
The Pennsylvania State University
The Graduate School

MODEL-SCALE EVALUATION OF AUTONOMOUS SHIP LANDING

GUIDANCE AND CONTROL MODES FOR ROTORCRAFT

A Dissertation in
Aerospace Engineering

by
Christopher M. Hendrick

© 2024 Christopher M. Hendrick

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 2024

The dissertation of Christopher M. Hendrick was reviewed and approved by the following:

Joseph F. Horn
Professor of Aerospace Engineering
Dissertation Advisor
Chair of Committee

Jack W. Langelaan
Professor of Aerospace Engineering
Director of Graduate Program

Eric N. Johnson
Professor of Aerospace Engineering

Christopher D. Rahn
J. Lee Everett Professor of Mechanical Engineering

Amy R. Pritchett
Professor of Aerospace Engineering
Department Head

ii

Abstract
Ship landing in high sea states is a challenge for both manned and unmanned rotorcraft.
A system that provides reliable autonomous recovery of ship-based rotorcraft could reduce
mishap rates and reduce costs associated with training and certification testing. Such a
system might also increase operational capability by allowing operations in more severe
wave and wind conditions. These potential benefits have motivated a significant amount
of public domain research on autonomous ship landing algorithms for rotorcraft. Existing
works have primarily been simulation based, however, and the rigorous experimental
evaluation of advanced landing algorithms is lacking in the public-domain literature. This
is due in part to the inaccessibility of full-scale testing. Model-scale testing, on the other
hand, offers a more accessible test bed for vetting autonomous landing solutions and
has therefore been utilized in all existing openly available experimental studies. These
studies have not considered the scaling of either the closed-loop aircraft dynamics or
ship motions, however, meaning key aspects of the full-scale landing scenario may not be
realistically represented at model-scale.

The objective of this research was to develop a methodology for performing dynamically
scaled autonomous ship landing experiments, and then to use the proposed scaling method
to perform a rigorous experimental analysis of advanced autonomous landing guidance
and control modes. Toward this end, Froude scaling is proposed for relating aircraft
closed-loop dynamics and ship motions across test scales and the validity of this method
is then analyzed. Two representative landing guidance algorithms were then developed
and experimentally evaluated using the proposed scaling methodology. The first is an
advanced landing strategy that uses quadratic programming (QP) optimization to plan
the landing path to a forecasted deck state. The second is a simpler “baseline” guidance
method that tracks deck motions while closing the distance between the aircraft and
deck at a constant rate. Both guidance algorithms command position and heading to an
explicit model following (EMF) control law.

The guidance algorithms were first evaluated in experiments conducted in the Ma-
neuvering and Seakeeping Basin (MASK) located at the Naval Surface Warfare Center
Carderock Division. During these experiments, control law parameters were modified
to impose artificial constraints on the maneuverability of the aircraft, providing insight
into how well both guidance methods can cope with a less agile airframe. The results
showed that the predictive landing strategy allowed for more direct landing paths to be
planned when compared to the baseline algorithm and can also allow for landings to
be performed with lower control bandwidth. The baseline guidance algorithm, on the
other hand, proved to be both simple and reliable when the UAV was in high bandwidth

iii

configurations, but may not be feasible for aircraft with limited control authority that
must land in moderate to high sea states.

The experimental setup in the MASK did not include aerodynamic disturbances.
Additional flight tests were therefore performed in the Penn State Indoor Flight Facility
to determine if the QP guidance algorithm offers any advantage over the baseline
method when operating in the presence of a significant aerodynamic disturbance. The
experimental results obtained at Penn State did not indicate that the QP algorithm
provides a definitive advantage over the baseline algorithm in terms of matching deck
position, velocity, and attitude at landing while operating in a gusty environment. The
QP algorithm did allow for landings with a shorter duration, however, resulting in lower
total control usage due to less time operating in aerodynamic disturbances.

iv

Table of Contents

List of Figures viii

List of Tables xii

Nomenclature xiii

Acknowledgments xvii

Chapter 1
Introduction 1
1.1 Background and Motivation . 1
1.2 Existing Work . 3

1.2.1 Guidance and Control for Autonomous Shipboard Landing 3
1.2.1.1 Model Predictive Control 4
1.2.1.2 Prescribed Form Trajectories 8
1.2.1.3 Deck Tracking Methods 10

1.2.2 Deck Motion Prediction . 12
1.2.3 Dynamic Scaling . 15
1.2.4 Ship Landing Experimental Setups 18

1.3 Contributions . 21

Chapter 2
Model Following Control Laws 24
2.1 UAV Platforms . 24
2.2 UAV Model Identification . 25

2.2.1 Overview of Transfer Function Modelling with CIFER® 25
2.2.2 PX4 Stabilized Mode Controller 28
2.2.3 Flight Test Procedure . 31
2.2.4 Identified Models . 33

2.3 Control Architecture . 39
2.4 Angular Rate Control . 40
2.5 Attitude Control . 40
2.6 Position Control . 44

2.6.1 X and Y Position Control . 45

v

2.6.2 Altitude Control . 46

Chapter 3
Autonomous Landing Guidance Algorithms 48
3.1 Baseline Guidance Algorithm . 48
3.2 Quadratic Programming Based Guidance with Deck Motion Predictions . 53

3.2.1 Deck Motion Prediction . 54
3.2.1.1 AR Model Estimation and Propagation 54
3.2.1.2 Use of AR Models for Deck State Predictions 56

3.2.2 Discrete Time Model . 56
3.2.3 Quadratic Program Transcription 57

3.2.3.1 Future Output and Jerk Calculation 57
3.2.3.2 Cost Function . 60
3.2.3.3 Constraints . 61
3.2.3.4 Prediction Horizon and Reference Path 64
3.2.3.5 Land Time . 66
3.2.3.6 Inclusion of Discrete Time Delays 69

3.3 Wave Off Criterion . 69

Chapter 4
Scaling Methodology and Scaled Control Laws 72
4.1 Scaling Methodology . 72
4.2 Dynamic Similarity for Scaled Reference Tracking 74
4.3 Dynamic Similarity for Scaled Disturbance Rejection 80
4.4 Choosing Model-Scale Controller Parameters for Froude Scaled Closed-

Loop Dynamics . 85
4.4.1 Choosing Parameters for Scaled Reference Tracking 85
4.4.2 Definition of Disturbance Rejection Bandwidth and Disturbance

Rejection Peak . 86
4.4.3 Choosing Parameters for Scaled Disturbance Rejection Bandwidth 88

4.5 Scaling Control Laws from Model-Scale to Full-Scale 90

Chapter 5
Model–Scale Autonomous Ship Landing Experiments 96
5.1 Autonomous Landing Experiments at the Maneuvering and Seakeeping

Basin . 96
5.1.1 Experimental Setup . 96
5.1.2 Wave Conditions . 98
5.1.3 Scaling of Model-Scale Ship Motions 100
5.1.4 Test Cases . 102
5.1.5 Results . 105

5.1.5.1 Deck Predictions . 105
5.1.5.2 Sample Landing Time Histories 108
5.1.5.3 Position, Velocity, and Attitude Landing Errors 111

vi

5.1.5.4 Accelerations During Landing 115
5.1.5.5 Factors Affecting QP Algorithm Performance 117

5.2 Autonomous Landing Experiments at the Penn State Indoor Flight Facility 119
5.2.1 Experimental Setup . 119
5.2.2 Test Cases . 121
5.2.3 Results . 122

Chapter 6
Conclusions and Recommendations for Future Work 125
6.1 Conclusions . 125
6.2 Recommendations for Future Work . 129

Bibliography 131

vii

List of Figures

1.1 Example UAVs performing autonomous ship landings. 2

1.2 MPC architecture. Note that the switch denotes the choice to either
command a trajectory tracking controller or to apply the optimal control
to the system directly. 4

1.3 Schematic of EiLQR landing concept and sample descent profile (from [5]). 8

1.4 Simulated impact velocities with polynomial path planner from [23] . . . 9

1.5 Illustration of deck tracking versus path planning to deck motion predictions. 11

1.6 Sample landing with deck tracking controller [6]. The top plot shows
longitudinal motion, the middle plot lateral motion, and the bottom plot
altitude. 12

1.7 Ship heave predictions using an AR model and SCONE data. 14

1.8 Example experimental setups with small UAVs and motion platforms. . . 18

1.9 Example outdoor landings onto a towed trailer. 19

1.10 Example outdoor landings at sea. 20

1.11 Autonomous landing experiment performed at the Maneuvering and Sea-
keeping Basin located at the Naval Surface Warfare Center Carderock
Division. 23

2.1 UAV platforms used in model-scale experiments. 25

2.2 Example of overlapped windowing (adapted from [57]) 27

viii

2.3 PX4 stabilized mode control architecture. 29

2.4 Block diagram of linearized PX4 stabilized mode roll axis controller. . . . 31

2.5 Lateral axis frequency sweep used for quadcopter model ID. Note that
δail is the PX4 bare airframe input shown in Fig. 2.3 32

2.6 Quadcopter frequency response and transfer function model fits. 34

2.7 Quadcopter model time history validation. 35

2.8 Hexacopter frequency response and transfer function model fits. 37

2.9 Hexacopter model time history validation. 38

2.10 High-level control law block diagram. 39

2.11 Pitch attitude controller. 41

2.12 Comparison of quadcopter pitch axis inversion model with internal delay
(derived from Eq. 2.20) and transfer function approximation with output
delay (shown in Eq. 2.23) . 43

2.13 Inertial X and Y position controller. 45

2.14 Altitude control law. 47

3.1 Baseline guidance algorithm block diagram and trajectory schematic. . . 49

3.2 Deck filter used in baseline guidance algorithm. 50

3.3 High level diagram of QP guidance algorithm. 54

3.4 Schematic of the process for updating the targeted land time. 69

3.5 Schematic depicting UAV landing gear altitude relative to the deck plane. 71

4.1 Landing trajectories at full and 1/10th scale obtained from simplified
simulations with the baseline guidance algorithm. 77

4.2 Comparison of deck heave predictions at full-scale (NF = 1) and model-
scale (NF = 16) with Froude scaled AR model. 78

ix

4.3 Landing trajectories at full and 1/16th scale obtained from simplified
simulations with the QP guidance algorithm. 79

4.4 Simple feedback loop with input and output disturbances. 81

4.5 Example roll axis ACAH system (adapted from [64]) 87

4.6 Graphical representation defining DRB and DRP. 88

4.7 EMF control law used for scaled control design example. 91

4.8 Pitch attitude stability margins with model-scale control design (1/10th

scale, or NF = 10) and full-scale control design determined from model-scale. 93

4.9 Pitch attitude DRB and DRP with model-scale control design (1/10th

scale, or NF = 10) and full-scale control design determined from model-scale. 94

4.10 Response to X position step command with model-scale control design
(1/10th scale, or NF = 10) and full-scale control design determined from
model-scale. 94

5.1 (a) Test setup in the MASK facility at the NSWCCD. (b) Model-ship
used during landings. 97

5.2 Test hardware and software integration. 98

5.3 Sample deck heave motion time history. 100

5.4 Comparison of scaled ship motion from MASK experiments with SCONE
simulation data. 101

5.5 Sample deck heave predictions at 0.5, 1.5, and 2.5 seconds into the future. 105

5.6 Process for calculating “trial” error vector used to compute prediction
error statistics shown in Figs. 5.7 and 5.8. 106

5.7 AR model deck state prediction error statistics vs look-ahead time for
wave condition 2. 107

5.8 Position prediction errors vs look-ahead time for each wave condition. . . 108

5.9 Sample landing time history with baseline guidance algorithm. 109

x

5.10 Sample landing time history with QP guidance algorithm. 110

5.11 Deck-relative landing velocities vs. command filter frequency. Faded
markers represent individual landings, bold markers show the average,
and the error bar shows 2σ of the velocity error magnitude. 112

5.12 Deck-relative X and Y position at landing. Command filter frequencies
for each control case are reported in the legend in units of rad/s. 114

5.13 Deck relative landing attitude. The faded markers represent individual
landings, the bold markers show the average value, and the error bar
represents 2σ of deck-relative landing attitudes. 114

5.14 Accelerations during the last 5 seconds of landing for flights conducted at
wave condition 2. 116

5.15 (a) Deck velocity norm vs. deck-relative descent rate at landing with
shortened QP flights denoted by the red “x". (b) Predicted deck altitude
at landing during final 3 seconds of all QP flights. 117

5.16 Deck-relative landing velocity and attitude with shortened QP flights
removed. Faded markers represent individual landings, bold markers show
the average, and the error bar shows 2σ of the error magnitude. 119

5.17 Quadcopter UAV flying in the Penn State Indoor Flight Facility. 120

5.18 Deck-relative velocity, position, and attitude at landing. On the velocity
and attitude plots, faded markers represent individual landings, bold
markers show the average, and error bars show 2σ of the error magnitude. 123

5.19 Control inputs plotted against time remaining until landing. 124

xi

List of Tables

1.1 Froude and Mach scaling factors. 16

1.2 Froude scaled hexacopter UAV dynamics with NF = 2.3 [52]. 18

1.3 Froude scaled XV-15 and IRIS+ quadrotor lateral dynamics with NF = 35
[53]. 18

2.1 Quadcopter Identified Models . 34

2.2 Hexacopter Identified Models . 36

2.3 Angular rate control parameters for each axis. 40

4.1 Froude Scaling Factors . 73

4.2 Full-Scale Stability and Control Derivatives 90

4.3 Model-scale control gains . 92

5.1 Ship motion properties for each wave condition.1 99

5.2 Landing Test Cases . 102

5.3 Tracking bandwidth cases. 103

5.4 Disturbance Rejection Properties . 104

5.5 Quadcopter Disturbance Rejection Properties 122

xii

Nomenclature

Symbols

g = gravitational acceleration
G̃xx = rough autospectrum for signal x
Ĝxx = smooth autospectrum for signal x
Ĝxx,c = composite autospectrum for signal x
G̃xy = rough cross spectrum for signals x and y

Ĝxy = smooth cross spectrum for signals x and y

Ĝxy,c = composite cross spectrum for signals x and y

J = system ID cost function, QP optimization cost function
j = jerk (acceleration time derivative)
KHPF = deck filter high pass channel gain for baseline guidance algorithm
KP = proportional control gain
KI = proportional control gain
KD = proportional control gain
M = aircraft mass
NF = Froude scaling factor
Nlag = number of lagged outputs in AR model
p = roll rate
q = pitch rate, quaternion
Q = QP cost function output weighting matrix
Q∆ = QP cost function jerk weighting matrix
r = yaw rate
R = QP cost function input weighting matrix
s = Laplace variable
S = QP cost function terminal output error weighting matrix

xiii

S∆ = QP cost function terminal jerk weighting matrix
t = time
tland = desired land time for QP guidance algorithm
Tg = duration of tau guidance trajectory
Tb/a = rotation matrix from a to b coordinates
u⃗ = control vector
uX = X position command filter input
uY = Y position command filter input
uZ = Z position command filter input
v⃗ = white noise vector
w = body axis vertical rate
x⃗ = state vector
Xa = X position in frame a
X(f) = frequency domain representation of system inputs provided to CIFER®

X∗(f) = complex conjugate of X(f)
y⃗ = output vector
y⃗ref = reference outputs for QP cost function
Y a = Y position in frame a
Y (f) = frequency domain representation of system outputs provided to CIFER®

Za = Z position in frame a
α = AR model coefficients
γ̂2
xy = coherence function
δail = lateral input to UAV bare airframe
δele = longitudinal input to UAV bare airframe
δrud = yaw input to UAV bare airframe
δthr = throttle input to UAV bare airframe
ζ = damping ratio
θ = pitch angle
τ = time delay
ϕ = roll angle
χ = tau guidance action gap
ψ = yaw angle
ωLPF = deck filter low pass channel frequency for baseline guidance algorithm
ωX = X position control command filter frequency
ωY = X position control command filter frequency

xiv

ωZ = X position control command filter frequency
ωθ = pitch command filter frequency
ωϕ = roll command filter frequency
ωpsi = yaw command filter frequency

Acronyms

AR = autoregressive
AFDD = Army Aeroflightdynamics Directorate
CIFER® = Comprehensive Identification from Frequency Responses software
DDP = differential dynamic programming
DRB = disturbance rejection bandwidth
DRP = disturbance rejection peak
GPU = graphics processing unit
ID = identification
iLQR = iterative LQR
LQR = linear quadratic regulator
MASK = Maneuvering and Seakeeping Basin
MCA = minor component analysis
MPC = model predictive control
MPPI = model predictive path integral control
NLP = nonlinear program
NSWCCD = Naval Surface Warfare Center Carderock Division
QP = quadratic program
SCONE = systematic characterization of the naval environment
UAV = unmanned aerial vehicle

Superscripts and Subscripts

0 = initial condition
cmd = command
D = deck state
dlf = averaged deck level frame
dp = deck state prediction
f = value at final time

xv

fs = full scale
lf = UAV level frame
I = inertial frame
k = value at current sample time
ms = model scale
UAV = UAV state

xvi

Acknowledgments

This work was partially funded by the United States Office of Naval Research (ONR)
under grant N00014-20-1-2092. The views and conclusions contained herein are those of
the authors only and should not be interpreted as representing those of the ONR, the
U.S. Navy, or the U.S. Government.

This journey really started for me when I was an undergrad at the University at
Buffalo. For that reason, I want to thank the many great friends I met at UB who
helped me make it to grad school in the first place. This includes Zachary Perkins
and William Gmoser, who both worked many late nights struggling through the UB
undergrad engineering program with me.

When I first went to grad school I had no intention of pursuing a Ph.D., but the
coursework and research I was exposed to at Penn State captured my interest and
motivated me. The positive experience I have had at Penn State was largely made
possible by the opportunity given to me by Dr. Joseph Horn, my advisor, when he took
me on as a research assistant in his lab group. I would like to thank Dr. Horn for giving
me this opportunity and for his mentorship throughout my graduate education.

The friends and fellow students I have met while working in the Vertical Lift Research
Center of Excellence, including ZhouZhou Chen, Ashish Manjhi, Grant Li, Andrew Jue,
and Joel Rachaprolu, have also made my time at Penn State more academically enriching
and certainly more entertaining.

I would like to acknowledge my dissertation committee members Dr. Jack Langelaan,
Dr. Eric Johnson, and Dr. Christopher Rahn for their comments and recommendations
when preparing this work. I would also like to thank Dr. Langelaan for his help while
testing and advice as co-principal investigator on the ONR project that funded much of
this work.

I would also like to thank the other individuals who contributed to this work. This
includes my (previously) fellow grad students Emma Jaques and Duncan Nicholson, as
well as Anish Sydney, Eric Silberg, and Jared Soltis from the Naval Surface Warfare
Center Carderock Division, all of whom were instrumental to the experiments performed
for this dissertation. Duncan Nicholson also worked alongside me at the start of this
project, and his help setting up UAV hardware and software was instrumental to getting
this research off the ground.

Lastly, I would like to thank both of my Parents and my fiancé Lauren for their
continued love and support. To my parents – you have been excellent examples of hard

xvii

work and have given me endless opportunity, making it possible for me to pursue my
interests. Lauren – you moved to Penn State for me, you have had incredible patience
while I have worked long and odd hours, and you have always believed in me. For this
and so much more, I am grateful.

xviii

Chapter 1 |
Introduction

1.1 Background and Motivation
Rotorcraft have a long history of naval use, with the U.S. Navy accepting its first
helicopter (a Sikorsky YR-4B) on October 16th, 1943 [1]. Initial interest in the use of
helicopters for sea-based aviation was largely due to their vertical takeoff and landing
capabilities eliminating the need for runways, as well as the potential use of helicopters as
antisubmarine warfare aircraft. In the decades following the 1940s, the role of rotorcraft in
naval aviation greatly expanded. Today manned and unmanned rotorcraft are vital assets
used to perform a variety of maritime tasks, including search and rescue, reconnaissance,
surveillance, cargo missions, and fire control support.

For all maritime tasks, two segments of the aircraft’s mission are launch and recovery.
Since the first use of rotorcraft from ships, these close-proximity operations have been
identified as posing a significant risk, especially the landing phase. To safely land during
moderate to high sea states, a pilot or autonomous control mode must approximately
match the state of the deck at touchdown while coping with rough seas, a degraded
visual environment, and high winds. The problem is further exacerbated by the turbulent
airwake produced by flow over the ship’s superstructure, which leads to difficult to predict
aerodynamic disturbances. Due to these adverse conditions, the ability to perform safe
landings is often the factor that limits the flight envelope. Furthermore, concerns related
to landing during different wave and wind conditions contribute to the extensive testing
required for both pilot training and certification of sea-based rotorcraft. Particularly
troublesome is the certification process. For decades this has required full “dynamic
interface” testing, where each rotorcraft-ship combination is flight tested at a full range of
wind speeds and azimuths to establish safe launch and recovery envelopes [2]. These tests
are expensive and logistically challenging, as tests depend on outdoor weather conditions

1

and ship and aircraft availability.
To help mitigate the aforementioned issues, various aspects of helicopter-shipboard

operation have been actively researched by the rotorcraft community for decades. Over
the past three decades, with large increases seen in onboard computational power, one
point of interest has been the development of advanced technologies for performing
autonomous ship deck landings. This has led to a sizeable body of research on deck state
sensing and estimation, as well as autonomous landing guidance and control methods.
Much progress has been made in these areas, as has been evidenced by autonomous
unmanned aerial vehicles (UAVs) like Northrop Grumman’s MQ-8C and Airbus’ VSR700
(see Fig. 1.1). Still, there is interest in further developing autonomous landing systems
to allow for landing in high sea states, for performing GPS denied landings, and for
automating the landing task for piloted aircraft. Such a system could expand flight
envelopes, reduce mishap rates, and reduce costs associated with pilot training and
certification testing.

(a) Northrop Grumman MQ-8C performing an
autonomous landing (from [3]).

(b) Airbus tests VSR700 autonomous landing
system using optionally piloted aircraft (from [4]).

Figure 1.1: Example UAVs performing autonomous ship landings.

While there exists a large body of research on autonomous shipboard landing systems,
rigorous experimental evaluation of these systems is lacking in the public domain. This
is impacted by the fact that flight testing with a large rotorcraft operating from a ship is
not feasible for most researchers. Hence, most studies either feature simulations or tests
with small-scale UAVs. While testing at full scale is inevitably necessary for validation
of a particular landing system, testing at model scale does have advantages that make it
an appealing research tool. Key advantages are:

1. Model scale testing offers a low-risk, low-cost test bed for vetting autonomous
landing solutions.

2

2. The effect of individual variables such as wind gusts, sea state, or aircraft handling
qualities can be isolated.

3. It is easier to perform a high volume of tests at model scale.

Most currently published model scale tests, however, feature a small number of
landings onto platforms with very limited amplitude motion. Furthermore, these tests
typically utilize the high control bandwidth of small UAVs while landing on a platform
moving with frequency content similar to that of a ship sized for full-scale manned
rotorcraft operations. Landing small UAVs on a large ship does have practical use,
but for using model scale experiments to gain knowledge applicable to larger aircraft,
attention should be paid to the scaling of dynamics across test scales. This work
presents a methodology for performing dynamically scaled autonomous ship landing
experiments, where both ship motions and key aspects of aircraft closed-loop dynamics
are systematically adjusted to model-scale. Model-scale experiments were then performed
to analyze the performance of advanced autonomous landing guidance and control
modes through high-volume flight testing, giving insight into the potential benefits and
limitations of the autonomous landing guidance and control laws. Note that the emphasis
here is on guidance and control only, and the associated deck state sensing and estimation
problem will not be considered.

1.2 Existing Work
This section gives a review of the existing literature in four main areas relevant to
the research discussed in this work: autonomous landing guidance and control laws,
deck motion prediction algorithms, dynamic scaling, and existing autonomous landing
experimental setups.

1.2.1 Guidance and Control for Autonomous Shipboard Landing
A variety of guidance and control methods have been proposed for autonomous shipboard
landing of rotorcraft. The majority of these can either be categorized as model predictive
control (MPC) methods or simple deck tracking methods. Additionally, algorithms based
on tau guidance theory and optimization of polynomials have been used. This section gives
a review of these landing methods. The discussion here will be contained to algorithms
that do not require a tether, articulated landing gear, or other similar augmentations
to the aircraft or ship. Note that a similar review was given by Pravitra in [5], but the

3

review given here is warranted for both completeness and tailoring conversation for this
work.

1.2.1.1 Model Predictive Control

Many published shipboard landing algorithms can be classified as model predictive
controllers. At its core, MPC is an optimal control methodology where the solution to
an optimization problem of the form

min J = h(x⃗f) +
∫ tf

0
g(x⃗, u⃗)dt

s.t. ˙⃗x = f(x⃗, u⃗)

c(x⃗, u⃗) ≤ 0⃗

(1.1)

is re-computed online. The goal of eq. (1.1) can be described as follows: determine the
sequence of controls u⃗ that drives the states x⃗ to minimize the objective function J over
the time horizon tf , all while satisfying the system dynamics ˙⃗x = f(x⃗, u⃗) and constraints
c(x⃗, u⃗) ≤ 0⃗. The solution yields an open loop control law that can be applied to the
controlled system in one of two ways: by applying the optimal control input directly or
by commanding the corresponding state trajectory to a lower-level trajectory following
controller. Since open loop control is often not practical, the MPC framework introduces
feedback through the process shown in Fig. 1.2: by applying only a small segment of
the optimal solution before online re-optimization occurs. Re-planning in this manner
provides some level of robustness to deviations from the expected path, changes in the
desired final state, and other uncertainties.

Figure 1.2: MPC architecture. Note that the switch denotes the choice to either command
a trajectory tracking controller or to apply the optimal control to the system directly.

4

A major advantage of MPC is the ability to explicitly include a representation of the
system dynamics in the solution, and therefore plan ahead for the expected dynamics.
This comes at a cost, though, as optimal control problems are generally difficult to solve
and rarely do analytic solutions exist. As a result, the optimal control problem is often
discretized and cast to a static optimization problem that is solved online for re-planning.
For real-time implementation, this requires the online optimization to be both fast and
reliable.

One class of optimal control problems that can be solved analytically is the case
of linear dynamics, a quadratic cost function, and no path constraints. With these
assumptions, a solution can be found by applying Pontryagin’s Minimum Principle and
solving a two-point boundary value problem, similar to the Linear Quadratic Regulator
(LQR) problem solution. The biggest difference is that, for path planning, the final state
and/or time may by fixed, resulting in different boundary conditions than the classic
LQR problem. This class of methods was applied to autonomous shipboard landing in [6],
where a landing path was generated using second order integrator dynamics to produce
position, velocity, and acceleration commands. The final state of the path was fixed to
match a prediction of deck state at the specified land time and the optimal controls were
re-calculated during landing to account for changes in the predicted deck state. The
commands were sent to a dynamic inversion translation rate command - position hold
controller, and the landing algorithm was tested with simulations of a helicopter similar
to a UH-60 landing on a ship representative of a DDG-51 destroyer. Results showed the
optimal control law to be sensitive to deck motion prediction errors.

A limited set of minimum time problems with both linear dynamics and state
constraints have well known analytic solutions as well. One example is the minimum
time problem with double integrator dynamics and limited accelerations. An approach
similar to this was used to land a quadrotor on a moving platform in [7], though this
work included nonlinear constraints and an iterative solution procedure was developed.

A method related to LQR that has been more commonly applied to shipboard landing
is quadratic programming (QP) based linear MPC. From a high level, the usual process
for writing a linear MPC problem as a QP begins by defining a discrete linear model
of the controlled dynamics, as well as a quadratic cost function and linear constraints.
The optimization problem is then generally posed in one of two ways. The first method,
known as “direct transcription”, is to include both the states and controls as decision
variables and enforce the dynamics through the equality constraints. The second method,
known as “direct shooting”, is to eliminate the states from the optimization by forward

5

simulation, thereby reducing the number of decision variables and constraints. Direct
shooting makes the optimization problem smaller, but can result in numerical issues
for large horizon lengths [8]. In both cases the equations can be manipulated into the
standard quadratic programming form, for which multiple fast and reliable optimization
routines have been developed. This allows for an approximate solution to the continuous
time linear-quadratic problem to be obtained, but with the benefit that path constraints
can be included.

QP based linear MPC was used to formulate receding horizon ship landing controllers
in [9–11]. A drawback to the MPC formulation in these works is that the horizon is
simply receding and does not change size. Once the landing is nearly complete, the
optimization will therefore take into account future states that would not occur until
after landing. This can lead the optimization to take greater errors at landing in order
to reduce errors that would have occurred after the fact. To address this, the group
from [9] formulated a shrinking horizon MPC algorithm (see [12, 13]) that plans the
trajectory to a future deck state at some pre-specified land time. The terminal deck
state was assumed known a priori in this case, however. Improvements were made to
this method in [14], with updates including a varying time horizon (the horizon can
grow as well as shrink) and a deck motion prediction scheme to estimate deck state at
touchdown. Simulations with these improvements were also conducted in [14], showing
successful application of the method to a helicopter landing on a CG-26 destroyer subject
to sea state 5 wave conditions. Note that references [9,11–14] all verified performance
via simulation. While these are all simulation based studies, QP based linear MPC has
also been applied experimentally for landing small UAVs on translating ground vehicles
in [15–17], demonstrating the ability to run reasonably sized QP optimizations in real
time.

Two other optimal control methods related to LQR are the iterative linear quadratic
regulator (iLQR) and differential dynamic programming (DDP). Both iLQR and DDP can
handle nonlinear dynamics, though computational costs can make them more challenging
to implement in real time than linear MPC, especially if constraints are included. The
idea behind iLQR is as follows: given an initial guess for the optimal control sequence
and corresponding state trajectory, the nonlinear dynamics and cost function can be
approximated as linear and quadratic, respectively, about the state trajectory. An
iterative procedure that includes so-called forward and backward passes is then used to
refine the control sequence. The forward pass involves rolling out the state trajectory
using the current estimate of the optimal control sequence, and the backward pass uses

6

the rolled out states to determine a perturbation to the current control sequence that
lowers the cost of the trajectory. The forward and backward passes may then be repeated
until convergence. The DDP algorithm is nearly identical to iLQR, but the dynamics
are approximated as quadratic about the state trajectory rather than linear. A good
overview of unconstrained DDP and iLQR is given in [5].

A MPC algorithm for autonomous ship landing based on iLQR is also outlined in [5].
The algorithm, called ensemble iLQR (EiLQR), leverages parallelized general-purpose
computing on graphics processing units (GPUs) to run a multitude of unconstrained
iLQR optimizations simultaneously, with each iLQR instance planning for a different
land time and hence different terminal deck state. A depiction of this concept is shown
in Fig. 1.3a. The terminal deck states are forecast by autoregressive models and the
time horizon of the trajectories shrinks as the aircraft approaches. The method was
tested with GPU in the loop simulations and flight tests landing on static ground. A
sample descent profile from the simulated landings is given in Fig. 1.3b, showing EiLQR
is capable of planning a successful landing path with minimal additional maneuvering.
Overall, the full results reported in [5] suggest that EiLQR can successfully be applied
in moderate sea states and give improved attitude matching at touchdown due to the
inclusion of nonlinear dynamics. Note that the work presented in [5] was not the first
to apply DDP/iLQR to autonomous landing. Receding horizon DDP was also applied
to landing a quadrotor on a moving platform in [18], but the authors focused on vision
based estimation of the landing platform.

