
The Pennsylvania State University
The Graduate School

FISHER INFORMATION FOR PRIVATE TRAINING OF MACHINE

LEARNING MODELS

A Thesis in
Computer Science and Engineering

by
Brandon Edmunds

© 2024 Brandon Edmunds

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

May 2024

The thesis of Brandon Edmunds was reviewed and approved by the following:

Mehrdad Mahdavi
Assistant Professor of Computer Science and Engineering
Thesis Advisor

Kiwan Maeng
Assistant Professor of Computer Science and Engineering

Chita Das
Distinguished Professor of Computer Science and Engineering
Department Head of Computer Science and Engineering

ii

Abstract

Machine learning models leak information about the data they are trained on. Given
a trained model, an adversary can potentially reconstruct the training data. Fisher
Information leakage is a measure of the privacy leakage of the data used in training
a machine learning model. A loss function incorporating Fisher Information leakage
and pruning are used to train machine learning models that both perform well and
leak minimal information about their training data through leveraging public data.
Incorporating public data through Fisher Information is seen to yield increased privacy
without significant decreases in utility compared to differentially private stochastic
gradient descent.

iii

Table of Contents

List of Figures vi

List of Tables x

Acknowledgments xi

Chapter 1
Introduction 1
1.1 Related Work . 1
1.2 Background . 2

1.2.1 DPSGD . 2
1.2.2 Fisher Information Leakage . 3

1.2.2.1 Signal-to-noise-ratio . 3

Chapter 2
Fisher Information Minimization 4
2.1 Improvements . 7
2.2 Pruning . 8

Chapter 3
Experiments 9
3.1 Verifying Decreased dFIL . 9
3.2 Reconstruction Attack . 11

3.2.1 Exploratory Data Analysis . 13

Chapter 4
Conclusion 15

Appendix A
Exploratory Data Analysis Continued 16
A.1 Random Seed: 0 . 16

A.1.1 Increased λ; Random Seed: 0 . 23
A.2 Random Seed: 1 . 29
A.3 Random Seed: 2 . 35

iv

A.4 No Batch Normalization Layer . 41

Appendix B
Additional Experiment Details 43

Bibliography 48

v

List of Figures

3.1 The plots show the test accuracy and dFIL taken across all the private data
points for configurations with different fractions of the MNIST data set
used as public data. A linear model is used. The other hyperparameters
are equivalent for all configurations. The values of ϵ for public data of
0.5, 0.2, 0.1, 0.05, and 0.01 are 20.5318, 18.4916, 18.0058, 17.8031, and
17.6615, respectively. 10

3.2 The plots show the test accuracy and dFIL taken across all the private
data points for configurations with different values of lambda with a public
data fraction of 0.5. A linear model is used. The other hyperparameters
are equivalent for all configurations, following the hyperparameters from
Figure 3.1; ϵ = 20.5318. 11

3.3 The images from top to bottom follow Table 3.5. The top image is the
target images to reconstruct, the next image is reconstruction without any
privacy, followed by DPSGD, pruning, FIM, and lastly perfect privacy,
which is reconstructed using only the labels. 13

3.4 Binary MNIST Linear Model Reconstruction Attack Cosine Similarity of
FIM Perturbation and Average Public Gradient For The First Iteration . 14

A.1 Binary MNIST Linear Model Reconstruction Attack 2-Norms. Random
Seed: 0 . 17

A.2 Binary MNIST Linear Model Reconstruction Attack Accuracy and dFIL.
Random Seed: 0 . 17

A.3 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 1; Random
Seed: 0 . 18

vi

A.4 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 2; Random
Seed: 0 . 19

A.5 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 3; Random
Seed: 0 . 20

A.6 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 4; Random
Seed: 0 . 21

A.7 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 5; Random
Seed: 0 . 22

A.8 Binary MNIST Linear Model Reconstruction Attack 2-Norms. λ = 106;
Random Seed: 0 . 23

A.9 Binary MNIST Linear Model Reconstruction Attack Accuracy and dFIL.
λ = 106; Random Seed: 0 . 23

A.10 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 1; λ = 106;
Random Seed: 0 . 24

A.11 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 2; λ = 106;
Random Seed: 0 . 25

A.12 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 3; λ = 106;
Random Seed: 0 . 26

vii

A.13 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 4; λ = 106;
Random Seed: 0 . 27

A.14 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 5; λ = 106;
Random Seed: 0 . 28

A.15 Binary MNIST Linear Model Reconstruction Attack 2-Norms. Random
Seed: 1 . 29

A.16 Binary MNIST Linear Model Reconstruction Attack Accuracy and dFIL.
Random Seed: 1 . 29

A.17 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 1; Random
Seed: 1 . 30

A.18 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 2; Random
Seed: 1 . 31

A.19 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 3; Random
Seed: 1 . 32

A.20 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 4; Random
Seed: 1 . 33

A.21 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 5; Random
Seed: 1 . 34

A.22 Binary MNIST Linear Model Reconstruction Attack 2-Norms. Random
Seed: 2 . 35

viii

A.23 Binary MNIST Linear Model Reconstruction Attack Accuracy and dFIL.
Random Seed: 2 . 35

A.24 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 1; Random
Seed: 2 . 36

A.25 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 2; Random
Seed: 2 . 37

A.26 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 3; Random
Seed: 2 . 38

A.27 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 4; Random
Seed: 2 . 39

A.28 Binary MNIST Linear Model Reconstruction Attack. Prune (top left),
FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 5; Random
Seed: 2 . 40

A.29 No Batch Normalization Binary MNIST Linear Model Reconstruction
Attack. Prune (top left), FIM before noise (top right), Perturbation
(bottom left), Cosine Similarity between Perturbation and Prune (bottom
right). Iteration: 1 . 42

ix

List of Tables

3.1 50% Public Data MNIST Linear Model Values from Figure 3.1; ϵ =
20.5318; Mean (STD) . 10

