss smoothness greatly impact
(i) and (ii), respectively: low gradient variance enables the adversary to accurately
estimate the gradient, while high loss smoothness allows the adversary to use such
estimate to perform effective perturbation.

Remark 3 – The effectiveness of various attacks is inherently connected through loss smooth-
ness and gradient variance.

5.4 Discussion
In § 5.2 and § 5.3, we reveal the relationships between the trainability of NAS-generated
models and their vulnerability to various attacks, two key questions remain: (i) what
are the architectural patterns associated with such vulnerability? and (iii) what are the
potential strategies to remedy the vulnerability incurred by the current NAS practice?
In this section, we explore these two questions and further discuss the limitations of this
work.

5.4.1 Architectural Weaknesses

As shown in § 5.3, the vulnerability of NAS models is potentially related to their high
loss smoothness and low gradient variance, which stem from the preference for models
of higher trainability. We now discuss how such preference is reflected in the concrete
architectural patterns, which we examine from two aspects, namely, topology selection

84

and operation selection.
Architecture Cell Depth Cell Width # Skip connects

AmoebaNet 4 3c 2

DARTS 3 3c 3

DrNAS 4 2c 1

ENAS 2 5c 2

NASNet 2 5c 1

PC-DARTS 2 4c 1

PDARTS 4 2c 2

SGAS 3 2c 1

SNAS 2 4c 4
Table 5.3. The cell depth and width, and the number of skip connects of representative
NAS-generated models (the width of each intermediate node is assumed to be c).

Topology selection – Recent studies [129] suggest that in cell-based NAS, the
preference for models with faster convergence often results in wide, shallow cell structures.
As shown in Figure 5.1, the cell depth is defined as the number of connections along the
longest path from the input nodes to the output node; the width of each intermediate
node is defined as the number of channels for convolution operators or the number
of features for linear operators, while the cell width is defined as the total width of
intermediate nodes connected to the input nodes. Table 5.3 summarizes the cell depth
and width of NAS models used in our evaluation. It is observed that the cell structures
of most NAS models are both shallow (with an average depth of 2.8) and wide (with an
average width of 3.3c), where the width of each intermediate node is assumed to be c.

It is shown in [129] that under similar settings (i.e., the same number of nodes
and connections), wide and shallow cells tend to demonstrate higher trainability. This
observation is also corroborated by the recent theoretical studies on the convergence of
wide neural networks [130]: neural networks of infinite width tend to evolve as linear
models using gradient descent optimization.

Operation selection – The preference for higher trainability also impacts the
selection of operations (e.g., 3×3 convolution versus skip connection) on the connections
within the cell structure, and typically favors skip connects over other operations.

Recall that differential NAS methods [43,46,47] typically apply continuous relaxation
on the search space to enable direct gradient-based optimization. The operation on
each connection is modeled as a softmax of all possible operations O and discretized by
selecting the most likely one arg maxo∈Oαo. It is shown in [131] that in well-optimized

85

models, the weight of skip connection αskip often exceeds other operations, leading to
its higher chance of being selected. This preference takes effect in our context, as NAS
models tend to converge fast at early training stages. Table 5.3 summarizes the number
of skip connects in each cell of representative NAS models. Observe that most NAS
models have more than one skip connection in each cell.

The operation of skip connection is originally designed to enable back-propagation in
DNNs [87,104]. As a side effect, accurate gradient estimation also facilitates attacks that
exploit gradient information [105]. Thus, the over-use of skip connects in NAS models
also partially accounts for their vulnerability to such attacks.

Remark 4 – NAS-generated models often feature wide and shallow cell structures as well as
overuse of skip connects.

5.4.2 Potential Mitigation

We now discuss potential mitigation to remedy the vulnerability incurred by the NAS
practice. We consider enhancing the robustness of NAS models under both post-NAS
and in-NAS settings. In post-NAS mitigation, we explore using existing defenses against
given attacks to enhance NAS models, while with in-NAS mitigation, we explore building
attack robustness into the NAS process directly.

Post-NAS mitigation – As a concrete example, we apply adversarial training
[88,132], one representative defense against adversarial evasion, to enhance the robustness
of NAS models. Intuitively, adversarial training improves the robustness of given model
f by iteratively generating adversarial inputs with respect to its current configuration
and updating f to correctly classify such inputs.

Figure 5.14 compares the effectiveness of adversarial training on various models
over CIFAR10. For each model, we measure its accuracy (in terms of accuracy drop
from before adversarial training) and robustness (in terms of the success rate of the
untargeted PGD attack). Observe that a few NAS models (e.g., DARTS) show accuracy
and robustness comparable with manual models, while the other NAS models (e.g.,
DrNAS) underperform in terms of both accuracy and robustness, which may be explained
by their diverse architectural patterns associated with adversarial training (e.g., dense
connections, number of convolution operations, and cell sizes) [133]. This disparity
also implies that adversarial training may not be a universal solution for improving the
robustness of all the NAS models.

In-NAS mitigation – We further investigate how to build attack robustness into

86

55 60 65 70
Attack Success Rate (%)

5

10

15

20

25

C
le

an
 A

cc
ur

ac
y

D
ro

p
(%

)
BiT

DenseNet

DLA

ResNet

ResNext

VGG

WideResNet
AmoebaNet

DARTS

DrNAS

ENAS

NASNet

PC-DARTS

PDARTS

SGAS

SNAS

Random

Figure 5.14: Effectiveness of adversarial training on various models over CIFAR10.

the NAS process directly. Motivated by the analysis in § 5.4.1, we explore two potential
strategies.

3

0

1

2

4

5

2 3 4 5

DARTS DARTS-i

Dil Conv 3×3 Dil Conv 5×5
Sep Conv 3×3 Sep Conv 5×5

Max Pool 3×3
Avg Pool 3×3 Skip Connect

Concat

DARTS-ii DARTS-iii

0

1

3

0

1

2

4

5

2 3 4 5

0

1

Figure 5.15: Illustration of cell structures of DARTS, DARTS-i, DARTS-ii, and DARTS-iii.

(i) Increasing cell depth – As the vulnerability of NAS models tends to be associated
with their wide and shallow cell structures, we explore increasing their cell depth. To
this end, we may re-wire existing NAS models or modify the performance measure of
candidate models. For the latter case, we may increase the number of training epochs

87

before evaluation. For instance, DARTS, without fully optimizing model parameters θ
with respect to architecture parameters α, uses a single-step gradient descent (nstep = 1)
to approximate the solution [43]. We improve the approximation by increasing the
number of training steps (e.g., nstep = 5) at the cost of additional search time.

(ii) Suppressing skip connects – As the vulnerability of NAS models is also associated
with skip connects, we explore purposely reducing their overuse. To this end, we may
replace the skip connects in existing NAS models with other operations (e.g., convolution)
or modify their likelihood of being selected in the search process. For the latter case,
at each iteration, we may multiply the weight of skip connection αskip by a coefficient
γ ∈ (0, 1) in Eq. 2.7.

We evaluate the effectiveness of such strategies within the DARTS framework. Let
DARTS-i, DARTS-ii, and DARTS-iii be the variants of DARTS after applying the strategies
of (i), (ii), and (i) and (ii) combined. Figure 5.15 compares their cell structures. Notably,
DARTS-i features a cell structure deeper than DARTS (5 versus 2), while DARTS-ii and
DARTS-iii substitute the skip connects in DARTS and DARTS-i with 3× 3 convolution,
respectively.

Architecture
Evasion Backdoor Membership

ASR (M) ASR (L) ASR CAD AUC

DARTS 100.0% 86.7% 99.9% 2.7% 0.562

DARTS-i 88.3% 72.7% 90.4% 4.6% 0.534

DARTS-ii 93.0% 75.0% 98.8% 3.0% 0.531

DARTS-iii 82.0% 65.6% 84.2% 4.6% 0.527
Table 5.4. Vulnerability of DARTS and its variants to adversarial evasion (M - most likely case,
L - least likely case), backdoor injection, and membership inference on CIFAR10.

Table 5.4 compares their vulnerability to adversarial evasion, backdoor injection, and
membership inference on CIFAR10. The experimental setting is identical to that in § 5.2.
Observe that both strategies may improve the robustness of NAS models against these
attacks. For instance, combining both strategies in DARTS-iii reduces the AUC score
of membership inference from 0.562 to 0.527. Similar phenomena are observed in the
case of model extraction attacks. As shown in Figure 5.16, increasing the cell depth
significantly augments the robustness against model extraction, while suppressing skip
connects further improves it marginally.

Yet, such strategies seem to have a negative impact on the robustness against model
poisoning. As shown in Figure 5.17, both strategies, especially increasing the cell depth,
tends to exacerbate the attack vulnerability. This may be explained by that while more

88

0 4 8 12 16
Query Number (k)

1.0

1.5

2.0

2.5

C
ro

ss
 E

nt
ro

py
DARTS

DARTS-i

DARTS-ii

DARTS-iii

Figure 5.16: Vulnerability of DARTS and its variants to model extraction on CIFAR10.

difficult to fit the poisoning data, it is also more difficult to fit deeper structures to the
clean data, which results in a significant accuracy drop. This may also explain why
the backdoor injection attack has higher CAD on DARTS-i and DARTS-iii as shown in
Table 5.4. The observation also implies a potential trade-off between the robustness
against different attacks in designing NAS models.

0 10 20 30 40
Poisoning Fraction (%)

0

10

20

30

40

C
le

an
 A

cc
ur

ac
y

D
ro

p
(%

)

DARTS

DARTS-i

DARTS-ii

DARTS-iii

Figure 5.17: Vulnerability of DARTS and its variants to model poisoning on CIFAR10.

Remark 5 – Simply increasing cell depth and/or suppressing skip connects may only partially
mitigate the vulnerability of NAS-generated models.

5.4.3 Limitations

Next, we discuss the limitations of this work.

89

Alternative NAS frameworks – In this work, we mainly consider the cell-based
search space adopted by recent NAS methods [42,43,47,134,135], while other methods
have considered the global search space (e.g., chain-of-layer structures) [77,136]. Further,
while we focus on the differentiable search strategy, there are other strategies including
random search [78], Bayesian optimization [79], and reinforcement learning [41, 77,
137]. We consider exploring the vulnerability of models generated by alternative NAS
frameworks as our ongoing research.

Other trainability metrics – In this work, we only consider loss smoothness and
gradient variance as two key factors impacting the trainability (and vulnerability) of NAS
models. There are other trainability metrics (e.g., condition number of neural tangent
kernel [138]) that are potentially indicative of attack vulnerability as well.

Robustness, accuracy, and search efficiency – It is revealed that the greater
vulnerability incurred by NAS is possibly associated with the preference for models that
converge fast at early training phases (i.e., higher trainability). It is however unclear
whether this observation implies fundamental conflicts between the factors of robustness,
accuracy, and search efficiency; if so, is it possible to find an optimal balance between
them? We consider answering these questions critical for designing and operating NAS
in practical settings.