Very few other research campaigns have applied nonlinear MPC to ship landing.
At the time of writing, the author of this paper is only aware of two other methods
that have been explored. One is a minimum time algorithm that included nonlinear
dynamics and path constraints (see [19]). The algorithm relied on the solution to a
nonlinear programming (NLP) problem, which can be computationally expensive. To
improve efficiency, the authors proposed a method of parameterizing the trajectory
with polynomial basis functions in [20], significantly reducing the size of the NLP. Both
formulations of the minimum time problem were tested with simulations of a UH-60A.
The second is a model predictive path integral control (MPPI) algorithm discussed in [21].
MPPI is a stochastic trajectory optimization method that rolls out a large amount
(potentially thousands) of state trajectories using monte carlo simulations. The control
sequence is then updated based on a weighted average of the simulated trajectories
(see [22] for a review and rigorous derivation of MPPI). Simulations of the MPPI ship
landing controller from [21] showed large errors at landing, which is not acceptable in

7

(a) Illustration of EiLQR landing algorithm.

(b) Sample descent profile with EiLQR.

Figure 1.3: Schematic of EiLQR landing concept and sample descent profile (from [5]).

practice. The authors speculated that this was due to insufficient accuracy of the linear
dynamic model used for planning.

1.2.1.2 Prescribed Form Trajectories

The MPC algorithms in the previous section do not prescribe any specific form that the
trajectory must meet. This makes for a very general optimization problem, where the
optimization space is all feasible controls. Trajectories with a prescribed form, on the
other hand, assume that the trajectory must satisfy a certain structure (for example,
the trajectory is defined by a polynomial). This allows the trajectory to be defined by a
smaller number of parameters, making manual parameter selection or online optimization
faster, but lacks the flexibility granted by optimal control. Additionally, prescribing the
form of the trajectory does not guarantee that the planned path is dynamically feasible,

8

though this may not be an issue with reasonable commands and an effective trajectory
following controller.

One prescribed form path planing method developed for autonomous ship landing is
the polynomial path planner presented in [23]. The polynomial was fifth order with six
coefficients. Four boundary conditions were imposed on the trajectory: the initial position
and velocity were fixed to that of the helicopter, while the terminal position and velocity
were fixed to values produced by a deck motion predictor. With six coefficients and
four boundary conditions, free parameters are left for optimization. The free parameters
were determined with a gradient descent optimization, where the cost function was
designed to constrain the maximum velocity and acceleration of the approach. Altitude
was also constrained to prevent premature contact with the deck. The method was
tested with simulations of a light and medium class rotorcraft landing on a simulated
ship representative of a DDG-51, as well as with simulations of a heavy class rotorcraft
landing on a simulated ship representative of LHA-1. Impact velocities from the medium
class simulation case are shown in Fig. 1.4, showing a low vertical impact velocity on all
landing gear and a slightly larger lateral impact velocity. These results demonstrate that
the polynomial path planner can produce a viable landing path for moderate sea states.

Figure 1.4: Simulated impact velocities with polynomial path planner from [23]

9

Prescribed form landing algorithms based on tau guidance have also been used. Tau
theory is a nature inspired theory introduced by Lee [24], hypothesizing that animals
plan guidance through the use of the variable τ where

τ = χ

χ̇
(1.2)

In eq. 1.2 the so called “action gap” χ represents the distance between the current
state and a desired end state. Note this does not need to be a spatial distance, but
can represent the distance between the current state and desired state for any degree of
freedom. Lee also proposed a differential equation in terms of τ that smoothly regulates
the action gap to zero in a specified time:

χ

χ̇
= k

2

(
t−

T 2
g

t

)
(1.3)

where k is a parameter used to tune the trajectory and Tg represents the total duration of
the maneuver. This theory was used by researchers in [25] to create a feedback control law.
The control law was tested with simulated ship landing and lateral reposition maneuvers.
The focus was on proof of concept for the tau-based feedback control law, however, and
shipboard landings were only simulated with a static deck and no disturbances. Another
tau based method was proposed in [26], where a modified version of eq. (1.3) was used
to produce position, velocity, and acceleration references. The algorithm was applied to
landing a small UAV on a motion platform using vision-based deck state estimation.

1.2.1.3 Deck Tracking Methods

A simple method for performing ship landings is to match the oscillations of the deck
while simultaneously closing the gap between the landing point and the aircraft. If the
aircraft can adequately match the motion of the landing platform then this method is
feasible and greatly simplifies trajectory generation. The drawback of deck tracking is
that additional maneuvering may result when compared to MPC algorithms that plan
to a predicted deck state. A schematic depicting this is shown in Fig. 1.5 : an MPC
method that plans its landing path to a predicted deck state can plan a more direct
landing path, provided the future deck state predictions are sufficiently accurate. This
has the potential to alleviate maneuverability constraints, allowing aircraft that are not
capable of tracking aggressive deck motions to land in rough seas.

In [6] a very simple implementation of deck tracking was tested with simulations of a

10

Figure 1.5: Illustration of deck tracking versus path planning to deck motion predictions.

helicopter similar to a UH-60 landing on a ship representative of a DDG-51 destroyer.
The helicopter was commanded to match the surge and sway of the deck while the aircraft
descended at a constant rate relative to the deck. Results of a sample landing with
this method are shown in Fig. 1.6, where the expected oscillations are clearly visible.
This paper also presented a linear-quadratic optimal control method discussed in section
1.2.1.1, which incorporated deck motion predictions. Simple deck tracking was found
to be surprisingly reliable and actually outperformed the optimal control method in
this case, due to the optimal control law’s sensitivity to poor long term predictions.
Results given by Pravitra in [5], though, showed that EiLQR (a more advanced MPC
algorithm incorporating deck state predictions) could consistently outperform a deck
tracking controller.

A number of other researches have landed UAVs on small platforms with deck tracking
controllers. For example, in [27] a deck tracking controller was used to land a quadcopter
on a wave glider at sea. In [28, 29] a 4 foot by 4 foot oscillating landing platform was
towed behind a moving vehicle and landings were conducted using relative position
estimates produced by a computer vision system. In [30–32] landing was performed to
stationary oscillating motion platforms. A unique aspect of [32] is that only the state of
the UAV relative to the deck was used for control, meaning that the inertial position
and velocity of the UAV are unknown. To cope with this, deck motion was treated
as an external disturbance to be estimated online. This approach allowed GPS denied
landings, though the controller was only tested for small (magnitudes on the order of a
few centimeters), low-frequency motions.

Others have utilized deck motion predictions to predict quiescent periods, and then
initiate a landing with a deck tracking control law once a quiescent period is expected
to occur. For example, this approach was taken in [33–35]. If quiescent periods are

11

Figure 1.6: Sample landing with deck tracking controller [6]. The top plot shows
longitudinal motion, the middle plot lateral motion, and the bottom plot altitude.

successfully identified then this facilitates landing, and it also does not introduce deck
predictions into the feedback loop. If deck predictions are reliable enough, though, full
use of the prediction in path planning could further reduce the required maneuvering.

Note that some of the methods discussed in the previous subsections can also be
classified as deck tracking algorithms. Namely, the tau inspired approaches and any
MPC algorithm that does not plan to a future deck state, as these methods must react
to the deck at least during the final stages of landing.

1.2.2 Deck Motion Prediction
Some of the landing algorithms discussed in the previous subsection include predictions
of future deck motions. As mentioned previously, there are several advantages to this
if predictions are sufficiently accurate. Namely, predictions can allow an autonomous
landing system to plan a more direct landing path and can also be used to identify calm
periods for triggering the landing procedure. For piloted aircraft, deck motion predictions
could aid in decision making in a similar way. For example, helicopter pilots make critical
flight path decisions 5 to 10 seconds before touchdown [36]. The ability to predict deck
motions 5 to 10 seconds into the future could therefore help the operator decide whether
or not a landing should be waved off. These and other applications have motivated a
number of deck motion prediction algorithms that can be found in the literature.

12

Deck motion prediction methods can generally be divided into two classes: those
which incorporate measurements of the surrounding environment along with information
on the ship model, and time series methods which use past measurements of ship state
alone. Examples falling in the first class can be found in [37] and [38], where the ship is
equipped with a Doppler radar for measuring the surrounding wave field. Inclusion of
these measurements along with ship model parameters can increase forecasting accuracy,
but requires the ship to be equipped with the prediction system. To date, such systems
have not been incorporated into any published autonomous landing algorithms. Several
landing algorithms have incorporated time series based predictions, however. A major
advantage of time series methods is they require no model of the ship dynamics or special
instrumentation onboard the ship, making the prediction method applicable to a wider
variety of landing craft.

Time series based algorithms that have been applied to deck motion prediction include
various neural network formulations (see [39–41]) and algorithms that represent ship
motion as a sum of sines and perform adaptive spectral analysis (see [34,42,43]). The two
prediction methods that have been most commonly applied to ship deck landing, however,
are those based on autoregressive (AR) models and those based on minor component
analysis (MCA). The AR model formulation assumes that the current output can be
described by a linear combination of lagged outputs plus additive zero mean white noise.
This is expressed as

y⃗k = α1y⃗k−1 + α2y⃗k−2 · · · + αNlag
y⃗k−Nlag

+ v⃗k (1.4)

where y⃗k is the current output vector, α⃗ represents the parameter matrices to be estimated,
v⃗k is the noise vector, and Nlag represents the number of lagged outputs included in
the model. Once the α matrices are estimated, the model is propagated forward in
time to produce future predictions. This method was used for path planning in [5], and
was also used for identifying quiescent periods in [33]. Many other studies have also
investigated the use of different AR model variants for deck motion predictions (for
example, [36,42,44–46]).

To give an idea of the prediction capabilities of a simple AR model, a comparison
between predicted and actual deck heave is shown in Fig. 1.7. This plot was produced
using ship motion time histories derived from simulation of a generic surface combatant
representative of a DDG-51 type ship. This database was developed by the U.S. Navy
Office of Naval Research and the Naval Surface Warfare Center under the Systematic

13

Figure 1.7: Ship heave predictions using an AR model and SCONE data.

Characterization of the Naval Environment (SCONE) program. More details on the
SCONE data can be found in [47]. The AR model order was Nlag = 30 and the output
vector used included deck heave, heave rate, and pitch motions, though just heave
predictions are shown here. Looking at Fig. 1.7, it can be seen that deck predictions
are very accurate at two seconds ahead and are reasonably accurate out to about five
seconds. After five seconds accuracy begins to drop off.

The MCA time series prediction method uses the smallest eigenvalues and the
associated eigenvectors of a signal’s autocorrelation matrix to predict future values. A
good description of the method is given by Monneau in [42]. MCA based predictions
were incorporated in the ship landing guidance algorithms presented in [6, 14, 23]. MCA
ship motion prediction algorithms were also compared to AR model formulations in [42]
and [44]. Both studies showed the MCA method to give more accurate predictions,
though the difference in prediction accuracy is not reported to be large and the MCA
method was reported in [42] to be more computationally expensive. An additional
factor to consider is that the AR methods used in both [42] and [44] consider a single
measurement. For example, past measurements of deck heave are used to forecast future
deck heave motions. It is possible, however, to include other measurements in the AR
forecasting algorithm. This was done when producing Fig. 1.7, where deck heave, heave
rate, and pitch angle are included in a single output vector to forecast future values
of heave, heave rate, and pitch angle. Including multiple measurements in the output
vector used in the prediction model allows correlations between measured signals to be

14

identified, which could potentially increase forecasting accuracy.

1.2.3 Dynamic Scaling
In the context of this paper, dynamic scaling refers to methods for relating the dynamics
of a small scale aircraft to a larger scale model. This is relevant to this work, as model
scale ship landing experiments should be designed so that key dynamics are roughly
consistent with reduction in scale, allowing for more meaningful extrapolation of results
to a target full scale use case. In order to do this, a dynamic scaling method is needed.

Two common scaling laws are Froude scaling and Mach scaling. Froude scaling
assumes that two aircraft being compared are dynamically similar, meaning that the
relative magnitude of the governing forces remains unchanged across scales [48]. Dynamic
similarity is quantified through the parameter

Fr = V 2

gL
(1.5)

where V is a characteristic velocity, L is a characteristic length, and g is gravitational
acceleration. With appropriate choice of characteristic length and velocity, Fr is repre-
sentative of the ratio of inertial to gravitational forces. For example, as discussed by
Mettler in [48, 49], for a conventional helicopter the characteristic velocity can be chosen
as rotor tip speed and the characteristic length as rotor radius. Fr is then correlated
with the ratio of blade lift to vehicle weight. Mach similarity, on the other hand, assumes
that the characteristic velocity remains constant across test scales.

The Froude and Mach scaling assumptions can be used to derive useful scaling rules.
For example, by using the Froude scaling assumption that eq. (1.5) remains constant
across scales, it is shown in [48] that frequency must scale by the rule

ωms =
√
NF ωfs , NF = Lfs

Lms
(1.6)

where the Froude scaling factor NF is defined by the characteristic length ratio and
subscripts fs and ms signify full and model scale, respectively. It is also known that units
of time scale by the inverse of the frequency scale factor:

tms = tfs√
NF

(1.7)

Using the scaling rules in eqs. (1.6) and (1.7), dimensional analysis can be applied to

15

derive other Froude scaling rules, some of which are shown in table 1.1. Note that we
multiply by these values to go from full to model scale.

Table 1.1: Froude and Mach scaling factors.

Dimension Froude Scale Factor Mach Scale Factor
Time 1/

√
NF 1/NF

Frequency
√
NF NF

Position 1/NF 1/NF

Velocity 1/
√
NF 1

Acceleration 1 NF

Jerk
√
NF N2

F

Angles 1 1
Angular Rates

√
NF NF

Weight 1/N3
F 1/N3

F

Inertia 1/N5
F 1/N5

F

Mach scaling rules that are obtained by applying the speed similarity assumption
are also shown in table 1.1. Clearly, the two laws are different and cannot be satisfied
simultaneously. This is well documented in rotor aeroelasticity studies, for which Froude
and Mach scaling have both commonly been employed. For example, in [50] and [51]
discussions are given on when it is most appropriate to apply either Froude or Mach
scaling for designing a model scale aeroelasticity experiment.

While the classic use of Froude and Mach scaling is for designing a model scale
experiment based on some full scale prototype, these rules have also been used to relate
the flight dynamics and control characteristics of differently sized aircraft that are not
meant to be models of each other. Though this means that there may be significant
deviations from similarity assumptions, these methods have still proven useful for roughly
scaling dynamic behavior. An example of this is given in [48], where Froude and Mach
scaling are used to study the flight dynamics of small-scale helicopters. The study
used two small-scale helicopters: one which was capable of acrobatic maneuvers, and
one that was designed for less aggressive operation. Froude scaling was applied to
compare the small-scale aircraft to a Bell UH-1H and a Robinson R22, with the scale
factor NF taken as the ratio of full to model scale rotor radius. The results showed a
reasonable relation between the non-acrobatic small-scale helicopter and the full-scale
helicopters. The Froude scaled dynamics of the acrobatic helicopter did not compare
well with larger aircraft, however. Instead, Mach scaling the acrobatic helicopter resulted

16

in scaled dynamics much more similar to the larger aircraft. Looking at the scaling
parameters of table 1.1, this is intuitive as frequencies scale by NF for Mach scaling,
as opposed to scaling by

√
NF for Froude scaling, indicating faster dynamics and more

control authority for a Mach scaled model (which are necessary properties for performing
acrobatic maneuvers). based on this result, the author suggested that Froude and Mach
scaling can be considered together to make predictions about the flight dynamics and
maneuverability of a small-scale helicopter.

Other researchers have used Froude scaling to correlate the dynamics and handling
qualities of small multi-rotor UAVs with larger aircraft. Some examples of this are given
in [52–54]. In [52], state space models were identified for two different size hexacopter
UAVs. Stability and control derivatives were related via Froude scaling, with the Froude
number NF taken as the ratio of full to small scale hub-to-hub distance. Results of the
scaling comparison are shown in table 1.2, where the dynamics of the larger UAV prove
to be well approximated by the Froude scaled dynamics of the smaller UAV (note, the
smaller UAV is denoted as “UP hex” in table 1.2). In [53], a similar scaling comparison
was given, where the lateral dynamics of an IRIS+ quadcopter were compared to those
of an XV-15. The results of this are given in table 1.3, which show Froude scaling to
give a much cruder relation between vehicle dynamics when comparing across such large
scales. Still, a rough approximation is achieved despite the large differences between
the two vehicles. In [54] Froude scaling was investigated as a method of translating the
handling qualities requirements given for full scale manned rotorcraft in ADS-33E-PRF
to small scale UAVs. The results showed Froude scaling based on hub-to-hub distance
is a promising method for establishing predictive handling qualities metrics, such as
disturbance rejection bandwidth (DRB), for UAVs. These studies demonstrate that
Froude scaling can be effective for roughly correlating the dynamics of small multi-
rotor UAVs to larger aircraft, even when the aircraft being compared are not perfectly
dynamically similar.

Currently, no publicly available work has considered dynamically scaling autonomous
ship landing experiments. The results discussed in the preceding paragraphs, however,
indicate that Froude scaling is appropriate for roughly relating ship motion and aircraft
dynamics across test scales. Froude scaling is also a logical method to choose for this
purpose due to the force similarity assumption it is based on. Factors such as relative
thrust to weight ratio have clear importance for maneuvering relative to the ship deck,
and therefore similarity in this regard should be approximately maintained.

17

Table 1.2: Froude scaled hexacopter UAV dynamics with NF = 2.3 [52].

Table 1.3: Froude scaled XV-15 and IRIS+ quadrotor lateral dynamics with NF = 35 [53].

1.2.4 Ship Landing Experimental Setups
The majority of the ship landing guidance algorithms discussed in section 1.2.1 were
evaluated through simulation, but this work is focused on the experimental evaluation of
autonomous landing systems. A brief review of the types of autonomous ship landing
experiments that can be found in the open literature is therefore pertinent.

(a) Test setup from [26]. (b) Test setup from [32].

Figure 1.8: Example experimental setups with small UAVs and motion platforms.

The most common test setup for experimentally evaluating autonomous landing
systems involves small UAVs operating from motion platforms in a motion capture
environment. Examples of such setups are shown in Fig 1.8, and similar setups can be
found in many other works (for example, [7, 30,31]). The advantage of this is cost and

18

easy to obtain hardware, but many small motion platforms can only achieve very limited
translational motions. Ship motions may be large in heave and sway, which can make
small motion platforms limiting even when scaling the magnitude of oscillations to be
appropriate relative to the UAV.

A small number of other researchers have performed landings on trailers towed by
a ground vehicle. Examples of this are shown in Fig. 1.9. Both of these setups give
added realism in that the landing platform can translate and change course, and there
are natural aerodynamic disturbances. Emulating the oscillatory motion of the ship
is difficult in such a setup, though, as a large motion platform must be attached to
the trailer. At the time of writing, the setup shown in Fig. 1.9a is the only publicly
available work that the author of this paper is aware of which includes a towed motion
platform, and position oscillations are still limited to be on the order of 5 centimeters
or less. Additionally, testing in an outdoor environment can impact the repeatability of
test conditions. This gives some appeal to indoor flight testing for cases where a large
amount of data at the same condition is desired.

(a) Towed motion platform for quadrotor vision based landings [29].

(b) UAV landing on a moving trailer [35].

Figure 1.9: Example outdoor landings onto a towed trailer.

19

An even smaller amount of publicly available data can be found for autonomous ship
landings performed at sea. Three examples of such cases are shown in Fig. 1.10. In [27]
(see Fig. 1.10a), a small quadrotor was used to land on a stationary platform subject
to waves. A total of 20 landings were performed with different controller configurations.
In [10] (see Fig. 1.10b) a small quadrotor was used to perform cooperative landings with
a 15-meter-long ship, but only results from one recorded landing were given. The only
other published work that the author of this paper is aware of where autonomous landings
of a rotorcraft were performed at sea is in [55], where two landings were performed to a
189-meter-long ferry (see Fig. 1.10c). While a test setup such as that of Fig. 1.10c can
be used to gain valuable information on the viability of a complete autonomous landing
solution, high volume testing in repeatable wave and wind conditions is difficult to achieve.
In fact, in [55] it was cited that only two recorded tests were performed due factors
including: unfavorable weather conditions and wind speed, position on international
waters, time of day, and the presence of other vessels in the ferry’s surroundings.

(a) Quadrotor landing on a wave glider [27]. (b) 15-meter-long landing craft used for coop-
erative landing with a quadrotor [10].

(c) Maritime operation of a UAV from the 189-meter-long
Wolin ferry. [55].

Figure 1.10: Example outdoor landings at sea.

20

Overall, there is not currently a large amount of experimental data available on
autonomous ship landing guidance and control systems. Most studies which do perform
repetitive testing utilize small motion bases to emulate the ship, as this setup is more
amenable to high volume testing than testing at sea. Studies using small UAVs and
motion bases typically do not frequency scale ship motion, however. Often just the
magnitudes of surge, sway, and heave are reduced until travel limits of the motion base
are not encountered. Additionally, most of these studies utilize the full control bandwidth
of the small-scale UAVs, which is typically much higher than the dominant frequency
of full-scale ship motion. This may not be problematic for validating certain specific
technologies or when testing close to a target use case. For using model-scale experiments
to evaluate autonomous landing guidance and control laws intended for use at much larger
scale, though, this is unrealistic as full-scale rotorcraft may have control bandwidths close
to or less than the dominant frequency of ship motion. This work uses Froude scaling to
better relate dynamics across test scales while utilizing a test setup that enables high
volume testing.

1.3 Contributions
While there is a significant amount of published research on autonomous landing guidance
and control laws, most existing studies are simulation based and there is a lack of openly
available experimental analyses of these systems. This research worked toward filling
this gap through the following contributions:

1. The development of a methodology for performing dynamically scaled
autonomous ship landing experiments

The existing experimental evaluations of autonomous landing systems that can be
found in the public literature have been conducted at model-scale. These studies
have not considered the scaling of dynamics across test scales, however. This work
introduces the use of Froude scaling to consistently scale both aircraft closed-loop
dynamics and ship motion, providing a more realistic model-scale representation of
the full-scale landing scenario. The results demonstrate that model-scale tests can
be performed in a more accessible test setup while retaining dynamic similarity.
For example, even though the majority of the tests performed for this study are
conducted in a wave basin, a Froude scaled UAV model operating from a motion
platform can be used to provide a representative landing scenario provided the

21

control law, guidance algorithms, and ship motion time histories are all consistently
Froude scaled.

2. The extensive experimental evaluation of autonomous landing algorithms
Scaled autonomous ship landing experiments were performed (see Fig. 1.11),
providing experimental data that clarifies the effectiveness and benefits of different
landing methods in practice. More specifically, the following experimental studies
were conducted:

• Comparison between simple deck tracking and advanced guidance algorithms
Two guidance algorithms were developed and evaluated as part of this work.
The first is the so-called “baseline” algorithm that commands a deck-relative
flight path, closing the distance between the aircraft and deck at a steady rate.
The second is an advanced method representative of the MPC style guidance
algorithms prevalent in the literature, for which few experimental validations
have been published. More specifically, the advanced guidance algorithm
utilizes quadratic programming (QP) optimization to plan a landing path in
real-time, with the trajectory planned to deck state predictions produced by
autoregressive time series models.
In theory, the incorporation of landing path optimization and predicted deck
motions should allow the QP algorithm to outperform the purely reactive deck
tracking method. This claim is supported by simulations conducted in [5].
Performing such comparisons experimentally is of interest, though, because the
robustness of advanced landing algorithms that use deck predictions directly
in path planning is a point of concern. Time series based prediction algorithms
that are commonly used for deck motion forecasting can be sensitive to noise
in measured/estimated outputs, and even with high quality data deck motion
predictions may be poor at times. A deck tracking guidance algorithm paired
with high bandwidth control, on the other hand, may be comparatively more
robust if control limits are not hit during landing, as path planning is simple
and the main reliance is on proven flight control laws. The experimental results
presented here give insight into the trade-offs between these two methods,
as well as the necessary accuracy of deck motion predictions to perform safe
landings.

• Studying the sensitivity of landing algorithms to degraded reference tracking
bandwidth and maneuverability

22

Using control laws implemented on small-scale UAVs, reference tracking
bandwidths and maneuverability constraints (i.e., limits on acceleration or
jerk) can be artificially degraded. This was used to study the sensitivity of
the deck tracking and QP landing algorithms to limited control authority
and speed of response. For a deck tracking method, degraded mobility will
cause the aircraft to lag deck motion and eventually lead to hard landings.
Scaled tests were performed with degraded reference tracking bandwidth to
give insight into the bandwidth necessary to utilize a deck tracking guidance
algorithm in high sea states at full-scale. A landing algorithm with predictive
capabilities, on the other hand, may be able to adequately plan for reduced
bandwidth and output constraints. Experiments were performed with the QP
algorithm to demonstrate the effectiveness of this approach in practice.

• Studying the robustness of advanced landing algorithms to disturbances
Additional experiments were performed where an industrial fan was used to
apply an abrupt wind gust. These experiments evaluate the robustness of the
QP algorithm (a representative shrinking-horizon guidance algorithm that re-
plans the trajectory from the perturbed aircraft state) to sudden disturbances.
The results are compared to those obtained with the baseline “deck tracking”
method to determine if the advanced landing strategy offers any advantage
over the deck tracking method when operating in the presence of a significant
aerodynamic disturbance.

Figure 1.11: Autonomous landing experiment performed at the Maneuvering and Sea-
keeping Basin located at the Naval Surface Warfare Center Carderock Division.

23

Chapter 2 |
Model Following Control Laws

One of the goals of this work was the development of autonomous ship landing experiments
where key aspects of the aircraft closed-loop dynamics are roughly consistent with
reduction in scale. Toward this end, explicit model following (EMF) control laws were
developed and implemented on two UAV platforms: a hexacopter and a quadcopter. The
EMF control architecture was chosen as this allows for reference tracking dynamics and
disturbance rejection bandwidths to be easily related across test scales. This chapter will
describe the UAV platforms used in experimentation, as well as the system identification
methods used to derive the aircraft models used in control design. The control architecture
and design procedure will then be presented. Note that the scaling of the closed-loop
system and the selection of controller parameters to match scaled reference tracking and
disturbance rejection bandwidths will be discussed in detail in Chapter 4.

2.1 UAV Platforms
A coaxial hexacopter (Fig. 2.1a) and a quadcopter (Fig. 2.1b) were built for use in the
model-scale autonomous landing experiments conducted for this research. Both vehicles
are equipped with a Pixhawk Cube Orange flight controller running the PX4 flight control
firmware, as well as an Odroid XU4 onboard computer. The Odroid uses the Robotic
Operating System (ROS) to communicate with the flight controller over a serial link and
is also fitted with a WIFI module, allowing for communication with a ground station
computer. For both vehicles all electronics other than the motors are contained within a
waterproof enclosure. To prevent the enclosure from overheating, the electronic speed
controllers were fitted to aluminum heat sinks. The quadrotor is equipped with 12.5 inch
diameter rotors, while the hexacopter uses 10 inch diameter rotors. Both UAVs have a
hub-to-hub distance of about 1.75 feet and weigh about 6.6 pounds.

24

(a) Hexacopter UAV.

(b) Quadcopter UAV.

Figure 2.1: UAV platforms used in model-scale experiments.

2.2 UAV Model Identification

2.2.1 Overview of Transfer Function Modelling with CIFER®

UAV flight dynamics models were identified using the Comprehensive Identification from
Frequency Responses (CIFER®) software package. CIFER® was developed by the U.S.
Army Aeroflightdynamics Directorate (AFDD) at the NASA Ames Research Center and
allows for frequency domain identification of generic state space models, as well as low
order transfer functions. Here CIFER®’s transfer function identification capabilities were
utilized, as multirotor UAVs like those used in this work can be well modelled through
simple decoupled transfer functions. This section will give an overview of the methods

25

employed by CIFER® for transfer function modelling.
The first step in the system identification (ID) process is to record system inputs

and outputs from flight tests where the aircraft dynamics are excited in the frequency
range of interest. Typically, the aircraft dynamics are excited via frequency sweeps on
each control axis. Once time histories are collected and provided to CIFER®, the average
value and linear drift in each each data record is removed and the time history data is
converted to the frequency domain using the chirp Z-transform. This results in frequency
domain inputs X(f) and outputs Y (f), and allows for rough estimates of the input
autospectrum G̃xx(f), output autospectrum G̃yy(f), and cross spectrum G̃xy(f) to be
computed as

G̃xx(f) = 2
T

|X(f)|2

G̃yy(f) = 2
T

|Y (f)|2

G̃xy(f) = 2
T

[X∗(f)Y (f)]

(2.1)

where T represents the duration of the time history data used in the chirp Z-transform
and X∗(f) represents the complex conjugate of X(f) [56].

To reduce the effects of random errors in the extracted frequency response, CIFER®

uses an overlapped windowing method. A graphical representation of this method is
shown in Fig. 2.2 for a lateral stick frequency sweep: the original time history is broken
into a number of smaller “windows” with a Hanning weighting function (represented
by the bell shaped curves in Fig. 2.2) applied to each window. For each window, the
weighted time domain data (w(t)δlat in Fig. 2.2) is transformed to the frequency domain
using the chirp Z-transform and rough spectral estimates are calculated using eq. (2.1).
A smooth spectral estimate is then obtained by averaging the rough spectral estimates
across all windows with the equation

Ĝxx = 1
Unr

nr∑
k=1

G̃xx,k(f) (2.2)

where nr is the number of windows used and U is a correction to the spectral density
magnitude to account for the taper in the window weighting function. For a Hanning
window this is calculated as U =

√
3/8. Equations analogous to eq. (2.2) are used to

calculate the smooth output autospectrum Ĝyy and smooth cross spectrum Ĝxy [56].
The smooth autospectra and cross spectra can then be used to compute an estimate

26

Figure 2.2: Example of overlapped windowing (adapted from [57])

of the coherence function with the equation

γ̂2
xy(f) = |Ĝxy(f)|2

|Ĝxx(f)| |Ĝyy(f)|
(2.3)

The coherence function varies from 0 to 1 and represents that portion of the output
spectrum that is linearly attributable to the input spectrum at each frequency [57]. For
a value of γ̂2

xy = 1, the system is linear and all of the output spectrum is attributable to
the input spectrum. In reality, however, the coherence function is never perfectly 1 due
to system nonlinearities, noise, and unmeasured inputs like wind gusts. In practice, a
coherence of γ̂2

xy ≥ 0.6 is sufficient for system ID purposes [56].
When computing the smooth autospectra there is a trade-off in the choice of window

size: longer windows provide more low-frequency information, while smaller windows
reduce the effects of random errors. CIFER® overcomes this trade-off by using a composite-
windowing method, which automatically selects a range of window sizes to use then
produces smooth spectral estimates Ĝxx, Ĝyy, and Ĝxy with each chosen window size.
These estimates are then merged into composite spectral estimates Ĝxx,c, Ĝyy,c, and Ĝxy,c

through an optimization procedure, automatically handling the trade-off in window size
selection. The composite autospectra and cross spectra can then be used to calculate a
composite coherence estimate. More details on this process can be found in [56].

