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Abstract

This thesis addresses two major problems in the area of quantum gravity. The first
regards an extension of the statistical mechanical derivation of the Bekenstein-
Hawking entropy from loop quantum gravity in [12]. Let us review what was
accomplished in [12]. In [12], equilibrium black holes were modeled by isolated
horizons. We recall the following terminology: When the intrinsic geometry of an
isolated horizon is spherically symmetric, we call it “type I”. When the intrinsic
geometry of an isolated horizon is only axisymmetric, we call it “type II”. The
quantum geometry and entropy of type I isolated horizons were investigated in
[12]. The first part of this thesis generalizes the investigations in [12] to the type II
case, thereby encompassing distortions and rotations of the horizon. In particular,
the leading term in the entropy of large horizons is again given by one fourth of
the horizon area, using the same value of the Barbero-Immirzi parameter as was
used in the type I case.

The second problem addressed in this thesis regards how to define ‘symmetric
state’ in quantum gravity (as well as quantum field theory more generally). The
question is approached via a discussion on the relation between symmetry reduc-
tion before and after quantization of a field theory. A toy model field theory is
used: the axisymmetric Klein-Gordon field. We consider three possible notions of
symmetry at the quantum level: invariance under the group action, and two no-
tions derived from imposing symmetry as a system of constraints a la Dirac. One
of the latter two turns out to be the most appropriate notion of symmetry in the
sense that it satisfies a number of physical criteria, including the commutativity of
quantization and symmetry reduction. Somewhat surprisingly, the requirement of
invariance under the symmetry group action is not appropriate for this purpose.
A generalization of the physically selected notion of symmetry to loop quantum
gravity is presented and briefly discussed.
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Chapter

Introduction

At the beginning of the 20th century, two revolutions in physics came about. One
was quantum mechanics, and the other general relativity. The first was the result
of an attempt to understand an array of experimental phenomena that defied foun-
dational assumptions of known physics at that time. The most elementary notions
had to be revised, and physicists such as Planck, Bohr, Heisenberg, Schrédinger,
Einstein and others took up the challenge to piece together and understand the
radically new structures and laws being uncovered before them. The result was
quantum mechanics, formulated systematically first by Schrodinger and Heisen-
berg and then developed further and applied to new domains by others after them.
Quantum theory succeeded in explaining, with precision, a wide range of facts that
had no explanation otherwise. Examples of such facts include the values of the
specific heat of certain materials, the minutest details of atomic spectra, and the
structure of the periodic table of the elements. Thus, quantum mechanics was a
remarkable success. However, quantum mechanics involved a radical revision of
basic notions: it forced us to replace our classical understanding of the world with
wave-functions and operators, with arbitrary superpositions of “classical states”
allowed. Because of the fundamental nature of these revisions, there are strong
reasons to believe that quantum mechanics must underlie everything. That is, in
order for physics to be consistent, it seems that all areas of physics must be eventu-
ally described by quantum theory. When a satisfactory classical theory is available
for a given class of phenomena, there are time-tested strategies for teasing out the

structure of the corresponding quantum theory from clues in the Hamiltonian and



Lagrangian frameworks — that is, strategies for quantization.

General relativity, the other revolution, was the culmination and completion
of what Einstein had begun in special relativity. In special relativity the prospect
of an absolute frame of rest in physics was banished, and space and time were
inextricably intertwined in a single geometry. In general relativity, the absolute
reference for non-acceleration was, remarkably, also banished; motion took on a
purely relational character. This was made possible through the discovery that
gravity is geometry: the geometry of spacetime is dynamical, and gravity is a
manifestation of its curvature. Furthermore, the field equation of general relativity
contained within itself in seamless fashion the law of inertia, Newton’s law of
gravity (in an appropriate limit), (local) conservation of energy and momentum
of all matter, and all of Euclidean geometry (in an appropriate limit). It was a

theory of which Max Born said

The theory appeared to me then, and still does, the greatest feat of
human thinking about nature, the most amazing combination of philo-
sophical penetration, physical intuition, and mathematical skill .... It

appealed to me like a great work of art ... [1]

At the theory’s birth, its compelling character was apparent to more than one
of the physics luminaries of the day — even before any compelling observational
evidence for its radical suggestions were present. The fact that most of its radical
suggestions have proven true, and that it has survived 90 years of increasingly
high-precision observational scrutiny should impress anyone. However, general
relativity, in spite of its simplicity, beauty, and power, has resisted attempts at
quantization. That is, a theory of quantum gravity remains elusive.

This thesis addresses two major problems in the area of quantum gravity. It
is thus organized into two parts. The first extends the generality of a statistical
mechanical calculation of black hole entropy from loop quantum gravity, while the
second investigates the notion of ‘symmetric state’ in quantum gravity, as well
as in quantum field theory more generally. The first part is based on work done
jointly with Abhay Ashtekar and Chris Van Den Broeck and was first reported in
[2]. The second is based on the work of the author [3].

Both problems are addressed in the approach to quantizing first class con-

strained Hamiltonian systems pioneered by Bergmann and Dirac. This approach



draws upon a remarkable compatibility between first class constrained systems and
quantum mechanics. Specifically, the two, classically distinct roles of first class
constraints as restrictions on initial data and generators of gauge transformations
converge into one in quantum theory: Imposition of the quantum constraints and
division by the corresponding gauge become identical operations (see, e.g. [4]). The
tight relation among constraints and gauge present classically is thus ‘explained’
by the underlying quantum mechanics. In general relativity, the consequences of
this approach to quantization are striking: The quantum constraints of general
relativity force the wave-function of the universe to be spatially diffeomorphism-
invariant and invariant under time evolution !. This gives Einstein’s insight that
individual space-time points have no physical reality of their own, so to speak,
mathematical feeth in quantum theory.

Loop quantum gravity (LQG) is the only modern approach to quantum gravity
that holds fast not only to Einstein’s deep insight that gravity is geometry, but
also to Bergmann and Dirac’s deep insights into the ramifications of first class
quantum constraints. In addition, it holds to Einstein’s more general principle of
(what is now called) background independence: the proposition that, with geometry

no longer non-dynamical, no non-dynamical field should ever appear in physics [5].

1.1 The entropy calculation and its extension

In the late 1970’s, Bekenstein, Hawking and others compellingly argued that black
holes are thermodynamic objects [6, 7]. They proposed a temperature /87 and
entropy a/4 be assigned to a black hole, where x denotes what is called the “surface
gravity”, and a the area of the event horizon. These quantities are typically referred
to as the “Hawking temperature” and “Bekenstein-Hawking entropy”, respectively.
A challenge for any theory of quantum gravity is to give a statistical mechanical
account of this thermodynamics. Black hole thermodynamics in this way becomes
an indirect window onto quantum gravity.

In particular, any quantum theory of gravity should be able to reproduce the

Bekenstein-Hawking entropy through a statistical mechanical counting of micro-

Imore precisely, invariant under time evolution for all choices of lapse and shift with sufficient
fall-off at infinity.



scopic degrees of freedom. This challenge was partially met in string theory and
loop quantum gravity around the same time, in the late 90’s [8, 9, 10, 11, 12].
Each of the calculations had its strengths and weaknesses. Within string theory,
detailed calculations were carried out for a sub-class of extremal black holes known
as BPS states. These are far from astrophysically realistic, but the exact coeffi-
cient of % in the Bekenstein-Hawking entropy is obtained, which is impressive. A
subsequent version of the calculation based instead on AdS-CFT correspondence
did not require the assumption of BPS states; however, it obtained the wrong nu-
merical coefficient in the expression for the entropy, being off by a factor of (%)1/ !
[13].

In the original loop quantum gravity calculation, on the other hand, no ex-
tremality was required. The charges on the horizon could be arbitrary. Further-
more, stationarity of geometry was imposed only on the horizon geometry itself in
the form of isolated horizon boundary conditions. On the other hand, loop quan-
tum gravity possesses a free parameter, known as the Barbero-Immirzi parameter
v, which trickles down into the spectrum of the area operator, and through the
area operator, it enters the expression for the entropy. Consequently, loop quantum
gravity does not predict the numerical coefficient in the expression for the entropy.
Rather, by stipulating that the numerical factor be i, one fixes the parameter vy
(see equation (3.48)). This is non-trivial, since, in order to fix v, it suffices to
consider the entropy of a single black hole. With the value of v so fixed, one then
automatically obtains the Bekenstein-Hawking entropy for black holes of arbitrary
electric charge and area, as well black holes with minimally and non-minimally
coupled scalar fields at the horizon [12, 14].

The loop quantum gravity calculation in [12] made the assumption that the
intrinsic geometry of the horizon is spherically symmetric. The first part of the
present thesis significantly extends the analysis by requiring only axisymmetry at
the horizon. This is a significant generalization, as now rotating and distorted black
holes are encompassed in the calculation. One should note that this relaxation from
spherical symmetry at the horizon to axisymmetry is much more than a relaxation
from the Schwarzschild family to the Kerr family of horizon geometries. The space
of possible axisymmetric horizon geometries is far richer than the space of Kerr

horizon geometries: the former is infinite dimensional whereas the latter is only



two dimensional.

To define the phase space we will quantize and the final ensemble whose entropy
is to be calculated, certain multipoles of isolated horizons are needed. These mul-
tipoles are diffeomorphism invariant, completely determine the horizon geometry
up to diffeomorphism, and have other physically desirable properties.

The material in this thesis addressing the entropy calculation is organized as fol-
lows. Chapter 2 gives an overview of isolated horizons and their multipoles, largely
based on [15]. Motivations for the definitions are discussed, and basic results are
mentioned. Chapter 3 starts with the appropriate classical phase space, proceeds
with its quantization, discusses the quantum geometry available at horizon, and

finally defines an ensemble and calculates the entropy.

1.2 Symmetric states

In chapter 4, we turn to the notion of symmetry in quantum field theory.

The usual approach to symmetry is to impose symmetry on the wave-function:
A state is symmetric if it is invariant under the action of the symmetry group.
In chapter 4, we suggest an alternative approach. The essential argument is: if
we want to impose the quantum analogue of symmetry of the classical fields, then
we should be imposing symmetry on the field operators, not the wavefunction.
Concretely, the approach is to formulate the classical symmetry condition in the
form of a (at least formally) first class system of constraint functions which are
then imposed as operator constraints in the quantum theory.

This second, new approach to symmetry in quantum field theory has a number
of physically desirable properties that the more usual definition of symmetry in
terms of invariance under the group action does not have. These are demonstrated
and discussed in chapter 4 using, for simplicity, a free scalar field theory. However,
an extension of the results to loop quantum gravity is discussed at the end. 2

Beyond its nice properties, the introduction of this new definition of symmetry

is critical for two reasons. First, in the case of a spatially compact universe, all

21t should be said that the notion of symmetry introduced by Bojowald and Kastrup [16] is
related to the present approach. The present approach was inspired by and seeks to improve
upon their approach.
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Figure 1.1. The commutativity question: do quantization and symmetry reduction
commute? The answer depends crucially on the meaning of ‘symmetry reduction’ at the
quantum level.

physical states are invariant under all possible diffeomorphisms. In particular, all
states will be invariant under any possible spatial symmetry group action one can
specify. Thus, the standard definition of symmetry becomes trivial, and hence
meaningless, in this case. However, the new approach to symmetry is not trivial
in this case.

Secondly, the introduction of this new approach to symmetry is crucial for the
issue of commutativity of symmetry reduction and quantization. Consider the
commutative diagram in figure 1.2. Commutativity of the diagram obviously de-
pends to a large extent on how the quantum symmetry reduction is done. In the
scalar field theory case (primarily considered in this thesis), it is the new approach
to quantum symmetry that achieves commutativity of the diagram. The standard
approach to quantum symmetry does not lead to commutativity (in any natural
sense). The hope is that the new approach to symmetry is the correct direction to
go in understanding better the relation between LQG and the symmetry reduced
models inspired by LQG. These symmetry reduced models include loop quantum
cosmology and the models of gravitational collapse spearheaded by Bojowald and
others, models which are beginning to address the resolution of classical singular-
ities in quantum gravity.

The presentation in chapter 4 differs from that in [3] in that coherent states now
play a more central role, and dependence on kinematical and dynamical linearity

is largely eliminated.



Chapter

Multipole Moments of Isolated

Horizons

2.1 Introduction

Multipole moments play an important role in Newtonian gravity and Maxwellian
electrodynamics. Conceptually, there are two distinct notions of multipole mo-
ments —source multipoles which encode the distribution of mass (or charge-current),
and field multipoles which arise as coefficients in the asymptotic expansions of
fields. In Newtonian gravity, the first set is of direct interest to equations of mo-
tion of extended bodies while the second determines the gravitational potential
outside sources. However, via field equations one can easily relate the two sets of
multipoles. In the Maxwell theory, the rate of change of the source dipole moment
is directly related to the energy flux measured at infinity. Because of such use-
ful properties, there has been considerable interest in extending these notions to
general relativity.

Results of the Maxwell theory were extended to the weak field regime of general
relativity —i.e., linearized gravity— quite some time ago. Already in 1916 Einstein
obtained the celebrated formula relating the rate of change of the quadrupole
moment of the source to the energy flux at infinity [17]. In the fifties, Sachs and
Bergmann extended the relation between the source multipoles and asymptotic

fields [18]. However, in the framework of ezact general relativity, progress has been



slow. In the seventies, Geroch, Hansen and others [19] restricted themselves to the
stationary context and introduced field multipoles by analyzing the asymptotic
structure of suitable geometric fields constructed from the metric and equations
they satisfy near spatial infinity. As in electrodynamics — and, in contrast to
the situation in the Newtonian theory — they found that there are two sets of
multipoles, the mass multipoles M) and the angular momentum multipoles J ).
In static situations, all the angular momentum multipoles J,) vanish and the
mass multipoles M, are constructed from the norm of the static Killing field
which, like the Newtonian gravitational potential, satisfies a Laplace-type equation
outside sources. In the (genuinely) stationary context, the J(,) are non-zero and
are analogous to the magnetic multipoles in the Maxwell theory. In the Newtonian
theory, since the field multipoles are defined as coefficients in the 1/r expansion of
the gravitational potential, knowing all multipoles one can trivially reconstruct the
potential outside sources. In general relativity, there are considerable coordinate
ambiguities in performing asymptotic expansions of the metric. Therefore, Geroch
and Hansen were led to define their multipoles using other techniques. Nonetheless,
Beig and Simon [20] have established that the knowledge of these multipoles does
suffice to determine the space-time geometry near infinity. Their construction
also shows that, if two stationary space-times have the same multipoles, they are
isometric in a neighborhood of infinity.

In the Geroch-Hansen framework, one works on the 3-dimensional manifold
of orbits of the stationary Killing field and multipole moments M) and the J)
arise as symmetric, trace-free tensors in the tangent space of the point A at spatial
infinity of this manifold. Now, the vector space of n-th rank, symmetric traceless
tensors on R? is naturally isomorphic with the vector space spanned by the linear
combinations > " 4y, Y™ (8, ¢) of spherical harmonics on the unit sphere S? in
R3. Therefore, each M,y and J,) uniquely defines a set of numbers, M, and Jym,
with m € {—n,—n+1,...,n—1,n}. Finally, let us consider stationary space-times
which are also axisymmetric (e.g., the Kerr space-time). Then M, ,, = M09
and Jy,;, = Jp0pm,0, whence multipoles are completely characterized by two sets of
numbers, M,,J, with n = 0,1,.... This fact will be useful to us because most of
our analysis will be restricted to axisymmetric isolated horizons.

In stationary space-times, then, the situation with field multipoles is well de-



veloped. The status of source multipoles, on the other hand, has not been so
satisfactory. Dixon developed a framework to define source multipoles [21] but the
program did not reach the degree of maturity enjoyed by the field multipoles.

In this chapter, we will focus on the problem of defining the analogs of source
multipoles for black holes in equilibrium. The isolated horizon framework provides
a suitable quasi-local arena for describing such black holes [22, 23, 24, 25, 26].
Thus, our task is to introduce an appropriate definition of multipoles which capture
distortions of the horizon geometry and of the distribution of angular momentum
currents on the horizon itself, and explore properties of these multipoles. Can
the multipoles provide a diffeomorphism invariant characterization of the horizon
geometry? Can they suffice to determine space-time geometry in the neighborhood
of the horizon in stationary space-times? These are attractive possibilities. But
since the horizon lies in a genuinely strong field region, a priori it is not obvious
that a useful notion of multipoles can be introduced at all. Indeed, since the
problem of defining and analyzing multipoles has turned out to be so difficult
already for relativistic fluids, at first glance it may seem hopelessly difficult for
black holes. However, a tremendous simplification occurs because black holes are
purely geometric objects; one does not have to resolve the messy and difficult issues
related to the details of matter sources. We will see that this simplification makes
it possible to carry out a detailed analysis and satisfactorily address the issues
raised above.

We will restrict our detailed analysis to axisymmetric (or type II) isolated
horizons, where the symmetry restriction applies only to the horizon geometry
(and to the pull-back of the Maxwell field to the horizon) and not to the entire
space-time. The material is organized as follows. In section 2.2, we recall the
relevant facts about isolated horizons and axisymmetric geometric structures. In
section 2.3 we define the multipoles M, and .J, and show that these two sets
of numbers provide a complete characterization of the isolated horizon geometry.
For the specific case of Maxwell sources, we introduce another pair, Q,, P, of
electromagnetic multipoles and show that they suffice to determine the pull-back of
the Maxwell tensor as well as that of its dual. Finally, the initial value formulation
based on two intersecting null surfaces [27] implies that, if there is a stationary

Killing field in a neighborhood of the horizon, multipoles also suffice to determine
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the near horizon geometry [28]. In section 2.4, we reformulate the main ideas of
the chapter in terms of tetrad and connection variables. Finally, in section 2.5,
we summarize what we have done in defining multipoles for isolated horizons, and
note the range of applications of the framework, the application to quantum gravity
used in this thesis being one of them.

Unless otherwise stated, in this chapter all manifolds and fields will be assumed

to be smooth.

2.2 Preliminaries

2.2.1 Isolated horizons

In this sub-section we briefly recall the relevant notions pertaining to isolated
horizons [22, 24, 25, 26]. This discussion will also serve to fix our notation.

Let us begin with the basic definitions [24]. A non-expanding horizon A is a
null, 3-dimensional sub-manifold of the 4-dimensional space-time (M, g4), with
topology S? x R, such that:

i) the expansion 6, of its null normal ¢ vanishes; and,

ii) Field equations hold on A with stress energy, T, satisfying the very weak
requirement that —7%/¢° is a future-directed, causal vector. (Throughout, ¢ will
be assumed to be future pointing.)

Before discussing their consequences, let us note two facts about these assump-
tions: i) if the expansion vanishes for one null normal ¢%, it vanishes for all null
normals f¢%; and, ii) the condition on the stress energy is satisfied by all the stan-
dard matter fields provided they are minimally coupled to gravity. (Non-minimally
coupled matter can be incorporated by a small modification of this condition. See,
e.g., [29].) Since A is a null 3-surface, its intrinsic ‘metric’ g, has signature 0,+,+.
The definition ensures that the flux of the matter 4-momentum across A vanishes
and Lyq, =0, where = denotes equality restricted to points of A. In particular,
the area of the 2-sphere cross-sections of the horizon is constant on A. We will
denote this area by aa. The definition also implies that the space-time derivative
operator V naturally induces a unique derivative operator D on A. Furthermore,

D,l® = w,l’ for some globally defined 1-form w, on the horizon. This 1-form will
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J

play an important role. It is referred to as the “rotation 1-form,” as it encodes
information about rotation.

The pair (g, D) is referred to as the intrinsic geometry of A. The notion that
the black hole itself is in equilibrium is captured by requiring that this geometry
is time independent:

An isolated horizon (A, [f]) is a non-expanding horizon A equipped with an equiv-
alence class [£?] of null normals ¢*, where ¢* ~ ¢'* if and only if £'* = ¢£* for a
positive constant c, such that [£y, D]=0 on A.!

Since A is a null surface, given any one null normal £* in [¢], we have (2D ¢* =
(k),¢° for some (k),. (Thus, (k), = ¢*w,.) The requirement [L,, D] =0 further
implies that (k), is constant on A. (k), is referred to as the surface gravity of
A with respect to £*. Note that if £'* = ¢f* then (k), = c(k),. Thus, the value
of surface gravity refers to a specific null normal; it is not a property of (A, [£]).
However, one can unambiguously say whether the given isolated horizon is eztremal
(i.e., has (k), = 0) or non-extremal (i.e., has (k), # 0).

The isolated horizon definition extracts from the notion of the Killing hori-
zon just that ‘tiny’ part which turns out to be essential for black hole mechanics
[24, 26] and, more generally, to capture the notion that the horizon is in equilib-
rium, allowing for dynamical processes and radiation in the exterior region [22].
Indeed, Einstein’s equations admit solutions with isolated horizons in which there
is radiation arbitrarily close to the horizons [30]. Finally, note that the definition
uses conditions which are local to A. Hence, unlike event horizons one does not
require the knowledge of full space-time; the notion is not ‘teleological’.

Of particular interest to our analysis is the case when the only matter present
at the horizon is a Maxwell field. In this case, only the pull-backs B,, and Eg
to A, respectively of the Maxwell field F,, and its dual *F}; are needed in the
isolated horizon analysis. We will refer to the quadruplet (qup, D, Bap, Eay) as the
Einstein-Mazwell geometry of the isolated horizon.

Remark: Note that the notion of an isolated horizon (A, [¢]), can be formulated
intrinsically, using only those fields which define its geometry, without reference to

the full space-time metric or curvature. Specifically: i) the condition ¢* is a null

LGiven (A, gup, D), one can show that, generically, there is an unique equivalence class [¢] of
null normals such that (A, [¢]) is an isolated horizon. However, our analysis will not be restricted
to this case.
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normal to A is captured in the property that g, has signature 0,4,+ with g.,¢° = 0;
ii) the condition 8, =0 can be replaced by Lyqq =0; iii) the requirement on the
stress-energy (in the definition of a non-expanding horizon) refers only to fields
By and Eg; and iv) the condition [£,, D] =0 refers only to D (and not to the
full space-time connection). This is why the quadruplet (qup, D, Bap, Eab), defined
intrinsically on A, was singled out to introduce the notion of Einstein-Mazwell
horizon geometry. All equations that are required in the derivation of the laws of
mechanics of isolated horizons in Einstein-Maxwell theory [24, 26] as well the main
results of this chapter refer just to these fields.

Next, let us examine symmetry groups of isolated horizons. A symmetry of
(A, 0%, qap, D, By, Egp) is a diffeomorphism on A which preserves g, D, B,y and
E, and at most rescales /* by a positive constant. It is clear that diffeomor-
phisms generated by ¢* are symmetries. So, the symmetry group G is at least
1-dimensional. The question is: Are there any other symmetries? At infinity, we
generally have a universal symmetry group (such as the Poincaré or the anti-de Sit-
ter) because all metrics under consideration approach a fixed metric (Minkowskian
or anti-de Sitter) there. In the case of the isolated horizons, generically we are in
the strong field regime and space-time metrics do not approach a universal metric.
Therefore, the symmetry group is not universal. However, there are only three
universality classes:

i) Type I: the isolated horizon geometry is spherical; in this case, Ga is four di-
mensional;

ii) Type II: the isolated horizon geometry is axisymmetric; in this case, Ga is two
dimensional;

iii) Type III: the diffeomorphisms generated by ¢* are the only symmetries; G is
one dimensional.

Note that these symmetries refer only to the horizon geometry. The full space-
time metric need not admit any isometries even in a neighborhood of the horizon.
Physically, type II horizons are the most interesting ones. They include the Kerr-
Newman horizons as well as their generalizations incorporating distortions (due to
exterior matter or other black holes) and hair. Our main results refer to the type
IT case.

Finally, one can use the field equations to isolate the freely specifiable data
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which determines the Einstein-Maxwell geometry of an isolated horizon [25, 31].
The analysis is naturally divided in to two cases: (k), # 0 and (k), = 0. Fix any
2-sphere cross-section A of A and denote by §%, the natural projection operator

on A. Then, on any type II horizon, we have the following.?

e In the non-extremal case, the free data consists of the projections Gup, @a, Bap, Eap

to A (using G%) of qap, Wq, Bap, Eap on A. (Recall that w, is defined by
Dol® = wet’.) That is, given the free data on A, using the projections of the

field equations on A, one can reconstruct the full Einstein-Maxwell geometry
(Qaba Da Bab, Eab) on A.

e In the extremal case, remarkably, the fields ¢4, wq, Bey and Eg, turn out to
be all universal; they are the same as those in the extremal Kerr-Newman
geometry [31]! The free data consists of (Sg), a symmetric, second rank
tensor on A, determined by D via Sab = G,°Gy* D,y where n, is the covariant
normal to A within A, satisfying ¢*n, = —1. (Thus, Sap is the analog of the

‘extrinsic curvature’ of A within A.)

These results will play an important role in section 3. Since, as summarized above,
the free data for the non-extremal and extremal cases are so different, appropriate
definitions of multipoles in the two cases would correspondingly have to be quite
different. Because of this, and because it is the non-extremal case that is of as-
trophysical interest, throughout most of this chapter and all of the next, we will
restrict ourselves to non-extremal isolated horizons.

Specifically, in section 3 of this chapter, for the non-extremal case, we will con-
struct multipoles from the free data and show that they provide a diffeomorphism
invariant characterization of the free data and hence, via field equations, of the

horizon geometry.?

2Proofs of these assertions are sketched in Appendix A of the paper [15].

3This general philosophy is rather similar to that used by Janis and Newman to introduce
a notion of multipoles using ‘free data’ on null surfaces [32]. However, since our analysis is
restricted to isolated horizons rather than general null surfaces, our results are free of coordinate
ambiguities.
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2.2.2 Axisymmetric structures

In this sub-section we will recall a few facts about axisymmetric geometries on
S2. While these results are usually just assumed in general relativity, we chose
to include this material because we were not able to find a reference where the
reasoning is spelled out. This discussion will also make our assumptions explicit.

Let S be a manifold with the topology of a 2-sphere, equipped with a metric
Ga- We will denote by €,, the alternating tensor on S compatible with ¢, by a
the area of S and by R its radius, defined by a = 47 R?. We will say that (S, Gas)
is axisymmetric if it admits a Killing field ¢* with closed orbits which vanishes
exactly at two points of S. The two points will be referred to as poles. We will now
show that such metric manifolds carry invariantly defined coordinates and discuss
properties of the metric coefficients in these coordinates.

Since L4€q, = 0, there exists a unique (globally defined) function ¢ on S such
that

D¢ = 1 Epa®®  and ?{gg =0. (2.1)
R? S

It is clear that £,{ =0 on all of S, while f)aC vanishes only at the poles. Hence,

¢ is a monotonic function on the 1-dimensional manifold § of orbits of ¢*. Now

S is a closed interval and the end points correspond to the two poles. Hence (

monotonically increases from one pole to another. We will say that ( assumes its

minimum value at the south pole and the maximum at the north pole.

Next, let us introduce a vector field (* on S’ = (S — poles) via:

GuC"¢" =0 and ("D,( =1 (2.2)
Then it follows that
a R4 ~ab T~

where p? = u¢?¢° is the squared norm of ¢% Hence integral curves of (% go
from the south pole to the north (and (* diverges as one approaches the poles).
Using (%, we can define a preferred affine parameter ¢ of ¢ as follows: Fix any
one integral curve I of (* in S’ and set ¢ = 0 on I. Thus, on I, we have L;¢ = 0.
Now, since ¢ is a Killing field and (* is constructed uniquely from (Gup, %), it
follows that £4,(* = 0. Hence, we conclude: L4(L¢¢) = 0. Since L¢¢ = 0 on 1,
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it now follows that ¢ = const on every orbit of (*. This now implies that the
affine parameter ¢ of ¢® has the same range on every orbit of ¢2.* Without loss of
generality, using the rescaling freedom in ¢°, we will assume that ¢* is such that
¢ € [0,27) on S.

Thus, starting from geometry, we have constructed two coordinates (,¢ on S
such that ¢* = 0/0¢ and (* = 0/0( are orthogonal. Equations (2.1) and (2.3)

now imply that the metric has the form:

G = (S DG DG+ fDap Dig) and G = 2 (fC°C + f71070%) (24)

where f = p?/R?. The fact that the area of S is 47 R? now implies that the range of
¢ is necessarily [—1, 1]. Conversely, given any ‘coordinates’ {’, ¢' in [—1, 1] x R/27Z
in which the metric can be expressed in (the primed version of) the form (2.4), it
is easy to show that (' = ( and ¢’ is at most a rigid shift of ¢.

Using the expression (2.4), one can also show that ¢ increases from —1 at the
south pole to +1 at the north pole uniformly in proportion to (physical) area. This
will be used in section 3.3 to write down an explicit formula for ¢ which we then
quantize.

Functions (, ¢ serve as ‘coordinates’ on S modulo usual caveats: they are ill-
defined at the poles and ¢ has a 27 discontinuity on the integral curve I of (¢. We
have to ensure that the metric ¢, is smooth in spite of these coordinate problems.
The discontinuity at I causes no problems. However, poles do require a careful
treatment because the norm p of * —and hence f— vanishes there. Smoothness
of G at the poles (i.e. absence of conical singularities) imposes a non-trivial

condition on f:

Jim f(¢) =2 (2.5)

where ‘prime’ denotes derivative with respect to (. On a metric 2-sphere, we have
f =1—(? and we can bring the metric to the standard form simply by setting
¢ = cosf. In the general case, f has the same values and first derivatives at the
poles as on a metric 2-sphere. Using I’Hopital’s rule, one can show that this fact

suffices to ensure that the metric (2.4) is smooth at the poles.