3.2 5% Public Data MNIST CNN; ϵ = 0.6310; Mean (STD) 11

3.3 50% Public Data CIFAR-10 Linear Model; ϵ = 3.9551; Mean (STD) . . . 12

3.4 Binary MNIST Linear Model Reconstruction Attack dFILs; ϵ = 1571.4291;
Mean (STD) . 12

3.5 Binary MNIST Linear Model Reconstruction Attack MSE and LPIPS;
ϵ = 1571.4291 . 13

A.1 No Batch Normalization (BN) Binary MNIST Linear Model Reconstruc-
tion Attack; ϵ = 389.9752; Iteration: 1; Mean (STD) 41

B.1 Section 3.1 Hyperparameters . 44

B.2 Binary MNIST Linear Model Reconstruction Attack Common Hyperpa-
rameters . 45

B.3 Table 3.5 Hyperparameters Part 1 . 45

B.4 Table 3.5 Hyperparameters Part 2 . 46

B.5 MLP FIM . 46

B.6 CNN FIM . 46

B.7 CNN MNIST . 47

B.8 MLP Attack . 47

x

Acknowledgments

I would like to thank Mehrdad Mahdavi and Kiwan Maeng for their guidance, knowledge,
and experience, which played an integral role in the successful completion of this project.

xi

Chapter 1 |
Introduction

As machine learning continues to become increasingly employed, the need for more data
grows. As a part of encouraging more individuals to allow use of their data, steps are
taken to help ensure an individual’s data remains private, even when used to train a
machine learning model. Given a machine learning model, and potentially other auxiliary
information, adversaries can infer membership status of an individual in a data set used
to train a machine learning model [24], or even reconstruct an individual’s data [5]. To
guarantee a bound on the success of any adversary, one of the most popular theoretical
guarantees is provided by differential privacy [9,22]. Differential privacy ensures that if a
model is trained on a data set where one data point is removed from the data set (or
the data point is modified), then the resulting model will be similar to the model that
was trained on the data set including the original data point. As shown in [5], Fisher
Information leakage (FIL) provides a tighter guarantee than differential privacy when
considering reconstruction error, that is, an adversaries ability to reconstruct training
data given information about the trained model. This motivates using the FIL as a part
of a loss function, allowing for choosing a model that is both private and has good utility.
To leverage FIL to impede training data reconstruction attacks, public data is used to
train a machine learning model that is then used to update another machine learning
model training on the private data. Additionally, pruning is considered as a method to
gain privacy with minimal degradation of model utility.

1.1 Related Work
FIL has previously been incorporated into algorithms to train private models with good
utility. [12] used FIL to train a model where its training data points have equivalent
FIL. [20] used FIL to train a model robust to input reconstruction attacks. Public

1

data has been leveraged in many works to aid in the training of private models. For
example, [8, 23] use public data to pre-train models before fine-tuning on private data,
allowing for the resulting models to have better utility for some privacy guarantee.
Additionally, [3, 7, 19,23] demonstrate that public data can be leveraged past only pre-
training the model. For example, [3] leverages public data in determining the gradients
of the private data. To the best of the author’s knowledge, all of such works devise
strategies for differential privacy rather than FIL, and are additionally orthogonal to this
work, allowing the methods to be used together. The primary algorithm used to train
private models is DPSGD from [1], which will be leveraged in this work, as [11] showed
that FIL can be calculated for this algorithm. Also, [25] showed that hyperparameter
tuning leaks private information for differential privacy. Similarly, hyperparameter tuning
leaks private information for FIL privacy, but this will not be considered in this work.

Similarly, there has been work leveraging pruning for increased privacy, as in [2,26,27].
In [2], public data is used to pre-train a model, then the model is pruned (or weights are
frozen) before being fine-tuned on the private data, producing models with better utility
for target differential privacy parameters. Similar pruning methodologies will be used in
this work, except the privacy measure will be FIL rather than differential privacy.

1.2 Background

1.2.1 DPSGD

DPSGD from [1] is similar to mini-batch SGD (stochastic gradient descent), but does
per sample gradient clipping, adds noise to the gradients summed over the batch, then
takes the average as in

g(θt, Bt) = 1
|Bt|

 ∑
z∈Bt

∇θL(θ, z)
max(1, ∇θL(θ,z)

C
)

+N (0, σ2C2I)
 ∣∣∣∣∣

θ=θt

(1.1)

where θt+1 = θt−λg(θt, Bt) is the update step from SGD, except the gradient is computed
as in Equation (1.1). θt is the model parameters at iteration t, Bt is a randomly drawn
batch of examples, and λ is the learning rate.

2

1.2.2 Fisher Information Leakage

In the case of an unbiased attacker, given the model h, every data point in data set
D except for one data point z, and all algorithm hyperparameters for the algorithm
used to generate h, then, [11] showed that for an unbiased estimate ẑ(h, D′) of z where
D′ = D \ {z} and z ∈ D and z ∈ Rd

Eh

[
∥ẑ(h, D′)− z∥2

2
d

]
≥ d

Tr(Ih(z)) (1.2)

where Ih(z) is the Fisher Information matrix. Note that in the unbiased case, E[ẑ(h, D′)] =
z. Also, let dFILh(z) = Tr(Ih(z))

d
. Abusing notation, when h and z are clear from context,

dFILh(z) will be abbreviated as dFIL.
Additionally, there is a bound for a biased attacker shown by [21]. Given the input

data distribution π, where z ∼ π, and the density function of π with respect to Lebesgue
measure, fπ(z), assume that the regularity conditions of van Trees inequality from [10]
are satisfied. That is, given p(h|z) is the probability density of h given z, p(h|z) and
fπ are absolutely almost surely continuous and fπ converges to 0 at the endpoints of z
(readers are referred to [10,21] for more precise conditions). The information theorist’s
Fisher Information from [4] of π is J (fπ) = Eπ[∇z log fπ(z)(∇z log fπ(z))⊤]. Otherwise
following the setting of Equation 1.2, but with a biased attacker

Eπ

[
Eh

[
∥ẑ(h, D′)− z∥2

2
d

]]
≥ 1

Eπ[dFILh(z)] + Tr(J (fπ))/d
. (1.3)

Additionally, [12] showed that the Fisher Information matrix of the Gaussian mecha-
nism is

Ih(D) = 1
σ2 (∇Df(D))⊤∇Df(D)

∣∣∣∣∣
D=D

(1.4)

where f(D) is a deterministic function of inputs D, f̃(D) = f(D) + r, r ∼ N (0, σ2I),
and h ∼ f̃(D). Here, f̃(D) resembles the Gaussian mechanism.