Once the composite autospectra are obtained, the composite frequency response that
captures the input-output dynamics can be calculated as

T̂c(f) = Ĝxy,c(f)
Ĝxx,c(f)

(2.4)

27

and CIFER® can then fit a transfer function model T to the composite frequency response.
This is done by minimizing the cost function

J = 20
nw

ωnω∑
ω1

Wγ

[
Wg

(
|T̂c| − |T |

)2
+Wp

(
∠T̂c − ∠T

)2
]

(2.5)

where | · | represents magnitude in dB, ∠ represents phase in degrees, nω is the number of
frequency points to use in optimization, ω1 and ωnω are the lowest and highest frequency
points used, and Wγ, Wg and Wp are weighting functions. Wγ is dependent on the
coherence function at each frequency and is calculated as

Wγ(ω) =
[
1.58

(
1 − e−γ2

xy

)]2
(2.6)

which emphasizes the frequency points with the highest coherence during the optimization.
Wg and Wp are the relative weights for the magnitude and phase square errors and are
set to Wg = 1.0 and Wp = 0.01745, which sets 1-dB of magnitude error comparable to
7.57 degrees of phase error [56].

The transfer function model T is a generic transfer function of up to the 4th order
and allows for the inclusion of input-output delays. That is,

T (s) = a1s
4 + a2s

3 + a3s
2 + a4s+ a5

s4 + b1s3 + b2s2 + b3s+ b4
e−τs (2.7)

where s represents the Laplace variable. To fit the transfer function model, the numerator
and denominator order must be specified by the user, and the user must also make the
decision on whether or not to include a time delay. The numerator coefficients, denomi-
nator coefficients, and time delay are then adjusted using Rosenbrock’s multivariable
search method to minimize eq. (2.5).

2.2.2 PX4 Stabilized Mode Controller
During the flight tests used for UAV system identification and model validation the PX4
stabilized mode controller was active. It is therefore necessary to understand the PX4
stabilized mode control structure, as model validation relied on reconstructing the closed
loop system.

A block diagram of the PX4 stabilized mode controller is shown in Fig. 2.3. In
stabilized mode the pitch and roll axes follow an attitude-command-attitude-hold response
type, the yaw axis follows a rate-command-attitude-hold response type, and the heave

28

Figure 2.3: PX4 stabilized mode control architecture.

axis is open loop with throttle commands directly input to the mixer. Referring to Fig.
2.3, we can see that (for roll and pitch) the attitude controller is nonlinear and acts on
a quaternion representation of vehicle attitude, where qcmd represents the commanded
quaternion and q represents the estimated vehicle attitude expressed as a quaternion.
This notation is used in this section alone, and should not be confused with pitch rate
command and pitch rate which are denoted by qcmd and q, respectively, in all other
sections of this work. Also note that Ω is used in this section to represent the body axes
angular rate vector.

For the purpose of validating the identified transfer function models that will be
discussed in Chapter 2.2.4, it is convenient to represent the attitude controller in a
decoupled and linearized form with feedback acting on the Euler angles. To achieve this,
an expression for the error quaternion qe is needed. Noting that the qe is defined as the
quaternion that performs the rotation from q to qcmd the following expression can be
written:

qcmd = q ∗ qe (2.8)

where the operator ∗ denotes quaternion multiplication. Solving for the error quaternion
gives

qe = q−1 ∗ qcmd = q

∥q∥
∗ qcmd = 1

∥q∥

q0 q1 q2 q3

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

q0,cmd

q1,cmd

q2,cmd

q3,cmd

 (2.9)

where q0 represents the scalar component of the quaternion and the quaternion norm is
calculated as

∥q∥ = q2
0 + q2

1 + q2
2 + q2

3 (2.10)

29

To express qe in terms of the measured and commanded Euler angles, q and qcmd

must be written in terms of Euler angles. For q the is written as

q =

q0

q1

q2

q3

 =

cos(ϕ2) cos(θ2) cos(ψ2) + sin(ϕ2) sin(θ2) sin(ψ2)
sin(ϕ2) cos(θ2) cos(ψ2) − cos(ϕ2) sin(θ2) sin(ψ2)
cos(ϕ2) sin(θ2) cos(ψ2) + sin(ϕ2) cos(θ2) sin(ψ2)
cos(ϕ2) cos(θ2) sin(ψ2) − sin(ϕ2) sin(θ2) cos(ψ2)

 (2.11)

and qcmd can be expressed in the same manner using the commanded Euler angles. To
develop a simplified decoupled model for model validation purposes, it is assumed that
attitude commands are limited to a single axis and all other Euler angle commands and
measurements remain close to 0. This assumption is valid for model validation as the
system ID flight tests consisted of commands primarily on a single axis. For example,
considering roll motion and letting θ = ψ = 0, eq. (2.11) can be simplified to

q =
[
cos(ϕ2) sin(ϕ2) 0 0

]T
(2.12)

Similarly, qcmd can be expressed as

qcmd =
[
cos(ϕcmd

2) sin(ϕcmd

2) 0 0
]T

(2.13)

Substituting eqs. (2.12) and (2.13) into eq. (2.9) yields the following expression for qe:

qe =

cos(ϕ2) cos(ϕcmd

2) + sin(ϕ2) sin(ϕcmd

2)
cos(ϕ2) sin(ϕcmd

2) − sin(ϕ2) cos(ϕcmd

2)
0
0

 =

cos(ϕcmd−ϕ

2)
sin(ϕcmd−ϕ

2)
0
0

 (2.14)

The scalar component of the error quaternion in Eq. (2.14) is always positive for
−90◦ < ϕcmd − ϕ < 90◦. Additionally, assuming small values of (ϕcmd − ϕ)/2, the first
vector component of qe is approximated as (ϕcmd − ϕ)/2. The commanded roll rate
produced by the quaternion attitude controller from Fig. 2.3 can then be reduced to

pcmd ≈ sgn(qe,0)
2P (ϕcmd − ϕ)

2 = P (ϕcmd − ϕ) (2.15)

Thus, the nonlinear attitude controller can be represented as a proportional gain controller
acting on the Euler angle error for the de-coupled, linearized model assumptions. The

30

same results are obtained for pitch compensation.
A block diagram of the roll axis control loop with the linearized attitude controller

is shown in Fig. 2.4. From Fig. 2.4, we can see that the inner rate loop consists of a
PI controller with derivative (angular acceleration) feedback. The angular acceleration
feedback is filtered by a second order low pass filter. The damping ratio for this filter
is 0.707 and the break frequency ωf was fixed at 20 Hz. Note that this same control
architecture is applied to the pitch axis. Additionally, the same inner-loop rate controller
is applied to the yaw rate response, but with the absence of the outer attitude loop as
the pilot commands yaw rate directly. Using this control architecture, the closed loop
system used in model validation can easily be constructed in the Laplace domain.

Figure 2.4: Block diagram of linearized PX4 stabilized mode roll axis controller.

2.2.3 Flight Test Procedure
Past work by Wei [58] demonstrated successful frequency domain system ID of a multirotor
UAV from manual frequency sweep flight test data, where flight tests were conducted with
an attitude command control law active. Due to the success of the identification in [58], a
similar flight test procedure was used in this work, which consists of the following steps:

1. The pilot brings the UAV to the desired trim condition and holds this condition
for at least 5 seconds.

2. The pilot begins manually sweeping the aircraft on a desired axis, beginning with
slow, long-period commands and gradually increasing the frequency until manual
limitations are met (the pilot cannot oscillate the stick any faster).

3. The aircraft is again held in a stable trim for at least 5 seconds.

31

Recall that the PX4 stabilized mode controller was active during flight test, as the bare
airframe dynamics of the UAVs are highly unstable and impractical to fly open-loop.
The swept pilot stick input therefore equates to swept roll angle, pitch angle, and yaw
rate commands for the lateral, longitudinal, and directional axes. For heave, however,
there is no feedback compensation and the stick inputs map directly to throttle inputs.
A sample time history showing a roll command sweep performed with the quadcopter is
shown in Fig. 2.5.

Figure 2.5: Lateral axis frequency sweep used for quadcopter model ID. Note that δail is
the PX4 bare airframe input shown in Fig. 2.3

All time history data used for system ID was recorded at a rate of 100 Hz. This
includes pilot stick inputs, attitude commands, angular rate commands, and bare-airframe
inputs, as well as the UAV attitude, body axis angular rate, and body axis velocity
estimates produced by the PX4 extended Kalman filter. Note that the system ID flight
tests were conducted in a motion capture facility, and motion capture position and
heading measurements were streamed from the ground station computer to the UAV at
a rate of 100 Hz. This allowed for accurate position, velocity, and heading estimates to
be obtained.

32

2.2.4 Identified Models
The flight test procedure discussed in the previous section was used to identify models
of the quadcopter and hexacopter UAVs operating around hover. These models were
found sufficiently accurate in the low speed forward flight regime as well, allowing the
controllers used for autonomous landing experiments to be designed around a single
linear model.

For the quadcopter, bare airframe models were identified directly using the transfer
function modelling capabilities of CIFER® (note that bare airframe here refers to the
aircraft dynamics plus the mixer, as was shown in Fig. 2.3). Referring back to Eq. (2.7),
CIFER® requires the user to provide the transfer function numerator and denominator
order, as well as to specify whether or not to include a time delay. Based on other work
on the system ID of multirotor UAVs (references [52,58–60]) it was first assumed that
the quadcopter dynamics could be captured by transfer functions of the form

p(s)
δail(s)

= Lδail
s(s− Yv)

s3 − Yvs2 − Lvg
e−τlats

q(s)
δele(s)

= Mδele
s(s−Xu)

s3 −Xus2 +Mug
e−τlons

r(s)
δrud(s)

= Nδrud

s−Nr

e−τruds

w(s)
δthr(s)

= Zδthr

s− Zw
e−τthrs

(2.16)

where Lv, Yv, Mu, Xu, Nr, and Zw are the typical stability derivatives and Lδail
, Mδele

,
Nδrud

, and Zδthr
are control derivatives. Since the stability and control derivatives are

not identified directly by CIFER®’s transfer function modelling tools, just the order of
the numerator and denominator from each transfer function shown in Eq. (2.16) was
used to specify the model structure. It was found, however, that adding an additional
pole to all four transfer functions and an additional zero to the yaw rate dynamics led
to a better model fit. The quadcopter models identified with the updated structure are
shown in table 2.1, and aircraft frequency response, model fit, and coherence are shown
in Fig. 2.6.

Looking at Fig. 2.6, excellent agreement is seen between the frequency response
extracted from flight test and that of the estimated models. The yaw and vertical axes
also show excellent coherence. On the pitch and roll axes the coherence does dip below the
recommended limit of 0.6, but only slightly and for small frequency ranges. Overall, the

33

Table 2.1: Quadcopter Identified Models

p(s)
δail(s)

e−τlats 1624.8(s+0.5549)(s−0.2694)
(s2−3.823s+8.761)(s2+11.38s+49.09)e

−0.0125s

q(s)
δele(s)e

−τlons 1568.1(s2+0.1455s+0.02292)
(s2−3.569s+7.731)(s2+12.67s+43.07)e

−0.0159s

r(s)
δrud(s)e

−τruds 42.543(s+2.431)
(s+7.906)(s+0.06621)e

−0.0170s

w(s)
δthr(s)e

−τthrs −518.22
(s+8.008)(s+0.3203)e

−0.0100s

(a) δail to roll rate. (b) δele to pitch rate.

(c) δrud to yaw rate. (d) δthr to vertical rate.

Figure 2.6: Quadcopter frequency response and transfer function model fits.

34

results shown in Fig. 2.6 indicate a successful identification of the quadcopter dynamics,
which is confirmed by the time history validation plots shown in Fig. 2.7. To produce
the time history validation, flight tests were conducted where doublet commands were
input to the closed loop system on each axis. Closed-loop simulations were then run
for comparison, where the closed loop models were formulated based on the linearized
PX4 stabilized mode control laws discussed in section 2.2.2. The results show excellent
agreement with flight test data for the roll, pitch, and yaw responses, and good agreement
on the vertical axis as well.

(a) Roll response. (b) Pitch response.

(c) Yaw rate response. (d) Vertical rate response.

Figure 2.7: Quadcopter model time history validation.

While the bare airframe model identification was successful for the quadcopter,
accurate bare airframe frequency responses with sufficiently high coherence could only
be extracted on the yaw and vertical axes of the hexacopter, and not on the pitch and
roll axes. This likely could have been overcome by using the flight test procedures

35

presented by Ivler in [52], where the frequency sweeps were automated and injected
into the closed loop system at the bare airframe input. For this work, however, it was
deemed sufficient to simply identify models from roll rate command to aircraft roll rate
(i.e. p(s)

pcmd(s)) and pitch rate command to aircraft pitch rate (i.e. q(s)
qcmd(s)) with the PX4

angular rate controller active. The closed loop roll and pitch rate dynamics were then
considered as the plant when designing the roll and pitch attitude controllers. The main
drawback to this is that it precludes the determination of stability margins by breaking
the control loop at the bare airframe input. For these small UAVs, however, stability can
be easily and safely verified through flight test.

Using this approach, the models estimated for the hexacopter are shown in table 2.2
and the hexacopter frequency response, model fit, and coherence are shown in Fig. 2.8.
Looking at table 2.2 and Fig. 2.8, we see that yaw rate and vertical rate models were
identified with the same structure as that used for the quadcopter and again agree well
with flight test data in the frequency domain. Further, the yaw rate and vertical rate
responses maintain high coherence over the frequency range of interest. The roll rate and
pitch rate frequency response also show an excellent model fit and very high coherence.
The high coherence is expected as the command roll and pitch rates are now considered
as the inputs, meaning the filtering effects of the angular rate controller do not effect the
extracted frequency response as they did for the quadcopter bare airframe identification.
Overall, the results shown in Fig. 2.8 indicate successful fits to the chosen responses for
the hexacopter UAV. This is confirmed by the time history comparisons shown in Fig.
2.9, where the estimated models provide an excellent prediction of the flight test data. In
fact, the simulated pitch and roll responses shown in Fig. 2.9 are nearly indistinguishable
from the flight test data.

Table 2.2: Hexacopter Identified Models

p(s)
pcmd(s)e

−τlats 717.91(s+0.05038)
(s+0.2513)(s2+19.39s+691.1)e

−0.0084s

q(s)
qcmd(s)e

−τlons 568.01(s+0.1607)
(s+0.4367)(s2+17.46s+530.6)e

−0.0097s

r(s)
δrud(s)e

−τruds 31.259(s+6.609)
(s+12.92)(s+0.5291)e

−0.0125s

w(s)
δthr(s)e

−τthrs −964.11
(s+14.78)(s+0.3974)e

−0.0132s

36

(a) Roll rate command to roll rate. (b) Pitch rate command to pitch rate.

(c) δrud to yaw rate. (d) δthr to vertical rate.

Figure 2.8: Hexacopter frequency response and transfer function model fits.

37

(a) Roll response. (b) Pitch response.

(c) Yaw rate response. (d) Vertical rate response.

Figure 2.9: Hexacopter model time history validation.

38

2.3 Control Architecture
Position and heading command control laws were developed using the nested control
architecture shown from a high-level in Fig. 2.10. Note that the position and attitude
control laws are run on the Odroid XU4 onboard computer and produce angular rate
commands that are sent to the PX4 angular rate controller that runs on the Pixhawk
autopilot.

The choice was made to send roll and pitch rate commands to PX4 because the bare
airframe model ID was unsuccessful on the hexacopter roll and pitch axes, so models
from roll and pitch rate commands to roll and pitch rate output were determined instead.
While bare airframe models were determined for the quadcopter, formulating the attitude
controllers to command roll and pitch rate allowed identical control structures to be
used on both UAVs. The choice was made to also send yaw rate commands because
it was desired to run the attitude controllers on the onboard computer carried by the
UAV, and then send commands to the Pixhawk flight controller. This prevented the
need to overwrite the default control modes available in the PX4 flight control firmware,
keeping them immediately available as a fail-safe. In order to send commands from the
onboard computer to PX4, though, the ROS package mavros was used. Mavros has
built in functionality that enables sending a combination of angular rate commands and
throttle inputs to PX4. Mavros does not, however, have the built in functionality to send
a combination of pitch and roll rate commands and inputs δrud and δthr. Formulating
the attitude control laws to send roll, pitch, and yaw rate commands therefore allowed
for identical control structures to be used on both aircraft while also taking advantage of
the convenient communication capabilities provided by mavros.

Figure 2.10: High-level control law block diagram.

39

2.4 Angular Rate Control
The PX4 angular rate controllers use the same control law as that shown in the inner
loop of Fig. 2.4 and discussed in chapter 2.2.2. The main features of the control law
are PI compensation on the angular rate error signal and filtered derivative (angular
acceleration) feedback. For both the hexacopter and quadcopter UAVs, the angular rate
control gains remained fixed at values which had previously been empirically tuned by a
pilot. These control gains are tabulated for each control axis in table 2.3. Additionally,
the filter on derivative feedback shown in Fig. 2.4 used a damping ratio of ζf = 0.707
and frequency of ωf = 20 Hz on all axes.

Table 2.3: Angular rate control parameters for each axis.
Quadcopter Hexacopter

KP KI KD KP KI KD

Roll Rate 0.1300 0.3800 0.0060 0.2250 0.8250 0.0045
Pitch Rate 0.1300 0.3800 0.0060 0.2250 0.8250 0.0045
Yaw Rate 0.2000 0.6000 0 0.6000 0.4800 0

2.5 Attitude Control
The explicit model following (EMF) control architecture [61] was used to create attitude-
command-attitude-hold controllers for roll, pitch, and yaw. EMF features a command
filter to shape reference commands, a feedforward inversion model to approximately
cancel plant dynamics, and linear feedback compensation. A time delay on commands is
also included to account for phase lag due to higher frequency dynamics not included in
the inversion model. This architecture is shown for the pitch attitude controller in Fig.
2.11, where the feedback compensation is chosen as simple proportional-plus-integral
(PI) control. An identical structure was used for the roll and yaw attitude controllers.

EMF was the control method of choice here because, with an accurate inversion
model, EMF forces the reference tracking response to approximate the command filter
with added input delay. For example, for pitch this allows the reference tracking response
to be approximated as

θ(s)
θcmd(s)

≈ Gcf,θ(s)e−τqs (2.17)

Additionally, an accurate inversion model effectively partitions the reference tracking
and disturbance rejection responses of the closed loop system. These properties of EMF

40

Figure 2.11: Pitch attitude controller.

make for easy tailoring of closed loop bandwidths and will be leveraged in Chapter
4.4 to systematically scale the UAV closed loop dynamics. Further, the EMF control
architecture lends itself nicely to control design with transfer function models like those
identified for the UAVs used in this work.

To design the attitude controller inversion models, the identified aircraft models
are used. Since the attitude controller output consists of angular rate commands, the
feedforward inversion model must be based on the attitude response due to a rate
command. For the hexacopter pitch and roll axes, this is obtained by simply integrating
the output of the identified models shown in table 2.2 and ignoring the time delay:

 ϕ̂(s)
pcmd(s)

hex

= 717.91(s+ 0.05038)
s(s+ 0.2513)(s2 + 19.39s+ 691.1) θ̂(s)

qcmd(s)

hex

= 568.01(s+ 0.1607)
s(s+ 0.4367)(s2 + 17.46s+ 530.6)

(2.18)

where (·)hex denotes that these inversion models are for the hexacopter. The identified
time delay is then placed on the reference command as shown in Fig. 2.11:

(
e−τps

)
hex

= e−0.0084s(
e−τqs

)
hex

= e−0.0097s
(2.19)

For the quadcopter attitude controllers and hexacopter yaw controller, however, the PX4
rate control loop must first be closed around the identified bare airframe models. The
inversion model is then obtained by integrating the angular rate output to yield attitude.
Using the quadcopter pitch axis as an example and referring back to the PX4 rate control

41

loop depicted in Fig. 2.4, this yields
 θ̂(s)
qcmd(s)

quad

=
q(s)
δele(s)e

−τlons
(
KP,q + KI,q

s

)
s
[
1 + s q(s)

δele(s)e
−τlons

(
KP,q + KI,q

s

) ω2
f

s2+2ζfωf s+ω2
f
KD,q

] (2.20)

An issue that arises when evaluating Eq. (2.20) is that an internal delay appears due to
the loop closure around the time delay e−τlons. This is undesirable as the inversion model
is most conveniently expressed as a transfer function. To circumvent this issue, the time
delay can be approximated as a first order Padé approximation:

e−τlons ≈
−(s− 2

τlon
)

(s+ 2
τlon

) (2.21)

Eq. (2.21) can then be substituted into Eq. (2.20) along with the estimates of q(s)/δele(s)
and τlon from table 2.1 and the PX4 controller parameter values given in section 2.4.
This results in the transfer function
 θ̂(s)
qcmd(s)

quad

= −203.85(s− 125.8)(s+ 2.923)(s2 + 0.1455s+ 0.02292)(s2 + 177.7s+ 1.579e04)
s(s+ 78.69)(s+ 2.244)(s+ 1.164)(s+ 0.0337)(s2 + 16.88s+ 221.5)(s2 + 213.6s+ 1.768e04) (2.22)

which no longer has an internal delay but does contain very high frequency poles and
zeros, including a non-minimum phase zero due to the Padé approximation which would
make the inverted model unstable. This can be corrected by neglecting the dynamics
added by the high frequency poles and zeros (i.e. setting s = 0 for these cases) and
accounting for the phase effects of neglected dynamics through an added time delay.
Following this process, Eq. 2.22 reduces to
 θ̂(s)
qcmd(s)

e−τqs

quad

= 291.05(s+ 2.923)(s2 + 0.1455s+ 0.02292)
s(s+ 2.244)(s+ 1.164)(s+ 0.0337)(s2 + 16.88s+ 221.5)e

−0.021s (2.23)

which consists of a valid inversion model and added time delay while still accurately
representing the dynamics of the exact model with an internal delay derived in Eq. 2.20.
This is confirmed by the frequency response comparison shown in Fig. 2.12, where the
two different representations show a nearly identical frequency response out to at least
30 rad/s. This same process also proved to be effective for deriving inversion model and
time delay parameters for the quadcopter pitch and yaw axes and hexacopter yaw axis.

42

The resulting expressions are as follows:
 ϕ̂(s)
pcmd(s)

e−τps

quad

= 287.25(s+ 2.923)(s+ 0.5549)
s(s2 + 3.178s+ 3.676)(s2 + 15.7s+ 245)e

−0.017s

 ψ̂(s)
rcmd(s)

e−τrs

quad

= 10.166(s+ 3)(s+ 2.431)
s(s+ 15.47)(s2 + 3.211s+ 4.794)e

−0.0185s

 ψ̂(s)
rcmd(s)

e−τrs

hex

= 26.914(s+ 6.609)(s+ 0.8)
s(s+ 37.78)(s+ 4.552)(s+ 0.8272)e

−0.015s

(2.24)

Figure 2.12: Comparison of quadcopter pitch axis inversion model with internal delay
(derived from Eq. 2.20) and transfer function approximation with output delay (shown
in Eq. 2.23)

With inversion models defined, the command filter structure can be chosen. Again
using the quadcopter pitch axis as an example, note that the inversion model θ̂(s)

qcmd(s)

shown in Eq. (2.23) is of relative degree three. Inverting this will therefore result in
an improper transfer function. This is avoided in practice by distributing the pitch

43

command filter shown in Fig. 2.11 to both the time delay and feedforward inverse plant.
The command filter structure is then chosen such that the product of the command filter
and inverted plant results in a proper transfer function. For the quadcopter pitch axis
the command filter was therefore chosen to be a third order filter of the form

Gθ,cf =
(

ω2
θ,cf

s2 + 2ζωθ,cfs+ ω2
θ,cf

)(
pθ

s+ pθ

)
(2.25)

where ωθ is set to govern the reference tracking bandwidth and the pole at pθ is placed

at high frequency and is included to make the product Gθ,cf

(
θ̂(s)

qcmd(s)

)−1
proper. Here it

was found that simply fixing pθ at 50 rad/s allowed the pitch response to be governed by
the lower frequency ωθ without causing any practical issues. The same command filter
was used for the hexacopter pitch axis.

Following the same logic as the pitch attitude controller, a command filter structure
identical to that of Eq. 2.25 was chosen for both the quadcopter and hexacopter roll
attitude controllers:

Gϕ,cf =
(

ω2
ϕ,cf

s2 + 2ζωϕ,cfs+ ω2
ϕ,cf

)(
pϕ

s+ pϕ

)
(2.26)

with pϕ also fixed at 50 rad/s. For both the hexacopter and quadcopter yaw axis, though,
the inversion model ψ̂(s)

rcmd(s) shown in Eq. 2.24 is of relative degree two. A second order
command filter of the form

Gψ,cf =
ω2
ψ,cf

s2 + 2ζωψ,cfs+ ω2
ψ,cf

(2.27)

was therefore used for yaw attitude control. Note that the process for choosing the
value of the command filter frequencies ωθ, ωϕ, and ωψ will be discussed in section 4.4.1.
Additionally, the process for choosing the attitude control feedback gains will be discussed
in section 4.4.3.

2.6 Position Control
The position control law is divided into two separate controllers: one for controlling
inertial XI and Y I translations, and one for controlling altitude (i.e. inertial ZI position).
Similar to the attitude control laws, both the translational position and altitude controllers
utilize the EMF control architecture.

44

2.6.1 X and Y Position Control

Figure 2.13: Inertial X and Y position controller.

A block diagram of the XI and Y I position control law can be seen in the outer
loop of Fig. 2.13, which outputs pitch and roll commands to the lower level attitude
controllers. The outer loop controller uses PID feedback compensation and second
order command filters, where the command filter inputs ux and uy are produced by the
trajectory generation algorithm (see Chapter 3). This same control law was used for
both the hexacopter and quadcopter UAVs.

To determined the outer loop inversion model, the UAV level frame translational
dynamics are modelled assuming that the aircraft will operate in hover and low speed
flight during shipboard landing tasks. Note that the UAV level frame is defined by
rotating the inertial frame X and Y axes to align with the UAV heading. The rotation
matrix to transform from inertial frame to UAV level frame coordinates is therefore
calculated as

Tlf/I =

cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0
0 0 1

 (2.28)

Assuming small pitch and roll angles and low vertical accelerations, the UAV level
frame translational accelerations can be approximated as

Ẍ lf = Xv,lonẊ
lf − gθ

Ÿ lf = Yv,latẎ
lf + gϕ

(2.29)

where coefficients Xv,lon and Yv,lat characterize drag effects and −gθ and gϕ account
for thrust vectoring due to change in attitude. For low-speed flight, the translational
dynamics are dominated by the thrust-vectoring terms and Xv,lon and Yv,lat can be

45

dropped from Eq. 2.29 , resulting in the further simplified model

Ẍ lf = −gθ

Ÿ lf = gϕ
(2.30)

Treating pitch and roll as the driving inputs for control design, assuming perfect pitch
and roll command tracking, and taking the Laplace transform of Eq. 2.30 yields

X lf (s)
θcmd(s)

= −g
s2

Y lf (s)
ϕcmd(s)

= g

s2

(2.31)

Inverting this leads to the level frame “inversion model” of acceleration feedforward with
gains of −1/g and 1/g, as is shown in Fig. 2.13. The control law is designed to follow
inertial position commands, however, so the desired inertial X and Y accelerations are
first transformed to the level frame prior to applying the feedforward control gains. Note
that the inertial acceleration feedforward command is passed through a low pass filter
prior to applying the transformation. This is done because the quadratic programming
based trajectory generation law (discussed in Chapter 3) outputs position commands ux
and uy at 10 Hz, but the EMF control laws execute as a separate process at 100 Hz. The
result is significant oscillation in the acceleration commands occurring at a frequency of
10 Hz. Including a second order low pass filter with a frequency of 25 rad/s and damping
ratio of 0.707 was found to effectively attenuate these oscillations without introducing
enough lag to harm performance.

The level frame model shown in Eq. 2.31 can also be used to design the PID control
gains in the aircraft level frame. Similar to the feedforward compensation though, the
inertial frame feedback errors must be transformed to the level frame prior to applying
the feedback gains. The specific process used for determining PID control gains will be
discussed in section 4.4.3. Additionally, the process for determining the command filter
coefficients ωX and ωY and time delay τθ,ϕ is discussed in section 4.4.1.

2.6.2 Altitude Control
A block diagram of the altitude control law is shown in Fig. 2.14. The control structure
is similar to the that used for X and Y position control, with a second order command
filter and PID feedback compensation (for discussion on the choice of command filter

46

Figure 2.14: Altitude control law.

frequency and feedback gains see sections 4.4.1 and 4.4.3). The main differences in the
altitude control structure are the absence of an inner control loop and the injection of
the nominal hover throttle into the bare airframe input.

With the absence of an inner control loop, the feedforward inversion model is de-
termined directly from the vertical axis system ID results. Again assuming small pitch
and roll angles so that the body axis vertical rate w is approximately equivalent to the
altitude rate ŻI , the altitude inversion model is given as

ẐI(s)
δthr(s)

= 1
s

w(s)
δthr(s)

(2.32)

where w(s)/δthr(s) is tabulated in tables 2.1 and 2.2 for the quadcopter and hexacopter,
respectively. The altitude command delay τthr is set equal to the values given in tables
2.1 and 2.2 as well.

Note that the altitude controller feedforward acceleration term is low pass filtered,
where the filter was specified to be identical to that used in the X and Y controller
feedforward path. This low pass filter was included in the altitude controller for the same
reason it was included in the X and Y position controller: the quadratic programming
based guidance algorithm discussed in Chapter 3 runs at a lower rate than the EMF
control laws. The result is high frequency oscillations in the command filter acceleration
output, which is problematic in the lead-heavy feedforward channel without additional
filtering.

47

Chapter 3 |
Autonomous Landing Guidance
Algorithms

Two different guidance algorithms were developed for performing autonomous ship landing
experiments. The first is a simple deck-tracking algorithm (referred to here as the baseline
algorithm), which commands a deck-relative flight path, closing the distance between
the aircraft and deck at a constant rate. The second is a quadratic programming (QP)
based landing algorithm that performs real-time landing path optimization and plans the
trajectory to a predicted deck state. This chapter will describe the both the baseline and
QP guidance algorithms, including the method for producing the deck motion predictions
incorporated into QP guidance method.

3.1 Baseline Guidance Algorithm
A high-level block diagram of the baseline guidance algorithm is shown in Fig, 3.1a and
a schematic of the planned trajectory is shown in Fig. 3.1b. Referring to Fig. 3.1a, the
baseline landing algorithm takes the current deck state measurements as input, filters
the deck states, and then uses the filtered deck states to produce position and heading
commands that are input to the EMF control law discussed in Chapter 2. As depicted in
Fig. 3.1b, the produced trajectory commands are broken into two stages: an approach
stage and a landing stage. The approach stage brings the aircraft from its initial position
to the so-called “approach point”, which is a fixed position relative to the mean motion
of the landing deck. For the model-scale experiments that will be discussed in this work,
the approach point was set to 0.5 meters behind and 0.75 meters above the mean deck
motion. A height of 0.75 meters was chosen so that for the largest heave oscillations
the UAV landing gear would remain approximately 0.25 meters above the deck, which

48

(a) High-level diagram of baseline guidance algorithm.

