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ABSTRACT 

The human microbiota, consisting of trillions of microorganisms inhabiting various regions 

of our bodies, is integral to numerous physiological processes such as digestion, immune response, 

and hormone regulation. Microbial imbalances, or dysbiosis, have been implicated in a plethora of 

health conditions. Exploiting the microbiota's potential can revolutionize the development of 

diagnostic and therapeutic strategies aimed at enhancing treatment outcomes, reducing 

complications, and preventing disease recurrence. A significant barrier to clinical application lies 

in the absence of rapid microbiota analysis methods that can produce clinically relevant data. This 

thesis introduces innovative multimodal biosensors designed for precise single-cell microbiota 

profiling. These biosensors enable the detection and functional assessment of microbial populations 

at the single-cell level, thus facilitating a holistic understanding of the microbiome's role in health 

and disease. The proposed biosensors provide a comprehensive analysis toolkit, capable of 

determining absolute microbial abundance, viability, spatial distribution, and gene expression 

profiles. Furthermore, we apply these multimodal biosensors to conduct microbial community 

profiling on clinical samples, with a particular focus on exploring the gut microbiome variations in 

mouse models of familial Alzheimer's disease. This research bridges a critical gap in microbial 

diagnostics and paves the way for integrating microbiome analysis into personalized medicine and 

clinical care. 
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Chapter 1 Introduction 

Portions of this chapter are reproduced from: Jyong-Huei Lee, Siew Mei Chin, Kathleen 

E. Mach, April Bobenchik, Joseph C. Liao, Samuel Yang, Pak Kin Wong (2024). Translating 

Microbiota Analysis for Clinical Applications. Nature Reviews Bioengineering 

 

The human body is estimated to host approximately 30 trillion microorganisms.1 While 

conventional cultivation-based techniques failed to fully characterize the microbiota, i.e., the 

collection of microorganisms, newer molecular approaches have enabled the analysis of the 

uncultivable species with unprecedented resolution. The Human Microbiome Project revealed that 

many species associated with the body are obscure commensal organisms serving beneficial 

functions.2,3 These microbes can prime the immune system, support metabolism, break down 

dietary components, and regulate hormonal activities.4-6 For example, the gut microbiota modulates 

signaling pathways involved in intestinal mucosa homeostasis through fermentation and metabolite 

production, and it is associated with various physiological functions and diseases.5 In addition to 

the gut, the significance of microbiota in other organs has also been revealed. For instance, while 

it was initially believed that the respiratory tract and urinary tract were sterile, recent explorations 

of the microbiome have demonstrated this is not the case.7,8 These microbial communities not only 

help prevent the overgrowth of harmful pathogens but also are associated with various 

pathophysiological processes.  

Analyzing microbial communities presents new opportunities in clinical management. 

Microbial patterns are observed when comparing the microbiota of healthy individuals and 

patients.9,10 These patterns may help physicians in evaluating patient’s health conditions, 
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susceptibility to diseases, and treatment responsiveness. To give a few examples, the composition 

and diversity of intestinal microbiota are associated with Clostridioides difficile infection, 

inflammatory bowel diseases, and colorectal cancer.11-13 Similarly, urinary and pulmonary 

microbiota are linked to infections, kidney stone diseases, and cancer of the urinary and respiratory 

systems.14,15 Importantly, the microbiota can contribute to diseases far beyond the organ it resides 

in.16 In addition to diagnostics and prognostics, techniques for manipulating microbial communities, 

such as prebiotics, probiotics, and fecal transplants, hold promise for treating recurrent diseases 

and enhancing treatment efficacy.17 For instance, fecal transplants are recommended for treating 

persistent C. difficile infections and are shown to improve the performance of immune checkpoint 

inhibitor.18-20 Another remarkable example of microbial therapy is Bacille Calmette-Guérin (BCG), 

an attenuated strain of Mycobacterium bovis that has been approved as an intravesical therapy for 

intermediate- and high-risk non muscle invasive bladder cancer since 1990.21 Notably, many 

medical conditions and treatment options, such as infections, stress, stone ablation, antibiotic usage, 

and dietary interventions, can also influence the microbiota.22-24 These examples illustrate the 

significance of the microbiota in clinical management. Nevertheless, few clinical studies have 

monitored the dynamic changes of the microbiota resulting from medical intervention, colonization, 

microbe-microbe interactions, and host-microbe communication.25 The microbiota is seldom 

integrated into the clinical decision-making process, despite its potential to optimize clinical care. 

The ability to rapidly analyze the microbiota in patients will facilitate the translation of microbiota 

analysis into medical management. 

High throughput sequencing methods are powerful techniques for characterizing human 

microbiomes in exploration and discovery studies. However, despite their ability to improve our 

understanding of the microbiota, these techniques are often expensive, slow, cumbersome, and 

labor-intensive. While the scalability of sequencing methods can reduce costs and processing time, 
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conducting experiments in batches with a small number of samples remains costly and time-

consuming. There are challenges in translating standard sequencing techniques for clinical 

applications. Rapid microbiota analysis systems for medical applications must be cost-effective, 

have a quick turnaround time, and be easy to use. In particular, the abundance of different types of 

microorganisms varies significantly between individuals, and a straightforward definition of a 

'healthy' microbiota may not exist. Efficiently tracking the evolution of the microbiota in the same 

patient is required to understand the progression of a disease. The ability to analyze microbiota 

effectively is also crucial for optimizing the efficacy of medical treatments that may directly or 

indirectly modulate the microbiota. In addition to cost and time considerations, it is critical that the 

microbiota analysis system focuses on clinically relevant information. Complex microbiota data 

can be challenging to interpret in clinical settings and will have limited clinical utility. Furthermore, 

conventional sequencing techniques have limitations in absolute quantification, live/dead cell 

detection, multiomic analysis, and resolving the spatial distribution of microbiota. These issues 

hinder the translation of microbiota discoveries into clinical practice. 

In this chapter, we analyze the potential of rapid microbiota analysis techniques for clinical 

translation, with a primary focus on bacterial communities that are extensively studied in recent 

years. We use the term 'microbiota' to describe the collection of microorganisms and 'microbiome' 

to encompasses not only the microorganisms themselves but also their surrounding environment, 

which includes microbial metabolites and components of the host that interact with these 

microorganisms. We first review genomic, proteomic, and cell-based technological platforms 

potentially suitable for microbiota analysis in at least some clinical applications (Figure 1-1). Then, 

we highlight valuable capabilities currently unavailable or challenging to implement in standard 

sequencing or other microbiota analysis techniques ( 
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Table 1). Finally, we conclude by discussing the challenges and opportunities associated 

with integrating rapid microbiota analysis technologies into clinical decision workflows.  

 

 

Figure 1-1 Rapid Microbiota Analysis Systems. Microbiota analysis systems can be classified into genomic, 

proteomic, and cell-based platforms. These technologies have inherent advantages and disadvantages. Ongoing efforts 

are dedicated to improving their cost and time efficiencies, as well as their abilities to quantify absolute abundance, 

handle low biomass, provide spatial mapping, distinguish live and dead microbes, and perform multiomic analysis. 
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Table 1 Comparison of microbiota analysis approaches 

Rapid microbiota analysis techniques for clinical applications 

In this section, we discuss microbiota analysis platforms that show promise as candidates 

for clinical translation. High throughput sequencing techniques undoubtedly stand out as a major 

enabling technology for microbiota analysis. Recently, other molecular methods, such as multiplex 

PCR, CRISPR-Cas sensors, DNA microarray, mass spectrometry, flow cytometry, and 

fluorescence in situ hybridization (FISH), have also gained traction for rapid microbiota analysis. 

While these techniques may not offer the same resolution as high throughput sequencing, a 

comprehensive analysis of the entire microbial community is not always necessary. These culture-

free approaches may be suitable for situations that demand a rapid and cost-effective analysis of 

specific components of the microbiota (e.g., an increase in a probiotic or a change in one or more 

taxonomic groups). We classify microbiota analysis techniques into genomic, proteomic, and cell-

based platforms, as the processing and analysis procedures in each approach are often associated 

with specific advantages and limitations (Figure 1-2). Additionally, we highlight selected 
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biosensing technologies that hold promise for microbiota analysis, even though they may not have 

been extensively applied in microbiota analysis. Comprehensive reviews of microbiological 

sensing platforms for other medical applications are available elsewhere.26-28 

Figure 1-2 Sample preparation and processing for microbiota analysis. Sample preparation steps, such as 

homogenization and washing, are performed depending on the sample type. For genomic assays, cells are lysed. DNA 

or RNA targets are then extracted and processed to be characterized by sequencing, microarrays, or molecular 

biosensors. For proteomic assays, microbial cells are cultured to form colonies for mass spectrometry analysis. For cell-

based assays, the cell samples are fixed and detected with nucleic acid probes or other reagents. 

Genomic platforms 

High-throughput sequencing techniques, coupled with advanced computational tools, have 

facilitated the culture-free analysis of genomic nucleic acids, enabling the characterization of 

compositions within microbial communities. Two primary methods for characterizing microbes are 

marker genes and metagenomic approaches.29 Marker gene sequencing, utilizing genes like 16S 

rRNA, 18S rRNA, and internal transcribed spacer (ITS), targets hypervariable regions that can be 

compared to databases of known microbial sequences, allowing researchers to characterize 
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microbial communities. Well-established 16S rRNA databases are readily available for this 

purpose.30 However, 16S rRNA sequencing is often limited to taxonomic categorization at the 

genus level, restricting the analysis of commensal, opportunistic, and pathogenic bacteria at the 

species and strain levels and omitting viral and fungal organisms.31,32 Furthermore, 16S rRNA 

sequencing can introduce errors due to substitutions and gaps. On the other hand, metagenomic 

sequencing involves the random sequencing of short fragments of DNA from a mixed microbial 

sample, which are then computationally assembled and analyzed to identify and characterize the 

diverse microorganisms present.33 While metagenomic sequencing incurs additional steps and 

higher costs compared to 16S rRNA sequencing, it provides a comprehensive readout of all 

genomic nucleic acids present. This untargeted approach has lower bias and enables the 

identification of both bacterial and non-bacterial organisms. Nevertheless, metagenomics can be 

more sensitive to host DNA contamination and requires greater sequencing depth for accurate 

calibration.34 Remarkably, clinical metagenomics has been applied to analyze microbial cell-free 

DNA in plasma for infection diagnostics.35 Metagenomics can also be combined with microfluidic 

droplet barcoding for single cell genomic sequencing of microbial communities.36 

Other nucleic acid biosensing platforms have been applied for microbiological analysis. 

For example, multiplex PCR assays are available for the rapid identification of bacterial pathogens 

associated with respiratory and gastrointestinal diseases in clinical settings.37,38 Microarrays 

provide a method for the multiplex detection of amplicons for scalable microbiota 

characterization.39 They identify multiple species in parallel through an extensive array of probes 

arranged on a surface or microspheres. Phylogenetic DNA microarrays have been demonstrated for 

characterizing dysbiosis of fecal microbiota in Crohn's disease and airway microbiota in asthma.40,41 

However, microarrays can have limitations in quantification and are susceptible to high background 

levels due to cross-hybridization. Recently, CRISPR-Cas biosensors, such as CRISPR/Cas9-
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triggered isothermal exponential amplification reaction (CAS-EXPAR), specific high sensitivity 

enzymatic reporter unlocking (SHERLOCK), and DNA endonuclease-targeted CRISPR trans 

reporter (DETECTR), have been demonstrated for the rapid analysis of microorganisms.42,43 The 

sequence specificity and multiplexity make CRISPR biosensors promising candidates for 

microbiota analysis. These biosensors can be integrated with lateral flow devices, enabling 

microbial detection with the naked eye or fluorescent reporters. In addition to CRISPR, RNA 

toehold switch biosensors, which recognize and respond to target RNA molecules by changing their 

conformation, can also be applied for microbiota analysis.44 An RNA toehold switch biosensor 

combined with nucleic acid sequence-based amplification (NASBA) has been developed to provide 

a low-cost platform for analyzing gut microbiota and host markers.45 

Proteomic platforms 

Despite the outstanding performance of genomic platforms in microbiota analysis, 

proteomic platforms also hold promise for clinical translation. Matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a powerful technique 

for accurately identifying bacterial species. Indeed, MALDI-TOF MS has long been applied in the 

clinical workflow of microbiological analysis.46 In MALDI-TOF MS-based bacterial identification, 

a bacterial colony is prepared from a culture of clinical specimens, such as blood, urine, or tracheal 

aspirate. A matrix is applied to the bacterial sample to desorb and ionize the bacterial proteins when 

exposed to laser energy. The ions produced travel through a flight tube and are separated based on 

their time of flight. Lighter ions reach the detector faster than heavier ions, and this information is 

used to determine the mass-to-charge ratios of the ions. The generated mass spectrum, which 

represents a fingerprint of the bacterial sample, is then compared with a database of reference 

spectra from known bacterial species to identify the bacterium. 
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MALDI-TOF MS bacterial identification is accurate and rapid, often providing results 

within minutes from an isolated bacterial colony. This technology can identify bacteria at the 

species level, significantly improving clinical microbiology by enhancing the speed and precision 

of bacterial identification compared to traditional methods like overnight biochemical reactions.46 

Mass spectroscopy is particularly valuable for diagnosing bacterial infections, guiding antibiotic 

treatment decisions, and monitoring the spread of bacterial pathogens in healthcare settings.47 

However, mass spectrometry has a limitation: it typically requires isolated bacterial colonies to be 

grown from polymicrobic mixtures. The process is time-consuming and is limited to culturable 

bacteria. Efforts have been devoted to computationally deconvoluting mixtures of bacteria.48 

Magnetic enrichment has also been demonstrated for detecting bacterial mixtures directly from 

urine for urinary tract infection diagnostics.49 Recently, single cell mass spectroscopy is available 

for analysis molecular contents of individual cells, including bacteria.50,51 Mass spectroscopy is also 

capable of metabolomic analysis and can be integrated with sequencing platforms to provide 

comprehensive microbiome analysis.52,53 Advances in microfluidics, automated sample preparation, 

and computational analysis may further expand the application of mass spectrometry in microbiota 

analysis in clinical settings. 