5.5 Conclusion
This work represents a systematic study on the security risks incurred by AutoML.
From both empirical and analytical perspectives, we demonstrate that NAS-generated
models tend to suffer greater vulnerability to various malicious manipulations, compared
with their manually designed counterparts, which implies the existence of fundamental
drawbacks in the design of existing NAS methods. We identify high loss smoothness
and low gradient variance, stemming from the preference of NAS for models with higher
trainability, as possible causes for such phenomena. Our findings raise concerns about
the current practice of NAS in security-sensitive domains. Further, we discuss potential
remedies to mitigate such limitations, which sheds light on designing and operating NAS
in a more robust and principled manner.

90

Chapter 6 |
EVAS: Exploitable and Vulnerable
Arch Search

6.1 Introduction
As a new paradigm of applying ML techniques in practice, automated machine learning
(AutoML) automates the pipeline from raw data to deployable models, which covers model
design, optimizer selection, and parameter tuning. The use of AutoML greatly simplifies
the ML development cycles and propels the trend of ML democratization. In particular,
neural architecture search (NAS), one primary AutoML task, aims to find performant
deep neural network (DNN) arches1 tailored to given datasets. In many cases, NAS is
shown to find models remarkably outperforming manually designed ones [42,43,46].

In contrast to the intensive research on improving the capability of NAS, its security
implications are largely unexplored. As ML models are becoming the new targets of
malicious attacks [55], the lack of understanding about the risks of NAS is highly
concerning, given its surging popularity in security-sensitive domains [139]. Towards
bridging this striking gap, we pose the intriguing yet critical question:

Is it possible for the adversary to exploit NAS to launch previously improbable attacks?

This work provides an affirmative answer to this question. We present exploitable
and vulnerable arch search (Evas), a new backdoor attack that leverages NAS to find
neural arches with inherent, exploitable vulnerability. Conventional backdoor attacks
typically embed the malicious functions (“backdoors”) into the space of model parameters.
They often assume strong threat models, such as polluting training data [16,18,122] or

1In the following, we use “arch” for short of “architecture”.

91

perturbing model parameters [140,141], and are thus subject to defenses based on model
inspection [26,27] and data filtering [70]. In Evas, however, as the backdoors are carried
in the space of model arches, even if the victim trains the models using clean data and
operates them in a black-box manner, the backdoors are still retained. Moreover, due to
its independence of model parameters or training data, Evas is naturally robust against
defenses such as model inspection and input filtering.

To realize Evas, we define a novel metric based on neural tangent kernel [138],
which effectively indicates the exploitable vulnerability of a given arch; further, we
integrate this metric into the NAS-without-training framework [138,142]. The resulting
search method is able to efficiently identify candidate arches without requiring model
training or backdoor testing. To verify Evas’s empirical effectiveness, we evaluate Evas
on benchmark datasets and show: (i) Evas successfully finds arches with exploitable
vulnerability, (ii) the injected backdoors may be explained by arch-level “shortcuts” that
recognize trigger patterns, and (iii) Evas demonstrates high evasiveness, transferability,
and robustness against defenses. Our findings show the feasibility of exploiting NAS as a
new attack vector to implement previously improbable attacks, raise concerns about the
current practice of NAS in security-sensitive domains, and point to potential directions
to develop effective mitigation.

6.2 Evas
Next, we present Evas, a new backdoor attack leveraging NAS to find neural arches
with exploitable vulnerability. We begin by introducing the threat model.

6.2.1 Threat Model

A backdoor attack injects a hidden malicious function (“backdoor”) into a target model
[143]. The backdoor is activated once a pre-defined condition (“trigger”) is present, while
the model behaves normally otherwise. In a predictive task, the backdoor is often defined
as classifying a given input to a class desired by the adversary, while the trigger can
be defined as a specific perturbation applied to the input. Formally, given input x and
trigger r = (m, p) in which m is a mask and p is a pattern, the trigger-embedded input
is defined as:

x̃ = x⊙ (1−m) + p⊙m (6.1)

92

trigger
input malfunction

EVAS search

Training

infected model

adversary
<latexit sha1_base64="6tRDbU4fHUw4V+FYXA6UDbMIt7M=">AAACenicbZHJahtBEIZb4yy2sng7+jJYCiQExIxxlqNJLjk6ENnGbiFqemqsRr0M3TWOhmHeItfkvfIuPqS1QCI5BQ0/VV8V1X9lpZKekuR3J9p69PjJ0+2d7rPnL17u7u0fXHhbOYFDYZV1Vxl4VNLgkCQpvCodgs4UXmbTz/P65R06L635RnWJIw23RhZSAIXUdb8Yc1DlBPrjvV4ySBYRPxTpSvTYKs7H+51rnltRaTQkFHh/kyYljRpwJIXCtssrjyWIKdziTZAGNPpRs1i5jV+FTB4X1oVnKF5k/+1oQHtf6yyQGmji12qz5ZBNfg7+l8/0OutJg6tdvrEjFR9HjTRlRWjEcsWiUjHZeO5cnEuHglQdBAgnwy9jMQEHgoK/XW7wu7Bag8kbLoR0om34FJ1JBu9wxu9EsAldwyeZnTV97sOEkjzVCvkc7rftX7rthmukm94/FBcng/T94PTrSe/s0+ou2+yIHbPXLGUf2Bn7ws7ZkAlm2A/2k/3q3EfH0Zvo7RKNOqueQ7YW0ekf6UHEXg==</latexit>

f↵

vulnerable arch

clean dataset

<latexit sha1_base64="T8eDilDKIBvB/kBIsNFdPp63CI0=">AAACi3icbZHbahRBEIZ7x1NcjdnolXgzuCvEm2UmHlEvgiJ4GcFNgull6ampyTTbh6G7Nu4wDD6Nt/o8vo29B9DdWNDwU/V1UfVXVinpKUl+d6Jr12/cvLVzu3vn7u69vd7+/RNvZw5wBFZZd5YJj0oaHJEkhWeVQ6EzhafZ9MOifnqJzktrvlBd4ViLCyMLCYJCatJ7OCgmXKiqFAcccktvY04lkng6mPT6yTBZRnxVpGvRZ+s4nux3vvLcwkyjIVDC+/M0qWjcCEcSFLZdPvNYCZiKCzwP0giNftwsd2jjJyGTx4V14RmKl9l/fzRCe1/rLJBaUOk3avNVk21+Af6Xz/Qm60kLV7t8a0YqXo8baaoZoYHViMVMxWTjhZVxLh0CqToIAU6GLWMohRNAwfAuN/gNrNbC5A0HkA7ahk/RmWT4Auf8EoJN6BpeZnbeDLgPHSryVCvkC3jQtn/pthuukW57f1WcHA7Tl8Pnnw/7R+/Xd9lhj9hjdsBS9oodsU/smI0YsO/sB/vJfkW70bPoTfRuhUad9Z8HbCOij38AZM/JSg==</latexit>

f↵(·; ✓)

Adversary

Input Trigger Input

generator

Victim

Malicious Arch

Training

Malicious Model Malfunction

Clean Dataset

trigger
<latexit sha1_base64="etNJS7l+dTsiatOJk/gBHafVGRg=">AAACe3icbZHbahRBEIZ7x1NcD0n00pvBXUFElplg1MugN7mMkE2C20voqanNNtuHobsm7tDMY3irz+XDCOk9gNmNBQ0/VV8V1X8VlZKesuxPJ7l3/8HDRzuPu0+ePnu+u7f/4szb2gEOwSrrLgrhUUmDQ5Kk8KJyKHSh8LyYfV3Uz6/ReWnNKTUVjrW4MnIiQVBMjfqcpCoxzNv+5V4vG2TLSO+KfC16bB0nl/ud77y0UGs0BEp4P8qzisZBOJKgsO3y2mMlYCaucBSlERr9OCx3btM3MVOmE+viM5Qus7c7gtDeN7qIpBY09Ru1+WrINr8A/8sXepP1pIVrXLm1I00+j4M0VU1oYLXipFYp2XRhXVpKh0CqiUKAk/GXKUyFE0DR4C43+AOs1sKUgQNIB23gM3QmGxzinF9DtAld4NPCzkOf+zihIk+NQr6A+237j2678Rr5tvd3xdnBIP84+PDtoHf0ZX2XHfaKvWZvWc4+sSN2zE7YkAGz7Cf7xX53/ia95F3yfoUmnXXPS7YRyeENiu/FHw==</latexit>

x̃
<latexit sha1_base64="u8LfjtMONkwFfmrCZNwbPOUOgNk=">AAACh3icbZFLb9NAEMc35tWGVwrixMUiQSqXYFfQVuJS4MKxSKSt6EbRejxJVtmHtTtOY1n+MFzhE/Ft2DwkSMpIK/0185vR7H+yQklPSfK7Fd25e+/+g7399sNHj5887Rw8u/C2dIADsMq6q0x4VNLggCQpvCocCp0pvMxmn5f1yzk6L635RlWBQy0mRo4lCAqpUedFb3LIIbf0IeZz4WiKJN70Rp1u0k9WEd8W6UZ02SbORwet7zy3UGo0BEp4f50mBQ3rMFGCwqbNS4+FgJmY4HWQRmj0w3q1fxO/Dpk8HlsXnqF4lf23oxba+0pngdSCpn6rtlgP2eWX4H/5TG+znrRwlct3dqTx6bCWpigJDaxXHJcqJhsvbYxz6RBIVUEIcDL8MoapcAIomN3mBm/Aai1MXnMA6aCp+QydSfrvccHnEGxCV/NpZhd1j/swoSBPlUK+hHtN85du2uEa6a73t8XFUT897r/7etQ9+7S5yx57yV6xQ5ayE3bGvrBzNmDAavaD/WS/ov3obXQcna7RqLXpec62Ivr4B6lsx6s=</latexit>

g(·;#)
<latexit sha1_base64="hSKFqIO+R8AL5Cb/Diu2KTFCWl4=">AAACc3icbZFLb9NAEMc3pkBJebRw7MVqjMSFyK54HSu4cCxq01btRtV6PElW2Ye1Oy6xLH8ErvDZ+CDc2TykNmlHWumvmd+MZv+Tl0p6StO/nejR1uMnT7efdXeev3j5anfv9Zm3lQMcgFXWXeTCo5IGByRJ4UXpUOhc4Xk+/Tavn9+g89KaU6pLHGoxNnIkQVBInSSz5Hq3l/bTRcT3RbYSPbaK4+u9ziUvLFQaDYES3l9laUnDRjiSoLDt8spjKWAqxngVpBEa/bBZ7NrGb0OmiEfWhWcoXmTvdjRCe1/rPJBa0MSv1WbLIZv8HHyQz/U660kLV7tiY0cafRk20pQVoYHliqNKxWTjuWVxIR0CqToIAU6GX8YwEU4ABWO73OBPsFoLUzQcQDpoGz5FZ9L+R5zxGwg2oWv4JLezJuE+TCjJU62Qz+GkbW/pthuukW16f1+cHfazT/0PPw57R19Xd9lm++yAvWMZ+8yO2Hd2zAYM2Jj9Yr/Zn86/aD86iJIlGnVWPW/YWkTv/wNTOMFp</latexit>x

generator
clean
input

1

2

3

Figure 6.1: Attack framework of Evas. (1) The adversary applies NAS to search for arches
with exploitable vulnerability; (2) such vulnerability is retained even if the models are trained
using clean data; (3) the adversary exploits such vulnerability by generating trigger-embedded
inputs.