(b) Schematic of baseline landing trajectory.

Figure 3.1: Baseline guidance algorithm block diagram and trajectory schematic.

corresponds to about 3.5 meters (about 11 feet) at full-scale when applying the scaling
method discussed in Chapter 4.1. The 0.5 meter offset aft of the deck was then chosen so
that a camera onboard the UAV could maintain a view of the deck during the approach.
The onboard camera was not used in this study, but it was desired to gather data with
the camera as part of a separate research effort. Once the approach point is reached,
the aircraft is commanded to hold this position for two seconds. After two seconds the
landing phase is initiated and the aircraft is commanded to close the distance between
the aircraft and deck at a constant rate, killing the throttle once the landing gear is
determined to be less that five centimeters above the deck. This method was chosen
as the baseline landing strategy as it is a simple trajectory that has been commonly

49

implemented in the literature (for example, see [6, 27,29,32,35]).
In [35] an altitude-based phase-in of deck motion was integrated into the landing

trajectory to limit tracking deck oscillations when still far from the deck, though the
specifics of the phase-in method were not discussed. Here, a complimentary filter is used
to phase deck oscillations into the X and Y trajectory commands given by the baseline
guidance algorithm. The complimentary filter separates the low frequency and high
frequency deck motion. A variable gain is then placed on the high frequency portion of
deck motion, which is scheduled with deck relative altitude to cut out oscillatory motion
from the deck-relative commands when the UAV is far from the deck. This was found
in model-scale simulations to help limit unnecessary pitching and rolling of the UAV
that occurred when tracking the unfiltered deck X and Y oscillations well before landing.
The complementary filter that was utilized is depicted for the deck X position in Fig.
3.2. Note that the high pass channel gain is saturated to be in the range 0 ≤ KHPF ≤ 1
and the filter parameters were set to ζ = 0.707 and ωLPF = 0.5 rad/s for all axes. Also
note that, in the scheduling function shown in Fig. 3.2, P1 represents the deck-relative
altitude where the high pass channel begins fading in and P2 represents the deck-relative
altitude where KHPF = 1 (high pass motion is fully phased in). Here P1 was set equal to
the approach point altitude (0.75 meters above the deck), and P2 was set to 0.1 meters so
as to include full X and Y deck motions before landing. For the Z axis, KHPF = 0 was
used during the approach and KHPF = 1 was used for the entire landing phase (there
is no phase in of the high pass channel). This was done to avoid early collisions with
the deck that could occur if the full deck altitude was not used in the landing phase
commands.

Figure 3.2: Deck filter used in baseline guidance algorithm.

To bring the aircraft from its initial location to the approach point, the higher order
tau guidance algorithm presented by Holmes in [26] was used. This algorithm proposes a
differential equation in terms of the distance to some goal and the velocity toward some

50

goal, denoted by χ and χ̇ respectively. The proposed differential equation is given as

χ

χ̇
= k

3

(
t−

T 3
g

t2

)
(3.1)

where the parameter k can be used to adjust the aggressiveness of the trajectory, t is
the time elapsed since the start of the trajectory, and Tg represents the total duration
of the trajectory (i.e., at t = Tg, χ=0). Here a value of k = 0.25 was used, and Tg was
calculated through the equation

Tg = 2.888
√

|χ0|
χ̈max

(3.2)

where χ0 is the difference between the initial position and desired deck-relative position
at the end of the approach phase. Determining Tg in this manner ensures that the
maximum acceleration of the commanded trajectory is equal to χ̈max, which was set to
χ̈max = 0.5 m/s2.

Solving Eq. (3.1) for χ(t) yields

χ(t) = χ0

T
3/k
g

(
T 3
g − t3

)1/k
(3.3)

which is used to calculated a separate tau guidance trajectory for each translational
degree of freedom. The initial gap χ0 is therefore calculated for X, Y , and Z approach
commands as

χI0,X

χI0,Y

χI0,Z

 =

XI
D,f

Y I
D,f

ZI
D,f

+ TI/dlf

Xdlf
app

Y dlf
app

Zdlf
app

−

XI

0,UAV

Y I
0,UAV

ZI
0,uav

 (3.4)

where [XI
D,f Y

I
D,f Z

I
D,f]⊺ denotes the filtered deck positions expressed in the inertial frame,

[Xdlf
app Y

dlf
app Z

dlf
app]⊺ denotes the desired end point of the approach expressed in the deck

level frame, TI/dlf transforms the approach point from the deck level frame to the inertial
frame, and [XI

0,uav Y
I

0,uav Z
I
0,uav]⊺ is the position of the UAV at the start of the approach.

The deck level frame is defined by rotating the inertial frame X and Y axes to align with
the deck heading. The rotation matrix to transform from inertial to deck level frame

51

coordinates is therefore calculated as

Tlf/I =

cos(ψD) sin(ψD) 0

−sin(ψD) cos(ψD) 0
0 0 1

 (3.5)

Using Eqs. (3.3) and (3.4), the inertial position command inputs for the EMF control
law can be calculated as

uIx

uIy

uIz

 =

XI
D,f

Y I
D,f

ZI
D,f

+ TI/dlf

Xdlf
app

Y dlf
app

Y dlf
app

−

χIX

χIY

χIZ

 (3.6)

Once the approach phase is completed, the landing phase commences and altitude
commands are calculated as

uIz = ZI
UAV,0 + (ZI

D − ZI
D,0) + ∆tVz,b (3.7)

where subscript 0 denotes a position at the start of the landing phase, ∆t is the time
elapsed since the start of the landing phase, and Vz,b is a constant descent rate relative to
the deck. Here a value of Vz,b = 0.25 m/s was used. Similarly, the X and Y commands
for the landing phase are calculated to follow the filtered deck positions, but with a small
constant velocity bias. This is written as

uIx
uIy

 =
XI

UAV,0 +XI
D,f −XI

D,f,0 + ∆tVx,bcos(ψD)

Y I
D,f + ∆tVx,bsin(ψD)

 (3.8)

where Vx,b is the velocity bias expressed along the X coordinate of the deck level frame.
This term is included because the end location of the approach phase was specified to
be 0.5 meters behind the landing point on the ship deck so that a camera onboard the
UAV could maintain a view of the ship deck during the approach. The onboard camera
was not used in this study, but it was desired to gather data with the camera as part
of a separate research effort. This velocity bias was calculated so that the X position
command at landing would be the center point of the deck if the UAV perfectly followed

52

to Z position commands:

Vx,b =
Xdlf
D,0 −Xdlf

UAV,0

tland

tland =
|ZI

UAV,0 − ZI
UAV,0|

Vz,b

(3.9)

The resulting values were typically around Vx,b = 0.15 m/s, which does not have a
significant impact on the analysis presented here.

Heading commands are handled separately without the use of an optimization solver,
as the ship does not typically change course rapidly during landing. Ship heading is
therefore characterized by oscillations about a constant or slowly varying mean value.
As a result, simply commanding the aircraft heading to match the ship heading passed
through a low pass filter was found sufficient.

For both the approach and landing phase the UAV heading was simply commanded
to follow low pass filtered deck heading, as the ship does not typically change course
rapidly during landing. Ship heading is therefore characterized by oscillations about a
constant or slowly varying mean value.

3.2 Quadratic Programming Based Guidance with Deck
Motion Predictions
A high-level view of the QP guidance algorithm is shown in Fig. 3.3. The algorithm solves
quadratic programming problems in real time to produce X, Y , and Z position command
inputs to the EMF control laws, with the trajectory planned to match a prediction of
the deck state at touchdown. The deck forecasts are updated continuously during the
approach, and therefore become more accurate as the landing progresses. This method
can provide more direct landing paths that, unlike the baseline algorithm, do not need
to follow the oscillatory motions of the deck. This also eliminates the need to break the
trajectory into an approach and landing stage.

To solve the QP optimizations, three separate instances of the MATLAB® function
“mpcActiveSetSolver” were executed: one each for inertial X, Y , and Z position com-
mands, all updating at 10 Hz. The choice was made to use three separate instances
of the QP optimizer because the EMF controller forces the system to approximate the
outer loop command filters with the addition of time delay. Since the command filters
are uncoupled, separating into smaller QP problems is valid. This boosts computational
efficiency as the three QP solvers can be run simultaneously on different CPU cores.

53

Figure 3.3: High level diagram of QP guidance algorithm.

Note that heading commands were not included in the optimization. Instead, it was
found sufficient to command the UAV heading to follow a low pass filtered deck heading,
as was done in the baseline guidance method. The remainder of this section will describe
the formulation of the QP trajectory optimizations used to produce position commands.

3.2.1 Deck Motion Prediction
Autoregressive (AR) time series models were used to produce the deck motion predictions
incorporated into the QP guidance algorithm. The AR method was chosen due to both
its ease of implementation and the fact that past simulation studies have found this
method to converge to reasonable predictions with sufficient lead time for performing
autonomous landings (for example, see [5,33]). Additionally, like all time-series based
prediction methods, AR predictions are based on past measurements alone and therefore
no information on the ship model is required.

3.2.1.1 AR Model Estimation and Propagation

The estimation of AR model parameters was carried out in a manner similar to that
presented in [5], but written to allow for a recursive update. The AR model formulation
assumes that the current output can be described by a linear combination of lagged
outputs plus additive zero mean white noise. This is expressed as

y⃗k = α1y⃗k−1 + α2y⃗k−2 · · · + αNlag
y⃗k−Nlag

+ v⃗k (3.10)

54

where output vectors y⃗ ∈ Rm, matrices α ∈ Rmxm, noise vector v⃗ ∈ Rm, and Nlag

represents the number of lagged outputs. Here Nlag = 15 was used, as increases in
accuracy leveled off when adding additional parameters. Transposing Eq. (3.10) and
writing in matrix form gives

y⃗⊺k =
[
y⃗⊺k−1 y⃗⊺k−2 · · · y⃗⊺k−Nlag

]

α⊺

1

α⊺
2
...

α⊺
Nlag

+ v⃗⊺k (3.11)

or, in a more compact form,
y⃗Tk = Ȳlagᾱ + v⃗⊺k (3.12)

This is then separated into one equation for each output

y1 = Ȳlagᾱ1 + v1

y2 = Ȳlagᾱ2 + v2

...

ym = Ȳlagᾱm + vm

(3.13)

where ᾱi represents the ith column of ᾱ. Each column vector ᾱi is then estimated
using a standard recursive least squares (LS) algorithm. While the problem could be
formulated as one larger recursive LS problem, breaking the parameter update into m
smaller problems was found to be more computationally efficient due to smaller matrix
inversions in the recursive update.

With the estimate of ᾱ obtained, the AR model is propagated into the future to cover
the desired prediction horizon:

y⃗⊺k+1 =
[
y⃗⊺k y⃗⊺k−1 · · · y⃗⊺k−Nlag+1

]
ᾱ

...

y⃗⊺k+N =
[
y⃗⊺k−1+N y⃗⊺k−2+N · · · y⃗⊺k−Nlag+N

]
ᾱ

(3.14)

Note that for predictions we are interested in the expected future output, so the zero
mean white noise term is dropped.

55

3.2.1.2 Use of AR Models for Deck State Predictions

For forecasting deck states, two separate AR models are used: one for longitudinal and
vertical states and one for lateral states. The output vectors for each AR model are

y⃗long =
[
Xdlf
D Ẋdlf

D θd ZI
D ŻI

D

]⊺
y⃗lat =

[
Y dlf
D Ẏ dlf

D ϕD ψD
]⊺ (3.15)

where the subscript D denotes these are deck states. Deck vertical position and velocity
are included with the longitudinal outputs, as the correlation between ship pitch motion
and landing deck heave was found to slightly improved the AR predictions. Including all
outputs in a single vector, however, was found to cause less reliable predictions at times.

In Eq. (3.15) XD, YD, ẊD, and ẎD are expressed in the averaged deck level frame.
This frame is defined by rotating the inertial X and Y axes to align with the heading of the
deck averaged over the lagged time history stored in the AR model. The transformation
of XD and YD from the inertial frame to the averaged deck level frame is computed as

Xdlf
D

Y dlf
D

 =
 cos(ψ̄D) sin(ψ̄D)
−sin(ψ̄D) cos(ψ̄D)

XI
D

Y I
D

 (3.16)

where ψ̄D is the averaged deck heading. ẊD, and ẎD are transformed in the same manner.
Once the AR model predictions are produced in this frame, they are transformed back
to the inertial frame for use by the trajectory generator.

3.2.2 Discrete Time Model
A discrete system model is needed for each of the three QP solvers. For each axis
the dynamics are approximated as the theoretical ideal result for the outer loop EMF
controllers. The model is then discretized assuming a zero order hold. For example, for
XI trajectory generation, discretizing and converting to state space form gives

GX(s) =
ω2
X,cf

s2 + 2ζωX,cfs+ ω2
X,cf

e−τθ,ϕs

↓

x⃗X,k+1 = AX x⃗X,k +BXuX,k−τd

y⃗X,k = CX x⃗X,k +DXuX,k−τd

(3.17)

56

where subscript k represents the current time step and τd represents the number of full
sample period delays. The fractional portion of the continuous time delay is absorbed
into the discrete state space model. For example, if the continuous time model has a
delay of 0.25 seconds and the sample period is 0.1 second (which is what was used here),
then the discrete time model will delay the input by two sample periods (we set τd = 2)
and the remaining 0.05 seconds is absorbed into the state space matrices.

3.2.3 Quadratic Program Transcription
The standard form for a QP problem with inequality constraints is written as

J = 1
2 Ū

THŪ + F T Ū

s.t. AcŪ ≤ b0

(3.18)

where J represents the quadratic objective function, Ū represents the decision variables
(in this case the controls), and H and F are constant matrices. In addition, the constant
matrix Ac and constant vector b0 define linear inequality constraints placed on the decision
variables. Using our discrete time models, we can define a quadratic cost function and
linear constraints in terms of system outputs, and then manipulate the equations to be
a QP in terms of system inputs. The process to do this is essentially the same as the
so-called “direct shooting” approach commonly used to apply QP to linear MPC. The
main difference here is that the prediction horizon is variable in length, vanishing during
the final stages of the landing sequence. The following subsections will cover this process.

3.2.3.1 Future Output and Jerk Calculation

We start by rolling out the output vectors over the prediction horizon. Consider a generic
LTI system without delays (delays will be included in section 3.2.3.6):

x⃗k+1 = Ax⃗k +Buk

y⃗k = Cx⃗k +Duk
(3.19)

57

The output at each time index can be written in terms of the initial state and the control
inputs at each time step. Progressing through the time horizon, we have

y⃗0 = Cx⃗0 +Du0

y⃗1 = Cx⃗1 +Du1 = CAx⃗0 + CBu0 +Du1

y⃗2 = Cx⃗2 +Du2 = CA2x⃗0 + CABu0 + CBu1 +Du2

...

y⃗N = CAN x⃗0 + CAN−1Bu0 + CAN−2Bu1 + · · · +DuN

(3.20)

where N represents the number of points in the prediction horizon. For convenience, Eq.
(3.20) can be written in matrix form:

Ȳ = Ĉx⃗0 + D̂Ū (3.21)

where we use the notation

Ȳ =

y⃗0

y⃗1
...
y⃗N

 Ū =

u0

u1
...
uN

 Ĉ =

C

CA
...

CAN

D̂ =

D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
CAN−1B CAN−2B CAN−3B · · · D

(3.22)

Since the discrete state space models are determined by the second order command filters,
the output vector y⃗ consists of position, velocity, and acceleration. To apply penalties
and constraints to these outputs across the time horizon, the expressions shown in Eqs.
(3.21) and (3.22) will be used. Constraining jerk is desirable as well, however, as jerk
limitations are sometimes considered when evaluating full-scale ride quality. Additionally,
an actual aircraft cannot achieve instantaneous acceleration, so it is logical to penalize
and constrain instantaneous jumps in commanded acceleration.

In order to penalize and constrain jerk, the jerk is approximated by back differencing

58

the acceleration output. That is,

jk = ak − ak−1

∆t (3.23)

where ∆t is the time step used when discretizing the model. In this work this back
difference is what the term “jerk” refers to. With this definition and the expressions in
Eqs. (3.21) and (3.22), the jerk can be solved for over the full time horizon as

Ȳ∆ = Ĉ∆x⃗0 + D̂∆Ū (3.24)

where we use the notation

Ȳ∆ =

j1

j2
...
jN

 Ĉ∆ =

Cj(A− I)
CjA(A− I)

...
CjA

N−1(A− I)

D̂∆ =

CjB −Dj Dj 0 · · · 0
Cj(A− I)B CjB −Dj Dj · · · 0

...
CjA

N−1(A− I)B CjA
N−2(A− I)B · · · · · · Dj

(3.25)

Note that Ū in Eq. (3.25) is still defined as given in Eq. (3.22). Also note that Cj and
Dj in Eq. (3.25) are calculated as

Cj = 1
∆tC3 Dj = 1

∆tD3 (3.26)

where the subscript 3 indicates that just the third row of the C and D matrices is used.
This is because acceleration is the third output, so the jerk approximation only uses the
state space coefficients defining the third output.

59

3.2.3.2 Cost Function

The cost function used here is defined as

J =
N−1∑
k=0

[(y⃗ref,k − y⃗k)⊺Q(y⃗ref,k − y⃗k) + u⊺kRuk]

+
N−1∑
k=1

[j⊺kQ∆jk] + u⊺NRuN +N [j⊺NS∆jN

+ (y⃗ref,N − y⃗N)⊺S(y⃗ref,N − y⃗N)]

(3.27)

where the weighting matrices Q, Q∆, S, S∆, and R are specified to be diagonal. This
equation includes penalties on the deviation of position, velocity, and acceleration outputs
from a reference trajectory y⃗ref , as well as penalties on jerk and control inputs. For
the output reference errors and jerk, the terminal cost weights S and S∆ are high in
magnitude relative to the running cost weights Q and Q∆. This places emphasis on the
final point of the trajectory, which is particularly important for rendezvous problems like
ship landing. Also note that the terminal cost associated with jerk and output reference
error is weighted by the number of points in the prediction horizon N . This is done
because the horizon length can vary at each time step, when the QP solver is re-run
to update the commanded trajectory. When the horizon length is larger, the running
cost is higher due to more points in the summation, so the terminal weighting factor
is also increased to avoid its impact being diluted and to maintain consistent relative
importance between the running and terminal cost. An approach similar to this was
used in the variable-horizon ship landing guidance algorithm proposed by Pravitra in [5].

Using the expressions developed in the previous subsection, we can solve for the H
and F matrices from Eq. (3.18) to write the cost function in the standard QP form.
Expanding Eq. (3.27) and dropping constant terms not effecting the optimization gives

J =
N−1∑
k=0

[
�������
y⃗⊺ref,kQy⃗ref,k − 2y⃗⊺ref,kQy⃗k + y⃗⊺kQy⃗k + u⊺kRuk

]

+
N−1∑
k=1

[j⊺kQ∆jk] + u⊺NRuN +N [j⊺NS∆jN

+
�������
y⃗⊺ref,NSy⃗ref,N − 2y⃗⊺ref,NSy⃗N + y⃗⊺NSy⃗N

]
(3.28)

Using the expressions from Eqs. (3.22) and (3.25) that define the outputs, inputs, and
jerk over the full prediction horizon, the cost function given above can be written in

60

matrix form:
J = −2Ȳ ⊺

refQ̄Ȳ + Ȳ ⊺Q̄Ȳ + Ū⊺R̄Ū + Ȳ ⊺
∆Q̄∆Ȳ∆ (3.29)

where we define

Ȳref =

y⃗ref,0

y⃗ref,1
...

y⃗ref,N

 R̄ =

R

R
. . .

R

Q̄ =

Q

Q
. . .

NS

 Q̄∆ =

Q∆

Q∆
. . .

NS∆

(3.30)

Substituting the expressions for Ȳ and Ȳ∆ given by Eqs. (3.21) and (3.24) into Eq.
(3.29), we have:

J = − 2Ȳ ⊺
refQ̄

(
Ĉx⃗0 + D̂Ū

)
+
(
Ĉx⃗0 + D̂Ū

)⊺
Q̄
(
Ĉx⃗0 + D̂Ū

)
+ Ū⊺R̄Ū +

(
Ĉ∆x⃗0 + D̂∆Ū

)⊺
Q̄∆

(
Ĉ∆x⃗0 + D̂∆Ū

) (3.31)

Expanding and neglecting terms that do not contain the optimization variables Ū , Eq.
(3.31) reduces to

J = Ū⊺
(
D̂⊺Q̄D̂ + D̂⊺

∆Q̄∆D̂∆ + R̄
)
Ū

+ 2
(
x⃗⊺0Ĉ

⊺Q̄D̂ + x⃗⊺0Ĉ
⊺
∆Q̄∆D̂∆ − Ȳ ⊺

refQ̄D̂
)
Ū

(3.32)

Dividing the above equation by two (which has no effect on the optimization) and
comparing to the standard QP form in Eq. (3.18), the H and F matrices are found by
inspection to be

H = D̂⊺Q̄D̂ + D̂⊺
∆Q̄∆D̂∆ + R̄

F =
(
D̂⊺Q̄Ĉ + D̂⊺

∆Q̄∆Ĉ∆
)
x⃗0 − D̂⊺Q̄Ȳref

(3.33)

These matrices are computed and passed to the QP solution routine at each time step.

3.2.3.3 Constraints

The expressions used to calculate the output and jerk over the prediction horizon (given
in Eqs. (3.21) and (3.24), respectively) can also be used place constraints on the outputs
and jerk. In the QP optimization formulation used here, the option is given to use

61

either hard or soft constraints. Hard constraints must be satisfied for the QP solution
to be deemed feasible, while soft constraints allow some violation of the constraint
boundaries but with a cost assigned proportional to the constraint violation. When using
hard constraints, the current aircraft state estimate is not used as the initial state for
re-planning the trajectory. Instead, the predicted output of the command model is used
to initialize the next step in the trajectory generation solver. In other words, perfect
command following is assumed and re-planning at each time step only compensates for
changes in the predicted deck state at landing. This is done when using hard constraints
because if feeding back estimated states for re-planning when operating near a constraint
boundary, a slight perturbation in the aircraft state can place the initial state used in
optimization over the constraint boundary resulting in an infeasible optimization problem.
The use of soft constraints alleviates this concern by permitting some violation of the
constraints, allowing the current state estimate to be fed back for re-planning. As will
be seen later in this section, however, constraint softening also introduces additional
optimization variables, making the QP solution more computationally expensive.

The hard constraint formulation is described as follows. Starting with the upper
limits on position, velocity, and acceleration, we define an augmented vector containing
the upper constraints at each time point in the prediction horizon:

Ȳlimup =
[
y⃗⊺limup,0 y⃗⊺limup,1 · · · y⃗⊺limup,N

]⊺
(3.34)

Appealing to Eq. (3.21), the inequality defining the output upper bounds is then written
as

Ĉx⃗0 + D̂Ū ≤ Ȳlimup → D̂Ū ≤ Ȳlimup − Ĉx⃗0 (3.35)

Doing the same for the output lower limits, as well as the jerk upper and lower limits,
yields

−D̂Ū ≤ −Ȳlim low + Ĉx⃗0

D̂∆Ū ≤ Ȳ∆,limup − Ĉ∆x⃗0

−D̂∆Ū ≤ −Ȳ∆,lim low + Ĉ∆x⃗0

(3.36)

where Ȳ∆,limup and Ȳ∆,lim low contain the jerk upper and lower limits across the prediction
horizon. The last step in the hard constraint formulation is to combine the inequalities
in Eqs. (3.35) and (3.36) and solve for the Ac matrix and b0 vector defining the QP

62

constraints in Eq. (3.18), giving

Ac =

D̂

−D̂
D̂∆

−D̂∆

 b0 =

Ȳlimup − Ĉx⃗0

−Ȳlim low + Ĉx⃗0

Ȳ∆,limup − Ĉ∆x⃗0

−Ȳ∆,lim low + Ĉ∆x⃗0

 (3.37)

To implement soft constraints, the approach described above is modified by introducing
slack variables. The process for this is as follows. First, the so-called slack variables are
added to the upper and lower bounds of the constraint equations given in Eqs. (3.35)
and (3.36), yielding

Ĉx⃗0 + D̂Ū ≤ Ȳlimup + ϵ⃗

−(Ĉx⃗0 + D̂Ū) ≤ −(Ȳlim low − ϵ⃗)

Ĉ∆x⃗0 + D̂∆Ū ≤ Ȳ∆,limup + ϵ⃗∆

−(Ĉ∆x⃗0 + D̂∆Ū) ≤ −(Ȳ∆,lim low − ϵ⃗∆)

(3.38)

where the slack variables ϵ⃗ and ϵ⃗∆ represent the extent to which the output and jerk
limits are violated, respectively. Next, the constraint equations are rearranged to place
constant terms on the right hand side and Ū (the control vector over the time horizon)
and slack variables on the left hand side:

D̂Ū − ϵ⃗ ≤ Ȳlimup − Ĉx⃗0

−D̂Ū − ϵ⃗ ≤ −Ȳlim low + Ĉx⃗0

D̂∆Ū − ϵ⃗∆ ≤ Ȳ∆,limup − Ĉ∆x⃗0

−D̂∆Ū − ϵ⃗∆ ≤ −Ȳ∆,lim low + Ĉ∆x⃗0

(3.39)

Considering the slack variables as an additional “input” to the QP solution routine, the
constraint equations can be written as a linear inequality of the form

Ac,softŪsoft ≤ b0 (3.40)

where

Ac,soft =

D̂ −I 0

−D̂ −I 0
D̂∆ 0 −I∆

−D̂∆ 0 −I∆

 Ūsoft =

Ū

ϵ⃗

ϵ⃗∆

 b0 =

Ȳlimup − Ĉx⃗0

−Ȳlim low + Ĉx⃗0

Ȳ∆,limup − Ĉ∆x⃗0

−Ȳ∆,lim low + Ĉ∆x⃗0

 (3.41)

63

The QP cost function must then be re-written to penalize the use of slack variable “inputs”
ϵ and ϵ∆. With the slack variables added, the quadratic cost function from Eq. (3.18)
can be updated by augmenting the weighting matrices as follows:

Hsoft =
H 0

0 Hslack

 Fsoft =
F

0

 (3.42)

where H and F in Eq. (3.42) are still calculated from Eq. (3.33), Hslack is a diagonal
weighting matrix penalizing the square of the slack variables, and Fsoft is augmented
with a zero vector to account for the increased dimension of the augmented QP input
vector Ūsoft. The diagonal weights in Hslack can then be set to govern the “hardness” of
the constraints. It should be noted, however, that the introduction of slack variables does
increase the dimension of the optimization vector and therefore makes the QP solution
more computationally expensive.

When using the hard constraint formulation, constraints are included on velocity,
acceleration, and jerk. Additionally, altitude is given a lower bound defined by the
predicted deck altitude at each point in the prediction horizon. This is included to
prevent early contact with the deck. An altitude upper limit or limits on XI and
Y I position were not included, however. When using the soft constraint formulation,
constraints on altitude and acceleration were retained, but velocity and jerk constraints
were removed. This was due to the additional computational cost associated with the
introduction of slack variables, limiting the number of constraints that could be included
while still running the QP algorithm onboard the aircraft at 10 Hz. Note that velocity
and jerk were still incorporated into the QP cost function in both cases, however.

3.2.3.4 Prediction Horizon and Reference Path

The maximum horizon length was set to Nmax = 30. With a time step of dtQP = 0.1
seconds for each QP solver, this equates to a 3 second prediction horizon. Limiting the
horizon to 3 seconds keeps the number of optimization variables and constraints to satisfy
reasonable, but the prescribed time to perform the landing (which will be described in
section 3.2.3.5) is generally higher than 3 seconds. To accommodate land times longer
than the prediction horizon, the QP solver uses Nmax as the horizon length if the time
remaining in the landing sequence is greater than 3 seconds. If the time remaining is less
than 3 seconds, then the QP horizon length N is defined as the time remaining divided

64

by the QP solver time step. Mathematically, that is

N = min
(
trem
dtQP

, Nmax

)
(3.43)

where trem is the time left until touchdown. The prediction horizon therefore vanishes as
the landing is completed.

When N > Nmax, an intermediate reference trajectory is prescribed for use in the
cost function by drawing a straight, constant velocity line toward the deck. For example,
for the XI QP solver we have

vdes =
XI
dp,f −XI

UAV

trem
(3.44)

where XI
dp,f is the deck XI prediction at the desired land time. The output reference

values for the XI QP solver (when N > Nmax) are then given as

y⃗Xref,k =
[
XI
UAV + vdestk vdes 0

]⊺
(3.45)

where tk is the time into the prediction horizon (i.e., t0 = 0 s and tNmax = 3 s). An
identical process is used for the Y I and ZI QP solvers.

When the prediction horizon covers the time remaining until touchdown (N ≤ Nmax),
different reference outputs are prescribed. For the XI and Y I trajectories, an identical
process is used to set the reference output y⃗ref . Using the XI axis to illustrate this, y⃗ref
in the running cost is set to the predicted deck XI position and velocity at touchdown
and zero acceleration:

y⃗Xref,k =
[
XI
dp,N ẊI

dp,N 0
]⊺

(3.46)

For the terminal cost, however, a non-zero reference acceleration is given:

y⃗Xref,N =
[
XI
dp,N ẊI

dp,N aIXdes,N

]⊺
(3.47)

The terminal reference acceleration is used to motivate matching the pitch and roll
attitude of the ship deck at touchdown. Attaining a close attitude match at touchdown
is desired, as a large ship-relative attitude could result in issues with rotor tip clearance
over the deck. Further, this can result in a single landing gear contacting the deck first,
with the moment placed on the aircraft due to ground contact leading to higher impact
velocities on the other landing gear. While helicopters are usually underactuated and

65

therefore cannot hold a set attitude without translating, it is theoretically possible to
plan a trajectory such that a desired position, velocity, and attitude are obtained at one
instant in time. The goal here is to motivate passing near this desired point in the state
space at landing. Here the desired XI and Y I accelerations at touchdown are computed
by assuming the vehicle level frame accelerations can be modeled by the equations

Ẍ lf = −gθ

Ÿ lf = gϕ
(3.48)

and that the UAV will closely match deck heading at touchdown. The desired terminal
X and Y accelerations are therefore calculated from the predicted deck attitude at
touchdown as aIXdes,N

aIY des,N

 =
cos(ψdp,N) −sin(ψdp,N)
sin(ψdp,N) cos(ψdp,N)

−gθdp,N
gϕdp,N

 (3.49)

While for a full-scale aircraft with significant wind the approximation in Eq. (3.48) may
not be valid, any mapping (linear or nonlinear) from aircraft states to acceleration could
be used here along with predicted deck and aircraft states. Given a model of a full-scale
aircraft, this mapping could potentially be found.