Metaproteomics, which involves large-scale protein identification and quantification, 

represents a new initiative for the characterization of the microbial communities.54 Metaproteomics 

uses techniques such as MS and liquid chromatography along with bioinformatic database search 

workflows to separate and identify peptides and proteins to identify taxonomic composition and 

functions of a microbial community.55 The metaproteomic approach not only allows 

characterization of the microbiota composition but also evaluates the functional proteins that are 

associated with immune, metabolic, and hormonal activities. Recently studies have demonstrated 

the use of metaproteomics for investigating gut, urinary, and respiratory microbiota functions in 
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patients.56-58 To give an example, the impact of vaginal microbiota on the effectiveness of tenofovir 

gel microbicide in HIV prevention among women has been investigated using metaproteomics.59 

The study found that tenofovir was significantly more effective (61% reduction in HIV incidence) 

in women with Lactobacillus-dominant vaginal microbiota compared to those with non-

Lactobacillus bacteria (18% reduction). The presence of non-Lactobacillus bacteria was associated 

with lower levels of detectable tenofovir due to rapid metabolism, linking vaginal bacteria to the 

microbicide's efficacy. Challenges of metaproteomics include the requirement of extensive 

reference datasets and advanced computational workflows. 

Cell based platforms 

Another category of rapid microbiota characterization techniques includes cell-based 

assays, such as FISH and flow cytometry, which maintain the integrity of microbial cells.60,61 These 

assays have been applied in clinical microbiology for a long time. Detecting molecular markers in 

intact cells allows for microbial identification and quantification without the need for cultivation, 

addressing the challenge of dealing with unculturable species in microbiota analysis. Similar to 

other genomic-based methods, cell-based platforms can identify microbial species using 16S rRNA 

or other marker genes. Microbial cells are usually isolated and fixed to preserve their structure. The 

microbes are then hybridized with nucleic acid probes and detected using a fluorescence 

microscope or a flow cytometer. In flow cytometry, light scattering and fluorescence signals can 

also indicate sizes, cell structures, and molecular information of each cell. High-resolution 

microbiota flow cytometry based on bacterial shape and DNA content has been demonstrated as a 

rapid and low-cost method for characterizing fecal microbiota and predicting Crohn’s disease 

states.62,63 Cell-based assays are particularly valuable for identifying bacteria in situations where 

quantification is important and when knowing the presence and location of specific bacteria is 
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crucial for diagnosis and treatment (e.g., biofilm formation in implant- and catheter-associated 

infections).64,65 

Due to the small volume of a cell, one notable characteristic of intracellular sensing is its 

high effective concentration, eliminating the need for amplification in other genomic analysis 

techniques. Another advantage of preserving the integrity of bacterial cells is their ability to provide 

precise quantitative counts down to the level of single cells. Furthermore, it is possible to detect 

other molecular markers and distinguish between live and dead cells. It is also possible to reserve 

the cell viability for downstream phenotypic assays.66 For instance, the combination of a 

monoclonal antibody and a viability dye has been shown to detect live Salmonella enterica Serovar 

Typhimurium in the presence of a large number of non-target and dead bacteria.67 However, a 

challenge lies in developing a permeabilization protocol suitable for a wide spectrum of bacteria. 

Specifically, Gram-positive and Gram-negative bacteria have distinct membrane structures 

characterized by a thick layer of peptidoglycan in Gram-positive bacteria and a double membrane 

structure in Gram-negative bacteria. Another challenge is associated with the presence of strong 

autofluorescence, which can affect the interpretation of results.  

Fluorescence detection is often limited by the number of colors available due to optical 

bandwidth. Remarkably, the multiplexity of FISH probes can be significantly enhanced through 

barcode schemes and sequential staining.68,69 For example, the high-phylogenetic-resolution 

microbiome mapping technique known as fluorescence in situ hybridization (HiPR-FISH) employs 

a 10-color barcode scheme to distinguish 1,023 isolates of Escherichia coli and to conduct spatial 

mapping of microbial communities.68 This technique has been applied to study the antibiotic 

disruption of the gut microbiome and the stability of human plaque biofilms.68 By incorporating 

sequential FISH, the parallel sequential fluorescence in situ hybridization (par-seqFISH) technique 

has been developed for analyzing spatial transcriptomics at the single-cell resolution.69 The 
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technique detects a set of 105 genes in Pseudomonas aeruginosa in planktonic and biofilm cultures. 

Furthermore, this platform enables the measurement of other characteristics, such as cell size and 

chromosome copy number, within the same cell. 

Characteristics of microbiota analysis systems for medical applications 

In this section, we discuss characteristics of microbiota analysis technologies that are 

important for clinical applications. We pay specific attention to aspects that are challenging or not 

achievable with conventional sequencing and microbiota analysis methods. Specifically, we 

highlight important considerations including cost and time efficiencies, absolute quantification of 

bacteria species, low biomass detection, spatial analysis, live and dead bacteria distinction, and 

multimodal analysis of the microbial community.   

Cost, time, and implementation efficiencies 

Diagnostic technologies must be highly effective to seamlessly integrate into clinical 

workflows. The most efficient approach, however, depends on the situation. In some cases, a 

comprehensive analysis of all microbial species may not be necessary. For example, the use of 

bioactive ingredients, such as probiotics, prebiotics, synbiotics (combinations of probiotics and 

prebiotics), and genetically modified organisms, holds promise for addressing healthcare 

challenges.70 Monitoring commensal bacteria can aid in tracking adherence, growth, and 

colonization of beneficial species, optimizing the duration and route of treatment administration. 

Characterizing specific pathogens and opportunistic bacteria may optimize the treatment and 

prevention of recurrent diseases, such as C. difficile infection and urinary tract infections71,72 

Characterizing respiratory microbiota in ventilated patients in the intensive care unit has been 
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suggested as a way to manage ventilator-associated pneumonia.73 Monitoring the retention of BCG 

may also benefit the optimization of intravesical therapy for bladder cancer. In these situations, a 

rapid assay targeting a relatively small panel of bacteria, while allowing effective measurement at 

multiple time points, may be most effective. On the contrary, some situations may necessitate a 

more comprehensive analysis of microbial composition and functions. Examples include 

evaluating the microbiome in patients undergoing fecal microbiota transplants. In a study of fecal 

transplant for ulcerative colitis patients, the investigators used 16S, metagenomic, and 

immunoglobulin A (IgA) sequencing to analyze samples from patients who received fecal 

microbiota transplants or a placebo.74 The research revealed dynamic competitive interactions 

between donor and patient strains, demonstrating that transferred microbes are not static. Some 

patients experienced a loss of donor bacteria, coinciding with pathogenic bacterial growth and 

worsening symptoms. These studies highlight that the effectiveness of a microbiota analysis system 

is context dependent.  

Recent efforts have been dedicated to the development of portable and rapid sequencers.75 

For instance, single molecule sequencing technology, e.g., nanopore sequencing, has enabled 

sequencing analyses in a highly portable format.76 Since Oxford Nanopore Technologies introduced 

the first nanopore sequencer, MinION, a pocket-sized sequencer for DNA and RNA, sequencing 

technology and its applications in both fundamental and practical research have advanced 

significantly. While portable sequencing systems may have limitations in terms of biases and error 

rates, their portability and rapid workflow make them promising candidates for clinical applications. 

For example, the MinION system has demonstrated its capability to analyze fungal pathogens from 

sample preparation to interpretation in as little as 2.5 hours.77 However, the implementation of high 

throughput sequencing technology generally can be limited by library preparation and data analysis. 

As automated library preparation techniques and cloud computing for data analysis become 
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available,78 the cost and turnaround time will continuously decrease, potentially enabling high-

throughput sequencing technology for a wide range of medical applications.  

Adapting technologies into clinical workflows is challenging. Considering infectious 

disease diagnostics, multiple diagnostic platforms based on multiplex PCR are already available 

for the rapid analysis of syndromic-based panels of microorganisms.79,80 These systems provide 

high-resolution molecular analysis in rapid and automated formats. Sample preparation, 

amplification, detection, and analysis for respiratory, bloodstream infections, meningitis, bone and 

joint infections, and gastrointestinal pathogens can be completed in one to two hours. These 

systems enable rapid diagnostics for C. difficile and ventilator-associated infections, reducing the 

empirical use of broad-spectrum antibiotics.79,80 Nevertheless, the adoption of these technologies 

in routine medical practice remains slow. The cost, throughput, and accuracy are among the most 

important hurdles preventing the wide adoption of these platforms.81,82 For microbiota analysis, 

additional hurdles may also include sample heterogeneity and challenges in data interpretation. 

Advancements in technologies, such as microfluidics, single-cell analysis, and artificial 

intelligence, may be required to improve the cost, assay time, and implementation efficiency of 

microbiota analysis.83 

Absolute quantification  

Quantification is an area of growing interest in microbiota research.84 As the abundance of 

microbiota is associated with various diseases and medical treatments, quantification can help 

identify imbalances in microbial communities and optimize the efficiency of microbiota 

modulation strategies.24,85-87 Quantifying the total bacterial load is crucial for data interpretation, 

sample quality control, and comparisons between different methods and studies.88 Variations in 
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microbial load among healthy individuals can have up to a tenfold difference in magnitude.89 When 

significant variations in bacterial load exist among samples, using relative measurements can be 

challenging for establishing associations between bacterial composition and metabolite production 

or health outcomes. For instance, the ratio between Firmicutes and Bacteroidetes is often 

considered an indicator of intestinal homeostasis and is associated with various medical conditions, 

such as inflammatory bowel disease.90 However, an increase in the ratio could result from an 

increase in Firmicutes, a decrease in Bacteroidetes, or both. Interestingly, the bacterial load can be 

linked to enterotype distinctions.89 A reduction in microbial abundance is a feature of the 

microbiome alterations for patients with Crohn’s disease.  

Sequencing typically provides relative abundance data based on the ratio of operational 

taxonomic units (OTUs) to the total number of sequences. The values can be influenced by various 

sample collection, storage, processing, library preparation, and data analysis steps.91 In particular, 

variations in cell lysis and DNA extraction efficiency between different bacterial strains due to 

different cell wall and membrane structures can introduce bias in both relative and absolute 

measurements of genome abundance.92 The copy number of 16S rRNA genes across taxa is another 

source of bias. Furthermore, the PCR amplification process may introduce significant biases, which 

can be attributed to a range of factors, including the properties of the PCR template (e.g., 

concentration and GC content), primer selection (encompassing coverage and mismatches), 

polymerase choice, and the particulars of the PCR protocol (including annealing temperature and 

cycle number).93 Data processing and statistical analysis methods can also create additional 

uncertainties in the interpretation of the results.94  

 

Quantifying the bacterial load in microbiota analysis can be achieved by digital PCR, flow 

cytometry, and FISH.84 Digital PCR is a highly sensitive molecular biology technique used for 
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quantifying and analyzing nucleic acids. In microfluidic digital PCR, the sample is partitioned into 

thousands or even millions of droplets, each containing a minute quantity of the target nucleic acid. 

This partitioning allows for the quantification of the nucleic acid based on the number of positive 

and negative reactions, rather than relying on a standard curve in qPCR. Digital PCR has been 

demonstrated for strain specific quantification of a set of six probiotics.95 By combining digital 

PCR and melt curve analysis, mixtures of 16 bacteria can be distinguished and quantified.96 

However, the loading of bacterial sample, which requires high singlets and low empty droplets and 

multiplets (i.e., droplets with more than one cell), present a tradeoff between dynamic range and 

throughput.  

Cell-based assays, e.g., flow cytometry and FISH, are valuable tools for quantifying 

microbial groups or species within complex samples.60,61 They provide useful information on the 

abundance of microbes by direct counting the microbes in the samples. Yet, accurate quantification 

and data analysis also require specialized equipment and expertise. Distinguishing bacteria species 

with a high resolution also requires advanced probe designs and imaging techniques. In quantitative 

microbiome profiling, high throughput sequencing and quantitative assays (e.g., flow cytometry, 

digital microfluidics, and qPCR) are combined to address the tradeoff between analysis resolution 

and quantification accuracy in microbiota analysis. For example, integrating amplicon sequencing 

and flow cytometry reveals large variation in bacterial loads of feces.89 The combination of 

microfluidic droplet barcoding and genomic sequencing demonstrates single-cell genomic 

sequencing of microbial communities.36 
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Low biomass samples 

A consideration related to quantification in microbiota analysis is associated with the large 

range of bacterial concentrations in physiological samples. The human microbiota is estimated to 

involve ~1013 microorganisms. The colon is one of the densest regions, with up to 1011 bacteria/g 

of luminal content. The concentration of an individual species in a stool sample can range from 104 

to 108 bacteria/ml. In the respiratory and urinary tracts, which were originally considered to be 

sterile, the microbiota have significantly lower densities of 104 bacteria/g of lung tissue and 102-

104 bacteria/ml of urine.97,98 Nevertheless, most sequencing technologies are optimized for high 

microbial mass samples and recommend a large amount of DNA on the order of ~10 ng. Despite 

their diagnostic value, urinary and respiratory samples with low bacterial density are particularly 

prone to issues related to the efficiencies of DNA or RNA extraction, amplification, and detection. 