Let f be the backdoor-infected model. The backdoor attack implies that for given
input-label pair (x, y), f(x) = y and f(x̃) = t with high probability, where t is the
adversary’s target class.

The conventional backdoor attacks typically follow two types of threat models: (i)
the adversary directly trains a backdoor-embedded model, which is then released to and
used by the victim user [18,122,140]; or (ii) the adversary indirectly pollutes the training
data or manipulate the training process [16,141] to inject the backdoor into the target
model. As illustrated in Figure 6.1, in Evas, we assume a more practical threat model
in which the adversary only releases the exploitable arch to the user, who may choose
to train the model from scratch using clean data or apply various defenses (e.g., model
inspection or data filtering) before or during using the model. We believe this represents
a more realistic setting: due to the prohibitive computational cost of NAS, users may
opt to use performant model arches provided by third parties, which opens the door for
the adversary to launch the Evas attack.

However, realizing Evas represents non-trivial challenges including (i) how to define
the trigger patterns? (ii) how to define the exploitable, vulnerable arches? and (iii) how
to search for such arches efficiently? Below we elaborate on each of these key questions.

93

6.2.2 Input-Aware Triggers

Most conventional backdoor attacks assume universal triggers: the same trigger is applied
to all the inputs. However, universal triggers can be easily detected and mitigated by
current defenses [26,27]. Moreover, it is shown that implementing universal triggers at
the arch level requires manually designing “trigger detectors” in the arches and activating
such detectors using poisoning data during training [144], which does not fit our threat
model.

Instead, as illustrated in Figure 6.1, we adopt input-aware triggers [145], in which a
trigger generator g (parameterized by ϑ) generates trigger rx specific to each input x.
Compared with universal triggers, it is more challenging to detect or mitigate input-aware
triggers. Interestingly, because of the modeling capacity of the trigger generator, it is
more feasible to implement input-aware triggers at the arch level. For simplicity, below
we use x̃ = g(x;ϑ) to denote both generating trigger rx for x and applying rx to x to
generate the trigger-embedded input x̃.

6.2.3 Exploitable arches

In Evas, we aim to find arches with backdoors exploitable by the trigger generator,
which we define as the following optimization problem.

Specifically, let α and θ respectively denote f ’s arch and model parameters. We define
f ’s training as minimizing the following loss:

Ltrn(θ, α) ≜ E(x,y)∼Dℓ(fα(x; θ), y) (6.2)

where fα denotes the model with arch fixed as α and D is the underlying data distribution.
As θ is dependent on α, we define:

θα ≜ arg min
θ
Ltrn(θ, α) (6.3)

Further, we define the backdoor attack objective as:

Latk(α, ϑ) ≜ E(x,y)∼D [ℓ(fα(x; θα), y) + λℓ(fα(g(x;ϑ); θα), t)] (6.4)

where the first term specifies that f works normally on clean data, the second term
specifies that f classifies trigger-embedded inputs to target class t, and the parameter
λ balances the two factors. Note that we assume the testing data follows the same

94

distribution D as the training data.
Overall, we consider an arch α∗ having exploitable vulnerability if it is possible to

find a trigger generator ϑ∗, such that Latk(α∗, ϑ∗) is below a certain threshold.

6.2.4 Search without Training

Searching for exploitable archs by directly optimizing Eq. 6.4 is challenging: the nested
optimization requires recomputing θ (i.e., re-training model f) in Ltrn whenever α is
updated; further, as α and ϑ are coupled in Latk, it requires re-training generator g once
α is changed.

Motivated by recent work [142, 146–148] on NAS using easy-to-compute metrics
as proxies (without training), we present a novel method of searching for exploitable
arches based on neural tangent kernel (NTK) [149] without training the target model
or trigger generator. Intuitively, NTK describes model training dynamics by gradient
descent [130,149,150]. In the limit of infinite-width DNNs, NTK becomes constant, which
allows closed-form statements to be made about model training. Recent work [151,152]
shows that NTK serves as an effective predictor of model “trainability” (i.e., how fast the
model converges at early training stages). Formally, considering model f (parameterized
by θ) mapping input x to a probability vector f(x; θ) (over different classes), the NTK is
defined as the product of the Jacobian matrix:

Θ(x, θ) ≜
[
∂f(x; θ)
∂θ

] [
∂f(x; θ)
∂θ

]⊺

(6.5)

Let λmin (λmax) be the smallest (largest) eigenvalue of the empirical NTK Θ̂(θ) ≜

E(x,y)∼DΘ(x, θ). The condition number κ ≜ λmax/λmin serves as a metric to estimate
model trainability [138], with a smaller conditional number indicating higher trainability.

In our context, we consider the trigger generator and the target model as an end-
to-end model and measure the empirical NTK of the trigger generator under randomly
initialized θ:

Θ̂(ϑ) ≜ E(x,y)∼D,θ∼Pθ◦

[
∂f(g(x;ϑ); θ)

∂ϑ

] [
∂f(g(x;ϑ; θ)

∂ϑ

]⊺

(6.6)

where Pθ◦ represents the initialization distribution of θ. Here, we emphasize that the
measure should be independent of θ’s initialization.

Intuitively, Θ̂(ϑ) measures the trigger generator’s trainability with respect to a

95

ASR (%)
40 60 80 100 20 60 80 10040

ACC (%)

1

2

3

4

C
on

di
tio

na
l N

um
be

r
of

 N
TK

 (

)

Figure 6.2: The conditional number of NTK versus the model performance (ACC) and vulnera-
bility (ASR).

randomly initialized target model. The generator’s trainability indicates the easiness of
effectively generating input-aware triggers, implying the model’s vulnerability to input-
aware backdoor attacks. To verify the hypothesis, on the CIFAR10 dataset, we measure
Θ̂(ϑ) with respect to 900 randomly generated arches as well as the model accuracy
(ACC) on clean inputs and the attack success rate (ASR) on trigger-embedded inputs.
Specifically, for each arch α, we first train the model fα to measure ACC and then train
the trigger generator g with respect to fα on the same dataset to measure ASR, with
results shown in Figure 6.2. Observe that the conditional number of Θ̂(ϑ) has a strong
negative correlation with ASR, with a smaller value indicating higher attack vulnerability;
meanwhile, it has a limited correlation with ACC, with most of the arches having ACC
within the range from 80% to 95%.

Leveraging the insights above, we present a simple yet effective algorithm that searches
for exploitable arches without training, which is a variant of regularized evolution
[142, 153]. As sketched in Algorithm 3, it starts from a candidate pool A of n arches
randomly sampled from a pre-defined arch space; at each iteration, it samples a subset
A′ of m arches from A, randomly mutates the best candidate (i.e., with the lowest score),
and replaces the oldest arch in A with this newly mutated arch. In our implementation,
the score function is defined as the condition number of Eq. 6.6; the arch space is defined
to be the NATS-Bench search space [119], which consists of 5 atomic operators {none,
skip connect, conv 1× 1, conv 3× 3, and avg pooling 3× 3}; and the mutation function is
defined to be randomly substituting one operator with another.

96

Algorithm 3: Evas Attack
Input: n – pool size; m – sample size; score – score function; sample – subset

sampling function; mutate – arch mutation function;
Output: exploitable arch

1 A,S, T = [], [], [] ; // candidate archs, scores, timestamps
2 for i← 1 to n do
3 A[i]← randomly generated arch, S[i]← score(A[i]), T [i]← 0;

4 best← 0;
5 while maximum iterations not reached yet do
6 i← arg mink∈sample(A,m) S[k] ; // best candidate
7 j ← arg maxk∈A T [k] ; // oldest candidate
8 A[j]← mutate(A[i]) ; // mutate candidate
9 S[j]← score(A[j]) ; // update score

10 T ← T + 1, T [j]← 0 ; // update timestamps
11 if S[j] < S[best] then best← j;

12 return A[best];

6.3 Evaluation
We conduct an empirical evaluation of Evas on benchmark datasets under various
scenarios. The experiments are designed to answer the following key questions: (i) does
it work? – we evaluate the performance and vulnerability of the arches identified by
Evas; (ii) how does it work? – we explore the dynamics of Evas search as well as
the characteristics of its identified arches; and (ii) how does it differ? – we compare
Evas with conventional backdoors in terms of attack evasiveness, transferability, and
robustness.

6.3.1 Experimental Setting

Datasets. In the evaluation, we primarily use three datasets that have been widely used
to benchmark NAS methods [42–44, 46, 118]: CIFAR10 [84], which consists of 32×32
color images drawn from 10 classes; CIFAR100, which is similar to CIFAR10 but includes
100 finer-grained classes; and ImageNet16, which is a subset of the ImageNet dataset [3]
down-sampled to images of size 16×16 in 120 classes.

Search space. We consider the search space defined by NATS-Bench ([154]), which
consists of 5 operators {none, skip connect, conv 1× 1, conv 3× 3, and avg pooling 3× 3}
defined among 4 nodes, implying a search space of 15,625 candidate arches.

97

0 21 3 0 21 3 0 21 3

Conv 1×1 Conv 3×3 Avg Pool 3×3Skip Connect

(i) EVAS (ii) Random 1 (iii) Random 2

Figure 6.3: Sample arch identified by Evas in comparison of two randomly generated arches.

Baselines. We compare the arches found by Evas with ResNet18 [87], a manually
designed arch. For completeness, we also include two arches randomly sampled from
the NATS-Bench space, which are illustrated in Figure 6.3. By default, for each arch
α, we assume the adversary trains a model fα and then trains the trigger generator g
with respect to fα on the same dataset. We consider varying settings in which the victim
directly uses fα, fine-tunes fα, or only uses α and re-trains it from scratch (details in
§ 6.3.4).

Metrics. We mainly use two metrics, attack success rate (ASR) and clean data
accuracy (ACC). Intuitively, ASR is the target model’s accuracy in classifying trigger
inputs to the adversary’s target class during inference, which measures the attack
effectiveness, while ACC is the target model’s accuracy in correctly classifying clean
inputs, which measures the attack evasiveness.

6.3.2 Q1: Does Evas work?

Figure 6.3 illustrates one sample arch identified by Evas on the CIFAR10 dataset. We
use this arch throughout this set of experiments to show that its vulnerability is at the
arch level and universal across datasets. To measure the vulnerability of different arches,
we first train each arch using clean data, then train a trigger generator specific to this
arch, and finally measure its ASR and ACC.