For the ZI trajectory, when N ≤ Nmax, the portion of y⃗ref used in the running cost
was still set to give a straight line to the desired landing point. This was done in an
identical manner to what is shown for the X axis in Eq. (3.45). For the ZI solver
terminal cost, the predicted deck position and velocity at land time were used to define
y⃗ref , but the desired land position was placed 3 cm above the deck:

y⃗Zref,N =
[
ZI
dp,N + ZI

offset,N ŻI
dp,N 0

]⊺
(3.50)

The 3 cm offset ZI
offset,N gives a slight gap between the constraints and the desired end

state in the QP solver, and it is close enough to begin throttling down when landing on
an actual platform. Note that while there is discontinuity when moving from the portion
of y⃗ref used in the running cost to the final reference point y⃗ref,N used in the terminal
cost, this is smoothed by the dynamics enforced in the QP solver.

3.2.3.5 Land Time

Since the prediction horizon itself is fixed in each QP optimization, the duration of the
landing maneuver must be assigned prior to running the QP solver. Methods employed by

66

other researchers to assign the landing duration include manually choosing a fixed length
of time (for example, [12]) or performing a line search on the allotted time for landing
(for example, [5]). Manually pre-determining the trajectory duration requires this value
to be tuned when starting the trajectory at different distances from the deck. Performing
a line search requires optimizing multiple trajectories, each targeting a different land time
and therefore different predicted deck states at landing. This is more flexible to different
initial conditions at the start of the trajectory and, if deck predictions are accurate
enough, can be used to choose a land time that has a more favorable deck state at
touchdown. The line search also adds additional computational burden, however, though
in [5] Pravitra demonstrated that this can be done in parallel on a graphics processing
unit at the expense of additional implementation effort. Here it was found both simple
and sufficient to choose an initially targeted land time based on the tau guidance method
described in [26], where the landing duration was chosen to limit accelerations during
the maneuver. Using XI guidance as an example, the resulting equation is

tland,X = 2.888

√√√√ |XI
UAV,0 −XI

D,0|
ẌI
max

(3.51)

where the subscript 0 indicates the start of the landing sequence and ẌI
max is the maximum

acceleration in the tau guidance command profile. While the tau guidance method is not
used in the QP guidance algorithm, this equation was found to produce reasonable times
for the landing maneuver and to scale well across different initial distances from the deck.
We therefore used this method to set the initial maneuver length tland, but with a scale
factor of 0.5 added to make the maneuver less aggressive. Mathematically, that is

tland = max

5.776
√

|XI
UAV,0−XI

D,0|
ẌI

max

5.776
√

|Y I
UAV,0−Y I

D,0|
Ÿ I

max

5.776
√

|ZI
UAV,0−ZI

D,0|
Z̈I

max

(3.52)

where the maximum value across all three axes is used and the maximum accelerations
are set equal to the QP planner acceleration limit.

If a flag is set in the trajectory generation algorithm, the initially chosen land time
can be updated during the approach based on the predicted deck states. The process for
doing this is depicted in Fig. 3.4 and is described as follows:

67

1. First an initial land time is chosen using Eq. (3.52).

2. Neighboring time points are then assigned a cost based on the predicted deck state.

3. The point with the lowest cost is then chosen as the new targeted time for landing.

The update is allowed to occur when in a pre-specified window, which was defined here to
be when there is between 1.5 and 3 seconds left in the maneuver. The lower bound was
chosen to avoid shifting the land point without leaving enough time for the UAV to react,
and the specific value of 1.5 seconds was determined using model-scale simulations. The
3 second upper limit was chosen because deck predictions are known to be inaccurate
at longer prediction horizons. When in this window, the algorithm can shorten the
remainder of the maneuver by up to 3 time steps (0.3 seconds in this case) or extend
the land time out to 3 seconds. Each time point in the considered landing window is
assigned a cost, and the point with the lowest cost is selected as the new land time. Note
that when applying this method to a full-scale landing scenario both the 1.5 second and
3 second limits should be scaled to account for slower developing aircraft dynamics, as
well as the fact that valid deck state predictions can be made further into the future at
full-scale due to lower frequency deck motion.

The cost for each time point in the considered landing window is given by

Jk = wZ
(
ZI
dp,k − Z̄I

dp

)
− wŻŻ

I
dp,k + wϕ|ϕdp,k|

+ wθ|θdp,k| + w∆t|tland,k − tland|
(3.53)

This equation weights the deck heave deviation from the mean, the heave velocity, and the
deck roll and pitch angles in the first four terms. Note that Z and Ż in the first two terms
of Eq. (3.53) are positive down. These terms are designed to attempt targeting a point
where the deck heave is near a high point, but is beginning to move back down. This
was done to avoid attempting to mate with a deck that is heaving upward significantly,
or near the bottom of an oscillation and about to heave upward, which is a harder state
to match at landing. The third and fourth term of the cost function were included
to discourage landing at a time with an extreme deck attitude, and the last term was
included to penalize changes from the currently targeted land time, so that large changes
in desired land time are not made due to small changes in the other terms. The weighting
factors were set to wZ = 1, wŻ = 0.5, w∆t = 0.15, and wϕ = wθ = 0.06 · 180/pi.

68

Figure 3.4: Schematic of the process for updating the targeted land time.

3.2.3.6 Inclusion of Discrete Time Delays

The preceding subsections considered a discrete LTI system without any input delays, but
the discrete time models used here have full sample period delays included. Adding these
delays into the QP framework is simple, however. If we have a discrete delay of τd sample
periods, we simply store the previous τd inputs that were passed from the QP solver to
the EMF controller. The stored inputs from the previous τd iterations then predetermine
the first τd − 1 future outputs y⃗0 · · · y⃗τd−1 of the discrete time model, meaning that these
outputs are no longer free and should be dropped from the cost function. To drop these
no longer free terms, the stored τd past inputs are used to propagate the model forward,
filling the first τd − 1 outputs into the prediction horizon:

y⃗0 = Cx⃗0 +Du−τd
, x⃗1 = Ax⃗0 +Bu−τd

y⃗1 = Cx⃗1 +Du1−τd
, x⃗2 = Ax⃗1 +Bu1−τd

...

y⃗τd−1 = Cx⃗τd−1 +Du−1 , x⃗τd
= Ax⃗τd−1 +Bu−1

(3.54)

The resulting state x⃗τd
is then taken as x⃗0 in the equations used to formulate the QP

optimization, and the “prediction horizon” used when calculating H, F , Ac, and b0 from
Eq. (3.18) is set to N − τd. The QP solver then computes the optimal inputs u0 · · ·uN−τd

that define the outputs y⃗τd
· · · y⃗N .

3.3 Wave Off Criterion
A “wave off” criterion for aborting landing would be a critical component to a complete
autonomous landing solution. Here the development and evaluation of a wave off criterion
was considered outside the scope of this research, but the importance of a well validated

69

method for aborting landing should be noted.
While the development of a wave off criteria targeted toward use on full-sized rotorcraft

was considered out of scope here, a simple criteria for aborting landing was implemented
as a safety mechanism for use in the model-scale tests discussed in Chapter 5. To initiate
an abort, the position and velocity of the UAV relative to the deck were compared to
predefined thresholds shortly before landing. The comparison was triggered once the
UAV landing gear was 15 centimeters above the plane of the deck (corresponding to
about 2 meters at full-scale when applying the scaling factor determined in Chapter 4).
The height of the UAV landing gear above the plane of the deck can be calculated by
examining the geometry sketched in Fig. 3.5. Referring to Fig. 3.5, r⃗ dp represents the
position vector from the deck origin (the desired landing point) to the point on the deck
plane that is directly below the UAV (denoted by point P). Additionally, ξ is defined as
the altitude of point P above the deck origin and hz→UAV is the altitude of the aircraft
landing gear relative to point P . Noting that r⃗ dp is a 2 dimensional vector in the deck
frame X − Y plane, the following system of equations can be written:

XI
UAV −XI

D

Y I
UAV − Y I

D

ξ

 = TI/D

rdp,x

rdp,y

0

 (3.55)

where TI/D represents the rotation matrix defining the transformation from the deck
body frame to the inertial frame. Using the first two equations of the matrix relation,
the distances rdp,x and rdp,y can be calculated. The values of rdp,x and rdp,y can then be used
to solve for ξ. With ξ determined, the altitude of the aircraft landing gear relative to
point P is calculated as

hz→UAV = ξ + ZI
D − ZI

UAV (3.56)

where the deck and aircraft inertial Z positions use the positive down sign convention.
The X and Y position error thresholds used to trigger an abort were defined through

the relation

Tldf/I

|XI
UAV −XI

D|
|Y I
UAV − Y I

D|

 <
ex,max
ey,max

 (3.57)

where Tldf/I is calculated as

Tldf/I =
 cos(ψD) sin(ψD)
−sin(ψD) cos(ψD)

 (3.58)

70

Figure 3.5: Schematic depicting UAV landing gear altitude relative to the deck plane.

The transformation is included to convert the deck-relative inertial positions to the level
deck frame, aligning X position errors with the ship longitudinal axis and Y position
errors with the ship lateral axis. The thresholds ex,max and ey,max were set to 0.5 meters
and 0.38 meters, respectively. These values were determined based on the dimensions of
the model-scale ship to ensure that the UAV was safely away from the edge of the deck
before landing. The deck-relative X, Y , and Z velocity thresholds used to determine
an abort were all set to 1 m/s, with the velocity comparison done in the inertial frame.
This was found to be a high velocity limit that would still allow hard landings, but would
avoid damage to the UAV hardware. This was deemed sufficient here, as the goal was
not to test the abort procedure but to use it to avoid hardware damage that would effect
further testing.

If any of the position or velocity thresholds were exceeded, an abort was initiated.
The abort procedure was to command the UAV to hold the current X and Y position,
while also commanding a step input into the altitude control law command filter such
that the UAV would hover one meter above the model-scale deck.

71

Chapter 4 |
Scaling Methodology and Scaled
Control Laws

In order to appropriately perform model-scale autonomous landing experiments, a
systematic scaling procedure must be used to consistently scale aircraft closed-loop
dynamics and ship motions. This chapter will first propose the use of Froude scaling
to achieve this. The feasibility of using the EMF control law presented in Chapter 2
to attain a Froude scaled response to reference commands and disturbances will then
be analyzed, and the methods used to select the EMF controller command model and
feedback gain parameters are discussed.

4.1 Scaling Methodology
The model-scale aircraft controller parameters are determined by Froude scaling closed-
loop reference tracking and disturbance rejection bandwidths from a full-scale use case
(refer to Chapter 1.2.3 for additional discussion on Froude scaling). With the Froude
scaling method, model-scale distance is calculated by dividing full-scale distance by the
Froude scale factor NF . Model-scale time is calculated by dividing full-scale time by
√
NF , and frequency follows the inverse of this. Following these rules the dynamic scaling

laws shown previously in table 1.1 can be derived, which are reproduced in table 4.1 for
convenience (note that we multiply by these scale factors to go from full- to model-scale).
To illustrate the process for deriving these laws, we consider scaling jerk. Looking at the
units of jerk, we have

mms

s3
ms

= mfs/NF

(sfs/
√
NF)3 = mfsN

3/2
F N−1

F

s3
fs

= mfs

√
NF

s3
fs

(4.1)

72

where m denotes meters, s denotes seconds, and subscripts fs and ms denote full- and
model-scale, respectively. This shows model-scale jerk is increased from full-scale by a
factor of

√
NF .

Table 4.1: Froude Scaling Factors

Dimension Scale Factor

Time 1/
√
NF

Frequency
√
NF

Position 1/NF

Velocity 1/
√
NF

Acceleration 1
Jerk

√
NF

Angles 1
Angular Rates

√
NF

Weight 1/N3
F

Inertia 1/N5
F

To use the scaling factors given in table 4.1, the Froude scale factor NF must be
determined. Here we propose using vehicle mass ratio to establish the scale factor. That
is, the Froude scale factor is taken as

NF =
(
Mfs

Mms

)1/3
(4.2)

where Mfs and Mms represent full and model-scale vehicle masses, respectively. In
Chapter 4.2 and Chapter 4.3 it will be shown that the actual choice of scaling factor
(for example, using mass ratio, length ratio, etc.) does not matter as long as the
aircraft dynamics, control laws, guidance algorithms, and ship motion are all scaled
consistently. Still, it is prudent to select a physically meaningful quantity, and mass
has clear importance here as ship motions are typically significant in heave. Relative
thrust-to-weight ratio is therefore important when maneuvering relative to the ship deck,
and Froude scaling based on mass ratio retains approximate similarity in this regard.

In the tests discussed here, the full-scale aircraft considered was a medium weight
helicopter roughly the size of a UH-60. Both the hexacopter and quadcopter UAVs used
for model-scale experimentation weigh approximately 6.6 pounds, so taking the nominal
full-scale aircraft weight to be approximately 17,500 pounds the Froude scale factor is

73

calculated as
NF =

(17500
6.6

)1/3
≈ 13.8 (4.3)

For the model scale tests that will be discussed in Chapter 5, all scaling was based on
this value of NF = 13.8.

4.2 Dynamic Similarity for Scaled Reference Tracking
It can be shown that the Froude scaling method proposed in the previous section retains
dynamic similarity across test scales when analyzing the closed-loop reference tracking
dynamics of the aircraft in the absence of disturbances. To show this, it is first noted
that rotorcraft typically employ model-following control architectures that attempt to
make the aircraft attitude and heave dynamics approximate a transfer function (the
command model). This same approach was taken here using the EMF control architecture
presented in Chapter 2. Assuming the attitude and altitude reference tracking dynamics
approximate the command models, similarity parameters that must remain constant
to preserve dynamic similarity are easily derived through the use of Buckingham’s Pi
theorem [62]. For example, consider the altitude dynamics of the UAV following the
second order command model shown for the altitude controller in Chapter 2.6.2:

Z̈(t) + 2ζωŻ(t) + ω2Z(t) = ω2uZ(t) (4.4)

where uZ is the input to the command filter, Z is the aircraft altitude, and ω and ζ

are the command filter frequency and damping ratio. Buckingham’s Pi theorem is then
applied to Eq. (4.4) as follows:

1. Identify the number of variables of the system. Here there are five variables:
uZ [m], Z [m], ω [s−1], ζ, and t [s], where the terms in square brackets represent the
dimension of each variable with m representing meters and s representing seconds.
Note ζ is dimensionless.

2. Identify the total number of dimensions. Here there are 2 dimensions: length
(m) and time (s).

3. Determine the number of dimensionless Π groups. According to Bucking-
ham’s Pi theorem, the number of independent dimensionless Π groups (denoted
here by k) is calculated as

k = n− j (4.5)

74

where n is the number of system variables (item 1 of this list) and j is the number
of independent dimensions (item 2 of this list). For this example, this gives
k = 5 − 2 = 3 dimensionless Π groups.

4. Determine a set of Π groups. Structured methods for determining a non-unique
set of Π groups are commonly used (for example, see [63]), but here a simple set of
Π groups that can be derived from inspection is

Π1 = Z

uZ
, Π2 = ωt , Π3 = ζ (4.6)

With the dimensionless groups determined, we can show that these groups remain
constant across test scales when the Froude scaling rules given in the previous section
are applied. First considering Π1 with the altitude output and altitude command both
Froude scaled from model-scale to full-scale we have

Π1 = Zms
uZ,ms

= Zfs/N

uZ,fs/N
= Zfs
uZ,fs

⇒ Π1 maintained (4.7)

which shows that Π1 remains constant across scales. Considering Π2 with both time and
frequency Froude scaled we have

Π2 = ωmstms =
(
ωfs

√
NF

)(
tfs√
NF

)
= ωfstfs ⇒ Π2 maintained (4.8)

showing that Π2 remains constant. Last, Π3 is just the command filter damping ratio,
which is a user-determined parameter that can be fixed to a constant value regardless of
scale.

The preceding analysis shows that if the closed-loop altitude tracking dynamics
approximate the command model, then dynamic similarity is retained regardless of the
choice of Froude scaling factor. The same result is obtained when applying a similar
process to the attitude and X and Y position dynamics. This result is expected, however,
as the Froude scaling laws given in table 4.1 were derived to be dimensionally consistent
(which was demonstrated for jerk scaling in Eq. (4.1)). Therefore, regardless of the
system considered, any dimensionless Π group will remain unchanged if all variables are
Froude scaled. For model-scale experiments the question then is, can the variables of
each Π group really be assigned to match values determined by Froude scaling a target
full-scale use case? With the reference tracking dynamics forced to approximate the
command models, the answer is yes. To see this note that the output of each command

75

model is completely determined by the command model frequency, damping ratio, and
input (i.e., uZ for altitude). Therefore, if these three variables all satisfy the Froude
scaling assumptions so will the output. For the frequency and damping ratio parameters
the Froude scaling assumption is easily satisfied, as these are user defined parameters
that can be set to a desired value in the control software. The input to the command
models, on the other hand, is determined by the choice of autonomous landing guidance
algorithm, and the commands produced by the guidance algorithm are inherently related
to the ship motion. It can be shown though, that if the ship motion is also Froude scaled,
then either of the guidance algorithms presented in Chapter 3 will produce appropriately
scaled command inputs and dynamic similarity for the reference tracking dynamics is
therefore retained.

This is first demonstrated for the baseline guidance algorithm with a simplified
simulation. For this simulation it was assumed that the aircraft pitch, roll, yaw, and
altitude dynamics follow the EMF controller command models perfectly. Additionally,
the inertial X and Y translational motions were modelled by the equationẌI

Ÿ I

 =
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

 −gθ
gϕ

 (4.9)

While this is a significantly simplified system model, this serves the purpose of demon-
strating the scaling of the reference tracking dynamics. The ship data used for simulation
was derived from simulation data of a generic surface combatant representative of a
DDG-51 type ship. This database was developed by the U.S. Navy Office of Naval
Research and the Naval Surface Warfare Center under the the Systematic Characteriza-
tion of the Naval Environment (SCONE) program [47]. To demonstrate that dynamic
similarity is retained for the reference tracking dynamics when the EMF control law is
commanded by the baseline guidance algorithm, two cases were simulated: a “full-scale”
case and a “model-scale” case. The full-scale case used roll, pitch, and yaw command
filter frequencies of 3 rad/s and an altitude command filter frequency of 1 rad/s, with
the SCONE ship data unscaled. The model-scale case used a scaling factor of NF = 10
to Froude scale the command filter frequencies as well as the ship data. The results are
shown in Fig. 4.1, with Fig. 4.1a showing the altitude, inertial X position, and pitch
attitude of the aircraft obtained from the simulated model-scale landing. The data in
Fig. 4.1a was then scaled up to full-scale and compared to landing data obtained directly
from the full-scale simulation case in Fig. 4.1b. The results show agreement between
the Froude scaled and simulated data sets, demonstrating dynamic similarity for the

76

(a) Model-scale simulation at 1/10th scale. (b) Scaled-up model-scale simulation compared to
full-scale simulation.

Figure 4.1: Landing trajectories at full and 1/10th scale obtained from simplified simula-
tions with the baseline guidance algorithm.

reference tracking dynamics is retained with the baseline guidance algorithm.
To show a similar result for the QP guidance algorithm, scaling of the AR model deck

state predictions (discussed in Chapter 3.2.1) must be considered since the predicted
deck states affect the position commands produced from the QP optimization. Similar
to what was demonstrated when applying Buckingham Pi theorem to the Froude scaled
altitude command model, if all parameters of the AR models (including the AR model
time step) are Froude scaled then the predictions that are produced will also satisfy the
Froude scaling rules. Recall, however, that the AR models take the form

y⃗k = α1y⃗k−1 + α2y⃗k−2 · · · + αNlag
y⃗k−Nlag

+ v⃗k (4.10)

where y⃗k is the current output, v⃗k zero mean white noise, and the α parameter matrices
are determined via recursive least squares (RLS) estimation. Since the α parameter
matrices are determined via RLS, the measurement noise covariance terms used in the
RLS algorithm also need to be Froude scaled to maintain similarity. This is confirmed

77

by the simulated deck altitude predictions shown in Fig. 4.2, which were produced using
the SCONE ship data. The plot on the lower left of Fig. 4.2 shows 4 second ahead
deck altitude predictions compared to the true deck altitude for a “full-scale” case where
predictions were produced using unscaled SCONE ship data. The plot on the upper
left then shows altitude predictions for a “model-scale” case where the ship data, AR
model parameters, AR model time step, and RLS noise variance terms were Froude
scaled with the factor NF = 16 (1/16th scale). Also, note that the model-scale predictions
are compared to ship data 1 second ahead as opposed to 4 seconds ahead at full-scale,
as time durations are also Froude scaled. Comparing these two plots, it is observed
that they look visually identical, except that the length and time scales shown on the
X and Y axes differ by their respective Froude scaling factors. This indicates that the
predictions maintain similarity when all parameters are Froude scaled. This is further
demonstrated by the plot on the right of Fig. 4.2, which shows the mean and 2σ bounds
of the deck altitude prediction errors plotted against the length of time into the future
we are predicting, with these statistics calculated from prediction errors produced from
280 simulations. This shows that when the model-scale prediction error statistics are
scaled-up to full-scale and compared to prediction error statistics obtained directly from
full-scale data, the mean and 2σ bounds tightly match. This again indicates similarity is
retained.

Figure 4.2: Comparison of deck heave predictions at full-scale (NF = 1) and model-scale
(NF = 16) with Froude scaled AR model.

78

To confirm that dynamic similarity is retained for trajectories produced with the
QP guidance algorithm, simulations were run using the SCONE data and simplified
UAV model mentioned previously in this section. For these simulations the command
model parameters, ship model, and AR prediction models were scaled as discussed in the
preceding paragraphs. Additionally, the QP algorithm update rate, optimization horizon
length, output constraints, and cost function weights were Froude scaled as well. The
cost function weights need to be scaled, as they have units equivalent to the squared-
inverse of the penalized term in order to give a unitless cost function. For example,
the penalty on squared velocity error will have units of s2/m2, and must therefore be
scaled accordingly. The results are shown in Fig. 4.3 in the same format as discussed
previously for simulations using the baseline guidance method. When the model-scale
simulation data from Fig. 4.3a is scaled up and compared to data obtained directly from
the full-scale simulation (shown in Fig. 4.3b), we again see tight agreement between the
two data sets.

(a) Model-scale simulation at 1/16th scale. (b) Scaled-up model-scale simulation compared to
full-scale simulation.

Figure 4.3: Landing trajectories at full and 1/16th scale obtained from simplified simula-
tions with the QP guidance algorithm.

79

In summary, this section showed that if the aircraft dynamics approximate the
command model then dynamic similarity is retained for the reference tracking dynamics
regardless of choice of Froude scaling factor NF , provided that the ship data, control law
command models, deck state prediction algorithm, and guidance algorithm parameters
are scaled consistently. This gives merit to scaling the reference tracking dynamics with
the Froude scaling laws from table 4.1, but does not address the decision to use mass
ratio to establish the scale factor. As mentioned in the previous section, the choice to
scale based on mass ratio was made because mass is a physically relevant quantity and
this scaling retains approximate similarity in relative thrust-to-weight ratio.

Lastly, while the tests that will be discussed in Chapter 5 were performed predomi-
nantly in a wave basin, it is worth noting that the results shown in this section offer an
improvement to other more accessible test setups, such as those utilizing small UAVs and
a motion platform to emulate the ship deck. As discussed in Chapter 1.2.4, many tests
have used this setup and the majority of them do not include aerodynamic disturbances.
The tests are therefore more focused on demonstrating that the proposed algorithm can
compensate for deck motions in high sea states, and the closed-loop reference tracking
dynamics and ship motions are what are most critical to scale in this scenario. While
dynamic scaling has not been considered in such tests, the results in this section show that
Froude scaling both the aircraft closed-loop reference tracking dynamics and full-scale
ship data prior to applying it to a motion platform gives a better representation of the
target full-scale use case.

4.3 Dynamic Similarity for Scaled Disturbance Rejection
When scaling the reference tracking dynamics, it was assumed that the closed-loop
response to a reference input accurately approximated the command model, greatly
simplifying the scaling relationships. For disturbance rejection it is more complicated,
however, as the scaling of the open-loop dynamics comes into play. This can be seen by
considering the closed-loop system shown in Fig. 4.4, where the controller C(s) must
compensate for disturbances and C(s) and G(s) are both SISO systems. Ideally, for
perfect scaling of the closed-loop system to be attained, both the output response due to
an input disturbance (y(s)/ud(s)) and the output response due to an output disturbance
(y′(s)/yd(s)) should scale following the Froude scaling rules of table 4.1. In order to
achieve a scaled input disturbance response y(s)/ud(s) and output disturbance response
y′(s)/yd(s) without needing to consider the scaling of the bare airframe dynamics, it must

80

be possible to design a controller that simultaneously achieves this for both y(s)/ud(s)
and y′(s)/yd(s) regardless of dissimilarity in the model-scale and full-scale open-loop
dynamics. This, however, proves to be infeasible.

Figure 4.4: Simple feedback loop with input and output disturbances.

To see this, we first examine the output due to an input disturbance, as aerodynamic
gusts would be more appropriately modelled through an equivalent input disturbance
since gusts will apply forces and moments to the system. Even designing a control law
to achieve similarity in y(s)/ud(s) alone has been found infeasible without the model-
scale open-loop dynamics appropriately scaled, however. This is intuitive as the input
disturbance ud shown in Fig. 4.4 is directly injected into the plant model, affecting the
output before the controller has the chance to act on the signal. In practice, this means
an unimplementable controller with higher order derivative terms would be necessary
to achieve similarity in y(s)/ud(s) while compensating for dissimilarity between the
model-scale and full-scale dynamics.

Further, even if it was practical to implement a controller that achieves dynamic
similarity in y(s)/ud(s) without accurately scaled open-loop dynamics, it is still not
possible to achieve this for both y(s)/ud(s) and y′(s)/yd(s) simultaneously. To show this,
we will again look at the input disturbance response y(s)/ud(s). Noting that the transfer
function for y(s)/ud(s) is given as

y(s)
ud(s)

= G(s)
1 +G(s)C(s) (4.11)

we can solve for a controller that theoretically achieves similarity in y(s)/ud(s) across
scales. To do this it is assumed that the transfer function for y(s)/ud(s) is known from
the full-scale closed-loop system, and the desired model-scale response can therefore be
determined via Froude scaling. Using this assumption and Eq. (4.11), the controller is

81

solved for as

Fr

[(
y

ud

)
fs

]
= Gms

1 +GmsCms,ud

⇒ Cms,ud
= Fr

[(
y

ud

)−1

fs

]
−G−1

ms (4.12)

where the s notation is dropped for convenience and subscripts ms and fs are used
to denote model-scale and full-scale transfer functions, respectively. Additionally, note
that the subscript ud denotes that the control law is derived to achieve a scaled input
disturbance response and the operator Fr[·] is used to denote Froude scaling a system
from full- to model-scale. Substituting for y/ud of the full-scale system, Eq. (4.12) can
be written as

Cms,ud
= Fr

(Gfs

1 +GfsCfs

)−1
−G−1

ms (4.13)

This controller will now be compared to the controller derived by examining the output
response due to an output disturbance. Noting that the transfer function describing
y′(s)/yd(s) is given by

y′(s)
yd(s)

= 1
1 +G(s)C(s) (4.14)

we can solve for a controller that achieves similarity in y′(s)/yd(s) across scales. Assuming
that a desired model-scale transfer function for y′(s)/yd(s) is known by Froude scaling
that of the full-scale system and using Eq. (4.14), the controller is solved for as

Fr

(y′

yd

)
fs

 = 1
1 +GmsCms,yd

⇒ Cms,yd
= G−1

ms Fr

(y′

yd

)−1

fs

−G−1
ms (4.15)

where the subscript yd denotes that the control law is derived to achieve a scaled output
disturbance response. Substituting for y′(s)/yd(s) of the full-scale system yields

Cms,yd
= G−1

ms Fr

(1
1 +GfsCfs

)−1
−G−1

ms (4.16)

In order for the closed loop response to both input and output disturbances to satisfy
Froude scaling simultaneously, the control laws in Eq. (4.13) and Eq. (4.16) must be
identical. Comparing Eq. (4.13) and Eq. (4.16), it is observed that the second term in
both equations is identical but that the first term differs. Equating the first term of both

82

equations gives

Fr

(Gfs

1 +GfsCfs

)−1
 = G−1

ms Fr

(1
1 +GfsCfs

)−1
 (4.17)

Noting that Froude scaling in the Laplace domain is equivalent to scaling pole and zero
frequencies as well as magnitude, and this can be done separately to polynomials in s

that are multiplied, divided, or added together, this can be written as

Fr [1 +GfsCfs]
Fr [Gfs]

= Fr [1 +GfsCfs]
Gms

(4.18)

Comparing the denominator of the resulting equation, it is seen that the only way the
controller in Eq. (4.13) (derived to achieve similarity in y(s)/ud(s)) can be equivalent
to the controller in Eq. (4.16) (derived to achieve similarity in y′(s)/yd(s)) is if the
model-scale open-loop dynamics are equivalent to those of the Froude-scaled full-scale
aircraft (Fr[Gfs] = Gms). Further, if the open-loop dynamics do relate across scales
via Froude scaling, then further simplifying Eq. (4.16) and substituting Fr[Gfs] = Gms

yields

Cms = Fr [1 +GfsCfs]
Gms

− 1
Gms

(4.19)

= 1 + Fr [Gfs]Fr [Cfs]
Gms

− 1
Gms

(4.20)

= 1 +GmsFr [Cfs]
Gms

− 1
Gms

(4.21)

=Fr [Cfs] (4.22)

This analysis shows that in order to achieve a scaled closed-loop output response to
both input and output disturbances, both the model-scale open-loop dynamics and the
model-scale controller should approximate the scaled open-loop dynamics and controller
from the full-scale system.

While it has been shown that the most appropriate way to achieve a scaled response to
disturbances is to design a model-scale system with both scaled open-loop dynamics and a
scaled controller, the multi-rotor UAVs used in this work were not built to achieve scaled
open-loop dynamics relative to any particular full-scale aircraft. This is an acknowledged
drawback of the choice to use a generic multi-rotor UAV, with the trade-off being that a
generic multi-rotor is easier to build than a Froude-scaled model of a particular aircraft.

83

In addition, the majority of the model-scale tests conducted for this work (discussed in
Chapter 5.1) were conducted in the absence of significant gusts or turbulence, meaning
that the tests were primarily focused on evaluating the ability of different guidance and
control configurations to compensate for ship motion. For this scenario, the scaling
of the reference tracking dynamics and ship motion are most important, as the UAV
precisely follows the command models. The model-scale tests discussed in Chapter 5.2
(which did include significant aerodynamic disturbances) were focused on a comparison
between different guidance algorithms, and a cruder scaling of closed-loop response to
aerodynamic disturbances was deemed sufficient provided the lower-level control design
was consistent across all guidance methods tested. If model-scale tests were conducted
with the intent of determining necessary closed-loop disturbance rejection criteria to
perform safe landings in a scaled aerodynamic environment, however, then utilizing a
bare airframe with scaled open-loop dynamics would be required.

