
The Pennsylvania State University

The Graduate School

SAFE MACHINE LEARNING FOR INTELLIGENT MULTI-ROBOT

SYSTEMS

A Dissertation in

Electrical Engineering

by

Zhenyuan Yuan

© 2024 Zhenyuan Yuan

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

May 2024

The dissertation of Zhenyuan Yuan was reviewed and approved by the following:

Minghui Zhu

Associate Professor of Electrical Engineering

Dissertation Advisor, Chair of Committee

Constantino Lagoa

Professor of Electrical Engineering

Alan Wagner

Associate Professor of Aerospace Engineering

Ying Sun

Assistant Professor of Electrical Engineering

Madhavan Swaminathan

Department Head and Professor of Electrical Engineering

Abstract

Recent advances in embedded computing and mobile sensing have led to perva-
sive use of robotic systems in both civil and military applications. With single
autonomous robots for particular tasks widely accepted and used in a number of
occasions and the development of high-speed communication technologies, there
are attempts to connect the robots together and make them work collaboratively
as a team. A key element that enhances the autonomy and intelligence of these
robotic systems is machine learning. However, recent accidents associated with
machine learning-enabled robots indicate that machine learning remains unsafe.

This dissertation is concerned with safe machine learning in intelligent multi-
robot systems; that is, developing a set of algorithms which multi-robot systems
can utilize to improve system performances and remain safe. The research agenda
will be developed from the following aspects.

The dissertation starts from the fundamental problem of distributed learning
with uncertainty quantification in multi-robot systems. In particular, we consider
the problem where a group of agents aim to collaboratively learn a common latent
function through streaming data. We propose a class of lightweight distributed
Gaussian process regression algorithms that explicitly considers the limited bud-
get in memory, computation, and communication in robotic systems. We show
that communication brings Pareto improvement to the agents in the network by
investigating the transient and the steady-state performances of the proposed al-
gorithms.

We next show how to integrate the learning algorithm developed above with
motion planning to ensure robot safety during the entire online learning process. In
particular, we propose a learning and planning framework to solve safe navigation
problems in uncertain environments or under uncertain dynamics. We further
derive the sufficient conditions to ensure the safety of the system.

Then we consider the problem of zero-shot generalization in reinforcement

iii

learning. In particular, we consider the problem of multiple learners collabora-
tively learning a single control policy which is able to perform well without data
collection and policy adaptation in new environments. We formulate the prob-
lem as a federated optimization problem with an unknown objective function. We
propose a class of federated optimization algorithms which leverages on zero-shot
generalization guarantees. We further derive theoretical guarantees on almost-sure
convergence, almost consensus, Pareto improvement and global convergence.

Finally, we investigate how a robot can quickly adapt its control policy on-
line by incrementally leveraging its previous learning experiences. Specifically, we
study online meta reinforcement learning on physical agents. We propose a novel
online meta update method and a policy masking framework. The policy mask-
ing framework ensures all-time safety, while the online meta update method is
sample-efficient and is able to achieve sublinear growth of dynamic regret.

iv

Contents

List of Figures ix

List of Tables x

Acknowledgments xi

Chapter 1
Introduction 1
1.1 Safety of machine learning . 3
1.2 Literature review . 4
1.3 Our contributions . 5

Chapter 2
Background on Gaussian process regression 10
2.1 Relationships between GPs and ridge regression 12

2.1.1 Reproducing kernel Hilbert spaces 13
2.1.2 Connection to ridge regression 14

2.2 Covariance functions . 17
2.2.1 Terminologies . 17
2.2.2 Eigenfunction analysis of kernels 18
2.2.3 Examples of covariance functions 19

Chapter 3
Distributed Gaussian process regression 21
3.1 Introduction . 21
3.2 Problem statement . 24
3.3 Lightweight distributed GPR . 26

3.3.1 Agent-based GPR . 27

v

3.3.2 Distributed GPR . 27
3.3.3 Fused GPR . 29
3.3.4 Choice of the kernel . 32
3.3.5 Performance guarantee . 33
3.3.6 Discussion . 37

3.4 Proofs . 39
3.4.1 Derivation of Line 11-12 in fused GPR 40
3.4.2 Proof of Theorem 3.3.3 . 40

3.4.2.1 Variance analysis of agent-based GPR 41
3.4.2.2 Variance analysis of distributed GPR 42
3.4.2.3 Variance analysis of fused GPR 50

3.4.3 Proof of Theorem 3.3.8 . 55
3.4.3.1 Mean analysis of agent-based GPR 55
3.4.3.2 Mean analysis of distributed GPR 56
3.4.3.3 Mean analysis of fused GPR 59

3.5 Simulation . 73
3.6 Conclusion . 78

Chapter 4
Distributed safe learning and planning 79
4.1 Introduction . 79
4.2 Problem formulation . 82
4.3 Distributed safe learning and planning 83

4.3.1 System learning . 84
4.3.2 Safe motion planning . 86
4.3.3 Active learning and real-time control 90
4.3.4 Performance guarantees . 91
4.3.5 Discussion . 92

4.4 Proof . 94
4.4.1 Concentration inequality of Gaussian process 94
4.4.2 Set-valued approximation 96
4.4.3 Proof of Theorem 4.3.2 . 102
4.4.4 Proof of Theorem 4.3.3 . 107

4.5 Simulation . 115
4.5.1 Safe grid vs. safe region . 116
4.5.2 Multi-robot maneuver. 118
4.5.3 Run-time computation. 119
4.5.4 Hyperparameter tuning . 120

4.6 Conclusion . 121

vi

Chapter 5
Federated reinforcement learning with zero-shot generalization 122
5.1 Introduction . 122
5.2 Problem formulation . 126

5.2.1 Environment-specific motion planning 126
5.2.2 Robot motion planning with zero-shot generalization 127
5.2.3 Federated reinforcement learning 128

5.3 Algorithm statement . 129
5.3.1 The FedGen algorithm . 130

5.3.1.1 Learner-based update 131
5.3.1.2 Cloud update . 132
5.3.1.3 Learner-based fusion 133

5.3.2 Performance guarantees . 133
5.3.3 Discussion . 135

5.4 Proofs . 137
5.4.1 Proof of Theorem 5.3.1 . 137
5.4.2 Proof of Theorem 5.3.6 . 138

5.4.2.1 Preliminary results 139
5.4.2.2 Proof of (T3) in Theorem 5.3.6 144
5.4.2.3 Proof of (T4) in Theorem 5.3.6 144
5.4.2.4 Proof of (T5) in Theorem 5.3.6 146

5.4.3 Proof of Theorem 5.3.7 . 147
5.5 Simulation . 150

5.5.1 Training . 151
5.5.2 Results . 152

5.6 Conclusion . 154

Chapter 6
Online safe meta reinforcement learning 158
6.1 Introduction . 158
6.2 Related work . 161
6.3 Problem statement . 163
6.4 The masked Follow-the-Last-Parameter-Policy framework 165

6.4.1 The Follow-the-Last-Parameter-Policy (FTLPP) algorithm . 166
6.5 Policy masking . 169
6.6 Proofs . 173

6.6.1 Proof of Theorem 6.4.1 . 173
6.6.2 Proof of Proposition 6.5.2 174
6.6.3 Proof of Theorem 6.5.3 . 176
6.6.4 Proof of Lemma 6.5.5 . 176

vii

6.7 Experimental evaluation . 177
6.8 Conclusion . 178

Chapter 7
Conclusion and future works 180
7.1 Conclusion . 180
7.2 Future works . 181

7.2.1 Transfer learning for generalizable reinforcement learning
with heterogeneous distributions 181

7.2.2 Meta Bayesian learning for safe system identification 182
7.2.3 Adversarial machine learning for environmental distribution

generalization . 183
7.2.4 Real-time safety verification for high dimensional systems . . 184
7.2.5 Distributed online safe meta reinforcement learning 185

Bibliography 186

viii

List of Figures

2.1 A graphical illustration of GPR . 11
2.2 Summary of several commonly-used covariance functions 20

3.1 Flow diagram of LiDGPR in one iteration 26
3.2 Robot trajectories and ground truth of η 74
3.3 Predictive variance and error of cNN-GPR 74
3.4 Comparison of agent-based GPR (NN) and LiDGPR (NN) 76
3.5 Average performance of robot 1 versus iteration number 77

4.1 Implementation of dSLAP over one iteration 84
4.2 A graphical illustration of obstacle collision avoidance 88
4.3 Safe grid computed by dSLAP vs. actual safe region 117
4.4 A sample of wind fields and robot trajectories 118
4.5 Ablation study of dSLAP . 119

5.1 Implementation FedGen for learner i in iteration k 130
5.2 Parameter update logic at each iteration 131
5.3 A sample environment in PyBullet 150
5.4 Generalized performances to unseen environments 152
5.5 Comparison between initial policy, locally converged policy and

globally converged policy . 154

6.1 Experiment results. Left: The reward of 50 testing tasks for the
policies adapted 1 step from the meta parameter obtained after
training with each number of tasks. Middle left: The rate of un-
safe accidents of 50 testing tasks for the policies adapted 1 step
from the meta parameter obtained after training with each number
of tasks. Middle right: The reward of 50 testing tasks for each
step of adapted policy from the meta parameter obtained using 100
training tasks. Right: The rate of unsafe accidents of 50 test-
ing tasks for each step of adapted policy from the meta parameter
obtained using 100 training tasks. 178

ix

List of Tables

3.1 Table of symbols . 39

4.1 Computation time (seconds) for each robot in one iteration 120
4.2 dSLAP Wall clock time (seconds) per iteration 121

5.1 Definitions of important iterations 139
5.2 The expected distance-to-goal, normalized arrival times, safe arrival

rates of the estimates at initialization, local convergence and final
convergence. 156

5.3 The expected distance-to-goal, normalized arrival times, safe arrival
rates of the limiting estimates for different number of learners. The
table shows the average values over the learners plus-minus one
standard deviation. 157

x

Acknowledgments

First of all, I am proudly grateful to my Ph.D. advisor, Professor Minghui Zhu,
whose expertise, encouragement, dedication and advice were invaluable throughout
my research process and career development. This dissertation would not be pos-
sible without him. Thanks to him, I was not only provided with plenty of research
opportunities, but also guided for my future academic career in a comprehensive
ways, including the identification of interesting research problems, writing papers,
preparing funding proposals, presentation skills, as well as mentoring students. I
am indebted to him for his patience, wisdom, and unwavering belief in my abilities.

I would like to express my sincere appreciation to my dissertation committee
members, Professor Constantino Lagoa, Professor Alan Wagner and Professor Ying
Sun, for their willingness to serve as well as their valuable feedback and insightful
suggestions to the development and refinement of this dissertation.

I am truly thankful to my colleagues and friends in Professor Minghui Zhu’s
research group for their camaraderie, intellectual exchange, and support. I would
like to thank Dr. Hunmin Kim, Dr. Zhisheng Hu, Dr. Yang Lu, Dr. Guoxiang
Zhao, Dr. Samer Saab, Dr. Xu Zhang, Mr. Siyuan Xu, Mr. Shicheng Liu, Mr. Yue
Mao and Mr. Rashed Aldhafeeri for the stimulating discussions and collaborative
environment which greatly enhanced the quality of my research work and Ph.D.
life.

My gratitude extends to my other collaborators, Dr. Hai Lin, Dr. Zihan Zhou,
Dr. Rui Yu, Dr. Seong-Woo Kim, Dr. Younghwa Jung, Mr. Tongjia Zheng, Mr.
Mollik Nayyar and Mr. Sihyeon Jo for the support and technical expertise.