Table 6.1 reports the results. We have the following observations. First, the ASR
of Evas is significantly higher than ResNet18 and the other two random arches. For
instance, on CIFAR10, Evas is 21.8%, 28.3%, and 34.5% more effective than ResNet18
and random arches, respectively. Second, Evas has the highest ASR across all the
datasets. Recall that we use the same arch throughout different datasets. This indicates
that the attack vulnerability probably resides at the arch level and is insensitive to
concrete datasets, which corroborates with prior work on NAS: one performant arch
found on one dataset often transfers across different datasets [43]. This may be explained
as follows. An arch α essentially defines a function family Fα, while a trained model
fα(·; θ) is an instance in Fα, thereby carrying the characteristics of Fα (e.g., effective to

98

extract important features or exploitable by a trigger generator). Third, all the arches
show higher ASR on simpler datasets such as CIFAR10. This may be explained by
that more complex datasets (e.g., more classes, higher resolution) imply more intricate
manifold structures, which may interfere with arch-level backdoors.

dataset
architecture

Evas ResNet18 Random I Random II

ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR10 94.26% 81.51% 96.10% 59.73% 91.91% 53.21% 92.05% 47.04%

CIFAR100 71.54% 60.97% 78.10% 53.53% 67.09% 42.41% 67.15% 47.17%

ImageNet16 45.92% 55.83% 47.62% 42.28% 39.33% 37.45% 39.48% 32.15%

Table 6.1. Model performance on clean inputs (ACC) and attack performance on trigger-
embedded inputs (ASR) of Evas, ResNet18, and two random arches.

To understand the attack effectiveness of Evas on individual inputs, we illustrate
sample clean inputs and their trigger-embedded variants in Figure 6.4. Further, using
GradCam [106], we show the model’s interpretation of clean and trigger inputs with
respect to their original and target classes. Observe that the trigger pattern is specific
to each input. Further, even though the two trigger inputs are classified into the same
target class, the difference in their heatmaps shows that the model pays attention to
distinct features, highlighting the effects of input-aware triggers.

cl
ea

n
in

pu
t

“bird”

tr
ig

ge
r

in
pu

t

“airplane” “deer” “airplane”

Figure 6.4: Sample clean and trigger-embedded inputs as well as their GradCam interpretation
by the target model.

6.3.3 Q2: How does Evas work?

Next, we explore the dynamics of how Evas searches for exploitable arches. For simplicity,
given the arch identified by Evas in Figure 6.3, we consider the set of candidate arches

99

with the operators on the 0-3 (skip connect) and 0-1 (conv 3×3) connections replaced by
others. We measure the ACC and ASR of all these candidate arches and illustrate the
landscape of their scores in Figure 6.5. Observe that the exploitable arch features the
lowest score among the surrounding arches, suggesting the existence of feasible mutation
paths from random arches to reach exploitable arches following the direction of score
descent.

none skip connect conv 1x1 conv 3x3 avg pool 3x3

no
ne

sk
ip

 c
on

ne
ct

co
nv

 1
x1

co
nv

 3
x3

av
g

po
ol

 3
x3

ASR: 30.01
ACC: 90.34

Score: 12.54

ASR: 62.35
ACC: 92.89
Score: 4.49

ASR: 41.21
ACC: 91.53
Score: 9.84

ASR: 36.99
ACC: 92.53

Score: 11.82

ASR: 53.83
ACC: 91.00
Score: 4.22

ASR: 52.52
ACC: 91.67

Score: 19.43

ASR: 52.25
ACC: 92.62
Score: 6.55

ASR: 50.22
ACC: 92.47

Score: 12.28

ASR: 38.47
ACC: 92.11

Score: 10.87

ASR: 44.48
ACC: 91.63
Score: 5.98

ASR: 29.64
ACC: 91.19

Score: 19.21

ASR: 46.76
ACC: 91.97
Score: 3.68

ASR: 50.71
ACC: 92.54

Score: 20.51

ASR: 48.66
ACC: 92.86

Score: 15.55

ASR: 42.76
ACC: 91.58
Score: 5.87

ASR: 27.01
ACC: 91.52

Score: 23.35

ASR: 81.51
ACC: 94.26
Score: 3.48

ASR: 51.19
ACC: 93.22
Score: 9.24

ASR: 32.66
ACC: 93.22

Score: 21.89

ASR: 45.59
ACC: 92.55
Score: 6.80

ASR: 39.99
ACC: 90.30

Score: 13.88

ASR: 56.35
ACC: 92.62
Score: 8.31

ASR: 43.13
ACC: 92.36

Score: 32.61

ASR: 51.55
ACC: 92.59

Score: 19.37

ASR: 60.71
ACC: 91.30
Score: 8.18 5

10

15

20

25

30

0-3 connection

0-
1

co
nn

ec
tio

n

Figure 6.5: Landscape of candidate arches surrounding exploitable arches with their ASR, ACC,
and scores.

Further, we ask the question: what makes the arches found by Evas exploitable?
Observe that the arch in Figure 6.3 uses the conv 1×1 and 3×3 operators on a number
of connections. We thus generate arches by enumerating all the possible combinations
of conv 1×1 and 3×3 on these connections and measure their performance. Observe
that while all these arches show high ASR, their vulnerability varies greatly from about
50% to 90%. We hypothesize that specific combinations of conv 1×1 and conv 3×3
create arch-level “shortcuts” for recognizing trigger patterns. We consider exploring the
causal relationships between concrete arch characteristics and attack vulnerability as our
ongoing work.

6.3.4 Q3: How does Evas differ?

To further understand the difference between Evas and conventional backdoors, we
compare the arches found by Evas and other arches under various training and defense

100

scenarios.
Fine-tuning with clean data. We first consider the scenario in which, with the

trigger generator fixed, the target model is fine-tuned using clean data. Table 6.2 shows
the results evaluated on CIFAR10 and CIFAR100. Observe that fine-tuning has a
marginal impact on the ASR of all the arches. Take Random I as an example, compared
with Table 6.1, its ASR on CIFAR10 drops only by 7.40% after fine-tuning. This suggests
that the effectiveness of fine-tuning to defend against input-aware backdoor attacks may
be limited.

dataset
architecture

Evas ResNet18 Random I Random II

ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR10 90.33% 74.40% 92.22% 53.87% 85.62% 45.81% 87.02% 45.16%

CIFAR100 72.52% 53.50% 79.02% 50.42% 58.89% 38.91% 60.18% 25.41%

Table 6.2. Model performance on clean inputs (ACC) and attack performance on trigger-
embedded inputs (ASR) of Evas, ResNet18, and two random arches after fine-tuning.

Re-training from scratch. Another common scenario is that the victim user
re-initializes the target model and re-trains it from scratch using clean data. We simulate
this scenario as follows. After the trigger generator and target model are trained, we fix
the generator, randomly initialize (using different seeds) the model, and train it on the
given dataset. Table 6.3 compares different arches under this scenario. It is observed
that Evas significantly outperforms ResNet18 and random arches in terms of ASR (with
comparable ACC). For instance, it is 33.4%, 24.9%, and 19.6% more effective than the
other arches respectively. This may be explained by two reasons. First, the arch-level
backdoors in Evas are inherently more agnostic to model re-training than the model-level
backdoors in other arches. Second, in searching for exploitable arches, Evas explicitly
enforces that such vulnerability should be insensitive to model initialization (cf. Eq. 6.4).
Further, observe that, as expected, re-training has a larger impact than fine-tuning on the
ASR of different arches; however, it is still insufficient to mitigate input-aware backdoor
attacks.

Fine-tuning with poisoning data. Further, we explore the setting in which the
adversary is able to poison a tiny portion of the fine-tuning data, which assumes a stronger
threat model. To simulate this scenario, we apply the trigger generator to generate
trigger-embedded inputs and mix them with the clean fine-tuning data. Figure 6.6
illustrates the ASR and ACC of the target model as functions of the fraction of poisoning

101

dataset
architecture

Evas ResNet18 Random I Random II

ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR10 94.18% 64.57% 95.62% 31.15% 91.91% 39.72% 92.09% 45.02%

CIFAR100 71.54% 49.47% 78.53% 44.39% 67.09% 35.80% 67.01% 39.24%

Table 6.3. Model performance on clean inputs (ACC) and attack performance on trigger-
embedded inputs (ASR) of Evas, ResNet18, and two random arches after re-training from
scratch.

data in the fine-tuning dataset. Observe that, even with an extremely small poisoning
ratio (e.g., 0.01%), it can significantly boost the ASR (e.g., 100%) while keeping the
ACC unaffected. This indicates that arch-level backdoors can be greatly enhanced by
combining with other attack vectors (e.g., data poisoning).

75

80

85

90

95

100

ASR

ACC

poisoning ratio (10-5)
0 2 4 6 8 10

Figure 6.6: Model performance on clean inputs (ACC) and attack performance on trigger-
embedded inputs (ASR) of Evas as a function of poisoning ratio.

Backdoor defenses. Finally, we evaluate Evas against three categories of defenses,
model inspection, input filtering, and model sanitization.

Model inspection determines whether a given model f is infected with backdoors. We
use NeuralCleanse [26] as a representative defense. Intuitively, it searches for potential
triggers in each class. If a class is trigger-embedded, the minimum perturbation required
to change the predictions of inputs from other classes to this class is abnormally small.
It detects anomalies using median absolute deviation (MAD) and all classes with MAD
scores larger than 2 are regarded as infected. As shown in Table 6.4, the MAD scores of
Evas’s target classes on three datasets are all below the threshold. This can be explained
by that NeuralCleanse is built upon the universal trigger assumption, which does not

102

hold for Evas.
dataset NeuralCleanse STRIP

CIFAR10 0.895 0.49

CIFAR100 0.618 0.51

ImageNet16 0.674 0.49

Table 6.4. Detection results of NeuralCleanse and STRIP for Evas. NeuralCleanse shows the
MAD score and STRIP shows the AUROC score of binary classification.

Input filtering detects at inference time whether an incoming input is embedded with
a trigger. We use STRIP [70] as a representative defense in this category. It mixes a
given input with a clean input and measures the self-entropy of its prediction. If the
input is trigger-embedded, the mixture remains dominated by the trigger and tends to be
misclassified, resulting in low self-entropy. However, as shown in Table 6.4, the AUROC
scores of STRIP in classifying trigger-embedded inputs by Evas are all close to random
guess (i.e., 0.5). This can also be explained by that Evas uses input-aware triggers,
where each trigger only works for one specific input and has a limited impact on others.

dataset
architecture

Evas ResNet18

ACC ASR ACC ASR

CIFAR10 90.53% 72.56% 94.11% 50.95%

CIFAR100 64.92% 54.55% 73.35% 38.54%

ImageNet16 40.28% 32.57% 42.53% 27.59%

Table 6.5. Model performance on clean inputs (ACC) and attack performance on trigger-
embedded inputs (ASR) of Evas and ResNet18 after Fine-Pruning.