4To make this argument precise, one should work on the universal covering of the orbits of
¢ on S’ but the additional steps are straightforward.
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Finally, we note a property of these axisymmetric metrics which will be useful
in section 2.3.1. A simple calculation shows that the scalar curvature R of Gap 1S
given by:

R(C.6) = =25 '(0). (2.6
By integrating it twice with respect to ¢ and using the boundary conditions (f|¢=—1) =

0 and (f'|¢c=—1) = 2, one can reconstruct the function f from the scalar curvature:

f=—R? [/j d¢ /_i d@fz(@)} +2(¢C+1) (2.7)

Thus, thanks to the preferred coordinates admitted by an axisymmetric geometry
on S, given the area a of S and the scalar curvature R, the metric ,, is completely
determined.

Remark: Coordinates ((, ¢), determined by the axisymmetry of G,;, also enable

us to define a canonical round, 2-sphere metric g;, on S:

Q% = R*(f, "Dl Dy¢ + f.Da¢ Dyop) (2.8)

where f, = 1 — (2 Note that ¢, has the same area element as . This round
metric captures the extra structure made available by axisymmetry in a coordinate
invariant way. The availability of ¢, enables one to perform a natural spherical
harmonic decomposition on S. This fact will play a key role throughout section
2.3.

2.3 Multipoles of type II isolated horizons

This section is divided into four parts. In the first two, we restrict ourselves
to non-extremal, type II isolated horizons with no matter fields on them. We
begin in the first part by defining a set of multipoles, I,,, L,,, starting from the
horizon geometry. These two sets of numbers provide a convenient diffeomorphism
invariant characterization of the horizon geometry, so that we refer to I,, L, as
geometric multipoles. In the second part, we rescale these moments by appropriate
dimensionful factors to obtain mass and angular momentum multipoles M,,, J,,.

Finally, in the third part we discuss electromagnetic multipoles.
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2.3.1 Geometric Multipoles

Let (A, [¢]) be a non-extremal, type II isolated horizon with an axial Killing field
¢°. In this sub-section, we will ignore matter fields on A and concentrate just on
the horizon geometry defined by (g, D). Fix a cross-section A of A. Then, as
summarized in section 2.2.1, the free data that determine the horizon geometry
consists of the pair (G, @,) where g is the intrinsic metric on A and @, is the
projection on A of the 1-form we on A (defined by D ¢* = w,¢’). However, there
is some gauge freedom associated with our choice of the cross-section A [25]. We
will first spell it out and then define multipoles using gauge invariant fields.

For simplicity of presentation, let us fix a null normal ¢* in [¢*]. Then, A can
be regarded as a leaf of a foliation u = const, where u is such that £*D,u=1. For
notational simplicity, we will set n, = —D,u so that n, is the covariant normal
to the foliation satisfying ¢*n, = —1. The projection operator g,’ on the leaves of
this foliation is given by G,° = 6% + n.¢°. Hence, dop = o and @, = wy + (k),na
as tensor fields on A. Since L9, =0 and L, =0 on any isolated horizon, and
since Lyn, =0 from definition of n,, it follows that (Gup,@,) on any one leaf is
mapped to that on any other leaf under the natural diffeomorphism (generated by
£%) relating them. Let us now consider a cross-section A’ which does not belong to
this foliation. Let u' = const denote the corresponding foliation. Set f = u — u'.

Then, regarded as tensor fields on A the two sets of free data are related by
Gop = Gap and @), =@, + (k), Do f (2.9)

Thus, under the natural diffeomorphism (defined by the flow of £%) between A and
A, Gup is mapped to d., but @, is not mapped to @,; the difference is a gradient
of a function. This is the gauge freedom in the free data.

It is therefore natural to consider, in place of w,, its curl. From the isolated
horizon framework, it is known that for any null tetrad £*,n% m® m® such that
0% € [£], the Weyl components ¥y and ¥; vanish on A whence ¥, is gauge invariant

[24, 25], and the curl of @, is given just by ImW,:

D[aa)b] = Im\I!2 €ab (210)
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where €, is the natural area element on A (which satisfies €,,¢* =0 and Le, = 0).
Thus, the gauge invariant content of &, is coded in ImW,.

The second piece of free data is the metric g, on A. In section 2.2.2 we showed
that using an invariant coordinate system ((, ¢), one can completely determine g
in terms of a number, the area a, and a function, its scalar curvature R. If, as
assumed in this sub-section, the cosmological constant is zero and there are no
matter fields on A, then R = —4ReW, [23]. Hence the gauge invariant part of
the free data that determines the horizon geometry is neatly coded in the Weyl
component s,

It is therefore natural to define multipoles using a complex function ®5 on A:

1 -
Qp = ZR —iImW, . (2.11)
(Thus, in absence of matter on A, 5 = —W¥, while in presence of matter it is given
by ®a = — Uy + (1/4)RpG® — (1/12) R, where Ry is the Ricci tensor and R the
scalar curvature of the 4-metric at the horizon.) Since all fields are axisymmetric,
using the natural coordinate ( on A, we are led to define multipoles as:

I, +iLy, ::7{ DA Y(C) d?V (2.12)

A

or,

1 ~ - -
I, := 1 % RY?(()d*V and L, := —]{ Im¥, Y°(¢) d*V.
A A

Here Y2 are the m = 0 spherical harmonics, subject to the standard normalization:
% YVOY0 d*V = R30nm, (2.13)
A

where Ra is the horizon radius defined through its area aa via an = 47R3.
Thus, given any horizon geometry, we can define two sets of numbers, I,, and L,.
Now, from (2.1) and (2.10), ¢ and ImW, are completely determined, in a covariant
manner, by the metric ., the rotation one-form @w,, and the rotational Killing
field ¢®. Therefore, it is immediate that if (A, gu, D) and (A', ¢.,, D') are related
by a diffeomorphism, we have I, = I and L, = L!; the two sets of numbers

are diffeomorphism invariant. If the isolated horizon were of type I, ¢,, would
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be spherically symmetric and ImW¥, would vanish [24]. Then, the only non-zero
multipole would be Iy which, by the Gauss-Bonnet theorem, has a universal value
(v/7; see below). Given a generic type II horizon, as we saw in section 2.2.2, the
axisymmetric structure provides a canonical 2-sphere metric ¢, (which, in the type
I case, coincides with the physical metric). The physical geometry has distortion
and rotation built in it. The round metric ¢}, serves as an invariantly defined
‘background’ against which one can measure distortions and rotations. Multipoles
I, L, provide a diffeomorphism invariant characterization of these. More precisely,
they encode the difference between the physical horizon geometry (gq, D) and the
fiducial, type I geometry determined by (¢3,, v, = 0).

Finally, note that I,, and L, cannot be specified entirely freely but are subject
to certain algebraic constraints. The first comes from the Gauss-Bonnet theorem
which, in the axisymmetric case, follows from the boundary condition (2.5) on f

and the expression (2.6) of the scalar curvature in terms of f:
1 . .
=7 f RYL () d*V = /7. (2.14)
A
The second comes directly from the relation (2.10) between ImWs and curl of @,:

Lo = ImV, d?V =0 (2.15)

1
B Var JA

The third constraint comes again from (2.5) and (2.6):

V3 [ i
I ._ﬁﬁngd V=0 (2.16)

We will show in section 2.3.2 that (2.15) implies that, as one would physically
expect, the ‘angular momentum monopole’ necessarily vanishes and (2.16) implies
that the mass dipole vanishes, i.e., that our framework has automatically placed
us in the ‘center of mass frame of the horizon’. Next, because ® is smooth, these
moments have a certain fall-off. Let us assume that ®, is C* (i.e., the space-time

metric is C¥*2). Then as n tends to infinity, I, and L,, must fall off in such a way
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that
oo k+1

D In™I, — L) < o0 (2.17)

n=0 m=0
Finally, there is a constraint arising from the fact that f is non-negative and
vanishes only at the poles. (This property of f is essential for regularity of the
metric.) Using (2.6) and the definition (2.12) of I,,, one can express f in terms of

I,,. Unfortunately, the resulting restriction on multipoles is quite complicated:

f(g)zl_CQ + ;%[_Qn:_?)Pn%—Q(C)
2(2n+1) 1

Pa(€)

(2n+3)2n—-1) "

— 2717—113”*2(0} I, >0 (2.18)

and vanishes only if ( = &1, where P, are the Legendre polynomials.

Given a set of multipoles {I,,, L,, } satisfying (2.14)-(2.18), a horizon area ax and
a surface gravity k, # 0, through explicit construction, one can show there exists a
horizon geometry (g, D) with the chosen multipoles, horizon area and surface grav-
ity. Furthermore, this horizon geometry (¢, D) is unique up to diffeomorphisms.
We refer the reader to the paper [15] for proofs of these assertions.

Remark: We conclude by noting some simplifications that occur in the presence
of additional symmetries. Certain space-time metrics, such as the Kerr solutions
have a discrete (spatial) reflection symmetry, (,¢) — (—(, ¢ + 7), under which
Wy — U5, Therefore, in the isolated horizon framework it is interesting to consider
the case in which & — &} and €, — €, under the discrete diffeomorphism
¢+ —C on A. Then, since Y, are even/odd under reflections if n is even/odd, it
follows that I, = 0 for all odd n and L,, = 0 for all even n. Next, consider the case
in which the isolated horizon is a Killing horizon of a static Killing field. Then,
one can show that ImWs =0 [26]. Hence L, = 0 for all n but in general I,, can be
arbitrary, capturing possible distortions in the horizon geometry. Finally, consider
type I isolated horizons on which the horizon geometry is spherically symmetric.
Then, &, and ¢, are spherically symmetric. It is then obvious from properties
of spherical harmonics Y,2(¢) that for all n > 0, we have I, = L, = 0. Since L
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always vanishes, in this case the only non-trivial multipole is Iy = /7.

2.3.2 Mass and angular Momentum multipoles

As is obvious from their definition, I,,, L,, are all dimensionless. Therefore, it is
difficult to attribute direct physical interpretation to them. In this sub-section we
will argue that they can be rescaled in a natural fashion to obtain quantities which
can be interpreted as mass and angular momentum multipoles M,, and J,.

In the isolated horizon framework, the area aa is defined geometrically. One
then defines the horizon angular momentum JA as a surface term in the expression
of the generator of rotations, evaluated on a 2-sphere cross-section of the horizon.
Ja is unambiguous because type II horizons come with an axial symmetry [26].
The horizon mass My is also defined using Hamiltonian methods as the generator
of a preferred time translation. However, the preferred time translation varies from
space-time to space-time. If Jo = 0, the time-translation points along ¢%; if not,
it is a suitable linear combination of ¢* and ¢®, which can be fixed only after one
knows the value of Ja [26]. Thus, Ja is defined first before one can fix M. In the
same spirit, we will first define the angular momentum multipoles J,, and then the
mass multipoles M,,.

We begin by recalling a general fact about angular momentum. Fix a space-
time (M, gqp) and a space-like 2-sphere S in it. Let ¢ be any vector field tangential
to S. Then, by regarding S as the inner boundary of a partial Cauchy surface M,

one can use the Hamiltonian framework to define a ‘conserved’ quantity J¢
© 1 a b
JE = ——— ¢ Kup'dS (2.19)

where K, is the extrinsic curvature of M. In a general space-time, this quantity
is independent of M if and only if ¢ is divergence free with respect to the natural
area element of S. Thus, for each divergence-free ¢ on S, J¢ depends only on the
4-metric g, and the choice of S. J¢ can then be interpreted as the ¢®-component
of a ‘generalized angular momentum’ associated with S. If S happens to be a
cross-section of A, as one would expect, one can recast this expression in terms of

the fields defined by the isolated horizon geometry, making no reference at all to
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the partial Cauchy surface M [26]:

J¢ = — % O, AV E — — ff[Im\Ilg] d*v (2.20)
Here f is a ‘potential’ for ¢® on A —given by ¢® = €® D, f— which exists because
L€ =0. By the isolated horizon boundary conditions it follows that if ¢* is the
restriction to S of a vector field on A satisfying £, ¢® =0, then J¢ is independent
of the 2-sphere cross-section S used in (2.20).

Thus, on any isolated horizon there is a well-defined, gauge invariant notion of
a ‘generalized angular momentum’ J, associated with any divergence free vector
field ° satisfying L, =0. ImW¥, plays the role of the ‘angular momentum aspect’.
Hence, it is natural to construct the angular momentum multipoles J,, by rescaling
the L,, with appropriate dimensionful factors. This strategy is supported also by
other considerations. First, since ImW¥, transforms as a pseudo-scalar under spatial
reflections, we will automatically satisfy the criterion that the angular momentum
multipoles should transform as pseudo tensors. Second, all angular momentum
multipoles would vanish if and only if Im¥, =0 and this is precisely the condition
defining non-rotating isolated horizons [24, 26]. Thus, the strategy has an overall
coherence.

To obtain the precise expression, let us first recall the situation in magneto-
statics in flat space-time. If the current distribution j¢ is axisymmetric, the nth

magnetic moment M, is given by:

M, / (cosf) V - (Z x J) d’z, (2.21)

where P, are the Legendre polynomials. If the current distribution is concentrated

on the sphere S defined by r = R, the expression simplifies to:
M, = R f (0D, P, (cos 0)) Gu 2V | (2.22)
s

where &, is the alternating tensor on the r = R 2-sphere and j, is the projection
of j, on this 2-sphere. Note that this expression refers just to the axisymmetric

structure on the 2-sphere S and not to the flat space in which it is embedded.
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Comparison of (2.20) with (2.22) suggests that we can think of the horizon slice S

as being endowed with a surface ‘current density’

1

L 2.2
87rGw (2.23)

GA)a =
and define the angular momentum (or ‘current’) moments as:

R
811G

dr  RYM
= — Yo(O)Im¥, d?
Von+1 4rG fg o (Q)Im¥> V7
[ 4r R}
— V2n+1 47G Ln (224)

Let us now turn to the mass multipoles, M,. When all J,, vanish, we should

I, = f (€ Dy P, (cos 0)) @ d2V
S

be left just with M,. These are then to be obtained by rescaling the multipole
moments [, by appropriate dimensionful factors. In electrostatics, when the charge

density is axisymmetric, the electric multipoles are defined by
E, = /T"Pn(cos 0) pd’z. (2.25)

When the charge is concentrated on the sphere S defined by r = R, the expression
simplifies to:
E,=R" 7( Py (cos0)pd*V (2.26)
s

where p is the surface charge density. Again, the final expression refers only to
the axisymmetric structure on the 2-sphere S and not to the flat space in which
it is embedded. Hence we can take it over to type II horizons. What we need is
a notion of a ‘surface mass density’. Now, Hamiltonian methods have provided a
precise definition of mass Ma of type II isolated horizons in the Einstein-Maxwell
theory [24, 26]. The structure of geometric multipoles I, now suggests that we
regard Ma as being ‘spread out’ on the horizon, the ‘surface density’ pa being

uniformly distributed in the spherical case but unevenly distributed if the horizon
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is distorted. It is then natural to set®

1 . 1
on = — MAR = —— MAReU,. 2.27
pa 8 A 2T ARER2 ( )

This heuristic picture motivates the following definitions:

dr MaARY 7{ 0 0
M, = — Y U, d
2n+1 27 s " (C) Ry dV

B dmr MaR}
= Vot e (2.28)

Here My is the isolated horizon mass, which is determined by the horizon radius

RA and angular momentum .J; via:

1
Mp = ———1/ Ry + 4G? 2.2

Since our definitions are based on analogies with source multipoles in the
Maxwell theory, an important question is whether they have the physical prop-

erties we expect in general relativity. We have:

e As discussed in section 2.3.1, the geometrical multipoles Ly and I; vanish.
Hence it follows that the angular momentum monopole moment J, vanishes
as one would expect on physical grounds, and the mass dipole moment M;

vanishes implying that we are in the center of mass frame.

e By construction, the mass monopole M, agrees with the horizon mass Ma
and, by inspection, the angular momentum dipole moment .J; equals the hori-

zon angular momentum Ja, calculated through Hamiltonian analysis [26].

e Restrictions imposed by symmetries on the horizon geometry follow imme-
diately from the remark at the end of section 2.3.1:
i) if the horizon geometry is such that ¥y — W3 under the reflection ¢ — —¢,
then M, = 0 if n is odd and J,, = 0 if n is even. This is in particular the

case for the Kerr family of isolated horizons.

5Note incidentally that the smaller the principal radii of curvature of the intrinsic geometry,
the higher is pa. Thus, the situation has a qualitative similarity with the way charge is distributed
on the surface of a conductor.
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ii) If Im¥y =0, then all angular momentum multipoles vanish. This is in
particular the case if A is a Killing horizon in a static space-time.

iii) If the horizon geometry is spherically symmetric, M, = 0 for all n > 0
and J, = 0 for all n.

Our multipoles M,,, J,, are constructed just from the knowledge of the horizon
geometry; knowledge of the space-time metric in the exterior region is not
required. In particular, there may well be matter sources outside the horizon,
responsible for its distortion and the exterior geometry need not even be
stationary or asymptotically flat. Even when the exterior is stationary and
asymptotically flat, there is no a priori reason to expect that these ‘source
multipoles’ would agree with the ‘field multipoles’ defined at infinity —unless
symmetry principles are involved— because the gravitational field outside the
horizon would also act as a source, contributing to the ‘total’ moments at

infinity.

As noted in the introduction to this chapter, in vacuum, stationary space-
times, Hansen’s field moments at infinity suffice to determine the geometry
in the neighborhood of infinity. Is there an analogous result for the horizon
multipoles? The answer turns out to be affirmative. Fix a cross section S
of A and consider the future directed, inward pointing null vector field n®
which is orthogonal to S, normalized so that ¢*n, = —1. The null geodesics
originating on S with tangent vector —n® generate a null surface A/. In
the source-free Einstein theory, there is a well-defined initial value problem
based on the double null surfaces, A and N [27]. The freely specifiable data
consists of the pair (Gu,w,) on A and the Newman-Penrose component ¥,
of the Weyl tensor on A [22].

Now suppose that the space-time is analytic near A and admits a stationary
Killing field ¢* in a neighborhood of A which is time-like in the exterior
region and becomes null on A. Then, as one might imagine, the initial value
problem becomes highly constrained: ¥, on N is determined by the horizon
geometry [28]. Hence, the horizon multipoles suffice to determine the solution

to Einstein’s equation in a past neighborhood of A UN. Thus, qualitatively
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the result is the same as with the field multipoles.®

To summarize, the mass and angular momentum multipoles M,,, J,, have phys-
ically expected properties. This in turn strengthens the heuristic picture we used
to fix the dimensionful rescalings of I,,, L,,. We first considered stationary, ax-
isymmetric charge and current distributions with support on a 2-sphere in the
Maxwell theory and expressed the electric and magnetic multipoles using only the
axisymmetric structure on the 2-spheres without reference to Minkowski space-
time. We then noted that these structures are available also on type II horizons.”
Additional structures made available on these horizons by geometric and Hamil-
tonian methods then led us to our definitions of M, J,. The physical picture is
that observers in the exterior region (between the horizon and infinity) can regard
the horizon multipoles as arising from an effective (but fictitious) mass density
pa = —(1/2m)MaRe¥, and a current density (ja)a = —(1/87G)@, on A. This
picture may be useful in physical applications.

We complete this subsection with explicit formulae for the multipoles in the

Kerr case, to satisfy the curiosity of the reader:

My, = (=1)*V2rn (ﬁ(2m+ 1)) @Pf“% (T—+> , (2.30)

m=0 GRA 2 RA
M25+1 == 0, (231)
Jos = 0, (2.32)
2s+1 2542
1 MR —2s-3 (T
Josi1 = %(—1)5\/27T(H(2m+1)> ﬁp_g 2 (R—D (2.33)
m=0

where P! denotes the appropriate associated Legendre function of the second kind

(using the conventions of [33]).

6However, while the domain in which the solution is determined by field multipoles is known
to be large [20], the available results on the double-null initial value problem only ensure the
existence of the solution in a small, past neighborhood of A UN. But it is quite possible that
the double-null initial value results can be significantly strengthened.

"Note that the spherical harmonics Y,?(¢) used in the definition of geometric multipoles I,,, L,,
refer to the unique round metric §3, defined by coordinates ({, ¢) (see (2.8)). They are eigenstates
of the Laplacian defined by G2, and not of the physical metric ¢,;. Therefore, the extension of
the Maxwell formulas is natural. As noted in section 2.2.2, §°, is uniquely determined by the
axisymmetry of §,; and the two metrics have the same area element. Therefore, pa and (ja)a
can be interpreted as the mass and current densities in terms of either metric.



27

2.3.3 Extension: inclusion of Maxwell fields

Let us continue to restrict ourselves to the non-extremal case but allow Maxwell
fields on A. Then the Einstein-Maxwell horizon geometry consists of the quadru-
plet (¢ap, D, Bap, Eqp). The presence of matter fields on A cause a few minor mod-
ifications in the discussion of gravitational multipoles. We will first discuss these
and then turn to the electromagnetic multipoles.

In the gravitational case, the definition of the basic complex field ®5 on A
continues to be the same in terms of R and ImW¥y but changes if we use ReWs in
place of R:

1~ 1
(I)A = ZR — ZIIII\IIQ = —\IIQ + ZRab(jab- (234)

where the term involving the space-time Ricci tensor can be expressed in terms of
B,, and E,; as:
Rup§® = G (BypB™ + E4E™) . (2.35)

The definition of mass Ma changes from (2.29) to

V(B + GQR)? + 4G I3

Mr =
A 2GRA

(2.36)

The subsequent definition of the geometric and physical multipole moments is
the same as in section 2.3.1. The reconstruction of the free data from multipoles
is also unaffected but there is an additional term involving B,, and E,, in the
reconstruction of D from the free data (see Appendix A in [15]). Finally, there
is a minor modification in the list of properties of M,, J, listed in section 2.3.2.
This arises because, in presence of a Maxwell field on the horizon, the canonical
angular momentum Ja obtained by Hamiltonian methods contains two terms, a
gravitational one and an electromagnetic one [26]. The angular momentum dipole
moment J; yields just ‘the gravitational part’ of Jo. There does not seem to be a
natural generalization of the definition of angular momentum multipoles such that
J1 would agree with the full Jx.

Let us now turn to the electromagnetic fields. As noted in section 2.2.1, the
electromagnetic free data consists of the projections By, and E,y, of By, and E,, on

a cross-section A. Therefore, it is natural to define the electromagnetic counterpart
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of (I>A:
1y re . .m
PEM .= —5¢ " [Ea + iBuy) (2.37)

(which is just the Newman-Penrose component ¢; of the Maxwell field), and define

multipoles via:

Rn EM 0 217
Qn = m}éRe@A )Y, (Q)dV
Rn EM 0 27
P, = mﬁm(% )YO(C) 27 (2.38)

One can check that Qg and P, are the electric and magnetic charges of the horizon.
Thus, heuristically Re(®5M) /471 and Im(®5M) /47 may be thought of as ‘surface
charge densities’ on the horizon and charge multipoles capture the non-uniformity
in the distributions of electric and magnetic charge densities.

Remark: If non-electromagnetic sources are also present, we can still define
the gravitational (and electromagnetic) multipoles as above but the multipoles
for other sources have to be defined case by case. Gravitational multipoles again
determine the ‘free data’ for the horizon geometry (qq5, D). However, to reconstruct
the horizon geometry from this data, one needs to know those matter fields which
determine the space-time scalar curvature R and the component §® R,; of the Ricci

tensor, evaluated at the horizon.

2.4 Tetrads and connections

The presentation up until this point is logically complete. However, now we wish
to rewrite the results of this chapter in terms of variables which will be of direct
use in the next chapter. Specifically, for quantization, connection variables are
necessary. In this section we will recast the constructions of this chapter, replacing
the metric by a tetrad and connection. Throughout this presentation, we assume
no matter is present at the horizon. This is both for simplicity and because this is

the primary case considered in the next chapter.
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2.4.1 Foliation of A and an adapted tetrad

Consider a spacetime (M, g,) containing an isolated horizon A. First, we recall
from [25] that there is a unique preferred foliation of A by 2-spheres, defined by
the condition that on each leaf §®*D,&, = 0, where §u, @, denote the pull-back of
Qe and the rotation one-form w, to the leaf. The leaves of this preferred foliation
are known as “good cuts”.

We use these “good cuts” to define the notion of a null tetrad adapted to
the horizon. First, recall that a (Newman-Penrose) null tetrad (¢, n*, m®,m®) is a
quadruplet of vectors such that £* and n® are real, m® is complex, all of the vectors
are null, and the only non-zero inner products between the vectors are £*n, = —1
and m®m, = 1. When (£%,n% m® ,m?) is a null tetrad on a spacetime (M, gq)
with isolated horizon inner boundary A, we say that the tetrad is adapted to the
horizon if £* belongs to the equivalence class [¢*] of null normals on A, and n® is
orthogonal to the leaves of the preferred foliation of A. It follows that for such
adapted tetrads, m?® is tangent to the preferred leaves.

Furthermore, each such adapted null tetrad admits a coordinate v on A such
that n, = —9,v. Let us show this. Let a null tetrad (¢*, n* m? m") adapted to the
hOl"iZO;l_ be given, so that ¢* € [¢*] and n, is normal to the leaves of the preferred
foliation. Define a coordinate v on A by setting v equal to an arbitrary constant
v, on some leaf S, of the preferred foliation, and then “evolve” v to the rest of A
via the equation ¢*0,v = 1. Using the fact that /% is a symmetry of both ¢, and
wq one can show that the resulting coordinate v will be, in fact, constant on all

leaves of the preferred foliation. It follows that —0J,v is normal to the preferred

slices; furthermore by construction ¢*(—0,v) = —1. But these two conditions alone
suffice to determine the one-form —0,v; as n, also satisfies these two conditions,
(_
it follows n, = —0,v.
(_

Given a space-time geometry with isolated horizon A, the freedom in the choice
of an adapted tetrad is characterized by (£2, n%, m®, m?) — (cf%, ¢~ 'n®, e¥m?® e~ *¥m?),
¢ € R*, # € R. Furthermore, for any fixed tetrad, the coordinate v is unique up
to addition of a constant.

Finally, we introduce some conventions. Suppose S is a leaf of the preferred
foliation of A. Then T*S will be identified with the subset of T*Al|g orthogonal to

£%, and T*A, in turn, will be identified with the subset of T* M| orthogonal to n®.
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With a slight abuse of terminology, we will sometimes refer to elements of 7%S as
being “tangent to S”, and elements of T*A, “tangent to A.” A single arrow below
a space-time tensor will denote its pull-back to A, while a double underarrow will

denote its pull-back to a given S.

2.4.2 The horizon data (m?,V,)

In this subsection we introduce variables at the horizon, to be referred to as the
“horizon data”. These will be needed in the next chapter. In order to introduce
them, however, first we need to review the variables for the first order formulation
of gravity used in quantization, as well as introduce some partial gauge fixing.

As before, let M denote the spacetime manifold. The basic space-time vari-
ables, of the first order formulation of gravity we are using, are a Lorentz connection
wl’ and a tetrad e¢. (Note wl’ is distinct from w, — index structure will make
clear the difference.) The internal indices I, J, K, ... are associated with an inter-
nal four dimensional tetrad space; local rotations in this internal space constitute
the new gauge freedom which is gained in using connection and tetrad variables.
The 4-metric is determined by e} in the usual fashion: g, = e,’;ebI. As we are
using a first order formulation of gravity, prior to the equations of motion, w!” is
independent of the tetrad e?. However, onshell, w!/ is equal to the Levi-Civita
connection determined by e?. We assume M has an S? x R inner boundary A,
with A an isolated horizon.

Next, we introduce some partial gauge fixing and associated necessary extra
structures. First, we fix a foliation of A by 2-spheres, and fix a vector field ¢* such
that its flow preserves the foliation. These then uniquely determine a covector
field n, on A via the conditions (1.) n, be normal to the fixed foliation, and (2.)
£*n, = —1. Using these structures, we partially gauge fix diffeomorphism freedom
by requiring the fixed foliation to coincide with the “good cuts” determined by
the geometry. That is, we impose ¢**D,&, = 0 on each leaf. In addition to this
condition, we will also find it convenient to partially gauge fix the internal tetrad
rotation freedom at A. To do this, we additionally fix a field of internal Newman-
Penrose null tetrads (¢/,nf,m!,m!) at A (so that #fn; = —1, mim; = 1 are

the only non-zero inner products between the elements), with orientation €;xr, =
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24l mymgmpr). We then impose the partial gauge-fixing conditions

e?ﬂl =/

elny = n, (2.39)

One can show this reduces the internal gauge rotation freedom at A to U(1),
selecting a U(1) sub-bundle (over A) of the principal Lorenz bundle. This U(1)
sub-bundle may be identified with the spin-bundle of any 2-sphere cross-section of

A. To complete the Newman-Penrose tetrad, we define
m® := etm’. (2.40)

The partial gauge fixing implies that (¢*,n*, m® m®) is a null tetrad adapted to
the horizon, and hence m® is tangent to the leaves of the fixed foliation. m?®
determines for us a spin dyad (e%,e%) on each cross-section of the horizon via
me =: %(e‘f + ie%). Because of this, we will sometimes refer to m® as a complex
‘spin-dyad.” m? is the first part of the horizon data.