I owe debt of gratitude to all the people I met during my undergraduate research
experience. I would like to thank Professor Asok Ray and Professor Bharath
Sriperumbudur for the opportunities and guidance of my undergraduate research.
I would like to thank Dr. Devesh Jha, Dr. Nurali Virani, Dr. Yiwei Fu, Dr.
Pinyao Guo, Dr. Eric Keller and Mr. Kevin Fisher at NRSL as well as Mr.
Christopher Miller at the Penn State Schreyer Honors College for their mentorship
and friendship. I also thank Mr. Zeyu Zhang, Mr. Chuong Nyugen, Ms. Ishana

xi

Shekhawat, Mr. Ziyang Wang, Ms. Jilan Zhang and Mr. Joong Won Ah for the
memorable collaboration.

I thank the Penn State community for providing a conducive environment for
my academic and personal growth in the past nine years. I would like to thank all
the Penn State friends, especially Mr. Waroch Tangbampensountorn, for making
the years interesting and memorable.

I must say here that none of this would have been possible without my dad
and my mom. I am deeply indebted to them for their dedication, encouragement
and support without expecting anything in return. I would also like to thank my
dog Kaito for all the cute moments and emotional support. The final words of
the acknowledgment go to my wife (and my best teammate) Dr. Xue Xiao for her
unwavering love, support and company throughout this long journey. Without the
patience, optimism, and unconditional support from her I would not have been
able to make it here.

This dissertation was supported by NSF grants ECCS-1710859, CNS-1830390,
ECCS-1846706 and the Penn State College of Engineering Multidisciplinary Re-
search Seed Grant Program. Any opinions, findings, and conclusions or recommen-
dations expressed in this dissertation are those of the author and do not necessarily
reflect the views of the funding agencies.

xii

Chapter 1
Introduction

Recent advances in embedded computing and mobile sensing have led to pervasive

use of robotic systems in both civil and military applications. For example, Tom, a

robot created by Small Robot Company for precision agriculture, uses a combina-

tion of GPS, AI, and mobile technology to move safely and digitally map fields and

estimate crop yields [1]. Australia-based Fastbrick Robotics can build brick houses

four times faster than human workers as it combines a 3D printer and a robot that

can lay bricks just as precisely as human laborers [1]. The CQ-10 SnowGoose, a

small fully autonomous aircraft used to deliver supplies to US Special Operations

forces in the field, can carry out GPS-guided missions for extended periods over

distances as far as 150 km, and has been deployed in Afghanistan and Iraq [2]. The

US Navy has recently demonstrated autonomous mine countermeasures, where a

small autonomous surface vessel equipped with advanced sonar systems is deployed

to patrol a suspected minefield, then detect and localize mines [3]. In February

2021, NASA’s Perseverance rover landed on Mars to collect samples that will be

returned to Earth on a future mission, while NASA’s Curiosity rover, which landed

on Mars in 2012, has been exploring new Martian terrain [4]. The global market

for robots is expected to grow at a compound annual growth rate of around 26

percent to reach 210 billion U.S. dollars by 2025 [5].

With single autonomous robots for particular tasks widely accepted and used

in a number of occasions as exemplified above and the development of high-speed

communication technologies, such as WiFi and 5G, there are attempts to connect

robots together and make them work collaboratively as a team [6]. For examples,

1

over 200,000 robots are performing packing and sorting in Amazon warehouses [7].

At the opening ceremony of 2018 Pyeongchang Winter Olympic Games, the light

show made of 1,218 drones broke Guinness records. The U.S. Navy has developed

an advanced ship protection system, which can deploy a fleet of more than a

dozen of small unmanned boats swimming around a warship and detecting threats

[8]. In 2019, the Defense Advanced Research Projects Agency experimented with

using a swarm of autonomous drones and ground robots to assist with military

missions and showed how the robots analyzed two city blocks to find, surround,

and secure a mock city building; the whole system could eventually scale up to

250 drones and ground robots [9]. Waymo, Uber and Tesla have produced fleets

of autonomous cars transporting passengers in a number of cities, e.g., Phoenix

[10], Tempe [11], and Pittsburgh [12]. By the global market for autonomous cars,

only a subset of multi-robot systems, is expected to reach a size of over 55.6 billion

U.S. dollars in 2032 [13]. There are unique advantages that multi-robot systems

enjoy over single-robot systems. First, it is very difficult and costly to design

a monolithic robot that could accomplish various tasks in different environment

conditions [14]. On the other hand, most difficult tasks are composed of a number

of subtasks. Therefore, a difficult task can be accomplished through multiple

robots specialized in different subtasks, and these robots can be reused through

different combinations for a variety of tasks. Second, a single-robot system is

vulnerable to single-point failures, where even a small failure of a robotic unit,

e.g., malfunctions of a camera for perception, may prevent the accomplishment of

the whole task [14]. In multi-robot systems, if some robots fails, remaining robots

can continue to carry out missions [15]. Third, multi-robot systems can benefit

from parallel operations, versatility and flexibility when deploying heterogeneous

units, and inherent redundancy [14]. Therefore, multi-robot systems can provide

cost-effectiveness, robustness, and high efficiency.

A key element that enhances the autonomy and intelligence of these robotic sys-

tems is machine learning. In particular, machine learning allows robotic systems

to extract relevant, reliable and actionable information from sensor data, adapt

to highly dynamic and unstructured environments, and achieve super-human per-

formances in some cases. For example, Uber Engineering indicates that machine

learning is involved in almost every component, e.g., perception, prediction, motion

2

planning and control, of Uber’s autonomous cars [16]. Project Maven, a Pentagon

project, has used Unmanned Aerial Systems equipped with machine learning to

identify insurgent targets in Iraq and Syria in thousands of hours of drone footage

[17][18].

1.1 Safety of machine learning

Current applications of advanced machine learning techniques, e.g., deep learn-

ing, are largely limited to software agents or computer programs, e.g., face/object

recognition, natural language processing and AlphaGo, a computer program that

plays the board game Go. Due to high volume, variety and velocity of processed

data, learning efficiency and accuracy are dominant metrics for measuring the

performances in these applications. In contrast, robots are physical agents and

sometimes work around humans, their safety as well as the safety of their sur-

roundings are more important than learning efficiency and accuracy. However,

recent accidents associated with machine learning-enabled robots indicate that

machine learning remains unsafe. From 2016 to 2019, there were five fatalities

resulted from accidents of autonomous driving. All the accidents were caused by

the malfunction of the machine learning algorithms. For instance, in 2016, a Tesla

Motor S caused the first death by a self-driving car because it was unable to distin-

guish a white tractor-trailer crossing the highway against a bright sky [19]. NBC

News reported that in 2019 a self-driving Uber car hit and killed a female because

it was unable to recognize the pedestrian jaywalk [20]. Besides autonomous cars,

a security robot drowned itself in a fountain because the algorithm failed to detect

the uneven surface [21].

The reasons why machine learning remains unsafe are as follows. First, the ma-

chine learning models that achieve extraordinary performances are usually trained

offline using an enormous amount of data [22]. In contrast, robots may face unex-

pected changes of their own dynamical systems and operating environments during

mission execution. Prior information is limited for unanticipated scenarios or even

unavailable for edge cases. In these situations, the responses of the machine learn-

ing models, though heavily trained, become uncertain. Second, existing machine

learning algorithms, such as deep learning, exhibit one detrimental characteristics,

3

a trade-off between performance and transparency. That is, the more complex a

machine learning model’s working principle, which is usually able to solve more

difficult tasks, the less clear how its decisions are made [23][24]. This makes the

outputs of machine learning models less predictable when operating in complicated

environments such as urban traffics, and the unexpected decisions could lead to

catastrophic consequences. Third, current machine learning algorithms are often

fragile, i.e., small perturbations of input data could lead to dramatic changes in

learning outputs [25]. For example, paper [26] shows an experiment, where with

some deliberately crafted camouflage graffiti and art stickers, a machine learning

algorithm can misclassify a stop sign into a speed limit 45 sign in 100% of the

images taken. The fragility is partially due to the fact that the decision mak-

ing functions of the machine learning models are highly nonlinear and have large

derivatives with respect to inputs.

1.2 Literature review

The previous section indicates that the challenge of safety in machine learning is

a crucial barrier for wide-range deployment of robotic systems in human society.

In both computer science and control communities, safe machine learning has

been studied in different contexts. In general, safe machine learning aims to solve

certain learning tasks and meanwhile ensure the system to stay within certain

safety measures. It can be categorized into safe offline learning and safe online

learning.

For safe offline learning, models are trained using a fixed set of data. Safety

issues could therefore arise when robots encounter edge cases that are not observed

in the training dataset. Furthermore, uncertainties of the robots’ dynamic systems

and their operating environments can also induce safety issues. Safe offline learning

is usually tackled by modifying optimization criterion based on different safety

definitions [27]. For example, risk-sensitive criterion can be introduced to balance

between a return and a risk, where the risk can be the variance of the return or

the probability of entering an unsafe region [28][29]. Constrained criterion can be

included to enforce certain (safety) measures within given bounds [30][31]. Worst-

case criterion is used to mitigate the effects of the variability induced by a given

4

policy due to the stochastic nature of the environment or the dynamic system

[32][33].

As for safe online learning, robots sequentially collect training data and grad-

ually refine their learning models on-the-fly. As a result, the learning errors could

be large during the initial learning phase. It is therefore important and challenging

to keep the robots safe during the entire learning process. According to learning

tasks, related literature can be categorized into six classes: (1) exploration [34][35]

[36], where the objective is to learn about the uncertainties of a dynamic model or

an environment; (2) optimization [37][38][39], where decision variables are selected

to optimize an unknown objective function; (3) bandit [40], where the objective is

to optimize a sequence of unknown objective functions; (4) reinforcement learning

(RL) [27][41][42][43], where the objective is to find an optimal control policy to

maximize aggregate return; (5) regulation [44][45][46], where the objective is to

derive a control policy to achieve certain classical control specifications, such as

stabilization and tracking; (6) navigation [47][48], where the objective is to find a

sequence of control inputs to bring a dynamic system to a goal region. These works

usually define safety as hard constraints. For example, the thresholds of certain

function evaluations are usually considered in exploration, optimization, and ban-

dit problems; state constraints and/or policy constraints are usually imposed in

exploration, RL, regulation, and navigation. Safety is achieved if the constraints

are satisfied throughout the learning process. Dynamic systems are usually not

considered in the tasks of optimization, bandit, and sometimes, exploration. RL

usually models a dynamic system as a Markov Decision Process, while tasks of

regulation and navigation model a dynamic system using state-space equations.

1.3 Our contributions

Existing safe machine learning techniques mainly focus on single-robot systems.

The counterparts of multi-robot systems have been rarely studied. There are

new challenges arisen that make extending the machine learning techniques from

single-robot systems to multi-robot systems non-trivial. First, problems involving

multiple robots, such as multi-robot reinforcement learning, usually have complex-

ity scaled up exponentially with respect to the number of the robots [49]. Second,

5

data are spatially distributed and locally maintained by each robot in multi-robot

systems, while it is usually impractical for each robot to obtain all the data due

to concerns of, e.g., transmission bandwidth, memory, and privacy [50]. However,

the robots have incentives to fully utilize all the data since the performances of

machine learning models are usually positively related to the size of dataset [51].

Third, robots in multi-robot systems usually have simple architectures with lim-

ited resources in, e.g., computation power, communication budget, and onbroad

memory [52][53]. This makes the deployments of resource-hungry machine learning

models unrealistic.

This dissertation aims to study a set of distributed algorithms for safe machine

learning in intelligent multi-robot systems. The research agenda is developed from

the following aspects.

