
The Pennsylvania State University

The Graduate School

GRAPH THEORY DRIVEN TOOLPATH DESIGN FOR
MATERIAL EXTRUSION ADDITIVE MANUFACTURING

A Thesis in

Mechanical Engineering

by

Logan J. Hutton

© 2024 Logan J. Hutton

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

May 2024

The thesis of Logan J. Hutton was reviewed and approved by the following:

Joseph Bartolai

Applied Research Laboratory

Assistant Research Professor

Thesis Co-Advisor

Darren C. Pagan

Assistant Professor of Materials Science and Mechanical Engineering

Thesis Co-Advisor

Nicholas Meisel

Associate Professor of Engineering Design and Mechanical Engineering

Simon W Miller

Applied Research Laboratory

Associate Professor of Architectural Engineering

Robert Kunz

Professor and Associate Head for Graduate Mechanical Engineering

ii

Abstract

Polymer material extrusion (MEX) additive manufacturing (AM) toolpath design
has been driven by toolpath algorithms that are robust and computationally inexpen-
sive. These contemporary algorithms fail to minimize travel moves – toolpaths where
no material is deposited. It has been shown that continuous toolpaths, toolpaths that
have no travel moves, increase the bond strength between adjacent roads deposited.
This increase in bond strength leads to increased part strength when continuous
toolpaths are used throughout the part. A reduction in travel moves is especially
impactful in pellet-fed MEX AM systems, where precise control of the flow rate is
not possible, leading to larger and more frequent defects at start-stop locations. This
thesis presents a graph theory based toolpath generation algorithm, entitled GRATER
– the GRAph Theory based slicER – that when compared to contemporary toolpath
generation softwares, or “slicers”, reduces travel moves by up to 95%, reduces travel
distance by a factor of 3, and reduces build time by approximately 25%. Further
advantages of continuous toolpaths are shown for parts which have regions within a
layer built using different processing parameters, such as infill density. Contemporary
slicers consider these regions independently, using discontinuous toolpaths to deposit
material within the layer. By generating a continuous toolpath for the layer containing
varying process parameters, the effective ultimate stress of parts is shown to increase
33% under various strategies.

iii

Table of Contents

List of Figures vi

List of Tables viii

List of Algorithms ix

List of Code Snippets x

Nomenclature xi

Acknowledgements xiii

1 Introduction & Motivation 1
1.1 Introduction of MEX AM . 2

1.1.1 Desktop Machines from Hobbyist to Industrial 3
1.1.2 Large Format MEX Machines 3

1.2 MEX AM Software . 5
1.2.1 Slicers . 5
1.2.2 Firmware . 7

1.3 Bonding Mechanisms in MEX AM . 8
1.4 MEX AM Toolpath Design . 9
1.5 Graph Theory . 11

2 GRATER: GRAph Theory based slicER 14
2.1 Introduction . 14
2.2 Main . 16
2.3 Slicing . 16
2.4 Perimeter Generation . 18
2.5 Perimeter Sorter . 20
2.6 Perimeters To Paths . 20
2.7 Infill Line Generator . 21
2.8 Graph Generator . 23

iv

2.9 Infill Path Finding . 25
2.10 Path Combiner . 28
2.11 Gcode . 28

3 GRATER Results 32
3.1 Desktop Benchmark Testing . 32
3.2 Large-Scale Benchmark Performance 33
3.3 GRATER Performance Metrics . 34
3.4 Toolpath Quality . 38
3.5 Summary . 41

4 Effects of a Continuous Toolpath on Integrating Dense and Sparse
Infill 42
4.1 Methods . 42
4.2 Toolpath Combination Strategies . 44
4.3 Results & Discussion . 49
4.4 Summary . 54

5 Contributions & Future Work 58
5.1 Contributions . 58
5.2 Limitations . 60
5.3 Future Work . 60

Appendix 62

References 69

v

List of Figures

1.1 World’s Largest 3D Printer . 4
1.2 STL being sliced . 7
1.3 Pressure Advance . 9
1.4 Polymer Interface Healing . 10
1.5 Peterson Graph . 12
1.6 Adjacency list & its associated Graph 12

2.1 GRATER Structure . 15
2.2 GRATER Contours . 18
2.3 Perimeter Generation . 20
2.4 Infill Generation . 23
2.5 Path Finding . 27
2.6 Dijkstra Example . 27
2.7 Longest Minimal Path . 28

3.1 Small Scale Results . 32
3.2 Large Scale Results . 34
3.3 Travel Moves Comparison . 35
3.4 Test Part . 36
3.5 Build Times Comparison . 36
3.6 Travel Distance Comparison . 37
3.7 Gcode vs Point Cloud Comparison 39
3.8 Geometric Deviation . 41

4.1 Sparse and Dense Regions . 43
4.2 Infill Spacing . 46
4.3 Continuous and Two Continuous . 47
4.4 Weak Sparse and Out-In . 47
4.5 Independent, Cura, and Slic3r . 48
4.6 Effective ultimate stress boxplots . 51
4.7 Nominal strain at break boxplots . 51
4.8 Representative Failed Tensile Specimens 52

vi

4.9 Slic3r Stress vs Strain . 53
4.10 Independent and Cura print order . 54
4.11 Ashby chart comparing infill combination strategies 55
4.12 Independent infill Ashby-style comparison 56
4.13 Continuous infill Ashby style comparison 56

A.1 GRATER - 1 . 64
A.2 GRATER - 2 . 65
A.3 ORNL Slicer - 1 . 66
A.4 ORNL Slicer - 2 . 67
A.5 Cura - 1 . 68

vii

List of Tables

2.1 User Inputs to GRATER . 17

3.1 Point Cloud Comparison . 40

4.1 Printing Parameters . 43
4.2 Tensile Test Results . 50
4.3 Tukey comparison . 52

viii

List of Algorithms

2.1 Perimeter Generation . 19
2.2 Perimeter Sorter . 21
2.3 Perimeter To Paths . 22
2.4 Infill Line Generator . 24
2.5 Graph Generator . 25
2.6 Infill Path Finding . 26
2.7 Path Combiner . 30
2.8 Gcode . 31

3.1 Gcode to Point Cloud Comparison 40

ix

List of Code Snippets

3.1 The MATLAB script used to calculate the distance GRATER traveled. . 38
A.1 The MATLAB script used to calculate the distance Cura traveled. . . . 62
A.2 The MATLAB script used to calculate the distance ORNL Slicer traveled. 63

x

Nomenclature

Symbols

β number of brims
ϵin Extrusion width of infill [mm]
ϵp Extrusion width of perimeter [mm]
η number of layers
θ perimeter starting angle
λin weight of the infill edges
λp weight of the perimeter edges
µ infill percentage
ν angle from vector
ρ number of perimeters
σ layer height [mm]
τbed printer’s bed temperature
τhot printer’s nozzle temperature
ϕ infill overlap percentage
χ number of contours
ω infill angle

xi

Acronyms

2D Two Dimensional
3D Three Dimensional
AM Additive Manufacturing / Additively Manufactured
MEX Material Extrusion

Typeface

Teletype Algorithms not developed in this research
Bold Algorithms or toolpaths developed in this research
Underline User-defined options in GRATER
Small Caps MATLAB or open source functions used in GRATER

xii

Acknowledgements

I would like to thank my friends at The Pennsylvania State University Applied
Research Laboratory. In particular I would like to thank Simon Miller, Justin Valenti,
Callie Zawaski, Thomas Jones, Zachary Renda, and Joseph Fisher for their guidance,
willingness to listen, and extensive technical support. I would also like to express
thanks for those whom I shared the Bull Pen with: Andrew Loughran, Victoria Lenze,
and Christie Hasbrouck. Their friendship and support will not be forgotten. Many
thanks to my readers for taking the time to review this thesis and providing helpful
feedback. Last but not least, a special thanks to Joseph Bartolai for your guidance
and support.

I would like to thank my family for their understanding, support, and love. A
special thanks to my fiancée for braving this journey with me. I would also like to
thank my dog, Dobby, for knowing when I needed a break and demanding a walk.

This thesis is based on work funded by Penn State’s Applied Research Laboratory
(ARL) through the Walker Scholar Program. The opinions, findings, conclusions,
and recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of Penn State ARL or collaborators.

xiii

Remember - the enemy’s gate is down.

Ender, Ender’s Game

xiv

Chapter 1
Introduction & Motivation

The polymer MEX AM process is often relegated to prototyping due to its perceived
poor and/or unpredictable mechanical properties of parts. Modern toolpath, generated
instructions that define movement of the system such as the path, location, speed, and
direction, algorithms were developed to be computationally inexpensive and robust,
but are ignorant to the performance of the final part or the physics of the AM process.
For example, modern toolpath algorithms fail to consider the bonding mechanisms of
polymers in MEX AM. Holistically considering the physics of the AM process during
the toolpath generation step is non-trivial as MEX AM slicers can change printing
parameters for any number of defined regions within a part [1, 2]. The most common
use for defining one of these regions is to define regions of sparse and dense infill to
strategically strengthen or lighten the as-built part. When parameters that directly
affect the toolpath are changed in one of these regions, the slicer will independently
develop the toolpaths for each region. This leads to the part being fabricated as if it
were multiple parts on the build plate that just happen to be touching one another. The
boundaries of these adjacent regions are not printed sequentially, leading to a large
temperature difference between the road being extruded and the adjacent, previously
extruded road. The temperature difference between adjacent roads (also known as
extrudate) can lead to poor bonding between the roads and is often the weak spot in
the part, thereby limiting the utility of defining regions of varying parameters in a
single part [3–6]. This is more simply stated as defining a region of dense infill at a
high-stress region in a part does not increase the strength of the region as much as is
possible due to the defects at the boundary of the dense infill region [3]. Furthermore,

1

the regions are deposited independently with no transition or load paths between
adjacent regions, which is another toolpathing problem that diminishes the possible
strength of the produced part.

Travel moves in the MEX AM process are toolpaths that stop extruding (often
with a retraction command), travel to another area of the part, then resume extruding.
These travel moves can cause defects called travel defects, which are uncommon on
filament-fed MEX AM systems due to the precise extrusion control that the short
melt zone provides and an accurate model of pressure affects (see Section 1.2.2 and
Figure 1.3 for a discussion on extrusion control in filament-fed MEX AM systems) [7].
Precise extrusion control allows filament systems to stop extruding during travel moves
without stringing molten filament between travel points. Screw-fed extrusion systems
found on large-format MEX AM systems do not have precise extrusion control as the
systems cannot quickly or reliably stop then start extruding for travel moves due to
the highly non-linear extruder dynamics [8]. This lack of extrusion control greatly
increases the chance a travel move can cause a travel defect as well as cause stringing

— a phenomenon that occurs when the molten polymer is still under pressure causing
it to ooze out of the print nozzle during travel moves. Stringing defects can also
occur when the filament continues to flow from the nozzle while the extruder moves
to another region of the print thereby inducing a travel defect as well.

1.1 Introduction of MEX AM

The ASTM / ISO 52900 standard defines the MEX AM process as an “additive
manufacturing process in which material is selectively dispensed through a nozzle
or orifice” [9]. MEX AM can be more intuitively explained by drawing an analogy
to building a castle using a hot glue gun where you build the castle one layer at a
time with the molten glue. These machines are the most ubiquitous by far as the
process technology is mature, the range of materials processable is wide, the process
has no hazardous powder or resin like other AM processes use, and the upfront and
operating cost is low [10]. Entry-level machines cost around $150 at the hobbyist level
and industrial machines capable of producing engineering-grade materials being in
the six-figure range [11].

2

1.1.1 Desktop Machines from Hobbyist to Industrial

In 2005, Dr. Adrian Bowyer started the Replicating Rapid Prototyper (RepRap)
project to bring inexpensive 3D printers to the masses [12]. RepRap is an open-source
project to create self-replicating 3D printers and is still alive today with open-source
printers being designed such that they can print most of their own parts. The patent
for fused deposition modeling (FDM) expired in the year 2009 and, essentially overnight,
the price for a MEX machine dropped dramatically from $10,000 to $1,000; hobbyist
MEX AM machines can be bought today for only $150 [11,12]. Numerous companies
have entered the hobbyist MEX market, while passionate groups of hobbyists, such as
VORON Design, have created open-source designs that anyone can contribute to [13].
Most of the companies were created by hobbyists who believed in keeping everything
open-source – the hardware and software. This openness led to the rapid development
of software tools for MEX AM such as the popular hobbyist tool from Ultimaker
called Cura that is commonly forked by companies for their industrial machine [14].
It is also common in the hardware space for commercial companies to use open-source
motion systems and micro-controllers. That said, not all of the innovation in the MEX
AM space is happening at the hobbyist / open-source level. The capital required
to research and build a large-format MEX machine has limited these machines to
commercial enterprises.

1.1.2 Large Format MEX Machines

Big Area Additive Manufacturing (BAAM) has a variety of other names such as
Large Area Additive Manufacturing (LAAM) or Wide Area Additive Manufacturing
(WAAM) — WAAM has fallen out of fashion due to confusion with Wire Arc Additive
Manufacturing that shares the same acronym. BAAM machines have “big” build
volumes and use pellets for the material feedstock as a cost-effective alternative to
filament, see Figure 1.1 [15]. Filament MEX systems have a positive displacement
extrusion system where the volume of filament pushed into the hotend is assumed to
be directly correlated to the volume of molten plastic extruded. By assuming the cross
section of the extrudate is a stadium, the slicer can accurately model the dimensions of
the extruded road. [2,16]. Pellet MEX systems are, however, not positive displacement
with respect to the volume of plastic extruded. This small difference has created a
litany of issues including the development of controller strategies that attempt to

3

Figure 1.1: World’s largest 3D printer at UMaine’s Advanced Structures and
Composites Center with a build volume of 100×22×10 feet, reproduced
from [17].

correlate changes in screw RPM to changes in the volume of plastic extruding [8]. In
practice, this limits pellet systems to empirically determining parameters such as bead
width, screw RPM, and layer height for a steady state flow rate regime [16]. The print
quality degrades when not at a steady state, this can include decelerating for sharp
corners or extrusion starts and stops [8]. The inability for precise extrusion control
means that pellet systems cannot retract to stop extruding molten plastic and travel
as filament systems are able. This small difference leads to challenges in material
deposition consistency, mechanical properties, geometric accuracy, and in almost every
aspect of process planning. Compounding this effect is that conventional toolpath
algorithms do not attempt to minimize the travel moves, which are known to lead
to defect-riddled parts when used in conjunction with pellet systems. These defects
are known as travel defects. The tools developed in Chapter 2, seek to reduce travel
moves and therefore travel defects.