Low biomass samples can be easily overwhelmed by background DNA from the environment or 

the host. Multiple sources, such as collection procedures, sampling handling, and laboratory 

environment, may contribute to contamination and biases in the analysis of low biomass samples.25 

The low signal-to-noise ratio can lead to inaccurate or incomplete taxonomic profiles of the 

microbiome.99 It has been suggested that low-density communities (below 106 bacteria/ml) can 

introduce significant error in microbiota analysis, and over 106 bacteria/ml is recommended for 

microbial analysis by sequencing.100  

Various strategies have been applied for handling low biomass samples.101 For instance, a 

method called  2bRAD sequencing for Microbiome (2bRAD-M) has been reported to address 

challenges in sequencing microbiome samples with low microbial biomass or degraded DNA.102 

This approach digests microbial genomes with type IIB restriction endonucleases to produce iso-

length DNA fragments to reduce bias in PCR amplification. The technique sequences only about 

1% of the microbiota but can provide detailed taxonomic profiles of bacteria, archaea, and fungi at 
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the species level. It is capable of accurately profiling difficult samples with minimal DNA 

(picogram level), high host DNA contamination, or severely fragmented DNA. Testing on various 

sample types, including stool, skin, environmental, and clinical formalin-fixed, paraffin-embedded 

samples, has shown successful reconstruction of comprehensive microbial profiles including low 

abundance species with high resolution and accuracy.  

Digital microfluidics can provide an effective way to increase the signal to noise ratio for 

low biomass samples. Compartmentalized microbial DNA in droplets provide a way to separate 

the target from background DNA contamination, which increases the effective signal to noise ratio. 

It has been demonstrated that digital PCR can faithfully amplify a low amount of template (50-100 

pg) and minimize the influence of DNA contamination in the analysis.103 Similarly, analyzing 16S 

rRNA in intact cells with FISH and flow cytometry naturally creates an enclosed compartment, 

which eliminates the need of DNA amplifications and the influence of DNA contamination. These 

techniques provide promising approaches to studying bacteria in low biomass samples by directly 

characterizing bacteria at the single cell level. 

Mapping spatial distribution of microbiota 

The density and composition of the microbiota depend heavily on the location in the body. 

Spatial distribution is, therefore, a crucial parameter when applying microbiota analysis systems 

for medical applications. For instance, microbiota in the duodenum, jejunum, ileum, and colon 

differ by orders of magnitude, contributing to diverse functions.104 Even in a similar location, the 

microbiota in stool, luminal contents, and biopsies can exhibit significant differences.105,106 

Similarly, microbiota in the kidney, bladder, ureter, and urethra play distinct roles in health and 

diseases. Proteus mirabilis, which produces urease, is associated with urea stone formation in the 
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kidney, while the same bacterium in the lower urinary tract represents a significant cause of 

catheter-associated infections.107 Analyzing P. mirabilis and associated microbiota in different 

regions of the urinary tract may have important implications for evaluating the risk of development 

of different urological diseases. 

The sample collection method is an important consideration for analyzing the microbiota 

in different locations of the body. When specific spatial locations are crucial, medical procedures 

like colonoscopy, bronchoscopy, and cystoscopy may be required to obtain specific samples for 

analysis. On the other hand, stool and urine, which can be collected non-invasively, may facilitate 

longitudinal microbiota analysis in patients. For the diagnosis of urinary tract infections, midstream 

urine samples are typically preferred to reflect bladder bacterial counts. This strategy minimizes 

contamination by bacteria colonizing the distal urethra and genital mucosa. Analyzing different 

portions of the urine sample may provide a strategy for analyzing the spatial distribution of the 

microbiota in a non-invasive manner. 

In addition to spatial mapping at the organ scale, spatial mapping at the tissue-cell level is 

also crucial for clinical applications. For example, analyzing the biofilm on urinary catheters can 

provide insights into the initial site of bacterial biofilm formation on indwelling catheters and guide 

strategies for preventing catheter-associated complications.108 In these situations, FISH can be 

performed to measure spatial distribution, bacterial composition, and gene expression profiles on 

the sample. However, autofluorescence of bacteria and biofilm can significantly influence the 

results. Advanced imaging protocols and noise reduction algorithms are needed to improve the 

accuracy of the analysis.109 Additionally, imaging mass spectrometry is available for visualizing 

metabolites and microbe interactions in microbiological analysis down to the single cell level.110,111  
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An interesting example of spatial analysis is kidney stone microbiota. Kidney stone is 

associated with various bacteria, and stone obstruction of the urinary tract can lead to pyelonephritis, 

i.e., kidney infections.107,112 However, urine culture is a poor predictor for the presence of bacteria 

and biofilms on kidney stones.113-115 Patients with no growth urine culture can develop severe 

postoperative complications including urinary tract infections and urosepsis, which is associated 

with the stone microbiota. An enhanced culture technique (EQUC) and 16S rRNA gene sequencing 

have been demonstrated for characterizing stone microbiota of stone patients.116 The two methods 

complement each other by compensating for each other's strengths and weaknesses. Deep 16S 

rRNA sequencing allows in-depth microbiota analysis without the need for bacterial cultivation. 

However, it struggles with precise identification below the genus level. In contrast, EQUC can 

capture bacteria for full-scale characterization, contingent on their cultivability. The isolated 

bacteria can be identified to the species level by MALDI-TOF MS or whole genome sequencing.  

Live and Dead Bacteria 

A limitation of genomic analysis is its inability to determine the viability of cells. In fresh 

feces, dead cells can constitute over 30% of the total microorganisms.117 This issue could impede 

the analysis of how microbiota evolves under antibiotic treatment or other medical procedures. Live 

bacteria are crucial as they actively engage in and contribute to biomass production. Interestingly, 

while dead bacteria do not participate in biomass production, they represent unique characteristics 

of individuals and can reflect interactions with the host and medical intervention. This has been 

demonstrated in studies involving live, injured (dormant or inactive), and dead bacteria of the fecal 

microbiota.118 Analyzing both live and dead bacteria is important to interpret the influence of the 

microbiota on patients' conditions and host conditions. 



21 

 

Several methods can be applied to discriminate between viable and non-viable 

microorganisms.119 Culture-dependent approaches are often considered the gold standard, but they 

prove ineffective when dealing with unculturable bacteria, including microbes that only grow under 

specific conditions and viable but non-culturable (VBNC) bacteria.119 Culture-independent 

approaches analyze either the intactness of the cell membrane or metabolic activity. Viability dyes, 

such as Propidium iodide (PI) and SYTO, selectively stain nucleic acids in dead cells depending 

on the intactness of the cell membrane. However, they may have limitations in effectively staining 

some species.120 Metabolic assays, such as Calcein-AM for esterases and resazurin for 

mitochondrial enzymes, focus on measuring metabolic activity but might overlook metabolically 

dormant spores. 

Both viability stains and metabolic assays are compatible with microbiota analysis. They 

can be implemented alongside cell-based assays, such as FISH and flow cytometry, and occupy 

one of the fluorescence channels. For example, a combination of a cell viability kit and flow 

cytometry has been applied to rapidly analyze microbial populations and sort extremely oxygen-

sensitive species like Faecalibacterium prausnitzii from fecal materials.121 Additionally, propidium 

monoazide (PMA) can be combined with genomic assays to analyze only viable cells.122 In this 

method, PMA, a photoactivatable DNA-intercalating dye, is used to bind extracellular and non-

viable DNA that is not protected by an intact cell membrane. The PMA treatment can be combined 

with PCR, 16S rRNA sequencing, and metagenomics to analyze the DNA from viable cells. 

However, the process may render subsequent analysis less quantitative.123 
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Multiomic and functional analysis 

Clinical decision-making can benefit not only from the composition of microbiota but also 

from their functions and interactions with the host. Metagenomics describes what can be 

accomplished by microbes, while other omics analysis techniques, particularly metatranscriptomics, 

metaproteomics, and metabolomics, reveal their actual activities at different levels.124 Even within 

the same strains, significant phenotypic heterogeneity exists and evolves over time.125 

Metatranscriptomics analyzes the RNA content of a microbial community, offering insights into 

the gene expression activities within the microbial community. Metaproteomics further analyzes 

protein expression in the microbial community. Metaproteomics has advantages over 

metatranscriptomics due to the greater stability of proteins compared to RNA, particularly those 

from prokaryotes, making it a valuable method for deciphering biological functions.126 Furthermore, 

metabolomics measures a wide range of small molecules, including sugars, amino acids, lipids, and 

other organic molecules, directly examining the activity of the microbiota and their influence on 

the host. Metabolomics typically employs nuclear magnetic resonance (NMR) and mass 

spectrometry. Effective sample collection, storage, and preparation pose some of the challenges in 

metabolomics, as some metabolites are susceptible to degradation.127 Distinguishing between host-

origin and microbiota-origin metabolites presents another significant challenge.  

In addition to genomic and proteomic assays, cell-based assays can be applied to evaluate 

the functions of microbiota with the resolution of single cells. This ability can reveal the phenotypic 

heterogeneity and resolve the group of microorganisms responsible for the phenotypic change, 

which may benefit the optimization of therapy or microbiota manipulation procedures. In the case 

of FISH, molecular probes quantify gene expression with high resolution, without the need for cell 

isolation and lysis.128 Sequential FISH and barcode strategies can be applied to evaluate the 

numbers of genes.68,69 However, counting the number of spots may underestimate the expression 
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level due to overlapping mRNA in the field. Integrating fluorescence intensity provides a more 

accurate quantification of the expression level. In addition, imaging mass spectroscopy can resolve 

locations of biomolecules within cells.111 However, current studies are mostly performed using a 

small number of cells. Further development will be required to resolve functional activities in 

complex microbiota samples. 

Outline 

In the preceding sections, we explored the potential of emerging technologies for 

characterizing microbiota and their role in facilitating microbiota-associated clinical management 

strategies. Our focus was on technologies exhibiting promise for swift microbiota analysis in 

medical settings. After delving into essential features of microbiota analysis systems, such as 

implementation efficiency, absolute abundance measurement, low biomass detection, spatial 

distribution mapping, discrimination between live and dead cells, and functional analysis, we 

identified the crucial need for developing effective single-cell measurement methods in practical 

applications. 

In Chapter 2, we propose a multimodal biosensor design tool, specifically tailored for 

single-cell microbiota profiling. The simplicity of construction and cost-effectiveness associated 

with these tools are anticipated to make microbial community profiling widely accessible and 

efficient for diverse scientific research purposes. Leveraging multimodal biosensors, we can now 

detect microbial populations and assess functionality at the single-cell level, opening up new 

possibilities for comprehensive analysis in scientific research. In Chapter 3, we focus on microbial 

community profiling via multimodal biosensor on clinical samples and in Chapter 4 , we will make 

a conclusion and discuss future work.



 

 

Chapter 2 Multimodal Biosensor Design 

Multimodal Biosensor Design Workflow 

In this chapter, we will talk about the multimodal biosensor design workflow, as shown in 

Figure 2-1. This report will comprehensively cover the database, bioinformatic algorithms, 

biosensors binding kinetics, and detailed applications of the multimodal biosensor. The design 

workflow showcased for this biosensor holds versatile potential across various applications, 

including but not limited to 16S rRNA identifications and mRNA quantifications at the single-cell 

level. The discussions will delve into essential aspects pertaining to these applications. 
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Figure 2-1 Multimodal biosensor design workflow 
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Consensus sequence of target taxon or gene 

In our study, we focused on determining the consensus sequence of the target taxon or gene 

using specific algorithms as shown in Figure 2-2. Initially, we retrieved the 16S rRNA genes from 

the RDP database129 and mRNA genes from Kyoto Encyclopedia of Genes and Genomes 

(KEGG)130. To create probes for detecting the murine microbiota in fecal sample, our approach 

involves referencing the Murine Microbiome Database131 alongside our sequence data. This allows 

us to identify and select appropriate species or genera from the database for probe design. The 16S 

rRNA genes obtained from the RDP website were aligned upon download, while for mRNA genes 

sourced from KEGG, we utilized Clustal Omega at EMBL-EBI132 via web services to align the 

sequences. Subsequently, we derived a consensus string by identifying the most prevalent 

nucleotides in each column of the aligned sequence matrix. Each column was assigned a profile 

score based on similarity, and the consensus string's probability was determined by multiplying the 

probabilities of individual nucleotides. Additionally, we computed the probabilities of potential 

donor candidates by multiplying the profile scores of specific lengths, enabling the identification 

of high-sensitivity candidates by setting probability thresholds.   

It's crucial to highlight the difference in approach from methods like Primrose133 and 

ARB134, where the use of degenerate bases to generate consensus sequences often compromises the 

specificity of probes and might miss out on high-sensitivity candidates. In contrast to ARB, which 

typically removes gaps when they are most prevalent in a column, our gap threshold assigns 

positions as 'not applicable,' effectively bypassing these regions. To tackle this issue, we've 

introduced a threshold aimed at excluding gaps within the consensus sequence, restricting the usage 

to only the four bases for more precision. 

This methodology ensures a nuanced approach to consensus sequence determination, 

emphasizing both sensitivity and specificity while strategically handling gaps in the sequence. 
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Figure 2-2 Consensus sequence of target taxon or gene. Starting with an aligned sequence from the 

Ribosomal Database Project, the process continues with the calculation of profile scores and the establishment of 

thresholds for selecting probe candidates. 

Statistical analysis of binding energy 

In the subsequent phase, we conduct a statistical analysis of the free energy change (ΔG) 

within both the target and non-target groups. To ensure probes exhibit exceptionally high 

sensitivities and specificities, adherence to the thermodynamic condition of ΔGtarget < ΔGquencher < 

ΔGnon−target is important (as illustrated in Figure 2-3). The robust hybridization of the target and 16S 

rRNA outperforms that of the quencher, leading the donor to bind to the 16S rRNA and emit light. 

Conversely, weaker hybridization of the non-target 16S rRNA compared to the quencher prompts 

the donor to bind to the quencher, diminishing the fluorescence signal. Utilizing functions within 
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the ViennaRNA package135, we compute the minimum free energy among the donor, quencher, and 

target. 