1.2.2.1 Signal-to-noise-ratio

Taking Tr(Ih(z))
d

= dFIL and applying Equation (1.4), solving for σ2 gives σ2 = ∥∇ζf(ζ)∥2
F

d·dFIL

∣∣∣∣∣
ζ=z

.

Maximizing the signal-to-noise-ratio (SNR), ∥f(z)∥2
2

σ2 , is equivalent to minimizing ∥∇ζf(ζ)∥2
F

∥f(ζ)∥2
2

∣∣∣∣∣
ζ=z

for fixed dFIL, as done in [20].

3

Chapter 2 |
Fisher Information Minimization

To train a model that has both good utility and resistance to training data reconstruction
attacks, Fisher Information is leveraged. Equation (1.2) shows that the mean squared
error (MSE) of such a reconstruction attack is bounded and dependent on the trace
of the Fisher Information matrix. Additionally, Equation (1.3) has the trace of the
Fisher Information matrix in the denominator, implying that decreasing the trace makes
the reconstruction task more difficult. These bounds motivate minimizing the trace
of the Fisher Information matrix. Then, given some function of the data set, such as
SGD (stochastic gradient descent), that outputs model parameters, when the Gaussian
mechanism is applied to such an algorithm (treating SGD as deterministic in this case),
that is, adding Gaussian noise to the outputted model parameters, applying the trace to
Equation (1.4) allows for the following objective formulation

ϕ∗ = argminϕL(ϕ, θ,D) + λ
n∑

i=1
∥∇ζi

fϕ(D)∥2
F

∣∣∣∣∣
D=D,ζi=zi

(2.1)

where L captures some objective other than privacy, D ∈ Rn×d, and λ ∈ R. This
formulation requires learning a function that, when given a data set, outputs parameters
θ for a machine learning model. Learning such a function requires its own machine
learning model with parameters ϕ. The learned machine learning model that outputs
model parameters is analogous to an algorithm that trains a private model with good
utility. Training such a model is difficult since a single training data point is an entire
data set. Additionally, the test data set, which is the private data, cannot be used to
train the model since it leaks privacy, hence requiring multiple public data sets.

4

Instead, if the Gaussian mechanism is applied to the model output

ϕ∗ = argminϕ

n∑
i=1

L(ϕ, θ, ζi) + λ
d∑

j=1
∥∇ζij

fϕ(ζi)∥2
F

∣∣∣∣∣
ζ=z

(2.2)

where zij refers to data point i of D at dimension j. If the privacy of the objective gener-
alizes to data points other than the data points used in training, applying Equation (1.2),
minimizing Equation (2.2) could make it so that when an adversary is given the model
output of a non-training data point and all of the non-training data point except for 1
feature, the reconstruction error of input reconstruction attacks will be lower bounded.
This idea was used in [14,20].

Lastly, the Gaussian mechanism can be applied to the gradients. [11] showed that if a
model h is obtained through DPSGD on data set D, applying the Gaussian mechanism
to clipped gradients

Tr(Ih(z)) ≤ E
[

T∑
t=1

q

(q + (1− q)e−ϵ)Tr(Ig(θt, z))
]

(2.3)

where T is the number of iterations of DPSGD, g ∼ g̃(θ, z), and g̃(θ, z) = ḡ(θ, z) + r,
with r ∼ N (0, σ2I), where ḡ(θ, z) is the clipped gradient. ϵ = 1.115 · 2

√
2 log(1.25

δ
)

σ
as

in [11] (note that this holds for the cases used in this work), and, for batch size B,
q = B

n
, where n is the number of data points in the data set. As made apparent by

Equation (2.3), after clipping, Tr(Ig(θt, z)) for the iteration is computed for a data point
with the Gaussian mechanism being applied to the clipped gradient. Tr(Ig(θt, z)) for
the iteration is then added to the previous iterations to handle the privacy accounting.
To clip, GeLU from [13] is used so that the clipping operation is differentiable, which is
required for computing FIL. Using GeLU introduces the 1.115 overhead in computing ϵ,
as shown in [11]. To clip with GeLU, the operation becomes ḡ(θ, z) = g(θ,z)

GeLU(∥g(θ,z)∥2
C

−1)+1
,

where C is the clipping threshold, giving ∥ḡ(θ, z)∥2 ≤ 1.115C.
So, instead of directly minimizing Tr(Ih(z)) like in Equation (2.1), Tr(Ig(θ, z)) can

be minimized, giving

ϕ∗ = argminϕ

∑
{t,i}∈S

L′(ϕ, θt, zi) + λ∥∇ζi
gϕ(θt, ζi)∥2

F

∣∣∣∣∣
ζi=zi

(2.4)

where ϕ parameterizes the new gradient gϕ and S ⊆ [T]× [n] indexes the set of all pairs
(θt, zi) that would be input to gϕ if gϕ was used to train a model, where T is the number of

5

iterations (not epochs) of SGD. A function for L′ could be ∥∇θL(θ, zi)−gϕ(θt, zi)∥2
2