Even though the UAVs used for the tests conducted for this work were not designed
to achieve accurately scaled open-loop dynamics, it should be noted that reasonable
similarity in the scaled output disturbance response y′(s)/yd(s) could still be obtained.
The reason for this is because the output disturbance yd passes through both the plant
and the controller to produce the perturbed output y′. This means that the scaling of the
loop transfer function G(s)C(s) is what matters for achieving similarity in y′(s)/yd(s)
and the feedback compensator can be designed to capture important aspects of the scaled
output disturbance response. This is meaningful, as commonly used metrics such as
disturbance rejection bandwidth and disturbance rejection peak (defined in Chapter 4.4.2)
are defined from y′(s)/yd(s). Physically, disturbance rejection bandwidth characterizes
how fast the hold variable of the closed loop system will return to its commanded value
after a disturbance. Disturbance rejection peak relates to the overshoot and damping
of the hold variable as it returns to the commanded variable after the disturbance. As
will be discussed in Chapter 4.4.3, the feedback compensators will be designed here to
achieve disturbance rejection bandwidths and peaks determined by scaling representative
values for full-scale rotorcraft. This at least provides a crude scaling that captures the
salient characteristics of the response to disturbances.

84

4.4 Choosing Model-Scale Controller Parameters for Froude
Scaled Closed-Loop Dynamics

4.4.1 Choosing Parameters for Scaled Reference Tracking
Based on the results presented in Chapter 4.2, Froude scaled reference tracking dynamics
can be attained by simply Froude scaling the command model parameters of the EMF
control law. To exemplify the process for doing this, the longitudinal control axis will
first be considered. Say we have a full-scale model with a pitch tracking bandwidth
denoted by ωθ,fs. Following the Froude scaling framework discussed in section 4.1, we
simply scale this by

√
NF to arrive at the model-scale pitch command filter frequency:

ωθ,cf = ωθ,fs
√
NF (4.23)

The outer loop position control command filter frequency is then determined by dividing
ωθ,cf by 5:

ωX,cf = ωθ,cf
5 (4.24)

This factor of 5 is a good rule of thumb for ensuring adequate frequency separation
between the inner and outer control loops.

The time delay included on position and velocity commands, denoted by τθ,ϕ in Fig.
2.13, is also calculated based on the attitude command filter. For position control, the
attitude dynamics are neglected in the inversion, so we capture the phase of the attitude
dynamics with this delay. Recall that the attitude tracking dynamics are forced to
approximate the attitude command filters plus some small time delay. For pitch with
the command filter given in Eq. 2.25, ignoring the high frequency pole pθ and focusing
on the second order filter that governs the reference tracking response, this gives

θ(s)
θcmd(s)

≈
ω2
θ,cf

s2 + 2ζωθ,cfs+ ω2
θ,cf

e−τqs (4.25)

To approximate the phase of the attitude dynamics in Eq. (4.25), we calculate τθ,ϕ as
follows:

τθ,ϕ = 1.65/ωθ,cf + τq (4.26)

Note that this is valid with the attitude command filter damping ratio set to 0.8, which

85

was done for all command filters. Also, referring to Fig. 2.13, note that τθ,ϕ delays both
the XI and Y I position and velocity commands. While we only considered the pitch
attitude tracking response when calculating τθ,ϕ in Eq. (4.26), the roll attitude command
filter is constrained in the control design to be identical to the pitch command filter.
For a highly augmented aircraft with full authority flight control, this is a reasonable
requirement. Additionally, the values of τq and τp are generally much smaller than the
portion of τθ,ϕ attributed to the attitude command filters, meaning differences in τq and
τp do not have a large impact on the value of τθ,ϕ.

By scaling outer loop delay τθ,ϕ and command filter frequency ωX,cf based on the
inner loop command filter frequency ωθ,cf , the X position and pitch attitude tracking
responses are consistently scaled based on just the full-scale pitch attitude tracking
bandwidth ωθ,fs. This same process was used to scale the Y position and roll attitude
tracking responses. For altitude and yaw control, however, there is no outer control loop
and the reference tracking bandwidths can be set by scaling command filter frequencies
by

√
NF as was done for pitch in Eq. (4.23). That is,

ωZ,ms = ωZ,fs
√
NF (4.27)

ωψ,ms = ωψ,fs
√
NF (4.28)

4.4.2 Definition of Disturbance Rejection Bandwidth and Disturbance
Rejection Peak
In Chapter 4.3 it was shown that a Froude scaled response to both input and output
disturbances cannot be attained here since the model-scale UAVs used for this work
were not designed to match the scaled open-loop dynamics of any particular airframe.
It is still possible to design the feedback compensator to attain similar properties in
the response to output disturbances, however. Here feedback gains will be selected to
match a Froude scaled disturbance rejection bandwidth (DRB), which is defined from the
output disturbance response. This provides a crude scaling of the disturbance rejection
properties of the system. The following subsection will present the method used for
choosing control gains to meet a scaled DRB, but prior to discussing this process DRB
should be formally defined. The discussion given here will summarize the definition given
by Berger in [64].

DRB is a frequency domain metric obtained from the response of the control system
hold variable to a disturbance at the hold variable output [64]. An example of this is

86

shown for a roll axis attitude-command-attitude-hold (ACAH) control system subject to
a roll attitude disturbance ϕd in Fig. 4.5, where ϕ′ is the measured output. The transfer
function from ϕd to ϕ′ is obtained from the sensitivity function S as

ϕ′(s)
ϕd(s)

= S22 = [(I +GK)−1]22 (4.29)

where S22 represents the element at the second row and column of S, and G and K are
defined as

G =
 p/δlat

p/δlat/s

K =

[
Kp Kϕ

] (4.30)

Figure 4.5: Example roll axis ACAH system (adapted from [64])

DRB is defined as the frequency where the magnitude of the hold variable response to
a disturbance (i.e. ϕ′(s)

ϕd(s) for this example) crosses -3 dB. This is exemplified graphically in
Fig. 4.6. Note that an additional metric referred to as disturbance rejection peak (DRP)
is also defined in Fig. 4.6: DRP is taken as the peak magnitude of the hold variable
response to a disturbance. Physically, DRB gives a measure of how quickly the hold
variable will return to its held value after a disturbance and DRP gives a measure of
the overshoot and damping of the hold variable after a disturbance. These have become
common metrics for rotorcraft flight control design guidance.

87

Figure 4.6: Graphical representation defining DRB and DRP.

4.4.3 Choosing Parameters for Scaled Disturbance Rejection Band-
width
The desired model-scale DRB is calculated through the same process as shown in Eq.
(4.23): multiplying the full-scale DRB by

√
NF . To match this value the feedback

compensators must be systematically tuned. Starting again with the longitudinal control
axis, first consider the pitch attitude loop. The pitch proportional gain KP,θ is set to
achieve a desired gain crossover frequency in the loop transfer function. The zero in the
loop transfer function at KI,θ/KP,θ is then placed by setting

KI,θ = 0.2KP,θωco (4.31)

where ωco is the gain crossover frequency. This is a commonly used rule-of-thumb to
provide frequency separation between the integral and proportional compensators [61],
and allows the pitch attitude DRB to be tuned by adjusting only KP,θ. This same method
was used for tuning the roll and yaw PI controllers.

The X position hold control gains are chosen by approximately specifying the error
dynamics in the UAV level frame. To do this the UAV level frame X position dynamics
are modelled as shown in Eq. 2.31, where θcmd is considered the driving input. The loop
is then closed on this model with the PID feedback compensator used in the X and Y

88

position control law. Then, considering the effect of an additive disturbance X lf
dst at the

X lf position output on the position tracking error, the following expression for the error
dynamics can be derived:

e(s)
X lf
dst(s)

= s3

s3 − g(KD,Xs2 +KP,Xs+KI,X)

where e(s) = X lf
cmd(s) −X lf (s)

(4.32)

The denominator of Eq. (4.32) can then be factored into a second order and first order
polynomial, yielding

e(s)
X lf
dst(s)

= s3

(s2 + 2ζdωds+ ω2
d)(s+ pd)

(4.33)

where we set ζd = 1, pd = 0.2ωd, and ωd is tuned to give a desired trade-off between
stability margins and DRB. This reduces the tuning process to adjusting only ωd. The
X position control PID gains are then related to ζd, ωd, and pd through the equations

KP,X = −(ω2
d + 2ζdωdpd)

g

KI,X = −pdω
2
d

g

KD,X = −(2ζdωd + pd)
g

(4.34)

The same process was used for determining the Y position hold PID gains.
For scaling the ZI controller DRB, a process similar to that applied to the attitude

PI controllers is used. First, we factor the ZI feedback compensator as shown below:

KZ(s) = KD,Zs
2 +KP,Zs+KI,Z

s
= K(s+ z1)(s+ z2)

s
(4.35)

The gain K in Eq. (4.35) is then used to set the loop transfer function gain crossover
frequency and zeros z1 and z2 are set to 0.1 times the gain crossover frequency. The PID
gains are then found calculated from the equations

KP,Z = K(z1 + z2)

KI,Z = z1z2K

KD,Z = K

(4.36)

allowing the altitude control gains to be tuned by only adjusting K.

89

4.5 Scaling Control Laws from Model-Scale to Full-Scale
The previous section discussed how controller parameters were chosen in this work to scale
the reference tracking dynamics and disturbance rejection bandwidths from full-scale
down to model-scale. The purpose in doing this is to provide reasonably scaled closed-loop
dynamics when evaluating the guidance algorithms presented in Chapter 3 in model-scale
experiments. But while this work uses representative full-scale closed-loop dynamics
to determine control gains for model-scale experimental evaluations, it is worth noting
that scaling could be applied in the opposite direction. For example, if the model-scale
aircraft were built to exhibit approximately Froude scaled open-loop dynamics in the
frequency range of interest for control design, then a new control mode could be designed
and evaluated at model-scale. The control gains could then be scaled-up and applied to
the full-scale aircraft.

To exemplify the process of scaling a control law from model-scale to full-scale, a
simple example based on the longitudinal dynamics of the UH-60 in hover will be explored.
A crude, decoupled model of the longitudinal dynamics for a helicopter at hover can be
expressed as

u̇fs

q̇fs

θ̇fs

Ẋfs

 =

Xu 0 −g 0
Mu Mq 0 0
0 1 0 0
1 0 0 0

ufs

qfs

θfs

Xfs

+

Xδlon

Mδlon

0
0

 δlon,fs (4.37)

where the stability derivatives Xu, Mu, and Mq and control derivatives Xδlon
and Mδlon

are determined from the linearization of the PSUHeloSim UH-60 model [65] and tabulated
in table 4.2. Note that the subscript fs here is included to emphasize that this is a
model of the full-scale aircraft.

Table 4.2: Full-Scale Stability and Control Derivatives
Xu [1/s] Mu [1/(ft s)] Mq [1/s] Xδlon

[ft/s2] Mδlon
[1/s2]

value -0.0041 3.6518e-04 -0.1768 0.0402 0.0047

Since the goal here is to first design a controller at model-scale and then use the
model-scale controller to determine the full-scale controller, a model of the model-scale
dynamics is needed. For this simple example, Froude-scaled model-scale dynamics are
obtained from Eq. (4.37) by Froude scaling each of the stability and control derivatives.
For example, Xu has units of 1/s and therefore scales following the frequency scaling
rule given in table 4.1. That is, Xu,ms = Xu,fs

√
NF where NF is again the Froude scaling

90

factor. For this example a scale factor of NF = 10 was used. Applying dimensional
analysis as was done to determine the jerk scaling factor in Eq. (4.1), scale factors for the
remaining stability and control derivatives can be determined. The model-scale dynamics
that will be used in this example are then given by

u̇ms

q̇ms

θ̇ms

Ẋms

 =

Xu

√
NF 0 −g 0

MuN
3/2
F Mq

√
NF 0 0

0 1 0 0
1 0 0 0

ums

qms

θms

Xms

+

Xδlon

Mδlon
NF

0
0

 δlon,ms (4.38)

A controller can now be designed based on these model-scale dynamics.
Here the model-scale control design uses the EMF control architecture shown in Fig.

4.7, which is very similar to the position control law implemented on the UAVs in this
work (see Chapter 2.6.1). The pitch attitude inversion model for the model-scale design
is given by a simple first order approximation of the pitch dynamics:

θ̂(s)
δlon(s) = Mδlon

NF

s(s−Mq

√
NF)

(4.39)

The pitch attitude command model at model-scale was given a damping ratio of ζθ = 0.8
and frequency of ωθ,ms = 10 rad/s, and the pitch PID controller gains were tuned to meet
the scaled DRB guideline for level 1 handling qualities as specified in ADS33E-PRF. The
model-scale position controller command model was given a damping ratio of ζx = 0.8
and frequency of ωx,ms = 2 rad/s. The outer loop time delay was determined from the
pitch attitude command model frequency in the same manner as shown in Eq. (4.26).
The position loop inversion model shown in Fig. 4.7 is based on the assumption that the
X position dynamics can be reasonably modelled by Ẍ = −gθ. The model-scale position

Figure 4.7: EMF control law used for scaled control design example.

91

control PID gains were chosen using this same assumption and approximately specifying
the position tracking error dynamics, as was done to derive the position control PID gain
formulas given in Eq. (4.34) where the frequency parameter ωd defines all three gains.
The position and attitude control gains from the model-scale design are given in table
4.3.

Table 4.3: Model-scale control gains
KP,θ,ms KI,θ,ms KD,θ,,ms KP,X,ms KI,X,ms KD,X,ms

value 245.45 151.96 59.83 -0.0627 -0.0107 -0.0821

The full-scale controller parameters can now be set by Froude scaling the model-scale
parameters. For example, the pitch-attitude derivative control gain KD,θ acts on the
pitch rate error, which has units of rad/s. Since the attitude control PID gains sum
together to produce the dimensionless control input δlon, KD,θ must have units of s/rad
so that the product of pitch rate tracking error and KD,θ is unitless. Scaling the units of
KD,θ gives

sfs
radfs

= sms
√
NF

radms
(4.40)

which shows that the full-scale pitch attitude derivative gain is increased from model-scale
by

√
NF (i.e., KD,θ,fs = KD,θ,ms

√
NF) for appropriate Froude scaling. Applying the

same process to scale the pitch control proportional and integral gains, the equations for
determining the full-scale gains from the model-scale design are

KP,θ,fs = KP,θ,ms

KI,θ,fs = KI,θ,ms/NF

KD,θ,fs = KD,θ,ms

√
NF

(4.41)

For the outer loop position controller, the control gains could be obtained in the same
manner. More simply though, since the position control gains are determined by the
frequency parameter ωd as shown in Eq. (4.34), equivalent scaling is obtained by simply
scaling ωd. That is, setting ωd,fs = ωd,ms/

√
NF . All other parameters in the full-scale

control law are determined by Froude scaling as well. For example, full-scale command
model frequencies are determined from model-scale using the aforementioned frequency
scaling rule.

With Froude-scaled open-loop dynamics and the full-scale control law determined by
Froude scaling the model-scale design, it is expected that key aspects of the closed-loop
system like stability margins and disturbance rejection properties will be related by

92

Froude scaling as well. First we will verify the scaling of gain and phase margin, as
determined by breaking the loop at the control input. For phase margin, one-to-one
scaling is expected since the phase angle is unitless. One-to-one scaling is also expected
for gain margin since the transfer function from an input disturbance to the resulting
control input is also unitless. These expectations are confirmed by comparing Fig. 4.8a
and Fig. 4.8b, where we see stability margins are maintained across scales. Only the gain
and phase crossover frequencies change, and they change following the square root scaling
rule expected of Froude scaling. Similar expectations are confirmed when analyzing
the disturbance rejection properties. For example, DRB will scale following the square
root frequency scaling rule and DRP will be maintained across scales since the ratio of
output over output disturbance will be unitless. This result is demonstrated by the DRB
and DRP values reported in Fig. 4.9. Additionally, as expected, closed-loop reference
tracking dynamics will scale appropriately. This is verified in Fig. 4.10 where a 1 ft
position step command is applied to the model-scale system and a 10 ft step command
(increased by scale factor NF =10) is applied to the full-scale system. Comparing Figs.
4.10a and 4.10b, the plots appear identical but the x and y axis scales are off by the
associated Froude scaling factors, verifying appropriate scaling.

(a) Model-scale margins. (b) Full-scale margins.

Figure 4.8: Pitch attitude stability margins with model-scale control design (1/10th scale,
or NF = 10) and full-scale control design determined from model-scale.

93

(a) Model-scale DRB and DRP. (b) Full-scale DRB and DRP.

Figure 4.9: Pitch attitude DRB and DRP with model-scale control design (1/10th scale,
or NF = 10) and full-scale control design determined from model-scale.

(a) Model-scale step response. (b) Full-scale step response.

Figure 4.10: Response to X position step command with model-scale control design
(1/10th scale, or NF = 10) and full-scale control design determined from model-scale.

The preceding example is simplified in that the open-loop dynamics relate perfectly
across scales by Froude scaling, which will only be approximately true in a best-case
scenario. Still, this does demonstrate that it is theoretically possible to perform control
design at model-scale and translate the design and expected robustness and performance to
a larger scale model. Further, work by other researchers has indicated that approximately
Froude scaled open-loop dynamics can be attained by making this a goal in the design of

94

the model-scale aircraft. For example, rotorcraft built with roughly Froude scaled rotor
radius, mass, and inertia have been shown in some studies to exhibit roughly Froude
scaled open-loop dynamics [52–54]. Though it is not explored further in this work, the
feasibility of designing a model-scale aircraft to achieve approximately Froude scaled
dynamics, performing system modelling and control design with the aid of model-scale
flight test, and then scaling the model-scale control design to full-scale would be an
interesting area of future work.

95

Chapter 5 |
Model–Scale Autonomous Ship
Landing Experiments

Using the scaling methodology from the previous chapter, the guidance algorithms
presented in Chapter 3 were evaluated in a series of model-scale autonomous landing
experiments. The majority of the experiments were performed at the Maneuvering
and Seakeeping Basin (MASK) located at the Naval Surface Warfare Center Carderock
Division (NSWCCD). For these tests aerodynamic disturbances were not included, and
the focus was on evaluating the ability of the baseline and QP guidance algorithms to
compensate for deck motion. Additionally, control law parameters were adjusted during
testing to evaluate the ability of both guidance algorithms to compensate for reduced
speed of response and maneuverability. A smaller set of tests were also performed at
the Penn State Indoor Flight Facility. These tests incorporated wind gusts and were
conducted to evaluate the ability of both guidance algorithms to perform in the presence
of a significant aerodynamic disturbance. This chapter will describe the experimental
setups and results obtained from both sets of model-scale tests.

5.1 Autonomous Landing Experiments at the Maneuver-
ing and Seakeeping Basin

5.1.1 Experimental Setup
A picture of the experimental setup at the MASK facility is shown in Fig. 5.1a. The
MASK facility contains a 360 foot long by 240 foot wide wave basin with 216 individually
controlled electro-mechanical wave boards around the edge of the basin. The wave boards

96

can produce appropriately scaled wave conditions that are precisely controlled to match a
specified wave spectrum. An OptiTrack motion capture system is installed in the MASK,
with the motion capture software running on the ground control station (GCS). This
allows for accurate tracking of deck and aircraft positions and attitudes. A 20 foot long
unmanned ship vessel (USV) was loosely tethered in the wave pool, as shown in Fig. 5.1b.
Tethering prevented unbounded drift in the ship’s heading and position, but allowed
significant oscillations in all six degrees of freedom. A launch and recovery (L&R) zone
was designated off the shore of the basin for takeoff and landing between test runs.

(a)

(b)

Figure 5.1: (a) Test setup in the MASK facility at the NSWCCD. (b) Model-ship used
during landings.

97

Figure 5.2: Test hardware and software integration.

The flight tests flown in the MASK facility used the hexacopter UAV described in
section 2.1. The UAV is equipped with a WiFi module, which is used to receive data
from the ground station computer as shown in Fig. 5.2. The ground station computer
sends out position and attitude measurements of both the ship and UAV. The UAV
measurements are picked up by the PX4 firmware for use in state estimation, and the
estimated aircraft states are then sent to the UAV’s Odroid XU4 onboard computer for
use in trajectory generation and control. The ship position and attitude measurements
are used directly in the trajectory generation algorithms.

5.1.2 Wave Conditions
Landings were performed in three separate stochastic wave conditions. The wave condi-
tions are referred to as stochastic because a single sinusoidal wave form was not used.
Rather, the waves are produced to match a realistic wave spectrum. The standard
deviation (STD) and maximum difference from the mean are tabulated for each degree
of freedom at each wave condition in table 5.1. The mean magnitude of ship motion for
each degree of freedom is also tabulated in table 5.1. For example, the reported mean
magnitude of deck heave motion is calculated as mean

(
Z⃗I
D − Z̄I

D

)
where Z⃗I

D is a vector
of all ship altitude measurements taken at a given wave condition and Z̄I

D is the average
altitude of the deck at that wave condition. Ship heading and heading rate were excluded

98

from this table as oscillations in heading were mild for these tests. Note that ωp in table
5.1 is the frequency corresponding to the peak in the wave amplitude spectrum, and ψw

is the wave heading. For wave conditions 1 and 2 the waves approached the bow of the
ship directly, but for wave condition 3 the waves approached at an angle of 45 degrees to
starboard.

Wave condition 1 was the most mild, as reflected by the deck motion statistics shown
in table 5.1. Wave conditions 2 and 3 were similar, but the 45 degree wave angle for
condition 3 led to more aggressive roll and sway motion and less aggressive surge motion.
Wave condition 3 was found to be the most difficult for the autonomy algorithms to
perform landings in, though it should be noted that this may not be entirely due to larger
lateral motions. The wave makers in the MASK dissipate less energy with a 45 degree
wave heading than with 0 degree wave heading, which leads to slightly more aggressive
motions on average.

Table 5.1: Ship motion properties for each wave condition.1

Cond. 1
ωp = 2.8 rad/s
ψw = 0 deg

Cond. 2
ωp = 2.3 rad/s
ψw = 0 deg

Cond. 3
ωp = 2.3 rad/s
ψw = 45 deg

DOF STD/Max/Mean STD/Max/Mean STD/Max/Mean
Roll 1.46/5.24/1.16 1.89/8.04/1.49 3.74/16.20/2.97

Roll Rate 5.16/15.51/4.09 5.74/17.79/4.51 12.38/50.36/9.78
Pitch 2.82/10.32/2.26 3.82/15.58/3.04 2.30/10.96/2.37

Pitch Rate 9.20/25.76/7.36 10.66/35.42/8.47 8.71/30.94/6.89
Surge 0.11/0.41/0.09 0.15/0.64/0.12 0.10/0.41/0.08

Surge Rate 0.09/0.27/0.07 0.17/0.58/0.14 0.13/0.45/0.10
Sway 0.07/0.24/0.06 0.08/0.36/0.06 0.14/0.72/0.10

Sway Rate 0.05/0.17/0.04 0.09/0.28/0.07 0.15/0.54/0.12
Heave 0.05/0.23/0.04 0.11/0.44/0.08 0.11/0.41/0.09

Heave Rate 0.15/0.42/0.12 0.26/0.93/0.20 0.27/0.94/0.21
1Angles and angular rates use units of deg and deg/sec. Translation
and translational rates use units of meters and meters/sec.

To give a qualitative feel for the deck motion, a segment of deck heave at wave
condition 2 is plotted in Fig. 5.3. Only heave is plotted here because the deck motion
was most aggressive in heave for all wave conditions, though significant oscillations in
surge and sway were present as well. Referring to Fig. 5.3, two important aspects of
the deck motion can be noted. First, the motions are irregular and difficult to predict,
which is essential for accurate evaluation of the QP guidance algorithm as it incorporates

99

deck motion predictions. Also, it should be noted that the deck regularly undergoes
periods of significant motion for the scale the tests were conducted at. At times the
deck heave oscillated with amplitudes around 35 to 40 centimeters, meaning the deck
heaves through a total throw of 70-80 centimeters, and this occurs in a time span of 1
to 2 seconds. Using the Froude scaling metrics, a model-scale throw of 70 centimeters
in slightly over 1 second corresponds to a full-scale throw of approximately 10 meters
(slightly under 120 percent the UH-60 rotor radius) in about 3.7 seconds.

Figure 5.3: Sample deck heave motion time history.

5.1.3 Scaling of Model-Scale Ship Motions
To gain a better understanding of how the ship motion from the experiments performed in
the MASK compares to representative full-scale ship motion, the ship data is compared to
data released under the Systematic Characterization of the Naval Environment (SCONE)
program. The SCONE database includes 6 degree of freedom simulation data of a generic
surface combatant representative of a DDG-51 type ship [47]. The time histories are
categorized into low, moderate, and high severity cases, which are also identified as
exhibiting roll dominant or heave dominant motion.

Plots comparing the scaled ship motions are shown in Fig. 5.4. Comparisons are
drawn with the heave dominant moderate and high severity SCONE cases, as the model-

100

scale ship motion during the MASK experiments was heave dominant. The model-scale
data shown in Fig. 5.4 is adjusted to full-scale using the Froude scaling method discussed
in Chapter 4.1. Only the model-scale data from wave condition 2 is shown here, as
the vast majority of landings were performed in this wave condition. Additionally, ship
surge motion was not compared here, as the ship moves forward at a constant velocity
in the SCONE simulations. With the model-scale ship tethered in the wave basin, the
model-scale ship experiences more significant oscillations in surge as it does not move
forward through the waves with a significant velocity.

(a) Heave and sway comparison (b) Pitch and roll comparison

Figure 5.4: Comparison of scaled ship motion from MASK experiments with SCONE
simulation data.

Looking at the data plotted in Fig. 5.4a, it is seen that both the scaled standard
deviation (std) and maximum (max) displacement of the heave (Z) motion obtained
from the MASK ship data is similar that obtained from the high-heave SCONE data.
The same is true for the sway (Y) motion. The scaled std and max of the MASK heave
rate (Vz) and sway rate (Vy) data compares well with the SCONE moderate-heave data,
however. This is related to the fact that the frequency content of the model-scale ship
motion was slightly low when compared to that of the SCONE data sets. This can be
seen by first noting that ωp in table 5.1 is approximately equivalent to the frequency at

101

which the peak in the ship heave spectrum occurs. Froude scaling ωp for wave condition
2 gives a corresponding full-scale heave spectrum peak occurring at ωp ≈ 0.62 rad/s,
while the SCONE data sets typically exhibit a peak in the heave spectrum at around 0.9
rad/s. The fact that the scaled ship motion from these experiments exhibited slightly low
frequency content when compared to full-scale is due to hardware limitations in the wave
board actuators at the MASK. Still, the heave and sway displacement and rate data in
Fig. 5.4a demonstrates that ship translational motions in the MASK experiments were
representative of a scaled moderate to high sea state. The same is true when looking
at the std and max of the roll angle and roll rate shown in Fig. 5.4b, where the MASK
data falls between the SCONE moderate and high heave data points. The std and max
of the pitch and pitch rate data does show more significant pitch motion in the MASK
experiments than even the SCONE high-heave data, however. This is again due to the
fact that the model-scale ship in the MASK was did not translate forward with a constant
velocity, and therefore did not have forward momentum to break the waves. Overall, the
comparison given in Fig. 5.4 demonstrates that the MASK ship data is representative of
ship motion in scaled moderate to high sea state.

5.1.4 Test Cases
A total of 149 autonomous landings were performed (79 with the QP guidance algorithm
and 70 with the baseline algorithm), with 10 different flight controller configurations
used. The controller configurations are summarized in table 5.2. At least 10 landings
were performed for each combination of control case and wave condition. However, in
instances where the UAV battery had enough capacity remaining to perform additional
landings before switching test cases, additional landings were recorded.

Table 5.2: Landing Test Cases
Control

Case
Guidance
Algorithm

Roll and Pitch1

Tracking BW (rad/s)
X and Y Tracking

BW (rad/s)
Heave Tracking1

BW (rad/s)
X,Y/Z2 Jerk
Limit (m/s3)

Wave Conds. Tested
(No. of landings)3

1 QP High 2.23 High 9/9 1 (10), 2 (12), 3 (11)
2 QP Med 1.67 High 7/9 2 (11)
3 QP Low 1.11 High 5/9 2 (12)
4 QP High 2.23 Med 9/7 2 (10)
5 QP High 2.23 Low 9/5 2 (12)
6 baseline High 10 30 NA 1 (10), 3 (10)
7 baseline High 2.23 30 NA 2 (10)
8 baseline High 2.23 15 NA 2 (10)
9 baseline High 2.23 6 NA 2 (10)
10 baseline High 2.23 High NA 2 (10), 3 (10)

1Refer to table 5.3 for high, medium, and low values.
2Jerk limits in QP planner are reported as “X,Y limit" / “Z limit." For example, 7/9 for control case 2 means the X,Y jerk limit was
±7 m/s3 and the heave jerk limit was ±9 m/s3 for this case.
3The number in parentheses is the number of landings performed at that wave condition. For example, “2 (12)" for control case 3
means that 12 landings were performed at wave condition 2 for control case 3.

102

Referring to table 5.2, control cases 1 - 5 used the QP algorithm, but with varied
pitch, roll, and heave tracking bandwidths to simulate reduced aircraft mobility. The
values corresponding to high, medium, and low cases are reported in table 5.3, which
were chosen by Froude scaling realistic values for an aircraft similar to the UH-60. Note
that the “hard constraint” formulation of the QP guidance algorithm was used for these
tests.

Table 5.3: Tracking bandwidth cases.

Model Scale
Bandwidth

Full Scale
Equivalent

High Med Low High Med Low
ωθ,cf 11.14 8.36 5.57 3.00 2.25 1.50
ωϕ,cf 11.14 8.36 5.57 3.00 2.25 1.50
ωZ,cf 3.71 1.86 0.74 1.00 0.50 0.20

Note: All entries in units of rad/s

Control cases 6-10 used the baseline algorithm, with pitch and roll tracking bandwidth
fixed to the high configuration and heave tracking bandwidth varied. Note that control
cases 6-9 used Z bandwidths that were significantly higher than the “High” configuration
used for the QP algorithm. For these cases, the bandwidth is reported directly in table 5.2.
This was done because the deck relative commands produced by the baseline guidance
algorithm were passed directly into the UAV altitude controller command filter, and the
UAV lags the deck motion increasingly as command filter frequency is reduced. The
baseline controller was therefore first tested with a very high Z bandwidth (30 rad/s) to
simulate a case where the aircraft can track the deck with minimal lag. The command
filter frequency was then progressively reduced until the lag was too great to perform
soft landings. This occurred by the time the Z bandwidth was reduced to the “High”
case used for QP landings (i.e., control case 10).

For all control cases, with the exception of control case 6, the X and Y bandwidths
were assigned by dividing the pitch and roll bandwidth by 5, ensuring adequate frequency
separation between the inner and outer loops. For control case 6 the X and Y bandwidths
were set to 10 rad/s. This gives a faster response, but with a higher potential for significant
overshoot.

