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ABSTRACT 
 

Elastomeric bearings are one of the most commonly used types of seismic isolation devices.  

Composed of alternating layers of rubber and steel shims, this study focuses on elastomeric 

bearings made from low damping rubber with and without a lead core.  AASHTO specifications 

require these bearings to remain stable both service loading as well as seismic loading.  Stability 

under service loading is well understood and evaluated in a method similar to column buckling.  

During seismic loading some of the bearings in the isolation system are subjected to increased 

axial compressive loads at large displacements and their ability to sustain load in this 

configuration is less clear.  At present, design for stability under these conditions is performed 

using the overlapping area method, which reduces the critical load calculated for service loading 

as a function of the area that overlaps between the top and bottom bearing end plates.  Finite 

element and experimental investigations were conducted to evaluate the performance of the 

overlapping area method and to provide insight into finding an improved method for assessment 

of stability when bearings are laterally displaced.  In addition, the use of a simple mechanical 

model to predict instability was explored. 

The results of these studies showed that the overlapping area method fails to accurately capture 

trends observed in experiments and finite elements and that it provides inconsistent predictions 

between low damping rubber and lead-rubber bearings.  The lead core was found to have 

negligible impact on bearing stability by comparison to the low damping rubber bearing.  A two-

dimensional parametric study performed in finite elements demonstrated the impact of several 

geometric properties that are ignored in the simplistic overlapping area formulation.  The 

mechanical model that was studied better estimated the stability behavior for the low damping 

rubber bearing in the range of displacements of interest for design, but like the overlapping area 

method still lacks a significant theoretical foundation. 
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CHAPTER 1 

 Introduction 

1.1 Background  

Seismic isolation is a method for reducing inertial forces that develop in a structure as a result of 

earthquake ground motion by shifting the natural period of vibration.  This period shift is 

accomplished by decoupling a building superstructure from its supporting foundation via 

laterally flexible, yet vertically stiff elements called isolators (Figure 1.1a).  During earthquake 

ground motion, the majority of shear deformation is concentrated across the isolation interface 

which must be accommodated by the individual isolators. One type of seismic isolation hardware 

commonly used in practice is the elastomeric bearing (Fig. 1.1b).  

  

a) Illustration of isolated building 
(http://www.dis-inc.com/ 
seismic_isolation.html) 

b) Bearing cross section 

 

Figure 1.1 Seismic Isolation 
 

Elastomeric bearings are composite structural elements consisting of alternating layers of rubber 

and steel shims. The rubber layers provide low shear stiffness whereas the close spacing of the 

steel shims provide increased vertical stiffness by restraining the bulging of the rubber.   In cases 

where additional energy dissipation is required a lead core is added to a centrally located hole to 

form lead-rubber (LR) bearings.   
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During a maximum considered earthquake (MCE) event some of the elastomeric seismic 

isolation bearings (EBs) in a seismically isolated structure will be subject to simultaneous large 

lateral displacements and increased axial compressive load due to overturning forces (Fig. 1.2).  

As a result, one important consideration when designing seismic isolation systems is stability of 

the individual EBs in this deformed configuration. 

Figure 1.2 Loading for EBs in deformed configuration 
 

Currently stability is assessed using procedures that have been adopted from the AASHTO Guide 

Specifications for Seismic Isolation Design (1999).  The guide specifications require that each 

EB satisfy two stability criteria: 

 For service loading, 

3cr

D L

P

P P



                                                        (1-1) 

where crP  is the critical load at zero displacement, DP  is unfactored axial dead load, and LP  is the 

axial live load. 

 Under MCE loading, 

' 1.2cr D SL OTP P P P                                                  (1-2) 

where '
crP  is the reduced critical load at the MCE displacement level, SLP  is the axial effect due 

to seismic live load, and OTP  is the axial load due to overturning. 
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The work presented in this thesis focuses on the determination of the reduced critical load,      

'
crP , of low damping rubber (LDR) and LR bearings.  Although not specified in the codes of 

practice, stability under MCE conditions is typically checked using the overlapping area method 

introduced by Buckle and Liu (1994).  The OLAM reduces the load carrying capacity of an EB 

in the undeformed configuration ( crP , from Haringx 1949 and Gent 1964) using the ratio of the 

overlapping area between top and bottom bearing end plates ( rA ) to the bonded rubber area ( bA ) 

at a given displacement (u) as illustrated in Fig. 1.3.   

 

Figure 1.3 Overlapping area method 

Using the OLAM, the reduced critical load, '
crP , is calculated as:  

' r
cr cr

b

A
P P

A

 
  

 
                                                  (1-3) 

While the OLAM provides a simple methodology for calculating '
crP , it lacks a rigorous 

theoretical basis and previous studies (Buckle and Liu 1994, Nagarajaiah and Ferrell 1999, 

Buckle et al. 2002) have suggested that the OLAM: 

1. does not agree well with experimental data over a wide range of lateral displacements, 

2. predicts zero load capacity at a lateral displacement equal to the bearing diameter, in 

contrast with experimental evidence. 
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1.2 Scope 

This thesis will review research on stability of bolted LDR and LR seismic isolation bearings and 

expand the current knowledge with respect to stability in the deformed configuration using 

several analytical and experimental techniques.  While previous research has concentrated only 

on LDR bearings with shape factors less than or equal to 5, this study will focus primarily on 

LDR and LR seismic isolation bearings having shape factors greater than 10 – values within a 

typical range of those used in seismic applications, where the shape factor, S , is a parameter of 

an EB defined as the ratio of the loaded area to the area free to bulge for an individual rubber 

layer that is illustrated in more detail in the body of this thesis. 

1.3 Motivation 

At present no experimental stability data exists for LR bearings or for LDR bearings with shape 

factors greater than 5.  Further, it is unclear how well the overlapping area method performs for 

bearings with larger shape factors ( 10S  ) and lead-rubber bearings, though previous studies 

(Buckle and Liu 1994; Nagarajaiah and Ferrell 1999; Buckle et al. 2002) have shown it to be 

inconsistent in its predictions with variation of bearing geometry and displacement level.  It is 

also unknown how the lead core will impact stability.  Lastly, there still remains a gap in the 

fundamental understanding of instability in the deformed configuration. 

1.4 Objectives 

The principal goals of this study are to: 

1. investigate the stability of LDR and LR EBs in the deformed configuration (reduced 

critical load) using finite element analysis (FEA) and experimental testing, 

2. use this data to evaluate the OLAM, and 

3. build on previous work (Nagarajaiah 1999) that explored an existing two-spring 

mechanical model as the basis for developing an improved formula that has a rational 

basis for predicting the reduced critical load of an LDR bearing for a wide range of shape 

factors and displacements. 
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CHAPTER 2 

 Literature Review 

2.1 General 

Stability refers to a structure or structural element’s ability to return to an equilibrium position 

after being unloaded. When a structure becomes unstable it is no longer able to support an 

increase in load and will displace without bound unless another stable condition is reached.  It 

should be noted that this research will focus on EBs with bolted, rather than doweled 

connections. Although bearings with doweled connections prevent the development of tensile 

stresses, bearings with that connection detail are susceptible to another type of instability termed 

“rollover” when laterally displaced. 

Under service conditions elastomeric seismic isolation bearings (EBs) are subject to axial 

compressive loads and therefore are susceptible to instability in this undeformed configuration 

(UC) similarly to a column in a building.   

During a seismic event the demands imposed on some EBs are exacerbated due to the 

combination of lateral displacement and simultaneous increase in axial compressive load due to 

overturning.  Current design procedures require that all bearing remain stable (able to return to 

the UC) following the earthquake event.  Therefore, stability must also be assessed in the 

laterally deformed configuration (DC). 

This review considers several studies, in chronological order, from the simplest determination of 

stability in which only axial loads and bending deformations are considered (UC) to the laterally 

deformed (or post-buckling) configuration in which shear deformations are taken into account 

(DC). 

2.2 Undeformed Configuration 

Information related to the design for global stability of columns in the laterally undeformed 

configuration is well-documented. For columns where shear deformations can be neglected, 

critical loads can be predicted with reasonable accuracy using the Euler Buckling formula and 
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effective length factors for a wide range of boundary conditions. However, in EBs with low 

shear moduli the shear deformations (neglected in the above) must be considered. 

Engesser (1891) was the first to derive equations for buckling accounting for shear deformations.  

This derivation assumes the shear components of force and deformation act normal to the total 

slope of the column.  While Engesser’s formulations are reasonable (Roeder 1987), subsequent 

research and experimental testing (Gent 1964; Timoshenko and Gere 1961; Derham and Thomas 

1981) suggest other research (Haringx 1948, 1949) provides a more accurate prediction of the 

buckling load for elastomeric bearings in the UC. 

In Haringx’s study of buckling in helical springs (extended to rubber rods and later to reinforced 

rubber bearings by Gent 1964) the shear components of force and displacement were assumed to 

act perpendicular to the bending (rather than total) slope.  This fundamental deviation between 

Haringx’s and Engesser’s approaches resulted in a drastically different estimate of the critical 

load, crP  (Roeder 1987). 

For the first mode of buckling the Haringx formulation yields: 

2 4

2
s s E s

cr

P P P P
P

  
                                               (2-1) 

where crP  denotes the critical load in the UC, sP  is the product of the shear modulus (G ) and 

shear area ( sA ), and EP  is the Euler Buckling Load  2 2/EI l . 

For EBs, EP  is typical several magnitudes greater than SP  so that (2-1) can be simplified to: 

cr E sP P P                                                            (2-2) 

Equation (2-2) provides an expression to estimate the critical load for bolted EBs in the UC, 

accounting for shear deformations. 

2.3 Deformed Configuration 

Under seismic conditions EBs along the perimeter on one side of the building are subject to 

maximum simultaneous axial compressive load and lateral displacement.  Similarly to a column 
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in a sway frame in which buckling loads are reduced due to second order effects the load 

carrying capacity of EBs reduces from the value calculated by (2-2) to some reduced value at a 

given lateral displacement (Buckle and Liu 1994).   

Currently no explicit guidance is provided in most codes of practice such as the International 

Building Code (IBC 2003) and ASCE 7 (ASCE 2005) as to how '
crP  should be calculated.  For 

example, Section 17.2.4.6 of ASCE 7-05 states, “each element of the isolation system shall be 

designed to be stable under the design vertical load where subjected to a horizontal displacement 

equal to the total maximum displacement”, but does not provide means for this assessment. 

Similar provisions can be found in IBC 2003 as well as FEMA documents 356 (FEMA 2000) 

and 450 (FEMA 2004).  However, the overlapping area method (OLAM), which appears in the 

AASHTO Guide Specifications for Seismic Isolation Design, has largely been adopted as the 

preferred way to determine '
crP .   

2.3.1 Overlapping Area Method 

As previously mentioned, the OLAM uses the ratio of the overlapping area between the top and 

bottom bearing end plates to the bonded rubber area to reduce the critical load in the UC (Eqn. 2-

2) for a given lateral displacement.  Using the OLAM, the reduced critical load, 'crP , is 

calculated according to (1-3).  Figure 2.1 illustrates the overlapping area for three different 

lateral displacements including the UC (Fig. 2.1a), the DC when u  is less than the bearing 

diameter, D  (2.1b), and the DC when u
 
is equal to D .  

               

 

 

 

 

 
 

     

a) u = 0 b) 0 < u < D c) u = D 

Figure 2.1 Illustration of the overlapping area method for a circular bearing 
 

Ab 

D=2R 

u

Ar 
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In Fig. 2.1a, the ratio /r bA A  is unity, which from (2-3) results in 'cr crP P . As u  increases (Fig. 

2.1b), the ratio /r bA A  reduces and therefore 'crP  is reduced based on the percentage of bonded 

area that remains overlapping.  At u D , the OLAM predicts 'crP  to be zero as a result of no 

overlapping area ( 0)rA  .  Outside of the notion of the “effective column” that exists in the 

overlapped area the OLAM has no rigorous theoretical basis in mechanics or otherwise to 

support the way the critical load is reduced. 

To evaluate the OLAM, Buckle and Liu (1994) performed finite element analysis (FEA) and 

experimentally tested 18 square bearings at shear strains (γ, defined as u divided by the total 

thickness of rubber, rT ) of 50%-600%.  The bearings were separated into six different sets based 

on shape factor ( S =1.67 to 10), rubber layer thickness, and number of rubber layers. It should be 

noted that bearings with shape factors lower than 10 would typically be used for non-seismic 

bridge applications.  Shape factors for EBs typically range from 10 to 30. 

Of the six bearing sets only data for two ( S =1.67 and S =2.5) were presented due to limitations 

on the axial compressive force that could be applied to the bearing.  The maximum axial load 

was insufficient to observe critical behavior for the bearings with 10S  .  A sample plot of the 

experimental data from Buckle and Liu (1994) for a bearing with S =2.5 is presented along with 

the prediction of 'crP  from the OLAM in Fig. 2.2. 