∣∣∣∣∣
θ=θt

,

where L captures some objective other than privacy. Then, gϕ∗ can be used to train the
model. Also, notice that θt is not included in the privacy term’s gradient since FIL is
closed under post-processing, as shown in [12]. To solve Equation (2.4), the private data
cannot be used, instead, public data can be used, as in Equation (2.1) and Equation (2.2).
Additionally, S is unknown, but can be approximated with public data. This motivates
Algorithm 1. In Algorithm 1, first, the model is pre-trained on the public data. Next,

Algorithm 1 Gradient Fisher Information Minimization
1: Input: Public data set Dpublic, private data set Dprivate, numbers of iterations

T1, T2, T3, batch sizes B1, B2, B3, noise multiplier σ, clip threshold C, learning rates
η1, η2, η3, losses L, L′

2: Initialize θ0 randomly
3: for t1 in [T1] do
4: Sample Bt1 ⊆ Dpublic, with Bt1 = {z1, z2, ..., zB1}

5: θt1 ← θt1−1 − η1
1

B1

∑
i∈[B1]∇θL(θ, ζi)

∣∣∣∣∣
θ=θt1−1,ζi=zi

6: end for
7: Initialize ϕ0 randomly
8: for t2 in [T2] do
9: for t3 in [T3] do

10: Sample Bt3 ⊆ Dpublic, with Bt3 = {z1, z2, ..., zB3}
11: ϕ(t2−1)×T3+t3 ← ϕ(t2−1)×T3+t3−1 − η3

1
B3

∑
i∈[B3]∇ϕ(L′(ϕ, θT1+t2−1, zi) +

λ∥∇ζi
gϕ(θT1+t2−1, ζi)∥2

F)
∣∣∣∣∣
ϕ=ϕ(t2−1)×T3+t3−1,ζi=zi

12: end for
13: Sample Bt2 ⊆ Dprivate, with Bt2 = {z1, z2, ..., zB2}
14: Sample r from N (0, σ2C2I)
15: θT1+t2 ← θT1+t2−1 − η2

1
B2

(r + ∑
i∈[B2] CLIP(gϕt2×T3

(θT1+t2−1, zi)))
16: end for

the model being used as the gradient is trained using the public data, and the current
main model weights (as FIL is closed under post-processing). After training the gradient
model, the main model is updated using the private data and the gradient model, which
has been trained on the current weights. The next time the gradient model is trained, it
has been pre-trained on the previous weights.

6

2.1 Improvements
Instead of using Equation (2.4) directly, a modification is made to improve performance.
Equation (2.4) can be rewritten as

ϕ∗ = argminϕ

∑
{t,i}∈S

L′(ϕ, θt, zi) + λ∥∇ζi
(∇θL(θ, ζi) + gϕ(θt, ζi))∥2

F

∣∣∣∣∣
θ=θt,ζi=zi

(2.5)

with L′ = ∥gϕ(θt, zi)∥2
2. Equation (2.5) makes gϕ perturb the existing gradient rather

than output an entire gradient. The intention is to make it so that if gϕ is poorly learnt,
the original gradient is at least still present, so it may perform better.

To compute the Jacobian, the approximation method from [15] is employed by
reformulating the trace of the Fisher Information matrix as a Jacobian-vector product as
done in [11], giving

Tr(Ig(θ, z)) = 1
σ2 Tr((∇ζ ḡ(θ, ζ))⊤∇ζ ḡ(θ, ζ))

∣∣∣∣∣
ζ=z

= 1
σ2E[u⊤(∇ζ ḡ(θ, ζ))⊤∇ζ ḡ(θ, ζ)u]

∣∣∣∣∣
ζ=z

= 1
σ2s

s∑
i=1

u⊤(∇ζ ḡ(θ, ζ))⊤∇ζ ḡ(θ, ζ)u
∣∣∣∣∣
ζ=z

= 1
σ2s

s∑
i=1
∥∇ζ ḡ(θ, ζ)u∥2

2

∣∣∣∣∣
ζ=z

(2.6)

where E[u] = 0, E[uu⊤] = I, and s is the number of samples for approximating the
expectation. Specifically, u is chosen to be a standard normal random vector. As in [11],
Equation (2.6) can be calculated using Jacobian-vector products so that the full Jacobian
does not need to be instantiated.

To take advantage of the subsampling factor in Equation (2.3), the base algorithm
considered is DPSGD, with the modification that the gradient computed (which is then
clipped and noise is added to) is the new gradient that minimizes Equation (2.5). Since
FIL is computed on the clipped gradient, Equation (2.5) is modified to

ϕ∗ = argminϕ

∑
{t,i}∈S

L′(ϕ, θt, zi)+λ∥∇ζi
CLIP(∇θL(θ, ζi)+gϕ(θt, ζi))∥2

F

∣∣∣∣∣
θ=θt,ζi=zi

. (2.7)

Additionally, as done in [20], the signal-to-noise-ratio (SNR) is used, giving

ϕ∗ = argminϕ

∑
{t,i}∈S

L′(ϕ, θt, zi) + λ
∥∇ζi

CLIP(∇θL(θ, ζi) + gϕ(θt, ζi))∥2
F

∥CLIP(∇θL(θ, ζi) + gϕ(θt, ζi))∥2
2

∣∣∣∣∣
θ=θt,ζi=zi

.

(2.8)
Also, in an attempt to make learning the original gradient function easier, the original

7

gradient is input to the model, giving

ϕ∗ = argminϕ

∑
{t,i}∈S

L′(ϕ, θt, zi)

+ λ
∥∇ζi

CLIP(∇θL(θ, ζi) + gϕ(θt, ζi,∇θL(θ, ζi)))∥2
F

∥CLIP(∇θL(θ, ζi) + gϕ(θt, ζi,∇θL(θ, ζi)))∥2
2

∣∣∣∣∣
θ=θt,ζi=zi

. (2.9)

Auto-differentiation is used to take care of the additional dependence on the input.

