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Abstract
In this thesis, we propose and explore the consequences of the principle of cosmic veiling
for the pre-inflationary epoch of the universe. The principle is based on the requirement
that there exists a consistent post-Planckian, but pre-inflationary epoch of the universe
in which the framework of perturbative quantum field theory remains valid, and that
the transition is smooth. Inflation then functions as a censor of the initial singularity by
pushing back the Planck scale further into the past, serving a role similar to horizons of
black holes that censor their singularities. The principle of cosmic veiling allows then a
maximum amount of inflationary e-foldings to just barely censor the initial singularity.
The initial quantum state is prepared at the transition between the quantum gravity and
quantum field theory regimes, and is chosen to be compatible with cosmic veiling, that
is, the initial state should not spoil the veiling by containing additional information from
the Planck epoch, defined as the epoch when the curvature length scale is of the order of
the Planck length.

An immediate consequence of this principle is, by allowing ourselves to push the
domain of validity of quantum field theory to its maximal limit, we can set initial
conditions at an earlier time. Classically, singularities are censored to prevent pathologies
in the causual structure of the manifold. In conjunction with quantum mechanics,
Hawking provided a mechanism through which one could peer at the singularity – only
very barely – at the end of the black hole’s life, through Hawking evaporation of black
holes. Cosmic veiling is a similar, mild violation of the censorship of the initial singularity
– we elevate the role of inflation as a censor that pushes back in time the Planck scale and
require that the amount of inflation is bounded from above such that we can peer back far
enough to observe some features from the primordial epoch. In this manner, the amount
of inflation, which is already bounded from below by requiring sufficient e-foldings to be
compatible with observation, we can postulate a very narrow “Goldilocks” band in which
inflation lasts long enough to make our universe interesting, but not observationally
excluded. We determine the effect on the cosmic microwave background and discuss the
possibility of future observations.
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Chapter 1 |
Introduction

1.1 Canticle of veiling
At quantum threshold one can take

a principle of cosmic veil;
that inflation, by virtue ancilliary,

would Penrose censor, as customary,
the initial singularity.

Though only just, as gossamer.

The veiling on the background places
a special time, ’tween transition phases,

and by requiring the quantum state
avoids, of Planck, being au fait

thus posed the precepts of cosmic veil.

Ensuring features, as promiser.

Higher curv’ture can drive alone
the expansion to conclusions known.

But if at de Sitter-like attractor,
tease apart pre-inflationary factor,

the veil thus lifts for to behold:

the power adjust, astronomer.
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1.2 A thinly-veiled proposal
Humanity’s curiosity and innate inclination to craft stories makes us unique amongst
living beings. Amongst these stories, none are more universal than our cosmic origins.
We are like cosmic detectives, traversing the deep noire of the night sky, gathering clues
to solve the universal mystery. Our space-age magnifying lenses are now able to probe
deeply into the “scene of the crime" – the Cosmic Microwave Background (CMB) [1,2], a
relic of the nascent universe imprinted on the sky. And, from there, it’s up to our keen
gumshoe instincts to hone in on the puzzles we aim to solve.

What are the facts at the scene of the crime and what are our puzzles? For one,
we observe that the universe is expanding – suggesting that the matter content was
more densely packed together in the past. Look far enough into the past and we observe
the CMB, a nearly uniform snapshot of black body photons at a temperature of 2.73
K [3–5]. The temperature fluctuations of this cosmic sea of photons are quite small, with
conventional scale δT

TCMB
≈ 10−5. This is the first surprise – the universe we live in is

shockingly homogeneous!
Like in any good mystery, however, there is a second act twist, a surprise within the

surprise. Thermal fluctuations generally go as one over the square root of the degrees of
freedom of the gas. However, the number of degrees of freedom in the early universe is
so large, that purely canonical statistical fluctuations cannot explain the temperature
deviation observed in the CMB. This means that the fluctuations are simultaneously
incredibly small and incredibly large! Large, in this context, means that there must be
some mechanism that adds power into the fluctuations. The usual culprit mechanism
is inflation [6–8] – a period of time when the nascent universe expanded exponentially,
taking the quantum fluctuations of the initial Fock gas and blowing them up to the
scale we see today in the night sky [9]. There are several ingredients to this story – the
mechanism to trigger inflation, how one prepares the initial state of the quantum fields,
and the extent to which inflation lasts.

The usual framework for inflation includes the inflaton – a posited particle in a given
potential that drives inflation by minimally coupling to gravity and subsequently to
the rest of the Standard Model during a period of time called reheating. Introducing
particles to explain phenomena is a heuristic that has been incredibly successful in the
20th century. When it comes to inflation, the standard framework is similarly wildly
successful at matching observation; by positing an initial quantum vacuum in the far
past of a de Sitter background, the framework generates a power spectrum that is very
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slightly red-tilted, and with power commensurate with observations. Which mysteries, if
any, are left to be solved?

Unfortunately, the mechanisms that drive inflation are not unique, and there exists
a veritable zoo of inflationary theories [10–13], with differing numbers of assumptions,
parameters, and add-on effects which cannot be made falsifiable given the status of
observation today. Details of the scenarios aside, the basic premise is to take quantum
fluctuations and expand them to cover the entirety of the sky, which requires a principle
to select a particular quantum state as initial state. Nominally, the simplest choice is
to take an adiabatic vacuum state – that the ultraviolet modes of the state be in the
ground state, the short-distance correlation functions approximate those of Minkowski
space, the field modes be of positive frequency, and that the state has negligible particle
creation by virtue of approximating the symmetry of the background [14,15].

Consider, for a moment, this most standard set of inflationary assumptions, with the
state of the perturbations being adiabatic at the end of inflation. If we take a background
in which the universe is not inflationary infinitely into the past, we ought to observe
particle production from this state as we wind the clock back and the universe becomes
increasingly curved and hot [16], making backreaction a salient concern and leading
us outside the regime of validity of quantum field theory in curved space-time. If we
invert the time arrow on this thought process, were we to pick a random state from
the quantum gravity regime, absent a mechanism or principle to set a measure on the
configuration space of quantum initial states, we might be fooled into thinking that any
hot state should lead into a reasonable adiabatic state for doing perturbative field theory
– else we might not be able to do the perturbative theory at all!

Ultimately, the inflationary theory must, at some point, be an emergent result of a
more fundamental theory of quantum gravity [17], consequently paring down the list
of viable inflationary scenarios. With this “holy grail theory of everything” still on the
horizon, in this thesis we propose and explore a different set of assumptions for driving
inflationary expansion and choosing the initial quantum state. We propose a principle of
cosmic veiling, which consists of the following statements:

1. Inflation functions as a censor of the initial singularity by pushing back the Planck
scale further into the past, serving a role similar to horizons of black holes that
censor their singularities. The principle of cosmic veiling is then to turn the full
censorship into a gentler veiling. As we’ll see, this principle will yield a maximum
amount of e-foldings consistent with veiling.

3



2. By requiring a space-time background that is consistent with veiling, there must
exist a post-Planckian, but pre-inflationary epoch of the universe in which the
framework of perturbative field theory remains valid. Furthermore, the transition
from the Planck era to this pre-inflationary regime is expected to be smooth.

3. The initial quantum state is prepared at the transition between the quantum gravity
and quantum field theory regimes, and is chosen to be compatible with cosmic
veiling, that is, the initial state should not spoil the veiling by containing additional
information from the Planck epoch, defined as the epoch when the curvature length
scale is of the order of the Planck length ℓP =

√
Gℏ/c3 ≃ 1.6× 10−35 m.

An immediate consequence of the first assumption is, by allowing ourselves to push
the domain of validity of quantum field theory to its maximal limit, we can set initial
conditions at an earlier time. Certainly, there exists frameworks other than semiclassical
gravity for pre-inflationary cosmologies, such as those in Loop Quantum Cosmology
(LQC), which have the added benefit of resolving the initial singularity [18–24]. The
principle of cosmic veiling is inspired by Penrose’s censorship of black holes in general
relativity [25]. Classically, singularities are censored to prevent pathologies in the causual
structure of the manifold. In conjunction with quantum mechanics, Hawking provided a
mechanism through which one could peer at the singularity – only very barely – at the
end of the black hole’s life, through Hawking evaporation of black holes [26, 27]. Cosmic
veiling is a similar, mild violation of the censorship of the initial singularity – we elevate
the role of inflation as a censor that pushes the Planck scale back in time and require that
the amount of inflation is bounded from above such that we can peer back far enough to
observe some features from the primordial epoch. In this manner, the amount of inflation,
which is already bounded from below by requiring sufficient e-foldings to be compatible
with observation, we can postulate a very narrow “Goldilocks” band in which inflation
lasts long enough to make our universe interesting, but not observationally excluded.

As we will see, the amount of pre-inflationary, non quasi-de Sitter e-foldings is
very limited, primarily by virtue of this phase being radiation-like in its geometry, or
fast-roll, despite being modeled as a matter-less universe. This, along with our first
two assumptions, sets a special time – a threshold time from the Planck regime to a
semiclassical one. Thus our third assumption comes in: we can set a cosmic veiling
condition for the initial quantum state ⟨ψveil| at this time such that it carries the minimum
amount of information from the Planck era. Consider for a moment the alternative – if
there were imprints from the transition on the initial state, these primordial fluctuations
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could be enhanced by inflation and observed today in the CMB!
Taking cosmic veiling as a principle gives the primary ingredients requisite to set

initial conditions for a given model of inflation. Since the initial state is set at the
threshold of the Planck regime, with higher order curvature terms of gravity expected to
play a significant role at this scale, the choice is made to work in the simplest possible
case – a framework of inflation without a scalar inflaton field, in which inflation is driven
purely by gravity [28,29]. This model, originally proposed by Starobinsky in 1979 [30],
provides a scheme in which the next leading order term to the Einstein-Hilbert action,
αR2, where α is a coupling constant of the theory, is already sufficient to drive inflation.
As we will see, taking the purely gravitational point of view leads to a background that
both gracefully enters and exits an inflationary phase.

The thesis is structured as follows:
In Chapter 1, we’ll finish the Introduction by presenting a wide overview of the key

picture in identifying cosmic veiling, namely how a quantity called the comoving-scale
changes over different cosmological epochs. We’ll identify the cosmic veiling conditions,
and speak briefly of the background initial conditions.

In Chapter 2, we introduce the classical background for our framework, motivated
by introducing higher curvature terms into the Einstein-Hilbert action, but ultimately
simplified to the action due to Starobinsky: S[gµν ] = 1

16πG

∫
d4x
√
−g(R+ αR2). Three

major regimes of classical solutions are explored and solved: the inflationary phase,
quasi-de Sitter phase, the subsequent reheating phase, in which the geometry oscillates.
Finally, the pre-inflationary phase, which is radiation-like in its geometry, does not have
an exact closed form solution for H(t), but does admit a relation between Ḣ and H that
characterizes this regime, and introduces a relevant scale of the theory, Hc, the value of
the Hubble parameter at the time the quasi-de Sitter and pre-inflationary solutions cross
in the (H, Ḣ) phase space diagram. The scale Hc will become instrumental in identifying
the amount of inflationary e-foldings for a given classical trajectory.

In Chapter 3, we discuss the standard theory of quantization, taking a specific gauge
to identify the physical degrees of freedom, and quantize only the resulting physical
Hilbert space. Given the ADM ansatz with a lapse and shift, we can decompose the
metric in Scalar-Vector-Tensor sectors and express a general perturbation to the metric
along these sectors. Subsequently, we develop the second-order free action that governs
the perturbations and select a gauge in which the are no Ricci curvature fluctuations on
a given slicing, namely the comoving gauge. Finally, with solved constraints, we find the
action for the perturbations in each sector, with the vectorial sector being trivial, and
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the scalar and tensor sectors both formulated in a general manner, with a characteristic
function Zs(t) or Zt(t) that distinguishes them. As we will see, these functions and their
Hubble-flow derivatives, encode the relative difference in the power spectrum amplitude
for scalars and tensors, as well as the different in their spectral tilts.

In Chapter 4, we quantize the general, Fourier-passed action for the perturbations
by computing the Poisson brackets from the classical theory and promoting them to
canonical commutators. We build the Fock space starting with a vacuum annihilated
by all annihilation operators, and developed by creation operators for each mode k⃗, and
find a classically peaked representation of the field operator. Alongside the canonical
commutation relation, the field representation yields a Wronskian relation for the mode
functions, and with the action we determine the equation of motion for the mode functions,
which closely resembles that of a harmonic oscillator with a friction term. We briefly
discuss the observables that come from the mode functions, define the power spectrum,
and present a fully solvable sample case: that of Bunch-Davies initial conditions.

In Chapter 5, once the mode equation is reformulated into a canonical form, with
quantities expanded in small Hubble-flow parameters, and further expanded around
a critical time, flagged by when the pivot mode k∗ crosses the Hubble horizon, we
find that the previously solved Bunch-Davies state functions as a zeroth order of this
expansion. We briefly discuss the exact solutions to this canonical mode equation at
given truncations, and then present a method that can be used to find the solution
at arbitrary order in Hubble-flow parameters. The key results presented in the thesis,
however, can be extracted already at linear order in ϵi’s, which fortunately has Bessel
functions as solutions of the mode equation. Some results at second order are presented
without proof.

In Chapter 6, we present the results for observational quantities computed from
the Starobinsky model, and discuss connections with observation. Here, we expand
fully on the scaffolded development of the cosmic veiling principle. At first order, we
identify the scale kfeature at which we expect to observe a pre-inflationary feature on
the CMB, and find that, under the assumption that the pre-inflationary evolution does
not spoil the results of the standard inflationary initial state at the scale k∗, there is a
single-parameter expression that gives a near-minimal number of inflationary e-foldings
compatible with observation, when the parameter is of order unity. We observe that,
qualitatively, whenever this parameter is of order unity, the largest comoving scale in the
primordial universe at the onset of inflation is of the same order as the largest comoving
scale that we will ever observe in the modern universe. We first propose a principle
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in which the CMB, as the de facto probe for primordial perturbations, provides the
precise comoving scale at the onset of inflation. Lastly, we posit cosmic veiling as a
principle for setting initial conditions of the background, the initial state, and investigate
the consequences. Among them, we find an expression for the number of inflationary
e-foldings, of which the leading order is

Nveil ≲ log
(

1
αΛ

)
≃ 64 , (1.1)

with the coupling constants α ≃ 2.5 × 105 ℓ2
P of αR2 and the cosmological constant

Λ ≃ 2.9 × 10−122 ℓ−2
P which determine the large scale behavior of the universe in two

completely different epochs! Given this principle of cosmic veiling, numerical simulations
are run to identify the salient aspects of the power spectrum, among them the presence of
power suppression at large scales, and finally we present an analytic approximation scheme
that separates the pre-inflationary effect from the purely inflationary effect on the power
spectrum by parametrizing deviations from squeezing, preserving the homogeneity and
isotropy assumptions, via Bogoliubov coefficients, and discuss which effects, consistent
with observation, might be imprinted on the CMB.

1.3 A brief co-moving history of the universe
At the heart of the explanation for the CMB lies the inflationary mechanism, which
posits the early universe expands nearly exponentially in size. In order to motivate a
pre-inflationary phase, a key element in the assumptions of cosmic veiling, we need to
understand the role inflation plays in explaining the temperature fluctuations observed
in the CMB. Figure 1.1 presents a co-moving history of the universe that can serve to
illustrate the inflationary mechanism – in particular as a diagram of the homogeneous
space-time background upon which we observe properties of anisotropic perturbations –
as well as the open questions it leaves, and how cosmic veiling can fill in those gaps.

In what sense is Figure 1.1 a co-moving history? The horizontal scale ought to stand
for time if this is indeed a history; in this case, the x-axis gives us our stand-in for time,
the amount of e-foldings N . The way to think of e-folds is similar as thinking of folding
a piece of paper and counting its thickness: fold once, and you get twofold the thickness.
Fold once more, to get four times the thickness, and so on. E-folds give us the same
geometric increase of size of the universe, but with the e as a root number rather than 2.
These are e-folds of the scale factor a(t), which gives us a sense of the size of the universe
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Figure 1.1. The co-moving history of the universe. Noted are some important epochs of the
universe: inflation, radiation-dominated era, matter-dominated era, and Λ−dominated era.
There are some noted special times, such as the time of the CMB, radiation-matter equality,
and matter-Λ equality. There is a minimum of co-moving scale which corresponds to the largest
scale ever observed in the universe. Also shown is the band of observable modes of the CMB,
and how they cross the Hubble horizon several times over the history of the universe, leading
to differing oscillatory and freezing behavior over epochs.

at a given time t. Specifically, if you have two freely moving bodies in space-time, such
as galaxies, the scale factor captures the increasing distance between them over time.
And if I know the scale factor at one point in time, I can relate it to the scale factor at
another point in time by the amount of e-folds N that occurs in between:

a(t1) = a(t0)eNt0→t1 . (1.2)

The vertical scale of Figure 1.1 is the co-moving scale a(t)H(t), where H(t) is the
Hubble parameter, derived from the scale factor:

H(t) ≡ ȧ(t)
a(t) . (1.3)

Note that, while the scale factor is dimensionless, the Hubble factor has a dimensions
of [time]−1. This gives us a natural length scale alongside the speed of light, that of
c/H(t), which measured today gives us: c/H0 ≃ 14billion light years. The scale a(t)H(t)
is then co-moving in the sense that this is the natural inverse length scale (in units
with c = 1), or wavenumber scale, that a freely floating observer would measure as the
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universe expands.
Now, the history of this plot gives us the background, with several identifiable epochs

of the universe - the radiation-dominated phase, followed by a short (in e-folds) matter-
dominated phase, and finally the current cosmological constant-, or Λ−, dominated phase
of the universe. During many of these eras, the co-moving scale decreases, with a notable
time near the present at which we’d observe the largest co-moving scale the universe will
ever see – remember that large scales corresponds to small co-moving scale a(t)H(t) – just
as the universe begins its accelerated expansion due to cosmological constant domination.

Now that we have the history of the background, we need to know how perturbations
evolve on this background. While the specific nature of the perturbations depends on
inflationary model, these are usually ultimately made manifest in temperature perturba-
tions of the CMB. These perturbations are generally analyzed via spectral decomposition,
that is, in terms of frequencies of the signal. Our diagram, helpfully, depicts also the
band of observable modes of the CMB, randing in scale from about 5Mpc−1 to 1Gpc−1.
These modes evolve on the background according to the wave equation. In Minkowski
space, this is simply the Klein-Gordon equation. When we consider cosmological spaces,
there is an addition which depends on the Hubble factor:

ϕ̈+ 3H(t)ϕ̇+ k2

a(t)2ϕ = 0, (1.4)

where ϕ is the mode function of the perturbation. This is, in essence, a damped
harmonic oscillator, with k/a(t) functioning as our frequency, and the Hubble factor
taking the role of friction. However, it is worthwhile to note that this isn’t really a friction,
so much as it is a dilution! This equation has two regimes of interest – overdamped and
underdamped solutions. In the underdamped case, the friction isn’t strong enough to
prevent oscillations, while in overdamped solutions, friction overtakes the oscillations,
leading to solutions being frozen. So for a given wavenumber k, the relevant quantity
that determines the freezing of the solution is a(t)H(t). Note that this argument isn’t
quite precise - why would a solution freeze to a nonzero value in this scheme? A more
careful treatment of this freezing phenomenon is given in Chapter 5.

Take, for example, a given band of modes k that is above the co-moving scale in the
universe during the modern epoch. If we look at the past-evolution of the bundle of
modes and choose quantum initial conditions |ψ⟩ at a time when the modes are under
the co-moving scale, since the modes are frozen, we would have no simple principle to
select initial conditions that gives rise to the statistical distribution of anisotropies we
observe in the CMB today. However, if we were to go further back in time, during the
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Figure 1.2. The co-moving history of the universe, now cosmically-veiled. The same important
epochs of the universe are depicted, but now we have a pre-inflationary era that is post-
Planckian, leading to a minimum of co-moving scale which corresponds to the largest scale
in the primordial universe. The band of observable modes of the CMB now can have initial
conditions set at a pre-inflationary time.

era of inflation, the band of modes would once again be above the co-moving scale, and
so the modes are oscillatory. As it turns out, if we pick a vacuum state as our initial
condition, evolve it through inflation, which at some point causes the band to become
frozen, we find, after its unfreezing in the modern epoch, a statistical distribution of
anisotropies that matches observation.

This is, of course, predicated on inflation having the depicted behavior that its
co-moving scale increases over time. We’ll see this derivation in Chapter 6. Altogether,
inflation gives us a mechanism for explaining the statistics of temperature perturbations
at late times in terms of simple initial conditions at a much earlier time. This is the
standard story - so what are the open questions that inflation leaves? For one, the
standard story doesn’t specify what exactly is the mechanism that produces inflation. In
addition, there’s no maximum amount to the total amount of inflationary e-foldings –
that is, inflation can last arbitrary long into the past absent some other mechanism. But
is this infinite inflation compatible with quantum gravity? And if not, does a quantum
gravity phase preceding inflation spoil the inflationary predictions?

The principle of cosmic veiling, inspired by censorship of black hole singularities by
their event horizon, is a threshold condition that we posits we ought to observe that
inflation veils rather than fully censors the initial singularity. By doing so, we require
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Quantum Gravity

Transition phase

Quantum Field Theory

H

Figure 1.3. The quantum gravity to quantum field theory transition can be partitioned
geometrically by the Kretschmann scalar. Shown above are K = const slices on the (H, Ḣ)
plane. The outer surface represents the quantum gravity regime; any solution of the Friedmann
equation which traverses into this regime is disallowed by our assumptions. The inner surface
represents the surface of initial conditions that are considered, allowing ourselves a buffer in
between where the transition to effective field theory may break down at some unspecified scale.

the existence of a post-Planckian, but pre-inflationary era of the universe in which the
framework of perturbative field theory still holds, and that the transition between these
regimes is smooth. Then, we can choose a vacuum state at this threshold – a simple initial
condition, at an earlier, pre-inflationary time – and we can determine the consequences
that such an initial state will have on observables. The change to our picture of the
co-moving history of the universe is shown in Figure 1.2. We’ll explore this modification
further in Chapter 6.

In order to talk about a pre-inflationary, but post-quantum gravity era of the universe,
that is, an era of time in which QFT in curved spacetime is able to make meaningful
predictions, we first need to quantify the transition between these two periods, as shown in
Figure 1.3. Working with FLRW spacetime absent of matter, the Kretschmann curvature
scalar, RabcdR

abcd provides a curvature invariant that can already be computed with the
FLRW metric without requiring any details of the inflationary theory. Using the metric
ds2 = −dt2 + a(t)2dx⃗2, we find the Kretschmann scalar,

K = RabcdR
abcd = 12(2H4 + 2H2Ḣ + Ḣ2) (1.5)
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defines a series of contours in the (H, Ḣ) plane when setting K = const. Regardless of
physical theory, we expect quantum gravity effects to be significant at Planckian scales.
The standard inflationary paradigm, using data from the Planck collaboration, puts an
upper bound on the value of the Hubble parameter at the time of inflation:

H∗

MPlanck
< 2.5× 10−5 (1.6)

Thus we define a possible QG-to-QFT transition band, in terms of length scale, between
the values of LPlanck < LQG-QFT transition < 104LPlanck.

It is within this band that we seek to impose pre-inflationary – but post-Planckian
– initial conditions that allow us to use the well-studied framework of QFT in curved
spacetime and probe for pre-inflationary effects that could be imprinted on the cosmic
microwave background.

12



Chapter 2 |
The classical space of initial con-
ditions

2.1 Introduction
We will work primarily in the modified gravity model proposed by Starobinsky in 1979.
This model, developed prior to the inflationary hypothesis, was devised with with goal
of investigating higher curvature effects on the early universe. At the time, there were
no direct methods to work this theory into observations, so when Starobinsky came
up with the potential typically used in single field inflaton theories, he was not simply
coming up with a parametrization that would best fit data. While one can use this as
a principle – gravity with additional curvature terms – as a starting point for doing
inflation with a dummy scalar field, we insist on taking Starobinsky’s action seriously.
This becomes relevant in situations where we have to consider observables. After all, just
as choosing a gauge informs the questions that we ask of observables, so too does what
we genuinely consider to be the physical field or physical scalar and tensor perturbations.
Moreover, taking this action seriously gives us a natural, intuitive way to ask questions
about a pre-inflationary, but post-Planckian regime of the universe. It is fair to insist on
including all higher curvature terms, after all, there’s no a priori reason to truncate the
gravitational theory at Einstein-Hilbert, and while higher curvature terms could certainly
be considered, our starting point is the quartic order in derivatives action, organized by
number of derivatives and including all possible ways the derivatives can appear while
keeping the action diffeomorphism invariant: [31]

S[gµν ] =
∫

(c0 + c2R + c4R
2 + c′

4RµνR
µν + c′′

4RµνρσR
µνρσ + ...)