For cases with the QP algorithm, jerk limits were also varied with tracking bandwidth.
For example, when heave was in the high bandwidth configuration, the maximum Z axis
jerk constraint is set to ±9 m/s3. When heave was in the medium and low bandwidth
configurations this was reduced to jz,max = ±7 m/s3 and jz,max = ±5 m/s3, respectively.

103

The X and Y jerk limits were tied to the pitch and roll bandwidths in the same manner.
To simulate the QP algorithm controlling an aircraft with reduced maneuverability some
restriction of output constraints is necessary, because if the constraints are too loose
the optimal control algorithm can overdrive the command filter input to compensate for
the reduced tracking bandwidth. For the UAVs used during testing this would not be
problematic as the reduced bandwidth is artificial, but for a full-scale aircraft bandwidth
limits are related to real physical limitations such as actuator rate saturations. Here
jerk was restricted because it was found to be the most common constraint to approach
a limit, and also is related to actuator rate saturation. The acceleration and velocity
output constraints were fixed to Vmax = ±7 m/s and amax = ±3.5m/s2.

For all control cases, the feedback gains for roll, pitch, yaw, and heave were tuned
to meet scaled ADS-33E-PRF level 1 handling qualities guidelines for DRB and DRP.
The scaled DRBs and DRPs are shown in table 5.4. The gains for roll, pitch, yaw, and
heave were fixed for all tests to isolate the effects of varied tracking bandwidths. The
X and Y control gains, however, were not fixed. The gain values corresponding to the
“X, Y High” case were tuned to just satisfy scaled level 1 DRB and DRP. These gains
were used for control cases given in table 5.2 where the pitch and roll axes were in a
high tracking bandwidth configuration. For medium and low pitch and roll tracking
bandwidth configurations, however, the X and Y feedback gains were reduced to avoid
excessively high DRP, reducing DRB. This occurs for degraded pitch and roll bandwidth
because the pitch and roll attitude command filters are present in the loop closure when
assessing outer loop disturbance rejection. This change in X and Y DRB does not have
a large impact here as wind gusts and turbulence were not included in the test setup.

Table 5.4: Disturbance Rejection Properties

Model Scale
DRB (rad/s)

Full Scale
DRB (rad/s) DRP (dB)

Pitch 2.63 0.71 2.04
Roll 3.73 1.00 2.74
Yaw 3.67 0.99 1.70

Z 1.04 0.28 1.72
X, Y High 0.67 0.18 2.74
X, Y med 0.59 0.16 3.05
X, Y Low 0.42 0.11 3.14

104

5.1.5 Results

5.1.5.1 Deck Predictions

Prior to assessing the performance of each landing algorithm, discussion of the deck state
prediction accuracy is pertinent as the predictions are used directly in the QP guidance
algorithm. To give a qualitative feel for the deck prediction accuracy, a representative
sample of deck heave predictions produced during flight is given in Fig. 5.5. The plot was
produced by taking a sample time segment of deck heave motion and comparing this to
what it was predicted the deck heave would be at each time point, with the predictions
produced 0.5, 1.5, and 2.5 seconds ago. The result shows that the predictions are very
accurate at 0.5 seconds ahead, but the accuracy drops off quickly. When predicting
just 1.5 seconds ahead, errors in both magnitude and phase of the predicted heave are
significant. By 2.5 seconds ahead, the heave magnitude is regularly under-predicted.

Figure 5.5: Sample deck heave predictions at 0.5, 1.5, and 2.5 seconds into the future.

These observations are supported by the prediction accuracy statistics calculated
across trials shown in Figs. 5.7 and 5.8. The errors for a single “trial” were computed as
shown in Fig. 5.6, described as follows:

1. A time point in a given landing flight test time history was chosen.

2. At the chosen time point, predictions of future deck motion spanning 0.1 to 3

105

Figure 5.6: Process for calculating “trial” error vector used to compute prediction error
statistics shown in Figs. 5.7 and 5.8.

seconds into the future were made during testing. These predictions were saved.

3. The saved predictions were compared to the actual deck motion at 0.1, 0.2, ... 3
seconds ahead of the time when the predictions were produced, generating a “trial”
error vector.

The time points chosen to evaluate the predictions were spaced out by at least 3 seconds in
all cases. This ensured that directly adjacent time points were not used when calculating
prediction errors, providing trials taken at a more diverse set of conditions. The number
of trials used to calculate the prediction error statistics was increased until the mean and
standard deviation converged (here this occurred at 217 trials).

Looking at the wave condition 2 prediction errors shown in Fig. 5.7, the light gray
lines show the error vectors computed for each trial and the darker lines show how the
mean and standard deviation of the prediction errors vary with how far we predict into
the future. From this plot it can be seen that the X and Y predictions start converging
toward the true deck value at approximately 1.5 seconds out (as can be seen by the
prediction error mean and standard deviation beginning to trend toward zero) and the
heave predictions begin to converge toward the true deck heave between 1 and 1.5 seconds
out. On average, the long term position prediction errors are slightly under the average
deviation of deck position from its mean location. For example, the average magnitude
of heave displacement from the mean deck altitude (reported in table 5.1) is about 9
cm, while the average heave prediction error at 2.5 seconds is about 6 cm. In many
cases, though, the prediction errors at 1-3 seconds out are more than double this value
indicating that predictions are only reliable in the very short term. The attitude errors
also follow a similar trend, decreasing in the final second of the prediction horizon. The
same is true for the velocity predictions, but the velocity predictions also exhibit a
number of sharp spikes in prediction error, which sometimes occur with under 1 second
remaining in the prediction horizon. This is related to occasional data buffering that
occurred when sending deck measurements from the ground station to the UAV over wifi.

106

Figure 5.7: AR model deck state prediction error statistics vs look-ahead time for wave
condition 2.

When this occurs, small step-like inputs are passed through the filters used to estimate
deck velocity, resulting in spikes in the velocity estimates. Since the AR model calculates
future outputs based on past outputs, this can result in sharp spikes appearing in the
predictions. Despite these issues, it will be shown that QP algorithm was able to perform
well with the quality of deck predictions obtained here.

It should also be noted that the prediction quality is dependent on both the frequency
and magnitude of deck motion. For example, as shown when considering the scaling
of the prediction algorithms in Chapter 4.2, the model-scale predictions beginning to
converge toward the true deck states at 1.5 seconds ahead would Froude scale to full-scale
predictions beginning to converge at slightly over 5 seconds ahead. Further, the effect

107

Figure 5.8: Position prediction errors vs look-ahead time for each wave condition.

of deck motion aggressiveness on prediction performance can be seen from the Fig. 5.8,
where position prediction errors at wave condition 1 (the most mild wave condition) are
notably lower than the errors calculated at wave conditions 2 and 3. The deck Y (sway)
prediction errors are also highest at wave condition 3 because this was the condition
with the highest amplitude sway oscillations (see table 5.1). Likewise, the X (surge)
prediction errors are highest for wave condition 2, which was the wave condition with
the highest amplitude oscillations in surge.

5.1.5.2 Sample Landing Time Histories

Sample landings performed at wave condition 2 with the baseline and QP guidance
algorithms are shown in Figs. 5.9 and 5.10. In both cases, a successful landing was
completed with low terminal deck-relative positions and velocities.

For the baseline landing case, the relative descent rate at touchdown was very close
to the 0.25 m/s descent rate bias commanded in the baseline guidance algorithm. This
is not surprising as the Z bandwidth for control case 7 was high and the UAV could
effectively track the deck. The baseline algorithm also matched X and Y velocity well in
this instance, though in other flight tests more significant X velocity errors were observed
as the X and Y command filter frequency for control case 7 was low enough to introduce
significant lag in X and Y translation. This will be discussed further in section 5.1.5.3.
Also, note that the sharp changes in attitude that occur shortly after deck contact are
due to a combination of rigid landing gear on the UAV and the throttle being cut several
centimeters above the deck.

For the QP landing case, similar relative velocities were obtained at landing but deck

108

Figure 5.9: Sample landing time history with baseline guidance algorithm.

109

Figure 5.10: Sample landing time history with QP guidance algorithm.

oscillations were largely ignored. This can be seen by examining the altitude time history
plotted for the sample QP landing case shown in Fig. 5.10, where the UAV descends at a
nearly constant velocity without needing to explicitly follow deck heave oscillations. This
is in contrast to the baseline landing case shown in Fig. 5.9, where it is observed that
the UAV follows the deck heave oscillations for approximately the last 3 seconds of the

110

landing. The results illustrate that the QP algorithm can plan a more direct landing path,
though the baseline “deck tracking” method is simple and effective when the aircraft
has the required control authority. Also, for the case shown in Fig. 5.10, the land-time
update scheme included in the QP algorithm shifted the land time from a point with
significant upward heave to a point near a peak in the oscillations, preventing the UAV
from needing to change direction to match heave motion at landing. It will be shown in
the following subsections, however, that the land time update harmed performance in
many other cases. The QP algorithm also manages to match deck attitude in this case,
though deck attitude was small at landing. The capability of the landing algorithms to
consistently match position, velocity, and attitude will be clarified through the statistics
presented in the following subsections.

5.1.5.3 Position, Velocity, and Attitude Landing Errors

The deck-relative landing velocities are shown for all flight tests in Fig. 5.11. Note
that Fig. 5.11a shows the X and Y landing velocity errors plotted versus the X/Y
command filter frequency used for each test, and Fig. 5.11b plots the Z velocity errors
as a function of Z command filter frequency. First focusing on the deck-relative descent
rates reported for the baseline algorithm in Fig. 5.11b, the results show the baseline “deck
tracking” guidance method to provide low relative descent rates when the control law was
configured to provide a very high Z bandwidth. For example, with ωcf,Z = 30 rad/s at
wave condition 1 and ωcf,Z = 15 rad/s at wave condition 2, deck-relative descent rates of
under 0.4 m/s were obtained with averages close to the deck-relative descent rate of 0.25
m/s commanded by the baseline guidance algorithm. With ωcf,Z = 30 rad/s at wave
condition 2 the results are similar, though two landings did end with relative descent
rates of around 0.45 m/s. While testing, however, landings that were no longer visibly
perceived as “soft” did not occur until relative descent rates of around 0.6 m/s. One
such landing occurred with ωcf,Z = 30 rad/s in wave condition 3 (the most aggressive
wave condition), though the other landings at this test condition had impact velocities of
around 0.4 m/s or less.

The results reported in Fig. 5.11b also demonstrate the sensitivity of the baseline
algorithm to reduced bandwidth. For example, moving from ωcf,Z = 15 rad/s to
ωcf,Z = 6 rad/s at wave condition 2, a noticeable increase in the mean and variance of
the Z velocity landing errors begins to emerge due to the effective command tracking
delay added by the reduced bandwidth. When the bandwidth is further reduced to
ωcf,Z = 3.71 rad/s at wave condition 2 the trend continues, resulting in excessively high

111

(a) Deck-relative X and Y landing velocities.

(b) Deck-relative Z landing velocities.

Figure 5.11: Deck-relative landing velocities vs. command filter frequency. Faded markers
represent individual landings, bold markers show the average, and the error bar shows
2σ of the velocity error magnitude.

impact velocities. The same behavior is seen when moving from ωcf,Z = 30 rad/s to
ωcf,Z = 3.71 rad/s with the baseline guidance algorithm at wave condition 3.

Relating these results back to full-scale, a heave tracking bandwidth of 6 rad/s at
model-scale corresponds to 1.6 rad/s at full-scale. The specifications for height response
characteristics in ADS-33E-PRF (Ref. 66) require a vertical axis time constant of 5
seconds or less for level 1 handling qualities. This roughly corresponds to a full-scale
vertical axis bandwidth of 0.2 seconds. The results obtained here therefore suggest
that the vertical axis tracking bandwidth would need to significantly exceed the level
1 requirement to consistently perform soft landings with the baseline “deck tracking”
landing strategy in high sea states. Such a high bandwidth may be difficult for large or
heavily loaded rotorcraft to attain.

The QP guidance algorithm, on the other hand, proved to be insensitive to reduced Z
bandwidth. For example, looking at the results shown in Fig. 5.11b for ωcf,Z = 3.71 rad/s
at wave condition 2, low deck-relative descent rates are obtained with the QP algorithm
while the baseline algorithm performed poorly with the same Z bandwidth. Further, as
ωcf,Z is reduced down to ωcf,Z = 0.79 rad/s, the QP algorithm still consistently obtained
low deck-relative descent rates on average. Looking at Fig. 5.11a, it is observed that

112

the Y velocity errors also did not increase with the QP algorithm when reducing the X
and Y command filter frequency from 2.23 rad/s to 1.11 rad/s at wave condition 2. The
reduced X and Y bandwidth did result in an increase in the average X velocity errors,
however, but the increase is slight and low relative velocities were still obtained.

A similar trend can be observed in the X position errors shown for the QP algorithm
in Fig. 5.12b. Comparing the X position landing errors across all controller configurations
tested with the QP algorithm at wave condition 2, the largest spread in the X position
error is observed for control case 3 (the case with the lowest X/Y bandwidth). The
difference here is again small, though, with the majority of QP X position landing errors
grouped below 20 cm regardless of controller configuration. This is in contrast to the
position errors reported for the baseline algorithm in Fig. 5.12a, where the position
landing errors are clearly lowest for the case with the highest X and Y bandwidth (control
case 6, ωcf,xy = 10 rad/s). This occurs despite the lack of frequency separation between
the inner and outer loops for control case 6 (ωcf,xy = 10 rad/s and ωcf,θϕ = 11.14 rad/s),
as the frequency of deck motion was low enough to avoid significant overshoot resulting
from commanding the UAV to track the deck. If roll and pitch bandwidths are not high,
however, simply using a high outer loop command filter frequency may not be a tractable
solution. Using a command filter frequency that ensures adequate frequency separation
may not provide a fast enough response, though. This is seen by the inflated position
landing errors for control cases 7-10, where ωcf,xy was reduced to 2.23 rad/s. For control
case 10 position landing errors were highest, as using a Z command filter frequency of
ωcf,Z = 3.71 rad/s with the baseline algorithm resulted in the UAV and deck altitudes
being significantly out of phase during the descent. This caused the UAV to contact the
deck prior to the expected land time, further inflating landing errors.

Aside from being more robust to reduced command tracking bandwidth, it should
also be noted that the QP algorithm did result in lower average relative landing velocities
than the baseline algorithm in nearly every case. For baseline landing cases with
ωcf,Z = 30 rad/s and ωcf,Z = 15 rad/s, though, the relative descent rate would likely
have decreased at the expense of an increased duration of descent if the 0.25 m/s Z
velocity bias included in the baseline algorithm was reduced. Also, it should not be
overlooked that the QP algorithm did not perform well in several outlying cases. Looking
at the relative landing velocities shown in Fig. 5.11 for the QP algorithm at wave
condition 3, one landing terminated with a X velocity error of close to 0.75 m/s and
another with a Z velocity error of about 0.75 m/s. One of these landings also terminated
with a very large position error (the largest shown in Fig. 5.12b). The QP algorithm

113

(a) Baseline guidance position errors. (b) QP guidance position errors.

Figure 5.12: Deck-relative X and Y position at landing. Command filter frequencies for
each control case are reported in the legend in units of rad/s.

also performed poorly in terms of attitude matching at touchdown. This is shown by
the results plotted in Fig. 5.13, where the QP landings terminated with deck-relative
pitch attitudes of close to 15 degrees in several instances. The pitch attitude errors
were often greater than those obtained with the baseline algorithm, despite the fact
that the QP algorithm included some motivation for attitude matching in the cost
function (albeit through a simplified relationship between attitude and acceleration). It
will be shown in the Chapter 5.1.5.5, however, that the vast majority of cases where
the QP algorithm performed poorly likely would have been averted if the land time
update method (discussed in Chapter 3.2.3.5) did not allow any reduction of the landing
duration.

Figure 5.13: Deck relative landing attitude. The faded markers represent individual
landings, the bold markers show the average value, and the error bar represents 2σ of
deck-relative landing attitudes.

114

Despite the poor attitude matching performance, these results illustrate one of the
major advantages of using a guidance algorithm like the QP method presented here.
That is, integrating deck motion predictions and an optimal control solver allow the
guidance algorithm to plan ahead for the aircraft dynamics and expected deck motions.
Here, this allowed the QP algorithm to adequately match deck positions and velocities
at lower bandwidths than the baseline landing algorithm. With a sequential loop closure
architecture used to control X and Y translation, this in turn allows the outer loop
controllers to be designed assuming adequate frequency separation. With the baseline
algorithm, on the other hand, the outer loop command filter frequency was set to balance
a trade-off between speed of response and overshoot due to lack of separation from the
inner loop.

The QP algorithm also has the potential to plan ahead for more restrictive output
constraints. For the QP algorithm, this is different than planning for reduced bandwidth.
The highly weighted terminal cost used to motivate matching deck state at touchdown
can outweigh the cost placed on acceleration and jerk. Without high enough penalties or
constraints included on acceleration or jerk, the optimal control solution may therefore
increase the magnitude of control inputs to compensate for reduced bandwidth. Here,
the jerk penalty and constraints included in the QP algorithm were set to prevent the
algorithm from overcompensating for reduced bandwidths. Additionally, tests with
further restricted jerk constraints were included to study the ability of the QP algorithm
to plan ahead for reduced output constraints. The hypothesis here was that, with more
stringent output constraints included, the optimization algorithm may need to plan the
landing path with the control action spread out over a larger time range, which also
requires that deck motion predictions converge with enough lead time to avoid a rapidly
changing desired terminal state at the end of the trajectory. The results showed the
reduced jerk constraints to have little impact on performance, but the jerk constraints
may simply have not been restricted enough to have a large impact. To better understand
the extent to which the QP algorithm is capable of planning ahead for more stringent
output constraints, additional testing with further restricted acceleration and jerk limits
would need to be conducted.

5.1.5.4 Accelerations During Landing

Another hypothesized advantage of the QP algorithm was that accelerations during
landing could be reduced, as deck motions do not need to be tracked. This proved
not to be the case, however. Referring to the results shown in Fig. 5.14, the baseline

115

algorithm did result in large Z accelerations around 2-2.5 seconds before landing, but
this is an artifact of the baseline guidance logic. It was around this time in the landing
sequence where the baseline algorithm would switch from tracking low pass filtered deck
motion to tracking actual deck motion while descending. This introduces a small step
input, resulting in sharp throttle commands and more aggressive accelerations. This
behavior could have been averted by phasing in the switch between the approach and
landing stages of the baseline algorithm, but this does illustrate an advantage of the QP
algorithm: the QP algorithm results in smoothly regulated accelerations without the
need to manage transitions between flight modes.

Figure 5.14: Accelerations during the last 5 seconds of landing for flights conducted at
wave condition 2.

Looking at later time points in the landing sequence, the baseline and QP algorithms
resulted in comparable Z acceleration magnitudes, though the baseline landing accelera-
tions are defined by those of the deck and more aggressive deck motion may change this
result. The QP guidance algorithm also generally resulted in higher X accelerations, but
this was due to the X command filter frequency resulting in heavily filtered deck-relative

116

commands for all baseline tests conducted at wave condition 2. It should also be noted
that the QP accelerations remained within the specified 3.5 m/s2 constraint for all cases
but one. This one instance was due to the landing gear contacting the deck slightly
harder than usual at touchdown, resulting in a spike in the acceleration in the final 0.2
seconds of the plotted trajectory.

5.1.5.5 Factors Affecting QP Algorithm Performance

To understand the robustness of the QP algorithm, it is necessary to understand why the
QP algorithm performed poorly in some instances. Here it was found that there were
three contributing factors: the quality of deck motion predictions, the aggressiveness of
deck motion at landing, and the land time update scheme included in the QP algorithm.

The individual impact of each of these factors is clarified by studying the plots shown
in Fig. 5.15. Fig. 5.15a plots the velocity norm at landing against the relative-descent rate
at touchdown for all QP landings. As the deck motion was dominated by translational
oscillations, the velocity norm is representative of the aggressiveness of deck motion. This
plot shows that the cases with the three highest impact velocities all landed at times
where deck velocity norm is large, which is an expected result.

(a) (b)

Figure 5.15: (a) Deck velocity norm vs. deck-relative descent rate at landing with
shortened QP flights denoted by the red “x". (b) Predicted deck altitude at landing
during final 3 seconds of all QP flights.

More interestingly, Fig. 5.15a also reveals the impact of the land time update scheme.
The markers plotted as a red “x” in Fig. 5.15a represent cases where the land time update
scheme elected to shorten the landing by a slight amount (the target land time was not

117

reduced by more than 0.3 seconds in any case), and the black “*” markers represent all
other QP landings. The cases with shortened landing duration account for every landing
where the deck velocity norm was under 0.6 m/s but the relative descent rate was over
about 0.3 m/s. In addition, only one landing with a relative descent rate of greater than
0.5 m/s did not have a shortened landing duration. This landing is marked by “Flight
59” on Fig. 5.15a and, by comparing to Fig. 5.15b, it is seen that abnormally poor deck
heave predictions occurred during the final 0.5 seconds of the landing. Further, the deck
was moving aggressively at touchdown for this case. Also, it should be noted that while
cases with a shortened maneuver duration account for slightly over 50 percent of the QP
landing cases, these landings were not disproportionately biased toward cases with high
deck velocity norms at landing (in other words, shortened landings did not happen to
coincide with unfavorable deck motions on average). Landings with shortened duration
were biased toward cases with high impact velocities, however.

The land time update scheme also negatively impacted QP algorithm attitude errors
at touchdown. This can be observed by comparing Fig. 5.16a and Fig. 5.13. In Fig.
5.16a the shortened QP flights are removed from the plot, which removes all QP landings
with a pitch attitude error greater than about 7.5 degrees. The reason for this is that the
slightly shortened landing duration requires a more aggressive trajectory to be planned,
resulting in the UAV flaring pitch attitude at the end of the trajectory to match deck
surge velocity. The flared pitch attitudes often resulted in the rear landing gear contacting
the deck, increasing the relative pitch attitude at touchdown. This also inflates the
velocity errors at touchdown, which is clearly seen by comparing Fig. 5.16b and Fig.
5.11. In Fig. 5.16b the data points corresponding to the shortened QP landings are
removed from the plot, which removes the data points with the largest X and Z velocity
errors. These results are interesting, as a major point of concern prior to testing was the
fidelity of the deck motion predictions. In the vast majority of cases, however, poor deck
motion predictions proved not to be the culprit of poor performance and performance
likely would have improved by simply not allowing the trajectory duration to be reduced
during the descent.

118

(a) Deck-relative landing attitude.

(b) Deck-relative landing velocities.

Figure 5.16: Deck-relative landing velocity and attitude with shortened QP flights
removed. Faded markers represent individual landings, bold markers show the average,
and the error bar shows 2σ of the error magnitude.

5.2 Autonomous Landing Experiments at the Penn State
Indoor Flight Facility

5.2.1 Experimental Setup
Additional landing flight tests were conducted with the quadcopter UAV in the Penn
State Indoor Flight Facility, as seen in Fig. 5.17. The Indoor Flight Facility consists of a

119

Figure 5.17: Quadcopter UAV flying in the Penn State Indoor Flight Facility.

25’ x 25’ x 15’ space equipped with a 12 camera Vicon motion capture system. A landing
platform capable of emulating ship motion was not available for use in this facility, so
the flight tests were performed to a “virtual ship deck.” The deck is referred to as virtual
because time histories of deck motion recorded during the experiments performed at
the Maneuvering and Seakeeping Basin (MASK) were simply forwarded to the drone,
providing the landing algorithms with a “measured deck location” despite the lack of
physical hardware. An industrial fan was added to the test setup to provide aerodynamic
disturbances.

For the flight tests conducted in the Penn State Indoor Flight Facility, data was
transferred between the motion capture system, UAV onboard computer, and UAV
flight controller in a manner similar to what is shown for the tests conducted in the
MASK facility in Fig. 5.2. The UAV WIFI link is still used to forward motion capture
measurements of aircraft position and attitude from the ground station to the Odroid
XU4 onboard computer. Additionally, ship motion data is still sent from the ground
station to the UAV, but here the ship motion “measurements” are produced from ship
data recorded at the MASK facility rather than measurements of a physical platform.
During these tests the motion capture measurements and recorded ship motion time

120

histories were streamed to the UAV at rates of 100 Hz and 50 Hz, respectively.

5.2.2 Test Cases
The tests conducted in the MASK facility did not incorporate aerodynamic disturbances,
which can have a significant impact on performance in a practical landing scenario. The
purpose of these experiments was therefore to determine if the QP guidance algorithm
offers any advantage over the baseline method when operating in the presence of a
significant aerodynamic disturbance.

For this purpose, flight tests were performed with an industrial fan placed 15 feet from
the mean location of the ship deck. The fan was located so that the wind approached the
bow of the virtual ship at a 30 degree angle to port (as the UAV approached the deck,
the gust would blow the aircraft backward and to the right). The height of the fan was
set so that the aerodynamic disturbance would extend to approximately 1 meter above
the mean height of the ship deck, so that the UAV was not affected by the gust until the
final stages of the landing. Measured at a distance of 15 feet, the flow produced by the
fan has a mean wind speed of approximately 6 m/s. The circulation of the fan blades
combined with the rotor wake also introduced significant turbulence, though the degree
of turbulence is difficult to quantify. Based on the Froude scaling method discussed in
section 4.1, the mean wind speed of 6 m/s corresponds to a full-scale wind speed of
approximately 40 kts, but it should be noted that the model-scale UAV was not designed
to exhibit a response to aerodynamic disturbances similar to that of a UH-60. Still, this
is a significant disturbance for the model-scale aircraft.

Using this setup, a total of 30 landings were performed: 15 with the QP guidance
algorithm and 15 with the baseline algorithm. Here the “soft constraint” formulation of
the QP guidance method was used, allowing the QP algorithm to re-plan the trajectory at
each time step with the current state estimate used as the initial condition. In addition,
the method included in the QP algorithm for selecting the targeted land time was altered
to not allow any reduction of the landing maneuver duration. This adjustment was made
based on the results presented in Chapter 5.1.5.5, where it was found that even slight
reductions in the landing maneuver duration often had a negative impact on performance.

The EMF controller reference tracking parameters were fixed to high bandwidth
configurations. More specifically, when using the QP guidance algorithm the command
filter frequencies listed for control case 1 in the experiments performed at the MASK
(see table 5.2) were used. When using the baseline guidance algorithm, the command
filter frequencies listed for control case 6 in table 5.2 were used, but the heave tracking

121

bandwidth was reduced from 30 rad/s to 15 rad/s as this was found in the MASK
experiments to be sufficiently high for performing landings with the baseline guidance
method. The feedback gains were also fixed to give the DRB values listed in table 5.5,
which were determined by Froude scaling level 1 handling qualities guidelines for full-sized
rotorcraft.

Table 5.5: Quadcopter Disturbance Rejection Properties

Model Scale
DRB (rad/s)

Full Scale
DRB (rad/s) DRP (dB)

Pitch 2.70 0.73 3.29
Roll 3.69 1.00 4.50
Yaw 3.18 0.85 3.72

Z 1.02 0.27 2.36
X, Y 0.67 0.18 2.92

The ship motion time histories used to drive the virtual deck were obtained from
data recorded at wave condition 2 used in the MASK experiments (see Chapter 5.1.2).
Fifteen segments of ship data were selected randomly in order to provide a range of wave
conditions. The same 15 ship motion time histories were used for flight tests performed
with the QP and baseline guidance algorithms.

5.2.3 Results
The velocity, position, and attitude landing errors are shown in Fig. 5.18. Overall, with
feedback gains tuned to provide scaled DRBs meeting the guidelines for level 1 handling
qualities and the baseline guidance algorithm in a high tracking bandwidth configuration,
both the QP and baseline guidance methods were able to perform successful landings in
the presence of the aerodynamic disturbance. The landing error statistics shown in Fig.
5.18 do not, however, indicate that the QP algorithm offers any definitive advantage over
the baseline algorithm in terms of compensating for aerodynamic disturbances. Looking
at Fig. 5.18a, the descent rate errors obtained with the QP algorithm were lower on
average, but the baseline algorithm still performs well, with an average deck-relative
descent rate close to the 0.25 m/s descent rate bias commanded by the baseline guidance
algorithm. This result is similar to that obtained from the disturbance-free experiments
performed in the MASK. The attitude landing errors also show a result similar to that
obtained in the MASK experiments, with the QP algorithm resulting in slightly lower
attitude errors on average, though one outlier case terminated with a pitch attitude error

122

slightly higher than the worst case for the baseline algorithm. Looking at the X and Y

velocity errors, the QP guidance method does not provide any performance improvement
and the results obtained with both guidance methods are very similar. Further, the
position landing errors obtained with both algorithms were also comparable.

(a) Velocity landing errors. (b) Position Landing Errors.

(c) Attitude Landing Errors.

Figure 5.18: Deck-relative velocity, position, and attitude at landing. On the velocity
and attitude plots, faded markers represent individual landings, bold markers show the
average, and error bars show 2σ of the error magnitude.

While the landing error statistics in Fig. 5.18 do not indicate that the QP algorithm
provides significantly improved landing errors in a gusty environment, the QP method
does allow for a more direct landing with a shorter duration than the baseline method.
When operating in a gusty or turbulent environment this is advantageous, as the QP
method will spend less time operating in the ship airwake. For the tests conducted for
this section, the effect of this can be seen by looking at the control input time histories

123

shown in Fig. 5.19, which are plotted against the time remaining until landing. The
aerodynamic disturbance here primarily affected the lateral and longitudinal axes, and
an increased magnitude of the control inputs δail and δele can be observed once the UAV
enters the flow induced by the fan. Since the baseline algorithm must slowly descend
relative to the ship deck, δail and δele tend to be increased for approximately the final
5 seconds of the landing. With the QP guidance algorithm the UAV typically only
operates in this region for the last 1.5 to 2 seconds of the trajectory, resulting in lower
total control usage. Higher throttle inputs δthrot are also seen for the baseline landings,
though it should be noted that spikes in the baseline throttle inputs occurring with 1.75
to 4 seconds remaining are a product of the baseline guidance logic. As mentioned in
Chapter 5.1.5.4, when the baseline algorithm switches from hovering over the deck to
following deck motions while descending, a step in the position command can occur and
result in a sharp throttle input. This behavior could potentially be averted by phasing
in the switch between the approach and landing stages of the baseline algorithm.

Figure 5.19: Control inputs plotted against time remaining until landing.

124

Chapter 6 |
Conclusions and Recommendations
for Future Work

6.1 Conclusions
The rigorous experimental evaluation of autonomous ship landing guidance and control
algorithms is lacking in the open literature. The vast majority of existing experimental
data is from model-scale experiments, but the scaling of dynamics has not been considered
in these tests. This work contributed toward addressing this gap by developing a
methodology for performing model-scale autonomous landing experiments where both
aircraft closed-loop dynamics and ship motions are related across test scales via Froude
scaling. The validity of using Froude scaling to retain dynamic similarity in the closed-
loop reference tracking dynamics and response to disturbances was then analyzed in
Chapter 4. Based on this analysis, the following conclusions can be drawn:

1. If a model-following control law is designed such that the reference tracking dy-
namics of the closed-loop system approximate those of the command filter, then
dynamic similarity can be retained for the reference tracking dynamics if the ship
data, command models, deck state prediction algorithm, and guidance algorithm
parameters are Froude scaled consistently. Even without considering the scaled
response to aerodynamic disturbances, this offers an improvement to many of the
more accessible test setups that have been used in the literature. For example,
many tests have been performed with small UAVs and a motion platform to emulate
the ship deck, and many of these tests have not included aerodynamic disturbances.
The tests are therefore assessing the ability of a proposed algorithm to compensate
for deck motions, and Froude scaling both the closed-loop reference tracking dy-

125

namics and ship motions will allow approximate dynamic similarity to be retained
across scales in this scenario.

