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ABSTRACT 
 

 Scaling up renewable energy production, solar and biomass, will require a 

substantial area of land. Such land should ideally not be in competition with other uses 

such as agriculture, pasture, or urban development. Furthermore, converting this land to 

renewable energy should neither contribute to carbon emissions nor negatively impact 

habitat or ecosystem services. Recently abandoned cropland that has not converted to 

another use like urban development or pasture is presented here as an appropriate land 

opportunity.  

 This dissertation investigates abandoned cropland in three ways. First, it estimates 

how much usable abandoned cropland (UACL) there is in the United States. Usable 

abandoned cropland is an area recently in agricultural production but is not anymore and 

has not converted to another land use like urban development or pasture. Data from the 

Census of Agriculture, supplemented by information derived from the National Land 

Cover Dataset (NLCD), are used to calculate the amount of UACL that has emerged in 

the counties in the conterminous United States. Results show that between 5 and 15Mha 

of UACL exists in the United States, considering historical limits for when cropland was 

abandoned of 2007 and 1978 respectively. The relative contributions of these estimates to 

national energy consumption amount to only 3 to 8 percent of total light duty gasoline 

consumption, and make more significant contributions to other end uses, such as aviation. 

 Second, this dissertation explores the potential drivers of cropland abandonment. 

Random forest analysis is performed to see which of a suite of 22 variables of underlying 

characteristics is important to variation in levels of UACL in each county in the eastern 

United States. The western United States is excluded due to the prevalence of irrigation, 
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which is a stark difference from the east and would complicate analysis. Since many 

counties do not have a net increase in UACL, first, a classification analysis using 

Random Forest is performed to identify variables important to whether a county has 

UACL or not. Second, a regression analysis using Random Forest is performed to 

identify which variables are most important to the amount of net UACL that has emerged 

in each county that experiences an increase. Results show that the rent farmers pay to 

operate cropland and the value of farmland and buildings are among the most important 

variables influencing UACL. Interestingly, when viewing UACL in a binary form 

(counties with zero UACL versus counties with a non-zero value of UACL) it is the 

measure of change in rent and land value over time that is important, while a view of only 

those counties with a non-zero value of UACL reveal that static measures of rent and 

land value are most important. Regional analyses show that there are some differences in 

the drivers for counties in one part of the country versus another. However, the 

observations that measures of rent and land value change over time being most important 

to whether a county has net UACL or not and that static measures of rent and land value 

being most important to the amount of UACL in counties that experience a gain hold true 

for all regions. 

 Third, this dissertation downscales UACL from the county level to the 30m 

landscape level by using a spatially explicit land change model, Dyna-CLUE. Four 

counties, each of which is in a distinct agricultural region of the United States, are chosen 

as study areas. Using rates of increase in UACL from earlier chapters, the model projects 

UACL emergence over a 50-year period in each county. Patterns and distribution of 

UACL across each county are measured with landscape metrics to detect whether there 
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are differences among the counties and if some counties are more suitable for renewable 

energy production. Patterns that are favorable for renewable energy are those that have 

large, regular patches of UACL. Results show that there are differences in the metrics 

across the counties and that some emerge as more favorable for renewable energy. 

Interestingly, two counties that appear similar initially have starkly different patterns and 

suitability for renewable energy at year 50. This raises the question of whether this 

difference is due to the initial pattern and characteristics of the county landscape or an 

artifact of the modeling approach. 
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PREFACE 
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professor and dissertation committee member. Ryan E. Baxter is the lead author of the 

publication and performed all data preparation, analysis, cartography, and writing, except 

for some much-appreciated editorial contributions from Kirby E. Calvert. The work by 

Ryan E. Baxter in Chapter 2 is therefore substantial and integral to this dissertation. The 

reference to the publication is as follows:  

 

Baxter, R. E., & Calvert, K. E. (2017). Estimating available abandoned cropland in the 
United States: Possibilities for energy crop production. Annals of the American 
Association of Geographers, 107(5), 1162-1178. 
doi:10.1080/24694452.2017.1298985 
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Chapter 1. Introduction 

1. Overview 

The overarching motivation of this research is to investigate abandoned cropland 

as an opportunity for the production of renewable energy, specifically utility-scale solar 

and biomass. These energy systems help mitigate the effects of anthropogenic climate 

change and are able to utilize land that does not compete with other uses. The land area 

requirements of these energy systems are large, and appropriate areas for production must 

be identified carefully. Abandoned cropland is explored, in part, to avoid the pitfalls of 

more common, generic classifications of land, like “marginal;” these pitfalls relate to the 

difficulty in defining what marginal land is, in a way that is objective, not biased by the 

view of the researcher, and not implying that particular land areas are of little value.  

This dissertation addresses three primary questions: 1) How much abandoned 

cropland exists in the United States at a national scale that is available for renewable 

energy production, considering factors like urban development, forest growth, and 

pasture conversion? 2) What county-level factors are associated with national scale 

cropland abandonment? In other words, what might be the drivers of cropland 

abandonment? And 3) How suitable is abandoned cropland renewable energy production 

given its spatial configuration at the landscape level? 

Prior research has estimated the quantity of renewable energy the United States is 

capable of producing. Biomass energy has potential to be integrated with existing 

regional agricultural systems (Chesapeake Bay Commission & Commonwealth of 

Pennsylvania, 2010), provide cellulosic biofuel products that can offset fossil sources 

nationwide (Lamers et al., 2021), and contribute to a global bioenergy system of 
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(Hoogwijk et al., 2003; Smeets et al., 2007). Solar has demonstrated particular promise in 

the United States as evidenced by spatially-explicit surveys of existing installations 

(Fujita et al., 2023; Tavakkoli et al., 2021). This potential includes utilizing solar for 

electricity generation (Brown & O'Sullivan, 2020; Tabassum et al., 2021), industrial 

applications (Schoeneberger et al., 2020), agrivoltaics (Lytle et al., 2021; Pascaris et al., 

2023; Pascaris et al., 2021; Pascaris et al., 2020). Others have shown the potential for 

producing various types of renewable energy on marginal land (Milbrandt et al., 2014; 

Niblick & Landis, 2016; Stoof et al., 2015). Renewables are an important component of 

our future energy portfolio, whether reducing greenhouse gas emissions from fossil-based 

electricity generation or reducing our dependence on foreign and domestic oil (United 

States Energy Information Administration, 2023). These studies have established that the 

United States is capable of producing a meaningful quantity of renewable energy. A 

question that remains is where this energy may be effectively produced. The following 

sections introduce some theories and concepts that inform the process of where land use 

change occurs, the impacts of that change on the landscape, and the relevance of land 

change to renewable energy development. 

2. Background 

2.1. Landscape Ecology 

 Wiens (1995, p. 1) states that the underlying premise of landscape ecology is that 

“the explicit composition and spatial form of a landscape mosaic affect ecological 

systems in ways that would be different if the mosaic composition or arrangement were 

different.” This dissertation aims to extend this idea beyond ecological systems to the 



3 
 

realm of anthropogenic land change. Commonly, landscape ecology principles are 

applied to measure the impacts of human land use change on ecological systems. In this 

study, I explore the relationship between landscape ecology metrics and the land use 

change process itself. Concepts include how spatial pattern relates to land use processes 

and thresholds; how spatial landscape patterns are altered by the abandonment of 

cropland; and how landscape patterns may impact, either positively or negatively, the 

suitability of conversion to biofuel crops. 

 Landscapes possess characteristic states and behaviors, which are often self-

regulating and driven by natural conditions, such as climate and biophysical structures. In 

fact, even when impacted by a disturbance, natural land covers commonly return to their 

pre-disturbance conditions or progression to a steady state (Bormann & Likens, 1979; 

Turner, 2010). However, human activity has the potential to force landscapes into new 

states outside of their natural tendencies (Foster et al., 1998). Measures of a landscape's 

pattern, such as heterogeneity, patchiness, patch configuration and inter-patch distance, 

can help elucidate such processes (Franklin & Forman, 1987). Previous research has 

investigated whether landscape patterns and change in patterns can help indicate 

criticality or tipping points in a system, which may indicate the point at which a 

landscape has been forced into a new state. Pascual & Guichard (Pascual & Guichard, 

2005) observe that patchiness can indicate that an ecosystem is near a critical threshold. 

In the context of biofuel production, this can be extended to ask whether a landscape of a 

certain pattern, for example, the patchiness and connectedness of farms, is more or less 

suited to the yield and logistics of energy crops. 
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 Wiens (1976) emphasizes patchiness as an important measure of landscape 

structure, and that the patches are defined and of relevance to environmental processes, in 

this case the production of renewable energy. Observing the change of patches over time 

can help indicate whether a landscape is evolving in a direction that is more conducive to 

energy crop production or crossing a threshold of diminishing returns or an unsustainable 

state. Raffa et al. (2008) extends this idea of thresholds by using landscape heterogeneity 

as a measure of landscape pattern, specifically observing that greater homogeneity 

increases the likelihood that a threshold will be crossed. Furthermore, thresholds can 

occur at different spatial scales, and consequently changes at a farm scale may not result 

in a system state shift, but at higher spatial scales the aggregate sum of many land use 

decisions may exceed a landscape’s resilience and push it into a new state. There are 

many ways to measure the shape, configuration, and distribution of patches in a 

landscape, and these metrics have been used in many contexts, including natural and 

human systems (Cardille & Turner, 2017; Cushman & McGarigal, 2008; Kaminski et al., 

2021). 

 Naveh (1988) discusses homeostasis (natural feedbacks) and homeorhesis 

(cultural regulation) as two mechanisms by which landscapes maintain their characteristic 

states. It is possible, however, to push a system beyond its capacity to self-regulate. This 

begs the question of whether the expansion of renewable energy can become widespread 

enough to dominate natural and cultural feedbacks and force landscapes into new states. 

Furthermore, it is not yet clear whether the increase in abandoned cropland within 

existing agricultural areas is itself a mechanism for maintaining a landscape’s state. 
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2.2. Systems Theory 

 The theoretical framework of Panarchy (Gunderson & Holling, 2002) 

acknowledges that systems (natural and human) are dynamic and that multiple stable 

states are possible. A state refers to the characteristic organisms, relationships, or 

processes within a given system. Given adequate disturbances, a system can be forced 

into a new state accompanied by the dissolution of some of its original characteristics. 

The ability of a system to maintain stability when confronted by disturbance is defined by 

its resilience (Berkes & Folke, 1994; Folke, 2006; Holling, 1973). As systems are 

increasingly managed (as is the case with agricultural land use) they can become rigid, 

dependent on multiple institutions to maintain stability and ultimately less resilient. The 

suitability of a landscape for energy crop production may be an important factor in 

assessing an area’s resilience in the face of changing agricultural practices. 

 The transformation of system states, as defined by Panarchy, is highlighted by the 

progression from a state of disorganization and high resilience, typified by a nascent 

ecosystem or economy, to one of established structure and low resilience due to large 

amounts of stored capital or investment and the interdependent nature of the system’s 

components (Gunderson & Holling, 2002). For a system to maintain stability it must 

manage its state transformations in a way that fosters novelty, allowing the system to 

gradually adapt to change and disturbance in a way that does not lead to a complete 

collapse and reorganization. Systems in a highly organized and managed state are often 

resistant to novelty. For example, an established agricultural economy may resist the 

rapid introduction of a new crop commodity. A system is resilient when it is able to 

reorganize its parts in subtle ways that cause it to evolve into a slightly different state but 
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avoiding crossing a threshold into collapse (Walker, 2020). Switchgrass production on 

newly abandoned cropland can be considered to be a novel land use within an existing 

agricultural landscape, representing the emergence of novelty in a highly organized 

system. Driving forces, such as energy demands and climate change, may force this 

novelty to occur and lead to a system transformation. Theoretically, if this transformation 

occurs while the system is at a highly connected, rigid state the consequences may be 

more extreme and unpredictable than if it occurs while the system is at a more loosely 

coupled state (Gunderson & Holling, 2002). Intentional design of a landscape system can 

help prevent collapse and, in fact, create a state that is more resilient and able to 

regenerate in a more sustainable manner (Smithwick et al., 2023). 

2.3. Scale and Hierarchy 

Scale is critical to the study of land use processes (Allen & Starr, 1982; Delcourt 

et al., 1983; O'Neill, 1986). Scale can be defined as the spatial and temporal dimensions 

of an object or process (Turner et al., 2001), and it is important to recognize the scale at 

which data analyses are performed to better understand how the results fit within the 

complete system of land use change. Grain (the areal unit, or resolution, of analysis) and 

extent (the size of the study area region) are key aspects of scale and inform decisions of 

what data to include and how well the data models the objects and processes of interest. 

This highlights a notion that can be framed within complex systems theory and 

hierarchy theory. Complex systems are those that contain a multitude of interrelated 

components, which challenge the comprehensive understanding of the whole system. 

This challenge is illustrated by Allen and Starr (1982) through the differentiation of 

systems into three broad types: first, Large-Number Systems, which contain a sufficiently 
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high number of components that makes a statistical average of them an appropriate 

treatment; second, Small-Number Systems, which contain few enough components to 

allow for each to be described specifically; and third, Middle-Number Systems, which 

possess an assortment of components numerous enough to preclude their individual 

treatment but few enough to make statistical averaging inappropriate. Such middle-

number systems frequently characterize the realm of complexity found in human-

environment systems and ecological systems, and consequently, methods are required 

that enable sufficient organization and simplification to support understanding while 

preserving the critical heterogeneity of the system. Simon (1973, p. 8) takes this a step 

further by stating that “all the very large systems will have hierarchic organization.” This 

generic view of complexity suggests that system components self-organize into different 

levels corresponding to the rate or scale of their dynamics. In this way, processes that 

proceed at a very high rate will appear as noise or an average value to processes at a 

higher level. Conversely, processes that proceed at a slow rate will appear constant to 

processes at a lower level. This separation of constituent parts allows for their individual 

treatment and requires the understanding of only minimal interaction between levels. 

Simon’s hierarchical approach has been applied widely in the ecological and 

human-environment disciplines (Allen and Starr 1982; Gunderson and Holling 2002). 

Allen and Starr introduced hierarchy to ecological systems and suggested the debate 

between whether hierarchy is a purely heuristic tool with no basis in reality and whether 

ecological organisms and processes are physically organized in a hierarchical manner. 

Wiens (1995) argues that hierarchies are artificial constructs we impose on nature and 

may be more heuristic than operational. Others, however, show that hierarchy is a real 
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structure in nature and therefore approaching the system in this way is not just helpful, 

but necessary, to fully understand its behavior. Holling (1992) explicitly demonstrates the 

presence of hierarchy in nature by studying the body mass of organisms and observing 

that there is not a smooth increase in organism size, but rather a stepped distribution, 

where species’ body masses tend to clump at similar sizes. Others have observed a more 

continuous increase in animal body mass, that is proportional to other components like 

metabolic rate and life span (West et al., 1997). Whether stepped or continuous, there are 

observed patterns in nature that vary with scale or size. 

There is growing consensus that the use of hierarchy is appropriate and necessary 

for understanding land use land cover change, whether ecological, human, or integrated 

systems (O'Neill et al. 1999; Turner 1989; Urban, O'Neill, and Shugart 1987). 

(Gustafson, 1998, p. 151) states that the “scale of heterogeneity (patchiness) of the 

landscape” must be properly identified so that subsequent analyses are conducted at the 

appropriate scale. Some have gone as far as to specify the resolution of data relative to 

the features of interest; O'Neill et al. (1996) state that the spatial resolution of land 

use/land cover data should be two to five times finer than the size of the features so that 

patterns can be observed and not obscured and aggregated into coarse pixels. This body 

of literature illustrates the importance of the foundational concept of spatial resolution, or 

grain, in the study of landscapes and processes of change (Wiens, 1976). 

Hierarchy theory and the concepts of resolution and grain help to frame chapters 

two and three of this dissertation by placing the county-level analysis at a level between 

higher-level government policy decisions and lower-level farm and field land use 

decisions. The pertinent information to be derived from this study are the driving forces 
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at the moderate, county level, which are most relevant to understanding regional patterns 

of land use. Conversely, local scale land use processes, i.e., decisions by individual 

landowners operate at a lower-level and a finer grain that are obscured by the scale of 

analysis in this study. Hierarchy theory helps to frame the current analysis at a moderate 

level of complexity that provides an appropriate amount of detail for the goal of regional 

decision-making, while still recognizing that actual land use processes are occurring at a 

lower, local level that are obscured by the aggregation into counties. 

Crews (2008) argues that detecting patterns and subsequently inferring land 

change processes is dependent on the scale of observation and that the spatial unit of 

analysis should be unbiased rather than delineated by land characteristics. This supports 

the use of raster data models rather than vector polygons that require human 

interpretation when drawn. The choice of spatial units may be out of the researcher’s 

hand, however, if data is only available in a specific form, for example, the county-level 

United States agricultural census. Changing scales and units of analysis by aggregating 

and disaggregating is cautioned because doing so may affect the relevance of the 

resulting data and hindering the interpretation of patterns and processes (Hill, 2008; 

Moody & Woodcock, 1994; Rutchey & Godin, 2009). 

2.4. Land Use Change 

The modeling framework employed in Chapter 4 of this dissertation targets four 

theoretical concepts outlined by Verberg et al. (2002) as being important to land change: 

first, connectivity and topological relationships of landscape characteristics, which 

address the notion that behavior and properties of a location are impacted by properties of 

neighboring areas; second, hierarchy theory, which accounts for phenomena and driving 
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forces that operate and manifest at different scales (Easterling & Kok, 2002; Urban et al., 

1987); third, the interplay between driving forces and proximate causes, which emphasize 

that land use change cannot be explained simply by relating it to underlying 

characteristics (driving forces); and finally, stability and resilience, which describe the 

ability of a system to sustain itself given a disturbance, either by maintaining its original 

form or evolving or adapting to a modified, yet still sustainable state (Holling, 1973). 

 The modeling procedure in this research is based largely on the approach of 

Hellmann and Verburg (2011) and addresses the four theoretical concepts described 

above. It involves a spatially explicit land change model (connectivity), including 

separate modules to separate driving forces at different hierarchical levels (hierarchy). In 

the case of biofuels, economic and policy drivers operate at a national level while land 

use change operates at a local/regional level. A multi-criteria evaluation component is 

coupled to help integrate the driving forces with proximate causes, such as social 

processes, decision-making, and individual behavior (integration). Although it is often 

impossible to identify all relevant driving forces (Lambin et al., 2001), one must integrate 

driving forces with social processes and constraints to gain a more complete picture. A 

conversion matrix of land change trajectories is utilized to account for resistance to and 

direction of change between particular land use types (stability & resistance). The 

modeling framework attempts to encapsulate the land change impacts of renewable 

energy expansion in an integrated systems approach to best represent the complex social 

and biophysical interactions involved and to observe the landscape response to increased 

biomass production on abandoned cropland. 
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 Traditional land use change theories, like Ricardian (Lambin, 2012; Mendelsohn 

& Reinsborough, 2007) and von Thunen (Chisholm, 1962; Norton, 1979; Sinclair, 1967) 

provide understanding of how change ideally occurs and the spatial configuration of the 

resulting land use distribution. Ricardian theory emphasizes crop yield and profit as the 

primary motivators for decision-making by farmers. If there is a different crop or land use 

that would be more profitable, a landowner is likely to convert to that use. Likewise, if a 

current crop has low yield and proves to be unprofitable, land may be taken out of 

production and left idle rather than converting to another active use. Von Thunen is a 

complementary theory, with a nuanced difference that rather than profit being the 

primary driver of change, spatial proximity to markets is the dominant factor. In this case, 

locations closer to markets are generally allocated to the most profitable land use, while 

less profitable land uses are allocated to areas farther away from markets. This view can 

be extended to say that proximity to urban centers or higher population density impacts 

the land use chosen for a particular area. These theories are highly simplified models of 

reality and have received some criticism, but it is expected that decisions to abandon 

cropland will be made, to some degree, by its productivity and location (Harvey, 1981; 

Mendelsohn et al., 1994; Parr, 2015; Polsky, 2004; Polsky & Easterling III, 2001; 

Sinclair, 1967). 

2.5. Climate Change Context 

 The context for this research can be framed within two global challenges: the 

causes and effects of climate change and the supply and demand for energy. There is 

unequivocal scientific consensus that “human influence has warmed the atmosphere, 

ocean and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere and 
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biosphere have occurred” (IPCC, 2021, p. 4). This change in climate has the potential to 

impose significant stress on natural and human systems. For example, rising sea levels 

may displace human populations; elevated temperatures and increased intensity of 

droughts and storms may challenge agricultural productivity and food production; and 

changes in the magnitude and timing of seasonal temperatures may stress marine and 

terrestrial biological systems in ways that exceed their resilience and ability to adapt. 

 Managed land areas, such as forestry, pastures, and crops, are of particular 

relevance to atmospheric CO2 concentrations due to their role as terrestrial carbon sinks, 

and by association the land management practices that can lead to changes in land use 

and vegetation. For example, it is possible that a direct effort to adapt to climate change 

by converting land to biomass or solar production to offset fossil fuel use may result in a 

maladaptation, as the net carbon flux due to the land use change outweighs the benefit 

from reduced fossil fuel use (Fargione et al., 2008; Searchinger et al., 2008). In fact, the 

IPCC indicates that climate change may independently increase carbon storage on some 

managed lands, further compounding a potential loss of carbon sequestration if land use 

change occurs (IPCC, 2022a). Consequently, these scientific findings illustrate the 

importance of reducing human emissions of CO2, in particular finding alternatives for 

liquid fossil fuels that reduce direct carbon emissions while also minimizing undesired 

consequences of land use change. Field et al. (2020) find that, in fact, converting existing 

cropland or pasture to renewable energy production can have greater greenhouse gas 

emission mitigation potential than allowing former cropland or pasture return to natural 

vegetation. The IPCC finds that wind and solar have the greatest potential contribution to 
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net emission reductions of any mitigation effort and that biofuels have the greatest 

potential within the transportation sector (IPCC, 2022b). 

2.6. Energy Context 

The demand for renewable energy in the United States has been increasing in 

recent years and is forecast to continue to grow in the coming decades (United States 

Energy Information Administration, 2023). Solar is expected to see particularly strong 

growth in the electricity sector, and biomass shows promise in the liquid transportation 

fuel sector.  

Globally, solar energy production has increased by 41 percent since 2009 and the 

majority of this development has occurred on agricultural lands (Kruitwagen et al., 2021). 

In the United States solar is the third largest renewable source of electricity generation 

and its production capacity has increased by over 35 percent between 2022 and 2023 

alone (United States Energy Information Administration, 2024). Consumer attitudes and 

demand for solar installations are often positive (Mamkhezri et al., 2020), although many 

farmers adopt solar energy production on their land under financial or social pressure 

(Spangler et al., 2024). This suggests the continued increase in need for land on which to 

build solar production facilities. 

Although biomass has potential to contribute to the liquid fuel demands of the 

transportation sector, recent trends in the automotive industry have supplanted much of 

this demand with electric vehicles. Sales of electric vehicles globally have increased from 

550,000 in 2015 to over 10 million in 2022 IEA (2023). The aviation industry is still a 

niche opportunity for the use of biomass energy as the industry has set a target of a 50% 

reduction in CO2 emissions by 2050 (Detsios et al., 2023) and liquid fuel is likely to 
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continue to be a dominant renewable energy source due to the convenience of existing 

infrastructure and the challenges of electrifying aircraft (Su-ungkavatin et al., 2023). 

 The preceding discussion illustrates the importance of renewable energy to the 

energy portfolio of the United States and the need to study the impacts of their 

production. The impacts of renewables investigated in this dissertation pertain to the land 

change implications of expanding production. Despite the benefits and case made for 

renewable energy presented above, they present particular challenges related to the 

location and context of where they are produced. 

2.6.1. Biomass 

Biofuel's advantage over fossil in terms of carbon sequestration is exemplified by 

its "feedstock uptake credit" (Searchinger et al., 2008). Biomass-derived fuels are 

considered carbon neutral as their combustion emissions are offset by the carbon 

absorbed via photosynthesis during the regrowth of the feedstock. However, this carbon 

neutrality is negated if land cleared to grow the initial fuel feedstock (e.g., switchgrass) 

was previously covered by vegetation (e.g., forest) that sequesters a greater quantity of 

carbon. The initial flux of carbon to the atmosphere due to the land use change is 

considered a "carbon debt" that may take decades to recoup (Fargione et al., 2008). 

Ecosystem habitat health may be compromised by induced land use change. 

Instances of fragmentation, increasing homogeneity, and elimination of land cover types 

are examples of processes that can impair species’ ability to survive and reduce valuable 

ecosystem services (Hasan et al., 2020; Martin et al., 2020). However, contradictory 

findings have demonstrated that, in some cases, a more fragmented landscape with small 

habitat patches can have advantages such as harboring more species in a smaller area 
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(Fahrig, 2020; Riva & Fahrig, 2022). Expansion of land area dedicated to the production 

of biofuel crops has the potential to interfere with the natural processes in place if not 

managed carefully. The decision to convert land to energy production can be viewed 

from the two perspectives of land sharing and land sparing (Baudron et al., 2021). Land 

sharing is the practice of putting land into agricultural land use, while maintaining other 

land functions and characteristics such as vegetation diversity and habitat conservation. 

The result is less energy production but improved ecosystem services. Land sparing, on 

the other hand, concentrates production and yield on a smaller amount of land, leaving 

other areas unaffected. 

Induced land use changes caused by demand for biomass energy may incur 

indirect land use changes elsewhere (Fiorini et al., 2023). For example, non-agricultural 

land in other regions may be converted to food production to replace food sources 

displaced by energy crops. Many studies consider food to be inelastic (Jones et al., 2007; 

Searchinger et al., 2008; Smeets et al., 2007), and because of the conflict between food 

and fuel, it is appropriate to account for both direct and indirect land use changes. In the 

case of this dissertation, an assumption is made that food production totals will not be 

compromised, and that total agricultural land (food and fuel) will expand into previously 

non-agricultural land as necessary to accommodate both. Specifically, recent studies 

indicate that it is inappropriate to replace food crop production with energy crop 

production for economic and ethical reasons, and they suggest other means of increasing 

agricultural production, such as double cropping and utilizing non-competitive 

abandoned cropland (Baker & Griffis, 2009; Baxter et al., 2009; Chesapeake Bay 

Commission & Commonwealth of Pennsylvania, 2010). Furthermore, some cellulosic 
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biofuel crops, such as switchgrass, can grow adequately on less productive lands, where 

food crops would not otherwise be present (McLaughlin & Kszos, 2005; Sanderson & 

Adler, 2008; Tilman et al., 2006). 

2.6.2. Solar 

Increased production of utility-scale solar will require the conversion of land. van 

de Ven et al. (2021) estimate that up to 5 percent of a country’s land may need to be 

dedicated to solar installations if solar energy is to account for most of its total electricity 

generation mix. In the United States, it is estimated that over 4,400 utility-scale solar 

installations are in operation as of 2021 (Fujita et al., 2023). These estimates may, in fact, 

be an undercount as they are often derived from remotely sensed imagery that requires 

interpretation and may quickly become out of date and miss newer developments.  

As the number and area of solar installations increase over time with increased 

demand for renewable electricity generation, thoughtful planning processes will be 

required to ensure that development proceeds in a way that maximizes production while 

avoiding negative land use change consequences within the context of the local area 

(Katkar et al., 2021). Furthermore, incorporating social factors in a multicriteria approach 

to siting solar facilities is likely necessary to arrive at an optimal solution (Sward et al., 

2021). O'Shaughnessy et al. (2023) observe that the process of siting solar installations is 

typically driven by technoeconomic factors and may result in development that unjustly 

impacts communities by, for example, incurring environmental harm at the site of the 

solar installation while the generated electricity is transmitted to distant populations. 

Farming communities are at greater risk as opportunities for renewable energy 

development incentives changes to livelihoods and land use (Goldberg, 2023). 
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3. Research Approach 

This dissertation approaches the emergence of usable abandoned cropland as an 

opportunity for renewable energy production from two dominant perspectives: a multi-

scale approach and spatially explicit modeling.  

First, it has a multi-scalar focus. Chapter 2 of this dissertation estimates the 

amount of abandoned cropland that may be available for biomass production at a national 

scale. Chapter 3 explores the drivers of cropland abandonment at regional level by 

investigating how the factors influencing land change vary from one part of the country 

to another. Chapter 4 downscales the analysis further by modeling change at the local 

level using insights of the drivers obtained earlier to force the model and landscape 

characteristics to assess impacts.  

Other studies of renewable energy transition, particularly on biofuels, have 

projected the potentials and impacts of biomass feedstocks typically at aggregated, 

national, or global scales (De La Torre Ugarte & Ray, 2000; Smeets et al., 2007; 

Strengers et al., 2004). Broad-scale research of this kind can be informative. However, 

when assessing land use decision-making, i.e., the decision to abandon cropland, a finer 

scale is more appropriate, because the process of land use and land cover change 

manifests at a local or landscape level. In general, it is optimal to match the scale and 

resolution of data and analysis to the scale of the phenomena being studied. Furthermore, 

human-environment systems involve complexities spanning multiple hierarchical scales, 

and it has been suggested that regional scale approaches are best suited for understanding 

this type of system (Easterling & Kok, 2002). Decisions by landowners to put land into 

agricultural production, remove land from agricultural production, or convert to a new 
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activity like renewable energy production are managed and governed at multiple scales. 

For example, the federal government directs national-scale policy; state governments and 

regional organizations assess meso-scale potential (Chesapeake Bay Commission & 

Commonwealth of Pennsylvania, 2010); and local land managers implement land use 

based on landscape characteristics and economic and provincial incentives. Studying this 

issue at multiple scales is therefore necessary, particularly when considering that the 

drivers of land use change and the relevance of spatial landscape pattern to those 

decisions may vary with spatial scale. 

 Second, the land change modeling framework employed in Chapter Four of this 

dissertation is spatially explicit. The impacts of energy crop production on abandoned 

cropland are inextricably connected to the spatial pattern of the landscape and the spatial 

manifestation of land use change processes. A spatial approach is particularly critical in 

biofuel studies, as the response to increased demand is influenced by the geographical 

location and proximity from which the demand originates (Kloverpris et al., 2008). 

Furthermore, to assess the relevance of spatial landscape pattern on the process and 

impacts of biofuel expansion, the modeling framework employed must be based on the 

spatial patterns of the underlying characteristics of the landscape. Non-spatial land 

change projections rely on prescriptive expert knowledge to drive models and are only 

able to assess results and impacts at gross aggregated levels, an approach inadequate for 

the proposed study. 

 While this dissertation utilizes statistics and modeling to understand and project 

land use change, it does not intend to imply that land use processes are completely 

explainable by the few factors included in the analysis nor does it suggest that complex 
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human decision-making and behavior are driven exclusively by quantifiable factors. Such 

an approach would suggest an adherence to antiquated theories, such as environmental 

determinism, where human behavior and cultural expression are shown to be controlled 

by the physical environment (Peet, 1985). Rather, this study aims to address land use 

change from a statistical perspective, relating both physical and cultural variables to the 

land change process, as a complement to other approaches grounded in critical social 

theory. 

4. Dissertation Outline 

Figure 1.1 illustrates the three following chapters of this dissertation and how they 

connect the primary research themes.  

In Chapter 2, I utilize historical agricultural data to estimate the amount of 

abandoned cropland that is available for the production of energy crops, given three 

constraints: 1) avoiding abandoned cropland that may have had time to regrow mature 

forest cover and significant biomass that would incur a large carbon debt if cleared for 

switchgrass production; 2) avoiding land that may have converted to an urban land use 

and therefore unlikely to transition back to an agriculture; and 3) avoiding land that may 

have converted to a pasture land use. 

In Chapter 3, I perform a statistical analysis to explore what county-level factors 

may contribute to the abandonment of cropland. Understanding these characteristics can 

help to identify regions of the country that have higher potential to experience future 

abandonment and opportunities for energy crop production, and therefore places that may 

be worth directing investments or incentives. The estimates of abandoned cropland 

developed in Chapter 2 are used as the dependent variable.  
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In Chapter 4, I downscale the occurrence of abandoned cropland to the landscape 

level to assess the patterns of available land and how they compare among counties in 

different types of landscapes. County-level estimates of abandoned cropland developed in 

Chapter 2 are used to inform how much abandonment to force onto the study area 

landscapes in a land change modeling exercise. The drivers identified in Chapter 3 

provide a starting point for identifying variables relevant to the landscape-level changes 

in Chapter 4. The predictor variables in these two chapters are complementary, however, 

they differ due to differences in the scale of the analyses. 

I conclude the dissertation in Chapter 5 by summarizing the results of the 

preceding chapters and discussing broader implications. 
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Figure 1.1. Connections among themes and chapters of this dissertation. 
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Chapter 2. Estimating Available Abandoned Cropland in the United 
States for Energy Crop Production 

1. Abstract 

Plans to produce significant energy crops at a scale that will achieve meaningful 

displacement of fossil fuels raise questions about the quantity of land that is available and 

the consequences of land conversion. Using the US as a case study, this paper assesses 

the potential of abandoned cropland to produce energy crops while avoiding some of the 

negative impacts of converting other types of land to such crops; for example, land cover 

change-induced carbon emissions and competition with food production. Abandoned 

cropland is a less ambiguous and context-dependent land resource than the more 

commonly considered marginal land. A methodology is developed to estimate available 

abandoned cropland (AACL) in the United States, accounting for conversion to forest 

cover, urban development, or permanent pasture. Estimates are derived for two scenarios: 

1) land abandoned between 1978 and 2012, which represents the longest time period 

from the present that precludes forest regrowth; and 2) land abandoned between 2007 and 

2012, which correspond to constraints imposed by the Renewable Fuel Standard. Results 

show that 15 and 4.9 Mha of AACL exist in the United States in the two scenarios 

respectively. The relative contributions of these estimates to national energy consumption 

amount to only 3 to 8 percent of total light duty gasoline consumption, and make more 

significant contributions to other end uses, such as aviation or ethylene. The policy 

implications of these findings and the need for future research are discussed.  
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2. Introduction 

Concerns about the amount of land area that is required to produce a meaningful 

quantity of biomass for energy or fuel production (hereafter energy crops) underpin 

debates about whether bioenergy or biofuel systems are sustainable (Lynd, Laser, 

McBride, Podkaminer, & Hannon, 2007; Tilman, et al., 2009). Broadly speaking, these 

debates feature two issues: (1) environmental impacts such as habitat change and carbon 

sequestration as land is converted into energy crop production (Fargione, Hill, Tilman, 

Polasky, & Hawthorne, 2008); and (2) social impacts such as competition with food 

prices and large-scale land transfers from local subsistence to multinational corporations 

(i.e., land grabbing), most relevant to cases outside the United States (Nalepa & Bauer, 

2012). Further complicating the sustainability and acceptance of energy crop production 

is the potential for indirect land use change, where land may be converted elsewhere to 

compensate for food crop production that was displaced by energy crop production 

(Searchinger, et al., 2008). Yet, biomass is the only renewable resource that can provide 

base-load heat or electricity without complex storage systems; the only renewable 

resource from which to produce non-energy products that are currently derived from 

petroleum (e.g., plastics); and the resource that is most likely to directly substitute for 

liquid fossil fuels in heavy-duty vehicles, shipping, and aviation in the near term. In this 

light, it is critical to locate and quantify land that might support energy crop production 

with minimal undesirable biophysical and social impacts (Calvert 2011).  

Abandoned cropland is a possible alternative land type on which to produce 

energy crops (Kang, et al. (2013). Here, abandoned cropland is defined as land area that 

was once used for, or declared as, agricultural cropland, but is no longer (considered to 



34 
 

be) performing that function. In this sense, abandoned cropland is land that was once 

included within agricultural surveys, such as the USDA Census of Agriculture, and is no 

longer counted. Defined thusly, it is possible to estimate abandoned cropland using 

historical census data.  

This paper contributes to the conceptual, methodological, and empirical 

foundations of estimating land potential for dedicated energy crop production, using the 

United States as a case study. The paper has four parts. First, the relationship between 

abandoned cropland and the concept of marginal land is discussed. Second, a review of 

existing estimates of abandoned cropland is undertaken. Building from this work, the 

paper then develops a methodology for calculating the quantity of available abandoned 

cropland (AACL) at the county-level in the United States. By AACL we refer to 

abandoned cropland that has not converted to another active use such as urban 

development, forest cover or permanent pasture. Before concluding, the implications on 

decision-making of how results are visualized cartographically are discussed. In sum, the 

paper argues that AACL is a more appropriate category than marginal agricultural land 

for quantifying and locating land that might support dedicated energy crop production 

with minimal social and ecological impacts. The US is shown to have a small amount of 

AACL relative to the area of land required to supply meaningful amounts of biomass, 

although regional opportunities exist.  
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3. Literature Review 

3.1. Abandoned Cropland as Economically Marginal Land 

It is widely believed that the land use and food system impacts of energy crop 

production can be mitigated if they are grown on marginal land (Gopalakrishnan, Negri, 

& Snyder, 2011). Use of the label marginal land to identify potential land areas for 

energy crop production is problematic because it lacks a standard, unambiguous 

definition. Richards, et al. (2014) performed a review of 51 articles written between 2008 

and 2012 that use the term marginal and found that only 53% of these articles provide an 

explicit definition, 31% provide an implicit definition that could be inferred from context, 

and 16% provide no definition at all. Ambiguity is further compounded by the fact that 

multiple terms are sometimes used interchangeably with marginal, including: 

“unproductive,” “waste,” “under-utilized,” “idle,” “abandoned,” “degraded,” “unused,” 

“suitable,” “free,” “spare,” “set aside,” “fallow,” “additional,” “appropriate,” (Kang, et 

al., 2013; Shortall, 2013). 

Ambiguity breeds scientific deficiencies and exposes political value differences. 

Scientifically, conclusions drawn by studies which attempt to locate and quantify 

marginal land differ significantly depending on how marginal is defined. Lewis and 

Kelly (2014) performed a study of 21 articles from 2008 to 2013 that illustrates the 

impact of such variability on estimates of marginal land. Their results include five 

examples from China where differences in definitions produced marginal land estimates 

ranging from 2.80 to 22.26% of China’s total land area. Two of the most 

methodologically similar studies reviewed by Lewis and Kelly (2014) produced estimates 

of marginal land from 19.9 to 43.75 Mha. Most startling about this example is the fact 



36 
 

that each study relied on nearly identical input data. Politically, the lack of consensus 

around what defines land as marginal underpins actions by dominant actors (e.g., 

governments or corporations) which impose this land-use classification on a given plot of 

land for the purpose of attracting foreign investment (Baka, 2014).  

Given the challenges and implications of the use of marginal as the underlying 

concept to identify land for energy crops, a more specific classification is advisable. 

Richards, et al. (2014) argue that the most effective classification will include economic 

and biophysical criteria. Building on these arguments, we propose abandoned cropland 

(ACL) as a more appropriate land resource to consider when trying to locate and quantify 

land that might support energy crops (see Figure 2.1). Here, ACL is defined as land that 

was once used for, or declared as, agricultural cropland, but is no longer supporting that 

function (see also Milbrandt, et al. (2014) and Zaragozi, et al. (2012)). Such land is by 

definition economically marginal, which might relate to the fact that it is also 

biophysically marginal relative to surrounding land but also to political-economic factors 

such as changing commodity markets, international competition, or the demographics of 

the landowner(s). ACL can be considered a subset of marginal land if one assumes that 

areas removed from active crop production are of a poorer quality than the lands 

remaining in production (see Pazur, et al. (2014)). This is not always the case however, as 

shown by Nalepa and Bauer (2012), who identify cases where land considered marginal 

is being used for primary agricultural activities. At the same time, key drivers of ACL are 

often socioeconomic factors, including emigration to urban areas by rural farmers, rather 

than land productivity per se (Rey Benayas, Martins, Nicolau, & Schulz, 2007). In some 

contexts, ACL emerges due to social conflict and fundamental political-economic 
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reforms (Pazur, Lieskovsky, Feranec, & Otahel, 2014). Researchers interested in locating 

and quantifying ACL for dedicated energy crop productions should not include ACL that 

has been abandoned for these reasons, since it is likely that under a peaceful set of 

conditions said land would be used for food production.  

Consequently, the identification of abandoned cropland requires a different set of 

criteria and a different methodology from those used to identify marginal land. ACL 

implies a temporal change in land use, not a static characteristic of land cover or 

productivity (Munroe, van Berkel, Verburg, & Olson, 2013). Furthermore, ACL does not 

imply unused land. It is likely that land removed from crop production is under a new 

active land use, for example pasture or urban development. Zaragozi, et al. (2012) argue 

that a dynamic approach is more appropriate by considering land to be abandoned “if 

there is no current land use despite a recent history of farmland use, normally declining, 

over [the] last 10 years.” This type of definition is consistent with most usages in the 

literature and aligns with the approach presented in this paper. Here, we calculate the 

subset of abandoned cropland that has not converted to another active use and is therefore 

considered available abandoned cropland (AACL). 

3.2. Estimating Abandoned Cropland 

The process of identifying abandoned land is based on a temporal analysis of 

changes in agricultural activity in a given area or for a specific plot of land. There are two 

predominant approaches to estimating ACL: 1) remote-sensing based, and 2) land-owner 

data based, derived from interviews and surveys. Although recent work has relied on a 

combination of these two, the distinction between remote-sensing based work and 
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survey-based research is determined by the data used to generate historical timelines and 

maps of agricultural land use. 

Ramankutty and Foley conducted studies of cropland change at both global 

(1999a) and continental (1999b) extents. Their map of cropland abandonment in North 

America is most pertinent to the study presented in this paper. The authors take a hybrid 

approach to estimating ACL, combining remote sensing and agricultural survey data to 

produce a time series of cropland distribution. Historical cropland maps were produced 

by hindcasting from a baseline map for 1992. Hindcasting is the technique of 

extrapolating historical data patterns based on observations in a recent time period. 

The1992 map was derived from the DISCover, 1km resolution land cover dataset, and the 

results were aggregated at the 5 minute / 10km resolution (Loveland & Belward, 1997). 

Agricultural land-cover was represented as a fraction of each pixel. Linear interpolation 

was used to develop annual values of cropland from Census of Agriculture data which are 

collected every 5 to 10 years. These values were used to adjust pixel fractions 

(Ramankutty & Foley, 1999b). Using this method, Ramankutty and Foley (1999b) found 

that 81 Mha of cropland have been abandoned in North America between 1850 and 1992.  

This value is subject to some uncertainty for two primary reasons. First, 

understanding historic land use patterns by inference from current observations presumes 

the continuation of spatial patterns of cropland production and precludes capture of actual 

changes in land use that may occur beyond the extent of the 1992 cropland. In other 

words, the method would not be valid if it were replicated to generate estimates for 

present-day ACL. Second, and perhaps most importantly, 81 Mha is a gross total, since 

this study also does not explicitly account for conversions of abandoned cropland to 



39 
 

developed, forested or pastureland uses, and is therefore an inadequate estimate of 

AACL. 

A recent study by Lark, et al. (2015) exemplifies a remote sensing methodology 

for assessing cropland change. In this study, the Cropland Data Layer (CDL), a 30m 

resolution land cover dataset (USDA NASS, 2015a), is used to classify land as crop or 

non-crop. Lark, et al. (2015) aggregate 107 unique cropland classes into a single crop 

class and 27 unique non-cropland classes into a single non-crop class. National-level 

CDL datasets from 2008 to 2012 are compared to measure the expansion or contraction 

of cropland over time.  

Lark emphasizes the difference between gross change and net change over the 4-

year period. Gross change is the sum of pixels that have changed to cropland plus the 

sum of pixels converting from cropland, whereas net change is the difference in the 

aggregated total cropland area between the two time periods. Recognition of the 

difference between these two measurements is important because the calculation of net 

change might undercount cropland abandonment in cases where land is abandoned in 

some areas but expands in different locations; for example, an area’s net change may be 

zero when viewed in the aggregate (offsetting locations of cropland gain and loss), but its 

gross abandonment of cropland may be positive when viewed as the sum of individual 

pixels. Lark’s results show a net increase of cropland area of 1.2 Mha from 2008 to 2012 

and a gross abandonment of cropland of 1.76 Mha over the same period. 

As a remote sensing-based study, the results from Lark et al. (2015) have two 

shortcomings. First, remote sensing platforms do not unambiguously distinguish between 

natural grassland, pastureland, and certain forage crops (Nalepa & Bauer, 2012), whereas 
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this distinction would be explicitly documented in a census or survey. For this reason, 

Lark, et al. (2015) aggregated the classes Grassland/Pasture, Pasture/Hay and Other 

Hay/Non-Alfalfa into their non-crop land class, despite the fact that some of those areas 

are most certainly cropland. This limitation might overestimate the amount of grassland 

that is being displaced for corn production (because pastureland is often converted to 

corn production due to market conditions, and this conversion may mistakenly be 

interpreted as grassland-to-corn). Second, remotely sensed datasets currently lack time 

series adequate to conduct historical trend analyses. Although they enable a calculation of 

gross change in recent years, they are unable to capture long-term trends that are 

observed by the US Census of Agriculture over decades. To make assessments for earlier 

time periods would require the use of proxy data (surveys, aerial photography, etc.) or 

extrapolations that may introduce error and uncertainty. 

In contrast to remote sensing-based methodologies, survey/questionnaire-based 

approaches rely primarily on data directly from landowners, who directly provide data 

regarding their use of land. The analysis by Zumkehr and Campbell (2013) exemplifies 

such an approach, although, similar to Ramankutty and Foley (1999b), they rely on 

remote sensing data to account for unavailable land uses, such as forest regrowth and 

urbanization, that arise after cropland abandonment. Zumkehr and Campbell collect 

historical cropland data from Waisanen and Bliss (2002), which includes county-level 

values of total cropland in production for every five to ten years dating back to 1850. 

Zumkehr and Campbell calculate a gross estimate of abandoned cropland to be the 

difference between the current land in crop production (in the year 2000) and the 

maximum amount of land in crop production in any year since 1850. Their results find 45 
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Mha of abandoned cropland in the United States that are available for energy crop 

production. 

Again, these results are subject to several uncertainties. First, Zumkehr and 

Campbell downscale the county-level cropland data to a grid of 5-minute pixels, 

assuming that the current spatial distribution of cropland is representative of the spatial 

arrangement of cropland in previous years using a hindcasting methodology from 

Ramankutty and Foley (1999b). This spatial allocation is critical because their subsequent 

steps to adjust for forest regrowth and urban development are explicitly dependent upon 

the spatial overlay of remote sensing data with historical cropland. To account for forest 

regrowth and urban expansion, Zumkehr and Campbell rely on MODIS satellite imagery 

to remove areas (at the 5-minute grid cell level) that are classified as forest or developed. 

This assumes that the classification of the imagery is accurate, and that the identification 

of pixels identified as abandoned cropland are accurately located. Any inconsistencies or 

errors in classification or spatial allocation of cropland will impact the accuracy of these 

calculations. Second, they do not account for conversion of pasture to cropland, and vice 

versa, even though land often converts between these two categories. Across the US, for 

example, between 1997 and 2012 the total national area of cropland has decreased by 22 

Mha and the area of permanent pasture has increased by 7 Mha (USDA NASS, 2015b). It 

is likely that most or even all of the pasture increase is due to a direct conversion from 

cropland rather than the conversion of another land use such as forest, grassland or 

developed. Accordingly, to make a conservative estimate of the amount of usable 

abandoned cropland, the amount of increase in pasture should be removed from the 

estimate of abandoned cropland. 
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The preceding discussion illustrates that methodological choices have a profound 

impact on results. Key choices to consider are (1) determining the time scale across 

which to consider changes in land use, (2) accounting for the regrowth of vegetation and 

storage of carbon on lands that have been abandoned from active agricultural production, 

(3) accounting for the conversion of agricultural land to developed urban land uses, and 

(4) accounting for the conversion of cropland to and from pasture. The remainder of this 

paper presents a new methodology and results for the estimation of available abandoned 

cropland in the United States. Although trends in pastureland are considered, only 

increases in pasture at the expense of cropland are included. Pasture abandonment is not 

included because the focus here is on abandoned cropland, the type of land most likely to 

support dedicated energy crop production (see Bryngelsson and Lindgren (2013) for 

reasons why considering low-quality pasture land is not practical for energy crop 

production). 