 

Figure 2.2 Data adapted from Buckle and Liu (1994) for a bearing with S=2.5 
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The horizontal axis in Fig. 2.2 represents the lateral displacement normalized by the bearing 

width (square) ( /u D ), whereas the vertical axis represents the reduced critical load 'crP  

normalized by the critical load in the UC, crP (Eqn. 2-2). Figure 2.2 shows the OLAM 

conservatively estimates the reduced critical load ( 'crP ) for all displacement levels and at 

/ 1u D  , the OLAM predicts ' 0crP   whereas the experimental data suggests '/ 0.55cr crP P   or 

55% of the initial capacity remains at a displacement equal to the bearing width.  Other bearings 

in this set, as well as the bearings with S =1.67 exhibited similar trends, though the OLAM was 

shown to be more conservative for bearings with S =1.67.  Although conservative for the 

bearings shown in Buckle and Liu (1999), the OLAM is inconsistent and does not capture the 

experimentally observed trends in reduced critical load or provide an accurate estimate of 'crP  

with increasing u . 

Using data from Buckle and Liu (1994) (including some from the bearing set with S =5 that was 

not previously presented), Nagarajaiah and Ferrell (1999) conducted research investigating the 

stability of EBs in the laterally DC with varying axial load.  The additional data ( S =5) showed 

that the OLAM was unconservative for / 0.45u D  .  The results of Nagarajaiah and Ferrell 

once again showed that the OLAM does not agree well with experimental trends, that it is 

conservative in range of displacements for which stability would be assessed ( 0.6 / 1.0u D  ), 

and the conservatism of the OLAM decreases with increasing S .   

2.3.2 Two-Spring Model 

In an effort to improve the prediction of 'crP  over the estimations provided by the OLAM, 

Nagarajaiah and Ferrell (1999) examined a mechanical model initially developed by Koh and 

Kelly (1987) for its potential application to stability.  This model, herein referred to as the two-

spring model (TSM) was originally developed to predict the effect of axial load on the reduction 

in horizontal stiffness ( HK ), decrease in height (v ), and increase in damping.  The TSM (shown 

in Fig. 2.3) consists of two rigid tee sections connected via frictionless rollers, a linear      ( sK ) 

and two rotational springs ( / 2K ) connected to top and bottom end plates.  The top is free to 

translate laterally whereas the bottom plate is fixed in all degrees of freedom. Under 

simultaneous axial load, P , and shear force, F , the model undergoes lateral displacement, u , 
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producing shear deformation concentrated in the linear spring, s , and rotation concentrated in the 

two rotational springs,  . 

 

 

 

 

 

(a) Undeformed (service) 

 

(b) Deformed (seismic) 

Figure 2.3 Two-spring model (adapted from Koh-Kelly 1987) 

Though a simple model, the TSM has been shown by Koh and Kelly (1987) and others (Warn 

and Whittaker 2006) to accurately predict the reduction in height, v , with lateral displacement, 

the reduction in HK  and increase in mechanical damping with increasing axial load ( P ), and the 

reduction in the vertical stiffness with increasing lateral displacement (u).  

By introducing nonlinear geometric and material properties ( sK  and K ) Nagarajaiah and 

Ferrell (1999) were able to apply the TSM to the stability problem.  Using equilibrium equations 

in the deformed configuration from this model and employing nonlinear spring properties 

(reducing the spring stiffnesses as some function of displacement) Nagarajaiah and Ferrell 

(1999) were able to show that the TSM could predict a reduction of 'crP  with increasing lateral 

displacement.  Although these solutions were obtained numerically a closed-form solution was 

not presented.  Moreover, the manner in which the spring stiffness properties varied with 

displacement is unable to be scrutinized as no rational or theoretical justification was provided.  

Other studies (Simo and Kelly 1984) suggests that instability observed in EBs is related to 

geometry, and not due to material instability or “softening.”  This argument is explored in further 

detail via numerical methods in Chapter 5 (Analytical Investigation).   
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CHAPTER 3  

Finite Element Investigation 

3.1 General 

Finite element analysis (FEA) was employed to investigate the influence of lateral displacement 

on the load carrying capacity of low damping rubber (LDR) and lead-rubber (LR) bearings.  Two 

three-dimensional half-space bearings were modeled, one LDR bearing with a shape factor ( S ) 

equal to 10 and one LR bearing with S  equal to 12. The results of the FEA were used to generate 

numerical stability data which could be validated by experimental testing. 

In addition to the 3D models, a number of two-dimensional models were developed for a 

parametric study to attempt to identify key geometric properties affecting the stability of LDR 

bearings.   

3.2 Finite Element Analysis of Model LDR and LR Bearings 

Three-dimensional FEA was performed using the commercially available finite element software 

package ABAQUS/Standard (DSSC 2008).  A finite element model (FEM) of an annular LDR 

bearing that is circular in plan was generated.  The LDR bearing has a shape factor ( S ) of 10, 

which is given by: 

 
2( ) / 4

4
o i o i

o i r r

D D D DLoaded area
S

Area freetobulge D D t t




 
  


                            (3-1) 

for an annular bearing, where the subscripts o and i refer to the outer and inner diameters 

respectively, and rt  is the thickness of an individual rubber layer.  A LR bearing model ( 12S  ) 

was constructed using the LDR model as a base through the addition of elements to represent the 

lead-core.  Each model consists of two 25 mm steel end plates, 20 layers of 3 mm thick rubber 

with 19 intermediate steel shims (3 mm thick), and a 12 mm rubber cover.  The LR bearing also 

includes a 30 mm diameter lead plug.  Figure 3.1 shows details of the bearing, while Figs. 3.2a 

and 3.2b present a rendering of the LDR and LR bearing models, respectively.  A detailed 

description of the modeling assumptions regarding element types, boundary conditions, and 

material properties is provided in subsequent sections.   
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Figure 3.1 Bearing details 

  

a) LDR FEM ( 10S ) b) LR FEM ( 12S ) 
 

Figure 3.2 Finite element models 
 

3.2.1 Model Description 

The geometric and material properties of the FEM are based on bearings used for earthquake 

simulation testing (Warn and Whittaker 2006) which were also used in the experimental testing 

portion of this study.  Exploiting symmetry, only half of the bearing was modeled in each case to 

maximize computational efficiency.  Boundary conditions were chosen to mimic field bearings 

in which the bottom plate is fixed in all degrees of freedom and the top plate is fixed against 

rotation, but free to translate laterally and vertically.  Because the bearings were modeled in half 

space the interior nodes not part of the central hole (which would normally be restrained by the 

other side of the bearing) were constrained to prevent motion perpendicular to the direction of 

displacement (i.e. bulging out of plane). 
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All elements of the LDR FEM used eight-noded C3D8 brick elements.  These elements have first 

order formulations which have been shown to be more accurate than second order elements for 

materials that undergo large deformation (DSSC 2008).   

More specifically, the rubber layers and cover were modeled with C3D8H elements that use a 

hybrid (or mixed) formulation in which pressure and displacement fields are independently 

specified.  Due to the nearly incompressible behavior of rubber (Poisson ratio, 0.5  ) the two 

fields (displacement and pressure) are required to avoid the development of excessive hydrostatic 

stresses that could lead to volumetric locking (Bathe 1976, DSSC 2008). Steel layers were 

represented using C3D8I elements which include incompatible modes to avoid shear locking due 

to parasitic (non-existent) shear stresses.  The lead core of the LR FEM was composed of a mix 

of C3D8H and six-noded, C3D6H (hybrid triangular prism) elements, where the hybrid 

formulation was once again used due to the high Poisson ratio of lead (Sivaraman 2000). 

Following the selection of element types, material definitions were chosen for the steel and 

rubber.  The steel material was modeled using a linear elastic, isotropic material with 0.3  and 

an elastic modulus, 200E  GPa (29,000 ksi).  Rubber, however, displays more complex 

behavior by comparison.  Like most cross-linked polymers, the vulcanized rubber typically used 

in elastomeric bearings exhibits a behavior that is best characterized as nonlinear elastic, or 

hyperelastic.  The Neo-Hookean material model, which is an extension of Hooke’s Law for 

materials with large deformations was selected because the two parameters required are directly 

related to the engineering properties of the rubber, namely, the shear and bulk moduli.  The strain 

energy potential takes the form: 

2
10 1

1

1
( -3) ( -1)elU C I J

D
 

     
                                              (3-2)                         

where U  is the volumetric strain energy; 10C  is defined as one-half the initial shear modulus; 1I  

is the first invariant of the deviatoric strain tensor; 11 / D  is one-half the initial bulk modulus; and 

elJ  is the elastic volume ratio.   

The effective shear modulus of 0.73 MPa (106 psi) was determined from shear testing in the 

experimental investigation (Chapter 4) and a value of 2,000 MPa (290 ksi) was assumed for the 
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bulk modulus.  The value of the bulk modulus was chosen based on typical values for lightly 

filled natural rubber. FEA performed by Warn and Whittaker (2006) showed that the vertical 

stiffness of the LDR bearing was insensitive to the exact value of the bulk modulus ( 20% ), but 

sensitive to the assumption of fully incompressible ( K   ) behavior.   Lead elements were 

modeled as elastic-perfectly plastic using material properties 0.44  and 16E  GPa (2,320 ksi) 

from Guruswamy (2000).  The uniaxial yield stress ( y ) of 14.3 MPa (2,085 psi) was calculated 

using a relationship of the von Mises yield criterion and pure shear data in Warn and Whittaker 

(2006): 

3
y

y


                                                                     (3-3) 

where  y  is the yield stress in pure shear which was determined experimentally as 8.3 MPa 

(1,203 psi). 

3.2.2 Convergence Study 

To ensure the models used in this study had converged, three different meshes were generated 

for both the LDR and LR bearings.  Models were run using eight nodes on Penn State’s LION-

XJ PC Cluster.  LION-XJ uses an IBTM x3450 1U Rackmount Server with dual 3.0 GHz Intel 

Xeon E5472 quad-core processors and 64 GB of ECC RAM (HPC Group).  A summary of the 

different meshes considered, along with the number of elements and wallclock times for each 

can be found in Table 3.1.   

Table 3.1 Summary of models for convergence study 
Mesh No. Elements Wallclock time (s) 

LDR 

Coarse  3,294 133 

Medium  19,998 1,486 

Fine  79,992 9,168 

LR 

Coarse  3,843 668 

Medium  21,816 3,728 

Fine  83,628 20,088 
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For the LDR bearing both horizontal stiffness ( HK ) and critical displacement ( critu ) as illustrated 

in Fig. 3.3 were considered as convergence criteria.  The horizontal stiffness is simply the slope 

of the shear force – lateral displacement curve and the critical displacement is the point of neutral 

equilibrium (stability limit) which is found when 0HK  .  

 

Figure 3.3 Illustration of convergence criteria for LDR bearing 

The results of the convergence study for the LDR model is shown in Figs. 3.4, 3.5 and 3.6. 

 

Figure 3.4 Convergence of LDR bearing using HK  for criteria  

KH=0 at u=ucrit 

KH 
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Figure 3.5 Convergence of LDR bearing using critu  for criteria 

 

 

Figure 3.6 Wallclock time variation with number of elements for the LDR bearing  

 

For both criteria ( HK  and critu ) the medium mesh provided less deviation from the fine mesh 

than the coarse mesh.  Table 3.2 shows the numerical difference in results of the convergence 

study between the coarse and fine mesh, and medium and fine mesh. 
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Table 3.2 Percentage difference of convergence criteria for the LDR bearing 

Criteria/Meshes Coarse to Fine Medium to Fine 

, 178H P kNK   8.0% 6.2% 

, 311H P kNK  27.1% 13.0% 

, 178crit P kNu   8.6% 2.2% 

, 311crit P kNu  15.1% 0.0% 

While ideal convergence for HK  was not achieved (in which the difference between the results 

from the medium and fine meshes were kept under 10%) it was decided that the medium mesh 

still provided a reasonable approximation of the horizontal stiffness, but more importantly 

converged for the main parameter of interest in this study, critu .  Since a significant number of 

analyses needed to be run, wallclock times were also strongly considered as a dominating factor 

in the decision.  To provide a balance between acceptable error and efficiency the medium mesh 

was selected for this study.  

For the LR bearing the characteristic strength ( dQ ), which is defined as the zero-displacement 

force intercept from one fully reversed cycle, (as illustrated in Fig. 3.7) was added to the 

convergence criteria.   

 

 

 

 

 

 

 

Figure 3.7 Idealized behavior of an LR bearing 

Results of the convergence study for the LR bearing are presented in Figs. 3.8, 3.9 and 3.10.   

Force 

umax 

Displacement 
K1 Keff 

Kd Qd 
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Figure 3.8 Convergence of LR bearing using dQ  for criteria  

 

Figure 3.9 Convergence of LR bearing using critu  for criteria 
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Figure 3.10 Wallclock time variation with number of elements for the LR bearing 
 

Again critu  was considered to be the principal interest for convergence.  The results for the 

convergence of critu  was similar to that of the LDR bearing, where the medium mesh provided a 

more accurate result (using the fine mesh as the ‘true’ solution) than the coarse mesh and within 

a reasonable tolerance of error.  The characteristic strength appeared to be irregularly sensitive to 

mesh density, with the medium mesh providing a more inaccurate result (when compared to the 

fine mesh) than the coarse mesh.  Table 3.2 shows the numerical difference in results of the 

convergence study between the coarse and fine mesh, and medium and fine mesh. 