4

1.2 MEX AM Software

There are two software components to most MEX AM machines: the slicer and the
firmware. The slicer is the software usually hosted on a separate computer to the MEX
AM system that translates the desired model (e.g., STL, CLI, AMF, and 3MF) into
Gcode (a programming language used to control machines and 3D printers) that the
firmware can read, interpret, and execute. The firmware takes in the Gcode that the
slicer generates and translates it into a buffered set of machine commands. Slicing and
path planning are integral for the MEX AM process as they are the means by which
a desired design becomes a set of instructions that can be fabricated. Methods for
slicing are reliable and robust, but toolpath planning requires a number of decisions
(algorithmic, computational, and physical) to be taken into account to get the best
results possible from the MEX AM process. As such, this thesis focuses on the toolpath
algorithms to meet several of these needs. A brief aside into the details of slicers and
printer firmware is presented in the following subsections to provide additional context
into the individual components that will be built upon to develop the novel suite of
tools in Chapter 2.

1.2.1 Slicers

The process planning for most polymer MEX AM systems is carried out in the slicer,
which takes in the desired object model and performs a number of tasks before the
model is ready to be printed. This sequence of tasks can be divided into four routines:
(1) orienting and positioning (often user-driven), (2) dividing the model into 2D layers
(slicing), (3) assembling those cut layers into polygons, and (4) planning the printer’s
toolpath [10]. The first step is elementary if user-driven and is used to position the part
into the MEX AM systems’ build volume and address many design for AM principles,
e.g., overhang angles and material anisotropy. Slicing, the second routine, splits the
model into 2D Layers using parallel-to-the-build plate planes that are intersected
with the model. The spacing of these planes is commonly a constant, user-specified
distance called the “layer height”; however, algorithms do exist to dynamically vary
the distance between the parallel planes [10]. Most slicing algorithms assume the
model is an unordered and unstructured mesh representation such as the ubiquitous
STL file format that represents the 3D model as a triangularly tessellated mesh [18].
The optimal mesh slicing algorithm is run in O(n + k + m) by only operating on

5

the set of triangles sliced by each plane, where n is the number of triangles, k is the
number of slicing planes, and m is the number of triangle-plane intersection [18].
Throughout the late 1990’s and early 2000’s, slicing algorithms got closer to optimal
runtime until Minetto et al. (2017) published an optimal algorithm that could handle
adaptive layer heights and creates the contours as part of the slicing process [18]. The
slicer must then organize the 2D intersections of the planes with the model into closed
polygons during the third step such that the inside and outside of the polygon are
noted. This is usually done by following the convention that perimeters of closed
polygons are clockwise while interior holes are counterclockwise. The fourth and
final step of generating toolpaths will be discussed at length in Section 1.4. In brief;
it consists of space-filling and toolpath planning routines specific to the MEX AM
process. The output of a slicer is a file containing machine readable instructions of
the toolpaths and various commands needed to build the part, usually in the form of
a Gcode file.

Gcode was invented and first used in the MIT Servomechanisms laboratory in
1958 during the research of computer numerical control (CNC) machining systems [19].
Gcode was initially known as the Automatically Programmed Tool (APT) and an
attempt was made to standardize Gcode with the RS-274 Electronic Industries Alliance
standard in 1962 and the ISO 6983 standard first published in 1982 [20]. The ISO
6983 standard failed to adequately define Gcode due to a variety of reasons such as:
the path of the cutter is with respect to the machine axis not part axis, semantics of
program statements left unclear, uni-directional flow of information making changes
on the shop floor impractical, and an incapability of handling splines, making Gcode
unusable for five plus axis machines [20,21]. This led to each vendor enhancing the
language in non-standard ways (called flavors of Gcode), combined with the rise of five
plus axis machines has seen Gcode replaced in new CNC machines. The novel suite of
tools in Chapter 2 are built to work with the widely used Marlin flavor of Gcode [22].

The most common slicers are open-source slicers that benefit from both hobbyist
creating new features in their free time and companies building on top of these open-
source slicers for their commercial machines. The licensing for these open-source
slicers often requires those who modify them to publish the changes forcing companies
to give back to the community when they use an open-source slicer [23]. One of
the most popular slicers is Ultimaker Cura, which as of 2019 had 500,000 unique
users per month and processes 1.4 million parts per week [24]. Another popular

6

Figure 1.2: A triangle mesh of the surface of the 3D object (an STL) and the 3D
object after being sliced. Reproduced from [18].

slicer is PrusaSlicer, a fork of one of the original open-source slicers, Slic3r [25].
PrusaSlicer quickly outgrew Slic3r with a dedicated team of developers overhauling
the code base from Perl to C++ and revamping the user interface, but PrusaSlcier and
Slic3r still merge features between each other [25]. Custom slicers from companies
that do not build off of an open-source slicer do exist, but the they act as a black-box
with no information about the unique toolpath algorithms used and little to no means
of modifying the Gcode before use.

1.2.2 Firmware

Firmware is a low-level software that controls a device’s hardware. For MEX AM
machines, the firmware translates the Gcode from the slicer into command signals for
the stepper motors, fans, heater, and any other miscellaneous hardware integrated into
the MEX AM system. As discussed earlier, Gcode is not standardized among vendors,
so each firmware is designed to translate a specific flavor of Gcode. The most popular
firmware flavor is called Marlin and its widespread adoption has driven its dictionary
to be the defacto standard [22]. Marlin grew out of the popular open-source CNC
firmware grbl and an early MEX AM firmware called Sprinter [22, 26,27]. Modern

7

firmwares will look ahead to determine cornering speeds between moves instead of
fully decelerating at the end of every movement command as well as smooth out
acceleration [7]. This helps mitigate disruptions to the steady state conditions that
pellet MEX AM printing parameters are empirically determined.

Firmware performs other computation on the Gcode to attempt to balance
commands versus actions in the open-loop control architecture of most MEX AM
systems. One such computation is the determination of material flow. In a filament
extrusion system, the deposition is considered positive displacement. This assumption
is largely true when in a steady state of constant extrusion. A change in the volume
of extrusion being pushed through the hot end pressure causes a lag in the volume of
filament extruded. Modern firmwares use a model called pressure advance to accurately
model the pressure effects in the extrusion system through a linear coefficient, see
Figure 1.3 [7]. This linear coefficient is empirically determined and controls how much
additional filament is used during accelerations and how much extra filament retracts
during accelerations. Future work could pair the tools built in Chapter 2 with a
modified pressure advance model for pellet MEX AM systems.

1.3 Bonding Mechanisms in MEX AM

The bonding mechanism in polymer MEX AM is driven by the thermal energy
between adjacent roads [28]. If the temperature at the interface of the two roads
drives the energy at the interface to or above the activation energy, then reptation
across the interface will occur [4, 29, 30]. Reptation, the snake-like movement of
polymer chains above the activation energy, entangles polymer chains across the
interface boundary [4, 30]. As the entanglement across the boundary approaches
the bulk entanglement of the bulk polymer, the interface strength approaches the
strength of the bulk polymer and is considered fully healed [4]. This interface healing
is depicted in Figure 1.4 which is reproduced from Grewell et al. (2007) [4]. The
speed of reptation is exponentially dependent on the interface energy and thus the
interface temperature [4, 30]. To maximize the strength of bonds between adjacent
roads in MEX AM, the roads should be deposited sequentially to minimize the time
the first deposited road has to cool. The infill combination strategies in Chapter 4
minimize the deposition times between adjacent roads with aspirations of increasing
bond strength in the polymer.

8

Figure 1.3: The pressure advance system models the extruder based on pressure, not
on the assumption that the system is a purely positive displacement system.
The pressure in the extruder increases when filament is pushed into the
extruder and the flow rate dominates the pressure needed to extrude the
molten plastic. The top figure depicts an extrusion move followed by
a travel move, the other two figures depict the commanded amount of
filament extruded and the actual amount of filament extruded without
pressure advance. Reproduced from [7].

1.4 MEX AM Toolpath Design

There have been various studies on how infill patterns, the structure and shape of the
material inside a part such as lines, grids, and gyroids, and relative density affect the
final part strength. Yadav et al. and, separately, Abbas et al. specifically looked at
the compressive strength of various infill patterns and found that it increased with
infill percentage regardless of tested infill pattern type [31,32]. A similar study of infill
parameters’ affect on tensile strength was conducted by Panzdzic et al., who found
that ultimate and yield strength increases with infill density for every infill pattern
tested [33]. The orientation of the part as printed and therefore the orientation of
the infill as-printed has a dramatic effect on part strength [34]. Varying the infill
pattern and percentage on a layer-by-layer basis to optimize the strength and weight
of a part was studied by Dave et al. [35]. It was found that at lower infill densities,
strength of the part can be optimized for specific loading scenarios by stacking specific
sequences of different infill patterns [35]. Mechanically interlocking infill has been

9

Figure 1.4: Polymer interface hearing when the interface is above the activation energy,
reproduced from [4].

used to improve the interface strength of multi-material parts up to the bulk strength
of the material [36].

There have been various attempts to create an algorithm that produces the optimal
toolpath, with optimal being defined as the toolpath that gives the highest strength
for a specific load case or the toolpath that completely fills space. Xia et al. (2020)
designed a stress-based toolpath algorithm that constructs toolpaths parallel with the
maximum principal stress directions with a depth-first search and then used Dijkstra’s
algorithm to minimize travel distance [37]. The limitation of Xia et al.’s (2020) work
is the algorithm only considers 2D complex shapes with a single load case [37]. Shaikh
et al. (2016) developed a toolpath algorithm that follows the Hilbert Curve, which is a
continuous space-filling fractal [38]. This approach is implemented in most slicers and
can be selected as the Hilbert Curve infill pattern. Yoo et al. (2020) used a Monte
Carlo Tree Search algorithm to efficiently fill space and reduce travel moves, but the
method was significantly slower than conventional space-filling toolpath algorithms [39].
Most recently Borish et al. (2023) developed a toolpath algorithm that generates a
single path for closed contours by using graph theory and topological hierarchy [40].

10

This thesis takes a holistic approach to toolpath design, aspiring to create toolpath
algorithms that reduce defects in parts and increase mechanical part properties.

ORNL Slicer 2 is an evolution of ORNL Slicer, which was the first purpose-
built slicing software for large-scale printing [41]. Slicer 2’s current approach for
travel moves is to try and minimize their affect on print quality by modifying the
beginning and ending of travel moves. For instance a Tip Wipe, which is a motion
used to wipe the tip of the nozzle and break away the extrusion bead, is implemented
at the beginning of travel moves [42]. This addressing of the symptoms caused by
travel moves is effective, enough to consistently get adequate parts, up to a point.
The tools presented in Chapter 2 seek to address the root of the problem, but future
work that combines both approaches could greatly improve the chronic inconsistency
of pellet MEX AM parts.

1.5 Graph Theory

Graph theory is a relatively new mathematical field that models the pairwise relation
between objects. A graph is defined by an ordered pair (V, E) where V is a finite,
nonempty set called vertices, and E is a set of unordered pairs of vertices called
edges [43]. A vertex u is adjacent to a vertex v if the unordered pair {u, v} is in E,
i.e., the vertices are connected to one another via the edge e ∈ E [44]. Graphs are
commonly presented visually by representing each node as a point in a plane and each
edge as a line connecting the vertices [45]. An example of this visual representation
can be seen in Figure 1.5, where each node is labeled with a number, and the edges
connecting the nodes are denoted as solid lines. An example of the set notation from
Figure 1.5 would be the edge between nodes 2 and 7 being denoted in the edge set E

as {2, 7} or as {7, 2} since edges are unordered pairs. The degree of a vertex is defined
as the number of incident edges (edges that connect to the node) [46]. For example,
every node in the Peterson graph, depicted in Figure 1.5, has a degree of 3.

The geometric position of the points, the path the edges take between nodes, and
the length of the edges (typically) hold no meaning. The graph is usually drawn such
that no edges intersect other edges, to aid in human readability [49]. A graph that can
be drawn without such intersection is defined as a planar embedding of that graph
and said graph is considered a planar graph [46]. A geometric graph is a graph whose
nodes are defined by geometric means [50]. For our purposes, we will be discussing

11

Figure 1.5: Peterson Graph with nodes labeled 1-10, reproduced from [47].

(a) Adjacency List (b) Graphical Representation

Figure 1.6: An adjacency list and its corresponding graphical representation. Each
node is defined in a separate list as a vertex in 2D space. Reproduced
from [48].

12

geometric graphs in the Euclidean plane, but other topological geometric graphs have
a deep depth of research and practical applications [50]. Nodes in this work will
be defined by their coordinates in a 2D coordinate space and the edges will be the
unordered pair of the indices of the nodes [48]. The edge list will be referred to as
the adjacency list; an example of an adjacency list and its graphical representation is
shown in Figure 1.6.

For practical applications it is often useful to assign a weight to the edges to
represent some cost or price, commonly referred to as distance in geometric graphs, to
traverse that edge. Weights are used in a variety of applications such as connecting
landline nodes or planning roads as they directly map to physical distances in the
system [43]. A common practical problem to solve with a weighted graph is to find
the shortest distance between two vertices within a graph. As such, a variety of robust
algorithms have been developed to solve the so-called shortest path problem [43]. A
popular greedy algorithm, a greedy algorithm is one that makes the locally optimal
choices at each decision step to solve the problem, to find the shortest distance is
Dijkstra’s algorithm. [44]. This heuristic strategy rarely results in the optimal solution
but it does, in many cases, provide a near-optimal solution significantly faster than
the optimal solution could be found [44]. Dijkstra’s algorithm is popular in solving the
shortest path problem due to its runtime of O(|V 2|), or in other words, the runtime
of the algorithm scales by the number of vertices in a graph squared [44]. There are
faster shortest-path algorithms for certain types of graphs, but Dijkstra’s is considered
the fastest shortest-path algorithm that can handle any graph well. We will use these
robust shortest-path algorithms as a framework for the toolpath algorithm that will
allow the algorithm to robustly handle complex layer geometry.

13

Chapter 2
GRATER:
GRAph Theory based slicER

This work has developed a suite of tools collectively known as the GRAph Theory
based sliceR (GRATER) that seeks to improve the MEX AM process by reducing
travel moves. As discussed in the previous chapter, travel defects are inherent to
travel moves; therefore, reducing travel moves will reduce travel defects, reduce the
amount of post-processing necessary, and reduce print time. The reduction of travel
moves is especially relevant to the pellet extrusion systems found on large format
MEX AM systems due to their inherent difficulties in extrusion control as discussed
in Section 1.1.2. This chapter will discuss the structure and algorithms used by
GRATER in detail with the next chapter will discuss the results of using GRATER
to manufacture parts.