4. Data and Methods 

Two scenarios were constructed in this study to guide estimates of ACL. The 

scenarios differ temporally. In the first scenario, we limit our time period to 34 years 

prior to the present day in order to avoid including abandoned agricultural land that 

would have had time to develop a mature forest cover, in order to limit the carbon debt 

that would be incurred due to large-scale conversion of forest to energy crops (Fargione 

et al., 2008) (our carbon constraint scenario). In the second scenario, we include only 

those lands that have been abandoned since 2007 to be consistent with rules set out in the 

Renewable Fuels Standard (RFS2) (our regulatory constraint scenario). In both 

scenarios, data on agricultural land-use are collected from landowners in agricultural 
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surveys executed and published by the USDA, and remote sensing data are used to locate 

and exclude areas that have converted to urban development and permanent pasture in 

order to arrive at a value of available abandoned cropland. Estimates are provided at the 

county-level for the contiguous United States (See Appendix A for detailed data 

processing procedures).  

To estimate available abandoned cropland (AACL), we follow the logic set out by 

Equation 1: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚
(𝑝𝑝𝑝𝑝−𝑥𝑥)≤𝑡𝑡≤𝑝𝑝𝑝𝑝

(𝑇𝑇𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡)  − 𝑇𝑇𝐴𝐴𝐴𝐴𝑖𝑖,𝑝𝑝𝑝𝑝 − 𝑈𝑈𝐴𝐴𝑖𝑖 − 𝑃𝑃𝐴𝐴𝑖𝑖 

Where AACLi represents the calculated available abandoned cropland for each county 

(i). maxTCLi,t represents the maximum total cropland in production for county (i) in any 

year (t) that occurs between present day and a historical limit of year (x), which is set at 

1978 in scenario 1 and 2007 in scenario 2. TCLi,pd represents the total cropland area in 

production for county (i) in the present day (pd), which is set at the date of the most 

recent agricultural census (in this case, 2012). UC and PC represent the quantity of 

abandoned cropland estimated to have transitioned into the land uses of urban 

development and permanent pasture respectively. 

 The sequence of subtractions described in Equation 1 can be subdivided into 

incremental equations describing each step. The first step calculates the Total Abandoned 

Cropland (TACL) by subtracting the current cropland area from the historical maximum 

cropland area (Equation 2). 

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚
(𝑝𝑝𝑝𝑝−𝑥𝑥)≤𝑡𝑡≤𝑝𝑝𝑝𝑝

(𝑇𝑇𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡)  − 𝑇𝑇𝐴𝐴𝐴𝐴𝑖𝑖,𝑝𝑝𝑝𝑝 

The primary data source to estimate total cropland over time is the US Census of 

Agriculture. Historical cropland area data are derived from Waisanen and Bliss (2002), 
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who produced a county-level compilation of population and agricultural data from 1790 

to 1997. These data are updated using US Census of Agriculture reports for the years 

1997, 2002, 2007 and 2012 (USDA NASS, 2015b), by extracting only Total Cropland 

and Permanent Pastureland. Total Cropland is represented by the entire circle labeled 

Cropland in Figure 2.2, and contains the sub-categories of Harvested Cropland, Cropland 

used for Pasture, and Other Cropland. Our definition of Permanent Pastureland excludes 

pastured woodland, and most notably Cropland used for Pasture, which would be double 

counted if included. Because historical data on pastureland are not included in the 

Waisanen and Bliss dataset, a digital archive of the 1978 Census of Agriculture was 

obtained from the Cornell Institute for Social and Economic Research (CISER) (U.S 

Census Bureau, 1978).1  

 In order to avoid counting cropland which has been reforested, this study sets the 

historical limit of analysis to 34 years (1978 – 2012) which is an appropriate national 

average (but does not reflect region-specific growth rates; thus, presenting an opportunity 

for future research). This method avoids the potentially significant sources of error when 

relying on current remote sensing imagery to track land cover change over several 

decades and aligning areas classified as forest with areas classified as cropland 

historically. 

To account for immutable land-use conversions post-abandonment, such as to 

urban development and barren wasteland (e.g., quarries), the National Land Cover 

Database (NLCD) is utilized (Homer, et al., 2015). The NLCD is unique in that it is a 

30m resolution land cover dataset for the entire United States and contains the specific 

 
1 Values in the archive were validated by comparing a sample with respective county figures in the 

original 1978 Census of Agriculture report. 
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classes of agriculture and urban development required for this analysis. This permits the 

spatially explicit identification of locations that convert specifically from cropland to 

urban development or to other uses. More specifically, agriculture is represented by two 

classes, cultivated crops and pasture/hay. Based on the definitions of these two classes it 

is determined that the pasture/hay class more closely aligns with the Census of 

Agriculture category of cropland than permanent pasture. As pointed out by Laingen 

(2015), a class called hay might be considered grassland if viewed as a land cover but 

cropland if viewed as a land use, as it is in this analysis. Laingen’s results also show that 

the combined NLCD classes of cultivated crops and pasture/hay are comparable to total 

cropland in the Census of Agriculture, which is the primary data value used in the current 

study. Consequently, cultivated crops and pasture/hay are both combined and treated as 

cropland. 

Nation-wide NLCD datasets have been produced for the years 1992, 2001, 2006 

and 2011. This study calculated change between the 2001 and 2011 datasets, which 

provide the greatest span of years with an acceptable level of classification accuracy.2  

The quantity of land converting to an urban land use (UC) is calculated by 

observing changes between the raster datasets of 2001 and 2011 NLCD. First, a new 

dataset is created by selecting all pixels that transitioned from cultivated crops or 

pasture/hay to developed or barren classes. Second, a new dataset is created by selecting 

 
2 The NLCD reports an accuracy of the agriculture classes to be approximately 43% in the 1992 dataset 

and 82% in the more recent onesInvalid source specified.. The poor level of confidence in the 1992 
dataset compelled this study to focus instead on changes between 2001 and 2011 despite the fact that the 
1992 data would provide a timespan that more closely matches the temporal extent of this analysis. 
Furthermore, Wickham, et al. (2013) indicate that accuracies of the observed changes in agriculture classes 
between 2006 and 2011 are quite low, likely due to the difficulty in distinguishing among grass-dominant 
land covers. This suggests caution in relying on NLCD for cropland change detection, however, the current 
paper focuses on change specifically from agriculture to developed classes, for which change accuracies are 
high. 
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all pixels that transitioned from cultivated crops or pasture/hay to any class. A Zonal 

Statistics function is applied to the new raster datasets to aggregate all selected pixels 

within each county and populate two new county attributes, which contain the number of 

pixels transitioning from agriculture to developed or barren (𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) and the 

number of pixels transitioning from agriculture to anything (𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). The 

attributes are divided to derive for each county (𝑝𝑝) the fraction of its abandoned cropland 

that converts to an urban or barren land use versus any land use, setting any undefined 

values to zero (Equation 3).  

𝑈𝑈𝐴𝐴𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖  ÷  𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖 

These fractions are multiplied against TACL to derive the quantity of abandoned 

cropland that is estimated to have converted to a developed land use, and that area is then 

subtracted from TACL. The assumption is made that the fraction of urban conversion 

calculated for the time period of 2001 to 2011 is representative of the time period of the 

entire study, 1978 – 2012. We discuss the validity of this assumption in the results 

section. 

 The final step is to remove abandoned cropland areas estimated to have converted 

to a permanent pastureland use. The assumption is made that an increase in permanent 

pastureland in each county will occur at the expense of cropland. Accordingly, an 

observed increase in permanent pastureland over the time period of analysis, 1978 – 

2012, is deducted from the estimate of abandoned cropland. The total area of permanent 

pastureland (TPP) in 1978 is subtracted from the permanent pasture figures reported in 

the 2012 NASS data tables to calculate PC for each county (Equation 4). 

𝑃𝑃𝐴𝐴𝑖𝑖 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑖𝑖,2012 − 𝑇𝑇𝑃𝑃𝑃𝑃𝑖𝑖,1978 
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This value is then subtracted from each county’s TACL to derive the quantity of 

abandoned cropland that is ultimately available for the production of energy crops. 

Conversion of cropland to pasture is assumed to be indicated by the total increase in 

permanent pastureland during the study period. 

 The data and methodology utilized in this study permit the running of scenarios of 

many time frames. The base scenario for this analysis spans from 1978 – 2012 to capture 

the greatest amount of AACL. A second scenario is performed for the time period of 

2007 – 2012, which aligns with constraints imposed by the Renewable Fuel Standard 

(RFS), which limits the conversion of land to energy crops to only those areas that were 

in agricultural production sometime since December 19, 2007 (EPA 2010). In other 

words, biofuels generated from biomass grown on land that was abandoned prior to this 

date would not be eligible for production credits. This rule was established to restrict the 

conversion of non-agricultural land to energy crops, which could result in undesirable 

land use change consequences that may negate the benefit of the intended energy crops.  

5. Results & Discussion  

5.1. Estimates of AAL 

The scenarios constructed in this study evaluated land change over the time 

periods from 1978 to 2012 and from 2007 to 2012 respectively. The results show 15 Mha 

of available abandoned cropland in the United States under the first scenario and 4.9 Mha 

under the second scenario. These estimates differ from those in other similar studies (see 

Table 2.1). Disagreement with Ramankutty & Foley (1999b) is likely due predominantly 

to the fact that Ramankutty & Foley incorporate cropland area figures dating back to 
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1850, when much more land was in production, and including all of North America. 

Furthermore, the Ramankutty & Foley methodology does not adjust for potential 

conversion of cropland to developed, forested or pasture uses. The study by Lark, et al. 

(2015), on the other hand, presents a much smaller estimate of available abandoned 

cropland of 1.76 Mha in the United States. Again, much of the disagreement with this 

study’s estimate is due to differences in the time period under consideration. Lark, et al. 

only include the years between 2008 and 2012, which corresponds better with this study’s 

regulatory constraint scenario. A second significant difference between these two studies 

is the reliance on agricultural census data versus remote sensing land cover data as the 

primary data source.  

In contrast, the source data used in both Zumkehr and Campbell (2013) and this 

study are the same. And yet estimates of the national quantity of abandoned cropland 

differ significantly. Disagreement is due to three primary factors. First, Zumhehr and 

Campbell extend their historical view to 1850, relative to this study’s limit of 34 years. 

Second, Zumhehr and Campbell account for forest regrowth by overlaying a spatially 

explicit map of abandoned cropland, at a 5-minute resolution, with current land cover 

map derived from satellite imagery. This introduces two sources of error: first, the 

process of downscaling of county-level cropland totals to 5-minute grid cells, and second, 

the interpretation of satellite imagery to delineate forest areas and the assumption that 

said-areas can confidently be overlaid with the downscaled cropland areas. Finally, 

Zumkehr and Campbell do not account for pasture conversion in their calculations, which 

likely results in higher estimates of abandoned cropland availability.  
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5.1.1. Energy crop production potential on AACL  

Estimates of AACL are useful for any number of rural policy domains (e.g., 

socioeconomic, land-use). In this study, we are primarily interested in AACL as a 

possible resource for energy crop production. Differences in estimates of AACL have 

important policy implications. For example, regional and national energy policies may be 

recommended or legislated based on production potentials communicated by the 

scientific community. In this case, policies related to the use of abandoned cropland for 

the production of energy crops may be implemented, or not, based on whether there is a 

meaningful amount of land available and ultimately whether there is potential to make 

significant contributions to energy demands. Developing confident and accurate estimates 

of land availability is critical, but also presenting consistent estimates is important to 

avoid confusion. The preceding discussion illustrates the great range of abandoned 

cropland estimates that can be obtained by making slight changes in data input and 

methodology, and that this variability can have serious consequences on the claimed 

contributions this energy feedstock can make to different energy sectors and, ultimately, 

the decisions that are made on energy policy. 

 To what extent might AACL in the US contribute to growing energy needs? In 

order to answer this question, energy crop production potential on AACL is estimated 

using average county-level switchgrass yields, calculated using the Wullschleger (2010) 

model. The Wullschleger model is based on a compilation of observations from field 

trials across the United States and defines yield as a function of annual average 

temperature, growing season precipitation and nitrogen fertilization. A continuous 800-

meter resolution raster dataset of temperature and precipitation was obtained from 
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PRISM Climate Group (PRISM Climate Group, 2015). Two rasters were extracted 

containing 30-year average annual temperature and 30-year average growing season 

precipitation (April – September). For each pixel, the temperature and precipitation 

values were supplied as inputs to the switchgrass model to calculate yield. A Zonal 

Statistics function was applied to aggregate the pixel-level values into county-level yield 

averages. Multiplying each county’s average switchgrass yield by its area of available 

abandoned cropland generated a county-level map of potential switchgrass production. 

The results from this study indicate that under the regulatory constraint scenario 

only 2% of the United States’ transportation fuel demand may be replaced by cellulosic 

ethanol produced from switchgrass on available abandoned cropland (Table 2.1). Values 

in this table are estimated using generic estimates of 10 Mg of switchgrass per hectare 

and 210 liters of fuel per dry ton of switchgrass. This figure increases to 6% under the 

carbon constraint scenario. Although insignificant relative to total fuel consumption in 

the US, AACL may provide a basis for specific sectors. For example, energy produced on 

this abandoned cropland may account for 81% of the aviation fuel consumed in the 

United States. This indicates that decision-makers may want to look not only at the total 

production numbers, but also to how they relate to different downstream uses that may be 

perceived as more appealing, feasible and meaningful. 

5.1.2. Urban and pasture conversion 

 The distribution of pasture increase between 1978 and 2012 is shown in Figure 

2.3. The highest concentrations of pastureland expansion are found in Texas and 

extending northeast into Missouri. Additionally, individual counties with high densities 

of pastureland are scattered across the western plains. Low densities of pasture expansion 
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occur in the Cotton Belt, the Dakotas, and south of the Platte River and correspond to 

areas of high abandoned cropland density. This suggests that such areas are losing 

cropland and lack the incentives to replace the crop production with pasture operations. 

Estimates of available abandoned cropland in this study are conservative in part 

because of the assumption that any increase in pasture is a result of decreasing cropland. 

It is possible that some new pasture production occurs on land not previously in crop 

production, for example converting grassland or forest land. However, it is difficult to 

determine from available data the fraction of pasture increase that is responsible for 

decreases in other specific land types, and this study assumes that the most common land 

interaction with pasture is the conversion to and from cropland.  

Furthermore, pasture area totals are subject to changes in definitions of 

pastureland in the Census of Agriculture over time (particularly prior to 1978, which is 

outside the scope of this study’s analysis) as well as privacy issues. For example, 99% of 

the land area in Kenedy County, Texas is reported as permanent pastureland in the 2012 

Census of Agriculture, but no value is reported in the 1978 Census. This results in the 

calculation 369,188 ha of pasture increase between 1978 and 2012. However, it is very 

likely that there was pasture in production in 1978, but due to the requirements to protect 

respondent confidentiality the value was suppressed in the 1978 census report. 

Estimates of cropland conversion to urban development are shown in Figure 2.4. 

Values of UC vary from county to county, ranging from zero in some areas to 100% in 

others, where urban and suburban expansion rates are high. A simple average of county-

level fractions of abandoned cropland transitioning to a developed land use is 

approximately 38% across the entire United States and when weighting the values by 
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each county’s area, the national average is 30%. Areas of high fractions of conversion 

from cropland to development are, not surprisingly, found in regions of high population: 

the northeast, pacific coast, rust belt, in addition to isolated pockets around urban centers, 

such as Salt Lake City, Denver and Houston. Prominently low fractions of conversion are 

visible in the cotton belt region in the southeast United States, which likely helps to 

explain why there is a relative abundance of available abandoned cropland in that area. 

 The calculated fractions of conversion of cropland to urban development play a 

significant role in the estimates of available abandoned cropland. Accordingly, these 

numbers were validated against other data sources to assess confidence in the results. 

Validating this result is challenging primarily because county-level data for agricultural 

conversion to urban development do not exist nation-wide. The USDA National 

Resources Inventory (NRI) (USDA 2010) provides the best data source available to 

validate the calculations of urban conversion. The NRI is a survey of sampled locations 

nationally and is administered primarily every five years. Land cover/use classes are 

identified by the NRI survey, including cropland, CRP land, pastureland, rangeland, 

forest land, other rural land, developed land and water areas & federal land. To most 

closely align with the classification scheme used in the NLCD and the Census of 

Agriculture, the NRI classes of cropland, CRP land and pastureland are combined and 

treated as cropland. Urban conversion fractions are calculated from the NRI data by 

summing the area converting from cropland, CRP land and pastureland to developed 

land, and dividing it by the sum of cropland, CRP land and pastureland converting to 

anything (Table 2.2). These numbers illustrate a reasonable agreement with the urban 

conversion fraction calculated from the NLCD. Differences may be due to the different 
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methods used to classify land as cropland versus pastureland, the fact that NRI is a 

sampled dataset, the fact that the NLCD is based on the interpretation of satellite 

imagery, or how data are aggregated into a national average. 

5.1.3. Spatial Patterns of AAL 

Figures 2.5 and 2.6 illustrate the spatial distribution of the available abandoned 

cropland in both the 1978-2012 and 2007-2012 scenarios. The regulatory constraint 

results present a subtle spatial pattern; available abandoned cropland is distributed 

relatively evenly across the country with counties of higher concentrations scattered 

across the middle of the country in a band spanning from the Canadian border to Texas. 

The carbon constraint scenario, on the other hand, reveals a distinct spatial pattern in the 

distribution of available abandoned cropland. A concentration is visible in a crescent 

following the historic cotton belt in the southeast United States, and high concentrations 

are visible along the lower Mississippi River, near the Missouri River in the Dakotas, and 

south of the Platte River in Nebraska and Kansas. It is likely that regions with high 

concentrations of available abandoned cropland are those where economic conditions are 

not able to support existing agriculture and not sufficient to spur new active use of the 

land, either as urban development or pasture. A future study will study explanations of 

cropland abandonment and their persistence in greater detail 

Spatial data can be visualized and communicated to decision-makers in many 

ways, and the choice of visualization method can have impacts on the conclusions drawn 

from the information. Furthermore, certain visualization options may be better suited for 

one audience than another. In the case of available abandoned cropland, four 

visualizations of the 1978-2012 scenario are presented in Figure 2.7. Map A is a 
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straightforward presentation of the county-level values of available abandoned cropland 

in hectares. Although a common approach presenting total values can be misleading. This 

is due to the fact that counties with a large spatial area are likely to have more hectares of 

cropland in them simply because of their size and their aggregation of many small values. 

Consequently, large counties often appear darker, suggesting high potential for energy 

crop production, despite the fact that such counties may be largely void of cropland. To 

correct for this phenomenon, values are normalized, by dividing each county’s total value 

by the county’s area to derive density values (Map B). For example, Elko County in 

northeast Nevada displays high amounts of available abandoned cropland in Map A, but 

when normalized by area in Map B, the county’s lighter shading is more representative of 

the sparse concentration and relatively low quantity of abandoned cropland. 

On the other hand, the agricultural community often presents crop commodities 

and production distributions as a density of total cropland area, rather than a density of 

total county area (Map C). This data visualization may be more familiar to an agricultural 

sciences audience but conveys a different message than the other maps. Nevada, Arizona 

and New Mexico provide a good example of this, as much of the states appear to have 

high values. In reality, all values are quite low, but the proportion of abandoned cropland 

to total cropland is high because there is little total cropland to begin with. Finally, data 

can be presented as total hectares in the form of a dot density map as seen in Map D. This 

is also a common visualization method in the agricultural community. This technique 

allows for the display of total hectares without normalization and would be familiar to 

individuals who interact with crop production maps often seen in USDA reports. Dot 
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density maps are an effective way to see general distribution patterns but can be a poor 

tool for deriving values for particular locations. 

The audiences for the results of this study are not necessarily agricultural 

scientists or farmers. Rather, these results are primarily intended to inform policy 

decision-makers and government officials who operate at a broad scale and make 

determinations of the value in enacting regulations to pursue the generation of energy 

crops. Accordingly, it is most relevant to present land resource totals as a density of total 

county area, so policymakers can see what regions of the country might be most 

productive and where the greatest concentrations of available land are located. The other 

visualizations may be valuable for the agricultural community to assess the relative 

contribution of abandoned cropland to other agricultural activities, but they may be less 

appropriate for broad scale energy policy decisions. 

6. Conclusion 

This study develops and applies a methodology to estimate and map abandoned 

cropland across the United States at the county level. Rather than focusing on marginal 

land, this study targets abandoned cropland that has neither had time to develop mature 

forest nor converted to urban development or pasture. This enables a more precise and 

appropriate estimate of land that might be immediately available to support dedicated 

energy crop production with minimal social and ecological impacts. Agricultural census 

data is the primary source of cropland data, rather than remote sensing; cropland 

abandonment is a land use process, which landowner surveys like the USDA Census of 

Agriculture directly capture, in contrast to land cover, which is fundamentally what 

remote sensing instruments measure and which requires further interpretation to deduce 
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land use. The methodological framework developed in this study for estimating and 

mapping AACL is flexible, replicable and encourages future research and customized 

scenarios. As new data are released by the Census of Agriculture and the NLCD, new 

urban conversion fractions can be developed, pasture conversion amounts updated, and 

final results refined. Additionally, this framework allows for scenarios to be run for any 

time frames, which may be useful for decision-makers when comparing trends over time 

or evaluating different policy environments, such as relaxed rules on the use of 

abandoned cropland for energy crop production.  

The carbon constraint scenario developed in this study suggests that 15 Mha of 

AACL is available. When considering limitations on the use of AACL for energy crop 

production set by the RFS in the regulatory constraint scenario, the area drops to 4.9 

Mha. Although potentially significant at regional scales, these numbers are not significant 

at national scales, as they could potentially supplement only 3-8 percent of total light 

duty gasoline consumption. That said, the existing quantity of AACL might be capable of 

producing enough biomass to support specific sectors, such as aviation or ethylene, and 

future policy might consider targeting biofuel production in these areas to match 

production with consumption. At the same time, rates of AACL are driven by increased 

international trade, increased yield on other lands due to greater use of synthetic 

fertilizers, and other features of a fossil-fuel based economy. Future research should aim 

to understand drivers of land abandonment including the extent to which these lands are 

abandoned due to the more intensive use of fossil fuels in the first place. Future research 

should also aim to understand and explain the persistence of agricultural land 

abandonment, and how landowners and land managers envision these land resources.  
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Figure 2.1. The definition of Abandoned Cropland within the biophysical and 
economic dimensions of Marginal Land. 
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Figure 2.2. The intersections of variables defined in the US Census of Agriculture. 

The dark-outlined circle labeled “cropland” is the primary data category used in this 
study to assess cropland abandonment. 
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Table 2.1. Liquid fuel production from switchgrass grown on different estimates of 
abandoned cropland, and the percent of the total US demand for various fuel sectors each 
would offset. Total = total liquid transportation fuel, LDV = Light Duty Vehicles, Aviation 
= aviation fuel, Ethylene = chemical production. * Estimate for North America; all other 
estimates for the United States. 

  
Time Frame Area 

(Mha) 
Millions of 

Liters 
% Total % LDV % 

Aviation 
% Ethylene 

Baxter & Calvert, 
Scenario 1 1978 - 2012 15 38,648 6 8 81 39 

Baxter & Calvert, 
Scenario 2 2007- 2012 4.9 12,834 2 3 27 13 

Ramankutty & 
Foley (1999) 1850 -1992 81* 170,100 25 36 358 174 

Lark, et al. 
(2015) 2008 – 2012 1.76 3,696 1 1 8 4 

Zumkehr & 
Campbell (2013) 1850 - 2000 45 94,500 14 20 200 96 

 

 

 
 
 
Table 2.2. Estimates of the fraction of cropland converting to urban development based 

on analyses of the NLCD and NRI over different time periods. 
  

NLCD 2001-2011 NRI 1997-2002 NRI 2002-2007 NRI 2007-2010 NRI 1982-2010 

Fraction of 
Cropland 
Converting to 
Development 

.30 .22 .26 .24 .27 
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Figure 2.3. Pasture area increase between 1978 and 2012 presented as a density of 

total county area. 
 
 
 
 

 
Figure 2.4. Fraction of abandoned cropland area that transitions into a developed or 

barren land use. The national average weighted by county area is 30%. In other words, 
this is a map of urban expansion.  
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Figure 2.5. Available Abandoned Cropland for Scenario 1 presented as a density of 

total county area. 
 
 
 
 

 
Figure 2.6. Available Abandoned Cropland for Scenario 2 presented as a density of 

total county area. 
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Figure 2.7. Available Abandoned Cropland visualized using four different methods. 

Map A: total hectares. Map B: density of total county area. Map C: density of maximum 
cropland area. Map D: dot density. 
  

A B 

C D 
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Chapter 3. Drivers of Cropland Abandonment 

1. Introduction 

The current chapter investigates the process of cropland abandonment and 

specifically the emergence of usable abandoned cropland (UACL). Usable abandoned 

cropland is defined to be land that had been in agricultural production sometime since 

2007 but is no longer in production and has not converted to another immutable land use, 

such as urban development, permanent pasture, or mature forest. The 2007 threshold is a 

constraint specified in the Renewable Fuel Standard to avoid the carbon debt incurred by 

clearing non-agricultural land (e.g., mature forest) for energy production (United States 

Environmental Protection Agency, 2022b). Usable Abandoned Cropland (UACL) 

differentiates itself from Available Abandoned Cropland (AACL) discussed in the 

previous chapter, in that AACL can be calculated to any historical limit while UACL is 

specifically limited by the 2007 constraint. 

Abandoned cropland has been suggested as a potential opportunity for renewable 

energy production, much of which is land intensive. But only “usable” abandoned 

cropland is truly available for such subsequent uses. Conversely, on average, nearly 40% 

of the cropland abandoned in the United States converts to some sort of urban 

development, whether residential, commercial, or industrial (Baxter & Calvert, 2017). In 

some counties, particularly surrounding the northeast metro areas, rates of abandonment 

converting to urban development are 100%. These types of abandoned cropland are not 

usable for renewable energy production as they have actively converted to a land use that 

is likely irreversible and precludes the development of biomass, wind, or utility-scale 
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solar energy production. Whereas active abandonment is characterized by conversion 

directly to another use like urban development, passive abandonment is characterized by 

land that is abandoned for other reasons without an intended subsequent use and 

consequently left unmanaged (Hart, 1968). The potential for passive abandonment to 

result in usable land for energy production has been quantified previously across the US 

(Baxter & Calvert, 2017). However, the processes that drive patterns of this abandonment 

are not clear, and likely heterogeneous across the US. 

This study explores the process by which cropland is abandoned and the 

economic, demographic, and biophysical factors that contribute to the landscape patterns 

of usable abandoned cropland. Understanding these factors can help identify potential 

land opportunities for other activities beyond food production. Specifically, an emphasis 

is placed on usable abandoned cropland as a potential land base on which to produce 

renewable energy, whether biomass (Fargione et al., 2008; Field et al., 2020; Hellmann & 

Verburg, 2011; Searchinger et al., 2008), solar (Daniels, 2023; Hoffacker et al., 2017; 

Katkar et al., 2021; Nordberg et al., 2021), or wind (Alonso Serna, 2022; Dabiri et al., 

2015; Diffendorfer et al., 2019), to satisfy production and sustainability requirements. 

Ultimately, the decision about whether agricultural land stays in production or not, a 

local-scale process that takes place at the farm and field level, involving the intended land 

use decisions made by landowners or farmers about how to utilize their land. These 

proximate causes are defined by Geist and Lambin (2002, p. 143) as “human activities or 

immediate actions at the local level, such as agricultural expansion, that originate from 

intended land use and directly impact [land] cover.” These proximate causes may include, 

for example, retiring from farming and allowing fields to return to an unmanaged state, 
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investing in real estate opportunities and converting farms to suburban housing 

developments, or shifting production practices from crops to pasture due to changes in 

farmer interest or economic profitability. 

The factors driving landowner decisions are influenced by driving forces 

operating at the county, state, or national levels. These driving forces constrain and 

control the local processes that occur beneath them and establish an environment or set of 

conditions that influence local-scale decisions (Allen & Starr, 1982). Geist and Lambin 

(2002) define driving forces as “fundamental social processes, such as human population 

dynamics or agricultural policies, that underpin the proximate causes and either operate at 

the local level or have an indirect impact from the national or global level.” Therefore, by 

conducting this current analysis at the county level, rather than at the local field level or 

broad national level, I am investigating driving forces that influence the process of 

cropland abandonment. 

Lambin and Geist (2006) caution that oversimplification of land change systems 

can be helpful but misleading. Generalization and variable selection are unavoidable and 

must be interpreted within the context and scale of the research. In the current study, all 

variables are aggregate measures of the economic, demographic, geographic and 

biophysical conditions of each county in the United States. Results of this analysis can 

help indicate which of these variables is likely to represent a driver underlying cropland 

abandonment. 

1.1. Drivers of Cropland Abandonment 

Land use land cover (LULC) change has been studied from different perspectives. 

Foley et al. (2005) take a global perspective, with the understanding that land use is a 
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local phenomenon that has global implications as it is aggregated. In addition to this 

recognition of the importance of spatial scale, Foley et al. (2005) asserts that a temporal 

component is relevant too, in that there are potentially different impacts in the short term 

versus the long term. Some studies take a regional perspective and use statistical 

relationships with underlying land characteristics to project future land use patterns 

(Gellrich et al., 2007; Mahiny & Clarke, 2012; Temme & Verburg, 2011; Veldkamp & 

Fresco, 1996; Verberg et al., 2002; Verburg et al., 2006; Verburg & Overmars, 2007; 

Verburg & Overmars, 2009). 

Some studies have investigated the development of a specific type of land cover 

or land use, for example, using spatially explicit models to project future distribution of 

bioenergy crops (Hellmann & Verburg, 2011). Others assess the impacts of land change 

on different phenomena like carbon emissions and climate (Houghton et al., 1999; 

Searchinger et al., 2008; Strengers et al., 2004), land availability and global food security 

(Lambin, 2012), water resources (Näschen et al., 2019), earthquake risk assessment (Nath 

et al., 2020), and ecosystem services (Yirsaw et al., 2017). Many such studies group the 

predictor variables in their studies into categories such as economic, institutional, 

technological, cultural, and demographic, as defined in Geist and Lambin (2002).  

Within this larger body of research, some studies have specifically investigated 

the process of cropland abandonment using a similar set of predictor variables. Gurgel et 

al. (2021) take a broad, global view of cropland abandonment and groups possible 

driving factors into economic, population, food demand, and climate categories, 

concluding that economic and population factors dominate. van Vliet et al. (2015) 

performed a meta-analysis of cropland change research in Europe and classified drivers 
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into the following categories: farmer characteristics, demographic, economic, 

technological, institutional, sociocultural, and location factors. Their findings show that 

institutional characteristics, farmer characteristics, and economic drivers are the most 

important, followed by location. A recurring theme in this literature is that certain drivers 

are dominant, particularly socio-economic, with other factors playing lesser roles that act 

as mediating forces or catalysts of change (Zaragozi et al., 2012).  

Rey Benayas et al. (2007) perform a meta-analysis of the literature and observed 

that the most decisive factors in explaining farmland abandonment are: first, socio-

economic factors; followed by factors related to poor management; and finally, physical 

variables. They state that "abandonment is mainly a human process" and, furthermore, 

that "usually, some of these [socio-economic] drivers are mediators of large-scale or 

macro-driving forces of change, representing, ultimately, new economic opportunities” 

(Rey Benayas et al., 2007, p. 2). They find that at the global level rural-urban migration 

in areas where new economic opportunities are offered to rural people is the number one 

driver. Even when approaching cropland from different scales, the socio-economic 

drivers appear to dominate and be facilitated by other factors. "Agricultural land whose 

production is limited by ecological factors such as fertility or precipitation is more prone 

to be abandoned if socio-economic factors act” (Rey Benayas et al., 2007, p. 2). This 

reiterates the observation above that some factors serve as catalysts when the underlying 

socio-economic factors occur. 

A particular socio-economic process that is significant to cropland abandonment 

in the literature is the decline in economic competitiveness. Hart (1968) studies the 

eastern United States and finds that a potential factor is the "loss of major crop." For 
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example, many counties in the South, where cotton was dominant, struggled to compete 

with other areas of production due to poor land quality. Consequently, land may have 

been abandoned as the major crop (cotton) moved to other regions. Some land may have 

continued to produce other crops, but the loss of a major crop could contribute to 

abandonment. Napton et al. (2010) studies the southeastern United States and finds that 

increasing demand for commercial forest products coincided with farming becoming less 

competitive, in addition, there were federal programs that subsidized the conversion of 

cropland to forest land. Even dating back to the 19th and 20th centuries, degradation of 

soil quality coupled with the opening of new productive croplands elsewhere led to 

existing cropland, particularly in the northeastern United States, losing competitiveness 

and leading to abandonment (Stoof et al., 2015). 

Munroe et al. (2013) echo many of the above observations and assert that land 

abandonment is not an end state but rather part of a continuous cycle of land change. 

Abandonment typically takes place on remote, less productive, and less profitable land, 

although it has been observed on land not considered marginal. Ultimately, the 

underlying drivers of change, however, are primarily socio-economic. Examples that 

Munroe et al. (2013) provide from around the globe include competition with more 

profitable land opportunities in the western United States leading to abandonment in the 

east (Ramankutty et al., 2010), aging farm populations in Europe (MacDonald et al., 

2000), adjusting economies in post-soviet Eastern Europe (Müller & Munroe, 2008), 

rural-to-urban migration in Latin America (Aide et al., 2013), and resource conservation 

efforts in Africa (Hartter et al., 2010). 
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Several studies focus specifically on mountainous regions, which are similar to 

the East & Central Farming region in the eastern United States. These found that 

mountainous regions with fragmented farms that are far from population centers 

experience more abandonment. The importance of proximity to urban areas is a finding 

unique to mountainous areas (MacDonald et al., 2000; Mottet et al., 2006; Müller et al., 

2009; Pazúr et al., 2014). 

1.2. Study Area 

The study area for this research is the eastern United States. The 100th parallel is 

roughly the western extent of the study area and represents a demarcation to the west of 

which agricultural land is largely arid and highly irrigated and to the east of which 

irrigation is less common or necessary. This difference between east and west is 

noticeable and complicates the effort to try and develop a single model to explain land 

use decisions. Eastern and western counties are inherently different due to these 

conditions. Consequently, this study only focuses to the east of the 100th parallel to 

simplify the analysis and remove irrigation and aridity as substantial, complicating 

factors. 

To more precisely define the western extent of the study area, the US Department 

of Agriculture (USDA) land resource regions (LRRs) are utilized. LRRs are delineated 

areas that are each characterized by common physiography, geology, climate, water 

resources, soils, biological resources, and land use (United States Department of 

Agriculture, 2022). The entire United States consists of 28 LRRs, and this study includes 

11 regions in the eastern part of the country (Figure 3.1).  
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Figure 3.1. Entire study area and the Land Resource Regions (LRRs) within it. 
 

1.3. Research Questions 

To investigate the drivers of usable abandoned cropland, this study poses two 

research questions: 

1. Are there different factors that influence (1) whether a county will 

experience a gain in UACL or not versus (2) how much UACL exists in 

counties that experience a positive gain? 
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2. What are the regional differences in the factors that drive the emergence 

of usable abandoned cropland? 

To address these research questions, three hypotheses are tested: 

1. A unique set of factors are important to the binary classification of 

counties with a positive gain versus those with no gain (H1). 

2. A unique set of factors are important to the amount of UACL in counties 

that experience a non-zero gain (H2). 

3. The factors most important to the emergence of usable abandoned 

cropland in the counties of one region are different than the factors 

important to counties in other regions (H3). 

2. Data and Methods 

2.1. Dependent Variable 

The target variable in this study is the amount of net usable abandoned cropland 

that has emerged between 2007 and 2017. 2017 is set as the current time because it 

represents the latest year available in the Census of Agriculture, as of the date of this 

writing. 2007 is set as the historical maximum to abide by constraints imposed by the 

Renewable Fuel Standard (RFS), which amended the Clean Air Act (United States 

Environmental Protection Agency, 2022a). The RFS regulations state that only existing 

agricultural land may be utilized for producing biofuel feedstock. This land is defined as 

land “that was cleared or cultivated prior to December 19, 2007” and not forested (United 

States Environmental Protection Agency, 2022b). Cropland that had been abandoned 
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earlier than 2007 would not be considered cultivated and may have had time to grow 

forest cover and is therefore not eligible for conversion to energy crop production. 

Enforcement of this constraint is made only by observing the net change in 

agricultural land relative to the amount of cropland as of 2007 (Larson, 2014). It is 

possible that areas not cultivated prior to 2007 were converted to energy crop production 

while other cropland areas were abandoned to other uses, such as urban development. In 

this way, expansion into disallowed land may be obscured due to abandonment in other 

areas. Only if expansion of energy crop production exceeds abandonment would 

enforcement take place. 

Using the methodology developed by Baxter and Calvert (2017), the area of net 

usable abandoned cropland (UACL) in each county in the United States between 2007 

and 2017 is calculated. This method utilized the Census of Agriculture as its primary data 

source and the National Land Cover Dataset (NLCD) to account for cropland estimated 

to have transitioned into an urban land use. This is in contrast to other studies that have 

estimated abandoned cropland using different methods and relying on other primary data 

sources such as the Cropland Data Layer (CDL) (Lark et al., 2015; Plassin et al., 2021), 

global remote sensing imagery (Campbell et al., 2008; Ramankutty & Foley, 1999a, 

1999b), and a combination of census data and remote sensing to hindcast the amount and 

distribution of cropland back into the 1800s (Zumkehr & Campbell, 2013). UACL areas 

are divided by the total cropland area of each county to normalize results and account for 

the variable range of county sizes (See Appendix B for detailed data processing 

procedures). 
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When performing the initial subtraction of cropland between 2007 and 2017, 

some counties show an increase in cropland, or in other words, a negative value of 

abandoned cropland. These negative values are treated as zeros. Treating negative values 

as zero explicitly focuses the analysis on opportunities for new energy production 

activities, which only occur on UACL, making areas of cropland expansion irrelevant. 

Additionally, a negative value for “usable” abandoned cropland is nonsensical because 

usable abandoned cropland excludes other types of abandoned cropland, i.e., cropland 

that actively converted to another land use, such as urban development. This research is 

studying land opportunities for future production, not general agricultural land use 

change which may benefit from including both expansion and abandonment. Thus, it is 

sufficient to know whether a county has abandonment or not, and to know the actual 

value of net positive UACL area. 

It is possible for a county in this study with zero abandoned cropland to have 

experienced abandonment in some places and be negated by cropland expansion in other 

places. Consequently, some abandoned cropland area changes within counties may be 

obscured. However, the emphasis on net abandonment at the county-level in this study 

reflects the opportunity to identify counties and, subsequently, regions with the greatest 

potential for available land for producing renewable energy. County-level and regional-

level estimates of UACL are relevant to state and federal level policies that would benefit 

from information about where best to focus renewable energy investments.  

2.2. Predictor Variables 

This study does not include all potential forces influencing the decisions of 

farmers to abandon cropland. This is due in part to practical concerns, i.e., some factors 
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are not available or representable in a spatial data format at the county level. Also, the 

current analysis investigates how the driving forces of agricultural land use change vary 

across space, from county to county. Accordingly, the statistical analysis excludes 

variables that are constant nationwide, such as commodity prices, national policies, and 

national and international market conditions. Although these factors influence decisions 

to abandon cropland the data is not resolved at this scale. Rather, this analysis includes 

variables that have resolution at the county-level (a moderate hierarchical level) to 

identify factors that are relevant and contribute to regional land use patterns. 

A suite of independent variables describing the economic, demographic, 

geographic and biophysical characteristics of each county is prepared. Data regarding 

farm economics and farmer demographics are obtained from the United States Census of 

Agriculture for the years 2007, 2012, and 2017 (United States Department of Agriculture, 

2017). The Census of Agriculture is administered by the US Department of Agriculture 

every 5 years using surveys of every farm in the United States that makes at least $1000 

in revenue. The Census of Agriculture aggregates its data to the county level, so no 

additional processing is required. 2017 is the latest year data from the Census of 

Agriculture are available and 2007 marks the historical extent of the study; these datasets 

are used to calculate variables of change over time. Data from 2012 are used to represent 

conditions at a single point in time, and 2012 is the midpoint of the study’s temporal 

extent.  

Data regarding economics and demographics of the general population are 

derived from the United States Population Census conducted by the United States Census 

Bureau in 2010 and 2017 (United States Census Bureau, n.d.). The Population Census 
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aggregates its data to the county level, so no additional processing is required. Variables 

representing conditions at a single point in time are taken from the 2010 decennial 

census, which is the closest time frame of available data to the 2012 data used from the 

Census of Agriculture. The decennial census is an enumeration of the population by 

surveying every household in the country. The 2012 Census of Agriculture data and the 

2010 Population Census are treated the same in the analysis to represent the approximate 

midpoint of the study timeframe. More recent data is derived from the American 

Community Survey conducted in 2017, which aligns with the time extent in the study and 

data from the Census of Agriculture. The American Community Survey is conducted in 

years between each decennial census and is based on a sample of the population, unlike 

the decennial census which is a direct enumeration of every household. Some variables, 

however, are only available in the American Community Survey, which necessitates its 

use despite the potential reduction in accuracy due to it being a sample rather than a 

direct count of the entire population. 

Road and rail network data are obtained from the US Department of 

Transportation (United States Department of Transportation, 2012). These vector datasets 

are used to calculate sums of the total length of all road or rail lines in each county, which 

are then divided by the county’s total area to derive rail and road density figures. Climate 

data represents 30-year normal for temperature and precipitation developed by PRISM 

(PRISM Climate Group, 2023). This raster data has a spatial resolution of 4km, and 

values are aggregated to the county level by taking the average of all pixels within each 

county. Slope is calculated by utilizing a 1/3 arc second (approximately 10m) spatial 

resolution digital elevation model (DEM) from the United State Geological Survey 
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(United States Geological Survey, 2023). ArcGIS Pro software (Esri, 2023) is used to 

calculate a slope value for every pixel in the dataset from the elevation values in the 

DEM. These pixel values are then averaged to determine an aggregate value for each 

county. Crop productivity is calculated to be the average of the values of the National 

Commodity Crop Productivity Index (NCCPI) from the 90m gSSURGO dataset from the 

United States Department of Agriculture, Natural Resource Conservation Service 

(NRCS) (United States Department of Agriculture, 2023). The NCCPI rates “soils 

according to their inherent capacity to produce dryland (non-irrigated) commodity crops” 

(Albers et al., 2022). Table 3.1 lists the final predictor variables selected for analysis, and 

Table 3.2 shows summary statistics across the entire study area. Figure 3.2 contains maps 

of six of the predictor variables, which emerge as some of the most important in the 

results. 
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Table 3.1. Predictor variables and units. 
 

Variable Units 
Average value of farmland and buildings in 2012  $/ac 
Percent change in average value of farmland and buildings between 2007 and 2017 % 
Average rent paid by farmers in 2012  $/farm 
Change in average rent paid by farmers between 2007 and 2017 $ 
Median housing value in 2010 $ 
Percent change in median housing value between 2010 and 2017 % 
Median household income in 2010  $ 
Percent change in median household income between 2010 and 2017 % 
Median household age in 2010 age in years 
Average age of principal farm operator in 2012 age in years 
Unemployment rate in 2010 % of population 
Change in unemployment rate between 2010 and 2017 % 
Mean annual precipitation  mm 
Mean annual temperature  degrees C 
Average crop productivity NCCPI index 
Average slope angular degrees 
Distance to nearest urban area  m 
Percent of population living in an urban area in 2010 % of population 
Population density in 2010 persons/ha 
Density of road networks  total road length/ha 
Density of rail networks  total rail length/ha 
Percent of county in cropland % of county area  
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Table 3.2. Predictor variable summary statistics (minimum value, maximum value, 
mean, and standard deviation) for the entire study area. 
 

Variable Min Max Mean SD 
Average value of farmland and buildings in 2012  913.0 35660 4214 2834 
Percent change in average value of farmland and buildings 
between 2007 and 2017 

-82.46 324.6 42.64 40.30 

Average rent paid by farmers in 2012  454.6 248600 28380 33550 
Change in average rent paid by farmers between 2007 and 
2017 

-74370 104800 1070 19110 

Median housing value in 2010 44400 507800 125800 64700 
Percent change in median housing value between 2010 and 
2017 

-34.24   55.22 7.908 11.90 

Median household income in 2010  20080 1156 44070 1215 
Percent change in median household income between 2010 
and 2017 

6.572 104.4 47.600 13.125 

Median household age in 2010 25.00 55.90 40.07 4.041 
Average age of principal farm operator in 2012 47.80 65.70 58.46 2.036 
Unemployment rate in 2010 1.900 23.00 8.144 2.885 
Change in unemployment rate between 2010 and 2017 0.224 3.156 8.144 0.2784 
Mean annual precipitation  634.9 1933 1193 223.8 
Mean annual temperature  3.508 24.48 13.30 4.180 
Average crop productivity 0.08194 0.9132 0.4617 0.1664 
Average slope 0.270 24.76 4.783 4.197 
Distance to nearest urban area  0 448100 85310 68090 
Percent of population living in an urban area in 2010 0 0.9998 0.4267 0.2907 
Population density in 2010 0.01555 18.59 0.7123 1.396 
Density of road networks  0 7.237 1.484 0.8290 
Density of rail networks  0 4.767 0.5980 0.5276 
Percent of county in cropland 0.1623 99.87 29.29 0.2639 
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 Figure 3.2. Maps of some important predictor variables: (a) mean rent in 2012, (b) 
value of farmland and buildings in 2012, (c) change in average rent per farm between 
2007 and 2017, (d) percent change in value of farmland and buildings between 2007 and 
2017, (e) distance to urban areas, and (f) percent of county area in cropland. 
 

(a) (b) 

(c) (d) 

(e) (f) 
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2.2.1. Outlier and Missing Values 

Thirteen counties have values in at least one variable that are outliers relative to 

the other counties. For example, Nantucket, Massachusetts and New York, New York 

have average housing values of $1,000,000 and $825,200, respectively, that strongly 

skew the distribution of values that have a mean of $127,676 and a standard deviation of 

$74,026. Of the outlier counties, most have either no cropland at all or predictor values 

have been redacted to protect the identities of the very small number of farmers in the 

area. Of the 1,302 remaining counties in the study area, 29 have missing values, most 

commonly due to redaction in order to protect the privacy of farmers in counties that 

contain only one or a few farms and are removed from the analysis. 

2.2.2. Collinearity 

Of all the remaining variables, a correlation matrix illustrates if any pairs of 

variables show relationships between them. Variable collinearity is a condition that 

violates an assumption of regression models. Table 3.3 shows the variable pairs with a 

correlation coefficient greater than 0.6 to highlight the strongest relationships. These 

relationships can be explained mostly by reasonable commons sense; population density 

shows a strong relationship with road and railroad density, road and railroads are related 

to each other, and housing value is related to land value and household income. Similar 

studies use higher thresholds (0.7, 0.8 or above) above which variables should be 

considered for removal (Mahan et al., 2010; Spangler et al., 2022). Although some of the 

variables in this study are correlated at levels above 0.6, all variables are retained, in part 

due to the demonstrated use of higher thresholds in other studies and because the random 
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forest statistical method used in this study is not sensitive to correlated predictors, unlike 

traditional parametric regression techniques. 