√
−gd4x (2.1)
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Note that the coupling constants c4, c
′
4, c

′′
4 are not independent. The Gauss-Bonnet

term, which is a surface term in 3+1 gravity, constrains the relationship between the
coefficients:

E = 4RµνR
µν −R2 −RµνρσR

µνρσ = ∇µC
µ (2.2)

Since the variation of this term yields does not contribute to the equation of motion,
we can adjust the original formulation of our action by eliminating one of the three terms
c4, c

′
4, c

′′
4 using the Weyl tensor and restore the historical names of the coupling constants:

S[gµν ] = 1
16πG

∫
(−2Λ +R + αR2 + βWµνρσW

µνρσ + ...)
√
−gd4x (2.3)

where G is Newton’s constant and α is a coupling constant to the higher curvature
term. Notice that since R has units of 1/length, α has units of area. A couple of
remarks about this action are in order. The coupling constant β is currently largely
unconstrained, while analysis of the inflationary phase in this theory and subsequent
matching to observation will show a value of α of the order 1010Gℏ. Clearly any effective
field theory should be expected to break down at the Planck scale. One might have
concerns regarding a large order of magnitude of the coupling constant α that might
affect the domain of validity of the effective field theory. Indeed, observations within
the solar system provide weak constraints of the magnitude of α, limiting it to values
below 1018m2 or 1087Gℏ. As back-of-the-envelope calculation, consider how large a
black hole might have to be in order to observe α. Well, α must be compatible with the
effective field theory, and thus small compared to the bounds of the solar system. If α is
5 orders of magnitude removed from Planck length, might we observe a black hole with
this energy scale? Well, 5 orders of magnitude removed from the Planck mass gives us
about a 1 gram black hole. In comparison to a solar mass black hole, around 1030kg, the
contribution of α is suppressed by 10−33, so there’s not much chance of seeing α in the
solar system, so it can thankfully be relegated to an early universe effect!

Further stringent constraints from Eot-Wash experiments with torsion balances,
in addition to results of the Gravity Probe B mission, have led to a bound of |α| <
1.0 × 10−9m2 or 3.8 × 1060Gℏ. [32–35] So within the solar system, α is allowed to be
quite large without ruining the validity of the theory at the scale of the solar system.

In this thesis, we will be working under the explicit assumption that, just in the way
that there exist a separation of scales which allows us to describe gravity within the solar
system using only the Einstein-Hilbert action with a high degree of fidelity, so too can we
describe an inflationary, and pre-inflationary epoch with only quadratic curvature terms.
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Since we’ll be working within the framework of flat FLRW slices, the description
of the dynamics of the background will have the contribution by the Weyl tensor be
automatically zero, as this theory is conformally flat. In addition, the scale of Λ is
negligible at this curvature, so for the time being we will work solely from the action
from Starobinsky, [30]

S[gµν ] = 1
16πG

∫
(R + αR2)

√
−gd4x (2.4)

Once we have the action, since the equations of motion are stationary points of the
action, we vary the action once and impose equality to zero to find the equations of
motion of the background, where here we introduce the abstract functional derivative
with the tensor F µν , a tool that will help us later on when we take on the second-order
action of the perturbations:

F µν = δ

δgµν

S = − 1
16πG (Gµν + Λgµν + αHµν + 4βBµν) (2.5)

with the tensor Gµν being the usual Einstein tensor, and the variation of R2 giving
the tensor Hµν :

Gµν = Rµν −
1
2Rgµν (2.6)

Hµν = 2RGµν − (∇µ∇νR +∇ν∇µR) + 2(gαβ∇α∇βR + 1
4R

2)gµν (2.7)

In a frame where the inflaton field is taken as physical, the first variation of the action
with respect to the metric and the field would yield the ordinary Einstein’s equations
and the Klein-Gordon equation, respectively. Here instead, assuming minimal coupling
of matter fields to gravity, the zeroth order modified Eintein’s equation becomes: [36] [37]

Gµν + αHµν = 8πGTµν = 0 (2.8)

where the last equality reinforces that we’ll be working in a universe with trivial
matter content. It is worth noting at this point, once again in comparison to a frame
with a physical inflaton field, one would field a potential with a plateau at ϕ≫ b given
generically by:

V (ϕ) = V0

(
1− e− ϕ

b

)2
(2.9)
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where an expansion near ϕ ∼ 0 and identification with the quadratic potential allows
us to define an associated mass V0 = 1

2M
2b2. Note the features of the theory – there is a

width to the potential, as well as a height of the plateau. Moreover, the way in which
one prepares the field, how it exponentially approaches slow-roll, whether it was always
in that state or whether the slow-roll is preceded by a period of fast-roll, these are all
considerations of the theory. In a framework in which we take seriously gravity-driven
inflation, we are left with only one significant physical parameter – the value of α. This
scale makes itself evident in its importance in the classical space of initial conditions
we consider, that of the (H, Ḣ) plane, where there is an attractor line at Ḣ = 1

36α
,

corresponding to quasi-de Sitter inflationary evolution.
There’s some remarks to be made here considering the configuration space of initial

conditions. The word “attractor” here is charged; it implies a likelihood of inflation
occurring. In addition, it makes it clear that we are not dealing with a canonical phase
space in (H, Ḣ), as an attractor in a phase space would violate the Liouville theorem.
Converting our configuration space to a proper canonical phase space would have certain
advantages, such as allowing us to define a integration measure on the space of initial
conditions. With added information, either in the form of an independently-developed
wavefunction on the space of initial conditions or more simply taking the assumption of
ergodicity – that the universe can explore the space of initial conditions in a uniform
manner, giving rise to a random set of initial conditions – it would be possible to argue
for the likelihood of inflation from the logic of typicality [38]. We do not make any such
arguments for typicality. Instead, we have a principle – cosmic veiling – that bounds
from above the number of inflationary e-foldings, and we set out to find initial conditions
compatible with this principle. For all such initial conditions, the line at Ḣ = −1/36α is
an attractor.

Since inflationary solutions must go through this attractor line, we require only one
other parameter to specify an initial condition. The only relevant scale in the theory is
the evolutionary scale, in terms of length that is 1/

√
α, so we will posit the transition

scale Hc = µ√
α
, where we will see observations exclude µ < 1.8.

Working with a metric that is FLRW with flat spatial sections,

ds2 = −dt2 + a(t)2dx⃗2 (2.10)

we obtain modified Friedmann and Raychaudhuri equations:

H2 + 6α(6H2Ḣ − Ḣ2 + 2HḦ) = 0 (2.11)
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3H2 + 2Ḣ + 6α(18H2Ḣ + 9Ḣ2 + 12HḦ + 2
...
H ) = 0 (2.12)

where H(t) is the Hubble parameter defined to be H(t) ≡ ȧ(t)
a(t) . The Raychaudhuri

equation, in this instance, is not independent of the Friedmann equation but it is linearly
dependent on the Friedmann equation and its first derivative. It is useful to introduce
quantities to speak efficiently about slow-roll and e-foldings. We already have one of
them, the Hubble parameter, which gives the logarithmic rate of change of the scale
factor a(t). We introduce a second parameter, ϵ, which itself determines how quickly
H(t) changes:

ϵ1(t) = − Ḣ

H2 (2.13)

Note that ϵ is dimensionless as H(t) has units of one over time. Here, the Hubble
parameter can be thought of as the length scale associated to the extrinsic curvature of
our sections. These sections change in time, so the Hubble parameter is the time scale
over which it changes, or if we add in the speed of light c, the length scale. We can define
this length scale, the Hubble radius, as lH(t) = 1

H(t) , and look at its rate of change l̇H ,
which is dimensionless:

l̇H = d

dt

1
H(t) = − Ḣ

H2 = ϵ (2.14)

So if we ask how quickly the Hubble radius changes, it’s exactly ϵ1! Moreover, it’s
clear that the Hubble rate measures a velocity, ȧ(t) = a(t)H(t), with H(t) > 0 leading
to expansion as a(t) by definition is positive. If we take the definition of ϵ1 and solve for
ä(t), we find the condition for accelerating expansion:

ä = (1− ϵ1)aH2 (2.15)

So to check if the expansion is accelerating or decelerating, simply check whether ϵ1

is bigger or smaller than 1, with a smaller value leading to acceleration. The quantity
that is really relevant when we talk about how the scale factor changes is its logarithmic
change, which we can give a name to, the number of e-foldings N(t), which we can write
by either taking a reference scale factor and take a ratio or conversely use to write a(t)
as a number of e-folds from that reference scale:

N(t) = log a(t)
a0

or a(t) = eN(t)a0 (2.16)

One of the nice things that comes from this definition is the relationship of the number
of e-foldings to the Hubble rate, where H(t) turns out to be precisely Ṅ(t), or allowing

17



us to write e-folds as an integral in H(t):

N(t) =
∫ t

t0
H(t′)dt′ (2.17)

So long as H(t) remains positive, that is, we live in an expanding universe, we can
ask how long time has passed in terms of number of e-foldings. Keen-eyed readers
will have noticed that we’ve chosen to index the slow-roll parameter; it will be useful
for us to introduce further Hubble-flow parameters once we begin speaking about the
equation of motion of the perturbations. Each slow-roll parameter is recursive, each with
a logarithmic derivative in time, made dimensionless by introducing the only relevant
time scale H(t) :

ϵ1(t) = − Ḣ

H2 , ϵ2(t) = ϵ̇1

Hϵ1
, ϵ3(t) = ϵ̇2

Hϵ2
, ... (2.18)

In the literature, one often finds a second-order slow-roll parameter, δ = Ḧ
ḢH

that
further characterizes the slow-roll of the inflaton in a given potential. The relationship
between this parameter and our Hubble flow parameters is given by:

ϵ2(t) = 2ϵ1(t) + δ(t) (2.19)

Notice that whenever δ(t) is negligible, that is, Ḧ is small, or the jerk of the scale
factor is small, both Hubble flow parameters are roughly of the same order. Indeed,
assuming we are in a regime in which each progressive derivative of H(t) is smaller than
the previous one, we will find that every Hubble-flow parameter is of the same order of
magnitude. This will be useful for us in expanding our perturbation equation of motion
at a given order. For now, it is sufficient to know that, in the background, we will use
ϵ1 < 1 as the definition of an inflationary phase, which we distinguish from a more specific
quasi-de Sitter phase in which |ϵi| ≪ 1 for all i, so that the Hubble rate is approximately
constant. It can be intructive to re-express the Friedmann equation in terms of Hubble
flow parameters, where we have placed all non-Einstein-Hilbert terms on the left, and
the Einstein-Hilbert contribution on the right:

(
1− 1

2ϵ1 + 1
3ϵ2

)
36ϵ1αH

2 = 1. (2.20)

Now given all these tools, we can identify 3 separate regimes in the Friedmann
equations. We will visit them one by one, starting with the quasi-de Sitter phase, looking
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at how it ends gracefully into an oscillatory, reheating phase, and finally push the bounds
of quantum field theory in curved spacetime and push further into the past, looking for
the behavior of the pre-inflationary phase.

2.2 The quasi-de Sitter phase
To identify the quasi-de Sitter phase, or R + αR2 phase, we will take all the ϵi in the
Friedmann equation to be small and of the same order, so that O(ϵi) = O(ϵ1). Neglecting
terms of order O(ϵ2

1), we find:
36ϵ1αH

2 = 1 (2.21)

This yields a simple equation of motion:

Ḣ ≈ − 1
36α ⇒ H(t) ≈ H(t0)−

1
36α(t− t0) (2.22)

where t0 is some reference time. In this phase, Ḧ is negligible, so the slow-roll
parameter δ is of higher order, and the relation reduces to ϵ2 ≈ ϵ1.

Given the totality of the Friedmann equations, one can describe the classical tra-
jectories on the (H, Ḣ) configuration space by looking at the vector field flow of the
Friedmann equation:

VFriedmann =
(
Ḣ,
−36αH2Ḣ + 6αḢ2 −H2

12αH

)
(2.23)

Figure 2.1 shows a clear attractor line to which classical paths converge. This
corresponds to a solution in which Ḧ = 0, which in turn allows us to solve the Friedmann
equation for Ḣ:

Ḣ = 18αH2 −
√

6
√

54α2H4 + αH2

6α , (2.24)

When expanded in series around H →∞, we find Ḣ → − 1
36α

, confirming the quasi-de
Sitter phase is defined entirely in terms of this attractor line. Thus, any trajectory that
undergoes slow-roll inflation must cross this attractor line, which in turn is defined by the
sole dimensionful parameter of the theory, α. In order to identify an initial condition in
this space, we require two numbers, presumably H, Ḣ. The latter can already be set this
this attractor line – a requirement that any trajectory we investigate must be slow-roll
inflationary. We then posit an additional relevant scale, written in terms of the only
scale of the theory, which marks a transition scale from inflationary to pre-inflationary
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Classical trajectory Attractor line

Figure 2.1. The vector field flow of classical solutions to the Friedmann equation. Shown in
red is the attractor line. One specific solution (blue) is shown in totality, evolving into the
reheating phase.

behavior. We call the quantity “H-cross”, Hc ≡ µ√
α
, where µ is an undetermined

parameter of order unity. Note that this choice of initial conditions, without introducing
an additional scale, selects only trajectories that approach the attractor line from below.
While we won’t directly consider trajectories that approach from above, note that some
of these correspond to universes which have an instantaneous Minkowski-like point at
H = 0, Ḣ = 0, thought with nontrivial Ḧ, and which either become more and more
quantum in nature or feature a non-quantum bounce where the space-time curvature
reaches a maximum before going back to a quasi de Sitter regime.

Using this set of initial conditions as our pinpoint where our classical trajectory must
pass through, we can calculate the total number of inflationary efoldings for a generic
trajectory. Identifying the Hubble rate and time of crossing Hc, t× as the integration
constants H0,t0 in the equation governing slow-roll inflation, and defining the end of
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inflation to occur when ϵ1(tend) ≡ 1, the expression for inflationary efoldings is:

Ninfl =
∫ tend

t×
H(t)dt = 18H2

cα (2.25)

There is a requisite minimal number of efoldings in order to match observations –
a time interval of long enough duration is required for all observable modes k to be
oscillatory at early times – that informs the value of µ. Assuming this minimal number
of around 60 efolds and substituting in Hc, we find µ > 1.8. We will see that, in order to
observe pre-inflationary modifications to the power spectrum that are compatible with
observation, µ cannot be much larger than 1.8.

2.3 The reheating phase
Reheating, or the R+αR2 + matter phase, occurs at the end of inflation. Referring back
to the Friedmann equation, reheating occurs at a time when the Hubble-flow parameters
are no longer small and instead become comparable to unity and then larger. During
this phase, the sign of Ḣ changes, so ϵ1 oscillates between being positive and negative,
and goes to infinity at times when H goes to zero. In this theory, absent of matter, this
leads to oscillations that are no longer well-defined by only two initial conditions, as the
origin of the (H, Ḣ) plane is degenerate, and requires an additional input of Ḧ to specify
the behavior of the trajectory. In addition, since H, Ḣ are not canonically conjugate to
each other, we should not expect that the Louisville flow volume will be conserved by
classical trajectories. When one introduces matter into this framework, the expectation
is that the coupling of matter to R+ αR2 gravity will energize matter sectors, leading to
a nontrivial energy density content and curing the degeneracy of the oscillations.

During reheating, the Friedmann equation is approximately given by:
(1

2ϵ1 + 1
3ϵ2

)
36ϵ1αH

2 = 1 (2.26)

This can be straightforwardly be solved for H(t), yielding:

H(t) = C cos2
(
t− treheat√

24α

)
(2.27)

It is possible to improve the approximation further by keeping the initially neglected
term and plugging back into the full Friedmann equation with the ansatz H(t) =
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f(t) cos2
(

t−treheat√
24α

)
, where f(t) is an unspecified damping function. Under the condition

that the damping is slow, we find f(t) =
(
1 + 1

8 sin
(

t−treheat√
6α

+ 1
8
√

6α
(t− treheat)

))−1
.

There is a separate story about matter during this period of time – how it becomes
thermalized, changes in time, how the particle zoo of the Standard Model drop out the
relativistic primordial gas according to their masses, however, that is not the focus of this
thesis. Instead, we’ll study perturbations during inflation, and how those perturbations
become imprinted in the CMB.

2.4 The pre-inflationary phase
If we rewind back far enough in time, during a pre-inflationary phase of the universe, the
curvature of the universe becomes large enough to neglect the Einstein-Hilbert term in
the action, leaving behind a pure curvature squared action. This action is scale invariant,
and so we’ll see the scale α drop out from out equations of motion. As a consequence of
one of our key assumptions – that there exists a separation of scales from the Planck
era to the R2 era to the Einstein-Hilbert and Λ-dominated era – is that this curvature
squared, or scale-free phase of the universe is well described by quadratic terms in the
action without requiring higher derivative terms and in which the framework of quantum
field theory in curved space-time is still an effective perturbative theory that accurately
describes the universe.

We’re interested in determining the behavior of H(t) during this pre-inflationary era,
building toward describing at timeline of events from the very earliest non-Planckian
times. During this epoch, the magnitude of the curvature is sufficiently large to disregard
the R term in the Starobinsky action, and so we find the following Friedmann equation
for the pre-inflationary dynamics:

(
1− 1

2ϵ1 + 1
3ϵ2

)
ϵ1H

2 = 0 or 6H2Ḣ − Ḣ2 + 2HḦ = 0 (2.28)

We can solve the equation of motion in a couple of steps. In this case, it’s helpful to
use a change of variables H = w2 and integrate once to get an exact first order differential
equation:

4w3(3w2ẇ + ẅ) = 0 ⇒ 3w2 + ẅ

ẇ
= 3w2 + dẇ

dw
= 0 (2.29)

⇒ ẇ = −w3 + const . (2.30)
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The first order equation, with restored H and Ḣ variables becomes:

Ḣ = −2
√
H(H3/2 − const3/2) (2.31)

The constant term gives the value of Ḣ when H is 0. Given that there’s an attractor
line at Ḣ = 1

36α
that any such pre-inflationary trajectory must cross from below, this

solution won’t in practice ever reach the horizontal axis. However, the value of α we’ll
determine is around 1010 in Planck units, so a clever selection of the constant of integration
can closely approximate the time when the pre-inflationary and quasi-de Sitter solutions
cross. For this reason, and since the total number of inflationary efoldings is one of our
parameters, it makes sense to set const = Hc.

Ḣ = −2
√
H(H3/2 −H3/2

× ) (2.32)

We can further solve the remaining first order equation by approximation. We can
rewrite our equation by defining the parameter ξ(t) = Hc

H(t) , we can integrate once more:

ξ̇(t) = 2Hc (1− ξ(t)3/2) ⇒ dξ

2Hc (1− ξ(t)3/2) = dt (2.33)

and so in the regime in which ξ ≪ 1, we can integrate once more to find the
approximate solution:

t(ξ) ≈ ξ

2Hc

+ ξ5/2

5Hc

(2.34)

Once you revert back to H variable, it’s clear that a lowest order solution is H(t) = 1
2t

.
We can find the next order solution by positing an ansatz with a constant and square
root term, Hansatz = 1

2t
+ a1 + a2t

1/2. We then make sure the ansatz is self-consistent, by
plugging back into Equation 2.34 and expanding out in a series, and ensuring that the
series is equal to t order by order. Doing so imposes a consistency relation which sets
the coefficients a1 and a2:

a1 = 0 (2.35)

−2a2 + 4
5
√

2H3/2
c = 0 ⇒ a2 = 2

5
√

2H3/2
c (2.36)

This gives our approximate equation for the Hubble parameter during the pre-
inflationary era:

H(t) ≈ 1
2t + 2

5
√

2tH3/2
c (2.37)
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Notice that, akin to that of a cosmological radiation-dominated phase, at lowest order
H(t) = 1

2t
. It’s important to note that the pre-inflationary era is not radiation dominated,

after all the matter sector at this pre-Hot Big Bang time is trivial. This era is merely
radiation-like in the sense that the expansion of the universe is akin to that of FLRW
with dominant radiation sector, but in this case, it is purely driven by higher curvature
gravity. In cosmological backgrounds with matter, one can write the energy density and
pressure in terms of kinetic and potential energy:

ρ(t) = K(t) + V (t) (2.38)
P (t) = K(t)− V (t) (2.39)

Speficically, radiation dominated backgrounds can be identified by the equation of
state P = 1

3ρ. Putting together both of these ideas, we find that radiation, and thus
radiation-like backgrounds, can be thought of as being kinetic dominated:

K = 2V (2.40)

This idea is borne out in our gravity-driven background, by looking at the first Hubble
flow parameter:

ϵ1(t) = 2
1−

(
Hc

H(t)

)3/2
 (2.41)

Recall that 1/H(t) gives us a length scale, so in the Planck limit where H(t) is large,
we find ϵ1 → 2. As it becomes smaller, ϵ1 becomes smaller as well, eventually becoming
unity and starting inflation, though at this time it is a fast-roll. At some point, H(t)
comes close enough to Hc that the quasi-de Sitter approximation takes over, and we
officially start slow-roll inflation. In this model, pre-inflationary classical solutions of this
kind enter inflation gracefully. Figure 2.2 gives us an idea of the timeline of events for a
typical trajectory. Worth noting is that the onset of inflation occurs prior to the crossing
time. That is, the onset where ϵ = 1 that signals accelerating expansion occurs before we
formally can describe the trajectory in terms of the inflationary, quasi-de Sitter evolution.
However, this accelerated expansion is fast-roll, so not a lot of e-foldings develop, and
the bulk of inflationary e-foldings occur during the quasi-de Sitter, slow-roll evolution
after the time tcross.
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Figure 2.2. Shown is a typical trajectory evolving in time and major milestones of its evolution.
Formal solutions are evolved from the Kretschmann time, though there must exist a past-facing
extension towards the initial singularity. The onset of inflation occurs first, when ϵ = 1 the first
time during evolution, followed by the crossing time when the pre-inflationary and inflationary
solutions meet. Sometime later, the pivot mode k∗ crosses the Hubble horizon at time t∗, and
finally inflation ends, leading to the oscillatory behavior of reheating.

2.5 The quantum gravity threshold
How far into the past can we extend our solution? Certainly, we should not trust our
perturbative field theory at the Planck scale, where quantum gravity effects are expected
to be significant. While the boundary where quantum field theory in curved space-time
framework ceases to accurately describe the physics of the system may be fuzzy, we can
at least set a hard boundary using the Kretschmann curvature scalar, as curvature is the
relevant physical scale that best probes Planck effects in our pure gravity theory and
Kretschmann is a simple curvature invariant that can be computed in FLRW regardless
of any additional details:

KPlanck = RabcdR
abcd = 12(2H4 + 2H2Ḣ + Ḣ2) = 1/ℓ4

P (2.42)
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Figure 2.3. Evolution of the Hubble factor H(N) across these 3 regimes. A sharp “knee”
indicates the transition from the pre-inflationary to quasi-de Sitter phase, and oscillations
mark the beginning of reheating. Scale of Hubble factor given in units of Planck. The zero of
e-foldings is set at the time t∗.

This boundary, set by ℓP , defines a cardiod-like shape in the (H, Ḣ) plane. The
choice of our initial condition, namely the selection of a given Hc with the selection of a
trajectory that crosses the attractor line from below, precludes us from initial conditions
in the upper plane of the space. An additional aggravating factor is that some upper plane
initial conditions will actually first exit the cardiod, and so we cannot take seriously any
trajectory that first heads into the quantum gravity regime before entering the cardiod
at a later time. Similarly, we do not explore initial conditions with H < 0 initially, that
is, universes that are contracting. In order to make one last classification of background
trajectories, we need to describe the Kretschmann curve a bit more detail.