2.1 Introduction

GRATER was written in MATLAB and currently ingests ASCII STLs, binary STLs,
or NaN-separated contours (similar to some laser additive manufacturing processes).
GRATER currently outputs Marlin flavored Gcode for filament MEX AM systems or
for the Juggerbot 3D’s P3-44. The P3-44 uses a pellet-fed screw extrusion system that
can output up to fifteen pounds of filament an hour [51]. The P3-44 runs a limited
version of Marlin, with the main difference being that a screw RPM is commanded

14

Fi
gu

re
2.

1:
Th

is
di

ag
ra

m
re

pr
es

en
ts

th
e

st
ru

ct
ur

e
of

G
R

AT
ER

.E
ve

ry
bl

ac
k

bo
x

is
a

se
pa

ra
te

MA
TL

AB
fu

nc
tio

n
an

d
th

e
in

pu
ts

an
d

ou
tp

ut
s

of
th

os
e

bo
xe

s
is

th
e

m
aj

or
da

ta
be

in
g

pa
ss

ed
be

tw
ee

n
fu

nc
tio

ns
.

Th
e

bl
ue

bo
xe

s
re

pr
es

en
t

th
e

su
rr

ou
nd

in
g

st
ep

s
in

th
e

M
EX

A
M

pr
oc

es
s

w
ith

th
e

bl
ue

in
pu

ts
an

d
ou

tp
ut

s
be

in
g

in
pu

ts
an

d
ou

tp
ut

s
to

G
R

AT
ER

.

15

instead of an extrusion value. The structure of GRATER is described in Figure 2.1.
Each black box in Figure 2.1 represents a function in MATLAB and the inputs and
outputs represent the variables being passed into and out of the functions. The blue
boxes are the rest of the MEX AM process that are either an input into GRATER
or the output of GRATER. Each function will be discussed at length in this chapter,
with each function being a chapter subsection.

2.2 Main

The Main MATLAB file calls all the other functions for GRATER as well as housing
the user-defined options that control the slicing and toolpath generation process.
The user-defined options are listed in Table 2.1 along with brief descriptions. The
user-defined options will be discussed in greater detail as the various functions of
GRATER use them in the subsequent sections.

The decision to house all of the functions in Main and limit the number of times
a function is called outside of Main allows for quick debugging modularity of the
code. This is useful for factory methods when you have other MEX AM systems in
the future. For instance, the Graph Generator function could have been called
from the Infill Line Generator function. However, having the data from the Infill
Line Generator function be passed into main and then passed into the Graph
Generator function allows for debugging of the Infill Line Generator function and
the Graph Generator function separately. The Main MATLAB file is sectioned into
groups of functions with functions that take a particularly long time being grouped by
themselves. This lets the user change user inputs such as hot end temperature without
having to go through the entire slicing process. Re-slicing an entire part when a small
change in slicing parameters is a common friction point with contemporary slicers.
The Main MATLAB file housing all of the functions makes it trivial to add a GUI as
well as bundle everything into an executable for the public release of GRATER.

2.3 Slicing

GRATER can accept STL files in either the binary or plain text format (ASCII). The
recommendation is to use binary STLs as the plain text STLs become cumbersome to
transfer between computers or folders, due to size, at the model scale GRATER is

16

Table 2.1: User Inputs to GRATER

Slicing Parameter Function
Slice Height Height in millimeters which the STL will be sliced.
Layer Height Height of the printed layers in millimeters.
Number of
Perimeters The number of perimeters of the printed part.

Perimeter Extrusion
Width The width in millimeters of the printed perimeters.

Infill Extrusion
Width The width in millimeters of the printed infill.

Infill Percentage The percentage of interior space filled by the infill, defined
in decimal form.

Infill Overlap The percentage that the infill overlaps the perimeter.

Bed Temperature The temperature the bed of the printer will be
commanded to maintain throughout printing.

Hot End
Temperature

The temperature the nozzle of the printer will be
commanded to maintain throughout printing.

Weight Perimeter Weighting of the perimeter paths when generating the
graphs used to find continuous toolpaths.

Weight Infill Weighting of the infill paths when generating the graphs
used to find continuous toolpaths.

Smooth Step Resampling step for contours generated from slicing the
STL in millimeters.

Number of Brims Number of brims generated for the first layer.

Infill Angle The angle in degrees from the X-axis the infill will be
rotated to.

Perimeter Starting
Angle

The counter-clockwise angle used to determine the start of
perimeter paths.

Angle From The point from which the perimeter starting angle is
measured.

Gcode File Name Name of outputted Gcode file.
STL Name Name of STL to slice.

17

Figure 2.2: This is an example of an output from the Slicing function. Each of these
closed contours is [NaN,NaN] separated.

designed for [52]. To extract closed contours from the STL, an open-source collection
of MATLAB functions hosted on the MATLAB File Exchange1 under the BSD2 license was
used. This collection of scripts developed by Sunil Bhandari is exceptionally fast and
scales well with larger STL files to identify contours by intersecting the triangles of the
STL with a plane to generate closed contours [53]. The user inputs the Slice Height
that defines the interval between the planes (also known as the layer height) used
to intersect the triangles. The closed contours are stored in a 1 by n cell where n

is the number of layers generated. Within the cell, the contours are stored in an m

by 2 array of x, y points, with NaNs separating separate closed contours. Figure 2.2
showcases the contours generated by Bhandari’s open-source slicer.

2.4 Perimeter Generation

The inputs into the Perimeter Generator function in GRATER are the contours
from the Slicing function, Perimeter Extrusion Width (ϵp), Infill Extrusion Width
(ϵin), Infill Overlap Percentage (ϕ), and the number of Brims (β).The user inputs
are further explained in Table 2.1. The perimeter and infill extrusion width were
kept separate to allow the user more options as well as enable future features to be
implemented without having to rewrite the function.

The structure of the perimeter generator function is detailed in Algorithm 2.1. The
contours are read into the function then the function generates brims and perimeters
using the infill and perimeter extrusion width to determine spacing for the polybuffer
function. The MATLAB function polybuffer3, which takes in a polygon and returns a
polygon with boundaries that are buffered from the input polygon by the specified

1https://www.mathworks.com/matlabcentral/fileexchange/
2https://opensource.org/license/bsd-3-clause/
3https://mathworks.com/help/matlab/ref/polyshape.polybuffer.html

18

https://www.mathworks.com/matlabcentral/fileexchange/
https://opensource.org/license/bsd-3-clause/
https://mathworks.com/help/matlab/ref/polyshape.polybuffer.html

Algorithm 2.1: The Perimeter Generation algorithm takes in the
contours generated by the Slicing function and leverages the MATLAB function
polybuffer to buffer perimeters, brims, and the infill boundary from the
contour.

Input: Contours, ρ, ϵp, ϵin, ϕ, β
Output: Perimeters, Infill Boundary, Brims

1 function perimeterGenerator:
2 Define Perimeters, Infill Boundary, Brims
3 for n = 1 to η do
4 if n == 1 then
5 use Polybuffer to generate Brims
6 end
7 for j = 1 to ρ + 1 do
8 use Polybuffer to generate Perimeters and Infill Boundary
9 end

10 end

distance. Brims and perimeters are separated by one Perimeter Extrusion Width and
the infill boundary is separated from the last perimeter by one Infill Extrusion Width.
The infill boundary is used in the infill generation and path-finding steps. If a road
is coincident with the infill boundary, it will be connected to the perimeter. The
perimeters and infill boundary buffered from the contour are shown in Figure 2.3. The
structure of the output of the function is a {1, η, ρ} cell of (n, 2) arrays, where n is an
arbitrary number of rows needed to define the geometry of the polygons. The arrays
contain closed contours defined by [x, y] points and separated by [NaN,NaN].

The brims generated are contained in a similar structure but the cell is a {1, 1, β},
as brims are only generated for the first layer. The brims help with adhesion to the
buildplate and help mitigate warping. It is common to offset the brims and perimeter
by a slight amount to aid in the removal of the brims. However, GRATER does not
contain this feature (at this time) as warping is a significant issue when printing on
large format MEX AM systems for which GRATER is designed. The level of warping
at the large format MEX AM scale can lead to offset brims breaking away from the
outer perimeter completely, negating all benefits of brims.

19

Figure 2.3: The first perimeter / brim is buffered half an extrusion width from the
contour, see Figure 2.2, while the rest of the perimeters / infill boundary
/ brims are buffered a whole extrusion width from the previous.

2.5 Perimeter Sorter

The Perimeter Sorter algorithm in Algorithm 2.2 takes in the perimeters and brims
from Algorithm 2.1 and outputs the perimeters in the same data structure, but the
(n, 2) lists are sorted such that one perimeter starts near the previous perimeter
ended. The starting point for the first perimeter or brim on the first layer is defined
by the point closest to the Perimeter Starting Angle measured from the Angle From
user-defined option. The other perimeters or brims are sorted by the closest point from
the end of the previous perimeter first. The perimeters generated from Algorithm 2.1
are ostensibly in the same direction and order, but frequently the direction of the
perimeter (clockwise or counterclockwise) is not maintained when buffering from a
previous perimeter, due to quirks of the polybuffer function. If the perimeters
were already in order then the arrays could simply be concatenated together from the
outside-in or the inside-out, whichever is preferred. In practice, edge cases such as
inner perimeters being squeezed into more contours than the perimeters before them
break this assumption frequently. This is part of what lets GRATER start the next
layer where the previous layer ended.

2.6 Perimeters To Paths

The Perimeter To Paths algorithm in Algorithm 2.3 takes in the sorted perimeters
and brims from Algorithm 2.2, which are in the form {1, η, ρ} and {1, η, β}, and
returns the variable Perimeters Path in the form of {1, η}. If the perimeters contain

20

Algorithm 2.2: The Perimeter Sorter algorithm sorts the perimeters and
brims such that their beginning vertex is the vertex closest to where the
previous perimeter ended.

Input: Perimeters, θ, ν⃗
Output: Perimeters Sorted

1 function perimeterSorter(graphs):
2 for n = 1 to η do

// Loops over every Layer
3 for i = 1 to ρ do

// Loops over every Perimeter
4 for j = 1 to χ do

// Loops over every Contour
5 if n == 1 & i == 1 & j == 1 then
6 Sort Contour by closeness to θ

// Sorts Contours within a single Perimeter
7 else
8 Sort Contour by closest point to previous contour
9 Perimeters Sorted← Sorted Contours

10 end
11 end
12 end
13 end

different numbers of contours then the algorithm inserts [NaN,NaN] between the
contours to signify a travel move is necessary, otherwise, the perimeters are simply
concatenated. Once all of the perimeters are sorted by contours, the algorithm orders
them such that the travel distance is minimized by choosing the first contour by its
closeness to the end of the previous layer, and then the next contours are chosen by
the closeness at the end of the first contour. The contours are reordered such that
they start at the closest point found in the previous step. This does not guarantee
the total distance traveled is minimal as the algorithm does not use any look ahead
strategy, but it is fast and prevents any exceedingly long or illogical ordering within a
layer. Future work could explore other algorithms to minimize total travel distance.

2.7 Infill Line Generator

The Infill Line Generator of Algorithm 2.4 creates the rectilinear infill pattern
represented as a graph, such as the infill seen in Figure 2.4, by creating horizontal
scan lines. The Infill Line Generator function then rotates the scan lines by the

21

Algorithm 2.3: The Perimeter To Paths algorithm takes in the sorted
perimeters and brims from the Perimeter Sorter algorithm and combines
them into a continuous path.

Input: Perimeters Sorted, Brims
Output: Perimeter Paths

1 function perimeterToPaths(graphs):
2 for n = 1 to η do

// Loops over every Layer
3 for i = 1 to ρ do

// Loops over every Perimeter
4 for j = 1 to χ do

// Loops over every Contour
5 Concatenate perimeters from separate cells to one cell

6 end
7 end
8 end
9 for k = 1 to η do

10 if k == 1 then
11 PerimeterPaths ← vertcat(brims, Contour{k, 1})
12 else
13 Sort Contour by closest point to previous contour or Last Point
14 Perimeter Paths← Sorted Contours
15 LastPoint← PerimeterPath{1, k − 1}(end, :)
16 end
17 end

user-defined input Infill Angle and intersects the rotated lines with the infill boundary
generated in Algorithm 2.1. The MATLAB command polyxpoly4 is used for the
intersection as the intersection indices it generates are helpful when creating the
graph in Algorithm 2.5 [54]. The vertical distance between the horizontal scan lines
is defined by Equation 4.1. Figure 2.4 shows these scan lines in red intersecting
the infill boundary in blue. To aid in the next algorithm, the intersection points
found by intersecting the scan lines with the infill boundary are included in the array
defining the infill boundary. The closest point in the infill boundary is replaced by the
intersection point. Replacing the point instead of inserting a new point lets GRATER
skip updating the intersection indices generated by polyxpoly. While this does
slightly change the exact shape of the infill boundary, the computation gains and
readability of the codebase are well worth the slight change. With a point on the infill
boundary every 0.1mm, the change is never enough to affect the printed part. This

4https://www.mathworks.com/help/map/ref/polyxpoly.html

22

https://www.mathworks.com/help/map/ref/polyxpoly.html

Figure 2.4: Infill lines (red) intersecting the infill boundary (blue). The intersections
are recorded and used to make the infill for the infill path-finding function
to traverse.

updated infill boundary is outputted as well as the variable scanInt, which has the
form {1, η, k} where k = 1 is the (x, y) intersection points and k = 2 is the line segment
indices generated by polyxpoly. Edge cases, such as an infill line intersecting only
one vertex on the infill boundary, or an infill line intersecting the infill boundary more
than twice must be considered, or the infill will end up outside the contour. Such as
in a C shape, there will be intersections of the infill lines connecting the convex part
of the C. If an infill line has more than two intersections the resulting infill line is
checked to see if it is inside the contour. This ensures infill lines connect to the infill
boundary and are interior.

2.8 Graph Generator

The Graph Generator in Algorithm 2.5 operates on the modified infill boundary and
the scanInt variables from Algorithm 2.4 and the Weight Perimeter and Weight Infill
parameters. The Graph Generator algorithm generates a weighted, geometric graph,
and stores it in a variable called graphs. The variables are a {1, η, k} cell with k = 1
being the node list, k = 2 the edge list, and finally k = 3 the weight list for every layer
η. The node list is an (n, 2) array of (x, y) points. The edge list is also an (n, 2) array
where each row contains the indices of the two nodes in the node list that the edge
connects. The weight list is a column vector of the same length as the edge list where
the weight in row n corresponds to the weight of the edge in row n of the edge list.
The algorithm creates two separate graphs and then combines them: (1) the interior

23

Algorithm 2.4: The Infill Line Generator algorithm creates rectilinear
infill by intersecting scan lines with the infill boundary.