Chapter 3 designs a class of distributed Gaussian process regression algorithms,

which allow a group of robots to collaboratively learn a common latent function

online. The algorithms estimate the uncertainties of intermediate learning results.

The uncertainty quantification will be used in Chapter 4 where machine learning

and motion planning are integrated. The developed algorithms are cognizant of

limited resources of memory, computation and communication budget. Our analy-

sis reveals that limited inter-agent communication improves learning performances

in the sense of Pareto, i.e., some agents’ performances improve without sacrificing

other agents’ performances. The algorithms are empirically verified by simulating

a scenario where a multi-robot system is deployed to learn about a spatial signal,

such as temperature or wind field. Chapter 3 is based on the following papers:

(C1) Z. Yuan and M. Zhu. “Communication-aware distributed Gaussian pro-

cess regression algorithms for real-time machine learning”, American Control

Conference, pp. 2197-2202, July 2020.

(J1) Z. Yuan and M. Zhu. “Lightweight distributed Gaussian process regression

algorithms for online machine learning”, IEEE Transactions on Automatic

Control, 2024. To appear.

In Chapter 3, how training data is collected is not specified. Hence, in Chapter

4, we investigate the scenario where training data is collected along robot trajec-

tories. In particular, we consider the problem where a group of mobile robots

6

subject to unknown external disturbances, e.g., wind turbulence for drones, aim

to safely reach goal regions. We develop a class of distributed safe learning and

planning algorithms that allow the robots, in a single execution, to learn about

the common environmental model using the GPR algorithms in Chapter 3, update

their motion plans promptly, and enforce safety as collision avoidance of obstacles

and other robots with high probability. This framework provides fast update of

distributed coordination with other robots and fast adaptation to the sequence

of dynamic models resulted from online learning. We further derive the sufficient

conditions to ensure the safety of the robots. The framework is empirically evalu-

ated by Monte Carlo simulation where a group of robots are deployed to navigate

through different environments. Chapter 4 is based on the following papers:

(C2) Z. Yuan and M. Zhu. “dSLAP: Distributed safe learning and planning for

multi-robot systems”, IEEE International Conference on Decision and Con-

trol, pp. 5864-5869, December 2022.

(J2) Z. Yuan and M. Zhu. “Distributed safe learning and planning for multi-robot

systems”, IEEE Transaction on Automatic Control. Under review.

Chapter 4 considers obtaining a safe control policy through an online learning

method, in Chapter 5 we consider the complementary and investigate the safety of

a control policy obtained from an offline learning method. Specifically, we consider

the problem where a network of learners collaboratively learn a universal feedback

control policy for different environments. We formulate the problem as a federated

optimization problem with an unknown objective function. We propose a class of

federated reinforcement learning algorithms cognizant of zero-shot generalization

guarantees on arrival time and safety. We derive theoretical guarantees on almost-

sure convergence, almost consensus, Pareto improvement and global convergence.

Monte Carlo simulation is conducted to evaluate the proposed framework. The

following papers summarize the results in Chapter 5:

(C3) Z. Yuan, S. Xu and M. Zhu. “Federated reinforcement learning for gener-

alizable motion planning”, American Control Conference, pp. 78-83, May

2023.

7

(J3) Z. Yuan, S. Xu and M. Zhu. “Federated reinforcement learning for robot

motion planning with zero-shot generalization”, Automatica. Under review.

Chapter 4 considers online learning where no data is provided before deploy-

ment, whereas Chapter 5 considers offline learning using data provided before de-

ployment. In Chapter 6, we consider how the online learning and offline learning

can be combined to improve the performances when a robot encounter a sequence

of tasks. Specifically, we consider the problem of how data collection and policy

adaptation can be done efficiently together with guaranteeing all-time safety. We

propose a class of online meta update algorithms together with a policy masking

framework. The meta update algorithms achieve high sample efficiency, and sub-

linear growth of dynamic regret is analyzed. All-time safety is formally guaranteed

for any control policy within the masked control policy space. We evaluate our

method on two tasks from OpenAI gym and compare with three benchmarks. The

following paper summarizes the results in Chapter 6:

(J4) Z. Yuan, S. Xu and M. Zhu. “All-time safety and sample-efficient meta

update in online safe meta reinforcement learning”. In preparation.

In addition, the following publications are not included in this dissertation:

(C4) R. Yu, Z. Yuan, M. Zhu and Z. Zhou. “Data-driven distributed state esti-

mation and behavior modeling in sensor networks”, IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 8192-8199, October 2020.

(C5) X. Zhang, Z. Yuan, S. Xu, Y. Lu and M. Zhu. “Secure perception-driven

control of mobile robots using chaotic encryption”, American Control Con-

ference, pp. 2575-2580, May 2021.

(C6) Y. Jung, Z. Yuan, S. Seo, M. Zhu and S. Kim. “Learning neural processes

on the fly”, International Conference on Consumer Electronics Asia, pp.1-4,

October 2022.

(C7) S. Jo, Z. Yuan and S. Kim. “Interactive storyboarding for rapid visual story

generation”, International Conference on Consumer Electronics Asia, pp.1-4,

October 2022.

8

(C8) X. Zhang, Z. Yuan and M. Zhu. “Byzantine-tolerant federated Gaussian

process regression for streaming data”, International Conference on Neural

Information Processing Systems, pp.13499-13511, December 2022.

(C9) T. Zheng, Z. Yuan, M. Nayyar, A. Wagner, M. Zhu and H. Lin. “Multi-robot-

assisted human crowd evacuation using navigation velocity fields”, IEEE

International Conference on Decision and Control, pp. 2061-2066, December

2022.

(C10) Z. Yuan, T. Zheng, M. Nayyar, A. Wagner, H. Lin and M. Zhu. “Multi-

robot-assisted human crowd control for emergency evacuation: A stabiliza-

tion approach”, American Control Conference, pp. 4051-4056, May 2023.

(C11) M. Nayyar, G. Paik, Z. Yuan, T. Zheng, M. Zhu, H. Lin and A. Wagner.

“Characterizing evacuee behavior during a robot-guided evacuation”, IEEE

International Conference on Safety, Security, and Rescue Robotics, Novem-

ber, 2023.

(J5) X. Zhang, Z. Yuan, S. Xu, Y. Lu and M. Zhu. “Secure perception-driven

control of mobile robots using chaotic encryption”, IEEE Transaction on

Automatic Control, 2024. To appear.

(J6) X. Zhang, Z. Yuan, and M. Zhu. “Byzantine-resilient federated online learn-

ing for Gaussian process regression”, Automatica. Provisionally accepted.

(J7) T. Zheng, Z. Yuan, M. Nayyar, A. Wagner, M. Zhu and H. Lin. “Multi-

robot-guided crowd evacuation: Two-scale modeling and control based on

mean-field hydrodynamic models”, IEEE Transactions on Control Systems

Technology. Under review.

9

Chapter 2
Background on Gaussian process

regression

In this chapter, we provide necessary background on Gaussian process regression

(GPR), a powerful tool for safety-critical applications and learning-based control

problems. This chapter is mainly adopted from the book [54].

GPR is an efficient nonparametric statistical learning model for supervised

learning problems, i.e., the problem of learning input-output mappings from em-

pirical data. There are two common approaches to deal with the supervised learn-

ing problem. One is to restrict the class of functions that we consider, for example

by only considering linear functions of the input, which is usually referred as the

frequentist approach. The second approach is to give a prior probability to ev-

ery possible function, where higher probabilities are given to functions that we

consider to be more likely, for example because they are smoother than other

functions, which is usually referred as the Bayesian approach. GPR falls into the

second approach.

In general, let f : X → R be the target function, where X ⊆ Rnx . Given

input x(t) ∈ X at time t, the corresponding output is: y(t) = f(x(t)) + e(t),

e(t) ∼ N (0, σ2
e), where e(t) is the Gaussian measurement noise. Let training data

be in the form D ≜ (X ,y), where X ≜ {x(1), · · · ,x(ns)} is the set of input

data and y ≜ [y(1), · · · , y(ns)]T is the column vector aggregating the outputs.

GPR aims to estimate the function over a set of test data points X∗ ⊂ X using

D by modelling η as a sample from a Gaussian process prior. For simplicity of

10

(a) Prior (b) Posterior

Figure 2.1: A graphical illustration of GPR

illustration, we assume y ∈ R; if y is multi-dimensional, GPR is performed for each

element.

A Gaussian process is a generalization of the Gaussian probability distribution.

The formal definition is given as follows.

Definition 2.0.1. (page 13, [54]) A Gaussian process is a collection of random

variables, any finite number of which have a joint Gaussian distribution. ■

Whereas a probability distribution describes random variables which are scalars

or vectors, a stochastic process governs the properties of functions. A graphical

illustration of how GPR works on some simple regression examples can be found

in Figure 2.1. In Figure 2.1a, a number of sample functions are drawn at random

from the prior distribution over functions specified by a particular Gaussian process

which favors smooth functions. This prior represents our prior beliefs over the kinds

of functions we expect to observe before seeing any data. At any value of x we can

characterize the variability of the sample functions by computing the variance at

that point. The shaded region denotes twice the pointwise standard deviation.

Now suppose we have two observations of the target function given by a dataset

D = {(x1, y1), (x2, y2)}, and we wish to consider functions that pass through these

two data points exactly. This situation is illustrated in Figure 2.1b. The dashed

lines show sample functions which are consistent with D, and the solid line depicts

the mean value of such functions. Notice that the uncertainty is reduced close to

the observations. The combination of the prior and the data leads to the posterior

distribution over functions.

11

The specification of the prior is important, because it fixes the properties of

the functions considered for inference. A Gaussian process is completely specified

by its mean function µ(x) and covariance function k(x,x′), which is also referred

as the kernel function. Then the training outputs y and the test outputs f(X∗)

are jointly distributed according to the prior as:[
y

f(X∗)

]
∼ N (

[
µ(X)
µ(X∗)

]
,

[
k(X ,X) + σ2

eIns k(X ,X∗)

k(X∗,X) k(X∗,X∗)

]
),

where k(X ,X∗) returns a matrix such that the entry at the ith row and the jth

column is k(x(i),x∗(j)), x∗(j) ∈ X∗, and analogously for k(X ,X) and k(X∗,X∗).

Utilizing identities of joint Gaussian distribution (page 200, [54]), we arrive at the

predictive distribution of f(X∗) | X ,y, or the conditional (posterior) distribution

on f(X∗) based on dataset D, as f(X∗) ∼ N (µX∗|D,ΣX∗|D), where

µX∗|D ≜ µ(X∗) + k(X∗,X)̊k(X ,X)−1(y − µ(X)),

ΣX∗|D ≜ k(X∗,X∗)− k(X∗,X)̊k(X ,X)−1k(X ,X∗), (2.1)

where k̊(X ,X) ≜ k(X ,X) + σ2
eIns . We refer (2.1) as full GPR. Therefore, the

distributional predictions of GPR naturally provides uncertainty quantification for

its outputs. With proper choice of prior covariance function, or kernel, and mild

assumptions of the target function, it has been proven that GPR is able to con-

sistently approximate any continuous function [55]. With optimal sampling in the

input space and covariance functions obeying Sacks-Ylvisaker conditions of order r,

the generalization error of GPR diminishes at the rate ofO(n−(2r+1)/(2r+2)
s) (Section

V.2, [56]). GPR has demonstrated powerful capabilities in various applications,

e.g., optimization [57][37], motion planning [58], and trajectory estimation [59].