2.2 Pruning
As made apparent in Equation (2.4), pruning the gradient increases FIL privacy. Addi-
tionally, as shown in Equation (2.9), the learned gradient model requires the parameters
and corresponding gradients of the main model as inputs, and the output has the same
dimension as the number of parameters, hence pruning gradients decreases the dimension
of the learning problem since constants are not useful features and the model does not
need to output the gradient for all the parameters. When pruning based on a pre-trained
model on public data, the learned gradient model can be initialized using only the
parameters and gradients that are non-constant, decreasing the size of the model.

8

Chapter 3 |
Experiments

The code is based off the code from [11] and is based in JAX [6]. The code can be
found at https://github.com/brandonedmunds2/Thesis. Experiments are done using
the MNIST [18] and CIFAR-10 [17] data sets. MNIST has 60,000 training images and
10,000 test images, each with 28x28 features. The classes are the 10 digits. CIFAR-10
has 50,000 training images and 10,000 test images, which are color images of size 32x32.
The 10 classes are airplane, bird, car, cat, dog, frog, deer, horse, ship, and truck.

The following applies to all experiments. To approximate the expectation in Equa-
tion (2.6), 2 samples are taken. Whenever error bars (standard deviations) are reported,
experiments are run 3 times, taking the average of the runs for the reported metrics
(accuracy and dFIL). For pruning, the associated parameters are frozen rather than
pruned. Pruning is only done in addition to DPSGD. "FIM" indicates that pruning was
done and that a new gradient function was learned. Images are normalized between 0 and
1. Additionally, CIFAR-10 is standardized. The model is first pre-trained on the public
data set, then fine-tuned on the private data set. Magnitude pruning indicates that the
parameters with the smallest magnitudes are frozen immediately after pre-training. The
pruning mask is not changed during training. To measure privacy, the label is considered
public as done in [11]. All experiments are done using 10−9 for delta. The model used
for FIM is a convolutional neural network (CNN) for all MNIST experiments and a
multilayer-perceptron for CIFAR-10. To train the classification models, entropy loss is
used. Additional details and hyperparameters can be found in the Appendix.

3.1 Verifying Decreased dFIL
The effect of varied amounts of public data is considered in Figure 3.1. Increasing the
amount of public data improves the performance of FIM. Using smaller amounts of public

9

data does not work well with the given hyperparameters, as the accuracy of FIM is lower
than the pre-train accuracy. For 50% public data, FIM works well, as shown by the
values from Figure 3.1 which are presented in Table 3.1. Table 3.2 uses a smaller amount
of public data more successfully. Additionally, the effect of different values of λ is shown
in Figure 3.2, which indicates that increasing the value of lambda generally increases the
privacy and decreases the accuracy.

Figure 3.1. The plots show the test accuracy and dFIL taken across all the private data points
for configurations with different fractions of the MNIST data set used as public data. A linear
model is used. The other hyperparameters are equivalent for all configurations. The values
of ϵ for public data of 0.5, 0.2, 0.1, 0.05, and 0.01 are 20.5318, 18.4916, 18.0058, 17.8031, and
17.6615, respectively.

Table 3.1. 50% Public Data MNIST Linear Model Values from Figure 3.1; ϵ = 20.5318; Mean
(STD)

Method Accuracy Max dFIL Mean dFIL Median dFIL

Pretrain 0.9208 (0.0005) - - -
SGD 0.9226 (0.0005) - - -
DPSGD 0.9211 (0.0005) 0.6615 (0.0498) 0.0608 (0.0002) 0.0132 (0.0002)
Prune 0.9217 (0.0002) 0.6731 (0.0980) 0.0497 (0.0002) 0.0112 (0.0002)
FIM 0.9228 (0.0005) 0.3391 (0.0284) 0.0286 (0.0001) 0.0098 (0.0002)

Additionally, FIM works for other models. The results in Table 3.2 are done using
a convolutional neural network (CNN) with a smaller value of ϵ. Note that while the
maximum dFIL increases, the mean decreases, meaning that the total privacy gets better
at the cost of making some data points have decreased privacy.

10

Figure 3.2. The plots show the test accuracy and dFIL taken across all the private data points
for configurations with different values of lambda with a public data fraction of 0.5. A linear
model is used. The other hyperparameters are equivalent for all configurations, following the
hyperparameters from Figure 3.1; ϵ = 20.5318.

Table 3.2. 5% Public Data MNIST CNN; ϵ = 0.6310; Mean (STD)

Method Accuracy Max dFIL Mean dFIL Median dFIL

Pretrain 0.9524 (0.0038) - - -
SGD 0.9717 (0.0007) - - -
DPSGD 0.9597 (0.0007) 0.1961 (0.0158) 0.0106 (0.0001) 0.0034 (0.0001)
Prune 0.9618 (0.0011) 0.1865 (0.0068) 0.0093 (0.0004) 0.0026 (0.0002)
FIM 0.9705 (0.0014) 0.3211 (0.0405) 0.0057 (0.0002) 0.0007 (0.0001)

Lastly, CIFAR-10 is considered using a linear model with entropy loss for classification.
The results are shown in Table 3.3. As shown in Table 3.3, the effectiveness of FIM is
more limited with CIFAR-10.