Table 3.3 Percentage difference of convergence criteria for the LR bearing 

Criteria/Meshes Coarse to Fine Medium to Fine 

, 133d P kNQ   0.0% 2.1% 

, 623d P kNQ  7.3% 8.7% 

, 133crit P kNu   11.5% 2.4% 

, 623crit P kNu  316.7% 52.1% 

Though the percentage difference is quite large under 623 kN of axial load the actual difference 

in the critical displacement is only 6 mm (0.25 in) and is a marked improvement over the coarse 
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mesh.  For similar reasons to the convergence study for the LDR bearing the medium mesh was 

used in a trade off of time and accuracy. 

3.2.3 Analysis Using Constant Axial Force 

The FEMs were analyzed under constant axial load and monotonically increasing lateral 

displacement to identify points of neutral equilibrium (identified in this study as the stability 

limit).  Each analysis was carried out in two steps.  First, the bearing was compressed axially to a 

specified load. Then, the bearing was sheared to a specified lateral displacement. This analysis 

was repeated for a wide range of axial loads (0 to 0.93 crP ).  

The force-displacement results generated from the aforementioned steps were then used to 

determine the point of neutral equilibrium ( /F u  = HK =0) which corresponds to a reduced the 

critical displacement, critu .  The axial load corresponding to critu  was identified as the critical 

load capacity at the given displacement (or the reduced critical load), '
crP .  Neutral equilibrium 

represents a condition for which the change in the total potential energy (or its second variation) 

is zero (Tauchert 1974).  Graphically this is observed when the shear force passes through a 

maximum under constant axial load. Similarly for a constant shear force, the critical point is 

reached when / 0P u   as will be utilized in subsequent sections.  Figure 3.11 shows sample 

FEA results for the LDR bearing under three axial load levels, demonstrating the influence of 

axial load on shear force and illustrating the critical point. 
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Figure 3.11 Force-displacement results from LDR FEM for varying axial load
 

The results presented in Fig. 3.11 show that for zero axial load no critical point is observed up to 

a lateral displacement of 200 mm (7.9 in) and there exists a linear relationship between shear 

force and displacement per the Neo-Hookean material model assigned to the rubber layers.  As 

the axial load was increased from 0 kN to 133 kN (30 kips) and then 267 kN (60 kips) several 

results seen in previous studies (Koh and Kelly 1987, Nagarajaiah and Ferrell 1999) were 

observed.  These results  include: 

1. As axial load increases the horizontal stiffness decreases. 

2. As axial load increases the maximum shear force decreases and occurs at a smaller 

displacement.  

 

Moreover, Fig. 3.11 illustrates an example of a point of neutral equilibrium.  When the LDR 

bearing is subject to 133 kN of axial load the shear force passes through a maximum (shown by 

the horizontal dashed line) of 22 kN (4.9 kips) at a displacement ( critu ) of 132 mm (5.2 in).  The 

displacement and axial load at which 0HK   are critical points used to define stability in the 

deformed configuration. 

 

 

 

ucrit = 132 mm 
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3.2.4 Analysis Using Constant Displacement 

Due to eventual constraints with the experimental test setup, a constant displacement method 

(CDM) used in other studies (Buckle and Liu 1994, Nagarajaiah and Ferrell 1999, Buckle et. al 

2002) was adopted for experimental testing.  For verification purposes, FEA was performed 

using the constant displacement method for both the LDR and LR models to: 

1.  Determine the impact of loading history on the point of neutral equilibrium. 

2.  Facilitate direct comparison of FE and experimental results. 

The CDM operates under the principle that critical displacements represent a unique equilibrium 

configuration at which there is a single shear force and axial load combination corresponding to 

a point of neutral equilibrium.  Unlike constant force methods the CDM requires an indirect 

determination of critical points.  The analysis is carried out by first shearing the bearing to a 

specified displacement level.  Then, the axial load is monotonically increased and shear force is 

monitored as it tends to zero.  Shear force-axial load curves are generated from the collected data 

and lines of constant shear or axial load are drawn.  Figure 3.12 shows sample results of the FEA 

using the constant displacement method. 

 

Figure 3.12 Sample FEA P-F curves using the CDM 

F=8kN 
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Points where the lines of constant shear force (F=8kN for example) intersect the shear force-

axial load curves are replotted on a force-displacement graph (Fig. 3.13). 

 

Figure 3.13 Sample FEA P-u curves using the CDM 

The second point in Fig. 3.13 corresponds very nearly to the maximum axial force value, 

indicating the critical point for F=8kN is at approximately critu = 76 mm and '
crP = 278 kN.  

Though only a finite number of analyses can be run and the true maximum cannot be determined 

exactly, FEA provides the ability to specify displacements and calculate forces at a resolution not 

possible in experimentation.  As a result, curve fitting is unnecessary using this method in FEA, 

though it will be required in the experimental investigation.  The critical point is found where the 

shear force passes through a maximum under constant axial load (or axial load passes through a 

maximum under constant shear force).  This process is revisited and illustrated further in section 

4.3.3 for the experimental phase. 

3.2.5 Results 

The theoretical critical load for the LDR bearing, crP , was calculated to be 341 kN (76 kips).  

This was found using a modified version of Haringx theory (Eqn. 2-2) in which sP  (the term that 

accounts for shear deformation) was increased by a factor of 1.2 to account for the apparent 
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increase in the shear stiffness observed both in the FEA and in Warn and Whittaker (2006).  

Traditionally, for LDR bearings the effective shear stiffness, effK , is given by: 

eff b s
eff

r

G A P
K

T l
 

 
                                                     (3-4) 

where rT  is the total thickness of the rubber layers and l  is the bearing height.  Because bA  and 

rT  are fixed values, the observed twenty percent increase in shear stiffness is simulated by 

premultiplying the effective shear modulus (referred heretofore simply as G ) by 1.2.  However, 

since the vertical and rotational properties were found to be largely unaffected by the cover, the 

unmodified value of the shear modulus (determined experimentally as 0.73 MPa [106 psi]) is 

used in the calculation of EP  (the term more closely related to the rotational behavior of the 

bearing).  Using the same modified effective shear modulus for both terms would lead to an 

overestimation of crP .  As a result of the aforementioned (2-2) becomes: 

( ) (1.2 )cr s E s E s EP P P G A P G A P       
 
                              (3-5) 

with the Euler buckling load defined as 2 2( ) /E effP EI l
 
where E

 
is the rotational modulus, 

for a annular bearings (from Constantinou et al. 1992): 

   
1

2(1 / 6 4 / 3 / 3E GS F K


   
                                        

(3-6) 

where 10.2S   is the shape factor;
 

2000K MPa  is the bulk modulus;
 

0.69F 
 
is a geometric 

factor to account for the compression behavior due to the presence of the central hole; and 

6 426.5 10I m   is the second moment of area.  Effective values of sGA and EI  in which those 

terms are multiplied by the ratio of the bearing height to total rubber layer thickness are used to 

account for the fact that the steel does not deform in the composite system.  When values are 

input for each of the variables, (3-5) leads to the following calculation: 

 
  

2

2

( )
(1.2 )cr s

EI
P G A

l


                                                     (3-6) 

341crP kN                                                          (3-7) 
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Figure 3.14 presents the results of the FEA for the LDR bearing using the constant axial force 

method with axial loads ranging from 0 to 0.93 crP .   

 

Figure 3.14 LDR force-displacement results,  10S  

 

The results presented in Fig. 3.14 show that the LDR FEM predicts a reduction in the critical 

displacement ( critu ) for increasing axial loads.  For example, under 89 kN of axial load, critu  

occurs at 172 mm, but as the axial load is increased to 178 kN the displacement at which neutral 

equilibrium is reached decreases to 109critu  mm.   

For the LR bearing the theoretical critical load  ( crP ) was again determined using (2-2), however, 

as with the LDR bearing, sP  needed to be modified to account for the effect of the cover.  In the 

case of LR bearings the effective horizontal stiffness is given by: 

max

d s
eff d

Q P
K K

u l
                                                       (3-8) 

where /d b rK GA T  is the second slope stiffness (see Fig. 3.7).  Because the lead core is 

assumed to behave independently of the additional cover only the dK  term is modified for the 

calculation of sP .  The result is: 
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max

(1.2 )d b s
eff

r

Q G A P
K

u T l
                                                 (3-9) 

Again, the unmodified value of the shear modulus is used for the calculation EP  while (3-9) is 

used for calculating sP . Based on these assumptions and using experimentally determined values 

of dQ
 
and maxu , crP  for the LR bearing was found to be 693 kN (156 kips): 

2

max

(1.2 ) 5.9 (1.2 0.73 ) 0.017
0.117 40.5

0.06 0.06
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                         (3-11) 

(40.5 ) (11,851 ) 693crP kN kN kN                                     (3-12) 

Figure 3.15 presents the results of the constant axial force method results for the LDR bearing. 

 

Figure 3.15 LR bearing force-displacement results,  12S  

The reduced critical loads ( 'crP ), shear force ( F ), and corresponding displacements ( critu ) 

obtained for each axial load level (each curve) from Figs. 3.14 and 3.15 were used to generate 

numerical stability data that are plotted in Fig. 3.16.   
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Figure 3.16 Normalized stability results of FEA  

Figure 3.16 presents normalized results of the FEA for both the LDR and LR bearing models 

using the constant axial force method (CFM) and constant displacement method (CDM) where 

the horizontal axis is lateral displacement, u , normalized by the bearing diameter, D , and the 

vertical axis is the reduced critical load, 'crP , normalized by the critical load in the undeformed 

configuration, crP .  At a displacement equal to the bearing diameter ( / 1u D  ) the bearings have 

on the order of 0.19 crP  and 0.30 crP  for the LR and LDR bearings respectively. 

3.3 Discussion of Model LDR and LR Bearing FEA Results 

The stability data shown in Fig. 3.16 provides several useful observations.  For LDR bearings it 

was confirmed that the constant axial force and constant displacement methods yield the same 

critical load behavior, suggesting a path independency of the critical point to loading.  

Conversely, the FEA results for the LR bearing only agreed moderately well, having the largest 

disparity in the region between / 0.2u D   and / 0.6u D  suggesting the reduced critical load is 

path dependent.   

The discrepancy between the two methods for the LR bearing can be explained in small part due 

to the inexactness of the CDM, but the degree of discrepancy suggests that the nonlinear 

behavior of the lead core is the cause.  A consequence of this result is that due to the random 

nature of seismic loading (which will fall somewhere between the two methods in terms of how 
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loading is applied) the CDM, which was shown to be the more conservative of the two methods, 

should be used in practice unless otherwise justified. 

Another observation from Fig. 3.14 is that the critical load capacity reduces at a faster rate for 

the LR bearing than the LDR bearing.  This suggests that the LR bearing will be most effective 

for the stability limit state when the design displacements are small relative to bearing diameter 

and that the benefit of a increasing crP  in absolute terms through the introduction of the lead core 

are going to be offset to some degree by the quicker reduction. 

Lastly, the capacity of both bearing types is significantly greater than zero at / 1u D   once again 

suggesting the overlapping area method (OLAM) is excessively conservative at large normalized 

displacements.  However, due to the aforementioned rate of reduction of critical load the OLAM 

will tend to be less conservative for LR bearings than LDR bearings. 

3.4 Parametric Study of LDR Strip Bearings 

In addition to the three-dimensional analysis of the LDR and LR bearings a two-dimensional 

parametric study was performed to determine whether certain geometric properties had an effect 

on the reduced critical load of LDR bearings. 

The first step of the parametric study was the development of several prototype bearings to be 

modeled using finite elements.  In choosing the bearings to be studied there is implicit bias on 

the properties to be studied.  Initially the use of Latin Hypercube Sampling (a random sampling 

technique) was examined to avoid this bias, but the result was the generation of models without 

enough in common that trends would be unable to be discerned.  The decision was made to 

constrain the study to three typically specified bearing properties: the shape factor ( S ), the 

bearing width (b ) , and the thickness of rubber layers ( rt ).  The shape factor for strip bearings is 

defined as: 

2 r

b
S

t
                                                                   (3-13) 

and can therefore be thought of a composite of the latter two properties. 
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To allow direct comparisons to be made the bearings were chosen to have constant values of one 

or more of the three properties, while the other(s) were free to vary.  A summary of the models is 

shown in Table 3.4.  Additional properties such as the number of rubber layers ( n ), bearing 

height ( h ), shim thickness ( st ) and critical load at zero displacement ( crP ) are also presented.   

Table 3.4 Model bearings used in the parametric study 

Model Name S  b  (mm) rt  (mm) n h (mm) st  

(mm) 
crP (kN) No. 