The relevant branch of the Kretschmann curve we wish to look at is the one in which
H > 0 and Ḣ < 0. This branch, near the bottom of the well of the cardiod, is given by:

Ḣ = −1
6

(
6H2 + 3− 36H4ℓ4

P

ℓ2
P

)
(2.43)

The bottom of the well in this branch can be identified with Hmin = 1
23/431/4LPlanck

.
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Note that, this branch evaluate at Hmin, we find Ḣ = − 1√
6l2

. Extracting the slow-roll
parameter at this point gives ϵ = 2, that is, the bottom of the well corresponds to an exact
radiation-like phase! At this point, we can begin talking about the number of inflationary
efolds you might generate from a given trajectory. As noted in Figure 2.3 there is a clear
change in behavior of H(t) between the pre-inflatioanry and inflationary solution that is
sharp - so we can find the intersection of said trajectory and the Kretschmann curve by
combining 2.43 and 2.32, with the latter containing Hc. Thus, we can write the number
of inflationary efolds from the equation 2.25. The result more instructive when expanded
in series around the bottom of the well:

Nslow-roll ≈
√

6α(6HLPlanck − 21/433/4)4/3

ℓ2
P

(2.44)

Notice that at Hmin, the number of inflationary efoldings is identically zero. That is,
the bottom of the well, exact radiation-like solution, corresponds to a trajectory that
goes directly from pre-inflationary behavior to reheating! We can take its derivative
with respect to H to get a sense of how sensitive the number of efolds is to the chosen
trajectory:

dNslow-roll

dH
≈ 8
√

6α(6HLPlanck − 21/433/4)1/3

ℓ2
P

(2.45)

The important value to note here is the dependence on α/ℓP . Since the scale α of
inflation is set around 1010 that of Planck, one does not need to deviate much from the
bottom of the well to generate a lot of efoldings. One final remark: certain trajectories
that intersect the Kretschmann curve to the left of the bottom of the well tend to intersect
the origin of the (H, Ḣ) plane, and then loop back and approach the attractor line from
above. We won’t consider these models, ones in which the universe momentarily becomes
Minkowski and then goes into an ϵ < 0 inflation phase.
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Chapter 3 |
Quantization and mode equations

3.1 Introduction
Let’s briefly outline our strategy, which follows the techniques of effective field theory. [39]
There are two general approaches to quantization of the action. On one hand, we could
take a gauge invariant approach, and quantize the full kinematical Hilbert space. We’ll
take the approach of identifying a specific gauge to work in, identify appropriate gauge
and Hamiltonian constraints, and look to only to quantize the physical Hilbert space.
In order to find this action for tha gravitational perturbations, we’ll need to find the
second functional derivative of the action. When we first looked at the background, we
saw that the first functional derivative with respect to the metric, when taken to be
stationary points, yield the equations of motion of the background. Next, we’ll look at
the second functional derivative to get the equations of motion of the perturbations. In
doing so, we’ll need to identify gauge conditions, so we’ll need to identify the physical
degrees of freedom. To do so, we split the metric into an Scalar-Vector-Tensor (SVT)
decomposition, which will allow us to identify scalar and tensor degrees of freedom, and
their respective actions.

We’ll end up solving our equations of motion mode-by-mode, so it’ll be useful to
speak in the language of Fourier transforms. We declare the following convention, for
a given function f(x⃗) that is square-integrable, that is, f(x⃗) ∈ L2(R3), the Fourier and
inverse Fourier transforms are given by:

f̃(k⃗) =
∫
f(x⃗)e−−i⃗k · x⃗d3x⃗ (3.1)

f(x⃗) =
∫
f̃(k⃗)e+ik⃗·x⃗ d3k⃗

(2π)3 (3.2)
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with a compatible Dirac Delta defined by:
∫
e−ik⃗·x⃗d3x⃗ = (2π)3δ(3)(k⃗) (3.3)

This is the Fourier transform that we are used to using in physics, but it’s important
to keep in mind why we are using it. The Fourier transform can be thought of as a basis
of eigenfunctions of the Laplacian:

∆ = δij∂i∂j, ∆e−ik⃗·x⃗ = −k⃗2e−ik⃗·x⃗ (3.4)

Since we’ll be working in flat spatial slices of FLRW, this Fourier transform is the
choice that is adapted to the symmetries in question, namely translations and rotations
in 3d Euclidean space. In a general curved space-time, with metric gab and compatible
covariant derivative Da, the covariant Laplacian doesn’t just have δab, but contains
covariant derivatives:

∆ = gab∇a∇b = 1√
h
∂a(
√
hhab∂b) (3.5)

One could still ask for the eigenfunctions of the curved Laplacian, but in our case, the
symmetry of our background is what allows us to select the ordinary Fourier transform,
as opposed to harmonic analysis on spheres or hyperplanes. Thus, instead of working in
the full metric gµν as it doesn’t many manifest the symmetries of our space-time, we’ll
utilize the ADM formalism in order to decompose the 4d metric into a 3d metric plus a
lapse and a shift. For the metric, we’ll need to do an SVT decomposition; for example, in
R3, one can take a reference vector and decompose any other vector into a part parallel
to the reference vector, and thus affixed by a scalar value, and one orthogonal to the
reference vector.

We start with the background, written in terms of the ADM ansatz with a lapse and
shift:

ds2 = −N2dt2 + hij(dxi +N idt)(dxj +N jdt) (3.6)

Starting with the shift, in the FLRW background, it’s identically 0, so we can begin
by writing out its perturbation. As the shift is a vector, it can be decomposed into
a portion in the direction of k⃗ and a portion that is transverse, or in other words, a
divergence-less and an irrotational part:

δNµ(k⃗, t) = ε(ikµS(k⃗, t) +Nµ
⊥(k⃗, t)) (3.7)
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with δµνk
µN ν

⊥(k⃗, t) = 0. Note that we’ll raise and lower indices with the background
metric δµν , since we think of this framework as a perturbative expansion and the
perturbation would introduce higher orders than in the free theory. If you reverse the
Fourier transform, it can be written in terms of a derivative of a scalar plus a vector with
zero divergence:

δNµ(x⃗, t) = ε(∂µS(x⃗, t) + δNµ⊥(x⃗, t)) (3.8)

The perturbation of the scalar lapse is simple to write at first order:

N = 1 + εδN (3.9)

Note that we won’t be able to set δN or δNa to zero since they are Lagrange
multipliers for the contraint equations and were we to set them to zero, we would miss
equations.

We required the coordinates because the perturbation depends on the coordinates
we use. The next step is to decompose the ADM metric into Scalar-Vector-Tensor
(SVT) contributions. Consider the metric hab, which is the 3d metric tensor under 3d
diffeomorphisms of the FLRW slices. The SVT decomposition of this metric then refers
to ISO(3), all translations, reflections and rotations on 3d Euclidean space. Explicitly,
we write the perturbation as:

hab(x⃗, t) = a(t)2δab + δhab(x⃗, t) (3.10)

We can then write the decomposition of the perturbation hab with respect to the
background metric δab. To do so, we’ll go to Fourier transform as it becomes easier to
separate out derivatives. We ask: how can we decompose a tensor? We can write a
tensor out in terms of a scalar, in this case the trace of the metric, times δab, but we can
also write a scalar since two momenta ka, kb can also give a tensor. We can also write a
tensor in terms of a vector kaBb where we ask the vector Bb to be transverse. Finally,
the only thing that’s left is something that’s genuinely a tensor that is transverse and
traceless. In other words, we have:

δhab(k⃗, t) =− 2R(k⃗, t)a2(t)δab (3.11)
− kakbC(k⃗, t) (3.12)
+ a(t)

(
ikaBb(k⃗, t) + ikbBa(k⃗, t)

)
(3.13)

+ a(t)2γab(k⃗, t) (3.14)
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with:

Scalars: R, C (3.15)
Transverse vector: Ba with kaBa = 0 (3.16)
Transverse traceless tensor: γab with kaγab and δabγab = 0 (3.17)

In components where k points in the z direction, these are:

k⃗ =


0
0
k

 , Ba =


B1

B2

0

 , γab =


γ+ γ× 0
γ× γ+ 0
0 0 0

 (3.18)

In this form it’s straightforward to count: we have two scalars, two vector components,
and two tensor components; six total components split into 3 groups. The trace R(k⃗, t)
has a traditional name – the curvature perturbation – while the rest don’t, as we’ll see
them disappear once we impose constraints. Now written in position space, including
the small parameter ε to track order:

hab(x⃗, t)dxadxb =
(
a(t)2δab + εδab

)
dxadxb (3.19)

= a(t)2(1− 2εR(x⃗, t))δabdx
adxb (3.20)

+ ε∂a∂bC(x⃗, t)dxadxb (3.21)
+ εa(t)(∂aBb(x⃗, t) + ∂bBa(x⃗, t))dxadxb (3.22)
+ εa(t)2γab(x⃗, t)dxadxb (3.23)

Note that, if you want to track where the scale factors should be, x is defined to be a
coordinate, so a(t)dx is a physical length, and so when we take a derivative, we get a

1
a(t)

∂
∂xa .
Let’s make sense of the trace R(x⃗, t) which we called the curvature perturbation.

Using this metric, we can compute the 3d Ricci tensor:

(3)Rab = ε
(
δab + ∂a∂b

)
R(x⃗, t)− ε1

2∆γab(x⃗, t) where ∆ = δab∂a∂b (3.24)

As expected given the flat FLRW background, at zeroth order in ε, our spatial sections
are flat. The functions C(x⃗, t) and Ba(x⃗, t) don’t contribute at linear order, and the
tensorial part of the Ricci tensor is encoded entirely in ∆γab(x⃗, t). When we further take
the trace of the Ricci tensor, we find that the Ricci salar is the Laplacian of the curvature
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perturbation with a coefficient

(3)R = hab(3)Rab = ε
4

a(t)2 ∆R(x⃗, t) (3.25)

The curvature perturbation is not directly the physical perturbation, but it is directly
related to the Ricci scalar. When we compute the power spectrum, it’ll be the fluctuations
of this quantity that we’ll calculate and see imprinted in the CMB with the amplitude
10−5.

We can already count out the vector contribution to the perturbations. From the
shift we get a vector perturbation which is split into a scalar part plus a transverse part.
We similarly get a transverse vector contribution from the perturbation of the metric
tensor. In the Hamiltonian constraint, there is a vector constraint which can itself be
written perturbatively in terms of a scalar part and a transverse part. The only other
constraint, from gauge fixing, also provides a vector contribution similarly split. Thus,
counting dynamical degrees of freedom, we find for vectors, the two perturbations are
exactly constrained by two equations, meaning that there’s no vector contribution to the
perturbations.

3.2 The action at quadratic order, gauge fixing and con-
staints
Now that we’ve identified the degrees of freedom of the perturbations, we identify which
of those are dynamical. The plan will be to fix a gauge, solve the constraints, and then
write the action just for the cosomological perturbations which remain and are physical.
Note that, when we use ε to track order, and then Taylor series and truncate the action
at order 2, the free quadratic action will have ε set to 1. The average perturbation should
be zero, but has square root variance, which has to be small compared to the background
to ensure self-consistency.

It’ll be useful to introduce the auxiliary field χ(x⃗, t) :

χ(x⃗, t) = 1 + 2αR(x⃗, t) (3.26)
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Our action rewritten in terms of this auxiliary field becomes:

S[gµν ] = 1
16πG

∫
(R + αR2)

√
−gd4x⇒ S[gµν , χ] = 1

16πG

∫
(χR− 1

4α(χ− 1)2)
√
−gd4x

(3.27)
We’ll consider R(x⃗, t) and χ(x⃗, t) to be independent from each other as we vary the

action. We’ll take once again a variation of the full metric, where we will use a bar to
denote the background quantities:

gµν(x) ≡ ḡµν(x) + εδgµν(x) (3.28)
χ(x) = χ̄(x) + εδχ(x) (3.29)

We’ll also require raising indices, thus we’ll need the inverse metric. Note that, when
we invert the metric, we are inverting the previous definitions, so we cannot define the
former and say that the latter is purely linear as there must corrections:

gµν = ḡµν − εḡµαḡνβδgαβ +O(ε2) (3.30)

Given an action, the equations of motion are stationary points of the action. As
before, we can define the following functional derivatives with respect to the metric gµν

and auxiliary field χ:
F µν = δS

δgµν

K = δS

δχ
(3.31)

When you impose equality to zero, one should recover the previous modified Friedmann
equations of motion once χ has been substituted in. To go to next order, we vary a
second time by taking once more the functional variation of the first derivative. Written
out symbolically, we’re looking to expand the action in a series in ε:

S[ḡµν + εδgµν , χ̄+ εδχ] = S[ḡµν , χ̄] + εS1[δgµν , δχ] + ε2S2[δgµν , δϕ] +O(ε3) (3.32)

At order zero, we simply get the background action, which doesn’t contribute to the
perturbations as it’s constant with respect to the perturbations. The linear order term is
zero because we assume the background is a classical solution to the equations of motion,
and thus provides a stationary point:

εS1[δgµν , δχ] =
∫ (

ε
δS

δgµν

δgµν + ϵ
δS

δχ
δχ

)
d4x

∣∣∣∣∣
background

(3.33)
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=
∫

(εF µνδgµν + ϵKδχ) d4x
∣∣∣∣
background

(3.34)

=
∫ (

εF̄ µνδgµν + ϵK̄δχ
)
d4x (3.35)

The goal is to compute the second order free action for the perturbations:

ε2S2[δgµν , δχ] =
∫ (1

2ε
2F µν

1 δgµν + 1
2ε

2K1δχ
)
d4x (3.36)

where we define the additional functional derivatives F1 and K1 by expanding these
in terms of ε around the background:

F µν [ḡµν + εδgµν , χ̄+ εδχ] = 0 + εF1 +O(ε2) (3.37)
K[ḡµν + εδgµν , χ̄+ εδχ] = 0 + εK1 +O(ε2) (3.38)

Remember, at order zero, these must evaluate to zero because they correspond to the
background functional derivatives F̄ µν and K̄. Note that, for the order 2 Lagrangian, we
get extra δgµν and δχ as part of the full functional differential of S1, but now each of F1

and K1 themselves are linear in δgµν and δχ, so we’re going to end up with contributions
δgµνδgµν , δgµνδχ, and δχδχ. We have to take in all contributions are the same order of
ε, so now with the mixed term, when we speak about perturbations, we cannot separate
the two. Were we to work explicitly in a framework with gravity plus inflaton field, the
scalar field of the metric and that of the inflaton would thus appear mixed together at
the level of the quadratic action.

Before we simply plug in the variations into the second order Lagrangian, it’s worth-
while taking some time to think about what we should expect. Given the SVT decompo-
sition we’ve done, we have 3 different types of objects, and since our action is quadratic,
we have up to 9 possible combinations. However, the action is a scalar quantity, which
means that the way we combined objects must also yield a scalar, so for example, we
should not expect a scalar-vector coupling to survive. That leaves only 3 possible options:
scalar-scalar, vector-vector, and tensor-tensor. Note, if one wishes to investigate the
theory at higher orders to account for interactions and non-Gaussianities, one should
expect more complicated couplings to emerge. For now, we expect a quadratic action
with a scalar-scalar coupling with 5 different scalars, a vector-vector coupling with 2
vectors, and a tensor-tensor coupling with just one tensor perturbation:

S2[δgµν , δχ] = S
(ss)
2 [δh(s)

µν , δN, δN
(s)
µ , δχ] + S

(vv)
2 [δh(v)

µν , δN
(v)
µ ] + S

(tt)
2 [δh(t)

µν ] (3.39)
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=S(s)
2 [R, C, δN, S, δχ] + S

(v)
2 [Ba, δN

a
⊥] + S

(t)
2 [γ+, γ×] (3.40)

3.3 The comoving gauge and constraints
Theories with gauge symmetries contain redundant degrees of freedom, creating the
challenge of uniquely determining the physical state and choice of gauge-fixing conditions.
In order to extract predictive results, tailored to the deriving the power spectrum, we
will choose the comoving gauge. [36] The action that we start with is invariant under all
coordinate transformations; at zeroth order, this is the symmetry:

xµ → xµ + ξµ(x) (3.41)

When we chose the background, we picked cartesian coordinates that were comoving.
To understand this notion of comoving, it is easier to first think in terms of the sister
space-time with Einstein-Hilbert action plus a scalar field. In this space-time, we think
of comoving in the sense that the energy-momentum tensor is simple, depending only on
t, and having no energy-flux:

T̄ 0
0 = −ρ̄(t) T̄ a

b = P̄ (t)δa
b T̄ 0

a = 0 (3.42)

However, we still have the freedom to write a linear-at-epsilon diffeomorphism, after
all, as we’re doing everything perturbatively, we can express even the gauge symmetry
order by order. We can consider an SVT decomposition of the linear diffeomorphism
ξµ(x), such that:

t→ t+ εξ0(x⃗, t) (3.43)
xa → xa + εδab

(
ξ

(v)
b (x⃗, t) + ∂aξ

(s)(x⃗, t)
)

(3.44)

In words, given an initial flat FLRW slicing of the space-time, we can either deform
the spacetime in a timelike manner by putting in a small “bump” in the foliation, or if
we deform only with respect to the spatial parts, we preserve the section but deform
them in either a rotational, vectorial manner, or in a divergenceless, scalar way. A gauge
fixing is then a specific choice of ξ(x⃗, t), which can be set individually for both the scalar
ξ0(x⃗, t), ξ(s)(x⃗, t) and vectorial sectors ξ(v)(x⃗, t) separately.

Consider a slicing that is not the initial one but one closely related to it. Instead,
choose a slicing that, one you introduce perturbations, re-slices the space-time in a way
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that it’s not the background energy-momentum tensor that has no energy fluxes, but the
perturbed one:

T 0
a = T̄ 0

a + �
��>

0
δT 0

a = 0 (3.45)

The background slicing already had vanishing flux, so by imposing this additional
condition, you select a slicing on the basis of the matter that you have. Now we can
more easily envision what this condition means in out purely gravitational space-time.
The information of the field is encoded in the energy-momentum tensor, which translates
to the Starobinsky tensor Hab. We similarly require that:

H0
a = H̄0

a + �
��>

0
δH0

a = 0 (3.46)

The modified Einstein equations link together Rab and Hab, and indeed, our gauge
choice is equivalent to δχ = δ(1 + 2αR(x⃗, t)) = 0 ⇒ δR = 0. That is, given an initial
foliation such that there were no Ricci curvature fluctuations, we choose a new foliation
such that the slicing is comoving in the sense that the are still no Ricci curvature
fluctuations.

A good choice of gauge makes asking the questions we’re interested in a simpler task.
This choice – that the curvature of the spatial sections is such that there’s no Ricci
curvature fluctuation – is not enough to completely fix the gauge. In addition, we’ll
choose C = 0, which won’t affect the final result since our questions have answers that
are independent of C, so this will solely simplify the work.

Next we have constraints, which are essentially the 00 and 0i components of the
Einstein equations. Recall that F µ

(1)ν gives Einstein’s equations, which are second order
equations. However, some components, such as the space-space or the time-space ones
are first order, so they are constraints for the initial data. If you write them in the
language of the variational tensor F µν , we have a scalar, Hamiltonian constraint, as well
as a vectorial, 3d-diffeomorphism constraint, which can itself be decomposed into a scalar
and transverse vector form:

0 = H = F 0
0 (3.47)

0 = Ha = F 0
a → H(s)

a = 0 and H(v)
a = 0 (3.48)

The last step is then to take the action and evaluate it on the solution of the gauge
fixing and constraint equations. Whatever is left is then the reduced action for the
dynamical degrees of freedom. We begin with the scalar sector. Beginning with the
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action at quadratic order for the scalar part, we have:

S
(s)
2 [R, C, δN, S, δχ] =

∫ (1
2h

(s)
µνF

µν
(1) + 1

2δχK(1)

)
d4x (3.49)

where we will use the scalar part of the SVT-decomposed metric:

gµν =
 −1− 2ϵδN(t, x⃗) ϵ∂iS(t, x⃗)

ϵ∂iS(t, x⃗) a(t)2(1− 2ϵR(t, x⃗))

 (3.50)

Now choose the surface deformation and 3d diffeomorphism such that the FLRW
sections have a scalar component of the metric with C = 0 and vanishing Ricci scalar
fluctuation. Next, we put the scalar part of the SVT decomposed metric and plug into
the diffeomorphism constraint:

(1)F 0
i = G0

i + αH0
i = 0, (3.51)

where we can find the solution, written in Fourier transform, gives the perturbation
of the lapse proportional to the time derivative of the curvature perturbation:

δN(k⃗, t) = − 2χ(t)Ṙ(k⃗, t)
2H(t)χ(t) + χ̇(t) (3.52)

Note that this isn’t a choice – it is a consequence of of the selection of our physical
variables. If we initially slice the space-time flat, and then fix the gauge, this constraint
tells you how to re-slice correctly such that there’s no Ricci scalar perturbation. Now we
can consider the Hamiltonian constraint:

(1)F 0
0 = G0

0 + αH0
0 = 0, (3.53)

After passing to Fourier space, we find a condition of the scalar S(k⃗, t), which comes
from the shift:

S(k⃗, t) = 4k2H(t)R(k⃗, t)χ(t)2 + χ̇(t)(2k2R(k⃗, t)χ(t) + 3a(t)2Ṙ(k⃗, t)χ̇(t))
k2(2H(t)χ(t) + χ̇(t))2 (3.54)

This gives the divergence part of the shift, deforming the slices in a way that depends
on the curvature perturbation and its first derivative. Note that there’s a factor of 1/k2.
In position-space, this corresponds to an inverse Laplacian ∆−1, which is a nonlocal
quantity. That is, this expression appears to require us to know the curvature everywhere
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in space in order to know how to deform a small region! It’s important to keep in mind
that, though this is indeed a noncausal, nonlocal quantity, it’s also not an observable, thus
there’s no need to give a physical interpretation to intermediate steps in the calculation.

Let’s briefly review the state of our scalar degrees of freedom. We started with 5
different scalars in the SVT decomposed action, δN, S,R, C, and δχ. With our choice
of gauge, we eliminated C = 0, and δχ = 0. Then consequently, the solution to our
constraint equations gave an expression for δN and S in terms of R. So from this
complicated action with 5 scalars and all possible mixings, we find at the end something
that depends only on R. The result is a quadratic action, with a kinetic term minus
a potential term, just like that of a free field, but with a nontrivial, time-dependent
function in front and a volume factor a(t)3:

S2[gµν ] =
∫
dt
∫ d3k⃗

(2π)3
a(t)3

8πG
3χ(t)

4

(
ϵχ(t)

1− ϵχ(t)/2

)2 (
|Ṙ(k⃗, t)|2 − k2

a(t)2 |R(k⃗, t)|2
)

(3.55)

where we have introduced the slow-roll parameter for χ(t):

ϵχ(t) = − χ̇(t)
H(t)χ(t) (3.56)

Note that, since this action depends on ϵχ(t), and thus on the time derivative of the
Ricci scalar, R(t). If we were doing this computation on de Sitter, this change would be
zero and so there would be no second order action and thus no scalar perturbations. It’s
worthwhile to introduce a quantity that sums up the modification from a free scalar field
and that will allow us to draw a parallel to the tensorial quadratic action:

Zs(t) = 3χ(t)
16πG

(
ϵχ(t)

1− ϵχ(t)/2

)2

(3.57)

And so we may rewrite the action for scalar perturbations in a more compact manner:

S2[gµν ] =
∫
dt
∫ d3k⃗

(2π)3a(t)3Zs(t)
1
2

(
|Ṙ(k⃗, t)|2 − k2

a(t)2 |R(k⃗, t)|2
)

(3.58)

As we will see later, this function Zs(t) will have a big effect on the behavior of the
scalar perturbations, particularly during the pre-inflationary to quasi-de Sitter transition.
For now, we’ll merely note that this action is that of a harmonic oscillator with time
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dependent mass and frequency given by:

m(t) = d3k⃗

(2π)3a(t)3Zs(t) (3.59)

ω(t) = |k|
a(t) (3.60)

This procedure can be repeated to find the dynamical vector and tensor degrees
of freedom. For the vectors, one starts with the SVT-decomposed metric written in
background plus perturbation:

gµνdx
µdxν = (ḡµν + ϵh(v)

µν )dxµdxν (3.61)
= −dt2 + a(t)2δijdx

idxj + ϵa(t)δN (v)
i dtdxi + ϵa(t)(∂iBj − ∂jBi)dxidxj (3.62)

We see that there are two vector quantities, the transverse vector part of the shift
and the transverse vector part of the 3d metric. But we also have two vector constraints,
one from the Hamiltonian constraint and one from the 3d diffeomorphism constraint.
Thus, we expect that there will be no dynamical vector degrees of freedom. Indeed, the
simplest way to show this is to choose the gauge fixing condition Bi = 0, and then plug
in the vector sector of the perturbed metric into the diffeomorphism constraint:

(1)F 0
i = G0

i + αH0
i = 0⇒ δN

(v)
i = 0 (3.63)

Thus in the gauge where Bi is zero, so too does the transverse vector from the shift
also becomes zero, and we see that there are no propagating vector modes.