 

Table 3.3. Independent variable correlation coefficients greater than 0.6. 
 

Variable 1 Variable 2 Correlation 
Housing value 2010 Land value 2012 0.67 
Household income 2010 Land value 2012 0.60 
% Land in cropland Average rent paid 2012 0.79 
Change in land value 07-17 Average rent paid 2012 0.61 
Change in rent paid 07-17 Average rent paid 2012 0.76 
Road density % population in urban areas 2010 0.60 
Road density Population density 2010 0.81 
Household income 2010 Housing value 2010 0.85 
Rail density Road density 0.63 
Crop productivity % Land in cropland 0.69 
Change in land value 07-17 % Land in cropland 0.70 
Change in rent paid 07-17 % Land in cropland 0.74 
Mean temperature Mean precipitation 0.68 

 

2.2.3. Spatial Autocorrelation 

Spatial autocorrelation is a characteristic of geographic data where observations 

present a correlation with each other based on their spatial proximity (Anselin, 1988; 

Legendre & Fortin, 1989), in other words, observations that are spatially close to each 

other have values that are more similar than to observations that are far away. These 

correlations may be inconsequential or may indicate a functional process whereby a 

location’s value is directly influenced by the values of its neighbors. If the latter case is 

true, it is necessary to identify it and account for it in any statistical models. Furthermore, 

a requirement in many statistical methods is that observations be independent of each 

other and not related in space; thus, the presence of spatial autocorrelation precludes the 

use of such methods or calls their results into question. 
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Using ArcGIS Pro software, a Morans-I analysis of UACL produces a value of 

0.21. This indicates a slight expression of spatial autocorrelation. A Morans-I value of 1 

indicates high spatial autocorrelation with similar features clustering near each other, a 

value of 0 indicates a random arrangement, and a value of -1 indicates a checkerboard 

pattern where dissimilar features are near each other. This small expression of spatial 

autocorrelation is not surprising, as national crop production follows broad distributions 

similar to those of climate and geology, which are spatially autocorrelated. However, the 

Morans-I value is low, which indicates that the expression of UACL is largely not 

spatially autocorrelated and that the process of cropland abandonment resulting in usable 

land is not dependent on spatial proximity. Perhaps at the local level (e.g., land parcels) 

there is a process at work where a landowners decide to abandon cropland due to a 

neighbor doing so, i.e., spatial autocorrelation, but at the county level, which is the scale 

of UACL in this study, a causal process due to spatial proximity is unlikely thus resulting 

in the low Morans-I. It is therefore not necessary to control for spatial autocorrelation in 

the model. 

2.3. Region Selection 

In addition to performing analyses of the entire eastern United States study area, 

comparisons are made across four LRRs (Figure 3.3). These include Central Feed Grains, 

East & Central Farming, South Atlantic Cash Crops, and Atlantic & Gulf Coast. These 

regions are selected due to their relatively large extent and number of counties and 

represent distinct topographical and agricultural characteristics. These regions also 

perform well in the statistical analysis, as explained in the following section. 
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Figure 3.3. LRRs selected for analysis. 
 

2.4. Statistical Analysis 

Given the large number of zero values in the dependent variable of UACL, 

traditional regression techniques are not well suited. The large number of zero 

observations in the dependent variable suggests that there is a meaningful process that 

influences whether a county has zero UACL versus non-zero UACL and a process that 
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influences the magnitude of UACL in counties that have a non-zero value. These 

realizations call for statistical methods that address the preponderance of zero 

observations and the bounded nature of the dataset. Generalized linear regression models 

assume that data are normally distributed and are not bounded. The UACL values in this 

study are not normal, given the long tail of zeros in its histogram, and are bounded by 

zero and one since the values are fractions representing percents. Furthermore, this 

analysis aims to determine variable significance, or importance, rather than a model 

intended to make predictions of the dependent variable.  

Random forest is chosen as the statistical method for this study and has been 

employed in similar research (Peeler & Smithwick, 2018; Prasad et al., 2006; Spangler et 

al., 2022). Prasad et al. (2006) is of particular relevance as the data in that study contains 

a substantial number of observations with a value of zero, leading to the same 

complications encountered in this study with regard to regression model fitness 

assumptions. Other methods exist that account for a preponderance of zero values and a 

bounded range in the dependent variable, such as fractional regression, but are not 

employed here (Breiman, 2001; Papke & Wooldridge, 1996; Ramalho et al., 2011). 

Random forest is a collection of many tree-structured classifiers each consisting 

of nodes at which a randomly selected independent variable is used to split a sample 

population (Breiman, 2001). This pattern repeats recursively with other randomly 

selected variables and split values until the population is ultimately split into groups of 

observations that are the most similar within the group and most different from other 

groups. By randomly selecting variables and iterating through many trees, no a priori 

knowledge of variable significance or relationship needs to be known nor does the data 
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need fit to a certain distribution, as is the case for other methods like linear regression. 

Furthermore, data covering a large geographic area can be problematic for traditional 

regressions as independent variables’ influence may vary from one region to another. The 

randomized tree approach allows for more flexible results that are not bound to particular 

distribution curves, allowing for a more exploratory analysis that reveals patterns that 

may have otherwise been obscured (Prasad et al., 2006). 

The dependent variable in a random forest analysis can be nominal (e.g., land 

cover classes) or ratio (e.g., values of population density). random forest can therefore be 

run in two different forms: classification or regression. The difference is how nodes are 

split and aggregated to develop an overall result for the model. In either case, 

independent variables can be measured for their importance in predicting the dependent 

variable regardless of the predictive power of the model (Prasad et al., 2006).  

To test the first hypothesis regarding whether a county experiences a net gain in 

UACL or not, random forest is run in classification mode. This run is similar to a logistic 

regression in the sense that the dependent variable is classified into two classes: counties 

with a value of zero UACL and counties with a non-zero value of UACL. This binary 

form of the dependent variable allows the analysis to determine which variables are 

important in distinguishing counties that experience UACL and those that do not. To test 

the second hypothesis regarding the magnitude of UACL in counties that have a non-zero 

value, random forest is run in regression mode. To test the third hypotheses, both the 

classification and regression modes of random forest described above are run for just the 

counties in each region.  
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The measure of percent variance explained, which is an output from random 

forest that is similar to R2 in traditional regression analysis, are very low for some sub 

regions (Table 3.4). A test run of a random forest regression is performed twice: first 

against all counties (including those with a UACL value of zero) within each sub region 

and second against only those counties with a non-zero UACL value. Regions with a 

percent variance explained value above 20 in the non-zero test performed relatively well 

and are selected for further analysis. 

 

 
Table 3.4. Percent variance explained by random forest analysis of each study area 

region. 
 

Region UACL Non-Zero UACL 
Entire Study Area 24.18 42.96 
Atlantic and Gulf Coast 10.53 24.73 
Central Feed Grains -12.07 30.06 
East and Central Farming 22.33 12.91 
Florida Subtropical Fruit 2.28 -10.82 
Lake States Fruit 0.06 16.52 
Mississippi Delta Cotton -12.84 -17.93 
Northeastern Forage 4.94 19.14 
Northern Atlantic Slope -35.6 38.11 
Northern Lake States 15.23 10.10 
South Atlantic Cash Crops 14.17 23.77 
Southwestern Prairies Cotton 4.66 -33.46 

 
  



91 
 

The Central Feed Grains region performed poorly in the test of all counties (-

12.07) but was retained in the analysis because of its of particular importance in the 

agricultural landscape in the eastern United States. Such low percent variance explained 

values for many of these regions suggests that there are other predictors involved that are 

missing. They may also indicate that the factors that are included do an inadequate job at 

explaining the dependent variable and, therefore, the model should be discarded. This is 

not necessarily the case, however. First of all, a single measure of model fitness, like 

percent variance explained or R2, does not define whether there is value in a model. Such 

measures can be quite low and still describe a model that contains useful information 

(Moriasi et al., 2015; Spiess & Neumeyer, 2010). Secondly, the purpose of the random 

forest application in this study is not to develop a predictive model, for which a measure 

of fitness may be more relevant. Rather, this study aims to elucidate variable importance. 

A low measure of fitness does not negate information about variables’ relative 

importance to variation in the dependent variable. 

Prior to running the random forest models, two parameters (nTree and mTry) are 

tuned to achieve the highest performance. Some assert that the default model values of 

mTree=500 and nTry=7 are optimal for most cases but that increasing the number of 

trees can help to achieve stable importance values (Grömping, 2009; Probst et al., 2019; 

Spangler et al., 2022). Several combinations of these parameters are tested to determine 

the values to utilize in all model cases. 

The first parameter is nTree, which specifies the total number of random trees that 

will be generated. Increasing this number helps ensure that every variable will likely be 

used to split a node and therefore assessed for its importance. If a study has many 
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predictor variables, but likely only a few that are important, more trees is better to help 

the model identify those most important ones. However, it is possible that a few dominant 

variables may be selected over and over, resulting in them obscuring the importance of 

slightly lesser, but still important, variables.  

nTree is tested with values of 250, 500, 1000, 2000, 4000, and 8000 (Table 3.5). 

When testing different nTree values for UACL and All Counties, overall model accuracy 

(percent variance explained) peaks at around 24.27% 4000 trees. Accuracy increases 

from a value of 250 and plateaus at around 24% at 500, with a slight dip at 1000, 

returning to 24% at 2000 with little change beyond that value. 2000 was selected as the 

nTree value to use in all model cases as a good compromise between accuracy and 

computation time. 

 

Table 3.5. Variable Importance to the classification of zero versus non-zero UACL 
counties in the entire study area. 

nTree Percent Variance Explained 
250 23.54 
500 24.09 
1000 23.81 
2000 24.05 
4000 24.27 
8000 24.05 

 
 

The second parameter is mTry, which specifies the number of randomly selected 

variables that will be available to perform the split at each node. For example, if mTry is 

set to seven, seven predictors will be randomly selected at a given split. The model will 

iterate through those variables to determine which produces the optimal segregation of 

the data into two groups. Only that one chosen variable performs the split. At each 
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subsequent node, a new random selection of 7 variables is selected, and one of those is 

chosen as the most optimal splitter. 

Holding nTree constant at 2000, mTry is tested with values of 4, 7, 14, and 20. 

All mTry values resulted in essentially the same percent variance explained. Furthermore, 

each run results in the same variable listed as the most important and the next five or six 

variables were the same with only slight differences. Since varying mTry does not affect 

the variable importance results in the model and did not improve overall accuracy, the 

default value of 7 is selected. 

To address the hypotheses stated earlier, three separate runs of random forest are 

performed. The first classifies counties in the entire study area into two classes: one 

consisting of counties with a value of zero UACL, and one consisting of counties with a 

non-zero value of UACL. Random forest is run in classification mode to determine which 

predictor variables are most important in distinguishing counties that experienced a net 

increase in usable abandoned cropland versus those that did not. The second run excludes 

all counties with a value of zero UACL and only includes counties with a non-zero value. 

The actual values of UACL are retained and random forest is run in regression mode to 

determine which predictor variables are most important to the magnitude of usable 

abandoned cropland in counties that experienced a net gain. The third run compares both 

the classification of zero versus non-zero UACL counties and the magnitude of non-zero 

UACL counties for each of the four regions. Doing so allows for the observation of 

differences among the regions of the eastern United States. 
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3. Results 

3.1. Usable Abandoned Cropland 

Using the methodology from Baxter and Calvert (2017), UACL is calculated for 

counties in the eastern United States between the years of 2007 and 2017 (Figure 3.4). Of 

the 2140 total counties selected for the analysis, 867 have a value of zero UACL (Figure 

3.5). This represents approximately 40% of the counties in the eastern Unites States that 

have no net increase in usable abandoned cropland. These and other counties with low 

amounts of UACL appear to be concentrated in the Central Feed Grains region, although 

they are scattered throughout the entire study area. Higher values of UACL are 

concentrated in the East & Central Farming and southeastern regions of the United States. 
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Figure 3.4. Usable abandoned cropland (UACL) over the 2007 – 2017 timeframe. 
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Figure 3.5. Histogram of UACL values for counties across the entire study area. 
 

The range of values in the usable abandoned cropland dataset is a minimum of 

zero and a maximum of approximately 0.63. The median value is approximately 0.013 

and an interquartile range from 0.0 to 0.09 (Figure 3.6). These figures illustrate that 75% 

of the counties saw less than 10% of their total cropland convert to usable abandoned 

cropland. Only 25% of counties saw between approximately 10 and 63% of their total 

cropland convert to UACL. 

When looking only at counties with a non-zero value of UACL, the median is 

approximately 0.07 and an interquartile range from approximately 0.02 to 0.16 (Figure 

3.7). Even when excluding all counties with zero net gain in usable abandoned cropland, 

75% of counties see less than only 16% of total cropland convert to UACL. For the 

majority of counties in the eastern United States with a net gain in usable abandoned 
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cropland, this land opportunity represents a small fraction of the county’s total cropland 

area. 

 

 

 

Figure 3.6. Box plot of UACL values including all counties in the entire study area. 
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Figure 3.7. Box plot of UACL values of only those counties with a non-zero value. 
 

3.2. Drivers of UACL – Binary Classification of Counties (H1) 

The change in Rent Paid per Farm from 2007 to 2017 has the highest variable 

importance in determining whether or not abandoned cropland is available (Figure 3.8). 

Mean Annual Precipitation is the next most important followed by Percent Change in 

Land Value from 2007 to 2017. It is notable that two of these three most important 

predictor variables represent change in economic conditions over time. Important 

variables measuring change over time are unique to the binary analysis testing 

Hypothesis 1 (H1). One variable describes how rents that farmers pay to work their farms 

changes and the other describes how the value of the farmland and its buildings changes 

over time. Other economic variables that represent the absolute rents and values at a 

single time period are also present in the model but show less importance. 
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Figure 3.8. Variable Importance to the classification of zero versus non-zero UACL 
counties in the entire study area. 

 

The relationship between each predictor variable and UACL is illustrated in 

partial dependence plots. The pattern of relationship between Change in Rent Paid per 

Farm from 2007 to 2017 and UACL shows a positive relationship for rent values that 

decrease over time and a negative relationship for rents that increase over time (Figure 
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3.9). This suggests that counties where rent values are stable or decrease over time 

experience the greatest increase in UACL, and counties with larger increases in rent over 

time produce less UACL. Mean Precipitation shows a relationship where UACL 

increases slightly with low precipitation values and increases steeply as precipitation 

grows beyond 1000 mm, levelling off at around 1500 mm (Figure 3.9). There is a greater 

likelihood that a county will produce a net increase in UACL if it experiences more than 

1000 mm precipitation per year. The relationship between Percent Change in Land Value 

from 2007 to 2017 and UACL shows a threshold around zero, below which there is 

nearly no increase in UACL and above which there is a steep increase in UACL 

ultimately leveling off at around 100%, which is equivalent to a doubling of land value 

over time (Figure 3.9). 
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Figure 3.9. Relationships between three predictor variables and the classification of 

zero versus non-zero UACL counties in the entire study area. 
 

 

The economic variables of rent and land value change over time show strong, but 

opposite, relationships with UACL. Increasing rent leads to decreasing UACL, while 

increasing land value leads to increasing UACL.  
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3.3. Drivers of UACL – Positive Gain Counties (H2) 

Two variables stand out as the most important to the magnitude of non-zero 

UACL counties: percent of the county’s area that is cropland in 2012 and mean annual 

temperature (Figure 3.10). Land value in 2012 and average rent paid in 2012 are the next 

most important variables. Like the classification analysis of zero versus non-zero counties 

(H1), a biophysical variable is among the most important, however in this case it is 

temperature rather than precipitation. A notable contrast with H1 is that, in the case of 

only the non-zero counties, three of the top four most important variables are values for a 

single year rather than their change over time. Cropland area, land value, and rent 

represent economic and geographic conditions at a particular time and indicate that 

measure of such factors at a single point in time influences the magnitude of UACL in 

counties that have a net gain. Important variables measuring conditions at a single point 

in time are unique to the non-zero analysis test of Hypothesis 2 (H2). 
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Figure 3.10. Variable importance to the regression of non-zero UACL counties in the 
entire study area. 

 

Partial dependence plots for the non-zero counties in the entire study area show 

how important each predictor variable is in affecting variation in UACL. The percentage 

of a county’s total area that is cropland shows a negative relationship with UACL (Figure 

3.11). This variable is normalized by county area, so county size should not skew the 

findings. Counties with little area in cropland experience a greater rate of usable 

abandoned cropland while counties with increasing amounts of their area in cropland 
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experience more usable abandoned cropland. The decrease in UACL with increasing 

percentage of cropland plateaus at around 25% of county area. Mean annual temperature 

shows a positive relationship with usable abandoned cropland (Figure 3.11). Below 

approximately 10 ºC UACL is steady, then increases until approximately 20 ºC when it 

again plateaus. This suggests a threshold between 10 and 20 ºC above which counties 

may experience a greater increase in usable abandoned cropland. Land value and rent 

paid in 2012 both show negative relationships with usable abandoned cropland (Figure 

3.11). In each case UACL decreases until a threshold value at which it levels off. For 

land value in 2012 the threshold is approximately $5,000 and for rent paid the threshold 

is approximately $25,000. These two relationships suggest that as rents increase, likely 

due to high agricultural productivity, and land value increases, due to opportunities to sell 

land to developers, land either remains in agricultural production or is sold to developers 

for urban development. In both cases, little land is abandoned and left usable for other 

purposes. 
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Figure 3.11. Relationship between four predictor variables and the non-zero UACL 
counties in the entire study area. 

 

3.4. Regional Differences in Drivers of UACL (H3) 

To test the hypothesis regarding differences among regions in the eastern United 

States (H3), random forest is run separately including only the counties within each 

region. Random forest is run in both classification and regression modes to investigate 

the process influencing whether a county experiences a net increase in usable abandoned 

cropland (i.e., counties with a UACL value of zero versus counties with a non-zero value 
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of UACL) and the factors that influence the magnitude of usable abandoned cropland in 

counties that experience a net increase.  

3.4.1. Binary Classification of Counties in Each Region 

In the classification case of counties with zero UACL versus counties with a non-

zero value of UACL the variable that is distinctly the most important across the entire 

study area (change in rent paid between 2007 and 2017) also emerges as the first or 

second most important variable in three of the four regions (Figure 3.12). Only in the 

Central Feed Grains region is change in rent not among the most important factors. 

Furthermore, change in land value between 2007 and 2017 is among the most important 

factors for the same regions. These observations reinforce that change in economic 

conditions over time is an important factor in the development of usable abandoned 

cropland across the majority of the entire study area. Interestingly, three of the top four 

most important variables for the Central Feed Grains region are economic conditions at a 

single point in time: average rent paid in 2012, average housing value in 2010, and land 

value in 2012. 
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Figure 3.12. Variable importance for regions in the study area in the classification 
analysis of counties with zero UACL versus counties with a non-zero value. 

 

The biophysical variable of average annual precipitation stand out as the second-

most important variable to the entire study area. However, it does not stand out as having 

particular importance to any sub region, only appearing in the top five for two regions. In 

fact, mean annual precipitation is either the very lowest or among the least important 

variables for two regions: it is the least important variable in the East & Central Farming 

region and is seventh least important variable in the Atlantic & Gulf Coast region. 
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Accompanying precipitation, mean annual temperature is the second-least important 

variable in the East & Central Farming region. 

Two other observations of regional differences in important factors relate to the 

East & Central Farming and South Atlantic Cash Crops regions. First, the very most 

important variable in The East & Central Farming region is distance to urban areas. This 

variable measures the distance from each county’s centroid to the nearest urban area. 

This, along with the differences in biophysical variables, sets The East & Central 

Farming region apart from all other regions. Second, average household age in 2010 is 

among the most distinctly important variables in the South Atlantic Cash Crops region. In 

no other region does a demographic variable stand out as being particularly important. 

Figure 3.13 illustrates the relationship between change in rent between 2007 and 

2017 and whether a county has a net increase in usable abandoned cropland in each of the 

regions. Each region shows a similar threshold at zero change in rent. When rents 

decrease over time, more UACL is likely to occur, and when rents increase over time, 

less UACL is likely to occur.  
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Figure 3.13. Relationship between change in rent between 2007 and 2017 and usable 
abandoned cropland in each region. 

 

Figure 3.14 illustrates the relationship between precipitation and usable 

abandoned cropland. Excluding The East & Central Farming and the Atlantic & Gulf 

Coast, where this variable is not important, precipitation shows a similar positive 

relationship in the Central Feed Grains and South Atlantic Cash Crops regions. A notable 

difference is that the threshold at which UACL increases with increasing annual 
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precipitation is higher in the South Atlantic Cash Crops region than it is in the Central 

Feed Grains region. At 1000 mm of precipitation in the Central Feed Grains region,  

 

Figure 3.14. Relationship between mean annual precipitation and usable abandoned 
cropland in each region. 

 

UACL values increase steeply, which in the South Atlantic Cash Crops region the 

increase occurs at 1500 mm of precipitation. Furthermore, the amount of change in 

UACL influenced by precipitation is higher in the South Atlantic Cash Crops region than 
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in the Central Feed Grains region, indicating a 60% change and a 20% change 

respectively. 

Figure 3.15 illustrates the relationship between change in land value over time 

and usable abandoned cropland. Again, excluding the Central Feed Grains region, each  

 

Figure 3.15. Relationship between change in land value between 2007 and 2017 and 
usable abandoned cropland in each region. 
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region shows a similar pattern of increasing UACL with increasing land values that levels 

off, or decreases in the case of The East & Central Farming region, above approximately 

1% change. 

Three variables stand out as being of distinct importance to only one of the 

regions. Central Feed Grains is the only region in which average rent paid in 2012 is most 

important. Figure 3.16 shows the relationship between rent and usable abandoned 

cropland. UACL increases steeply above a threshold of approximately $75,000.  

 

 

 

Figure 3.16. Relationship between average rent paid by farmers in 2012 and usable 
abandoned cropland in the Central Feed Grains region. 

 

 

South Atlantic Cash Crops is the only region in which average household age in 

2010 is distinctly important. UACL increases across all ages with a spike at 

approximately 40 years of age (Figure 3.17).  
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Figure 3.17. Relationship between average household age in 2010 and usable 
abandoned cropland in the South Atlantic Cash Crops region. 

 
 

Distance to urban areas is only important in the East & Central Farming region 

and it shows a negative relationship with usable abandoned cropland. UACL changes at a 

40% for counties nearer to urban areas and decreases starting at a distance of 

approximately 50,000 m to almost zero change as distances exceed approximately 

200,000 m (Figure 3.18). 
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Figure 3.18. Relationship between distance to urban areas and usable abandoned 
cropland in The East & Central Farming region. 

 

3.4.2. Positive Gain Counties in Each Region 

In the regression analysis of only those counties with a non-zero value of UACL, 

regional variable importance mirrors the entire study area for the most part (Figure 3.19). 

Percent of county area in cropland, which is the topmost important variable in the entire 

study area, is not a particularly important variable in any of the regions, but is among the 

top seven in all regions. Mean annual temperature is the single most important variable to 

three of the regions, except for The East & Central Farming region where it is the fourth 

most important variable. A final observation is that average rent paid in 2012 is among 

the most important variables in each region except for The East & Central Farming 

region, where it is in the lower half of variables when sorted by importance. Interestingly, 

in The East & Central Farming region, it is change in rent between 2007 and 2017 that is 

the very most important variable. As is the case when observing the classification 
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analysis of zero versus non-zero counties, The East & Central Farming region appears to 

differentiate itself from the other regions. 

Figures 3.20 - 3.23 show partial dependence plots for four of the overall most 

important variables for each of the regions. In all cases, the relationship between the 

variables and the magnitude of usable abandoned cropland in counties where there is a 

net increase are similar. A notable difference across all four variables is that, in the 

Central Feed Grains region, the amount of change in UACL is overall lower than in the 

other regions, suggesting that these variables are important but do not lead to as much 

change as in the other regions. Another observation is that The East & Central Farming 

region has a slightly different pattern than the other regions for mean temperature and 

land value in 2012. For these two variables, the relationship between them and the 

magnitude change in net UACL shows a decrease at lower values of the variables, while 

the other regions remain relatively flat (Figures 3.21 and 3.22). These results suggest that 

the Central Feed Grains and East & Central Farming regions are unique in some ways 

relative to the rest of the study area. 
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Figure 3.19. Variable importance for regions in the study area in the regression 
analysis of counties with a non-zero value of UACL. 
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Figure 3.20. Relationship between percent of county area in cropland and usable 
abandoned cropland in each region. 
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Figure 3.21. Relationship between mean temperature and usable abandoned cropland 
in each region. 
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Figure 3.22. Relationship between land value in 2012 and usable abandoned cropland 
in each region. 
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Figure 3.23. Relationship between average rent paid per farm in 2012 and usable 
abandoned cropland in each region. 

 

 

In the analysis of the magnitude change in counties with a non-zero value of 

UACL, The East & Central Farming region is also unique in that its most important 

variable is change in rent between 2007 and 2017, whereas in the other regions this 

variable is much less important. Figure 3.24 illustrates the relationship between this 

variable and the change in amount of UACL in counties that experience a net increase. 
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There is a threshold at zero change in rent, below which there is an increase in UACL and 

above which there is less of an increase in UACL. In The East & Central Farming region, 

decreasing rents result in more usable abandoned cropland and increasing rents result in 

less usable abandoned cropland.  

 

 

Figure 3.24. Relationship between change in average rent paid between 2007 and 
2017 and usable abandoned cropland in The East & Central Farming region. 

 

4. Discussion 

These results suggest that hypotheses one (H1) and two (H2) are accepted: that 

there is a different set of factors that are most important when comparing UACL as a 

binary classification across all counties and UACL only in those that have a positive 

value. The same general observation is made when looking at the entire eastern US or 

each of the regions separately. The most important factors related to whether a county has 

a gain in UACL or not are largely variables measuring change in conditions over time, 
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while the most important factors in the case of counties with a positive gain are largely 

variables measuring conditions at a single point in time. 

This dichotomy between temporal and static variables suggests that there are two 

processes influencing the emergence of UACL. Temporal variables measuring changes in 

rent and land value over time have an important role in determining whether a county 

will have a net gain in UACL or not. This observation is of particular importance to this 

study given that there are a substantial number of counties that have no net gain in UACL 

between 2007 and 2017. The counties with a value of zero UACL are evenly scattered 

across the entire eastern US (Figure 3.4). Comparing this spatial distribution with the rent 

and land value change over time variables, which are most important, reveals a somewhat 

similar pattern. 

Change in rent over time and change in land value over time show somewhat 

scattered patterns of counties with zero or negative change (Figure 3.2c and d). These 

patterns are more scattered than the static variables of rent and land value (Figure 3.2a 

and b). Local conditions likely contribute to these changes in rent and land value over 

time and, consequently, to whether a county will experience a net gain in UACL. 

Changing rent and land value variables have opposite relationships with UACL. 

The negative relationship between changing rents over time and UACL suggests that the 

agricultural productivity of land is high enough for landowners to charge more for 

farmers to operate it and to continue keeping the land in agricultural production. Whereas 

the positive relationship between changing land values over time suggests that there are 

more opportunities to sell land to developers which would result in cropland 

abandonment. However, since this results in an increase in usable abandoned cropland, 
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the land values are high enough to compel a landowner to sell, but not high enough or in 

a location desirable enough for the land to convert to an urban land use, thereby leaving 

the land available for other purposes. 

Static variables of rent and land value in 2012 present more clustered and gradual 

spatial distributions. Clusters are most notable in the Central Feed Grains region and 

some pockets to the southeast. There is more alignment with these factors and the non-

zero UACL counties, which present a pattern of less UACL in the Central Feed Grains 

region and more in pockets to the southeast. Broader forces at the regional or national 

level are likely to contribute to the static rent and land value conditions and, 

consequently, the amount of UACL that emerges in counties that experience a net gain. 

Both the static measure of rent and land value have the same relationship with 

UACL, unlike the scenario with the multi-temporal variables. These variables generally 

have a negative relationship with UACL which indicates that higher rents and higher land 

values lead to farmers to either keep their land in agricultural production or sell their land 

to developers. Increasing rents could be taken as a proxy for profitability, which logically 

explains why a farmer would remain in production. Increasing land value is more curious 

because its relationship with UACL is different in the two cases (binary classification of 

counties and regression of just the positive-gain counties). Increasing land value suggests 

greater opportunities for selling to developers, and logically the reason more counties 

would not see a gain in UACL. Increasing land value also exerts influence on counties 

that do experience a net gain in UACL by moderating the amount that ultimately remains 

over time. Increasing rent over time does not appear to have the same moderating effect. 
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Prior research and modeling studies show that the value of farmland and rental 

rates are closely related to each other and that a rise in one is coincident with a rise in the 

other (Buchholz et al., 2022; Gutierrez et al., 2007; Nickerson & Zhang, 2014; Robison et 

al., 1985). Others, however, show some disagreement between the two factors, for 

example, different rates of change or lags in time when changes occur (Clark et al., 1993; 

Hanson & Myers, 1995; Ibendahl, 2013). Among the variables included in this 

dissertation analysis, only Change in Land Value between 2007 and 2017 and Average 

Rent Paid in 2012 were correlated at a level above 0.6. This indicates a relationship 

between land value and rent; however, it is not a strong signal, which would have been 

evidenced by a high correlation between variables such as land value and rent in the same 

year.  

Results also show that hypothesis three (H3) is accepted: that different factors are 

important in some regions and not others. For the most part, the important variables are 

similar across regions. For example, in the case of counties with a net gain in UACL, 

mean annual temperature is the most important factor in three regions and in the top four 

in the other.  

However, despite these limited overarching trends, regional variation among 

drivers is evident. For example, Central Feed Grains is different from the other regions in 

the classification case in terms of the importance of economic drivers. For the entire 

study area and the other three regions, variables of economic change over time (rent and 

land value) are among the most important, whereas for the Central Feed Grains region, 

static economic conditions at a particular point in time were most important, suggesting 

fundamental differences in the process of land use change. The Central Feed Grains 
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region is certainly a highly productive agricultural region, more so than the three other 

regions in this analysis. Furthermore, the diversity of crops produced is more narrowly 

focused on corn and soybeans in a landscape comprised of relatively large, flat, and 

continuous farms. 

The East & Central Farming region is similarly unique in the case of net-gain 

counties. It is the only region for which change in rent over time is most important, while 

static rent in 2012 is most important to all other regions. Additionally, it is the only 

region for which distance to urban areas is important. These two notable differences 

suggest unique processes at work in the East & Central Farming region that aren’t at play 

elsewhere. The map of distance to urban areas (Figure 3.2e) illustrates that there is a large 

portion in the interior of the East & Central Farming region that is relatively far from 

urban centers. 

Other studies (MacDonald et al., 2000; Mottet et al., 2006; Müller et al., 2009; 

Pazúr et al., 2014) have shown that in rural areas, the distance to urban areas is a 

significant factor in the feasibility of agricultural production. The East & Central Farming 

region is characterized by variable terrain and relatively low economic conditions. These 

factors may explain why the East & Central Farming region is unique, but in a different 

manner than the Central Feed Grains region suggests. There is a threshold of around 50 

km below which there is some increase in UACL and above which there is a sharp 

decrease. It’s possible that farms more than this distance from population centers don’t 

have much agricultural production to begin with or continue their farming practices 

perhaps for subsistence or local community markets. In this region and others in the 

southeast there are likely other forces at play. Napton et al. (2010) studies the 
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southeastern United States and finds that increasing demand for commercial forest 

products coincided with farming becoming less competitive, in addition, there are federal 

programs that subsidize the conversion of cropland to forest land. Future work should 

investigate these types of regionally targeted forces and how they might affect cropland 

abandonment. 

Across the board, some form of rent (static or multi-temporal) is among the most 

important factors influencing the emergence of usable abandoned cropland. In 2017, 

482,214 farms are rented out of a total of 2,042,220 farms in the United States. For 

comparison, in 1997, 485,512 farms are rented out of a total of 1,911,859 total farms. 

This amounts to 25% of farms in the United States renting to operators steadily over at 

least the last 20 years and corresponds to approximately 50% of the total farmland 

acreage in the United States (Kirwan, 2009). The impact of rents on decisions to keep 

land in production or abandon it is a topic that demands further investigation. 

Renter-landowner relationships are important. In a qualitative study, Qiu et al. 

(2021) found that renting out land does not generally improve a landowner’s sense of 

well-being. However, the study does observe an increase in well-being in the specific 

case of renting to an acquaintance. This suggests that from whom a farmer rents farmland 

has a qualitative effect on their sense of well-being, and consequently a potential impact 

on their decision to continue farming or abandon land. It is possible that abandonment is 

less likely in areas where land is predominantly rented from local landowners versus 

large agribusinesses with no local connection to the land beyond its value as an 

investment property. Future work should investigate the relationship between the rates of 

abandonment and the types of relationships between renter and landowner. 
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Allen and Borchers (2016) find that over the past 20 years, there has been an 

increase in cash rent versus sharecropping arrangements between renters and landowners. 

This results in more of a business-only relationship between farmer and landowner. This 

may come at the expense of relationships in which the farmer and landowner are 

acquaintances and work collaboratively. A study by Swinton et al. (2017) found that 

farmers in the Great Lakes region of the US were largely unwilling to rent farmland they 

consider to be marginal, largely due to environmental concerns and worries about how an 

unacquainted renter would maintain the property. This suggests that even if land is not 

otherwise profitable, landowners are often not interested in renting their land even when 

rental rates are high. 

Land management and soil conservation practices are related to land tenure. 

Leonhardt et al. (2019) finds that farmers who rent land in short-term agreements tend to 

manage their land less carefully than if they owned it. Furthermore, if the farmer does not 

have a personal relationship with the landowner, practices such as fertilization and soil 

conservation are worse. Sawadgo et al. (2021) found that practices of cover crops, buffer 

strips, and sediment basins were implemented less frequently on rented farmland. Ranjan 

et al. (2022) performed a qualitative study that observed that renting farmland hinders 

conservation behavior. These findings suggest that the type of rental arrangement affects 

farmers’ practices, which may in turn lead to decisions to abandon, particularly if land is 

less well cared for. Other studies, however, have found that land tenure does not have an 

impact on some specific practices, such as weed management (Frisvold et al., 2020). 

Farmer age is related to the decision to rent farmland. A study by Sun et al. (2023) 

investigated the relationship between elderly care and farmland rental practices. Elderly 
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farmers are shown to be more likely to rent out their land if they are in a more stable 

financial and medical situation. This may suggest that in places of economic uncertainty 

and inadequate retirement funds, farmers may be more likely to continue operating their 

farms and ultimately abandon them. Furthermore, Buchholz et al. (2022) find that the 

only factor statistically significant to the willingness to rent land is the age of the farmer. 

They report that in 2017 the average age of farmers in the US is 58 years old. 

Stevens and Wu (2022) find that renting is associated with higher net farm 

income for younger farmers. In other words, young farmers who rent some or all of the 

land they operate have higher levels of production and profit than those who own their 

land. Renting may increase flexibility to invest in improvements on the farm, whereas 

inheriting farmland may present few incentives to implement efficient practices (Stevens 

& Wu, 2022). Further research into the rates of ownership because of family inheritance 

versus renting or purchasing from unacquainted landowners may elucidate whether either 

scenario leads to increased rates of abandonment. 

Burchfield et al. (2022) find that, on average, farms in the US are generating less 

net income than in earlier years. Despite rising subsidies from the federal government, 

many farmers see less profit. This may be due in part because landowners increase rents 

in step with the subsidies resulting in the farmers not seeing any of the increased 

government payments. This practice of raising rents commensurate with increased 

subsidies may also be a consequence of less personal and unacquainted relationships 

between renter and landowner. The overall reduction in net income is particularly 

apparent in areas within Texas, Appalachia, and the Southeast (Burchfield et al., 2022). 

These trends of increasing farmer age, financial insecurity, and renter-landowner 
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relationship may contribute to decisions to rent farmland or simply abandon it, 

particularly in some regions of the country. 

5. Conclusion 

This study explores the emergence of usable abandoned cropland (UACL) 

between 2007 and 2017 and the potential drivers of this land change. A random forest 

analysis of UACL reveals that the rent farmers pay to operate cropland and the value of 

farmland and buildings are among the most important variables. Interestingly, when 

viewing UACL in a binary form (counties with zero UACL versus counties with a non-

zero value of UACL) it is the measure of change in rent and land value over time that is 

important, while a view of only those counties with a non-zero value of UACL reveal that 

static measures of rent and land value are important. 

These results suggest that there are different processes at work: one that affects 

whether a county will experience a net gain in UACL or not, and one that affects the 

amount of UACL that emerges in counties where there is a net gain. Because temporal 

variables of changing land value and rent over time are spatially scattered, it is likely that 

local conditions play an important role in determining whether a county will experience a 

gain in UACL or not. Whereas static measures of land value and rent at one point in time 

are more spatially clustered, suggesting that broader regional factors play an important 

role in the amount of UACL that emerges in counties with a net gain. With this 

information, policymakers may be able to identify regions of renewable energy potential 

based on quantitative economic characteristics and qualitative assessments of farmer-

landowner relationships.  
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Chapter 4. Patterns of Emergent Usable Abandoned Cropland 

1.   Introduction 

 Previous chapters have estimated the amount of usable abandoned cropland 

(UACL) there is in the United States and some of the factors that influence the process of 

abandonment. The current chapter explores the occurrence of abandoned cropland further 

by downscaling it from the county level to the landscape level to assess the suitability of 

these lands for the production of renewable energy. A spatially explicit land use change 

model is utilized to project where on the landscape abandoned cropland may occur. 

Suitability is assessed within the context of the logistics of energy production. Patches of 

UACL that are larger, closer to each other, and more regularly shaped are considered 

more suitable given the challenges and efficiencies of installing, harvesting, or 

transporting renewable energy. 

 While many previous studies explore land change using a variety of methods, few 

have specifically studied novel land types (i.e., those that were not previously present on 

the landscape) or the specific case of abandoned cropland for renewable energy 

production. Among the methods used to model land change, spatially explicit models are 

among the most effective. For example, Nath et al. (2020) and Yirsaw et al. (2017) 

utilized a cellular automata approach to model future landscape risk in earthquake-prone 

regions and changes to ecosystem services respectively. Mahiny and Clarke (2012) 

present an example of using multi-criteria evaluation to project urban expansion in Iran 

based on Landsat imagery. Some studies specifically perform land use projections for the 

purpose of assessing suitability of some activity or phenomenon. Sahoo et al. (2018) 
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project the future suitability of areas to be considered agricultural zones in India. Kienast 

et al. (2012) predict areas suitable for the development of recreation in Swiss cities using 

correlations between locations specified by residents and underlying characteristics of the 

landscape to drive a spatial model. Fonderflick et al. (2015) develop a habitat suitability 

model based on the presence of foraging bats and correlate it with 17 underlying 

Mediterranean landscape variables.  

Commonly, land change modeling exercises perform multiple scenarios to 

observe how landscapes change under different drivers and conditions, particularly 

climate regimes. Näschen et al. (2019) runs different climate scenarios to observe 

possible impacts to agriculture and water resources in Tanzania. The Intergovernmental 

Panel on Climate Change (IPCC) develops a suite of emission scenarios (SRES) or 

narratives of how the world may unfold in the future. These narratives have been used to 

project future carbon emissions and resulting climate change. Strengers et al. (2004) 

extends these projections to explicitly include land use change. Their analysis is global in 

scope and has a spatial resolution of 0.5 degrees, much coarser than land change models 

that operate at the landscape level.  

A gap in the research literature that the current study addresses is the application 

of land change modeling to find opportunities for renewable energy production in a novel 

land type, e.g., places where abandoned cropland was not previously present but is 

starting to emerge as an opportunity. In this case, projecting where usable abandoned 

cropland emerges on the landscape over time and measuring where these emergent lands 

may be the most favorable for the production of energy like biomass or utility-scale solar. 

Furthermore, the current study utilizes a data structure with a 30 m pixel resolution, 



142 
 

which is a greater level of detail than many previous efforts. This fine spatial resolution 

facilitates the measurement of landscape pattern and composition that is necessary for the 

assessment of suitability for energy production placement.  

Landscape metrics can be applied to data at this resolution to derive quantitative 

measures of the spatial configuration of usable abandoned cropland and ultimately assess 

its utility. Metrics have traditionally been used to measure the configuration and 

composition of various land types in the context of ecological process and wildlife habitat 

(Gergel et al., 2002; Heilman et al., 2002; Jones et al., 2001; Mladenoff et al., 1995; 

Riitters et al., 2000; Wiens, 2002). Land managers can use information derived from such 

studies to understand better the form of land that best supports biota and ecosystem 

services and make more informed decisions about how to alter or utilize land. The current 

study applies such landscape measurement techniques using metrics not to assess habitat 

or ecological function, but rather the human process of renewable energy production. 

To investigate the patterns of usable abandoned cropland and its utility for 

renewable energy production, this study poses two research questions: 

1. Does usable abandoned cropland emerge in different spatial patterns in 

different regional landscapes of the United States when projected over 50 

years? 

2. Are the spatial patterns of emergent usable abandoned cropland in some 

regions of the United States more favorable to renewable energy 

production? 

To address these research questions, two hypotheses are tested: 
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1. Counties in different regions in the United States present unique patterns 

of emergent usable abandoned cropland (H1). 

2. The patterns of usable abandoned cropland in some counties are more 

favorable for renewable energy production than counties in other regions 

(H2). 

1.1. Study Area 

Four counties in the United States are selected for analysis in this study. These 

counties are Blue Earth, Minnesota Brazoria, Texas, Estill, Kentucky, and Wilcox, 

Georgia (Figure 4.1). These counties are chosen because they each occur within one of 

the four regions studied in the previous chapter. The four regions are distinct agricultural 

zones defined by the USDA Land Resource Region (LRR) map (FIGURE 4.2). Other 

criteria for selecting counties are that they have above average amounts of UACL (i.e., a 

total UACL area greater than the mean for all counties in the region) and where the 

fraction of the counties’ total area that is cropland is greater than the mean percentage for 

all counties in the region. The mean values for UACL and percent of county area in 

cropland are shown in Table 4.1. Counties were also selected based on where the NLCD 

trend in cropland aligned with the Census of Agriculture; Blue Earth, Brazoria, and 

Wilcox counties show general agreement between the two datasets but Estill shows an 

inverse trend in cropland change. 
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Figure 4.1. County study areas. 

 

Blue Earth, MN 

Estill, KY 

Brazoria, TX 

Wilcox, GA 
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Figure 4.2. Land Resource Regions included in this study. 

 

Table 4.1. Mean values of UACL (fraction of total cropland area) and amount of 
cropland (fraction of total county area that is cropland) for each region. 
 
Region UACL Cropland 
Central Feed Grains (Blue Earth, MN) 0.0226 0.6824 

East & Central Farming (Estill, KY) 0.1052 0.1368 

South Atlantic Cash Crops (Wilcox, GA) 0.1426 0.1038 

Atlantic & Gulf Coast (Brazoria, TX) 0.1068 0.1292 
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1.2. Modeling Framework 

 Projections of future land use patterns are performed using a spatial land change 

model that projects the expansion of abandoned agricultural land, and implicitly accounts 

for direct and indirect land use changes. The spatial model chosen here is the Dynamic 

Conversion of Land Use and its Effects at Small regional extent (Dyna-CLUE) model 

(Verburg & Overmars, 2009). Different versions of this model have been widely used to 

project land use change under different scenarios, drivers, and underlying conditions 

(Easterling & Kok, 2002; Hellmann & Verburg, 2011; Veldkamp & Fresco, 1996; 

Verburg & Overmars, 2007; Waiyasusri & Wetchayont, 2020).  

The Dyna-CLUE model is chosen because it best addresses the theoretical criteria 

discussed in earlier chapters. Accordingly, the model falls into the following relevant 

categories: it is spatially explicit, relying on existing land use and landscape 

characteristics to explain future change in land use; it follows a top-down approach, 

which is appropriate here, as the primary driver of change originates at a high 

hierarchical level in the form of the county-level estimates of usable abandoned cropland 

(UACL) from previous chapters along with national/regional demands for biofuel in 

response to climate change and energy demand; it is descriptive, in that it is based on the 

actual land use and the processes that operate within it, as opposed to prescriptive models 

that aim to produce optimized land use configurations that meet a set of criteria and 

objectives; and finally, it is dynamic by incorporating competition among land uses, 

irreversibility, path dependence and fixed land use trajectories (P. Verburg et al., 2006).  

The National Land Cover Dataset (NLCD) (Dewitz, 2021) is used as the initial 

land cover map input to the Dyna-CLUE model. The NLCD is produced every ten years, 
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most recently in 2016. It would be possible to simply compare multiple years of NLCD 

land cover maps to determine how much and where cropland is abandoned; cultivated 

crops is one of the land cover types included in the NLCD. This would be a reasonable 

approach; however, it has two disadvantages. First, NLCD cannot be used on its own to 

project future land use, but rather only to compare previous changes. The current study 

aims to project future cropland abandonment and measure its pattern and configuration. 

This would not be possible with the NLCD. Second, the reported accuracy of NLCD 

raises questions about its reliability as a definitive source of land change information and 

is a primary reason for not relying on it entirely.  

Wickham et al. (2021) details the accuracies of both the 2006 and 2016 NLCD 

products. Overall accuracies of land type classifications are 83.6 and 86.4% respectively 

for 2006 and 2016. The cultivated crops class itself has accuracies of 86 and 89% 

respectively. These numbers are quite high and suggest confidence in the NLCD to 

present land cover in each year. However, when identifying pixels that change from one 

class to another, the NLCD is less accurate. The accuracy of identifying pixels that 

change to agriculture (cultivated crops or pasture) from 2006 to 2016 is 33% and pixels 

that change from agriculture to another class between 2006 and 2016 is 27%. As a static 

representation of LULC at a point in time, NLCD provides a reasonable data source. 

However, the NLCD's ability to accurately identify changes in a pixel's LULC from one 

time period to another is quite poor, particularly for the agriculture classes. 

NLCD is good at classifying the bulk of pixels in a particular land class because 

the majority of pixels in each class do not transition to another class; the majority of 

pixels in a class remain in that class between time periods. It is the pixels at the margins, 



148 
 

which convert to another class, for which NLCD has poor accuracy. The pixels 

converting from one class to another represent a small fraction of the total pixels in each 

class, so this poor accuracy does not significantly impact NLCD's overall accuracy 

measures. However, it is precisely these marginal pixels that the current study is 

interested in. Therefore, NLCD is a reliable source for observing the general distribution 

of land types but not their change in quantity or spatial configuration, thus supporting the 

use of a land change model, like Dyna-CLUE, to determine locations of change. 

Comparing images, and derived products like the NLCD, from the same remote 

sensing instrument, like Landsat, across multiple time periods is an example of 

homogeneous change detection (Homo-CD) (Lv et al., 2022). A potential area for future 

research from the current study is to use imagery from different sensors across time 

periods to detect land change, or heterogeneous change detection (Hete-CD). An 

advantage of Hete-CD is that imagery is more likely available at a greater variety of time 

periods, whereas a single remote sensing product may only be available at regular time 

intervals that do not coincide with the needs of the study. Hete-CD has been shown to be 

an effective method and has advantages that complement the strengths of traditional 

Homo-CD techniques (Ayhan & Kwan, 2019; Lei et al., 2022; Lv et al., 2022; Touati et 

al., 2018). This approach may be an improvement over simply comparing multiple years 

of a dataset like the NLCD. 