To statistically evaluate the sensitivity and specificity of each potential donor, we generate 

plots displaying the percentages of thermodynamically qualified species within both the target and 

non-target groups. Specifically, the percentage of species meeting the condition ΔGtarget < ΔGquencher 

in the target group represents sensitivity, while the percentage adhering to ΔGquencher < ΔGnon−target 

in the non-target group signifies specificity. Hence, adjusting the quencher lengths allows for fine-

tuning the probes' sensitivity and specificity. Notably, as the quencher length increases, sensitivity 

may decrease while specificity may augment. 

By integrating the ViennaRNA package into the proposed R package, we aim to select 

donors exhibiting high sensitivities and specificities from a plethora of potential candidates. This 

selection process facilitates the determination of an appropriate quencher length for optimal probe 

performance. Furthermore, a comprehensive evaluation of the hairpin and self-dimer structures 

within the donor sequence is performed. The stability of these structures has the potential to 

significantly influence the binding efficiency of the biosensors. 

 

Figure 2-3 Statistical analysis of binding energy. Conducting a statistical analysis of the free energy change 

(ΔG) within both the target and non-target groups as well as self-dimer and hairpin structure. 



29 

 

Secondary structure prediction for biosensors selection 

The secondary structure prediction for biosensors selection is shown in Figure 2-4. 

Following the statistical analysis of binding energy, numerous probe candidates are still viable, as 

depicted in Figure 2-5 (A). The Y-axis indicates the percentage of the target genus, Lactobacillus, 

showing lower binding energy, and all non-target bacteria (excluding those in the Lactobacillus 

genus but included in the mice stool sample database) displaying higher binding energy, relative to 

the quencher, in mice stool database. To pinpoint the most suitable probes, we delve into the 

secondary structures of our target. In the case of the 16S rRNA, the folding intricacies significantly 

impact its binding capability. However, assessing all targets individually, especially considering 

the potential multitude of species within a single phylum, is a formidable task. Therefore, we 

employ the ViennaRNA package135 to derive bracket notations representing the minimum free 

energy (MFE) structure. 

In quantifying the degree of freedom within specific target regions, we convert the bracket 

notations into scores based on continuity. For example, in instances illustrated in the figure, an 

open area containing four continuous bases would accrue a score of 4 for each of these bases. 

Subsequently, we calculate the average scores for all target regions and visualize them as a heat 

map, showcasing regions with the highest probability of continuous unpaired bases, as illustrated 

in Figure 2-5 (B). Moreover, we compute the entropy of each column, obtaining their averages, and 

present this data as a heat map Figure 2-5 (C). This visualization assists in enhancing the selection 

process by providing a clearer understanding of the entropy distribution for better-informed 

decision-making. This approach aids in the selection of the most optimal probes from the extensive 

pool of hundreds of candidates. 
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Figure 2-4 Secondary structure predictions. Employment of the ViennaRNA package135 to derive bracket 

notations representing the minimum free energy (MFE) structure. 

 

Figure 2-5 Example of Lactobacillus probe selection. The Y-axis indicates the percentage of the target genus, 

Lactobacillus, showing lower binding energy, and all non-target bacteria (excluding those in the Lactobacillus genus 

but included in the mice stool sample database) displaying higher binding energy, relative to the quencher, in mice 

stool database. The X-axis is the serial number of probe candidates. 
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Enhance the coverage by multiple probe combinations 

Following the selection of probes exhibiting high sensitivity, specificity, and unpaired 

regions, we assess their efficacy using rBLAST. Generally, genus-level probes tend to achieve 

superior sensitivity and specificity. However, designing probes at the phylum level presents 

challenges as it involves encompassing a larger number of species while simultaneously excluding 

others. To address this complexity, we implement multiple probe combinations as a solution 

(Figure 2-6). 

For instance, in the case of Firmicutes probes, we initially create two probes, Firm_1 

targeting the Bacilli class and Firm_2 targeting the Clostridia class, which are the dominant classes 

in murine fecal samples. During the probe design phase, the absence of mutual exclusivity between 

the two probes is advantageous for the design process, as shown in Table 2. Subsequently, we 

design Firm_3 based on species not covered by Firm_1 and Firm_2. By employing these 

combinations, we achieve a coverage of 98.5% with high specificity. We apply a similar strategy 

to other predominant phyla in murine fecal samples, such as Bacteroidota, Actinomycetota, and 

Proteobacteria. 

The probe combinations' BLAST results, as outlined in Table 3, demonstrate that these 

combinations significantly improve coverage to over 97% while maintaining less than 3% of 

nonspecificity. This approach effectively addresses the challenges associated with designing probes 

at the phylum level, enhancing both coverage and specificity in detecting the Murine Microbiota. 

The phylum probes are focused on the phylum level; there may be greater potential for 

nonspecificity if our focus were on more refined taxonomic levels. With probes targeting the genus 

level, we observe much lower nonspecificity (less than 1%). 
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Figure 2-6 Enhance the coverage by multiple probe combinations 

                                                              
Probe.                Probe 
 

Taxa         

Bac_1 Bac_2 Firm_1 Firm_2 Firm_3 Actino_1 Actino_2 
Proteo_

1 
Proteo_

2 

Bacteroidota 98.3% 98.9% 0.2% 1.0% 2.3% 0.2% 0.0% 0.6% 0.0% 

Firmicutes 

Bacilli 
0.1% 0.1% 97.3% 33.8% 3.2% 0.2% 0.0% 0.0% 0.0% 

Firmicutes 

Clostridia 
0.3% 0.2% 20.6% 82.3% 63.5% 0.3% 0.0% 0.0% 0.6% 

Actinomycetota  0.2% 0.2% 0.2% 1.0% 0.2% 92.0% 22.9% 0.0% 0.0% 

Proteobacteria  

Alphaproteobacteria 
0.0% 0.0% 0.7% 0.0% 0.9% 0.4% 0.0% 98.8% 6.2% 

Proteobacteria  

Gammaproteobacteria 
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 18.3% 99.5% 

Table 2 Coverage of individual probes 
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               Probe 
Taxa 

Bac_1 
+ 

Bac_2 

Firm_1 
+ 

Firm_2 
+ 

Firm_3 

Actino_1 
+ 

Actino_2 

Proteo_1 
+ 

Proteo_2 

Bacteroidota 99.2% 2.9% 0.2% 0.6% 

Firmicutes 0.2% 98.5% 0.2% 0.3% 

Actinomycetota 0.2% 1.2% 97.8% 0.0% 

Proteobacteria 0.0% 0.9% 0.2% 99.4% 

Table 3 Coverage of probe combinations 

Incorporate the workflow into a single R package 

 To optimize biosensor design efficiency, we've consolidated the workflow into a 

unified R package. This package allows for easy modification of parameters such as the threshold, 

donor length, and quencher to enhance results. Integration with ViennaRNA and rBLAST packages 

ensures seamless functionality within the R Studio platform. 

The most resource-intensive and time-consuming aspect involves utilizing the brute-force 

algorithm to search for the best-matched regions among probe candidates, targets, and non-targets, 

involving four layers of iterations. To expedite this process, we've implemented parallel computing 

on the R Studio server, a significant enhancement in computational speed. What originally took 

about a week to run on a personal computer now completes within a few hours on the servers. This 

adoption of parallel computing significantly reduces the computational load and expedites the 

identification of optimal probe regions, greatly streamlining the biosensor design process.  
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Multimodal Biosensor Design for Mouse Fecal Microbiota 

Phylogenetic biosensors design for mouse fecal microbiota 

Designing phylogenetic biosensors for mouse fecal samples involves targeting specific 

bacterial groups commonly found in stool. The selected phyla for the biosensors are Bacteroidota, 

Firmicutes, Actinomycetota, and Proteobacteria, as they are frequently observed in these samples. 

Additionally, we'll focus on Lactobacillus and Bifidobacterium, core genera often present in 

probiotic products, for probe development. 

             To assess the detection limits of the system, the chosen target species for evaluation is 

Enterococcus faecalis. This species is relatively uncommon in our mouse fecal samples, making it 

an ideal candidate to evaluate limit of detection of the biosensor system. Enterococcus faecalis 

holds significance in various contexts due to its versatile nature. As a commensal bacterium, it 

naturally resides in the gastrointestinal tract of humans and animals, contributing to the complex 

microbial community within the gut136. Despite being a part of the normal gut microbiota, 

Enterococcus faecalis can pose health concerns as it possesses traits of opportunistic pathogenicity, 

leading to infections, particularly in hospital settings137,138.  

Genus-level and species-level probes commonly display heightened discriminatory power, 

offering superior sensitivity and specificity in target identification. Conversely, the design of probes 

at the phylum level presents inherent challenges due to the vast taxonomic diversity it encompasses, 

necessitating the inclusion of numerous species while excluding others. To surmount these 

challenges, our methodology employs a strategy involving the creation of multiple probe 

combinations described in Chapter 2. This approach allows for a comprehensive coverage of the 

diverse range of species within the phylum while concurrently ensuring precise and selective 

targeting, thus optimizing the specificity and sensitivity of the detection system. 
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Gene biosensors design for single cell gene expression  

The inhibitory neurotransmitter role of gamma-aminobutyric acid (GABA) in the context 

of the nervous system is fundamental. In the central nervous system of animals, GABA acts as the 

primary inhibitory neurotransmitter, regulating neuronal excitability by binding to GABA receptors 

on neurons. When GABA binds to these receptors, it triggers an inhibitory response, essentially 

calming the activity of neurons. This modulation of neuronal activity helps maintain a balance 

between excitation and inhibition, crucial for normal brain function. 

In the realm of bacteria, while GABA functions primarily in metabolic and stress-related 

pathways, its role as an inhibitory neurotransmitter akin to its function in the nervous system of 

animals is not precisely replicated. However, the mechanisms involving GABA in bacterial cells 

contribute to regulating cellular responses to stressors and maintaining internal homeostasis. Within 

bacteria, GABA can act as a signaling molecule to regulate various cellular processes. It can 

facilitate responses to external stresses such as acid stress or oxidative stress, aiding in bacterial 

survival under adverse conditions. By modulating GABA levels, bacteria can adapt to changing 

environments, adjust their metabolic activity, and potentially resist external challenges. 

Understanding the role of GABA and the pathways involved in its synthesis, including the 

gadB gene, provides insights into how bacteria manage stress responses and adapt to different 

environmental conditions. Manipulating GABA metabolism in bacterial systems might have 

implications beyond bacterial physiology, potentially influencing stress tolerance, probiotic 

development, or even strategies for controlling microbial populations. 

Exploring the parallels and divergences between GABA's functions as an inhibitory 

neurotransmitter in animals and its roles in bacterial physiology remains an area of active research. 

This exploration not only deepens our understanding of microbial biology but also unveils potential 
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applications in biotechnology, where harnessing these mechanisms could lead to innovative 

solutions in various fields. Initially, we retrieved the gadB genes specific to the Lactobacillus genus 

from the KEGG. Subsequently, we employed Clustal Omega, accessible through EMBL-EBI's web 

services, to align these sequences. Following the alignment, we utilized our R package to develop 

probes following a standardized protocol. In this process, the 16S rRNA sequences served as the 

non-target group for the probe design, ensuring specificity to the gadB genes of Lactobacillus. The 

phylogenetic tree analysis of gadB genes of Lactobacillus are shown in Figure 2-7. 

 

 

Figure 2-7 Phylogenetic tree analysis of gadB genes of Lactobacillus. 
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Chapter 3 Microbial Community Profiling via Multimodal Biosensor 

Within this chapter, our aim is to introduce and elaborate on the application of phylogenic 

biosensors in studying the fecal microbiome, alongside an exploration of biosensor hybridization 

protocols. We'll thoroughly discuss the materials used, the intricacies of the sample preparation 

process, and the study design (Figure 3-1). 

Furthermore, we will integrate the use of Live/Dead kits to discern and assess the viability 

of distinct taxa. A critical aspect of our exploration will be studying the limits of detection inherent 

within these methods, along with detailing the flow of image processing integral to this analytical 

process. We will also introduce the mRNA biosensor, which enables the evaluation of gene 

expression levels at the single-cell level. This innovation promises to significantly enhance our 

ability to understand and analyze the dynamic gene expression patterns within the microbiome. 

 

Figure 3-1 Microbial Profiling via Multimodal Biosensor 
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Materials and Methods 

Fecal sample collection and bacteria isolation 

We gather 9 mice fecal samples in a dual collection on the same day – one set for 

sequencing and the other for our biosensor profiling. Following immediate collection, we 

implement the fecal sample processing protocol. 

1. Dilute the fecal sample with PBS at a ratio of 1:10. 

2. Agitate the diluted sample using a vortex mixer then follow a sonicating water bath for 

10-15 minutes to ensure thorough mixing. 

3. Centrifuge the mixture at a low speed of 200 x g for 2 minutes to separate larger 

particles and debris. 

4. Carefully collect the supernatant obtained after centrifugation and subject it to a higher 

centrifugal force of 14,000 rpm for 5-10 minutes to pellet smaller particles. 

5. Resuspend debris in PBS by agitation using a vortex mixer then follow a sonicating 

water bath for 10-15 minutes to ensure thorough mixing. 

6. Centrifuge the debris-PBS mixture at 200 x g for 2 minutes to separate bacteria 

7. Collect the supernatant obtained and subject it to a centrifugal force of 14,000 rpm for 

5-10 minutes to pellet any remaining solid materials. 