Model sanitization, before using a given model, sanitizes it to mitigate the potential
backdoors, yet without explicitly detecting whether the model is tampered. We use
Fine-Pruning [155] as a representative. It uses the property that the backdoor attack
typically exploits spare model capacity. It thus prunes rarely-used neurons and then
applies fine-tuning to defend against pruning-aware attacks. We apply Fine-Pruning on
the Evas and ResNet18 models from Table 6.1, with results shown in Table 6.5. Observe
that Fine-Pruning has a limited impact on the ASR of Evas (even less than ResNet18).
This may be explained as follows. The activation patterns of input-aware triggers are
different from that of universal triggers, as each trigger may activate a different set of
neurons. Moreover, the arch-level backdoors in Evas may not concentrate on individual

103

neurons but span over the whole model structures.

6.4 Conclusion
This work studies the feasibility of exploiting NAS as an attack vector to launch pre-
viously improbable attacks. We present a new backdoor attack that leverages NAS to
efficiently find neural network architectures with inherent, exploitable vulnerability. Such
architecture-level backdoors demonstrate many interesting properties including evasive-
ness, transferability, and robustness, thereby greatly expanding the design spectrum
for the adversary. We believe our findings raise concerns about the current practice of
NAS in security-sensitive domains and point to potential directions to develop effective
mitigation.

104

Chapter 7 |
Conclusion

7.1 Conclusion
In this dissertation, we explore and study three important topics in neural backdoors. We
first present IMC attack and demonstrate that co-optimizing adversarial inputs versus
poisoned models provides additional security concerns for DL systems. It is also effective
in both supervised and unsupervised settings. All three study reveals vulnerabilities in
the common ML and DL practice. Finally, We propose a new platform called TrojanZoo
that supports unified evaluation for. This work makes the benchmark of backdoor
research unified, reproducible, and convenient.

Specifically, Imc represents a solid step towards understanding adversarial inputs and
poisoned models in a unified manner. We show both empirically and analytically that (i)
there exist intriguing mutual reinforcement effects between the two attack vectors, (ii)
the adversary is able to exploit such effects to optimize attacks with respect to multiple
metrics, and (iii) it requires to carefully account for such effects in designing effective
countermeasures against the optimized attacks. We believe our findings shed light on
the holistic vulnerabilities of DNNs deployed in realistic settings. TrojanZoo is the first
platform dedicated to assessing neural backdoor attacks/defenses in a holistic, unified,
and practical manner. Leveraging TrojanZoo, we conduct a systematic evaluation of
existing attacks/defenses, which demystifies a number of open questions, reveals various
design trade-offs, and sheds light on further improvement.

Afterwards, we conduct a systematic study on the security risks incurred by AutoML.
From both empirical and analytical perspectives, we demonstrate that NAS-generated
models tend to suffer greater vulnerability to various malicious manipulations, compared
with their manually designed counterparts, which implies the existence of fundamental
drawbacks in the design of existing NAS methods. We identify high loss smoothness

105

and low gradient variance, stemming from the preference of NAS for models with higher
trainability, as possible causes for such phenomena. Our findings raise concerns about
the current practice of NAS in security-sensitive domains. Further, we discuss potential
remedies to mitigate such limitations, which sheds light on designing and operating
NAS in a more robust and principled manner. Evas studies the feasibility of exploiting
NAS as an attack vector to launch previously improbable attacks. We present a new
backdoor attack that leverages NAS to efficiently find neural network architectures
with inherent, exploitable vulnerability. Such architecture-level backdoors demonstrate
many interesting properties including evasiveness, transferability, and robustness, thereby
greatly expanding the design spectrum for the adversary. We believe our findings raise
concerns about the current practice of NAS in security-sensitive domains and point to
potential directions to develop effective mitigation.

7.2 Future Works
Imc presents several potential paths for additional exploration. Initially, beyond the
specific, transparent attacks examined in this dissertation, it is compelling to investigate
the relationships between the two vectors in different scenarios (such as non-targeted,
opaque attacks). Secondly, it is worthwhile to explore augmenting various forms of
threats (like hidden backdoor attacks) within the input-model co-optimization framework.
Lastly, creating a comprehensive resilience measure that encompasses both vectors could
offer a promising foundation for crafting efficient defenses.

First, to date TrojanZoo has integrated 12 attacks and 15 defenses, representing the
state of the art of neural backdoor research. The current implementation does not include
certain concurrent work [156–158]. However, thanks to its modular design, TrojanZoo
can be readily extended to incorporate new attacks, defenses, and metrics. Moreover, we
plan to open-source all the code and data of TrojanZoo and encourage the community to
contribute. Second, to conduct unified evaluation, we mainly consider the attack vector
of re-using pre-trained trojan models. There are other attack vectors through which
backdoor attacks can be launched, including poisoning victims’ training data [15,159] and
knowledge distillation [160], which entail additional constraints for attacks or defenses.
For instance, the poisoning data needs to be evasive to bypass inspection. We consider
studying alternative attack vectors as our ongoing work. Finally, because of the plethora
of work on neural backdoors in the computer vision domain, TrojanZoo focuses on the
image classification task, while recent work has also explored neural backdoors in other

106

settings, including natural language processing [161–163], reinforcement learning [164],
and federated learning [165,166]. We plan to extend TrojanZoo to support such settings
in its future releases.

107

Bibliography

[1] Meng, D. and H. Chen (2017) “MagNet: A Two-Pronged Defense Against
Adversarial Examples,” in Proceedings of ACM SAC Conference on Computer and
Communications (CCS).

[2] Moosavi-Dezfooli, S.-M., A. Fawzi, J. Uesato, and P. Frossard (2018)
“Robustness via Curvature Regularization, and Vice Versa,” ArXiv e-prints.

[3] Deng, J., W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei (2009) “ImageNet:
A Large-scale Hierarchical Image Database,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[4] Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang (2016) “SQuAD:
100,000+ Questions for Machine Comprehension of Text,” in Proceedings of Con-
ference on Empirical Methods in Natural Language Processing (EMNLP).

[5] Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis (2016) “Mastering the Game of Go with Deep Neural Networks
and Tree Search,” Nature, (7587), pp. 484–489.

[6] Ji, Y., X. Zhang, S. Ji, X. Luo, and T. Wang (2018) “Model-Reuse Attacks
on Deep Learning Systems,” in Proceedings of ACM SAC Conference on Computer
and Communications (CCS).

[7] Sculley, D., G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison (2015) “Hidden
Technical Debt in Machine Learning Systems,” in Proceedings of Advances in Neural
Information Processing Systems (NeurIPS).

[8] BVLC (2017), “Model Zoo,” https://github.com/BVLC/caffe/wiki/
Model-Zoo.

[9] Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus (2014) “Intriguing Properties of Neural Networks,” in
Proceedings of International Conference on Learning Representations (ICLR).

108

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo

[10] Goodfellow, I., J. Shlens, and C. Szegedy (2015) “Explaining and Harnessing
Adversarial Examples,” in Proceedings of International Conference on Learning
Representations (ICLR).

[11] Papernot, N., P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami (2016) “The Limitations of Deep Learning in Adversarial Settings,” in
Proceedings of IEEE European Symposium on Security and Privacy (Euro S&P).

[12] Carlini, N. and D. A. Wagner (2017) “Towards Evaluating the Robustness
of Neural Networks,” in Proceedings of IEEE Symposium on Security and Privacy
(S&P).

[13] Ji, Y., X. Zhang, and T. Wang (2017) “Backdoor Attacks against Learning
Systems,” in Proceedings of IEEE Conference on Communications and Network
Security (CNS).

[14] Suciu, O., R. Mărginean, Y. Kaya, H. Daumé, III, and T. Dumitraş (2018)
“When Does Machine Learning FAIL? Generalized Transferability for Evasion and
Poisoning Attacks,” in Proceedings of USENIX Security Symposium (SEC).

[15] Shafahi, A., W. Ronny Huang, M. Najibi, O. Suciu, C. Studer, T. Dumi-
tras, and T. Goldstein (2018) “Poison Frogs! Targeted Clean-Label Poisoning
Attacks on Neural Networks,” in Proceedings of Advances in Neural Information
Processing Systems (NeurIPS).

[16] Gu, T., B. Dolan-Gavitt, and S. Garg (2017) “BadNets: Identifying Vulnera-
bilities in the Machine Learning Model Supply Chain,” ArXiv e-prints.

[17] Liu, Y., S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang
(2018) “Trojaning Attack on Neural Networks,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS).

[18] ——— (2018) “Trojaning Attack on Neural Networks,” in Proceedings of Network
and Distributed System Security Symposium (NDSS).

[19] Pang, R., H. Shen, X. Zhang, S. Ji, Y. Vorobeychik, X. Luo, A. Liu, and
T. Wang (2020) “A Tale of Evil Twins: Adversarial Inputs versus Poisoned Models,”
in Proceedings of ACM SAC Conference on Computer and Communications (CCS).

[20] Versprille, A. (2015), “Researchers Hack Into Driverless Car System, Take
Control of Vehicle,” http://www.nationaldefensemagazine.org/.

[21] Cooper, P. (2014), “Meet AISight: The scary CCTV network completely run by
AI,” http://www.itproportal.com/.

[22] Biggio, B., G. Fumera, F. Roli, and L. Didaci (2012) “Poisoning Adaptive
Biometric Systems,” in Proceedings of Joint IAPR International Workshop on
Structural, Syntactic, and Statistical Pattern Recognition (SSPR&SPR).

109

http://www.nationaldefensemagazine.org/
http://www.itproportal.com/

[23] Chen, X., C. Liu, B. Li, K. Lu, and D. Song (2017) “Targeted Backdoor
Attacks on Deep Learning Systems Using Data Poisoning,” ArXiv e-prints.

[24] Li, S., B. Z. Hao Zhao, J. Yu, M. Xue, D. Kaafar, and H. Zhu (2019)
“Invisible Backdoor Attacks Against Deep Neural Networks,” ArXiv e-prints.

[25] Yao, Y., H. Li, H. Zheng, and B. Y. Zhao (2019) “Latent Backdoor Attacks
on Deep Neural Networks,” in Proceedings of ACM SAC Conference on Computer
and Communications (CCS).

[26] Wang, B., Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao (2019) “Neural Cleanse: Identifying and Mitigating Backdoor Attacks in
Neural Networks,” in Proceedings of IEEE Symposium on Security and Privacy
(S&P).

[27] Liu, Y., W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang (2019) “ABS:
Scanning Neural Networks for Back-Doors by Artificial Brain Stimulation,” in
Proceedings of ACM SAC Conference on Computer and Communications (CCS).

[28] Chen, H., C. Fu, J. Zhao, and F. Koushanfar (2019) “DeepInspect: A Black-
box Trojan Detection and Mitigation Framework for Deep Neural Networks,” in
Proceedings of International Joint Conference on Artificial Intelligence.