Another complication for the NLCD is its disagreement with land change 

quantities with the Census of Agriculture (United States Department of Agriculture, 

2017). For example, Estill, KY had 13,041 acres of Harvested Cropland in 2007 and 

11,062 acres in 2017, based on the US Census of Agriculture (Table 4.2). This is a 



149 
 

reduction in cropland of 1,979 acres. NLCD, on the other hand, shows 6,813 pixels 

(14,777 acres) of Cultivated Crops in 2006 and 8,605 pixels (19,137 acres) in 2016, 

which represents an increase of 4,360 acres. This illustrates the challenge of identifying 

LULC types from remote sensing data sources, which the NLCD does. Discriminating 

among classes such as cultivated crops, pasture, and grassland is particularly challenging 

and is likely the reason that the NLCD acreages for cropland differ from the Census of 

Agriculture. 

 

Table 4.2. Comparison of cropland areas reported by the NLCD and the Census 
of Agriculture from 2006 to 2016. (Census of Agriculture dates are in parentheses. The 
Census is conducted every five years and 2007 and 2017 are the closest dates that match 
the NLCD.) 
 
Estill County, KY Census of Agriculture NLCD 
2006 (2007) 13,041 14,777 

2016 (2017) 11,062 19,137 

Net Change -1,979 4,360 
 

NLCD acknowledges that its accuracy in identifying locations of change in 

agricultural classes is particularly poor (Wickham et al., 2021). Baxter and Calvert (2017) 

argue that data from the Census of Agriculture is more accurate than remote sensing-

based datasets. Furthermore, studies have shown that landscape patterns and composition 

are influenced by error in the underlying land cover data (Burnicki, 2012). The 

inaccuracies in the NLCD, particularly its representation of land change, may lead to 

erroneous measures of landscape pattern, which is a critical component of the current 

study. For these reasons, the current study utilizes NLCD as the initial land cover map 
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but relies on the Census of Agriculture to derive rates of change of agricultural areas and 

on Dyna-CLUE to determine the locations of change.  

1.3. Model Description 

The Conversion of Land Use and its Effects modeling framework (CLUE) 

(Veldkamp & Fresco, 1996; Verburg et al., 1999) is developed to simulate land use 

change using empirically quantified relations between land use and its driving factors in 

combination with dynamic modeling of competition between land use types. The model 

is initially intended for national and continental levels and applications. For study areas 

with such a large extent the spatial resolution for analysis is coarse and, as a result, each 

land use is represented by assigning the relative cover of each land use type to each pixel. 

In contrast, land use studies of smaller spatial extents are typically based on land use 

maps or remote sensing images that represent land use types by assigning a single land 

type to each pixel, indicating the dominant land type in that location. To reflect this 

fundamental difference in data structure and spatial extent, the modelling approach has 

been modified and renamed CLUE-S (the Conversion of Land Use and its Effects at 

Small regional extent). CLUE-S is specifically developed for the spatially explicit 

simulation of land use change based on an empirical analysis of location suitability 

combined with the dynamic simulation of competition and interactions between the 

spatial and temporal dynamics of land use systems. The most recent version of the CLUE 

model includes autonomous developments through bottom-up simulation (Verburg, 

2007). This version is called Dyna-CLUE and is what the current study employs. 

There are two primary components to the Dyna-CLUE model: a non-spatial 

demand component, and a spatial land use allocation component. The demand component 
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provides the model the quantity of land cover types on a yearly basis that must be 

allocated across the spatial landscape. I use scenarios of the quantity of UACL derived in 

the earlier analysis as the net change of agricultural land use over the entire time period, 

the total amount of which will be divided by the number of years to derive the annual 

increments.  

The lower two boxes of Figure 4.3 illustrate the demand (non-spatial) and 

location suitability (spatial allocation) components of the model. The demand component 

forces annual changes to the amounts of each land cover type, while the location 

suitability component guides where on the landscape the changes will occur. The Dyna-

CLUE model differs from its predecessor, CLUE-S, in part because the area change for 

some land cover types is not required to be explicitly stated in the demand module 

(Verburg & Overmars, 2009) (see Figure 4.4). Land cover types that are not specified are 

grouped into a single category for the purposes of the land allocation process and allowed 

to convert to those land classes defined in the demand module. Location suitability is 

determined by an analysis of the land cover types and other underlying factors by 

performing a regression to determine the relative impact of each factor on land use. The 

underlying factors are correlated to land cover using a logistic regression that predicts 

whether a pixel is likely to convert from one land cover type to another. Using the 

relationships derived by logistic regression, the model can determine the most likely land 

use conversion at each pixel. 
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Figure 4.3. Overview of the CLUE-S land allocation procedure (Adapted from P. H. 
Verburg et al. (2006). 
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  Figure 4.4. Overview of the inputs to the land allocation module of the Dyna-CLUE 
model (Verburg & Overmars, 2009). 

 

The model can be parameterized to account for restrictions or requirements for 

certain land use conversions. The upper two boxes of Figure 2 illustrate some of these 

configuration options. Parameters include: the ability to restrict certain areas from 

converting to certain land use types, for example parks or protected areas; specific land 

transition sequences, for example agriculture always converting first to grassland and 

only to forest after a certain amount of time has elapsed; and conversion elasticities, 

which define how likely it is for a land type to convert at all, for example, it is very 
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unlikely that an urban land cover type will undergo a conversion to forest or grassland, 

whereas it is relatively likely that forest or grassland might convert to an agricultural land 

use. 

Land use sequences are defined in a matrix that specifies whether each land use 

type is allowed or not allowed to convert to each other land use type. See Figure 4.5 for 

the scenario used in this study where only a conversion from cropland to grassland is 

allowed. Additionally, time constraints that restrict certain land conversions only after a 

specified period of time has elapsed can be specified. The model runs at a yearly interval. 

For each yearly step, the model first identifies pixels that can convert to another land use, 

excluding ones that are in a protected area or are not able to convert due to time 

constraints. The model iterates through all possible pixels to determine the likelihood of 

each to convert to another land type, based on the regressions with underlying factors, 

and assigns new land types to the most likely candidate. The model continues to iterate 

until the total amounts of each land cover type determined by non-spatial demand 

component have been allocated on the map. In this study, the model is parameterized 

such that demand for UACL is specified as an explicit increase in a grassland category 

and will be configured in the conversion matrix to specifically replace cropland pixels.  
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Figure 4.5. Land type conversion matrix. 1 = land conversion is allowed, 0 = land 

conversion is not allowed. Initial land type along the left, destination land type across the 
top. 
 

2. Data and Methods 

2.1. Data 

 The Dyna-CLUE model is run to project the future distribution of land uses across 

the landscape. The data inputs to this model consist of spatial layers at a 30-meter 
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resolution, representing the land cover and predictor variables, which adequately matches 

the scale of the core process (agricultural land use) being studied. The National Land 

Cover Database (NLCD) is the map of land use types that serves as the foundation of the 

modeling exercise (Dewitz, 2021). Among the land classes included in the NLCD is 

Agriculture (Cultivated Crops); it is the target land class that this study is interested in as 

the model forces changes to the quantity of this land use in the study area and ultimately 

reveals the location and configuration of abandoned cropland. See Figure 4.6 for a legend 

of the land classes included in the NLCD and Figure 4.7 for maps showing the initial 

NLCD land cover in the four counties in 2006. 

 

Figure 4.6. NLCD Land Cover Types (Dewitz, 2021). 
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Figure 4.7. 2006 NLCD land cover. Upper row: Blue Earth County, MN (left), Brazoria 
County, TX (right). Lower row: Estill County, KY (left), Wilcox County, GA (right). 
(Maps are not to scale.) 
 

A suite of additional variables that describe the landscape are converted to rasters 

at the same 30-meter resolution as the NLCD land cover map. These layers represent 

potential underlying drivers of land use. Slope is calculated from the USGS National 

Elevation Database (United States Geological Survey, 2023), demographic variables 

(median age, household size, percent of the population that is non-white, population 

density, and percent of households that are renting) come from the US Census Bureau 
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(United States Census Bureau, n.d.), and soils data (crop productivity (NCCPI), drought 

vulnerability, flooding frequency, soil organic matter, and soil water availability) come 

from the USDA gSSURGO database (United States Department of Agriculture, 2023). 

See Appendix C for definitions of the gSSURGO variables. A challenge of statistical 

models, such as the one employed here, is that the factors included in the model must be 

carefully selected to avoid spurious correlations with irrelevant factors and to avoid 

inadvertently excluding factors of importance. These 11 factors are not a comprehensive 

list of every potential driver of cropland abandonment but represent a sample of such 

factors. Tables 4.3 – 4.6 shows summary statistics of each predictor variable within each 

region and Appendix D show maps of each factor for each study region. 

 

Table 4.3. Summary statistics for predictor variables in Blue Earth County, MN. 

Variable Min Max Mean SD 
Slope (%) 0.000007 50.74 2.052 3.727 

NCCPI (0 – 1, low – high productivity) 0.06 0.925 0.7261 0.1718 

Median Age (age) 5.5 94.5 46.11 13.87 

Household Size (people) 1 8 2.556 0.8013 

Drought vulnerability (0 – 1, slightly – severely) 2 6 4.405 0.8377 

Flooding Frequency (1 – 6, none – very frequent) 1 6 1.218 0.9314 

% Non-White (fraction) 0 1 0.01799 0.0802 

Pop Density (people per square mile) 0.4842 1253 85.66 665.6 

Soil Organic (% weight) 0.65 90 3.971 6.510 

Soil Water (cm) 5.5 68.40 31.27 7.716 

% Renting (fraction) 0 1 0.1174 0.1984 
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Table 4.4. Summary statistics for predictor variables in Brazoria County, TX. 

Variable Min Max Mean SD 
Slope (%) 0 34.31 0.3329 1.213 

NCCPI (0 – 1, low – high productivity) 0.002 0.706 0.3662 0.1168 

Median Age (age) 3.8 96.5 43.457 10.10 

Household Size (people) 1 8 2.6817 0.6510 

Drought vulnerability (0 – 1, slightly – severely) 2 6 2.527 0.8008 

Flooding Frequency (1 – 6, none – very frequent) 1 7 1.956 1.245 

% Non-White (fraction) 0 1 0.8075 0.2060 

Pop Density (people per square mile) 0.1618 105100 325.1 1130.9 

Soil Organic (% weight) 0.11 3.5 1.815 0.8238 

Soil Water (cm) 3.04 39.02 25.54 7.228 

% Renting (fraction) 0 1 0.1530 0.1884 

     

 

 

Table 4.5. Summary statistics for predictor variables in Estill County, KY. 

Variable Min Max Mean SD 
Slope (%) 0.000005 61.32 14.92 9.461 

NCCPI (0 – 1, low – high productivity) 0.04 0.929 0.2835 0.2225 

Median Age (age) 12 80.5 42.68 6.063 

Household Size (people) 1 8 2.462 0.2900 

Drought vulnerability (0 – 1, slightly – severely) 2 6 3.394 0.8204 

Flooding Frequency (1 – 6, none – very frequent) 1 6 1.285 0.9895 

% Non-White (fraction) 0 1 0.02130 0.0734 

Pop Density (people per square mile) 0.8924 5330 47.70 123.9 

Soil Organic (% weight) 0.34 3.61 1.347 1.056 

Soil Water (cm) 3.12 40.45 20.16 8.339 

% Renting (fraction) 0 1 0.1992 0.1169 
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Table 4.6. Summary statistics for predictor variables in Wilcox County, GA. 

Variable Min Max Mean SD 
Slope (%) 0.000001 23.99 1.925 1.546 

NCCPI (0 – 1, low – high productivity) 0.19 0.766 0.4756 0.1356 

Median Age (age) 5.5 88.5 43.55 13.71 

Household Size (people) 1 6 2.518 0.7027 

Drought vulnerability (0 – 1, slightly – severely) 2 5 3.257 1.001 

Flooding Frequency (1 – 6, none – very frequent) 1 6 1.590 1.561 

% Non-White (fraction) 0 1 0.1517 0.2617 

Pop Density (people per square mile) 0.5249 121300 29.30 861.9 

Soil Organic (% weight) 0.16 2.06 0.3747 0.3023 

Soil Water (cm) 10.2 31.1 19.94 4.583 

% Renting (fraction) 0 1 0.1585 0.2200 

     

 

 

Correlations between each pair of predictors show little collinearity among the 

variables. Figures 4.8 – 4.11 show variable correlation matrices of predictor variables for 

each of the analysis counties. Household size and median age show a larger correlation 

than most other pairs of variables. This is true across all regions, but to a lesser degree in 

Estill, KY. A few physical characteristics, like soil water availability, show collinearity 

with other variables but not to a great degree. Because only a few variables show some 

collinearity, correlation coefficients are only above 0.6 in a few cases, and no variables 

are correlated above 0.6 in every county, all variables are retained in the logistic 

regression analysis. 
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Figure 4.8. Predictor variable correlation matrix for Blue Earth County, MN 

 

 

Figure 4.9. Predictor variable correlation matrix for Brazoria County, TX. 
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Figure 4.10. Predictor variable correlation matrix for Estill County, KY. 

 

 

Figure 4.11. Predictor variable correlation matrix for Wilcox County, GA. 
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2.2. Pattern Analysis 

Areas of usable abandoned cropland are the interest of this study. As such, 

metrics at the class level are appropriate, rather than those at the patch or landscape level. 

The class level measures the composition and pattern of one land type, whereas patch-

level metrics measure the properties of individual patches and landscape-level metrics 

measure the composition and distribution of all land types across the entire landscape. 

Previous studies have found that a select few metrics adequately describe landscape 

patterns (Li & Reynolds, 1995; Li & Reynolds, 1994; McGarigal, 1995; Riitters et al., 

1995). 

Riitters et al. (1995), for example, studied fifty-five metrics and determined their 

pair-wise correlation coefficients based on their measurements of eighty-five land cover 

maps. Metrics with a coefficient above 0.9 were grouped together. From each group, one 

metric was chosen as its representative, and all others were removed. A factor analysis 

identified five unique characteristics of landscapes: average patch perimeter-area ratio, 

contagion, average patch area, patch perimeter-area scaling, and number of attribute 

classes. Some of these characteristics are more appropriate at the landscape level rather 

than the class level, and therefore not appropriate to the current study. Cushman et al. 

(2008) performed a similar study and identified seven class-level metrics they determined 

to be consistent across many regions of the United States. These metric categories align 

well with the metrics chosen in the current study.  

From these categories of metrics, I selected ones that are relevant to the ultimate 

end use of usable abandoned cropland proposed in this study: renewable energy, in the 

form of either industrial-scale solar or biomass production. I made these selections based 
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on my own assessment of the metrics’ appropriateness and fitness for assessing the 

impact of landscape pattern on energy production. 

The logistics and productivity of biomass and solar energy production suggest 

preferable patterns of available land (Ali et al., 2019; Anwarzai & Nagasaka, 2017; 

Caputo et al., 2005; Liu et al., 2017; Pillot et al., 2020; Ribeiro et al., 2016; Richard, 

2010; Ruiz et al., 2013; Uyan, 2013; Watson & Hudson, 2015). Areas that are large, 

compact, regularly shaped, and close to each other simplify the installation, harvesting 

and transmission/transport of these energy types. Also, the overall usable area in a 

county, measured as a percent of the total county’s area, suggests greater potential energy 

production. In light of these observations, I selected the following metrics for inclusion in 

the analysis: average patch area (AREA_MN), largest patch index (LPI), edge density 

(ED), connectance index (CONNECT), patch density (PD), mean perimeter-area ratio 

(PARA_MN), aggregation index (AI), and percentage of landscape (PLAND).  

To test hypothesis 1 (H1), metrics measuring the spatial pattens of UACL are 

calculated using Fragstats software (McGarigal et al., 2023). For each region in the 

analysis, metrics are calculated for each of the 50 years in the scenario. Metrics may be 

correlated with each other and therefore redundant in an analysis (Cushman et al., 2008; 

Eigenbrod et al., 2011; Riitters et al., 1995). However, these correlations are observed 

when comparing metrics across many different regions rather than across different time 

periods within the same region, making it difficult to calculate correlations in the current 

study. Recognizing this potential redundancy, all eight metrics are included for 

comparison across the regions. Cardille and Lambois (2010) demonstrated that including 
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many metrics, even those that may appear to be redundant, can help to characterize 

landscapes and distinguish unique landscape types. 

 To assess the relative suitability of usable abandoned cropland in each region for 

renewable energy production and test hypothesis 2 (H2), the outputs from the CLUE 

model are measured using each metric over a 50-year modeling period. The values of 

each metric are assessed based on how preferable they likely are for energy production 

(Table 4.7). I made my own assessment of whether a higher or lower value of each metric 

represents a more favorable landscape pattern. These preferences generally aim toward 

large, simply shaped patches that are close together. 

 

Table 4.7. Landscape metric preference for renewable energy production. 

Metric 
Renewable Energy 
Production Preference Landscape Characteristic 

Average Patch Area (AREA_MN) Higher values Size and Quantity 
Largest Patch Index (LPI) Higher values Size and Quantity 
Percentage of Landscape (PLAND) Higher values Size and Quantity 
Edge Density (ED) Lower values Shape Complexity 
Mean Perimeter-Area Ratio (PARA_MN) Lower values Shape Complexity 
Connectance (CONNECT) Higher values Clustering and Proximity 
Patch Density (PD) Lower values Clustering and Proximity 
Aggregation Index (AI) Higher values Clustering and Proximity 

  

 

AREA_MN, LPI, and PLAND indicate how large the patches of usable abandoned 

cropland are and how much of the region they comprise. ED and PARA_MN indicate 

how complex the shapes of the patches are; lower values of these metrics mean that the 

patches are more regularly shaped. CONNECT, PD, and AI indicate how clustered and 

near to each other the patches of usable abandoned cropland are. Lower values of PD are 
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preferable in that fewer, large patches are easier to manage in an energy production 

setting than many, small patches. Rather than attempt to combine these metrics into a 

single index of renewable energy suitability, as has been done in other contexts like 

wildlife habitat (Brooks, 1997; Theuerkauf & Lipcius, 2016), this study will compare 

them individually since there may not be a definitive combination of these measures that 

is universally preferable across all regions. 

2.3. Analysis Procedure 

Dyna-CLUE requires several data inputs and parameters. Required data include 

an ASCII map of the initial NLCD land cover, ASCII maps of each of the 11 predictor 

variables, the logistic regression coefficients, a conversion matrix of each land type, and 

the land change demand. (See Appendix E for detailed data processing steps.) 

For each study region, data for the predictor variables are converted to a raster 

data model with a cell size and alignment that matches the 2006 NLCD using ArcGIS Pro 

software (Esri, 2023). Data obtained from the US Census Bureau are aggregated to 

census blocks. This is the smallest areal unit at which these data variables are available. 

Census blocks are much larger than 30m pixels, so the resulting rasters contain large 

homogenous patches of pixels. There is likely some variation within these patches but it 

is obscured by the resolution of the source data. Rasters are then exported to an ASCII 

format to prepare them for statistical analysis. Using the File Convert tool provided by 

the CLUE model, all predictor rasters along with the NLCD land cover raster are 

converted into a single text table in which each row is a pixel and each column represents 

a predictor variable or land cover type. The table contains all cells from the source 

rasters. 
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Using R statistical analysis software (R Core Team, 2022) a logistic regression is 

performed on the table for each region where a land cover type is the dependent variable, 

and the 11 predictors are the independent variables. For each region, a separate regression 

equation is generated for each of the 15 land cover types in the NLCD. These regression 

coefficients are used as inputs to the Dyna-CLUE model. 

The conversion matrix specifies to which land types each initial land type is 

allowed to convert. For example, agriculture is only allowed to convert to grassland; 

agriculture is not allowed to convert to forest or open water. This study is only interested 

in the emergence of usable abandoned cropland, all other land conversions are not 

allowed and only the conversion of cropland to grassland is allowed (Figure 4.5). This 

simplifies the model and removes conversion detail that is superfluous. For example, 

knowing the locations where cropland converts to urban development is unnecessary 

because it does not represent locations of usable abandoned cropland. Also, knowing 

other conversions such as forest areas that convert to or from grassland is not necessary 

in this study. 

The land change demand input is a list of each year in the model scenario, 50 

years in the case of this study, and the explicit land area for each of the 15 land types. In 

each row (year) of the demand input, the sum of all land types must equal the total area of 

the entire region. Quantities of each individual land type can vary as long as they still add 

up to the same total. Appendix F shows the demand input for each region in the current 

study. All land types are held constant over time, except for a reduction in cropland and 

an increase in grassland. The amount of decrease in cropland, and commensurate increase 
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in grassland, is calculated using the rate of emergence of UACL developed in Baxter and 

Calvert (2017) 

Other parameters include conversion elasticities and allowable allocation 

deviation. Conversion elasticities, on a scale from 0 to 1, specify how likely, or easily, 

each land type changes. In the current study, all land types are set to 1 to enforce that they 

will not change, except for cropland and grassland which are both set to 0. Certainly, if 

the purpose of a land change modeling exercise is interested in the dynamics of other 

land types, these elasticities would not be parametrized so strictly. Finally, the maximum 

deviation from the demanded land areas is specified as a percent of the demanded land 

area. For example, during each annual iteration of the Dyna-CLUE model, pixels are 

changed in sequence based on the suitability factors in the regression coefficients and the 

other model parameters until the area of each land type matches the values in the demand 

input. If the allocated area in the iteration is within the percentage specified in the 

deviation parameter, the model will consider the allocation complete and move on to the 

next year. In the current study, for example, the Dyna-CLUE model for Wilcox County, 

GA has an allowable deviation parameter of 2 percent maximum in any year. 

The resulting land cover maps for 2056 are queried using ArcGIS Pro software to 

select pixels that converted from cropland to grassland to produce a map of UACL for 

each of the regions. These maps are exported to TIFF images for pattern analysis in 

Fragstats software (McGarigal et al., 2023). 

3. Results 

The logistic regression analysis in R produced results where nearly all predictor 

variables are statistically significant in the prediction of every land type in all regions. All 
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variables are included for all land cover types. Regression results for each land type in the 

four regions are presented in Appendix G. 

Figures 4.12 – 4.15 illustrate the initial land cover map in 2006, the projected map 

for 2056, and the areas of emergent UACL for each region. Figure 4.16 shows graphs of 

each landscape metric calculated for each year of the model scenario in each region. 

 

 

Figure 4.12. Blue Earth County, MN. Upper left: initial NLCD land cover map in 
2006. Upper right: Modeled 2056 land cover map. Lower: dark areas represent the 
emergent UACL between 2006 and 2056. 
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Figure 4.13. Brazoria County, TX. Upper left: initial NLCD land cover map in 2006. 
Upper right: Modeled 2056 land cover map. Lower: dark areas represent the emergent 
UACL between 2006 and 2056. 
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Figure 4.14. Estill County, KY. Upper left: initial NLCD land cover map in 2006. Upper 
right: Modeled 2056 land cover map. Lower: dark areas represent the emergent UACL 
between 2006 and 2056. 
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Figure 4.15. Wilcox County, GA. Upper left: initial NLCD land cover map in 2006. 
Upper right: Modeled 2056 land cover map. Lower: dark areas represent the emergent 
UACL between 2006 and 2056. 
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Figure 4.16. Landscape metrics of UACL plotted over the 50-year modeling scenario for 
each region. 
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Several metrics showed similar patterns for each region. AI, PARA_MN show the 

closest agreement across regions. In these two cases, however, Blue Earth County, MN is 

slightly different than the others; its perimeter-area ratio is a bit higher, and its 

aggregation index is a bit lower. This suggests that the patches of UACL in Blue Earth 

County, MN are a bit more complexly shaped and distributed more widely. Estill County, 

KY is more divergent than other regions in some metrics, due in large part to the fact that 

there is less cropland to begin with relative to the other counties. Interestingly, the 

CONNECT metric shows much greater connectance, or proximity between UACL 

patches, in Estill than all other counties. A possible cause of this outlier is that all UACL, 

and cropland for that matter, is concentrated in a single valley, whereas the other counties 

have cropland distributed more evenly across the entire landscape. 

Patch density (PD), which is a measure of how many patches exist per area of the 

county, shows some regional differences. Blue Earth County, MN shows the greatest 

density of patches among the regions, and its value increases over time before levelling 

off. Wilcox County, GA, on the other hand, initially increases in patch density but then 

begins to decrease after year ten and continues to decrease steadily through year 50 of the 

scenario. 

All counties show an increase in mean patch size (AREA_MN) over time. 

Brazoria County, TX shows the greatest increase while Blue Earth County, MN shows 

the least increase. This metric along with the aggregation index (AI) suggests that the 

patches of UACL become larger and more clustered over time. Interestingly, Blue Earth 

County, MN shows very little increase in mean patch size, suggesting that UACL 

emerges in small, disjointed patches rather than agglomerating onto existing patches. 
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A final observation is that Blue Earth County, MN and Brazoria County, TX 

show an increase in edge density (ED) over time which Estill County, KY and Wilcox 

County, GA show very little. Edge density is a measure of the complexity of patches’ 

shapes. Blue Earth and Brazoria’s patches of UACL develop more complexity while 

Estill and Wilcox retain more simply shaped patches of UACL. Edge density is 

calculated by summing the lengths of all patch edges and dividing them by the total area 

of the county. Interestingly, Blue Earth and Brazoria are the two largest of the four 

counties. On their own, these large areas would tend to make the calculation of edge 

density result in lower values. Rather, these counties have higher values of edge density 

which suggests that the patches of UACL are particularly complex in shape relative to 

those in Estil and Wilcox counties. 

Table 4.8. shows a summary of the relative favorability of each metric in each 

region. Metric favorability is determined by ranking the 50-year value as higher or lower 

than the other regions and whether the ordinal value (relatively high or low) aligns with 

the preferred magnitude of each metric. Brazoria, TX, Estill, KY, and Wilcox, GA 

aligned with 6, 5, and 4 metric preferences respectively. Blue Earth, MN, however, does 

not rate more favorably relative to the other regions for any metric.  
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Table 4.8. 50-year projected UACL metrics and preference for renewable energy. 
“low” and “high” are ordinal rankings of a county’s metric value relative to the other 
regions. The shading indicates that the ranking aligns with the metric’s preferability for 
renewable energy production. 

 

Metric Preference 
Blue Earth, 

MN Brazoria, TX Estill, KY Wilcox, GA 

Average Patch Area 
(AREA_MN) Higher values low high med med 

Largest Patch Index 
(LPI) Higher values med high low high 

Percentage of 
Landscape (PLAND) Higher values med med low high 

Edge Density (ED) Lower values high low low high 

Mean Perimeter-
Area Ratio 
(PARA_MN) 

Lower values high low low low 

Connectance 
(CONNECT) Higher values low low high low 

Patch Density (PD) Lower values high low low med 

Aggregation Index 
(AI) Higher values med high high high 

Total Aligned 
Preferences 

 
0 6 5 4 

 

4. Discussion 

Hypothesis 1 (H1) is accepted based on the results of this study. The landscape 

metrics measured for the 50-year projected UACL are different for each region. This is 

true for essentially all eight of the metrics selected for this analysis. Rarely are the plots 

of metrics for multiple regions exactly the same. The metrics vary both in their rate of 

change over the 50-year period and in their magnitude in year 50. 

Trends in metrics over time follow the same sign of change for all regions with 

one exception: Wilcox County, GA experiences a decrease in patch density after year 10 
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while all other regions continue to increase. This suggests that new patches of UACL in 

Wilcox County initially emerge in isolation from each other, similar to the other regions, 

but after year 10 new areas of UACL emerge adjacent to existing patches. This results in 

larger, aggregated patches, more so than the other regions that experience an increase in 

smaller separate patches. A contributing factor to this difference may be that a larger 

percentage of the overall landscape in Wilcox County is comprised of UACL. At year 50, 

Wilcox County is over 20% comprised by UACL while the other regions are around 10% 

or less. 

Hypothesis 2 (H2) is accepted because the favorability of metrics for renewable 

energy production varies from region to region. This cursory inspection of the metrics 

results suggests that three of the four regions (Brazoria County, TX, Estill County, KY, 

and Wilcox County, GA) may be well suited for renewable energy efforts. It is notable 

that Blue Earth County, MN did not rank more preferably than the other regions for any 

landscape metric. More research is needed to determine which of these metrics is the 

most important measure of an area’s suitability for renewable energy. It may be the case 

that some metrics for which regions in this study were favorable are not relevant, perhaps 

due to poor metric selection or incorrect assumptions about their relevance to renewable 

energy. Furthermore, since it is likely that only some of the metrics included in this study 

are relevant or important, the regions that scored preferably in certain metrics may 

ultimately not be good candidates for renewable energy investment. Despite these 

potential shortcomings, these results, along with the national level results in the previous 

chapters, indicate that there is variability across space and scale that is of consequence to 

renewable energy. 
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Brazoria County, TX emerges as the region ranking favorably across the most 

landscape metrics. This county is large in total area, relatively flat terrain, and has large 

plots of cropland that are abandoned in aggregated portions. Blue Earth County, MN is 

similarly large with flat terrain. However, the emergence of usable abandoned cropland 

occurs in a more scattered pattern rather than in large, aggregated areas like in Brazoria. 

Whether this is an artifact of the model or methodology in this study, or a reflection of 

the underlying drivers and landscape characteristics requires further investigation. A 

notable observation is that the edge density of UACL patches in Brazoria County, TX is 

much lower than the densities in Blue Earth County, MN. This likely due in part to the 

fact that Blue Earth has many, small patches rather than large, contiguous patches as in 

Brazoria, but it is also a reflection that the shapes of the usable abandoned cropland areas 

in Brazoria County, TX are more simple and therefore more favorable for renewable 

energy production. 

5. Conclusion 

 This study projected the emergence of usable abandoned cropland within four 

distinct regions of the eastern United States. The projection was based on a spatially 

explicit land change model that relies on relationships with underlying landscape 

characteristics to allocate change in the places where it is most likely to occur. Results 

indicate that each of the four regions exhibits different patterns of UACL. Furthermore, 

measurements of the size, quantity, shape, and clustering of the emergent areas of UACL 

show that some regions are more favorable for renewable energy production based on 

spatial pattern alone. Brazoria County, TX ranked most favorable across more metrics 

than the other regions. Blue Earth County, MN, on the other hand, did not rank most 
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favorable in any of the landscape metrics. On the surface, both counties appear to have 

great potential for renewable energy production on their emergent UACL, but the results 

of this study suggest that there may be other factors operating in those regions that make 

them less favorable. Future work is needed to identify which, if any, landscape metrics 

are good measures of energy production suitability, and whether there are other 

underlying characteristics or factors that contribute to areas being more or less 

appropriate for renewable energy. The variability in patterns of usable abandoned 

cropland across regions and scales presents intriguing insights into the suitability of 

renewable energy. 
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Chapter 5. Conclusion 

This dissertation explores abandoned cropland as a land opportunity for 

renewable energy production. The first chapter presents relevant background context and 

theoretical concepts. Chapter 2 develops a methodology for calculating how much 

abandoned cropland exists in the United States. This methodology accounts for forest 

regrowth, conversion to pasture, and conversion to urban development to determine how 

much abandoned cropland is still available for other uses, such as biomass production or 

utility-scale solar. This methodology is flexible and allows the user to specify a historical 

extent to limit how old the time of abandonment may be. Estimates are calculated with 

historical limits of 1978 and 2007 to represent scenarios limited by forest regrowth and 

the renewable fuel standard respectively. This methodology and analysis are performed 

nationally with the county as the spatial unit of analysis. 

Chapter 3 explores the drivers of cropland abandonment. The specific time 

scenario of 2007 – 2017 is used to determine how much usable abandoned cropland 

emerges in each county over that timeframe. A suite of other variables representing the 

economic, demographic, and biophysical characteristics of each county are examined for 

their correlations with usable abandoned cropland. Four distinct agricultural regions of 

the United States are chosen as study areas. Random forest regressions are performed to 

determine which underlying county characteristics are most important to the emergence 

of usable abandoned cropland. Results show that measures of the rent farmers pay to 

work their land and the value of the land itself are the most important across all regions. 

In some cases, it is the static measure of rent and land value in 2007 that is most 
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important, and in other cases it is the change in rent and the change in land value over 

time that are most important. 

Chapter 4 downscales the exploration of usable abandoned cropland to a 30m 

spatial resolution within four counties, one selected from each of the four study areas in 

Chapter 3. A spatially explicit land change model (Dyna-CLUE) is used to project the 

spatial expression of usable abandoned cropland on the landscape using the rate of 

abandonment developed in Chapter 2 as the driver of change. The resulting maps are 

analyzed using metrics that measure the spatial pattern, shape, and distribution of usable 

abandoned cropland patches. Results show that each county develops a different set of 

spatial characteristics of the pattern of usable abandoned cropland. The two largest 

counties, Blue Earth County, MN and Brazoria County, TX, present a contrast of results. 

Both counties appear to have similar initial underlying characteristics including large 

parcels of cropland and flat terrain. Blue Earth, however, produces metric values 

unfavorable to renewable energy production relative to the other counties, and Brazoria 

produces several metric values that are relatively favorable. These results indicate that the 

potential land opportunities for renewable energy production on abandoned cropland vary 

from region to region, and that some characteristic regions may be better suited than 

others, despite how they may appear on the surface. 

This dissertation successfully produces three sets of results:1) estimates of how 

much usable abandoned cropland may exist in the United States, 2) what the drivers of 

usable abandoned cropland may be, and 3) the spatial patterns of emergent usable 

abandoned cropland in different regions of the country. These results, in and of 

themselves, represent useful findings that could be used by land managers and 
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policymakers to assess the potential for renewable energy production on abandoned 

cropland. Future work is required to expand on these findings in several ways.  

First, land change scenarios, like the one employed in Chapter 4, should include 

other conversion trajectories. In the current study, only cropland was allowed to change 

to grassland; no other land type conversions are allowed for the purpose of running a 

simple model for baseline results. Although the conversion from cropland to grassland 

between year one and the final year of any scenario is the ultimate interest of the analysis, 

allowing conversions among other land types may influence the ultimate spatial 

allocations of abandoned cropland. Furthermore, allowing pixels to make multiple 

conversions over time may introduce complexity that influences the ultimate spatial 

pattern of abandoned cropland. It is possible that a pixel begins as cropland in year one 

and converts to grassland, then back to cropland, then to pasture, and then back to 

grassland over the intervening years.  

Second, running complex scenarios requires more expert knowledge of the region 

of study in order to appropriately parameterize the model. Ultimately, this modeling 

exercise helps to understand the context within which land change is occurring. Each 

location exists within a story involving economics, politics, climate, demographics, 

health, hazards, and many other factors that contribute to the process and patterns of land 

change. Modeling ideally integrates the known aspects of this story while at the same 

time helps to reveal other aspects that were previously unknown. It is also possible that 

extreme events take place in one of two regions that are otherwise similar. Hurricanes, 

earthquakes, economic crises, and other such events may cause traumatic shifts in the 

characteristics and trajectories of a place which would influence the ability to completely 
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understand the processes at work. Simplified models like the ones developed in Chapters 

3 and 4 are the first steps in achieving this.  

Finally, this study is an exploration of scale and hierarchy. By explicitly spanning 

from the national to local scales between Chapters 2 and 4, this dissertation investigates 

the relevance of scale to the process of land change. Factors at broader scales 

(national/regional), such as the net change in cropland area, influence changes at local 

scales (county/landscape) by forcing change in the relative areas of each land type. And 

the underlying characteristics of places guide and influence where and how the changes 

manifest on the landscape. The drivers explored in Chapter 3 operate at a higher 

hierarchical level than the underlying forces in Chapter 4. This study explores each level 

somewhat separately. A more complete systems approach would be required to fully 

integrate the operators at each scale. This dissertation provides a foundation upon which 

to build more complex and integrated models to understand the process of cropland 

abandonment, its drivers, and the potential for emergent lands to support critical new land 

uses like renewable energy production. 
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Appendix A.  Data Processing Procedures for UACL Calculation 

These procedures include steps for calculating UACL (or AACL) for any time range.  
Sections toward the bottom include steps for calculating UACL specifically for 2006 

– 2016. 
 
Shapefile called AbandonedCropLandSince1969and1850.shp contains all calculations 

below. 
20141010 – Migrating shapefile to a geodatabase with separate tables for attributes. 

All of the variables named below should still exist as they are currently named, some in 
tables starting with “REB” to indicate that they are for my use only. Newer model runs 
and results will be performed in their own self-contained tables that indicate the range of 
years for which the analysis is run. 

 
The following is a link to an ESRI document regarding working with Excel files in 

ArcGIS: 
• http://support.esri.com/es/knowledgebase/techarticles/detail/31793 
• Summary: To add an Excel doc to ArcGIS, the table must conform to the 

following: 
o Fields being joined must be of the same type (double, text, short, integer) 
o Name of the .xls or .xlsx file must have: 

 No spaces 
 No special characters (only underscores allowed) 
 Not begin with a number 

o The first row of the table must contain the field names: 
 No spaces 
 No special characters (only underscores allowed) 
 Not begin with a number 

o Tabs or worksheets must conform to the same as above. 
 
 
1)  Switchgrass on Recently Abandoned (Potential) Cropland 
1. Begin with shapefile of counties in the US 

a. Dissolve features by FIPS code(rejoin attributes from original shapefile, 
export and rename to make permanent) 

b. Bring the attribute table (.dbf) into Excel and convert the FIPS_1 column 
to numbers 

i. This is necessary to remove leading spaces from the values 
ii. Open the table in Access and export back to DBASE4 and replace 

original .dbf 
c. Add a new field (Max1969) to store the max crop land value since 1969, 

which is approximately 40 years prior to the ‘current’ year of 2007. 
i. Do this by bringing the attribute table into Excel 

ii. Save the table as AbandonedCropLandSince1969.xlsx 

http://support.esri.com/es/knowledgebase/techarticles/detail/31793
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iii. Use the Max() function to assign the max value from IFC1969M2 
to IFC1997M2 

iv. Copy and paste the new column to itself As Values to remove the 
function. 

v. Delete all fields except FIPS_1 and Max1969 and join back to the 
shapefile (directly do the join from the .xlsx) 

vi. Perform the export/join/rename procedure to store the values and 
remove the join. 

d. Create a new field (Max69_ha) to store the values as hectares 
i. Calculate the field by multiplying Max1969 by .0001 

2. Download current (2007) Crop Land area from the 2007 Ag stats (this is 
considered to be the ‘current’ year, which is approximately 40 years following 
1969). 

a. Use NASS Quick Stats site 
i. Census, Economics, Farms & Land & Assests, Ag Land, Area, 

“Ag Land, Cropland – Acres” 
b. Data manipulated and converted to hectares in 

TotalCropLandChesBay.xlsx 
c. New value stored in CurLndHa 
d. Note: a value of “(D)” in the Ag Census data indicates that the value has 

been restricted due to privacy concerns. This represents a situation where 
an individual producer may possibly be identified, for example if they are 
the only one in the county. 

3. Join Ag Stats table to shapefile 
a. Perform the export/join/rename procedure to store the values and remove 

the join. 
4. Create new field (Aban1969) to store the area of potential crop land abandoned 

since 1969 
a. Calculate by subtracting CurLndHa from Max69_ha (THIS INCLUDES 

NEGATIVE NUMBERS) (thru 2007) 
5. Create new field (1969noNeg) by converting all negative values in Aban1969 to 

zero. 
6. NLCD UPDATE FOR 2012 – SEE NEW PROCEDURE AT END OF 

DOCUMENT….. 
7. Acquire NLCD 1992/2001 Change Product Raster 

a. All Areas 
b. Merge the grids into a single raster dataset  (Raster dataset in a File 

Geodatabase NationalNLCD) 
8. (The following steps are required as a workaround because Arc cannot run Zonal 

Stats on large rasters) 
9. Clip the National NLCD into 16 smaller blocks using the ClipBlock shapefile. 
10. Reclassify each of the 16 grids into two new grids: 

a. Using the Reclassify tool, create a new grid (Ag2Urb01 - Ag2Urb16) 
where pixels with value 62 (Ag to Urban) have a value of 1 and all else is 
0 
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b. Using the Reclassify tool, create a new grid (Ag2Els01 - Ag2Els16) where 
pixels with values of 61,63,64,65,67,68 (Ag to anything else) have a value 
of 1 and all else is 0 

c. NOTE: the agriculture category in the NLCD retrofit dataset includes the 
pasture/hay classification, which is not intended to be included in the 
cropland calculation. However, since this analysis calculates the % of 
agriculture that transistioned to urban, we can assume that the % of true 
agriculture land uses will be the same as the % of total ag/pasture/hay that 
transitions. 

d. ALSO NOTE: since this category includes both cropland and pastureland, 
we can use this percentage to adjust the amount of abandoned cropland 
and permanent pastureland in subsequent steps to derive the grand total of 
Abandoned Agricultural Land. 

11. Use the Zonal Statistics tool to calculate the sum of pixels in each raster dataset 
and create a .dbf table (Ag2Urb01 - Ag2Urb16 and Ag2Els01 - Ag2Els16) for 
each block. 

12. Create a new table (nlcdJoin.dbf) that has the identical county records as the 
AbandonedCropLandSince1969 shapefile 

13. One at a time, join each of the 32 .dbf tables to it and use Calculate Field to write 
the SUM from the block table  to a new field (UrbSum01 - UrbSum16 and 
ElsSum01 - ElsSum16) 

14. Join nlcdJoin.dbf to the AbandonedCropLand shapefile 
15. Create two new fields in the county shapefile (AgToUrbn, AgToElse) 
16. Use the calculate Field option to sum all 16 Urb values into the AgToUrbn field 

and all 16 Els values into the AgToElse field 
17. Create new field in the county shapefile (AgToAll) as the total Ag change and the 

sum of AgToUrbn + AgToElse 
18. Create new field in the county shapefile (PctUrbCh) to represent the fraction of 

changed Ag land that went to urban v. anything else by dividing 
AgToUrban/AgToAll. 

19. Create a new field (69toUrbn) to show the portion of abandoned crop land that 
went to urban by multiplying by the percent of ag land change that transitioned to 
urban v. total ag land change (PctUrbCh). 69toUrbn = Aban1969 * PctUrbCh. 

20. Create a new field (Potent69) to show the amount of cropland abandoned since 
1969 that has not transitioned to urban and is therefore a potential resource for 
switchgrass production. Potent69 = Aban1969 - 69toUrbn. (Convert any negative 
numbers to 0.) (thru 2007) 

21. Create new attributes for nominal switchgrass yield (Mg/ha) assuming 0 Nitrogen 
and 100 Nitrogen applied (SGYDN0, SGYDN100) 

a. Using the updated switchgrass yield model from Dartmouth, produce a 
raster dataset of switchgrass yield for the CB region. 

i. PRISM climate data includes normals from 1971-2000. 
ii. Extracted the Temp and Prcp layers from the Chesapeake Bay 

analysis folder and imported to a new file geodatabase in the 
national folder 

b. Run the model separately for upland and lowland ecotypes. 
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c. Export the two grids to the TempGrids file geodatabase 
d. (May need to close ArcMap to perform the following steps) 
e. In ArcCatalog, Use the Copy Raster tool to duplicate the lowland grid to 

the Yields filegeodatabse and name it with the final name (e.g., yldN100) 
f. Use the Mosaic tool to mosaic the upland grid into the final grid using the 

MAXIMUM option. 
g. Calculate Statistics. 
h. Use this maximum raster in the zonal stats step below. 
i. Use the Zonal Statistics tool to calculate the average nominal switchgrass 

yield for each county and populate the new yield attribute in the county 
layer 

22. Create new attributes for the total switchgrass production (Mg) on recently 
abandoned cropland corresponding to 0, 100 and 200 N applied 
(SGPDABN0,SGPDABN1,SGPDABN2) 

a. Multiply the failed cropland area by the switchgrass yield to calculate the 
total switchgrass production (Potent69 * SGYDN0 = SGPDABN0, 
Potent69 * SGYDN100 = SGPDABN1....) 

b. Convert any negative values to 0. 
 
23. NEW (20140307) Calculations to incorporate calculations back to 1850 
24. Repeat steps from sections 1c and d above for calculating the max going all the 

way back to 1850 
a. Export the attribute table from AbandonedCropLandSince1969.shp and 

bring into Excel 
b. Save the table as tempTableFor1850MaxCalc.xlsx 
c. Create a new field called Max1850 
d. Use the Max() function to assign the max value from IFC1850M2 to 

IFC1997M2 
e. Copy and paste the new column to itself As Values to remove the 

function. 
f. Create a new field called Mx1850ha to store the values as hectares 

i. Calculate the field by multiplying Max1850 by .0001 
g. Delete all fields except FIPS_1, Max1850 and Mx1850ha and join back to 

the shapefile (directly do the join from the .xlsx – THIS DID NOT 
WORK, had to convert to csv first) 

h. Export the shapefile to a new one to make join permanent 
i. New shapefile called: AbandonedCropLandSince1850.shp 

25. Create new field (Aban1850) to store the area of potential crop land abandoned 
since 1850 

a. Calculate by subtracting CurLndHa from Mx1850ha (THIS CONTAINS 
NEGATIVE NUMBERS) 

26. Create new field (1850noNeg) by converting all negative values in Aban1850 to 
zero. 

27. Create a new field (1850toUr) to show the portion of abandoned crop land that 
went to urban by multiplying by the percent of ag land change that transitioned to 
urban v. total ag land change (PctUrbCh). 1850toUr = Aban1850 * PctUrbCh. 
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28. Create a new field (Pot1850) to show the amount of cropland abandoned since 
1850 that has not transitioned to urban and is therefore a potential resource for 
switchgrass production. Pot1850 = Aban1850 – 1850toUr. (Convert any negative 
numbers to 0.) 

 
Numbers for current year 2002 (looking back thru 1964, which is approximately 

40 years)  **this is the best time period to compare against Z&C, who calculate thru 
2000: 

1. Create new field, Max1964, to hold the max cropland area that occurred in any 
year between 1964 and 1997 (in the historical spreadsheet), see above for 
procedure. 1964 is chosen because it is the closest year in the record to the 40-
year time period we established. 

2. Create new field, Mx64_ha, to convert Max1964 to hectares. 
3. Create new field, CrpLnd02, to hold the cropland totals for the year 2002 from the 

USDA NASS Ag Census. (This is in hectares. The files called, 2002Acres.xlsx, 
are the download from NASS in acres.) 

4. Create new field, Aban2002, to hold the abandoned cropland between 1964 and 
2002 (Max64_ha – CrpLnd02) 

5. Create new field, 2002noNeg, to equal Aban2002 with all negative numbers 
converted to zeros. 

6. Create new field, 02toUrbn, to represent the amount of the abandoned cropland 
estimated to have converted to urban; 2002noNeg * PctUrbCh. 

7. Create new field, Potent02, to be the potential abandoned cropland including 
deduction of the amount estimated to have transitioned to urban since 1964; 
2002noNeg – 02toUrbn. 

 
Numbers for current year 2012 (looking back thru 1974, which is approximately 

40 years)  **this is the time period for presenting our most up-to-date numbers: 
1. Create new field, Max1974, to hold the max cropland area that occurred in any 

year between 1974 and 1997 (in the historical spreadsheet), see above for 
procedure. 1974 is chosen because it is the closest year in the record to the 40-
year time period we established. 