Input: ϵin, µ, ω,Infill Boundary
Output: scanInt, updated Infill Boundary

1 function infillLineGenerator(graphs):
// This Algorithm is specifically for Rectilinear Infill

2 Define: χ

3 for n = 1 to η do
// Alternates infill Angle

4 if mod(n, 2) == 0 then
5 χ← ω − 90
6 else
7 χ← ω
8 end
9 Generate horizontal lines

10 Rotate horizontal lines by χ in 2D
11 Intersect rotated lines with Infill Boundary
12 scanInt ← intersection points & indices
13 for n = 1 to size(scanInt) do
14 updated Infill Boundary ← Replace closest point in Infill Boundary with

scanInt(n,:)
15 end
16 end

infill making up the edges spanning perimeters in the rectilinear infill, and (2) the
graph of the infill boundary. Concatenating these graphs forms the rectilinear infill,
this concatenation happens at the end of the algorithm to form one geometric graph.
Creating the graphs separately and then combining them vastly simplifies creating
the graphs.

NOTE: The Graph Generator algorithm can have any pattern passed
into it including non-traditional infill patterns and 2D meshes so long as
the input follows the data structure described above — the final result
will always be a geometric graph. The pattern must intersect the infill
boundary for the algorithm to find a path that inlcudes the patern. The
weights of the edges are currently user-defined variables that require some
manual iteration to yield the desired output. For example, if the weight
ratios are off then the infill will be zigzag instead of rectilinear. In future
work, the weight of the edges will be mathematically determined.

24

Algorithm 2.5: The Graph Generator creates geometric graphs that
contain the infill boundary and the infill.

Input: updated Infill Boundary, scanInt, λin, λp

Output: graphs
1 function graphGenerator(graphs):
2 Define: tempNodesB, tempnodesI, edgeS, edgeB weightS, weightB,

tempNodesCombined, tempEdgesCombined, tempWeightCombined, graphs
3 for n = 1 to η do

// repeat for each contour if necessary
4 tempNodesB ← updated Infill Boundary{n,1}
5 tempNodesI ← scanInt{1,n,1}
6 Use the indices in scanInt to add edges between the nodes in scanInt

to the corresponding nodes in updated Infill Boundary
7 edgeS ← indices found above

// The Infill Boundary nodes are simply connected sequentially
8 for k = 1 to length(tempNodesB)− 1 do
9 edgeB(k,:)=[k, k+1]

10 end
11 weightS ← zeros(length(edgeS(:, 1)), 1) + λin

12 weightB ← zeros(length(edgeS(:, 1)), 1) + λp

13 tempNodesCombined ← vertcat(tempNodesB, tempNodesS)
14 tempEdgesCombined ← vertcat(edgeB, edgeS)
15 tempWeightCombined ← vertcat(weightB, weightS)
16 graphs{1,n,1} ← tempNodesCombined
17 graphs{1,n,2} ← tempEdgesCombined
18 graphs{1,n,3} ← tempWeightCombined
19 end

2.9 Infill Path Finding

The Infill Path Finding in Algorithm 2.6 leans heavily on the MatGeom library for
its robust geometric graph theory functions [55]. For each contour in each layer, the
graphPeripheralVertices (from MatGeom) function is used to find the peripheral
vertices of the graph [55]. The eccentricity of a vertex is the maximum distance from
that vertex to any other vertex in the graph [45]. The peripheral vertices are the
vertices whose eccentricity is the maximum, and the maximum eccentricity is the
diameter of a graph. This finds the two furthest, by edge weight, vertices from each
other so we can find the longest continuous path. This function takes up most of the
runtime, but simply using the linear distance between vertices in the x, y plane does
not guarantee the furthest path between two nodes. This is apparent when using a

25

Algorithm 2.6: The Infill Path Finding algorithm uses Dijksra’s algorithm
to find the longest path in the graph generated by Graph Generator.

Input: graphs
Output: infill Path

1 function infillPathFinding(graphs):
2 Define: infillPath, nodesSplit, edgesSplit, weightsSplit, nodes, edges,

edgeWeights, ssIndices, shortPathIndices, shortPath
3 for n = 1 to η do

// splitting polygons
4 nodesSplit ← splitPolygons(graphs{1, n, 1})
5 edgesSplit ← splitPolygons(graphs{1, n, 2})
6 weightsSplit ← splitPolygons(graphs{1, n, 3})
7 for k = 1 to length(nodesSplit) do
8 nodes ← nodesSplit{k}
9 edges ← edgesSplit{k}

10 edgeWeights ← weightsSplit{k}
// finds the nodes with max eccentricity

11 ssIndices ← graphPeripheralV ertices(nodes, edges)
// finds shortest path between the two nodes found above

12 shortPathIndices ← grShortestPath(nodes, edges, ssIndices(1)...
13 ..., ssIndices(end), edgeWeights)
14 shortPath ← nodes(shortPathIndices)
15 if k == 1 then
16 infillPath{1,n} ← shortPath
17 else
18 infillPath{1,n} ← vertcat(infillPath{1, n}, [nan, nan], shortPath
19 end
20 end
21 end

convex geometry such as a C shape. The function uses Dijkstra’s algorithm to create
a shortest path tree and determine the eccentricity of every vertex [43].

These peripheral vertices and the geometric graph are passed into the grShort-
estPath function from MatGeom to find the shortest path between the vertices [55].
The grShortestPath function can take in negative weights which can be used to
find the longest path. This is how GRATER identifies the longest path between the
two peripheral vertices while using a shortest-path algorithm. This function also uses
Dijkstra’s algorithm; however, it uses the classical version of Dijkstra’s algorithm to
only find one path instead of creating a shortest path tree. An example of a path
found by this algorithm can be seen in Figure 2.5 This ensures the function is fast,
but since Dijkstra’s algorithm is a greedy algorithm, GRATER does not provide any

26

Figure 2.5: The blue lines represent the edges of the infill boundary and infill. The
green line is the continuous path that Algorithm 2.6 found that is deposited
during the MEX AM process.

(a) Starting Graph
(b) Red lines denote the shortest path from

node 0 to every other node.

Figure 2.6: This figure is an example of how Dijkstra’s algorithm works for a simple
graph. The algorithm finds the shortest path from node 0 to every other
node. Reproduced from [56].

guarantee that the path chosen is the “shortest path” [43]. This means the path found
may not capture all of the infill, future work could explore using non-greedy shortest
path algorithms to guarantee capturing all of the infill.

An example of Dijkstra’s algorithm is given in Figure 2.6 [56]. Dijkstra’s algorithm
either starts at a node you choose and finds the shortest path between the starting
node and every other node in the graph. For the purpose of GRATER we will use
negative edge weights to get the longest path. By definition this path will be the
longest, continuous, visit no edge twice, path within the graph from the starting
node to the largest node. The red edges in Figure 2.6b represent the paths Dijkstra’s
algorithm found. In order to capture the greatest possible amount of infill we do
this process starting at every node to determine each node’s eccentricity. The path
Dijkstra found between the two nodes with the highest eccentricity is the longest path
possible in the graph, an example of this is in Figure 2.7. This longest path possible
is chosen to be the infill path.

27

Figure 2.7: The longest minimal path between two nodes that Dijkstra’s algorithm
finds when starting at node 0. Modified figure from [56].

2.10 Path Combiner

The Path Combiner in Algorithm 2.7 takes in the infill path from Algorithm 2.6, and
the perimeter path from Algorithm 2.3, and combines them into one continuous path.
The closest perimeter point to the beginning and the end of the infill is found. Then
depending on a user-defined input, either a short travel is inserted to reach the closest
point on the next layer from where the previous layer ended or a small portion of the
next layer is not traveled. If the index of the perimeter point closer to the beginning
is higher than the index of the perimeter point closest to the end of the infill, then
the perimeter is truncated to that index and concatenated with the infill path to form
one path. If the opposite is true then the perimeter is truncated to the index closest
to the end of the infill and the perimeter is truncated with the flipped infill to form
one path. The truncation means, the inner perimeter may not be fully printed and
should be considered a sacrificial perimeter. The ability to flip the infill is unique to
GRATER as each closed contour is guaranteed to have a single continuous infill path.
This process is repeated for every contour on each layer.

2.11 Gcode

The Gcode algorithm takes in the Path variable from Algorithm 2.8 and creates a
Gcode file that a 3D printer can read. Specifically, the Gcode algorithm writes Gcode
for machines that run Marlin firmware or firmware loosely based on Marlin, like
the Juggerbot Tradesman Series P3-44. The Gcode algorithm calls a start function
at the beginning and an end function after going through the entire Path variable.
These functions write printer-specific Gcode to the Gcode file which is usually some
combination of homing the printer, heating the bed and hotend, wiping the nozzle,
and turning motors and heaters off. Most Gcode flavors start with an alphanumeric

28

command at the start of the line, then alphanumeric values relevant to that command.
Most commands start with G followed by a number hence the name Gcode. The
command for a move has the following form: G1 X10 Y10 Z10 E50 such that (X, Y, Z)
is where the toolhead travels to from its current position and E is the value the
extruder axis travels. The E value is calculated by determining the volume of the
extruded plastic based on the linear distance traveled. The linear distance is calculated
by the current point and the points in the G1 command. The volume is determined by
assuming the cross-section of the extruded plastic is a stadium, whose cross-sectional
area is given by Equation 2.1 where ϵ is extrusion width and σ is layer height, then
multiplying the cross-sectional area by the linear distance being traveled [2].

Astadium = (ϵ− σ) ∗ σ + π(σ/2)2 (2.1)

The volume of the extruded path is then divided by the cross-sectional area of the
filament to get a linear distance of filament needed to fill the volume of the path to
determine the E value. If the path point consists of [NaN,NaN] then the algorithm
inserts a travel more, i.e., a move without an E value. The convention is to denote
a travel move by using the G0 command and a regular move by a G1 command.
GRATER follows this convention and uses G0 for all travel moves. GRATER does
not support the G2 and G3 commands for arc and circle moves as these moves get
discretized to short straight-line moves by the firmware [57].

The Juggerbot P3-44 and similar pellet-fed screw extrusion printers do not accept
an E value. Instead, extrusion is controlled by controlling the screw RPM. The volume
of plastic extruded cannot be mathematically correlated to screw RPM due to the
buildup of pressure in the screw system. The volume of plastic to the screw RPM has
to be empirically determined for every feedrate. GRATER has a user-defined input
for screw RPM when using GRATER for a pellet-fed MEX AM system.

29

Algorithm 2.7: The Path Combiner combines the longest path found in
Infill Path Finding and the perimeter path found in Perimeter To Paths
into a continuous path.

Input: infill Path, perimeter Path
Output:

1 function pathCombiner(graphs):
2 Define: perimSplit, infSplit, tempInf, tempPerim, infillBeg, infillEnd,

indxPerimBeg, indxPerimEnd, tempPath, pathOut
3 for n = 1 to η do
4 perimSplit ← splitPolygons(perimPath{1, n})
5 infSplit ← splitPolygons(infPath{1, n})
6 if length(perimSplit) == length(infSplit) then
7 for i = 1 to length(infSplit) do
8 tempInf ← infSplit{i}
9 tempPerim ← perimSplit{i}

10 infillBeg ← tempInf(1,:)
11 infillEnd ← tempInf(end,:)
12 indxPerimBeg ← findClosestPoint(infillBeg, tempPerim)
13 indxPerimEnd ← findClosestPoint(infillend, tempPerim)
14 if indxPerimBeg > indxPerimEnd & length(infSplit) == 1

then
15 tempPath ←

vertcat(tempPerim(1 : indxPerimBeg, :), tempInf)
16 else
17 tempPath ←

vertcat(tempPerim(1 : indxPerimEnd, :), f lip(tempInf))
18 end
19 if i == 1 then
20 pathOut{1,n} ← vertcat([nan, nan], tempPath)
21 else
22 pathOut{1,n} ← vertcat(pathOut{1, n}, [nan, nan], tempPath)
23 end
24 end

// Perimeters and infill have an unequal number of contours
25 else
26 pathOut{1,n} ←

vertcat([nan, nan], perimPath{1, n}, [nan, nan], tempPath)
27 end
28 end

30

Algorithm 2.8: The Gcode algorithm outputs the continuous path from
Path Combiner and encodes it a format the printer can read.

Input: Path, ϵin, ϵp, σ, τbed, τhot, file name
Output: file name.Gcode

1 function gcodeGenerator():
2 Define: speed, filamentCSA, filW, pathCSA, A, movelength, pathVolume, E

// assume cross section of extruded road is a stadium
3 pathCSA ← (ϵin − σ) ∗ σ + (σ

2)2 ∗ π

4 filamentCSA ← filW
2

2 ∗ π
5 create a file called file name.Gcode
6 A ← file name.Gcode
7 print start Gcode for specific printer to A
8 for n = 1 to size(Path, 2) do

// printing the speed once at the beginning is specific to the
juggerbot

9 if n==1 then
10 print speed Gcode command to A
11 end
12 for i = 1 to length(path{1, n} do
13 if isnan(Path(i)) then
14 if i==1 then
15 print to A move to start point
16 else
17 print to A hop up and travel
18 end
19 else if i==1 then
20 calculate moveLength using last point from previous layer
21 pathVolume = movelength ∗ pathCSA
22 E = E + pathV olume/filamentCSA
23 print extrusion move to A

24 else
25 calculate moveLength using
26 pathVolume = movelength ∗ pathCSA
27 E = E + pathV olume/filamentCSA
28 print extrusion move to A

29 end
30 end
31 end
32 print end Gcode for specific printer to A

31

Chapter 3
GRATER Results

To determine if GRATER achieves its goal of reducing travel defects, we will first
test GRATER on a small scale filament extrusion MEX AM machine. Then move on
to large scale testing where we will compare GRATER’s travel moves, travel distance,
and build time to other slicers.

3.1 Desktop Benchmark Testing

GRATER was first tested on a desktop filament MEX AM system before moving on
to large-scale pellet MEX AM system tests. A benchmark part was designed as it
represents an end-use part that is extremely difficult to print on large-scale MEX AM
systems with current slicers. Retractions, when filament MEX AM systems retract

(a) Slic3r (b) GRATER

Figure 3.1: A 2.7 inch gyroid section sliced using Slic3r with retraction off versus
one processed with GRATER on a desktop filament MEX AM system.
Note the excessive amount of stringing between the two regions as a result
of excessive travel moves.

32

filament from the hotend to prevent stringing and defects during travel moves, were
disabled for both prints to simulate the inability of a large-scale pellet MEX AM
system to stop extruding plastic during travel moves. As seen in Figure 3.1a, the
Slic3r sliced part has significant stringing between the two peaks at the top of the
print. The Slic3r sliced part also has stringing on the bottom layers similar to
Figure 3.2a, but this stringing is difficult to capture in an image. The GRATER
sliced part in Figure 3.1b has slight stringing between the two peaks at the top of the
print since it has to travel across the empty space once per layer; this stringing was
insignificant compared to the Slic3r part. The bottom of the parts were similar. The
GRATER sliced part had no stringing on the bottom layers, unlike the Slic3r part.