2.1 Relationships between GPs and ridge regres-

sion

Given a dataset D, there are infinitely many functions that are consistent with

it. GPR approaches this problem by putting a prior over functions. A related

12

viewpoint is provided by regularization theory where one seeks a trade-off between

data-fit and the reproducing kernel Hilbert space (RKHS) norm of function. It is

also closely related to the MAP estimator in GP prediction. In this section, we

briefly introduce RKHS and discuss how GPR is closely related to ridge regression.

2.1.1 Reproducing kernel Hilbert spaces

We start with the formal definition of RKHS.

Definition 2.1.1. (Reproducing kernel Hilbert space, page 130 [54]). Let Hk be a

Hilbert space of real functions f defined on an index set X . Then Hk is called a

reproducing kernel Hilbert space endowed with an inner product ⟨·, ·⟩k (and norm

∥f∥k =
√
⟨f, f⟩) if there exists a function k : X × X → R with the following

properties: i) for every x, k(x,x′) as a function of x′ belongs to Hk, and ii) k has

the reproducing property ⟨f(·), k(·,x)⟩k = f(x). ■

The RKHS uniquely determines k, and vice versa, as stated in the following

theorem:

Theorem 2.1.2. (Moore-Aronszajn theorem, page 130 [54]). Let X be an index

set. Then for every positive definite function k(·, ·) on X ×X there exists a unique

RKHS, and vice versa. ■

Consider a real positive semidefinite kernel k(x,x′) (see Section 2.2.1 for more

discussion) with an eigenfunction expansion k(x,x′) =
∑N

i=1 λiϕi(x)ϕi(x
′) relative

to a measure ν. Note that the eigenfunctions are orthogonal with respect to ν:∫
ϕi(x)ϕj(x)dν(x) = δij, where δij is the Kronecker delta. We now consider a

Hilbert space comprised of linear combinations of the eigenfunctions, i.e., f(x) =∑N
i=1 fiϕi(x) with

∑N
i=1 f

2
i /λi <∞. We assert that the inner product ⟨f, g⟩k in the

Hilbert space specified by kernel k between functions f(x) and g(x) =
∑N

i=1 giϕi(x)

is defined as

⟨f, g⟩k =
N∑
i=1

figi
λi

.

Thus this Hilbert space is equipped with a norm ∥f∥k where ∥f∥2k = ⟨f, f⟩k =

13

∑N
i=1 f

2
i /λi. Note that for ∥f∥k to be finite the sequence of coefficients {fi} must

decay quickly; this effectively imposes a smoothness condition on the space.

The reproducing property of this Hilbert space can be easily achieved as

⟨f(·), k(·,x)⟩k =
N∑
i=1

fiλiϕi(x)

λi
= f(x).

Similarly,

⟨k(x, ·), k(x′, ·)⟩k =
N∑
i=1

λiϕi(x)λiϕi(x
′)

λi
= k(x,x′).

2.1.2 Connection to ridge regression

Consider the Bayesian analysis of the standard linear regression model with Gaus-

sian noise

f(x) = xTw, y = f(x) + ϵ

where x is the input vector, w is the weights of the linear model, f is the func-

tion value and y is the observed target value, and ϵ ∼ N (0, σ2
e) is additive noise

following independently and identically distributed Gaussian distribution. This

noise assumption together with the model directly gives rise to the likelihood, the

probability density of the observations given the parameters, which is factored over

cases in the training set to give

p(y|X,w) =
n∏
i=1

p(yi,xi,w) =
n∏
i=1

1√
2πσe

exp(−(yi − xTi w)2

2σ2
e

)

=
1

(2πσ2
e)
n/2

exp(− 1

2σ2
e

|y −XTw|2) = N (XTw, σ2
eI)

where X is the matrix aggregating the column input vectors, |z| denotes the Eu-

clidean length of vector z. The Bayesian formalism allows us to specify a prior

over the parameters, expressing our beliefs about the parameters before we look

at the observations. We put a zero-mean Gaussian prior with covariance matrix

14

Σw on the weights,

w ∼ N (0,Σw).

Inference in the Bayesian linear model is based on the posterior distribution over

the weights, computed by Bayes’ rule,

posterior =
likelihood× prior

marginal likelihood
, p(w|y, X) =

p(y|X,w)p(w)

p(y|X)

where the normalizing constant, also known as the marginal likelihood, is indepen-

dent of the weights and given by

p(y|X) =

∫
p(y|X,w)p(w)dw.

Writing only the terms from the likelihood and prior which depend on the weights,

and “completing the square”, we obtain

p(w|X,y) ∝ exp(− 1

2σ2
e

(y −XTw)T (y −XTw)) exp(−1

2
wTΣ−1

w w)

∝ exp(−1

2
(w − w̄)T (

1

σ2
XXT + σ−1

w)(w − w̄))

where w̄ = σ−2(σ−2
e XXT +Σ−1

w)−1Xy. This gives the form of the posterior distri-

bution as Gaussian with mean w̄ and covariance matrix A−1

p(w|X,y) ∼ N (w̄ =
1

σ2
e

A−1Xy, A−1),

where A = σ−2
e XXT +Σ−1

w . Thus the predictive distribution for f(x∗) is given by

p(f(x∗)|X,y) =
∫
p(f(x∗)|w)p(w|X,y)dw = N (

1

σ2
e

xT∗A
−1Xy,xT∗A

−1x∗).

Using linear model can suffers from limited expressiveness. A simple idea to

overcome this problem is to first project the inputs into some high dimensional

space using a set of basis functions and then apply the linear model in this space

instead of directly on the inputs themselves. For example, a scalar input x could

be projected into the space of powers of x: ϕ(x) = (1, x, x2, x3, · · ·)T to implement

15

polynomial regression. In general, we introduce the function ϕ(x) which maps a

nx-dimensional input vector x into an nϕ-dimensional feature space. Further let

Φ(X) be the aggregation of columns ϕ(x) for all cases in the training set. Now the

model is

f(x) = ϕ(x)Tw. (2.2)

Following analogous analysis to the standard linear model, the predictive distribu-

tion becomes

f(x∗)|X,y ∼ N (
1

σ2
e

ϕ(x∗)
TA−1Φ(X)y, ϕ(x∗)

TA−1ϕ(x∗))

where A = σ−2
e Φ(X)Φ(X)T + Σ−1

w . This can also be rewritten as

f(x∗)|X,y ∼ N (ϕ(x∗)
TΣwΦ(X)(K + σ2

eI)
−1y,

ϕ(x∗)
TΣwϕ(x∗)− ϕ(x∗)

TΣwΦ(X)(K + σ2
eI)

−1Φ(X)TΣwϕ(x∗)).

Define k(x,x) = ϕ(x∗)
TΣwϕ(x∗). Then the posterior mean and variance of

f(x∗) have the expression the same as (2.1) when the prior mean is set to zero:

µ(x∗) = 0. Notice that for this model, the mean of the posterior distribution

p(f(x∗)|X,y) is also its mode, which is also the maximum a posteriori (MAP)

estimate of f(x∗).

The model in (2.2) also enables learning f through kernel ridge regression.

Consider the functional

J [f] =
1

2
∥f∥2k +

1

2σ2
e

n∑
i=1

(yi − f(xi))2

which uses a squared error data-fit term (corresponding to the negative log likeli-

hood of a Gaussian noise model with variance σ2
e). By penalizing the RKHS norm,

this formulation automatically limits the solution within the RKHS induced by

kernel k(x,x′) = ϕ(x)Tϕ(x), or Σw = I. The representer theorem shows that each

minimizer f ∈ Hk of J [f] has the form f(x) =
∑n

i=1 αik(x,xi). Hence substituting

16

f(x) =
∑n

i=1 αik(x,xi) and using ⟨k(·,xi), k(·,xj)⟩k = k(xi,xj) we obtain

J [a] =
1

2
αTk(X ,X)α+

1

2σ2
e

|y − k(X ,X)α|2

=
1

2
αT (k(X ,X) + 1

σ2
e

k(X ,X)2)α− 1

σ2
e

yTk(X ,X)α+
1

2σ2
e

yTy.

Minimizing J by differentiating w.r.t. the vector of coefficients α we obtain

α̂ = (k(X ,X) + σ2
eI)

−1y, so that the prediction for a test point x∗ is f̂(x∗) =

k(x∗,X)T (k(X ,X) + σ2
eI)

−1y, which is exactly the form of the predictive mean in

(2.1) when µ(x∗) = 0.

In conclusion, GPR is consistent with the MAP estimator as well as the opti-

mal solution to kernel ridge regression. Yet uncertainty in predictions as well as

marginal likelihood are omitted in the later two methods, compared to GPR.

2.2 Covariance functions

Covariance function is the crucial ingredient in a Gaussian process predictor be-

cause it encodes our assumptions about the function which we wish to learn. It is

a basic assumption that points with inputs close to each other should have similar

target values, and thus training points that are near to a test point should be

informative about the prediction at that point. This is particularly useful in learn-

ing continuous functions. Under the view of Gaussian process, it is the covariance

function that defines nearness or similarity.

An arbitrary function of input pairs x and x′ will not, in general, be a valid

function. This section aims to give examples and properties of some commonly-

used covariance functions.

2.2.1 Terminologies

A stationary covariance function is a function of x − x′. Thus it is invariant to

translations in the input space. If further the covariance function is a function

only of |x− x′| then it is called isotropic; it is thus invariant to all rigid motions.

Isotropic covariance functions are also known as radial basis functions since it is

only a function of r = |x− x′|.

17

A dot product covariance function depends only on x and x′ through x · x′. It

is invariant to a rotation of the coordinates about the origin, but not translations.

A general name for a function k of two arguments mapping a pair of inputs

x,x′ ∈ X into R is a kernel. A real kernel is said to be symmetric if k(x,x′) =

k(x′,x); clearly covariance functions must be symmetric from the definition.

Given a set of inputs X = {x(t)}nt=1, we can compute the Gram matrix k(X ,X)
whose entry at the i-th row j-th column is k(x(i),x(j)). If k is a covariance function

we call the matrix k(X ,X) the covariance matrix.

A real n × n matrix k(X ,X) which satisfies Q(v) = vTk(X ,X)v ⩾ 0 for all

vectors v ∈ Rn is called positive semidefinite (PSD). A symmetric matrix is PSD

if and only if all of its eigenvalues are non-negative. A Gram matrix corresponding

to a general kernel function need not be PSD, but the Gram matrix corresponding

to a covariance function is PSD.

A kernel is said to be positive semidefinite (PSD) if∫
k(x,x′)f(x)f(x′)dν(x)dν(x′) ⩾ 0

for all f ∈ L2(X , ν), where ν denotes a measure. Equivalenty a kernel function

which give rise to PSD Gram matrices for any choice of n ∈ N and D is positive

semidefinite.

2.2.2 Eigenfunction analysis of kernels

It turns out that GPR can be viewed as Bayesian linear regression with a possibly

infinite number of basis functions (see Section 2.1.2). One possible basis set is the

eigenfunctions of the covariance function. A function ϕ(·) that obeys the integral

equation ∫
k(x,x′)ϕ(x)dν(x) = λϕ(x)

is called an eigenfunction of kernel k with eigenvalue λ with respect to measure

ν. In general, there are infinite number of eigenfunctions, which we label ϕ1(x),

ϕ2(x), · · · . We assume the ordering is chosen such that λ1 ⩾ λ2 ⩾ · · · . The

eigenfunctions are orthogonal with respect to ν and can be chosen to be normalized

18

so that
∫
ϕi(x)ϕj(x)dν(x) = δij where δij is the Kronecker delta.

Mercer’s theorem below allows us to express the kernel k in terms of the eigen-

values and eigenfunctions.