2. Create new field, Mx74_ha, to convert Max1974 to hectares. 
3. Create new field, CrpLnd12, to hold the cropland totals for the year 2012 from the 

USDA NASS Ag Census. (This is in hectares. The files called, 2012Acres.xlsx, 
are the download from NASS in acres.) 

4. Create new field, Aban2012, to hold the abandoned cropland between 1974 and 
2012 (Max74_ha – CrpLnd12) 

5. Create new field, 2012noNeg, to equal Aban2012 with all negative numbers 
converted to zeros. 

6. Create new field, 12toUrbn, to represent the amount of the abandoned cropland 
estimated to have converted to urban; 2012noNeg * PctUrbCh. 

7. Create new field, Potent12, to be the potential abandoned cropland including 
deduction of the amount estimated to have transitioned to urban since 1974; 
2012noNeg – 12toUrbn. 
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8. To calculate Potential Switchgrass Production on the most current abandoned land 
estimates, create a new field, SGPD12N1, to hold the production totals based on 
Nitrogen of 100 k/ha on the 2012 land estimate (SGYDN100 * Potent12) 

 
Correction for 1940 – 1945 Definition Change: 
UPDATE: 
 Create a new table in the Geodatabase called, 

“HistoricCroplandUSGS1940Adjusted”, that contains cropland numbers from 1850 to 
1997 where values prior to 1945 have been adjusted for the definition change in the 
Census as Z&C did.  

1. Create separate spreadsheet: 
AbandonedCropLandSince1969and18501940Adjust.xlsx 

2. Copy all M2 columns 
3. Rename the pre-1954 columns with a trailing “c” to indicate that they are 

corrected. 
4. Create new field, 40_45Dif, to hold the difference between 1940 and 1945 (1940 

– 1945). 
5. Create new field, 4045NoNg, to convert all negative values to zeros. 
6. Calculate the “c” columns by subtracting the 4045NoNg values from the original 

M2 values. 
7. In all “c” columns, convert negative values to zeros. 
8. Create a new column, Mx1850_HAc, to hold the Max occurring value in all years 

dating back to 1850 including the corrected columns. (multiply by .0001 to 
convert to Hectares) 

9. Create a new column, Aban18502002c, to hold the difference between the 1850 
Max and the current 2002 cropland (Mx1850_HAc – CrpLnd02) and convert all 
negative values to zeros at the same time. 

10. Create a new column, 1850to2002toURBNc, to hold the % of abandoned 
cropland that transitioned to urban. (Aban18502002c * PctUrbCh). 

11. Create a new column, Potent18502002c, to hold the potential abandoned cropland 
after urban is removed. (Aban18502002c – 1850to2002toURBNc). 

12. Create a new column, Aban18502012c, to hold the difference between the 1850 
Max and the current 2012 cropland (Mx1850_HAc – CrpLnd12) and convert all 
negative values to zeros at the same time. 

13. Create a new column, 1850to2012toURBNc, to hold the % of abandoned 
cropland that transitioned to urban (Aban18502012c * PctUrbCh). 

14. Create a new column, Potent18502012c, to hold the potential abandoned cropland 
after urban is removed. (Aban18502012c – 1850to2012toURBNc). 

 
Integration with Campbell Data: 
 
Source data Downloaded from 

https://eng.ucmerced.edu/campbell/AbandonedAG/download.html 
 
**Repeat the following for the 1964 – 2002 numbers above to get the best 

comparison with Z&C….. 

https://eng.ucmerced.edu/campbell/AbandonedAG/download.html
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1. Need to join the Campbell tables to my shaefile. 
2. Create a new field in shapefile, STABBV, to hold the state abbreviation in order 

to match Campbell’s usage. (used the script in StateNameTranslation.txt) 
3. Create new field, CNTYJOIN, in Campbell’s and my tables that is the state 

abbreviation [STABBV] appended to the county name [CNTY_NAME]. 
4. Create new field, cntyJnLo, to hold the /county combined names in all 

LOWERCASE letters. 
5. In all tables (my attribute table, noSub and Sub): 

a. Delete all spaces in cntyJnLo. 
b. Delete all underscores in cntyJnLo. 
c. Delete all periods in cntyJnLo. 
d. Delete all single quotes in cntyJnLo. 

6. Change the following counties manually: 
a. FL, Dade (Miami-Dade) “flmiamidade” 
b. Alabama, De Kalb to “aldekalb”. 

7. Join the tables based on cntyJnLo. 
a. Several ‘counties’ in Virginia don’t exist in Campbell list 
b. Pinellas county in FL does not exist in Cmapbell’s list 

8. Create two new fields, ZC_SUB and ZC_noSub, to hold Z&C’s abandoned 
cropland values (with and without urban/forest subtraction) 

9. Create new field, CNTYAREA, to hold the total area of each county (ha). Use 
Calculate Geometry function to populate the values. 

10. Create a new field, Pot69_D, to hold the density of abandoned cropland in each 
county according to Baxter. Populate it with the calculation: 
Potent69/CNTYAREA. 

11. Create a new field, Pot02_D, to hold the density of abandoned cropland in each 
county according to Baxter. Populate it with the calculation: 
Potent02/CNTYAREA. 

12. Create a new field, ZC_sub_D, to hold the density of abandoned cropland in each 
county according to Z&C. Populate it with the calculation: ZC_sub/CNTYAREA. 

13. Create a new field, DensDiff, to hold the difference between ZC_sub_D and 
Pot69_D. This is the difference in our estimates of abandoned cropland density. 

14. Create a new field, D_Diff02, to hold the difference between ZC_sub_D and 
Pot02_D. This is the difference in our estimates of abandoned cropland density. 

15. Create a new field, AreaDiff to hold the difference between ZC_sub and Potent69. 
This is the difference in our estimates of abandoned cropland area. 

16. Create a new field, A_Diff02 to hold the difference between ZC_sub and 
Potent02. This is the difference in our estimates of abandoned cropland area. 

17. Create a new field, 1850Diff, to hold the difference between ZC_noSub and 
1850noNeg. This is the difference between our estimates going back to 1850 
without any adjustments. 

18. To compare with his NOSUB numbers, create a new variable, 185097Ha, to be 
my estimate of abandoned cropland between the max cropland dating back to 
1850 and 1997 ((Max1850 - IFC1997M2) * .0001) 
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19. Create new field, NSb97Dif, To show the difference between Z&C’s noSub 
estimates and my estimate dating back to 1850 and only up to 1997 to be 
comparable to the dates used in Z&C. (ZC_noSub – 185097Ha) (a positive value 
indicates a higher estimate from Z&C) (Not useful. It appears that the data in 
Z&C’s table already adjusts for the 1940 reclassification of ag land, resulting in a 
drop from approx. 90 MHa to 60MHa) 

20. Calculate Switchgrass Production on Z&C land estimates: 
a. Create new field, SGPDN1ZC, to be (SGYDN100 * ZC_sub) 

 
Processing Historic Ag Census Files From CISER (to get historic Pasture numbers): 
1. Acquire data file from 

http://ciser.cornell.edu/ASPs/browse_ath.asp?CATEGORY=100 
2. Ideally, get a .trn file, which can be processed with SAS 
3. Copy the .trn file to the Work folder in GPFS using SSH 
4. Open SAS: 
5. In the Program Editor window paste the following code and edit with the 

appropriate file names (“libraryName” is the name of a SAS library that will hold 
the imported table. “ag6974ad” is the name of the table to be loaded): 

 

libname libraryName '/gpfs/home/reb186/work/Data'; 
libname ag6974ad xport '/gpfs/home/reb186/work/Data/ag6974ad.trn'; 
     PROC COPY in=ag6974ad out=agCensus; 
     run; 

 
6. In the Program Editor window paste the following code and edit with the 

appropriate file names (“libraryName” is the name of a SAS library that will hold 
the imported table. “ag6974ad” is the name of the table to be loaded): 

 
PROC EXPORT DATA= libraryName.ag6974ad  
            OUTFILE= 

"/gpfs/home/reb186/work/DataAg_census.csv"  
            DBMS=CSV REPLACE; 
     PUTNAMES=YES; 
RUN; 

 
7. Import the .csv to a new table in ArcGIS called “AgCensus1978” (of course 

changing the year accordingly). 
a. In the 1978 table, the Permanent Pasture attribute is called, “V218”. 
b. In the 1978 table, the Total Cropland attribute is called, “V50”. 
c. To determine which attribute column in the csv is desired, refer to the 

cag003_codebood.pdf. Count the number of variable values occur in the 
document starting with “Farms” moving across columns and down each 
row until you encounter the value you want. For example, to get Total 
Cropland in Acres, there are 8 columns of values in the pdf and Total 
Cropland is in the 7th row. So count the first 6 rows (each with 8 variables) 

http://ciser.cornell.edu/ASPs/browse_ath.asp?CATEGORY=100
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up to 48 and then count two more until you arrive at Total Copland in 
Acres. 

 

Integration of Pasture data and full Cropland data from NASS 
1. In the HistoricCroplandUSGS table, create a new set of columns that contain the 

cropland areas in hectares. 
a. Calculate the new fields by multiplying the corresponding ‘M2’ fields by 

.0001. 
2. Acquire any updated NASS data: 

a. Download data from the NASS QuickStats site for the years 1997 – 2017. 
i. C:\data\PhD\Chapter2_Data\CropAndPastureDataNASS 

b. Save the files as .xlsx in Excel (confirm naming conventions described in 
link above) 

c. Create a new column that matches the FIPS_1 field in the shapefile for use 
when joining. 

i. FIPS_1 combines the two-digit state code with the three-digit 
county code 

ii. State code has no leading zero (therefore some counties are four 
digits and others five) 

iii. Calculate new column by multiplying State by 1000 and adding the 
County 

d. Delete the following columns: 
i. Program, Year, Period, Week Ending, Geo Level, Ag District, Ag 

District Code, Zip Code, Region, Watershed, Commodity, 
Domain, Domain Category and all “CV (%)” columns 

e. Rename all columns to match conventions described in the link above. 
i. Remove spaces 

ii. Remove special chars 
iii. Include the appropriate year in each variable name (e.g., 97) 

1. aglnxCPW97ac Ag Land (excl crop & past & wood) 
- NASS 

2. cropTot97ac Cropland Total - NASS 
3. cropxHP97ac Cropland (excl harv & past) - NASS 
4. cropHar97ac Cropland Harvested - NASS 
5. cropPas97ac Cropland Pastured Only - NASS 
6. pastTot97ac Pastureland Total - NASS 
7. pastxCW97ac Pastureland (excl crp & wood) - NASS 
8. woodTot97ac Woodland Total - NASS 
9. woodxP97ac Woodland (excl past) - NASS 
10. woodPas97ac Woodland Pastured – NASS 

f. Convert all values to hectares by calculating new variables (multiply acres 
by .404686): 

1. aglnxCPW97ha Ag Land (excl crop & past & wood) 
- NASS 

2. cropTot97ha Cropland Total - NASS 
3. cropxHP97ha Cropland (excl harv & past) - NASS 
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4. cropHar97ha Cropland Harvested - NASS 
5. cropPas97ha Cropland Pastured Only - NASS 
6. pastTot97ha Pastureland Total - NASS 
7. pastxCW97ha Pastureland (excl crp & wood) - NASS 
8. woodTot97ha Woodland Total - NASS 
9. woodxP97ha Woodland (excl past) - NASS 
10. woodPas97ha Woodland Pastured – NASS 

g. Import spreadsheet to a new table in ArcGIS 
i. Name the new table NASS#### (#### corresponding to the year, 

e.g., NASS2002) 
ii. Note: if you get a “Failed to connect to database” error, download 

the Excel 2007 driver (necessary even if a more recent version of 
Excel is already installed). http://www.gisarea.com/topic/3523-
facing-error-in-arcgis-102/ 

h. Convert all values in all fields from NULL to zeros using the following 
Python code in the Field Calculator (this is necessary because any 
calculation involving a NULL value results in a NULL value. This would 
be inappropriate in instances, for example, when a present day value is 
NULL but a historic value is positive; this should result in a positive value 
of abandoned land, but would instead appear as NULL and ultimately, 
zero) 

i. Python Script: 
def nullFunc(x): 
  if x is None: 
    return 0 
  else: 
    return x 
         
nullFunc( !FIELD! ) 

3. Acquire any updated NLCD data and recalculate the Urban Conversion fractions 
a. See NLCD instructions below, and an update to the procedure for 

2016…… 
4. Acquire any necessary years of historical pasture data. 

a. See CISER instructions above…… 
5. In a new table called “Results19502012” (make a copy of the ResultsTemplate 

table and rename the title and field names with the appropriate scenario years) 
calculate the following new fields by joining it to the other tables: 

a. Max19502012 = Maximum occurring value of cropland area in the period 
between the historic limit and the present day. Make sure it is 
HECTARES!! 

i. Join the historicUSGS table and the NASS#### tables to the 
Results table 

ii. Python code: max([!field1!, !field2!, !field3!]) 
iii. Use the Crop####ha fields in the historic table 
iv. Use the cropTot##Ha in the NASS tables 

http://www.gisarea.com/topic/3523-facing-error-in-arcgis-102/
http://www.gisarea.com/topic/3523-facing-error-in-arcgis-102/
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v. Do NOT include the 1997 field in the historic table; use the 1997 
NASS instead. 

b. Aban19502012 = max19502012 – NASS2017:cropTot12ha (difference in 
the amount of total cropland area between historic maximum and present 
day). Use the following code to perform the subtraction, while also setting 
negative values to zero. 

i. Set NULL values to zero and any negative results to zero: 
1. Python code: 

def convertNullsAndZeros(max,current): 
  if max is None: 
    max = 0 
  if current is None: 
    current = 0 
  diff = max - current 
  if diff < 0: 
    diff = 0 
  return diff 
 
convertNullsAndZeros( 

!Results19782012.max19782012!, 
!NASS2012.cropTot12ha!) 

 
c. toUrbn19502012 = Aban19502012 * UrbanConversion:urCh01to11 

(Amount of the abandoned ag land that has transitioned to an urban use. 
Based on calculations using NLCD 2001 and 2011.) 

d. Pot19502012 = Aban19502012 – toUrbn19502012 (Potential cropland 
after removing the land estimated to have transitioned to urban) 

e. histPasture19502012 = Value of pastureland (excluding cropland & 
woodland) in the earliest year of the period being investigated. (This is 
deliberately the amount in the earliest year of the period rather than the 
maximum that occurs in any intervening year.)  In the NASS tables it is 
field “pastxCW##ha”. This is field “V218” in the AgCensus1978 table. 
CONVERT TO HECTARES!  Convert NULLs to zero: 

i. If pulling from NASS table, use this Python code: 
def convertNulls(hist): 
  if hist is None: 
    hist = 0 
  return hist 
 
convertNulls( !NASS1997.pastxCW97ha! ) 

 
ii. If pulling from historic (CISER) Ag Census file, use this Python 

code: 
def convertNulls(hist): 
  if hist is None: 
    hist = 0 
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  hist = hist * .404686 
  return hist 
 
convertNulls( !AgCensus1978.V218! ) 
 

f. toPasture19502012 = NASS2012:pastxCW12ha - histPasture19502012 
(difference in the amount of total pastureland (excl C&W) between the 
present day and historic limit. This is assumed to be the amount of 
cropland that has transitioned to pastureland and therefore not available 
for use.)  Also set negative values to zero. 

i. Set NULL values to zero and any negative results to zero: 
1. Python code: 

def convertNullsAndZeros(current,hist): 
  if current is None: 
    current = 0 
  if hist is None: 
    hist = 0 
  diff = current - hist 
  if diff < 0: 
    diff = 0 
  return diff 
 
convertNullsAndZeros( 

!NASS2012.pastxCW12ha!, 
!Results19782012.histPasture19782012!) 

 
g. useable19502012 = Pot19502012 – toPasture19502012 (Net amount of 

useable abandoned cropland after both urban and pasture conversions are 
removed.)   

i. Set negative values to zero. 
1. Python code: 

def convertNullsAndZeros(pot,pas): 
  if pot is None: 
    pot = 0 
  if pas is None: 
    pas = 0 
  diff = pot - pas 
  if diff < 0: 
    diff = 0 
  return diff 
 
convertNullsAndZeros( 

!Results19782012.pot19782012! , 
!Results19782012.toPasture19782012!) 
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h. Create normalized versions of TACL and UACL by dividing by the max 
cropland amount: 

i. Calculate new fields:  
1. TACLnorm = useable19502012 / Max19502012 
2. UACLnorm = Aban19502012 / Max19502012 

ii.  
i. sgPdN019502012 = SwitchgrassYield:SGYDN0 * useable19502012 
j. sgPdN119502012 = SwitchgrassYield:SGYDN1 * useable19502012 
k. sgPdN219502012 = SwitchgrassYield:SGYDN2 * useable19502012 

 
l. abanPasture19502012 = histPasture19502012 - NASS2012:pastxCW12ha 

(Amount of permanent pasture that has been lost during the time frame 
being investigated. All negative values are set to zero. Positive values 
indicate Abandoned Permanent Pasture, and therefore a potential land area 
for the production of biofuel feedstocks. This value is separate from the 
Abandoned Cropland calculated above, but could be added to that net 
amount for a grand total of useable Abandoned Agricultural Land.) 

i. Set NULL values to zero and any negative results to zero: 
1. Python code: 

def convertNullsAndZeros(hist,current): 
  if hist is None: 
    hist = 0 
  if current is None: 
    current = 0 
  diff = hist - current 
  if diff < 0: 
    diff = 0 
  return diff 
 
convertNullsAndZeros(!Results19782012.histPa

sture19782012!,  
!NASS2012.pastxCW12ha!) 
 

l. max18502012 = The max occurring cropland value between current year 
and 1850. Use (join) the 1940-adjusted historic cropland table 
(HistoricCroplandUSGS1940Adjusted) to calculate the max occurring 
value. Make sure it is HECTARES!! 

i. Join the Adjusted historic USGS table and the NASS#### tables to 
the Results table 

ii. Python code: max([!field1!, !field2!, !field3!]) 
iii. Use the Crop####ha fields in the historic table 
iv. Use the cropTot##Ha in the NASS tables 
v. Do NOT include the 1997 field in the historic table; use the 1997 

NASS instead. 
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m. totalAban18502012 = max18502012 - NASS2012:cropTot12ha 
(difference in the amount of total cropland area between the adjusted 
historic maximum and present day). Also set negative values to zero. 

i. Set NULL values to zero and any negative results to zero: 
1. Python code: 

def convertNullsAndZeros(max,current): 
  if max is None: 
    max = 0 
  if current is None: 
    current = 0 
  diff = max - current 
  if diff < 0: 
    diff = 0 
  return diff 
 
convertNullsAndZeros( 

!Results19782012.max18502012!, 
!NASS2012.cropTot12ha!) 

m.  
l. In an Excel spreadsheet (ScenarioResultsTotals.xlsx), calculate the SUMs 

of all values and populate a row for each scenario run. 
i. Also calculate a weighted national average of the Urban 

Conversion fractions (pDev01to11), that uses the aban19782012 
values as the weights: 

1. =SUMPRODUCT(A2:A3,B2:B3)/SUM(B2:B3) 
 

2012 and 2016 NLCD UPDATE, URBAN CONVERSION ADJUSTMENT 
1. DEFINITELY use the 2001 – 2011 numbers instead of the 1992 – 2001 numbers 

due to the increased accuracy of the NLCD data. The NLCD documentation paper 
(see literature) indicates that in particular the Cropland class improved its 
classification accuracy significantly between the two data periods. 

2. Acquire 2001 and 2011 nlcd 
a. We have determined that the combined NLCD categories of Cultivated 

Crops + Pasture/Hay are a better measure of Cropland as defined in the Ag 
Census 

b. Therefore, we should develop an urban conversion fraction that treats both 
cropland and pasture/hay as a single class in the NLCD to adjust the Total 
Cropland numbers in the Ag Census. 

3. To illustrate the match of the categories in NLCD with the Ag Census in both 
2001(2002) and 2011(2012) (perform this using the regular NLCD products, not 
the change rasters): 

a. Create the following RECLASSED rasters setting the corresponding 
values to 1 and all others to 0: 

i. cCrops01 = 82 (in the 2001 NLCD) 
ii. cCrops11 = 82 (in the 2011 NLCD) 

iii. pastHay01 = 81 (in the 2001 NLCD) 



204 
 

iv. pastHay11 = 81 (in the 2011 NLCD) 
b. Use the Zonal Statistics as Table tool to create a new table in the File 

Geodatabase that contains the SUM of the pixel values in the 
corresponding raster: 

i. znCCrp01 
ii. znCCrp11 

iii. znPsHy01 
iv. znPsHy11 

c. Create new fields in the Counties2001to2011 feature class that calculate 
the separate and combined Cultivated Crops and Pasture/Hay totals in 
2001 and 2011: 

i. cCrops01 
ii. cCrops11 

iii. pastHay01 
iv. pastHay01 
v. crpPsHy01 = cCrops01 + pastHay01 

vi. crpPsHy11 = cCrops11 + pastHay11 
d. The above values are in units of pixels. Convert them to hectares by 

multiplying by 900 and multiplying by .0001 (the 900 converts each 30m 
pixel to meters, and the .0001 converts each square meter to hectares) 

i. crpPas01ha = crpPsHy01 * 900 * .0001 
ii. crpPas11ha = crpPsHy11 * 900 * .0001 

e. Compare the combined NLCD totals with the Cropland total in the Ag 
Census: 

i. Perform a join on the Counties2001to2011 feature class with the 
NASS tables to access the Total Cropland numbers 

1. cropTot02ha in the NASS2002 table 
2. cropTot12ha in the NASS2012 table 

ii. Create new fields to hold the difference between the NLCD and 
Census as a percentage of the Ag Census value 

1. Cen02Nlcd01 (Use the following VB script to avoid 
dividing by zero) 

dim theThing 
if [cropTot02ha] <> 0 then 
theThing = ([cropTot02ha] – [crpPas01ha]) / 

[cropTot02ha]  
else 
theThing = 0 
end if 

2. Cen02Nlcd11 (Use the following VB script to avoid 
dividing by zero) 

dim theThing 
if [cropTot12ha] <> 0 then 
theThing = ([cropTot12ha] – [crpPas11ha]) / 

[cropTot12ha]  
else 
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theThing = 0 
end if 

3. Negative values indicate that the NLCD value is greater 
than the Ag Census value. 

4. Acquire 
nlcd_2001_to_2011_landcover_fromto_change_index_2011_eedition_2014_04_0
9 raster 

a. Changes for the 2006-2016 analysis: 
 

There is no NLCD product that specifically shows change between 
2006 and 2016, unlike the 2001 instructions above. Therefore, I need to 
use the 2006 and 2016 land cover datasets and calculate the changes 
manually. 

 
2006 and 2016 Landcover codes: 
• CultivatedCrops or Pasture/Hay 

o 81,82 
• Developed or Barren 

o 21,22,23,24,31 
 
agToDev = Con((("nlcd_2006_land_cover_l48_20210604.img" == 81) | 

("nlcd_2006_land_cover_l48_20210604.img" == 82)) & 
(("nlcd_2016_land_cover_l48_20210604.img" == 21) | 
("nlcd_2016_land_cover_l48_20210604.img" == 22) | 
("nlcd_2016_land_cover_l48_20210604.img" == 23) | 
("nlcd_2016_land_cover_l48_20210604.img" == 24) | 
("nlcd_2016_land_cover_l48_20210604.img" == 31)), 1, 0) 

 
agToElse = Con((("nlcd_2006_land_cover_l48_20210604.img" == 81) | 

("nlcd_2006_land_cover_l48_20210604.img" == 82)) & 
(("nlcd_2016_land_cover_l48_20210604.img" != 21) & 
("nlcd_2016_land_cover_l48_20210604.img" != 22) & 
("nlcd_2016_land_cover_l48_20210604.img" != 23) & 
("nlcd_2016_land_cover_l48_20210604.img" != 24) & 
("nlcd_2016_land_cover_l48_20210604.img" != 31) & 
("nlcd_2016_land_cover_l48_20210604.img" != 81) & 
("nlcd_2016_land_cover_l48_20210604.img" != 82)), 1, 0) 

 
In the Environments settings: 
 
• Set the Snap Raster to be the NLCD 2006 raster. This ensures that the 

pixels in the output raster align with those in the input rasters. For 
some reason, running a test without this setting resulted in an output 
that was shifted diagonally up and to the right. 

 
• Processing Extent is set to the Intersection of Inputs 
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5. Create the following RECLASSED rasters setting the corresponding values to 1 

and all others to 0: 
a. agToDev = (CultivatedCrops and Pasture/Hay to Developed or Barren) 

i. 225-229,242-246 
b. agToEls = (CultivatedCrops and Pasture/Hay to all other categories 

except CultiavtedCrops, Pasture/Hay, Developed and Barren) 
i. 222-224,230-234,237-238,239-241,247-251,254-255 

6. Use the Zonal Statistics as Table tool to create a new table in the File 
Geodatabase that contains the SUM of the pixel values in the corresponding 
raster: 

a. znAgToDev 
b. znAgToEls 

7. Join the tables to the Counties feature class and use the Calculate Field tool to 
populate new fields in the attribute table for each of the joined tables: 

a. agToDev 
b. agToEls 

8. Create a new field, agToAll, to contain the sum of agToDev and agToElse. 
9. Create new field, urCh01to11, to contain the fraction of total ag land change 

between 2001 and 2011 that transitioned to a ‘developed’ class. 
a. Use the following VB script to avoid dividing by zero: 

dim theThing 
if [agToAll] <> 0 then 
theThing = [agToDev] / [agToAll]  
else 
theThing = 0 
end if 
 
 
Python version: 
 
Expression: 

calc(!agToAll!,!agToDev!) 
 
Code Block: 

def calc(all,dev): 
  global theThing 
  if (all != 0): 
    theThing = dev / all 
  else: 
    theThing = 0 
 
  return theThing 
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10. Create a new table in the core geodatabase with the updated UrbanConversion 
values (archive the old one to a separate geodatabase and rename 
UrbanConversion92_01). 

11. To compare our estimate of abandoned cropland with raw numbers from NLCD: 
a. Create the following RECLASSED rasters setting the corresponding 

values to 1 and all others to 0: 
i. cPasToGrsSh = 250,251,233,234 (Cultivated Crops and 

Pasture/Hay to Shrub/Scrub and Grassland) 
b. Use the Zonal Statistics as Table tool to create a new table in the File 

Geodatabase that contains the SUM of the pixel values in the 
corresponding raster: 

i. znCrPsToGrSh 
c. Join the znCrPsToGrSh column to the Counties feature class and compare 

its sum to the sum of the PotentialCropland values calculated earlier (at 
some point I need to redo the PotentialCropland numbers using the 
updated urban conversion fractions that include both cropland and 
pasture/hay in NLCD). Run a Results scenario for the time period 2002 – 
2012 for the best comparison. 

d. After doing a back of the envelope overview in 
ComparisonOfNLCDGrasslandAndAbandonedAg.xlsx, the NLCD 
numbers don’t agree with our estimates of abandoned cropland. I’m not 
too concerned with this, as we are not using NLCD for absolute areas, but 
rather the relative change in cropland during specific time periods. 

 
 
RESULTS Table Data Dictionary: 
 
• Max19502012  -  Maximum occurring value of cropland area in the period 

between the historic limit and the present day. 
• aban19502012  -  Difference in the amount of total cropland area between 

historic maximum and present day (max19502012 – NASS2012:cropTot12ha). 
Negative values set to zero. This is the raw TACL value. 

• toUrbn19502012  -  Amount of the abandoned cropland that has transitioned to an 
urban use. (Aban19502012 * UrbanConversion:pDev01to11). Based on 
calculations using NLCD 2001 and 2011. 

• pot19502012  -  Potential abandoned cropland after removing the land estimated 
to have transitioned to urban (Aban19502012 – toUrbn19502012). AACL. 

• histPasture19502012  -  Amount of permanent pastureland (excluding cropland & 
woodland) in the earliest year of the period being investigated. (This is 
deliberately the amount in the earliest year of the period rather than the maximum 
that occurs in any intervening year.) 

• toPasture19502012  -  Difference in the amount of permanent pastureland 
(excluding cropland & woodland) between the present day and historic limit 
(NASS2012:pastxCW12ha - histPasture19502012). This is assumed to be the 
amount of abandoned cropland that has transitioned to pastureland and therefore 
not available for use. Negative values set to zero. 
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• useable19502012  -  Net amount of useable abandoned cropland after both urban 
and pasture conversions are removed (Pot19502012 – toPasture19502012). 
Negative values set to zero. This is the raw UACL value.  

• TACLnorm - normalized version of TACL by dividing by the max cropland 
amount. Use this in the regression. 

• UACLnorm - normalized version of UACL by dividing by the max cropland 
amount. Use this in the regression. 

• sgPdN019502012  -  Switchgrass production totals based on a yield model with a 
nitrogen input of zero (SwitchgrassYield:SGYDN0 * useable19502012). 

• sgPdN119502012  -  Switchgrass production totals based on a yield model with a 
nitrogen input of 100 kg/ha (SwitchgrassYield:SGYDN1 * useable19502012). 

• sgPdN219502012  -  Switchgrass production totals based on a yield model with a 
nitrogen input of 200 kg/ha (SwitchgrassYield:SGYDN2 * useable19502012). 

• abanPasture19502012  -  Amount of permanent pasture that has been lost during 
the time frame being investigated (histPasture19502012 - 
NASS2012:pastxCW12ha). Negative values set to zero. (Positive values indicate 
Abandoned Permanent Pasture, and therefore a potential land area for the 
production of biofuel feedstocks. This value is separate from the Abandoned 
Cropland calculated above, but could be added to that net amount for a grand total 
of useable Abandoned Agricultural Land.) I didn’t proceed with this. 
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Appendix B.  Data Processing Procedures for Correlation Analysis 

1. Download NED 
a. https://apps.nationalmap.gov/downloader/ 
b. Use the instructions on this page (https://apps.nationalmap.gov/uget-

instructions/) to bulk download tiles 
c. Metadata: 

https://www.sciencebase.gov/catalog/item/61e11197d34e8911d9ff0fa9 
d. Add all tiles to ArcGIS 
e. Remove any tiles west of 101 degrees west. Either do this here or in the 

step below. In either case, this is done to reduce processing time, since the 
analysis will be confined to the east half of conus. 

2. Constrain analysis to east of the 100th parallel. 
a. Download the MLRA (LRR) data from USDA 
b. Dissolve the MLRAs into the larger LRRs based on the LRR name of each 

polygon. 
i. Allow multi-part polygons 

c. Remove the NED tiles west of 101 degrees west. 
i. Keep the one with 100 degrees west in its name as the farthest-

west tile. 
d. Mosaic the remaining tiles together into a new raster, called DEM, in the 

AbandonedCropland geodatabase. 
i. 16-bit Unsigned 

1. This should truncate off all decimal values leaving just 
whole numbers. But it will allow for values up to 65,536 
which is way more than needed. (8-bit was too low since it 
maxes out at 255). Losing the precision of the decimals 
shouldn’t be a big deal. That’s sub-meter detail that’s 
probably way within the margin of error in the dataset. 

2. Trying to make the process run faster and not fail. Previous 
run went for over 48 hours and ultimately failed due to the 
table size maximum being exceeded; that run was specified 
for 32-bit Signed. My hope is that by reducing the bit depth 
and constraining the spatial extent to east of the 100th 
parallel will allow it to finish successfully. 

ii. Use the Define Projection tool to add a vertical datum to the 
mosaic dataset’s properties: 

1. NAVD88 height (m) 
iii. Build pyramids using Bilinear technique 

e. Use the Surface Parameters tool to generate a slope raster: 
i. Input: DEM 

ii. Output raster: Slope 

https://apps.nationalmap.gov/downloader/
https://apps.nationalmap.gov/uget-instructions/
https://apps.nationalmap.gov/uget-instructions/
https://www.sciencebase.gov/catalog/item/61e11197d34e8911d9ff0fa9
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iii. Output slope measurement: Degree 
f. Build pyramids using Bilinear technique 
g. Use the Zonal Statistics as Table tool to convert slope values to the mean 

and standard deviation for each county 
i. NOTE: Only the counties east of the 100th parallel will exist in the 

resulting table 
3. Acquire all datasets according to the Variables20072017.xlsx spreadsheet 
4. Extract each variable from NASS Quick Stats individually. 
5. Save each table as a .xlsx. In Excel: 

a. Create a new column that matches the FIPS_1 field in the shapefile for use 
when joining. 

i. FIPS_1 combines the two-digit state code with the three-digit 
county code 

ii. State code has no leading zero (therefore some counties are four 
digits and others five) 

iii. Calculate new column by multiplying State by 1000 and adding the 
County 

b. Delete the following columns: 
i. Program, Period, Week Ending, Geo Level, Ag District, Ag 

District Code, Zip Code, Region, Watershed, Commodity, 
Domain, Domain Category and all “CV (%)” columns 

c. Rename the Value column to match the desired name for the variable, e.g., 
LndVal12. 

6. Export the counties feature class table to create a new table 
(Regression20072017) in the abandonedcropland.gdb to hold TACLnorm, 
UACLnorm, and all the regression independent variables. 

7. Delete any extraneous columns from the new table, leaving TACLnorm, 
UACLnorm, etc. 

8. In ArcGIS Pro, join the Results20072017 table and each of the variable tables 
(their sources are listed in Variables20072017.xlsx) one at a time to the 
Regression20072017 table. 

9. Create a new field in the Regression20072017 table for each of the independent 
variables. 

a. Open the Fields view and use Copy/Paste to create a new field in the 
Regression20072017 table. 

10. Then go back to the regular table view and use Calculate field to copy the values 
into the new field. 

11. Make copies of the Counties feature class and the Regression20072017 table, 
adding the name “exclude” 

a. Counties_exclude, Regression20072017_exclude 
12. Delete records from the feature class and table all the counties west of the 100th 

parallel. Delete those counties with an avSlope of null. 
13. Overlay the LRRs_multiPart feature class on the counties. 
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14. Use Spatial Join to create a new column, LRR, that contains the LRR_Name 
value from the LRR_multiPart layer: 

a. Target: Counties_exclude 
b. Join Features: LRRs_multiPart_exclude 
c. Output Feature Class: Counties_exclude_SpatialJoin 
d. Join Operation: Join one to one 
e. Keep all target features 
f. Match Option: Have their center in 
g. Field Map: 

i. Output Field LRR = LRR_Name from the LRR layer 
15. Join the Regression20072017_exclude table to the Counties_exclude_SpatialJoin 

feature class 
16. Export the attribute table to Regression20072017_excludeWithLRRs 
17. Export the Counties_exclude_SpatialJoin feature class to a new layer called 

Counties_excludeWithLRRs (without the regression attributes) 

18. I plan to exclude any county with a TACLnorm of 1. These are places that have little cropland to 
begin with, and 100% of it was abandoned, whether to urban or something else. These are also all 
counties for which the 2017 value for total cropland is redacted to protect the identify of a farmer. 
So, the data makes it appear that 100% of cropland was abandoned, when in fact it is likely the no 
abandonment has occurred. These are the counties that have redacted 2017 total cropland values 
and will be excluded from the analysis: 

 
6075 CALIFORNIA  6 SAN FRANCISCO 
6003 CALIFORNIA  6 ALPINE 
34017 NEW JERSEY  34 HUDSON 
34039 NEW JERSEY  34 UNION 
36081 NEW YORK  36 QUEENS 
36085 NEW YORK  36 RICHMOND 
48301 TEXAS   48 LOVING 
48495 TEXAS   48 WINKLER 
54045 WEST VIRGINIA 54 LOGAN 
54059 WEST VIRGINIA 54 MINGO 
55078 WISCONSIN  55 MENOMINEE 
55079 WISCONSIN  55 MILWAUKEE 
32029 NEVADA  32 STOREY 
35028 NEW MEXICO  35 LOS ALAMOS 
51013 VIRGINIA  51 ARLINGTON 

 
19. Export the Counties_excludeWithLRRs layer to a new feature class called 

Counties_excludeFinal. 
20. Join the Regression20072017_excludeWithLRRs table, and select features in the 

Counties_excludeFinal layer that have a TACLnorm = 1. Delete these features. 
21. Be sure the Regression20072017 table is joined to the Counties_excludeFinal 

feature class and export the feature class to a new feature class called 
Counties_excludeFinal_withVariables that includes all of the variables in the 
attribute table. 

22. Export the attribute table to Regression20072017_excludeFinal.xlsx. 
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a. I made a second version of this that includes four new variables presenting 
some values as percents rather than absolutes. I saved the previous version 
as Regression20072017_excludeFinal_Old.xlsx. 

23. Leave an intact version of the table 
24. Make a copy and save it in the R folder 
25. Delete extraneous columns 
26. Add a column, LRR_ID, to contain an integer id for each LRR name. This should 

simplify running subsets in R. 
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Appendix C.  gSSURGO Variable Descriptions 

Descriptions come from the USDA-NRCS Soil Development Data Toolbox for ArcGIS 
downloaded from the following site: https://www.nrcs.usda.gov/resources/data-and-
reports/gridded-soil-survey-geographic-gssurgo-database. 
 
NCCPI 

 
National Commodity Crop Productivity Index is a method of arraying the soils of the 

United States for non-irrigated commodity crop production based on their inherent soil 
properties. This version features a separate index for soybeans. In the past, soybeans and 
corn were considered together. The rating a soil is assigned is the highest one of four 
basic crop group indices, which are based on the climate where the crop is typically 
grown. Cooler climates are represented by winter wheat, moderate climates are 
represented by corn and soybeans, and warmer climates are represented by cotton. 
(http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_050734.pdf) 
The interpretation is applicable to both heavily populated and sparsely populated areas. 
Ratings are for soils in their present condition. The present land use is not considered in 
the ratings.  

Ratings are based on properties and qualities to the depth normally observed during 
soil mapping (approximately 6 feet). Soil, site, and climate properties that influence the 
growth of crops are major considerations. Soil productivity is influenced by many soil 
properties. An ideal soil will store adequate amounts of water to nurture the crop between 
rains. This soil will have a near-neutral pH, will store nutrients, and lack toxic materials. 
The soil will have no barriers, either physical or chemical, to root growth. Water and gas 
transmission through the soil will be sufficient to maintain both water and oxygen at 
sufficient levels in the root zone.  The soil will not be saturated with water during the 
growing season to the point that root growth is inhibited. The soil will not be subject to 
excessive flooding or ponding during the growing season. Slope is an important 
consideration because it affects erosion by water, runoff, and the operation of equipment. 
The climate must provide adequate water and heat to allow the desired crop to mature. A 
soil that differs from the ideal in any of these features will have lower inherent 
productivity for a particular crop. The further a soil differs from ideality in any one or all 
of the factors that determine inherent productivity, the lower its inherent productivity will 
be.  

The ratings are both verbal and numerical. Rating class terms indicate the estimated 
productivity which is determined by all of the soil, site, and climatic features that affect 
crop productivity. "High inherent productivity" indicates that the soil, site, and climate 
have features that are very favorable for crop production. High yields and low risk of 
crop failure can be expected if a high level of management is employed. "Moderately 

https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database
https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_050734.pdf
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high inherent productivity" indicates that the soil has features that are generally quite 
favorable for crop production. Good yields and moderately low risk of crop failure can be 
expected. "Moderate inherent productivity" indicates that the soil has features that are 
generally favorable for crop production. Good yields and moderate risk of crop failure 
can be expected. "Moderately low inherent productivity" indicates that the soil has 
features that are generally not favorable for crop production. Low yields and moderately 
high risk of crop failure can be expected.  "Low inherent productivity" indicates that the 
soil has one or more features that are unfavorable for crop production. Low yields and 
high risk of crop failure can be expected.  

Numerical ratings indicate the overall productivity of the soil. The ratings are shown 
in decimal fractions ranging from 1.00 to 0.01. They indicate gradations between the 
point at which the combination of soil, site, and climate features has the greatest positive 
impact on inherent productivity (1.00) and the point at which the soil features are very 
unfavorable (0.01).  

The map unit components listed for each map unit in the accompanying Summary by 
Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are 
determined by the aggregation method chosen. An aggregated rating class is shown for 
each map unit. The components listed for each map unit are only those that have the same 
rating class as listed for the map unit. The percent composition of each component in a 
particular map unit is presented to help the user better understand the percentage of each 
map unit that has the rating presented.  

Other components with different ratings may be present in each map unit. The ratings 
for all components, regardless of the map unit aggregated rating, can be viewed by 
generating the equivalent report from the Soil Reports tab in Web Soil Survey. Onsite 
investigation may be needed to validate these interpretations and to confirm the identity 
of the soil on a given site. 

 
Drought 

 
Even in a year, having normal precipitation or slightly less than normal, some soils 

are prone to having drought stress occur in the plants growing on them. Several 
conditions can allow this to happen. Most influential may be a relative lack of effective 
precipitation, as is estimated by subtracting the mean annual precipitation from an 
estimate of the annual evapotranspiration. Soils west of the 100th meridian frequently fall 
into this situation, especially at low elevations. Also, a soil may have an inherently low 
ability to store water. This is typical of sandy or shallow soils or soils having a high 
content of rock fragments. In this case, even though there may be significant rainfall, the 
soil matrix does not retain sufficient water for crop growth. 

Topographic and climatic characteristics can be present to mitigate a soil's droughty 
tendacies. Some soils exist on water-gathering portions of the landscape and can thus 



215 
 

support more plant growth than their similar neighbors because of run on. Some soils 
have a water table present within the rooting zone during the growing season to supply 
plant water needs. Finally, some soils exist in a climate where precipitation is much 
higher than evapotranspiration and the soil is nearly always moist. This can occur in cool 
climates at high elevations. 

The ratings are both verbal and numerical. Rating class terms indicate the extent to 
which the soils are vulnerable to drought. Numerical ratings indicate the degree of 
vulnerability associated with each soil or site feature. The ratings are shown in decimal 
fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which 
a soil feature imparts the greatest degree of vulnerability (1.00) and the point at which the 
soil feature helps to mitigate drought vulnerability (0.00). 

Verbal ratings are defined as follows:  
Severely drought vulnerable (rating index equals 1.0). — The soil and site properties 

present are such that the plants growing on the soil must be very drought tolerant even in 
years with normal amounts of rainfall. The soil may have very low water storage capacity 
(below 5 cm) or may be in an area of low annual precipitation or high annual temperature 
or both.  

Drought vulnerable (rating index is greater than 0.67 but less than 1.0). — The soil 
and site properties are such that drought conditions generally occur every year. The soil 
may have low water storage capacity (5 to 15 cm) and the site may have low annual 
precipitation or high annual temperature or both.  

Moderately drought vulnerable (rating index is greater than 0.33 but less than 0.67). 
— The soil and site proerties are such that in an average year, some water stress may 
occur, but in a good year, plant available water is generally adequate. Water storage is in 
the range of 15 to 25 cm. Rainfall and estimated potential evapotranspiration are nearly 
equal.  

Somewhat drought vulnerable (rating index is greater than 0 but less than 0.33). — 
These soils have greater than 25 cm of water storage and annual precipitation is generally 
adequate for plant growth. In dry years some water stress may occur.  

Slightly drought vulnerable (rating index equals 0). — These soils are either in 
lowlying parts of the landscape where plant roots may exploit near-surface ground water 
or are in areas where precipitation is much higher than potential evapotranspitration. In 
an extremely dry year plants may be water stressed on these soils.  

The map unit components listed for each map unit in the accompanying Summary by 
Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are 
determined by the aggregation method chosen. An aggregated rating class is shown for 
each map unit. The components listed for each map unit are only those that have the same 
rating class as listed for the map unit. The percent composition of each component in a 
particular map unit is provided to help the user better understand the percentage of each 
map unit that has the rating presented. 
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Other components with different ratings may be present in each map unit. The ratings 
for all components, regardless of the map unit aggregated rating, can be viewed by 
generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the 
Soil Data Mart site. Onsite investigation may be needed to validate these interpretations 
and to confirm the identity of the soil on a given site. 

 
Soil Organic Content 

 
Organic matter percent is the weight of decomposed plant, animal, and microbial 

residues exclusive of non-decomposed plant and animal residues. It is expressed as a 
percentage, by weight, of the soil material that is less than 2 mm in diameter. 

Significance: 
Soil organic matter (SOM) influences the physical, chemical, and biological 

properties of soils far more than suggested by its relatively small proportion in most soils. 
The organic fraction influences plant growth through its influence on these soil 
properties. It encourages soil aggregation, especially macroaggregation, increases 
porosity, and lowers bulk density. Because the soil structure is improved, water 
infiltration rates increase. SOM has a high capacity to adsorb and exchange cations and is 
important to pesticide binding. It furnishes energy to microorganisms in the soil. As SOM 
is decomposed by soil microbes, it releases nitrogen, phosphorous, sulfur, and many 
micronutrients, which become available for plant growth. SOM is a heterogeneous, 
dynamic substance that varies in particle size, carbon content, decomposition rate, and 
turnover time. In general, the content of SOM is highest at the surface—where plant, 
animal, and microbial residue inputs are greatest—and decreases with depth.  

Total organic carbon (TOC) is the carbon (C) stored in SOM. Total organic carbon is 
also referred to as soil organic carbon (SOC) in the scientific literature. Organic carbon 
enters the soil through the decomposition of plant and animal residues, root exudates, and 
living and dead microorganisms. Inorganic carbon is common in calcareous soils in the 
form of calcium and magnesium carbonates. In calcareous soils, the content of inorganic 
carbon can exceed TOC. 

Factors Affecting Content of SOM and SOC: 
Inherent factors - Soil texture, parent material, drainage, climate, and time affect 

accumulation of SOM. Soils that are rich in clay have greater capacity to protect SOM 
from decomposition by stabilizing substances that bind to clay surfaces. The formation of 
soil aggregates—enabled by the presence of clay, aluminum and iron oxides, fungal 
hyphae, bacterial exudates (carbohydrates), and fine roots—protects SOM from microbial 
decomposition. Extractable aluminum and allophanes, which are present in volcanic 
soils, can react with SOM to form compounds that are stable and resist microbial 
decomposition. Warm temperatures increase decomposition rates of SOM. High mean 
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annual precipitation increases accumulation rates of SOM by stimulating the production 
of plant biomass.  

Loss of SOM through erosion results in SOM variations along slope gradients. Areas 
of level topography tend to have much more SOM than areas with other slope classes. 
Both elevation and topographic gradients affect local climate, vegetation distribution, and 
soil properties. They also affect associated biogeochemical processes, including SOM 
dynamics. Analysis of factors affecting C in the conterminous United States indicates that 
the effects of land use, topography (elevation and slope), and mean annual precipitation 
on SOM are more obvious than the effects of mean annual temperature. However, when 
other variables are highly restricted, SOM content clearly declines with increasing 
temperature. 

Dynamic factors - Dynamic gains and losses in SOM are due primarily to 
management decisions in combination with climate and microbial influences. 
Accumulation of SOM is controlled by the rate of C mineralization, the amount and stage 
of decomposition of plant residues, and the addition of organic amendments to soil. 

Soil organic carbon comprises approximately 52 to 58% of the SOM and is the main 
source of energy for soil microorganisms. The C within plant residues, particulate organic 
matter, and soil microbial biomass is generally considered to be within the active pool of 
SOM. The emergent view of SOM focuses on microbial access to SOM and includes an 
emphasis on the need to manage C flows rather than discrete C pools. During 
decomposition of SOM, energy and nutrients are released and utilized by plant roots and 
soil biota. Recognizing that SOM is a continuum of decomposition products is a first step 
in designing management strategies for renewing SOM sources throughout the year. 

Soil aggregates of various sizes and stabilities can act as sites at which SOM is 
physically protected from decomposition and C mineralization. Soil disturbance and 
aggregate destruction increase biodegradation of SOM. Aggregates are readily broken 
apart by tillage operations. 