8. Wash the resulting pellet twice using PBS to ensure cleanliness and remove impurities. 

This protocol aims to isolate supernatant containing target components while removing 

debris and impurities through centrifugation and washing steps. Adjustments to timing, centrifuge 

speeds, and wash repetitions may be made based on specific research requirements or sample 

characteristics. 
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Viability staining using Live/Dead kit 

To obtain information on single-cell viability, we utilized the LIVE/DEAD BacLight 

Bacterial Viability Kit (Cat. No. L7012). This specific kit serves the purpose of evaluating the 

viability of bacterial populations based on their cellular membrane integrity. Cells with 

compromised membranes, indicative of being dead or dying, exhibit a red stain, while cells with 

intact membranes exhibit a green stain. Our choice to utilize the red dye (propidium iodide) solely 

for staining dead bacteria is aiming to conserve spectral resources for phylogenetic biosensors. 

Considering the permeable step of our hybridization protocol, we perform the viability staining 

beforehand. Upon bacterial isolation, we conduct two washes with PBS and subsequently 

resuspend the bacteria in 1 ml of PBS. Following this, we add 1.5 µL of the dye mixture to each 

milliliter of the bacterial suspension. The suspension is then incubated at room temperature in 

darkness for 15 minutes. Subsequently, the bacteria undergo a modified fluorescence in situ 

hybridization (FISH) protocol to simultaneously gather information regarding both viability and 

phylogenetics. 

Modified fluorescence in situ hybridization (FISH) protocol 

Fluorescence in situ hybridization (FISH) is a powerful molecular biology technique used 

to detect and localize specific DNA or RNA sequences within cells or tissues. It utilizes 

fluorescently labeled probes that hybridize to complementary target sequences, allowing for the 

visualization and identification of these sequences under a fluorescence microscope. 

In the context of bacteria, FISH can be particularly useful for studying microbial 

communities, identifying specific bacterial species, and examining their spatial distribution within 

environmental samples or host tissues. However, bacteria possess unique cell structures and 
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membranes that can make it challenging to access their genetic material for FISH analysis. Bacterial 

cell membranes contain rigid cell walls and other protective layers that can impede the penetration 

of FISH probes. To overcome this barrier and facilitate probe entry, various methods are employed 

to effectively lyse or permeabilize the bacterial cell wall. Enzymatic and/or heat lysis methods are 

commonly used to disrupt the tough bacterial membrane and allow the FISH probes to access the 

intracellular DNA or RNA. 

Enzymatic lysis involves the use of enzymes, such as lysozyme, to degrade components of 

the bacterial cell wall. Lysozyme targets the peptidoglycan layer of the cell wall, while proteinase 

K breaks down proteins that contribute to the structural integrity of the membrane. These enzymes 

weaken the cell wall, making it more permeable to the FISH probes. Heat lysis, on the other hand, 

involves subjecting the bacterial cells to elevated temperatures, typically through heat shock or 

boiling, to disrupt the cell membrane. This process helps to soften the cell wall and increase its 

permeability, allowing the FISH probes to enter and bind to the target genetic material. After 

enzymatic or heat lysis, the fluorescently labeled probes are introduced to the sample and allowed 

to hybridize specifically with the complementary sequences within the bacterial cells. Unbound 

probes are washed away, and the samples are visualized using fluorescence microscopy. The 

fluorescence signals emitted by the bound probes indicate the presence and location of the targeted 

DNA or RNA sequences within the bacterial cells. 

Overall, the combination of FISH with enzymatic or heat lysis methods enables the 

visualization and study of specific genetic material within bacterial cells, contributing to a better 

understanding of microbial communities, pathogen identification, and various other applications in 

microbiology and environmental sciences. Here is the optimized protocol for conducting FISH 

within bacterial cells. 

1. Preparation of Hybridization Buffer in Water: 
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• NaCl: 0.9 M 

• Tris-HCl (pH 7.6): 0.02 M 

• Formamide: 20% 

• Dextran Sulphate: 10% 

• SDS: 0.01% 

• CaCl2: 0.45 mM 

2. Preparation of Probe: 

• Combine 1 µl of each probe with 99 µl of hybridization buffer to make 100 µl of 

the probe solution. 

3. Bacterial Cell Preparation: 

• Harvest 50 µl of bacteria culture at 10^9 CFU/ml for each FISH test. 

• Wash the cells twice with 1X PBS. 

4. Fixation and Cell Preparation: 

• Fix the bacteria cells by adding 150 µl of 4% PFA and incubate for 40 minutes at 

4 °C. 

• Remove excess fixative (3% PFA) and wash the cells twice with 1X PBS. 

5. Cell Treatment for FISH: 

• Heat the bacteria cells at 80°C for 10 minutes. 

• Immediately place the cells on ice for 1 minute. 

• Permeabilize the cells by treating them with 50 µl of a mixture containing 20 

mg/ml lysozyme + 1 mg/ml lysostaphin for 15 minutes at 37°C. (For gram-positive 

target) 

• Wash the cells thoroughly with ice-cold 1X PBS. 

6. Hybridization and Washing Steps: 
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• Resuspend the cells and incubate them with 50 µl of hybridization buffer 

containing 1 µm probe at 46 °C for 20 minutes. 

• Wash the cells twice with 50 µl of washing buffer 1 (0.4x SSC) to eliminate excess 

probes, incubating at 46 °C for 3.5 minutes each time to reduce nonspecific binding. 

• Perform additional washes with 50 µl of washing buffer 2 (2x SSC/0.05% Tween) 

twice. 

7. Imaging: 

• Acquire images using a fluorescent microscope with a fluorescent exposure time 

of 1 second and a bright field image. 

This optimized protocol for FISH in bacterial cells involves multiple steps for cell 

preparation, fixation, permeabilization, probe hybridization, and thorough washing to ensure 

specific and accurate visualization of targeted RNA sequences within the bacterial cells. 

Adjustments should be made based on specific experimental requirements and bacterial species 

characteristics (enzyme lysis for gram-positive species). 

Image analysis protocol 

Following viability staining and modified fluorescence in situ hybridization, dispense 1 µl 

of the prepared solution onto a glass slide and capture images using a fluorescent microscope set 

with a 1-second exposure time for fluorescent images and a bright-field image. All procedural steps 

are automated using the ImageJ Macro. Initially, the image is converted to 8-bits and the 

background is subtracted. Subsequently, a threshold is established and the image is converted to a 

mask to create a binary representation. Employing the watershed method, each object's center is 

determined via a morphological erode operation. A distance map is calculated from these object 
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centers to the object edges, simulating a "topological map" filled with simulated water. At junctures 

where two "Watersheds" meet, a dam is constructed to separate them. The watershed function 

effectively separates touching cells. Following this, particle analysis is executed using automatic 

particle counting. To eliminate small background artifacts generated by the threshold, a minimum 

size filter is applied. Regions of interest (ROIs) are then obtained and used to measure the mean 

fluorescent intensity within them, yielding results. Subsequently, an intensity threshold is set, and 

the data is plotted using R for further analysis and visualization. The process is shown in Figure 

3-2.  

 

Figure 3-2 Image processing of bright field image. 

Sampling from large population of bacteria in stool 

Determining the required sample size from a large population of bacteria in stool to attain 

statistical significance is a pertinent academic query. In accordance with Dillman's formula139, 

accommodations are applied to account for finite population size within the confidence interval 

formula. In this formula, np represents the total count of the larger population, ns stands for the 

sample size, 𝑝 denotes the proportion of the targeted group for detection, ε is the margin of 

sampling error, and 𝑍𝛼
2⁄
 refers to the z-score corresponding to the desired confidence level. 
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ns =
np𝑝(1 − 𝑝)

(np − 1)(
ε

𝑍𝛼
2⁄
)

2

+ 𝑝(1 − 𝑝)

 

 

In order to estimate the necessary sample size, several assumptions must be established. 

For a 95% confidence level, 𝑍𝛼
2⁄
  equals 1.96. The estimate number of the bacteria in healthy 

mouse feces is near 109 CFU per gram of stool. Considering an experiment with a total stool weight 

of 0.1 grams, np would equate to 108. We sampled 50,000 bacteria through the capture of 10 images, 

each comprising 5,000 bacteria. The table below illustrates the margin of sampling error achieved 

by setting different target proportions (Table 4). We can get different but acceptable sampling error 

whin dynamic range, subject to specific constraints and statistical parameters. 

Target 

proportion 

50% 10% 5% 1% 0.5% 0.1% 0.05% 0.01% 

Sampling 

error 

0.44% 0.26% 0.19% 0.087% 0.061% 0.028% 0.019% 0.0087% 

Table 4 Target proportion and sampling error. 

16S rRNA sequencing 

To assess our sample's microbial composition, we engaged CD Genomics for 16S rRNA 

sequencing, a widely recognized method for profiling microbial communities. This approach 

involves amplifying prokaryotic 16S rDNA hypervariable regions via PCR and subsequently 

sequencing the amplicons on a high-throughput platform. Analysis of these distinct regions allows 

for determining the relative abundance of various taxa within a community and comparing 
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taxonomic profiles among different groups, aiding in understanding changes in microbial profiles 

over time or between treatments. 

Traditionally, absolute quantification of specific microorganisms in environmental 

samples involved qPCR, yet this method often yielded unstable results and necessitated the design 

of specific primers. Presently, standard 16S rRNA sequencing provides relative abundance data by 

calculating the ratio of sequence variants to the total number of sequences. However, addressing 

the absolute quantification issue has garnered considerable attention. 

For this purpose, we submitted a stool sample over 0.1g to CD Genomics, shipping it in a 

fresh state with dry ice. They isolated the DNA and performed Accu16STM (Accurate 16S 

Absolute Quantification Sequencing). The process began with DNA extraction using the 

FastDNA® SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA) as per the manufacturer's 

instructions. Genomic DNA integrity, concentration, and purity were assessed via agarose gel 

electrophoresis, Nanodrop 2000, and Qubit3.0 Spectrophotometer. 

To enable accurate quantification, synthetic spike-ins were created with conserved regions 

mimicking natural 16S rRNA genes but featuring randomly sequenced variable regions (~40% GC 

content). These spike-ins, with known gradient copy numbers, were mixed in appropriate 

proportions with the sample DNA. Subsequently, the V3-V4 hypervariable regions of the 16S 

rRNA gene and spike-ins were amplified using primers 341F (5'-CCTACGGGNGGCWGCAG-3') 

and 805R (5'-GACTACHVGGGTATCTAATCC-3') and sequenced using an Illumina NovaSeq 

6000 sequencer. 

In data processing, QIIME2 was employed. The cutadapt plugin removed adaptor and 

primer sequences, followed by DADA2 for quality control and amplicon sequence variant (ASV) 

identification. Taxonomic assignments were made with a pre-trained Naive Bayes classifier based 

on Greengenes (version 13.8) at a confidence threshold of 0.8. Subsequently, spike-in sequences 
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were identified, read counts recorded, and standard curves generated for each sample, correlating 

read counts to spike-in copy numbers. This facilitated calculating the absolute copy number of each 

ASV in the samples. 

Given that spike-in sequences were not part of the sample's natural flora, they were 

removed in subsequent analyses. ASVs, differing from OTUs by removing repetitive sequences 

without performing similarity clustering, were generated post quality control using the DADA2 

plugin. Taxonomic annotations of ASVs were achieved by comparing representative sequences 

with a database via QIIME2 software, using different annotation methods at a confidence threshold 

of 0.8 (16S confidence level). The resulting taxonomic annotations were obtained through various 

annotation methods: classify-sklearn, classify-consensus-blast, classify-consensus-vsearch, and 

default classify-sklearn. 

Results and Discussions 

Proof of concepts with culturable strain 

To validate the concept with culturable strains, we tested Bacteroides fragilis, 

Lactobacillus plantarum, Bifidobacterium longum, and Escherichia coli, all stored at -80°C in a 

solution comprising 25% glycerol and 75% culture medium. The anaerobic strains (Bacteroides 

fragilis, Lactobacillus plantarum, and Bifidobacterium longum) were cultivated using BD 

GasPak™ EZ Gas Generating Systems and EZ Anaerobe Container System Sachets, taking several 

days to reach sufficient growth concentrations. Bacteroides fragilis was cultured in Bacteroides 

Phage Recovery Medium (BPRM), while Lactobacillus plantarum and Bifidobacterium longum 

were cultured in De Man–Rogosa–Sharpe (MRS) media supplemented with 0.1% cysteine to 



47 

 

tolerate oxygen exposure. These bacteria were incubated at 37°C without agitation. Escherichia 

coli was cultured in Mueller Hinton Broth 2 at 37°C with shaking. Subsequently, phylogenetic 

biosensors were applied to the mouse fecal microbiota using modified fluorescence in situ 

hybridization. The resulting BLAST analysis is presented in Table 5, while the phylogenetic 

biosensors' transformation efficiency is illustrated in the Figure 3-3. The under fluorescent 

microscope are shown in Figure 3-4. 