Elements 
Wallclock 
time1 (s) 

b15tr250n20 30.00 381 6.4 20 187.3 3.2 487.1 21240 760 
b15tr375n20 20.00 381 9.5 20 250.8 3.2 216.5 10620 461 
b15tr500n20 15.00 381 12.7 20 314.3 3.2 121.7 8496 364 
b15tr625n20 12.00 381 15.9 20 377.8 3.2 77.9 9440 389 
b10tr375n20 13.33 254 9.5 20 250.8 3.2 64.1 11328 728 
b12tr375n20 16.00 305 9.5 20 250.8 3.2 110.8 18880 542 
b20tr375n20 26.67 508 9.5 20 250.8 3.2 513.1 3360 602 
b15tr375n5 20.00 381 9.5 5 60.3 3.2 865.9 6960 225 

b15tr375n10 20.00 381 9.5 10 123.8 3.2 432.9 10560 440 
b15tr375n15 20.00 381 9.5 15 187.3 3.2 288.6 14160 654 

b15tr1500n20 5.00 381 38.1 20 822.3 3.2 13.5 3540 167 
b375tr375n20 5.00 95 9.5 20 250.8 3.2 3.4 3540 112 
b15tr3000n20 2.50 381 76.2 20 1584.3 3.2 3.4 1770 97 
b187tr375n20 2.50 48 9.5 20 250.8 3.2 0.4 1770 105 
1The wallclock time presented is associated with the time it took to run each model using the aforementioned LION-
XJ cluster in Penn State’s High Performance Computer network using 8 cpus in parallel. 
 
3.4.1 Model Description 

In the interest of computational efficiency and to allow more analyses to be conducted the 

aforementioned bearings were modeled as two-dimensional strip bearings using the commercial 

finite element software package ABAQUS.  Because the bearings were being modeled as strips a 

plane strain condition was enforced.  The rubber layers were modeled with CPE4H elements, 

where the “C” refers to continuum, “PE” refers to plane strain, “4” denotes number of nodes, and 

“H” once again denotes the use of a hybrid formulation of pressure and displacement for the 

reasons previously discussed.  Similarly, CPE4I elements were used to model the steel shims.   

Each rubber layer was discretized into two layers for a better approximation of the bulging that 

takes place under load while not dramatically increasing the computational cost.  Ideally the 

aspect ratio would have been kept to 1, however, several models had issues with excessive 

deformations.  To address this problem the elements were “preshaped” such that they were tall 

and narrow when the bearing was undeformed, but as the bearing was displaced the elements 
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would tend to become square and were prevented from becoming excessively squat.  Figure 3.17 

illustrates the concept of preshaping elements. 

 

a) Original 
(undeformed) 

b) Original 
(deformed) 

c) Preshaped 
(undeformed) 

d) Preshaped 
(deformed) 

Figure 3.17 Illustration of preshaped elements 

In cases where a given model could be run with elements having aspect ratios of 1 or 3 the 

resulting critical points varied by less than 10%.  This suggests a reasonable insensitivity to the 

aspect ratio and supports the use of an aspect ratio of 3 where required.  For consistency the 

aspect ratio was held constant at 3 for rubber elements in all models.  The decision to maintain 

this aspect ratio determined the number of elements (and as a result the mesh density).  Figure 

3.18 shows a sample strip bearing model. 

 
Figure 3.18 Sample strip bearing model (b12tr375n20) 

3.4.2 Results 

Both rubber and steel elements made use of the same material models used in the three-

dimensional FEA.  Boundary conditions mirrored those described in section 3.2.1.  The same 

loading procedure in which the bearing was subjected to a constant axial load and then sheared 

was used to find critical points.  Each model was run at axial loads ranging from 0.1 crP to 0.9 crP  

though results were not able to be achieved in every case.  Figure 3.19 shows a sample of shear 

force – displacement curves for one of the bearing models. 
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Figure 3.19 Shear force – displacement curves for model b12tr375n20 

 

Having obtained the above plot the stability curve shown in Fig. 3.20 could be constructed.  For 

reference the predictions of the OLAM are plotted along with the FE results. 

 
Figure 3.20 Stability curve for model b12tr375n20 

 

The expected result of diminishing capacity with increasing displacement is observed.  This 

process is repeated for each model bearing to generate individual stability curves.  Several of the 

models (such as the aforementioned) would not run for the full range of axial loads, however, in 

most cases there were enough data points to sufficiently describe the variation of capacity with 
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displacement (even if only in certain regions, for example, between /u b =0.6 to 1.0).  The 

stability curves for the remaining model bearings appear in the Appendix A.   

Figures 3.21, 3.22, and 3.23 are a series of plots that show the variation of normalized critical 

load capacity ( ' /cr crP P ) with shape factor ( S ), bearing width (b ), and rubber layer thickness      

( rt ) respectively. 

 

Figure 3.21 Variation of normalized critical load capacity with shape factor 
 

 

Figure 3.22 Variation of normalized critical load capacity with bearing width 
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Figure 3.23 Variation of normalized critical load capacity with rubber layer thickness  
 

To compare the predictions of the overlapping area method with the parametric FEA results a 

series of plots comprising Figs. 3.24, 3.25, and 3.26 were generated for normalized displacement 

levels of 0.4, 0.6, and 0.8. 

a) b) c) 
Figure 3.24 Comparison of critical load predictions from FE and OLAM (dashed) 

for shape factor for a) / . 0 4u b   b) / . 0 6u b  c) / . 0 8u b  
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a) b) c) 
Figure 3.25 Comparison of critical load predictions from FE and OLAM (dashed) 

for bearing width for a) / . 0 4u b   b) / . 0 6u b  c) / . 0 8u b  
 

a) b) c) 
Figure 3.26 Comparison of critical load predictions from FE and OLAM (dashed) 

for rubber layer thickness for a) / . 0 4u b   b) / . 0 6u b  c) / . 0 8u b  
 

3.5 Discussion of Parametric Study Results 

Shape Factor ( S ) 

Figure 3.21 shows that at a given displacement level bearings with larger shape factors, in 

general, will have lower reduced critical load capacity (in normalized terms).  The trend becomes 

more pronounced as the displacement level increases (at / 0.4u b  the trend is nearly linear, at 

/ 0.6u b  and / 0.8u b  it is closer to an exponential decay).   

In addition, as evidenced from Fig. 3.24 the FEA results indicate that the OLAM is conservative 

for all shape factors at / 0.4u b  and that the degree to which it is conservative decreases with 



35 
 

increasing shape factor.  The latter result has been observed in experimental studies (Buckle and 

Liu 1994, Buckle et al. 2002), but due to the limited sample size of experimental data lacked 

confidence that the trend would be observed for other bearings.  At / 0.6u b  and / 0.8u b  the 

OLAM does not consistently provide conservative predictions of capacity suggesting the OLAM 

might lead to unconservative estimates of 'crP  for large (20-30) shape factors which are typical 

of seismic isolation bearings.   

Bearing Width ( b ) 

Figure 3.22 shows that for a given rubber layer thickness and shape factor, an increase in bearing 

width results in a lower normalized capacity at a given displacement level.  This is 

counterintuitive at first glance because a bearing that is more squat would be expected to have a 

higher capacity (and they do).  However, when normalized, the wider bearings have a smaller 

percent of crP  remaining by comparison to narrower bearings.  This means that even though the 

absolute capacity is higher for a wider bearing, in terms of the undeformed capacity we see a 

faster rate of reduction in the critical load with increasing displacement.  This implies that the 

benefit of increasing the bearing width that could result from the OLAM would have diminishing 

marginal returns that are unaccounted for at present.   

Rubber Layer Thickness ( rt ) 

Figure 3.23 shows that for a given bearing width and shape factor, an increase in the rubber layer 

thickness results in an increase in normalized capacity at a given displacement level.  The trends 

are inversely related to the shape factor as would be expected by the definition of shape factor 

for strip bearings where S =b / 2 rt .  However, the rubber layer thickness tends to have greater 

physical meaning and similarly to the bearing width one may intuitively arrive at the incorrect 

result.  By increasing the rubber layer thickness the normalized capacity appears to increase 

despite increased bulging.  It should however be reiterated that this is only looking into the 

vertical load stability of the bearings and increasing the rubber layer thickness could negatively 

impact other limit states, for example, vertical stiffness.   
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3.6 Application of Parametric Study Results to the OLAM 

To improve the predictions of the OLAM and highlight a potential method for making it 

generally applicable for elastomeric bearings the results of parametric study were examined to 

develop a modified version of the OLAM.  It has been shown that 'crP  is a function of bearing 

geometry (width, thickness of rubber layers, shape factor).  Because the shape factor takes into 

account both bearing width (diameter) and the thickness of individual rubber layers it was chosen 

as the basis for the modification factor. 

For simplicity of integration with the current method, which for strip bearings predicts: 

' 1cr cr

u
P P

b
    
 

                                                   (3-14) 

a linear shift by a factor,  λ ,was implemented.  The result of this modification is Eqn. (3-15). 

' 1cr cr cr

u
P P P

b
      

 
                                           (3-15) 

where λ is given by: 

0.4 0.045 ( 5) 15

0.04 0.008 ( 15) 15

S S
for

S S


    
      

                           (3-16) 

The modification factor, λ , represents the dependence of the minimum residual between the 

OLAM predictions and the parametric results on the shape factor of the bearing.  Because λ gives 

rise to the potential of Eqn. (3-15) to predict the undesirable situation in which reduced critical 

load exceeds the undeformed capacity it carries the additional stipulation that 'crP  is limited to 

crP .   To illustrate the derivation of λ  Fig. 3.27 shows the variation of minimum residual with 

shape factor. 
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Figure 3.27 Variation of minimum residual between OLAM and FEA with shape factor 

In lieu of fitting λ to a smooth, but complex function using curve fitting techniques it was 

approximated by a bilinear function in which a convenient (by inspection of Fig. 3.27) shape 

factor of 15 was chosen as the distinctive value.   

Figure 3.28 shows the result of the modified overlapping area method (mOLAM) based on Eqns. 

(3-15) and (3-16) for several shape factors. 

 

Figure 3.28 Illustration of mOLAM predictions 
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Figures 3.29, 3.30, 3.31, and 3.32 show a comparison of the mOLAM with the OLAM 

predictions for the b15tr1500n20 (S = 5), b15tr625n20 (S = 12), b12tr375n20 (S = 16), and 

b15tr250n20 (S = 30) bearing respectively. 

 

Figure 3.29 Comparison of mOLAM and OLAM for b15tr1500n20 

 

Figure 3.30 Comparison of mOLAM and OLAM for b15tr625n20 
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Figure 3.31 Comparison of mOLAM and OLAM for b12tr375n20 

 

Figure 3.32 Comparison of mOLAM and OLAM for b15tr250n20 

As shown in Figs. 3.29 to 3.32 the mOLAM provides conservative, but significantly better 

agreement to the predicted critical load from FEA.  Although a mechanics based modification or 

formulation is preferred the λ factor proposed here retains the simplicity of the overlapping area 

calculation for design while improving its predictive capability.  It should further be noted that 

the relationships derived are based on a limited number (14) of two-dimensional FEA strip 
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bearings and might not be generally applicable as the results have not been verified 

experimentally. 
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CHAPTER 4 

Experimental Investigation 

4.1 General 

The stability of low damping rubber (LDR) and lead-rubber (LR) bearings was investigated 

through experimental testing of bearing specimens described in Chapter 3 ( S =10.2 and 12.7 

respectively).  The objective of the experimental investigation was collecting data to facilitate 

development of stability curves that will be used to validate the finite element (Chapter 3) and 

numerical (Chapter 5) results.   

Testing was conducted at the State University of New York (SUNY) at Buffalo’s Structural 

Engineering and Earthquake Simulation Laboratory (SEESL) using two bearing testing 

machines.  The small bearing testing machine (SBTM), which permitted cycling of a bearing 

under constant axial load, was used to characterize the bearings (determine mechanical 

properties such as horizontal stiffness and effective shear modulus).  Due to the limited axial 

load capacity of the SBTM, the large bearing testing machine (LBTM) was used for stability 

testing.  

The stability tests consisted of laterally displacing the bearing to a specified level then 

monotonically increasing the axial load while monitoring the reduction in shear force.  These 

tests generated equilibrium trajectories from which critical loads could be determined for a given 

lateral displacement.  In addition to studying the behavior (mechanical and stability) of the two 

bearing types independently, the influence of the lead core on stability was also investigated by 

comparison to the LDR results. Bearing characterization testing in which the bearing was 

subjected to cyclic lateral displacements under constant axial load was used to determine 

mechanical properties. 
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4.2 Bearing Characterization  

4.2.1 Setup and Instrumentation 

Bearing characterization was conducted using the SBTM to determine mechanical properties 

(Keff, Geff) to be used in the FEA.  A schematic and photograph of the apparatus are shown in 

Figs. 4.1a and 4.1b respectively.  The SBTM has been designed to apply simultaneous axial load 

and lateral displacement.  