Crop residues incorporated into or left on the soil surface reduce erosion and the 
losses of SOM associated with sediment. In acidic soils, applications of lime increase 
plant productivity, microbial activity, organic matter decomposition, and CO2 release. 

The diversity of the soil microbial population affects SOM. For example, while soil 
bacteria and some fungi participate in SOM loss by mineralizing C compounds, other 
fungi, such as mycorrhizae, facilitate stabilization and physical protection by aggregating 
SOM with clay and minerals. SOM is better protected from degradation within 
aggregates than in free-form.  

Relationship to Soil Function: 
SOM is one of the most important soil constituents. It affects plant growth by 

improving aggregate stability, soil structure, water availability, and nutrient cycling. 
SOM fractions in the active pool, described above, are the main source of energy and 
nutrients for soil microorganisms, which mediate nutrient cycling in the soil. 
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Biochemically stable SOM participates in aggregate stability and in holding capacity for 
nutrients and water. 

Microaggregates are formed by mineral interactions with iron and aluminum oxides 
and are generally considered an inherent soil characteristic. They are, however, impacted 
by current and past management. Fine roots, fungal hyphae, and organic carbon 
compounds, such as complex sugars (carbohydrates) and proteins (also referred to as 
glues), bind mineral particles and microaggregates together to form macroaggregates that 
are still porous enough to allow air, water, and plant roots to move through the soil. 

An increase in SOM leads to greater biological diversity and activity in the soil, thus 
increasing biological control of plant diseases and pests. 

Problems Associated with Low Organic Matter Levels: 
Low levels of SOM result in energy-source shortages and thereby lowered levels of 

microbial biomass, activity, and nutrient mineralization. In noncalcareous soils, aggregate 
stability, infiltration, drainage, and airflow are also reduced. Scarcity of SOM results in 
less diversity in soil biota and a risk of disruption to the food chain equilibrium. This 
disruption can cause disturbance in the soil environment (e.g., increased plant pests and 
diseases and accumulation of toxic substances). 

Improving SOM Levels: 
An estimated 4.4x10 to the 9th power tons of C have been lost from soils of the 

United States due to traditional farming practices. Most of this carbon was SOC. Nearly 
half of the SOM has been lost from many agricultural soils. Other farming practices, such 
as no-till and cover cropping (especially when used together), can stop losses of SOM 
and even lead to increases. Continuous application of manure and compost can increase 
SOM. Burning, harvesting, or otherwise removing plant residues decreases SOM. 

Measurement: 
SOM is measured in the laboratory by determining total carbon (TC) content using 

either dry or wet-dry combustion. Current analytical methods do not distinguish between 
decomposed and nondecomposed residues, so soil is first sieved to 2 mm to remove as 
much of the recognizable plant material as possible. If no carbonates are present, TC is 
considered to be the same as TOC (or SOC). For calcareous soils, soil inorganic carbon 
in the form carbonates must also be measured and then subtracted from the TC to 
determine TOC content. Results are given as the percent TOC in dry soil. To convert 
percent TOC to percent SOM, multiply the TOC percentage by 1.724. To convert percent 
SOM to percent TOC, divide the SOM percentage by 1.724. Note that this value 
continues to be debated by researchers with possible values ranging from 1.4 to 2.5 
(Pribyl, 2010). A conversion factor of 2 has been suggested for this database but has not 
yet been adopted. Detailed procedures for measurement of SOM are outlined in 'Soil 
Survey Investigations Report No. 42, Kellogg Soil Survey Laboratory Methods Manual, 
Version 5.0,' (Soil Survey Staff, 2014). 
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Many soil testing laboratories use a 'loss on ignition' method to estimate soil organic 
matter. The estimate produced by this method must be correlated to analytical TOC 
measurements for each area to improve accuracy. The loss on ignition method can 
provide a good indication of the trend in SOM content within a field. It is important to 
note that temperature and timing used for the loss on ignition approach vary across labs 
and can influence results. Thus, comparisons should be made using only results from 
within a given lab. 

Currently, no standard method exists to measure TOC in the field. Attempts have 
been made to develop charts that match color to TOC content, but the correlation is better 
within soil landscapes and only for limited soils. Near-infrared spectroscopy has been 
tested for measuring C directly in the field, but it is expensive and sensitive to moisture 
content. 

Estimates: 
Color and feel are soil characteristics that can be used to estimate SOM content. 

Color comparisons in areas of similar parent materials and textures can be correlated with 
laboratory data and thereby enable a soil scientist to make field estimates. In general, 
darker colors or black indicate the presence of higher amounts of organic matter. The 
contrast of color between the A horizon and subsurface horizons is also a good indicator. 
Sandy soils tend to look darker with a lower content of SOM. In general, lower numbers 
for hue, value, and chroma (in the Munsell soil color system) tend to be associated with 
darker soil colors that are attributed to higher content of SOM, soil moisture, or both. 

For each soil layer, this attribute is actually recorded as three separate values in the 
database. A low value and a high value indicate the range of this attribute for the soil 
component. A 'representative' value indicates the expected value of this attribute for the 
component. For this soil property, only the representative value is used. 
 

Available Water Storage 
 
Available water storage (AWS) is the total volume of water (in centimeters) that 

should be available to plants when the soil, inclusive of rock fragments, is at field 
capacity. It is commonly estimated as the amount of water held between field capacity 
and the wilting point, with corrections for salinity, rock fragments, and rooting depth. 
AWS is reported as a single value (in centimeters) of water for the specified depth of the 
soil. AWS is calculated as the available water capacity times the thickness of each soil 
horizon to a specified depth. 

For each soil layer, available water capacity, used in the computation of AWS, is 
recorded as three separate values in the database. A low value and a high value indicate 
the range of this attribute for the soil component. A "representative" value indicates the 
expected value of this attribute for the component. For the derivation of AWS, only the 
representative value for available water capacity is used. 
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The available water storage for each map unit component is computed as described 
above and then aggregated to a single value for the map unit by the process described 
below. 

A map unit typically consists of one or more "components." A component is either 
some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being 
aggregated (e.g., available water storage), the first step of the aggregation process is to 
derive one attribute value for each of a map unit's components. From this set of 
component attributes, the next step of the process is to derive a single value that 
represents the map unit as a whole. Once a single value for each map unit is derived, a 
thematic map for the map units can be generated. Aggregation is needed because map 
units rather than components are delineated on the soil maps. 

The composition of each component in a map unit is recorded as a percentage. A 
composition of 60 indicates that the component typically makes up approximately 60 
percent of the map unit. 

For the available water storage, when a weighted average of all component values is 
computed, percent composition is the weighting factor. 
 
Flood Frequency 

 
Flooding is the temporary inundation of an area caused by overflowing streams, by 

runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or 
snowmelt is not considered flooding, and water standing in swamps and marshes is 
considered ponding rather than flooding. 

Frequency is expressed as none, very rare, rare, occasional, frequent, and very 
frequent.  

"None" means that flooding is not probable. The chance of flooding is nearly 0 
percent in any year. Flooding occurs less than once in 500 years. 

 
"Very rare" means that flooding is very unlikely but possible under extremely unusual 

weather conditions. The chance of flooding is less than 1 percent in any year. 
"Rare" means that flooding is unlikely but possible under unusual weather conditions. 

The chance of flooding is 1 to 5 percent in any year. 
 "Occasional" means that flooding occurs infrequently under normal weather 

conditions. The chance of flooding is 5 to 50 percent in any year. 
"Frequent" means that flooding is likely to occur often under normal weather 

conditions. The chance of flooding is more than 50 percent in any year but is less than 50 
percent in all months in any year. 

"Very frequent" means that flooding is likely to occur very often under normal 
weather conditions. The chance of flooding is more than 50 percent in all months of any 
year.  
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Appendix D.  Predictor Variable County Maps 

 

 

Slope. Darker colors indicate a greater slope. Upper row: Blue Earth County, MN (left), 
Brazoria County, TX (right). Lower row: Estill County, KY (left), Wilcox County, GA 
(right). 
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Crop Productivity (NCCPI). Darker colors indicate greater productivity. Upper row: 
Blue Earth County, MN (left), Brazoria County, TX (right). Lower row: Estill County, 
KY (left), Wilcox County, GA (right). 



223 
 

 

Median Age. Darker colors indicate a higher median age. Upper row: Blue Earth County, 
MN (left), Brazoria County, TX (right). Lower row: Estill County, KY (left), Wilcox 
County, GA (right). 
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Average Household Size. Darker colors indicate larger household size. Upper row: Blue 
Earth County, MN (left), Brazoria County, TX (right). Lower row: Estill County, KY 
(left), Wilcox County, GA (right). 
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Drought Vulnerability. Darker colors indicate greater risk. Upper row: Blue Earth 
County, MN (left), Brazoria County, TX (right). Lower row: Estill County, KY (left), 
Wilcox County, GA (right). 
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Flood Frequency. Darker colors indicate greater frequency. Upper row: Blue Earth 
County, MN (left), Brazoria County, TX (right). Lower row: Estill County, KY (left), 
Wilcox County, GA (right). 
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Percent of Population Non-White. Darker colors indicate a higher percentage. Upper 
row: Blue Earth County, MN (left), Brazoria County, TX (right). Lower row: Estill 
County, KY (left), Wilcox County, GA (right). 
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Population Density. Darker colors indicate a higher density. Upper row: Blue Earth 
County, MN (left), Brazoria County, TX (right). Lower row: Estill County, KY (left), 
Wilcox County, GA (right). 
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Soil Organic Matter. Darker colors indicate greater amounts. Upper row: Blue Earth 
County, MN (left), Brazoria County, TX (right). Lower row: Estill County, KY (left), 
Wilcox County, GA (right). 
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Soil Water Availability. Darker colors indicate greater amounts. Upper row: Blue Earth 
County, MN (left), Brazoria County, TX (right). Lower row: Estill County, KY (left), 
Wilcox County, GA (right). 
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Percent of Households Renting. Darker colors indicate a higher percentage. Upper row: 
Blue Earth County, MN (left), Brazoria County, TX (right). Lower row: Estill County, 
KY (left), Wilcox County, GA (right). 

 

  



232 
 

Appendix E.  Data Processing Procedures for Dyna-CLUE Analysis 

1. In ArcGIS, select counties in each region that have a UACL greater than the 
median, a pctCrp12 greater than the median, and where the NLCD shows a 
reduction in the area of cropland over time. Stats are for the region only, not the 
entire study area. 

a. This would represent a county with an average to above-average amount 
of cropland and where my model suggests a relatively high rate of 
abandonment to UACL.  

2. Alternatively, find counties whose Ag Census change in Harvested Cropland 
between 2007 and 2017 matches the change in Cultivated Crops in NLCD 
between 2006 and 2016. 

a. Create a county layer with the 2007 and 2017 Harvested Cropland 
numbers from Ag Census.  

b. Reclassify the 2006 and 2017 NLCDs so that Cultivated Crops = 1 and all 
other classes = 0. 

c. Use Zonal Statistics as Table to calculate how many Cultivated Crops 
pixels in the 2006 NLCD. 

d. Use Zonal Statistics as Table to calculate how many Cultivated Crops 
pixels in the 2016 NLCD. 

e. Add them as new fields in the county feature class. 
f. For the Ag Census and NLCD numbers, calculate new fields showing the 

% change in cropland. 
i. Fields: 

1. AgCensusCrop0717 = ((HarvCropland17 – 
HarvCropland07) / HarvCropland07) * 100 

2. NLCDCrop0616 = ((NLCDCultCrop2016 – 
NLCDCultCrop2016) / NLCDCultCrop2006) * 100 

3. CensusNLCDDiff = AgCensusCrop0717 – 
NLCDCrop0616 

g. Select counties with a CensusNLCDDiff of 0 and a UACL and %cropland 
values as described above. These are counties where the Ag Census and 
NLCD agree how much cropland area changed over the ten year period. 

i. Corn Belt: 
1. UACL > 0.0226634 AND pctCrp12 > 0.6824 AND 

NLCDCrop0616 <= -1 
2. Blue Earth, MN 

ii. Appalachia: 
1. UACL > 0.105265 AND pctCrp12 > 0.136854 AND 

NLCDCrop0616 <= -1 
2. Estill, KY (selected before these criteria) 

iii. Black Belt 
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1. UACL > 0.1426495 AND pctCrp12 > 0.103829 AND 
NLCDCrop0616 <= -1 

2. Wilcox, GA 
iv. Gulf Coast 

1. Brazoria, TX 

Data Acquisition and Processing 

Important that all raster layers have exactly the same pixel size and alignment. 

1. Create ArcGIS Pro project for each of the four counties. 
3. Geometry Shapefiles: 

a. https://www.census.gov/cgi-
bin/geo/shapefiles/index.php?year=2010&layergroup=Blocks 

b. Choose the state and county for 2010 and download the .zip file 
c. Unzip the data and copy into the Blocks folder in the county spatial data 

folder. 
d. Export the shapefile to a feature class in the county geodatabase. 
e. Rename it to Blocks2010 

2. NLCD 
a. Add 2006 NLCD from the PhD_Data folder. 
b. Set map coordinate system to Albers Equal Area to match the 2006 NLCD 

(use the Layers list in the coordinate systems dialog and select the 
NLCD2006 layer). 

c. Use the Clip Raster tool to clip the NLCD to the county boundary. 
i. Check “Use input features for clipping geometry” 

ii. Environments: 
1. Output Coordinate System: nlcd_2006….. 
2. Snap Raster: nlcd_2006_land_cover…. 

d. Use the Resample tool to adjust pixel size to 30x30 
i. Output Raster Dataset: EstillNLCD2006 

3. DEM (slope) 
a. Add NED slope raster from PhD_Data folder. 
b. Use the Clip Raster tool to clip slope to actual extent of the county feature 

i. Output Raster Dataset: Slope_Clip 
ii. Output Extent: county feature class 

iii. Check “Use input features for clipping geometry” 
iv. Environments: 

1. Output Coordinate System: NLCD2006 
2. Snap raster: NLCD2006 
3. Pyramids, Resampling Technique: Bilinear 

c. Use the Resample tool to convert the slope raster to the same pixel size as 
the NLCD. 

https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2010&layergroup=Blocks
https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2010&layergroup=Blocks
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i. Output Raster Dataset: EstillSlope 
ii. Output cell size: NLCD2006 

iii. Use the Bilinear option since data is continuous. 
iv. Environments: 

1. Snap raster: NLCD2006 
2. Pyramids, Resampling Technique: Bilinear 

4. GSSURGO 
a. Download state versions of the GSSURGO dataset for MN, MS, GA, KY 

i. https://www.nrcs.usda.gov/resources/data-and-reports/gridded-
soil-survey-geographic-gssurgo-database 

ii. Followed link to the Box site 
iii. Save this geodatabase in the county folder as 

gSSURGO_<state>.gdb 
b. Add the MapunitRaster_10m… raster to ArcGIS Pro 
c. Clip the MapunitRaster… to the county boundary 

i. Use the Clip Raster tool to clip ssurgo to actual extent of county 
boundary 

1. Output Extent: County feature class 
2. Check “Use input features for clipping geometry” 
3. Environments: 

a. Output Coordinate System: NLCD2006 
b. Snap raster: NLCD2006 

d. Use the Resample tool 
i. MapunitRaster… is the input 

ii. Output Raster Dataset: <county>gSSURGO 
iii. Output cell size: same as NLCD2006 
iv. Nearest Neighbor is the resampling technique 
v. Environment settings: 

1. Output Coordinate System: Same as NLCD2006 
2. Snap Raster: NLCD2006 

e. Copy the <county>gSSURGO raster from the county geodatabase to the 
gSSURGO_<state>.gdb 

i. This is necessary because the toolbox tool in ArcGIS Desktop 
below requires that the raster layer be in the gSSURGO 
geodatabase 

f. Close ArcGIS Pro 
5. gSSURGO Attributes 

a. Download the Soil Development Data Toolbox from the following site: 
b. https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-

survey-geographic-gssurgo-database 
c. Open ArcGIS Desktop 

i. Save the MXD as <county>gSSURGOTables.mxd in the county 
folder. 

https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database
https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database
https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database
https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database
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ii. Add the <county>gSSURGO raster 
1. must be added from the gSSURGO_<state> geodatabase, 

not the county geodatabase. 
d. Add the toolbox to ArcGIS Desktop (Not Pro) 

i. VALUE1 table in the geodatabase will be used by the toolbox 
tools: 

1. Refer to https://www.nrcs.usda.govresourcesdata-and-
reportsgridded-soil-survey-geographic-gssurgo-
database.pdf for details of the attributes in the table. 

2. These attributes are GIS-ready variables from ssurgo that 
are already mapped to the map units. NCCPI and other 
variables are in there. 

3. From https://www.nrcs.usda.gov/resources/data-and-
reports/gridded-soil-survey-geographic-gssurgo-database: 

f. Included with the gSSURGO database, but not a part of the standard 
SSURGO dataset is a table called Valu1. This table contains 57 pre-
summarized or “ready to map” attributes derived from the official 
SSURGO database. These attribute data are pre-summarized to the map 
unit level using best-practice generalization methods intended to meet the 
needs of most users. The generalization methods include map unit 
component weighted averages and percent of the map unit meeting a given 
criteria. These themes were prepared to better meet the mapping needs of 
users of soil survey information and can be used with both SSURGO and 
gridded SSURGO (gSSURGO) datasets. Below is a partial list of the data 
found in the valu1 table. 

i. Soil organic carbon - weighted average 
(g C/m2) 

ii.  Available water storage - weighted 
average (mm) 

iii.  National Commodity Crop Productivity 
Index (NCCPI) Version 3 - weighted 
average index for major components 
(Dobos, Sinclair, and Robotham, 2012) 

iv.  Root-zone depth of commodity crops - 
weighted average (cm) major 
components (Dobos et al., 2012) 

v.  Available water storage within the root-
zone depth - weighted average (mm) 
major components 

vi.  Drought-vulnerable soil landscapes 
(The map unit is identified as either 
drought vulnerable or not drought 
vulnerable. Drought-vulnerable soil 

https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database
https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurgo-database
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landscape map units have 152 
millimeters (6 inches) or less root zone 
available water storage for major 
components.)  

vii.  Potential wetland soil landscapes 
(PWSL Version 1) - percentage of the 
map unit that meets the criteria for a 
potential wetland soil landscape (see 
table metadata for detailed criteria) 

e. Open the Create Soil Map tool (under gSSURGO Mapping Toolset) 
i. Select the <county>gSSURGOWGS1984 layer and the variable 

of interest 
1. See list below 
2. I believe this just creates a layer (.lyr) file and a map layer 

in the mxd. 
f. Variables to generate: 

i. NCCPI 
1. Selections in the tool dialog window: 
1. Land Classifications – National Commodity Crop 

Productivity Index 
2. I assume this is the NCCPI_all variable. 
2. See Appendix C for metadata from the layer in ArcGIS 

Desktop. 
ii. Drought Vulnerability (droughty) 

1. Land Management – Drought Vulnerable Soils 
2. See Appendix C for metadata from the layer in ArcGIS 

Desktop. 
iii. Soil organic carbon stock estimate (SOC) in total soil profile 

1. Selections in the tool dialog window: 
3. Soil Health Properties – Organic Matter 
4. Top Depth: 0 
5. Bottom Depth: 200 
2. See Appendix C for metadata from the layer in ArcGIS 

Desktop. 
iv. Available water storage estimate (AWS) in total soil profile 

1. Selections in the tool dialog window: 
a. Soil Physical Properties – Available Water 

Storage 
b. Top Depth: 0 
c. Bottom Depth: 200 
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3. See Appendix C for metadata from the layer in ArcGIS 
Desktop. 

v. Flooding frequency class 
1. Selections in the tool dialog window: 

a. Water Features – Flooding Frequency Class 
4. See Appendix C for metadata from the layer in ArcGIS 

Desktop. 
g. Open the Convert Soil Map Layers to Raster tool (under gSSURGO 

Raster Toolset) 
i. Select the maps created in the previous step and specify a 

location for the new raster dataset 
1. Output Workspace: County geodatabase (e.g., 

EstillKY.gdb) 
2. New rasters are named automatically by the tool. 

h. Close ArcGIS Desktop 
6. Socio-Economic Variables: 

a. Census (Block-level) 
i. Geometry Shapefiles (should have already been downloaded 

earlier): 
1. https://www.census.gov/cgi-

bin/geo/shapefiles/index.php?year=2010&layergroup=Bloc
ks 

2. Choose the state and county for 2010 and download the .zip 
file 

3. Unzip the data and copy into the Blocks folder in the 
county spatial data folder. 

4. Export the shapefile to a feature class in the county 
geodatabase. 

a. Rename it to Blocks2010 
ii. Tables: 

1. https://data.census.gov/advanced 
b. If the download popup appears in the lower right of 

the screen but gets stuck, click the little x icon and 
choose Resume Download. 

2. Filters: 
c. Median Age 

i. Geography: All Blocks within Estill County, 
Kentucky 

ii. Surveys: Decennial Census, SF1 
iii. Years: 2010 

https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2010&layergroup=Blocks
https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2010&layergroup=Blocks
https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2010&layergroup=Blocks
https://data.census.gov/advanced
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iv. Topics: Populations and People, Age and 
Sex 

v. Tabe P13 
vi. Variable: P013001 

d. Average Household Size 
i. Geography: All Blocks within Estill County, 

Kentucky 
ii. Surveys: Decennial Census, SF1 

iii. Years: 2010 
iv. Topics: Housing, Housing 
v. Table H12 

vi. Variable: H012001 
e. Population Density 

i. Geography: All Blocks within Estill County, 
Kentucky 

ii. Surveys: Decennial Census, SF1 
iii. Years: 2010 
iv. Topics: Populations and People, Populations 

and People 
v. Tabe P1 

vi. Variable: PopDensity 
f. Percent of Population Non-White 

i. Geography: All Blocks within Estill County, 
Kentucky 

ii. Surveys: Decennial Census, SF1 
iii. Years: 2010 
iv. Topics: Populations and People, Populations 

and People 
v. Tabe P8 

vi. Variable: pctPopNonWhite 
g. Percent of Households Renting 

i. Geography: All Blocks within Estill County, 
Kentucky 

ii. Surveys: Decennial Census, SF1 
iii. Years: 2010 
iv. Topics: Housing , Owner/Renter, 

Owner/Renter (householder) characteristics 
v. Tabe H16 

vi. Variable: pctHouseholdsRenting 
iii. Data Processing: 
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h. Click the “Download Table Data” hyperlink 
i. Check the box by the relevant table under the 

Tables tab 
j. Click download and save the 2010 data to the 

CensusTables folder in the county spatial data 
folder. 

k. Rename the file something like 
2010P13MedianAge_Blocks.csv and open in Excel 

l. Insert a new column to the right of the GEO_ID 
column. 

m. Use the Convert Text to Columns tool under the 
Data tab to split the GEO_ID column after the 9th 
character “1000000US” (Fixed width) 

i. Specify both columns to be of type TEXT. 
ii. (For some reason, opening the file in Excel 

will always try to treat the values as 
numbers, but in ArcGIS it should appear as 
text, which is necessary to join to the feature 
class.) 

n. Give the new column the header “GEOID10”. 
o. Add “ID” to the second row below GEOID10. 
p. In the second row, delete the descriptions of each of 

the P013… variables; this prevents ArcGIS from 
interpreting the column as Text. Leave a text 
description, like “ID”, in each of the ID column 
headings, so that ArcGIS treats those columns as 
text, which is necessary to join to the shapefile in 
ArcGIS. 

q. Close Excel. 
r. Using the ArcGIS Pro Catalog pane, import the 

table into the county geodatabase. 
i. Rename it something like 

MedianAge2010_Blocks 
s. Add the geodatabase table to the ArcGIS Pro 

project. 
t. Convert zeros to null (if necessary and appropriate): 

i. In ArcGIS Pro, open the table and right-
click the column (e.g., H012001) heading 
and click Calculate Field. 
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ii. In the box right above the Code Block, enter 
convertZeros(!H012001!), specifying the 
correct variable name. 

iii. In the Code Block enter: 

def convertZeros(var): 
    if (var == 0): 
        return None 
    else: 
        return var 

u. Join the table to the block layer using the GEOID10 
fields. 

v. Use the P013001 variable (Median Age, Both 
Sexes), for example. 

w. Create new field (if necessary and appropriate). 
i. Average Household Size: 

1. Add a new copy of the Blocks2010 
feature class and rename it to 
AveHouseholdSize2010_Blocks 

2. Join the table and proceed to the 
Feature to Raster step using the field 
H012001 

ii. Median Age: 
1. Add a new copy of the Blocks2010 

feature class and rename it to 
MedianAge2010_Blocks 

2. Join the table and proceed to the 
Feature to Raster step using the field 
P013001 

iii. Population Density: 
1. Add a new copy of the Blocks2010 

feature class and rename it to 
PopulationDensity2010_Blocks 

2. Before joining the table to the feature 
class, open attribute table and add a 
new fields, AreaSqMiles and 
PopDensity to the feature class. 

3. Use the Calculate Geometry option 
to populate the AreaSqMiles field: 

a. Property: Area 
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b. Area Unit: Square US Survey 
Miles 

c. Coordinate System: 
countyNLCD2006 

4. Join the table to the feature class and 
use the Calculate Field tool to 
populate the PopDensity field: 

a. P001001 / Area 
iv. pctPopNonWhite: 

1. Add a new copy of the Blocks2010 
feature class and rename it to 
PctPopNonWhite2010_Blocks 

2. Before joining the table to the feature 
class, open attribute table and add a 
new field, pctPopNonWhite to the 
feature class. 

3. Join the table to the feature class and 
use the Calculate Field tool to 
populate the pctPopNonWhite field: 

a. (P008001-P008003)/P008001 
b. (total pop – white pop) / total 

pop 
v. pctHouseholdsRenting: 

1. Add a new copy of the Blocks2010 
feature class and rename it to 
pctHouseholdsRenting _Blocks 

2. Before joining the table to the feature 
class, open attribute table and add a 
new field, pctHouseholdsRenting to 
the feature class. 

3. Join the table to the feature class and 
use the Calculate Field tool to 
populate the pctHouseholdsRenting 
field: 

a. H016010 / H016001 
b. Total households renting / 

total households 
7. Convert vector census layers to raster 

a. Use the Feature to Raster tool in ArcGIS Pro toolbox 
b. Input features: block or block group feature class 
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c. Field: attribute from the joined census table 
d. Output raster: e.g., MedianAgeBlocks2010_BlocksRaster (in county 

geodatabase) 
i. The raster name must be different from the table name, thus why 

adding “raster” to the end. 
e. Output cell size: countyNLCD2006 
f. Environments: 

i. Output Coordinate System: countyNLCD2006 
ii. Cell Size: countyNLCD2006 

iii. Snap Raster: countyNLCD2006 
8. In ArcGIS Pro, use the Resample tool to ensure all independent variable layers 

precisely match and align (including soils, census, slope, etc.) 
a. Input Raster: each variable one at a time 
b. Output Raster Dataset: something like PopulationDensity2010resample 
c. Output Cell Size: countyNLCD2006 
d. Resampling technique: Nearest 
e. Environments:  

i. Output Coordinate System: countyNLCD2006 
ii. Processing Extent: countyNLCD2006 

iii. Snap Raster: countyNLCD2006 
9. Convert any <null> pixels to -9999 

a. Use the Con tool in ArcGIS Pro 
b. Input raster: each …_Resample raster. 
c. Where Value is null 
d. Input true value: -9999 
e. Input false value: …_Resample raster. 

10. Convert Raster layers to ASCII files 
a. In ArcGIS Pro, use the Raster to ASCII tool 
b. Input raster: Select each of the independent variable layers (…_9999) one 

at a time 
c. Output ASCII raster file: Save in the ASCIIRasters folder in the county 

folder with a name like ExtillPopNonWhite.txt. 
i. Leave all other settings at their defaults 

1. Copy all the ASCII rasters into the CLUE folder for the 
county (e.g., …\PhD\Downscaling\CLUE\EstillKY.  

2. Copy all the CLUE program files into the county folder 
too. Seems like the program needs everything to be in the 
same directory. 
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3. Copy and rename each of the ascii driving forces (location 
factors, i.e., independent variables) to sc1gr*.fil. Where * 
indicates the numeric code for the variable (see below). 

0. Slope 
1. NCCPI 
2. Median Age 
3. Average Household Size 
4. Drought Vulnerability 
5. Flood Frequency 
6. Percent Population Non-White 
7. Population Density 
8. Soil Organic Matter 
9. Soil Water Storage 
10. Percent Households Renting 

ii. These files are needed later when the CLUE model is run. 
d. Open the NLCD2006 raster in ArcGIS Pro 

i. Use the Reclassify tool to recalculate each of the land cover 
types so their values match the 0-14 codes below. 

0. 11. Water 
1. 21. Developed, Open Space 
2. 22. Developed, Low Intensity  
3. 23. Developed, Medium Intensity 
4. 24. Developed High Intensity  
5. 31. Bare Rock/Sand/Clay 
6. 41. Deciduous Forest 
7. 42. Evergreen Forest 
8. 43. Mixed Forest 
9. 52. Shrub/Scrub  
10. 71. Grasslands/Herbaceous 
11. 81. Pasture/Hay 
12. 82. Cultivated Crops 
13. 90. Woody Wetlands 
14. 95. Emergent Herbaceous Wetlands 
 
ALSO: Convert any <null> values to -9999. Just 

like for the independent variable rasters above. 
 

ii. Output to a raster called cov_all. 
iii. Export the cov_all raster as an ascii version named cov_all.0 to 

the county CLUE folder. 
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11. Use the File Convert tool (convert.exe) provided by CLUE to convert ascii files 
into a single tabular file in which each row is a pixel and each column contains 
the land cover type and each of the independent variables. 

a. Parameters: 
i. I can’t check the “Exclude No Data Values” box because the 

manual indicates that all files must have “exactly the same 
number of NODATA values at the same geographical locations.” 
Some of my layers have values everywhere, and others have 
some no data pixels (block-level data with no people, for 
example). 

ii. Version 1: 
1. 100% of all observations in final sample 
2. 0 number of cells distance between sampling 
3. Uncheck Exclude No Data values 
4. Uncheck Balanced sample (I’m not sure exactly what this 

is). 
5. Estill County results: 

a. Good. 
6. Blue Earth results: 

a. Will not converge on a solution so coefficients are 
poor. 

iii. List all the ascii text rasters in the Edit File List. 
1. Copy this list into a text editor and then copy/paste from 

there. 

cov_all.0 
sc1gr0.fil 
sc1gr1.fil 
sc1gr2.fil 
sc1gr3.fil 
sc1gr4.fil 
sc1gr5.fil 
sc1gr6.fil 
sc1gr7.fil 
sc1gr8.fil 
sc1gr9.fil 
sc1gr10.fil 

b. Result is a file, stat.txt. 
c. Make a copy of stat.txt with the Version name from above. (Each new run 

will overwrite the stat.txt file.) 
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Logistic Regression 

 
12. Copy the stat.txt file to the county folder under 

PhD/Downscaling/R/LogisticRegressions… 
13. Create a separate MarkDown document for each county 
14. Process a logistic regression and ROC test for each land cover type in the NLCD 
15. Use the option(scipen=999) setting to prevent the use of scientific notation in the 

coefficients. Handy for when copying into CLUE. 
16. Filter the records to only include ones that do not include a -9999 value in any 

column. 
a. Don’t do this. Even though it would produce a better regression, since all 

the -9999 values would be removed, and even though it would make the 
variables not correlated with each other, this causes CLUE to fail for some 
reason. CLUE only works when using regression coefficients from a 
regression that includes all rows. 

17. Generate a correlation matrix and bubble plot. 
a. Filter out the -9999 values first. Otherwise each variable is very highly 

correlated with each other. 
18. The diagonal line through the middle of the ROC plot indicates a model that does 

no better than a random prediction; that represents an AUC score of .5, which 
means that half of the plot area is under the line. A perfect predictive model 
would have an AUC score of 1, and the plot would be as close to the upper left 
corner as possible. So, the goal is to have an AUC score close to 1 and the curve 
to be as close to the upper left corner as possible. 

19. Here are the codes in the NLCD: 

0. 11. Water 
12. Perennial Ice Snow  
1. 21. Developed, Open Space 
2. 22. Developed, Low Intensity  
3. 23. Developed, Medium Intensity 
4. 24. Developed High Intensity  
5. 31. Bare Rock/Sand/Clay 
6. 41. Deciduous Forest 
7. 42. Evergreen Forest 
8. 43. Mixed Forest 
9. 52. Shrub/Scrub  
10. 71. Grasslands/Herbaceous 
11. 81. Pasture/Hay 
12. 82. Cultivated Crops 
13. 90. Woody Wetlands 
14. 95. Emergent Herbaceous Wetlands 
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a. I believe all occur except for Perennial Ice Snow 

20. Open the Raster Attribute Table in ArcGIS to see each of the land types that occur 
in the county NLCD 

21. Copy and paste the table here…. (second column is the cell count for the land 
type) 

Estill, KY: (For Estill, the first column is not land cover type, it’s ObjectID. Refer to the 
text description for land class.) 

1 4929 70 107 159 255 Open Water 
2 25382 222 197 197 255 Developed, Open Space 
3 15213 217 146 130 255 Developed, Low Intensity 
4 4748 235 0 0 255 Developed, Medium Intensity 
5 998 171 0 0 255 Developed, High Intensity 
6 1051 179 172 159 255 Barren Land 
7 462182 104 171 95 255 Deciduous Forest 
8 3359 28 95 44 255 Evergreen Forest 
9 83383 181 197 143 255 Mixed Forest 
10 2211 204 184 121 255 Shrub/Scrub 
11 10066 223 223 194 255 Herbaceous 
12 118417 220 217 57 255 Hay/Pasture 
13 6813 171 108 40 255 Cultivated Crops 
14 976 184 217 235 255 Woody Wetlands 
15 222 108 159 184 255 Emergent Herbaceous Wetlands 

 
Blue Earth, MN 

0 53107 
1 81822 
2 41409 
3 26025 
4 9938 
5 7618 
6 87645 
7 115 
8 1238 
9 215 
10 21892 
11 35710 
12 1680528 
13 81742 
14 74004 
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Brazoria, TX 
 
0 47084 
1 64590 
2 47641 
3 17221 
4 7699 
5 2465 
6 20755 
7 20849 
8 30669 
9 35939 
10 43007 
11 381181 
12 433991 
13 141960 
14 174100 
 
 

Wilcox, GA 

0 11494 
1 34103 
2 14537 
3 1875 
4 398 
5 746 
6 13935 
7 285329 
8 39979 
9 20389 
10 55062 
11 12162 
12 339954 
13 261785 
14 8141 

 
22. From the county CLUE folder, run clues.exe. 
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CLUE Modeling 

23. Regression Results 
a. Under Edit Input, choose Regression Results. 
b. Better yet, edit the file directly in Text Pad to facilitate copy paste from 

the R regression results. 
c. Refer to CLUE_manual.pdf for details on the file structure 
d. Edits the alloc1.reg file in the county CLUE folder. 
e. Use the following numbering for the land types: 

0. Open Water 
1. Developed, Open Space 
2. Developed, Low Intensity  
3. Developed, Medium Intensity 
4. Developed High Intensity  
5. Bare Rock/Sand/Clay 
6. Deciduous Forest 
7. Evergreen Forest 
8. Mixed Forest 
9. Shrub/Scrub  
10. Grasslands/Herbaceous 
11. Pasture/Hay 
12. Cultivated Crops 
13. Woody Wetlands 
14. Emergent Herbaceous Wetlands 
 

f. Use the following numbering for the driving factors: 

0. Slope 
1. NCCPI 
2. Median Age 
3. Average Household Size 
4. Drought Vulnerability 
5. Flood Frequency 
6. Percent Population Non-White 
7. Population Density 
8. Soil Organic Matter 
9. Soil Water Storage 
10. Percent Households Renting 
 

g. Maybe paste the regression results into Excel, use Text to Columns tool to 
separate by TAB and Space then change the cell properties to show the 
coefficients as decimals instead of scientific notation. Add a column next 
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to the coefficients numbered 1-9 and copy/paste both columns into the text 
files to speed things up. 

i. Actually, I used the options(scipen = 999) function in each .rmd 
to force output to not use scientific notation. 

ii. Still paste into Excel to add a second column with the 0 – 10 
numbers. 

h. I excluded Land Cover Type 6 (Deciduous Forest) and 12 (Cultivated 
Crops) from the BlueEarth regression result because its coefficients were 
many orders of magnitude too big. Some sort of error. 

24. Main Parameters 
a. Refer to DynaCLUE_Help_contents.pdf for details on the file structure.  

i. Parameters (line number, description | my setting): 
• 1 Number of land use types Integer 

o 15 
• 2 Number of regions Integer 

o 1 
• 3 Max. number of independent variables in a regression 

equation Integer 
o 11 

• 4 Total number of driving factors Integer 
o 11 

• 5 Number of rows Integer 
o Blue Earth: 1548 
o Estill: 1103 
o Wilcox: 1115 
o Brazoria: 3084 

• 6 Number of columns Integer 
o Blue Earth: 1640 
o Estill: 1191 
o Wilcox: 1475 
o Brazoria: 2653 (region2: 1219) 

• 7 Cell area Float (area of each pixel, in hectares) 
o .09 

• 8 xll coordinate Float 
o Blue Earth: 129585 
o Estill: 1032675 
o Wilcox: 1160295 
o Brazoria: 12225 (region2: 1219) 

• 9 yll coordinate Float 
o Blue Earth: 2318484.7677146 
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o Estill: 1678783.7553716 
o Wilcox: 1051479.9728759 
o Brazoria: 632625 

• 10 Number coding of the land use types Integers 
o 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

• 11 Codes for conversion elasticities Float. Provide a number 
from 0 (easy conversion) to 1 (irreversible change) for each 
of the land types in the list above. 

o Scenario 1: 
 1 0.25 0.25 0.25 0.25 0.9 0.75 0.75 0.75 0.25 

0.1 0.1 0.1 0.9 0.9 
• Open Water 
• Developed, Open Space 
• Developed, Low Intensity  
• Developed, Medium Intensity 
• Developed High Intensity  
• Bare Rock/Sand/Clay 
• Deciduous Forest 
• Evergreen Forest 
• Mixed Forest 
• Shrub/Scrub  
• Grasslands/Herbaceous 
• Pasture/Hay 
• Cultivated Crops 
• Woody Wetlands 
• Emergent Herbaceous Wetlands 

• 12 Iteration variables Float 
o Attempting a Scenario 4 in the hopes that results will 

be successful and meaningful. 
o 0 1 2 

 The first number (1) means that the amount of 
pixels allocated is measured as a percentage of 
the demanded amount. 

 The second number (1) means the average 
deviation between demanded changes and 
actually allocated changes 

 The third number (10) means the maximum 
deviation between demanded changes and 
actually allocated changes. 

o This parameter required trial and error to narrow in 
on an optimal set of values.  
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o 0 1 2 resulted in a solution.  
• 13 Start and end year of simulation Integers 

o 2006 2016 
• 14 Number and coding of explanatory factors that change 

every year Integers 
o 0 

• 15 Output/input file choice 1, 0, -2 or 2 
o 1 
o CLUE sometimes throws an error here. Seems to be 

related to whether the input grids have the correct 
headers. As of the writing of this sentence, my grids 
require the 1 setting. 

o Double check this setting if CLUE throws errors 
about not being able to read any of the input grids of 
the independent variables. 

• 16 Region specific regression choice 0, 1 or 2 
o 0 

• 17 Initialization of land use history 0, 1 or 2 
o 1 5 

 The 1 indicates that a random number will be 
generated for each pixel to indicate the 
number of years prior to year zero the pixel 
has been in the current land use type. 

 The 5 is the maximum number of years the 
number generator can choose. 

• 18 Neighborhood calculation choice 0, 1 or 2 
o 0 

• 19 Location specific preference addition Integers 
o 0 

• 20 Optional iteration parameter Float 
o 0.05 (default) 

b. Edits the main.1 file in the county CLUE folder. 
c. Edit in Text Pad might be easier than the CLUE interface. 

25. Conversion Matrix 
a. These values can be pasted into the Change Matrix menu of the CLUE 

interface. 
i. Easier to paste the table below into TextPad first, and then 

copy/paste from there. 



252 
 

b. Table of all land types: rows indicate a pixel’s starting land type and 
columns indicate a future land type. 1 = conversion allowed between the 
land types, 0 = conversion is not allowed between the land types. 

c. 105 means that the pixel must remain in the initial land type for a 
minimum of 5 years before being allowed to convert to the future land 
type 

d. -105 means that the pixel must convert from its initial type within 5 years. 
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Open Water 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dev. Open 
Space 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dev. Low 
Intensity 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Dev. Medium 
Intensity 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Dev. High 
Intensity 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Bare Rock 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Deciduous 
Forest 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Evergreen 
Forest 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Mixed Forest 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Shrub/Scrub 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Grasslands 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Pasture/Hay 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Cultivated 
Crops 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 

Woody 
Wetlands 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Emergent Herb. 
Wetlands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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26. Area Restrictions 
a. Create an ascii raster that indicates the area (pixels) that the model should 

use in its run. In my case, it will simply be the extent of the county NLCD 
raster. 

b. In ArcGIS Pro, use the Reclassify tool to convert all land cover types to 
the value 0, leaving the -9999 pixels as-is. 

c. Export the new raster to an ascii file, called region1.fil, and copy it to the 
county CLUE folder. 

i. Do not copy the xml or prj files 
27. Demand Scenario 

a. Create a table in Excel in which each column represents one land type and 
each row represents a year in the model run (e.g., 2006 – 2016). 

b. Each value indicates the area of each land type in hectares. 
c. Use the same order and numbering for each land type as above. 
d. Refer to the raster attribute table above to see the pixel count for each land 

type in the raster. 
i. Convert the pixel counts to hectares and enter the values into the 

first row of the table.  
1. Each pixel is 30m x 30m, which is 900 square meters. 
2. Which equals 0.09 hectares (Divide by 10,000 to get 

hectares). 
3. Multiply pixel count by 0.09 to calculate the total hectares 

of each land type. 
b. Test Scenario 

i. Only model the change from Cropland to grassland. Leave 
development unchanged. 

1. Cropland reduces by the UACL value 
2. Grassland increases by the UACL value 

ii. Changes in main config file: 
1. Set all conversion elasticities to 1 except for cropland and 

grassland which are 0 
2. Increase the deviation settings until the model runs. 

a. Estill is at: 0 2 5 
3. Delete all the regression information except for cropland 

and grassland 
iii. Conversion matrix only allows changes from Cropland to 

Grassland. No other change trajectories are allowed. 
iv. This scenario reflects the notion that I can’t model and account for 

the processes driving changes in all land types. For example, in the 
Wilcox, GA region, large patches of forest convert to grassland 
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between 2006 and 2016 in the NLCD. These changes are likely 
due to commercial forestry and the harvesting of pine trees. In light 
of my inability to account for all such processes and because my 
interest is solely in the change from cropland to grassland, I will 
constrain my land change drivers to the exchange of land between 
those two land types, keeping the areas of all other land types 
constant. 

c. Final Scenario 
i. Same as test scenario, only changing pixels from cropland to 

grassland. 
ii. Begin with the 2006 NLCD and project change through 2056. 

1. Use the same rate of UACL expansion, but extrapolate 
across 50 years instead of just 10. 

a. Since the UACL decimal calculated in chapter 2 is a 
percentage of land that converts over 10 years, 
divide it by 10 to derive the percent change per 
year. Use the per-year value to multiply the 
previous year’s land type area to derive the annual 
change. For each year in the model, be sure to 
multiply the UACL per-year value by the previous 
year’s land area. In this way, the reduction in 
cropland becomes less and less over time. 

2. Starting from 2006 instead of starting at 2016. The reason 
for this is because (1) my value of UACL is based on 
change between 2006 and 2016, and therefore its starting 
date is 2006, and (2) the NLCD has poor accuracy 
(approximately 20%) when modeling pixels that change 
from cropland to another land type. Given this poor 
accuracy of change and the disagreement between my 
UACL values, which are derived from the Census of 
Agriculture, starting at 2016 is reasonable. Furthermore, 
NLCD and the Census of Agriculture do not agree in terms 
of counties’ net change in cropland. In some cases, one will 
indicate an increase in cropland while the other indicates a 
decrease over the same time period. Reconciling these 
differences does not have an obvious solution. Given the 
challenges in interpreting cropland from satellite imagery 
and the reported inaccuracies of the NLCD, the Census of 
Agriculture is likely a more reliable source of information 
about the area of land in cropland production 
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(Baxter/Calvert citation). Consequently, starting a model 
run from 2016 may not add any additional information than 
starting from 2006. 

 
28. Region Files: 

a. A region file must be selected when running CLUE, even if it is simply 
the entire extent. 

b. Region1.fil 
i. Entire county 

c. Region2.fil 
i. A small rectangular area just for demo purposes to test the 

model.. 
ii. For Brazoria, region2 is a 1218x1218 area that is necessary 

because the entire county (region1) is too big for CLUE to run. 
29. Demand Scenario 
30. Run CLUE Model 

a. Results are saved as cov_all.* 
i. The * indicates the year after the start of the simulation 

b. Copy all of the cov_all.* result rasters to a scenario folder under the 
CLUEResults folder under the county’s Spatial Data folder. 

c. Add .asc to the end of each file name to inform ArcGIS that the files are 
ASCII rasters. 

i. Use the following code in a PowerShell window: 

$suffix = ".asc" 
Get-ChildItem -Path *.* -File | ForEach-Object { 
    $currentFile = $_ 
    $newName = $_.Name + $suffix 
    Rename-Item -path $_ -NewName $newName 
    Write-Host "Renamed file $currentFile to $newName" 
} 
 

31. View Results in ArcGIS Pro 
a. Add the cov_0 thru cov_50 ascii rasters to Pro 
b. Import the symbology from the CLUEResults\NLCDReclass.clr colormap 

file to match the NLCD color scheme. 
32. Errors 

a. If CLUE fails saying that there’s an error with the sc1gr#.fil files, change 
the parameters in line 12 or main.1 to increase the allowable deviation. 
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Calculate Abandoned Cropland 

1. Use Raster Calculator to identify pixels that changed from cropland in year 0 to 
grassland in each year after (change the cov_all.2.asc for each raster and change 
the output accordingly): 

a. Use the Model Builder model to run this as a batch for all 50 rasters. 

Con(Con("cov_all.0.asc"==12,1,0) + 
Con("cov_all.2.asc"==10,1,0)==2,1,0) 

b. Result values: 
i. 1 = UACL 

ii. 0 = Cropland changing to another land type and not usable, or land 
that converted to grassland from a non-cropland type. 

iii. 0 = Land that was not cropland to begin with. 
c. Save output raster as WilcoxUACL## in the county geodatabase 

 

Landscape Metrics 

1. Export the cov_## rasters from Pro… (Use tool in Model Builder) 
i. FragStats recommends using GeoTIFFs. 

b. Save TIFF files in a Fragstats folder in the county SpatialData folder. 
2. Open Fragstats 

a. Add the tifs and save as a project like “Wilcox.” 
b. Use the .fbt files to batch load all 50. 