The second part of the horizon data will come from the connection, and to
introduce it we will need the following notation. First, given any internal 2-form
X1, recall the definition of its self-dual and anti-self-dual parts, X }j) and X };),

respectively:

1 )
X}z}:) = 5 (X[J + EGL]KLXKL) (241)

It will be convenient to generalize this to the notion of vy-self-dual part:

X = % (XI S — %q JKLXKL) . (2.42)
For the cases v = =i this reduces to the self-dual and anti-self-dual parts. This
definition of vy-self-dual part is useful in discussing the Ashtekar-Barbero formula-
tion of gravity (to be used in quantization in the next chapter), in which case 7 is
taken to be the Barbero-Immirzi parameter (see section 3.2). In that context, the
~-self-dual part of w,;; is the connection variable in the canonical theory obtained
from the Legendre transform of the action. It will therefore be natural to construct

the connection part of the horizon data from w,(ﬂ)U.
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Let us do so. The connection part of the horizon data, V,, will be a U(1)
connection on the U(1) sub-bundle over A selected by the partial gauge fixing
conditions described above. It will be convenient at the same time to define an
analogous compler U(1) connection V) on the complexification of this U(1) sub-
bundle. The definitions are

Vo = —impmywM (2.43)
,(_

VD = —imygmy WD (2.44)
«—

where the underarrow denotes pull-back to A. Because of the partial gauge fix-
ing that has been done, w((f’)u and w,(;r)u are completely determined by V, and
Va(H, respectively. We introduce Va(“L) because it will be useful as an intermediate
structure in some derivations. Let f/a denote the pull-back of V, to a given slice S.

Then (m®,V,) will be referred to as the horizon data. One can show V, is of the

form .
Vo =5 (=Ta+7Ga) (2.45)
where ', := im"D,m; is the spin connection determined by m,, with D, the

derivative operator determined by Ggp OD the slice S, and @, is the pull-back of the
rotation one-form to S. From this equation one can see that (m®,V,) determines
@, and hence (Gup,@q), which in turn is the free data for the isolated horizon
geometry (g, D) [25, end of section V]. Hence the name ‘horizon data’ is justified.
We call (m?, Va) “type I” or “type II” according to whether the associated horizon
geometry is type I or type II.

Lastly, we note how, with the internal gauge fixing introduced above, the iso-
lated horizon boundary conditions can be captured in terms of the U(1) connection
V. First, in terms of the pull-back, f/a(ﬂ, of the complex connection Va(+) defined in

(2.44), the condition that the horizon be isolated may be captured in the equation
28[a‘~/,)§+) = \1126(1.[)- (246)

This follows from a slight modification of the discussion leading to (B23) in [11].
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8 Equation (2.45), applied to the case v = i, yields ) = 2(=Tq +i@,). Thus,

Vo = ReVH) 4 AImVH) (2.47)
so that if we define "W, := ReW, 4+ vImU,, in terms of V,, (2.46) becomes
20, Vi) = "Wseap. (2.48)

With the internal gauge fixing in place reducing the internal gauge freedom to U(1)
at the horizon, this equation is sufficient to imply isolation of the horizon. (This
condition, or rather, the reformulation of it (2.61) will be important in chapter 3,

where it will be imposed as an operator equation in quantum theory.)

2.4.3 Canonically associated type I data

Let S denote any 2-sphere cross-section of A. We will show that, for every type II
horizon data set (m?, f/a), there is a canonically associated type I horizon data set
(rh®, V2). This type I data set will have an important role in the derivation of the
symplectic structure and quantization in chapter 3.

To begin, we recall (from §2.2.2) there exists a natural coordinate system (¢, ¢),

unique up to rigid shifts in ¢, in which ¢ takes the form

G = R*(f ' DalDyC + fDuyDyp) (2.49)

for some function f = f(¢), and where R is the area radius a =: 47R?. The

canonical type I metric associated with ¢ (as in equation (2.8)) is then

@3 = R*(f,'"DuCDeC + f.DuDip) (2.50)

where f, :=1— (%
Now, a spin-dyad m® has more information than just that contained in ¢°: it

also contains “gauge” information. Somehow we need to intertwine the gauge in-

8(2.46) here follows directly from (B23) in [11]. However, the derivation in [11] made use of
the sphericity of the type I horizon geometry. Nevertheless, it is easy to see that (B23) still holds
even without assuming sphericity: the sphericity was only used to kill a certain term which gets
killed anyway on being pulled back to the 2-sphere slice.
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formation contained in m® into our definition of m®. This is accomplished by fixing

natural reference spin-dyads m® and m®, available due to the structure provided

o (2] e

m® so defined is compatible with the physical metric ¢, whereas m® is compatible

by axisymmetry:

M

with the type I metric ¢°. As m® and m® are gauge-related, there exists a function
a on A such that

m® = e"*m®. (2.53)

« is precisely the gauge information contained in m®. We transfer it over to our
definition of m* by defining

me = e"*m®, (2.54)

Turning to the connection, we first note that, in the type I case, since ¢**D, &y =
0 and O,@y = 0 [26], we have @, = 0. We therefore define

- 1. i

V= —5Ta = —gfn”ﬁamb (2.55)
which reduces to
Vi = 5Tt (f ~ f)Dug)
= Va— (" - £)Pap - T (2.56)

where prime denotes derivative with respect to ¢. (% V?°) as defined above is
then the type I horizon data canonically associated with the type II horizon data
(m®, V,).

Next, we show that (m®,V,) — (1? V?) is both diffcomorphism and U(1)-
gauge covariant. This becomes crucial in the next chapter, when the diffeomor-
phism and Gauss constraints are imposed. The diffeomorphism covariance follows

from the background independence of the construction. To address U(1)-gauge
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covariance, because ‘7; is covariantly determined by m?, it is sufficient to demon-
strate the U(1)-gauge covariance of the map m?® — m®. To prove this latter co-
variance, let us first write o, m®, m®, and m* as functions of m®: a(m?*), m*(m?*),
m®(m®),m*(m*). Now, because m® and m® depend only on the metric and the
metric is U(1)-gauge invariant, m® and m® are also U(1)-gauge invariant. From

the definition of a(m?),

(eiema) — eia(ewm“)ma (eiema) (2.57)
and mt = mIme(ma). (2.58)
It thus follows
a(e?m®) = a(m?®) + 6. (2.59)
Consequently
ma(eiema) — eia(emm“)ﬁla (ei0ma)
= M) (ma) = e (m®) (2.60)

proving the desired covariance.

Furthermore, in the type I case — that is, when (m?%V,) is type I — the
canonically associated type I data (m?, 17;) is in fact the same as the physical data
(m®,V,). For, in that case f, = f, implying m® = m?, which implies 1m® = m?,
which in turn implies ‘7; =V,.

To complete the discussion, we note that the horizon boundary condition (2.48)
can be recast in terms of the type I connection V°. To accomplish this, we sub-
stitute (2.56) into (2.48). On using (2.6),(2.10) and R = —4ReU, (since we are in

vacuum), the factors exactly conspire to give

9
dve = — L. (2.61)

Qo

which is none other than the familiar type I horizon boundary condition used in

the prior calculation [11, 12]! This is of dramatic importance for the next chapter.
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Figure 2.1. Left: axial foliation &, defined by the orbits of the axial symmetry field.
Right: the coordinate ¢ increases uniformly in proportion to physical area, starting at
—1 at the south pole and ending at +1 at the north pole.

2.4.4 Reconstruction of V, using multipoles

Lastly, again for purposes in the next chapter, we show that, given the horizon area
element %, the type I connection V°, the multipoles I,,, L, and a certain “axial”
foliation of S (described next), one can fully reconstruct the physical type II con-
nection V at the horizon. Let us begin by specifying precisely the required foliation
of S. First note that, given the physical geometry ¢,, on S, the axial symmetry
field ¢ Lie-dragging g, is generically unique. The orbits of this symmetry field
give us a foliation of S into circular leaves; this is the axial foliation we need and
we denote it by “£”.

Let us demonstrate the reconstruction. Suppose we are given only the struc-
tures just mentioned. We will proceed to show that, using only relations universally
holding for all type II isolated horizons, we will be able to deduce an expression
for V in terms of the given data, thus allowing reconstruction.

In section 2.2.2, it was noted that ( increases uniformly in proportion to (phys-
ical) area from the south pole to the north pole (see figure 2.1). It follows that

((z)=-1+2 %z) (2.62)
where ag denotes the area of S and a(z) denotes the area of the portion S, of S
bounded by the leaf of £ labeled by z (and containing the south pole). From the
definition of the multipoles, and the orthonormality of the functions {¥,°(¢)}, we
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can then obtain an expression for ¥y in terms of the knowns thus far:

Q) = oy D (i) YI(C), (2.63)

n=o

Since R = —4ReWs,, we can then use (2.7) to obtain

¢ G
10=1m [ [daren @] +2c+n. oy
1 1
so that from (2.4),

(jab = R2(f_1DaC Dbc + fDa¢Db¢) (265)

W, is then uniquely determined by the conditions 9wy = ImWse,y, and iD=
0. Finally, from (2.56), we can reconstruct the physical U(1) connection V,, as
desired:

|
Vo= Vo + (/' = f)Dap + %@a, (2.66)

where the prime denotes derivative with respect to (.
As we will see in the next chapter, the above reconstruction will extend to

quantum geometry.

2.5 Discussion

Source multipoles in Newtonian gravity characterize the way in which mass is
distributed, higher multipoles providing a complete description of distortions, i.e.,
departures from sphericity. The multipole moments defined in this chapter do
the same for horizon geometry. In this sense, they can be regarded as ‘source
multipoles’ associated with a black hole, distinct from the ‘field multipoles’ defined
at infinity. In Newtonian gravity and Maxwellian electrodynamics, there is a simple
relation between the two because both these theories are ‘Abelian’: the field does
not serve as its own source. In non-Abelian contexts such as Yang-Mills theory
and general relativity, the field in the region between the source and infinity itself

acts as an effective source. Hence one would expect there to exist two distinct
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sets of multipoles, one associated with the central gravitating body and the other
associated with the entire system. The multipoles introduced in this chapter give
us a notion of source multipoles associated with a black hole in equilibrium.

The horizon multipoles defined in this chapter are likely to have four sets of

applications:

1. Since, in the stationary case, the multipoles determine the space-time geom-
etry in a neighborhood of the horizon (see §2.3.2), they have potential use
in formulating equations of motion for a test mass in the neighborhood of
the horizon. Hansen’s multipoles at infinity have successfully been used for a
similar purpose, but in a neighborhood of infinity; it allowed one to construct
an elegant framework in which one can “measure” the Hansen moments of
a large black hole using gravitational radiation from the infall of a smaller
black hole [34].

2. The multipoles may have use in formulating equations of motion for a small
black hole moving in a background space-time (i.e. in the gravitational field
produced by other more massive bodies). The law of geodesic motion for
a body moving in a background space-time is only an approximation that
holds when all internal structure of the moving body is ignored. When more
precise equations of motion are desired, it is common to represent the internal
structure of the moving body by multipole moments (see for example, [35]).
As, heuristically, the coupling between the body and the background happens
at the body itself rather than at infinity, one would expect source multipoles
to be the most relevant for this purpose. Thus, when the moving body is a
black hole, one expects use of something like the multipoles defined here to
be more appropriate than other previously defined multipole moments in the

literature.

3. The diffeomorphism invariance of the multipoles, and the fact that they bear
physical meaning, makes them an ideal language for describing the physics
in binary black hole numerical simulations. Furthermore, one can, with-
out difficulty, extend the definition of the multipoles to dynamical situations
[15, 36]. That is, not only can they be used in describing physics at times

of approximate equilibrium in the horizons, but they can also be used to
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describe physics in fully dynamical regimes. These applications of the mul-

tipoles have been carried out, e.g., in [36].

. Finally, the multipoles are important in the extension of the loop quan-
tum gravity entropy calculation discussed in this thesis. The need for the
multipoles here arises as follows. To calculate black hole entropy from first
principles, one needs to construct an ensemble, where the ‘macroscopic pa-
rameters’ describing the system are fixed. To be physically meaningful —
and to be well defined at all in quantum theory — these parameters have
to be diffeomorphism invariant. For type I horizons, this is straightforward:
there is only one gravitational parameter, which can be taken to be the hori-
zon area (or mass). For type II horizons, one can not just work with mass
and angular momentum because the horizon may be distorted by various
types of hair. Even within the 4-dimensional Einstein-Maxwell theory where
no-hair theorems hold, distortions can be caused by matter rings and other
black holes. Even if the black hole itself is isolated, one can not automatically
rely on uniqueness theorems and say that it must be a Kerr hole because it is
physically unreasonable to require that the whole space-time be stationary.
(Since one wishes to calculate entropy of a black hole in equilibrium, one
should only need to require that the horizon geometry is time independent,
not the whole universe.) To incorporate physically realistic situations, then,
one needs a diffeomorphism invariant characterization of the horizon fields.
Multipoles can now serve as the required parameters in the construction of
the ensemble. It turns out that they can in fact be used to calculate entropy
associated with type II horizons, as reported in [2] and described in the next

chapter.



Chapter

Entropy of rotating and distorted

horizons in loop quantum gravity

3.1 Introduction

Since the work by Bekenstein, Hawking, et al. in the early seventies on black hole
thermodynamics, various proposals have been made for a microscopic explanation
of black hole entropy. Of these, the only ones concretely related to well-developed
approaches to quantum gravity are those based on string theory and loop quantum
gravity. The present work aims at an extension of the latter. The previous loop
quantum gravity calculation [12] (see also [10] and earlier work cited therein),
restricted itself to the case in which the intrinsic geometry of the black hole horizon
is spherically symmetric — the “type I” case in the terminology of chapter 2. We
will refer to this previous calculation as the “type I” calculation. In the present
work, we extend the calculation to the inclusion of rotation and distortion of the
horizon compatible with axisymmetry — the “type II” case.

Both of these calculations assume isolated horizon boundary conditions at the
horizon. Isolated horizons (IHs) provide a quasi-local framework to describe black
holes which are themselves in equilibrium but in space-times whose exterior regions
may carry time-dependent fields and geometry [37]. The zeroth and the first
laws of black hole mechanics of classical general relativity were first established
for globally stationary black holes [6]. However, they extend to all IHs [24, 26].
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The thermodynamic entropy is again given by 1/4th the horizon area (provided
matter is minimally coupled to gravity). These results hold not just for the Kerr-
Newman family but also for other astrophysically realistic black holes which may be
distorted. It is natural to ask if a quantum gravity description of the IH geometry
can lead to a statistical mechanical calculation of entropy of this diverse family of
black holes.

In the globally stationary situation, black holes without external influences are
completely characterized by their mass (or horizon area), spin and possible charges
associated with gauge fields and dilatons (which, however, will be ignored in most
of this presentation). The entropy of such a black hole with fized mass and spin
is given by 1/4 the horizon area. In the quasi-local context of IHs, mass and spin
do not suffice to characterize a time independent horizon geometry. One needs an
infinite set of multipoles [15] to capture the distortions in the mass and angular
momentum distribution on the horizon induced, e.g., by external matter rings,
which are ignored by fiat in the black hole uniqueness theorems.

In this chapter, we will begin by sketching the essential features of a Hamilto-
nian framework for the sector of general relativity consisting of space-times which
admit an isolated horizon with fixed multipoles. Then, we will carry out a non-
perturbative quantization using ideas from quantum geometry [38, 39| and finally
calculate the number of microstates of the resulting quantum horizon. This strat-
egy is the same as that used in [10, 11, 12, 40, 41] for the simplest (type I) isolated
horizons.

It will turn out that the canonical structure of the type II phase space will be
isomorphic in every relevant way to the canonical structure of the type I phase
space. Most of this chapter in fact consists in classical analysis showing how this
is the case. The (basic) quantization itself will then be taken directly from the
quantization used in the type I analysis [12].

Throughout, the conventions of [38] are used.

3.2 Action and Hamiltonian framework

We begin by specifying the basic variables, action, and boundary conditions. From

there we will derive a symplectic structure in the covariant phase space framework,
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as this turns out to be the easiest context for that task. Then we will perform the
Legendre transform to obtain the canonical (i.e. 34+1) phase space, and analyze the
gauge motions generated by the constraints. This will complete the preparations

for the quantization to be presented in section 3.3.

3.2.1 General considerations

Our arena is a spacetime manifold M with an inner boundary A, topologically
S? x R. The basic variables are a Lorentz connection w!’ and a (co-)tetrad e!.
The action used is that given by Holst [42]:

1

SH(eaw) = E

1
/ eUKLeI/\eJ/\QKL——/ 61/\€J/\Q[J (31)
M 2k Jm
where QL) is the curvature of w!’, k := 8rG and 7 is referred to as the Barbero-
Immirzi parameter. In terms of the y-self-dual part of Q! (defined in equation
(2.42) of the last chapter),

Su(e,w) = L ef nel A Q%) (3.2)
Vk J
This is the action which forms the starting point for loop quantum gravity [38].
For the case v = i, it reduces to the self-dual action. When varied, this action
yields the standard equations of motion for general relativity.

Next, we fix on the inner boundary A the same extra structures as in §2.4.2.
That is, we first fix a foliation of A and a vector field ¢* whose flow preserves the
foliation. This in turn determines a unique covector n, orthogonal to the leaves
of the foliation and satisfying ¢*n, = —1. Secondly, we fix a field of internal null
tetrads (¢/,n!, m!, m’) at the horizon.

We then define the space of histories (to be used in the action principle) to

I

consist in the set of all pairs (w,”, e;) such that the following conditions hold.

1. Appropriate fall-off conditions are satisfied at spatial infinity.

2. The inner boundary A is a type II isolated horizon with the partial gauge
fixings of §2.4.1 imposed:



43

(a) The leaves of the fixed foliation of A are required to coincide with the
good cuts uniquely determined by geometry [25]. That is, on each leaf
of the fixed foliation, we impose §*D,&, = 0 where gy is the pull-back
of the metric to the leaf, D, is the associated Levi-Civita derivative
operator, and @, is the pull-back of the rotation one-form to the leaf

(see chapter 2).

(b) ¢¢ = e%¢! and n® = e%n!, partially gauge fixing the internal rotation

freedom at the horizon, reducing the gauge group to U(1) at the horizon.
3. A has fized area a, and fized multipoles fn, Lt

(Note the axial symmetry vector field is not fixed.) Let the sub-space of these
histories extremizing the action be denoted T',,,. I';y, is then the covariant phase
space.

Let us take the opportunity to remind the reader about the idea of a “covariant
phase space.” The covariant phase space of a theory is the space of solutions
(on spacetime), equipped with a symplectic structure €2.,, obtained from second
variations of the action (see [43]). The covariant phase space is related to the
more usual phase space of initial data (also called the “canonical” or “34+1” phase
space) as follows. Suppose spacetime, M, admits a Cauchy surface X. Let (T',(2)
denote the phase space of initial data on ¥, defined with the usual symplectic
structure encoding the relation between fields and momenta. Then, any solution
in I';,, induces initial data on X, giving us a map I',,, — I'. Let n denote this
map. Because X is a Cauchy surface, 7 is an isomorphism. In fact one can show,

in general, 7 is furthermore a phase space isomorphism:
7*Q = Q- (3.3)

Because of this, the covariant phase space viewpoint and the canonical phase space
viewpoint are (in general) equivalent when a Cauchy surface is used to define the

canonical phase space. In the case relevant for this chapter, however, we will

'Tn the type I case, all physical multipoles except M, are zero, M, is simply 1/a,/167, and
U, is given by —27/a,. Therefore to single out the relevant sector of general relativity, it suffices
to fix just the horizon area a,. This is precisely what was done in [10] although at that time the
notion of multipoles was not available.
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use only a partial Cauchy surface to define the canonical phase space. In this
case, initial data on a given X then corresponds to more than one solution to the
equations of motion. 7 is consequently no longer one to one, but is a projection.
Fortunately, however, one still has n*Q2 = Q,,, so that the covariant and canonical
frameworks are still, in this sense, consistent, which is all that is necessary for our
purposes.

We use the covariant phase space framework to calculate symplectic structure.
This is because we will have need of a surface term in the symplectic structure;
the covariant phase space framework allows for a simpler, clearer derivation of this
surface term. After the surface term is determined in the next few subsections, it
will be transferred (in section 3.2.5) to the canonical picture, in preparation for

quantization.

3.2.2 Symplectic structure

Let us determine an expression for the symplectic structure on I',,,. Let M; and
M, denote surfaces in M to be understood as (partial-)Cauchy surfaces, with M;
preceding M,, and let S7,S; denote their respective intersections with A (as in
figure 3.1).

From variation of the action, one finds the symplectic current to be [38]

2

W(51,52) = 2

(e’ Ae’) A byl (3.4)
where 01,05 are tangent vectors to I'y,. It turns out that one cannot simply use

the naive symplectic structure

s (61, 53) = / w(51,6,) (3.5)

M

because it is not preserved under time evolution. That is, even when §;, d, are
restricted to be tangent to the space of solutions, €2/ (01,02) in general fails to
be equal to 2y, (d1,d2). Figure 3.1 shows the cause of this: symplectic current

is escaping across the horizon. More precisely, from figure 3.1 and the fact that
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.M S
A::>>0)(81,52)
o M S

Figure 3.1. Symplectic current escapes through the horizon. M; and Ms are partial
Cauchy surfaces with inner boundaries S; and Ss, and outer boundaries at spatial infinity.

symplectic current is conserved, we have

/Mzw(51’52):/le(51a52)—/Aw(51,52) (3.6)

(The contribution from the integral at spatial infinity vanishes because of the fall-
off imposed.) The solution to the problem is to use the isolated horizon boundary

conditions to rewrite the A-integral: 2

/A (61,65) = (?fs ﬁ) (61,5) (3.7)

If we then define our symplectic structure to be

9(61, 52) = / w(51, 52) + f )\(51, (52) (38)

the symplectic structure will be conserved as required.

3.2.3 Surface term in the symplectic structure

I'm! and

By expanding out the basic variables el and w!” in terms of ¢, nf m
Loy Nays Mg, Mg using Newman-Penrose coefficients, and making use of the isolated

horizon boundary conditions, one can, through straightforward manipulation, show

2As one would expect, there is more than one way to split the A integral into two such
boundary integrals. This leads to an ambiguity in the final symplectic structure one uses. Note
this sort of ambiguity will always be present whenever one’s spatial manifold has a boundary.
Below, we will present one particularly natural way of splitting up the A integral.
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that
/Aw(61,52) _ %/A [51 e A By(—rn) — %51 e AGy((e—n) — (1 2)|  (3.9)

where £y 1= w,l?, 2e = imAm is the area 2-form on A, and € is a Newman-Penrose
coefficient satisfying
Lomg = (€ — €)My, (3.10)

Let Sy denote any of the leaves of the foliation of A to the past of both S; and S,.
Recall from §2.4.1 that there exists a coordinate v on A, unique up to addition of
a constant, such that ng = —0,v. (Note ng = —0,v is equivalent to /*0,v = 1 and
v is constant on slices of the fixed foliation.) For convenience in the calculations
below, let us fix the freedom in the coordinate v on A by requiring it to be zero

on Sy. Define potentials ¢ and 1& on A satisfying

Ly = K
L) = —i(e—¢) (3.11)

with initial conditions ¢ = 1) = 0 on S.

Since (—£%,m* m®) is dual to (ng, mg, My),

3

dy = —(L-dY)n + (m - dy)m + (m - d)m (3.12)

dp = —(-d)n+ (m-d)m+ (m - di) (3.13)

3
3

Since k(g is constant on A [26], and *D,v = 1, it follows from the definition
of v that 1) is constant on each leaf of the fixed foliation. Consequently m - dy =
m-dy =0, and (3.12) reduces to

dyp = —(£-dy)n = —Kk@yn (3.14)

Equation (3.13) shows us that in every history, d¢» 4+ (£ - d)n is tangent to
the fixed foliation of A (i.e., is orthogonal to ¢%), whence &(d¢) + (£ - dib)n) is
tangent to the fixed foliation of A. Likewise % is tangent to the fixed foliation

of A throughout the space of histories, so that d; % is also tangent to the fixed
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foliation of A. But then
81%€ A Gy (dep + (€ - dep)n) =0 (3.15)

since the left hand side at each leaf S, is then a three-form on the two-dimensional
manifold S,.

Using (3.14),(3.11) and (3.15) in (3.9) gives us

/Aw(61,52) _ %/A [51 ' A Gy(dip) — %51 e A Sy(d) — (1 2) (3.16)

From the Cartan identity,
L% =d(lo%) + £od %, (3.17)

and the fact that £,% = 0 and /% = 0, it follows that /.d % = 0, so that d % is
degenerate. (Here . denotes contraction of a vector with the first index of a form.)
But the space of three forms on A at each point is one-dimensional, so that this

suffices to imply d % = 0. Using this fact to rewrite (3.16),

1 1 -
/ w(51,(52) = —/ d |:51 N 621/} — —(51 N 521[1 — (1 <~ 2):|
A kJa Y

= % <jq£2 - %91) [51 %091 — %51 %by1) — (1 & 2)] (3.18)

As 1) is constant on each leaf of the fixed foliation of A,

51 2652’(/) = 521,[751% 26 =0 (319)

51 Sl

whence (3.18) further reduces

/Aw((sl,(sQ) - ;—k (7{9 —7§> (8108, % — (1 ¢+ 2)] (3.20)

One may be tempted to stop the derivation at this point. For, from this equation,
it is evident one could choose A(d1,d2) = 7%[611552 ¢ — (1 < 2)]. However, such

a choice of )\ is not acceptable because 75 appears in it. 7/; is well-defined in the
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covariant phase space framework, but it is not a well-defined function in terms
of the basic variables when we go over to the canonical framework (§3.2.5). The
reason for this is that the value of ) on a given slice S is not a function only of the
basic variables e and w!” on S, but rather depends on the values of these fields on
the entire segment of A between S and Sy. That is, 1) is not a function of the basic
variables that is ‘local in time’. Because of this, 1) is ill-defined in the canonical
framework, where the basic variables live on a single spatial slice representing
only an instant of time. Therefore 7,/3 should be understood merely as an auxiliary
variable introduced in the covariant phase space picture for convenience in the
present calculation; in the end, the final expression for the symplectic structure

should, preferably, not explicitly involve 7. 3

3.2.4 Surface symplectic structure in terms of canonical

type I connection

Recall from section 2.4.3 that there is a canonical type I connection V° defined on
slices of A, determined uniquely by the dynamical fields on the horizon. We will
use this type I connection to rewrite the integral of the symplectic current over A
and solve the problem mentioned at the end of the last subsection. We will be able
to extract an expression for the surface symplectic structure which only depends
locally (in time) on the dynamical fields, and hence will carry over unambiguously
to the canonical framework in section 3.2.5.

We begin by substituting (2.61) into (3.20) and integrating by parts,

/Aw(51,52) - 7%;7 (ﬁ —79 [51f/° A pdih — (1 65 2)] (3.21)

In what follows it will be convenient to use the following notational convention:
given any (possibly tensorial) field ¥ on A, we let ¥(v) denote the unique field on
A satisfying ¥(v) |s,= ¥ |s, and L£,¥(v) = 0. From (3.10) and (3.11) it is then
not hard to show that

ma(v) = e m,(0) (3.22)

30ne can ignore the fact that ¢ is ill-defined in the canonical framework by, e.g., simply
declaring v to be a new degree of freedom at the horizon. Nevertheless, if one does this, there
are other difficulties/ inelegancies that one encounters when trying to implement the quantization.
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On each slice, m, is defined in a unique and covariant manner from gq. S0 L¢ge =
0 implies £,m, = 0. For the same reason L,m, = 0. These together with (2.53)
and (2.54) imply

mi(v) = =) me(q) (3.23)
mi(v) = ele=al)me(g) (3.24)

These together with (3.22) imply
Tha(v) = €% @1, (0) (3.25)
substituting this expression into (2.55) yields

Vo (v) =V;(0) + %d¢(v) (3.26)

Let v; and vy denote the coordinates for leaves S; and Sy, respectively. Substituting
(3.26) into (3.21) gives

/A((sl,aQ (f; }é) (677 A& (7 7°(0) - (1 0 2)] (327

Let A
aO
° 2
- (74 f) 5% A GV (3.28)

2 a,

/Aw(al,(sz) - (?i _?£> (57 A 6770 - (102)] (329

Plugging in (3.26),

[ty = 1-2%(f -f
]i_ —fg) :aldzZ/\(SQf/"(o) ~(1e 2)]
i/

) :5117°(0) A8 V°(0) — (1 ¢ 2)}

) :51011; AGV°(0) = (1 45 2)]
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- 1+71—k;—; (jiz—f;l) [511;/\52(“70(0)_(1 <—)2)}

- I+ ;—k;—w (ﬁ—i) [511;/\52dv°—(1 <—>2)]

_ - / w (61, 65) (3.30)

where we have used £,V°(0) = 0 (in virtue of the definition of V°(0)) in the
second step and £,dV° = L, (—Z—: 26) = 0 (due to isolation) in the penultimate
step. (Note it is V° and not V°(0) appearing in the penultimate step.) Thus

2 a, .
/A((sl,(sg) o fyk27r<f22 fil)w IR (3.31)

Whence we may define

24 [ o -
Q(5,,6) == / (51,52)+—k;—7r 5.7 A 6,77 (3.32)
M

as our symplectic structure.

Let us summarize what has been done. We set out in subsection 3.2.2 to
determine the symplectic structure for the phase space I'.,,. In the process, it
was found that a surface term in the symplectic structure was necessary in order
for the symplectic structure to be conserved in time. In subsection 3.2.4, we
recast the surface term to depend on the basic fields in a manner local in time.
The result is the surface term above, written in terms of the canonical type I
connection V°, determined by the dynamical fields at the horizon. In this form,
the symplectic structure can be carried over to the canonical (i.e. 3+1) framework,

to be introduced in the next section.