[29] Guo, W., L. Wang, X. Xing, M. Du, and D. Song (2019) “TABOR: A Highly
Accurate Approach to Inspecting and Restoring Trojan Backdoors in AI Systems,”
in Proceedings of IEEE International Conference on Data Mining (ICDM).

[30] Huang, X., M. Alzantot, and M. Srivastava (2019) “NeuronInspect: Detect-
ing Backdoors in Neural Networks via Output Explanations,” in Proceedings of
AAAI Conference on Artificial Intelligence (AAAI).

[31] Liu, K., B. Dolan-Gavitt, and S. Garg (2018) “Fine-Pruning: Defending
Against Backdooring Attacks on Deep Neural Networks,” in Proceedings of Sympo-
sium on Research in Attacks, Intrusions and Defenses (RAID).

[32] Gao, Y., C. Xu, D. Wang, S. Chen, D. Ranasinghe, and S. Nepal (2019)
“STRIP: A Defence Against Trojan Attacks on Deep Neural Networks,” in Proceed-
ings of Annual Computer Security Applications Conference (ACSAC).

[33] Chen, B., W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
I. Molloy, and B. Srivastava (2018) “Detecting Backdoor Attacks on Deep
Neural Networks by Activation Clustering,” in ArXiv e-prints.

[34] Cohen, J., E. Rosenfeld, and Z. Kolter (2019) “Certified Adversarial Robust-
ness via Randomized Smoothing,” in Proceedings of IEEE Conference on Machine
Learning (ICML).

110

[35] Udeshi, S., S. Peng, G. Woo, L. Loh, L. Rawshan, and S. Chattopadhyay
(2019) “Model Agnostic Defence against Backdoor Attacks in Machine Learning,”
ArXiv e-prints.

[36] Zinkevich, M., M. Weimer, L. Li, and A. J. Smola (2010) “Parallelized
Stochastic Gradient Descent,” in Proceedings of Advances in Neural Information
Processing Systems (NeurIPS).

[37] Madry, A., A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu (2018)
“Towards Deep Learning Models Resistant to Adversarial Attacks,” in Proceedings
of International Conference on Learning Representations (ICLR).

[38] Alaifari, R., G. S. Alberti, and T. Gauksson (2019) “ADef: an Iterative
Algorithm to Construct Adversarial Deformations,” in Proceedings of International
Conference on Learning Representations (ICLR).

[39] Salem, A., R. Wen, M. Backes, S. Ma, and Y. Zhang (2020) “Dynamic
Backdoor Attacks Against Machine Learning Models,” ArXiv e-prints.

[40] Elsken, T., J. Hendrik Metzen, and F. Hutter (2019) “Neural Architecture
Search: A Survey,” Journal of Machine Learning Research, 20(1), p. 1997–2017.

[41] Zoph, B., V. Vasudevan, J. Shlens, and Q. V. Le (2018) “Learning Trans-
ferable Architectures for Scalable Image Recognition,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[42] Pham, H., M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean (2018) “Efficient Neu-
ral Architecture Search via Parameter Sharing,” in Proceedings of IEEE Conference
on Machine Learning (ICML).

[43] Liu, H., K. Simonyan, and Y. Yang (2019) “DARTS: Differentiable Architecture
Search,” in Proceedings of International Conference on Learning Representations
(ICLR).

[44] Xie, S., H. Zheng, C. Liu, and L. Lin (2019) “SNAS: Stochastic Neural
Architecture Search,” in Proceedings of International Conference on Learning
Representations (ICLR).

[45] Real, E., A. Aggarwal, Y. Huang, and Q. V. Le (2019) “Regularized Evolu-
tion for Image Classifier Architecture Search,” in Proceedings of AAAI Conference
on Artificial Intelligence (AAAI).

[46] Li, G., G. Qian, I. C. Delgadillo, M. Müller, A. Thabet, and B. Ghanem
(2020) “SGAS: Sequential Greedy Architecture Search,” in Proceedings of Interna-
tional Conference on Learning Representations (ICLR).

111

[47] Chen, X., R. Wang, M. Cheng, X. Tang, and C.-J. Hsieh (2021) “DrNAS:
Dirichlet Neural Architecture Search,” in Proceedings of International Conference
on Learning Representations (ICLR).

[48] Madry, A., A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu (2018)
“Towards Deep Learning Models Resistant to Adversarial Attacks,” in Proceedings
of International Conference on Learning Representations (ICLR).

[49] Carlini, N. and D. A. Wagner (2017) “Towards Evaluating the Robustness
of Neural Networks,” in Proceedings of IEEE Symposium on Security and Privacy
(S&P).

[50] Biggio, B., B. Nelson, and P. Laskov (2012) “Poisoning Attacks against
Support Vector Machines,” in Proceedings of IEEE Conference on Machine Learning
(ICML).

[51] Orekondy, T., B. Schiele, and M. Fritz (2018) “Knockoff Nets: Stealing Func-
tionality of Black-Box Models,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[52] Tramèr, F., F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart (2016)
“Stealing Machine Learning Models via Prediction APIs,” in Proceedings of USENIX
Security Symposium (SEC).

[53] Shokri, R., M. Stronati, C. Song, and V. Shmatikov (2017) “Membership
Inference Attacks against Machine Learning Models,” in Proceedings of IEEE
Symposium on Security and Privacy (S&P).

[54] Choquette-Choo, C. A., F. Tramer, N. Carlini, and N. Papernot (2020)
“Label-Only Membership Inference Attacks,” ArXiv e-prints.

[55] Biggio, B. and F. Roli (2018) “Wild Patterns: Ten Years after The Rise of
Adversarial Machine Learning,” Pattern Recognition, 84, pp. 317–331.

[56] Papernot, N., P. McDaniel, X. Wu, S. Jha, and A. Swami (2016) “Distilla-
tion as a Defense to Adversarial Perturbations Against Deep Neural Networks,” in
Proceedings of IEEE Symposium on Security and Privacy (S&P).

[57] Kurakin, A., I. J. Goodfellow, and S. Bengio (2017) “Adversarial Ma-
chine Learning at Scale,” in Proceedings of International Conference on Learning
Representations (ICLR).

[58] Guo, C., M. Rana, M. Cissé, and L. van der Maaten (2018) “Countering
Adversarial Images Using Input Transformations,” in Proceedings of International
Conference on Learning Representations (ICLR).

112

[59] Tramèr, F., A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel (2018) “Ensemble Adversarial Training: Attacks and Defenses,” in
Proceedings of International Conference on Learning Representations (ICLR).

[60] Xu, W., D. Evans, and Y. Qi (2018) “Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks,” in Proceedings of Network and Distributed
System Security Symposium (NDSS).

[61] Gehr, T., M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev (2018) “AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation,” in Proceedings of IEEE Symposium on
Security and Privacy (S&P).

[62] Ma, S., Y. Liu, G. Tao, W.-C. Lee, and X. Zhang (2019) “NIC: Detecting
Adversarial Samples with Neural Network Invariant Checking,” in Proceedings of
Network and Distributed System Security Symposium (NDSS).

[63] Athalye, A., N. Carlini, and D. Wagner (2018) “Obfuscated Gradients Give
a False Sense of Security: Circumventing Defenses to Adversarial Examples,” in
Proceedings of IEEE Conference on Machine Learning (ICML).

[64] Ling, X., S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang (2019)
“DEEPSEC: A Uniform Platform for Security Analysis of Deep Learning Model,”
in Proceedings of IEEE Symposium on Security and Privacy (S&P).

[65] Wang, S., K. Pei, J. Whitehouse, J. Yang, and S. Jana (2018) “Formal
Security Analysis of Neural Networks Using Symbolic Intervals,” in Proceedings of
USENIX Security Symposium (SEC).

[66] Tran, B., J. Li, and A. Madry (2018) “Spectral Signatures in Backdoor Attacks,”
in Proceedings of Advances in Neural Information Processing Systems (NeurIPS).

[67] Chen, H., C. Fu, J. Zhao, and F. Koushanfar (2019) “DeepInspect: A Black-
box Trojan Detection and Mitigation Framework for Deep Neural Networks,” in
Proceedings of International Joint Conference on Artificial Intelligence.

[68] Chen, B., W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
I. Molloy, and B. Srivastava (2018) “Detecting Backdoor Attacks on Deep
Neural Networks by Activation Clustering,” in ArXiv e-prints.

[69] Chou, E., F. Tramer, G. Pellegrino, and D. Boneh (2018) “SentiNet:
Detecting Physical Attacks Against Deep Learning Systems,” in ArXiv e-prints.

[70] Gao, Y., C. Xu, D. Wang, S. Chen, D. Ranasinghe, and S. Nepal (2019)
“STRIP: A Defence Against Trojan Attacks on Deep Neural Networks,” in ArXiv
e-prints.

113

[71] Doan, B., E. Abbasnejad, and D. Ranasinghe (2020) “Februus: Input
Purification Defense Against Trojan Attacks on Deep Neural Network Systems,” in
ArXiv e-prints.

[72] Li, Y., B. Wu, Y. Jiang, Z. Li, and S.-T. Xia (2020) “Backdoor Learning: A
Survey,” ArXiv e-prints.

[73] “CleverHans Adversarial Examples Library,” https://github.com/tensorflow/
cleverhans/.

[74] “Advbox,” https://github.com/advboxes/AdvBox/.

[75] “IBM Adversarial Robustness Toolbox (ART),” https://github.com/
Trusted-AI/adversarial-robustness-toolbox/.

[76] “TrojAI,” https://trojai.readthedocs.io.

[77] Baker, B., O. Gupta, N. Naik, and R. Raskar (2017) “Designing Neural Net-
work Architectures using Reinforcement Learning,” in Proceedings of International
Conference on Learning Representations (ICLR).

[78] Jozefowicz, R., W. Zaremba, and I. Sutskever (2015) “An Empirical Explo-
ration of Recurrent Network Architectures,” in Proceedings of IEEE Conference on
Machine Learning (ICML).

[79] Bergstra, J., D. Yamins, and D. D. Cox (2013) “Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures,” in Proceedings of IEEE Conference on Machine Learning (ICML).

[80] Esteva, A., B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun (2017) “Dermatologist-Level Classification of Skin Cancer with
Deep Neural Networks,” Nature, 542(7639), pp. 115–118.

[81] Moosavi-Dezfooli, S., A. Fawzi, O. Fawzi, and P. Frossard (2017) “Uni-
versal Adversarial Perturbations,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[82] Boyd, S. and L. Vandenberghe (2004) Convex Optimization, Cambridge Uni-
versity Press.

[83] Kingma, D. P. and J. Ba (2015) “Adam: A Method for Stochastic Optimization,”
in Proceedings of International Conference on Learning Representations (ICLR).

[84] Krizhevsky, A. and G. Hinton (2009) “Learning Multiple Layers of Features
from Tiny Images,” Technical report, University of Toronto.