3. All Class-level metrics (quoted definitions from fragstats online documentation. 
(https://www.fragstats.org/index.php/documentation) 

a. Average patch area (AREA_MN) 
i. Mean patch size. Fragstats calculates the area of each patch in the 

class, sums them, and divides by the total number of patches in the 
class. (hectares) 

ii. Larger patches are better 
b. Largest patch index (LPI) 

i. Percent of the entire landscape comprised by the largest patch 
ii. “LPI approaches 0 when the largest patch of the corresponding 

patch type is increasingly small. LPI = 100 when the entire 
landscape consists of a single patch of the corresponding patch 
type; that is, when the largest patch comprises 100% of the 
landscape.” 

iii. Higher LPI is better 
c. Edge density (ED) 
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i. Sum of the lengths of all patches of the class type divided by total 
landscape area. I.e., are there more, complexly shaped patches. 
Similar to PD except it includes a measure of how complex or 
irregular the patch shape is. 

ii. “ED equals the sum of the lengths (m) of all edge segments 
involving the corresponding patch type, divided by the total 
landscape area (m2), multiplied by 10,000 (to convert to 
hectares).” 

iii. Keep the default setting to not include edges along the raster 
boundary 

iv. Lower ED is better 
d. Percentage of Landscape (PLAND) 

i. “PLAND equals the sum of the areas (m2) of all patches of the 
corresponding patch type, divided by total landscape area (m2), 
multiplied by 100 (to convert to a percentage); in other words, 
PLAND equals the percentage the landscape comprised of the 
corresponding patch type. Note, total landscape area (A) includes 
any internal background present.” 

ii. Higher is better  
e. Mean perimeter-area ratio (PARA_MN) 

i. “Perimeter-area ratio is a simple measure of shape complexity, but 
without standardization to a simple Euclidean shape (e.g., square). 
A problem with this metric as a shape index is that it varies with 
the size of the patch. For example, holding shape constant, an 
increase in patch size will cause a decrease in the perimeter-area 
ratio.” 

ii. Ratio of patch perimeter length over patch area 
iii. Lower is better 

f. Connectance index (CONNECT) 
i. The percent of all possible patch pairings that are within a certain 

distance of another patch of the same class. I.e., I specify a 
threshold distance (e.g., 100m) and Fragstats determines how 
many pairs of patches are within that distance of each other. 

ii. “Connectance is defined on the number of functional joinings 
between patches of the corresponding patch type, where each pair 
of patches is either connected or not based on a user-specified 
distance criterion. Connectance is reported as a percentage of the 
maximum possible connectance given the number of patches.” 

iii. Set the threshold to 100. (I assume the units are meters.) 
iv. Higher is better 
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g. Patch density (PD) 
i. Number of patches of a certain class divided by the total area of 

the landscape. Basically provides an area-normalized version of 
the total number of patches. 

ii. “PD equals the number of patches of the corresponding patch type 
divided by total landscape area (m2), multiplied by 10,000 and 100 
(to convert to 100 hectares).” 

h. Aggregation index (AI) 
i. For all pixels of a certain class, this calculates how many pixels are 

adjacent to another pixel of the same class divided by the 
maximum possible number of such adjacencies (i.e., add up all the 
possible pairs of class pixels that would exist if the landscape had 
one large patch). 

ii. “AI equals the number of like adjacencies involving the 
corresponding class, divided by the maximum possible number of 
like adjacencies involving the corresponding class, which is 
achieved when the class is maximally clumped into a single, 
compact patch; multiplied by 100 (to convert to a percentage).” 

iii. Higher is better 
4. Save the output to WilcoxScenarioX.class 
5. Import each county .class file into a separate sheet in Excel 

a. Save the Excel file in the R folder. 
6. Filter the Type column to only show the cls_1 records. (UACL) 
7. Plot each metric on a line chart. 
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Appendix F.  Dyna-CLUE Demand Inputs 

 
 
Demand input for Blue Earth County, MN (hectares). 
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0 4780 7364 3727 2342 894 686 7888 10 111 19 1970 3214 151248 7357 6660 198271 

1 4780 7364 3727 2342 894 686 7888 10 111 19 2471 3214 150747 7357 6660 198271 

2 4780 7364 3727 2342 894 686 7888 10 111 19 2970 3214 150248 7357 6660 198271 

3 4780 7364 3727 2342 894 686 7888 10 111 19 3467 3214 149750 7357 6660 198271 

4 4780 7364 3727 2342 894 686 7888 10 111 19 3963 3214 149255 7357 6660 198271 

5 4780 7364 3727 2342 894 686 7888 10 111 19 4457 3214 148761 7357 6660 198271 

6 4780 7364 3727 2342 894 686 7888 10 111 19 4950 3214 148268 7357 6660 198271 

7 4780 7364 3727 2342 894 686 7888 10 111 19 5441 3214 147777 7357 6660 198271 

8 4780 7364 3727 2342 894 686 7888 10 111 19 5930 3214 147288 7357 6660 198271 

9 4780 7364 3727 2342 894 686 7888 10 111 19 6417 3214 146800 7357 6660 198271 

10 4780 7364 3727 2342 894 686 7888 10 111 19 6903 3214 146314 7357 6660 198271 

11 4780 7364 3727 2342 894 686 7888 10 111 19 7388 3214 145830 7357 6660 198271 

12 4780 7364 3727 2342 894 686 7888 10 111 19 7871 3214 145347 7357 6660 198271 
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13 4780 7364 3727 2342 894 686 7888 10 111 19 8352 3214 144866 7357 6660 198271 

14 4780 7364 3727 2342 894 686 7888 10 111 19 8831 3214 144387 7357 6660 198271 

15 4780 7364 3727 2342 894 686 7888 10 111 19 9309 3214 143909 7357 6660 198271 

16 4780 7364 3727 2342 894 686 7888 10 111 19 9786 3214 143432 7357 6660 198271 

17 4780 7364 3727 2342 894 686 7888 10 111 19 10261 3214 142957 7357 6660 198271 

18 4780 7364 3727 2342 894 686 7888 10 111 19 10734 3214 142484 7357 6660 198271 

19 4780 7364 3727 2342 894 686 7888 10 111 19 11205 3214 142012 7357 6660 198271 

20 4780 7364 3727 2342 894 686 7888 10 111 19 11676 3214 141542 7357 6660 198271 

21 4780 7364 3727 2342 894 686 7888 10 111 19 12144 3214 141074 7357 6660 198271 

22 4780 7364 3727 2342 894 686 7888 10 111 19 12611 3214 140607 7357 6660 198271 

23 4780 7364 3727 2342 894 686 7888 10 111 19 13077 3214 140141 7357 6660 198271 

24 4780 7364 3727 2342 894 686 7888 10 111 19 13541 3214 139677 7357 6660 198271 

25 4780 7364 3727 2342 894 686 7888 10 111 19 14003 3214 139215 7357 6660 198271 

26 4780 7364 3727 2342 894 686 7888 10 111 19 14464 3214 138754 7357 6660 198271 

27 4780 7364 3727 2342 894 686 7888 10 111 19 14923 3214 138295 7357 6660 198271 

28 4780 7364 3727 2342 894 686 7888 10 111 19 15381 3214 137837 7357 6660 198271 

29 4780 7364 3727 2342 894 686 7888 10 111 19 15837 3214 137380 7357 6660 198271 

30 4780 7364 3727 2342 894 686 7888 10 111 19 16292 3214 136926 7357 6660 198271 

31 4780 7364 3727 2342 894 686 7888 10 111 19 16745 3214 136472 7357 6660 198271 

32 4780 7364 3727 2342 894 686 7888 10 111 19 17197 3214 136021 7357 6660 198271 

33 4780 7364 3727 2342 894 686 7888 10 111 19 17648 3214 135570 7357 6660 198271 

34 4780 7364 3727 2342 894 686 7888 10 111 19 18096 3214 135121 7357 6660 198271 

35 4780 7364 3727 2342 894 686 7888 10 111 19 18544 3214 134674 7357 6660 198271 

36 4780 7364 3727 2342 894 686 7888 10 111 19 18990 3214 134228 7357 6660 198271 

37 4780 7364 3727 2342 894 686 7888 10 111 19 19434 3214 133784 7357 6660 198271 

38 4780 7364 3727 2342 894 686 7888 10 111 19 19877 3214 133341 7357 6660 198271 

39 4780 7364 3727 2342 894 686 7888 10 111 19 20318 3214 132900 7357 6660 198271 

40 4780 7364 3727 2342 894 686 7888 10 111 19 20758 3214 132460 7357 6660 198271 
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41 4780 7364 3727 2342 894 686 7888 10 111 19 21197 3214 132021 7357 6660 198271 

42 4780 7364 3727 2342 894 686 7888 10 111 19 21634 3214 131584 7357 6660 198271 

43 4780 7364 3727 2342 894 686 7888 10 111 19 22069 3214 131148 7357 6660 198271 

44 4780 7364 3727 2342 894 686 7888 10 111 19 22503 3214 130714 7357 6660 198271 

45 4780 7364 3727 2342 894 686 7888 10 111 19 22936 3214 130282 7357 6660 198271 

46 4780 7364 3727 2342 894 686 7888 10 111 19 23368 3214 129850 7357 6660 198271 

47 4780 7364 3727 2342 894 686 7888 10 111 19 23797 3214 129420 7357 6660 198271 

48 4780 7364 3727 2342 894 686 7888 10 111 19 24226 3214 128992 7357 6660 198271 

49 4780 7364 3727 2342 894 686 7888 10 111 19 24653 3214 128565 7357 6660 198271 

50 4780 7364 3727 2342 894 686 7888 10 111 19 25078 3214 128139 7357 6660 198271 
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Demand Input for Brazoria County, TX (hectares). 
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0 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 10337 82519 58508 55920 63856 413866 

1 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 11173 82519 57673 55920 63856 413866 

2 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 11996 82519 56849 55920 63856 413866 

3 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 12807 82519 56038 55920 63856 413866 

4 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 13607 82519 55238 55920 63856 413866 

5 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 14396 82519 54449 55920 63856 413866 

6 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 15173 82519 53672 55920 63856 413866 

7 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 15939 82519 52906 55920 63856 413866 

8 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 16695 82519 52151 55920 63856 413866 

9 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 17439 82519 51406 55920 63856 413866 

10 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 18173 82519 50672 55920 63856 413866 

11 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 18896 82519 49949 55920 63856 413866 

12 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 19609 82519 49236 55920 63856 413866 

13 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 20312 82519 48533 55920 63856 413866 

14 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 21005 82519 47840 55920 63856 413866 

15 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 21688 82519 47157 55920 63856 413866 

16 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 22361 82519 46484 55920 63856 413866 

17 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 23025 82519 45821 55920 63856 413866 

18 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 23679 82519 45166 55920 63856 413866 
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19 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 24324 82519 44522 55920 63856 413866 

20 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 24959 82519 43886 55920 63856 413866 

21 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 25586 82519 43260 55920 63856 413866 

22 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 26203 82519 42642 55920 63856 413866 

23 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 26812 82519 42033 55920 63856 413866 

24 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 27412 82519 41433 55920 63856 413866 

25 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 28003 82519 40842 55920 63856 413866 

26 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 28586 82519 40259 55920 63856 413866 

27 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 29161 82519 39684 55920 63856 413866 

28 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 29728 82519 39118 55920 63856 413866 

29 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 30286 82519 38559 55920 63856 413866 

30 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 30837 82519 38009 55920 63856 413866 

31 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 31379 82519 37466 55920 63856 413866 

32 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 31914 82519 36931 55920 63856 413866 

33 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 32441 82519 36404 55920 63856 413866 

34 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 32961 82519 35884 55920 63856 413866 

35 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 33473 82519 35372 55920 63856 413866 

36 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 33978 82519 34867 55920 63856 413866 

37 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 34476 82519 34369 55920 63856 413866 

38 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 34966 82519 33879 55920 63856 413866 

39 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 35450 82519 33395 55920 63856 413866 

40 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 35927 82519 32918 55920 63856 413866 

41 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 36397 82519 32449 55920 63856 413866 

42 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 36860 82519 31985 55920 63856 413866 

43 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 37317 82519 31529 55920 63856 413866 

44 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 37767 82519 31079 55920 63856 413866 

45 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 38210 82519 30635 55920 63856 413866 

46 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 38648 82519 30198 55920 63856 413866 
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47 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 39079 82519 29767 55920 63856 413866 

48 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 39504 82519 29342 55920 63856 413866 

49 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 39922 82519 28923 55920 63856 413866 

50 56477 18369 14870 7889 3809 1963 9732 8921 10847 9848 40335 82519 28510 55920 63856 413866 
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Demand input for Estill County, KY (hectares). 

Y
ea

r 

0.
 O

pe
n 

W
at

er
 

1.
 D

ev
el

op
ed

, O
pe

n 
Sp

ac
e 

2.
 D

ev
el

op
ed

, L
ow

 
In

te
ns

ity
 

3.
 D

ev
el

op
ed

, M
ed

iu
m

 
In

te
ns

ity
 

4.
 D

ev
el

op
ed

 H
ig

h 
In

te
ns

ity
 

5.
 B

ar
e 

R
oc

k/
Sa

nd
/C

la
y 

6.
 D

ec
id

uo
us

 F
or

es
t 

7.
 E

ve
rg

re
en

 F
or

es
t 

8.
 M

ix
ed

 F
or

es
t 

9.
 S

hr
ub

/S
cr

ub
 

10
. 

G
ra

ss
la

nd
s/

H
er

ba
ce

ou
s 

11
. P

as
tu

re
/H

ay
 

12
. C

ul
tiv

at
ed

 C
ro

ps
 

13
. W

oo
dy

 W
et

la
nd

s 

14
. E

m
er

ge
nt

 
H

er
ba

ce
ou

s W
et

la
nd

s 

T
O

T
A

L
 

0 444 2284 1369 427 90 95 41596 302 7504 199 906 10658 613 88 20 66576 

1 444 2284 1369 427 90 95 41596 302 7504 199 926 10658 593 88 20 66576 

2 444 2284 1369 427 90 95 41596 302 7504 199 946 10658 573 88 20 66576 

3 444 2284 1369 427 90 95 41596 302 7504 199 965 10658 554 88 20 66576 

4 444 2284 1369 427 90 95 41596 302 7504 199 983 10658 536 88 20 66576 

5 444 2284 1369 427 90 95 41596 302 7504 199 1001 10658 518 88 20 66576 

6 444 2284 1369 427 90 95 41596 302 7504 199 1018 10658 501 88 20 66576 

7 444 2284 1369 427 90 95 41596 302 7504 199 1035 10658 484 88 20 66576 

8 444 2284 1369 427 90 95 41596 302 7504 199 1051 10658 468 88 20 66576 

9 444 2284 1369 427 90 95 41596 302 7504 199 1066 10658 453 88 20 66576 

10 444 2284 1369 427 90 95 41596 302 7504 199 1081 10658 438 88 20 66576 

11 444 2284 1369 427 90 95 41596 302 7504 199 1096 10658 423 88 20 66576 

12 444 2284 1369 427 90 95 41596 302 7504 199 1110 10658 409 88 20 66576 

13 444 2284 1369 427 90 95 41596 302 7504 199 1123 10658 396 88 20 66576 

14 444 2284 1369 427 90 95 41596 302 7504 199 1137 10658 383 88 20 66576 

15 444 2284 1369 427 90 95 41596 302 7504 199 1149 10658 370 88 20 66576 

16 444 2284 1369 427 90 95 41596 302 7504 199 1162 10658 358 88 20 66576 

17 444 2284 1369 427 90 95 41596 302 7504 199 1173 10658 346 88 20 66576 

18 444 2284 1369 427 90 95 41596 302 7504 199 1185 10658 334 88 20 66576 
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19 444 2284 1369 427 90 95 41596 302 7504 199 1196 10658 323 88 20 66576 

20 444 2284 1369 427 90 95 41596 302 7504 199 1207 10658 313 88 20 66576 

21 444 2284 1369 427 90 95 41596 302 7504 199 1217 10658 302 88 20 66576 

22 444 2284 1369 427 90 95 41596 302 7504 199 1227 10658 292 88 20 66576 

23 444 2284 1369 427 90 95 41596 302 7504 199 1237 10658 282 88 20 66576 

24 444 2284 1369 427 90 95 41596 302 7504 199 1246 10658 273 88 20 66576 

25 444 2284 1369 427 90 95 41596 302 7504 199 1255 10658 264 88 20 66576 

26 444 2284 1369 427 90 95 41596 302 7504 199 1264 10658 255 88 20 66576 

27 444 2284 1369 427 90 95 41596 302 7504 199 1272 10658 247 88 20 66576 

28 444 2284 1369 427 90 95 41596 302 7504 199 1280 10658 239 88 20 66576 

29 444 2284 1369 427 90 95 41596 302 7504 199 1288 10658 231 88 20 66576 

30 444 2284 1369 427 90 95 41596 302 7504 199 1296 10658 223 88 20 66576 

31 444 2284 1369 427 90 95 41596 302 7504 199 1303 10658 216 88 20 66576 

32 444 2284 1369 427 90 95 41596 302 7504 199 1311 10658 209 88 20 66576 

33 444 2284 1369 427 90 95 41596 302 7504 199 1317 10658 202 88 20 66576 

34 444 2284 1369 427 90 95 41596 302 7504 199 1324 10658 195 88 20 66576 

35 444 2284 1369 427 90 95 41596 302 7504 199 1331 10658 189 88 20 66576 

36 444 2284 1369 427 90 95 41596 302 7504 199 1337 10658 182 88 20 66576 

37 444 2284 1369 427 90 95 41596 302 7504 199 1343 10658 176 88 20 66576 

38 444 2284 1369 427 90 95 41596 302 7504 199 1349 10658 170 88 20 66576 

39 444 2284 1369 427 90 95 41596 302 7504 199 1354 10658 165 88 20 66576 

40 444 2284 1369 427 90 95 41596 302 7504 199 1360 10658 159 88 20 66576 

41 444 2284 1369 427 90 95 41596 302 7504 199 1365 10658 154 88 20 66576 

42 444 2284 1369 427 90 95 41596 302 7504 199 1370 10658 149 88 20 66576 

43 444 2284 1369 427 90 95 41596 302 7504 199 1375 10658 144 88 20 66576 

44 444 2284 1369 427 90 95 41596 302 7504 199 1380 10658 139 88 20 66576 

45 444 2284 1369 427 90 95 41596 302 7504 199 1385 10658 135 88 20 66576 

46 444 2284 1369 427 90 95 41596 302 7504 199 1389 10658 130 88 20 66576 



267 
 

47 444 2284 1369 427 90 95 41596 302 7504 199 1393 10658 126 88 20 66576 

48 444 2284 1369 427 90 95 41596 302 7504 199 1397 10658 122 88 20 66576 

49 444 2284 1369 427 90 95 41596 302 7504 199 1402 10658 118 88 20 66576 

50 444 2284 1369 427 90 95 41596 302 7504 199 1405 10658 114 88 20 66576 
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Demand input for Wilcox County, GA (hectares). 
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0 1034 3069 1308 169 36 67 1254 25680 3598 1835 4956 1095 30596 23561 733 98990 

1 1034 3069 1308 169 36 67 1254 25680 3598 1835 5767 1095 29784 23561 733 98990 

2 1034 3069 1308 169 36 67 1254 25680 3598 1835 6557 1095 28994 23561 733 98990 

3 1034 3069 1308 169 36 67 1254 25680 3598 1835 7326 1095 28226 23561 733 98990 

4 1034 3069 1308 169 36 67 1254 25680 3598 1835 8074 1095 27477 23561 733 98990 

5 1034 3069 1308 169 36 67 1254 25680 3598 1835 8803 1095 26748 23561 733 98990 

6 1034 3069 1308 169 36 67 1254 25680 3598 1835 9513 1095 26039 23561 733 98990 

7 1034 3069 1308 169 36 67 1254 25680 3598 1835 10203 1095 25348 23561 733 98990 

8 1034 3069 1308 169 36 67 1254 25680 3598 1835 10875 1095 24676 23561 733 98990 

9 1034 3069 1308 169 36 67 1254 25680 3598 1835 11530 1095 24022 23561 733 98990 

10 1034 3069 1308 169 36 67 1254 25680 3598 1835 12167 1095 23384 23561 733 98990 

11 1034 3069 1308 169 36 67 1254 25680 3598 1835 12787 1095 22764 23561 733 98990 

12 1034 3069 1308 169 36 67 1254 25680 3598 1835 13391 1095 22161 23561 733 98990 

13 1034 3069 1308 169 36 67 1254 25680 3598 1835 13979 1095 21573 23561 733 98990 

14 1034 3069 1308 169 36 67 1254 25680 3598 1835 14551 1095 21001 23561 733 98990 

15 1034 3069 1308 169 36 67 1254 25680 3598 1835 15108 1095 20444 23561 733 98990 

16 1034 3069 1308 169 36 67 1254 25680 3598 1835 15650 1095 19902 23561 733 98990 

17 1034 3069 1308 169 36 67 1254 25680 3598 1835 16178 1095 19374 23561 733 98990 

18 1034 3069 1308 169 36 67 1254 25680 3598 1835 16692 1095 18860 23561 733 98990 
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19 1034 3069 1308 169 36 67 1254 25680 3598 1835 17192 1095 18360 23561 733 98990 

20 1034 3069 1308 169 36 67 1254 25680 3598 1835 17679 1095 17873 23561 733 98990 

21 1034 3069 1308 169 36 67 1254 25680 3598 1835 18153 1095 17399 23561 733 98990 

22 1034 3069 1308 169 36 67 1254 25680 3598 1835 18614 1095 16937 23561 733 98990 

23 1034 3069 1308 169 36 67 1254 25680 3598 1835 19063 1095 16488 23561 733 98990 

24 1034 3069 1308 169 36 67 1254 25680 3598 1835 19501 1095 16051 23561 733 98990 

25 1034 3069 1308 169 36 67 1254 25680 3598 1835 19926 1095 15625 23561 733 98990 

26 1034 3069 1308 169 36 67 1254 25680 3598 1835 20341 1095 15211 23561 733 98990 

27 1034 3069 1308 169 36 67 1254 25680 3598 1835 20744 1095 14807 23561 733 98990 

28 1034 3069 1308 169 36 67 1254 25680 3598 1835 21137 1095 14415 23561 733 98990 

29 1034 3069 1308 169 36 67 1254 25680 3598 1835 21519 1095 14032 23561 733 98990 

30 1034 3069 1308 169 36 67 1254 25680 3598 1835 21891 1095 13660 23561 733 98990 

31 1034 3069 1308 169 36 67 1254 25680 3598 1835 22254 1095 13298 23561 733 98990 

32 1034 3069 1308 169 36 67 1254 25680 3598 1835 22606 1095 12945 23561 733 98990 

33 1034 3069 1308 169 36 67 1254 25680 3598 1835 22950 1095 12602 23561 733 98990 

34 1034 3069 1308 169 36 67 1254 25680 3598 1835 23284 1095 12268 23561 733 98990 

35 1034 3069 1308 169 36 67 1254 25680 3598 1835 23609 1095 11942 23561 733 98990 

36 1034 3069 1308 169 36 67 1254 25680 3598 1835 23926 1095 11626 23561 733 98990 

37 1034 3069 1308 169 36 67 1254 25680 3598 1835 24234 1095 11317 23561 733 98990 

38 1034 3069 1308 169 36 67 1254 25680 3598 1835 24534 1095 11017 23561 733 98990 

39 1034 3069 1308 169 36 67 1254 25680 3598 1835 24827 1095 10725 23561 733 98990 

40 1034 3069 1308 169 36 67 1254 25680 3598 1835 25111 1095 10440 23561 733 98990 

41 1034 3069 1308 169 36 67 1254 25680 3598 1835 25388 1095 10164 23561 733 98990 

42 1034 3069 1308 169 36 67 1254 25680 3598 1835 25657 1095 9894 23561 733 98990 

43 1034 3069 1308 169 36 67 1254 25680 3598 1835 25920 1095 9632 23561 733 98990 

44 1034 3069 1308 169 36 67 1254 25680 3598 1835 26175 1095 9376 23561 733 98990 

45 1034 3069 1308 169 36 67 1254 25680 3598 1835 26424 1095 9128 23561 733 98990 

46 1034 3069 1308 169 36 67 1254 25680 3598 1835 26666 1095 8885 23561 733 98990 
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47 1034 3069 1308 169 36 67 1254 25680 3598 1835 26902 1095 8650 23561 733 98990 

48 1034 3069 1308 169 36 67 1254 25680 3598 1835 27131 1095 8420 23561 733 98990 

49 1034 3069 1308 169 36 67 1254 25680 3598 1835 27354 1095 8197 23561 733 98990 

50 1034 3069 1308 169 36 67 1254 25680 3598 1835 27572 1095 7980 23561 733 98990 
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Appendix G.  Logistic Regression Results 

The variable names below refer to the following predictors: 
sc1gr0.fil – Slope  
sc1gr1.fil – NCCPI  
sc1gr2.fil – Median Age   
sc1gr3.fil - Average Household Size   
sc1gr4.fil - Drought Vulnerability  
sc1gr5.fil - Flood Frequency 
sc1gr6.fil - Percent Population Non-White  
sc1gr7.fil - Population Density 
sc1gr8.fil - Soil Organic Matter 
sc1gr9.fil - Soil Water Storage 
sc1gr10.fil - Percent Households Renting 

 

Blue Earth County, MN: 

0. Water 

No regression performed for this land type. 
 
1. Developed, Open Space 

 
Coefficients: 
                Estimate   Std. Error  z value             Pr(>|z|)     
(Intercept) -3.256779157  0.028996528 -112.316 < 0.0000000000000002 *** 
sc1fr0.fil  -0.000394075  0.000008445  -46.662 < 0.0000000000000002 *** 
sc1fr1.fil   0.000059812  0.000008159    7.331    0.000000000000228 *** 
sc1fr2.fil  -0.002338602  0.000336734   -6.945    0.000000000003786 *** 
sc1fr3.fil  -0.002686513  0.005517679   -0.487                0.626     
sc1fr4.fil   0.000566594  0.000022143   25.588 < 0.0000000000000002 *** 
sc1fr5.fil   0.000482864  0.000010676   45.230 < 0.0000000000000002 *** 
sc1fr6.fil   0.002222472  0.000338880    6.558    0.000000000054431 *** 
sc1fr7.fil   0.000141571  0.000002897   48.869 < 0.0000000000000002 *** 
sc1fr8.fil  -0.002645225  0.000470489   -5.622    0.000000018844988 *** 
sc1fr9.fil   0.002419779  0.000469259    5.157    0.000000251484689 *** 
sc1fr10.fil  0.002775297  0.005518606    0.503                0.615     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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2. Developed, Low Intensity  

Coefficients: 
                Estimate   Std. Error z value             Pr(>|z|)     
(Intercept) -3.360675028  0.039867767 -84.296 < 0.0000000000000002 *** 
sc1fr0.fil  -0.000315760  0.000014586 -21.648 < 0.0000000000000002 *** 
sc1fr1.fil  -0.000042619  0.000007146  -5.964        0.00000000246 *** 
sc1fr2.fil  -0.007841124  0.000478695 -16.380 < 0.0000000000000002 *** 
sc1fr3.fil  -0.070581076  0.007633723  -9.246 < 0.0000000000000002 *** 
sc1fr4.fil   0.000070159  0.000025368   2.766              0.00568 **  
sc1fr5.fil   0.000534341  0.000017431  30.655 < 0.0000000000000002 *** 
sc1fr6.fil   0.007268944  0.000482147  15.076 < 0.0000000000000002 *** 
sc1fr7.fil   0.000380491  0.000003296 115.427 < 0.0000000000000002 *** 
sc1fr8.fil   0.008290015  0.000644907  12.855 < 0.0000000000000002 *** 
sc1fr9.fil  -0.008397008  0.000643247 -13.054 < 0.0000000000000002 *** 
sc1fr10.fil  0.071146765  0.007634689   9.319 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
3. Developed, Medium Intensity 

Coefficients: 
                Estimate   Std. Error z value             Pr(>|z|)     
(Intercept) -2.658670319  0.049632858 -53.567 < 0.0000000000000002 *** 
sc1fr0.fil   0.000007761  0.000045887   0.169                0.866     
sc1fr1.fil   0.000004534  0.000011626   0.390                0.697     
sc1fr2.fil  -0.022462412  0.000647111 -34.712 < 0.0000000000000002 *** 
sc1fr3.fil  -0.269929144  0.009785590 -27.584 < 0.0000000000000002 *** 
sc1fr4.fil  -0.000222456  0.000041117  -5.410         0.0000000629 *** 
sc1fr5.fil   0.000535171  0.000015235  35.129 < 0.0000000000000002 *** 
sc1fr6.fil   0.021477994  0.000651161  32.984 < 0.0000000000000002 *** 
sc1fr7.fil   0.000611059  0.000003872 157.803 < 0.0000000000000002 *** 
sc1fr8.fil   0.021596508  0.000804394  26.848 < 0.0000000000000002 *** 
sc1fr9.fil  -0.021759886  0.000802325 -27.121 < 0.0000000000000002 *** 
sc1fr10.fil  0.270951375  0.009787460  27.684 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
4. Developed High Intensity  

Coefficients: 
                Estimate   Std. Error z value             Pr(>|z|)     
(Intercept) -0.676683664  0.067107254 -10.084 < 0.0000000000000002 *** 
sc1fr0.fil   0.000599717  0.000138893   4.318            0.0000158 *** 
sc1fr1.fil   0.000094559  0.000027435   3.447             0.000567 *** 
sc1fr2.fil  -0.051280607  0.001089522 -47.067 < 0.0000000000000002 *** 
sc1fr3.fil  -0.906581862  0.015630699 -58.000 < 0.0000000000000002 *** 
sc1fr4.fil  -0.000240362  0.000049955  -4.812            0.0000015 *** 
sc1fr5.fil   0.000596815  0.000018091  32.989 < 0.0000000000000002 *** 
sc1fr6.fil   0.051220338  0.001094392  46.803 < 0.0000000000000002 *** 
sc1fr7.fil   0.000255103  0.000003843  66.377 < 0.0000000000000002 *** 
sc1fr8.fil   0.043941512  0.001137154  38.642 < 0.0000000000000002 *** 
sc1fr9.fil  -0.044198108  0.001134294 -38.965 < 0.0000000000000002 *** 
sc1fr10.fil  0.906852512  0.015632887  58.009 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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5. Bare Rock/Sand/Clay 

Coefficients: 
               Estimate  Std. Error  z value             Pr(>|z|)     
(Intercept)  0.01724571  0.08611459    0.200               0.8413     
sc1fr0.fil   0.00075695  0.00006704   11.291 < 0.0000000000000002 *** 
sc1fr1.fil   0.19692066  0.00868562   22.672 < 0.0000000000000002 *** 
sc1fr2.fil  -0.02451550  0.00107808  -22.740 < 0.0000000000000002 *** 
sc1fr3.fil  -0.25225485  0.01730839  -14.574 < 0.0000000000000002 *** 
sc1fr4.fil  -0.00020561  0.00003206   -6.413       0.000000000143 *** 
sc1fr5.fil   0.00012354  0.00002110    5.855       0.000000004757 *** 
sc1fr6.fil   0.02472751  0.00108429   22.805 < 0.0000000000000002 *** 
sc1fr7.fil  -0.00003136  0.00001281   -2.448               0.0144 *   
sc1fr8.fil  -0.04570227  0.00854227   -5.350       0.000000087891 *** 
sc1fr9.fil  -0.15085841  0.00133542 -112.967 < 0.0000000000000002 *** 
sc1fr10.fil  0.25220974  0.01731176   14.569 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
6. Deciduous Forest 

Coefficients: 
                        Estimate           Std. Error     z value            
Pr(>|z|)     
(Intercept) -2526294905911744.00            367599.06 -6872419351 
<0.0000000000000002 *** 
sc1fr0.fil       318753765154.27               174.06  1831280146 
<0.0000000000000002 *** 
sc1fr1.fil       -33637917910.57                79.58  -422671162 
<0.0000000000000002 *** 
sc1fr2.fil      3268617267120.84              4232.53   772260420 
<0.0000000000000002 *** 
sc1fr3.fil     36056538984064.20             70165.53   513878226 
<0.0000000000000002 *** 
sc1fr4.fil      -300956982526.39               170.79 -1762151738 
<0.0000000000000002 *** 
sc1fr5.fil       120613222753.10                92.55  1303158046 
<0.0000000000000002 *** 
sc1fr6.fil     -3336279537352.65              4258.27  -783481623 
<0.0000000000000002 *** 
sc1fr7.fil        62088777586.84                65.89   942346942 
<0.0000000000000002 *** 
sc1fr8.fil     -2623208194752.98              5971.31  -439302151 
<0.0000000000000002 *** 
sc1fr9.fil      2655719654901.33              5955.73   445909972 
<0.0000000000000002 *** 
sc1fr10.fil   -35990398462675.13             70181.82  -512816519 
<0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
7. Evergreen Forest 

Coefficients: 
               Estimate  Std. Error z value             Pr(>|z|)     
(Intercept) -7.09637148  0.66068263 -10.741 < 0.0000000000000002 *** 
sc1fr0.fil   0.06272577  0.01402277   4.473     0.00000770806633 *** 
sc1fr1.fil  -0.00018149  0.00007231  -2.510              0.01208 *   
sc1fr2.fil  -0.00672603  0.00840590  -0.800              0.42362     
sc1fr3.fil  -0.41896276  0.14507194  -2.888              0.00388 **  



274 
 

sc1fr4.fil   0.00027078  0.00187615   0.144              0.88524     
sc1fr5.fil  -0.00019584  0.00049496  -0.396              0.69234     
sc1fr6.fil   0.00611884  0.01370810   0.446              0.65533     
sc1fr7.fil  -0.00001279  0.00013671  -0.094              0.92548     
sc1fr8.fil   0.06788040  0.00947445   7.165     0.00000000000078 *** 
sc1fr9.fil  -0.06731528  0.00945918  -7.116     0.00000000000111 *** 
sc1fr10.fil  0.41967994  0.14534646   2.887              0.00388 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
8. Mixed Forest 

Coefficients: 
               Estimate  Std. Error z value            Pr(>|z|)     
(Intercept) -8.14047129  0.24207189 -33.628 <0.0000000000000002 *** 
sc1fr0.fil   0.12493602  0.00262755  47.548 <0.0000000000000002 *** 
sc1fr1.fil  -0.00022681  0.00001808 -12.548 <0.0000000000000002 *** 
sc1fr2.fil  -0.00193325  0.00278186  -0.695              0.4871     
sc1fr3.fil   0.02885959  0.04517685   0.639              0.5229     
sc1fr4.fil   0.00004516  0.00040262   0.112              0.9107     
sc1fr5.fil  -0.00019708  0.00030235  -0.652              0.5145     
sc1fr6.fil   0.00135054  0.00367423   0.368              0.7132     
sc1fr7.fil   0.00001057  0.00004019   0.263              0.7926     
sc1fr8.fil  -0.00621754  0.00403357  -1.541              0.1232     
sc1fr9.fil   0.00675277  0.00401874   1.680              0.0929 .   
sc1fr10.fil -0.02823990  0.04523094  -0.624              0.5324     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
9. Shrub/Scrub  

Coefficients: 
               Estimate  Std. Error z value             Pr(>|z|)     
(Intercept) -8.45507334  0.61467208 -13.755 < 0.0000000000000002 *** 
sc1fr0.fil   0.10206619  0.00706155  14.454 < 0.0000000000000002 *** 
sc1fr1.fil  -0.00026250  0.00003899  -6.733      0.0000000000167 *** 
sc1fr2.fil   0.00801925  0.00711230   1.128             0.259523     
sc1fr3.fil   0.13973624  0.12281417   1.138             0.255210     
sc1fr4.fil   0.00022881  0.00119417   0.192             0.848054     
sc1fr5.fil  -0.00020396  0.00033490  -0.609             0.542509     
sc1fr6.fil  -1.40061192  0.36985914  -3.787             0.000153 *** 
sc1fr7.fil   0.00003723  0.00004561   0.816             0.414353     
sc1fr8.fil   0.08406368  0.00652732  12.879 < 0.0000000000000002 *** 
sc1fr9.fil  -0.08341487  0.00651723 -12.799 < 0.0000000000000002 *** 
sc1fr10.fil  1.25281392  0.31632548   3.961      0.0000747862097 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
10. Grasslands/Herbaceous 

Coefficients: 
               Estimate  Std. Error z value            Pr(>|z|)     
(Intercept) -4.56986995  0.05567681 -82.079 <0.0000000000000002 *** 
sc1fr0.fil   0.07425715  0.00097385  76.251 <0.0000000000000002 *** 
sc1fr1.fil   0.00003608  0.00001451   2.486              0.0129 *   
sc1fr2.fil   0.00660623  0.00065003  10.163 <0.0000000000000002 *** 
sc1fr3.fil   0.12092006  0.01072827  11.271 <0.0000000000000002 *** 
sc1fr4.fil   0.00011899  0.00012483   0.953              0.3405     
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sc1fr5.fil   0.00018740  0.00001484  12.624 <0.0000000000000002 *** 
sc1fr6.fil  -0.00715148  0.00082870  -8.630 <0.0000000000000002 *** 
sc1fr7.fil  -0.00001253  0.00001134  -1.105              0.2692     
sc1fr8.fil   0.03038777  0.00082968  36.626 <0.0000000000000002 *** 
sc1fr9.fil  -0.03040991  0.00082758 -36.746 <0.0000000000000002 *** 
sc1fr10.fil -0.12039343  0.01073927 -11.211 <0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
11. Pasture/Hay 

Coefficients: 
                Estimate   Std. Error  z value             Pr(>|z|)     
(Intercept) -5.206352060  0.049954406 -104.222 < 0.0000000000000002 *** 
sc1fr0.fil   0.034960724  0.001086652   32.173 < 0.0000000000000002 *** 
sc1fr1.fil  -0.000052135  0.000007273   -7.168    0.000000000000761 *** 
sc1fr2.fil   0.013870224  0.000551915   25.131 < 0.0000000000000002 *** 
sc1fr3.fil   0.298563586  0.009268638   32.212 < 0.0000000000000002 *** 
sc1fr4.fil  -0.000170945  0.000023255   -7.351    0.000000000000197 *** 
sc1fr5.fil   0.000135933  0.000012343   11.013 < 0.0000000000000002 *** 
sc1fr6.fil  -0.185963352  0.032953555   -5.643    0.000000016692262 *** 
sc1fr7.fil   0.000020592  0.000007364    2.796              0.00517 **  
sc1fr8.fil   0.013633471  0.000678199   20.102 < 0.0000000000000002 *** 
sc1fr9.fil  -0.013555586  0.000676447  -20.039 < 0.0000000000000002 *** 
sc1fr10.fil -0.126602202  0.029724802   -4.259    0.000020521155093 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
12. Cultivated Crops 

These results are excluded due to irregular coefficient values. 
Coefficients: 
                       Estimate          Std. Error      z value            
Pr(>|z|)     
(Intercept) -519161464109799.44           367599.06  -1412303561 
<0.0000000000000002 *** 
sc1fr0.fil      990815951367.61              174.06   5692361248 
<0.0000000000000002 *** 
sc1fr1.fil      152256933907.50               79.58   1913156911 
<0.0000000000000002 *** 
sc1fr2.fil    20095919511800.47             4232.53   4747965873 
<0.0000000000000002 *** 
sc1fr3.fil  -201195968937731.28            70165.53  -2867447359 
<0.0000000000000002 *** 
sc1fr4.fil      230943583908.88              170.79   1352211982 
<0.0000000000000002 *** 
sc1fr5.fil      111210282686.37               92.55   1201564566 
<0.0000000000000002 *** 
sc1fr6.fil   -20356538136981.38             4258.27  -4780466794 
<0.0000000000000002 *** 
sc1fr7.fil     -922767583543.57               65.89 -14005223553 
<0.0000000000000002 *** 
sc1fr8.fil   -31255585838032.94             5971.31  -5234295212 
<0.0000000000000002 *** 
sc1fr9.fil    31318327685698.42             5955.73   5258519886 
<0.0000000000000002 *** 
sc1fr10.fil  201232405305735.72            70181.82   2867300893 
<0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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13. Woody Wetlands 

Coefficients: 
                Estimate   Std. Error  z value             Pr(>|z|)     
(Intercept) -2.925657756  0.029185972 -100.242 < 0.0000000000000002 *** 
sc1fr0.fil   0.042127138  0.000724820   58.121 < 0.0000000000000002 *** 
sc1fr1.fil  -0.000022285  0.000005531   -4.029  0.00005598521851250 *** 
sc1fr2.fil  -0.003309646  0.000340501   -9.720 < 0.0000000000000002 *** 
sc1fr3.fil  -0.089179639  0.005673429  -15.719 < 0.0000000000000002 *** 
sc1fr4.fil   0.000163972  0.000021182    7.741  0.00000000000000986 *** 
sc1fr5.fil  -0.000118168  0.000016690   -7.080  0.00000000000143872 *** 
sc1fr6.fil   0.002665413  0.000567819    4.694  0.00000267755596843 *** 
sc1fr7.fil  -0.000342889  0.000012542  -27.340 < 0.0000000000000002 *** 
sc1fr8.fil   0.003601375  0.000464258    7.757  0.00000000000000868 *** 
sc1fr9.fil  -0.003375220  0.000462996   -7.290  0.00000000000031007 *** 
sc1fr10.fil  0.089806145  0.005687331   15.791 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
14. Emergent Herbaceous Wetlands 

Coefficients: 
                Estimate   Std. Error  z value             Pr(>|z|)     
(Intercept) -0.125968775  0.030134193   -4.180            0.0000291 *** 
sc1fr0.fil   0.000626411  0.000043371   14.443 < 0.0000000000000002 *** 
sc1fr1.fil  -0.000232802  0.000002915  -79.859 < 0.0000000000000002 *** 
sc1fr2.fil  -0.009168997  0.000373358  -24.558 < 0.0000000000000002 *** 
sc1fr3.fil  -0.185033350  0.006188270  -29.901 < 0.0000000000000002 *** 
sc1fr4.fil   0.000330854  0.000036827    8.984 < 0.0000000000000002 *** 
sc1fr5.fil  -0.000331521  0.000026324  -12.594 < 0.0000000000000002 *** 
sc1fr6.fil   0.008925134  0.000389399   22.920 < 0.0000000000000002 *** 
sc1fr7.fil  -0.000199631  0.000009815  -20.340 < 0.0000000000000002 *** 
sc1fr8.fil   0.102828732  0.000451514  227.742 < 0.0000000000000002 *** 
sc1fr9.fil  -0.102078477  0.000450569 -226.555 < 0.0000000000000002 *** 
sc1fr10.fil  0.185318084  0.006190450   29.936 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Brazoria County, TX: 

0. Water 

No regression performed for this land type. 
 