We can now turn to tensor perturbations, where we begin with the now-familiar
starting point: the SVT-decomposed tensorial sector of the metric expressed in terms of
a background plus perturbation:

gµνdx
µdxν = (ḡµν + ϵh(v)

µν )dxµdxν (3.64)
= −dt2 + a(t)2(δij + ϵγij(x⃗, t))dxidxj (3.65)

where γij is transverse and traceless:

δαi∂αγij = 0
δijγij = 0
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Remember that, at the quadratic level, we know that tensors aren’t going to mix with
scalars and vectors, so it is sufficient to put in only the tensor perturbation. Since we’ll
end up writing the action in momentum space, we next write the transverse traceless
tensor in Fourier transform:

γij(x⃗, t) =
∑

σ=+,×

∫
hσ(x⃗, t)e(σ)

ij (k⃗)e+ik⃗·x⃗ d3k⃗

(2π)3 (3.66)

with the choice in which k⃗ = (0, 0, k), the linear polarization matrices are given by:

e
(+)
ij =


+1 0 0
0 −1 0
0 0 0

 (3.67)

e
(×)
ij =


0 +1 0

+1 0 0
0 0 0

 (3.68)

There is no tensorial diffeomorphism, thus the second order action is automatically
gauge invariant. We can then plug the tensorial sector of the metric into the quadratic
Lagrangian, deriving the reduced action for tensor perturbations:

S2[gµν ] =
∑

σ=+,×

∫
dt
∫ d3k⃗

(2π)3
a(t)3(1 + 2αR(t))

16πG
1
2

(
|ḣσ(k⃗, t)|2 − k2

a(t)2 |hσ(k⃗, t)|2
)

(3.69)

We have a very similar structure to that of the reduced scalar action! There’s a
kinetic term, one per polarization, as well as a potential term with frequency |k|

a(t) , and a
volume factor a(t)3. We can make the two actions look even more similar by introducing
writing the defining the tensor-characterizing function Zt(t) :

Zt(t) = χ(t)
16πG = 1 + 2αR(t)

16πG (3.70)

allowing us to write the second order action in a familiar form:

S2[gµν ] =
∑

σ=+,×

∫
dt
∫ d3k⃗

(2π)3a(t)3Zt(t)
1
2

(
|ḣσ(k⃗, t)|2 − k2

a(t)2 |hσ(k⃗, t)|2
)

(3.71)

Like with scalars, the characteristic function Zt(t) will modify the evolution of the
perturbations from that of the free field during the pre-inflationary phase and quasi-de
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Sitter phase. In particular, we will see the characteristic functions for scalars and tensors
differ in terms of their expansions in ϵ1, which in turn will lead to much larger power for
scalars than for tensors in the power spectrum. In addition, the logarithmic derivatives
of Z(t) functions will show up, defined similarly to the Hubble flow parameters. From
this point on, then, we differentiate between the slow-roll parameters for H, ϵ1H , ϵ2H , ...

and those for the characteristic functions Z, ϵ1Z , ϵ2Z , ...
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Chapter 4 |
Quantization and the mode equa-
tion

4.1 Introduction
We have successfully decomposed the metric to put it in a form that is easy to work with,
which allows us to bring it all together and look at the full perturbed metric. This is:

gµν =


−1− 2ϵδN ϵδxS ϵδyS ϵδzS

ϵδxS a(t)2(1− 2ϵR) 0 0
ϵδyS 0 a(t)2(1− 2ϵR) 0
ϵδzS 0 0 a(t)2(1− 2ϵR)

 (4.1)

The metric can now be converted to an operator on a Hilbert space, with an expectation
value that is the classical FLRW −1 + a(t)2δµν , but now it also has fluctuations. It
has a lapse, shift, curvature perturbation and tensor modes and seems like it has many
operators, but as we have seen, it’s actually just two operators: the curvature perturbation
and the tensor operator:

ĝµν =
 −1− 2δN̂(x⃗, t) ∂iŜ(x⃗, t)

∂iŜ(x⃗, t) a(t)2((1− 2R̂(x⃗, t))δij + γ̂ij(x⃗, t))

 (4.2)

=
 −1− 2

H(t)
d
dt
R̂ 1

H(t)∂iR̂ + ϵ(t)a(t)2∆−1 d
dt
R̂

1
H(t)∂iR̂ + ϵ(t)a(t)2∆−1 d

dt
R̂ a(t)2((1− 2R̂(x⃗, t))δij + γ̂ij(x⃗, t))

 (4.3)

Note that, though we have access to this quantized metric, it’s worth keeping in
mind that it’s not an observable – indeed, it’s an explicitly nonlocal quantity. We can
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take components of the metric from the 3d metric and from the time-time component,
and look at their commutator. One depends on Ṙ and one has R as well, which don’t
commute. Thus different components of the metric are noncommutative, which implies a
Heisenberg uncertainty relation for quantum geometry!

[ĝij, ĝtt] ̸= 0 (4.4)

That is, even in perturbative quantum gravity on a cosmological background, you
cannot find a state that has section with exactly zero curvature perturbation and a lapse
that is also exactly zero. We can push this even further. Recall that our second order
action for the perturbations is essentially the action of a harmonic oscillator with time-
dependent mass and frequency, so finding Poisson brackets and passing to commutators
is straightforward. We start by first defining a general action for the perturbations in an
agnostic fashion:

S[ϕ] =
∫
dt
∫ d3k⃗

(2π)3a(t)3Z(t)1
2

|ϕ̇(k⃗, t)|2 − k⃗2

a(t)2 |ϕ(k⃗, t)|2
 (4.5)

where Z(t) could be either Zs(t) or Zt(t), and the field ϕ(k⃗, t) could be either the
tensor or scalar curvature perturbation. The procedure is standard: begin with the
classical theory, compute the Poisson brackets in phase space and promote them to
canonical commutators. The canonical momentum conjugate to the field is given from
the variation of the action with respect to ϕ̇(k⃗, t):

π(k⃗, t) = δS

δϕ̇(k⃗, t)
= 1

2a(t)3Z(t)ϕ̇(−k⃗, t) (4.6)

Given the Lagrangian, we can establish the associated Poisson bracket relation, picking
up an additional factor of (2π)3 when expressed in momentum space:

{ϕ(k⃗, t), π(k⃗′, t)} = (2π)3δ(3)(k⃗ − k⃗′) (4.7)

The Hamilton equation for momentum allows us to express the Poisson bracket in
terms of the field and its time derivative, which we can then promote to commutators by
introducing a factor of iℏ:

[ϕ̂(k⃗, t), d
dt
ϕ̂(k⃗′, t)] = i

2ℏ
a(t)3Z(t)(2π)3δ(3)(k⃗ + k⃗′) (4.8)
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Finally, note that regardless of whether we are speaking about Zs(t) or Zt(t), both
functions contain 1

G
, which means that the commutator will have a factor ofGℏ, the Planck

area! We are doing quantum gravity! In fact, we have Heisenberg uncertainty relations
for quantum geometry. To be more explicit, recall that the curvature perturbation is
connected to the 3d Ricci tensor and 3d Ricci scalar, which we can also promote to
operators:

(3)R̂(x⃗, t) = 4
a(t)2 ∆R̂(x⃗, t) (4.9)

(3)R̂ab(x⃗, t) = (∂a∂b + δab)R̂(x⃗, t)− 1
2∆γ̂ab(x⃗, t) (4.10)

The next step in quantization is to decompose the field into a sum of mode functions,
each with its own associated momentum. A Fock space is built from the ground up,
starting with a Fock vacuum |0⟩ that is a Gaussian state annihilated by all annihilation
operators, and further expanded with creation operators b̂† for each mode k⃗. The algebraic
structure of the space is then determined by the commutation relation between creation
and annihilation operators; in particular, for a bosonic Fock space, we have:

[b̂(k⃗), b̂†(k⃗′)] = (2π)3δ(3)(k⃗ + k⃗′), [b̂(k⃗), b̂(k⃗′)] = 0, b̂(k⃗) |0⟩ = 0 ∀k⃗ (4.11)

By construction, the creation and annihilation operators don’t depend on time, so all
time dependence is encoded in the mode functions. Then, given the vacuum reference
state |0⟩ ∈ H0, one can build a one particle state by acting the creation operator on the
vacuum, and summing up over all momenta:

|1, f⟩ =
∫ d3k⃗

(2π)3f(k⃗)b̂†(k⃗) |0⟩ ∈ H1 (4.12)

where f(k⃗) is the mode function associated to the momentum k⃗. The Fock space can
then be built from a direct sum of spaces each built from copies of the single-particle
state: F = H0⊕H1⊕S(H1⊗H1)⊕ ..., where the S helps us denote states with identical
particles, that is, a bosonic Fock space. The field operator can then be written linearly
in b̂(k⃗) and b̂†(k⃗′), ensuring that ϕ̂(x⃗, t) has only Gaussian correlations.

ϕ̂(x⃗, t) =
∫ d3k⃗

(2π)3

(
u(k⃗, t)b̂(k⃗) + û∗(k⃗, t)b̂†(k⃗)

)
e+ik⃗⃗̇x (4.13)

Given this representation, we can quickly check that the field is classically peaked,
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with perturbations that are quantum, so we ought to have an expectation value for the
vacuum that is vanishing:

⟨0| ϕ̂(x⃗, t) |0⟩ =
∫ d3k⃗

(2π)3 ⟨0|
(
u(k⃗, t)b̂(k⃗) + û∗(k⃗, t)b̂†(k⃗)

)
|0⟩ e+ik⃗·x⃗ = 0 (4.14)

Meanwhile, the first non-trivial computation occurs at the level of the two-point
correlation function, which will allow us to ascribe physical meaning to the mode functions:

⟨0| ϕ̂(x⃗, t)ϕ̂(x⃗′, t′) |0⟩ =
∫ d3k⃗

(2π)3

∫ d3k⃗′

(2π)3 e
+ik⃗·x⃗e+ik⃗′·x⃗′ (4.15)

⟨0|
(
u(k⃗, t)b̂(k⃗) + u∗(k⃗, t)b̂†(k⃗)

) (
u(k⃗′, t′)b̂(k⃗′) + u∗(k⃗′, t′)b̂†(k⃗′)

)
|0⟩ (4.16)

=
∫ d3k⃗

(2π)3u(k⃗, t)u∗(k⃗, t′)e+ik⃗·(x⃗′−x⃗′) (4.17)

Since our state is Gaussian, by Wick’s theorem, every higher-order correlation function
can be computed from the two-point correlation. The mode functions, then, encode all
information about the vacuum state, capturing its vanishing expectation value and the
two-point correlation, thus its dispersion. We can simplify our mode functions further;
after all, we began with the assumption that the space-time is homogeneous and isotropic,
so there mustn’t be a preferred directly, and the two-point functions must only depend on
the distance between the points: G(x⃗, t; y⃗, t) = G(|x⃗− y⃗|, t). Thus, the mode functions
u(k⃗, t) must depend only on the magnitude of k, simplifying the field representation:

ϕ̂(x⃗, t) =
∫ d3k⃗

(2π)3

(
u(k, t)b̂(k⃗) + û∗(k, t)b̂†(k⃗)

)
e+ik⃗⃗̇x (4.18)

We can plug in this field representation into the canonical commutation relation, and
using the fundamental ones with the creation and annihilation operators, we find that
the mode functions must satisfy:

u(k, t)u̇∗(k, t)− u̇(k, t)u∗(k, t) = iℏ
a(t)3Z(t) (4.19)

This is the Wronskian of the mode functions. By ensuring that the Wronskian is
nonzero, the mode functions are made linearly independent, which in turn implies that
the mode function u(k⃗, t) must be complex. A straightforward treatment of the Hamilton
equations yield a linear equation of motion for the field, which in turn becomes an
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equation of motion that the mode functions must also satisfy:

ü(k⃗, t) +
d
dt

(a(t)3Z(t))
a(t)3Z(t) H(t)u̇(k⃗, t) + k⃗2

a(t)2u(k⃗, t) = 0 (4.20)

This appears to be an equation of motion for a harmonic oscillator with a friction
term. It’s important to remember that this isn’t friction, but rather dilution due to the
expansion of the universe.

Let’s speak briefly about observables. After all, our end goal is to make connection
with observation, in particular with the power spectrum of the field – but how exactly is
this power spectrum defined? Well, the field is not the object that is usually measured,
as the field is defined at a point. Instead, one usually measures a smearing of the filed
over a given region, or alternatively, one measures the Fourier modes of the filed via
spectral decomposition. Instead of looking for observables labeled by a point in space,
we instead look for observables labeled by a function f that captures modes of the field
across a particular frequency band:

ϕ̂f (t) =
∫
d3x⃗f(x⃗)ϕ̂(x⃗, t) =

∫ d3k⃗

(2π)3 f̃(k)ϕ̂(k⃗, t) (4.21)

For us, this filter function f(k) characterizes the properties of the thermalized plasma
of the CMB. We can check that this observable of the field is still classically peaked with
expectation value zero:

⟨0| ϕ̂f (t) |0⟩ =
∫ d3k⃗

(2π)3 f̃(k) ⟨0| ϕ̂(k⃗, t) |0⟩ = 0 (4.22)

The two-point correlation of the Fock vacuum, however, is non-trivial and will allow
us to ascribe physical meaning to the mode function.

⟨0|
(
ϕ̂f (t)

)2
|0⟩ = (4.23)

=
∫
d3x⃗

∫
d3y⃗f(x⃗)f(y⃗) ⟨0| ϕ̂(x⃗, t)ϕ̂(y⃗, t) |0⟩ (4.24)

=
∫ d3k⃗

(2π)3 |f̃(k)|2|u(k, t)|2 (4.25)

In turn, this yields a simple expression for the variance of the field observable:

∆ϕf =
√
⟨ϕ2

f⟩ − ⟨ϕf⟩2 =
∫ d3k⃗

(2π)3 |f̃(k)|2|u(k, t)|2 (4.26)
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The mode function u(k⃗, t) can then be understood as follows: given a measurement
made in a Fourier band, the modulus squared of the mode function |u(k⃗, t)|2 gives the
amplitude of the variance of that band. This is what we refer to as the power spectrum –
the quantity that gauges the strength of field fluctuation in a particular frequency band.
Once again, the spacetime is isotropic, we can make a further simplification by integrating
the variance over a spherical shell, leaving only a single integral over the magnitude of k⃗ :

⟨0|
(
ϕ̂f (t)

)2
|0⟩ =

∫ d3k⃗

(2π)3 |f̃(k)|2|u(k, t)|2 (4.27)

=
∫ ∞

0

4π
(2π)3k

2dk|u(k, t)|2|f̃(k)|2 (4.28)

=
∫ ∞

0

k3

2π2 |u(k, t)|2|f̃(k)|2 (4.29)

=
∫ ∞

0
P (k, t)|f̃(k)|2 (4.30)

where we have defined the power spectrum:

P (k, t) = |u(k, t)|2 k
3

2π2 . (4.31)

4.2 Bunch Davies initial conditions
It’s worthwhile to remark on the importance of initial conditions, as well as how quantities
in this quantization framework are related to each other. Now that we’re equipped with
an equation of motion to solve, which is of second order, we need a choice of two initial
conditions u(k, t0) and u̇(k, t0) that satisfy the canonical Wronskian in order to find a
solution. But these mode functions fully characterize the correlation functions, which in
turn characterize the Fock vacuum |0⟩. That is, all of these quantities are related – a
choice of mode functions gives us a choice of vacuum |0⟩ in terms of correlation functions
G(|x⃗− y⃗|, t0) and d

dt
G(|x⃗− y⃗|, t0)

∣∣∣
t=t0

.
Let’s take a moment to return to our picture of the evolution of the universe. We

already have everything we need from quantum field theory, so we can look at how it
connects to observations of the CMB, and then we’ll talk about zero order Bunch Davies
solutions.

Ordinarily, give a Minkowski vacuum, we can say what is the state and compute its
fluctuations. For the CMB, we said these fluctuations were the anisotropies that are
observed, effectively arguing that the fluctuations are of quantum origin. Thus, we need
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to provide a state for said quantum fields. If we wanted to prescribe the state during
the hot Big Bang, there’s unfortunately no notion of vacuum for the observable band
of modes at the time. Thus, the idea is to go further into earlier times, to a phase in
which a(t)H(t) is increasing, so the modes are oscillatory and we can choose a vacuum
at this time. This is a principle of our choosing. Then, there is a process that changes
the vacuum in a way we have to determine. Note that it doesn’t matter exactly where in
the inflationary regime we put the vacuum because if the phase in which we put initial
conditions evolves slowly enough, the vacuum is adiabatic. We could require that the
state is a vacuum just before a given mode crosses the Hubble horizon, and use that
as a principle, but there’s no need to restrict ourselves so much. We’ll start with this
assumption, but later we’ll parametrize solutions as squeezing of the vacuum.

Let’s look at what our equation of motion would look like during slow-roll inflation.
Recall that we have two requirements of this phase in order to conform to observation:
we need a phase with increasing a(t)H(t) so that the spectral tilt is red, which implies
an accelerating scale factor, and we need this phase to last sufficiently long that all
observable modesn are covered. Let’s assume then, that we have such a slow-roll inflation,
such that ϵ1(t)≪ 1. Note that the logarithmic derivative that appears in the equation
of motion as a “friction” can be expressed in terms of a small deviation from 3H(t)
including a “slow-roll” of the function Z(t):

d
dt

(a(t)3Z(t))
a(t)3Z(t) H(t) = (3− ϵZ(t))H(t) (4.32)

where we have defined the slow-roll parameter for the characteristic function Z(t) :

ϵZ(t) = − Ż(t)
H(t)Z(t) . (4.33)

This is a dimensionless parameter, similar to ϵ1(t), that measures how much Z(t)
changes over one Hubble time. Let’s assume this parameter is similarly small during
slow-roll, so ϵZ(t)≪ 1. Note that the following equation of motion has no approximations
in ϵ1(t) or ϵZ(t) yet; this is exact up until this point:

ü(k⃗, t) + (3− ϵZ(t))H(t)u̇(k⃗, t) + k⃗2

a(t)2u(k⃗, t) = 0 . (4.34)

What kind of behavior can we expect? We have an oscillator with a “friction” term,
which is approximately constant during slow-roll, but a(t) changes rapidly in time -
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exponentially so in exact de Sitter. For a given mode k, there is an early time when we
can neglect the friction and a late time in which you can neglect the frequency. That
is, we are going from an oscillatory solution into a frozen one. The sense in which it
is freezing is a specific one: that in which, in an oscillator where the friction is like a
mass that is increasing exponentially while the length is also increasing exponentially but
with twice the coefficient due to the a(t)2. When this occurs, we’ll find that we freeze to
something finite and nonzero.

There’s a key time in between the two regimes, when both the friction and frequency
are of the same order and you cannot neglect either. This occurs when a(t)H(t) ∼ k,
that is, when the mode k crosses the Hubble horizon. We’ll call the freezing time tk
when a(t)H(t) is exactly k, for a given k. The relevant physics we want to capture is this
transitional period. We will end up doing approximations in ϵ1(t), so it’s worthwhile to
start with a baseline, zeroth order approximation, which corresponds to the Bunch-Davies
vacuum. Thus, we’ll start by saying all ϵ’s are small and set them to zero and solve
everything up to the end. Then, we’ll build a perturbation theory order by order around
this zeroth order solution.

Since our slow-roll quantities are zero, the Hubble parameter and Z(t) don’t change
and we can set them to be constants:

ϵ1(t) = 0 ⇒ H(t) = H0 ⇒ adS(t) = a0e
H0t de Sitter (4.35)

ϵZ(t) = 0 ⇒ Z(t) = Z0 (4.36)

Were we to take a specific theory on inflation, Z(t) would clearly be a function of
H(t), so we’re not really free to set it to a specific constant if H(t) is de Sitter. For now,
we’ll treat treat them as separate, so that Z0 is independent, and later we can check for
consistency. Our equation of motion simplifies so that we have constant friction, with
exponential behavior in both the frequency and the Wronskian:

ü(k, t) + 3H0u̇(k, t) + k2

adS(t)2u(k, t) = 0 (4.37)

u(k, t)u̇∗(k, t)− u̇(k, t)u∗(k, t) = iℏ
adS(t)3Z0

(4.38)

Here we’ll introduce a trick that we’ll use again when we do the series expansion.
There’s two parts to this technique: the first is a reparametrization of time, followed by
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a rescaling. This change of variables is written in the following manner:

u(k, t) = v(k, x(t))√
m(t)

(4.39)

We’ll show that one can determine x(t) and m(t) such that we can put the equation
of motion and the canonical Wronskian in the following canonical forms:

v′′(x) +
(
k2

k2
∗
− 2
x2

)
v(x) = 0 (4.40)

v(x)v′∗(x)− v′(x)v∗(x) = i (4.41)

where we have simplified the notation, dropping the explicit k dependence, with the
understanding that these equation apply to each mode k individually, and where we
established a prime meaning derivative with respect to x. There’s a couple of things we
ought to note. By writing this into a canonical form, we’ve eliminated the first derivative
term, simplifying our analysis of the relevant term,

(
k2

k2
∗
− 2

x2

)
. There could be a generic

function of x inside this expression, but we’ll require that the constant part is always k2

over a reference k2
∗, which one often refers to as the pivot mode. In the literature, one

finds different values of this pivot mode, but the important thing to remember is that
this is a choice, so one ought to always ensure they are well-informed as to which pivot
mode a particular study utilizes. If the power spectrum is exactly scale invariant, we
should find that our final answer doesn’t depend on the scale, which we should be able to
read by having k∗ disappear from our answer. The function of x that appears here is not
free – it’s something that’s generated from a calculation given the imposition of constant
k2/k2

∗ term. This same logic will be utilized when we take on the full non-Bunch-Davies
theory, but the function inside the parenthesis will be more complicated.

In order to determine the new time x and rescaling µ(x), we start by taking our ansatz
u(t) = v(x(t))√

µ(t)
into the equation of motion for u(t) and then impose that there should not

be a v′(x) term in the equation of motion for v(x(t)). We find the first derivative term
to be:

v′(x(t))
 3ȧ(t)ẋ(t)
a(t)

√
µ(t)

− ẋ(t)µ̇(t)
µ(t)3/2 + ẍ(t)√

µ(t)

 (4.42)

We can then solve and integrate for µ(t) :

µ(t) = c0a(t)3ẋ(t) (4.43)
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We can set the constant of integration c0 by imposing that the commutation relation
for v(x(t)) takes on a canonical form. Plugging in our ansatz for u(t) once again, we find:

v(x(t))v′∗(x(t))ẋ(t)
µ(t) − v∗(x(t))v′(x(t))ẋ(t)

µ(t) = − iℏ
Z0a(t)3 (4.44)

v(x)v′∗(x)
a(t)3c0

− v∗(x)v′(x)
a(t)3c0

= − iℏ
Z0a(t)3 (4.45)

⇒ c0 = Z0

ℏ
(4.46)

Putting all of this together, we can write out a canonical, simplified version of our
equation of motion in the form v′′(x) + Q(x)v(x) = 0, where the to-be-determined
function Q(x) will contain the relevant physics, that is, whether our system is oscillating
or frozen. In order to determine x(t), we must impose that Q(x) has a constant term in
the form k2/k2

∗. Plugging in our ansatz and found solutions into the equation of motion,
we find the following Q(x), which gives us a simple differential equation for x(t) :

Q(x) = k2

a(t)2ẋ(t)2 −
3a′(t)2

4a(t)2ẋ(t)2 −
3ä(t)

2a(t)ẋ(t)2 + 3ẍ(t)2

4ẋ(t)4 −
...
x (t)

2ẋ(t)3 (4.47)

⇒ ẋ(t) = k∗

a(t) (4.48)

We can solve this simply by integrating in time. Note that in this case, this is precisely
conformal time, which gives us the following expression for x(t) :

x(t) =
∫ k∗

a(t)dt = k∗η(t) = − k∗

adS(t)H0
(4.49)

Note that this x(t) gives exactly the desired properties we spoke of earlier! When x <
−1, k∗ > adS(t)H0 and we have oscillatory behavior. When 0 > x > −1, k∗ < adS(t)H0,
the mode is frozen. The time x = −1 is exactly when the pivot mode k∗ crosses the
Hubble horizon. There are also some things to note about the behavior of x as a time.
When x→ −∞, this indicates the far past, while the far future is given by x− > 0. This
is not the whole lifetime of the universe, however! This is solely a model in which we’re
approximating the universe during this inflationary patch, and shouldn’t be trusted for
all time. Now, we can write down µ(x), as it’s given directly from the expression for x(t),
and ultimately write the full parametrization of u(t) :

µ(t(x)) = k∗adS(t)Z0

ℏ
= Z0

ℏ
k3

∗
(−H0x)2 (4.50)
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⇒ u(t) =
√

ℏ
Z0

−H0x

k
3/2
∗

v(x) (4.51)

Now assuming the de Sitter ansatz for the scale factor, a(t) = a0e
H0t, we get a simple

equation to solve, precisely those in equation 4.40! The solution is a pair of complex
conjugated functions that give the Bunch-Davies basis:

v0(x) = 1√
2k/k∗

1− i
k
k∗
x

 e−i k
k∗

x (4.52)

v∗
0(x) = 1√

2k/k∗

1 + i
k
k∗
x

 e+i k
k∗

x (4.53)

As a basis, we can write any solution as a linear combination of v0(x) and v∗
0(x) with

Bogoliubov coefficients α(k) and β(k) :

v(x) = α(k)v0(x) + β(k)v∗
0(x) with |α|2 − |β|2 = 1 (4.54)

What makes this basis special is that it’s the solution that has adiabatic correlation
functions in the far past. One can take the modulus squared, and see that when we take
x→ −∞, we find a constant:

|v0(x)|2 =

1 + 1(
k
k∗
x
)2

 1
2k/k∗

−−−−→
x→−∞

1
2k/k∗

(4.55)

For de Sitter, this gives us a notion of in-vacuum, though in this case in-vacuum in the
far past really means just a bit before the mode crosses the Hubble horizon. This gives
us a sense of what we’re going to call an adiabatic vacuum. Asking if a mode function is
adiabatic is not something that is immediate to recognize due to the space-time changing
in time. However, we can compute correlation functions from them, which contain the
modulus squared |v(x)|2, which itself depends on time with x(t) ∼ e−H0t, so this is a fast
time dependence. In the far past, we find the modulus squared goes to a constant, and
this is the notion which we call adiabatic – the correlation function is constant in the far
past, that is, it is unchanging in time up to corrections. Remember the power spectrum
contains the modulus squared of u(t), not v(x), but as v(x) diverges as 1/x at late times
(that is, x→ 0), u(t) itself constains x as well, as so u(t) freezes. Note that you have to
fix k, otherwise regardless of how far into the past we go, one could always find a k such
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that you find the modulus squared to be non-adiabatic.
We can plug in u(t) and v(x) with these change in variables, to compute the Bunch-

Davies power spectrum as a function of x and determine its late-time behavior:

P (k) = |u(k, t)|2 k
3

2π2 (4.56)

= |v(k, x)|2 ℏ
Z0

(−H0x)2

k3
∗

k3

2π2 (4.57)

=
1 +

(
kx

k∗

)2
 ℏH2

0
4π2Z0

(4.58)

−−−→
x→0−

ℏH2
0

4π2Z0
(4.59)

At late times, we see the time dependence disappear and the power spectrum amplitude
goes to a constant, despite the fact that the universe keeps expanding. We see also that
the power doesn’t depend on k – this is scale invariance. That is, there is the same
amount of power in every interval of log k. Another way to say it is that the power
spectrum is flat or has zero tilt. In this expression, we observe too the importance of
the characteristic functions Z(t). How these functions may depend on ϵ1 as a series may
affect the power by either suppressing it or enhancing it. In addition, both of these
functions contain Newton’s gravitational constant G, so we’ll see the Planck area Gℏ
in some form in the power spectrum, confirming that this is indeed a quantum gravity
phenomenon.