[85] Stallkamp, J., M. Schlipsing, J. Salmen, and C. Igel (2012) “Man vs. Com-
puter: Benchmarking Machine Learning Algorithms for Traffic Sign Recognition,”
Neural Metworks, pp. 323–32.

114

https://github.com/tensorflow/cleverhans/
https://github.com/tensorflow/cleverhans/
https://github.com/advboxes/AdvBox/
https://github.com/Trusted-AI/adversarial-robustness-toolbox/
https://github.com/Trusted-AI/adversarial-robustness-toolbox/
https://trojai.readthedocs.io

[86] Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba (2016) “End to End Learning for Self-Driving Cars,”
ArXiv e-prints.

[87] He, K., X. Zhang, S. Ren, and J. Sun (2016) “Deep Residual Learning for
Image Recognition,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[88] Shafahi, A., M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S.
Davis, G. Taylor, and T. Goldstein (2019) “Adversarial Training for Free!”
in Proceedings of Advances in Neural Information Processing Systems (NeurIPS).

[89] Moosavi-Dezfooli, S.-M., A. Fawzi, O. Fawzi, P. Frossard, and S. Soatto
(2017) “Analysis of Universal Adversarial Perturbations,” ArXiv e-prints.

[90] Fawzi, A., S.-M. Moosavi-Dezfooli, P. Frossard, and S. Soatto (2017)
“Classification Regions of Deep Neural Networks,” ArXiv e-prints.

[91] Cybenko, G. (1989) “Approximation by Superpositions of A Sigmoidal Function,”
Mathematics of Control, Signals, and Systems (MCSS), 2(4), pp. 303–314.

[92] Polyanin, A. and A. Manzhirov (2006) Handbook of Mathematics for Engineers
and Scientists, Taylor & Francis.

[93] Liao, C., H. Zhong, A. Squicciarini, S. Zhu, and D. Miller (2018) “Backdoor
Embedding in Convolutional Neural Network Models via Invisible Perturbation,”
ArXiv e-prints.

[94] Lester Juin Tan, T. and R. Shokri (2020) “Bypassing Backdoor Detection
Algorithms in Deep Learning,” in Proceedings of IEEE European Symposium on
Security and Privacy (Euro S&P).

[95] Tang, R., M. Du, N. Liu, F. Yang, and X. Hu (2020) “An Embarrassingly
Simple Approach for Trojan Attack in Deep Neural Networks,” in Proceedings of
ACM International Conference on Knowledge Discovery and Data Mining (KDD).

[96] Liu, Y., X. Ma, J. Bailey, and F. Lu (2020) “Reflection Backdoor: A Natural
Backdoor Attack on Deep Neural Networks,” in Proceedings of European Conference
on Computer Vision (ECCV).

[97] Goodfellow, I. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio (2014) “Generative Adver-
sarial Networks,” in Proceedings of Advances in Neural Information Processing
Systems (NeurIPS).

115

[98] Xu, W., D. Evans, and Y. Qi (2018) “Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks,” in Proceedings of Network and Distributed
System Security Symposium (NDSS).

[99] Meng, D. and H. Chen (2017) “MagNet: A Two-Pronged Defense Against
Adversarial Examples,” in Proceedings of ACM SAC Conference on Computer and
Communications (CCS).

[100] Tran, B., J. Li, and A. Madry (2018) “Spectral Signatures in Backdoor Attacks,”
in Proceedings of Advances in Neural Information Processing Systems (NeurIPS).

[101] Steinhardt, J., P. W. Koh, and P. Liang (2017) “Certified Defenses for Data
Poisoning Attacks,” in Proceedings of Advances in Neural Information Processing
Systems (NeurIPS).

[102] Cao, Q., L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman (2018) “Vggface2:
A dataset for recognising faces across pose and age,” in 13th IEEE International
Conference on Automatic Face & Gesture Recognition.

[103] Simonyan, K. and A. Zisserman (2014) “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in Proceedings of International Conference on
Learning Representations (ICLR).

[104] Huang, G., Z. Liu, L. van der Maaten, and K. Q. Weinberger (2017)
“Densely Connected Convolutional Networks,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[105] Wu, D., Y. Wang, S.-T. Xia, J. Bailey, and X. Ma (2020) “Skip Connections
Matter: On the Transferability of Adversarial Examples Generated with ResNets,”
in Proceedings of International Conference on Learning Representations (ICLR).

[106] Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra (2017) “Grad-CAM: Visual Explanations from Deep Networks via
Gradient-Based Localization,” in Proceedings of IEEE International Conference on
Computer Vision (ICCV).

[107] Fong, R. C. and A. Vedaldi (2017) “Interpretable Explanations of Black Boxes
by Meaningful Perturbation,” in Proceedings of IEEE International Conference on
Computer Vision (ICCV).

[108] Tao, G., S. Ma, Y. Liu, and X. Zhang (2018) “Attacks Meet Interpretability:
Attribute-Steered Detection of Adversarial Samples,” in Proceedings of Advances
in Neural Information Processing Systems (NeurIPS).

[109] Guo, W., D. Mu, J. Xu, P. Su, G. Wang, and X. Xing (2018) “LEMNA:
Explaining Deep Learning Based Security Applications,” in Proceedings of ACM
SAC Conference on Computer and Communications (CCS).

116

[110] Zhang, X., N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang (2020) “Inter-
pretable Deep Learning under Fire,” in Proceedings of USENIX Security Symposium
(SEC).

[111] Li, K. and J. Malik (2017) “Learning to Optimize,” in Proceedings of International
Conference on Learning Representations (ICLR).

[112] Andrychowicz, M., M. Denil, S. Gómez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. de Freitas (2016) “Learning to Learn
by Gradient Descent by Gradient Descent,” in Proceedings of Advances in Neural
Information Processing Systems (NeurIPS).

[113] Kolesnikov, A., L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and
N. Houlsby (2020) “Big Transfer (BiT): General Visual Representation Learning,”
in Proceedings of European Conference on Computer Vision (ECCV).

[114] Yu, F., D. Wang, E. Shelhamer, and T. Darrell (2018) “Deep Layer
Aggregation,” in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[115] Xie, S., R. Girshick, P. Dollár, Z. Tu, and K. He (2017) “Aggregated
Residual Transformations for Deep Neural Networks,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[116] Zagoruyko, S. and N. Komodakis (2016) “Wide Residual Networks,” in
Proceedings of British Machine Vision Conference (BMVC).

[117] Xu, Y., L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong
(2020) “PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture
Search,” in Proceedings of International Conference on Learning Representations
(ICLR).

[118] Chen, X., L. Xie, J. Wu, and Q. Tian (2019) “Progressive Differentiable
Architecture Search: Bridging the Depth Gap between Search and Evaluation,” in
Proceedings of IEEE International Conference on Computer Vision (ICCV).

[119] Dong, X. and Y. Yang (2020) “NAS-Bench-201: Extending the Scope of Repro-
ducible Neural Architecture Search,” in Proceedings of International Conference on
Learning Representations (ICLR).

[120] Deng, J., W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei (2009) “ImageNet:
A Large-scale Hierarchical Image Database,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[121] Ilyas, A., L. Engstrom, A. Athalye, and J. Lin (2018) “Black-box Adversarial
Attacks with Limited Queries and Information,” in Proceedings of IEEE Conference
on Machine Learning (ICML).

117

[122] Pang, R., H. Shen, X. Zhang, S. Ji, Y. Vorobeychik, X. Luo, A. Liu, and
T. Wang (2020) “A Tale of Evil Twins: Adversarial Inputs versus Poisoned Models,”
in Proceedings of ACM SAC Conference on Computer and Communications (CCS).

[123] Chen, J., M. I. Jordan, and M. J. Wainwright (2020) “HopSkipJumpAttack:
A Query-Efficient Decision-Based Attack,” in Proceedings of IEEE Symposium on
Security and Privacy (S&P).

[124] Goodfellow, I. J., O. Vinyals, and A. M. Saxe (2015) “Qualitatively
Characterizing Neural Network Optimization Problems,” in Proceedings of Advances
in Neural Information Processing Systems (NeurIPS).

[125] Li, H., Z. Xu, G. Taylor, C. Studer, and T. Goldstein (2018) “Visual-
izing the Loss Landscape of Neural Nets,” in Proceedings of Advances in Neural
Information Processing Systems (NeurIPS).

[126] Salimans, T. and D. P. Kingma (2016) “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” in Proceedings
of Advances in Neural Information Processing Systems (NeurIPS).

[127] Ghadimi, S. and G. Lan (2013) “Stochastic First- and Zeroth-order Methods for
Nonconvex Stochastic Programming,” SIAM Journal on Optimization, 23(4), pp.
2341–2368.

[128] He, K., X. Zhang, S. Ren, and J. Sun (2015) “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” in Proceedings
of IEEE International Conference on Computer Vision (ICCV).

[129] Shu, Y., W. Wang, and S. Cai (2020) “Understanding Architectures Learnt by
Cell-based Neural Architecture Search,” in Proceedings of International Conference
on Learning Representations (ICLR).

[130] Lee, J., L. Xiao, S. S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-
Dickstein, and J. Pennington (2019) “Wide Neural Networks of Any Depth
Evolve as Linear Models under Gradient Descent,” in Proceedings of Advances in
Neural Information Processing Systems (NeurIPS).

[131] Wang, R., M. Cheng, X. Chen, X. Tang, and C.-J. Hsieh (2021) “Rethinking
Architecture Selection in Differentiable NAS,” in Proceedings of International
Conference on Learning Representations (ICLR).

[132] Madry, A., A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu (2017)
“Towards Deep Learning Models Resistant to Adversarial Attacks,” in Proceedings
of the International Conference on Learning Representations (ICLR).

[133] Guo, M., Y. Yang, R. Xu, Z. Liu, and D. Lin (2019) “When NAS Meets
Robustness: In Search of Robust Architectures against Adversarial Attacks,” in

118

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[134] Zela, A., T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter
(2020) “Understanding and Robustifying Differentiable Architecture Search,” in
Proceedings of International Conference on Learning Representations (ICLR).

[135] Chu, X., X. Wang, B. Zhang, S. Lu, X. Wei, and J. Yan (2021) “DARTS-:
Robustly Stepping out of Performance Collapse Without Indicators,” in Proceedings
of International Conference on Learning Representations (ICLR).

[136] Cai, H., J. Yang, W. Zhang, S. Han, and Y. Yu (2018) “Path-Level Net-
work Transformation for Efficient Architecture Search,” in Proceedings of IEEE
Conference on Machine Learning (ICML).

[137] Zhong, Z., J. Yan, W. Wu, J. Shao, and C.-L. Liu (2018) “Practical Block-
wise Neural Network Architecture Generation,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[138] Chen, W., X. Gong, and Z. Wang (2021) “Neural Architecture Search on
ImageNet in Four GPU Hours: A Theoretically Inspired Perspective,” in Proceedings
of International Conference on Learning Representations (ICLR).