Theorem 2.2.1. (Mercer’s theorem, page 96 [54]). Let (X , ν) be a finite measure

space and k ∈ L∞(X 2, ν2) be a kernel such that Tk : L2(X , ν)→ L2(X , ν) is posi-

tive definite. Let ϕi ∈ L2(X , ν) be the normalized eigenfunctions of Tk associated

with the eigenvalues λi > 0. Then:

1. the eigenvalues {λi}∞i=1 are absolutely summable;

2. k(x,x′) =
∑∞

i=1 λiϕi(x)ϕ
∗
i (x

′) holds ν2 almost everywhere, where the series

converges absolutely and uniformly ν2 almost everywhere.

This decomposition is just the infinite-dimensional analogue of the diagonal-

ization of a Hermitian matrix. Note that the sum may terminate at some value

N ∈ N, or the sum may be infinite. This gives the following definition.

Definition 2.2.2. A degenerate kernel has only a finite number of non-zero eigen-

values.

A degenerate kernel is also said to have finite rank. If a kernel is not degenerate

it is said to be nondegenerate.

2.2.3 Examples of covariance functions

Figure 2.2 below summarizes several commonly-used covariance functions, where

the covariances are written either as a function of x and x′, or as a function of

r = |x−x′|, the two columns marked as ‘S’ and ‘ND’ indicate whetherthe covariance

functions are stationary and nondegenerate respectively.

19

Figure 2.2: Summary of several commonly-used covariance functions

20

Chapter 3
Distributed Gaussian process

regression

3.1 Introduction

In this chapter, we develop a class of distributed machine learning algorithms for

machine learning in multiple robots. In particular, we study Gaussian process

regression (GPR) [54] because it has high expressive power and high consistency

in function approximation. Meanwhile, its mathematical formulation applying

Bayesian inference naturally provides uncertainty quantification, which is highly

useful for safety-critical applications.

GPR scales as O(n3
s) in computational complexity and O(n2

s) in memory (page

171, [54]), which prohibits applications with large datasets. There are multiple

sparse approximation methods for large datasets. One major class of approxima-

tion methods, which is also referred as global approximation, tackles the computa-

tional complexity by achieving the sparsity of the Gram matrix. Methods include

using a subset of data to approximate the whole training dataset, designing a

sparse kernel, and sparsifying the Gram matrix. The best possible result can be

achieved by global approximation algorithms is O(m3
s) in computational complex-

ity and O(m2
s) in memory, where ms ≪ ns is the number of inducing points or the

size of a subset of training data. More details about global approximation can be

found in the recent survey paper [60]. In the community of Geostatistics, Nearest-

21

neighbor GPR [61] is applied [62][63], where the predictions are made only using

the training data of the nearest input. It requires only O(ns) in both memory and

(worst-case) computation.

Centralized implementation of GPR is not suitable for networks of agents due

to poor scalability in data size, high cost in communication and memory, and

fragility to single-point failures. There have been studies on distributed GPR over

server-client architecture, which is also referred to as divide-and-conquer approach

or local approximations [60]. In the server-client architecture, a server acts as the

centralized entity that partitions a dataset and assigns each subset of the data to

computing units (clients). The clients perform training independently and send

their learning results to the server for post-processing. These methods speed up

the training process and are able to scale to arbitrarily large datasets. Commu-

nication budget constraint is considered in [64] by reducing the dimensionality of

transmitted data to approximate the whole dataset. Sparse approximation of full

GPR is used in [64] to further relieve the communication overhead. Notice that the

server-client architecture requires each client being well-connected with the server,

and is not robust to the failure of the server. Paper [65] decentralizes sparse ap-

proximations of full GPR for fixed datasets over complete communication graphs.

A distributed algorithm is also proposed to deal with fixed and sparse graphs.

However, this chapter considers offline learning with static datasets on the agents

and does not provide theoretic guarantee on the distributed algorithm.

Our work is related to multi-agent regression using kernel methods and basis

functions. Papers [66][67][68] study offline learning, where all training data is

provided before learning, using kernel methods. Papers [69][70][71] study online

learning, where training data is collected successively by mobile robots, using basis

functions. In particular, they approximate the unknown functions with a linear

combination of a finite number of known basis functions. This reduces the problem

into a parameter estimation problem. From the perspective of regression, the

problem investigated in [69] is equivalent to selecting the centers of a finite number

of basis functions defined by Voronoi partition. In contrast, this chapter considers

online learning of abstract agents using Gaussian processes, where the unknown

function is modelled as a sample from a distribution of functions.

Contribution statement. We consider the problem where a group of agents

22

aim to collaboratively learn a common static latent function through streaming

data. We propose Lightweight Distributed Gaussian Process Regression (LiDGPR)

algorithm for the agents to solve the problem. More specifically, each agent in-

dependently runs agent-based GPR using local streaming data to predict the test

points of interest; then the agents collaboratively execute distributed GPR to ob-

tain global predictions over a common sparse set of test points; finally, each agent

fuses the results from distributed GPR with those from agent-based GPR to re-

fine its predictions. Our analysis of the transient and steady-state performances

in predictive variance and error reveals that through communication agents whose

data samples have lower dispersion (or observation noise has lower variance) help

improve the performance of the agents whose data samples have higher dispersion

(or observation noise has higher variance). The improvements in learning perfor-

mances are in the sense of Pareto, i.e., some agents’ performances improve without

sacrificing other agents’ performances. In summary, our major contributions are

two-fold:

• We develop LiDGPR that is cognizant of agents’ limited capabilities in com-

munication, computation and memory.

• We analyze the predictive mean and variance of LiDGPR and quantify the

improvements of the agents’ learning performances resulted from inter-agent

communication.

Monte Carlo simulation is conducted to evaluate the developed algorithm.

Notations: We use lower-case letters, e.g., a, to denote scalars, bold letters,

e.g., a, to denote vectors; we use upper-case letters, e.g., A, to denote matrices,

calligraphic letters, e.g., A, to denote sets, and bold calligraphic letters, e.g., A, to

denote spaces. For any vector a, we use ai to denote the i-th entry of a. For any

matrix A, we denote aij as the entry at i-th row j-th column. Denote In ∈ Rn×n

the n-by-n-dimensional identity matrix, 1n ∈ Rn the n-dimensional column vector

with all 1’s, i.e., [1, · · · , 1]T , and 0n analogously.

We use superscript (·)[i] to distinguish the local values of agent i, and (·)max

((·)min) denote the maximum (minimum) of the local values, e.g., amax ≜ maxi∈V a
[i].

We denote superscript (·)T the transpose of a vector or matrix, bracket [·]E the col-

umn vector with elements satisfying event E . Denote Ea[·] the expectation taken

23

over the distribution of random variable a, and P{·} a distribution. We use O(·)
to denote the conventional Big O notation, i.e., O(g(t)) represents the limiting

behavior of some function f(t) if lim
t→∞

f(t)
g(t)

= a for some constant a > 0.

We use ⪰ (⪯) to denote element-wise comparison between two vectors, i.e.,

for any a, b ∈ Rn, a ⪰ (⪯)b if and only if ai ⩾ (⩽)bi for all i = 1, · · · , n.
Operation |a| takes the absolute values element-wise on vector a, |A| returns the
cardinality of set A, ∥a∥∞ ≜ maxj |aj| for any vector a. Define the distance

metric ρ(z, z′) ≜ ∥z − z′∥, the point to set distance as ρ(z,Z) ≜ inf
z′∈Z

ρ(z, z′).

Define proj(z,Z) ≜ {z′ ∈ Z|ρ(z, z′) = ρ(z,Z)} the projection set of point z onto

set Z. Denote the supremum of a function η as ∥η∥Z ≜ supz∈Z |η(z)|.

3.2 Problem statement

Network model. Consider a network of agents represented by a directed time-

varying communication graph G(t) ≜ (V , E(t)), where V ≜ {1, · · · , n} represents
the agent set, and E(t) ⊆ V × V denotes the edge set at time t. Notice that

(i, j) ∈ E(t) if and only if agent i can receive messages from agent j at time t.

Define the set of the neighbors of agent i at time t as N [i](t) ≜ {j ∈ V : (i, j) ∈
E(t), and j ̸= i}. The matrix A(t) ∈ Rn×n represents the adjacency matrix of G(t)
where aij(t) ̸= 0 if (i, j) ∈ E(t). We make the following standard assumptions [72]

about the network topology:

Assumption 3.2.1. (Periodical Strong Connectivity). There exists positive inte-

ger b ⩾ 1 such that, for all time instant t ⩾ 0, the directed graph (V , E(t) ∪ E(t+
1) ∪ · · · ∪ E(t+ (b− 1))) is strongly connected. ■

This guarantees the information of each agent can reach any other agents in

the network within finite time.

Assumption 3.2.2. (Balanced Communication). It holds that 1TnA(t) = 1Tn and

A(t)1n = 1n, for all t ⩾ 0. ■

In the consensus literature, the first part of Assumption 3.2.2 is called column

stochasticity and is a standard sufficient condition to reach consensus. The second

part is called row stochasticity and is needed to guarantee average consensus.

24

Assumption 3.2.3. (Non-degeneracy). There exists a constant α > 0 such that

aii(t) ⩾ α and aij(t) ∈ {0} ∪ [α, 1], i ̸= j, for all t ⩾ 0. ■

That is, each agent assigns nontrivial weights on information from itself and

its neighbors.

Observation model. At each time instant t, each agent independently observes

the outputs of a continuous common static latent function η : Z → Y with zero-

mean Gaussian noise, where Z ⊆ Rnz is the compact input space for η. The

observation model is given by

y[i](t) = η(z[i](t)) + e[i](t), e[i](t) ∼ N (0, (σ[i]
e)

2), (3.1)

where z[i](t) ∈ Z is the input of η from agent i at time t, y[i](t) ∈ Y is the obser-

vation of agent i, and e[i](t) is independent Gaussian noise. Note that we do not

assume that input z[i](t) follows any distribution, which is a standard assumption

in statistical learning [51]. We let η(Z) return a column vector [η(z)]z∈Z , and sim-

ilarly for other functions. For notational simplicity, it is assumed that the output

space Y ⊆ R because multi-dimensional observations can always be decomposed

as aggregation of one-dimensional observations.

Problem Statement. The objective of this chapter is to design a distributed

algorithm for the agents to learn the common static latent function η via streaming

data {y[i](t), z[i](t)}t⩾1. The challenges of the problem stem from the fact that the

training dataset is monotonically expanding due to incremental sampling while the

agents have limited resources in communication, computation and memory.

The followings are examples of potential applications of this formulation. One

example can be a group of mobile robots deployed in a vast open area to collab-

oratively monitor a static signal, such as temperature or wind field (see the case

study in Section 4.5). Other examples includes the learning of the dynamics of a

moving target using a network of static sensors [73]. In addition to robotic appli-

cations, this formulation also applies to profit predictions in marketing and wheat

crop prediction [74].