The method thus presented gives a sense for the technique we’ll use for higher order
corrections. If you have the most general, second order, linear differential equation,
f(t)ü(t) + g(t)u̇(t) + ω(t)u(t) = 0, there always exists a change of variables that can
bring it to a canonical form v′′(x) + Q(x)v(x) = 0. In addition, we want to bring the
Wronskian also into a canonical form, and then put Q(x) in a special form where we
extract a particular constant k2/k2

∗, and expand the rest of the terms in an expansion
1/x, 1/x2, 1/x3, .... As it happens, these all have names; Bessel functions corresponds
to 1/x2, Whittaker functions to 1/x. Our approach is similar, but we’ll do this order
by order since, as we’ll see, the expansion corresponding to quasi de-Sitter at second
order in ϵ1 will include a logarithmic function which doesn’t have a close-form solution,
necessitating a slightly different approach.

53



Chapter 5 |
Non Bunch-Davies initial condi-
tions and the power spectrum

5.1 Introduction
We’ve seen how to generate the power spectrum when we assume the space-time is de
Sitter, H(t) is constant, and our initial conditions for the mode functions are Bunch-
Davies in-vacuum. The standard way to getting to next order is to assume instead of
a constant H(t) it instead changes slowly, and our equations of motion for the modes
end up being Bessel equations that we can solve. This method works well if the order
at which things change slowly is linear in ϵ1, but fails for higher orders. Instead, we’ll
develop a theory of perturbations from scratch, and apply said theory and look for special
cases. The framework is as follows: we’ll begin with qualitative analysis of the mode
equation and put it into a canonical form through Mukhanov-Sasaki variables. Then, we
prepare all our relevant quantities in terms of an expansion in Hubble-flow parameters.
Next, expand around the critical time, the time when the pivot mode k∗ crosses the
Hubble horizon, which we call the pivot time, and then write the canonical equation of
motion for the mode function in terms of a potential that has a leading term that is
constant, a zeroth order term that gives back Bunch-Davies, and then a series which we
control and truncate to a desired order. The endpoint is to find Q(x) as a series:

Q(x) = k2

k2
∗

+ δQ(x) (5.1)

Both the scale factor and the characteristic functions Z(t) are fixed once we choose
the FLRW background. The equation of motion for the modes is linear, with a “friction”
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term and an angular frequency. Given initial conditions, what kind of behavior do we
expect? The inflationary background is close to de Sitter, with a Z(t) that is close to
being constant. We’re interested in an inflationary phase that transitions between two
regimes: one at early times in which we describe an oscillator that is under-damped and
we can neglect friction and prepare the state in the vacuum, and one at late times when
we have an over-damped oscillator, and large friction that prevents oscillation of the
modulus squared |u(k, t)|2.

When we choose initial conditions and look at late times, under the assumption that
friction goes to a constant 3H0 and ω(t)→ 0 (since ω ∼ 1/a), then |u(k, t)|2 goes to a
constant. Thus we expect the solution is going to be a constant – the power spectrum
amplitude – plus an exponential approach to a constant that is compatible with the
canonical commutation relations. Note that we’re not taking the initial condition at
t → −∞. We merely need a phase of the universe prior to freezing – what happens
before either a pre-inflationary or purely quantum gravity era, is not needed for this
part of the analysis. First we assume that we begin with an in-vacuum, and once we
determine the mode functions for that in-vacuum, we can modify the state by writing a
new initial state as a squeezed state using Bogoliubov coefficients.

The analytic procedure we used in Chapter 4 allowed us to move all complications in
the equation of motion from the friction term and the complicated commutation relations
into x and Q(x). We will then take a(t) and H(t), expand them in a Hubble-flow
expansion, and then look at Q(x) in terms of this expansion. Since we know the de Sitter
solution, we can then find the general solution order by order. This is extremely helpful
to do in analytical approximations in a slow-roll expansion, but it is a poor route to take
if using numerical computation. This is due to having to compute x and Q(x) out of
background quantities, which include lots of derivatives and introduces noise and error
into the computation. When we present numerics to compare and verify the predictions
from the analytic approximations, the numerics will be done in proper time in the original
scaling of u(k, t).

The language of “slow-roll” is tailored to having a potential, a scalar field, and the
image of a ball in a potential with friction so that the ball rolls slowly either because the
kinetic energy is small or the friction is large. For us, this idea captures a property of
the background, which can be phrased independent of a potential, and independent of
the mechanism that drives inflation – slow-roll means that the Hubble factor changes
slowly and the characteristic functio Z(t) changes slowly. Changing slowly in this case
means with respect to proper time, which is dimensionful. We want to use dimensionless

55



quantities so that we can use them to organize our expansion, so we require logarithmic
rates of change. We have done this before by defining the Hubble flow parameters. The
idea was that, in order to capture the change of H, that is, Ḣ, we first want it logarithmic
so we compute Ḣ/H. The dot carries a dimension of time, so we put in another H, and
chose a convention with a minus sign so that if H is decreasing, ϵ1 is positive. In plain
terms, one H has to do with the quantity being derived, and the other with the dot
to make the parameter dimensionless. We can use this same iterative process to define
Z-flow functions:

ϵ1Z = − Ż(t)
H(t)Z(t) (5.2)

ϵ2Z = − ϵ̇1Z

H(t)ϵ1Z

(5.3)

ϵ3Z = − ϵ̇2Z

H(t)ϵ2Z

... (5.4)

Everytime we take a time derivative of a(t) or H(t) or Z(t) we can replace them
with these Hubble- and Z-flow functions. Once we write everything in terms of these, we
can make all our work symbolic and automatic. Since we’ll want an expansion in ϵ, we
simply put a λ in front of each parameter, and do a series in λ to a desired order. Note
that these are constructred such that each of them are of the same order; ϵ2 expressed
as an expansion in ϵ1 would be ϵ2 = c1ϵ1 + c2ϵ

2
1 + ... Once one fixes the scale factor,

all coefficients in the expansion are determined and you can express each one in terms
of the previous one. At this point, we are making the minimal assumption that these
parameters are all small and independent.

How do we write conformal time in terms of this Hubble flow expansion? In FLRW,
we can write the metric in proper time or as a flat space up to a conformal factor:

ds2 = −dt2 + a(t)2dx⃗2 = Ω(η)2(−dη2 + dx⃗2) (5.5)

Equating the two gives the definition of conformal time η such that dη/dt = 1/a(t).
Now we want to find the change of variable from t to η for a given scale factor, without
knowing the scale factor. We’ll need to integrate, which could be complicated, as it’s
nonlocal and has a memory, but we can trade in these complications for extra time
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derivatives. At order zero, in exact de Sitter, the integral is simple:

adS(t) = a0e
H0t

HdS(t) = H0
⇒ ηdS(t) =

∫ t dt′

adS(t′) = − 1
adS(t)HdS(t) (5.6)

Now suppose we’re merely close to de Sitter. In this case, we can parametrize the
corrections in terms of Hubble flow parameters, writing the following ansatz:

η(t) = − 1
a(t)H(t)(1 + b1ϵ1H(t)) (5.7)

We can determine b1 by imposing that dη/dt = 1/a(t), which gives b1 = 1. If we
want to go to higher order, we need to introduce all permutations of how second-order
Hubble-flow parameters could appear, so our ansatz becomes:

η(t) = − 1
a(t)H(t)(1 + ϵ1H(t) + c11ϵ1H(t)2 + c22ϵ2H(t)2 + c12ϵ1H(t)ϵ2H(t)) (5.8)

Once more imposing dη/dt = 1/a(t) allows us to determine the coefficients, and we
find the conformal time at second order is:

η(t) = − 1
a(t)H(t)(1 + ϵ1H(t) + ϵ1H(t)2 − ϵ1H(t)ϵ2H(t) + ...) (5.9)

The next step is to find the change of variable from t to x. But we already know
x is given by the conformal time, x(t) = k∗η(t), so we have the change of variable. In
particular, we can solve for the scale factor in terms of x :

a(t) = − k∗

H(t)x(t)(1 + ϵ1H(t) + ϵ1H(t)2 − ϵ1H(t)ϵ2H(t) + ...) (5.10)

Finally, we can take this and plug into our expression for Q(x):

Q(x) = k2

k2
∗
− 2
x

+
−3ϵ1H(x) + 3

2ϵ1Z(x)
x2 (5.11)

+ 1
4x2

(
−16ϵ1H(x)2 + 10ϵ1H(x)ϵ1Z(x)− ϵ1Z(x)2 (5.12)

+ 15ϵ1H(x)ϵ2H(x)− 2ϵ1Z(x)ϵ2Z(x)
)

+O(ϵ3) (5.13)

We have a constant term plus a first correction that corresponds to Bunch-Davies.
We then have a linear correction in Hubble- and Z-flow functions as well as higher order
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corrections, but these still have a dependence on x. It we were to set x to be constant, it
would be a simple equation; in fact, the solution would be Bessel functions. However, x
is not constant and we want to treat it correctly.

Previously, we introduced the pivot mode k∗. If we find the power spectrum at the
pivot mode, we can ask how it changes around that value. If the power spectrum is
log-log linear, then we need only the tilt to fully describe that change. In particular,
we’re interested just a band around k∗. So we choose a k∗, presumably one that from
the point of view of observation we can measure to good precision. Then, we look at a
neighborhood of that value and read the tilt and its running. This pivot mode also fixes a
time – the time t∗ when the pivot mode transitioned from underdamped to overdamped.
The transition in Q(x) for the mode k∗ occurs when Q(x)|k=k∗

= 0, which occurs near
x ∼ −1. We invert this idea and choose this as a definition; x∗ = −1 gives the definition
of our pivot mode. We can then find k∗ in terms of corrections in ϵ. By definition, the
freezing time t∗ is now given by x(t∗) = x∗ = −1. Then, we say k∗ is a(t∗)H(t∗) up to
corrections:

− k∗

a(t∗)H(t∗)
(1 +O(ϵ)) = −1 ⇒ k∗ = a(t∗)H(t∗)(1 +O(ϵ)) (5.14)

We have to track everything at a given order of ϵ, so we cannot throw away these
corrections! Now we can turn to the expansion term in Q(x). Each ϵ(x) is going to
be expanded, and our goal is to write everything in a Taylor series around x∗. In this
case, we’re not interested in the difference from x∗, but rather the ratio x/x∗. Doing
an expansion in terms of log x/x∗ maintains the desired properties of x, and ultimately,
we’ll be using log-log plots in the power spectrum anyways. We begin by writing H(x)
in terms of a Taylor series in log x :

H(x) =
∞∑

n=0

cn

n!

(
log x

x∗

)n

= H∗ + c1 log x

x∗
+ 1

2

(
log x

x∗

)2
+ ... (5.15)

We can determine the coefficients as follows. Since we know ẋ by definition, we can
invert the relationship and write t′(x) and t′′(x):

t′(x) = dt

dx
=
(
dx

dt

)−1

= 1
ẋ

(5.16)

t′′(x) = d

dx

dt

dx
= dt

dx

d

dt

(1
ẋ

)
= 1
ẋ

d

dt

(1
ẋ

)
(5.17)

We can plug this back into the definition of the Taylor series coefficients, and get
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expressions for each coefficient:

c1 = d

d
(
log x

x∗

)H(x)
∣∣∣∣∣∣
x→x∗

= x

ẋ
Ḣ

∣∣∣∣
x→x∗

(5.18)

= (1 + ϵ1H∗ + ...)ϵ1H∗H∗ (5.19)

c2 =
(

1− x ẍ
ẋ2

)
x

ẋ
Ḣ + x2

ẋ2 Ḧ (5.20)

= (1 + ...)
(
ϵ2

1H∗ + ϵ1H∗ϵ2H∗
)
H∗ (5.21)

Put together, we find an expression for H(x) as a log series. In turn, we can follow
the same procedure to write Z(x), and the Hubble- and Z-flow functions, which we write
out in the following unfortunate wall of equations:

a(x) =
(

1 + ϵ1H∗ + ϵ2
1H∗ − ϵ1H∗ϵ2H∗ +

(
−ϵ1H∗ − 2ϵ2

1H∗ + ϵ1H∗ϵ2H∗
)

log x

x∗
(5.22)

−ϵ1H∗ϵ2H∗

(
log x

x∗

)2
+ ...

)(
− k∗

H∗x

)
(5.23)

H(x) =
(

1 +
(
ϵ1H∗ + ϵ2

1H∗

)(
log x

x∗

)
+
(
ϵ2

1H∗ + ϵ1H∗ϵ2H∗
) (

log x

x∗

)2
+ ...

)
H∗ (5.24)

Z(x) =
(

1 +
(
ϵ1Z∗ + ϵ2

1Z∗

)(
log x

x∗

)
+
(
ϵ2

1Z∗ + ϵ1Z∗ϵ2Z∗
)(

log x

x∗

)2
+ ...

)
Z∗ (5.25)

ϵ1H(x) = ϵ1H∗ + ϵ1H∗ϵ2H∗ log x

x∗
+ ... (5.26)

ϵ1Z(x) = ϵ1Z∗ + ϵ1Z∗ϵ2Z∗ log x

x∗
+ ... (5.27)

We see that these are organized both as a series in ϵ and a log series, and that these
aren’t the same expansion; the former deals with the deviation from exact de Sitter while
the latter is about investigating the relevant time near freezing, so we can understand
the mechanism. It’s important to remember also the qualitative behavior we’re trying to
preserve. The mode function v(x) satisfies an equation that goes from stable to unstable
and is going to diverge, meanwhile µ(x) is also going to diverge, but |u(k, t)|2 must go to
a constant. Thus the divergence in the numerator and denominator of the u(k, t) ansatz
have to cancel exactly, and so we have to carefully keep track of everything order by
order. Fortunately, this can also function as a check on our calculations; if things don’t
cancel, that’s a sign that something has gone awry.

Now that we have everything, we can plug it all into Q(x) and write it out as a log
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expansion:

Q(x) = k2

k∗
−

2− λb1∗ + λ2b2∗ + λ2c2∗ log x
x∗

+ ...

x2 (5.28)

where

b1∗ = 3
2 (2ϵ1H∗ − ϵ1Z∗) (5.29)

b2∗ = 4ϵ2
1H∗ − 4ϵ1H∗ϵ2H∗ + 1

4ϵ
2
1Z∗ + 1

2ϵ1Z∗ϵ2Z∗ −
5
2ϵ1H∗ϵ1Z∗ (5.30)

c2∗ = 3ϵ1H∗ϵ2H∗ −
3
2ϵ1Z∗ϵ2Z∗ (5.31)

The parameter λ here is solely to help us keep track of orders. The first order λ term
can be generated simply by evaluating our previous expression for Q(x) at the time t∗,
5.11. However, these epsilons change in time, which give contributions to the λ2 and
logarithmic term, and we also get contributions from ϵ2’s showing up. At order λ0, we
recover the exact Bunch-Davies solution. At λ1, the solution turns out to be exact Bessel
functions. However, for λ2, the log term complicates computations, and so we’ll be using
a Green function method to find the approximate solution. If we merely wanted the
power spectrum amplitude and tilt at leading order, the λ− linear expression is sufficient,
however, we’ll be looking to predict the power spectrum at order ϵ2. As a remark, note
that our definition of the pivot mode also has a correction in orders of epsilon, so we
need to make sure we match orders when computing the full power spectrum.

5.2 Green function method
The tools required to to up to second order can be found in a paper by Stewart and
Gong (2001/2005). There have been different proposals to approach the second order
power spectrum, but we find this one to be the most likely to be of use at higher orders
as well. In this case, we have an equation that we want to solve, and we can use Green
function methods to solve said differential equation with a parameter, perturbatively in
that parameter. The strategy is to first begin by standardizing our expressions for Q(x)
in terms of an expansion in the parameter λ, and to write down an ansatz for a solution
of the differential equation as a series in λ:

Q(x) = Q0(x) +
∞∑

n=1

λn

n! qn(x)v(x) = v0(x) +
∞∑

n=1

λn

n!wn(x) (5.32)
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In this case, remember that λ0 case corresponds to Bunch-Davies, so we are expanding
our solutions around Bunch-Davies, so the solution v0(x) is already known. We can then
plug in this ansatz into the equation of motion and organize everything order-by-order:

v′′
0(x) +Q0(x)v0(x) = 0 (5.33)

w′′
1(x) +Q0(x)w1(x) = −q1(x)v0(x) (5.34)

w′′
2(x) +Q0(x)w2(x) = −q2(x)v0(x)− 2q1(x)w1(x) (5.35)

We see the zeroth order equation gives the already-solved Bunch-Davies case. Subse-
quent equations have the same form on the left-hand side, but with a different source on
the right. We could write it in general as:

w′′
n(x) +Q0(x)wn(x) = Jn(x) (5.36)

To solve this class of equations, we say that the solution wn(x) is the Green function
of the source:

wn(x) =
∫ x

−∞
G(x, s)Jn(s)ds (5.37)

Recall that the Green function is the solution to the differential equation with a delta
function as a source, which we then impose conditions to ensure that it is causal:

G′′(x, s) +Q0(x)G(x, s) = δ(x− s) (5.38)

with causal conditions:  G(s− ε, s) = 0

G′(s− ε, s) = 0 ε > 0
(5.39)

Causal in this case means that it depends on the source: just before the source there’s
nothing and we get trivial Green function and first derivative. In fact, we want it to be
zero for all times before the source. After the source, δ(x− s) is zero, and so we want
the solution to be the homogeneous solution, of which we have already found a basis
of solutions: v0(x) and v∗

0(x). Once we know the Green function for the delta function
source, we can integrate it, and find a general solution. We can write the Green function
as a linear combination of our basis with coefficients that depend on s, the location of
the source:

G(x, s) = A(s)v0(x) +B(s)v∗
0(x) for x > s (5.40)
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We determine the coefficients A(s) and B(s) by imposing the continuity of G(x, s)
across the source, and a jump of G′(x, s) across the source. The statemetn of continuity
is given by:

lim
ε→0+

(G(s+ ε, s)−G(s− ε, s)) = 0 (5.41)

If G(x, s) were to be discontinuous, the first derivative would contain a δ(x− s), and
thus the second derivative would contain δ′(x− s). Since the differential equation doesn’t
have a δ′(x− s), the two couldn’t possibly match, thus the condition that G(x, s) must
be continuous. The condition that we have a jump across the source is the following:

lim
ε→0+

(G′(s+ ε, s)−G′(s− ε, s)) = 1 (5.42)

The proof of this conditions is as follows. Take the equation of motion and integrate
it across the source. The right-hand side delta function becomes 1, while the left-hand
side contains an oscillatory term which over the integral can be averaged out to be the
function’s value times the width of the integral, 2ε, and so we’re left with an integral of
G′′(x, s) :

∫ s+ε

s−ε
G′′(x, s)dx+Q(s)G(s, s)2ε = 1 (5.43)

⇒ G′(s+ ε, s)−G′(s− ε, s) = 1 in the limit ε→ 0 (5.44)

where the last line is obtained by sending ε to zero. Imposing these conditions of
continuity and jump, we have:

Continuity⇒ A(s)v0(s) +B(s)v∗
0(s) = 0

Jump⇒ A(s)v′
0(s) +B(s)v′

0
∗(s) = 1

(5.45)

This gives us two equations and two unkonwns, so we can solve them to get A(s) and
B(s). We find the answer is a quantity divided by a determinant, which corresponds
precisely to the canonical Wronskian:

A(s) = −v∗
0(s)

v0(s)v′
0

∗(s)− v′
0(s)v∗

0(s) = iv∗
0(s) (5.46)

B(s) = +v0(s)
v0(s)v′

0
∗(s)− v′

0(s)v∗
0(s) = −iv0(s) (5.47)

62



This gives us a simple solution for the general form of the causal Green function:

G(x, s) = θ(x− s)i (v∗
0(s)v0(x)− v0(s)v∗

0(x)) (5.48)

where θ(x−s) is the Heavyside step function which ensures that it is causal. At order zero,
we have the reference equation of motion and commutation relations, with in-vacuum
solution that is Bunch-Davies 4.52. Now we have a first order correction with source
J1(x) = −q1(x)v0(x) = b1

x2v0(x). The solution is then:

w1(x) =
∫ x

−∞
G(x, s)J1(s)ds (5.49)

We primarily interested in the late time behavior, that is, the x→ 0 limit. In this limit,
we find that w1(x) diverges. Our goal is to determine the divergent part, as that is the
relevant quantity that ensures |u(k, x)|2 freezes to the correct value. The technique is
then to split the integral and identify which part is the divergent contribution. In this
case, we can see the integrand diverges at 0, so we take the integrand and expand it
around zero and give it a name, Ω0(x, s):

Ω0(x, s) = Series[G(x, s)J1(s) around (x, 0, 0), (s, 0, 0)] (5.50)

Now instead of solving the full integral for w1(x), we instead compute the divergent
part of the integral from −1 to x, and then we pay it as a separate integral, and a final
part that with the rest of the range of the integral:

w1(x) =
∫ x

−1
Ω0(x, s)ds ← divergent as x→ 0 (5.51)

+
∫ x

−1
(G(x, s)J1(s)− Ω0(x, s)) ds ← finite (5.52)

+
∫ −1

−∞
G(x, s)Js(s)ds ← finite (5.53)

All together, we find the following expression for w1(x) keeping only the divergent
part explicit:

w1(x) = 1√
2k/k∗

ib1

3
1

k
k∗
x

(
−2 + γE + log

(
−2 k

k∗
x

))
+ finite terms as x→ 0 (5.54)

We can then compute the first order correction to the mode function v(x). Note that,
expanded in the limit x→ 0, we can neglect the 1 and the exponential, while for w1(x)
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we have already kept only the terms that are needed, with whatever is left being finite
terms in the limit x→ 0:

v(x) =v0(x) + w1(x) (5.55)

= 1√
2k/k∗

�1−
i

k
k∗
x

 e−i k
k∗

x (5.56)

+λ 1√
2k/k∗

ib1

3
1

k
k∗
x

(
−2 + γE + log

(
−2 k

k∗
x

))
(5.57)

+ finite terms as x→ 0 (5.58)

We can then compute the modulus squared with the leading order correction:

|v(x)|2 = 1
2
(

k
k∗

)3
x2

(
1− 2

3λb1(−2 + γE)− 2
3λb1 log

(
−2 k

k∗
x

)
+ ...