 

Bacteroidota Firmicutes Lactobacillus Actinomycetota  Bifidobacterium Proteobacteria 

donor CGACACCTCA

CGGCACGAGC 

CGTAGTTAGC

CGTGACTTTC 

GCAGGTTCGC

TTCTCGTTGT 

CGGCCATTGT

AGCATGCGTG 

ACCGTTAAGC

GATGGACTTT 

GCCCAGTAAT

TCCGATTAAC 

quencher GCTCGTGCCG

TGAGG 

GAAAGTCACG

GCTAA 

ACAACGAGA

AGCGAA 

CACGCATGCT

ACAAT 

AAAGTCCATC

GCTTA 

GTTAATCGGA

ATTAC 

 

Bacteroides 

fragilis 

GCTCGTGCCG

TGAGGTGTCG 

N NA NA NA NA 

Lactobacillu

s plantarum 

NA 
GAAAGCCACG

GCTAACTACG 

ACAACGAGTT

GCGAACTCGC 

NA NA NA 

Bifidobacter

ium longum 

NA NA NA 
CACGCATGCT

ACAATGGCCG 

AAAGTCCATC

GCTTAACGGT 

NA 

Escherichia 

coli 
NA NA NA NA NA 

GTTAATCGGA

ATTACTGGGC 

Table 5 BLAST result of culturable strains 
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Figure 3-3 Phylogenetic biosensors' transformation efficiency 

 

Figure 3-4 The bacteria after phylogenetic biosensor hybridization under fluorescent microscope 

Limit of detection 

We introduced Enterococcus faecalis into mouse stool samples and utilized Enterococcus 

faecalis probes to assess the system's limit of detection. Enterococcus faecalis was chosen as the 
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target due to its absence in certain samples, and the probes exhibited high specificity according to 

the BLAST results. Cultured Enterococcus faecalis was added, and ImageJ was employed to 

quantify cell concentrations. Through serial dilutions, we obtained various target proportions: 50%, 

10%, 5%, 1%, 0.5%, 0.1%, 0.05%, and 0.01%. Subsequently, we conducted species probe 

hybridization and employed specific workflows to analyze the resultant images. Each data point 

was derived from 50,000 bacteria samples, captured across 10 images, each containing 5,000 

bacteria. The experiments were replicated three times (n=3). The ratios of spiked samples and the 

measured target proportions using multimodal biosensors are detailed in the corresponding results 

(Table 6 and Figure 3-5). Following the limit of detection formula140, the calculated limit of 

detection (LoD) is calculated as 0.0075%.  

LoD = LoB + 1.645 SDlow concentration 

In this context, LoB denotes the limit of blank (which is zero in our case), and SD 

represents the selected standard deviation of 0.01%. The R-squared value is 0.9997, indicating a 

high degree of correlation. Additionally, the coefficient is 0.9369, closely aligning with the 

transformation efficiency. The observed errors in the results might originate from various factors, 

such as sampling errors discussed in the preceding paragraph, transformation efficiency, and/or 

probe coverages. When the calculated LOD is lower than the lowest amount actually measured in 

the tests, this might suggest that the assay has the theoretical capability to detect smaller quantities 

than those we have experimentally confirmed. Consequently, we evaluated the lower concentration 

level of 0.0075%, obtaining an average measurement of 0.0126% with a standard deviation of 

0.0026%. This outcome is clearly distinguishable from the blank sample, demonstrating the 

substance's detectability at this concentration level. 

 

 



50 

 

Spiked sample 

ratio 

100% 50% 10% 5% 1% 0.5% 0.1% 0.05% 0.01% 0.0075% 0% 

Measurement 

by biosensor 

94.34% 45.3% 9.23% 4.88% 1% 0.548% 0.07% 0.041% 0.013% 0.0126% 0% 

Standard 

deviation 

3.62% 3.51% 0.655% 0.299% 0.167% 0.112% 0.0196% 0.0102% 0.00461% 0.0026% 0% 

Table 6 Explore limit of detection by spike cultured bacteria into mice stool sample 

 

 

 

 

 

 

 

 

 

 

Figure 3-5 The relationship between target proportions and detection capability 

 

Relative abundance and absolute abundance 

In our taxonomic analysis, we concentrated on Proteobacteria, Bacteroidota, 

Actinomycetota, and Firmicutes, significant phyla prevalent in murine feces with crucial 

physiological roles. Furthermore, we specifically targeted Lactobacillus and Bifidobacterium, core 

genera commonly found in probiotic products, alongside Enterococcus faecalis due to its absence 
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or low abundance in select samples, enabling sensitivity testing of the biosensors. To validate the 

microbial composition of our samples, we collaborated with CD Genomics for 16S rRNA 

sequencing analysis. Using a biosensor platform, we characterized the microbial community 

profiles within mice fecal samples, displaying the abundance of bacteria at the phylum, genus, 

species level via a heatmap (Figure 3-6).  

 

Figure 3-6 Heatmaps of the microbial community composition. 

 

The findings exhibit strong concordance with the data obtained from 16S rRNA sequencing. 

Notably, the biosensor platform effectively detected a significant increase in Bacteroidota and a 
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substantial decrease in Firmicutes at the phylum level in samples 6, 7, and 8. At the genus level, 

distinct patterns emerged for Lactobacillus and Bifidobacterium, with both exhibiting notably high 

percentages (>40%) and very low percentages (<0.1%). Additionally, the presence or absence of 

Enterococcus Faecalis could be determined, even with its minimal abundance at the species level. 

 

In terms of absolute abundance, as our sampling is based on actual cell numbers, it offers 

a more meaningful comparison of the actual bacterial quantities between samples. The absolute 

abundance particularly valuable when comparing different individuals. For instance, while samples 

6, 7, and 8 display similar high relative abundances of Bacteroidota, an examination of absolute 

abundance reveals that sample 8 contains double and triple the amount of Bacteroidota per gram 

of stool compared to samples 6 and 7. This information was not captured by relative abundance 

analysis and absolute read counts in 16S rRNA sequencing, and may potentially provide useful 

insights into the microbial composition across samples. 

Viability of different taxonomic group  

One of the key advantages of our biosensors lies in their ability to assess the viability of 

various taxonomic groups, a capability not achievable through sequencing alone. To gain a 

comprehensive understanding, it is imperative to obtain simultaneous information regarding the 

identity and activity of microbial cells. Live bacteria actively contribute to biomass production, 

while inactive bacteria, although not participating in production, may still serve functions within 

the gastrointestinal tract, as evidenced by studies involving inactive probiotic bacteria. 

Defining life and death in microbiology can be complex, with two main aspects of 

microbial viability being the intactness of the cell membrane and cellular metabolism. While 
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culture-dependent approaches are considered the gold standard, they prove ineffective when 

dealing with bacteria that cannot be cultured. Culture-independent methods encompass viability 

stains and metabolism-based approaches. 

Viability stains, such as Propidium iodide (PI), typically rely on the integrity of the cell 

membrane. In our workflow, we have incorporated PI by staining the bacteria before 

permeabilization. Subsequently, we hybridize the biosensors with distinct fluorescent colors, 

enabling us to obtain both viability and taxonomic information simultaneously, as illustrated in  

Figure 3-7 (C-E). 

 

Figure 3-7 Viability of different taxonomic group. (A) The work flow of single cell viability staining and 

biosensor hybridization. (B) Image processing of bright field to determine the ROIs. (C) PI staining (red) of dead bacteria. 

(D) The phylum (green) and (E) genus (blue) biosensors signals under fluorescent microscope.  

The Figure 3-8 displays the results of viability and absolute abundance. A side-by-side 

comparison allows us to discern the quantity of active bacteria along with their taxonomic 
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information. Additionally, this comparison enables us to evaluate the abundance of active bacteria 

within specific taxonomic groups across different samples. 

Figure 3-8 A side-by-side comparison reveals the viability of various taxonomic groups and their absolute 

abundance. 

GadB gene expression in single cell 

We demonstrated the analysis of gene expression in bacteria at the single-cell level using 

the biosensor platform. Gut bacteria, such as Lactobacillu plantarum, are crucial regulators of γ-

aminobutyric acid (GABA), a neurotransmitter that regulates gut motility, immune function, mood, 

and behavior. These bacteria produce GABA through the activity of enzymes including glutamate 

decarboxylase B (gadB), which converts L-glutamate into GABA by removing the carboxyl group 

from glutamate. We designed an mRNA probe to identify bacterial communities that express gadB. 

Figure 3-9 shows gadB upregulation in Lactobacillus in response to 30 mg/mL of glutamate. The 

results demonstrate the biosensor's ability to detect time-dependent gadB upregulation upon 

glutamate stimulation. 

 

 



55 

 

 

 

 

 

 

Figure 3-9 The intensity of the gadB gene biosensors at single-cell level. The level of significance of two-way 

ANOVA was ***p < 0.001. 

Differences in gut microbiome profiles among mouse models of familial alzheimer's disease 

The 9 healthy mice were used as mouse models of familial Alzheimer's disease. Samples numbered 

1, 3, 4, 5, 6 were developed using 5XFAD mice141, recapitulating major features of Alzheimer's 

Disease amyloid pathology. Samples numbered 2, 7, 8 are wild type (WT). Sample number 9 was 

discarded for other reasons, and genotyping was not recorded. The  

Figure 3-10 displays the absolute abundance of different taxonomic groups in both 5XFAD 

and WT. Figure 3-11 illustrates the viability of various taxonomic groups in both 5XFAD and WT. 

This allows us to compare not only the differences in absolute abundance but also the viability of 

different taxonomic groups in both 5XFAD and WT.  
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Figure 3-10 Absolute abundance of different taxonomic groups in both 5XFAD and WT. 

 

Figure 3-11 Viability of different taxonomic groups in both 5XFAD and WT. 
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We observe a notable increase in the numbers of Proteobacteria, aligning with findings 

from other study142. In addition to the rise in absolute abundance, there is a noticeable trend towards 

higher viability of Proteobacteria in 5XFAD mice. By performing transversal analysis, our results 

also show patterns of increase in the ratios of viable Firmicutes/Bacteroidota and 

Bifidobacterium/Actinomycetota. Despite the absolute abundance of Lactobacillus being similar 

between WT and 5xFAD groups, there was an increase in the amount of viable Lactobacillus in 

the 5xFAD group. 

Comparative analysis of gadB gene expression in Lactobacillus versus the entire taxonomic 

spectrum among mouse models of familial alzheimer's disease 

To investigate gadB gene expression in Lactobacillus within 5XFAD mice, we employed 

phylogenetic biosensors targeting both the Firmicutes phylum and Lactobacillus genus, along with 

gadB gene biosensors, in stool samples. Figure 3-12 illustrates that, in the absence of phylogenetic 

biosensors, the gadB gene biosensors (full taxonomy) yield a p-value of <0.05. However, the small 

effect size observed between the two groups (Cohen's d of 0.2) implies that the statistical analysis 

does not unveil a significant difference. This suggests that the observed variation may lack practical 

significance or substantial impact on the outcome. 

On the other hand, concurrent application of phylogenetic biosensors allows for the 

detection of Lactobacillus gadB gene expression (Figure 3-13). The results demonstrate a high 

effect size (Cohen's d of 0.65), significantly higher than that observed in wild-type mice. Our 
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combined use of phylogenetic and gene biosensors enables the capture of information not 

discernible by bulk technologies such as qPCR or sequencing. 

Figure 3-12 GadB gene expression in Lactobacillus versus the entire taxonomic spectrum. 

 

Figure 3-13 Concurrent application of phylogenetic biosensors allows for the detection of Lactobacillus gadB 

gene expression (A) The phylum (green) and (B) genus (blue) biosensors (C) gadB gene biosensors (red) signals under 

fluorescent microscope. 
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Centrifugal microwell array for high-throughput sample preparation 

While microfluidic devices have demonstrated the capability to handle multiple conditions, 

enable parallel drug screening, and even facilitate single-cell analysis, their widespread adoption is 

hindered by the need for specialized pumps to achieve precise flow control. This requirement 

imposes a significant entry barrier. However, the utilization of a centrifugal microwell array offers 

a solution to overcome such limitations without the necessity for high-end equipment. The device 

comprises multiple layers, including acrylic, double-sided tape, and MAS-coated glass slides, as 

depicted in Figure 3-14 (A). Fabrication of the acrylic and double-sided tape was accomplished 

using a laser cutting machine. Figure 3-14 (B) and (C) illustrate the assembly of the microwell array 

to the adapter, allowing for centrifugation in individual wells. The bacteria can be immobilized on 

the adhesive surface by placing the device into a well plate centrifuge. Subsequent steps such as 

pipetting, washing, incubating, and imaging can be performed seamlessly on the same device. 

For processes like enzyme treatment and probe transformation, over 10 centrifuge steps are 

required. The proposed microfluidic device enables parallel sample processing, a crucial aspect for 

efficient diagnosis. The multiwell design facilitates high-throughput sample preparation. The 

results, as shown in the Figure 3-15, indicate that even after 10 rounds of pipetting and washing, 

99.7% of bacteria remain adhered to the adhesive surface. This underscores the effectiveness and 

reliability of the device in sample retention and processing. We use this microwell array to conduct 

the experiment of GadB gene expression in single cell. 
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Figure 3-14 Centrifugal microwell array for high-throughput sample preparation (A)multiwell devices and 

adapter. (B)Integrated with bench-top centrifuge.(C)The illustration of spinning process. 

 

Figure 3-15 Bright field images of bacteria inside microwell. (A) Before spinning bacteria are out of focus. (B) 

After spinning bacteria are sitting on the same focus. (C) After 10 rounds of pipetting and washing, 99.7% of bacteria 

remain adhered to the adhesive surface. 
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Chapter 4 Conclusion and Future Work 

Conclusion 

We provide an in-depth exploration of multimodal biosensor design. It delves into the 

complex methodologies for creating these biosensors, focusing on the determination of consensus 

sequences, which are crucial for sensor accuracy. We also discuss the statistical analysis of binding 

energies, essential for understanding sensor interactions at a molecular level. Additionally, we 

examine the prediction of secondary structures, a key factor in sensor stability and function. We 

also comprehensively detail the multimodal biosensor design, focusing on enhancing detection 

capabilities with multiple probe combinations, streamlining the design process through an 

integrated R package, and applying these technologies in specific contexts. It highlights designing 

phylogenetic biosensors for analyzing the mouse fecal microbiome and developing gene biosensors 

for single-cell gene expression studies. This comprehensive approach contribution to advancing the 

field of biosensor technology. 

We address microbial community profiling via multimodal biosensor and delve into 

various methodologies and applications. We focus on the application of phylogenetic biosensors to 

study fecal microbiomes, the viability of bacteria using Live/Dead kits, and the development of 

mRNA biosensors for assessing gene expression levels at the single-cell level. Techniques such as 

fluorescence in situ hybridization (FISH) are optimized for bacterial cells, and we outline detailed 

protocols for sample collection, preparation, and imaging analysis. 