3.2 Large-Scale Benchmark Performance

After the success of the small-scale prints, seen in Figure 3.1, the same shape was made
at full scale on a Juggerbot P3-44 large-scale pellet-fed MEX AM system. Simplify3D,
a slicer similar to Ultimaker Cura and Slic3r, was used instead of Slic3r because
Simplify3D is the manufacturer recommended slicer with a Simplify3D profile being
provided by Juggerbot. The Simplify3D part failed due to the print head crashing
into the print while traveling, but the point of comparison for travel defects is evident
with the unfinished benchmark part. This failure is consistent with previous attempts
to print this and similar geometries on the P3-44 with the Simplify3D slicer. The
excessive travel moves used by Simplify3D and other contemporary slicers lead to
build failures due to excessive stringing and travel defects. The part was printed with
no infill, as no top surface needed infill to support it. GRATER would perform even
better if infill was included as we will see later. The GRATER part was completed
with minimal stringing between the two peaks and no stringing along the bottom
of the part that consists of a single contour! Figure 3.2 showcases this dramatic
improvement.

GRATER guarantees one continuous path per layer and starts the next layer
near where the previous layer ended, so that the single contour layers only had one
small travel move. This is in stark contrast to the multiple travel moves per layer
that the Simplify3D sliced part had, which led to the abundance of stringing seen in
Figure 3.2a. After these prints, the Juggerbot P3-44 underwent a series of firmware
and hardware upgrades that came along with a profile for Oak Ridge National Lab’s

33

(a) Simplify3D

(b) GRATER

Figure 3.2: A 27 inch gyroid section sliced with Simplify3D and GRATER on a pellet
MEX AM system. The Simplify3D build failed due to travel defects from
excessive travel moves.

Slicer [41,42]. Therefore the following tests were done with ORNL Slicer instead
of Simplify3D.

3.3 GRATER Performance Metrics

GRATER was built with the aspiration of reducing travel defects by reducing both the
number of travel moves and the length of travel moves. Every travel move invalidates
the steady-state extrusion flow condition that the process parameters were empirically
determined under. This leads to defects such as over and under-extrusion before and

34

Figure 3.3: Total travel moves of the lattice section on the Juggerbot P3-44. GRATER
has an order of magnitude fewer travel moves than both Cura and Slicer.

after every travel move. Molten plastic continually oozes out of the nozzle during travel
moves in pellet-fed MEX AM systems. This ooze can even cause prints to fail such as
in Figure 3.2a. To test if GRATER lives up to aspirations, it will be compared against
the manufacture-provided slicer (ORNL Slicer) and the most popular open-source
slicer (Ultimaker Cura).

A new end-use part was used for the following tests and can be seen in Figure 3.4.
The same geometry was sliced in three slicers (Cura, GRATER, and ORNL Slicer)
for the Juggerbot P3-44. Slice parameters were held the same across all of the slicers
to isolate the effect of toolpath planning. The part was 221 layers tall and had a single
contour on every layer. GRATER had one travel move per layer plus one travel move
to move from home to the start of the first layer. Figure 3.3 shows the number of
travel moves each slicer had for the same part. GRATER has an order of magnitude
fewer travel moves than both Ultimaker Cura and ORNL Slicer for the geometry
tested.

This reduction in travel moves leads to a reduction in build time, specifically on
the Juggerbot P3-44. The P3-44 pauses every single time the extruder is stopped or
started, which happens during every travel move. As is evident from Figure 3.5, these
pauses result in thousands of stop-start events that aggregate into more than a 20%
increase in total build time for both Cura and Slicer as compared to GRATER’s
continuous toolpath planning algorithm for the geometry tested. The Cura build time

35

Figure 3.4: This test part was chosen as it was an end-use part that had a variety of
cross-sections through the build direction.

Figure 3.5: Build times of the lattice section on the Juggerbot P3-44. The Cura build
time is an estimation as no Cura sliced part was printed successfully. The
reduction in travel moves has the benefit of reducing print time on the
Juggerbot P3-44.

36

Figure 3.6: Travel distance of the lattice section on the Juggerbot P3-44. GRATER
reduces the total distance traveled, reducing the amount of stringing due
to traveling.

is, however, an estimate based on the expected build time as no benchmark parts were
able to be successfully printed. The estimate is based on the time it took to print the
failed part, combined with the estimated build time. This experiment clearly shows
the benefit of reducing start-stop events on these pellet MEX AM systems to increase
part production rates.

Pellet MEX AM systems ooze material as they travel leading to defects, GRATER
sought to try and reduce the distance traveled to mitigate this problem. To calculate
travel distance a MATLAB script was developed for each of the three slicers, one of
which can be seen in Code 3.1 and the rest are in Appendix 5.3. Each of the three
slicers denotes travel moves differently, making a script for each one necessary. The
distance was the linear distance in the (x, y) from the starting location to the location
being traveled. All three slicers implement a z-hop, an upwards travel in z to avoid
crashing into the part when traveling, but this distance was not calculated due to it
not contributing to the ooze defect. GRATER reduced the total distance traveled by
a factor of three for the geometry tested!

37

Code 3.1: The MATLAB script used to calculate the distance GRATER traveled.
1 close all; clear all; clc;
2
3 file = 'GRATER2 . gcode ';
4
5 D = readlines (file);
6
7 R = D (20:13781 , 1);
8 total_distance = 0;
9

10 for n = 1:1: length (R)
11
12 if isempty (R{n}) == 1
13 continue
14 end
15
16 hop_check = strfind (R{n}, '; hop up ');
17 move_check = strfind (R{n}, ';move ');
18
19 if isempty (hop_check) == 0
20 X_location = strfind (R{n - 2}, 'X');
21 Y_location = strfind (R{n - 2}, 'Y');
22 spaces = strfind (R{n - 2}, ' ');
23 X_end = find(spaces > X_location);
24 X_value = str2double (R{n - 2}(X_location + 1: spaces (X_end (1))));
25 Y_end = find(spaces > Y_location);
26 Y_value = str2double (R{n - 2}(Y_location + 1: spaces (Y_end (1))));
27 loc_B = [X_value , Y_value];
28 end
29
30 if isempty (move_check) == 0
31 X_location = strfind (R{n}, 'X');
32 Y_location = strfind (R{n}, 'Y');
33 spaces = strfind (R{n}, ' ');
34 X_end = find(spaces > X_location);
35 X_value = str2double (R{n}(X_location + 1: spaces (X_end (1))));
36 Y_end = find(spaces > Y_location);
37 Y_value = str2double (R{n}(Y_location + 1: Y_location + 6));
38 loc_A = [X_value , Y_value];
39 total_distance = total_distance + sqrt ((loc_B (1) - loc_A (1))^2 + (loc_B (2) - loc_A (2))^2)
40 end
41
42 end

3.4 Toolpath Quality

This section compares the effect of the different slicer’s toolpath planning algorithms
on the final part geometry. The goal is to capture travel defects such as stringing and
the over-extrusion defects seen in Figure 3.4. To quantify the geometric accuracy of
the part as a function of the toolpath, a FARO laser scanner was used to capture the
as-built geometry [58]. For incomplete builds the Gcode was truncated to match the
point at which the build failed. This point cloud was then compared to the Gcode
used to build the part using a method pioneered by Valenti et al. (2022) [59]. The
authors graciously provided the MATLAB script they used. The algorithm it uses is
shown in Algorithm 3.1.

The printed parts were scanned with a Faro arm laser scanner to capture the
stringing and defects travel moves created in large format pellet extrusion MEX AM
systems. That scan was then compared to the Gcode points to capture the maximum
deflection, the scanned point farthest from its respective Gcode point, and the RMSD
value. All of the metrics captured are provided in Table 3.1. One of the Cura and

38

(a) ORNL Slicer1 (b) ORNL Slicer 2

(c) GRATER 1 (d) GRATER 2

(e) Cura 1

Figure 3.7: Heatmap showing deflection of the scanned point cloud to the Gcode.
GRATER 2 and Cura 1 are both failed prints.

39

Algorithm 3.1: Algorithm to compare a point cloud to a Gcode file,
reproduced from [59].

Input: Gcode, Point Cloud
Output: RMSD, Deformation

1 for each Gcode Layer do
2 Find all Point cloud points within half a layer height;
3 for Each Point Cloud Point, pi, at the current layer do
4 Find the closest Gcode point at the layer, gj to pi

5 Determine whether gj+1 or gj−1 is the next closest to pi

6 Calculate the local deformation, δi, defined as the perpendicular distance
between pi and the line defined by the two closest Gcode points;

7 end
8 end
9 Calculate RMSD of all δ values to find the RMSD deformation of the as-built part;

Table 3.1: Point cloud to Gcode comparison

Slicer & Run RMSD
(mm)

Max Deviation
(mm)

Quartiles (mm)
(25%, 50%, 75%)

GRATER-1 6.6 33.8 (−1.7, 1.5, 5.9)
GRATER-2* 27.9 62.6 (−10.7,−6.1, 32.4)
Slicer-1 18.9 35.8 (−22.5,−9.0,−1.4)
Slicer-2 15.5 34.8 (−17.5,−6.7,−0.7)
Cura-1* 15.6 65.1 (−1.68, 3.4, 15.8)

*results from partial builds

one of the GRATER prints, GRATER-2 and Cura-1, failed due to a printer error.
These runs are included for posterity, but the RMS and max deflection values are
not representative of those slicers. The Slicer prints seen in Figures 3.7a and 3.7b
have surface defects on the corner closest and the flat face farthest away from the
figure viewpoint. These surface defects lead to higher RMSD values compared to the
complete GRATER print. The complete GRATER print had one string that drooped
down, seen in red, on the overhang, but overall has a better surface finish compared
to the ORNL Slicer prints. While the method pioneered by Valenti et al. (2022) gave
some interesting results, it is better suited for its original purpose, of measuring local
deformation from thermal warping than measuring small defects such as over and
under extrusion [59]. The data gathered fails to adequately capture travel defects such
as stringing and over or under-extrusion.

40

Figure 3.8: Box & Whisker plots of the geometric deviation measured for the scanned
point clouds using Algorithm 3.1.

3.5 Summary

GRATER was built to reduce travel defects, specifically to make the pellet MEX AM
process more reliable by reducing the travel defects inherent to the process. GRATER
accomplished this by utilizing graph theory to find continuous toolpaths. GRATER
was successful in this aspect as measured against both a contemporary filament MEX
AM slicer and the manufacturer’s recommended slicer in the following three metrics
for the geometry tested.

1. GRATER reduced travel moves by an order of magnitude or 95%.

2. GRATER reduced total distance traveled by a factor of three.

3. GRATER reduced the print time by approximately 25%.

The next chapter will expand on the continuous toolpath and explore how sequential,
continuous toolpaths used to combine different infill regions affect part properties.

41

Chapter 4
Effects of a Continuous Toolpath on
Integrating Dense and Sparse Infill

Slicers and preprocessing software for MEX AM builds can be used to assign any
arbitrary region of a part to have different processing properties. This method is most
commonly used to adjust the infill percentage in these regions to locally strengthen the
part. Contemporary methods of generating toolpaths for said regions are performed
independently without regard to the integrity of the final produced part, resulting in
poor bonding between the regions. This chapter explores novel ways to connect the
boundaries of the different infill regions sequentially and continuously to strengthen
bonding and subsequently the overall part strength.

4.1 Methods

ASTM D638-22 provides a standard test geometry (aka “dogbone” geometry) to
determine mechanical properties by loading the specimen in tension until failure [60].
The geometry printed to evaluate the effect of toolpath continuity at the interface
between solid and sparse infill was selected as the Type 1, 4mm thick test specimens.
The gage section of the specimen is used as the experimental domain to compare infill
strategies with the grip regions defaulted to fully dense infill. All process parameters
for a desktop MEX AM printer (a Lulzbot Mini2) were kept constant for all tensile test
specimens with the relevant slicing parameters given in Table 4.1. Constant process

42

Figure 4.1: ASTM D638 Type 1 specimen geometry with an overlay of the dense and
sparse infill regions within the tensile specimen. Sparse regions are shown
in red and are 45mm in length; dense regions are shown in blue.

parameters allow for the effect of toolpath continuity on mechanical performance to be
isolated simply. Further, the proposed toolpath planning is compared to contemporary
slicers of Slic3r and Ultimaker Cura so that a baseline could be determined to
compare against the proposed infill combination strategies detailed in Section 4.2.

Table 4.1: Printing Parameters

Slicing Parameters Parameter Value
Extrusion Width 0.5 mm
Layer Height 0.2 mm
First Layer Printing Speed 25 mm/s
Printing Speed 60 mm/s
Infill Overlap 15%
First Layer Part Cooling Fan 0%
Part Cooling Fan 40%
Bed Temperature 60°C
Nozzle Temperature 240°C

Slic3r and Ultimaker Cura both have built-in modifiers that were used to modify
the sparse region to consist of 20% infill, with the dense region consisting of 100%
infill. The sparse region is in the gage region and is 45mm long [60] illustrated in
Figure 4.1. The sparse region is shown in red and the dense regions are shown in
blue. All the specimens were printed with no solid top and bottom surfaces to avoid
different top and bottom surface patterns confounding the testing. The difference in
weight between infill combination strategies was less than one standard deviation of
the difference in weight between replications. The sparse and dense infill angle is ±45
degrees to the specimen’s load axis.

43

4.2 Toolpath Combination Strategies

Novel infill combination strategies are generated using MATLAB code. The MATLAB

program first reads in an STL geometry file and assumes that the x-y cross section is
constant for every z height, so only intersects the STL at one z height. The MATLAB

function polybuffer is used to generate perimeters and to define the infill regions,
which allows for control of the infill overlap percentage. For the novel infill algorithm
to find a continuous infill path between multiple infill regions there are two conditions
that must be met:

(1) Higher infill density must be collinear with the lower infill density

(2) Infill travel directions must be the same along collinear paths

To guarantee that these conditions are satisfied, the following equations are used
to define the sparse and dense infill spacing. The dense infill spacing is defined by
Equation 4.1 and can be seen in Figure 4.2a.

Dense Spacing = Extrusion Width
Dense Infill Percentage (4.1)

The spacing of the sparse infill lines alternates between the spacing found above in
Equation 4.1 and the spacing found below in Equation 4.2. This generates pairs of
lines where each pair is separated by the sparse spacing equation of Equation 4.2. The
unique sparse infill spacing can be seen in Figure 4.2b.