)
(5.59)

= 1
2
(

k
k∗

)3
x2

(
1− (2ϵ1H∗ − ϵ1Z∗)(−2 + γE)− (2ϵ1H∗ − ϵ1Z∗) log

(
−2 k

k∗
x

)
+ ...

)

(5.60)

Note that we have divergences that go as 1/x2 as well as logarithmic. There will
also in principle be divergences that are higher order in λ, for instance terms that go as
log2. Recall the definition of the power spectrum; the ansatz for u(k, t) depends on both
v(k, x) and µ(x). We can use the expressions we found for the scale factor, as well as the
Hubble- and Z-flow parameters in 5.22 and put them all together for find a formula for
µ(x) as a log series:

µ(x) = k∗a(x)2Z(x)
ℏ

(5.61)

=
(

1 + 2ϵ1H∗ + (−2ϵ1H∗ + ϵ1Z∗)
(

log x

x∗

)
+ ...

)
k2

∗Z∗

ℏH2
∗x

2 (5.62)

Just as we did with |v(x)|2, we find that there is a quantity that diverges as 1/x2 as
we as additional log divergences. Clearly, the x−2 will cancel with each other, but it’s
rather remarkable that, if the coefficients on the log term weren’t exactly the same for
both µ(x) and |v(x)|2, then the divergences would not cancel! Now we can simply take
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the ratio and present the result for the late-time power spectrum: [40]

P (k) = lim
t→∞
|u(k, t)|2 k

3

2π2 = lim
x→0−

|v(x)|2
µ(x)

k3

2π2 (5.63)

=
(

1− 2(1 + C0)ϵ1H∗ + C0ϵ1Z∗ + (−2ϵ1H∗ + ϵ1Z∗) log k

k∗
+ ...

)
ℏH2

∗
4π2Z∗

(5.64)

where C0 is a number given by:

C0 = γE + log 2− 2 ≈ −0.729 (5.65)

All the starred quantities are evaluated at the freezing time. Since both H(t) and
Z(t) change in time, this technique allows us to express everything in terms of the value
at the reference time plus their change in terms of flow parameters. Remember that the
reference time is conventional, so when we compare to observatin we have to declare it.
Let’s take stock of our results. When we did the zeroth order Bunch-Davies case, we
found the power spectrum with relatively little work – the power was just given by the
front coefficient! To get the first order correction, we had to go through a complicated
framework that keeps track order-by-order in ϵ. The constant piece in this case is not
that important as it’s a small correction to unity, we have the power spectrum amplitude
as the value of the power at the reference k∗:

A∗ ≡ P (k∗) = (1− 2(1 + C0)ϵ1H∗ + C0ϵ1Z∗)
ℏH2

∗
4π2Z∗

(5.66)

However, the logarithmic term is the important one since it contains all the dependence
on k! This is where we get the tilt; cosmological perturbations plus inflation gives us
a tilt that is small! The spectral tilt is the log derivative of the power spectrum; in a
log-log plot, P (k) would look like a line at linear order in log k

k∗
. This line can then be

described by its value at a given reference position plus the slope at that position. The
spectral tilt in this case, at linear order, is:

θ∗ ≡ k
d

dk
logP (k)

∣∣∣∣∣
k=k∗

= −2ϵ1H∗ + ϵ1Z∗ (5.67)
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Chapter 6 |
Pre-inflationary initial conditions

Up until now, our theory of quantum perturbations has been largely model-agnostic; our
results simply required that the space-time in question was at least close to de Sitter so
that we could write out the perturbations in terms of an expansion around the Bunch-
Davies in-vacuum. Now, we declare the model. Once more, we are working in a purely
gravity-driven inflationary background, the action of which is given by Starobinsky:

S[gµν ] = 1
16πG

∫
(R + αR2)

√
−gd4x . (6.1)

In Chapter 3, we worked on decomposing this action into a scalar-vector-tensor
(SVT) decomposition, identified the dynamical degrees of freedom, and wrote down a
second-order action for the perturbations:

d
dt

(a(t)3Z(t))
a(t)3Z(t) H(t) = (3− ϵZ(t))H(t) (6.2)

where the characteristic function Z(t) determined the behavior of scalar and tensor
perturbations:

Zs(t) = 3χ(t)
16πG

(
ϵχ(t)

1− ϵχ(t)/2

)2

(6.3)

Zt(t) = χ(t)
16πG = 1 + 2αR(t)

16πG (6.4)

Let’s consider what we require from the model. The quasi-de Sitter approximation
gives us a relationship between H∗, ϵ1H∗ and α, since:

ϵ1H(t∗) = − Ḣ∗

H2
∗
≈ 1

36αH2
∗

(6.5)
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Thus we need two parameters to determine the remaining one. Our expressions for the
power spectrum, however, depend on ϵ1Z∗ and Z∗; however, these functions are geometric
in nature, and so can be determined by the specific background. In fact, we wish to
express these characteristic functions in terms of solely the Hubble-flow parameter ϵ1H ;
doing so allows us to keep two observational quantities, the power spectrum amplitude
and the spectral tilt, and two unknowns, say H∗ and ϵ1H∗. In principle, we could use
the approximation scheme from Chapter 5, calculating Z∗ and ϵ1Z∗ at a given order in
Hubble-flow parameters. However, inevitably this would introduce higher Hubble-flow
parameters – but we don’t have a background-agnostic manner of identifying them. We
can say something about ϵ1H at the onset of inflation, and even its relationship with α

and H∗ during inflation, but nothing of ϵ2H without specifying a background. So let’s
specify a background! We’re going to make use of another approximation scheme, one
that relies entirely on ϵ1H . Note that this new approximation is solely to determine the
static values of ϵ1Z and Z at the time t∗, and that this approximation is in slow-roll
parameters – whereas the Chapter 5 approximation was a time based approximation
using x as a clock, around the pivot time t∗.

Our approximation begins with an ansatz for H(t) during the quasi-de Sitter phase,
treated more carefully to include higher order ϵ1H terms:

H(t) ≈ 1
36αϵ1H(t)(1 + b1ϵ1H(t) + b2ϵ

2
1H(t) + ...) (6.6)

The background Friedmann equation constraints ϵ̇1H(t), which can be solved exactly
in terms of H(t) and ϵ1H(t) :

ϵ̇1H(t) = 1− 36αH(t)2ϵ1H(t) + 18αH(t)2ϵ1H(t)2

12αH(t) (6.7)

We can impose the consistency relation that ϵansatz(t) = ϵ1H(t) up to second order in
ϵ1H . This yields the following series expansion for Hansatz(ϵ1H):

Hansatz(ϵ1H) = 1
6√αϵ1H

− ϵ1H

72α +O(ϵ3/2
1H ) (6.8)

In order to track how many derivatives of ϵ1H we require, we first consider the scalar
sector as it will have more derivatives. The Ricci scalar contains Ḣ(t), which goes as
ϵ1H , and thus so does χ(t) = 1 + 2αR(t). Then, ϵχ(t), which is the log derivative of χ(t),
will contain ϵ̇1H , and thus so will Zs(t). Finally, the scalar Z-flow function is itself a log
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derivative, and thus will have one more derivative of ϵ1H . That is, we need only find
an expression for ϵ̈1H(t) in this approximation to compute all the relevant quantities.
Taking the derivative of ϵ̇1H(t) from 6.7 and substituting back in expressions for Ḣ(t)
and ϵ̇1H(t), we find ϵ̈1H(t) in terms of H(t) and ϵ1H(t) :

ϵ̈1H(t) = − 1
4α + ϵ1H(t)

3α + 9H(t)2ϵ1H(t) +O(ϵ2
1H) (6.9)

Introducing the ansatz for H(t) as a series in ϵ1H gives a simple expression for ϵ̈1H in
a likewise series, and we find that the second derivative can be safely ignored at linear
order:

ϵ̈1H ∼ O(ϵ2
1H) (6.10)

The relevant quantities can then be computed straightforwardly from this collection of
expressions of H(ϵ1H) and its derivatives in terms of ϵ1H , ϵ̇1H , and ϵ̈1H . We present the
result up to first order in ϵ1H :

Zs(ϵ1H) = ϵ1H

2Gπ +O(ϵ2
1H) (6.11)

ϵ1Zs(ϵ1H) = −2ϵ1H +O(ϵ2
1H) (6.12)

Zt(ϵ1H) = 5
144Gπ + 1

24Gπϵ1H

+ ϵ1H

108Gπ +O(ϵ2
1H) (6.13)

ϵ1Zt(ϵ1H) = 2ϵ1H +O(ϵ2
1H) (6.14)

With the input from the model, we can then express the power spectrum amplitude
and its tilt and – critically – we can evaluate whether the model exhibits red or blue tilt.
Already from our expressions, we can note that ϵ1Z for scalars is negative so added to
−2ϵ1H already gives a red tilt! Meanwhile, for tensors, we find that the tilt is zero at
linear order in ϵ1H :

θs∗ = −2ϵ1H∗ + ϵ1Z∗ = −4ϵ1H∗ +O(ϵ2
1H∗) (6.15)

θt∗ = O(ϵ2
1H∗) (6.16)

As for the amplitude, the scalar power is enhanced by the presence of ϵ1H∗ while
in contrast, the tensor power is suppressed by ϵ1H∗! Recall that for tensors, the power
spectrum gets an extra 2 from the two polarizations as well as an additional 2 from the
trace of the polarization tensor. The expression given accounts already for this factor of
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4:

As∗ ≡ Ps(k∗) = GℏH2
∗

2πϵ1H∗
− (17 + 24C0)GℏH2

∗
12π + (85 + 72C0)GℏH2

∗ ϵ1H∗

72π (6.17)

+O(ϵ2
1H∗) (6.18)

(6.19)

At∗ ≡ Pt(k∗) = 24GℏH2
∗ ϵ1H∗

π
− 4(17 + 24C0)GℏH2

∗ ϵ1H∗

π
+O(ϵ2

1H∗) (6.20)

For scalars, the enhanced, leading term, is the most important one, with the next
order term being smaller by a factor of ϵ1H∗. In the numerical simulations run, we find
that ϵ1H∗ becomes as small as around 1%. Observations from Planck, presented at a
reference scale of k∗ = 0.002Mpc−1 suggests a scalar amplitude around 10−9, which
means if ϵ1H∗ ∼ 1%, then the tensor amplitude will be around 10−14! The origin of this
discrepancy in power can be traced back, in this frame, to the characteristic functions
Z(t). When we look at the effective Hubble scale that the modes see in their equation of
motion Equation 4.32,

(
1− 1

3ϵZ(t)
)
H(t), we see one very important difference between

the scalar and tensor behavior shown in Figures 6.1 and 6.2.
Specifically, for scalar modes, we see a dip below the x-axis for

(
1− 1

3ϵZ(t)
)
H(t),

which acts as a negative friction coefficient in the mode equation, adding power to scalar
modes, whereas such behavior is not observed in the tensor Heffective.

Note that ϵ1H is a geometric quantity ultimately computed from the metric tensor. It
can be helpful to translate these results in terms of number of e-foldings – after all, the
number of e-foldings in either the Jordan or Einstein frame is the same, allowing us to
have a more intuitive sense of the power spectrum amplitude and tilt. The number of
e-foldings since the time the pivot mode k∗ crosses the Hubble horizon can be expressed
by:

Ninflation =
∫ tend

t*

H(t)dt =
∫ end

*

H(ϵ1H)
ϵ̇1H

dϵ1H (6.21)

Recall that during quasi-de Sitter, at lowest order, ϵ1H is monotonically increasing,
so it makes for a reasonable clock. Plugging in our ansatz for the background and
integrating, we find the following expansion of e-folds in terms of ϵ1H :

N* = −1
2 + 1

2ϵ1H∗
(6.22)

It’s easy to reverse this relationship and then write our power spectrum quantities in
terms of series of number of efoldings since the time t∗. Moreover, we can mirror the
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Figure 6.1. The quantity
(
1− 1

3ϵZ(t)
)

H(t), which appears in the friction term in 4.32
becomes negative for scalar modes, effectively acting as a negative friction and adding power
into the modes.

expression that gives us the total number of e-foldings from Hc and ask only that it gives
us the amount of e-foldings since the mode k∗ crossed the horizon, N∗ = 18αH2

∗ . In turn,
we can rewrite the power spectrum quantities in terms of the number of e-foldings and
constants of the theory:

θs∗ = − 2
N∗

+O(N−2
∗ ) (6.23)

⇒ ns∗ = θs∗ + 1 = 1− 2
N∗

+O(N−2
∗ ) (6.24)

θt∗ = O(N−2
∗ ) (6.25)

As∗ = GℏN2
∗

18πα −
(17 + 24C0)GℏN∗

216πα + (85 + 72C0)Gℏ
2592πα (6.26)

+O(N−2
∗ ) (6.27)

(6.28)

At∗ = 12GℏN2
∗

18πα − 2(17 + 24C0)GℏH2
∗

18πα +O(N−2
∗ ) (6.29)

Given the central value data from the Planck 2018 collaboration [41], evaluated at
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Figure 6.2. The quantity
(
1− 1

3ϵZ(t)
)

H(t), which appears in the friction term in 4.32,
remains positive for all time for tensor modes.

the mode k∗ = 0.05Mpc−1, namely:

As = 2.099× 10−9 (6.30)
ns = 0.9649 (6.31)

we find the following best-fit values for the number of e-foldings N∗ and the coupling
constant α:

N∗ = 56.98 e-foldings (6.32)
α = 2.73× 1010ℓ2

P (6.33)

as well as values for the geometric quantities, H∗ and ϵ1H∗:

H∗ = 1.07× 10−5 1
ℓP

(6.34)

ϵ1H∗ = 8.70× 10−2 (6.35)
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The tensor-to-scalar ratio r, which is often used in the literature to characterize
inflationary models in an observational space, can now be readily computed from the
leading order terms of the power amplitudes. Expressed as a series up to second order,
this is:

r = 48ϵ2
1H∗ +O(ϵ3

1H∗) (6.36)

Or in terms of number of e-foldings:

r = 12
N2

∗
+O(N−3

∗ ) (6.37)

A few remarks are in order. While the analysis in Chapter 5 using the Green function
method can be used to find the power spectrum up to arbitrary order in ϵi, it quickly
becomes computationally difficult to go to higher than linear orders. The result presented,
in a background-agnostic manner, was given at linear order in ϵi, so the results presented
here are likewise at linear order. When we do so, however, we find a quadratic order
tensor-to-scalar ratio! Should we trust this result? Certainly, we can say that the
tensor-to-scalar ratio is at lowest order quadratic. A paper by de Felice which approaches
the solution of the mode equation in a different manner – through Bessel functions –
finds the same coefficient. In addition, we find the coefficient to be consistent with our
numerical simulations.

In the literature, one often sees a consistency relation for single scalar field inflation
which relates the tensor-to-scalar ratio r to the tensor spectral tilt nT :

r ≈ −8nT (6.38)

It’s a rather simple equation, which comes from noting that r = 16ϵ and nT ≈ 2ϵ in the
inflaton framework. At linear order, it seems, we cannot say much about the consistency
relation. Numerical results, however, suggest that the consistency relation is satisfied
in this framework – which in turn suggests the following expression for nT at quadratic
order:

nT ≈ −6ϵ1H∗ ≈ −
3

2N2
∗

(6.39)

We’ll see numeric results and consistency checks later on in this chapter.
For now, we turn to analytic, pre-inflationary modifications to the power spectrum.

72



6.1 Pre-inflationary effect on the power spectrum
Let’s review our pre-inflationary initial conditions. Certainly, we can use Friedmann
equations and the ΛCDM model to get an idea of the evolution of the universe in terms of
e-foldings. Starting with the Friedmann equation, and for simplicity assuming a perfectly
flat universe:

H(t) = H0

√
Ωr

a(t)4 + Ωm

a(t)3 + ΩΛ (6.40)

which, since a(N) = e(N−Ntoday) setting atoday = 1, we can write Hubble during the
post-reheating universe as:

H(N) = H0

√
Ωr

e(4(N−Ntoday)) + Ωm

e(3(N−Ntoday)) + ΩΛ (6.41)

Similarly, we can find a numerical expression for H(N) during a pre-inflationary
and inflationary time. Starting with the Starobinsky equation, we need only two initial
conditions to find a unique solution. These are chosen at the crossing time, when the
pre-inflationary approximation of H(t) crosses the attractor line Ḣ = − 1

36α
, which can

be rewritten in terms of an e-fold derivative, dH
dN

= dH
dt

(
dN
dt

)−1
= Ḣ

H
. With the additional

choice of Hc = µ√
α
, with µ remaining a parameter we can tune to see how much pre-

inflationary evolution is available between the observation boundary and the quantum
gravity theoretical boundary. We can now put together the evolution of the universe, in
particular looking at the physical Hubble rate a(t)H(t) during these two epochs on the
same log-log plot, along with the band of observable modes.

A few remarks are in order. There’s a clear minimum value that µ must take on –
around µ ∼ 1.8, otherwise the pivot mode k∗ would not have entered the Hubble horizon
in time to coincide with observations. Modes above the Hubble horizon oscillate, so as a
principle, we could set the initial state to be that of the Bunch-Davies vacuum, while
those below are frozen. It is sensible to use this principle – whatever are the details of
the transition between full quantum gravity and quantum field theory, the transition
must be gentle enough that inflationary evolution is not disrupted. A choice of vacuum
assures that is the case.

We would prefer to utilize the same principle with all modes, so we can push the value
of µ a little to include all modes, and use the same principle. However, at this point,
we could keep pushing the value of µ so that modes are oscillatory even further in the
past – meaning at µ > 1.8, there is room for observable scalar modes to be affected by
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pre-inflationary effects! We can instead use as our principle setting a pre− inflationary
vacuum state that evolves naturally and provides a new initial state at the onset of
inflation. As we’ll see in this Chapter, this’ll be a squeezed vacuum that can be fully
characterized by Bogoliubov coefficients. The effect of this squeezing is to suppress

modes that are near the bottom of the well – the longest wavelength modes we observe –
while leaving high k modes largely untouched. This is a boon – allowing a modification of
the power spectrum of the CMB at large scales, which, as it’s limited by cosmic variance,
still presents a challenge in fully understanding its features, with some hints that there
may be deviation from scale invariance. [42]

For larger values of µ, the physical length scale in the far past becomes much smaller
than all observable modes – at this point, we begin to lose the effects of power suppression,
leaving behind the usual Bunch-Davies power spectrum. Even further increasing µ gives
us a background in which our framework is no longer even valid – as soon as the transition
from pre-inflationary to inflationary occurs in the band in which we no longer trust
quantum field theory in curved space-time, we necessarily must move to a full theory of
quantum gravity. Thus, in terms of this framework, we have a hard lower bound on µ, a
hard upper bound on µ, and moreover, a more restrictive, soft upper bound on µ, where,
if we hope to be able to resolve observations within our lifetimes, we cannot have a value
of µ that strays far from 1.8.

In order to be aligned with observations, any pre-inflationary effect must leave
the power spectrum nearly scale invariant at high k – so when do we begin to see
pre-inflationary features? Consider in our diagram, a k when we transition from pre-
inflationary to inflationary evolution, named kfeature. We seek to write this critical k
in terms of our inflationary e-folds parameter µ. For the sake of simplicity, take an
inflationary background that is purely de Sitter. In this background, the slope of the
inflationary section of the log-log plot is:

d(log(a(t)H(t)
a0H0

))
dN

= d log(eH0t)
dN

= d(H0t)
dN

= dN

dN
= 1 (6.42)

Recall that Ninfl = 18µ2 captures how many total inflationary efoldings there are,
while N∗ is the amount of inflationary efoldings since the pivot mode crossed the Hubble
horizon. Putting together these ideas, using the slope of the log-log graph, we can write
the following equality:

log
(

k∗

kfeature

)
= Ninfl −N∗ (6.43)
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⇒ kfeature = e−(Ninfl−N∗)k∗ (6.44)
⇒ kfeature = e−(18µ2−N∗)k∗, (6.45)

Thus, if we require that kfeature < k∗, that is, features should only be observed when
we change the dynamics from the standard framework below the pivot mode k∗, then
18µ2 > N∗, or µ >

√
N∗
18 , which for N∗ ≈ 60 gives µ ≈ 1.8, giving a hard lower bound

on µ that is of order unity. We can also reverse this logic – under the assumption that
the pre-inflationary evolution doesn’t affect the quasi-de Sitter result at the scale k∗,
and given that this result predicts the inflationary energy scale at α, taking µ ≈ 1 as a
principle gives a number of efoldings compatible with observation that can be written in
terms of the relevant inflationary scale, H× ≈ 1√

α
with Ninfl = 18H2

×α.
As a small aside, we can posit an upper bound of total pre-inflationary e-foldings

given that any reasonable classical trajectory must maintain the usual quasi-de Sitter
result. Consider once more the log plot of the physical length scale a(t)H(t) against
e-foldings. We can calculate the derivative of the plot during the pre-inflationary era:

d log a(t)H(t)
a0H0

dN
= 1
a(t)H(t)

(
ȧ(t)H(t) + aḢ(t)

) dt

dN
(6.46)

= 1
H(t)(H(t)2 + Ḣ(t)) dt

dN
(6.47)

= 1
H(t)2 (H(t)2 + Ḣ(t)) = 1− ϵ1H(t) (6.48)

where the second-to-last equality comes from dN
dt

= H(t). This also gives us a simple
manner of identifying extrema of comoving scale: whenever ϵ1H(t) = 1. Since during
the period of pre-inflation the space-time behaves like a radiation background, we have
ϵH = 2 during this period, giving us a plot derivative of −1, that is, the logarithmic
difference in physical scale directly gives us the amount of e-folds that have passed. The
maximum amount of physical scale that we could have during pre-inflation is from the
Planck scale up to the α scale of inflation. That is, we have a maximum number of
pre-inflationary e-foldings. During this radiation-like phase, the expressions for the scale
factor and Hubble rate are quite simple, and a quick substitution allows us to rewrite
the scale factor in terms of Hubble as a(t) = a0√

2H(t)
, or a(t)H(t) = a0√

2

√
H(t). Putting

these ideas together, we find the expression for the maximum number of pre-inflationary
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e-foldings:

Npre-inflationary = log aPlanckHPlanck

a0H0
− log aαHα

a0H0
(6.49)

= log aPlanckHPlanck

aαHα

(6.50)

= log
√
HPlanck√
Hα

(6.51)

= log
√
Lα√
ℓP

(6.52)

= log
√

105ℓP√
ℓP

= 1
2 log 105 ∼ 5 e-folds . (6.53)

There is a curious coincidence that occurs near µ ∼ 1; namely, the primordial universe
largest comoving scale at the onset of inflation is roughly the same as the post-Hot Big
Bang universe’s largest comoving scale that occurs near the matter-dark energy transition.
Can we turn this observation into a principle? It’s worth remembering that the CMB is
a probe – the surface of last scattering we observe bears the temperature gradients and
photon polarizations caused by early universe density variations and gravitational waves.
As any probe, it has a physical size, the scale of which is given by the comoving scale at
the time of reionization. Certainly, this is a drawn-out process that doesn’t occur all at
the same time, but using the usual redshift for the CMB, zCMB = 1100, we can find how
many e-folds ago this occurred:

1
a(t) = 1 + z ⇒ 1

a0eN
= 1 + z (6.54)

NCMB = − log(1 + zCMB) ≈ −7 (6.55)

In cosmology, we often write down the Friedmann equation for the modern universe
in terms of the energy content of the universe: radiation, matter, curvature and the
cosmological constant:

H(t) = H0

√
Ωr

a(t)4 + Ωm

a(t)3 + Ωk

a(t)2 + ΩΛ (6.56)

where the nominal values are given by today’s Hubble rate H0 = 67.4km/s/Mpc,
unitless density parameters Ωr = 9.0 × 10−5, Ωm = 0.32, ΩΛ = 0.68, and where for
simplicity we’ll take a flat universe with Ωk = 0. Rewriting the Friedmann equation in
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terms of efoldings makes it easy to write the expression for the scale factor as well:

H(N) = H0

√
Ωre−4(N−Ntoday) + Ωme−3(N−Ntoday) + ΩΛ (6.57)

a(N) = e(N−Ntoday) (6.58)

where we have set a0 = atoday = 1. With these, we can determine the comoving scale
at the time of the CMB:

kCMB = a(NCMB)H(NCMB) ≈ 0.0048Mpc−1 (6.59)

Using the equation 6.43, we can find the corresponding parameter µ that gives kCMB

as the largest comoving mode at the onset of inflation:

µ = 1
3
√

2

√
Ninfl − log k∗

kCMB
≈ 1.8 (6.60)

We’ve seen already that µ ≈ 1.8 is compatible with observations, giving us just
enough inflation so that pre-inflationary features might appear at the largest comoving
scales. That is, we could take the following principle for setting our initial condition: The
largest comoving scale at the time of the CMB, which serves as a probe for primordial
perturbations, should be the same size comoving scale at the time of the onset of inflation.
Note that we state this as a principle – we do not provide a mechanism for this occur.