1. Developed, Open Space 

Coefficients: 
                Estimate   Std. Error  z value             Pr(>|z|)     
(Intercept) -3.617999011  0.024717913 -146.372 < 0.0000000000000002 *** 
sc1gr0.fil  -0.000057115  0.000015622   -3.656             0.000256 *** 
sc1gr1.fil   0.000055831  0.000014462    3.861             0.000113 *** 
sc1gr2.fil  -0.014475239  0.000325940  -44.411 < 0.0000000000000002 *** 
sc1gr3.fil   0.061268213  0.004656096   13.159 < 0.0000000000000002 *** 
sc1gr4.fil   0.000387412  0.000015100   25.657 < 0.0000000000000002 *** 
sc1gr5.fil  -0.211430060  0.002506101  -84.366 < 0.0000000000000002 *** 
sc1gr6.fil   0.014064729  0.000329256   42.717 < 0.0000000000000002 *** 
sc1gr7.fil   0.000177801  0.000001506  118.074 < 0.0000000000000002 *** 
sc1gr8.fil   0.158385741  0.002350678   67.379 < 0.0000000000000002 *** 
sc1gr9.fil   0.053056479  0.000381589  139.041 < 0.0000000000000002 *** 
sc1gr10.fil -0.060736001  0.004656677  -13.043 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
2. Developed, Low Intensity  

Coefficients: 
                Estimate   Std. Error  z value             Pr(>|z|)     
(Intercept) -3.346678675  0.027672976 -120.937 < 0.0000000000000002 *** 
sc1gr0.fil  -0.000045859  0.000024994   -1.835              0.06653 .   
sc1gr1.fil   0.000027681  0.000008108    3.414              0.00064 *** 
sc1gr2.fil  -0.011880469  0.000378585  -31.381 < 0.0000000000000002 *** 
sc1gr3.fil   0.057195974  0.005309416   10.773 < 0.0000000000000002 *** 
sc1gr4.fil   0.000410103  0.000021102   19.434 < 0.0000000000000002 *** 
sc1gr5.fil  -0.112840156  0.002384289  -47.327 < 0.0000000000000002 *** 
sc1gr6.fil   0.010768761  0.000382453   28.157 < 0.0000000000000002 *** 
sc1gr7.fil   0.000427886  0.000001542  277.560 < 0.0000000000000002 *** 
sc1gr8.fil   0.094698208  0.002321908   40.785 < 0.0000000000000002 *** 
sc1gr9.fil   0.018288768  0.000378087   48.372 < 0.0000000000000002 *** 
sc1gr10.fil -0.056024209  0.005310251  -10.550 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
3. Developed, Medium Intensity 

Coefficients: 
                Estimate   Std. Error  z value             Pr(>|z|)     
(Intercept) -4.259168337  0.040202710 -105.942 < 0.0000000000000002 *** 
sc1gr0.fil  -0.000088314  0.000035073   -2.518              0.01180 *   
sc1gr1.fil   0.000022599  0.000007553    2.992              0.00277 **  
sc1gr2.fil  -0.003856804  0.000567152   -6.800      0.0000000000104 *** 
sc1gr3.fil   0.016144627  0.007719678    2.091              0.03650 *   
sc1gr4.fil   0.000425638  0.000026568   16.020 < 0.0000000000000002 *** 
sc1gr5.fil  -0.040169061  0.002985495  -13.455 < 0.0000000000000002 *** 
sc1gr6.fil   0.001678870  0.000572305    2.934              0.00335 **  
sc1gr7.fil   0.000665385  0.000001940  342.907 < 0.0000000000000002 *** 
sc1gr8.fil   0.041874673  0.003006506   13.928 < 0.0000000000000002 *** 
sc1gr9.fil  -0.001534778  0.000505756   -3.035              0.00241 **  
sc1gr10.fil -0.013998258  0.007721143   -1.813              0.06984 .   
--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
4. Developed High Intensity  

Coefficients: 
               Estimate  Std. Error z value             Pr(>|z|)     
(Intercept) -1.43633011  0.05597228 -25.661 < 0.0000000000000002 *** 
sc1gr0.fil   0.00010250  0.00012215   0.839              0.40140     
sc1gr1.fil   0.00028155  0.00001640  17.167 < 0.0000000000000002 *** 
sc1gr2.fil  -0.05570801  0.00083624 -66.618 < 0.0000000000000002 *** 
sc1gr3.fil  -0.64677104  0.01082221 -59.763 < 0.0000000000000002 *** 
sc1gr4.fil   0.01771378  0.00615562   2.878              0.00401 **  
sc1gr5.fil   0.13984415  0.00378896  36.908 < 0.0000000000000002 *** 
sc1gr6.fil   0.05495248  0.00084384  65.122 < 0.0000000000000002 *** 
sc1gr7.fil   0.00029598  0.00000261 113.422 < 0.0000000000000002 *** 
sc1gr8.fil  -0.13867655  0.00372101 -37.269 < 0.0000000000000002 *** 
sc1gr9.fil  -0.00122249  0.00067084  -1.822              0.06841 .   
sc1gr10.fil  0.64779396  0.01082346  59.851 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

5. Bare Rock/Sand/Clay 

Coefficients: 
                Estimate   Std. Error z value             Pr(>|z|)     
(Intercept) -5.025630208  0.115429994 -43.538 < 0.0000000000000002 *** 
sc1gr0.fil   0.000835340  0.000046476  17.974 < 0.0000000000000002 *** 
sc1gr1.fil  -0.000098204  0.000003035 -32.355 < 0.0000000000000002 *** 
sc1gr2.fil  -0.015264867  0.001559023  -9.791 < 0.0000000000000002 *** 
sc1gr3.fil  -0.500740654  0.023808180 -21.032 < 0.0000000000000002 *** 
sc1gr4.fil   0.000204530  0.000003658  55.919 < 0.0000000000000002 *** 
sc1gr5.fil   0.517618076  0.004964138 104.271 < 0.0000000000000002 *** 
sc1gr6.fil   0.015355858  0.001571579   9.771 < 0.0000000000000002 *** 
sc1gr7.fil  -0.000099068  0.000018815  -5.265      0.0000001399534 *** 
sc1gr8.fil  -0.523587326  0.005244362 -99.838 < 0.0000000000000002 *** 
sc1gr9.fil   0.005847474  0.000873038   6.698      0.0000000000212 *** 
sc1gr10.fil  0.500763243  0.023811537  21.030 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
6. Deciduous Forest 

Coefficients: 
                Estimate   Std. Error  z value             Pr(>|z|)     
(Intercept) -5.167259863  0.035029016 -147.514 < 0.0000000000000002 *** 
sc1gr0.fil   0.000268938  0.000040030    6.718      0.0000000000184 *** 
sc1gr1.fil   0.000408228  0.000085820    4.757      0.0000019670049 *** 
sc1gr2.fil   0.011527737  0.000446073   25.843 < 0.0000000000000002 *** 
sc1gr3.fil  -0.250469915  0.006866255  -36.478 < 0.0000000000000002 *** 
sc1gr4.fil   0.000521139  0.000038235   13.630 < 0.0000000000000002 *** 
sc1gr5.fil  -0.174663817  0.003034499  -57.559 < 0.0000000000000002 *** 
sc1gr6.fil  -0.011596836  0.000450136  -25.763 < 0.0000000000000002 *** 
sc1gr7.fil  -0.000268447  0.000006617  -40.570 < 0.0000000000000002 *** 
sc1gr8.fil   0.096709042  0.002825085   34.232 < 0.0000000000000002 *** 
sc1gr9.fil   0.077553081  0.000498482  155.578 < 0.0000000000000002 *** 
sc1gr10.fil  0.250600033  0.006866999   36.493 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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7. Evergreen Forest 

Coefficients: 
               Estimate  Std. Error  z value             Pr(>|z|)     
(Intercept) -5.45297354  0.03690773 -147.746 < 0.0000000000000002 *** 
sc1gr0.fil   0.00071961  0.00008289    8.681 < 0.0000000000000002 *** 
sc1gr1.fil   0.00034488  0.00006974    4.945   0.0000007607149374 *** 
sc1gr2.fil   0.00747074  0.00046875   15.938 < 0.0000000000000002 *** 
sc1gr3.fil  -0.00677815  0.00714829   -0.948                0.343     
sc1gr4.fil   0.00054609  0.00007246    7.536   0.0000000000000483 *** 
sc1gr5.fil  -0.16733602  0.00325194  -51.457 < 0.0000000000000002 *** 
sc1gr6.fil  -0.00798080  0.00053691  -14.864 < 0.0000000000000002 *** 
sc1gr7.fil  -0.00063855  0.00001149  -55.555 < 0.0000000000000002 *** 
sc1gr8.fil   0.09421213  0.00301955   31.201 < 0.0000000000000002 *** 
sc1gr9.fil   0.07291666  0.00052832  138.015 < 0.0000000000000002 *** 
sc1gr10.fil  0.00733928  0.00715241    1.026                0.305     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
8. Mixed Forest 

Coefficients: 
               Estimate  Std. Error  z value             Pr(>|z|)     
(Intercept) -4.82077250  0.03297424 -146.198 < 0.0000000000000002 *** 
sc1gr0.fil   0.00064450  0.00005442   11.842 < 0.0000000000000002 *** 
sc1gr1.fil   0.00068732  0.00034452    1.995                0.046 *   
sc1gr2.fil   0.00446128  0.00042225   10.565 < 0.0000000000000002 *** 
sc1gr3.fil   0.03046253  0.00636473    4.786           0.00000170 *** 
sc1gr4.fil   0.00072563  0.00005388   13.468 < 0.0000000000000002 *** 
sc1gr5.fil  -0.16810673  0.00299074  -56.209 < 0.0000000000000002 *** 
sc1gr6.fil  -0.00433938  0.00042589  -10.189 < 0.0000000000000002 *** 
sc1gr7.fil  -0.00076867  0.00001180  -65.165 < 0.0000000000000002 *** 
sc1gr8.fil   0.10769800  0.00280797   38.354 < 0.0000000000000002 *** 
sc1gr9.fil   0.05977237  0.00047468  125.922 < 0.0000000000000002 *** 
sc1gr10.fil -0.03050055  0.00636543   -4.792           0.00000165 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
9. Shrub/Scrub  

Coefficients: 
                Estimate   Std. Error z value             Pr(>|z|)     
(Intercept) -2.388792377  0.034484499 -69.271 < 0.0000000000000002 *** 
sc1gr0.fil   0.000499911  0.000062995   7.936  0.00000000000000209 *** 
sc1gr1.fil   0.403863437  0.004540566  88.946 < 0.0000000000000002 *** 
sc1gr2.fil  -0.014809326  0.000451484 -32.801 < 0.0000000000000002 *** 
sc1gr3.fil  -0.090997274  0.006562826 -13.866 < 0.0000000000000002 *** 
sc1gr4.fil   0.000712745  0.000065241  10.925 < 0.0000000000000002 *** 
sc1gr5.fil  -0.334069644  0.003429870 -97.400 < 0.0000000000000002 *** 
sc1gr6.fil   0.014906533  0.000455691  32.712 < 0.0000000000000002 *** 
sc1gr7.fil  -0.000607084  0.000009964 -60.927 < 0.0000000000000002 *** 
sc1gr8.fil  -0.091842633  0.004642265 -19.784 < 0.0000000000000002 *** 
sc1gr9.fil   0.022308561  0.000479135  46.560 < 0.0000000000000002 *** 
sc1gr10.fil  0.091048516  0.006563557  13.872 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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10. Grasslands/Herbaceous 

Coefficients: 
                Estimate   Std. Error z value             Pr(>|z|)     
(Intercept) -3.685601450  0.037021485 -99.553 < 0.0000000000000002 *** 
sc1gr0.fil   0.000205312  0.000044876   4.575           0.00000476 *** 
sc1gr1.fil   0.000133591  0.000010400  12.845 < 0.0000000000000002 *** 
sc1gr2.fil  -0.012218397  0.000503649 -24.260 < 0.0000000000000002 *** 
sc1gr3.fil   0.079955070  0.007266779  11.003 < 0.0000000000000002 *** 
sc1gr4.fil   0.000589940  0.000038773  15.215 < 0.0000000000000002 *** 
sc1gr5.fil  -0.051967705  0.002308052 -22.516 < 0.0000000000000002 *** 
sc1gr6.fil   0.012384517  0.000507784  24.389 < 0.0000000000000002 *** 
sc1gr7.fil  -0.000049254  0.000003716 -13.255 < 0.0000000000000002 *** 
sc1gr8.fil   0.036260502  0.002309935  15.698 < 0.0000000000000002 *** 
sc1gr9.fil   0.015728254  0.000395394  39.779 < 0.0000000000000002 *** 
sc1gr10.fil -0.080129865  0.007267613 -11.026 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
11. Pasture/Hay 

Coefficients: 
                Estimate   Std. Error  z value             Pr(>|z|)     
(Intercept) -1.797216946  0.014576072 -123.299 < 0.0000000000000002 *** 
sc1gr0.fil   0.000683670  0.000019205   35.599 < 0.0000000000000002 *** 
sc1gr1.fil   0.315545212  0.001654217  190.752 < 0.0000000000000002 *** 
sc1gr2.fil  -0.000433511  0.000187993   -2.306             0.021111 *   
sc1gr3.fil   0.175494096  0.002783419   63.050 < 0.0000000000000002 *** 
sc1gr4.fil   0.000682154  0.000018546   36.782 < 0.0000000000000002 *** 
sc1gr5.fil  -0.379358197  0.001362177 -278.494 < 0.0000000000000002 *** 
sc1gr6.fil   0.000627941  0.000189611    3.312             0.000927 *** 
sc1gr7.fil  -0.000794460  0.000004158 -191.066 < 0.0000000000000002 *** 
sc1gr8.fil   0.020600739  0.001740970   11.833 < 0.0000000000000002 *** 
sc1gr9.fil   0.043415672  0.000198826  218.360 < 0.0000000000000002 *** 
sc1gr10.fil -0.175640974  0.002783721  -63.096 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

12. Cultivated Crops 

Coefficients: 
               Estimate  Std. Error z value            Pr(>|z|)     
(Intercept) -0.49344300  0.01933597  -25.52 <0.0000000000000002 *** 
sc1gr0.fil   0.00082938  0.00001777   46.66 <0.0000000000000002 *** 
sc1gr1.fil   0.61903251  0.00214388  288.74 <0.0000000000000002 *** 
sc1gr2.fil  -0.02951197  0.00027244 -108.33 <0.0000000000000002 *** 
sc1gr3.fil   0.05023970  0.00363935   13.80 <0.0000000000000002 *** 
sc1gr4.fil   0.00183095  0.00001907   96.03 <0.0000000000000002 *** 
sc1gr5.fil  -1.12439155  0.00241482 -465.62 <0.0000000000000002 *** 
sc1gr6.fil  -0.43977710  0.00675599  -65.09 <0.0000000000000002 *** 
sc1gr7.fil  -0.00199082  0.00001164 -170.97 <0.0000000000000002 *** 
sc1gr8.fil   0.46767761  0.00268505  174.18 <0.0000000000000002 *** 
sc1gr9.fil   0.03797181  0.00026952  140.89 <0.0000000000000002 *** 
sc1gr10.fil  0.41907612  0.00691064   60.64 <0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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13. Woody Wetlands 

Coefficients: 
                Estimate   Std. Error z value            Pr(>|z|)     
(Intercept) -3.236982606  0.016457373 -196.69 <0.0000000000000002 *** 
sc1gr0.fil   0.000846851  0.000017796   47.59 <0.0000000000000002 *** 
sc1gr1.fil   0.000333628  0.000021368   15.61 <0.0000000000000002 *** 
sc1gr2.fil   0.018704800  0.000214830   87.07 <0.0000000000000002 *** 
sc1gr3.fil   0.104628258  0.003204295   32.65 <0.0000000000000002 *** 
sc1gr4.fil   0.001149328  0.000016748   68.63 <0.0000000000000002 *** 
sc1gr5.fil  -0.205109362  0.001316612 -155.79 <0.0000000000000002 *** 
sc1gr6.fil  -0.018880561  0.000216938  -87.03 <0.0000000000000002 *** 
sc1gr7.fil  -0.001298171  0.000008212 -158.08 <0.0000000000000002 *** 
sc1gr8.fil   0.167925194  0.001271993  132.02 <0.0000000000000002 *** 
sc1gr9.fil   0.036917457  0.000208471  177.09 <0.0000000000000002 *** 
sc1gr10.fil -0.104475969  0.003204639  -32.60 <0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
14. Emergent Herbaceous Wetlands 

Coefficients: 
                Estimate   Std. Error z value            Pr(>|z|)     
(Intercept)  1.218457127  0.023701105   51.41 <0.0000000000000002 *** 
sc1gr0.fil   0.001324538  0.000044999   29.43 <0.0000000000000002 *** 
sc1gr1.fil   0.000370810  0.000002178  170.22 <0.0000000000000002 *** 
sc1gr2.fil   0.012296896  0.000321278   38.27 <0.0000000000000002 *** 
sc1gr3.fil  -0.553737564  0.004904711 -112.90 <0.0000000000000002 *** 
sc1gr4.fil   0.001733954  0.000024369   71.16 <0.0000000000000002 *** 
sc1gr5.fil   0.779323696  0.001303688  597.78 <0.0000000000000002 *** 
sc1gr6.fil  -0.012758027  0.000332495  -38.37 <0.0000000000000002 *** 
sc1gr7.fil  -0.001733338  0.000018425  -94.07 <0.0000000000000002 *** 
sc1gr8.fil  -0.648306555  0.001294791 -500.70 <0.0000000000000002 *** 
sc1gr9.fil  -0.131059209  0.000231922 -565.10 <0.0000000000000002 *** 
sc1gr10.fil  0.554219028  0.004905599  112.98 <0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Estill County, KY: 

(Variable names are different for this county but refer to the same predictors) 

0. Water 

No regression performed for this land type. 
 
1. Developed, Open Space 

Coefficients: 
                                   Estimate   Std. Error z value             
Pr(>|z|)     
(Intercept)                    -2.434749049  0.095551894 -25.481 < 
0.0000000000000002 *** 
estillslope.txt                -0.000092952  0.000025638  -3.626             
0.000288 *** 
estillnccpi.txt                 0.526977641  0.008453075  62.342 < 
0.0000000000000002 *** 
estillmedianage.txt             0.004383308  0.001182001   3.708             
0.000209 *** 
estillavehouseholdsize.txt     -0.011024636  0.023634139  -0.466             
0.640879     
estilldroughtvulnerability.txt  0.056239012  0.011247432   5.000          
0.000000573 *** 
estillfloodfrequency.txt        0.000573168  0.000057445   9.978 < 
0.0000000000000002 *** 
estillpctpopnonwhite.txt       -0.131044443  0.046912691  -2.793             
0.005216 **  
estillpopulationdensity.txt     0.000098040  0.000004471  21.929 < 
0.0000000000000002 *** 
estillsoilorganicmatter.txt    -0.481143779  0.008022165 -59.977 < 
0.0000000000000002 *** 
estillwaterstorage.txt         -0.045807582  0.001190827 -38.467 < 
0.0000000000000002 *** 
estillpcthouseholdsrenting.txt  0.137628088  0.045733760   3.009             
0.002618 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 

2. Developed, Low Intensity  

Coefficients: 
                                  Estimate  Std. Error z value             
Pr(>|z|)     
(Intercept)                    -3.44342380  0.12058794 -28.555 < 
0.0000000000000002 *** 
estillslope.txt                -0.00011973  0.00003335  -3.590              
0.00033 *** 
estillnccpi.txt                 1.02151641  0.01644672  62.111 < 
0.0000000000000002 *** 
estillmedianage.txt             0.00317501  0.00151670   2.093              
0.03632 *   
estillavehouseholdsize.txt      0.21343561  0.02755643   7.745  
0.00000000000000953 *** 
estilldroughtvulnerability.txt  0.00063337  0.00011804   5.366  
0.00000008058198350 *** 
estillfloodfrequency.txt        0.00059096  0.00004354  13.572 < 
0.0000000000000002 *** 
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estillpctpopnonwhite.txt       -0.87438106  0.06206155 -14.089 < 
0.0000000000000002 *** 
estillpopulationdensity.txt     0.00013973  0.00000621  22.502 < 
0.0000000000000002 *** 
estillsoilorganicmatter.txt    -0.98637339  0.01590485 -62.017 < 
0.0000000000000002 *** 
estillwaterstorage.txt         -0.03528231  0.00117246 -30.093 < 
0.0000000000000002 *** 
estillpcthouseholdsrenting.txt  0.65767122  0.05456267  12.054 < 
0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
3. Developed, Medium Intensity 

Coefficients: 
                                  Estimate  Std. Error z value             
Pr(>|z|)     
(Intercept)                    -3.86621851  0.19145063 -20.194 < 
0.0000000000000002 *** 
estillslope.txt                -0.00010108  0.00008209  -1.231                
0.218     
estillnccpi.txt                 0.92744527  0.03400891  27.271 < 
0.0000000000000002 *** 
estillmedianage.txt            -0.01923988  0.00234071  -8.220 < 
0.0000000000000002 *** 
estillavehouseholdsize.txt     -0.34713683  0.04279477  -8.112 
0.000000000000000499 *** 
estilldroughtvulnerability.txt  0.50483320  0.03297740  15.308 < 
0.0000000000000002 *** 
estillfloodfrequency.txt        0.00046025  0.00002340  19.671 < 
0.0000000000000002 *** 
estillpctpopnonwhite.txt        0.01902482  0.00235090   8.093 
0.000000000000000584 *** 
estillpopulationdensity.txt     0.00021063  0.00001050  20.062 < 
0.0000000000000002 *** 
estillsoilorganicmatter.txt    -0.86235364  0.03268775 -26.382 < 
0.0000000000000002 *** 
estillwaterstorage.txt         -0.06516443  0.00318884 -20.435 < 
0.0000000000000002 *** 
estillpcthouseholdsrenting.txt  0.34743916  0.04280311   8.117 
0.000000000000000477 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
4. Developed High Intensity  

Coefficients: 
                                  Estimate  Std. Error z value             
Pr(>|z|)     
(Intercept)                    -7.65975185  0.53998967 -14.185 < 
0.0000000000000002 *** 
estillslope.txt                -0.00007576  0.00023977  -0.316             
0.752024     
estillnccpi.txt                 0.57758092  0.13687875   4.220  
0.00002446779252311 *** 
estillmedianage.txt            -0.01908053  0.00503457  -3.790             
0.000151 *** 
estillavehouseholdsize.txt     -1.07167888  0.08600340 -12.461 < 
0.0000000000000002 *** 
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estilldroughtvulnerability.txt  0.94495538  0.10456748   9.037 < 
0.0000000000000002 *** 
estillfloodfrequency.txt        0.00077627  0.00010002   7.761  
0.00000000000000839 *** 
estillpctpopnonwhite.txt        0.01923543  0.00505300   3.807             
0.000141 *** 
estillpopulationdensity.txt     0.00007317  0.00001694   4.319  
0.00001570459219360 *** 
estillsoilorganicmatter.txt    -0.51503868  0.13074740  -3.939  
0.00008175764508403 *** 
estillwaterstorage.txt         -0.06274148  0.01342526  -4.673  
0.00000296267648199 *** 
estillpcthouseholdsrenting.txt  1.07160057  0.08601868  12.458 < 
0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
5. Bare Rock/Sand/Clay 

Coefficients: 
                                   Estimate   Std. Error z value             
Pr(>|z|)     
(Intercept)                    -10.73788290   0.61933853 -17.338 < 
0.0000000000000002 *** 
estillslope.txt                  0.03013326   0.00429977   7.008    
0.000000000002416 *** 
estillnccpi.txt                  0.21881455   0.03780927   5.787    
0.000000007151631 *** 
estillmedianage.txt              0.02938275   0.00597316   4.919    
0.000000869288281 *** 
estillavehouseholdsize.txt      -0.67509466   0.13984678  -4.827    
0.000001383353915 *** 
estilldroughtvulnerability.txt   1.83968172   0.04565350  40.297 < 
0.0000000000000002 *** 
estillfloodfrequency.txt         0.00002563   0.00001680   1.525              
0.12728     
estillpctpopnonwhite.txt        -0.70186639   0.27237095  -2.577              
0.00997 **  
estillpopulationdensity.txt      0.00004486   0.00001780   2.520              
0.01173 *   
estillsoilorganicmatter.txt     -0.04880786   0.03728419  -1.309              
0.19051     
estillwaterstorage.txt          -0.16955543   0.00712122 -23.810 < 
0.0000000000000002 *** 
estillpcthouseholdsrenting.txt   1.34761298   0.18159777   7.421    
0.000000000000116 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
6. Deciduous Forest 

Coefficients: 
                                   Estimate   Std. Error  z value             
Pr(>|z|)     
(Intercept)                    -0.008561509  0.037045768   -0.231                
0.817     
estillslope.txt                 0.000533078  0.000048704   10.945 < 
0.0000000000000002 *** 
estillnccpi.txt                -0.749887467  0.003294872 -227.592 < 
0.0000000000000002 *** 
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estillmedianage.txt             0.003981848  0.000488014    8.159 
0.000000000000000337 *** 
estillavehouseholdsize.txt     -0.194745551  0.009533749  -20.427 < 
0.0000000000000002 *** 
estilldroughtvulnerability.txt  0.000355500  0.000050019    7.107 
0.000000000001183880 *** 
estillfloodfrequency.txt       -0.000219309  0.000005411  -40.529 < 
0.0000000000000002 *** 
estillpctpopnonwhite.txt       -0.003940829  0.000512588   -7.688 
0.000000000000014933 *** 
estillpopulationdensity.txt     0.000014947  0.000001888    7.919 
0.000000000000002396 *** 
estillsoilorganicmatter.txt     0.738035074  0.003131385  235.690 < 
0.0000000000000002 *** 
estillwaterstorage.txt          0.012115604  0.000334449   36.226 < 
0.0000000000000002 *** 
estillpcthouseholdsrenting.txt  0.194792728  0.009536972   20.425 < 
0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
7. Evergreen Forest 

Coefficients: 
                                   Estimate   Std. Error z value             
Pr(>|z|)     
(Intercept)                    -2.977486053  0.244664918 -12.170 < 
0.0000000000000002 *** 
estillslope.txt                 0.000002234  0.000070605   0.032                
0.975     
estillnccpi.txt                 0.581111365  0.023283040  24.959 < 
0.0000000000000002 *** 
estillmedianage.txt            -0.046053324  0.003712543 -12.405 < 
0.0000000000000002 *** 
estillavehouseholdsize.txt      0.271649713  0.050775479   5.350   
0.0000000879456067 *** 
estilldroughtvulnerability.txt  0.000683268  0.000131754   5.186   
0.0000002149355635 *** 
estillfloodfrequency.txt        0.000013959  0.000062611   0.223                
0.824     
estillpctpopnonwhite.txt       -1.211558086  0.119429686 -10.145 < 
0.0000000000000002 *** 
estillpopulationdensity.txt    -0.000178347  0.000017290 -10.315 < 
0.0000000000000002 *** 
estillsoilorganicmatter.txt    -0.526762019  0.022358497 -23.560 < 
0.0000000000000002 *** 
estillwaterstorage.txt         -0.054027002  0.002323015 -23.257 < 
0.0000000000000002 *** 
estillpcthouseholdsrenting.txt  0.986141843  0.127828867   7.715   
0.0000000000000121 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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8. Mixed Forest 

Coefficients: 
                                   Estimate   Std. Error z value             
Pr(>|z|)     
(Intercept)                    -2.068305743  0.056201820 -36.801 < 
0.0000000000000002 *** 
estillslope.txt                 0.000100488  0.000028532   3.522             
0.000428 *** 
estillnccpi.txt                 0.184219458  0.003989637  46.174 < 
0.0000000000000002 *** 
estillmedianage.txt            -0.014752404  0.000758974 -19.437 < 
0.0000000000000002 *** 
estillavehouseholdsize.txt      0.407887953  0.013478118  30.263 < 
0.0000000000000002 *** 
estilldroughtvulnerability.txt  0.000856289  0.000048886  17.516 < 
0.0000000000000002 *** 
estillfloodfrequency.txt       -0.000111114  0.000007719 -14.394 < 
0.0000000000000002 *** 
estillpctpopnonwhite.txt       -0.947659533  0.027824214 -34.059 < 
0.0000000000000002 *** 
estillpopulationdensity.txt    -0.000127401  0.000003383 -37.664 < 
0.0000000000000002 *** 
estillsoilorganicmatter.txt    -0.167750255  0.003778677 -44.394 < 
0.0000000000000002 *** 
estillwaterstorage.txt         -0.016286893  0.000481503 -33.825 < 
0.0000000000000002 *** 
estillpcthouseholdsrenting.txt  0.554554424  0.027940927  19.847 < 
0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
9. Shrub/Scrub  

Coefficients: 
                                  Estimate  Std. Error z value             
Pr(>|z|)     
(Intercept)                    -5.25573997  0.32203653 -16.320 < 
0.0000000000000002 *** 
estillslope.txt                 0.00013772  0.00023494   0.586             
0.557755     
estillnccpi.txt                -0.06447943  0.02057228  -3.134             
0.001723 **  
estillmedianage.txt            -0.00862354  0.00426800  -2.021             
0.043330 *   
estillavehouseholdsize.txt      0.04140289  0.08167276   0.507             
0.612199     
estilldroughtvulnerability.txt  0.00059005  0.00025575   2.307             
0.021048 *   
estillfloodfrequency.txt       -0.00017425  0.00004742  -3.674             
0.000239 *** 
estillpctpopnonwhite.txt       -0.64117548  0.15098963  -4.246           
0.00002171 *** 
estillpopulationdensity.txt     0.00001051  0.00001712   0.614             
0.539374     
estillsoilorganicmatter.txt     0.09051971  0.01941848   4.662           
0.00000314 *** 
estillwaterstorage.txt         -0.02582925  0.00293197  -8.810 < 
0.0000000000000002 *** 
estillpcthouseholdsrenting.txt  0.60842081  0.15825058   3.845             
0.000121 *** 
--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
10. Grasslands/Herbaceous 

 
Coefficients: 
                                   Estimate   Std. Error z value             
Pr(>|z|)     
(Intercept)                    -3.038660247  0.154612550 -19.653 < 
0.0000000000000002 *** 
estillslope.txt                -0.000006406  0.000047609  -0.135             
0.892970     
estillnccpi.txt                 0.027363350  0.010166648   2.691             
0.007114 **  
estillmedianage.txt            -0.027716062  0.002129363 -13.016 < 
0.0000000000000002 *** 
estillavehouseholdsize.txt      0.158728677  0.035206379   4.509           
0.00000653 *** 
estilldroughtvulnerability.txt  0.057056751  0.017318565   3.295             
0.000986 *** 
estillfloodfrequency.txt       -0.000130685  0.000012414 -10.527 < 
0.0000000000000002 *** 
estillpctpopnonwhite.txt       -1.314562296  0.070572051 -18.627 < 
0.0000000000000002 *** 
estillpopulationdensity.txt    -0.000030139  0.000006712  -4.490           
0.00000712 *** 
estillsoilorganicmatter.txt     0.024622877  0.009450619   2.605             
0.009176 **  
estillwaterstorage.txt         -0.051835780  0.002111083 -24.554 < 
0.0000000000000002 *** 
estillpcthouseholdsrenting.txt  1.183598252  0.073197079  16.170 < 
0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
11. Pasture/Hay 

Coefficients: 
                                   Estimate   Std. Error  z value            
Pr(>|z|)     
(Intercept)                    -2.480376210  0.054669775  -45.370 
<0.0000000000000002 *** 
estillslope.txt                -0.000184878  0.000016270  -11.363 
<0.0000000000000002 *** 
estillnccpi.txt                 1.264811067  0.006987165  181.019 
<0.0000000000000002 *** 
estillmedianage.txt             0.006679141  0.000687496    9.715 
<0.0000000000000002 *** 
estillavehouseholdsize.txt      0.485719227  0.012733487   38.145 
<0.0000000000000002 *** 
estilldroughtvulnerability.txt  0.001073819  0.000048465   22.157 
<0.0000000000000002 *** 
estillfloodfrequency.txt        0.000209494  0.000006408   32.692 
<0.0000000000000002 *** 
estillpctpopnonwhite.txt       -1.253125931  0.028299954  -44.280 
<0.0000000000000002 *** 
estillpopulationdensity.txt    -0.000028640  0.000002133  -13.425 
<0.0000000000000002 *** 
estillsoilorganicmatter.txt    -1.259807082  0.006782334 -185.748 
<0.0000000000000002 *** 
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estillwaterstorage.txt         -0.004952071  0.000431981  -11.464 
<0.0000000000000002 *** 
estillpcthouseholdsrenting.txt  0.760523624  0.025595716   29.713 
<0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
12. Cultivated Crops 

Coefficients: 
                                   Estimate   Std. Error z value             
Pr(>|z|)     
(Intercept)                    -9.042263556  0.224659964 -40.249 < 
0.0000000000000002 *** 
estillslope.txt                -0.000145166  0.000047770  -3.039              
0.00237 **  
estillnccpi.txt                 3.867625689  0.065251144  59.273 < 
0.0000000000000002 *** 
estillmedianage.txt             0.041487537  0.002091718  19.834 < 
0.0000000000000002 *** 
estillavehouseholdsize.txt     -0.631952972  0.039941179 -15.822 < 
0.0000000000000002 *** 
estilldroughtvulnerability.txt  1.072855987  0.042776665  25.080 < 
0.0000000000000002 *** 
estillfloodfrequency.txt        0.000018081  0.000051647   0.350              
0.72627     
estillpctpopnonwhite.txt       -2.046336093  0.078733348 -25.991 < 
0.0000000000000002 *** 
estillpopulationdensity.txt     0.000051289  0.000007049   7.276    
0.000000000000344 *** 
estillsoilorganicmatter.txt    -3.871412488  0.063851185 -60.632 < 
0.0000000000000002 *** 
estillwaterstorage.txt          0.004343826  0.002706517   1.605              
0.10850     
estillpcthouseholdsrenting.txt  2.636668158  0.062744899  42.022 < 
0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
13. Woody Wetlands 

Coefficients: 
                                   Estimate   Std. Error z value             
Pr(>|z|)     
(Intercept)                    -16.94447253   0.50757309 -33.383 < 
0.0000000000000002 *** 
estillslope.txt                 -0.00012615   0.00011819  -1.067             
0.285819     
estillnccpi.txt                  0.56963945   0.07047228   8.083 
0.000000000000000631 *** 
estillmedianage.txt              0.13411448   0.00451709  29.690 < 
0.0000000000000002 *** 
estillavehouseholdsize.txt       0.30597683   0.10038271   3.048             
0.002303 **  
estilldroughtvulnerability.txt   0.62479216   0.08464597   7.381 
0.000000000000156822 *** 
estillfloodfrequency.txt         0.00014595   0.00008300   1.758             
0.078683 .   
estillpctpopnonwhite.txt        -0.78759144   0.20605263  -3.822             
0.000132 *** 
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estillpopulationdensity.txt      0.00022918   0.00002087  10.979 < 
0.0000000000000002 *** 
estillsoilorganicmatter.txt     -0.62242893   0.06723767  -9.257 < 
0.0000000000000002 *** 
estillwaterstorage.txt           0.05298920   0.00573595   9.238 < 
0.0000000000000002 *** 
estillpcthouseholdsrenting.txt   0.34662180   0.16554417   2.094             
0.036275 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
14. Emergent Herbaceous Wetlands 

 
Coefficients: 
                                   Estimate   Std. Error z value             
Pr(>|z|)     
(Intercept)                    -23.93906655   1.24927966 -19.162 < 
0.0000000000000002 *** 
estillslope.txt                 -0.00006113   0.00022738  -0.269               
0.7880     
estillnccpi.txt                  1.23908304   0.25196430   4.918    
0.000000875701646 *** 
estillmedianage.txt              0.07758789   0.01070605   7.247    
0.000000000000426 *** 
estillavehouseholdsize.txt       0.07885413   0.20222983   0.390               
0.6966     
estilldroughtvulnerability.txt   2.49235241   0.17647224  14.123 < 
0.0000000000000002 *** 
estillfloodfrequency.txt        -0.00053391   0.00048115  -1.110               
0.2671     
estillpctpopnonwhite.txt        -2.07213447   0.37483130  -5.528    
0.000000032357195 *** 
estillpopulationdensity.txt      0.00008025   0.00002986   2.687               
0.0072 **  
estillsoilorganicmatter.txt     -1.32586722   0.24419008  -5.430    
0.000000056463943 *** 
estillwaterstorage.txt           0.08758826   0.01514819   5.782    
0.000000007377724 *** 
estillpcthouseholdsrenting.txt   1.91518724   0.31247246   6.129    
0.000000000883557 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Wilcox County, GA: 

0. Water 

No regression performed for this land type. 
 
1. Developed, Open Space 

n/a 
 

2. Developed, Low Intensity  

Coefficients: 
                Estimate   Std. Error z value             Pr(>|z|)     
(Intercept) -4.145863108  0.078443049 -52.852 < 0.0000000000000002 *** 
sc1fr0.fil  -0.000103498  0.000035779  -2.893              0.00382 **  
sc1fr1.fil   1.955140565  0.055449497  35.260 < 0.0000000000000002 *** 
sc1fr2.fil  -0.004739603  0.000839629  -5.645        0.00000001653 *** 
sc1fr3.fil  -0.093360777  0.016192517  -5.766        0.00000000813 *** 
sc1fr4.fil   0.000501852  0.000043181  11.622 < 0.0000000000000002 *** 
sc1fr5.fil  -0.160713585  0.013358085 -12.031 < 0.0000000000000002 *** 
sc1fr6.fil   0.005015901  0.000847225   5.920        0.00000000321 *** 
sc1fr7.fil   0.000045730  0.000002961  15.447 < 0.0000000000000002 *** 
sc1fr8.fil  -1.798221547  0.060715540 -29.617 < 0.0000000000000002 *** 
sc1fr9.fil   0.003906420  0.002075539   1.882              0.05982 .   
sc1fr10.fil  0.093126061  0.016194282   5.751        0.00000000890 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
3. Developed, Medium Intensity 

Coefficients: 
               Estimate  Std. Error z value             Pr(>|z|)     
(Intercept) -4.59304635  0.21518975 -21.344 < 0.0000000000000002 *** 
sc1fr0.fil   0.00029833  0.00060488   0.493               0.6219     
sc1fr1.fil   1.40391778  0.14080652   9.971 < 0.0000000000000002 *** 
sc1fr2.fil  -0.02773845  0.00236947 -11.707 < 0.0000000000000002 *** 
sc1fr3.fil  -0.54482661  0.04736103 -11.504 < 0.0000000000000002 *** 
sc1fr4.fil   0.33314772  0.04262321   7.816  0.00000000000000545 *** 
sc1fr5.fil  -0.38945753  0.04213601  -9.243 < 0.0000000000000002 *** 
sc1fr6.fil   0.02823380  0.00238828  11.822 < 0.0000000000000002 *** 
sc1fr7.fil   0.00003316  0.00000448   7.403  0.00000000000013346 *** 
sc1fr8.fil  -0.99633582  0.15405789  -6.467  0.00000000009978132 *** 
sc1fr9.fil  -0.01791339  0.00828436  -2.162               0.0306 *   
sc1fr10.fil  0.54453694  0.04736678  11.496 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
4. Developed High Intensity  

Coefficients: 
               Estimate  Std. Error z value             Pr(>|z|)     
(Intercept) -3.91226030  0.46810555  -8.358 < 0.0000000000000002 *** 
sc1fr0.fil   0.00022934  0.00088865   0.258               0.7963     
sc1fr1.fil   0.96190021  0.29467854   3.264               0.0011 **  
sc1fr2.fil  -0.06895444  0.00553015 -12.469 < 0.0000000000000002 *** 
sc1fr3.fil  -1.23442808  0.10829840 -11.398 < 0.0000000000000002 *** 



291 
 

sc1fr4.fil   0.57599466  0.08700347   6.620      0.0000000000358 *** 
sc1fr5.fil  -0.62830151  0.10234160  -6.139      0.0000000008291 *** 
sc1fr6.fil  -0.35758821  0.19017299  -1.880               0.0601 .   
sc1fr7.fil   0.00003315  0.00001078   3.076               0.0021 **  
sc1fr8.fil  -0.32647243  0.32766719  -0.996               0.3191     
sc1fr9.fil  -0.00684071  0.01779464  -0.384               0.7007     
sc1fr10.fil  1.66145707  0.17765331   9.352 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
5. Bare Rock/Sand/Clay 

Coefficients: 
              Estimate Std. Error z value             Pr(>|z|)     
(Intercept)  3.3646720  0.3460254   9.724 < 0.0000000000000002 *** 
sc1fr0.fil   0.2488422  0.0198026  12.566 < 0.0000000000000002 *** 
sc1fr1.fil   2.3394512  0.3215338   7.276    0.000000000000344 *** 
sc1fr2.fil  -0.0454547  0.0036222 -12.549 < 0.0000000000000002 *** 
sc1fr3.fil  -0.8495358  0.0742613 -11.440 < 0.0000000000000002 *** 
sc1fr4.fil   0.0006644  0.0012165   0.546             0.584943     
sc1fr5.fil   0.1473293  0.0646870   2.278             0.022752 *   
sc1fr6.fil  -0.4545600  0.1264823  -3.594             0.000326 *** 
sc1fr7.fil  -0.0001402  0.0001650  -0.850             0.395498     
sc1fr8.fil  -1.9876504  0.3346644  -5.939    0.000000002863568 *** 
sc1fr9.fil  -0.4987047  0.0184560 -27.021 < 0.0000000000000002 *** 
sc1fr10.fil  1.3500281  0.1318849  10.236 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
6. Deciduous Forest 

Coefficients: 
                Estimate   Std. Error z value             Pr(>|z|)     
(Intercept) -4.247639322  0.081410163 -52.176 < 0.0000000000000002 *** 
sc1fr0.fil   0.000180289  0.000135602   1.330             0.183667     
sc1fr1.fil   0.555513289  0.041885803  13.263 < 0.0000000000000002 *** 
sc1fr2.fil   0.015925812  0.000874118  18.219 < 0.0000000000000002 *** 
sc1fr3.fil   0.319422865  0.016618940  19.220 < 0.0000000000000002 *** 
sc1fr4.fil   0.000595083  0.000167391   3.555             0.000378 *** 
sc1fr5.fil  -0.222043745  0.011119061 -19.970 < 0.0000000000000002 *** 
sc1fr6.fil  -0.230580009  0.031622680  -7.292    0.000000000000306 *** 
sc1fr7.fil  -0.000002941  0.000012993  -0.226             0.820903     
sc1fr8.fil  -0.259969984  0.046926636  -5.540    0.000000030260345 *** 
sc1fr9.fil  -0.073234937  0.002202283 -33.254 < 0.0000000000000002 *** 
sc1fr10.fil -0.104912584  0.031398835  -3.341             0.000834 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
7. Evergreen Forest 

Coefficients: 
               Estimate  Std. Error  z value             Pr(>|z|)     
(Intercept)  0.33011369  0.02126221   15.526 < 0.0000000000000002 *** 
sc1fr0.fil   0.00092707  0.00002703   34.302 < 0.0000000000000002 *** 
sc1fr1.fil   0.49762802  0.01019560   48.808 < 0.0000000000000002 *** 
sc1fr2.fil  -0.00117042  0.00023405   -5.001          0.000000571 *** 
sc1fr3.fil   0.20293563  0.00447381   45.361 < 0.0000000000000002 *** 
sc1fr4.fil   0.00086900  0.00002750   31.603 < 0.0000000000000002 *** 
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sc1fr5.fil  -0.30538671  0.00273702 -111.576 < 0.0000000000000002 *** 
sc1fr6.fil  -0.16313240  0.00814457  -20.030 < 0.0000000000000002 *** 
sc1fr7.fil  -0.00099408  0.00002795  -35.568 < 0.0000000000000002 *** 
sc1fr8.fil  -0.11417476  0.01158931   -9.852 < 0.0000000000000002 *** 
sc1fr9.fil  -0.07772254  0.00054902 -141.566 < 0.0000000000000002 *** 
sc1fr10.fil -0.03867205  0.00806412   -4.796          0.000001622 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
8. Mixed Forest 

Coefficients: 
               Estimate  Std. Error z value             Pr(>|z|)     
(Intercept) -2.59680805  0.04870747 -53.314 < 0.0000000000000002 *** 
sc1fr0.fil   0.00044316  0.00014038   3.157              0.00159 **  
sc1fr1.fil   0.68636777  0.02602972  26.369 < 0.0000000000000002 *** 
sc1fr2.fil   0.00739647  0.00052740  14.024 < 0.0000000000000002 *** 
sc1fr3.fil   0.15348442  0.01014143  15.134 < 0.0000000000000002 *** 
sc1fr4.fil   0.00024105  0.00013851   1.740              0.08181 .   
sc1fr5.fil  -0.23416143  0.00686257 -34.122 < 0.0000000000000002 *** 
sc1fr6.fil  -0.31992366  0.01898727 -16.849 < 0.0000000000000002 *** 
sc1fr7.fil  -0.00001113  0.00001166  -0.955              0.33969     
sc1fr8.fil  -0.38894122  0.02908754 -13.371 < 0.0000000000000002 *** 
sc1fr9.fil  -0.06302411  0.00130484 -48.300 < 0.0000000000000002 *** 
sc1fr10.fil  0.15897153  0.01875869   8.475 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
9. Shrub/Scrub  

Coefficients: 
               Estimate  Std. Error z value             Pr(>|z|)     
(Intercept) -2.42393193  0.07125555 -34.017 < 0.0000000000000002 *** 
sc1fr0.fil   0.00033512  0.00008359   4.009          0.000060928 *** 
sc1fr1.fil   0.30952414  0.03488558   8.873 < 0.0000000000000002 *** 
sc1fr2.fil   0.00375213  0.00077344   4.851          0.000001227 *** 
sc1fr3.fil  -0.19702529  0.01579037 -12.478 < 0.0000000000000002 *** 
sc1fr4.fil   0.00061517  0.00011024   5.580          0.000000024 *** 
sc1fr5.fil  -0.44340010  0.01257007 -35.274 < 0.0000000000000002 *** 
sc1fr6.fil  -0.04609223  0.02794997  -1.649               0.0991 .   
sc1fr7.fil  -0.00027327  0.00003264  -8.371 < 0.0000000000000002 *** 
sc1fr8.fil   0.18619290  0.04088114   4.554          0.000005251 *** 
sc1fr9.fil  -0.05192604  0.00178026 -29.168 < 0.0000000000000002 *** 
sc1fr10.fil  0.23932540  0.02786291   8.589 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
10. Grasslands/Herbaceous 

Coefficients: 
               Estimate  Std. Error z value             Pr(>|z|)     
(Intercept) -0.25979803  0.04213538  -6.166   0.0000000007013063 *** 
sc1fr0.fil   0.00023877  0.00004805   4.969   0.0000006734346253 *** 
sc1fr1.fil   0.57688901  0.02238572  25.770 < 0.0000000000000002 *** 
sc1fr2.fil  -0.00672901  0.00046117 -14.591 < 0.0000000000000002 *** 
sc1fr3.fil  -0.23156113  0.00922449 -25.103 < 0.0000000000000002 *** 
sc1fr4.fil   0.00080039  0.00006468  12.375 < 0.0000000000000002 *** 
sc1fr5.fil  -0.32347602  0.00662376 -48.836 < 0.0000000000000002 *** 
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sc1fr6.fil  -0.11367842  0.01644225  -6.914   0.0000000000047184 *** 
sc1fr7.fil  -0.00019556  0.00002540  -7.700   0.0000000000000136 *** 
sc1fr8.fil  -0.16673873  0.02522793  -6.609   0.0000000000386166 *** 
sc1fr9.fil  -0.08642403  0.00115419 -74.878 < 0.0000000000000002 *** 
sc1fr10.fil  0.35202519  0.01631954  21.571 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
11. Pasture/Hay 

Coefficients: 
                Estimate   Std. Error z value             Pr(>|z|)     
(Intercept) -3.325964647  0.087387787 -38.060 < 0.0000000000000002 *** 
sc1fr0.fil   0.108091572  0.005656390  19.110 < 0.0000000000000002 *** 
sc1fr1.fil   0.822689001  0.053291774  15.437 < 0.0000000000000002 *** 
sc1fr2.fil  -0.001464188  0.000932716  -1.570                0.116     
sc1fr3.fil   0.019232867  0.017988811   1.069                0.285     
sc1fr4.fil   0.000075627  0.000099705   0.759                0.448     
sc1fr5.fil  -0.420562583  0.018259801 -23.032 < 0.0000000000000002 *** 
sc1fr6.fil  -0.050947034  0.032520151  -1.567                0.117     
sc1fr7.fil   0.000005561  0.000007419   0.749                0.454     
sc1fr8.fil  -0.345936055  0.059509376  -5.813        0.00000000613 *** 
sc1fr9.fil  -0.056033024  0.002413873 -23.213 < 0.0000000000000002 *** 
sc1fr10.fil  0.033191537  0.032397756   1.025                0.306     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
12. Cultivated Crops 

Coefficients: 
               Estimate  Std. Error  z value             Pr(>|z|)     
(Intercept) -0.72370138  0.02107219  -34.344 < 0.0000000000000002 *** 
sc1fr0.fil   0.00054161  0.00003040   17.816 < 0.0000000000000002 *** 
sc1fr1.fil   4.17216413  0.01666080  250.418 < 0.0000000000000002 *** 
sc1fr2.fil  -0.00384707  0.00022496  -17.101 < 0.0000000000000002 *** 
sc1fr3.fil  -0.14269622  0.00433062  -32.951 < 0.0000000000000002 *** 
sc1fr4.fil   0.00061373  0.00002993   20.502 < 0.0000000000000002 *** 
sc1fr5.fil  -0.17328894  0.00378031  -45.840 < 0.0000000000000002 *** 
sc1fr6.fil   0.00401117  0.00022902   17.514 < 0.0000000000000002 *** 
sc1fr7.fil  -0.00043965  0.00001938  -22.688 < 0.0000000000000002 *** 
sc1fr8.fil  -3.99670745  0.01803058 -221.663 < 0.0000000000000002 *** 
sc1fr9.fil  -0.00206544  0.00057647   -3.583              0.00034 *** 
sc1fr10.fil  0.14261751  0.00433107   32.929 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
13. Woody Wetlands 

Coefficients: 
               Estimate  Std. Error  z value             Pr(>|z|)     
(Intercept) -4.40518845  0.02728365 -161.459 < 0.0000000000000002 *** 
sc1fr0.fil   0.00061090  0.00001950   31.323 < 0.0000000000000002 *** 
sc1fr1.fil  -4.42714313  0.01840819 -240.499 < 0.0000000000000002 *** 
sc1fr2.fil   0.01024955  0.00028247   36.285 < 0.0000000000000002 *** 
sc1fr3.fil   0.03244734  0.00553052    5.867   0.0000000044385226 *** 
sc1fr4.fil   0.00018193  0.00002278    7.986   0.0000000000000014 *** 
sc1fr5.fil   0.31552016  0.00214356  147.195 < 0.0000000000000002 *** 
sc1fr6.fil  -0.01068448  0.00035616  -29.999 < 0.0000000000000002 *** 
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sc1fr7.fil  -0.00008782  0.00001814   -4.840   0.0000012998239590 *** 
sc1fr8.fil   3.98503312  0.01925215  206.992 < 0.0000000000000002 *** 
sc1fr9.fil   0.12631404  0.00076966  164.116 < 0.0000000000000002 *** 
sc1fr10.fil -0.03207796  0.00553385   -5.797   0.0000000067642523 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
14. Emergent Herbaceous Wetlands 

Coefficients: 
                Estimate   Std. Error z value             Pr(>|z|)     
(Intercept) -5.040072359  0.125731183 -40.086 < 0.0000000000000002 *** 
sc1fr0.fil   0.000582592  0.000121071   4.812           0.00000149 *** 
sc1fr1.fil  -0.939938396  0.022812270 -41.203 < 0.0000000000000002 *** 
sc1fr2.fil  -0.001592248  0.001308859  -1.217              0.22379     
sc1fr3.fil  -0.332861008  0.027041056 -12.309 < 0.0000000000000002 *** 
sc1fr4.fil   0.000324411  0.000112277   2.889              0.00386 **  
sc1fr5.fil   0.142923232  0.007882383  18.132 < 0.0000000000000002 *** 
sc1fr6.fil  -0.090947250  0.047338826  -1.921              0.05471 .   
sc1fr7.fil  -0.000000399  0.000018177  -0.022              0.98249     
sc1fr8.fil   0.771137741  0.028357742  27.193 < 0.0000000000000002 *** 
sc1fr9.fil   0.025588237  0.003043771   8.407 < 0.0000000000000002 *** 
sc1fr10.fil  0.425457266  0.046656279   9.119 < 0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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