We also discuss the challenges of sampling from large populations of bacteria within stool 

samples and the use of 16S rRNA sequencing for microbial community profiling. We introduce 

concepts such as the limit of detection for biosensors and the importance of both relative and 

absolute abundance in understanding microbial communities. The viability of different taxonomic 
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groups is assessed, and there's a focus on the gadB gene, which is vital for GABA synthesis in 

bacteria. 

In conclusion, this study validated the application of phylogenetic biosensors with 

culturable strains, including Bacteroides fragilis, Lactobacillus plantarum, Bifidobacterium 

longum, and Escherichia coli. Enterococcus faecalis was introduced to assess the system's limit of 

detection, yielding a calculated LoD of 0.0075%. The high R-squared value (0.9997) and a closely 

aligned coefficient with the transformation efficiency (0.9369) indicated strong correlation and 

efficacy. Acknowledging potential errors originating from factors like sampling, transformation 

efficiency, and probe coverage, these findings collectively underscore the robustness of the 

phylogenetic biosensor approach in detecting and quantifying target bacterial strains within 

complex microbiome samples. 

In summary, our taxonomic analysis focused on key phyla, including Proteobacteria, 

Bacteroidota, Actinomycetota, and Firmicutes, as well as specific genera like Lactobacillus, 

Bifidobacterium, and Enterococcus faecalis, known for their physiological significance. 

Collaboration with CD Genomics for 16S rRNA sequencing validated the microbial composition 

of mouse fecal samples, and the biosensor platform effectively mirrored these findings. Notably, it 

detected significant changes in Bacteroidota and Firmicutes at the phylum level in samples 6, 7, 

and 8, demonstrating strong concordance with sequencing data. At the genus and species levels, 

distinct patterns emerged for Lactobacillus, Bifidobacterium, and Enterococcus faecalis. Absolute 

abundance analysis, based on actual cell numbers, provided valuable insights into bacterial 

quantities, revealing variations not captured by 16S rRNA sequencing read numbers. Incorporating 

viability stains like Propidium iodide allowed simultaneous assessment of bacterial viability and 

taxonomic information, enabling a comprehensive understanding of active bacteria within specific 

taxonomic groups across different samples. Nonetheless, it is generally observed that 
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Proteobacteria exhibit the greatest aerotolerance among these groups, leading to their increased 

viability in our findings. This may indicate a potential issue of oxygen exposure during the 

processing stage. This integrated approach enhances our ability to characterize the microbial 

composition and viability in complex samples, offering a more nuanced perspective on microbial 

dynamics. 

This study successfully showcased the analysis of gene expression in bacteria at the single-

cell level using a biosensor platform. The focus was on gut bacteria, particularly Lactobacillus 

plantarum, known as crucial regulators of γ-aminobutyric acid (GABA). GABA plays a vital role 

in regulating various physiological functions, including gut motility, immune function, mood, and 

behavior. The study highlighted the significance of enzymes such as glutamate decarboxylase B 

(gadB) in the production of GABA by these bacteria. 

A specific mRNA probe designed for gadB enabled the identification of bacterial 

communities expressing this gene. The findings revealed gadB upregulation in Lactobacillus in 

response to 30 mg/mL of glutamate. This result demonstrated the biosensor's capability to detect 

time-dependent gadB upregulation upon glutamate stimulation. The study contributes valuable 

insights into the dynamics of gene expression in bacteria, particularly in response to external stimuli, 

paving the way for a deeper understanding of the regulatory mechanisms involved in 

neurotransmitter production by gut bacteria. 

We also explore the differences in gut microbiome profiles among mouse models, 

particularly focusing on those with familial Alzheimer's disease, to understand the changes in 

microbial populations and viability. In conclusion, this study utilized 9 healthy mice as mouse 

models for familial Alzheimer's disease, with samples derived from 5XFAD mice and wild-type 

(WT) mice. The analysis focused on the absolute abundance and viability of different taxonomic 

groups in both 5XFAD and WT mice. Our study provides interesting insights into the changes in 
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the microbiota associated with the 5xFAD model. In agreement with previous reports142,143, 5xFAD 

exhibited an increase in the absolute abundance of Proteobacteria. Moreover, there was a distinct 

trend towards higher viability of Proteobacteria in 5XFAD mice. By performing transversal 

analysis, our results also show patterns of increase in the ratios of viable Firmicutes/Bacteroidota 

and Bifidobacterium/Actinomycetota. Despite the absolute abundance of Lactobacillus being 

similar between WT and 5xFAD groups, there was an increase in the amount of viable 

Lactobacillus in the 5xFAD group. Our data also show an increase in gadB mRNA expression in 

Lactobacillus in 5XFAD fecal microbiota. Further investigation will be required to confirm these 

observations and elucidate the mechanistic origin of the alteration of the fecal microbiota in familial 

Alzheimer's disease. We anticipate that the platform will provide a valuable tool for elucidating the 

complex, bidirectional relationship between the gut microbiota and neurodegenerative disorders 

and other medical conditions.  
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 Discussion 

The human microbiota, comprising trillions of microorganisms residing in various regions 

of our bodies, holds a pivotal position in numerous physiological processes like digestion, immune 

response, and hormone regulation. The presence of microbial imbalances, known as dysbiosis, has 

been associated with a wide range of health conditions. Leveraging the potential of the microbiota 

has the potential to bring about a revolutionary shift in the development of diagnostic and 

therapeutic strategies, with a focus on improving treatment outcomes, minimizing complications, 

and preventing the recurrence of diseases. 

A notable challenge in translating these advancements into clinical practice is the absence 

of rapid microbiota analysis methods capable of generating clinically relevant data. This thesis 

introduces innovative multimodal biosensors meticulously designed for precise single-cell 

microbiome profiling. These biosensors not only facilitate the detection but also the functional 

assessment of microbial populations at the single-cell level, providing a holistic understanding of 

the microbiome's role in health and disease. The proposed biosensors offer a comprehensive 

analysis toolkit, capable of determining absolute microbial abundance, viability, spatial distribution, 

and gene expression profiles. Furthermore, the application of these multimodal biosensors extends 

to conducting microbial community profiling on clinical samples. There is a specific emphasis on 

exploring the variations in the gut microbiome within mouse models of familial Alzheimer's disease.  

However, while the biosensors represent a significant advancement, they fall short of 

providing the comprehensive information offered by sequencing technology. To delve deeper into 

functional ability and taxonomic details, there is a need for additional gene and phylogenic probes. 

Handling closely related species requires the development of more sophisticated barcodes, multiple 

rounds of hybridizations, and species-specific probes. The execution of FISH, fluorescent imaging, 

and imaging analysis also demands the expertise of an experienced operator. The path to process 
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automation and user-friendliness leans towards the integration of microfluidic systems. Moreover, 

the challenges extend to spatial mapping on tissue, where addressing autofluorescent issues and 

minimizing background noise are crucial aspects yet to be fully resolved. Despite these hurdles, 

this research remains dedicated to filling a critical gap in microbial diagnostics, setting the stage 

for the seamless integration of microbiome analysis into personalized medicine and clinical care.



 

 

Appendix A Sequence of Biosensors 

 
donor quencher 

Bac_1 CGACACCTCACGGCACGAGC/3Alex488N/ GCTCGTGCCGTGAGG 

Bac_2 TTAAGCCGACACCTCACGGC/3Alex488N/ GCCGTGAGGTGTCGG 

Firm_1 CGTAGTTAGCCGTGACTTTC/3Alex488N/ GAAAGTCACGGCTAA 

Firm_2 AGGCCGGCTACTGATCGTCG/3Alex488N/ CGACGATCAGTAGCC 

Firm_3 CCCCGACACCTAGTATTCAT/3Alex488N/ ATGAATACTAGGTGT 

Actino_1 CGGCCATTGTAGCATGCGTG/3Alex488N/ CACGCATGCTACAAT 

Actino_2 TGGCAACATGCGACGGGGGT/3Alex488N/ ACCCCCGTCGCATGT 

Proteo_1 GCCCGTAAGGGCCATGAGGA/3Alex488N/ TCCTCATGGCCCTTA 

Proteo_2 GCCCAGTAATTCCGATTAAC/3Alex488N/ GTTAATCGGAATTAC 

Lacto GCAGGTTCGCTTCTCGTTGT/3AlexF647N/ ACAACGAGAAGCGAA 

Bifido ACCGTTAAGCGATGGACTTT/3AlexF647N/ AAAGTCCATCGCTTA 

Enterococcus 

faecalis GAAAGCGCCTTTCACTCTTATGC/3AlexF647N/  

Table 7 Sequence of taxonomic probes 

 

Table 8 Sequence of gene probes

 

 

 

 
donor quencher 

GadB_1 CGACACCTCACGGCACGAGC/3Alex488N/ GCTCGTGCCGTGAGG 

GadB_2 TTAAGCCGACACCTCACGGC/3Alex488N/ GCCGTGAGGTGTCGG 
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Appendix B R package 

library("foreach") 
library("parallel") 
library("doParallel") 
cores=detectCores() 
registerDoParallel(cores) 
library("seqinr") 
library("seqRFLP") 
 
target_path<-"/Users/jyong-hueilee/desktop/gadb.fas" 
nontarget_path<-"/storage/home/j/jkl6028/Firm_N_20148seqs.fas" 
probe_length=18 
threshold_energy= 0.6 
threshold_gap=0.9 
threshold_match=0 
quencher_length=25 
RNAcofold <- '"/usr/local/bin/RNAcofold"' 
RNAfold <- '"/usr/local/bin/RNAfold"' 
 
run_RNAfold <- function(Sequences, RNAfold.path = "RNAfold",parallel.cores = 4){ 
   
  Seqs.validate <- Sequences[which(lengths(Sequences) < 30000)] 
   
  if(length(Seqs.validate) < length(Sequences)){ 
    message("Due to the limitation of RNAfold,") 
    message("Sequences with length more than 30000 nt will be omitted.") 
    message(length(Sequences) - length(Seqs.validate), " sequences have been removed.", "\n") 
    Sequences <- Seqs.validate 
  } 
   
  if (parallel.cores == 2) message("Users can try to set parallel.cores = -1 to use all cores!", "\n") 
   
  parallel.cores <- ifelse(parallel.cores == -1, parallel::detectCores(), parallel.cores) 
  cl <- parallel::makeCluster(parallel.cores, outfile = "") 
   
  message("\n", "Sequences Number: ", length(Sequences), "\n") 
  message("Processing...", "\n") 
  index <- 1 
  info <- paste(ceiling(length(Sequences) / parallel.cores), ",", sep = "") 
  parallel::clusterExport(cl, varlist = c("info", "index"), envir = environment()) 
  sec.seq <- parallel::parSapply(cl, Sequences, secondary_seq, info = info, 
                                 RNAfold.path = RNAfold.path) 
  parallel::stopCluster(cl) 
  sec.seq <- data.frame(sec.seq, stringsAsFactors = FALSE) 
  message("\n", "Completed.", "\n") 
  sec.seq 



69 

 

} 
 
secondary_seq <- function(OneSeq, info, RNAfold.path){ 
  seq.string <- unlist(seqinr::getSequence(OneSeq, TRUE)) 
   
  # assign("index", index + 1, inherits = TRUE) 
  index <- get("index") 
  showMessage <- paste(index, "of", info, "length:", nchar(seq.string), "nt", "\n") 
  cat(showMessage) 
   
  RNAfold.command <- paste(RNAfold.path, "--noPS") 
   
  seq.ss <- system(RNAfold.command, intern = TRUE, input = seq.string) 
  index <<- index + 1 
   
  seq.ss[3] <- as.numeric(substr(seq.ss[2], nchar(seq.string) + 3, nchar(seq.ss[2]) - 1)) 
  seq.ss[2] <- substr(seq.ss[2], 1, nchar(seq.string)) 
  seq.ss 
} 
 
 
 
#####################################################Probe 

candidate 
 
x   <- read.alignment(target_path, "fasta")  
xx<-as.matrix(x) 
y<-as.matrix(table(xx[,1])) 
for(i in 1: ncol(xx)-1) 
{ 
  y=merge(y, as.matrix(table(xx[,i+1])), by=c("row.names"),all=T, sort=T) 
  rownames(y) <- y$Row.names #reset rownames 
  y$Row.names <- NULL #remove added rownames col 
} 
y<-y[,-1] 
colnames(y)<-c(1: ncol(y)) 
y<-y/nrow(xx) 
RWNM<-row.names(y) 
 
consensus =vector() 
score =vector() 
entropy =vector() 
y[is.na(y)] <- 0 
 
# y=y+(1/nrow(xx))#pseudocount (Laplace'rule of succession) 
 
#################################### 
 



70 

 

for(i in 1: ncol(y)) 
{ 
 
  consensus[i]<-RWNM[which(y[,i] == max(y[,i]))] 
  score[i]<-max(y[,i]) 
  entropy[i]<-sum(na.omit(-y[,i]*log2(y[,i]))) 
 
} 
two_minus_entropy<-2-entropy 
merge_score_entropy<-rbind(consensus,score,entropy) 
 
 
for (i in 1: ncol(merge_score_entropy)){ 
  if (merge_score_entropy[1,i]=="-" & as.numeric(merge_score_entropy[2,i])<threshold_gap){ 
    merge_score_entropy[1,i]<-NA 
  } 
   