Sparse Spacing = Extrusion Width
Sparse Infill Percentage (4.2)

This guarantees that every sparse line is collinear with a dense line thereby fulfilling
the first condition listed above. This collinearity is apparent in Figure 4.2c. Lines
with either dense or sparse spacing are generated and then rotated to the desired
infill angle. The lines are then intersected with their respective region boundaries to
generate the intersection points on the region perimeter. These intersection points
are ordered in such a way that rectilinear infill is generated. The downside of this
infill generation method is the two infill densities must be odd integer multiples for
condition (2), listed above, to be true. If the infill percentages are not odd multiples
then the infill lines will still be collinear, but the sparse infill will be offset. This offset

44

means that the tool head would be traveling in the opposite direction necessary to
travel into the sparse infill from the dense infill or vice versa.

Five different ways to connect the sparse and dense infill regions are explored in
this thesis. Illustrations of each of the build strategies used are shown in Figures 4.3,
4.4, and 4.5. Each color in the figures represents a single continuous toolpath. Each
strategy produces a different toolpath plan that is mechanically tested to assess its
performance.

The Continuous infill combination strategy, shown in Figure 4.3, builds all three
infill regions and the perimeters in a single continuous toolpath. The Continuous infill
combination starts with the left dense region and transverses along the intersection
points previously established. While traveling along the intersection points, the
algorithm checks if there is a sparse line collinear with the line it is traveling. If a
sparse line is found to be collinear with the current dense line, the algorithm travels
along the collinear sparse line instead of stopping when the dense line stops. This
collinear spacing is demonstrated in Figure 4.2c; when the purple lines are collinear
with the green lines the algorithm will traverse along the green lines. This naturally
leads the path into the sparse region where it uses the same logic to travel back into
the dense region. Traveling back is guaranteed because the sparse lines that intersect
the dense-sparse boundary are collinear with a dense line and the sparse infill region
is ordered such that the sparse infill travels along the bottom perimeter. The sparse
infill traveling along the bottom perimeter is ideal for lining up the sparse region with
the dense region, but it is not ideal for transitioning from the sparse infill region into
the right dense region. The algorithm would travel into the dense region for only the
lines that are collinear with the sparse region until the sparse region is completely
traversed. This can be seen in Figure 4.2c, if the toolpath would travel from the
green lines along the orange lines it would not naturally be led back into the sparse
infill region. An extra road is inserted in the right side of the sparse infill to avoid
the algorithm skipping a large portion of the right dense infill region. The Two
Continuous strategy, seen in Figure 4.3, avoids this extra road by traversing the
sparse region completely, then traveling to traverse the right dense infill region.

The Weak Sparse infill combination strategy (seen in Figure 4.4) makes one
continuous toolpath by weakening, removing a road from one of the pairs in the middle
of the sparse infill, the sparse infill geometry. The sparse region travels along the

45

(a) Dense Spacing

(b) Sparse Spacing

(c) Collinearity of Dense and Sparse infill due to the unique sparse infill spacing

Figure 4.2: Infill spacing showcasing the unique sparse infill and the forced collinearity.
This collinearity is necessary to find a continuous toolpath through all
infill regions.

46

(a) Continuous

(b) Two Continuous

Figure 4.3: Continuous and Two Continuous infill combination strategies. Each color
represents a continuous toolpath. The Continuous infill combination
strategy consists of one continuous toolpath while the Two Continuous
infill combination strategy consists of two continuous toolpaths with a
travel move separating them.

(a) Weak Sparse

(b) Out-In

Figure 4.4: Weak Sparse and Out-In infill combination strategies. Each color
represents a continuous toolpath. The Weak Sparse infill combination
strategy has a singular road in the middle of the sparse section to force a
single continuous toolpath. The Out-In infill combination strategy is the
same geometry as weak sparse, but the infill consists of two toolpaths each
starting from the left and right respectively, and stopping in the middle of
the sparse section.

47

(a) Independent

(b) Cura

(c) Slic3r

Figure 4.5: Independent, Cura, & Slic3r infill combination strategies. The Indepen-
dent infill combination strategy has the same amount of discontinuities
as Cura and Slic3r. The Cura and Slic3r infill combination strategy
of completing each infill region independently is typical of contemporary
slicers. Each color represents a continuous toolpath.

bottom perimeter in the left half which allows for the smooth transition between
the left dense region and the sparse region. The sparse region travels along the top
perimeter in the right half which allows for the algorithm to smoothly transition into
the right dense region from the sparse region without an extra road. The transition in
the sparse region from traveling along the bottom to the top requires an odd number
of roads. The Out–In infill combination strategy seen in Figure 4.4, uses the same
geometry as the Weak Sparse infill combination strategy, but after extruding the
left dense region and half the sparse region, it then travels to the right dense region
and traverses the rest of the geometry from right to left.

The Independent infill combination strategy starts from the left dense infill
region and traverses the geometry from left to right, with travel moves between each
region. This infill strategy is similar to Cura and Slic3r; however, it traverses the
geometry from left to right sequentially. The Cura infill combination traverses the
perimeters separately, then it traverses the left dense infill region starting from the
bottom right corner. After the left infill dense region is traversed it travels to the right
dense infill region and traverses it starting from the top left corner. Finally, it traverses
the sparse infill region starting from the bottom right corner. The Slic3r similarly
traverses the perimeters separately then it traverses the left dense infill region starting

48

from the bottom left corner, then traverses the right dense infill region starting from
the top right corner. Finally, the Slic3r infill combination traverses the sparse region
starting from the top right corner.

All tensile specimens were printed using Essentium PLA XTR feedstock on a
Lulzbot Mini 2.0 MEX AM machine. The build order of the parts was randomized to
minimize outside influences affecting the builds. Tensile testing was performed using
an Instron 3345 test frame equipped with a 1.5kN load cell with BlueHill 3 control
and DAQ software. Five replications for each infill combination were tested at a
strain rate of 0.1 inches per minute except for one specimen. The Weak Sparse infill
combination which was tested at 0.2 inches per minute. The strain rate was chosen
to guarantee failure occurred between half a minute and five minutes as prescribed
in ASTM D638-22 [60]. All samples failed in the gage region and within the half a
minute and five-minute window. Effective ultimate stress was calculated according to
the ASTM D638-22 standard using the dense gage region’s cross-sectional geometry.
The effective ultimate stress calculated does not represent the stress in the sparse
region, but it allows for direct comparison across all infill combination strategies
[61]. Hence the effective qualifier when discussing ultimate stress for the rest of this
chapter. Nominal strain was measured by dividing the change in grip separation
by the original grip separation and then multiplying by 100 as specified in ASTM
D638-22. A one-way Analysis of Variance (ANOVA) table was calculated to compare
means between infill combination categories with a significance level of 0.05. Tukey
method comparisons with a significance level of 0.05 were used to compare differences
in means. A one-tailed two-variance hypothesis test with a significance level of 0.05
was used to compare the variances between infill combinations.

4.3 Results & Discussion

The average effective ultimate stress and average nominal strain at break results from
testing five replications of each infill combination strategy are shown in Table 4.2.
Yield stress was not recorded due to all specimens demonstrating brittle failure. The
average effective ultimate stress for Slic3r and Ultimaker Cura is lower than every
other infill combination strategy. Similarly, the average nominal strain at break for
Cura and Slic3r is lower than every other infill combination strategy.

49

Table 4.2: Tensile Test Results

Infill Combination
Strategy

Average Effective
Ultimate Stress (MPa)

Average Nominal
Strain at Break (%)

Slic3r 8.01 (0.56) 1.51 (0.063)
Ultimaker Cura 7.98 (1.5) 1.59 (0.11)
Two Continuous 8.61 (1.6) 1.93 (0.20)
Out–In 8.69 (0.52) 1.69 (0.12)
Independent 8.94 (1.4) 1.87 (0.17)
Continuous 9.16 (0.79) 2.01 (0.80)
Weak Sparse 9.60 (0.94) 1.62 (0.13)

standard deviations are listed in parenthesis

A one-way ANOVA test to compare the mean effective ultimate stress of the infill
combination strategies was performed. The results of the test showed that, at a 5%
significance level, there is not enough evidence to claim a difference in mean effective
ultimate strength for at least one of the infill combination strategies. This claim is
apparent when looking at Figure 4.6, as every boxplot overlaps every other boxplot.
One proposed benefit of a continuous toolpath is a reduction in defects, leading to
more consistent parts. The standard deviation of the Continuous infill combination
strategy is smaller than the standard deviation of the Cura infill combination strategy,
but the Slic3r infill combination strategy has a lower standard deviation than both
Continuous and Cura. The variation in the MEX AM process leads to a wide range of
as-built mechanical properties, such that only drastic changes in mechanical properties
can be proven statistically significant.

A one-way ANOVA test to compare the mean nominal strain at break for the
various infill strategies was performed. It is found that, at a 5% significance level,
there is enough evidence to claim that at least one of the infill combination strategies
has a different mean nominal strain from at least one other infill combination strategy.
The boxplots in Figure 4.7 showcase this difference in mean nominal strain between
the infill combination strategies. Tukey method comparisons at a 5% significance
level were carried out to evaluate differences in the nominal strain at break true
means because the one-way ANOVA found a statistically significant difference in mean
nominal strain. Table 4.3 showcases the results of the Tukey method simulations.
From the Tukey method comparisons, it is possible to claim that Continuous, Two
Continuous, and the Independent infill combination strategies have a higher true
mean nominal strain at break than Cura and Slic3r.

50

Figure 4.6: Effective ultimate stress boxplots showing that the contemporary slicers
performed poorly, the non-continuous infill combination strategies
performed better on average than the contemporary slicers, and the
Continuous infill combination strategies performed the best.

Figure 4.7: Nominal strain at break boxplot showing that the contemporary slicers per-
formed the worst while the novel infill combination strategies performance
was correlated with if they were sequential as explained in Section 4.4.

51

Table 4.3: Nominal strain at break Tukey method comparison results

Infill combination strategy Mean Grouping
Slic3r 1.51 D
Cura 1.59 D
Two Continuous 1.93 A B
Out-In 1.69 B C D
Independent 1.87 A B C
Continuous 2.01 A
Weak Sparse 1.62 C D

Figure 4.8: Representative Failed Tensile Specimens:
(A) Slic3r, (B) Cura, (C) Out-In, (D) Weak Sparse, (E) 2 Continuous,

(F) Independent and (G) Continuous

Infill combination strategies that displayed a statistically significant higher nominal
strain at break (those that belong to group A), break in approximately the center
of the gage region as seen in Figure 4.8. Out–In and Weak Sparse consistently
break in known weak points in the geometry, the single road for Weak Sparse and
the discontinuity point in Out–In. The Cura and Slic3r test specimens broke at a
variety of locations, indicating that these infill combination strategies suffered from
defects. Specimens produced using Cura showcased brittle fracture of the sparse infill
region from the perimeters throughout loading as can be seen in Figure 4.8. Slic3r

specimens frequently broke along one perimeter first leading to the warped sparse
infill region seen in Figure 4.8, then the other perimeter failed in a multi-stage failure.

52

Figure 4.9: The Slic3r infill combination strategy consistently showcased multi-stage
failure where one perimeter would break significantly earlier than the other
perimeter resulting in the warped broken specimens as seen in Figure 4.8.

Slic3r specimen’s multi-stage failure is apparent when looking at figure 4.9.
The Slic3r specimens appear to be fracturing at defects, poor or lack of bonding
between adjacent roads, with a significantly lower nominal strain than expected. The
other portions of the specimen continue to resist load to a larger nominal strain.
The statistically significant lower nominal strain along with the observations of the
failure behavior both point to Slic3r and Cura infill combination strategies having
significantly more defects than the more continuous toolpaths.

The Independent infill combination strategy had a statistically significant higher
nominal strain and a higher average effective ultimate stress than Out–In and Weak
Sparse strategies even though it has more discontinuities. The Independent infill
combination strategy has a similar number of toolpaths as the Cura strategy but the
roads are printed sequentially from left to right unlike in the Cura strategy. The
difference in the order of the toolpaths can be seen in Figure 4.10. This suggests that
the poor bonding in discontinuous adjacent roads is diminished if the adjacent roads
are sequentially extruded. The sequentially extruded roads have the least amount of
time to cool before an adjacent road is placed leading to the interface between the roads
maintaining the critical temperature for reptation for longer. The good mechanical

53

(a) Independent

(b) Cura

Figure 4.10: The Independent and Cura infill combination strategy print order. This
figure is colored by the order in which the toolhead traverses the layer.
This showcases how the Independent strategy is sequentially compared
to the random order of Cura.

properties of the Independent infill combination strategy suggest that discontinuities
are preferable to the single roads found in Weak Sparse and Out-In strategies so
as long as the discontinuous paths extruded adjacent roads sequentially. The Two
Continuous strategy has a statistically significant greater average nominal strain at
break than Weak Sparse, providing more proof. The large standard deviation for the
Independent infill combination strategy is possibly due to the increased chance of
defects at toolpath discontinuities, further complicating finding an optimal toolpath.

4.4 Summary

This research has compared the average effective ultimate stress and average nominal
strain at break across the seven infill strategies separately. Figure 4.11 aggregates the
average effective ultimate stress and average nominal strain at break in an Ashby-
style chart. The error bars in all charts of this nature in this chapter represent one
standard deviation. For comparison, preference is placed on producing parts with
higher effective ultimate stress, and a higher nominal strain at break is considered to
be better. Higher effective ultimate stress correlates to better bonding adjacent roads
and a low nominal strain is an indicator of fewer defects.

54

Figure 4.11: Ashby-style chart comparing the different infill combination strategies.
Higher effective ultimate stress and higher nominal strain at break are
desirable for high-performance parts.

As expected, the contemporary slicers perform poorly in both metrics. The
Continuous infill combination strategy performs the best with the Two Continuous
and Independent infill combination strategies within one standard deviation of the
Continuous infill combination strategy. The Two Continuous and Independent
infill combination strategies performed similarly, which is to be expected as they are
the same, except that the Two Continuous infill combination strategy has one fewer
travel moves. The Weak Sparse infill combination strategy was a continuous infill
strategy that weakened the sparse infill to force continuity. The poor performance of
the Weak Sparse infill strategy shows that weakening the infill to force continuity
will lead to a weaker part than having a discontinuity in the infill. The Out-In infill
combination strategy performs poorly in both metrics. The long delay between laying
down the two adjacent roads in the middle of the infill led to poor bonding. This
poor bonding did not result in only the perimeter resisting the load like the Cura

infill combination strategy, but the part did fail in the middle of the infill at the two
adjacent roads with poor bonding. Overall, the sequential infill combination strategies
performed well in both metrics with non-sequential infill combination strategies
performing poorly in both metrics.

The Independent infill strategy was created to be similar to contemporary slicers
to act as a control. The Independent infill strategy was named so because it deposits

55

Figure 4.12: Ashby-style chart comparing the independent infill combination strategy
to the Continuous infill combination strategies and the contemporary
slicers. The Independent infill combination strategy performing well
indicates that sequential toolpath strategies increase part properties.