3.2 Reconstruction Attack
To verify that using FIM defends against reconstruction attacks, the attack from [5] is
considered. The attacker uses a fixed data set, Dfixed, along with disjoint sample data
points from the same distribution as the data points in Dfixed to train many machine
learning models. The attack trains on Dfixed ∪ {zi} to get model θi, creating a new data
set {(θi, zi)}m

i=1. Next, the attacker model is trained on this new data set to predict z
given θ. In this case, since the label, y, is being treated as public, the input is the model
and label together, (θ, y), and the output is the image, x. To train the attacker model,

11

Table 3.3. 50% Public Data CIFAR-10 Linear Model; ϵ = 3.9551; Mean (STD)

Method Accuracy Max dFIL Mean dFIL Median dFIL

Pretrain 0.3751 (0.0038) - - -
SGD 0.3799 (0.0013) - - -
DPSGD 0.3992 (0.0013) 0.0758 (0.0010) 0.0165 (0.0000) 0.0156 (0.0000)
Prune 0.3977 (0.0021) 0.0633 (0.0006) 0.0166 (0.0000) 0.0156 (0.0000)
FIM 0.4011 (0.0008) 0.0540 (0.0014) 0.0151 (0.0000) 0.0149 (0.0000)

the inputs are first standardized.
As shown in [5], there are some methods of training that make the attacker unsuccessful,

and due to the large number of models being trained, compute is limited, motivating
the following modifications. First, the model initialization is the same (identical random
seed) across all models used to train the attacker model, including the models for FIM.
Additionally, pre-training is not done. Linear models with entropy loss are trained on
binary MNIST with the CNN model used for the new gradient function for FIM. The
attacker model is a MLP (multilayer perceptron). The reported metrics include MSE
(mean squared error), which dFIL is directly related to, and LPIPS, which was shown to
capture perceptual image similarity in [28].

As indicated in Table 3.4, FIM is able to perform well for binary MNIST, yielding
improved accuracy and privacy. In Table 3.5, the attack was not able to reconstruct
the images when FIM was used, even with a high ϵ which allowed DPSGD images to
be reconstructed. The associated images are shown in Figure 3.3. Note that since the
labels are given as inputs to the attacker, perfect privacy corresponds to an average of
the training images for the respective classes.

Table 3.4. Binary MNIST Linear Model Reconstruction Attack dFILs; ϵ = 1571.4291; Mean
(STD)

Method Accuracy Max dFIL Mean dFIL Median dFIL

SGD 0.9964 (0.0005) - - -
DPSGD 0.9951 (0.0011) 4.1469 (0.0622) 1.4096 (0.1710) 1.4521 (0.1506)
Prune 0.9924 (0.0031) 2.9422 (0.2106) 1.0357 (0.0401) 1.0180 (0.0670)
FIM 0.9975 (0.0008) 2.3875 (0.0286) 0.5713 (0.0217) 0.5339 (0.0392)

12

Table 3.5. Binary MNIST Linear Model Reconstruction Attack MSE and LPIPS; ϵ = 1571.4291

Method MSE LPIPS

SGD 0.0109 0.0179
DPSGD 0.0376 0.1020
Prune 0.0396 0.1261
FIM 0.0449 0.1630
Perfect Privacy 0.0439 0.1600

Figure 3.3. The images from top to bottom follow Table 3.5. The top image is the target
images to reconstruct, the next image is reconstruction without any privacy, followed by DPSGD,
pruning, FIM, and lastly perfect privacy, which is reconstructed using only the labels.

3.2.1 Exploratory Data Analysis

To better characterize FIM, the average of the public gradients is computed and the
cosine similarity is taken between these gradients and the perturbation outputted by the
FIM model, yielding Figure 3.4. The high cosine similarity implies that FIM is learning
the average gradient of the public data for the perturbation, which is studied in [19], and
allows for a more efficient algorithm. Additional investigation of the behavior of FIM is
present in the Appendix.

13

Figure 3.4. Binary MNIST Linear Model Reconstruction Attack Cosine Similarity of FIM
Perturbation and Average Public Gradient For The First Iteration

14

Chapter 4 |
Conclusion

This work explored using Fisher Information leakage (FIL) as a part of a loss function to
learn models with good utility and privacy by leveraging public data. Using FIL as a
part of a loss function is seen to increase the privacy of the training data with minimal
impact on model utility. Additionally, pruning, which also increases privacy with minimal
impact on model utility, is shown to work well when paired with FIL.

Some limitations and subjects for future work include that FIL most readily applies
to unbiased adversaries, whereas real-world adversaries are biased. Also, computing FIL
is expensive, limiting the effectiveness of the method for larger models. Furthermore, for
the best results for learning a new gradient, the representative model can be expensive
to train. Additionally, the attack from [5] can more easily be prevented by techniques
such as pre-training and using different activation functions, making a situation for using
FIM in real-world applications unlikely due to the weakness of current attacks. Also,
FIM is seen to calculate the average of the public gradients which can be more efficiently
computed without training a machine learning model and has been studied in [19]. Lastly,
learning new gradients requires additional knowledge about the data distribution, in this
case in the form of public data, which is not always readily available.

15

Appendix A|
Exploratory Data Analysis Contin-
ued

The experiments in this section all follow the same setting and hyperparameters as
in Section 3.2 unless otherwise indicated. In the Figures, "Base" indicates the normal
gradients that FIM perturbs, "Perturbation" indicates the prediction that the FIM model
makes which gets added to the base gradient. "Final" indicates that gradient after adding
the perturbation and after clipping, but before adding noise. Additionally, pruning is
used in all cases for all gradients, hence "Base" and "Prune" are used interchangeably.
The random seeds indicate different runs that the Figures are created from. The values of
ϵ each iteration are 389.9752, 697.6610, 996.0350, 1294.4090, and 1571.4291, respectively,
across all random seeds.

As indicated in the norm plots, such as Figure A.1, FIM encourages the gradients to be
larger, but does not linearly scale the gradients as indicated in the cosine similarity plots,
such as Figure A.3. Additionally, as indicated by comparing Figure A.1 and Figure A.8,
increasing λ increases the norms. Pairing this information with Figure 3.4 indicates that
FIM predicts the average public gradient and scales by λ. FIM also decreases the variance
of the most important principal components as shown in the PCA plots, particularly in
Figure A.3. Lastly, the majority of the privacy is seen to be leaked in the first iteration,
with less mean privacy typically being leaked per iteration, as shown in the accuracy and
dFIL plots, such as Figure A.2. On the other hand, the maximum privacy scales linearly.