25

Figure 3.1: Flow diagram of LiDGPR in one iteration

3.3 Lightweight distributed GPR

In this section, we propose the Lightweight distributed GPR (LiDGPR) algorithm

which allows the agents to collaboratively learn the static latent function subject to

limited resources. As shown in Figure 3.1, LiDGPR is composed of three parts: (i)

agent-based GPR (Algorithm 2), where the agents make their own predictions of

η over a given set of points of interest Z∗ ⊆ Z using local streaming data D[i](t) ≜

(Z [i](t),y[i](t)), where Z [i](t) ≜ {z[i](1), · · · , z[i](t)} aggregates local input data

and y[i](t) ≜ [y[i](1), · · · , y[i](t)]T aggregates the outputs; (ii) distributed GPR

(Algorithm 3), where the agents integrate their predictions with those of their

neighbors on a pre-defined common set Zagg ⊂ Z∗ and estimate the predictions

on this set given the global training datatset D(t) ≜ ∪i∈VD[i](t); (iii) fused GPR

(Algorithm 4), where the agents refine the predictions on Z∗ by fusing the results

from distributed GPR with those from agent-based GPR. The formal statement

of LiDGPR is presented in Algorithm 1. For each iteration t, each agent i collects

data online and updates local dataset D[i](t) = D[i](t − 1) ∪ (z[i](t), y[i](t)), and

then sequentially executes agent-based GPR, distributed GPR, and fused GPR.

26

Algorithm 1 LiDGPR

1: procedure
2: Input: network of agents: V ; test inputs: Z∗; common inputs: Zagg;

adjacency matrix: A(t); prior mean function: µ; kernel function: k; noise

variance: (σ
[i]
e)2 for i ∈ V .

3: Init: D(0) = ∅, ξ[i](0) = r
[i]
ξ (−1) = 0|Zagg |, r

[i]
ξ (0) = 1

σ2
f
1|Zagg |, θ

[i](0) =

r
[i]
θ (0), λ

[i](0) = r
[i]
λ (0), σ

2
f satisfying (3.4).

4: for t = 1, 2, · · · do
5: for i ∈ V do
6: D[i](t) = D[i](t− 1) ∪ (z[i](t), y[i](t))
{Agent-based GPR}

7: µ̌Z∗|D[i](t), σ̌
2
Z∗|D[i](t)

= aGPR(D[i](t))

{Distributed GPR}
8: µ̂

[i]
Zagg |D(t), (σ̂

[i]
Zagg |D(t))

2, (σ̂
ave,[i]
Zagg |D(t))

2 = dGPR(µ̌Zagg |D[i](t), σ̌
2
Zagg |D[i](t)

)

{Fused GPR}
9: µ̃

[i]
Z∗|D(t), (σ̃

[i]
Z∗|D(t))

2 = fGPR(µ̌Z∗|D[i](t), σ̌2
Z∗|D[i](t)

, µ̂
[i]
Zagg |D(t),

(σ̂
[i]
Zagg |D(t))

2, (σ̂
ave,[i]
Zagg |D(t))

2)
10: end for
11: end for
12: end procedure

3.3.1 Agent-based GPR

To reduce computational complexity, we implement Nearest-neighbor GPR as

agent-based GPR. Instead of feeding the whole training dataset to full GPR in

(2.1), agent-based GPR only feeds the nearest input z
[i]
∗ (t) ∈ proj(z∗,Z [i](t)), and

the corresponding output y
[i]

z
[i]
∗ (t)

, i.e., (z
[i]
∗ (t), y

[i]

z
[i]
∗ (t)

), to (2.1) for each z∗ ∈ Z∗. If

there are repeated observations over z
[i]
∗ (t), y

[i]

z
[i]
∗ (t)

can be the average of the ob-

servations. The predictive mean and variance for each z∗ are given in Line 4 and

5 of agent-based GPR. Agent-based GPR returns µ̌Z∗|D[i](t) ≜ [µ̌z∗|D[i](t)]z∗∈Z∗ and

σ̌2
Z∗|D[i](t)

≜ [σ̌2
z∗|D[i](t)

]z∗∈Z∗ .

3.3.2 Distributed GPR

Note that each agent only maintains D[i](t), a portion of the global training dataset

D(t). Besides collecting more data, information exchanges between the agents

27

Algorithm 2 Agent-based GPR

1: procedure aGPR(D[i](t))
2: for z∗ ∈ Z∗ do
3: choose z

[i]
∗ (t) ∈ proj(z∗,Z [i](t))

4: µ̌z∗|D[i](t) = µ(z∗) + k(z∗, z
[i]
∗ (t))̊k(z

[i]
∗ (t), z

[i]
∗ (t))−1(y

[i]

z
[i]
∗ (t)
− µ(z[i]

∗ (t)))

5: σ̌2
z∗|D[i](t)

= k(z∗, z∗)− k(z∗, z
[i]
∗ (t))̊k(z

[i]
∗ (t), z

[i]
∗ (t))−1k(z

[i]
∗ (t), z∗)

6: end for
7: Return µ̌Z∗|D[i](t), σ̌

2
Z∗|D[i](t)

8: end procedure

could enhance the learning performance upon agent-based GPR. However, lim-

ited communication budget prevents the agents from sharing D[i](t), whose size

monotonically increases. Hence, we develop distributed GPR where the agents

communicate with the predictive means and variances over a common set Zagg.
In order to deal with large dataset using GPR, local approximation methods

such as Product of Expert (PoE) [75] and Bayesian Committee Machine [76] are

proposed to factorize the training process. We consider the following PoE aggre-

gation model for predicting each z∗ ∈ Zagg:

µ̌
(agg)
z∗|D(t) =

(σ̌
(agg)
z∗|D(t))

2

n

n∑
i=1

σ̌−2
z∗|D[i](t)

µ̌z∗|D[i](t), (3.2)

(σ̌
(agg)
z∗|D(t))

−2 =
1

n

n∑
i=1

σ̌−2
z∗|D[i](t)

, (3.3)

which is consistent with full GPR (Proposition 2, [77]).

The two summations in (3.2) and (3.3) involve the global training dataset. To

decentralize the computation, we consider the computation of the two summations

as a dynamic average consensus problem and use FODAC in [78] to track the

time-varying sums in a distributed manner. Denote
(
θ[i](t), ξ[i](t),λ[i](t)

)
the con-

sensus states of agent i. Each entry of the consensus states,
(
θ
[i]
z∗(t), ξ

[i]
z∗(t), λ

[i]
z∗(t)

)
,

estimates
(
1
n

∑n
i=1 σ̌

−2
z∗|D[i](t)

µ̌z∗|D[i](t),
1
n

∑n
i=1 σ̌

−2
z∗|D[i](t)

, 1
n

∑n
i=1 σ̌

2
z∗|D[i](t)

)
for each

z∗ ∈ Zagg. State λ[i](t) is used as one of the criteria for applying fusion be-

tween agent-based GPR and distributed GPR in fused GPR. The dynamics of

FODAC is shown in Line 4, Line 6 and Line 8 of distributed GPR respectively for

28

Algorithm 3 Distributed GPR

1: procedure dGPR(µ̌Zagg |D[i](t), σ̌
2
Zagg |D[i](t)

)

2: for z∗ ∈ Zagg do
{Dynamic average consensus}

3: r
[i]
θ,z∗

(t) = σ̌−2
z∗|D[i](t)

µ̌z∗|D[i](t)

4: θ
[i]
z∗(t) = θ

[i]
z∗(t−1)+

∑
j ̸=i aij(t−1)(θ

[j]
z∗(t−1)−θ[i]z∗(t−1))+∆r

[i]
θ,z∗

(t−1)

5: r
[i]
ξ,z∗

(t) = σ̌−2
z∗|D[i](t)

6: ξ
[i]
z∗(t) = ξ

[i]
z∗(t−1)+

∑
j ̸=i aij(t−1)(ξ

[j]
z∗(t−1)−ξ[i]z∗(t−1))+∆r

[i]
ξ,z∗

(t−1)

7: r
[i]
λ,z∗

(t) = σ̌2
z∗|D[i](t)

8: λ
[i]
z∗(t) = λ

[i]
z∗(t−1)+

∑
j ̸=i aij(t−1)(λ

[j]
z∗(t−1)−λ

[i]
z∗(t−1))+∆r

[i]
λ,z∗

(t−1)
{Prediction on Zagg}

9: (σ̂
[i]
z∗|D(t))

2 = (ξ
[i]
z∗(t))

−1

10: µ̂
[i]
z∗|D(t) = (σ̂

[i]
z∗|D(t))

2θ
[i]
z∗(t)

11: (σ̂
ave,[i]
z∗|D(t))

2 = λ
[i]
z∗(t)

12: end for
13: Send (θ[i](t), ξ[i](t),λ[i](t)) to N [i](t)

14: Return µ̂
[i]
Zagg |D(t), (σ̂

[i]
Zagg |D(t))

2, (σ̂
ave,[i]
Zagg |D(t))

2

15: end procedure

each consensus state, where ∆r(t) ≜ r(t)− r(t−1) denotes the temporal change of

the signal r. Specifically, θ
[i]
z∗(t) tracks the average of the signal r

[i]
θ,z∗

(t) defined in

Line 3 among the agents. In particular, agent i computes a convex combination of

θ
[j]
z∗(t) for j ∈ {i} ∪ N [i](t − 1), and then adds the combination into the temporal

change of r
[i]
θ,z∗

(t). The update laws for ξ
[i]
z∗(t) and λ

[i]
z∗(t) are similar. The updated

states are sent to each agent in N [i](t) as in Line 13. Notice that consensus is not

necessarily reached at each time t. We will show that consensus is reached in an

asymptotic way in Section 3.4.2.

3.3.3 Fused GPR

Fused GPR aims to refine predictions of η(Z∗) by integrating agent-based GPR

with distributed GPR. The goal is to obtain an estimate of the predictive dis-

tribution P{η(z∗)|D(t)} for each z∗ ∈ Z∗. Note that distributed GPR obtains

new estimates of η(Zagg) by combining results from each agent through convex

combination. It can return results with more uncertain predictions, and these pre-

29

Algorithm 4 Fused GPR

1: procedure fGPR(µ̌Z∗|D[i](t), σ̌
2
Z∗|D[i](t)

, µ̂
[i]
Zagg |D(t), (σ̂

[i]
Zagg |D(t))

2, (σ̂
ave,[i]
Zagg |D(t))

2)

2: Z [i]
agg(t) = {zagg ∈ Zagg|(σ̂[i]

zagg |D(t))
2 < σ̌2

zagg |D[i](t)
and (σ̂

ave,[i]
zagg |D(t))

2 <

σ̌2
zagg |D[i](t)

}
3: if Z [i]

agg(t) == ∅ then

4: Return µ̃
[i]
Z∗|D(t) = µ̌Z∗|D[i](t), (σ̃

[i]
Z∗|D(t))

2 = σ̌2
Z∗|D[i](t)

5: end if
6: for z∗ ∈ Z∗ do
7: choose z

[i]
agg∗(t) ∈ proj(z∗,Z [i]

agg(t))

8: g
[i]
z∗(t) = g(z∗, t)k(z∗, z

[i]
agg∗(t))

9: v
[i]
z∗(t) = g

[i]
z∗(t)σ̌

−2

z
[i]
agg∗(t)|D[i](t)

10: µ
′[i]
z
[i]
agg∗(t)|D(t)

= µ̂
[i]

z
[i]
agg∗(t)|D(t)

− µ̌
z
[i]
agg∗(t)|D[i](t)

11: µ̃
[i]
z∗|D(t) = v

[i]
z∗(t)µ

′[i]
z
[i]
agg∗(t)|D(t)

+ µ̌z∗|D[i](t)

12: (σ̃
[i]
z∗|D(t))

2 = σ̌2
z∗|D[i](t)

+ (v
[i]
z∗(t))

2
(
(σ̂

[i]

z
[i]
agg∗(t)|D(t)

)2 − σ̌2

z
[i]
agg∗(t)|D[i](t)

)
13: end for
14: Return µ̃

[i]
Z∗|D(t), (σ̃

[i]
Z∗|D(t))

2

15: end procedure

dictions should be ignored. The set of inputs predicted by distributed GPR with

lower uncertainty is defined as Z [i]
agg(t) (Line 2 of fused GPR). Set Z [i]

agg(t) is the

set of inputs zagg ∈ Zagg, where the two variance estimates from distributed GPR,

the estimates of (σ̌
(agg)
zagg |D(t))

−2 in (3.3) and the estimates of 1
n

∑n
i=1 σ̌

2
zagg |D[i](t)

, are

lower than σ̌2
zagg |D[i](t)

from agent-based GPR. If this set is empty (Line 3-4 in fused

GPR), the results from distributed GPR are ignored and those from agent-based

GPR are used. Otherwise, P{η(z∗)|D(t)} is estimated as follows.