 

 

 

 

 

 

a) Schematic 

 

b) Photograph 

Figure 4.1 Small bearing testing machine  

Vertical load is applied via a horizontal loading beam and two force-controlled Parker vertical 

actuators both equipped with inline load cells.  A horizontal actuator is used to laterally displace 

the loading beam and connected bearing.  Relative lateral displacement is measured and recorded 

Loading 

Beam 

Vertical

Bearing Load Cell 

W14x145

W14x145 

W
14

x1
45

 
Actuator

W14x257

W8x24

W14x257

W
14

x1
59

 

Actuator Actuator 
Vertical 

(F, u) 

(P,v) (P,v) 

(P,F,M) 
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via an attached linear variable differential transformer (LVDT).  A 5-channel reaction load cell 

located directly beneath the specimen is used to measure axial load, shear force, and bending 

moment.  A summary of the instrumentation for the SBTM is found in Table 4.1. 

 

Table 4.1 SBTM Instrumentation 

No. Data Symbol Source Range 

1 
Lateral Force and 

Displacement 
F , u  

Horizontal 

Actuator/LC/LVDT 

0-244.7kN, 

±15.24cm 

2 
Vertical Force and 

Displacement 
P , v  Parker Actuator (2) 0-622.8kN 

3 
Horizontal and Vertical 

Reaction, Moment 
P , F , M  5-Channel Load Cell 

0-222.4kN axial, 

0-89kN lateral 

 

In each characterization test the bearing was subjected to a constant axial load, then cycled three 

times to the specified displacement.  The hysteretic loops (see Fig. 3.7) generated from the data 

permit the determination of the effective horizontal stiffness ( effK ) and the associated effective 

shear moduli ( effG ).  In the case of the LR bearing the characteristic strength ( dQ ) is also 

determined. 

 

4.2.2 Test Program 

Using the SBTM a single LDR bearing was tested to determine the horizontal stiffness and shear 

modulus.  Three tests were performed at each strain level (100% and 150%) with axial loads of 

0, 62, and 89 kN where shear strain is determined by: 

r

u

T
                                                                  (4-1) 

where is the   shear strain, u is the displacement, and rT  is the total thickness of rubber (60 mm 

for this bearing).  Table 4.2 summarizes the characterization program.   
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Table 4.2 Bearing Characterization Program 

Test Number Test Name Bearing 

Target 

Displacement 

(mm) 

Target 

Vertical Load 

(kN) 

1 DG100-00 LDR1  60 0 

2 DG100-14 LDR1 60 62 

3 DG100-20 LDR1 60 89 

4 DG150-00 LDR1 90 0 

5 DG150-14 LDR1 90 62 

6 DG150-20 LDR1 90 89 

 

Properties used for the LR bearing  were taken from characterization testing by Warn and 

Whittaker (2006). 

4.2.3 Results 

Figure 4.2 presents sample results of bearing characterization for the LDR bearing.  This figure 

shows the results of cycling the LDR bearing under 60 kN and 89 kN of vertical loading at 100% 

shear strain.   

 

Figure 4.2 Sample results from LDR bearing characterization 
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A summary of the results from bearing characterization can be found in Table 4.3.  For 

elastomeric bearings the effective horizontal stiffness, effK  is calculated by: 

max min

max min
eff

F F
K

u u





                                                        (4-2) 

where maxF , minF , maxu , and minu  correspond to the maximum and minimum shear force and 

maximum and minimum displacements respectively.  

effK  is related to the effective shear modulus, effG ,  by the following: 

eff b
eff

r

G A
K

T


                                                           (4-3) 

where bA  is the bonded rubber area and rT  is the total thickness of rubber.  

Table 4.3 LDR bearing characterization results 
Test Number Test Name γ (%) P (kN) effK  (kN/mm) *effG  (MPa) 

1 DG100-00 115 13 0.263 0.75 

2 DG100-14 116 61 0.254 0.73 

3 DG100-20 116 90 0.238 0.68 

4 DG150-00 169 11 0.271 0.78 

5 DG150-14 167 66 0.255 0.73 

* effG determined as / (1.2 )eff r bK T A  

 
In lieu of performing bearing characterization tests on the LRB, mechanical properties of an 

identical bearing that was tested in earlier experimental work (Warn and Whittaker 2006) were 

used in calculations.  Given little to no change was observed in the current tests as compared 

with Warn and Whittaker (2006) with the LDR bearings (the mechanical properties in this study 

were 0-4% different than those in Warn and Whittaker) the properties of the LR bearing reported 

in Warn and Whittaker (2006) were assumed to be representative of the tested bearing.  Table 4.4 

shows a summary of the LRB properties from Warn and Whittaker (2006). 
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Table 4.4 LR bearing characterization results 
Test Number γ (%) P  (kN) effK  (kN/mm) effG  (MPa) 

1 104 60 0.42 1.44 

2 104 60 0.40 1.37 

3 104 60 0.40 1.37 

4 104 60 0.40 1.37 

1 155 60 0.35 1.20 

2 155 60 0.35 1.20 

3 155 60 0.34 1.20 

4 155 60 0.34 1.20 

 

4.3 Stability Testing 

4.3.1 Setup and Instrumentation 

Due to force requirements needed to observe critical loads over a wide range of displacements 

for the LDR and LR bearings the use of the LBTM was required.  A schematic of the LBTM 

showing the bearing in the undeformed and deformed configurations can be seen in Figs. 4.3a 

and 4.3b respectively, while Fig. 4.4 shows a photograph of the LBTM.   

 

a) Undeformed configuration 

Shearing Plate 

(F) (F) 

(u) 

(P) (P) 
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b) Deformed configuration 

Figure 4.3 LBTM Schematic 

 

 

Figure 4.4 LBTM Photograph 

The setup of the LBTM is not conducive to maintaining a constant axial load during 

displacement for bearings that decrease in height with lateral displacement. Therefore the 

constant displacement method was used, in which the bearing is held at a specified displacement 

and then monotonically compressed.  The constant displacement method has been used in 

previous studies (Buckle and Liu 1994, Buckle et al. 2002) and operates under the principle that 

the neutral equilibrium configuration ( 0  ) corresponds to a unique combination of axial and 
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shear force. Unlike constant axial force methods, where the bearing is compressed to a specified 

load then displaced and force-displacement curves are obtained directly the constant 

displacement method requires an indirect determination of these curves and the corresponding 

critical points (discussed further in 4.3.3).  The two methods should yield the same results for the 

LDR bearing (which exhibits path independent behavior), though the LR bearing results would 

likely be different due to the path dependency observed in FEA. 

 

Loading in the horizontal direction was displacement controlled by the axial stroke of an MTS 

servo-controlled dynamic actuator that was positively connected to the shearing plate on which 

the bearing was placed.  The shearing plate was stationed atop two steel cylinders to facilitate 

lateral translation (see Fig. 4.3a).  A supplemental LC was added that had a more appropriate 

range for the anticipated force demands. Four string potentiometers were added at each corner to 

measure vertical displacement.  Data from the string pots was used to monitor the rotations of the 

loading plates to ensure force was not being transmitted into the support posts.  Table 4.5 

summarizes the instrumentation used in the LBTM. 

 

Table 4.5 LBTM Instrumentation 

No. Data Symbol Source Range 

1 
Lateral Force and 

Displacement 
F , u  

MTS Actuator/LC 

Actuator/LC/LVDT 

0-978.6kN, 

±12.7cm 

2 Axial Load P  Enerpacs/LCs 0-7117.2kN 

3 Vertical Displacement v String Potentiometers ±539.8cm 

 

The vertical loading system of the LBTM consists of five loading plates and four Enerpac 

hydraulic jacks that self-react on nuts above the plates.  The Enerpacs are used to apply 

additional vertical load beyond the self-weight of the system (60 kN).  Vertical load was 

determined from pressure measured by a pressure cell (not shown in the schematic) in the 

hydraulic system multiplied by the area of the hydraulic jack piston.  Initially the Enerpacs were 

spaced equidistant from the bearing center in the undeformed configuration.  However, as the 

bearings were displaced the equidistant configuration induced rotation in the loading plates due 

to an unbalanced moment and violated the desired boundary conditions of having the top plate 

fixed against rotation (but free to translate) and the bottom plate fixed.  This problem was 
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ameliorated by locating the centroid of the four Enerpacs above the center of the bearing at the 

bottom plate such that 1 2( ) / 2e e u   (as shown in Fig. 4.3b) and verified using a hand level. 

 

4.3.2 Test Program 

Two LDR bearings and one LRB were subjected to stability testing via the LBTM.  The use of a 

second, identical LDR bearing was necessary as the first LDR bearing became damaged during 

this phase of testing.  Using the aforementioned constant displacement method each bearing was 

subjected to increasing vertical load at constant displacements ranging from 19 to 176 mm at 

approximately 6 mm intervals.  This interval was chosen to allow the development of a stability 

curve with sufficient resolution. 

 

Table 4.6 summarizes the stability testing program.  The target vertical load reported in Table 4.6 

is only an estimated value based on preliminary results of the finite element analysis in Chapter 

3.  During stability testing the axial load was increased until the shear force reduced nearly to 

zero.  However, reaching zero force is not a requirement for use of the constant displacement 

method, which only requires the shear force-axial load trajectory of a given displacement level to 

cross trajectories from neighboring displacements.  

 

Table 4.6 Stability Testing Program 

Test Number Test Name Bearing 

Target 

Displacement 

(mm) 

Target 

Vertical 

Load (kN) 

7 DP127-50 LDR1 76 222 

8 DP138-47 LDR1 83 209 

9 DP148-43 LDR1 89 191 

10 DP148-43b LDR1 89 191 

11 DP138-47b LDR1 83 209 

12 DP127-50b LDR1 76 222 

13 DP127-50c LDR1 76 222 

14 DP138-47c LDR1 83 209 

15 DP148-43c LDR1 89 191 
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Table 4.6 Stability Testing Program (cont.) 

Test Number Test Name Bearing 

Target 

Displacement 

(mm) 

Target 

Vertical 

Load (kN) 

17 DP138-47d LDR1 83 209 

18 DP148-43d LDR1 89 191 

19 DP169-36 LDR1 101 160 

20 DP191-32 LDR1 114 142 

21 DP212-27 LDR1 127 120 

22 DP85-68 LDR1 51 302 

23 DP64-73 LDR1 38 325 

24 DS168-13 LDR1 101 58 

25 DS168-45 LDR1 101 200 

26 DS168-60 LDR1 101 267 

27 DS168-90 LDR1 101 400 

28 DP254-21 LDR1 152 93 

30 DS168-13b LDR1 101 58 

31 DP233-24 LDR1 140 107 

32 DP275-18 LDR1 165 80 

33 DP297-18 LDR1 178 80 

34 DP265-20 LDR1 159 89 

35 DP244-23 LDR1 146 102 

37 DP201-29 LDR2 120 129 

38 DP117-55 LDR2 70 245 

40 DP95-65 LDR2 57 289 

41 DP85-68 LDR2 51 302 

42 DP74-71 LDR2 44 316 

43 DP169-36-2 LDR2 101 160 

44 DP222-25 LDR2 133 111 

45 DP127-50-2 LDR2 76 222 

46 DP138-47-2 LDR2 83 209 

47 DP148-43-2 LDR2 89 191 

48 DP159-40-2 LDR2 95 178 
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Table 4.6 Stability Testing Program (cont.) 

Test Number Test Name Bearing 

Target 

Displacement 

(mm) 

Target 

Vertical 

Load (kN) 

50 DP212-27-2 LDR2 127 120 

51 DP233-24-2 LDR2 140 107 

52 DP244-23-2 LDR2 146 102 

53 DP254-21-2 LDR2 152 93 

54 DP265-20-2 LDR2 158 89 

55 DP275-18-2 LDR2 165 80 

56 DP32-80 LDR2 19 356 

57 DLP32 LRB1 19 - 

58 DLP64 LRB1 38 - 

59 DLP85 LRB1 51 - 

60 DLP106 LRB1 64 - 

62 DLP148 LRB1 89 - 

63 DLP169 LRB1 101 - 

64 DLP191 LRB1 114 - 

65 DLS169-14 LRB1 101 62 

66 DLS169-50 LRB1 101 222 

67 DLP212 LRB1 127 - 

68 DLP233 LRB1 140 - 

69 DLP254 LRB1 152 - 

70 DLP275 LRB1 165 - 

71 DLP297 LRB1 178 - 

72 DLP42 LRB1 25 - 

Notes: 
1. During testing of LDR1, (particularly at 6” displacement) there was appreciable plate rotation in 
the test setup.  This was fixed before the testing of LDR2 by rearranging the Enerpacs. 
2. As of Test 191-32-2, LDR2 seemed to develop a bulge near the top end plate. 
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4.3.3 Results 

This section presents a summary of the results from the stability testing.  The complete data is 

presented in Appendix C.  A description of the development of the experimental stability curves 

is discussed. 

As discussed in Chapter 3, stability curves are generated indirectly when the constant 

displacement method is used.  When the bearing is first laterally displaced to 114 mm it requires 

approximately 20.5 kN of shear force.  This is done while the bearing is only under the self-

weight of the loading plates (59.7 kN).  Second, once the target displacement is reached, the 

axial load is monotically increased from the self-weight to 350 kN resulting in a single trajectory 

on Fig 4.5.  This process is repeated for a large ranges of displacements.  The resulting 

trajectories are shown in Fig. 4.5 to illustrate the determination of  a critical point.  After the 

shear force-axial load curves from each test are generated a vertical line denoting constant shear 

force (F=6kN) is then drawn.   