3.2.5 Structure of the canonical phase space

For quantization, it is necessary to change to the canonical picture; we do so here.
Let M denote a fixed submanifold in M to be thought of as a (partial-)Cauchy
surface. Let us require that M be chosen to intersect A in a leaf of its fixed
foliation. Let S denote this leaf. Let  denote pull-back to M. As in [38], we fix a
field 77 on M, here required to approach %(ﬂl +nl) at S. €% is then partially gauge
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fixed by requiring e47! to be the future pointing normal to M at each point. Let
1, J, k denote abstract indices associated with the internal subspace perpendicular
to 7! at each point. Let ¢} denote the orthogonal projector onto this subspace at
each point. As this subspace is three dimensional, it may be identified with the
Lie algebra of SU(2). Make such an identification such that €;;; := ¢! qj it errix

is the structure tensor for the algebra. The canonical variables are then defined to
be [38]:

A = —e',Jw<Cg> (3.33)
- 1
= ’76 Jkej%e:,i (3.34)

or, in terms of the densitized triad EZ-“ induced on M, Zflb = %Qabcﬁ]cﬂ where 7).
is the Levi-Civita density on M. We then define our canonical phase space T" to be
the space of all (smooth) initial data (A%, ¥¢,) on M compatible with the boundary
conditions. The holonomies of the connection A take values in SL(2,C) = SU(2)¢
unless 7 is real, in which case they take values in SU(2). The functional calculus
on the space of connections is well-developed only when the structure group is
compact; for this reason we must restrict to the case in which 7 is real.

Define r* := —5q;(¢' — n'); then V., = ir;Ai. The meaning of the U(1) sub-
bundle selected by the partial gauge fixing conditions in section 2.4.1 is now more
transparent: it is the sub-bundle preserving r* at each point. The gauge transfor-
mations living in this sub-bundle are local gauge rotations about r%; it is then easy
to see why such a bundle is U(1) and is naturally identifiable with the spin bundle
over S.

In terms of these variables, the symplectic structure, determined in the forego-

ing subsections, is given by:
Q(01,09) = / (LA N 6X; — G A" A6 Y) + —- —7{ 6V A8Ve (3.35)
M

where 61,02 are any two tangent vectors to the phase space I'; and Ve is the

canonical type I spin connection associated with (g, V) via (2.66).
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The constraints for the theory are given by [38]:

Ca(AY) = / Ayd X (3.36)
Csr (V) 1= / [(NF) A S, — (N2A) A daS] (3.37)
o) = 1 /M N [0 (BisF*) — (1 4+ ) (Bis(K* A K9)] AS, (3.38)

where d4 denotes the covariant exterior derivative operator determined by A,/ :=
i’ AR, F. denotes the curvature of A%, E2 is the undensitized triad, and K :=
EY%K,, with K, the extrinsic curvature of M.

To determine the canonical gauge in the framework, we need to determine for
which smearings A‘, N , N the smeared constraints are differentiable functions on
the phase space and therefore generate Hamiltonian vector fields 64, 05, and dx.
That is, we need to determine for which smearings A’, N , N there exist 05,05,0n
such that 6Cg(A) = Q(6,04), (5C’Diff(]\7) = Q(9,65), and 0C(N) = Q(9, ) for all
0 tangent to I'. Since the bulk term in the symplectic structure is the same as in
standard general relativity, we know that in the bulk — and hence, by continuity,
on S as well — any such d,,05,0n must correspond to the usual gauge motions
generated by the constraints. 6, must correspond to local SU(2) gauge rotations,
0 to diffeomorphisms, and d to time evolution (on shell). We furthermore know
that these gauge motions, if they are to exist, must preserve the phase space T,
and in particular must preserve the boundary conditions and partial gauge fixings
imposed at the horizon. These two facts lead to the following restrictions on A,

N, and N, if 05,05, 0N are to generate motions:

1. A* must be proportional to r* at the horizon; that is, at the horizon it must
take values in the Lie subalgebra corresponding to the U(1) sub-bundle se-
lected by the partial gauge fixing conditions.

2. N must be tangent to S.
3. N must vanish on S.

The restriction on N deserves further explanation. If N were not to vanish on S,

the flow generated by dx would not preserve the boundary condition that S be the
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intersection of M with an isolated horizon. This can be seen as follows. On shell,
recall d generates time evolution along the time-like vector field N7¢, where 7¢ is
the unit future time-like normal to the partial Cauchy surface M. At the horizon,
7%, being time-like, points into the horizon. Hence, if N were to not vanish on S,
the flow generated by dx would carry S into the horizon — S would “fall into”
the black hole and so cease to be the location of an isolated horizon. Hence, if dy
is to define a well-defined flow on our phase space I', N must vanish on S.

We know the items in the above list are minimum restrictions on A’ N , and
N if Cg(A), CDiff(N), and C(N) are to generate gauge motions. One can check
that, in fact, these are all of the restrictions. * Thus, the allowed smearings of
the constraints are identical to the allowed smearings in the type I case, whence
the notions of canonical gauge are the same. In particular, the canonical gauge
transformations for V, = %r,-Az are again precisely U(1) gauge rotations and diffeo-
morphisms. The U(1)-gauge and diffeomorphism covariance of the map Vi Ve
proved in §2.4.3 now becomes important: It tells us that, furthermore, U(1)-gauge
rotations and diffeomorphisms are also the precise canonical gauge for V°. This
will be important in the quantization.

Note that the surface term is the symplectic structure of a Chern-Simons theory
for a U(1) connection V°, with level k = a,/47v¢2,. Because variations of only V°
— rather than V — appear, (2.61) provides the most convenient way to incorporate
the key boundary condition that dV is given by (2.48), where Wy has the given set
of multipoles.

Because the surface symplectic structure, the horizon boundary condition, and
the notions of canonical gauge are identical to those in the type I calculation,
the constructions in [12] can be carried over basically unchanged to the present
calculation. Let us briefly review the quantization strategy adopted in [12]. We
define a ‘bulk phase space’ I'p and a ‘surface phase space’ I's as follows. I'p is
isomorphic with I' as a manifold but it is equipped with a symplectic structure
Qp given just by the volume term in (3.35). I's is the space of U(1) connections

V° on S equipped with the Chern-Simons symplectic structure — i.e., the surface

4In verifying this statement for N, crucial use must be made of the fact that all the multipoles
(and area) have been fixed.
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term in (3.35). Then, we have natural maps
pBZI‘—)FB, pSZF—)FS

given by

pB(Aa E) = (A’ E) pS(A’ E) =V

so that
Qgrav = p*BQB + p*SQS

We will see that this structure on the kinematical space of classical states is faith-
fully mirrored in the kinematical space of quantum states.

Remark. Note that the definition of I'g is determined by the surface term in
the symplectic structure. We include in I's only those surface fields that appear
in Qg, so that 25 is non-degenerate on ['s. Non-degeneracy of 25 is needed for
quantizing the surface phase space. One might say 25 “grabs on to” exactly the
appropriate fields at the horizon.

Heuristically this is what symplectic structure always does: it determines the
physical degrees of freedom of a system. This is evident, for example, in the
covariant phase space formulation of a first class constrained system (such as gen-
eral relativity): It is precisely the degenerate directions of the symplectic structure
which correspond to unphysical degrees of freedom. This general observation might
lead one to suggest the following interpretation of the degrees of freedom which
will be quantized in the surface phase space. The boundary term in the symplec-
tic structure 3.35 came from integrating the symplectic current on the horizon,
and this was done in lieu of integrating over the interior of the black hole in both
Cauchy surfaces in subsection 3.2.2. It is thus natural to interpret the degrees of
freedom associated with the boundary term as representing the degrees of freedom
neglected in this approximation: That is, perhaps the surface phase space degrees
of freedom should be understood to represent the internal degrees of freedom of
the black hole.
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3.3 Quantum horizon geometry

Let us summarize the situation presented by the classical analysis. Each type II
horizon geometry defines a canonical type I geometry. Furthermore, the Hamilto-
nian theory of the sector of general relativity admitting type II isolated horizons
with fized area and multipoles, at the horizon makes direct reference only to the
type I connection V°. The surface symplectic structure in terms of V° is the same
as in the type I case, and the notions of canonical gauge for V° are also the same as
in the type I case. Therefore, the situation is formally identical to that present in
the type I case, and the quantization can be carried out by taking over the mathe-
matical constructions from [12]. However, the physical interpretation of states and
operators has to be made in terms of the physical type II geometries now under
consideration.

Let us first summarize the mathematical structure from [12]. To begin with,
there is a kinematical Hilbert space H = Hp ® Hg where Hp is built from suitable
functions of generalized connections in the bulk and Hg from suitable functions
of generalized surface connections on S. ® The bulk Hilbert space Hp describes
the ‘polymer excitations’ of the bulk geometry. Each excitation which punctures S
endows it with a certain quantum of area. The surface Hilbert space Hg consists
of states of the level k, U(1) Chern-Simons theory for the connection V° on the
punctured S. To ensure that S is indeed the desired horizon, only those states
in ‘H are selected which satisfy the operator analog of (2.61), called the quantum
horizon boundary condition.® This operator equation on permissible states allows
the connection and the triad to fluctuate but demands that they do so in tandem.
As emphasized in [12], this operator equation is stringent and admits a sufficient
number of solutions only because of a surprising agreement between an infinite
set, of eigenvalues of a quantum geometry operator in the bulk with an infinite
set, of eigenvalues of a Chern-Simons operator on S. The subspace Hy, of H on

which this condition is met is then the Hilbert space of kinematic states describing

5In the construction of Hg in [12], critical use was made of the fact that U(1)-gauge trans-
formations and diffeomorphisms are the canonical gauge for W. As already pointed out, this is
again true for V° in the present context, so, again, the construction of Hg in [12] can be carried
over without change.

6In addition, the states have quantum area and multipoles close to the macroscopic classical
values. The multipole operators are defined below.
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quantum geometry in the sector of general relativity now under consideration.

We now want to extract the quantum geometry of the horizon. For this, first
recall the axial foliation & of S discussed in section 2.4.4, determined by the orbits
of the axial symmetry field at the horizon. £ varies non-trivially over phase space.
However, £ is a pure gauge degree of freedom; that is, the group of diffeomorphisms
acts transitively on the space of possible £’s. To extract the physics of the situation
in the quantum theory, we simply fix £&. This may be thought of as “gauge-fixing”
for the purpose of reconstructing the quantum horizon geometry.

Regarding the legitimacy of this: It would perhaps be more satisfactory if the
gauge-fixing could be done in a more standard manner, 7.e. if one quantized a
classical theory in which £ is fixed. The problem is that if one actually gauge fixes
¢ to be equal to some background &, that reduces the group of diffeomorphisms
we divide out by at the quantum level. This reduction of the gauge group becomes
messy when we take into consideration the handling of the extra structure used in
the quantization of I'g, discussed in §IV.C and §V.B.2 of [12]. 7 In fact, if we do
this, the final entropy we calculate is highly ambiguous. One viewpoint is that the
mess is due to the fact that, by fixing £, we have broken diffeomorphism invariance,
and diffeomorphism invariance is “sacred.” The point, however, is that while we do
not want to gauge fix £ in the full technical sense of the word, we do need £ in the
intermediate step to build certain physical operators. Our justification for fixing
¢ in constructing the operators is that we will be dividing out by diffeomorphisms
eventually anyway so that the choice of a fixed £ ultimately does not really matter.
The most important operators we will build using & are the multipole operators;
they will carry over to the physical Hilbert space, and once we are at the level of
the physical Hilbert space, £ isn’t even a degree of freedom — it has been washed
out by dividing by diffeomorphisms.

For convenience, let us furthermore introduce a coordinate ¢, labeling the leaves
of £&. Nothing we do is going to depend on the choice of this coordinate. To describe
the quantum horizon geometry, the first step is to introduce an operator analog of

the preferred coordinate ( which played a key role in the classical theory. (2.62)

"The gauge group of the canonical theory no longer acts transitively on the set of possible
such extra structures, so that the choice of the extra structure becomes a continuous-infinite
dimensional quantization ambiguity.
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suggests the definition
(o) =—1+242) (3.39)

~

as

where ag and a(z) are the area operators associated with S and S,, the ‘southern’
portion of S bounded by the leaf of £ labeled by (; = z. To make the action of
this operator explicit, let us first note [12] that the Hilbert space Hyi, (on which

((z) acts) can be decomposed as a direct sum,
Hiin = EBP,}'HPJa (3.40)

where P denotes a finite set of punctures and j is a set of half integers labeling
the punctures. In each state in HP7 the Tth puncture is endowed with a quantum
of area of magnitude 87y +/j7(j;r +1)¢3,. Each #PJ is an eigenspace of the (

operator, with eigenvalue:

C’P,;(z) — _1 + 22[’ jI’(jI’ + ]‘)

s (3.41)
V(G +1)

where the sum in the numerator ranges over all punctures on S, while the sum in
the denominator ranges over all punctures on S. (The presence of Gg — rather
than a, — in the denominator ensures that eigenvalues of ¢ range from —1 to 1
as required in the definition of Y°(¢).) In the classical theory, the knowledge of ¢
and multipoles I,,, L, suffices to determine the horizon geometry (g, V). The idea
is to mimic that strategy. However, care is needed because the eigenvalues of f are
discontinuous functions: they jump at each z value where the leaf of £ contains a
puncture. (This is depicted schematically in figure 3.2.) This makes the quantum
geometry ‘rough’.

Fix a state in HP»7. To make the nature of the quantum geometry in this state
explicit, let us introduce a set of smooth functions {()(2) on S which converge to
the eigenvalue CPJ (z) in the sup norm as k tends to infinity. In addition, fix a
coordinate ¢ compatible with £. (¢ is only used in constructing the family of type
I and type II metrics introduced below, and the operator V. If one does not wish
to construct these operators, one need not fix ¢. Fixing ¢ constitutes another level

of gauge fixing.) Each () then defines via (2.8) a round metric ). Using the
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Figure 3.2. The eigenvalues of { are discontinuous at leaves with punctures, but are
constant elsewhere. As with the classical coordinate (, and as is necessary for subsequent
steps in quantization, all the eigenvalues start at —1 at the south pole, increasing to 1
at the north pole.

fixed multipoles, for each k, we can also define a smooth function \Ilgk):

W) = =gz D U+ i) Y2 (342)

Using Re\Ilgk) in (2.64), we also obtain a sequence of functions f*) through (2.64),
and via (2.49) we then obtain a sequence of axisymmetric metrics g(x). As k tends
to infinity, \Ifgk), f®) and f* have well-defined limits Wy, f, f, which, however, are
discontinuous functions on S. However, q), ¢x) do not admit limits even in the
distributional sense because the metric coefficients are quadratic in d(u)/dz and
these functions tend to Dirac distributions in the limit. This is not surprising
because polymer quantum geometry does not naturally admit metric operators.
Nonetheless, one can regard the family ¢(x) as providing an intuitive visualization
of the quantum metric on the horizon in the following sense. First, a type 1l
metric is completely determined by multipoles and the function {, and in the above
construction multipoles are fixed and the () tend to the physical ¢ uniformly.
Second, every type II metric determines the multipoles I, and for the family g,
these are precisely the given Ion.

At first one might be confused by the fact that all the metrics ¢*) so constructed
are axisymmetric, whereas all we began with was a finite set of punctures, which is
certainly not axisymmetric. However, one should remember the type II geometry
is determined not just by the punctures, but also by the fixed multipoles. One

needs both. Therefore, one should not expect any ‘naive’ relation between the
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location of the punctures and the physical, type II quantum geometry.

As one might expect from the type I analysis [12], the quantum connection
operator can be defined more directly. Let Ve denote the quantum connection
on Hg corresponding to the classical V°: this operator comes directly from the
geometric quantization of Hg. Using (2.66) we can then define an operator V on

Hyin corresponding to the classical ‘physical’ connection V:

A~ ~ ~

V=V = 17 = 1O Dap + 25a(0), (3.43)
where f') f! and & are all defined by the limiting procedure described above. 1
is a well-defined quantum connection: One can show that its holonomies along
arbitrary (analytic) edges on S, including those which may have a puncture at
their end points, are well-defined. Ve is flat everywhere except at the punctures
in the sense that the holonomy around a closed loop not enclosing any puncture
is identity. This is not the case with V. The distortion in the quantum horizon
geometry manifests itself through these non-trivial holonomies.

Finally, we can define multipoles operators. Taking the limit & — oo of (3.42)

we obtain the W, operator corresponding to the fiducial foliation of S:

(The numerical coefficient is left 1/R2 — rather than 47/as — to ensure the

agreement with the definition of U, used in quantum horizon boundary condition
of the type I analysis, where W, is taken to be the c-number —21) From (2.12),

o

1

In+ilL, = —%5 RARICL (3.45)
Quantum multipoles can be defined by replacing ( with é in the above expression.
However some care involving a regularization in terms of () is needed to give
precise meaning to the integrand. Because the eigenvalues of ¢ depend on position
in a discontinuous manner at the punctures, the eigenvalues of dé will have 4-
functions at the punctures. But the other elements of the integrand, as they

are functions of (the undifferentiated) CA , will be discontinuous at the punctures.
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Consequently, the meaning of the expression is ambiguous: we have delta functions
multiplied into discontinuous functions. The () regularization provides a simple

way out of this difficulty, so that we define

~

~ ~ a as

- 1
I +ily = — lim = /_1 Wy (Cy) Yoo (i) ey = w“ (fn + iin) (3.46)
giving us the final expression for the multipole operators.

Remark. The fact that in the end we have operators corresponding to the mul-
tipoles is similar to what happens in the original type I quantization [12]: There,
area was constant on the original phase space being quantized, but nevertheless
area ended up being a non-trivial operator in the final quantum theory.

The reason this happened, essentially, was due to the fact that the surface
degrees of freedom and bulk degrees of freedom were separated and quantized
separately. Prior to imposition of the quantum boundary condition, the fixing of
the area was only reflected in the surface quantum theory, not in the bulk. The fact
that area was fixed was “communicated” to the bulk only through the imposition
of the quantum boundary condition enforcing the proper relation between surface
and bulk degrees of freedom. This condition is an operator equation which allows
bulk and surface fields to fluctuate and only asks that they do so in tandem. As
a consequence, after the quantization a restricted but still non-trivial horizon area
operator remained.

Something similar happens here with the multipoles as well. The fact that
multipoles are fixed is initially only reflected in the surface quantum theory — in
the fact that, quantum mechanically, V° is the only connection degree of freedom
intrinsic to the surface. (If multipoles were not fixed, V° would not be sufficient
to embody all of the connection degrees of freedom intrinsic to S. 8) This fixing
of the multipoles is then communicated to the bulk only after the imposition
of the quantum boundary condition. Once again, it is the indirect manner of

the imposition of fixed multipoles in the bulk which allows non-trivial (though

8In the quantization [12], which we are here again using, connection degrees of freedom intrin-
sic to the horizon are deliberately excluded from the bulk quantum theory: The wave function
in the bulk is only allowed to depend on holonomies along edges no open portion of which lies in
S. Thus, the surface quantum theory alone represents these degrees of freedom, and it does so
by W (here V“). But V*° only determines all connection degrees of freedom intrinsic to S (viz.,
V) if the multipoles have been fixed.
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restricted) operators corresponding to multipoles to exist in the quantum theory. °

Concretely, of course, one can understand the non-triviality of the multipole
operators as descending from the non-triviality of the area operator: the presence
of Gg in the numerator of (3.46) comes from the presence of the area element in
the definition (2.12); it is through the presence of the area element in (2.12) that
the non-triviality of fn, L, arises. One is forced to use the physical area element
operator because there is no fixed background area element. The presence of a, in
the denominator of (3.46) comes from the definition (3.44) of .

3.4 Entropy

The calculation of entropy can be taken over from the type I analysis in a straight-
forward fashion. (Indeed, most of the above discussion of quantum operators en-
coding type IT horizon quantum geometry is not needed for calculating the entropy.)
We first impose the quantum Einstein equations following the same procedure as
in [12]. This procedure is again applicable without change because the notions
of canonical gauge in the present context — including the canonical gauge for V°
— are identical to those in the type I case. Denote the resulting Hilbert space by
Hpny- To incorporate the fact that we are interested in the horizon states of a black
hole with fixed parameters, let us construct a micro-canonical ensemble consisting
of states in Hppy for which the eigenvalues of as,1,,,Ly, lie in a small interval around
ao, I, L, and count the Chern-Simons surface states in this ensemble. © From
(3.46) it is easy to see that, for this ensemble, the relative fluctuations in the mul-

tipoles will be equal to the relative fluctuations in the area. Since eigenstates of ag

9The situation is also qualitatively similar to geometric quantization of a spinning particle
(though less so). There, the physical phase space is obtained by fixing the value of the total
angular momentum classically — it is a 2-sphere whose radius is determined by the fixed value
of the angular momentum squared. The angular momentum operator is defined on the resulting
Hilbert space but its eigenvalues are different from the fixed, classical value.

10Tt has been suggested by some that an alternative area operator be used to define the rel-
evant ensemble. Classically, there is more than one expression for the horizon area, such as
fs v/det g or kv fs | ¥ -r |. When quantized, these lead to different area operators. However, of
the possible area operators one could define, our viewpoint is that the standard loop quantum
gravity area operator specialized to the surface S is the most robust as far as its physical mean-
ingfulness. The other possible area operators have as their starting point expressions which have
the interpretation of area at the horizon only, whence they have significantly weaker support
interpretationally.
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are also eigenstates of I,, L, and eigenvalues of I,, L, are completely determined
by I, L, and ag, the counting is the same as in the type I case [40, 41]. Hence the

entropy Syor 18 again given by

Ghor 1 Ghor Ghor
Shor = —5 — = In(—~) + 0 In(——) (3.47)
g, 2 Ch

provided ~ is chosen as in the type I analysis [41],
v = 0.23753295796592 . . . (3.48)

We will conclude with a comment on inclusion of matter fields. If matter is min-
imally coupled to gravity, as in the type I case, there are no matter surface terms in
the symplectic structure, whence there are no independent surface degrees of free-
dom associated with these matter fields. Furthermore, the gravitational symplectic
structure continues to be given by (3.35) whence the analysis summarized here un-
dergoes only inessential changes. For an example showing how the analysis goes
through in the minimally coupled case, see appendix A, in which the incorporation
of the Maxwell field is discussed at length. In the case of non-minimally coupled
matter (which is only touched upon here in this thesis), the gravitational symplec-
tic structure does change. However, by introducing multipoles also for the matter
fields, one can extend the analysis of [14] and show that, even in the non-minimally
coupled case, the classically expected entropy expression [29] is recovered again for

the same value of the Barbero-Immirzi parameter.

3.5 Discussion

We have mapped the entropy calculation problem for the type II case to the type
I case: in terms of the variable Va°, the surface term in the symplectic structure is
just Chern-Simons, and the relation between V° and the bulk variables is the same
as in the type I case — that is, the appropriate “quantum boundary condition” we
impose at the quantum level is still the same. Therefore we are able to do the
quantization in the same manner as was done in the type I case, and get the same

entropy. The difference between the type I and type II cases lies in the physical
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interpretation of V°. In the type I case, the curvature dV° is directly related to
the curvature of the intrinsic geometry of the horizon. Consequently, in the type
I case, the concentrations of dV° at the punctures have a natural interpretion as
conical singularities in the horizon geometry [12]. In the type II case, on the other
hand, in order to obtain a physical interpretation, we introduced the C operator,
¥, operator, and multipole operators.

A remark is in order as to the method of quantization we chose. It would
be preferable to not fix multipoles prior to quantization. However, constructing
operators corresponding to multipoles in full loop quantum gravity would be a
highly non-trivial task. Multipoles are moments of Wy, and W, is a particular
component of the curvature. One quantizes expressions involving curvature by
rewriting them in terms of holonomies around loops and taking the limit as the
size of the loops approaches zero. Unfortunately, in loop quantum gravity there
is considerable ambiguity in the way such a limit is taken. This is the main
source of ambiguity in the proposed definitions of the operators for the Hamiltonian
constraint in loop quantum gravity, for example (see, e.g., section (6) in [38] and
references cited therein). Nevertheless, one can hope these issues will be cleared
up at some point.

It is worthwhile to note how much of an extension the present work represents.
The space of type II isolated horizons is infinite dimensional, encompassing the
(2 dimensional) family of Kerr isolated horizons as well as all possible distortions
of such horizons compatible with axisymmetry. A vast range of astrophysically

realistic black holes are therefore covered.



Chapter

Quantum field theory and its

symmetry reduction

4.1 Introduction

In full loop quantum gravity, the Hamiltonian constraint is difficult to solve, and
there are many ambiguities. It is possible that considerable progress could be
made by restricting oneself to symmetric situations. Since most of the work in
the classical theory is carried out in the context of homogeneous and isotropic
models, and perturbations thereon, in quantum theory one should expect symmet-
ric models to similarly play an important role. A major thrust in this direction is
loop quantum cosmology (LQC) [44], which attempts to describe the homogeneous
and isotropic sector of quantum gravity. Other symmetry reduced models in loop
quantum gravity have also been constructed, for example, for the purpose of better
understanding quantum black holes [45].

These models, however, are obtained by first symmetry reducing at the clas-
sical level and then quantizing. For these models, therefore, an issue of primary
importance is the relation to the full theory, loop quantum gravity. The issue of
the relation of LQC to the full theory is particularly important as possible predic-
tions testable by cosmological observations are starting to be made based on LQC
[46]. It is important to know to what extent tests of such possible predictions will

in fact be tests of full loop quantum gravity.
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In dealing with either LQC or related models, the underlying hope is that
quantization and symmetry reduction commute in a suitable sense. The question
of commutation of symmetry reduction and quantization is an old one. However,
it is often not appreciated that the question of whether commutation is achieved
depends in a critical way on what one means by the “symmetric sector” of the full
quantum theory. One would like the “symmetric sector” of the full quantum theory
(defined in some physically well-motivated way) to be isomorphic to the reduced-
then-quantized theory.! If one can achieve such an isomorphism, not only at the
level of Hilbert space structure, but also at the level of dynamics, one will have
achieved full commutation of symmetry reduction and quantization. One may also
have partial commutation: only the kinematical structure of the reduced theory
may be isomorphic to the “symmetric sector” of the full theory. Nevertheless, even
in such a situation one can ask if there is some choice of Hamiltonian operator
in the reduced theory that “best” represents the information contained in the
Hamiltonian of the full theory.

We will address all of these issues, but in the simple context where the full
theory is well understood: the axisymmetric, free Klein-Gordon field in Minkowski
space. We choose to consider a spatial symmetry (axisymmetry) in order to imitate
the situations of primary interest, namely, LQC and related models, all of which
are based on spatial symmetries. The analysis of the Klein-Gordon field presented
here will suggest a method of generalizing the results to LQG and other theories.
The programme of generalization for the case of LQG is sketched in the conclusions.

Above it was noted that there is an “ambiguity” in the notion of symmetry in
quantum theory. At first this may seem surprising. Nevertheless, there are in fact
at least two possible approaches to defining a notion of symmetry at the quantum

level:
1. Demanding invariance under the action of the symmetry group

2. Taking a system of constraints that classically isolates the symmetric sector,
and then imposing these constraints as one would in constrained quantiza-

tion.

!The phrase ‘reduced-then-quantized theory’ is of course ambiguous. What is meant here,
roughly, is the reduced theory, considered as a theory on the reduced spatial manifold (pp.80,139),
quantized using the same quantization methods as in the full theory.
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In the case of the axisymmetric Klein-Gordon theory, the notion of symmetry in
sense 1 above is straightforward: a state is axisymmetric if it is annihilated by
]I:z, the operator corresponding to the total angular momentum in the z direction,
since this is the generator of the action of rotations about the z axis.

However, we will find two distinct, but natural ways of implementing notion 2,
corresponding to two different ways of reformulating the symmetry constraints as a
first class system — to be referred to as reformulations ‘¢’ and ‘b’. (The motivation
for these designations will be given below; this is a change from the terminology in

[3].) In this chapter we thus actually consider three distinct notions of symmetry:
1. Requiring invariance under the action of the symmetry group (L, ¥ = 0).
2. Imposition of Ly¢(z)¥ = 0. (Constraint reformulation ‘c’.)
3. Imposition of a([Lyf, Lsg])¥ = 0. (Constraint reformulation ‘b’.)

where ¢° is the axial Killing field on Minkowski space generating rotation about
the z axis. In 3, [f, g] denotes the phase space point determined by the initial data
¢ = f, ™= g, with a([f, g]) denoting the associated annihilation operator (see next
section). ‘c’ stands for “configuration”, reflecting that symmetry is imposed only on
the configuration variable ; this symmetry is furthermore “exact” in the sense that
fluctuations of ¢ from axisymmetry are zero. ‘b’ stands for “balanced”, referring
to the fact that symmetry is imposed on configuration and momenta in a more
balanced way — fluctuations from symmetry are more evenly distributed between
configuration and momenta (8§4.5.5). We will refer to the three notions of symmetry
in the above list by the names “invariance symmetry”, “configuration symmetry”,
and “balanced symmetry” respectively. The latter two will also sometimes be
referred to as “c-symmetry” and “b-symmetry” for short. A state satisfying one
of these conditions of symmetry will likewise be referred to as “invariant”, “c-
symmetric”, or “b-symmetric”.

In the rest of this chapter, these three notions of symmetry will be explained,
justified, characterized and compared in detail. Simpler, less central results will
be stated without proof. The c-symmetric sector (with appropriate choice of in-
ner product) and b-symmetric sector of the quantum theory will turn out to be

naturally isomorphic to the reduced-then-quantized Hilbert space H,.q. Thus c-
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symmetry and b-symmetry as notions of symmetry achieve commutation of quan-

tization and reduction. Furthermore

e c-symmetry and b-symmetry are strictly stronger than invariance symmetry.
That is, if a state is c-symmetric or b-symmetric, it is also invariant, but not
conversely (§4.4.5, 4.5.4).

e The space of c-symmetric states is the space of wavefunctions with support
only on symmetric configurations. 2 It is thus the analogue of the notion of

symmetry used by Bojowald in quantum cosmology.

e The space of b-symmetric states is equal to the span of the set of coherent

states associated with the symmetric sector of the classical theory.

e In a precise sense, b-symmetric states are those in which all non-symmetric

modes are unexcited.

e For b-symmetric states, fluctuations away from axisymmetry are minimized

in a precise sense.

e The quantum Hamiltonian preserves the space of invariant states and the
space of b-symmetric states, but not the space of c-symmetric states. Thus,
balanced symmetry achieves full commutation of reduction and quantization,
whereas configuration symmetry achieves commutation only at the level of

Hilbert space structure.