Notice that for all zagg ∈ Z [i]
agg(t), we have

P{η(z∗)|D(t)} =
∫
P{η(zagg), η(z∗)|D(t)}dη(zagg),

P{η(z∗), η(zagg)|D(t)} = P{η(zagg)|D(t)} · P{η(z∗)|η(zagg),D(t)}.

However, P{η(zagg)|D(t)} and P{η(z∗)|η(zagg),D(t)} are unknown but can be

estimated using the results from distributed GPR and agent-based GPR respec-

tively. In particular, the results from distributed GPR are used to estimate

30

P{η(zagg)|D(t)} since the estimate has lower variance (uncertainty). The results

from agent-based GPR are used to estimate P{η(z∗)|η(zagg),D(t)} because dis-

tributed GPR is limited to Zagg and z∗ may not be in Zagg. The product of

P{η(z∗)|η(zagg),D(t)} and P{η(zagg)|D(t)}, which yields P{η(z∗), η(zagg)|D(t)},
then contains information from the local agent and those from the other agents

in the network. The overall process can be interpreted as a fusion of global in-

formation with local information, where improvement is expected because more

information is provided. After integrating over η(zagg), we obtain the estimate of

P{η(z∗)|D(t)}. The detailed procedure is broken down into the following steps.

Step 1: Estimation of P{η(zagg)|D(t)}. Consider any zagg ∈ Zagg. Agent i’s es-
timate of P{η(zagg)|D(t)}, denoted by P̃ [i]{η(zagg)|D(t)} ≜ N (µ̂

[i]
zagg |D(t), (σ̂

[i]
zagg |D(t))

2),

is given by distributed GPR.

Step 2: Estimation of P{η(z∗)|η(zagg),D(t))}. Note that agent-based GPR

does not return covariance cov(η(z∗), η(zagg)|D[i](t)) that reflects the correlation

between η(zagg) and η(z∗) similar to k(z∗, zagg). We set cov(η(z∗), η(zagg)|D[i](t)) =

g(z∗, t)k(z∗, zagg) and define

g(z∗, t) ≜
min{σ̌2

z∗|D[i](t)
, σ̌2

zagg |D[i](t)
} ·max{0, c− ψ[i]}

k(z∗, z∗)
,

where c ≜ µ−1
χ

(
1
n

∑n
j=1 χ

[j]ψ[j]
)
, ψ[i] ≜

σ2
f

σ2
f+(σ

[i]
e)2

, χ[i] ≜ 1

(σ
[i]
e)2

+ 1
σ2
f
and µχ ≜

1
n

∑n
i=1 χ

[i]. A distributed method for agent i to obtain (σ
[j]
e)2, j ̸= i, is given

in Section 3.3.4. This ensures covariance matrix

Σ̃z∗,zagg |D[i](t) ≜

[
σ̌2
z∗|D[i](t)

g(z∗, t)k(z∗, zagg)

g(z∗, t)k(z∗, zagg) σ̌2
zagg |D[i](t)

]

is positive definite. We further verify this choice is valid by showing (σ̃
[i]
z∗|D(t))

2 > 0

for all t ⩾ 1 and z∗ ∈ Z∗ in Section 3.4.2.3. We can write

P̃{η(z∗), η(zagg)|D[i](t)} ≜ N (

[
µ̌z∗|D[i](t)

µ̌zagg |D[i](t)

]
, Σ̃z∗,zagg |D[i](t)).

Then agent i’s estimate of P{η(z∗)|η(zagg),D(t))}, denoted by P̃ [i]{η(z∗)|η(zagg),D(t)},

31

is given by P̃{η(z∗)|η(zagg),D[i](t)} applying identities of joint Gaussian distribu-

tion (page 200, [54]) on P̃{η(z∗), η(zagg)|D[i](t)}.
Step 3: Estimation of P{η(z∗)|D(t)}. Combining the previous two steps, agent

i estimates P{η(z∗), η(zagg)|D(t)} as

P̃ [i]{η(z∗), η(zagg)|D(t)} = P̃ [i]{η(zagg)|D(t)} · P̃ [i]{η(z∗)|η(zagg),D(t))}.

Applying the same trick of nearest-neighbor prediction as in agent-based GPR, we

choose zagg = z
[i]
agg∗(t) ∈ proj(z∗,Z [i]

agg(t)) for each z∗ ∈ Z∗. Then we have agent

i’s estimate of P{η(z∗)|D(t)} given by

P̃ [i]{η(z∗)|D(t)} =
∫
P̃ [i]{η(z[i]

agg∗(t)), η(z∗)|D(t)}dη(z[i]
agg∗(t)),

which has mean and variance in Line 11-12 of fused GPR (see Section 3.4.1 for

derivation).

3.3.4 Choice of the kernel

In this chapter, we assume the following properties of the kernel k used in LiDGPR

algorithm.

Assumption 3.3.1. 1. (Decomposition). The kernel function k(·, ·) can be

decomposed in such a way that k(·, ·) = κ(ρ(·, ·)), where κ : R⩾0 → R>0 is

continuous.

2. (Boundedness). It holds that 0 < κ(r) ⩽ σ2
f for all r ⩾ 0 and some σf > 0.

3. (Monotonicity). It holds that κ(r) is monotonically decreasing as r increases

and κ(0) = σ2
f . ■

Remark 3.3.2. In GPR, kernel can be interpreted as the prior correlation between

function evaluations. For a continuous function, it is reasonable to assume bounded

correlation and the correlation is negatively related to the distance between two

inputs. One example that satisfies Assumption 3.3.1 above is the class of squared

exponential kernels having the form k(z, z′) = σ2
f exp(−||z − z′||2/ℓ2) (page 83,

[54]). ■

32

To obtain the theoretic guarantees in Section 3.3.5, σ2
f is chosen for initialization

as follows. Let σ2
χ ≜

∑n
i=1(χ

[i] + µχ)
2, V+ ≜ {i ∈ V|cσ2

f − ψ[i] > 0}, ϵ+ ≜

mini∈V+{cσ2
f − ψ[i]}. We choose σ2

f ⩾ 1 satisfying

σ2
χ/(µ

2
χϵ+) ⩽ (σmin

e)2/(σmax
e)2. (3.4)

When σ2
f increases, χ[i], µχ and σ2

χ converge to positive constants, ϵ+ has growth

rate O(σ2
f), which gives the left hand side of (3.4) diminishing at O(1

σ2
f
). Hence

inequality (3.4) is satisfied when σ2
f is sufficiently large.

A distributed way to choose a single σ2
f is as follows. By using the Floodset

algorithm (page 103, [79]), each agent i sends (σ
[i]
e)2 to its neighbors. By Assump-

tion 3.2.1, within n(b − 1) iterations, each agent obtains a copy of (σ
[i]
e)2 from all

i ∈ V . Then all the values in (3.4) can be calculated. To further consider data fit-

ting, each agent can incorporate (3.4) with existing hyperparameter optimization

methods, such as [80] which uses a given amount of data points collected during

initialization, or [81] which recursively updates whenever new data arrive. The

resulting local hyperparameter of agent i is denoted as σ
[i]
f , then all the agents

employ maximum consensus [82] to compute σf = maxi∈V{σ[i]
f }, which terminates

in n(b− 1) iterations.

3.3.5 Performance guarantee

In this section, we present the performance of predictive mean and variance re-

turned by LiDGPR. The main results are summarized in Theorem 3.3.3 and The-

orem 3.3.8, and their proofs are presented in Section 3.4.2 and Section 3.4.3.

Part of the performance is quantified in terms of the dispersion of local data de-

fined as d[i](t) ≜ sup
z∈Z

ρ(z,Z [i](t)). We can interpret dispersion as a measurement of

how dense the sampled data is distributed within a compact space. For notational

simplicity, we introduce shorthand ρZz ≜ ρ(z,Z).
Theorem 3.3.3 shows that LiDGPR makes predictions with lower uncertainty

than agent-based GPR.

Theorem 3.3.3. (Uncertainty reduction). Part I: Suppose Assumption 3.3.1

holds. For all z∗ ∈ Z and i ∈ V , the predictive variance by agent-based GPR is

33

bounded as
σ2
f (σ

[i]
e)2

σ2
f + (σ

[i]
e)2

⩽ σ̌2
z∗|D[i](t) ⩽ σ2

f −
κ(d[i](t))2

σ2
f + (σ

[i]
e)2

.

Part II: Suppose Assumptions 3.2.1, 3.2.2, 3.2.3 and 3.3.1 hold. For all z∗ ∈ Z
and i ∈ V , there exists a non-negative sequence γ

[i]
σ,z∗(t) such that the predictive

variance by LiDGPR is

0 < (σ̃
[i]
z∗|D(t))

2 = σ̌2
z∗|D[i](t) − γ

[i]
σ,z∗(t).

In particular, if Z [i]
agg(t) = ∅, γ[i]σ,z∗(t) = 0; otherwise:

γ[i]σ,z∗(t) ⩾O
(
κ(ρ

z
[i]
agg∗(t)

z∗)2
(1
n

n∑
j=1

κ(ρ
Z [j](t)

z
[i]
agg∗(t)

)2 −
σ2
f + (σmax

e)2

σ2
f + (σ

[i]
e)2

κ(ρ
Z [i](t)

z
[i]
agg∗(t)

)2
))
. ■

We provide the steady-state results assuming that the dispersion is diminishing.

Lemma 6 in [83] shows that dispersion does go to zero under uniform sampling.

Corollary 3.3.4. If lim
t→∞

d[j](t) = 0 for all j ∈ V and all the conditions in Theorem

3.3.3 are satisfied, then

lim inf
t→∞

γ[i]σ,z∗(t) ⩾ O
(
lim
t→∞

σ̌2
z∗|D[i](t) −

1

n

n∑
j=1

lim
t→∞

σ̌2
z∗|D[j](t)

)
,

where lim
t→∞

σ̌2
z∗|D[j](t)

=
σ2
f (σ

[j]
e)2

σ2
f+(σ

[j]
e)2

. ■

To ensure the improvement on prediction accuracy, we need to assume that the

prior covariance function of η is correctly specified. Note that any non-zero mean

Gaussian process can be decomposed into a deterministic process plus a zero-mean

stochastic process such that GPR can be performed over the zero-mean stochastic

process (page 27, [54]). Therefore, without loss of generality, we assume η follows

a zero-mean Gaussian process for notational simplicity.

Assumption 3.3.5. It satisfies that η ∼ GP(0, k). ■

That is, the target function η is completely specified by a zero-mean Gaus-

sian process with kernel k. This assumption is common in the analysis of GPR

(Theorem 1, [84]).

34

Furthermore, we need to assume that the state transition matrix induced by

A(t) is constant.

Assumption 3.3.6. It holds that
∏t

τ=1A(τ) =
∏t′

τ=1A(τ) for any t, t
′ > 1. ■

One example that satisfies this assumption is each entry of A(t) being constant
1
n
, which is a complete graph.

Furthermore, we assume η is Lipschitz continuous.