 

Figure 4.5 Shear force-axial load curves for LDR bearing 

Points where trajectories intersect the line of constant shear are replotted on in the axial load – 

lateral displacement plane to find the point of neutral equilibrium as illustrated in Fig. 4.6. 
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Figure 4.6 Sample axial load-displacement curve for LDR bearing 

A limitation of the constant displacement method is that the discrete data points likely are not 

exactly coincidental with the maximum as shown in Fig. 4.6.  Therefore, to be consistent from 

one displacement level to the next the neutral equilibrium point (maximum force) is determined 

from fitting a polynomial to the experimental stability results using MATLAB.  The polyfit 

function in MATLAB uses best fit curves (in the least-squares sense) so that a reasonable 

estimate of the critical points could be found.  In each case a polynomial of the form 
2

2 1 0( )P u a u a u a    was fit to the data.  Figure 4.6 shows an example where a critical point has 

been reached at approximately 106 mm when the axial load passes through a maximum of 262 

kN under a constant shear force of 6 kN.   

This process is repeated for both the LDR and LR bearing specimens at several shear force 

values using trajectories from the range of displacements at which the bearings were tested.  The 

remaining axial load-displacement curves can be found in Appendix C.  Assembling the critical 

load and displacement from each of these curves results in the experimental stability curves 

found in Fig. 4.7. 
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a) LDR bearing 

 

b) LR bearing 

Figure 4.7 Experimental stability curves  

4.4 Discussion of Experimental Results 

For both the LDR and LR bearing the critical load decreases with increase lateral displacement.  

A visual comparison of the stability curves generated for the LDR and LR bearings shown in 

Fig. 4.7 provides insight into the effect of the lead core on bearing stability since the bearings are 

identical with the exception of the lead core.  For the range of 90-150mm (where data was 
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gathered for both bearings) the LDR and LR bearings displayed similar behavior in terms of '
crP

data and trend in reduction . A more direct comparison between the two bearings in absolute 

terms is presented in Chapter 6.  

Figure 4.8 presents the stability curves in a normalized fashion – the reduced critical load,  'crP , 

is normalized by the critical load in the undeformed configuration (calculated as described in 

Chapter 3), crP , and the displacement is normalized by the bearing diameter, D .   

 

Figure 4.8 Normalized stability curves for the LDR and LR bearings  

To facilitate a comparison of the experimental data with the overlapping area method the 

experimental data was normalized by crP (Eqns. 3-7 and 3-12 for the LDR and LR bearings 

respectively) and D.  It is observed that for the full range of displacements that were tested the 

OLAM tends to under predict the actual capacity of the bearing.  Further, when reaching a 

displacement equal to the bearing diameter the OLAM estimates zero capacity whereas the 

experimental results suggest a reserve capacity of 0.40 crP  and 0.20 crP  for the LDR and LR 

bearing respectively. 

In summary, based on the experimental investigation several important observations can be 

made.  These include: 
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1. The critical load reduces with increasing lateral displacement for both the LDR and 

LR bearing. 

2. The LDR bearing has a reduced critical load of approximately 0.40 crP  at a 

displacement equal to the bearing diameter. 

3. The LR bearing has a reduced critical load of approximately 0.20 crP at displacement 

equal to the bearing diameter.  

4. When normalized, the data shows that the OLAM provides inconsistent predictions of 

the capacity as it is significantly more conservative for the LDR bearing than the LR 

bearing.  
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CHAPTER 5 
 

Analytical Investigation 
 

5.1 General 

An analytical investigation was conducted to investigate the application of the Koh-Kelly two-

spring model (TSM) discussed in Chapter 2 for predicting the stability limit of elastomeric 

bearings.  The purpose of this investigation is to explore the possibility of the use of the TSM to 

simulate the reduction in critical load with displacement for LDR bearings.   

Although the TSM is an idealization of an elastomeric bearing, it has been shown to predict well 

the effect of axial load on the horizontal stiffness, damping and reduction in height (Kelly 1997, 

Nagarajaiah 1999) and might provide a more rigorous basis for predicting the stability limit of 

elastomeric bearings. 

5.2 Analysis Using the Two-Spring Model 

Previous studies (Nagarajaiah and Ferrrell 1999, Buckle et. al 2002) have shown that the TSM 

has the potential to predict instability in LDR bearings through the solution of the equilibrium 

equations of the model in the deformed configuration when the spring stiffnesses sK  and K   

are reduced with displacement.  After deriving and solving the equations of equilibrium for the 

TSM, the shear force (or axial load) can be plotted with displacement using the same 

methodology as the FEA to obtain the location of critical points.  However, before the TSM can 

be used, various assumptions in the formulation of the equations of equilibrium and their effect 

on the solution require examination.  

5.2.1 Equilibrium of the Two-Spring Model 

Equilibrium of the TSM in the deformed configuration provides information that can be used to 

assess the stability of the model under various assumptions.  Figure 2.3 is presented again as Fig. 

5.1 for reference. 
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Figure 5.1 Koh-Kelly two-spring model 

 From Fig. 5.1 equilibrium of forces for the deformed configuration in the s-direction requires:  

cos( ) sin( )sK s F P                                          (5-1) 

where sK denotes the shear stiffness (defined as /sGA l ), s  is the shear deformation,   is the 

bearing rotation, F  is the horizontal force, and P  is the vertical load. Similarly, summation of 

moments about the pin at the base yields: 

[ sin( ) cos( )] [ cos( ) sin( )]K P l s F l s                          (5-2) 

where K  is the rotational stiffness (initially defined as EP l ), and l  is the bearing height.  In 

addition to the force equilibrium equations, compatibility of the TSM dictates the global 

displacement quantities are related to the internal displacement quantities by: 

sin( ) cos( )u l s                                               (5-3) 

where u  is the global lateral displacement and the other variables have been previously defined.  

Equations (5-1), (5-2), and (5-3) are solved simultaneously using iterative approaches (Gauss-

Newton and Levenberg-Marquardt) in MATLAB by specifying two of the five unknown 

variables, for example F and u , then solving for the remaining unknowns P , s , and  .  
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5.2.2 Impact of Assumptions 

To identify the impact of geometric and material assumptions on the stability behavior (via 

spring stiffnesses), the system of equations (equilibrium and compatibility) were solved 

simultaneously using a MATLAB routine for the following cases: 

1. linear geometry and linear material properties (LLL) – small angle theory is applied            

( cos( ) 1,sin( )    ) and the spring stiffnesses remain constant, 

2. nonlinear geometry and linear material properties (NLL) – the trigonometric functions 

are used, but the spring stiffnesses are kept constant, 

3. nonlinear geometry and nonlinear shear stiffness, but linear rotational stiffness (NNL) – 

the trigonometric functions are used and the shear spring stiffness is reduced as a function 

of displacement, 

4. nonlinear geometry and nonlinear rotational stiffness, but linear shear stiffness (NLN) – 

the trigonometric functions are used and the rotational spring stiffness is reduced as a 

function of displacement, and 

5. nonlinear geometry and nonlinear material properties (NNN) – the trigonometric 

functions are used and the spring stiffnesses are both reduced as a function of 

displacement. 

In the third, fourth, and fifth cases the functions suggested in Nagarajaiah and Ferrell (1999) for 

'
sK and 'K were used.   These are: 

 ' 1 tanh( )s s sK K C s                                  (5-4) 

where '
sK  is the shear stiffness at some shear deformation, s, and sC is a dimensionless constant 

equal to 0.325 and, 

 ' '1K K C s                                               (5-5) 

where 'K  is the rotational stiffness at some s and 'C is given by 1 / /rD t D . 
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5.2.3 Results 

Figures 5.2 to 5.6 demonstrate the importance of how geometry and material properties are 

considered to the stability behavior found in the TSM. 

 

a) LLL b) NLL 

 

c) NNL d) NLN 

 

e) NNN 

Figure 5.2 Two-spring model solutions 
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When everything is treated as linear (Fig. 5.2a) no critical point is reached as the axial force 

never passes through a maximum, even at displacements on the order of 4D.  When geometric 

nonlinearity is considered, but the material properties do not reduce (Fig. 5.2b) there are once 

again no critical points as the bearing actually begins to display a hardening behavior at large 

displacements. 

When geometric nonlinearity is considered along with a reducing shear stiffness and linear 

rotational stiffness (Fig. 5.2c) no critical points are obtained.  However, assuming geometric 

nonlinearity in conjunction with a reducing rotational stiffness and linear shear stiffness (Fig. 

5.2d) the curves pass through a maximum indicating instability does occur.  The fact that no 

critical points are observed with a reducing shear stiffness, but critical points are observed with a 

reducing rotational stiffness suggests the dominating stiffness parameter is 'K . 

In the final case where full nonlinearity is assumed (Fig. 5.2e) the axial forces pass through a 

maximum, indicating critical points have been reached.  Using the assumptions from this case, 

analytical stability data is generated and presented in Fig. 5.3.  This curve will be compared to 

the experimental and FEA data in Chapter 6 to determine the general applicability of the 

assumed functions for '
sK  and 'K . 

 

Figure 5.3 Analytical stability data 
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5.3 A Mechanics Based Approach 

As demonstrated by the lack of critical points in Figs. 5.2a-5.2c it is necessary to consider a 

reduction in 'K  with shear deformation (or displacement) if the TSM is to be used to predict 

instability.  However, Eqn. (5-5) provided by Nagarajaiah and Ferrell (1999) is based on 

empirical data rather than theoretical principles and might not be generally applicable. 

As an alternative to the relationship for 'K  provided by Nagarajaiah and Ferrell (1999) a 

mechanics based approach was investigated that used by Iizuka (2000) to determine how the 

rotational stiffness ( 'K ) reduces with increasing lateral displacement was investigated.  Iizuka 

(2000) considers the plastification of a single rubber layer and develops a relationship between 

the applied moment and rotation.  Figure 5.4 shows an illustration of the plastification of this 

cross section. 

 

 

 

 

 

 

 

Figure 5.4 Rubber layer plastification: a) vertical load only b) vertical load and moment at 

the elastic limit c) between the elastic limit and ultimate d) ultimate (fully plastic) 

Before yielding occurs ( y  ) the moment and rotation are linearly related by the initial 

rotational stiffness, K .  This results in: 

M K                                                            (5-6) 
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As the section begins to plastify 'K  reduces from this initial value to zero once the plastic 

moment has been reached.  A hyperbolic function that met the required boundary conditions 

(from geometry of the cross-section 4p yM M  and yM M  at y  ) was specified for the 

region beyond yield: 
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  
       

                                             (5-7) 

where the yield moment, yM , is given by (5-7): 

( )y yM Z                                                        (5-8) 

in which Z  is the section modulus,  is the applied stress ( /P A ), and y is the tensile yield 

stress.  Differentiating the moment in (5-7) with respect to theta leads to the equation of 'K  for 

any rotation beyond yield.  This results in: 
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2 2
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   

       
   

                                  (5-9) 

The pre-yield and post-yield values of 'K  were incorporated into the solution scheme used by 

MATLAB by making 'K  an additional unknown and using (5-9) as a fourth equilibrium 

equation along with (5-1), (5-2) and (5-3) so the system was still theoretically solvable.  

However, upon the introduction of this approach, the solutions provided by MATLAB no longer 

maintained equilibrium and therefore were deemed inadmissible. 

5.4 Discussion 

The TSM is only a viable model for predicting instability when a reduction in the rotational 

stiffness is considered.  While the method using concepts from Iizuka (2000) presents a 

theoretical alternative to (5-5) it breaks down in application due to its simultaneous dependence 
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on the axial load and rotation and the inability to solve the new system of equations without the 

introduction of significant error in equilibrium. 

The general applicability of the treatment of the spring stiffnesses by Nagarajaiah and Ferrell 

(1999) is questionable, but will be investigated further when the results are compared with 

experimental values in the following chapter. 
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CHAPTER 6 
 

Results and Conclusions 
 

6.1 General 

In this section the results of the finite element (Chapter 3), experimental (Chapter 4), and 

analytical (Chapter 5) studies are synthesized.  These results are compared with the overlapping 

area method (OLAM) predictions to evaluate its performance.  Conclusions with regard to what 

has been learned in these studies and remarks upon future investigations are made. 

6.2 Results 

Figure 6.1 shows results for the LDR bearing FEA (using both the constant axial force method 

and constant displacement method) and experimental investigation. 

 

Figure 6.1 Comparison of FEA and experimental results for the LDR bearing 

The finite element predictions for LDR bearing demonstrate reasonably good agreement with the 

observed trends in experimental data.  However, there is a significant difference between values 

predicted by the FEA and those observed experimentally.  At u / D = 0.6 the experimental results 

suggest nearly 45% more critical load capacity than the FEA predicts.  At u / D = 1.0 the 

difference between results is approximately 15%.  Two potential factors contributing to this 
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difference are the material models and boundary conditions.  The rubber layers were modeled 

using a simple hyperelastic model (the Neo-Hookean) which might not be appropriate for all 

loading conditions studied.  For example, the Neo-Hookean does not consider the stiffening that 

occurs in elastomers (cross-linked polymers) at large shear strains after the polymeric chains are 

maximally stretched.  While the Neo-Hookean provides an approximation of the behavior 

without the necessity of using empirically derived parameters, complex models such as the 

Mooney-Rivlin model have been shown to have better agreement with experimental data in 

previous studies (Buckle et al. 2002). 