Because of the last four items on this list, we argue that balanced symmetry should
be preferred over configuration symmetry as an embedding of the reduced theory.

We then motivate and discuss a prescription for carrying arbitrary operators in
the full theory over to the reduced theory. Finally, in the conclusions, we summa-
rize the results and discuss application to loop quantum gravity. For convenience
of the reader we have collected definitions of mathematical symbols in appendix
E.

We conclude with a conceptually important point. One may object that com-

mutation of reduction and quantization is achieved (in method ‘b’) only because

2 Although this seems obvious at first, the rigorous formulation of this statement is more
non-trivial to prove.
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we have chosen to use an “indirect” notion of symmetry, rather than the obvious
notion of invariance under the symmetry group. But, in fact, in quantum gravity,
if the question of commutation is even to be posed (in a non-trivial way), one
must use a notion of symmetry other than invariance symmetry. For, in quantum
gravity, after the diffeomorphism constraint is solved, the action of any spatial
symmetry is trivial, and so invariance symmetry becomes a vacuous notion. The
reason for this is that the symmetry group becomes a subgroup of the gauge group
of the canonical theory.® But if this is the case in quantum gravity, perhaps, then,
one should not be surprised if also in other theories invariance symmetry is inap-
propriate for commutation questions. Indeed, in the Klein-Gordon case at hand,
not only is invariance symmetry less desirable in that it does not achieve com-
mutation, but, as the list of results indicates, b-symmetry satisfies many physical

criteria which invariance symmetry does not.

4.2 Preliminaries: review of quantization of the
Klein-Gordon field

First, let us review those aspects of the treatment [47] of the quantization of the
free Klein-Gordon theory that will be used in the rest of this chapter (and in the

associated appendices). This section will also serve to fix notation.

4.2.1 Classical theory

Let X denote a fixed Cauchy surface: a spatial hyperplane in Minkowski space. Let
Qe denote the induced Euclidean metric on Y. The phase space I is a vector space
parametrized by two smooth real scalar fields ¢(z) and 7(z) on ¥ with Schwartz

fall-off at infinity. The symplectic structure is simply

g, ], [ 7)) = / (rg' — on')dPa (4.1)

3 As discussed in the conclusions, this situation can be exactly mimicked in the axisymmetric
Klein-Gordon case by simply declaring the three components of the total angular momentum to
be constraints, so that the canonical gauge group is just the group of SO(3) rotations about the
origin.
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so that the Poisson brackets between the basic variables are

{o(z),7(y)} = 8 (z,y) (4.2)

and {¢(z), p(y)} = {7 (x),7(y)} = 0. In a word, I is the cotangent bundle over
S(X), the space of Schwartz functions on 3.

The Hamiltonian of the scalar field with mass m is
1 - o
H=j [ {5+ (F0): (F9) + mi?)ds (1.3
b

From this Hamiltonian, one derives the equations of motion to be

o =T (4.4)

= Ap—mPp (4.5)

where A is the Laplacian on ¥. Let © := —A + m?. Choosing the complex
structure

Jlp,) = [~072m, 029 (4.6)

we turn I' into a complex vector space. The Hermitian inner product thereby

determined on I' is then

(o) o) = 3920l [, wD) ~ 500, [, 7]
= @%@+ 5O )~ m ) + (o) (@A)

where for f,g functions on ¥, we define (f,g) := [, fgd®z. Completing I' with
respect to this Hermitian inner product gives the one particle Hilbert space h.

In constructing the Hilbert space for the field theory, one then has two possible
approaches: the Fock and Schrodinger approaches.
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4.2.2 Fock quantization

In the Fock approach, the full Hilbert space is constructed as
H=Fh) =P hr (4.8)
n=0

n
where ®,h denotes the symmetrized tensor product of n copies of h. 4
n
For each n, the inner product on A induces a unique inner product on ®h via

the condition

(V1 @U@ ®@Yn, )1 @2 @+ @ bn)z, = (Y1, G1)(Wa, $2) -+ (Y, ) (4.9)

for all {¢;},{¢;} € h. This in turn induces an inner product on ®sh.

Let A, B,C'... denote abstract indices associated with the one particle Hilbert
space h. Let prime denote topological dual. Then, for each n, define the complex
conjugation map ®h (&)h)', YA s by 4 by

Gayn, @A = <¢a¢>§)h- (4.10)
A given member ¥ € ‘H = F;(h) takes the form

U = (3, gt ez qpdrdzds |y (4.11)

with each component ¢41-4» satisfying y41-4n = ¢)(41+4n)  The inner product
on H is then defined by

(T, @) = Z%Al...AnWh'"A”- (4.12)
n=0

Given an element £4 = [, 7]* € h, one has associated creation and annihilation

operators which act on H by

a0 = (09N, V2Nt V3t ) (4.13)

4That is, (%h is the space of all continuous multilinear maps Xh' = (@ (%Sh is then the space

n
of all members of ®h invariant under arbitrary permutations of arguments.
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a(§)¥ = (ZA¢A,\/§EA¢AAIa\/ggAi/)AAlAza---) (4.14)

One can check

[a(€),a’(m)] = (§,m 1 (4.15)

The unique normalized state annihilated by all the annihilation operators is the
vacuum; it is given by

T, = (1,0,0,0,...) (4.16)

In terms of the creation and annihilation operators, the representation of the

smeared field operators is given by

olfl = i{a((0, f) = a' ([0, fD)} (4.17)
ilg] = —i{a([g,0]) — a'([g,0])} (4.18)

With these definitions, one can check

[6Lf],Algl] =1 /E &rfg=i(f,9) (4.19)

with all other commutators zero, so that (4.17) indeed gives a representation of
the Poisson algebra of smeared field variables (4.2).

It is useful to note that, by using the fact that af(€) is linear and a(€) is anti-
linear in &, one can invert (4.17) to obtain an expression for the creation and

annihilation operators in terms of the field operators:

a([f.9]) =
a'([f.q]) =

P[0 f —ig] + %fr[@—%ﬁ if] (4.20)

DN =N =
S

(07 f +ig] + %ﬂG‘%g —if]

These expressions can then be carried over to the classical theory to obtain func-
tions on I which are classical analogues of the creation and annihilation operators.
Upon simplifying the expressions for these classical analogues, one obtains the

remarkably simple result

a([f,9]) = (If,9],[e,7]) (4.21)
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a'([f,9]) = (o7l Lf 9]) (4.22)

The Poisson brackets among these classical analogues exactly mimic the commu-
tators of the quantum counterparts.

Next, we quantize the Hamiltonian. Rewriting the classical Hamiltonian (4.3),

H = %/(W2—¢A90+m2902)d3:6
b
1
= 5/(7r2—i—g0®g0)d333 (4.23)
P

From (4.4) and (4.6), we obtain the one particle Hamiltonian operator on h,

. d
H[(‘O,ﬂ'] = Ja[%ﬁ]
= [©2¢,0°7] (4.24)

In terms of this, the classical Hamiltonian can be expressed as
H = (g, 7], Hlp, 7] (4.25)
Let {& = [fi, 9:]} denote an arbitrary orthonormal basis of h. Then

H = ) (o7, &) HENE, [p, )

1,J
= ) (& HE)al (&)alé) (4.26)
12
Which is an expression that can be taken directly over to the quantum theory,
using normal ordering:

H =Y (& HE)al(&)a(&) (4.27)

ij
4.2.3 Schrodinger quantization

As mentioned, the classical phase space [ has a cotangent bundle structure 7*C
over some appropriately defined configuration space C.

In the case of a finite number of degrees of freedom, the standard way to
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quantize a cotangent bundle 77C is via a Schrédinger representation — that is, a
representation of the field operators on an L?(C, du) for some appropriately chosen
measure /.

In the field theory case, however, the measures one is interested in using are
usually not supported on the classical configuration space C, but rather on some
appropriate distributional-like extension C. This extension is referred to as the
quantum configuration space.

In the case of the free Klein-Gordon field in Minkowski space, the appropriate
quantum configuration space can be taken to be the space of tempered distributions
S'(X) on X [48]. S(X) denotes the space of Schwartz functions equipped with the
appropriate topology [49], and the prime indicates the topological dual. From here
on ¢ will denote an element of S'(X).

The appropriate measure is the Gaussian measure heuristically given by the

expression
1
“dp = exp {—5(% @%w)} Dy” (4.28)

where Dy is the fictitious translation-invariant “Lesbesgue” measure on S'(X)
scaled such that [ q# = 1. To define the measure rigorously, one can specify its

Fourier transform. The Fourier transform Y, of a measure y is defined by

wWlf) = [ ety (4.20)
pES'(X)

for f € §(X). The Fourier transform giving rise to (the rigorous version of) the

measure in (4.28) is

Xu(f) = exp {—%(f, @—5f)} (4.30)

For further details, see [48]. H = L2(S8'(X),du) is then the Hilbert space of states
in the quantum field theory.

For this thesis it will also be necessary to introduce a certain dense subset
of H — the space of cylindrical functions. A function ¥ : §'(X) — C is called
cylindrical if U[p] = F(p(e1),...,¢(e,)) for some {er,...,e,} C S(X) (referred

to as “probes”) and some smooth function F' : R* — C (with growth at most
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exponential ® ). More specifically, such a ¥ is said to be cylindrical with respect to
the “probes” eq,...,e,. Let the space of cylindrical functions be denoted Cyl. H
is the Cauchy completion of Cyl.

Next, the representation of the field observables on H is

(@LIW)e] = olf1¥]e] (4.31)
(T[g]®)[p] = [Self—adjoint part of —iLd%g%} U]
= —i/zd?’x (g% - @@5g> U] (4.32)

Note that the action is well defined on Cyl and preserves Cyl. Thus a finite linear
combination of finite products of @[f] and 7[g] is densely defined on H.

We then use equations (4.20) to define creation and annihilation operators in
the Schrédinger picture. Substituting (4.31) and (4.32) into these expressions and

simplifying, we obtain

a([f,g]) = %/Edax (f—iG‘%g) % (4.33)
at([f.g]) = ¢[O°f +ig] — %/zd% (f + i@‘ég) % (4.34)

(In (4.33), the ¢ terms exactly cancel, leaving only a §/d¢ term.) The unique

normalized state in the kernel of all of the annihilation operators is
Yolp] =1 (4.35)

The availability of a vacuum state and creation and annihilation operators in the
Schrodinger picture allows one to construct a mapping from the Fock Hilbert space
into the Schrédinger Hilbert space. One finds that the mapping is unitary, so that
the Fock and Schrodinger descriptions of the theory are equivalent.

Let us next consider the Hamiltonian operator on 4. Substituting (4.33),(4.34)

5That is, we require limy_, o Fe(ﬁ) to be finite for all & € Rt and @ € R™. This ensures that

the cylindrical functions belong to H (i.e. that they be square integrable).
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into (4.27) and simplifying, one obtains

H = /22 d3xd3yA(a:,y)g0(y)&p(x) — /22 d3md3yB(x,y)m (4.36)
where
Awy) = 526 HE) -0 tg)@) O i+ig)ly) (@437

Bly) = {26 HE i +i07 )@ (-0 g)m)  (139)

where, as before, {£; = [f;, ¢:]} is an orthonormal basis of the one particle Hilbert

space. By integrating A(z,y) and B(z,y) against test functions, one can show
that A(z,y) is the integral kernel of ©7 and B(z,y) = 16%(x,y). Thus, ¢

S NN S S
H:/z“{(@ 5@ 2ago(x>aso(x>} (4.59)

The rigorous meaning of this expression is not immediately obvious. However,
note that for any cylindrical function ¥[p] = F(p(eq), ..., ¢(en)),
5 n

5ol 1) = 2_; ei(@) (0, F) (@ler), - .., olen)). (4.40)

Therefore, the action of H (4.39) on the space of cylindrical functions, Cyl, is well
defined. Furthermore one can check that H preserves Cyl. In proving this, the fact
that there is no term quadratic in ¢ in (4.39) is important.” Since Cyl is dense
in ‘H, we may take Cyl to be the domain of ]ﬂI; with this domain, one can show
that H is essentially self-adjoint. Let us sketch one way to show this. Let Cyl,,,
denote the space of all functions of the form ¥[p] = F(p(e1),...,¢(e,)) with F

6To our knowledge, expression (4.39) has not appeared in the literature.

"The reason the p? term is absent is that our quantum measure is Gaussian. Thus there
is a tight relation between kinematics (the choice of measure, and hence the representation of
the quantum algebra) and dynamics (the Hamiltonian operator). This is the origin of the usual
statement that in quantum field theory “dynamics dictates the choice of kinematics”!
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polynomial. Then Cyl ,, C Cyl and Cyl ., is dense in H. One can show that

poly poly

Cylyoy C (H = 3)[Cyl] (4.41)

so that, with domain Cyl, the range of H =+ 4 is dense in . It follows from the
corollary to theorem VIIL3 in [49] that H with domain Cyl is essentially self-
adjoint. Thus, H with domain Cyl has a unique self-adjoint extension. It is this

self-adjoint extension that we henceforth take to be the meaning of H.

4.3 Different methods of imposing symmetry

4.3.1 Classical analysis

As mentioned in the introduction, incorporation of symmetry by requiring invari-
ance under the action of the symmetry group is straightforward in the present
context: it corresponds to requiring a state to be annihilated by the operator L,
corresponding to the z component of the total angular momentum. However, se-
lection of the symmetric sector via imposition of a system of constraints deserves
further explanation.

Classically the condition for symmetry takes the form of the constraints
Lyp=0 and Lym=0 (4.42)
If we smear the constraints, they take the form
o[Lsf]=0 and 7[Lyf]=0 (4.43)

for all test functions f in S(X), the space of Schwartz functions. The form of
the smearings L4 f and L4g comes from an integration by parts. More generally,
the significance of the form L4f for test functions is the following. Let S(X)iny
denote the space of elements of S(X) Lie dragged by ¢®. One can show that the
space all test functions of the form L4f is precisely the orthogonal complement
of §(X)iny in §(X) (with respect to the usual inner product). Thus, if we set
SX)L ={Lyf | f € S(X)}, then S(X) = S(X)iny ®S(X) .. This gives us another



7

way to view the above set of smeared constraints: They are the non-symmetric
components of the fields; by requiring these to vanish, we impose symmetry.

Therefore, what we would ideally like to do in the quantum theory is impose
@[£¢f]‘11 =0 and ﬁ'[ﬁ(pf]\l/ =0 (444)

for all f € S(X). However, the proposed system of constraints is second class, and,
as Dirac taught us, such systems of constraints cannot be consistently imposed in
quantum theory in this fashion. One will find that the unique solution to these
constraints is the zero vector.

To get around this difficulty, the strategy is to reformulate the constraints (4.43)

as an equivalent first class system. We consider two such reformulations:
1. the set of constraints {[Lsf]} resx)

2. the set of constraints {a([Lyf, L49])}fges(m)

Y [P

We will refer to these as constraint set ‘c’ and constraint set ‘b’, respectively. ‘c
stands for ‘configuration’ and refers to the fact that symmetry is imposed only
on the configuration variable. ‘b’ stands for ‘balanced’ and refers to the fact that
configuration and momenta are treated in a more balanced way. a([f, g]) here is the
classical analogue of the annihilation operator as given in (4.21). Thus, constraint
set ‘b’ consists in complex linear combinations of the constraints in (4.43). Each of
the constraint sets ‘c’ and ‘b’ forms a first class system. Although the constraint
set ‘c’ is obtained by simply dropping all the constraints on momenta, nevertheless
as explained below ‘¢’ is in a certain sense (relevant for quantum theory) equivalent
to the full set of constraints.

We should also mention that other proposals for imposing second class con-
straints have been made in the past, such as that proposed in Klauder’s ‘universal
procedure’ for imposing constraints [50]. There is in fact a relation between ap-
proach ‘b’ and Klauder’s approach: The former is a special case of the latter with
some natural choices made. This is discussed later on in section 4.6 of this thesis.
In addition approach ‘b’ has similarities to the method of imposing second class

constraints discussed in [51], as was noticed after this work was completed.
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Let us introduce some notation. Let I' = {[p, 7]} be the full classical phase

space. Let
Liny :={[p,m] €T | Ly =0 and Lym =0}
Pe:={lp,n] € T'| Loyp = 0}
Dy = {lp,n] €T a([Lof, Log]) llom=0 Vf g€ S(E)}

So that I, is the constraint surface associated with constraint set ‘c’, and I'y is the
constraint surface associated with constraint set ‘b’.

Analysis of constraint set ‘c’

Since the constraint set ‘c’ is obtained by dropping constraints from the full
set (4.43), it is not surprising that I, is larger than T';,,. However, the symplectic
structure induced on I'. via pull-back, €. := "), is degenerate — as we should
expect since constraint set ‘c’ is first class. The degenerate directions are just the
“gauge” generated by the constraints ¢[L,f], namely m(x) — m(x) + Lysf. If we
divide out by this “gauge,” the resulting manifold, T, is naturally isomorphic to
Ling-

One may object: this notion of “gauge” is not physical gauge; it is gauge
generated by constraints that we have imposed completely by hand. This is true,
but the point is that when a constraint is imposed at the quantum level, you
automatically divide out by the corresponding “gauge” whether or not the gauge
1s “physical”.

At the quantum level, we will find that the solution to constraint set ‘c’, when
equipped with an appropriate inner product, is naturally isomorphic to the Hilbert
space one obtains when first reducing and then quantizing. The fact that I, is
naturally isomorphic to I[';,, is the imprint of this fact on the classical theory.

A final important note about constraint set ‘c’ is that its elements do not weakly
Poisson-commute with the total Hamiltonian for the free scalar field (4.3). This
foreshadows the fact that in the quantum theory, the total Hamiltonian operator
will not preserve the solution space to constraint set ‘c’.

Analysis of constraint set ‘b’

First, it is important to note that the classical observable a([f, g]), when ex-

panded out as a([f,g]) = ([f,9],[¢,7]), is a complex linear combination of the
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constraints (4.43). In fact, in rewriting the full constraint set (4.43) as constraint
set ‘b’, no constraints have been dropped. Rather, one has reduced the number of
constraints by half by simply taking complex linear combinations of the original
constraints. So, I'y = Tj,-

It is easy to see how this works in a simpler example. Suppose we are working
in a theory in which {z1, zs, x3, p1, P2, p3} are the basic variables, and we want to
impose the second class system of constraints x3 = 0, p3 = 0. The analogue of
reformulation ‘c’ in this context would be to just drop the p3 = 0 constraint. The
analogue of reformulation ‘b’ would be to replace the two constraints with the
single constraint z3 := z3 + ips = 0. Obviously z3, being only a single constraint,
makes up a first class system of constraints. Nevertheless, classically, z3 = 0 is
completely equivalent to x3 = 0 and p3 = 0. This is one of the strengths of
reformulation strategy ‘b’: the reformulation is classically completely equivalent
to the original set of constraints, but is now a first class system so that it can be
imposed consistently in quantum theory.

But one may object: how is this possible? You cannot change the fact that a
certain constraint submanifold is first or second class merely by reformulating it
in terms of different constraints because first-class and second-class character are
geometrical properties of the constraint submanifold [52]. This is indeed true. Our
underlying constraint submanifold is still geometrically a second-class constraint
surface. We have merely allowed it to be formally expressed as a first class system
by allowing our constraints to be complex. But fortunately, for a system of con-
straints to be consistently implementable in quantum theory, it is sufficient that
they be only formally first class — i.e., that their Poisson brackets with each other
vanish weakly.

Another fact that is important to note is that all the elements of constraint
set ‘b’ weakly Poisson-commute with the full Hamiltonian H. This points to the
fact that, in quantum theory, the full Hamiltonian operator H will preserve the

solution space to constraint set ‘b’.
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4.3.2 Setting up the quantum analysis

Recall that Cyl denotes the space of cylindrical functions on §'(X). Let Cyl* denote

its algebraic dual.

Let
Hinw = {0 eH|LT=0} (4.45a)
Cyly,, = {neCyl"[Lin=0} (4.45b)
Cyli == {neCyl"| ¢[LyfT'n=0 VfeSE)} (4.45¢)
Hy = {VeH|a(lsf Log)¥ =0 VfgeSE)}  (4.45d)

Hiny and Cyl? . are the sets of elements in H and Cyl* fixed by the natural action
of rotations about the z-axis, whence they are implementations of “invariance

*

symmetry,” the first notion of symmetry mentioned in the introduction. (Cyl}

has been introduced simply for the purpose of comparison with Cyl’.)

Cyl? is the solution space for constraint set ‘c’ at the quantum mechanical level.
Constraint set ‘c’ forces its solutions to have support only on symmetric configu-
rations, as we shall see below. The space of symmetric configurations has measure
zero with respect to the quantum measure p on §'(X). Since u characterizes the
inner product in H, all solutions to ‘c’ in H thus have norm zero, whence one must
go to the larger space Cyl* to find non-trivial solutions.

In addition, one should note that the characterization of Cyl} as the space of
functions with support only on symmetric configurations makes Cyl} the analogue
of the notion of symmetry used by Bojowald to embed loop quantum cosmology
and other symmetry reduced models into full loop quantum gravity [16].

‘H, is the solution space for constraint set ‘b’ at the quantum mechanical level.

4.4 Analysis of Cyl’

4.4.1 Two preliminary lemmas

We will denote the group of rotations about the z-axis by T C Diff(X). In the
reduced theory, the spatial manifold is taken to be B := 3 /T, and the quantum
configuration space S'(B). Let P : ¥ — B denote canonical projection. Let
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S (X)iny and 8(X);n, denote the T-invariant subspaces of §'(X) and S(X), respec-
tively. S(X)iny is then naturally identifiable with S(B); we make this identification.
Define I : §'(X)iny — S'(B) by [I()](f) := a(P*f). Let 7 : S(X) — S(B) denote
group averaging with respect to the action of 7. We here use “group averaging”
in a more general sense than usual in that we are not group averaging “states.” It
will be convenient in this chapter to let “group averaging” have this more general
meaning of averaging elements of any vector space over the action of a group. One
can show the pull-back 7* : §'(B) — &'(X);ny is the inverse of I, so that

Lemma 4.1. I is an isomorphism.

Thus §'(X)ny and S'(B) are naturally isomorphic. Because of this, henceforth we
will simply identify these two spaces. That is, the isomorphism I will sometimes
not be explicitly written. In addition, we will sometimes implicitly use the fact
that I is compatible with the structure of the cylindrical functions. Let Cyl, .,

denote the space of cylindrical functions in the reduced theory. We then have

Lemma 4.2. If ® € Cyl, then ®oI ' € Cyl ., C Hyeq, and the map ® — ®o [}

red =

s onto Cyl

red*

4.4.2 Cyl; = set of elements of Cyl* with support on &' ().,

It will be useful to next prove the precise way in which Cyl} is the space of all
elements of Cyl* with support in &' (X);n-

Define Cyl_, := {¥ € Cyl | Supp ¥ N S'(X)iny = 0}. Then we say n € Cyl* has
support on &' (X);n, if 7 is zero on Cyl .

Lemma 4.3. For ¥ € Cyl, ¥ € Cyl_ iff ¥ is of the form Y ., ¢(Lsfi)®; for
some {fi} C S(X) and some {®;} C Cyl.

Proof.

(<) Obvious.

(=) Suppose ¥ € Cyl . As an element of Cyl, ¥[p] depends on ¢ only via a fi-
nite number of “probes” (see section 4.2). There is an ambiguity in how one chooses
the probes; what is important is the finite dimensional subspace of S(2) spanned

by these probes. Let V' denote this finite dimensional subspace. We may then
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choose any set of probes spanning V' to represent ¥ as a cylindrical function. Us-
ing the decomposition S(X) = S(X)in, BS(X) L (see section 4.3.1), we demand that
our choice of probes spanning V' be a set of the form {L,f1,...Lofn,€1,...,m}
where Ly f1,...Lyfy are all in S(X), and ey, ..., ey, are all in S(3);p,.

Then ¥ may be written

lII[QO:I = F((p([’qﬁfl)a ) 90(‘C¢fn)a (,0(61), <. 790(€m)) (446)

for some smooth F. Because ® € Cyl_ it follows that F(0,...,0,y1,...,Ym) =0
for all y1,...,ym. For each i € {1,...,n}, define

F(Oa"'aoaxia"',ym)_F(Oa"'aoaxi—l—la"',ym)
z;

Gi(T1y -y Ty Yty e s Ym) =

(4.47)

Since F'is smooth, it follows that all the GG; are smooth. The G;’s thus determine
elements of Cyl:

Oilg] := Gi(@(Lof1), - - 0(Lofn), ler), ..., olem)) (4.48)

One can also show

i=1
It therefore follows that .
U] = Z (Lo fi) P (4.50)
i=1
proving the desired form. O

The following theorem then easily follows.

Theorem 4.4. Given n € Cyl*,
n € Cyl; if  n(¥)=0 V¥eCyl,

That is,
n€Cyl;  iff  Suppn C S'(X)in (4.51)

Proof.
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(=)
Suppose @(Lyf)*n = 0 for all f. Then n(¢(Lyf)®) = 0 for all f € S(X) and
® € Cyl, whence

U (Z 90(£¢fi)q)i> =0 (4.52)

for all {f;} € S(¥) and {®;} C Cyl. The above lemma then implies 7 is zero on
Cyl

~*

(<)
Suppose 1 € Cyl* is zero on Cyl_. Then, in particular, n(¢(Lsf)®) = 0 for all
f € 8(2) and @ € Cyl, whence n € Cyl.. O

Thus, in a precise sense, Cyl’ is the subspace of Cyl* consisting in elements with

support only on symmetric configurations.

4.4.3 Embedding of #H,.q into Cyl;: H,

Next we construct an anti-linear embedding of #,.4 into Cyl;. For ® € Cyl and
U € H,eq, define @

(€T)(@) = / T dtred = (T, By, ) (4.53)

(ngS’(E)inv
so that & : H,.q — Cyl*.
Lemma 4.5. ¢ is one-to-one.

Proof.
It is sufficient to show the kernel of € is trivial. Suppose €V = (. Then for all
d' € Cyl

/ Ulps]®'[@sldprea = 0 V' € Cyl
(psesl(z)inv

= U[ps]®[@s]dpreg = 0 VP € Cyl,y (4.54)
‘psesl(z)inv

8The complex conjugation on ¥ (and hence anti-linearity of the embedding) is incorporated
here in order to make the connections drawn in section 4.7 simpler.
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But since Cyl,,, is dense in H,eg = L*(S'(X)inw, dptrea), it follows ¥ = 0, proving

the desired trivial kernel. O

Thus, € gives an embedding of #,..q4 (as a vector space) into Cyl*. Furthermore,
Lemma 4.6. The image of € is contained in Cyl}.

Proof.
For all f € §(X) and ® € Cyl,

{GILo [T E(V)} [@] = E()(p]Ly f]®) = / . Ulps]os(Lof)@lps] = 0
e (4.55)
since @s(Lyf) = 0. The lemma follows. O
Thus €& gives a linear embedding of H,.q in Cyl,. Let the image of this embedding
be denoted H.. We equip H,. with the natural inner product

<€\I/1, @‘I’Q) = <\I/1, \I/2> (456)

induced from H,.4 via the isomorphism.

4.4.4 Nonpreservation of H. by H

Lastly, we make some remarks as to the (dual) action of the Hamiltonian H and
the lack of preservation of the c-symmetric sector by H*. As mentioned earlier, H
in (4.39) preserves Cyl; thus it has a dual action H* on Cyl*. We will show that,
as expected from the classical analysis (see section 4.3.1) , H* does not preserve

Hc-
Proposition 4.7. H,. is not preserved by H* .

Proof.

We show this by showing that the image of the reduced theory vacuum, 7y :=
Qi\ilo, in H,, is mapped out of H,. by H* .

Suppose by way of contradiction that T 1o = n for some n = EV € H..

Let f € §(X) be chosen non-axisymmetric, and define

O] := F(p(Lyf)) (4.57)
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where F': R — C is for now left unspecified. Now, for ¢s; € S(2)ins,

@O)igs] = (040 Lol F(pu(Lof)) = 3 (Lof, Lof F (0L f)

_ —%(Ed,f,ﬁd,f)F”(O) (4.58)
So,
(H*ﬁo)(q’) = WO(H(I’)
- / Tolp,] (D) 0, )d e
0s €8 (X)inv
1
= SEL L0 [ Wl
0s €S (X)inv
= L (Laf Lo F(0). (4.59)
And
77(@) = / \P[Sos]q)[(ps]d,ured
0s€S8 (X)inw
= F(O)/ md,u'red (460)
0s€8(X)inv

But F”(0) and F'(0) are independently specifiable. Thus, one can always choose
the function F' (and hence ®) such that expressions (4.59) and (4.60) are not equal.
It follows that

H' 1o # 1 (4.61)

yielding a contradiction. Thus H* maps 1y € H. out of H,. O

4.4.5 c-symmetry is stronger than invariance symmetry

Theorem 4.8. H. C Cyl?  *

9Ideally one would have liked to prove the stronger result Cyl’ C Cyl},,: but in fact one does
not even have Cyl’ C Cyl},, (see appendix B for proof). One has to restrict to H. before one has
a subspace of Cyl},,. This reminds us of the importance of restricting to appropriately defined

normalizable states before expecting certain properties to hold.
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Proof.
We first prove H. C Cyl; Suppose n € H. so that n = E(V¥) for some

mu*

U € H,eq. Forall g € T and ® € Cyl,

(g- (€V))(®) = (€V)(g~"- D)
= /ES’(E) m@[g‘(ﬂs]dﬂred

= / ‘I’[Qos]q)[gps]d,ured
ps€S'(X)

= (e7)(®) (4.62)

*

whence ¥ € Cyl; ., proving H. C Cyl;,,.

me that is not in

Next, to show H. C Cyl; ,, we construct an element of Cyl
He.