A.1 Random Seed: 0

16

Figure A.1. Binary MNIST Linear Model Reconstruction Attack 2-Norms. Random Seed: 0

Figure A.2. Binary MNIST Linear Model Reconstruction Attack Accuracy and dFIL. Random
Seed: 0

17

Figure A.3. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 1; Random Seed: 0

18

Figure A.4. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 2; Random Seed: 0

19

Figure A.5. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 3; Random Seed: 0

20

Figure A.6. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 4; Random Seed: 0

21

Figure A.7. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 5; Random Seed: 0

22

A.1.1 Increased λ; Random Seed: 0

Figure A.8. Binary MNIST Linear Model Reconstruction Attack 2-Norms. λ = 106; Random
Seed: 0

Figure A.9. Binary MNIST Linear Model Reconstruction Attack Accuracy and dFIL. λ = 106;
Random Seed: 0

23

Figure A.10. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 1; λ = 106; Random Seed: 0

24

Figure A.11. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 2; λ = 106; Random Seed: 0

25

Figure A.12. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 3; λ = 106; Random Seed: 0

26

Figure A.13. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 4; λ = 106; Random Seed: 0

27

Figure A.14. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 5; λ = 106; Random Seed: 0

28

A.2 Random Seed: 1

Figure A.15. Binary MNIST Linear Model Reconstruction Attack 2-Norms. Random Seed: 1

Figure A.16. Binary MNIST Linear Model Reconstruction Attack Accuracy and dFIL.
Random Seed: 1

29

Figure A.17. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 1; Random Seed: 1

30

Figure A.18. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 2; Random Seed: 1

31

Figure A.19. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 3; Random Seed: 1

32

Figure A.20. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 4; Random Seed: 1

33

Figure A.21. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 5; Random Seed: 1

34

A.3 Random Seed: 2

Figure A.22. Binary MNIST Linear Model Reconstruction Attack 2-Norms. Random Seed: 2

Figure A.23. Binary MNIST Linear Model Reconstruction Attack Accuracy and dFIL.
Random Seed: 2

35

Figure A.24. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 1; Random Seed: 2

36

Figure A.25. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 2; Random Seed: 2

37

Figure A.26. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 3; Random Seed: 2

38

Figure A.27. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 4; Random Seed: 2

39

Figure A.28. Binary MNIST Linear Model Reconstruction Attack. Prune (top left), FIM
before noise (top right), Perturbation (bottom left), Cosine Similarity between Perturbation
and Prune (bottom right). Iteration: 5; Random Seed: 2

40

A.4 No Batch Normalization Layer
FIM behaves differently with static input standardization instead of using a Batch
Normalization layer. In this section, the Batch Normalization layers are removed from
the CNN used to learn the new gradient function, instead standardizing the inputs
statically. Static standardization does not allow for using the weights as inputs since
their values are not known at initialization. Similarly, only the gradients in the current
iteration are known, and are standardized accordingly, hence a new FIM model is trained
from scratch at every iteration, and the weights become a constant, and thus unnecessary
input.

The FIM hyperparameters are modified when removing Batch Normalization. The
learning rate is 0.01, the weight decay is 0.2, and the number of epochs is 1000. In
Figure A.29, the perturbation is seen to no longer be constant, and the first PCA dimension
seems to be disparately impacted, showing that FIM can behave differently and still
maintain decent performance, as shown in Table A.1, but due to decreased performance
compared to using Batch Normalization, this setting is not further considered.

Table A.1. No Batch Normalization (BN) Binary MNIST Linear Model Reconstruction Attack;
ϵ = 389.9752; Iteration: 1; Mean (STD)

Method Accuracy Max dFIL Mean dFIL Median dFIL

BN 0.9685 (0.0008) 0.6216 (0.0223) 0.4406 (0.0058) 0.4433 (0.0072)
No BN 0.9614 (0.0238) 3.2741 (1.9908) 0.4239 (0.0124) 0.4086 (0.0285)

41

Figure A.29. No Batch Normalization Binary MNIST Linear Model Reconstruction Attack.
Prune (top left), FIM before noise (top right), Perturbation (bottom left), Cosine Similarity
between Perturbation and Prune (bottom right). Iteration: 1

42

Appendix B|
Additional Experiment Details

Throughout the Appendix, any unspecified values are left as the default in the repository.
A lower precedence indicates that the lower precedence layer comes before a higher
precedence layer. Layers with equal precedence are done in parallel, with the results
concatenated immediately afterwards. That is, there are two separate inputs to the
model. In the case of Table B.6, the image is given to the convolutional layer, and the rest
of the input is given to the identity layer (which does nothing). The Batch Normalization
(BN) layer is from [16]. The Batch Normalization layer is essential since the inputs cannot
be statically normalized. To train the gradient model, the model is first trained with
the full number of epochs, then for the next batch of private examples, the number of
epochs is decreased by the value of epoch decay, then the number of epochs continues to
decrease each iteration until reaching the minimum number of epochs. For Table 3.5,
note that different hyperparameters were used to optimize the attack for each case.

43

Table B.1. Section 3.1 Hyperparameters

Hyperparameter Figure 3.1 Table 3.2 Table 3.3

Pre-train

Batch Size 512 512 512
Epochs 30 100 10
Learning Rate 0.01 0.01 0.001
Weight Decay 0.0001 0.01 0.1
Optimizer Adam Adam Adam

Train

Batch Size 512 512 512
Prune Type Magnitude Magnitude Magnitude
Parameter density 0.5 0.5 0.5
Epochs 1 1 1
Learning Rate 0.01 0.01 0.001
Weight Decay 0.00001 0.0001 0.01
Optimizer Adam Adam Adam
σ 0.5 2 1
Clip 10 8 10

FIM

Batch Size 512 512 512
Epochs 200 200 200
Epoch Decay 50 50 50
Min Epochs 20 20 20
Learning Rate 0.01 0.01 0.001
Weight Decay 0.1 0.1 0.0
Optimizer Adam Adam Adam
λ 1e3 1e3 1e3

44

Table B.2. Binary MNIST Linear Model Reconstruction Attack Common Hyperparameters