In addition to the material models, the boundary conditions enforced in the FEA were not fully 

maintained during experimental testing.  In the models the bearings were restrained against 

rotation at the top and bottom end plates.  However, while small (less than one degree), the 

experimental setup allowed some rotation in both the direction of loading (north-south) and the 

perpendicular direction.  Rotation was calculated using a trigonometric relationship between 

measurements from string potentiometers located at the corners of the loading plates above the 

bearing and the fixed distance between them.  Figure 6.2 shows a sample plot of the variation of 

rotation with axial load. 

 

 Figure 6.2 Rotation in the experimental setup 
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Figure 6.3 provides a comparison of the finite element solutions to the OLAM with reference to 

experimental results. 

 

Figure 6.3 Comparison of FEA and OLAM results for the LDR bearing 

Despite the aforementioned deviations between FEA and experimental results, the FEA performs 

significantly better than the OLAM over the entire range of displacements considered.  At u / D 

= 0.6 the difference between experimental observations and OLAM predictions is on the order of 

300%.  When displacement reaches the bearing diameter the difference in results approaches 

infinity as the OLAM predicts zero critical load capacity at u / D = 1.0 whereas the experimental 

results suggest that a load of nearly 0.4 crP  can be sustained. 
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Figure 6.4 Comparison of TSM and OLAM results for the LDR bearing 

Using the suggested reductions in spring stiffness properties from Nagarajaiah and Ferrell (1999) 

the TSM provides better estimates (compared to the experimental results) than the OLAM at 

displacements greater than u / D = 0.5.  This suggests that the TSM has the capability of 

outperforming the OLAM.  However, as both the TSM solutions and OLAM demonstrate 

significant error it is clear that both formulations can be improved upon. Figure 6.4 shows a 

comparison of the two FEA methods with experimental results.   
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Figure 6.5 Comparison of FEA and experimental results for the LR bearing 

Beyond a normalized displacement of 0.2, the constant axial force method more accurately 

estimates critical loads (with respect to the experimental observations) increasing in performance 

with increasing lateral displacement.  The CDM also becomes more accurate with increasing 

displacement, but appears to provide a lower bound estimation of the critical load and is less 

accurate than the CFM over the range which they are able to be compared.   

Similarly to the LDR bearing models, the FEA performed for the LR models had several 

potential sources of modeling error that may explain deviation from experimentally observed 

results.  In addition to the boundary conditions and material model of the rubber layers, the lead 

core was assumed to be constrained to the surrounding elements when in reality the connectivity 

is via contact.  The connected nodes in the FEMs are, however, justified to some degree by the 

fact that under axial load the tightly fit lead core will attempt to expand laterally into the rubber 

layers and as a result form keyed joints.   

Because the CDM was used in the experimental investigation the FEA results from the CDM for 

the LR bearing was used for comparison with the OLAM in Fig. 6.6. 
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Figure 6.6 Comparison of FEA and OLAM results for the LR bearing 

In the case of the LR bearing the OLAM performs to a similar degree of accuracy as the finite 

element results using the constant displacement method up to a normalized displacement of 

approximately 0.75.   By comparison with Figure 6.3 it is evident that the margin of safety 

against failure for the LR bearing is smaller than for the LDR bearing.   
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For clarity on the effect of the lead core Fig. 6.7 presents the experimental stability data for both 

bearings in absolute terms.   

 

Figure 6.7 Stability curves for the LDR and LR bearings 

The results shown in Fig. 6.7 indicate that the lead-core does not increase the capacity of the LR 

bearings over the LDR bearings in the displacement range of 75 to 175 mm, corresponding to 

125% and 290% shear strain respectively.  One likely explains for this observation in that the 

lead core yields soon after the bearing is sheared and therefore contributes no additional stiffness 

to the system, limiting the affect on the stability behavior in the range of displacements for which 

critical points could be determined.  However, because the lead core does impact the calculation 

of crP , the two curves would deviate considerably as they approach zero lateral displacement.   

6.3 Conclusions 

Through these investigations several important observations have been made with respect to the 

stability behavior of  LDR and LR bearings.  It has been shown that the critical load reduces with 

increasing lateral displacement, while the bearing is subjected to the largest axial load demands 

due to overturning effects while simultaneously being at the largest displacement.   

It was demonstrated experimentally that the stability behavior of elastomeric bearings is not 

enhanced through the addition of a lead core, so in order to meet requirements of the stability 
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limit state other solutions (such as the use of shape memory alloys) might need to be 

investigated.  The lead core has, however, been shown to impart path dependent behavior, 

suggesting further investigation will be needed when choosing between the constant 

displacement and constant axial force method and that correctly predicting the future loading 

scheme is important.  However, the inherently random nature of earthquakes makes the CDM 

(which provides more conservative solutions) a more attractive method. 

The investigation into the TSM has shown that the treatment of the reduction of the rotational 

stiffness is the overriding factor as to whether or not the TSM can be used to detect instability.  

The current, empirical approach for this reduction (Nagarajaiah and Ferrell 1999) does not 

appear to be generally applicable based on the comparison provided in Fig. 6.4.  The use of a 

mechanics based solution utilizing concepts from Iizuka (2000) might be appropriate if it can be 

properly applied within a solution scheme.   

The overlapping area method is inconsistent in its predictions between a LR and LDR bearing 

that were shown experimentally to exhibit similar stability behavior over the range of 

displacements studied.  As a result the OLAM predicts critical loads with different margins of 

safety against exceeding the stability limit state for the two bearing types.  Results from the FEA 

parametric study would suggest that this inconsistency is at least in part due to the OLAM’s lack 

of incorporating the effect the shape factor (or alternatively the rubber layer thickness and 

diameter) into its predictions and that an improved formulation that includes these properties 

would be ideal.  The incorporation of the λ factor derived from the parametric study (or 

something similar) might provide a method for making the OLAM generally applicable and 

more accurate, though another factor will be required to account for lead cores. 

6.4 Future Study 

Future work regarding the stability of LDR and LR bearings should further investigate the use of 

a mechanics based approach to the reduction in the rotational stiffness used in the Koh-Kelly 

two-spring model.  Modeling the reduction with a rigorous basis might lead to the development 

of a closed form solution that can be used efficiently in design.  In addition to the utilization of 

concepts from Iizuka (2000) it might prove useful to incorporate observed effects on the 

reduction in critical load from the two-dimensional parametric study into such a solution (or a 
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modified version of the overlapping area method) so that it could be generally applicable for a 

wide range of bearing geometries and materials.  Ultimately, however, this will require a more 

fundamental understanding of the general instability problem that is being observed in 

elastomeric bearings. 
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APPENDIX A 

Supplemental Parametric Study Results 

As it was discussed in Chapter 3, a parametric study was performed to better understand the 

importance of several geometric factors (shape factor, bearing width, and rubber layer thickness) 

on stability behavior of the bearing.  A summary of the models generated along with 

corresponding notes is presented again in Table 1. 

Table A.1 Model Bearings 
Model Number S b (in.) tr (in.) n h (in.) ts (in.) Pcr (k) #Elements Runtime2 (s) 

b15tr250n20 30.00 15 0.250 20 7.375 0.125 109.50 21,240 760.12 

b15tr375n20 20.00 15 0.375 20 9.875 0.125 48.67 10,620 461.20 

b15tr500n20 15.00 15 0.500 20 12.375 0.125 27.37 8,496 364.63 

b15tr625n20 12.00 15 0.625 20 14.875 0.125 17.52 9,440 389.45 

b10tr375n20 13.33 10 0.375 20 9.875 0.125 14.42 11,328 728.17 

b12tr375n20 16.00 12 0.375 20 9.875 0.125 24.92 18,880 542.43 

b20tr375n201 26.67 20 0.375 20 9.875 0.125 115.36 3,360 602.67 

b15tr375n5 20.00 15 0.375 5 2.375 0.125 194.67 6,960 225.07 

b15tr375n10 20.00 15 0.375 10 4.875 0.125 97.33 10,560 440.52 

b15tr375n15 20.00 15 0.375 15 7.375 0.125 64.89 14,160 654.40 

b15tr1500n20 5.00 15 1.500 20 32.375 0.125 3.04 3,540 167.13 

b375tr375n20 5.00 3.75 0.375 20 9.875 0.125 0.76 3,540 112.31 

b15tr3000n20 2.50 15 3.000 20 62.375 0.125 0.76 1,770 97.170 

b187tr375n20³ 2.50 1.875 0.375 20 9.875 0.125 0.09 1,770 105.38 

1The input file for b20tr375n20 is called S20b1500p10. 
2The runtime is associated with the time it took to run each model using the LIONX cluster in 
Penn State’s High Performance Computer network using 8 cpus in parallel. 
³No critical points were obtained from this model. 
 
Each model was run in ABAQUS at nine axial load levels varying from 0.1 crP  to 0.9 crP .  When 

possible critical points were recovered, however, in several instances critical points were not 

observed due to an axial load that was too small in the displacement range of interest or failure of 

models to run due to solver issues in ABAQUS that were unable to be resolved. 
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Figure A.1 Stability curve for b15tr250n20 

 

Figure A.2 Stability curve for b15tr375n20 



79 
 

 

Figure A.3 Stability curve for b15tr500n20 

 

Figure A.4 Stability curve for b15tr625n20 



80 
 

 

Figure A.5 Stability curve for b10tr375n20 

 

Figure A.6 Stability curve for b12tr375n20 



81 
 

 

Figure A.7 Stability curve for b20tr375n20 

 

Figure A.8 Stability curve for b15tr375n5 
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Figure A.9 Stability curve for b15tr375n10 

 

Figure A.10 Stability curve for b15tr375n15 
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Figure A.11 Stability curve for b15tr1500n20 

 

Figure A.12 Stability curve for b375tr375n20 
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Figure A.13 Stability curve for b15tr3000n20 
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APPENDIX B 

Data Processing 

Data obtained from the stability testing at SUNY Buffalo was recorded into 71 electronic .ASC 

and .dat files.  MATLAB was employed to reduce the data noise, zero correct, calibration 

correct, and gather the most relevant information concisely.  The script (attached at the end of 

this section) was used to read in each file, add the weight of the steel plates (13.46 kips) which 

was not accounted for by the delta P cell to the axial load data, zero correct shear data (axial and 

displacement required no correction), then use a weighted average and decimating routine to 

remove noise and reduce data to a manageable size.  Three different shear values were used for 

zero correction as each of the three bearing testing cycles began with a different residual shear 

reading.  Figure B.1 shows an example (DP148_43d) with the decimated, weighted average 

plotted over the raw data.  Figure B.2 shows the same graph after the script executes the 

‘relevant data’ routine which only reads data where the specified displacement has been reached 

until the loading cycle ends.  

 

Figure B.1 Sample result from decimating routine 
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Figure B.2 Sample result from the ‘relevant data’ routine 
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MATLAB Script 