To facilitate explicit calculation, let us choose

f(p,2,¢) = H(p, 2)sin ¢ (4.63)

where H(p, z) is any non-negative, non-zero, smooth function of compact support
such that all derivatives of H vanish at p = 0 (to ensure smoothness of f at the
axis). Define oo € §'(X) by

a(h) = /E (hf)dz (4.64)

Then define n € Cyl* by
n(®P) ::/ Q[g - aldg. (4.65)
geT

*

so that n € Cyl;,,.
To show n ¢ Cyl, we construct an element ® of Cyl_ such that n(®) # 0.
Let F(z) := z?, so that F is smooth, zero only at zero, and positive everywhere

else. Define ® € Cyl by
D] == F(p(Lyf)) (4.66)

so that @ is in Cyl_ . We have

0@ = 5= [ Flalo(-) - £aas (467
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where we have parametrized the group of rotations T in the usual way by ¢' € 2%.
Working out the expression further, we get
1 2
n(®) = —/ F(—amsin¢')d¢’ (4.68)
2T ¢'=0

where a := [, H(p, z)?pdpdz > 0. Since the above integrand is positive almost
everywhere, n(®) > 0.
Thus n ¢ Cyl?, proving in particular n ¢ H,, so that H,. C Cyl; O

muv*

4.5 Analysis of H,

We next analyze the structure and properties of Hj, helping us to further grasp

its physical meaning in different ways.

4.5.1 Description of H; in terms of coherent states

Next recall that, in free Klein-Gordon theory, with each & € h one has an associated
(normalized) coherent state \Ilg"h € H defined by

et = MO, (4.69)

where A(€) := af(€) — a(€). As a side note, for & = [¢, 7], MO = i@lI=7le),
from this one can see e2® is a sort of ‘phase space translation operator.” In 4.69,
one is just starting with the vacuum and ‘translating’ its expectation values to
different points in phase space.

In the case where £ € I C h, ‘Ilgo" has the interpretation of being the quantum
state that “best approximates” the classical state £&. The expectation values of
field operators determined by \Ilg”h are precisely the values of the fields in &, and
uncertainties in appropriate field components are minimized.

It is not hard to show that \I’g"h satisfies the usual property of being a simul-

taneous eigenstate of the annihilation operators:

a(n) ¥ = (n, )" (4.70)
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Theorem 4.9.
Hy = span{ V¢ }eep,,,

Proof.
(=)

For each & € hjy,

a(n) et = (n, )¢ =0 Vn € hy; (4.71)

mv

so that \Il?’h € Hjp, whence span{\Ilg”h}gehm C Hy.

(<)

Suppose ¥ € H,. Since the coherent states span H, there exists a linearly
independent set of coherent states {¥§”"};c; and non-zero coefficients {);}ie; € C
such that

e 4
iel
Since ¥ € H,, for all n € hs.,,,
0= a,(’l])‘lf = Z )\Z<T], §Z>‘Ilgfh (473)
el

By the linear independence of {\Ilgfh}ze 1, and since the coefficients \; are all non-

zero, it follows that for each ¢ € I,

so that
whence ¥ € span{¥¢”"}¢cp,,, - O

Note that because I';,, is dense in hj,, and & — \Ilg"h is continuous '° one can

0The continuity of £ — lIJg"h can be seen from the relation
| Weoh — B |I°= 2 — 2 cos(Im(é, &;))eBlle=&l’

If & — £, from the continuity in &; of the right hand side of the above equation, ¥¢oh — @goh.



89

replace h;,, with [';,, in the statement of the above theorem. The theorem then
expresses H, as a span of coherent states associated with the axisymmetric sector

of the strictly classical theory.

4.5.2 Isomorphism with H,.q

More importantly, H; is naturally isomorphic to H,.s. Let us prove this in the
following way. Let ¥, denote the vacuum in the reduced theory. For & € hjp,,
define

T = ehreal®O g, (4.76)
where A,eq(€) == al 4(€) — area(). {\ilg"h}éehm gives a family of coherent states
in the reduced theory. This family of coherent states satisfies the completeness

relation
| B = 1 (@17
§€liny

where the measure dv?,; is a particular rigorization of the ‘Lesbesgue measure’ on
[iny- More specifically, dv?,, is a generalized measure: it defines an integration
functional, but not a set function. An advantage of generalized measures (in this
context) is that they can integrate functions directly on the classical phase space
['iny, without need for introduction of a larger distributional extension of I';,,. For

the precise definition of dv?, ,, and further details, see appendix C.

red’

Lemma 4.10. For all £,&' € hjp,,
(T, Weehy = (Week, Teehy (4.78)

where { U} .c), is the family of coherent states in the full theory.
& JE

Proof.
The calculation of (¥§*", Wg) = &) g3 lE-€1” (a5 in appendix B.2) uses

only the relations

[a(€),a' ()] = (&) V&€ € (4.79)
a€)Ty=0  VE€h (4.80)
(To, o) =1 (4.81)



In the reduced theory, exactly the same relations are satisfied:

[area(€), ala(€)] = (€,6)  VEE €h
rea(€)To =0 VEeh
(‘IIOa \IIO> = ]-
Thus
(li,goh, &,g,oh> _ im(E€) Sl
as well.
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(4.82)
(4.83)
(4.84)

(4.85)

The reduced theory completeness relation (4.77) and lemma 4.10 are the only

properties of {¥g”} and {T¢"} that we will need for the present subsection.

We next use the measure appearing in (4.77) to define a map 7 : Hyeq — Hp by

r L r h r h
A .—/ dvg (W™, U)Uge
EEFinv

(4.86)

From its definition, and lemma 4.10, it should not surprising that ¢ is isometric:

Lemma 4.11.
<L‘1’1, L‘I’z) = <\I/1, \I/2>

for all Uy, Uy € H,yeq.

Proof.

(0,00, = / dve,, / A, (U1, WP (W WM (W, W)
fel—‘inv eerinv

= / dV:ed / dl/:"]ed<\111’ &IEOh> <&1?h7 ‘i’?h) <\ijg’0h7 ‘112>
gel—‘inv &’erinv

= (¥, Py)

(4.87)
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Furthermore ¢ is one-to-one and onto. We prove this by showing
Y = / A, (T, Ty Feon (4.88)
'EEFin'v

1S an inverse:

Proposition 4.12.
voll=1, IMor=1 (4.89)

Proof.

We prove these equalities by proving the equality of their matrix elements.
Since {¥¢”"}¢cr,,, spans H, and {\il?h}éepm spans H,eq, it is sufficient to check
the matrix elements with respect to the (symmetric) coherent states \Ilgo" and \if?h,
¢ € I'j,. That is, it is sufficient to check that

(T, Lo TIWEM) = (Wgh, Wl (4.90)
for all &,& € I'y, and

(WS T1 o UERY = (T, Weeh) (4.91)
for all &,& € T'y. These two equations follow by repeated application of the

completeness relation (4.77) and lemma 4.10. O

Thus, ¢ gives an isometric embedding of H,.q into H, with H, as the image.

4.5.3 Preservation by H

‘H, is also preserved by the quantum time evolution. This can be viewed as a
consequence of the covariance of the family {\I!?h} with respect to time evolution,
that is, of the fact that I = eiﬂﬁlllfg”h for all t. More generally, the term ‘covari-

eitlflé- -
X - . . 1 f .
1S a given canonica transformation

itX

ant’ has the following meaning. Suppose e
on h O I. Let ¢X denote the quantization of this transformation, so that e
is a unitary operator on #. Then we say {Ug"} is covariant with respect to the

transformation eX if Weoh = e"tx\llg"h. In fact, the family of coherent states

eitf(g -
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{\IIEO'L} is covariant with respect to a much larger class of transformations than
time evolution. Because the broader covariance property of {\Ilgm} will also be
useful in the next subsection, we prove the full, broader property.

Suppose e*X is a one parameter family of transformations on h D I, so that
X : h — his the operator generating this family. X will be symmetric with respect
to (, ) if "X preserves both the symplectic structure and complex structure J. This
is true in particular for both time evolution and any flow arising from a family of
spatial isometries. Let us assume X is symmetric with respect to (,) and that it
has a unique self-adjoint extension. From the geometrical formulation of quantum
mechanics [53], it is well known that the generator, in the phase space sense, of
itX

the family of transformations e***, is the phase space function

{lips 7, X[i0, 7)) (4.92)

The generator of the corresponding flow in the quantum field theory is the quan-
tization of this phase space function. Imitating the quantization of H in section
4.2.2, one obtains
X =) (& X&)l (&)a(g) (4.93)
2

With this established, we prove

Lemma 4.13.
X, af(§)] = af (X¢)

Proof.

X,a' (@] = D (& X&' (E)a(g),a'(©)
= Z(fi,X£j><£j,£>aT(fi)
= ) (& X&' (&)

(3

= a (Z @@-,X@)

= af(X¥¢). (4.94)
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O
Lemma 4.14.
eitX[\(g)e—z’tX Y (eith)
Proof.
The complex conjugate of the last lemma yields
X, a(§)] = —a(X¢) (4.95)
so that
(X, A©)] = ia'(XE) +ia(XE)
= a'(iX¢) — a(iX¢)
= A(iX¢). (4.96)

The Baker-Hausdorff formula applied to eitXf\(g )e_i’SX then gives the desired result.
O

Theorem 4.15.

€ZtX\I/g()h — \Ilwh

eitf(£
Proof.
Let

f(s) := eitX\Ilggh = XAy (4.97)
and

g(s) = Weely = METHOT,, (4.98)
Then

d

—f(s) = ¢FA©)Tq
itXA(g)e—itX\Ilo
(eitf(,g)\l,o

Il
o

Il
>
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= Sy (4.99)

for all s. This combined with f(0) = g(0) implies f(s) = g(s) for all s; in particu-
lar, f(1) = ¢g(1), implying the desired result. O

~ A

In particular, for the case of time evolution (X =H,X= ]ﬂl),

g = yeoh (4.100)

eitI:Ié-
Similarly, in the reduced theory,

ez’tlﬁITed &JEO’L — &Icoh — \ijcoh (4101)

eitI:I,edE eitHg:

The proof is exactly the same as for the full theory.
(4.100) and (4.101) imply that #, is preserved by H and furthermore the Hamil-
tonian operator thereby induced on H;, and thence on H,..q4, is precisely ]ﬁl,ed. That

is,

Theorem 4.16. For all \if € Hred,

H (L\Il) = (Hredxi) (4.102)
Proof.
For all £ € h;ye,
it T coh _ it 1, coh

e <L\I/§ ) = eV

= ‘Ilz?:,/flg

= e,
- (eiﬂ@%d \irgoh) (4.103)
Proving (4.102) holds for all & = U¢** with & € hip,. But {T¢"} ¢y, spans Hyea,
whence (4.102) holds for all ¥ € H,.c4. O

As a side note, if all one wants is preservation of H;, a weakened version of
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(4.100) suffices. Namely, suppose instead all we knew was that our family of

coherent states were such that there exists A : R x I' — I' such that
MUt = Wil o). (4.104)

If, with respect to the symmetry group, the Hamiltonian H is invariant and & —
\Ilg"h is covariant, it is not hard to show that A(¢, &) will also be covariant. These

properties then suffice to imply H, = span{‘llg"h}gep is preserved by H. A family

inv

of coherent states that satisfies (4.104) is called dynamical [54, 55, 56].

4.5.4 b-symmetry is stronger than invariance symmetry

As mentioned, the map & — ‘Ilgo’l is covariant with respect to the action of all
one parameter groups of spatial isometries. That this is true in particular for our

symmetry group 7T is sufficient to imply Hy C Hine-

Proposition 4.17.
Hb g Hinv

Proof.
For all £ € h;,, and g € T,

coh coh coh

so that ‘Ilg"h € Hin, for all £ € hyy,,,. But {\1120’1}56,1 spans Hyp, so that Hy C Hine-

O

inv

Furthermore, Hy C Hiny, as we will prove. We proceed by explicitly construct-
ing an element of H,;,, that is not in H,.
Let L, := —J L4, the one particle generator of rotations about the z-axis. The

most general form for an eigenstate of L, with eigenvalue L, is
([, 7] =) [Re {A(p, 2)e>=*} ,©3Tm { A(p, z)eiLz¢}] . (4.106)

Because A(p, z) is freely specifiable, one can always construct an eigenstate of L,

(for any eigenvalue) that is normalizable. Let £, be a normalizable eigenstate of
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L, with eigenvalue L, > 0 and let £_ be any normalizable eigenstate of L, with
eigenvalue —L,. Let
U= af(&,)al (£2)W,. (4.107)

Claim: V is in H;,, but not H,
Proof.

Laf(€)a' (6 )Wy = [L.,al(&)]a"(€ )W+ a(€4)[Le, ol (€ )]0 + al (€4 )al (6 )L, ¥g
= al(L.&)al (€) W0+ al(€4)al (L6 )Ty
= L,Vv-L, ¥
= 0 (4.108)

So ¥ € H;py. To show ¥ & H,, we first note that, because &, & hjp,, there exists
n € hy such that (n,&.) # 0. We have

a(n)a'(€1)a" (€)W = (n, & )al (€2)To + (n, € )al (€4) T, (4.109)

The first term is non-zero, and the a(£,)¥, factor in the second term is linearly
independent of the first term. Thus, the sum must also be non-zero. So a(n)¥ # 0,
whence U & Hy,. O

4.5.5 Minimization of fluctuations from axisymmetry

A last notable property of H, is that the fluctuations from axisymmetry in its
members are under complete control and are in a certain sense minimized, whereas
in H;py it is difficult to prove anything general regarding fluctuations from axisym-
metry.

Let us be more precise. Recall ideally one may wish to impose L,¢(2)¥ = 0
and L,7(x)¥ = 0, but that, in this form, this is not possible. Therefore we

imposed instead a complex linear combination of these constraints (in approach
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‘b’). Nevertheless, the resulting states ¥ € H,, are still such that

(U, Lsp(z)T) = 0 (4.110)
(U, Lao(z)T) = 0 (4.111)

that is, the expectation values of ¢(x) and 7(z) are axisymmetric. The easiest way
to see this is actually to first note that Hj, C Hip, and then show that (4.110) and
(4.111) hold for all members of #H;,. One can show this using the fact that for all
rotations g, ¢(g- ) = U,p(x)U;". Thus both H, and Hi,, consist in states giving
rise to axisymmetric field expectation values.

The difference between H; and H;,, comes, however, when we consider fluctu-

ations from axisymmetry. For any operator O on H and ¥ € H, the “fluctuation”
in O determined by ¥ is defined by

240 = /(¥,070) — (u, 0w’ (4.112)

Smearing the symmetry constraint operators against a test function f, we get
P[Lyf] and 7Ly f]. For U € H;, with unit norm, one can show the uncertainties

in the non-axisymmetric modes are given by

Av@lLyf] = \/%/d%(%f)@;%f (4.113)

AvlLyf] = \/ 5 [ Eacaneic,s (4.114)

The easiest way to prove this is to first prove it for ¥ = \Ilgo" (€ € hiny). This
can be done by rewriting @[L,f] and 7[L,f] in terms of creation and annihilation
operators; A\I,goh@[ﬁ(p f] and A\Pgoh’ﬁ—[ﬁ(p f] can then be easily calculated using the
commutation relations among the creation and annihilation operators.
Specializing (4.113) and (4.114) to the case of f an eigenfunction of ©, we
furthermore get
AuglLo 1AL = 5 (4.115)
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saturating Heisenberg’s uncertainty principle.

4.6 Additional observations, using kinematical lin-
earity

In the last section, we proved properties of H; starting from the form of H; in terms
of coherent states (theorem 4.9). This was done in order to avoid crucial use of the
linearity of the Klein-Gordon theory, and so emphasize methods of proof that will
more easily extend to non-linear theories. However, there are a couple observations
which require a reformulation of H; that does use linearity in an essential way. We
go over these observations here.

First, the full theory Hilbert space H, using its Fock structure, can be rewritten

as follows:

H=TF,(h) = 2 ®h=0"0®, (hin®hy)
L e, en, {(ésth) ® (néjsm)}
= Dplo Pm-o {(éshinv) ® ((%.«JU_)}

{@20:0 ‘%s hinv} ® {EB?,?:O &L)s hL}
Fy(hinv) ® Fy(hy) (4.116)

Thus if we define H | = F(hy),

nat.

% = H’red@HJ_ (4117)

This is the decomposition of H into a tensor product of symmetric and non-

symmetric modes. We note, using the natural isomorphism in (4.117), if aled(-),

areq(-) and a' (), a1 (-) denote the creation and annihilation operators on H,q and

"' There exists a complete basis of eigenfunctions f of ©. However, technically $[f] and #[g] are
well defined as operators only when f and g are in S(X) — and no eigenstates of © are in S(X).
Therefore, prima facie the spreads Ag@[Ly f] and Ag7[Ly f] are not defined for eigenfunctions
f. Nevertheless, the right hand sides of equations (4.113) and (4.114) are well defined for f an
eigenfunction of ©, so that we can take the spreads to be simply defined by these expressions in
that case.
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H ., respectively, one can show, for & € h;,, and £, € h ),

a'(&+€) = al4(&) ®dl (€
a(fs+§L) = ared(&s)@“L(fJ_)- (4118)

1
Let ¥y = (1,0,0,...) denote the vacuum of #, = F,;(hy). Then, using (4.118),
we show that, in terms of (4.117), H, takes the form

Theorem 4.18.
7 1 7
Hy={V Q@ Vg | ¥ € Hpea}- (4.119)

Proof.

Hy = {VeH|an)¥P=0 Vneh,}
= {\il®\1167-lred®HL|a(n)\il®\Il:0 VnEhL}

r 1 [ 1

= {\Il®\11€7{red®%L|\Il®(aL(n)\Il):0 VnEhL}
» 1 L L

= {‘II(X)‘IIEHTM(X)HJ_MI!:\IIOEI}
r 1

= {‘I’@‘I’OE%red®%L}

1
= Hred ® \IIO (4120)

Additionally, if we let {&;}ic; be an orthonormal basis of h;,, and {}ics an or-

thonormal basis of h |,

A

H = ) (& HE)al(&)a(s)

= > (& Heal(€)ale) + (&, HEal (€)alg)

1,5€l 1,5€J

= {Z(fi’ﬁ§j>a1ed(§i)aT€d(§j)} @L+16 {Z(fiaﬁfg‘)al(&)w(fy‘)}(‘l-l?l)

1,j€1 1,j€J
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so that if we define

Hy =) (& HEal (&)au(é)) (4.122)
2,J€J
then
H=H.o1+1xH, (4.123)

]I:H,ed is then the Hamiltonian for the symmetric modes, and H | the Hamiltonian
for the non-symmetric modes. The unique lowest-eigenvalue eigenstate of H, is
the vacuum \io. We thus see that theorem 4.18 exhibits H; as the space of states
in which all non-symmetric modes are unexcited. This is probably the description
of H, that would most appeal to the intuition of a particle physicist, because a
particle physicist’s intuition is so often linked to Fock space structure. However,
as remarked at the start of the section, it is a description that uses crucially the
kinematical linearity of the theory, a linearity that will not be present in more
general situations. In particular such linearity is not present in the case of loop
quantum gravity. We thus did not introduce this description until now because of
it lacks use in extending the ideas of this chapter to the physically more interesting,
kinematically non-linear theories.

Also, it should be remarked that with the above reformulation of #;, many of
the properties of H, proven in the last section are now easier to show. Again, we
proved the results in the last section using coherent states because we wanted to
emphasize methods of proof which will be amenable to extension to the non-linear
case.

Lastly, the above reformulation of H; allows us to draw a connection between
b-symmetry and Klauder’s approach to imposing second class constraints. Because

4 A~
U, is the unique eigenstate of 1 ® H, with eigenvalue zero, theorem 4.18 implies
H, = Ker (11 ® ]ﬂh) (4.124)

Thus, 1 ® H, by itself could have been taken as the sole constraint. One can
cast H, as a quadratic combination of the original second class set of self-adjoint
constraint operators (equation (4.44)). This in turn makes this way of imposing
the (exact) constraints (4.44) an instance of Klauder’s universal procedure for

imposing constraints (with ‘0’ being set to zero; see [50]).
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Let us show this. First let {f;} denote any basis of S(X), orthonormal with
respect to (-, G)%-). Then {&; := (f;, @éfi)} is an orthonormal basis of h, (as one
can check). Define

Moy = Ll (4.125)
My = wlfil- (4.126)

so that {7 4} is a basis of the full original set of constraint operators (4.44).

Define the matrix

MEANLBL .= 0AB (g, HE) = oB(f;, 0F)) (4.127)
where o := jl i . It is not hard to check that M is Hermitian and

positive definite. We have

1® HJ_ = Z M[i’A][j’B}ﬁ[i,A]ﬁU’B] (4.128)
[Z5A]3[,75B}

casting 1 ® H | in the desired form.

4.7 Viewpoint on H. using ‘squeezed states’

Recall the natural embedding € : H,.4 — Cyl* defined (in §4.4.3) by (€¥)(®) =
(¥, ®|s/(n)iny)- One can rewrite this as follows. For ¢, € §'(X), we can define the
distribution 4, € Cyl* by

500 () = B(i0) (4.129)

Then

¢y 3=/ d/ﬁredq’[@s]éws :/ dftreddi, (\11)5% (4.130)
‘Psesl(z)inv @SES’(E)inU

This form bears striking resemblance to the map ¢ : H,.q — H as defined in

subsection 4.5.2. Using (4.130), we can rewrite H, as

H, := Imée¢
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= ((,)n.-normalizable subspace of) span{d,},cs/(s),., (4.131)

This in turn is reminiscent of the formulation of H; in terms of coherent states

(4.5.1). In what follows we make these similarities precise by

1. using the standard embedding H <— Cyl* (using the inner product on #) to
think of the ‘b’ embedding as an embedding in Cyl*

2. constructing a family of embeddings of H,.; < Cyl* intermediate between

H. and H, using squeezed states. 2

Heuristically, squeezed states are modified coherent states in which the uncertainty
is not evenly distributed between configuration and momentum. This is only a
heuristic statement for two reasons. First, the configuration and momentum vari-
ables have different dimensions, so that ‘equality’ of uncertainty in configuration
and momentum is not a priori defined. This is true even in the case of the simple
harmonic oscillator. In field theory, one has an additional source of ambiguity:
uncertainties in configuration and momenta depend on the smearing of the config-
uration and momenta, and the Heisenberg bound can at most be saturated only
for certain smearings. Furthermore, even for smearings which saturate the bound,
the distribution of uncertainty between configuration and momenta depends on
the smearing (even when the state is coherent/squeezed). This makes the no-
tion of ‘equal distribution of uncertainty between configuration and momentum’
ill-defined at an even deeper level in field theory. 3

Nevertheless, one can define ‘squeezed’ coherent states; Let us do so by con-
structing the squeezed states explicitly. For every choice of positive, self-adjoint
operator O : S(X) — S(X), we have a corresponding Gaussian measure, given

heuristically by
1

‘Ao = exp { ~5(6.07'9) | Dy (4132

12General squeezed states will live in Cyl* — i.e., be non-normalizable — because, generally,
squeezed states belong to a different representation of the quantum observable algebra (in the al-
gebraic QFT sense). Normally, one might want to restrict consideration to normalizable squeezed
states; however, here it is necessary to include non-normalizable squeezed states in order to make
the desired connection with H., which lives in Cyl*.

13When dynamics are brought in, one still cannot unambiguously say what ‘evenly distributed
uncertainty’ means, but nevertheless there is then at least a natural choice of distribution of
uncertainties — namely the unique one leading to dynamical coherent states (see discussion
below).
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or rigorously by the Fourier transform
xolf) =exp {51,060} (4.133)

dpe is said to be the Gaussian measure with variance O. (As for all Gaussian
measures in this work, dus is normalized such that [dus; = 1.) dpg in turn

defines for us a “vacuum” %o in Cyl™:
ho@) = [ alilduo. (4.134)
pES'(X)

for all ® € Cyl. Since af(-) and a(-) (defined in the standard Fock space, i.e. with
O = @_%) preserve Cyl, they have dual action on Cyl*, and hence so does the
generator A(€) := af(€) — a(€) of translations in phase space. Thus, for any @ and

& € h, we define the associated squeezed coherent state in Cyl*

%goh e eA(f)*%o_ (4135)

The choice @ = O~z gives the standard coherent states introduced and used in
section 4.5.

Define @)\ := \O~7 and label the associated vacuum 7A70 and coherent states
7gt. Then

0 = () (4.136)
et = (et (4.137)

are the standard coherent states used in section 4.5. For the limit A — 0 we define
No(®) := lim7o(®)
A—0

A—0

= 3[0] (4.138)

. 1. _ _1
= lim @[W]eXp{—E/\ Y, © 290)}990
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so that g = &. ** Furthermore, for £ = [¢', 7'], we have for all & € Cyl,

neh(@) = (eA@*(SO) (<1>) — 3 <6A(§)(I>) - (eA(O@) [0]
= (WD) (0] = (e 5etleg ) (o]
e 5(¢) ( plm ]) [0] ( —ift[p ) [0]

= ¢ 1.8[0+ ¢ = e 2™ P[] (4.139)

where the Baker-Campbell-Hausdorff formula was used in the second line. Thus

ng"h = e_%(”"“"')dpf (4.140)

so that the A — 0 limit gives us the ‘coherent states’ from which . is constructed.
Before introducing a family of embeddings interpolating between the ‘c’ and ‘b’
embeddings, it is necessary to introduce the Gaussian generalized measure dv,q

associated with the Lesbesgue generalized measure dv?, ;:

Avypeg = e~ 6802 (4.141)

Vyed:

Furthermore, let dfi,.q denote the Gaussian generalized measure on S(X) with
variance Oz, (All Gaussian measures and Gaussian generalized measures in this
work are normalized to be probability — .e. to be such that they integrate the
constant function 1 to 1.) Let duyeq denote the Gaussian measure used in the
Schrddinger representation of the reduced theory (D.9) (and in the definition of &

(4.53)), but now reinterpreted as a generalized measure on S(3). One can check
dl/',-ed = d,ufred X d,a'red- (4142)

With these structures introduced, we define the family of embeddings

¢\ = / Avpeq eXE8) e (W) 70, (4.143)
§€F’LTL’U

4Thus the limit A — 0 of the measures dpp, is no longer Gaussian, but is a Dirac measure.
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The ‘c’ and ‘b’ embeddings now become the A = 0 and A = 1 cases, respectively,
in this family. More precisely, €, = € and €; = *o¢. The latter of these equations
is obvious, once it is recalled dv,.qe{éf) = dv?.;. The former is perhaps not quite
obvious. Let us prove the former, using the fact that dv,.q- decomposes as djieq ¥

dfireq, with dfi.eq a probability measure. We have

0 0
QE()\I’ = / dl/redng(]h(\lf)n?h
§Erinv

duredé(p: (‘11)(590/

’77T’]Erinv

I
e

dﬂreddﬂred5¢’ (\II)égo’

Il
—

[¢',m']eS(X)xS(%)

d,lln,«edé(pl(‘ll)(s(p/ = ¢V (4144)
€S(%)

Il
o

Lastly, we use this new way of looking at H. to make an observation regarding
its non-preservation by H (i.e. by the quantum dynamics). The statement made

9 coh

at the end of subsection 4.5.3 applies here: If {n§ } as a family of coherent states
is preserved by the quantum evolution (i.e. is dynamical) in a manner covari-

ant with respect to the symmetry group, then the associated ‘symmetric sector’

<span {%go}l}fel—" ) will be preserved by quantum time evolution. However, of

all the families {%ZOh} considered in equation (4.135), only one is dynamical: the
standard family given by the choice O = ©~:. The fact that H* failed to pre-
serve H,. in subsection 4.4.4 can now be viewed as due to the fact that {0, } is

non-dynamical as a family of ‘coherent states.’

4.8 Carrying operators from H to H,.q

We have finished investigating the properties of ‘c’ and ‘b’ symmetry in the present
simple model.

One of the nice properties of H, is that the Hamiltonian preserves it, so that
the Hamiltonian has a well- defined restriction to H; which can then be carried
over to H,.q via the natural isomorphism. The operator thereby induced on H,q

is the same as the Hamiltonian in the reduced theory, so that H,; gives a fully
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dynamical embedding of the reduced theory.

However, in more general situations, even if the Hamiltonian preserves a given
choice of “symmetric sector” in a given theory, other operators of interest may
not. It is therefore of interest to investigate the possibility of a general rule for
carrying over any operator O on the full theory Hilbert space H. to an operator
@md on the reduced theory Hilbert space H,.q that somehow “best approximates
the information contained in @.” We will motivate and suggest such a prescription
for a completely general theory, and then look at applications to example operators
in the model theory considered in this chapter. We assume only that we are given
some embedding ¢ of the reduced theory, H,.q into the full theory H.

For O Hermitian (i.e., symmetric), a list of physically desirable criteria for the

corresponding @,ed might include
1. @Ted is Hermitian.
2. (LU, Oul,) = (U}, O,0qT5)
3. A, O = Ay, Oy

for all ¥y, ¥, in H,eq. That is, one might want Hermicity, matrix elements and
fluctuations to be preserved.