Hyperparameter Value

Train

Private Samples 1000
Batch Size 1024
Prune Type Magnitude
Parameter density 0.5
Epochs 5
Learning Rate 0.1
Weight Decay 0.0
Optimizer Adam
σ 0.05
Clip 10

FIM

Public Samples 1000
Batch Size 1024
Epochs 200
Epoch Decay 50
Min Epochs 20
Learning Rate 0.01
Weight Decay 0.1
Optimizer Adam
λ 1e3

Attack Train Samples 9500
Test Samples 500

Table B.3. Table 3.5 Hyperparameters Part 1

Hyperparameter SGD DPSGD Prune

Batch Size 64 64 64
Epochs 100 100 100
Learning Rate 0.001 0.001 0.001
Weight Decay 0.01 0.01 0.1
Optimizer Adam Adam Adam

45

Table B.4. Table 3.5 Hyperparameters Part 2

Hyperparameter FIM Perfect Privacy

Batch Size 64 64
Epochs 30 100
Learning Rate 0.01 0.001
Weight Decay 0.1 0.01
Optimizer Adam Adam

Table B.5. MLP FIM
Precedence Layer Hyperparameters

1 BN axis=0
2 Dense 512
3 GeLU
4 BN axis=0
5 Dense 256
6 GeLU
7 Dense 10

Table B.6. CNN FIM
Precedence Layer Hyperparameters

1 Conv 16 8x8 filters, stride 2, padding 2
2 GeLU
3 AvgPool 2x2, stride 1
4 Conv 32 4x4 filters, stride 2, padding 0
5 GeLU
6 AvgPool 2x2, stride 1
1-6 Identity
7 BN axis=0
8 Dense 256
9 GeLU
10 BN axis=0
11 Dense 256
12 GeLU
13 Dense 10

46

Table B.7. CNN MNIST
Precedence Layer Hyperparameters

1 Conv 16 8x8 filters, stride 2, padding 2
2 Tanh
3 AvgPool 2x2, stride 1
4 Conv 32 4x4 filters, stride 2, padding 0
5 Tanh
6 AvgPool 2x2, stride 1
8 Dense 32
9 Tanh
10 Dense 10

Table B.8. MLP Attack
Precedence Layer Hyperparameters

1 Dense 512
2 ReLU
3 Dense 256
4 ReLU
5 Dense 10

47

Bibliography

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, oct 2016.

[2] Kamil Adamczewski and Mijung Park. Differential privacy meets neural network
pruning, 2023.

[3] Ehsan Amid, Arun Ganesh, Rajiv Mathews, Swaroop Ramaswamy, Shuang Song,
Thomas Steinke, Vinith M. Suriyakumar, Om Thakkar, and Abhradeep Thakurta.
Public data-assisted mirror descent for private model training, 2022.

[4] Efe Aras, Kuan-Yun Lee, Ashwin Pananjady, and Thomas A. Courtade. A family of
bayesian cramér-rao bounds, and consequences for log-concave priors. In 2019 IEEE
International Symposium on Information Theory (ISIT), pages 2699–2703, 2019.

[5] Borja Balle, Giovanni Cherubin, and Jamie Hayes. Reconstructing training data
with informed adversaries, 2022.

[6] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy
programs, 2018.

[7] Zhiqi Bu, Xinwei Zhang, Mingyi Hong, Sheng Zha, and George Karypis. Pre-training
differentially private models with limited public data, 2024.

[8] Soham De, Leonard Berrada, Jamie Hayes, Samuel L. Smith, and Borja Balle.
Unlocking high-accuracy differentially private image classification through scale,
2022.

[9] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential
privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407,
2014.

[10] Richard Gill and Boris Levit. Applications of the van trees inequality: A bayesian
cramér-rao bound. Bernoulli, 1:59–79, 03 1995.

48

[11] Chuan Guo, Brian Karrer, Kamalika Chaudhuri, and Laurens van der Maaten.
Bounding training data reconstruction in private (deep) learning, 2022.

[12] Awni Hannun, Chuan Guo, and Laurens van der Maaten. Measuring data leakage
in machine-learning models with fisher information, 2021.

[13] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

[14] Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Robust learning with jacobian
regularization, 2019.

[15] M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix
for laplacian smoothing splines. Communication in Statistics- Simulation and
Computation, 19:432–450, 01 1990.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift, 2015.

[17] Alex Krizhevsky. Learning multiple layers of features from tiny images. University
of Toronto, 05 2012.

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] Tian Li, Manzil Zaheer, Sashank J. Reddi, and Virginia Smith. Private adaptive
optimization with side information, 2022.

[20] Kiwan Maeng, Chuan Guo, Sanjay Kariyappa, and Edward Suh. Measuring and
controlling split layer privacy leakage using fisher information, 2022.

[21] Kiwan Maeng, Chuan Guo, Sanjay Kariyappa, and G. Edward Suh. Bounding the
invertibility of privacy-preserving instance encoding using fisher information, 2023.

[22] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). IEEE, August 2017.

[23] Milad Nasr, Saeed Mahloujifar, Xinyu Tang, Prateek Mittal, and Amir Houmansadr.
Effectively using public data in privacy preserving machine learning, 2023.

[24] Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot, and Nicholas
Carlin. Adversary instantiation: Lower bounds for differentially private machine
learning. In 2021 IEEE Symposium on security and privacy (SP), pages 866–882.
IEEE, 2021.

[25] Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differential
privacy, 2022.

49

[26] Jasper Tan, Blake Mason, Hamid Javadi, and Richard G. Baraniuk. Parameters
or privacy: A provable tradeoff between overparameterization and membership
inference, 2022.

[27] Yijue Wang, Chenghong Wang, Zigeng Wang, Shanglin Zhou, Hang Liu, Jinbo Bi,
Caiwen Ding, and Sanguthevar Rajasekaran. Against membership inference attack:
Pruning is all you need, 2021.

[28] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric, 2018.

50