[139] Pang, R., Z. Xi, S. Ji, X. Luo, and T. Wang (2022) “On the Security Risks of
AutoML,” in Proceedings of USENIX Security Symposium (SEC).

[140] Ji, Y., X. Zhang, S. Ji, X. Luo, and T. Wang (2018) “Model-Reuse Attacks
on Deep Learning Systems,” in Proceedings of ACM SAC Conference on Computer
and Communications (CCS).

[141] Qi, X., T. Xie, R. Pan, J. Zhu, Y. Yang, and K. Bu (2022) “Towards Practical
Deployment-Stage Backdoor Attack on Deep Neural Networks,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[142] Mellor, J., J. Turner, A. Storkey, and E. J. Crowley (2021) “Neural
Architecture Search without Training,” in Proceedings of IEEE Conference on
Machine Learning (ICML).

[143] Pang, R., Z. Zhang, X. Gao, Z. Xi, S. Ji, P. Cheng, and T. Wang (2022)
“TrojanZoo: Towards Unified, Holistic, and Practical Evaluation of Neural Back-
doors,” in Proceedings of IEEE European Symposium on Security and Privacy
(Euro S&P).

[144] Bober-Irizar, M., I. Shumailov, Y. Zhao, R. Mullins, and N. Papernot
(2022) “Architectural Backdoors in Neural Networks,” ArXiv e-prints.

[145] Nguyen, T. A. and T. A. Tran (2020) “Input-Aware Dynamic Backdoor Attack,”
in Proceedings of Advances in Neural Information Processing Systems (NIPS).

119

[146] Wu, M.-T., H.-I. Lin, and C.-W. Tsai (2021) “A Training-Free Genetic Neural
Architecture Search,” in Proceedings of ACM International Conference on Intelligent
Computing and its Emerging (ICEA).

[147] Abdelfattah, M. S., A. Mehrotra, Ł. Dudziak, and N. D. Lane (2021)
“Zero-Cost Proxies for Lightweight NAS,” in Proceedings of International Conference
on Learning Representations (ICLR).

[148] Ning, X., C. Tang, W. Li, Z. Zhou, S. Liang, H. Yang, and Y. Wang
(2021) “Evaluating Efficient Performance Estimators of Neural Architectures,” in
Proceedings of Advances in Neural Information Processing Systems (NIPS).

[149] Jacot, A., F. Gabriel, and C. Hongler (2018) “Neural Tangent Kernel:
Convergence and Generalization in Neural Networks,” in Proceedings of IEEE
Conference on Machine Learning (ICML).

[150] Chizat, L., E. Oyallon, and F. Bach (2019) “On Lazy Training in Differen-
tiable Programming,” in Proceedings of Advances in Neural Information Processing
Systems (NeurIPS).

[151] Chen, W., X. Gong, and Z. Wang (2021) “Neural Architecture Search on
ImageNet in Four GPU Hours: A Theoretically Inspired Perspective,” in Proceedings
of International Conference on Learning Representations (ICLR).

[152] Mok, J., B. Na, J.-H. Kim, D. Han, and S. Yoon (2022) “Demystifying the
Neural Tangent Kernel from a Practical Perspective: Can it be trusted for Neural
Architecture Search without training?” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[153] Real, E., A. Aggarwal, Y. Huang, and Q. V. Le (2019) “Regularized Evolu-
tion for Image Classifier Architecture Search,” in Proceedings of AAAI Conference
on Artificial Intelligence (AAAI).

[154] Dong, X., L. Liu, K. Musial, and B. Gabrys (2021) “NATS-Bench: Bench-
marking NAS Algorithms for Architecture Topology and Size,” in Proceeddings of
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

[155] Liu, K., B. Dolan-Gavitt, and S. Garg (2018) “Fine-Pruning: Defending
Against Backdooring Attacks on Deep Neural Networks,” ArXiv e-prints.

[156] Xu, X., Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li (2020)
“Detecting AI Trojans Using Meta Neural Analysis,” in Proceedings of IEEE
Symposium on Security and Privacy (S&P).

[157] Weber, M., X. Xu, B. Karlas, C. Zhang, and B. Li (2020) “RAB: Provable
Robustness Against Backdoor Attacks,” ArXiv e-prints.

120

[158] Lin, J., L. Xu, Y. Liu, and X. Zhang (2020) “Composite Backdoor Attack for
Deep Neural Network by Mixing Existing Benign Features,” in Proceedings of ACM
SAC Conference on Computer and Communications (CCS).

[159] Zhu, C., W. Ronny Huang, A. Shafahi, H. Li, G. Taylor, C. Studer,
and T. Goldstein (2019) “Transferable Clean-Label Poisoning Attacks on Deep
Neural Nets,” in Proceedings of IEEE Conference on Machine Learning (ICML).

[160] Yoshida, K. and T. Fujino (2020) “Disabling Backdoor and Identifying Poison
Data by Using Knowledge Distillation in Backdoor Attacks on Deep Neural Net-
works,” in Proceedings of ACM Workshop on Artificial Intelligence and Security
(AISec).

[161] Schuster, R., T. Schuster, Y. Meri, and V. Shmatikov (2020) “Humpty
Dumpty: Controlling Word Meanings via Corpus Poisoning,” in Proceedings of
IEEE Symposium on Security and Privacy (S&P).

[162] Kurita, K., P. Michel, and G. Neubig (2020) “Weight Poisoning Attacks
on Pre-trained Models,” in Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL).

[163] Zhang, X., Z. Zhang, and T. Wang (2020) “Trojaning Language Models for
Fun and Profit,” ArXiv e-prints.

[164] Kiourti, P., K. Wardega, S. Jha, and W. Li (2019) “TrojDRL: Trojan Attacks
on Deep Reinforcement Learning Agents,” ArXiv e-prints.

[165] Bagdasaryan, E., A. Veit, Y. Hua, D. Estrin, and V. Shmatikov (2020)
“How To Backdoor Federated Learning,” in International Conference on Artificial
Intelligence and Statistics (AISTATS).

[166] Xie, C., K. Huang, P.-Y. Chen, and B. Li (2020) “DBA: Distributed Backdoor
Attacks against Federated Learning,” in Proceedings of International Conference
on Learning Representations (ICLR).

121

Vita
Ren Pang

Ren Pang is a Ph.D. student in the College of Information Sciences and Technology
at Pennsylvania State University. Prior to that, he received a B.S. degree in Mathematics
from Nankai University, Tianjin, China, in 2018. He is advised by Dr. Ting Wang during
his Ph.D. study. His research interests mainly focus on the security of machine learning
and deep learning systems.

Education
Ph.D. Informatics Penn State 2019–2023
B.Sc. Mathematics Nankai University 2014–2018

Selected Publications
1. A Tale of Evil Twins: Adversarial Inputs versus Poisoned Models,

R. Pang, H. Shen, X. Zhang, S. Ji, Y. Vorobeychik, X. Luo, A. Liu, and T. Wang,
Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2020.

2. AdvMind: Inferring Adversary Intent of Black-Box Attacks,
R. Pang, X. Zhang, S. Ji, X. Luo, and T. Wang,
Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2020.

3. Graph Backdoor,
Z. Xi, R. Pang, S. Ji, and T. Wang,
Proceedings of the USENIX Security Symposium (USENIX), 2021.

4. On the Security Risks of AutoML,
R. Pang, Z. Xi, S. Ji, X. Luo, and T. Wang,
Proceedings of the USENIX Security Symposium (USENIX), 2022.

5. The Dark Side of AutoML: Towards Architectural Backdoor Search,
R. Pang, C. Li, Z. Xi, S. Ji, and T. Wang,
Proceedings of the International Conference on Learning Representations (ICLR),
2023.

6. On the Security Risks of Knowledge Graph Reasoning,
Z. Xi, T. Du, C. Li, R. Pang, S. Ji, X. Luo, X. Xiao, F. Ma, and T. Wang,
Proceedings of the USENIX Security Symposium (USENIX), 2023.

7. Defending Pre-trained Language Models as Few-shot Learners Against Backdoor
Attacks,
Z. Xi, T. Du, C. Li, R. Pang, S. Ji, J. Chen, F. Ma, and T. Wang,
Proceedings of Advances in Neural Information Processing Systems (NeurIPS),
2023.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Overview of Neural Backdoors
	Contributions
	Roadmap

	Background
	Fundamentals
	Deep Neural Networks
	Attack Vectors
	Adversarial Inputs
	Poisoned Models

	Neural backdoor attacks
	Neural Architecture Search
	Other Attack Vulnerabilities

	Related Work
	ML Security
	Adversarial Inputs
	Poisoned Models

	Backdoor Benchmarks
	Neural Architecture Search

	IMC: Input Model Co-optimization Attack
	Introduction
	Our Work
	Threat Models

	A Unified Attack Framework
	Attack Objectives
	Attack Implementation
	Reformulation
	Optimization
	Analysis

	Mutual Reinforcement Effects
	Study Setting
	Effect I: Leverage Effect
	Disproportionate Trade-off
	Empirical Implications

	Effect II: Amplification Effect
	Mutual Amplification
	Empirical Implications

	Analytical Justification
	Loss Measures
	Mutual Reinforcement Effects

	IMC-Optimized Attacks
	Attack Optimization
	Basic Attack
	Enhanced Attacks

	Optimization against Human Vision
	Optimization against Detection Methods
	Backdoor Detection
	Attack Optimization
	Detection Evasiveness

	Potential Countermeasures

	Conclusion

	TrojanZoo: Unified Evaluation of Neural Backdoors
	Introduction
	Platform
	Attack Library
	Attack Performance Metrics
	Defense Library
	Defense Utility Metrics

	Assessment
	Experimental Setting
	Attack Evaluation
	Effectiveness vs. Evasiveness (Trigger)
	Effectiveness vs. Evasiveness (Model)
	Effectiveness vs. Transferability

	Defense Evaluation
	Robustness vs. Utility
	Detection Accuracy of Different Attacks
	Detection Accuracy vs. Recovery Capability

	Exploration
	Attack – Trigger
	Attack – Optimization
	Defense – Evadability
	Defense – Interpretability

	Conclusion

	The Security Risks of AutoML
	Introduction
	Measurement
	Experimental Setting
	Experimental Results

	Analysis
	Architectural Properties of Trainability
	Explanations of Attack Vulnerability
	Connections of Various Attacks

	Discussion
	Architectural Weaknesses
	Potential Mitigation
	Limitations

	Conclusion

	EVAS: Exploitable and Vulnerable Arch Search
	Introduction
	Evas
	Threat Model
	Input-Aware Triggers
	Exploitable arches
	Search without Training

	Evaluation
	Experimental Setting
	Q1: Does Evas work?
	Q2: How does Evas work?
	Q3: How does Evas differ?

	Conclusion

	Conclusion
	Conclusion
	Future Works
	Bibliography
	Education
	Selected Publications