A

Fortunately the second of these criteria uniquely determines O,..4:

~

Oreg:=1""0PoOou. (4.145)

where P : H — 1[H,eq] denotes orthogonal projection. This is perhaps what one
would first write down as a possible prescription. The point, however, is that this
prescription is not ad hoc: it is uniquely determined by a physical criterion, namely

(2) in the above list. Furthermore,

15This is yet another advantage of ‘b’ symmetry, at least in the present simple model: the
states are normalizable, and it is only in this case that the general prescription described here
will apply. In the case of ‘¢’ symmetry, even though the Hamiltonian does not preserve #., one
might have still hoped to induce a Hamiltonian operator on #H,..q from that on H via some other
manner, such as the one described here; but it is not at all obvious how to do that due to the
non-normalizability of c-symmetric states. The combination of the Hamiltonian not preserving
H. and H. not having any normalizable elements thus frustrates attempts to use c-symmetry to
compare the dynamics in the full and reduced theories in any systematic way.
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Theorem 4.19. The prescription defined in (4.145) satisfies all three of the desired

1

properties, 18 except that the last property is replaced by

~

A, 0 > Ay, O,eq (4.146)

with equality holding iff O preserves [ Hyeq]. 7

Let us look at some example operators in the Klein-Gordon theory consid-
ered in the present chapter. The example of H has already been remarked upon.
We proceed, then, to look at the basic configuration and momentum operators
&l f], 7lg]- It is convenient to split these operators into parts. Define as operators
on H,

Gslf] = @[f,] slg) = #g] (4.148)
GL1f] = @[f1] 1[g] = #[g.] (4.149)

Note that the latter pair of operators are just the symmetry constraint operators.
The tildes on these four operators are to distinguish them from the related op-
erators on H,eq and H,. For the configuration operators we have @,[f]¥[¢] =
©s[f1¥[¢] and 4. [f]¥[¢] = ¢.[f]¥[¢]. In terms of the corresponding operators
on H,eq and H |,

Qés[f] = @s[f] ®1 %s[g] = 7%s[g] ®1 (4150)
o1lfl:=10¢./] Filgl =1 ®#.g] (4.151)

@s|f] and 7,[g] both preserve #,, whereas ¢, [f] and 7, [g] do not. Nevertheless,

on carrying these operators over to the reduced theory using (4.145) we get exactly

'%Even though Hermicity of O implies Oyq is Hermitian, self-adjointness of @ does not imply
self-adjointness of O,¢q. This fact is discussed on page 19 of [57].

7As a side note, this result fully extends to non-Hermitian operators if we replace condition
(1) with (Oyeq)t = (O1)yeq, define the spread of a non-Hermitian operator by

Ag0 = \/(¥,1(010 + OO )~ | (¥,0) P. (4.147)

and give as the condition for equality in (4.146) the condition that both O and O preserve
L[Hred]-
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what one would expect:

(@s[fDrea = &slf] (4.152)

(FslgDrea = 7slg) (4.153)
but

(QzL[f])red =0 (4.154)

(FLlg)rea = 0. (4.155)

The inclusion of orthogonal projection in prescription (4.145) is essential in getting
the last couple of equations above. Even though the symmetry constraint operators
@1 [f] = ¢[f.] and 7, [g] = #[g.] do not annihilate H,, nevertheless, as one would
hope, their corresponding operators induced on H,.q via (4.145) are identically
Zero.

Lastly, one can also look at the angular momentum operator L,. In the reduced
classical theory the z-angular momentum is identically zero, so that one would
expect the corresponding operator in the reduced model to be identically zero as
well. Indeed,

(]I:z)red =1 1oPol,0,=0 (4.156)

as follows from Hy C Hine.

4.9 Summary and outlook

4.9.1 Physical meaning(s) of H,

It is notable that H; has a number of characterizations with completely distinct
physical meaning all pointing to ways in which #, embodies the notion of “sym-

metry.” They are

1. H, is the solution space to a set of constraints whose classical analogues

isolate the axisymmetric sector of the classical phase space;

2. Hy is the span of the coherent states associated with the axisymmetric sector
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of the classical theory;

3. Hyp is the space of states in which all non-symmetric modes are unexcited

(54.6).

The first two of these in a clear way point to H;, as the “quantum analogue
of the classical axisymmetric sector”. The idea of invariance under the group
action (leading to H;,y), on the other hand, is the quantum analogue of classical
axisymmetry in a slightly more indirect sense. It is invariance under the quantum
analogue of classical rotation about the z axis. It is a subtle but clear distinction.
Another way to state this distinction is that in H;,, we are imposing ‘Ly¥ = (’ 18
whereas in H, we are imposing (an appropriate complex linear combination of) the
conditions Lyp(x) =0, Lym(x) = 0. In H;p, we are imposing axisymmetry on the
wave-function whereas in H;, we are imposing axisymmetry on the field operators.

One can see the distinction in yet another way as well. Recall in the classical

theory that the total angular momentum is given by the expression

L, = /Z o(Lym)d’z. (4.157)

Therefore, classically the condition L, = 0 is weaker than the condition that
Lyp =0and Lym = 0. Likewise, as shown in subsections 4.4.5 and 4.5.4, quantum
mechanically L, ¥ = 0 is weaker than (an appropriate reformulation of ) £s¢(z)¥ =
0 and Ly7(x)¥ = 0. Again, it is H,; (and H.) that is playing the role of the
quantum analogue(s) of classical axisymmetry.

Furthermore, as was seen in section 4.5.5, one can grasp the difference between

Hiny and H, in terms of fluctuations from axisymmetry. Expectation values for

18For t a tensor field on I,

d /
Lot = d_¢’g(¢) -t

¢'=0
where g(¢') - t denotes the push-forward — i.e. natural left action — of the rotation g(¢') on t.
Likewise for ¥ € H we define

o= Loy w  =ilw.

dg'

The use of ‘L4 ¥’ in ‘Ly¥ = (0 is solely in order to highlight the analogy with and distinction
from L4p(x) =0 and Lym(z) = 0.

¢'=0
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field operators are axisymmetric both for states in H;,, and for states in H,.
However, the standard deviation, or “fluctuations”, of ¢[L,f] and 7[L,g] from
zero are completely controlled in H, — they are the same for all members of H,,
and are in a certain sense minimized, as discussed in section 4.5.5. In H,;,,, one
does not have this control.

Lastly, it is H, and H,. that achieve commutation of symmetry reduction and
quantization, the former at the full level of dynamics. H;,, does not achieve

commutation at any level.

4.9.2 Future directions: sketch of application to LQG
4.9.2.1 Motivation and strategy

As pointed out earlier, the embedding of symmetry reduced theories into full loop
quantum gravity suggested by Bojowald and Kastrup is analogous to the embed-
ding H,. in the Klein-Gordon model considered here. Nevertheless, in the Klein-
Gordon model, we saw that, for multiple reasons, the embedding H, is preferable
to H. C Cyl::

1. | preserves H; whereas H* does not preserve H.. Consequently, it is only

‘H, that gives us an embedding of both Hilbert space structure and dynamics.

2. Fluctuations from axisymmetry in H;, are more evenly distributed between

configuration and momentum variables, and are in a certain sense minimized.

3. Hp is the span of the set of coherent states associated with the symmetric
sector of the classical theory — a particularly elegant characterization that

brings out a physical content not fully shared by ..

It would be ideal, then, if one could extend the notion of balanced symmetry
(embodied in H;) to the case of LQG. The most obvious avenue for this is to
use the characterization in theorem 4.9 — that of the span of semi-classical states
associated with the symmetric sector of the classical theory. For, ideas on semi-
classical states in LQG have already been introduced [58, 59, 60]. Indeed, one of the
results in [61] seems to partially support this strategy. There it was found that one

had to restrict precisely to coherent symmetric states before one could reproduce



111

in full LQG a result known in the reduced theory — namely, the boundedness of
the inverse volume operator. °

However, there is a freedom in the choice of semiclassical states used in defining
’HbLQG. In the next two subsections we will consider how this freedom can be used

to reproduce additional characteristics of balanced symmetry.

4.9.2.2 Solving a set of quantum constraints that classically isolates

the symmetric sector

First, characterization (1) listed in section 4.9.1 is easily reproduced by using
complexifier coherent states. To see this, let P denote the SU(2) principal bundle
for the theory, with base space ¥. Let S, a subgroup of the automorphisms of
P, be the symmetry group of interest. Then if we define ’HbLQG to be the span
of complexifier coherent states associated with symmetric field configurations, all
states ¥ in 'HfQG will satisfy

—_—

(@% AC(e) — AC(e))T = (UaAC(e)U(;1 - AC(e)) T =0 (4.158)

for all edges e and all « € § C Aut(P). Here ®, and U, denote the action of «
on the kinematical phase space and kinematical Hilbert space, respectively. fl‘c(-)
are the “annihilation operators” defined in [58] depending on a particular choice

of complexifier. The classical constraints under the hat on the left hand side select

19The following is a side note. [61] nevertheless found that, on more general states approxi-
mately invariant under the action of the symmetry group (translations and rotations) on large
scales, the inverse volume operator is unbounded. From this they conclude that “the bounded-
ness of the inverse scale factor in isotropic and homogeneous LQC does not extend to the full
theory even when restricting LQG to those states which one would use to describe a maximally
homogeneous and isotropic situation (modulo fluctuations)” (pp.4-5).

However, in light of the present research, as written, this statement is not just. For, as was
pointed out earlier, in quantum gravity, the notion of symmetry given simply by invariance under
the action of the symmetry group becomes trivial once one goes to the level of solutions to the
diffeomorphism constraint. Therefore, the symmetry restriction used in [61] to make the state-
ment of unboundedness is, strictly speaking, empty of physical content. Rather, as has been a
main point of this chapter, when comparing a full quantum theory with a corresponding symme-
try reduced theory, the notion of symmetric sector in the full theory should be more restrictive
than the one defined by invariance under the symmetry group action. And, on the choice of
“symmetric sector” suggested by the present research, [61] did find boundedness.
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uniquely, at the classical level, the (S-)symmetric sector.? So, again like H; in the
scalar field case, ’}-[bLQG will solve a set of constraints that, at the classical level,

uniquely select the appropriate classical symmetric sector.

4.9.2.3 Preservation by quantum dynamics

Perhaps more importantly, one would like to reproduce the property that H, is
preserved by the Hamiltonian (in the case of LQG, a constraint in the bulk). Tt is
not obvious how to do this; nevertheless we mention some possibilities. Perhaps
complexifier coherent states could again be used, with the complexifier being tai-
lored to the dynamics in some way; or perhaps one needs a different approach. As
already indicated in section 4.5.3, what one needs is essentially ‘temporally sta-
ble’ or ‘dynamical’ coherent states if H, is to be preserved by the Hamiltonian
constraint.

The problem of constructing temporally stable coherent states is discussed in
[54, 55, 56]. In [54] and [55], two general schemes are given for constructing stable
families of coherent states. Unfortunately in both of these schemes, the label space
for the coherent states is no longer necessarily the classical phase space, I', whence
it is not obvious whether it is possible or appropriate to use such coherent states in
constructing HbL €% in the manner described above. In [56], on the other hand, I is
retained as the label space for the coherent states, but they conclude that ezactly
stable families of coherent states do not always exist, but rather, for interacting
theories, one in general expects only approximately stable families. However, this
statement is made for a fixed set of ‘fundamental operators’ used to characterize
semi-classicality; it is not clear it holds if the choice of ‘fundamental operators’ is
not so fixed.

We leave investigation along these lines to future research. The main reason
for desiring ’HbL @G to0 be preserved by the Hamiltonian constraint is that then a
constraint operator C(z)eq is induced on H, %, making (Hy%“, C()req) a closed
system that could be compared, for example, with loop quantum cosmology. How-

ever, even if HbLQG is not preserved by dynamics, ’HbLQG is still valuable in that

203ssuming the AC(e) for all edges e separate points in the kinematical phase space. This

is gauranteed to be true at least locally on the phase space and is hoped to hold globally for
complexifiers of physical interest [58].
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it gives us a notion of ‘symmetric sector’. This notion of ‘symmetric sector’ can
in principle be transferred to the physical Hilbert space (as described below), at
which point preservation by constraints is no longer an issue. Comparison with
LQC might then be attempted directly at the level of the physical Hilbert space
[62].

4.9.2.4 Gauge fixing and symmetry at the physical Hilbert space level

Next let us discuss two issues related to constraints. First, as just touched upon,
is the question of how one might obtain from ’HbLQG a ‘symmetric sector’ in the
final physical Hilbert space of LQG. Let Hy;, denote the kinematical Hilbert space
of the theory, let Hp;fy denote the solution to the Gauss and diffeomorphism
constraints, and let H py,; denote the space solving the Hamiltonian constraint as
well. We have already suggested how to define the “b-symmetric sector” in Hy;,-
To obtain a notion of symmetric sector in Hp;ss, the obvious strategy is to group
average the “b-symmetric states” in Hy,. This strategy is natural in light of [63]
and the fact that we are using the definition of the symmetric sector inspired by
theorem 4.9. Furthermore, if one follows the master constraint programme [64],
one can use the master constraint to group average21 states from H p; 17 to thys
and so transfer the notion of symmetric sector to H ppys.

The second issue related to constraints is that of gauge-fixing the symmetry
group — that is, choosing a symmetry group which is not invariant under conju-
gation by diffeomorphisms and gauge transformations. Such a choice of symmetry
group is made in LQC, for example. We note the following: on group averaging
the symmetric sector over gauge transformations and diffeomorphisms, any such
gauge-fixing will be washed out. This can be seen as follows. Let HS denote the
“symmetric sector” of Hy;, corresponding to the subgroup G of the automorphism
group of the principal bundle. If the only “background” used in the construction
of H{ is the choice of group G, then, for any automorphism « of P, we will have

covariance:
Un[HE] = H G, (4.159)

2lor, more or less equivalently, use the zero eigenvalue spectral projection operator for the
master constraint



114

Now, if we had not gauge fixed, our symmetric sector would consist in the span of
all ’H,?'G'a_l for @ in the automorphism group. This follows from the fact that we are
defining the quantum symmetric sector as the span of coherent states associated
with the classical symmetric sector. Thus, from the above equation, it is clear
that on group averaging over the automorphism group, one will obtain the same
subspace of Hpirs whether one gauge fixes the symmetry group or doesn’t.
Indeed, this situation can be mimicked in the Klein-Gordon toy model by simply
declaring, for example, that LL,,L,, L, be constraints. This is a first class system,
and the gauge group generated is the full group of SO(3) rotations about the origin.

In this context, the group of rotations about the z-axis is then
1. a subgroup of the full canonical gauge group.

2. furthermore a gauge-fixed group. It is not left invariant by conjugation by

the rest of the canonical gauge group.

These two properties precisely mimic the situation in loop quantum cosmology.
In this toy model, one has the possibility check that certain nice properties of
‘H, are preserved by the group averaging procedure, such as the minimization of
fluctuations from axisymmetry. This could possibly be done by group averaging
the kinematical symmetry constraints {¢[Lsf], 7[L49]} to obtain operators on the
physical Hilbert space. One could then calculate the fluctuations of these operators

from zero for the proposed symmetric sector in the physical Hilbert space.

4.9.2.5 Isomorphism with a reduced quantum model

We conclude with a final note on how all of this is, or might be, related to LQC
and similar reduced models. What has mainly been discussed thus far is how one
should define the notion of “symmetric sector” in LQG appropriate for comparison
with reduced models. It is not at all clear, however, whether one should expect
the “symmetric sector” so defined to be isomorphic to the Hilbert space in the

corresponding model quantized a la Bojowald.?? If it is not, we argue that the

22There is a fundamental difference between the configuration algebra underlying the full theory
and the configuration algebra underlying LQC and other related models. Specifically: in such
models, only holonomies along edges adapted to the symmetry are included in the algebra. This
makes isomorphism with HbL @ seem less likely unless perhaps HbLQG is modified in some way.
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physics of the “symmetric sector” defined along the lines suggested in this section
should be considered the more fundamental description. Perhaps one could even
formulate the physics of this sector in such a way that one could easily calculate
corrections to predictions made using LQC and related models.

One thing should be remarked upon, however: the work presented in this chap-
ter clarifies that the standard criticism [65] of minisuperspace models stating that
“fluctuations in non-symmetric modes are unphysically set to zero”, violating the
uncertainty principle, is not just. Rather, if one stays strictly within the confines of
the reduced theory, any question about fluctuations in non-symmetric modes has
no a priori answer: one must first embed the reduced theory into the full theory. It
is only then that the question has meaning. As was seen in the present toy model,
in one embedding, ‘c’, one indeed has no fluctuations in at least the configuration
part of the non-symmetric modes (the fluctuations in the momentum parts are not
defined). In embedding ‘b’, on the other hand, one has non-zero fluctuations in
both the configuration and momenta of the non-symmetric modes, and the uncer-
tainty principle is furthermore not violated, as must be the case for elements of
H.

As this objection is the most common one made regarding the trustworthiness
of minisuperspace models, perhaps the statement is that LQC, and other min-
isuperspace models, are more trustworthy that previously assumed. At least one
cannot make a general statement that they are not trustworthy. The degree of
trustworthiness, however, probably depends on the particular minisuperspace un-
der consideration. The constructions in this chapter should aid in assessing this
question by providing a guideline for the relation between full and reduced theories

in the ideal case.



Appendix

The entropy calculation: inclusion of

Maxwell fields

As noted in [12] and elsewhere, a key fact which any statistical derivation of the
Bekenstein-Hawking entropy must account for is that the entropy depends only on
geometrical fields. Therefore, it is important to consider how the entropy calcu-
lation presented in chapter 3 is modified when matter is present at the horizon.
In the present thesis, we only discuss in detail the inclusion of Maxwell fields, but
inclusion of dilaton and non-minimally coupled scalar fields can be handled as well,
by modifying the arguments for the type I case [12, 66] appropriately.

The Maxwell space-time field variable is a U(1) connection which we denote by
A; let F = dA denote the corresponding field strength. The action is

Serm = —L/ V=gFuF®d*s = i/ FA*F (A.1)
167 J g 8T Jm

In addition to appropriate fall-off conditions as infinity (the details of which are

not important for this section), we impose at the horizon the partial gauge-fixing

condition £,A = 0. That is, we require that A be in ‘a gauge adapted to the
horizon’, as in [26].

Let us now consider the required modifications to the derivation in chapter

3. First, because the macroscopic degrees of freedom at the horizon are not only

gravitational, but electromagnetic, it will be necessary to fix both the geometric

and electromagnetic multipoles. This will give us the necessary control in defining
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an ensemble for which to calculate the entropy. Let {Q,, P,} denote the chosen
fixed values of the electromagnetic multipoles.

There are two key facts which allow the argument in chapter 3 to go through
without affecting the entropy: (1.) The form of the horizon boundary condition
(2.61), which embodies the condition that S be an isolated horizon, does not
change, and (2.) there is no surface term in the Maxwell symplectic structure. The
rest of the appendix is organized into two sections. The first section elaborates on
the two key points just mentioned, while the second summarizes the quantization,
the construction of electromagnetic multipole operators for defining an ensemble,

and the calculation of the entropy.

A.1 Elaboration on two key facts

The quantum boundary condition remains the same
One can check that, in the presence of matter, the horizon boundary condition

(2.46) on the complez U(1) connection, V*), generalizes to

. R
+ = _ ks .
dV <\I]2 (I)H 24) Yor

- (o )5 »

where @, := iRab(f‘Lnb + mam?), and ®, is defined in (2.11). This again follows
from a slight modification of the discussion in appendix B of [11]. Since we here

only wish to consider Maxwell fields as matter, this simplifies to
AV = —@,% -7, (A.3)

So that in terms of V,
dV = —7®,% - 7. (A.4)

where 7®5 := Re®a + yYIm®PA. As before, however, we are ultimately interested
in reformulating this in terms of the type I connection V°, as this is the hori-

zon variable most convenient for quantization. Substituting (2.56) into the above
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equation, and using (2.6) and (2.10), again the factors exactly conspire to yield

- 2
dve=-""x.p (A.5)
Qo
so that the formulation of the quantum horizon boundary condition is (perhaps
surprisingly) unaffected by the presence of Maxwell fields.
The Mazwell symplectic structure possesses no surface term

The action for the Maxwell theory is

1 1
Spym = ——— / V—gFFd*s = — / FA*F (A.6)

™

variation of the action yields

1 1 1
5(—/ F/\*F) :——/ SANAF +— | GAN*F. (AT)
8 M A7 M A7 M

From the boundary term in the variation, we can read off the symplectic potential
current density as .
Opn(6) = 4—(5A AN*F (A.8)
s

giving the symplectic current density
1

wEM(51, (52) = 4— (51*F A 52A - 52*F(51A) (Ag)
T

When pulled back to a spatial hypersurface, *F' becomes the electric field two-
form E,;; thus, the above symplectic current density is the expected one, with F
and A conjugate. There will be a boundary term in the symplectic structure iff
the integral of the symplectic current density on A fails to vanish on the space
of histories. We will show that, in fact, the integral of the wg(61,02) on A does
vanish identically, so that no boundary term is required. Let us go over the proof.

First, as noted in [11], the isolated horizon boundary conditions imply that the

Maxwell Newman-Penrose coefficient ¢, vanishes at the horizon. It follows that

*FQLE - 2Re¢)1€ab (AlO)

where €4, = 2im[,Ty is the horizon area two-form on A. Pulling back (A.9) to A
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and substituting in (A.10), !

wen(61,6) = o (LA N B{(Regn) ) — (165 2) (A.11)

Now, 6¢ = —{in, + mém, + m%m,. Writing (A.11) with indices explicit, and
%

inserting 9,

3
wEM(él, 52)@ = % (61Ad(—€dn[a + mdm[a + mdm[a)ég{(Reqbl)ebc]} - (1 — 2)) .
(A.12)
As noted in §3.2.3, since % is tangent to the fixed foliation of A throughout the

space of histories, d, % is tangent to the fixed foliation of A. Thus,
1
wEM((Sl, 62) = —% [51(Ad€dn) N 52{(Re¢1) 26} — (1 — 2)i| . (A13)

Integrating this over A, and using the fact that n is minus the differential of the

affine coordinate v on A,

/A Wit (61, 65) = % / dv / (A 05 {(Red) el — (1 2)].  (A14)

Now, as in [26], we note that from the Cartan identity, and the fact that £,A = 0,

we have

0 = LAZ0dA+d(-A)
= d(¢-A) (A.15)

whence £ - A is constant on A (the ‘analogue of the zeroth law of black hole

mechanics for the electromagnetic field’). Thus,

/ 51(A- 05 {(Redr) e} = Gi(A-0)5, / (Reg) %

v

v

'When indices are suppressed, we write the area form as % to remind the reader of its rank,
to distinguish it from volume forms of other ranks.
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Which is zero since the electric charge @ is fixed. Therefore, from (A.14),

/ LUEM(51, 52) =0 (A17)

whence there is no surface term in the symplectic structure for the Maxwell degrees
of freedom. Because of this, as per the argument at the end of section 3.2.5, the
Maxwell degrees of freedom will make no contribution to the final entropy of the
black hole.

A.2 Summary of quantization and entropy

Using the above results, let us summarize the quantization and the calculation
of the entropy. The gravitational phase space is unchanged with the inclusion
of matter. The symplectic structure, with its surface term remains unchanged.
Furthermore, as noted above, the horizon boundary condition to be imposed in
quantum theory remains unchanged. Hence, the entire discussion leading up to
the construction of Hy;, in section 3.3 remains valid, without change.

Let us next address the electromagnetic degrees of freedom. Recall that part of
the isolated horizon boundary conditions entails that all equations of motion hold
at the horizon. Hence, even though the main isolated horizon boundary conditions
are purely geometrical in character, they have implications for matter fields via
Einstein’s equations. In fact, in part because the electromagnetic multipoles are
fixed, the non-gauge electromagnetic degrees of freedom intrinsic to the horizon are
completely determined by the geometric degrees of freedom. To see this, first note
that by inverting (2.38), one can express ¢; in terms of the fixed electromagnetic
multipoles, % and (. Then recall, as noted earlier, that the Newman-Penrose

coefficient ¢y vanishes on isolated horizons. It follows that

F 2 —2(Res))
F 2 2(Im)% (A.18)

Thus, with the electromagnetic multipoles fixed, *Eand Eare entirely determined

by the geometric degrees of freedom at the horizon, as claimed. Because of this,
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as in [12], we eliminate these electromagnetic degrees of freedom in favor of the
geometric degrees of freedom prior to quantization.

Nevertheless, there are still pure gauge degrees of freedom of the Maxwell field
intrinsic to the horizon. The strategy of solving the constraints (A.18) in favor
of the geometric degrees of freedom prior to quantization therefore should not
be understood as the reason why the Maxwell fields do not contribute to the
entropy. Rather, the decisive reason for the non-contribution is the fact that there
is no surface term in the symplectic structure of the Maxwell field, as already
noted. Because of this, as well as because we solve the constraints (A.18) prior
to quantization, the details of the quantization of the Maxwell field beyond what
has already been said will not matter for the purposes of calculating black hole

entropy, as we shall see. We therefore do not go into such details.

grav

Denote the results of the kinematical quantizations described above by H;,

and HEM, respectively. the kinematical Hilbert space for the full system is then

Hiin = chzn ® HIew. (A.19)

kin

As in section 3.3, one can at this point introduce operators describing the phys-
ical quantum geometry of the horizon: ((z), ®a(z), and the geometric multipole
operators I,,, L,. Note that instead of a Wy(z) operator, we construct a ®a(2)
operator, as this is now the field directly related to the definition of the geomet-
ric multipoles. As before, after regularizing in a manner analogous to that used

before, one obtains

N

. a ° .2
Iy +il, =2 (In + an) . (A.20)
a/O
With electromagnetic fields now present, we can additionally construct operators
corresponding to ¢; and the electromagnetic multipoles. The construction is ex-

actly analogous to the construction of the operators [0} A and fn —i—iﬁn in an obvious

way. In the end we have

b() = SVRETR Qb EE) (a2

N

Qu+iPy = 2 (Qu+ily), (A.22)

0
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As with the geometric multipole operators, because the electromagnetic multipole
operators are diffeomorphism invariant they will carry over to operators on the
physical Hilbert space, so that they can be used to characterize the ensemble of
physical states described below.

Finally, let us sketch the method of solving the quantum Einstein equation,
noting what differs from the presentation in [12]. First, substituting the expression
for #;;"" in [12] into (A.19), we have

Hin = &y HEM @ HD™ @ HET (A.23)

V,grav
P,m,a:—2m=a mod k
where P is a finite point set in S, m is an assignment of a half integer to each
point, and @ is an assignment of an integer modulo k£ to each point. m determines

eigenvalues of the flux operators fU S - 7 on the horizon, and @ determines eigen-

P,m

values of the U(1) holonomy operators on the surface Hilbert space Hs. Hy/'gra,

and H%'® are the corresponding eigensubspaces (see [12] for details).
To solve the diffeomorphism constraint, we must divide out by the group D of
all spatial diffeomorphisms preserving the inner boundary S. Following [12], we do

this as follows. For every positive integer n, we fix a set of n punctures P,. Define
7_‘ Pp— /Pn’_‘
He" =M. (A.24)

Let Dgs denote the group of spatial diffeomorphisms that are identity on S. We
define

5 HEM @ 3Prm
HY™ = —Em : A.25
Vv DS ( )
The solution to the diffeomorphism constraint can then be written
HOT = P HY™ @ HY". (A.26)

n,m,a:—2m=a mod k

The division by D here is achieved by a combination of dividing out by Dg and
then gauge fixing the remaining diffeomorphism freedom Diff(S). Finally, coming
to the Hamiltonian constraint, recall from section 3.2.5 that the Hamiltonian con-
straint generates gauge only when smeared against a lapse that vanishes at the

horizon. Thus, as in [12], the Hamiltonian constraint should not be imposed on
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the horizon, but only in the bulk. Let ’}:L‘"/m denote the subspace of ’H‘"/m solving
the Hamiltonian constraint in the bulk. The final physical Hilbert space for the

system can then be written

HPhs = &y HE™ @ HY, (A.27)

n,m,a:—2m=a mod k

This is the same form as in [12], except that here ﬁ?,m includes electromagnetic

degrees of freedom. It will be convenient to define

W = P HE" (A.28)
and
HYw = P HY" (A.29)
so that
MM CHY @ HE (A.30)

We next define the micro-canonical ensemble of interest to consist of states in
HPM for which the eigenvalues of ag, I, L,, Qn, P, lie in a suitable small interval
around ay, I, Lo, Q, and P,. Note that, because of equations (3.46) and (A.22),
the relative fluctuations of all of these operators will be equal to each other in such
an ensemble.

In order to reduce to the type I case, and so make use of the previous result
in calculating the entropy, we note that fn, I:n, Qn, P, are all functions of as, SO
that, if we wish, we can define H® using the eigenstates of ag alone, as in the
type I case. Let H* denote (the span of) the states included in this ensemble —
say, the span of all eigenstates of ag with eigenvalues in the range (a, — d, a, + 0)
for some § much smaller than a,, but sufficiently large such that (a, — 9, a, + 0)
includes at least one eigenvalue of ag. Because of the infinite degrees of freedom in
the bulk, " is infinite dimensional. However, it is only the surface states which

we wish to count, so, as in [12] we define

MW = {\1;5 € HIWS | JUy € HI sty @ Ug € ’H”"} (A.31)
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H% is finite dimensional, and the entropy of the black hole is given by
Spn = In(dim HY") (A.32)

We next argue that, in fact, the entropy obtained in the present context will
be the same as that obtained in [12] (and hence chapter 3). We do this by
first noting that H® depends on the spaces {ﬁ?,m} only through the spectra

{Spect (&5|?~{7&,m>} - This can be seen from the explicit expression
n,m

HY = oy H" (A.33)
n,a: Ims.t.—2m=d mod k

and Spect (ds\ ~n,7ﬁ) N(ao—9,a0+8)#0
Hy

which one can prove. We next make here the same assumption about the Hamil-
tonian constraint made in section VI.A of [12]. This assumption can be recast as

the assumption
Spect (as‘ﬁﬁ’ﬁ”) = Spect (a5|7_£‘n/,m) (A.34)

for all n, m. With this assumption, it is easy to show that the spectra

{Spect (&5|#&,m> }nﬁ'z are the same here as they are in [12]. The two facts primar-
ily relevant in showing this are (1.) ag kinematically acts only on the gravitational
sector, and (2.) ag is diffeomorphism invariant. Because of this equality of spectra,
H here is identical to H¥ in [12]. Tt follows that, with Maxwell fields included,
the black hole entropy found in chapter 3 does not change, and one again ob-
tains the Bekenstein-Hawking entropy with the same value of the Barbero-Immirzi

parameter (3.48).