%J.Weisman  
%07/13/09 
%Data Processing for Files from SUNY Buffalo 
  
clear all; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%TESTS With .ASC 
files%%%%%%%%%%%%%%%%%%% 
Testsuf='_dat_1.ASC'; 
%Testsuf='.ASC'; 
FileName=['dg100-00.dat']; 
%FileName=['dg100-14.dat']; 
%FileName=['dg100-20.dat']; 
%FileName=['dg150-00.dat']; 
%FileName=['dg150-14.dat']; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%%%%%%%%%%%BEARING 1 CRITICAL TESTS%%%%%%%%%%%%% 
%FileName=['DP127_~1_20090707_142047_0001_MD1' Testsuf];% 
%FileName=['DP138_47_20090707_143130_0001_MD1' Testsuf];% 
%FileName=['DP148_43_20090707_143737_0001_MD1' Testsuf];% 
%FileName=['DP148_43b' Testsuf];% 
%FileName=['DP138_47b' Testsuf];% 
%FileName=['DP127_50b' Testsuf];% 
%FileName=['DP127_50c' Testsuf];% 
%FileName=['DP138_47c' Testsuf];% 
%FileName=['DP148_43c' Testsuf];% 
%FileName=['DP127_50d' Testsuf];% 
%FileName=['DP138_47d' Testsuf];% 
%FileName=['DP148_43d' Testsuf];% 
%FileName=['DP169_36' Testsuf];% 
%FileName=['DP191_32' Testsuf];% 
%FileName=['DP212_27' Testsuf];% 
%FileName=['DP085_68' Testsuf];% 
%FileName=['DP064_73' Testsuf];% 
%FileName=['DP254_21' Testsuf];% 
%FileName=['DP254_21b' Testsuf];% 
%FileName=['DP233_24' Testsuf];% 
%FileName=['DP275_18' Testsuf];% 
%FileName=['DP297_18' Testsuf];% 
%FileName=['DP265_20' Testsuf];% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%FileName=['DP244_20' Testsuf];% Not a completed test. 
%%%%%%%%%%SHEAR TESTS, Bearing 1, LBTM%%%%%% 
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%FileName=['DS168_13' Testsuf]; 
%FileName=['DS168_13b' Testsuf]; 
%FileName=['DS168_45' Testsuf]; 
%FileName=['DS168_60' Testsuf]; 
%FileName=['DS168_90' Testsuf]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%%%%%%%%%%%%%%%%%%%BEARING 2 TESTS%%%%%%%%%%%%%% 
%FileName=['DP180_34' Testsuf];%2 
%FileName=['DP201_29' Testsuf];%2 
%FileName=['DP117_55' Testsuf];%2 
%FileName=['DP106_58' Testsuf];%2 
%FileName=['DP095_65' Testsuf];%2 
%FileName=['DP085_68_2' Testsuf];%2 
%FileName=['DP074_71' Testsuf];%2 
%FileName=['DP127_50_2' Testsuf];% 
%FileName=['DP169_36_2' Testsuf];%2 
%FileName=['DP222_25' Testsuf];%2 
%FileName=['DP138_47_2' Testsuf];%2 
%FileName=['DP148_43_2' Testsuf];%2 
%FileName=['DP159_40_2' Testsuf];%2 
%FileName=['DP191_32_2' Testsuf];%2 
%FileName=['DP212_27_2' Testsuf];%2 
%FileName=['DP233_24_2' Testsuf];%2 
%FileName=['DP244_23_2' Testsuf];%2 
%FileName=['DP254_21_2' Testsuf];%2 
%FileName=['DP265_20_2' Testsuf];%2 
%FileName=['DP275_18_2' Testsuf];%2 
%FileName=['DP032_80_2' Testsuf];%2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%%%%%%%%%%%%%%%%%%%%%LR TESTS%%%%%%%%%%%%%%%%%%% 
%FileName=['DLP032' Testsuf]; 
%FileName=['DLP064' Testsuf];%%%CHANGE TO _dat_2.ASC 
%FileName=['DLP085' Testsuf]; 
%FileName=['DLP106' Testsuf]; 
%FileName=['DLP127' Testsuf]; 
%FileName=['DLP148' Testsuf]; 
%FileName=['DLP169' Testsuf]; 
%FileName=['DLP191' Testsuf]; 
%FileName=['DLP212' Testsuf]; 
%FileName=['DLP233' Testsuf]; 
%FileName=['DLP254' Testsuf]; 
%FileName=['DLP275' Testsuf]; 
%FileName=['DLP297' Testsuf]; 
%FileName=['DLP042' Testsuf]; 
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%FileName=['DLS169_14' Testsuf]; 
%FileName=['DLS169_50' Testsuf]; 
  
 
 
%%%%%%%%%%%%%%%%%%%%%%%OPEN 
FILES%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%fid = fopen([FileName FileExtension]); % Open the file.  If this returns a -1, we did not open 
the file successfully. 
fid = fopen(FileName); 
if fid==-1 
  error('File not found or permission denied, recheck name and try again'); 
end 
  
%%%%%%%%%%%%%%%%%%INITIALIZE LOOP 
VARIABLES%%%%%%%%%%%%%%%%%%%%%%% 
max_line=0; 
nrows=0; 
ncols=0; 
data=[]; 
  
%%%%%%%%%%%%%%%%START PROCESSING 
FILES%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
line = fgetl(fid); 
if ~isstr(line) 
  disp('Warning: file contains no header and no data') 
end; 
[data, ncols, errmsg, nxtindex] = sscanf(line, '%f');  
%ERRMSG is an optional output argument that returns an error message string if an error 
occurred or an empty string if an error did not occur.  
%NEXTINDEX is an optional output argument specifying one more than the number of 
characters scanned in S. 
  
while isempty(data)|(nxtindex==1) 
  nrows=nrows+1; 
  max_line = max([max_line, length(line)]); 
  % Create unique variable to hold this line of text information. 
  % Store the last-read line in this variable. 
  eval(['line', num2str(nrows), '=line;']); 
  line = fgetl(fid); 
  if ~isstr(line) 
    disp('Warning: file contains no data') 
    break 
    end; 
  [data, ncols, errmsg, nxtindex] = sscanf(line, '%f'); 
  end % while 
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data = [data; fscanf(fid, '%f')]; 
fclose(fid); 
  
header = setstr(' '*ones(nrows, max_line)); 
for i = 1:nrows 
  varname = ['line' num2str(i)]; 
  if eval(['length(' varname ')~=0']) 
    eval(['header(i, 1:length(' varname ')) = ' varname ';']); 
    end 
  end  
   
eval('data = reshape(data, ncols, length(data)/ncols)'';', ''); 
  
%%%%%%%%%Increase P by calibration factor, CF=1.185 and add self-weight%%%%%% 
CF=1.185; %from actuator load cell vs reference load cell data see cal2_dat_2 and cal1_dat_1 
SW=13.460; %self-weight of plates in kips, 2.6*3+2.584+3.076 
data(:,5)=data(:,5)/CF; 
  
%%%%%%%%%%%%%%%%Zero Correct Axial Load, Displacement, and Shear 
Force%%%%%%%% 
zeroshear1=1.1165167E-001; 
zeroshear2=3.7961567E-001; 
zeroshear3=7.7039650E-001; 
  
for i=1:length(data) 
datao(i,1)=data(i,5)-data(1,5)-SW; %axial load 
datao(i,2)=data(i,2)-data(1,2); %displacement 
datao(i,3)=data(i,3)-zeroshear3; %shear 
i=i+1; 
end; 
  
%%%%%%%%%%%%%%%%%WEIGHTED 
AVERAGE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
window=51; NCol=1;  %1=> axial load, 2=>displacement, 3=>shear 
y=datao(:,NCol); 
  
n=(window+1)/2; 
w=zeros(1,window); 
for i=1:n 
   w(i)=i/n; 
   w(window-(i-1))=i/n; 
end 
clear i; 
  
  



91 
 

a=(window-1)/2; 
  
for i=1:length(y)-window 
   if i<=window 
      tmp(i)=0.5*y(i,1)+0.5*y(i+1,1); 
   else 
      tmp(i)=w*y(i-a:i+a,1)/sum(w); 
       
      %tmp(i)=(w(1)*y(i-3,1)+w(2)*y(i-2,1)+w(3)*y(i-
1,1)+w(4)*y(i,1)+w(5)*y(i+1,1)+w(6)*y(i+2,1)+w(7)*y(i+3,1))/sum(w); 
   end 
end 
clear i; 
  
%fileout2='Processed Graph' 
%f2=figure 
%hold on 
%grid on 
%plot(datao(:,NCol),y,'r') 
%plot(datao(1:length(y)-window,NCol),tmp,'b') 
%print(f2,'-dpng',fileout2) 
%axis([0,30,0,50]) 
  
  
%out=zeros(length(y)-window,2); 
%out(:,1)=data(1:length(y)-window,1); 
%out(:,2)=tmp'; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
NCol2=2;  %1=> axial load, 2=>displacement, 3=>shear 
y2=datao(:,NCol2); 
  
n=(window+1)/2; 
w=zeros(1,window); 
for i=1:n 
   w(i)=i/n; 
   w(window-(i-1))=i/n; 
end 
clear i; 
  
  
a=(window-1)/2; 
  
for i=1:length(y2)-window 
   if i<=window 
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      tmp2(i)=0.5*y2(i,1)+0.5*y2(i+1,1); 
   else 
      tmp2(i)=w*y2(i-a:i+a,1)/sum(w); 
       
      %tmp(i)=(w(1)*y(i-3,1)+w(2)*y(i-2,1)+w(3)*y(i-
1,1)+w(4)*y(i,1)+w(5)*y(i+1,1)+w(6)*y(i+2,1)+w(7)*y(i+3,1))/sum(w); 
   end 
end 
clear i; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
NCol3=3;  %1=> axial load, 2=>displacement, 3=>shear 
y3=datao(:,NCol3); 
  
n=(window+1)/2; 
w=zeros(1,window); 
for i=1:n 
   w(i)=i/n; 
   w(window-(i-1))=i/n; 
end 
clear i; 
  
  
a=(window-1)/2; 
  
for i=1:length(y3)-window 
   if i<=window 
      tmp3(i)=0.5*y3(i,1)+0.5*y3(i+1,1); 
   else 
      tmp3(i)=w*y3(i-a:i+a,1)/sum(w); 
       
      %tmp(i)=(w(1)*y(i-3,1)+w(2)*y(i-2,1)+w(3)*y(i-
1,1)+w(4)*y(i,1)+w(5)*y(i+1,1)+w(6)*y(i+2,1)+w(7)*y(i+3,1))/sum(w); 
   end 
end 
clear i; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%DATA 
DECIMATION%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k=1; 
for j=1:4:length(tmp) %take every 4th point starting at 1 i.e. 1,5,9 etc.. 
    datad(k,1)=tmp(j); %axial load 
    datad(k,2)=tmp2(j); %displacement 
    datad(k,3)=tmp3(j); %shear 
    k=k+1; 
end; 
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%%%%%%%%%%Remove Headers and Save to a 
.txt%%%%%%%%%%file%%%%%%%%%%%%%%%%%%%%%%%%%% 
FileExtension2='.txt'; 
FileOut(:,1)=datad(:,1); %Decimated, Weighted Axial 
FileOut(:,2)=datad(:,2); %Decimated, Weighted Displacement 
FileOut(:,3)=datad(:,3); %Decimated, Weighted Shear 
save(['1Processed ' FileName FileExtension2], 'FileOut','-ASCII', '-DOUBLE', '-TABS'); 
  
disp(['1Processed ' FileName]) 
 
%%%%%%%%%%%%%STAGE 2 RELEVANT DATA 
REPROCESSING%%%%%%%%%%%%%%%%% 
  
minindexfind=find(datad(:,1)<-13.75); %FINDS RELEVANT DATA 
minindex=minindexfind(1); 
maxindex=find(datad(:,1)==min(datad(:,1))); 
  
datar(:,1)=datad(minindex:maxindex,1); %axial 
datar(:,2)=datad(minindex:maxindex,2); %displacement 
datar(:,3)=datad(minindex:maxindex,3); %shear 
  
%%%%%%%%%%Remove Headers and Save to a 
.txt%%%%%%%%%%file%%%%%%%%%%%%%%%%%%%%%%%%%% 
FileExtension2='.txt'; 
FileOut2(:,1)=datar(:,1); %Relevant Axial 
FileOut2(:,2)=datar(:,2); %Relevant Displacement 
FileOut2(:,3)=datar(:,3); %Relevant Shear 
save(['1Reprocessed ' FileName FileExtension2], 'FileOut2','-ASCII', '-DOUBLE', '-TABS'); 
%FILE WITH RELEVANT INFORMATION 
  
disp(['1Reprocessed ' FileName]) 
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APPENDIX C  

Supplemental Experimental Stability Data 

Stability data not shown in Chapter 4 (Experimental Investigation) is presented.  The shear force 

– axial load curves for the low damping rubber (LDR) and lead-rubber (LR) bearing are shown 

in Figs. C.1 and C.2 respectively.  Figures C.3-C.7 provide individual LDR equilibrium paths 

while Figs. C.9-C.16 provide individual LR equilibrium paths.  On each of these figures the 

critical displacement and axial load are indentified, as well as the coefficients of the best fit 

polynomial.  Figs. C.8 and C.17 show all equilibrium paths for the LDR and LR bearing 

respectively to demonstrate the reduction in axial load with increasing shear force.  

It should be noted that in the plotting of the LR bearing stability curve the equilibrium paths 

from shear forces of 25.3 kN and 27.0 kN were disregarded as the data collected did not allow 

for reasonable curve fitting (there is a near linear agreement between data points).  Moreover, the 

data obtained from the test conducted at 25 mm was neglected in the determination of stability 

points as the results suggested the bearing was damaged. 

 

Figure C.1 LDR shear force – axial load plot 
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Figure C.2 LR shear force – axial load plot 

 

 

 

Figure C.3 LDR equilibrium path for F=0.4 kN 

 



96 
 

 

 

Figure C.4 LDR equilibrium path for F=6.0 kN 

 

 

 

Figure C.5 LDR equilibrium path for F= 9.4 kN 
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Figure C.6 LDR equilibrium path for F=14.9 kN 

 

 

 

Figure C.7 LDR equilibrium path for F=20.7 kN 
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Figure C.8 All LDR equilibrium paths  

 

 

 

Figure C.9 LR equilibrium path for F= 9.0 kN 
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Figure C.10 LR equilibrium path for F=11.0 kN 

 

 

 

Figure C.11 LR equilibrium path for F=15.0 kN 
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Figure C.12 LR equilibrium path for F=18.0 kN 

 

 

 

Figure C.13 LR equilibrium path for F=22.0 kN 
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Figure C.14 LR equilibrium path for F=24.0 kN 

 

 

 

Figure C.15 LR equilibrium path for F=25.3 kN 
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Figure C.16 LR equilibrium path for F=27.0 kN 

 

 

 

Figure C.17 All LR equilibrium paths  

 

 

 