This idea, however, does still rely on a particular measurement apparatus – the CMB
– as well as a special time in the universe, namely the Recombination of electrons and
protons into electrically neutral atoms. So let’s consider one last principle to set just the
right amount of inflation: censorship.

In classical general relativity, singularities must be censored lest they create causal
paradoxes such as the closed time-like curves or create pathologies where considering a
Cauchy surface, rendering the initial value formulation ill-defined. Singularities, then,
must be classically censored by a horizon. When considering quantum mechanical effects
in conjunction with general relativity, Hawking radiation leads to a case in which a naked
singularity is present only at the end of the black hole’s life. Our proposal, then, is a
very mild violation of this censorship, but for the initial cosmological singularity. The
inflationary framework already censors the Planck phase, functioning like the classical
horizon of a black hole. By lasting for a long enough time, every mode that we observe
today must’ve become unfrozen at some point in the past, whereas any mode that
remained frozen during inflation, and thus bearing direct imprints from the Planck era,
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is permanently inaccessible to us in the future, purely by virtue of the matter-energy
makeup of our universe. Inflation, then, is a past-facing censor analogue to the black
hole horizon future-facing censor. Is there, then, an analogue of Hawking evaporation?

We propose thusly the principle for setting a maximum number of inflationary e-
foldings: inflation should last just long enough to barely censor the initial singularity.
What happens when there’s just enough inflation, so that the Planck regime goes from a
hard censor to a soft blurring, from a cosmic umbra to a cosmic penumbra, from an iron
curtain to a gossamer veil?

6.2 Cosmic veiling
Before we look at the consequences of this cosmic veiling, let’s establish its condition.
Figure 6.3 shows examples of two backgrounds which are not cosmically veiled. We’ve
established that we ought to observe features at the scale where the background goes
from pre-inflationary to inflationary. The top picture gives us an example of a naked
initial singularity - the feature is observed at small angular scales and thus details from
the Planck era ought to be imprinted in the sky today. We don’t observe this, so this
scenario is excluded.

The bottom picture presents a cosmically censored scenario. Inflation lasts long
enough to push any features that might show up past the largest angular scale we’d ever
see in our universe, censoring any Planck effects completely. This is a possible scenario,
but ultimately wouldn’t present anything interesting for observation.

Cosmic veiling condition ought to occur when the largest co-moving scale in the
primordial universe matches the largest co-moving scale observed in the modern epoch,
as shown in Figure 6.4. In this case, the scale at which features arise is available to us,
though they are difficult to probe as they correspond to the largest angular scales of the
universe, which ultimately have challenging to determine statistically significant behavior
due to cosmic variance.

Let N ≡ 0 at the end of inflation, when ϵ = 1. Define Nre to be the amount of
e-foldings at the end of reheating, and onset of the radiation dominated phase. Note
that there isn’t a definite hard transition from reheating to radiation – simply as the
temperature of the universe rises, the equation of state that governs the evolution of
the universe will change from w = 0 (matter) to w = 1

3 (radiation) in a smooth manner.
We can separate the log co-moving scale into a log ratio of scale factors and log ratio of
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Figure 6.3. Pictured are two examples of non-cosmically veiled backgrounds. The co-moving
scale aH is shown as a function of e-folds across the lifetime of the universe. The primordial
co-moving scale that precedes the Hot Big Bang at some point must cross into the quantum
gravity regime at the Planck scale. The top figure shows a background that is disallowed by
observation, while the bottom figure shows a background that is cosmically censored.

Hubble parameter.

∆ = log amaxHmax

aminHmin
(6.61)

= log amax

amin
+ log Hmax

Hmin
(6.62)

Recall that during inflation, the slope on the log aH − −N plane is nearly 1, so this
target value, which we call ∆, is also related to the amount of inflationary e-foldings.
The log of ratio of scale factors is simply the amount of e-folds from the maximum of
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Figure 6.4. Pictured is a cosmically veiled background. Cosmic veiling occurs when the
largest scales in the primordial and modern universe are nearly the same value. This means
that the scale at which additional features arise are available to us. The comoving scale aH is
shown as a function of e-folds across the lifetime of the universe. Two solutions are joined – the
primordial comoving scale prior to the Hot Big Bang, and the comoving scale afterwards, during
the radiation-, matter, and finally Λ−dominated universe. The red area is the full quantum
gravity regime at the Planck scale. The band of observable modes k that are accessible to us
by the CMB is shown in green.

co-moving scale to its minimum, ∆Nmax→min. This value can be separated into a part we
understand well and an uncertain amount of e-folds. The primary uncertainty comes from
the amount of reheating e-foldings which is not well known. On the other hand, given
the ΛCDM model of the universe, we have a good understanding of how the universe will
evolve after the Hot Big Bang. Thus, we can separate ∆Nmax→min into Nreheat +NΛCDM

(see Figure 6.5).
Given an evolution of the present universe given by 6.57 and measuring from the

Hot Big Bang up to the minimum of co-moving scale in modern epoch, neglecting the
contribution of radiation since Ωr ≪ ΩΛ,Ωm, we find an expression including the number
of e-folds NΛCDM :

d

dN
log (a(N)H(N)) = 0 (6.63)

⇒ NΛCDM +Nreheat ≈ Ntoday −
1
3 log

(
2ΩΛ

Ωm

)
. (6.64)

We see that NΛCDM is in our recent past, with 1
3 log

(
2ΩΛ
Ωm

)
≈ 0.5 e-foldings ago, or in
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Figure 6.5. A close up picture of the co-moving scale during the modern epoch of the universe.
This figure reveals an uncertainty in the amount of e-foldings that occur from the end of
inflation to the present day – that of reheating e-foldings (red dotted line). The amount of
e-foldings NΛCDM is well understood in the context of the ΛCDM model. The value ∆ which
gives us the log difference in co-moving scale from its maximum to minimum also corresponds
to the amount of inflationary e-foldings for a cosmically-veiled background.

terms of redshift, we have:

z = atoday

a(t) − 1 = e∆N − 1 ≈
√
e− 1 ≈ 0.64 (6.65)

At this point, it is easy to calculate Hmin and amin:

Hmin = H(NΛCDM) = H0

√
3ΩΛ (6.66)

amin =
(

Ωm

2ΩΛ

)1/3

(6.67)

Our ignorance is now encoded in the value of Ntoday. We can push this uncertainty
onto Nreheat by defining the value of the Hubble parameter at the onset of the Hot Big
Bang to be the one given at the end of reheating, that is, impose H(Nreheat) ≡ HBB.
Further, at the onset of the Hot Big Bang, we can make a further assumption that the
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matter and vacuum energy content of the universe is negligible compared to the radiation
energy content, allowing the expression, from 6.57:

Ntoday = Nreheat + 1
2 log HBB

H0Ωr

(6.68)

Recall that the vacuum density parameter is given by ΩΛ = Λ
3H2

0
, allowing us to rewrite

Ntoday without the value of the Hubble parameter today:

Ntoday = Nreheat + 1
4 log 3H2

BBΩΛ

ΛΩr

(6.69)

Together with Equation 6.63 , we get then a refined expression for NΛCDM:

NΛCDM ≈
1
4 log

(
H2

BB
Λ

)
+ 1

12 log
(

27
16

Ω4
m

Ω3
rΩΛ

)
(6.70)

Now we are able to sharpen and focus on the notion of constraining the total amount of
reheating e-foldings. Consider a reheating phase described by an equation of state wreheat

where wreheat lies between its matter value and radiation value: 0 ≤ wreheat ≤ 1
3 . The

expression for the scale factor in terms of the equation of state can be generically written
as a(t) = t

2
3(w+1) . Alongside a(N) = eN , where N here is measured from the maximum of

log aH, we can rewrite the Hubble factor in terms of e-folds and the equation of state:

H(N) = 2
3
e− 3N

2 (1+wreheat)

1 + wreheat
(6.71)

For small values of wre, we can expand the expression for the logarithm of the comoving
scale and find a relatively simple expression, up to first order in wreheat :

log(aH) = −wreheat −
1
2N(1 + 3wreheat)− log 3

2 (6.72)

Note that the sign next to e-folds will always be negative for positive values of wreheat

– whenever the matter content is non-vacuum or non-inflationary, the comoving scale
contracts. For the special cases in which the equation of state describes matter or
radiation, we have the following result:

log(aH) = −1
2N − log 3

2 (matter) (6.73)

log(aH) = −N − 1
3 − log 3

2 (radiation) (6.74)
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We see a general form of the expression that is log(aH) = −η(N)N + const, where we’ve
made the contraction of the comoving scale explicit and with 1

2 ≤ η(N) ≤ 1 is a function
that describes how the coefficient of N , that is, the slope in the log aH − N diagram,
changes, depending on the variable equation of state wreheat during reheating. Now we
are free to manipulate this expression in order to determine bounds for HBB:

logH = − log a− η(N)N + const (6.75)
= −N − η(N)N + const (6.76)
= −(1 + η(N))N + const (6.77)
⇒ H(N) = e−(1+η(N))NHmax, (6.78)

where Hmax is the value of H(N) at N = 0, the point where the comoving scale is
maximum. This quantity is in turn easily computed, as quasi-de Sitter inflation was
defined by Ḣ ≈ − 1

36α
, ending when ϵ = 1, thus giving:

Hmax = 1
6
√
α

(6.79)

Assuming the evolution of the comoving scale is smooth during reheating, bounds can
be placed on the value of HBB with 6.78. Taking the two extremes in which reheating
is either a pure matter dominated or radiation dominated phase, we find the following
lower bound from radiation-modeled reheating and upper bound from matter-modeled
reheating:

e−2NreheatHmax ≤ HBB ≤ e− 3
2 NreheatHmax (6.80)

In either case, HBB is smaller than Hmax for a nontrivial amount of reheating e-foldings,
while an equality is only achieved when reheating is instantaneous, so Nreheat = 0 ⇒
HBB = Hmax. Putting this together with 6.70, we can put together an expression for
the log change in comoving scale from the end of inflation to the minimum value it ever
reaches, which we define by the quantity ∆:

∆ = log amaxHmax

aminHmin
(6.81)

= log amax

amin
+ log Hmax

Hmin
(6.82)

= −NΛCDM −Nreheat + log
(

1
6
√
αΛ

)
(6.83)
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= −Nreheat −
1
4 log

(
H2

BB
Λ

)
− 1

2 log(αΛ)− log 6− 1
12 log

(
27
16

Ω4
m

Ω3
rΩΛ

)
(6.84)

Now we can plug in our result relating the Hubble scale at the end of inflation to that at
the onset of the Hot Big Bang, where for the sake of simplicity, we’ve taken η(N) to now
be simply η as an unknown average value, but which must lie between the extremes of
matter and radiation, that is, 1

2 ≤ η ≤ 1:

HBB = e−(η+1)NreheatHmax = e−(η+1)Nreheat
1

6
√
α

(6.85)

⇒ −1
4 log

(
H2

BB
Λ

)
= 1

2(η + 1)Nreheat + 1
4 log(αΛ) + 1

2 log 6 (6.86)

which gives our final expression for the log difference of comoving scales ∆:

∆ = −1
2(1− η)Nreheat −

1
4 log(αΛ)− 1

2 log 6− 1
12 log 27

16 + 1
12 log Ω3

rΩΛ

Ω4
m

(6.87)

= 1
4 log

( 1
αΛ

)
− 1− η

2 Nreheat −
1
12 log

(
4× 39 Ω4

m

Ω3
rΩΛ

)
(6.88)

Some remarks are in order. Firstly, having made explicit the expected signs of every
term, we can evaluate the relative sizes of each of these contributions. The first part,
which depends on the energy scale of inflation and the modern, accelerating expansion of
the universe, yields the largest contribution to ∆! Using approximate values in Planck
units gives an approximate value:

1
4 log

( 1
αΛ

)
≈ 1

4 log
( 1

101010−122

)
≈ 1

4 log e(2.3×112) ≈ 64.5 (6.89)

Recall that this ∆ corresponds precisely to the amount of inflationary e-foldings, since
the derivative of log aH with respect to N is exactly 1 during inflation. Thus the leading
term in the calculation, which was motivated purely from an argument from cosmic
censorship, gives an amount of inflation that is very near to the current minimum amount
of inflation compatible with observation. The question remains: do the following terms
significantly change this value, and how large can Nreheat become before being disallowed
by current observation? Beginning with the matter content term, given nominal values,
we find:

1
12 log

(
4× 39 Ω4

m

Ω3
rΩΛ

)
≈ 2.9 (6.90)

This is an order of magnitude smaller than the leading term, though still provides enough

84



of a decrease in e-foldings to be relevant to our calculation. We ought to sharpen our
notion of our minimal number of e-foldings to be compatible with observation.

Recall the results of the power spectrum spectral tilt in terms of the number of e-folds
N∗ since the pivot mode k∗ crossed the Hubble horizon 6.23:

ns∗ = 1− 2
N∗

(6.91)

Solving for the number e-folds, we find N∗ = 2
1−ns

≈ 57 e-foldings, given the central value
for the spectral tilt as given in the Planck collaboration 2018 paper on the constraints
on inflation. The worst case scenario for the ∆ is to have η = 1

2 , dominated by matter,
in which case we find our bound for ∆ is given by:

∆−N∗ ≈ 3.92− Nreheat

4 ⇒ Nreheat ≈ 15.7 (6.92)

That is, as long as the amount of e-folds that occurred during reheating is less than 16,
we can use the principle of cosmic censorship to impose a maximum amount of total
inflationary e-foldings without coming into tension with observation.

We can sanity-check this result by taking the temperature of the CMB today and
blueshift it by the predicted e-folds into the past and seeing if it matches our expectation
of the energy scale at the Hot Big Bang. We know temperature in cosmological space-
times scales with redshift, which allows us to write the temperature at the time of the
Hot Big Bang in terms of e-folds since reheating:

T (t) = T0 (1 + z) = T0

a(t) = T0e
−N (6.93)

The time of the minimum of co-moving scale is very near to today, so we’ll simply take
the amount of e-foldings NΛCDM, and approximate the Hot Big Bang energy scale with
the energy scale α and check self-consistency:

NΛCDM = 1
4 log

(
H2

BB
Λ

)
+ 1

12 log
(

27
16

Ω4
m

Ω3
rΩΛ

)
(6.94)

= 1
4 log

( 1
36αΛ

)
+ 1

12 log
(

27
16

Ω4
m

Ω3
rΩΛ

)
(6.95)

= 1
4 log

( 1
αΛ

)
− 1

4 log 36 + 1
12 log

(
27
16

Ω4
m

Ω3
rΩΛ

)
(6.96)

≃ 65 (6.97)
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Then, taking the temperature today, rounded to 3K or 0.26meV, we can determine the
temperature at the time of the Hot Big Bang:

T (tHBB) = T0e
−NΛCDM ≃ 4× 1015 GeV (6.98)

which indeed gives the expected energy scale during reheating.
Next, we explore the consequences when cosmic censorship becomes cosmic veiling

and we get to peer slightly into the effects that come from just enough inflation.

6.3 Numerical evolution of background and quantum ini-
tial conditions
The paradigm proposed for setting initial conditions consists not only of a choice of
background initial condition – the choice consistent with cosmic veiling, but also of a
choice of initial state. The choice of initial state is stated thusly: The initial state |ψveil⟩
should be such that it carries the minimum amount of information from the quantum
gravity epoch. That is, given that the cosmic veiling condition fixes a time – there’s a
maximum amount of inflationary e-foldings in order to have veiling, plus the limited
amount of pre-inflationary e-foldings – the choice of state should be a vacuum state that
doesn’t spoil the veiling. Since we expect the transition of the background from quantum
gravity to effective field theory to be smooth, so too should we impose that the transition
does not imprint any quantum gravity information on the initial state that could be
blown up and observed in the sky today.

Once we have made this choice of initial state, we can evolve it with the chosen
background and generate the power spectrum of the theory. However, the evolution is
non-trivial, the transition from pre-inflationary to inflationary epoch is sharp, with a
prominent “knee” featured in the the (H, Ḣ) phase space diagram. It is necessary for us
then to evolve the initial state numerically in order to find the resulting power spectrum.
We begin by describing the background evolution and subsequent procedure for evolving
the quantum initial condition.

Given the definition of the Kretschmann scalar 2.42, we impose the pre-inflationary
characteristic equation of Ḣ(t) 2.32, which allows us to write the Kretschmann scalar in
terms of solely H(t) and the crossing time Hubble factor Hc:

K = 24(2H3
cH(t)− 2H3/2

c H(t)5/2 +H(t)4) (6.99)
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This expression of the Kretschmann curve is essentially the intersection of the
Kretschmann boundary with a given pre-inflationary trajectory, the latter of which
depends directly on the total amount of inflationary e-foldings, set by Hc. Replacing Hc

directly with e-foldings via Ninfl = 18αH2
c gives us a surface of initial conditions that

depend on an initial value of H and Ninfl as a parameter. The initial value of H can then
be set by selecting a particular scale for the Kretschmann surface, K = 1

L2
initial

, which
can be naturally selected to be the Planck scale as a maximal boundary for the effective
field theory. If one wished to be more conservative, the scale could be set at 10ℓP or
100ℓP , but the results here will hold regardless, unless one were to approach the scale of
inflation far enough to exclude pre-inflationary evolution.

With a selection of the initial Hubble parameter H, its first derivative is determined
by the pre-inflationary characteristic equation, alongside the desired number of e-foldings,
and thus we have a set of background initial conditions that depend solely on the input
parameter of inflationary e-foldings.

There is one more requisite ingredient before solving the Friedmann equation. At
this point, the value of α could be taken as a parameter of the theory, and thus yield a
two-parameter family of solutions alongside Ninfl. However, for simplicity, we can also
take α to be the one that is determined already by observation, given only the power
spectrum expression from the quasi-de Sitter framework. We will see in the next section
that this is indeed a reasonable approximation, as the pre-inflationary evolution has the
fortunate quality of leaving the power spectrum at small scales essentially unchanged,
and thus shouldn’t change the results garnered from observation.

With this nominal value, which we derive later as α ≈ 2.27×1010 ℓ2
P , one can solve the

Friedmann equation, in proper time, with the stated background initial conditions. The
solution for H(t) that’s generated numerically has a past extension which is short and
becomes intractable due to the singularity, and a future extension which describes several
oscillations of reheating. The numerics allow us to set a timeline of the evolution of the
background trajectory – given a proper time at the numerical singularity of tsing = 0, the
timescales of salient events are:

tKretschmann ∼ 100 tPlanck (6.100)
tinflation onset ∼ 3.4× 104 tPlanck (6.101)

t∗ ∼ 2.9× 105 tPlanck (6.102)
tinflation end ∼ 9.1× 106 tPlanck (6.103)
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The full expression for the mode equation depends on up to second degree Hubble flow
parameters, which contain up to fourth derivatives of H(t). We can reduce this noise
by using the Friedmann equation to solve for Ḧ(t) and

...
H (t) in terms of H(t)andḢ(t),

essentially imposing that the classical trajectory is not just one in which the classical
initial condition has H(t) and Ḣ(t) set by the Friedmann equation, but also its subsequent
derivatives. In effect, this requirements reduces the noise in the derivatives.

The next section will provide details on deriving the first order in ϵi’s equation of
motion for the modes, and their solutions. For the time being, we present them here sans
justification:

vQdS(x) =
√
xJν

(
kx

k∗

)
− iA

√
xYν

(
kx

k∗

)
(6.104)

with parameters ν and γ given by:

νQdS ≈
3
2 + ϵ1H − ϵ1Z

2 (6.105)

γQdS =
√

1 + 2ϵ1H (6.106)

Transforming back from v(x) to u(t) mode functions in this case is trivial – we have
access to numerical interpolations of a(t) and H(t) which give x(t) for all relevant times,
and the conversion mass-analogue function that translates between v and u can be
simplified and approximated into a straightforward expression:

mpre(x) ≈ a(t0)3Z(t0)x
2t0ℏ

+O(x4), (6.107)

The derivation of this expression will be presented in the next section. The only
difference then will be the time at which this function is evaluated – in the next section it
will be evaluated at the transition of pre-inflationary to quasi-de Sitter regimes, but at this
moment, we evaluate it at the same time we’ve set our initial conditions – consummate
with the Kretschmann boundary. With these pieces in place, the ansatz for the mode
functions can be evolved with the quantum equation of motion to yield an interpolation
of the mode functions at all future times, for each mode k, which are selected with a
logarithmic binning to cover the space of relevant modes from 1

210−1k∗ to 50k∗. Only
the late time behavior is needed of these modes, as well as their behavior in aggregate,
so the mode functions are evaluate at late times, 10tinflation end, and taken the modulus
squared of. The power spectrum for scalars can then be generated, as shown in Fig. 6.6.

Similarly, the power spectrum for tensors is generated, with the only difference being
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Figure 6.6. Numerical power spectrum for scalars. The nominal values of µ taken here are:
1.78, 1.80, 1.82, 1.84. The nearly-scale invariant result from observation without pre-inflationary
evolution shown in the black dashed line.

the the Z(t) functions and their log-derivatives taken to be the tensorial ones in Fig. 6.7.

6.4 Analytic approximation and interpretation of results
We begin once more with the mode equation, this time not adapted to quasi-de Sitter
but to a pre-inflationary regime. Since ϵi’s are not necessarily small during this epoch,
we need to return to the full mode equation:

ü(k⃗, t) + (3− ϵZ(t))H(t)u̇(k⃗, t) + k⃗2

a(t)2u(k⃗, t) = 0 (6.108)

Once again, we introduce the variable x(t) = k∗
a(t)H(t) , and rewrite the mode equation

in terms of x The change of variable will require translating from time derivatives to
x−derivatives:

ẋ = H(t)x(t)(−1 + ϵ1H(t) (6.109)
ẍ = −H(t)2x(t)(−1 + ϵ1H(t)(1 + ϵ2H(t))) (6.110)

The chain rule gives us u̇ = U ′(x)ẋ and ü = U ′′(x)ẋ2 + U ′(x)ẍ, and we normalize the
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Figure 6.7. Numerical power spectrum for scalars. The nominal values of µ taken here are:
1.78, 1.80, 1.82, 1.84.

mode equation so the second derivative term has coefficient of unity:

k2U(x)
k2

∗(−1 + ϵ1H(t))2 + (−2 + ϵ1Z(t)− ϵ1H(t)(−2ϵ1Z(t) + ϵ2H(t)))
x(−1 + ϵ1H(t))2 U ′(x)+U ′′(x) = 0 (6.111)

The Wronskian is similarly modified by going to the x variable, and will provide us
one more change of variable to bring the Wronskian into a canonical form:

U∗(x)U ′(x)− U(x)U∗′(x) = − ix2ℏH(t)2

k3
∗Z(t)(−1 + ϵ1H(t)) (6.112)

We define the function m(x) =
(

x2ℏH(t)2

k3
∗Z(t)(−1+ϵ1H(t))

)−1
, which serves as a mass-analogue

for the oscillator, and redefine the mode variables:

U(x) = v(x)√
m(x)

(6.113)

U∗(x) = v∗(x)√
m(x)

(6.114)

With this, the equation of motion no longer contains a first derivative term, allowing
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us to write it in an exact canonical form:

1
4k∗x2(−1 + ϵ1H(t))4v∗(x)

(
− 8k2

s + 4k2x2 − 2k2
∗ϵ1H(t)3(−2 + ϵ1Z(t) + ϵ2H(t)) (6.115)

−k2
∗ϵ1Z(t)(−6 + ϵ1Z(t) + 2ϵ2Z(t)2)+ (6.116)

ϵ1H(t)2
(
− 16k2

∗ + 4k2x2 + k2
∗

(
10ϵ1Z(t) + ϵ1Z(t)2 + 2ϵ1Z(t)ϵ2Z(t) (6.117)

+4ϵ2H(t) + ϵ2H(t)2 − 2ϵ2H(t)ϵ3H(t)
))

+ (6.118)

2ϵ1H(t)
(
10k2

∗ − 4k2x2 + k2
∗

(
− 7ϵ1Z(t) + ϵ1Z(t)2 + 2ϵ1Z(t)ϵ2Z(t)

)
(6.119)

+ϵ2H(t)(−1 + ϵ2H(t) + ϵ3H(t))
))

+ v′′
∗(x) = 0 (6.120)

As we’ve discussed previously, we’re only interested in the solution up to linear order
in ϵi’s; expanding this equation of motion, assuming all Hubble flow parameters are of
the same order of magnitude, yields:

v∗(x)
(
k2

k2
∗
− 2
x2 +

(
2k2

k2
∗
− 3
x2

)
ϵ1H(t) + 3ϵ1Z(t)

2x2

)
+ v′′

∗(x) = 0 (6.121)

We can check this equation against known solutions. For example, we take take the
perfect de Sitter limit, in which Hubble flow parameters are trivial, which gives the
simplified, familiar equation of motion:

v∗(x)
(
k2

k2
∗
− 2
x2

)
+ v′′

∗(x) = 0 (6.122)

The linear-order equation of motion presents only a slightly more complicated Bessel
equation. In particular, we can identify the relevant frequency function:

Q(x) ∼ k

k∗
− 2
x2 +

(
2k2

k2
∗
− 3
x2

)
ϵ1(t) + 3ϵZ1(t)

2x2 (6.123)

which in turn can be compared to that of the canonical Bessel:

Q(x) = γ2 −
ν2 − 1

4
x2 (6.124)

with relevant coefficients given by the Hubble flow parameters:

γ2 = (1 + 3ϵH∗)
(
k

k∗

)2

+O
(1
x

)
(6.125)
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ν2 = 3
2 + ϵH∗ −

1
2ϵZ1∗ +O(ϵ2) (6.126)

When we put the equation of motion in this simpler, canonical form, we can easily
guess an ansatz for the basis of solutions, which Hankel functions:

v∗(x)
(
k2

k2
∗
− ν2 − 1/4

x2

)
+ v′′

∗(x) = 0 (6.127)

⇒ vansatz(x) = A
√
xJν

(
kx

k∗

)
− iA

√
xYν

(
kx

k∗

)
(6.128)

vansatz(x) = A
√
xJν

(
kx

k∗

)
+ iA

√
xYν

(
kx

k∗

)
(6.129)

The change in variables is also intended to put the Wronskian in a canonical form:

v∗(x)v′(x)− v(x)v∗′(x) = i (6.130)

Inserting our ansatz into the Wronskian sets the undetermined coefficient to A =
√
π2.