Figure 4.13: Ashby-style chart comparing the continuous infill combination strategies
to contemporary slicers. This showcases that weakening the infill, the
Weak Sparse infill combination strategy, to force continuity does not
result in an infill combination strategy that performs well in both metrics.

56

the infill in each region independently. This is how contemporary slicers treat each
infill region, but the Independent infill strategy sequentially traverses the infill region
from left to right. This is showcased in Figure 4.10. The contemporary slicers do
not traverse the infill regions sequentially, both Cura and Slic3r fill both dense infill
sections first before filling in the sparse infill section. This leads to the roads at the
sparse-dense interface cooling significantly before their adjacent road is extruded. This
leads to a decrease in bond strength which can be seen in the decrease in average
effective ultimate stress in Figure 4.13.

The novel infill combination strategies presented in this chapter sought to increase
the mechanical properties of end-use parts by combining the infill regions using
sequential, continuous toolpaths. The good performance of the Independent infill
combination strategy compared to the contemporary infill combination strategies
demonstrates the effect of sequential toolpaths on bonding between adjacent roads.
The good performance of the Continuous infill combination strategy compared to the
Independent infill combination strategy showcases the effect of continuous toolpaths
on bonding between adjacent roads. Overall, this research saw a 20% increase in
average effective ultimate strength, and an increase of 33% average nominal strain
at break when comparing the novel infill combinations presented in this chapter to
contemporary slicers.

57

Chapter 5
Contributions & Future Work

Based on the research results presented in this thesis, MEX AM parts can be
fabricated with fewer travel moves and improved bonding between adjacent roads.
This is especially relevant for large format MEX AM systems that use pellet extrusion
systems. The hope is that the research presented in this thesis will make large-format
MEX AM systems a more viable manufacturing process by improving the reliability
of the process and the predictability of part properties.

5.1 Contributions

A novel method of combining dense and sparse infill was discussed in Chapter 4. This
method of combining dense and sparse infill using continuous and sequential toolpaths
showed an increase in average effective ultimate stress and a statistically significant
increase in average nominal strain. These results were part of the motivation to
create a new robust toolpath algorithm to create a single continuous toolpath for any
contour. This thesis purely looked at rectilinear style infill, but the toolpath algorithm
presented in this thesis can accept any infill pattern or mesh. The other part of the
motivation is the lack of precise extrusion control in pellet extrusion MEX AM systems
leads to travel move defects. It was shown in Chapter 3 that the novel toolpath
algorithm presented in this thesis reduced travel moves by an order of magnitude
when compared to other contemporary toolpath algorithms. Reducing travel moves
was shown to reduce the overall build time of parts on a pellet MEX AM system. The
novel toolpath algorithm also reduced the total distance traveled by a factor of three.

58

To support this novel toolpath algorithm a slicer was developed using a mix of open
source libraries and new functions. This new slicer can reliably handle large STLs, a
necessity when slicing parts for large format MEX AM. Slices (contours) can be used
instead of STLs, similar to other additive manufacturing processes, eliminating the
obtuse and time-consuming step of creating an STL.

The main contributions of this work can be summarized as follows:

1. A new toolpath algorithm that leverages graph theory to generate a single
continuous toolpath for any closed contour.

2. A slicer (GRATER) oriented for medium to large format polymer material
extrusion additive manufacturing systems that uses the aforementioned toolpath
algorithm. For the geometry tested in this thesis, it was found that GRATER
had the following results:

• GRATER reduced travel moves by an order of magnitude or 95%.

• GRATER reduced total distance traveled by a factor of three.

• GRATER reduced the print time by approximately 25%.

• GRATER can reliably handle large STLS.

• Contours can be used instead of STLS, eliminating the obtuse and often
time-consuming step of creating an STL.

3. A novel method of combining dense and sparse infill in a continuous, sequential
manner that improves mechanical properties of end-use parts.

• These methods showed a 20% increase in average effective ultimate stress.

• These methods showed a 33% increase in average nominal strain at break.

The number of geometries tested in this thesis is limited. Further refinement
and characterization to quantify GRATER’s performance on a range of MEX AM
machines, geometries, etc, must be explored before definitively claiming that GRATER
outperforms other slicers in every scenario.

59

5.2 Limitations

The code in this thesis is written for research, not for production. This means that
GRATER and accompanying code has not been optimized for computational efficiency.
GRATER was made to be able to handle large STL files and the overall process
planning time is comparable to contemporary slicers, but no time studies were run
due to computational efficiency not being the purpose of GRATER and accompanying
code. Leveraging graph theory in the path finding algorithm of GRATER allows the
algorithm to be inherently robust, but all path finding algorithms in graph theory
inherently scale poorly. This poor scaling is due to the brute force approach required
for the shortest path problem.

GRATER has not been tested for geometries with internal holes. GRATER does
follow the standard for contour direction that denotes these internal feature and
the graph theory section was made such that it can accept internal holes. As such,
GRATER should be able to handle these geometries, but this is purely speculation
and edge cases may exist that would require overhauling the GRATER codebase to
handle internal features. If an infill mesh that does not intersect the infill boundary is
passed into the Graph Generation algorithm, the Infill Path Finding algorithm
can not find an infill path that includes the islands of infill. This will result in the
Infill Path Finding algorithm finding a path that traverses the infill boundary,
essentially resulting in one extra perimeter instead of the desired infill.

GRATER seeks to holistically improve part properties by minimizing travel moves;
this maybe at the detriment of mechanical properties for certain geometries or slicer
settings. This thesis only tested GRATER with rectilinear infill for ease of comparison
to other slicers. Not every process parameter has been tested to extremes with
GRATER, as such process parameters such as too sparse infill percentage could effect
GRATER’s ability to reduce travel moves.

5.3 Future Work

The toolpath algorithm developed in this thesis may be useful for other additive
manufacturing processes, but testing the extensibility of the algorithm fell outside
the scope of this thesis. Future work could explore using the continuous toolpath
algorithm developed in this thesis for other additive manufacturing technologies that

60

benefit from continuous pathing. The slicer, discussed in Chapter 2, could be extended
to become a robust fully featured slicer. Another option could be to push the toolpath
algorithm as a unique feature or infill strategy to existing fully featured slicers. More
exotic shortest-path algorithms could be implemented in GRATER that might improve
run time as well as capture more of the infill. A mathematical way to determine the
correct weight ratio for GRATER would improve the usability of the slicer.

61

Appendix

Code A.1: The MATLAB script used to calculate the distance Cura traveled.
1 close all; clear all; clc;
2
3 file = 'CURA_Thesis . gcode ';
4
5 D = readlines (file);
6
7 R = D (27:87116 , 1);
8 total_distance = 0;
9

10 for n = 2:1: length (R)
11
12 if isempty (R{n}) == 1
13 continue
14 end
15
16 E_check = strfind (R{n}, 'E');
17
18 if isempty (E_check) == 1
19 %find previous points
20 X_location = strfind (R{n - 1}, 'X');
21
22 if isempty (X_location) == 1
23 continue
24 end
25
26 Y_location = strfind (R{n - 1}, 'Y');
27 spaces = strfind (R{n - 1}, ' ');
28 X_end = find(spaces > X_location);
29 X_value = str2double (R{n - 1}(X_location + 1: spaces (X_end (1))));
30 Y_end = find(spaces > Y_location);
31
32 if isempty (Y_end) == 1
33 Y_value = str2double (R{n - 1}(Y_location + 1: strlength (R{n - 1})));
34 else
35 Y_value = str2double (R{n - 1}(Y_location + 1: spaces (Y_end (1))));
36 end
37
38 loc_B = [X_value , Y_value];
39 % find current point
40 X_location = strfind (R{n}, 'X');
41 Y_location = strfind (R{n}, 'Y');
42 spaces = strfind (R{n}, ' ');
43 X_end = find(spaces > X_location);
44 X_value = str2double (R{n}(X_location + 1: spaces (X_end (1))));
45 Y_end = find(spaces > Y_location);
46
47 if isempty (Y_end) == 1
48 Y_value = str2double (R{n}(Y_location + 1: strlength (R{n})));
49 else
50 Y_value = str2double (R{n}(Y_location + 1: spaces (Y_end (1))));
51 end
52
53 loc_A = [X_value , Y_value];
54 total_distance = total_distance + sqrt ((loc_B (1) - loc_A (1))^2 + (loc_B (2) - loc_A (2))^2)
55 end
56
57 end

62

Code A.2: The MATLAB script used to calculate the distance ORNL Slicer traveled.
1 close all; clear all; clc;
2
3 file = 'Logan_ORNL_Test . gcode ';
4
5 D = readlines (file);
6
7 R = D (446:68537 , 1);
8 total_distance = 0;
9

10 for n = 1:1: length (R)
11 G_check = strfind (R{n}, 'G');
12 travel_check = strfind (R{n}, '; TRAVEL ');
13
14 if isempty (travel_check) == 0
15 zhop_check = strfind (R{n}, 'Set ');
16
17 if isempty (zhop_check) == 0
18 continue
19 end
20
21 X_location = strfind (R{n}, 'X');
22 Y_location = strfind (R{n}, 'Y');
23 spaces = strfind (R{n}, ' ');
24 X_end = find(spaces > X_location);
25 X_value = str2double (R{n}(X_location + 1: spaces (X_end (1))));
26 Y_end = find(spaces > Y_location);
27 Y_value = str2double (R{n}(Y_location + 1: spaces (Y_end (1))));
28 loc_A = [X_value , Y_value];
29
30 X_location = strfind (R{ lastG }, 'X');
31 Y_location = strfind (R{ lastG }, 'Y');
32 spaces = strfind (R{ lastG }, ' ');
33 X_end = find(spaces > X_location);
34 X_value = str2double (R{ lastG }(X_location + 1: spaces (X_end (1))));
35 Y_end = find(spaces > Y_location);
36 Y_value = str2double (R{ lastG }(Y_location + 1: spaces (Y_end (1))));
37 loc_B = [X_value , Y_value];
38
39 total_distance = total_distance + sqrt ((loc_B (1) - loc_A (1))^2 + (loc_B (2) - loc_A (2))^2)
40 end
41
42 if isempty (G_check) == 0
43 X_check = strfind (R{n}, 'X');
44
45 if isempty (X_check) == 0
46 lastG = n;
47 end
48
49 end
50
51 end

63

(a) Front (b) Side 1

(c) Back (d) Side 2

Figure A.1: GRATER - 1 photos

64

(a) Front (b) Side 1

(c) Back (d) Side 2

Figure A.2: GRATER - 2 photos

65

(a) Front (b) Side 1

(c) Back (d) Side 2

Figure A.3: ORNL Slicer - 1 photos

66

(a) Front (b) Side 1

(c) Back (d) Side 2

Figure A.4: ORNL Slicer - 2 photos

67

(a) Front (b) Side 1

(c) Back (d) Side 2

Figure A.5: Cura - 1 photos

68

References

[1] Makerbot. How to adjust print settings of a part of my model
in Ultimaker Cura. Accessed: 2023-05-18. [Online]. Available: https:
//support.makerbot.com/s/article/1667417981430

[2] slic3r.org. Slic3r Manual — Welcome to the Slic3r Manual. Accessed: 2023-05-18.
[Online]. Available: https://manual.slic3r.org/

[3] J. Bartolai, “Predicting and Improving Mechanical Strength of Thermoplastic
Polymer Parts Produced by Material Extrusion Additive Manufacturing,” Ph.D.
dissertation, The Pennslyvania State University, 2018.

[4] D. Grewell and A. Benatar, “Welding of Plastics: Fundamentals and New
Developments,” International Polymer Processing, 2007, doi:10.3139/217.0051.

[5] M. Roy, R. Yavari, C. Zhou, O. Wodo, and P. Rao, “Prediction and Experimental
Validation of Part Thermal History in the Fused Filament Fabrication Additive
Manufacturing Process,” Journal of Manufacturing Science and Engineering,
2019, doi:10.1115/1.4045056.

[6] R. Thomas, “Modeling the Fracture Strength Between Fused-Deposition Extruded
Roads,” in International Solid Freeform Fabrication Symposium, 2000.

[7] Kinematics — Klipper documentation. Accessed: 2024-02-06. [Online]. Available:
https://www.klipper3d.org/Kinematics.html

[8] P. Chesser, B. Post, A. Roschli, C. Carnal, R. Lind, M. Borish, and L. Love, “Extru-
sion control for high quality printing on Big Area Additive Manufacturing (BAAM)
systems,” Additive Manufacturing, 2019, doi:10.1016/j.addma.2019.05.020.

[9] BSI, “Additive manufacturing. General principles. Fundamentals and vocabulary,”
British Standards Institution, Standard, 2022, doi:10.3403/30448424.

[10] I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, Additive Manufacturing
Technologies, 3rd ed. Springer International Publishing, 2021. doi:10.1007/978-
3-030-56127-7.

69

https://support.makerbot.com/s/article/1667417981430
https://support.makerbot.com/s/article/1667417981430
https://manual.slic3r.org/
https://doi.org/10.3139/217.0051
https://doi.org/10.1115/1.4045056
https://www.klipper3d.org/Kinematics.html
https://doi.org/10.1016/j.addma.2019.05.020
https://doi.org/10.3403/30448424
https://doi.org/10.1007/978-3-030-56127-7
https://doi.org/10.1007/978-3-030-56127-7

[11] Official Creality Ender 3 3D Printer Fully Open Source with Resume
Printing Function DIY 3D Printers Printing Size 8.66x8.66x9.84 inch:
Amazon.com: Industrial & Scientific. Accessed: 2023-11-08. [Online]. Available:
https://a.co/d/89hW8nQ

[12] C. Edge. It’s Time For 3D Printing To Evolve From The Hobbyist Market.
Accessed: 2023-12-14. [Online]. Available: https://www.bootstrappers.mn/post/
it-s-time-for-3d-printing-to-evolve-from-the-hobbyist-market

[13] VORON Design. Accessed: 2023-12-14. [Online]. Available: https://vorondesign.
com/

[14] A. Chapman. (2022) The complete history of 3D printing. Accessed: 2023-12-14.
[Online]. Available: https://ultimaker.com/learn/the-complete-history-of-3d-
printing/

[15] T. G. Crisp and J. M. Weaver, “Review of Current Problems and
Developments in Large Area Additive Manufacturing (LAAM),” in International
Solid Freeform Fabrication Symposium, 2021. [Online]. Available: https:
//repositories.lib.utexas.edu/bitstream/handle/2152/90746/2021-127-Crisp.pdf

[16] A. Roschli, M. Borish, L. White, C. Adkins, C. Atkins, A. Barnes, B. Post,
Z. DiVencenzo, C. Dwyer, G. Rudiak, and B. Zellers, “Transmitting G-Code with
Geometry Commands for Extrusion Additive Manufacturing,” in International
Solid Freeform Fabrication Symposium, 2023.