} 
 
space=which(merge_score_entropy[1,]=="-") 
 
merge_score_entropy=merge_score_entropy[,-space] 
 
 
probe_set=0 
q=0 
probe_matrix=matrix(ncol= probe_length) 
entropy_m=matrix(ncol= probe_length) 
score_product=matrix(ncol= 1) 
entropy_sum=matrix(ncol= 1) 
k= length(merge_score_entropy[1,])- probe_length+1 
for(i in 1:k){ 
  j=i+probe_length-1 
  if(sum(is.na(merge_score_entropy[1,i:j]))==0){ 
    probe_matrix <-rbind(probe_matrix,merge_score_entropy[1,i:j]) 
    score_product<-rbind(score_product,prod(as.numeric(merge_score_entropy[2,i:j]))) 
    entropy_sum<-rbind(entropy_sum,sum(as.numeric(merge_score_entropy[3,i:j]))) 
    entropy_m<-rbind(entropy_m,merge_score_entropy[3,i:j]) 
    if(q==0){ 
      probe_set=probe_set+1 
    } 
    q=1 
  } 
  else{ 
    q=0 
  } 
} 
probe_matrix <-probe_matrix [-1,] 
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score_product <-score_product [-1,] 
entropy_sum <-entropy_sum [-1,] 
entropy_m <-entropy_m [-1,] 
######### 
#########plot(as.numeric(score_product),xlab = "",ylab = "Score_product",pch='.') 
#########lines(as.numeric(score_product)) 
#########plot(as.numeric(entropy_sum),xlab = "",ylab = "Entropy_sum",pch='.') 
#########lines(as.numeric(entropy_sum)) 
 
#########space_score_product<-which(score_product>=threshold_match) 
#########probe_matrix<-probe_matrix[space_score_product,] 
 
#####################################################Secondary 

matrix number and length  
 
ss<-list() 
sslist<-list() 
for (i in 1:nrow(xx)) { 
  space=which(xx[i,]=="-") 
  ss2=xx[i,] 
  ss2=ss2[-space] 
  ss[[i]]<-ss2 
   
} 
 
#################### Change R version 
RNAcofold <- '"/usr/local/bin/RNAcofold"' 
RNAfold <- '"/usr/local/bin/RNAfold"' 
sss <- run_RNAfold(ss[1:nrow(xx)], RNAfold.path = RNAfold, parallel.cores = 40) 
 
for (i in 1:nrow(xx)) { 
  ss_v<-strsplit(sss[2,i],"") 
  sslist[[i]]<-ss_v[[1]] 
} 
##################################################  
cores=detectCores() 
registerDoParallel(cores) 
ssloop<-list() 
for (i in 1:nrow(xx)) { 
  ss3=sslist[[i]] 
  count_0<-0 
  for (v in 1:length(ss3)){ 
    if (ss3[v]=="."){ 
      count_0=count_0+1 
      b=v-count_0+1 
      ss3[b:v]=count_0 
    } 
    else{ 
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      ss3[v]<-0 
      count_0=0 
    } 
    ssloop[[i]]<-ss3 
  } 
} 
registerDoParallel(cores) 
secondary_matrix<-vector() 
secondary_matrix<-foreach(l = 1:nrow(probe_matrix), .combine = rbind) %dopar% { 
  final_v_matrix<-vector() 
  final_r_matrix<-0 
  temp_loop_matrix_f<-vector() 
  for (i in 1: nrow(xx)){ 
    final_matrix<-vector() 
    ss2=ss[[i]] 
    b=length(ss2)-probe_length+1 
    resvoir=vector() #mismatch of probes in the whole sequence 
     
    for (v in 1:b) { 
      mismatch=0 
      for (j in 1:probe_length){ 
         
        if(ss2[v+j-1]!= probe_matrix[l,j]){ 
          mismatch=mismatch+1  
        } 
      } 
      resvoir[v]=mismatch 
    } 
    seq_min_po=which.min(resvoir) #min position of mismatch in one sequence 
    ssv=sslist[[i]] 
    temp_ss_matrix=ssv[seq_min_po:(seq_min_po+probe_length-1)] 
    tem<-as.matrix(table(temp_ss_matrix)) 
     
    if ("." %in% row.names(tem)){ 
      final_v_matrix<-cbind(final_v_matrix,tem['.',]) 
    } 
    else{ 
      final_v_matrix<-cbind(final_v_matrix,0) 
    } 
    ssl=as.numeric(ssloop[[i]]) 
    temp_loop_matrix=ssl[seq_min_po:(seq_min_po+probe_length-1)] 
    temp_loop_matrix_f<-rbind(temp_loop_matrix_f,temp_loop_matrix) 
  } 
  final_l_matrix<-vector() 
  for (i in 1:probe_length){ 
    final_l_matrix[i]<-mean(temp_loop_matrix_f[,i]) 
  } 
  final_r_matrix<-mean(final_v_matrix[1,]) #unpaired bases 
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  final_r_matrix<-cbind(final_r_matrix,t(final_l_matrix)) 
  final_r_matrix 
} 
 
 
 
#################### Change R 

version#############################quencher energy 
RNAcofold <- '"/usr/local/bin/RNAcofold"' 
RNAfold <- '"/usr/local/bin/RNAfold"' 
 
probe_revcom<-list() 
probe_combine_q<-0 
for(l in 1:nrow(probe_matrix)){ 
  probe_revcom[[l]]=tolower(revComp(paste(probe_matrix[l,],collapse = ""))) 
  temp_g=paste(probe_matrix[l,1:quencher_length],collapse = "") 
  probe_combine_q=cbind(probe_combine_q,paste(probe_revcom[[l]],"&",temp_g,collapse = '', 

sep = '')) 
} 
probe_combine_q<-probe_combine_q[1,-1] 
energy_quencher<-run_RNAfold(probe_combine_q[1:nrow(probe_matrix)], RNAfold.path = 

RNAcofold, parallel.cores = 4) 
energy_quencher_f=energy_quencher[3,] 
 
#####################################################hairpin; self 

dimer; GC content  
 
 
 
 
probe_combine_self<-0 
for(l in 1:nrow(probe_matrix)){ 
  

probe_combine_self=cbind(probe_combine_self,paste(probe_revcom[[l]],"&",probe_revcom[[l]],collap
se = '', sep = '')) 

} 
probe_combine_self<-probe_combine_self[1,-1] 
self_dimer<-run_RNAfold(probe_combine_self[1:nrow(probe_matrix)], RNAfold.path = 

RNAcofold, parallel.cores = 4) 
 
hairpin<-run_RNAfold(probe_revcom[1:nrow(probe_matrix)], RNAfold.path = RNAfold, 

parallel.cores = 4) 
 
gc_result<-vector() 
for (i in 1:nrow(probe_matrix)){ 
  gc= table(probe_matrix[i,]) 
  gc_f=as.matrix(gc) 
  gc_rowpo_c=which(rownames(gc_f)=="c") 
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  gc_rowpo_g=which(rownames(gc_f)=="g") 
  gc_rowpo=cbind(gc_rowpo_c,gc_rowpo_g) 
   
  gc_result[i]=sum(gc_f[gc_rowpo,1])/probe_length 
} 
##################################################### 
 
 
registerDoParallel(cores) 
mismatch_energy=vector() 
mismatch_energy<-foreach(l = 1:nrow(probe_matrix), .combine = rbind) %dopar% { 
  seq_min=vector() 
  probe_combine=vector() 
  probe_revcom<-list() 
  for(i in 1:nrow(xx)){ 
    space_non=which(xx[i,]== "-")  #remove gaps in target sequence 
    non_sequence=xx[i,-space_non]  #remove gaps in target sequence 
    b=length(non_sequence)-probe_length+1 
    resvoir=vector() #mismatch of probes in the whole sequence 
    for (v in 1:b) { 
      mismatch=0 
      for (j in 1:probe_length){ 
         
        if(non_sequence[v+j-1]!= probe_matrix[l,j]){ 
          mismatch=mismatch+1  
        } 
      } 
      resvoir[v]=mismatch 
    } 
     
    seq_min_po=which.min(resvoir) #min position of mismatch in one sequence 
    ssg=ss[[i]] 
    temp_g_matrix=ssg[seq_min_po:(seq_min_po+probe_length-1)] 
    temp_g=paste(temp_g_matrix,collapse = "") 
    probe_revcom[[i]]=tolower(revComp(paste(probe_matrix[l,],collapse = ""))) 
    probe_combine[i]=paste(probe_revcom[[i]],"&",temp_g,collapse = '', sep = '') 
  } 
  probe_combine 
} 
#################### Change R version 
RNAcofold <- '"/usr/local/bin/RNAcofold"' 
RNAfold <- '"/usr/local/bin/RNAfold"' 
energy_f<-0 
for(l in 1:nrow(probe_matrix)){   
  energy=matrix() 
  energy<-run_RNAfold(mismatch_energy[l,1:nrow(xx)], RNAfold.path = RNAcofold, 

parallel.cores = 4) 
  energy_f=cbind(energy_f,as.numeric(energy[3,])) 
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} 
energy_f<-energy_f[,-1] 
 
##############################################################

#### 
energy_result<-vector() 
 
for(l in 1:nrow(probe_matrix)){ 
  count_q=0 
  for (i in 1:nrow(xx)){ 
    if (as.numeric(energy_f[i,l])<as.numeric(energy_quencher_f[l])){ 
      count_q=count_q+1 
    } 
  }   
  energy_result[l]=count_q/nrow(xx) 
} 
 
 
##############################################################

#### 
 
nx   <- read.alignment(nontarget_path, "fasta")  
nxx<-as.matrix(nx) 
ssn<-list() 
for (i in 1:nrow(nxx)) { 
  space=which(nxx[i,]=="-") 
  ss2=nxx[i,] 
  ss2=ss2[-space] 
  ssn[[i]]<-ss2 
   
} 
 
registerDoParallel(cores) 
mismatch_energy_non=vector() 
mismatch_energy_non<-foreach(l = 1:nrow(probe_matrix), .combine = rbind) %dopar% { 
  seq_min=vector() 
  probe_combine=vector() 
  probe_revcom<-list() 
  for(i in 1:nrow(nxx)){ 
    space_non=which(nxx[i,]== "-")  #remove gaps in non-target sequence 
    non_sequence=nxx[i,-space_non]  #remove gaps in non-target sequence 
    b=length(non_sequence)-probe_length+1 
    resvoir=vector() #mismatch of probes in the whole sequence 
    for (v in 1:b) { 
      mismatch=0 
      for (j in 1:probe_length){ 
         
        if(non_sequence[v+j-1]!= probe_matrix[l,j]){ 
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          mismatch=mismatch+1  
        } 
      } 
      resvoir[v]=mismatch 
    } 
     
    seq_min_po=which.min(resvoir) #min position of mismatch in one sequence 
    ssg=ssn[[i]] 
    temp_g_matrix=ssg[seq_min_po:(seq_min_po+probe_length-1)] 
    temp_g=paste(temp_g_matrix,collapse = "") 
    probe_revcom[[i]]=tolower(revComp(paste(probe_matrix[l,],collapse = ""))) 
    probe_combine[i]=paste(probe_revcom[[i]],"&",temp_g,collapse = '', sep = '') 
  } 
  probe_combine 
} 
#################### Change R version 
energy_f_non<-0 
for(l in 1:nrow(probe_matrix)){   
  energy=matrix() 
  energy<-run_RNAfold(mismatch_energy_non[l,1:nrow(nxx)], RNAfold.path = RNAcofold, 

parallel.cores = 4) 
  energy_f_non=cbind(energy_f_non,as.numeric(energy[3,])) 
} 
energy_f_non<-energy_f_non[,-1] 
 
##############################################################

#### 
energy_result_non<-vector() 
for(l in 1:nrow(probe_matrix)){ 
  count_q=0 
  for (i in 1:nrow(nxx)){ 
    if (as.numeric(energy_f_non[i,l])<as.numeric(energy_quencher_f[l])){ 
      count_q=count_q+1 
    } 
  }   
  energy_result_non[l]=count_q/nrow(nxx) 
} 
energy_result_non=1-energy_result_non 
########################################################### 
library("lattice") 
library("gridExtra") 
secondary_number=secondary_matrix[,1] 
secondary_matrix=secondary_matrix[,-1] 
##################### 
 
qualified_probe<-which(energy_result>=threshold_energy & 

energy_result_non>=threshold_energy) 
probe_matrix_qualified<-probe_matrix[qualified_probe,] 
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energy_result_qualified<-energy_result[qualified_probe] 
energy_result_non_qualified<-energy_result_non[qualified_probe] 
energy_result_qualified_m<- 

data.frame(x=energy_result_qualified,y=1:length(energy_result_qualified))  
energy_result_qualified_non_m<- 

data.frame(x=energy_result_non_qualified,y=1:length(energy_result_non_qualified))  
plot1 <-barchart(x~y,data=energy_result_qualified_m,xlab = "",ylab = "percentage of target 

phylum",horiz = FALSE) 
plot2 <-barchart(x~y,data=energy_result_qualified_non_m,xlab = "",ylab = "percentage of non-

target phylum",horiz = FALSE) 
df_all<-

data.frame(x=1:length(energy_result_qualified),secondary_number=secondary_number[qualified_pro
be],self_dimer=as.numeric(self_dimer[3,qualified_probe]),hairpin=as.numeric(hairpin[3,qualified_pro
be])) 

plot3 <-barchart(secondary_number~x,data=df_all,xlab = "",ylab = "number of unpaired 
bases",horiz = FALSE) 

plot4 <-barchart(-self_dimer~x,data=df_all,xlab = "",ylab = "self-dimer deltaG",horiz = FALSE) 
plot5 <-barchart(-hairpin~x,data=df_all,xlab = "",ylab = "hairpin deltaG",horiz = FALSE) 
plot6 <- levelplot(secondary_matrix[qualified_probe,],xlab = "",ylab = "Unpaired 

bases",col.regions=heat.colors(100)) 
grid.arrange(plot1,plot2,plot3,plot4,plot5, nrow=5) 
 
plot7 <- levelplot(entropy_m[qualified_probe,],xlab = "",ylab = 

"Entropy",col.regions=heat.colors(100)) 
grid.arrange(plot6,plot7,nrow=2,widths=1:1) 
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