This gives us the general framework requisite to solve the equation of motion both during
the pre-inflationary and the quasi-de Sitter regimes. We proceed to give an outline of
the strategy.

As we’ve stated, there’s no closed form solution to the equations of motion that
smoothly changes from pre-inflationary to quasi-de Sitter, which necessitated the numeri-
cal analysis; the evolution of the background is non-trivial due to the sharp evolution at
the transition to inflation, the “knee” that appears in the (H, Ḣ) phase space diagram. In
order to interpret the numerics, we will work with an analytic approximation, transition
from the pre-inflationary to quasi-de Sitter solutions, by gluing this instantanously at the
transition. This is a very coarse approximation, to be sure! However, it does illustrate the
more salient aspects of the numerical solution, namely the presence of power suppression
at large scales, and the appearance of features at the previously calculated kfeature scale.
At the gluing time, we interpret both the pre-inflationary and quasi-de Sitter Bessel
ansatz as valid bases of solutions to the equation of motion – meaning we can write one
in terms of the other, and then separate the pre-inflationary effect on the power spectrum
from the usual slightly-red tilted result.

We begin by first finding the analytic solution at first order in Hubble flow parameters
during the pre-inflationary period. We will need to rewrite Hpre(t) in terms of the relevant
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x variable. Recall that the pre-inflationary solution for the Hubble parameter is given in
a small t series by:

Hpre(t) ≈
1
2t + 2

5Hc

√
2Hct+O(t2) (6.131)

One can solve the differential equation for a(t) and expand around small time. At
leading order, the constant of integration to ac/

√
tc by the simple requirement that

a(tc) = ac. Here tc is arbitrary, but will eventually be taken to have the same physical
meaning as Hc – the crossing time when the solutions are glued together. The expression
for the scale factor is then:

apre(t) ≈ ac

√
t

tc
+O(t2) (6.132)

With the scale factor, any of the relevant background quantities can be computed
straightforwardly. In particular, Z(t) is relevant in the mass-analogue function m(x),
and is found to take a similar form when expanded around early times:

Zpre(t) ≈ Zc

√
tc
t

+O(1) (6.133)

Given the time-dependent expressions for H(t) and a(t), the series expansion at early
times for x(t) can be written, and subsequently the relationship inverted to rewrite all
pre-inflationary quantities in terms of x:

xpre(t) = k∗

apre(t)Hpre(t)
≈ 2k∗

√
ttc

ac

+O(t2) (6.134)

⇒ tpre(x) =
a2

cx
2
pre

4k2
∗tc

+O(x5) (6.135)

Altogether, this allows us to write the mass-analogue function for pre-inflationary
times,

mpre(x) ≈ a3
cZcx

2tcℏ
+O(x4), (6.136)

as well as plug all relevant quantities into the exact equation of motion 6.115 to
determine a new approximation:(

k2

k2
∗

+ 1
4x2

)
v(x) + v′′(x) = 0 (6.137)

This equation of motion still has a simple Bessel function solution with ν = 0 and
γ = 1, and the slow-roll parameters are not present in this case – they are not small
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parameters, thus it is not valuable to express them explicitly in the equation of motion,
nor in the ansatz:

vpre(x) =
√
xJ0

(
kx

k∗

)
− i
√
xY0

(
kx

k∗

)
(6.138)

The equation of motion expanded around linear order in Hubble flow parameters
is already adapted to the quasi-de Sitter regime. Therefore, proposing an ansatz is
straightforward:

vQdS(x) =
√
xJν

(
kx

k∗

)
− i
√
xYν

(
kx

k∗

)
(6.139)

with parameters ν and γ given by:

νQdS = 1
2
√

3(3 + 4ϵ1H − 2ϵ1Z) ≈ 3
2 + ϵ1H −

ϵ1Z

2 (6.140)

γQdS =
√

1 + 2ϵ1H (6.141)

The remaining piece of the puzzle is determining the mass-analogue function mQdS(x).
Consider the Hubble factor in a background in which ϵ1H is roughly constant during the
quasi-de Sitter phase. In this case, consider the log derivative of H(x) :

x
d logH(x)

dx
= x

H(x)
dH(x)
dx

= x

H(x)
Ḣ

ẋ
(6.142)

= −xHϵ1H

ẋ
(6.143)

where the last equality comes from the definition of ϵ1H . We can compute the time
derivative ẋ to find a simple result:

ẋ = − k∗

a(t) −
k∗Ḣ(t)
a(t)H(t)2 = −xH(t)− xḢ(t)

H(t) = xH(x)(−1 + ϵ1H) (6.144)

⇒ x
d logH(x)

dx
= − ϵ1H

−1 + ϵ1H

(6.145)

Expanding this expression to first order in Hubble flow parameters, and integrating
both sides, we find a simple approximation for H(x) during the quasi-de Sitter regime:

H(x) ≈ xϵ1H∗H∗ (6.146)

In fact, any quantity that has a slowly changing log derivative will have the same form,
and since the Hubble flow parameters are defined precisely to have small log derivatives,
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we can similarly express ϵ1H and ϵ1Z near the crossing time:

ϵ1H× = ϵ1H∗x
ϵ2H∗
c = ϵ1H∗x

−2ϵ1H∗
c (6.147)

ϵ1Z× = ϵ1Z∗x
ϵ2Z∗
c = −2ϵ1H∗x

−2ϵ1H∗
c (6.148)

The mass-analogue function can then be written, at linear order in Hubble parameters:

mQdS(x) = k3
∗x

−2(1+ϵ1H∗+ϵ1Z∗Z∗(1− ϵ1H∗)
H2

∗ℏ
(6.149)

Now we have the ingredients requisite to glue the solutions at the threshold of inflation.
At the time of matching, we have two equally valid, linearly independent bases of solutions
of the equation of motion – the pre-inflationary and the quasi-de Sitter bases. Thus,
we ought to be able to write one basis in terms of the other. Consider the quasi-de
Sitter mode function can be written in terms of the pre-inflationary basis, where ρ, σ are
complex coefficients:

vQdS = ρvpre + σv∗
pre (6.150)

The Wronskian gives us a sense of linear independence, generically, given two differ-
entiable functions f, g as inputs:

⟨f, g⟩ = fġ∗ − ḟ g∗ (6.151)
⟨f, f⟩ = i (6.152)

This use of the Wronskian allows us to compute the coefficients ρ and σ. Using purely
its linear properties, we find:

⟨vQdS, vpre⟩ = ⟨ρvpre + σv∗
pre, vpre⟩ (6.153)

= ρ ⟨vpre, vpre⟩ (6.154)
= ρ i (6.155)

At the same time, computing via the definition of the Wronskian yields:

⟨vQdS, vpre⟩ = vQdSv̇
∗
pre − v̇QdSv

∗
pre (6.156)

⇒ ρ = −i(vQdSv̇
∗
pre − v̇QdSv

∗
pre) (6.157)
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The other coefficient can be similarly computed:

σ = +i(v∗
QdSv̇

∗
pre − v̇∗

QdSv
∗
pre) (6.158)

Equipped in this manner, we are able to determine an expression for the change to
the power spectrum that comes from the pre-inflationary evolution. Recall that the mode
function shows up in the power spectrum as a modulus squared:

P (k) ∝ |vQdS(k)|2 (6.159)

Starting with vQdS = ρvpre + σv∗
pre, we can manipulate and expand the modulus

squared:

|vQdS|2 = |ρvpre + σv∗
pre|2 (6.160)

= (|ρ|2 + |σ|2)|vpre|2 + ρσ∗vprevpre + σρ∗v∗
prev

∗
pre (6.161)

At this point, we’re seemingly stuck with a complicated expression. However, the
power spectrum is always evaluated at late times, which allows us to make a simplifying
assumption. The pre-inflationary mode function is a Hankel function – a combination
of Bessels of type 1 and 2. The late time limit, in terms of x, is x → 0, which for our
Bessel functions means that the real part will go to 0, while the imaginary part diverges!
Of course, we never reach the divergence, and in fact, it’ll be cancelled in the modulus
squared, but we can make use of the fact that, at late times, the mode function is purely
imaginary. From this, we can rewrite:

|vQdS|2 = (|ρ|2 + |σ|2)|vpre|2 + ρσ∗vprevpre + σρ∗v∗
prev

∗
pre (6.162)

= (|ρ|2 + |σ|2)|vpre|2 + (ρσ∗ + ρ∗σ)(−Im[vpre]2) (6.163)
= (|ρ|2 + |σ|2 − ρσ∗ − ρ∗σ)|vpre|2 (6.164)

= |ρ− σ|2|vpre|2 (6.165)

The end result gives us a simple rule of thumb; the contribution to the power spectrum
from the pre-inflationary evolution can be neatly summarised in the factor |ρ− σ|2. It
is the sufficient to characterize the behavior of this term in order to understand how
the power spectrum is modified from the usual expression. This standard expression, of
course, can be generated by taking the modulus squared of the quasi-de Sitter mode
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equation solution |vQds|2, and mapping back to U(x) by diving by m(x):

|vQds|2 = H∗πx
3+2H∗−ϵ1Z∗ℏ
4k3

∗Z∗

(
J 3

2 +ϵ1H∗− ϵ1Z∗
2

(
kx
√

1 + 2ϵ1H∗

k∗

)2

(6.166)

+Y 3
2 +ϵ1H∗− ϵ1Z∗

2

(
kx
√

1 + 2ϵ1H∗

k∗

)2 )
(6.167)

We needn’t change time variable from x to t since we’ll end up taking the late time
limit regardless. Focusing solely on the form of the time-dependent, asymptotic term, we
find at late times, x→ 0:

lim
x→0

x2ν
(
Jν(xµ)2 + Yν(xµ)2

)
= 4νγ−2νΓ(ν)2

π2 (6.168)

where Γ is the Euler-Gamma function. All put together and expanded at linear order
in ϵ′

is, we find the usual expression for the power spectrum at linear order:

P (k) = H2
∗ℏ

4π2Z∗
+ 1

4πZ∗
H2

∗ℏ
(
ϵ1Z∗(−2 + γ + log 2)− ϵ1H∗(−1 + 2γ + log 4) (6.169)

+(−2ϵ1H∗ + ϵ1Z∗) log k

k∗

)
(6.170)

By taking as input the specific background which offers a background solution to the
Friedmann equation from 6.11 and subsequent modification to the expressions for the
power spectrum amplitude and spectral tilt that come from this specific solution, that is,

As = H2
∗Gℏ

2πϵ1H∗
(6.171)

ns = 1− 4ϵ1H∗, (6.172)

we can then solve the system of equations and find the values for H∗ and ϵ1H∗:

H∗ = 1.17× 10−5ℓ−1
P (6.173)

ϵ1H∗ = 0.0089 (6.174)

In turn, this allows us to use the same series expression for H(ϵ) and leverage the
constant ϵ approximation of the choice of background solution in order to ultimately

97



determine α from observation, by imposing that H(ϵ1H∗) = H∗:

H∗ = H(ϵ1H∗) ∼
1

6√αϵ1H∗
−
√
ϵ1H∗

72
√
α

+O(ϵ3/2
1H∗) (6.175)

⇒ α ≈ 2.27× 1010ℓ2
P (6.176)

This calculation allows us to seed our numerical simulations, since the numerics require
the value of α to be known in order to compute the solution to the Friedmann equation.

Meanwhile, the full pre-inflationary factor is a complicated expression. For simplicity,
rewriting the expression back into terms of νQdS and γQdS, and defining the argument of
the Bessel functions to be ξ = kxc

k∗
, the pre-inflationary factor Π(k) becomes:

Π(k) = k2π2x2
c

16k2
∗

(
J0(ξ)2Jν−1(γξ)2 + 2ϵ1H∗J0(ξ)2Jν−1(γξ)2 + 4γJ0(ξ)J1(ξ)Jν−1(γξ)Jν(γξ)

(6.177)

+4J1(ξ)2Jν(γξ)2 − 2J0(ξ)2Jν−1(γξ)Jν+1(γξ)− 4ϵ1H∗J0(ξ)2Jν−1(γξ)Jν+1(γξ) (6.178)
−4γJ0(ξ)J1(ξ)Jν(γξ)Jν+1(γξ) + J0(ξ)2Jν+1(γξ)2 + 2ϵ1H∗J0(ξ)2Jν+1(γξ)2 (6.179)

+Jν−1(γϵ)2Y0(ξ)2 + 2ϵ1H∗Jν−1(γξ)2Y0(ξ)2 − 2Jν−1(γξ)Jν+1(γξ)Y0(ξ)2 (6.180)
−4ϵ1H∗Jν−1(γξ)Jν+1(γξ)Y0(ξ)2 + Jν+1(γξ)2Y0(ξ)2 + 2ϵ1H∗Jν+1(γξ)2Y0(ξ)2 (6.181)

+4γJν−1(γξ)Jν(γξ)Y0(ξ)Y1(ξ)− 4γJν(γξ)Jν+1(γξ)Y0(ξ)Y1(ξ) + 4Jν(γξ)2Y1(ξ)2
)

(6.182)

How well does the pre-inflationary factor actually capture the modifications from the
standard results for scalar and tensor power spectra, namely:

Ps(k) = As

(
k

k∗

)ns−1

(6.183)

Pt(k) = At

(
k

k∗

)nt

(6.184)

Figures 6.8 and 6.9 show the pre-inflationary factor against the power spectrum, which
has been normalized over its standard expression. For scalar modes, there doesn’t seem
to be much agreement, while the tensor pre-inflationary factor appears to exactly capture
the pre-inflationary modification to the power spectrum. The source of this discrepancy
across scalar and tensor modes goes back to the friction-like term in the mode equation.
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Figure 6.8. The scalar pre-inflationary factor can be compared to the full numerical power
spectrum, which has been normalized over its standard expression, as well as it’s low-k
approximation. We see there’s not a lot of agreement between these functions except at high
values of k.
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Figure 6.9. The tensor pre-inflationary factor, on the other hand, compares rather favorably
with its power spectrum, once again normalized over its standard expression.
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As shown in Figure 6.1, the scalar modes observe a non-trivial evolution in which the
“friction” they experience momentarily becomes negative precisely around the time of the
pre-inflationary to inflationary transition occurs. Meanwhile, in Figure 6.2, the “friction”
experienced by tensor modes remains positive throughout its evolution. Recall that we
choose a rather crude method of generating the pre-inflationary factor. Namely, we chose
to instantaneously glue the pre-inflationary to the inflationary solution and from there
tease apart the standard power spectrum from the effects of pre-inflation. That is, with
the scalar modes non-trivial evolution, we shouldn’t expect the pre-inflationary factor
derived in this manner to capture all the features of the evolution.

We can do some simple checks of Equation 6.182. When we take the Bogoliubov
coefficients, and look at their behavior in the UV, we find the following simple, series
expanded expressions:

|ρ(k)|2 = 1 + ϵ2
1H∗
4 +O(ϵ4

1H∗) (6.185)

|σ(k)|2 = ϵ2
1H∗
4 +O(ϵ4

1H∗) (6.186)

When we take the de Sitter limit, we find ρ = 1 and σ = 0, that is, there is no particle
production! This is expected, as a past-facing de Sitter solution would insist on staying
in de Sitter infinitely into the past. Now, while the full expression is complicated, it’s
possible to glean some information by looking at the behavior of this function at high
k and low k extrema. Expanding out Π(k) around high values of k, and subsequently
expanding at linear order in ϵi’s, we find:

Π(k)→k→∞
1 + ϵ1H∗ − ϵ1H∗ cos

(
πϵ1H∗ − 2kxc

√
1+2ϵ1H∗
k∗

− πϵ1Z∗
2

)
√

1 + 2ϵ1H∗
(6.187)

≈ 1− ϵ1H∗ cos
(

2kxc

k∗

)
(6.188)

This expression indicates the presence of oscillations at large values of k, which are
not observed in the power spectrum. However, we ought to be skeptical of results of the
pre-inflationary factor in this regime – after all, the process for obtaining this factor comes
from the very coarse process of gluing solutions to the equation of motion instantaneously,
to which large k modes should be more sensitive. Oscillations aside, we expect there to
be no modification to the power spectrum at small scales. However, the low k regime is
a different story. Applying the same expansion procedure at large scales, with redefining
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the argument ξ = kxc

k∗
, yields:

Π(k)k→0 = k3

k3
∗

2−2(ν+2)x3
cγ

2νξ2ϵ1H∗−ϵ1Z∗

Γ
(

5
2 + ϵ1H∗ − ϵ1Z∗

2

)2

(
16− 32γEulerν (6.189)

+15γ2
Eulerν

2 + 4π2ν2 − 16ν2 log(2ξ)2 + 16ν(−2 + 2γEulerν) log ξ2

)
(6.190)

The leading order term for Π(k) goes as k3+2ϵ1H∗−ϵ1Z∗ , indicating that, at large scales,
the pre-inflationary factor introduces power suppression that scales roughly as k3! By the
principle of cosmic veiling, if we are able to observe the veiled early universe, then we
ought to observe power suppression; or by contrapositive, if there is no power suppression,
then the universe is completely censored!

What are the connections we can make with the numerical result? The pre-inflationary
factor Π(K) depends on k, k∗, xc, ϵ1H∗ and ϵ1Z∗ – whilst the numerics depend on the
amount of inflationary e-foldings and α, the latter of which can be taken as a parameter,
or in conjunction with the theory framework, be set by observation. Setting the crossing
(gluing) time xc allows us to compute H(xc) for a given choice of background dynamics,
as well as subsequently determine ϵ1H∗ and ϵ1Z∗, and the total number of inflationary
e-foldings.

Thankfully, the approximations in 6.147 allow us to write the pre-inflationary factor
solely in terms of the gluing time xc! In turn, this gives us a single parameter family
of solution of Π(k), which we can then use to find the gluing time for which we do not
observe the key feature of power suppression at large scales. When we compare the first
peak of Π(k) to the minimum observable mode kmin, we find a gluing time of xc ∼ 27.
Putting this time in terms of inflationary e-foldings yields:

Ninfl = 18H2
cα ≈ 18H2

∗x
2ϵ1H∗
c α ≈ 59.6 e-folds (6.191)

When we compare this to our calculation for kfeature, with N∗ ∼ 57 (see 6.2) and
kfeature ∼ 10−1k∗, we find µ ∼ 1.82 or Ninfl ∼ 59.3 e-foldings.

6.5 Conclusion
In the spirit of true crime, even after decades of investigation, it can be downright grueling
to pinpoint all the details of mystery, especially when the original whodunnit dates back
to the 1960’s. We have set out with some essential assumptions:
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1. A complete theory of quantum gravity should transition smoothly from the Planck
regime to semiclassical gravity. Moreover, there exists a post-Planckian, but
pre-inflationary era that admits the methods of perturbative field theory.

2. The principle of cosmic veiling allows us to characterize an interesting universe:
one in which we may just barely observe primordial modifications to the power
spectrum, but is not excluded by observation.

3. In addition, cosmic veiling sets a special time when these features can be seen –
placing an upper bound on the total amount of inflationary e-foldings consistent
with veiling. The initial quantum state at this transition threshold should contain
no information from the Planck era, preserving cosmic veiling.

These assumptions allow us to reach surprisingly far! We take the minimal next step
by letting gravity be the pure driver of inflation, and discover that, for a significant
portion of the resulting configuration space, inflation is an attractor. Without a sense of
measure on a proper canonical phase space, one cannot make any statements regarding
the likelihood of inflation occurring, however. Perhaps, after determining the subset
of initial conditions that is compatible with cosmic veiling, a measure that depends
non-trivially on the coupling constants of the theory can be derived from the action.

Once the machinery of perturbative field theory has been applied to gravity and the
exact equation of motion for the modes is obtained, we find ourselves at the mercy of the
choice of approximation of the background. When we take quasi de Sitter, for example,
the order to which we expand the background dictates whether the solution for the
modes is a simple linear combination of Bessel function, or requires extra machinery via
the Green’s function method. There exists some generalizations of the Bessel equation
which have closed-form, named solutions, such as the Whittaker function. The eminent
issue in the exact mode equation in quasi de Sitter at second order is the presence of a
logarithmic term. Whether there could be a fully understood solution to that particular
differential equation would dictate the existence of a solution pathway similar to that of
de Sitter, up to second order.

At second order, we don’t observe much change to the usual power spectrum amplitude
or spectral tilt. The tensor spectral tilt may well be of second order in Hubble parameters
rather than perfectly flat, thus the second order expansion should confirm the consistency
relation. Certainly, a second order treatment of the perturbations could also uncover
additional effects in the pre-inflationary factor, or provided fortunate cancellations in
its spurious UV oscillations. I think, more exciting still, is the idea of incorporating the
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Weyl curvature into the calculation. [43] As we had previously stated, the background
is conformally flat, so the Weyl terms does not contribute to the classical dynamics.
However, Weyl curvature can and does appear when the full quadratic action for the
tensor perturbations. Effects on the power spectrum amplitude and spectral tilt have
been explored – but what other imprints might the presence of Weyl curvature have
on the pre-inflationary evolution of the modes? However, it’s important to note that
our major results still apply even when we introduce Weyl curvature into the action!
The combination αΛ that gives us the amount of veiling e-folds Nveil is derived using
only background dynamics, which Weyl does not affect. Additionally, introducing Weyl
doesn’t change the scalar perturbations, so we can still use the observations of Planck to
set the value of α.

A cosmically veiled universe is arguably one of the most interesting ones to be a part
of. By having an upper bound on inflationary e-foldings, we limit the range over which
the power spectrum can be nearly-scale invariant with a red tilt, as we would have power
suppression at large scales. We may even live in a universe where new insights from
observation might not be woefully far into the future. The next generation CMB detector,
spearheaded by the CMB-S4 team [44], targets sensitivities in the tensor-to-scalar ratio
r down to r = 0.001, put bounds on the energy scale of inflation, and probe large scale,
low ℓ ∼ 20 amplitudes of the CMB. There are deep consequences resulting from either a
detection or non-detection of tensor modes. On one hand, a detection would confirm the
energy scale of inflation in the single field inflation framework, as well as open the door
to new physics at the α scale. Alternatively, a non-detection could spell the death knell
for the simpler inflationary frameworks, such as the one studied herein by Starobinsky,
as they would become disfavored by observation.

Most tantalizing, cosmic veiling gives us a through line, connecting the nascent,
primordial universe, to our current day. This connection, coming from the inflationary
e-folding bound by veiling,

Nveil ≲ log
(

1
αΛ

)
≃ 64 , (6.192)

brings together two fundamental constants, which in essence encapsulate the separation
of scales in the second order Einstein-Hilbert action. Whether the cosmic veiling principle
could be elevated to a consequence of another more fundamental mechanism is up for
speculation; that together, they should bound the expansion of the early universe would
be nothing short of an awe-inspiring mystery.
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