[17] The University of Maine. (2022) UMaine 3D Prints Two New Large Boats for
U.S. Marines, Breaking Previous World Record. Accessed: 2023-11-30. [Online].
Available: https://composites.umaine.edu/2022/04/11/umaine-3d-prints-two-
new-large-boats-for-u-s-marines-breaking-previous-world-record/

[18] R. Minetto, N. Volpato, J. Stolfi, R. M. Gregori, and M. V. da Silva, “An
optimal algorithm for 3D triangle mesh slicing,” Computer-Aided Design, 2017,
doi:10.1016/j.cad.2017.07.001.

[19] C. Fox. (2023) A Little CNC History. Accessed: 2023-11-09. [Online]. Available:
https://tormach.com/articles/cnc-history

[20] K. Latif, A. Adam, Y. Yusof, and A. Z. A. Kadir, “A review of G code, STEP,
STEP-NC, and open architecture control technologies based embedded CNC
systems,” The International Journal of Advanced Manufacturing Technology, Jun
2021, doi:10.1007/s00170-021-06741-z.

[21] P. Smid, CNC control setup for milling and turning: mastering CNC control
systems. Industrial Press, 2010.

[22] jbrazio. (2024) What is Marlin? Accessed: 2024-02-06. [Online]. Available:
https://marlinfw.org/docs/basics/introduction.html

[23] GNU Lesser General Public License v3.0 — GNU Project — Free Software
Foundation. [Online]. Available: https://www.gnu.org/licenses/lgpl-3.0.en.html

70

https://a.co/d/89hW8nQ
https://www.bootstrappers.mn/post/it-s-time-for-3d-printing-to-evolve-from-the-hobbyist-market
https://www.bootstrappers.mn/post/it-s-time-for-3d-printing-to-evolve-from-the-hobbyist-market
https://vorondesign.com/
https://vorondesign.com/
https://ultimaker.com/learn/the-complete-history-of-3d-printing/
https://ultimaker.com/learn/the-complete-history-of-3d-printing/
https://repositories.lib.utexas.edu/bitstream/handle/2152/90746/2021-127-Crisp.pdf
https://repositories.lib.utexas.edu/bitstream/handle/2152/90746/2021-127-Crisp.pdf
https://composites.umaine.edu/2022/04/11/umaine-3d-prints-two-new-large-boats-for-u-s-marines-breaking-previous-world-record/
https://composites.umaine.edu/2022/04/11/umaine-3d-prints-two-new-large-boats-for-u-s-marines-breaking-previous-world-record/
https://doi.org/10.1016/j.cad.2017.07.001
https://tormach.com/articles/cnc-history
https://doi.org/10.1007/s00170-021-06741-z
https://marlinfw.org/docs/basics/introduction.html
https://www.gnu.org/licenses/lgpl-3.0.en.html

[24] MANUFACTUR3D. (2019) Ultimaker Moves To New Headquarters As Company
Expands On Global Scale — Manufactur3D. Accessed: 2024-01-27. [Online].
Available: https://manufactur3dmag.com/ultimaker-moves-to-new-headquarters-
as-company-expands-on-global-scale/

[25] Prusa Research. General info — Prusa Knowledge Base. Accessed: 2024-01-27.
[Online]. Available: https://help.prusa3d.com/article/general-info_1910

[26] RepRap. List of Firmware. Accessed: 2024-02-06. [Online]. Available:
https://reprap.org/wiki/List_of_Firmware

[27] grbl, “An open source, embedded, high performance g-code-parser and
CNC milling controller written in optimized C that will run on a
straight Arduino,” original-date: 2009-01-24T23:47:13Z. [Online]. Available:
https://github.com/grbl/grbl

[28] L. Li, Q. Sun, C. Bellehumeur, and P. Gu, “Investigation of Bond Forma-
tion in FDM Process,” in International Solid Freeform Symposium, 2002,
doi:10.26153/tsw/4500.

[29] R. P. Wool, B.-L. Yuan, and O. J. McGarel, “Welding of polymer interfaces,”
Polymer Engineering & Science, 1989, doi:10.1002/pen.760291906.

[30] T. Lodge and P. C. Hiemenz, Polymer Chemistry, 3rd ed. CRC Press, 2020.
doi:10.1201/9780429190810.

[31] T. Abbas, F. M. Othman, and H. B. Ali, “Effect of infill Parameter on compression
property in FDM Process,” International Journal of Engineering Research and
Application, 2017.

[32] P. Yadav, A. Sahai, and R. S. Sharma, “Strength and Surface Characteristics of
FDM-Based 3D Printed PLA Parts for Multiple Infill Design Patterns,” Journal
of The Institution of Engineers (India): Series C, 2021, doi:10.1007/s40032-020-
00625-z.

[33] A. Pandzic, D. Hodzic, and A. Milovanovic, “Effect of Infill Type and Density on
Tensile Properties of PLA Material for FDM Process,” in DAAAM Proceedings,
1st ed., B. Katalinic, Ed. DAAAM International Vienna, 2019, vol. 1,
doi:10.2507/30th.daaam.proceedings.074.

[34] M. Naik, D. Thakur, and S. Chandel, “An insight into the effect of printing orienta-
tion on tensile strength of multi-infill pattern 3D printed specimen: Experimental
study,” Materials Today: Proceedings, 2022, doi:10.1016/j.matpr.2022.02.305.

[35] H. K. Dave, B. H. Patel, S. R. Rajpurohit, A. R. Prajapati, and D. Nedelcu,
“Effect of multi-infill patterns on tensile behavior of FDM printed parts,”
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021,
doi:10.1007/s40430-020-02742-3.

71

https://manufactur3dmag.com/ultimaker-moves-to-new-headquarters-as-company-expands-on-global-scale/
https://manufactur3dmag.com/ultimaker-moves-to-new-headquarters-as-company-expands-on-global-scale/
https://help.prusa3d.com/article/general-info_1910
https://reprap.org/wiki/List_of_Firmware
https://github.com/grbl/grbl
https://doi.org/10.26153/tsw/4500
https://doi.org/10.1002/pen.760291906
https://doi.org/10.1201/9780429190810
https://doi.org/10.1007/s40032-020-00625-z
https://doi.org/10.1007/s40032-020-00625-z
https://doi.org/10.2507/30th.daaam.proceedings.074
https://doi.org/10.1016/j.matpr.2022.02.305
https://doi.org/10.1007/s40430-020-02742-3

[36] I. Mustafa and T.-H. Kwok, “Development of Intertwined Infills to Improve
Multi-Material Interfacial Bond Strength,” Journal of Manufacturing Science
and Engineering, 2022, doi:10.1115/1.4051884.

[37] L. Xia, S. Lin, and G. Ma, “Stress-based tool-path planning method-
ology for fused filament fabrication,” Additive Manufacturing, 2020,
doi:10.1016/j.addma.2019.101020.

[38] S. Shaikh, N. Kumar, P. K. Jain, and P. Tandon, “Hilbert Curve Based Toolpath
for FDM Process,” in CAD/CAM, Robotics and Factories of the Future, D. K.
Mandal and C. S. Syan, Eds. Springer India, 2016, series Title: Lecture Notes
in Mechanical Engineering, doi:10.1007/978-81-322-2740-3_72.

[39] C. Yoo, S. Lensgraf, R. Fitch, L. M. Clemon, and R. Mettu, “Toward Optimal
FDM Toolpath Planning with Monte Carlo Tree Search,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2020.
doi:10.1109/ICRA40945.2020.9196945.

[40] M. Borish, A. Roschli, C. Wade, B. Post, L. White, and C. Adkins, “Single Path
Generation for Closed Contours via Graph Theory and Topological Hierarchy,”
in International Solid Freeform Fabrication Symposium, 2023.

[41] A. Roschli, A. Messing, M. Borish, B. K. Post, and L. J. Love, “ORNL Slicer
2: A Novel Approach for Additive Manufacturing Tool Path Planning,” in
International Solid Freeform Fabrication Symposium, 2017. [Online]. Available:
https://hdl.handle.net/2152/89889

[42] Oak Ridge National Laboratory, “ORNL Slicer 2 User’s Guide,” Accessed:
2024-02-12. [Online]. Available: https://ornlslicer.github.io/Slicer-2/doc/Slicer_
2_User_Guide.pdf

[43] L. R. Foulds, Graph Theory Applications. Springer New York, 1992.
doi:10.1007/978-1-4612-0933-1.

[44] J. A. McHugh, Algorithmic Graph Theory. Prentice Hall, 1990.

[45] S. Mathew, J. N. Mordeson, and D. S. Malik, Fuzzy Graph Theory. Springer
International Publishing, 2018. doi:10.1007/978-3-319-71407-3.

[46] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, 2001.

[47] T. Imaizumi, A. Nakayama, S. Yokoyama, and A. Okada, Eds., Advanced
Studies in Behaviormetrics and Data Science: Essays in Honor of Akinori Okada.
Springer, 2020.

[48] D. Legland, “MatGeom library user manual,” MATLAB Central File Exchange.

[49] R. Tamassia, Ed., Handbook of Graph Drawing and Visualization, 1st ed. CRC
Press, Taylor & Francis Group, 2013. doi:10.1201/b15385.

[50] J. Pach, Towards a Theory of Geometric Graphs. Providence, R.I.: American
Mathematical Society, 2004.

72

https://doi.org/10.1115/1.4051884
https://doi.org/10.1016/j.addma.2019.101020
https://doi.org/10.1007/978-81-322-2740-3_72
https://doi.org/10.1109/ICRA40945.2020.9196945
https://hdl.handle.net/2152/89889
https://ornlslicer.github.io/Slicer-2/doc/Slicer_2_User_Guide.pdf
https://ornlslicer.github.io/Slicer-2/doc/Slicer_2_User_Guide.pdf
https://doi.org/10.1007/978-1-4612-0933-1
https://doi.org/10.1007/978-3-319-71407-3
https://doi.org/10.1201/b15385

[51] Tradesman Series™ P3-44. Accessed: 2024-02-03. [Online]. Available:
https://juggerbot3d.com/products/tradesman-series-p3-44/

[52] Autodesk. Help | STL Export Settings. Accessed: 2024-02-17. [Online].
Available: https://help.autodesk.com/view/RVT/2023/ENU/?guid=GUID-
01504202-EF80-4815-9675-ADB8802592BD

[53] S. Bhandari, “slice_stl_create_path(triangles,slice_height),” MATLAB Central
File Exchange. [Online]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/62113-slice_stl_create_path-triangles-slice_height

[54] MathWorks. Intersection points for lines or polygon edges — MATLAB
polyxpoly. R2023b. Accessed: 2023-10-10. [Online]. Available: https:
//www.mathworks.com/help/map/ref/polyxpoly.html

[55] Dlegland, Oqilipo, J. P. Carbajal, Gaturo, Roozbeh Geraili Mikola, M. Schappler,
C. Gorman, Drdadr, Robingeorg, Zubiao Xiong, Hamdan Al-Musaibeli, and S. Hol-
combe, “mattools/matGeom: MatGeom 1.2.6, doi:10.5281/ZENODO.7799184.”

[56] Dijkstra’s shortest path algorithm - a detailed and visual introduction.
[Online]. Available: https://www.freecodecamp.org/news/dijkstras-shortest-path-
algorithm-visual-introduction/

[57] thinkyhead. Linear Move. Accessed: 2024-01-16. [Online]. Available: https:
//marlinfw.org/docs/gcode/G000-G001.html

[58] FARO. (2016) FARO Edge and FARO Laser ScanArmEdge Manual. [Online].
Available: https://downloads.faro.com/index.php/s/N95m3Hi8LZQw4FP

[59] J. D. Valenti, J. Bartolai, and M. A. Yukish, “Experimental Study of Wing
Structure Geometry to Mitigate Process-Induced Deformation,” in International
Solid Freeform Fabrication Symposium, 2022, doi:10.26153/tsw/44322.

[60] D20 Committee, “Test Method for Tensile Properties of Plastics,” ASTM
International, Tech. Rep., 2022, doi:10.1520/D0638-22.

[61] J. Bartolai, A. E. Wilson-Heid, J. R. Kruse, A. M. Beese, and T. W. Simpson,
“Full Field Strain Measurement of Material Extrusion Additive Manufacturing
Parts with Solid and Sparse Infill Geometries,” JOM, 2019, doi:10.1007/s11837-
018-3217-1.

73

https://juggerbot3d.com/products/tradesman-series-p3-44/
https://help.autodesk.com/view/RVT/2023/ENU/?guid=GUID-01504202-EF80-4815-9675-ADB8802592BD
https://help.autodesk.com/view/RVT/2023/ENU/?guid=GUID-01504202-EF80-4815-9675-ADB8802592BD
https://www.mathworks.com/matlabcentral/fileexchange/62113-slice_stl_create_path-triangles-slice_height
https://www.mathworks.com/matlabcentral/fileexchange/62113-slice_stl_create_path-triangles-slice_height
https://www.mathworks.com/help/map/ref/polyxpoly.html
https://www.mathworks.com/help/map/ref/polyxpoly.html
https://doi.org/10.5281/ZENODO.7799184
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://marlinfw.org/docs/gcode/G000-G001.html
https://marlinfw.org/docs/gcode/G000-G001.html
https://downloads.faro.com/index.php/s/N95m3Hi8LZQw4FP
https://doi.org/10.26153/tsw/44322
https://doi.org/10.1520/D0638-22
https://doi.org/10.1007/s11837-018-3217-1
https://doi.org/10.1007/s11837-018-3217-1

	List of Figures
	List of Tables
	List of Algorithms
	List of Code Snippets
	Nomenclature
	Acknowledgements
	Introduction & Motivation
	Introduction of MEX AM
	Desktop Machines from Hobbyist to Industrial
	Large Format MEX Machines

	MEX AM Software
	Slicers
	Firmware

	Bonding Mechanisms in MEX AM
	MEX AM Toolpath Design
	Graph Theory

	GRATER: GRAph Theory based slicER
	Introduction
	Main
	Slicing
	Perimeter Generation
	Perimeter Sorter
	Perimeters To Paths
	Infill Line Generator
	Graph Generator
	Infill Path Finding
	Path Combiner
	Gcode

	GRATER Results
	Desktop Benchmark Testing
	Large-Scale Benchmark Performance
	GRATER Performance Metrics
	Toolpath Quality
	Summary

	Effects of a Continuous Toolpath on Integrating Dense and Sparse Infill
	Methods
	Toolpath Combination Strategies
	Results & Discussion
	Summary

	Contributions & Future Work
	Contributions
	Limitations
	Future Work

	Appendix
	References