2. With a well designed model-following control law implemented on the model-scale
aircraft, approximate similarity in the reference tracking dynamics can be attained
without considering the scaling of the open-loop aircraft dynamics. In order
to obtain an accurately scaled response to aerodynamic disturbances, however,
the model-scale system must be designed to attain accurately scaled open-loop
dynamics. If the model-scale open-loop dynamics are not designed to approximate
those of a scaled full-scale model, then a cruder scaling of the response to external
disturbances can be achieved by choosing feedback gains to match Froude scaled
disturbance rejection bandwidths representative of full-scale aircraft.

Using the proposed scaling methodology, two sets of model-scale tests were performed
to evaluate an advanced autonomous landing algorithm representative of the MPC
methods prevalent in the literature, for which few experimental validations have been
published. More specifically, the advanced landing algorithm utilizes quadratic program-
ming optimization and plans the landing trajectory to deck state predictions produced by
autoregressive time series models. A simpler “baseline” algorithm was also implemented
for comparison, which commands a deck-relative flight path, closing the distance between
the aircraft and deck at a steady rate. Both guidance algorithms provided position and
heading commands to an explicit model following (EMF) control law, and the EMF
controller command model parameters and feedback gains were chosen to match Froude
scaled reference tracking dynamics and disturbance rejection bandwidths.

The first set of model-scale tests was performed at the Maneuvering and Seakeeping
Basin (MASK) located at the Naval Surface Warfare Center Carderock Division. During
these tests the EMF control law parameters were modified to impose artificial constraints
on the maneuverability of the aircraft, providing insight into how well both guidance
methods can cope with a less agile aircraft. Based on the experimental results, the
following observations and conclusions can be made:

1. The baseline “deck tracking” landing strategy is both simple and effective when the
UAV has the bandwidth required to track deck motions. This is supported by the
low average velocity errors obtained with the baseline algorithm in high-bandwidth
configurations.

2. The baseline landing method is sensitive to additional sources of lag, however.
This was demonstrated by the tests performed with reduced vertical axis reference

126

tracking bandwidth. When the bandwidth was reduced to 6 rad/s with baseline
guidance, several hard landings and a noticeable increase in the mean and variance
of the deck-relative descent rates were observed. Based on the Froude scaling laws
used here, a heave tracking bandwidth of 6 rad/s at model-scale corresponds to
1.6 rad/s at full-scale. The specifications for height response characteristics in
ADS-33E-PRF [66] suggest a vertical axis time constant of 5 seconds or less for
level 1 handling qualities. This roughly corresponds to a vertical axis bandwidth
of 0.2 seconds. The results obtained here therefore suggest that the vertical axis
tracking bandwidth would need to significantly exceed the level 1 handling qualities
guideline to consistently perform soft landings with a “deck tracking” landing
strategy in high sea states. Such a high bandwidth may be difficult for large or
heavily loaded rotorcraft to attain.

3. The inclusion of deck state predictions and the ability to plan for the system
dynamics allowed the QP algorithm to plan more direct landing paths, and also to
perform landings with significantly lower tracking bandwidths than the baseline
algorithm. In fact, consistently low deck-relative descent rates were obtained with
the QP algorithm when the vertical axis bandwidth was reduced down to 0.79
rad/s. This bandwidth Froude scales to 0.2 rad/s at full-scale, approximately
corresponding to the 5 second vertical axis time constant guideline for predicted
level 1 handling qualities given in ADS-33E-PRF. This result suggests that a
full-scale rotorcraft just meeting the level 1 height response guideline could feasibly
achieve soft landings using a predictive landing strategy. It should be noted, though,
that full-scale acceleration and jerk limits could be a limiting factor as well. For
the tests conducted here, reducing the model-scale jerk limits down to 5 m/s3

(1.34 m/s3, or 0.13g per second, at full-scale) did not have a perceivable effect
on QP algorithm performance. Additionally, the model-scale acceleration limit of
0.35g (also 0.35g at full-scale due to one-to-one scaling) was rarely approached,
indicating that a lower acceleration limit could have been used without degrading
QP algorithm performance. In order to better understand the ability of the QP
algorithm to plan for more restrictive acceleration and jerk constraints, however,
additional testing with more stringent output constraints is required.

4. Long term deck state predictions produced by the AR models were often unreliable,
with the predictions typically beginning to converge toward the true deck state with
1.5 seconds or less remaining in the model-scale landings (this would correspond to

127

about 5.5 seconds or less at full-scale). Additionally, the velocity predictions often
exhibited intermittent points with spikes in the prediction errors. This was due to
intermittent buffering issues that occurred when sending ship measurement data
over WiFi to the UAV.

5. Despite poor long term deck state predictions, the QP landing algorithm was able
to match position and velocity well in the majority of cases. There were, however,
several outlier cases in the MASK experiments with deck-relative landing velocities
greater than 0.5 m/s. Additionally, there were a handful of cases where the QP
algorithm led to deck-relative pitch angles of greater than 10 degrees at landing.

6. It was hypothesized that robustness to poor deck state predictions would be a
limiting factor for the QP algorithm. These results, however, indicate that the land
time update scheme was the culprit in the majority of cases where the QP algorithm
showed poor performance. Removing cases from the experiments performed at the
MASK where the maneuver duration was slightly decreased was found to remove
almost all instances where a high deck-relative pitch attitude or velocity occurred
at landing. The one exception to this was a case where deck altitude prediction
errors were exceedingly poor during the last 0.5 seconds of the maneuver, and it is
believed that this was related to data buffering issues that occurred occasionally
during testing. These results give confidence in the feasibility of incorporating deck
motion predictions directly in path planning, provided the deck state measurements
used in the prediction scheme are not low quality.

The landings performed at the MASK did not include aerodynamic disturbances.
Additional landings to a “virtual deck” were therefore performed at the Penn State
Indoor Flight Facility to determine if the QP guidance algorithm offers any advantage
over the baseline method when operating in the presence of a significant aerodynamic
disturbance. Based on the results of these experiments, the following observations and
conclusions can be made:

1. With feedback gains tuned to provide scaled DRBs meeting the guidelines for
predicted level 1 handling qualities and the baseline guidance algorithm in a high
tracking bandwidth configuration, both the QP and baseline guidance methods were
able to perform successful landings in the presence of the aerodynamic disturbance.

2. The results did not indicate that recursively re-planning the trajectory from the
perturbed aircraft state with the QP algorithm offered any advantage over the

128

baseline method (when the baseline algorithm is in a high tracking bandwidth
configuration) in terms of matching deck position, velocity, and attitude while
operating in a gusty environment. The QP algorithm did allow for landings with a
shorter duration, however. For landings with the QP algorithm, the UAV therefore
spent less time operating in the aerodynamic disturbance placed near the ship deck,
resulting in lower total control usage.

6.2 Recommendations for Future Work
The scaling methodology proposed here could be used in a number of future model-scale
studies on autonomous ship landing systems. For example, while tests conducted as
part of this work examined the reference tracking properties necessary to compensate
for ship motion with different landing guidance algorithms, a study on the necessary
disturbance rejection properties was not performed. This is because the model-scale
UAV built for these experiments was not designed to obtain Froude scaled open-loop
dynamics, meaning an accurately scaled response to aerodynamic disturbances could
not be guaranteed. Work by other researchers, however, has shown that small aircraft
built with roughly Froude scaled properties such as rotor radius, mass, and inertia
result in open-loop dynamics reasonably satisfying the Froude scaling assumption [52–54].
Utilizing a roughly scaled bare airframe, Froude scaled tests could be designed where a
scaled ship hull is added to a platform used to emulate ship motion, and fans can be
used to provide disturbances with a scaled mean wind velocity. A scaled control law
could then be implemented, with control gains adjusted to vary disturbance rejection
properties like DRB and DRP across test cases. Performing scaled tests such as this
would give insight into disturbance rejection requirements for performing landings in a
range of conditions. Evaluating this through model-scale testing is also advantageous as
the near-ship aerodynamic environment is difficult to simulate.

Model-scale tests with varied disturbance rejection properties would also be pertinent
to the evaluation of many proposed GPS-denied landing solutions. A number of papers
have proposed methods for estimating deck-relative position and velocity for use in
GPS-denied landings (for example, [26,28,31,67,68]), but the proposed control designs
typically use the deck-relative position and velocity estimates in feedback as if they
were inertial frame estimates. The unknown motion of the deck therefore appears as an
output disturbance or sensor error to the control system. For small UAVs landing on a
full-scale ship, this may not be problematic as standard linear feedback can provide high

129

bandwidth disturbance rejection that allows commands to be accurately tracked in the
deck-relative frame. For larger rotorcraft, however, standard feedback control may not
be able to sufficiently reject disturbances occurring in the frequency range of ship motion.
Model-scale tests can be used to determine the necessary disturbance rejection properties
needed for performing GPS-denied landings in various sea states. Additionally, adaptive
mechanisms to estimate and compensate for the effective “disturbance” resulting from
the unknown ship motion can be evaluated.

A combination of simulations and model-scale experiments could also be used to gain
insight into the required accuracy of deck state predictions for use in a predictive landing
strategy. Looking at the deck state prediction error statistics obtained from the MASK
experiments (shown in Fig. 5.7), the plots show the expected shape where the mean
and variance of the prediction error increases as the length of time into the future we
are predicting increases. In many cases though, the prediction error mean and variance
level off after a certain length of time into the future. This information could be used to
perform simulations and model-scale tests with the purpose of determining requirements
on prediction accuracy. For example, emulating the ship motion with pre-recorded time
histories or simulated ship motion, the future states of the ship are known. Landings
could therefore be performed where the known future ship motion is used to give a
perfect “prediction” of ship motion across the optimization horizon. Landings could also
be performed where the known ship data is corrupted and again used in the landing
path optimization as the “predicted” ship motion. The ship data could be corrupted
to give “prediction errors” that exhibit properties similar to the errors reported from
the experiments conducted here, but with magnitude of prediction errors progressively
increased until the landing algorithm can no longer perform adequately.

130

Bibliography

[1] “Naval helicopter history timeline 400BC till 1940,” https://www.
nhahistoricalsociety.org/indexphp/naval-helicopter-history-timeline-
new/.

[2] Smith, Z. F. (2021) “Baseline for Virtual Dynamic Interface,” in AIAA AVIATION
2021 FORUM, p. 2484.

[3] (2022), “Next generation ship-based autonomous helicopter provides expanded
capabilities,” https://news.northropgrumman.com/news/releases/northrop-
grumman-built-mq-8c-fire-scout-makes-operational-deployment-with-
the-us-navy?_gl=1*ss8xhv*_ga*Mjg2NzA1OTQzLjE2NzA2MTczOTc.*_ga_
7YV3CDX0R2*MTY3MDYxNzM5Ny4xLjEuMTY3MDYxNzQyMS4wLjAuMA..

[4] (2022), “VSR700 autonomous take-off and landing capabilities tested at sea,” .
URL https://www.airbus.com/en/newsroom/press-releases/2022-03-
vsr700-autonomous-take-off-and-landing-capabilities-tested-at-sea

[5] Pravitra, J. (2021) Shipboard UAS Operations with Optimized Landing Trajecto-
ries, PhD dissertation, The Pennsylvania State University.

[6] Horn, J. F., J. Yang, C. He, D. Lee, and J. K. Tritschler (2015) “Au-
tonomous ship approach and landing using dynamic inversion control with deck
motion prediction,” in 41st European Rotorcraft Forum 2015, ERF 2015, Deutsche
Gesellschaft fuer Luft und Raumfahrt (DGLR), pp. 864–877.

[7] Hu, B., L. Lu, and S. Mishra (2018) “A Control Architecture for Time-
Optimal Landing of a Quadrotor Onto a Moving Platform,” Asian Journal of
Control, 20(5), pp. 1701–1712, https://onlinelibrary.wiley.com/doi/pdf/10.
1002/asjc.1693.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.1693

[8] Tedrake, R. (2023) Underactuated Robotics.
URL https://underactuated.csail.mit.edu

[9] Ngo, T. D. and C. Sultan (2016) “Model predictive control for helicopter ship-
board operations in the ship airwakes,” Journal of Guidance, Control, and Dynamics,
39(3), pp. 574–589.

131

https://www.nhahistoricalsociety.org/indexphp/naval-helicopter-history-timeline-new/
https://www.nhahistoricalsociety.org/indexphp/naval-helicopter-history-timeline-new/
https://www.nhahistoricalsociety.org/indexphp/naval-helicopter-history-timeline-new/
https://news.northropgrumman.com/news/releases/northrop-grumman-built-mq-8c-fire-scout-makes-operational-deployment-with-the-us-navy?_gl=1*ss8xhv*_ga*Mjg2NzA1OTQzLjE2NzA2MTczOTc.*_ga_7YV3CDX0R2*MTY3MDYxNzM5Ny4xLjEuMTY3MDYxNzQyMS4wLjAuMA..
https://news.northropgrumman.com/news/releases/northrop-grumman-built-mq-8c-fire-scout-makes-operational-deployment-with-the-us-navy?_gl=1*ss8xhv*_ga*Mjg2NzA1OTQzLjE2NzA2MTczOTc.*_ga_7YV3CDX0R2*MTY3MDYxNzM5Ny4xLjEuMTY3MDYxNzQyMS4wLjAuMA..
https://news.northropgrumman.com/news/releases/northrop-grumman-built-mq-8c-fire-scout-makes-operational-deployment-with-the-us-navy?_gl=1*ss8xhv*_ga*Mjg2NzA1OTQzLjE2NzA2MTczOTc.*_ga_7YV3CDX0R2*MTY3MDYxNzM5Ny4xLjEuMTY3MDYxNzQyMS4wLjAuMA..
https://news.northropgrumman.com/news/releases/northrop-grumman-built-mq-8c-fire-scout-makes-operational-deployment-with-the-us-navy?_gl=1*ss8xhv*_ga*Mjg2NzA1OTQzLjE2NzA2MTczOTc.*_ga_7YV3CDX0R2*MTY3MDYxNzM5Ny4xLjEuMTY3MDYxNzQyMS4wLjAuMA..
https://www.airbus.com/en/newsroom/press-releases/2022-03-vsr700-autonomous-take-off-and-landing-capabilities-tested-at-sea
https://www.airbus.com/en/newsroom/press-releases/2022-03-vsr700-autonomous-take-off-and-landing-capabilities-tested-at-sea
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asjc.1693
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asjc.1693
https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.1693
https://underactuated.csail.mit.edu

[10] Persson, L. and B. Wahlberg (2019) “Model predictive control for autonomous
ship landing in a search and rescue scenario,” in AIAA Scitech 2019 Forum, p. 1169.

[11] Crouse, J. (2020) Linear Model Predictive Control with Envelope Detection for
Aerial Vehicle-Ship Intercept Scenarios, MS thesis, The Pennsylvania State Univer-
sity.

[12] Greer, W. B. and C. Sultan (2020) “Shrinking horizon model predictive con-
trol method for helicopter–ship touchdown,” Journal of Guidance, Control, and
Dynamics, 43(5), pp. 884–900.

[13] Greer, W. B. (2019) Advanced Linear Model Predictive Control For Helicopter
Shipboard Maneuvers, PhD dissertation, Virginia Polytechnic Institute and State
University.

[14] Ngo, T. D. and C. Sultan (2022) “Variable Horizon Model Predictive Control for
Helicopter Landing on Moving Decks,” Journal of Guidance, Control, and Dynamics,
45(4), pp. 774–780.

[15] Baca, T., P. Stepan, V. Spurny, D. Hert, R. Penicka, M. Saska,
J. Thomas, G. Loianno, and V. Kumar (2019) “Autonomous landing on a
moving vehicle with an unmanned aerial vehicle,” Journal of Field Robotics, 36(5),
pp. 874–891.

[16] Paris, A., B. T. Lopez, and J. P. How (2020) “Dynamic landing of an au-
tonomous quadrotor on a moving platform in turbulent wind conditions,” in 2020
IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp.
9577–9583.

[17] Guo, K., P. Tang, H. Wang, D. Lin, and X. Cui (2022) “Autonomous Landing
of a Quadrotor on a Moving Platform via Model Predictive Control,” Aerospace,
9(1), p. 34.

[18] Nakamura, T., S. Haviland, D. Bershadsky, and E. N. Johnson (2016)
“Vision-based optimal landing on a moving platform,” Georgia Institute of Technol-
ogy.

[19] Zhao, D., J. Krishnamurthi, S. Mishra, and F. Gandhi (2018) “A trajectory
generation method for time-optimal helicopter shipboard landing,” in Annual Forum
Proceedings-AHS International, vol. 2018.

[20] Zhao, D., S. Mishra, and F. Gandhi (2019) “Real-time path planning for
time-optimal helicopter shipboard landing via trajectory parametrization,” .

[21] Comandur, V. and J. Prasad (2018) “Rotorcraft shipboard landing guidance
using MPPI trajectory optimization,” .

132

[22] Williams, G., A. Aldrich, and E. A. Theodorou (2017) “Model predictive
path integral control: From theory to parallel computation,” Journal of Guidance,
Control, and Dynamics, 40(2), pp. 344–357.

[23] Yang, J. (2018) Autonomous Control Modes and Optimized Path Guidance for
Shipboard Landing in High Sea States, PhD dissertation, The Pennsylvania State
University.

[24] Lee, D. N. (1998) “Guiding movement by coupling taus,” Ecological psychology,
10(3-4), pp. 221–250.

[25] Voskuijl, M., G. Padfield, D. Walker, B. Manimala, and A. W. Gubbels
(2010) “Simulation of automatic helicopter deck landings using nature inspired flight
control,” The Aeronautical Journal, 114(1151), pp. 25–34.

[26] Holmes, W. K. (2017) Vision-based Relative Deck State Estimation Used with Tau
Based Landings, MS thesis, The Pennsylvania State University.

[27] Lyu, Z., W. Ding, X. Sun, H. Sang, Y. Zhou, P. Yu, and L. Zheng (2021)
“Dynamic landing Control of a Quadrotor on the Wave Glider,” Journal of Marine
Science and Engineering, 9(10), p. 1119.

[28] Lee, B., V. Saj, D. Kalathil, and M. Benedict (2022) “Intelligent Vision-based
Autonomous Ship Landing of VTOL UAVs,” Journal of the American Helicopter
Society.

[29] Lee, B. (2021) On the Complete Automation of Vertical Flight Aircraft Ship Landing,
Ph.D. thesis, Texas A&M University.

[30] Xuan-Mung, N., S. K. Hong, N. P. Nguyen, T.-L. Le, et al. (2020) “Au-
tonomous quadcopter precision landing onto a heaving platform: New method and
experiment,” IEEE Access, 8, pp. 167192–167202.

[31] Wang, L. and X. Bai (2018) “Quadrotor autonomous approaching and landing on
a vessel deck,” Journal of Intelligent & Robotic Systems, 92(1), pp. 125–143.

[32] Lu, Q., B. Ren, and S. Parameswaran (2018) “Shipboard landing control enabled
by an uncertainty and disturbance estimator,” Journal of Guidance, Control, and
Dynamics, 41(7), pp. 1502–1520.

[33] Patel, R., B. Le Floch, E. N. Johnson, and J. Crouse (2021) “Gpc-based
deck motion estimation for autonomous ship deck landing of an unmanned aircraft,”
in AIAA Scitech 2021 Forum, p. 1814.

[34] Abujoub, S., J. Mcphee, C. Westin, and R. A. Irani (2018) “Unmanned aerial
vehicle landing on maritime vessels using signal prediction of the ship motion,” in
OCEANS 2018 MTS/IEEE Charleston, IEEE, pp. 1–9.

133

[35] Fourie, C. K. (2015) The autonomous landing of an unmanned helicopter on a
moving platform, Ph.D. thesis, Stellenbosch: Stellenbosch University.

[36] Vorwald, J., A. Schwartz, and C. Kent (2016) “Near Term Ship Motion
Forecasting From Prior Motion,” in Fluids Engineering Division Summer Meeting,
vol. 50299, American Society of Mechanical Engineers, p. V01BT30A004.

[37] Kusters, J., K. Cockrell, B. Connell, J. Rudzinsky, and V. Vinciullo
(2016) “FutureWaves™: A real-time Ship Motion Forecasting system employing
advanced wave-sensing radar,” in OCEANS 2016 MTS/IEEE Monterey, IEEE, pp.
1–9.

[38] Alford, L. K., R. F. Beck, J. T. Johnson, D. Lyzenga, O. Nwogu, and
A. Zundel (2015) “A real-time system for forecasting extreme waves and vessel
motions,” in International conference on offshore mechanics and arctic engineering,
vol. 56598, American Society of Mechanical Engineers, p. V011T12A056.

[39] Khan, A., C. Bil, and K. E. Marion (2005) “Ship motion prediction for launch
and recovery of air vehicles,” in Proceedings of OCEANS 2005 MTS/IEEE, IEEE,
pp. 2795–2801.

[40] Wang, H., F. Wu, and D. Lei (2021) “Prediction of Ship Heave Motion Using
Regularized BP Neural Network with Cross Entropy Error Function,” International
Journal of Computational Intelligence Systems, 14(1), pp. 1–7.

[41] De Masi, G., F. Gaggiotti, R. Bruschi, and M. Venturi (2011) “Ship motion
prediction by radial basis neural networks,” in 2011 IEEE Workshop On Hybrid
Intelligent Models And Applications, IEEE, pp. 28–32.

[42] Monneau, A., N. K. M’Sirdi, S. Mavromatis, G. Varra, M. Salesse, and
J. Sequeira (2020) “Adaptive prediction for ship motion in rotorcraft maritime
operations,” CEAS Aeronautical Journal, 11(4), pp. 1071–1082.

[43] Küchler, S., T. Mahl, J. Neupert, K. Schneider, and O. Sawodny
(2010) “Active control for an offshore crane using prediction of the vessel’s mo-
tion,” IEEE/ASME transactions on mechatronics, 16(2), pp. 297–309.

[44] Zhao, X., R. Xu, and C. Kwan (2004) “Ship-motion prediction: algorithms and
simulation results,” in 2004 IEEE international conference on acoustics, speech, and
signal processing, vol. 5, IEEE, pp. V–125.

[45] Ma, J., T. Li, and G. Li (2006) “Comparison of representative method for time
series prediction,” in 2006 International Conference on Mechatronics and Automation,
IEEE, pp. 2448–2453.

[46] Lin, Z., Q. Yang, Z. Guo, and J. Li (2011) “An improved autoregressive method
with kalman filtering theory for vessel motion predication,” International Journal
of Intelligent Engineering and Systems, 4(4), pp. 11–18.

134

[47] Schwartz, A. (2015) “Systematic characterization of the naval environment (scone)–
standard deck motion data for a generic surface combatant,” Memorandum from
Office of Naval Research and Naval Surface Warfare Center-Carderock Division.

[48] Mettler, B., C. Dever, and E. Feron (2004) “Scaling effects and dynamic
characteristics of miniature rotorcraft,” Journal of guidance, control, and dynamics,
27(3), pp. 466–478.

[49] Mettler, B. (2013) Identification modeling and characteristics of miniature rotor-
craft, Springer Science & Business Media.

[50] Hunt, G. (1973) “Similarity requirements for aeroelastic models of helicopter
rotors,” .

[51] Friedmann, P. (2004) “Aeroelastic scaling for rotary-wing aircraft with applica-
tions,” Journal of fluids and structures, 19(5), pp. 635–650.

[52] Ivler, C. M., E. S. Rowe, J. Martin, M. J. S. Lopez, and M. B. Tischler
(2021) “System Identification Guidance for Multirotor Aircraft: Dynamic Scaling
and Test Techniques.” Journal of the American Helicopter Society, 66(2), pp. 1 – 16.

[53] Tobias, E. L., F. C. Sanders, and M. B. Tischler (2018) “Full-Envelope
Stitched Simulation Model of a Quadcopter Using STITCH,” in AHS International
74th Annual Forum & Technology Display, AHS, Phoenix, Arizona.

[54] Ivler, C. M., K. Truong, D. Kerwin, J. Otomize, D. Parmer, M. B.
Tischler, and N. Gowans (2022) “Development and Flight Validation of Pro-
posed Unmanned Aerial System Handling Qualities Requirements,” Journal of the
American Helicopter Society, 67(1).

[55] Ambroziak, L., M. Ciężkowski, A. Wolniakowski, S. Romaniuk, A. Bożko,
D. Ołdziej, and C. Kownacki (2022) “Experimental tests of hybrid VTOL
unmanned aerial vehicle designed for surveillance missions and operations in maritime
conditions from ship-based helipads,” Journal of Field Robotics, 39(3), pp. 203–217.

[56] Tischler, M. B. and R. K. Remple (2012) Aircraft and rotorcraft system
identification, American Institute of Aeronautics and Astronautics Reston, VA.

[57] Bendat, J. S. and A. G. Piersol (2011) Random data: analysis and measurement
procedures, John Wiley & Sons.

[58] Wei, W., M. B. Tischler, and K. Cohen (2017) “System identification and
controller optimization of a quadrotor unmanned aerial vehicle in hover,” Journal
of the American Helicopter Society, 62(4), pp. 1–9.

[59] Saetti, U., J. F. Horn, S. Lakhmani, C. Lagoa, and T. F. Berger (2020)
“Design of Dynamic Inversion and Explicit Model Following Flight Control Laws for
Quadrotor UAS,” Journal of the American Helicopter Society, 65(3), pp. 1–16.

135

[60] Cho, S. H., S. Bhandari, F. C. Sanders, M. B. Tischler, and K. Cheung
(2019) “System identification and controller optimization of coaxial quadrotor UAV
in hover,” in AIAA Scitech 2019 Forum, p. 1075.

[61] Tischler, M. B., T. Berger, C. M. Ivler, M. H. Mansur, K. K. Cheung,
and J. Y. Soong (2017) Practical methods for aircraft and rotorcraft flight control
design: an optimization-based approach, American Institute of Aeronautics and
Astronautics, Inc.

[62] Buckingham, E. (1914) “On physically similar systems; illustrations of the use of
dimensional equations,” Physical review, 4(4), p. 345.

[63] Kittirungsi, B. (2008) A Scaling Methodology for Dynamic Systems: Quantifica-
tion of Approximate Similitude and Use in Multiobjective Design., PhD dissertation,
The University of Michigan.

[64] Berger, T., C. Ivler, M. G. Berrios, M. B. Tischler, and D. Miller
(2016) “Disturbance rejection handling qualities criteria for rotorcraft,” in 72nd
Annual Forum of the American Helicopter Society, West Palm Beach, USA.

[65] Horn, J. F. (2019) “Non-linear dynamic inversion control design for rotorcraft,”
Aerospace, 6(3), p. 38.

[66] Blanken, C. L., M. B. Tischler, J. A. Lusardi, T. Berger, C. M. Ivler,
and R. Lehmann (2019) Proposed Revisions to Aeronautical Design Standard-33E
(ADS-33E-PRF) Toward ADS-33F-PRF, Tech. rep., CCDC AvMC.

[67] Arora, S., S. Jain, S. Scherer, S. Nuske, L. Chamberlain, and S. Singh
(2013) “Infrastructure-free shipdeck tracking for autonomous landing,” in 2013 IEEE
international conference on robotics and automation, IEEE, pp. 323–330.

[68] Sanchez-Lopez, J. L., J. Pestana, S. Saripalli, and P. Campoy (2014) “An
approach toward visual autonomous ship board landing of a VTOL UAV,” Journal
of Intelligent & Robotic Systems, 74, pp. 113–127.

136

Vita
Christopher M. Hendrick

Christopher Hendrick was born in Syracuse, New York. In August 2014 he began his
undergraduate education at the University at Buffalo, graduating in May 2018 with
Bachelor of Science degrees in mechanical and aerospace engineering. Christopher then
enrolled in the Master of Science program in mechanical engineering at the Pennsylvania
State University, where he studied control theoretic models of human pilots applied
to rotorcraft flight simulation. After completing his Master’s degree in August 2020,
Christopher went on to pursue a Ph.D. in Aerospace Engineering at Penn State, where
his research has focused on flight control, optimal guidance, and model-scale analysis of
autonomous ship landing systems for rotorcraft.

	List of Figures
	List of Tables
	Nomenclature
	Acknowledgments
	Introduction
	Background and Motivation
	Existing Work
	Guidance and Control for Autonomous Shipboard Landing
	Model Predictive Control
	Prescribed Form Trajectories
	Deck Tracking Methods

	Deck Motion Prediction
	Dynamic Scaling
	Ship Landing Experimental Setups

	Contributions

	Model Following Control Laws
	UAV Platforms
	UAV Model Identification
	Overview of Transfer Function Modelling with CIFER®
	PX4 Stabilized Mode Controller
	Flight Test Procedure
	Identified Models

	Control Architecture
	Angular Rate Control
	Attitude Control
	Position Control
	X and Y Position Control
	Altitude Control

	Autonomous Landing Guidance Algorithms
	Baseline Guidance Algorithm
	Quadratic Programming Based Guidance with Deck Motion Predictions
	Deck Motion Prediction
	AR Model Estimation and Propagation
	Use of AR Models for Deck State Predictions

	Discrete Time Model
	Quadratic Program Transcription
	Future Output and Jerk Calculation
	Cost Function
	Constraints
	Prediction Horizon and Reference Path
	Land Time
	Inclusion of Discrete Time Delays

	Wave Off Criterion

	Scaling Methodology and Scaled Control Laws
	Scaling Methodology
	Dynamic Similarity for Scaled Reference Tracking
	Dynamic Similarity for Scaled Disturbance Rejection
	Choosing Model-Scale Controller Parameters for Froude Scaled Closed-Loop Dynamics
	Choosing Parameters for Scaled Reference Tracking
	Definition of Disturbance Rejection Bandwidth and Disturbance Rejection Peak
	Choosing Parameters for Scaled Disturbance Rejection Bandwidth

	Scaling Control Laws from Model-Scale to Full-Scale

	Model–Scale Autonomous Ship Landing Experiments
	Autonomous Landing Experiments at the Maneuvering and Seakeeping Basin
	Experimental Setup
	Wave Conditions
	Scaling of Model-Scale Ship Motions
	Test Cases
	Results
	Deck Predictions
	Sample Landing Time Histories
	Position, Velocity, and Attitude Landing Errors
	Accelerations During Landing
	Factors Affecting QP Algorithm Performance

	Autonomous Landing Experiments at the Penn State Indoor Flight Facility
	Experimental Setup
	Test Cases
	Results

	Conclusions and Recommendations for Future Work
	Conclusions
	Recommendations for Future Work

	Bibliography