Appendix B

Extra proofs left out of chapter 4

B.1 Cyl' ¢ Cyl*

mv

Definition 1. Given a set of vectors I/ in a topological vector space V, the Hamel
span of U, denoted span U, is the set of all finite linear combinations of elements
of U.

That is, limits are not taken in the Hamel span. The purpose of this definition
is to distinguish from “spanif”, which, in the main text, is understood to mean
the closure of the set of all finite linear combinations. The reason for calling it

‘Hamel span’ becomes clear when we recall the definition of ‘Hamel basis’:

Definition 2. Given a topological vector space V, a Hamel basis U is a linearly

independent set such that span,U = V.
It will be convenient to also introduce the notion of ‘Hamel complement’:

Definition 3. Given a subspace U of a topological vector space V, a Hamel com-
plement of U in 'V is any subspace W of V such that Y N W = {0} and

spany7U UW =V (B.1)

Let Cyl, := {® € Cyl | Supp® N &'(X)ins = 0}. Note, as was proven in

subsection 4.4.2,

Cyll ={a e Cyl" | a(®)=0 V& e Cyl_} (B.2)
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Lemma B.1. Suppose © € Cyl is not in Cyl_. Let g € T. Then g-0 x O implies
g-0=0.

Proof.
Suppose g - © = AO. Since © € Cyl_, there exists a € &'(X);n such that
Ola] # 0. So

(9-O)la] = AB[e]
Olg™'-a] = AOq]
Ola] = O]

whence \ = 1. O

Theorem B.2. Cyl; € Cyl;

inv

Proof.
We will prove this by constructing an element of Cyl; that is not in Cyl;,,. For
e € §(X), define @, € Cyl by

De[ip] := p(e) (B.3)
Let e; be any element of §(X);n,. Define @1 := ®,,. Then &, is not in Cyl_ and is
T-invariant. Let e; be any element of S(X) whose symmetric and non-symmetric

parts are both non-zero. Define &, := &,,. Then ®, is not in Cyl_ and is not
T-invariant!. Let g € T be such that g-®; # ®,. Let K be a Hamel basis of Cyl._.

Case 1. {®, Dy, g- Dy} is linearly independent.
Then {®;, @y, g-Po+P; } is also linearly independent. Extend {®;, 5, g-
&y + &} UK to a Hamel basis {®, Ps,g- Po + 1} UK U L of Cyl.

Let U := span,{®y, g-Po+P; JUKUL. Then U is a Hamel complement
of {®;} in Cyl. Furthermore, ®, € U but g- ®, ¢ U. 2

'For the proof, any ®; not in Cyl_ and T-invariant, and any ®, not in Cyl_ and not T-
invariant will do.

2Proof of latter: Suppose by way of contradiction that g - ®; € U. Then, by U’s linearity,
P =(g- Py + P1) — g- Py is also in U, yielding a contradiction.
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Case 2. {9, Dy, g Dy} is linearly dependent.

Since ®; is T-invariant, but ®, is not, {®1, P9} is linearly independent.
Thus
qg- (I>2 = a@l + b(I)Q (B4)

for some a, b. Since g - ®5 is not T-invariant, b # 0. Furthermore, since
g- Py # ®5, by the above lemma B.1, g- ®, is not proportional to @5, so
that a # 0. Complete {®;, P>} UK into a Hamel basis {®, P} UK UL
of Cyl. Let U :=spany{®,} UK U L. Then U is a Hamel complement
of {®;} in Cyl. Furthermore, ®, € U, whereas g-®, ¢ U. 3

In either case, we have a Hamel complement U of {®;} such that ®; € U but
Define n € Cyl* by

n(®) =1
n(® = 0 Vdeld

Then, since Cyl, C U, n € Cyl.. But n(®2) = 0 whereas n(g - ®3) # 0, whence
1 ¢ Cylin,-
Thus Cyl, € Cyl; O

B.2 Other lemmata regarding coherent states
Let us first recall some relevant conventions and notation:

e h = one particle Hilbert space.
o H = (D)5, ®" h.

e Uy:=(1,0,0,...) denotes the vacuum.

3Proof of latter: suppose by way of contradiction that g - & € I. Then from U’s linearity,
Py = L(g- Py — b®,) is also in U, yielding a contradiction.
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o For £ € h, af(€) and a(§) denote the creation and annihilation operators
associated with &. With the conventions in thesis, [af(£), a(n)] = (£, 7).

For £ € h, U@t .= eMEW, is the coherent state associated with &, where
A(€) = al(€) — a(€). Because of the skew-hermicity of A(€), eM® is unitary,
whence each \Ilg"h is unit norm. Also, note that A(f) is real linear in &, but not

complex linear in €.

Lemma B.3. Owverlap between coherent states. For all £,m € h,
<\1;goh’ \IIffh) — eim(&m) o~ llE—nll® (B.5)
Proof.

(‘1120’1’, q,goh) — <\IJO; e—j\('f)e[\(”)\ljo> (B6)

Now,

[AE), Am)] = —[al(€), a(n)] = [a(€), a' ()]
= —2iIm(¢,n) (B.7)

So that, using the Baker-Campbell-Hausdorff formula, and the real-linearity of

A(g) in¢,
e MO A _ gilm(gm) LA(n—¢) (B.8)

whence
<\Ilgl)h, \Ij;zloh> — eﬂm(f:'ﬂ) <\I;O’ eA(U_f)\I;()) (Bg)

Again, using Baker-Campbell-Hausdorff,

A=) _ gat(1-¢) j—a(n—£) ,—31In—€|I? (B.10)
so that

<\I/g()h, ‘Iff]Oh> — eiIm(f:”ﬂe_%Hn—EHQ <\I;0’ ea*(n—&)e—a(n—f)q;0>
etmi&m gz ln—€l (g @' O )

e m(&:m) o —3/In—€[? (B.11)
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O
Lemma B.4. For all ;1 € h,
— :—cosm,ne_%_2 .
gt — ek 2= 2 — 2 cos(1 =] B.12
Proof.
|| ‘Ilgoh _ \II‘T:]Oh ”2 = <\II§Oh _ \IIZOh, \Ilgoh _ ‘I];:Ioh>
= 2 — 2Re(Tg", T
= 2—2cos(Im(¢, n))e 2 e (B.13)
O

Theorem B.5. £ — \I’g"h 15 continuous with respect to the topologies on h and H

(induced by their respective norms).

Proof.
Suppose & — £ in h. From lemma B.4,

| Wt — gt = 2 — 2cos(Im(g, &) e 216" (B.14)

The continuity of the right hand side in & then implies ‘Ilg’h — \Ilg"h. O

B.3 Proof of (slight generalization of) theorem
(4.19)

Let ¢ denote an embedding of the Hilbert space H,q into the Hilbert space H. Let
(,) and || - || denote the inner product and induced norm on H and let (,),.q and

|| - ||rea denote the inner product and induced norm on H,.q, so that

<,L/)1a ¢2>red = <[,1/11, “/)2> (B15)
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and

| % [lrea=ll vt/ || (B.16)

for all wla ¢2a ¢ € Hred-
Let P : H — t[H,eq) denote orthogonal projection. For any operator O on H,

define a corresponding operator Oreq 0N Hred by

~

Orea:=1 oPo0o.. (B.17)

Furthermore, let us generalize the definition of the variance of an operator to the

case of a non-Hermitian operator:

~ 1 ~ 4 o ~
Ay® = \/<\1; ~(O10 + oow> — | (@, OF) |2 (B.18)

Given these definitions, we have the following.
Theorem B.6. For any operator O on H,

1. @Ied = (@T)red

2. (hr, Ouths) = (1, Oreata)rea for all 1,4 € Hiyea

3. Aw@red < Auﬁ@ for all v € H,eq, with equality holding iff @L¢ € ([Hyrea] and
(;)TM/) € L[Hred] 4

Proof.

Proof of (1)
For all ’(/11, 1/12 S Hred;

<1/11, @Tedw2>red - <L7,b1, L@redw2>
= <L’l/11, Po @ (¢] [/¢72>
= (uhr, Ouay) (B.19)

where the projection could be dropped because taking the inner product with 1,

4Thus, in particular, if O preserves H,eq and is Hermitian, one always has equality.
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automatically performs the projection for you. Continuing,

<¢1 ) (;)red¢2)red

whence (Oreg)t = (O ea
Proof of (2)
For all ¢17 ¢2 € Hred;

<l’w1a (/A)“ﬁ2>

Proof of (3)
For all ¢ € H,eq,

= (AW@)Z

| RN .

5 1 Oreatt 2 +5 | (Orea)'¥ s
1 A

5 1Ot |

1 A 1 N .
S 1 PoOw |2 +5 | Po Ol | — | (s, Ou) |

@T“/jla L¢2>
P o Otupy, iahy)

(
(
<l’_1 oPo (;)T © [/¢71; ¢2>7‘ed
(

= (@T)redwla w2>red (B20)
== <L1/11, P (@) @Mﬁz)

= <1/}11 L_l oPo @Lw2>red

= <¢17 (;)red’(/JZ)red (B21)

1 R
‘ <w; Oredw>red |2

| <’¢J7 @Ted1/1>red ‘2

2
1 o
zed +§ || (OT)Ted,‘vb ”ged -

1. . 1. . .
S 10w |45 1 O |2 = | (15, Oup) P

(B.22)

with equality holding iff both projection operators P in the third line are not
necessary: i.e., iff @Lw € [Hyreq) and (’5%& € t[Hred)-

O
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The completeness relation for

coherent states

C.1 Rigorous formulation of the completeness re-

lation using generalized measures

Let us begin by stating, heuristically, the completeness relation we wish to prove:
1

/ DT (TP = 1, (1)
gerinv

where D%¢ is a heuristic ‘Lesbesgue measure’ on I';,,. Of course D?¢ does not
really exist as a measure; however, the measure must be (a rigorization of) such
a ‘Lesbesgue measure’ in order for the completeness relation to hold — a Gaussian
measure cannot replace D2¢. (Indeed, if a Gaussian measure replaces D2¢ in (C.1),
the left hand side will be zero, once things are made rigorous) The easiest way to
construct such a ‘Lesbesgue measure’ is to first define a Gaussian measure, and
then multiply it by a factor to get rid of the Gaussian dependence. But even this
is not quite enough: for, the requisite Gaussian measure will require definition on
S'(X)iny X 8" (X)iny, which is larger than hg,, [48]. Most of the time, when this
measure is used to integrate (both in the completeness relation above, as well as in

sections 4.5 and 4.7), the integrand is defined at most on h;,,. The cleanest way

LOf course a completeness relation analogous to (C.11) also holds in the full theory, but it is
the completeness relation for the reduced theory that is needed in chapter 4.
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to overcome this problem is to think in terms of generalized measures [67] — that
is, think strictly in terms of the integration functional, without assuming it arises
from a corresponding set function. Such a generalized measure can be defined in a
way not involving the introduction of the larger space &' ()i X S’ (2)iny- In fact,
it is not even necessary to have integrands defined on all of h;,,: we will be able
to integrate functions even on the classical phase space [';,,. A further motivation
for using generalized measures is that they will allow us to define an analogue of a
Lesbesgue measure directly, which will be useful.

The term “generalized measure” was first introduced by Baez [67]. However, as
noted below, there is a certain class of generalized measures which are equivalent
to what are called promeasures or cylindrical measures [68, 69]. The ideas behind
these trace back to Kolmogorov [69]. Some of the generalized measures in this
thesis are of this type. In this thesis we use (a slight generalization of) the definition

of Baez because of its simplicity and generality:

Definition 4. Let X be an arbitrary Hausdorff space, and let A, denote a given
x-algebra of complex continuous functions on X. Let || - || denote a given norm
on A, such that when A, is completed with respect to this norm, it becomes a
C*-algebra. Let [dv: A, — C be a linear functional, assumed to be bounded —
that is, for some C > 0,

| / il <Cllf (C2)

for all f € A,. Then we say [dv- is a generalized measure on X, or that

(X, A, fdu-) is a generalized measure space.

We first introduce the requisite Gaussian generalized measure on I';,,, and then
introduce an associated ‘Lesbesgue’ generalized measure on I';,,.
For the Gaussian generalized measure, which we will denote by dv,.4, the basic

algebra of integrable functions A is taken to be the *-algebra of cylindrical

Vred

functions on T';,,, that is, the *-algebra of functions ® : I' — C of the form

] = F((& ), ---, (& an)) (C.3)

for some a,...,a, € Iy, and F : R® — C with growth at most exponential. The
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symmetric inner product (-,-) here is defined by
(£.9h 76D = (1) + (0.9) = [ FFda+ [ ggde. (Ca)
2 5

for all [f, g],[f’,¢'] € Tinw. The above *-algebra we denote by Cyl._,. On Cyl.

red

we define a norm, which we call a ‘Gaussian sup norm’:

| @ [lg== sup e &2 |@[¢]]. (C.5)

&El—‘inv

I
red?

One can check this norm is well defined on all of Cyl,_,, and that the completion

of Cylfed with respect to this norm yields a C*-algebra. Generalized measures with
such a *-algebra of integrable functions are the generalized measures equivalent to
specifying the promeasures or cylindrical measures mentioned earlier.

Such generalized measures can be uniquely defined by specifying the Fourier

transform, defined by
XVred(a) = / dyTedei(‘s’a) (06)
’gerinv

where o = [f,g] € Tin,- The Gaussian measure we will need is the one with

variance O : [inw = Tipy defined by
O :[p,7] = [0 2¢p,017]. (C.7)
This is the variance directly related to the hermitian inner product by
(€6 = 5(6,07) (©9)
Thus, the Gaussian measure is given heuristically by
“Auyeg = e~ 2EOTTOD2E = ~(EOD2er (C.9)
(with “D?¢ scaled such that [ duv,.q = 17) and rigorously by the Fourier transform
Xoyea (@) = €73(02) (C.10)

for all a € T';;,,. One can check that the generalized measure so-defined is bounded
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r
red’

with respect to the norm || - ||¢ on the algebra Cyl,_,, as required in definition 4.
(This du,eq is exactly the same as the measure dy in [70], except that here dv;q
is for the reduced theory.)

We can now state rigorously the completeness relation we wish to prove:
/g  duae O = L (C.11)
€liny

However, it will be more convenient, in sections 4.5.2 and 4.7, to formulate the
completeness relation using a single ‘Lesbesgue’-like generalized measure dv?,; rep-
resenting directly the combination ‘dv,.q4e{¢€) appearing in (C.11).

The basic algebra of integrable functions for dv?,, is taken to be

Ap = e &0 Loyt (C.12)

We equip this algebra with the usual sup norm || - ||o. The integration functional
is then defined by

/dl/fed&) = /dl/rede%(g’é_lg)(i). (C.13)

The boundedness of this integration functional [ dv?

© o With respect to || - ||oo

follows from the aforementioned boundedness of f dv,eq:. One can check that the
resulting generalized measure dv?,, is translation invariant, and so warrants the
name ‘Lesbesgue.”? (Note: the translation invariance of dv?,, will be very useful
in the proof in the next section.) We can express the relation between dv,q and
dvy.y by

Apeq = A1, 073070, (C.15)

2As a side note, if O had been replaced by a different variance operator @, a different ‘Les-
besgue generalized measure’ would have resulted. This is easy to see from the fact that for each
choice of variance operator O, the resulting Lesbesgue generalized measure dl/é’5 satisfies its own
unique normalization condition

/duge*%@’@‘lﬁ) =1. (C.14)

Thus, there are in fact an infinity of such ‘Lesbesgue generalized measures’.
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C.2 Proof of the completeness relation

Let us prove the completeness relation.

Theorem C.1.
| e = v, (c.16
gerinv

Proof.
We proceed by showing that the left hand side and the right hand side have
the same matrix elements with respect to arbitrary coherent states. Let n = [f, g],

' =[f',9'] € hiny be given. Let

M) = (5 { /£ g | i (€17)
€Eliny
Using lemma B.3,
M) = /s A " )
€l'ny

:/ dv? deilm("l’aei%”nl76”2eiIm(ﬁ’")e*%H&*nW
Eerinv

= [ dugge (il &) + Re(l, &) — 5 1 P =4 [ €17
‘gerinv
+iIm(&,n) + Re(€,n) — 5 | n 1> =5 11 €1” }
_1 2_ 11,112 0
= HPHE [ g exp (= € P 0.8 + (6n)
gerinv
_ e%l|n|2élln'll2/ e exp{ 1 (&Oxlg)
gz[WvW}erinv

s3(e0mm) +i(rm) =5 (o)

_ o lmliE= 3 /gerdyfed exp{ ! (g,()—lg) +1 (g, O'(n+ n’))
+i(elg—g.r- 1)} (C.18)



137

Define u := %(77 +7n'). Completing the square in the last expression, we then have

dv?,, exp{ -1 (§ —u, O} (€ - u)) + 3 (u, O‘lu)

M(n',m) =e—%lln|2—%lln'll2/
Eeling

Performing the change of variables given by &,e, = &og — U, and using the trans-

lation invariance of dv°, we obtain

M S [t {3 (667) + 3 (107)

§€lino

+i(&lo—g. 7 = 1) +5(wlo—g.F — 1)}
=exp{—s 0P =57 IP+5ln+0 P +5(F+ 9+ dLlg—9g.f =1}

[ e {36 lo - .5 = 1)

§€liny

=exp {5 |01 =5 |0/ IP +% [ n+ 0 |2 +5(9.£) — 5(£.9)}

- exp {—é ([g —¢.f'-fl.0lg—4d.f - f])}
=exp{=LlIn 2 =4 0 [P +% 110+ |2 +imsr, m)

~t(9-9.07 g-9)) - (- 10} - D)}
=exp{ =Ll l? =L o/ |2 +1 |+ |2 +itmin',m) = & (n— .0 (=) }
=exp{—5 |0 lI> =5 10" 7 +% I n+n" |7 +im{r',n) — 1 || n— " 1P}
=exp{—3 | 7[> =5 || 7" | +Re(n’,n) +ilm{, m)}
=exp{—3 [ 7' —n|* +im(n',n) } (C-20)

In the second line, the substitution dv,.q = dl/;’ede_%(f’é_lf) has been used. Note
the last line is just (5", W), We thus have

g { [ s g = g (e
for all n,n’ € h, whence

| e et = 1, (C:22)
‘gerinv
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Appendix

The reduced-then-quantized free

scalar field theory

Let (p, z, ¢) denote standard cylindrical coordinates on X such that the symmetry
vector field ¢ is equal to %. Let B := Y/7 denote the reduced spatial manifold.
Let P : ¥ — B denote canonical projection, and let ¢*® := P,¢%. B may be
coordinatized by (p,z), which are then Cartesian coordinates for g := (¢%)7L.
The configuration and momentum variables ¢ and m may then be represented by
functions on B.

More specifically, for ¢ and 7 symmetric, we define *
6r(p,2) = Vamp(p,z)  mlp,2) = Vampr(p,2) (D.2)

(The /27 factors are included for later convenience.) Let I,y denote the reduced

phase space — the space of all possible [¢,, 7] 2. The symplectic structure induced

!The definition of 7, can be motivated by considering the weight one densitization of m,
7 = (det g)%w. Using the projection mapping P : ¥ — B, we can then define 7, := V2rP,7,
where the push-forward is defined by treating 7 as a measure. If we then dedensitize 7, using
Gab: T = (det q)_%fn, then

T, = 2mpr. (D.1)

2(lassically there are also boundary conditions which ¢, and 7, must satisfy at p = 0 in order
to ensure smoothness. However, when going over to the quantum theory, because there is no
surface term in the symplectic structure at p = 0, there are no separate degrees of freedom at
p = 0, and the boundary conditions do not matter.
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on [',.q is simply

Qe 7], [ 7)) =:/Q(WT¢;——9%J¢>dpdz (D3)

Thus we see that at least kinematically, in terms of (¢, 7, ), the reduced theory
is nothing other than a free Klein-Gordon theory on B with flat metric g,. * From

the time evolution of (¢, 7) in the full theory, the time-evolution of (p,,m,) is

Gor = poim (D.4)
= p(As —m?)p,
= B+t g, (D.5)
pOp
where Ay denotes the Laplacian on X determined by ¢, and Ap denotes the
Laplacian on B determined by gg. Let © := —Ay +m? = —Ap — %a% + m?
Note that from (O7f, g)s = (f, ©%g)s for arbitrary g € Q, it follows (p©If, g)p =
(f,pO19) 5.

Given a choice of parametrization of time, from [47], the naturally associated

complex structure on the classical phase space is
J=—(—LeLe) > Le (D.6)

where L, denotes derivative with respect to the time evolution vector field £. From
(D.4, D.5), one then calculates

I, m] = [_67%:07177, p@%@r]- (D.7)

Following [47], the Hermitian inner product thereby determined on the classical

phase space is

1 1 1, 1 _ i i
{orsml [prm]) = 5 (002 ¢r, 0))p + 5 (0727 M M) — 5 (7, 0)) 8 + 5 (01, ™) 5
(D.8)
where (f,g)p = fB fgdpdz * . We take the quantum configuration space to be

3Note the role of the definition of ¢, and 7, in making this the case.
4Unless otherwise specified, from now on all integrations over B are understood to be with
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S'(B), with quantum measure given, again following [47], by

1
“fteq = exp {—5((,0, p®%<p)3} Dy.” (D.9)

More rigorously, the Fourier transform of the measure is given by

Xualf) =exp {37,077 )a (0.10)

We will denote the space of cylindrical functions in the reduced theory by Cyl
That is, Cyl,., is the space of functions @ : §'(B) — C of the form

red*

red

(D[Ot] = F(a(fl)a""a(fn)) (D'll)

for some fi,..., f, € S(B) and some smooth F' : R* — C with growth at most
exponential.

The representation of the field observables ¢[f] := [ fo and 7[g] := [, g7 is
given by

((ﬁr[f]‘l])[@r] = Qpr[f]‘ll[(pr] (D'12)
wlale) = =i [ (géi%—gorp@%g) ok (D.13)

For a given point [p,, 7] = [f, ¢] in the classical phase space, we have the “classical

observables” for the corresponding annihilation and creation operators:

ared([.fa g]) ‘[(pr,m] = <[fa g]7 [QOT:WTD

= @lOt —igl w0t g if)  (D14)

aloa(Lf, ) ligrm = (@r s [f, 9])

= %(%[ﬂeﬁfﬂg]ﬂrr[@%plg—if]) (D.15)

respect to d2z := dpdz, and all integrations over ¥ are understood to be with respect to d®z :=
pdpdzde.
5As noted earlier, % is defined with respect to the volume form dpdz.
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Quantizing by substituting in (D.12, D.13), we obtain

alq(lf,g) = Sor[p@%f-Fig]—%/B{@%(plg)—if} 5; (D.16)
wallfa) = =5 [ {0400 +ir} 5 (017)

Lastly we quantize the (reduced) Hamiltonian. The reduced Hamiltonian is

1

Hreq = 5 /B (p7'7? + p(Ver)? + pm*p})dpdz (D.18)

This can be checked to be consistent with (D.3, D.4, D.5). We next rewrite the

Hamiltonian,
]_ —
Hea = 5 / (p~'m; + p(Vepr)? + pm®g})dpdz
B
1 1.9 4 0 2
= - p T+ ppry—Ap —p oo+ m” e | dpdz
2 Jp op
1
= 3 / (p™'77 + ppr©p,)dpdz (D.19)
B

From (D.4,D.5), we deduce the one particle Hamiltonian:

. d
H = J—
red[(praﬂ-r] Jdt[ﬁpraﬂ—r]
= [©%¢,,p01p 'm]" (D.20)
So,
Hred = <[¢T’ 71'7«], ﬁred[¢ra 7Tr]> (D'21)

matching one’s expectations. Let {& = [f;, ¢;]} denote an arbitrary basis of [';¢q,

orthonormal with respect to (-,-). Then,

Hyeq = Z<[¢raﬁr]’§i><€iaI:Iredgjxgj,[¢ra77r]>

1,J
= D (& Hrealy)alog(6)areal&;) (D.22)
1,5

91f ¢ = [y, 7] is thought of as representing the corresponding symmetric full theory initial
data, Hy.q& = HE.
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To quantize we use the normal ordering above and substitute in (D.16, D.17), to

obtain

1) K
Hrea = /meB,yeB {A(‘”’ e, ~ Bl y)agor(x)a%(y)} (D-23)

where
Alr,y) = 5 36 Frea) (fy — 10739 1)) (2) (0O i +i0)(y) (D24)
b,J

B(z,y) = %Z<§i:ﬁred€j>(®;gi_ifi)(m)(e;plgj—i_ifj)(y) (D.25)

By integrating against test functions, one can show A(z,y) is the integral kernel
of ©2, and B(z,y) = 2p716%(z,y). It follows

= [ @050~ 5 5r ) (D-26)



Appendix E

List of symbols and basic relations

for chapter 4

For Klein-Gordon model:

Rz Q3

&«

n-fold tensor product

symmetrized n-fold tensor product

fag) ( Z.: fzfgd?’x

(
(fagB _fB gd2
()

1f, 9]

Cyl,eq; Cyl:

red

inner product on h, H, H,eq, or H 1, depending on con-

text
point in I' defined by ¢ = f, 7 = g. (not to be con-

fused with commutator; context makes clear which is

intended)
annihilation and creation operators in the full theory, or

their classical counterparts, depending on the context
annihilation and creation operators in the reduced the-

ory, or their classical counterparts, depending on the

context
spatial manifold for the reduced theory

space of cylindrical functions on §'(X), and the algebraic

dual
space of cylindrical functions on &'(X);,,, and the alge-

braic dual




Cylin,
Cyl* C Cyl*
d?z = dpdz

d3z = pdpdpdz
Diff()

¢ Hyeqg — Cyl

f57 fJ_

h
H := Fs(h)

= L*(S'(%), dp)
hy

Hy = Fs(h,)
Piny
Hinw
Hred := Fs(Pinv)
= L*(8'(B), dfirea)

H’reda H’red

I:8(%)in — S'(B)
J
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Cyl — H < Cyl*
Cy]red — Hred — Cyl:ed

T-invariant subspace of Cyl*

quantum mechanical solution to constraint set ‘c’

group of diffeomorphisms of 3
see §4.4.3
components of a given f € S(X) with respect to the

decomposition S(X) = S(X)in, & S(X) L
one particle Hilbert space of full theory

full field theory Hilbert space

orthogonal complement of A;,, in h

T-invariant subspace of h
TJ-invariant subspace of H

reduced theory Hilbert space

quantum mechanical solution to constraint set ‘b’

one particle Hamiltonians in the full and reduced theo-

ries, respectively
total Hamiltonian in the full theory and its quantization

total Hamiltonian in the reduced theory and its quanti-

zation
is defined by [I(B)](f) := B(P*f); I is an isomorphism
complex structure on I'; in appendix D: complex struc-

ture in the reduced theory



0
Vred:\Vied

146

z-component of the total angular momentum in the full

theory, and its quantization
Lie derivative with respect to ¢

scalar field mass

canonical projection

the orthogonal complement of S(X);,, in S(X) (§4.3.1)
space of Schwartz functions on ¥, B

T-invariant subspaces of S(X) and &'(3), respectively

space of tempered distributions on ¥, B

IRE

S (X)inw

S(B)
S'(B)

IRE

Cauchy completion of the set of all finite linear combi-

nations ) .
the group of rotations about z-axis

action of a given g € T on H

Cartesian coordinates on 2.

full phase space
T-invariant subspace of I’
Laplacian on X
Laplacian on B

variance (“fluctuation”) in O for the state ¥

see §4.5.2
generator of phase space translations

measure on S'(X) used in Schrédinger representation of

full theory (§4.2.3)
measure on §'(B) used in Schrodinger representation of

reduced theory (appendix D)
Gaussian and Lesbesgue generalized measures on [,

(5C.1)
group averaging map on S(X) (§4.4.1)



Tsy, TL

X

b

=2
olf1; 7lgl
@L[f]a ﬁL[g]

©r = Dred

= (272,
Ty = Tred

= (2m) % pm,

Orlf] = Predld]

Ty [g[: Tred [g]
Psy PL

@s[f1, s[g]
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components of 7 with respect to the decomposition

S(X) =8(X)in ®S(X)L
cylindrical coordinates on X

spatial hyperplane in Minkowski space

axial symmetry field

basic smeared field operators in the full theory

the operators on H corresponding to ¢, [f] and 7, [g].
&1 [f] is defined by multiplication and 7, [g] is the
self-adjoint part of —i [ g&’%

basic classical fields in the reduced theory; relation to
fields in the full theory.

smeared field operators in the reduced theory

components of ¢ with respect to the decomposition
S(Z) :S(E)mv @S(E)J_ or SI(E) :SI(Z)mU@S’(E)J_,

according to the context
the operators on H,.; corresponding to the smeared

functions ¢4[f] and 7[g]. @s[f] acts by multiplica-
tion and 7,[g] is the self-adjoint part of —i [, gﬁ.

oslf] = (27)7%@red[f8]

7Ars[g] = (277-)7%7?red[pilgs]
Pl = @[flel+1®¢.[f]
gl = oo+ 1 @l

vacuum in the full (§4.2) and reduced (§4.5.2) theory,
respectively
coherent states in full and reduced theories (£ € h or

& € hiny, accordingly) (§4.5.1, §4.5.2)
symplectic structure on I'; in appendix D: symplectic

structure in the reduced theory
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For LQG (§4.9.2):

Aut(P) group of automorphisms of P
P SU(2) principal bundle over ¥
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