Assumption 3.3.7. There exists some positive constant ℓη ∈ R such that supz,z′∈Z

|η(z)− η(z′)| ⩽ ℓηρ(z, z
′). ■

Theorem 3.3.8 below compares the predictive errors of agent-based GPR with

those of LiDGPR.

Theorem 3.3.8. (Accuracy improvement). Part I: Suppose Assumptions 3.3.1,

3.3.5 and 3.3.7 hold. For all z∗ ∈ Z and i ∈ V , with probability at least 1− (σmax
e)2

ϵ2
,

ϵ > σmax
e , the predictive error resulted from agent-based GPR is bounded as

|µ̌z∗|D[i](t) − η(z∗)| ⩽ (1− κ(d[i](t))

σ2
f + (σ

[i]
e)2

)∥η∥Z + ℓηd
[i](t) + ϵ.

Part II: Suppose lim
t→∞

d[i](t) = 0, ∀i ∈ V , and Assumptions 3.2.1, 3.2.2, 3.2.3,

3.3.1, 3.3.5, 3.3.6 and 3.3.7 hold. For all z∗ ∈ Z and i ∈ V : if lim
t→∞
Z [i]
agg(t) ̸= ∅,

then

lim
t→∞

E[(µ̃[i]
z∗|D(t) − η(z∗))

2 − (µ̌z∗|D[i](t) − η(z∗))
2] ⩽ −O

(
κ(ρZagg

z∗)
)
< 0;

otherwise,

lim
t→∞

(µ̃
[i]
z∗|D(t) − η(z∗))

2 = lim
t→∞

(µ̌z∗|D[i](t) − η(z∗))
2.

Further, if (σ[i]
e)

2 >
1

n

n∑
j=1

(σ[j]
e)2, lim

t→∞
Z [i]
agg(t) = Zagg. ■

The two theorems indicate that LiDGPR leverages inter-agent communication

to improve transient and steady-state learning performance; meanwhile, no agent

suffers from degraded learning performance. This improvement of learning per-

formance is achieved by the fact that the agents whose data samples have higher

35

dispersion (or observation noise has higher variance) benefit from those with data

samples having lower dispersion (or observation noise having lower variance) via

communication. Next we elaborate on the fact.

Transient improvement. Term 1
n

∑n
j=1 κ(ρ

Z [j](t)

z
[i]
agg∗(t)

)2 − σ2
f+(σmax

e)2

σ2
f+(σ

[i]
e)2

κ(ρ
Z [i](t)

z
[i]
agg∗(t)

)2 in

the lower bound of γ
[i]
σ,z∗(t) in Theorem 3.3.3 indicates that agent i benefits in vari-

ance prediction when
σ2
f+(σmax

e)2

σ2
f+(σ

[i]
e)2

κ(ρ
Z [i](t)

z
[i]
agg∗(t)

)2 is below 1
n

∑n
j=1 κ(ρ

Z [j](t)

z
[i]
agg∗(t)

)2. Note that

ρ
Z [i](t)

z
[j]
agg∗(t)

is closely related to dispersion d[j](t) and recall the monotonicity property

of κ. Hence, LiDGPR enables agents whose data samples have higher dispersion

(data sparsely sampled) and observation noise has higher variance to benefit from

those with data samples having lower dispersion (data densely sampled) and ob-

servation noise having lower variance.

Steady-state improvement. If lim inf
t→∞

γ
[i]
σ,z∗(t) > 0, it indicates that agent i ob-

tains improvement in steady-state learning performance in predictive variance.

From Corollary 3.3.4, we can see that lim inf
t→∞

γ
[i]
σ,z∗(t) > 0, if its steady-state local

predictive variance, lim
t→∞

σ̌2
z∗|D[i](t)

, is above the average over the agents in V . By

Corollary 3.3.4, lim
t→∞

σ̌2
z∗|D[i](t)

is positively related to (σ
[i]
e)2. Hence agents with

observation noise of higher variance might obtain steady-state improvement in

predictive variance from those with lower variance.

Steady-state improvement in prediction accuracy is reflected by the case lim
t→∞
Z [i]
agg

(t) ̸= ∅ in Theorem 3.3.8. The sufficient condition (σ
[i]
e)2 > 1

n

∑n
j=1(σ

[j]
e)2 indicates

that agent i obtains steady-state improvement when (σ
[i]
e)2 is above the average.

That is, agents with observation noise of higher variance benefits from those with

smaller variance.

The improvements γ
[i]
σ,z∗(t) and lim

t→∞
E[(µ̃[i]

z∗|D(t)−η(z∗))
2−(µ̌z∗|D[i](t)−η(z∗))

2] are

positively related to κ(ρ
z
[i]
agg∗(t)

z∗)2 and κ(ρ
Zagg
z∗) respectively. By monotonicity of κ in

Assumption 3.3.1, these terms indicate that the benefit brought by communication

decays as z∗ is moving away from z
[i]
agg∗(t) and Zagg respectively. That is, a denser

set Zagg could induce larger improvements.

36

3.3.6 Discussion

Relevance: The two theorems indicate that both prediction uncertainties and pre-

diction errors reduce as local dispersion d[i](t) reduces. This provides insights on

data sampling such that the agents should sample in a way that minimizes d[i](t).

The terms κ(ρ
z
[i]
agg∗(t)

z∗)2 and κ(ρ
Zagg
z∗) in Theorem 3.3.3 and Theorem 3.3.8 show that

the improvement of learning performances obtained from communication decreases

as the test point z∗ is moving away from Zagg. This can guide the design process of

Zagg such that if the test points in Z∗ are known a priori, Zagg should be allocated

such that supz∗∈Z∗ minzagg∈Zagg ρ(z∗, zagg) is minimized; otherwise Zagg should be

designed such that supz∗∈Z minzagg∈Zagg ρ(z∗, zagg) is minimized.

Complexities related to Z∗ and Zagg. The communication overhead scales as

O(|Zagg||N [i](t)|). Due to the use of Nearest-neighbor GPR, agent-based GPR

only requires O(t) in memory. The memory requirements for both distributed

GPR and fused GPR are O(|Zagg|). The computational complexities scale as

O(t|Z∗|) for agent-based GPR, O(|Zagg|) for distributed GPR, and O(|Z∗||Zagg|)
for fused GPR.

Nearest-neighbor GPR vs. full GPR. Part I of Theorem 3.3.3 and Theorem

3.3.8 characterize the steady-state errors of agent-based GPR. Paper [55] shows

that σ2
z∗|D[i](t)

→ (σ
[i]
e)2 and µz∗|D[i](t) → η(z∗) almost surely as t → ∞ for full

GPR. Part I of Theorem 3.3.3 indicates σ̌2
z∗|D[i](t)

→ σ2
f (σ

[i]
e)2

σ2
f+(σ

[i]
e)2

, hence the variance

for noisy prediction (page 19 [54]) equals
σ2
f (σ

[i]
e)2

σ2
f+(σ

[i]
e)2

+ (σ
[i]
e)2, and Theorem 3.3.8

indicates

lim sup
t→∞

|µ̌z∗|D[i](t) − η(z∗)| ⩽
(σ

[i]
e)2

σ2
f + (σ

[i]
e)2
∥η∥Z + ϵ,

assuming d[i](t)→ 0. The discrepancy can be caused by the fact that full GPR in

[55] makes prediction using all the data in the dataset while Nearest-neighbor GPR

only uses the data of the nearest input. Full GPR has computational complexity

O(t3) while Nearest-neighbor GPR has the same computational complexity as

nearest neighbor search, which is O(t) for the worst case [85]. This is the trade-

off between learning accuracy and computational complexity. Note that both full

GPR and Nearest-neighbor GPR have the same steady-state errors under noise-free

condition, i.e., (σ
[i]
e)2 = 0.

37

Symbol Meaning/definition Equivalence

µ̌z∗|D[i](t)

Predictive mean from

agent-based GPR of

agent i

µ̌z∗|D[i](t) = ř
[i]
z∗(t) + ě

[i]
z∗(t)

µ̂
[i]
z∗|D(t)

Predictive mean from

distributed GPR of

agent i

µ̂
[i]
z∗|D(t) = r̃

[i]
z∗(t) + ẽ

[i]
z∗(t)

µ̃
[i]
z∗|D(t)

Predictive mean from

fused GPR of agent i

σ̌2
z∗|D[i](t)

Predictive variance

from agent-based GPR

of agent i

σ̌2
z∗|D[i](t)

= σ2
f −

κ(ρ
Z[i](t)
z∗)2

σ2
f+(σ

[i]
e)2

(σ̂
[i]
z∗|D(t))

2

Predictive variance

from distributed GPR

of agent i

(σ̂
[i]
z∗|D(t))

2 = (ξ
[i]
z∗(t))

−1

(σ̃
[i]
z∗|D(t))

2

Predictive variance

from fused GPR of

agent i

r
[i]
θ,z∗

(t)

Reference signal for

consensus state θ in

distributed GPR

r
[i]
θ,z∗

(t) = r̂
[i]
z∗(t) + ê

[i]
z∗(t)

r
[i]
ξ,z∗

(t)

Reference signal for

consensus state ξ in

distributed GPR

r
[i]
λ,z∗

(t)

Reference signal for

consensus state λ in

distributed GPR

ř
[i]
z∗(t)

Real-valued compo-

nent of µ̌z∗|D[i](t)
ř
[i]
z∗(t) =

κ(ρ
Z[i](t)
z∗)η(z

[i]
∗ (t))

σ2
f+(σ

[i]
e)2

ř
[i]
z∗ ř

[i]
z∗ ≜ limt→∞ ř

[i]
z∗(t) ř

[i]
z∗ =

σ2
fη(z∗)

σ2
f+(σ

[i]
e)2

= ψ[i]η(z∗)

38

r̂
[i]
z∗(t)

Real-valued compo-

nent of r
[i]
θ,z∗

(t)
r̂
[i]
z∗(t) = σ̌−2

z∗|D[i](t)
ř
[i]
z∗(t)

r̂
[i]
z∗ r̂

[i]
z∗ ≜ limt→∞ r̂

[i]
z∗(t) r̂

[i]
z∗ = (

σ2
f (σ

[i]
e)2

σ2
f+(σ

[i]
e)2

)−1ř
[i]
z∗

r̃
[i]
z∗(t)

Real-valued compo-

nent of µ̂
[i]
z∗|D(t)

r̃
[i]
z∗(t) = (σ̂

[i]
z∗|D(t))

2θ
[i]
z∗,r(t)

e
[i]
z∗ Observation error at z∗ e

[i]
z∗ = y

[i]
z∗ − η(z∗)

ě
[i]
z∗(t)

Stochastic component

of µ̌z∗|D[i](t)
ě
[i]
z∗(t) =

κ(ρ
Z[i](t)
z∗)

σ2
f+(σ

[i]
e)2

(
y
[i]

z
[i]
∗ (t)
− η(z[i]

∗ (t))
)

ě
[i]
z∗ ě

[i]
z∗ ≜ limt→∞ ě

[i]
z∗(t) ě

[i]
z∗ =

σ2
f

σ2
f+(σ

[i]
e)2

e
[i]
z∗ = ψ[i]e

[i]
z∗

ê
[i]
z∗(t)

Stochastic component

of r
[i]
θ,z∗

(t)
ê
[i]
z∗(t) = σ̌−2

z∗|D[i](t)
ě
[i]
z∗(t)

ẽ
[i]
z∗(t)

Stochastic component

of µ̂
[i]
z∗|D(t)

ẽ
[i]
z∗(t) = (σ̂

[i]
z∗|D(t))

2θ
[i]
z∗,e(t)

χ[i] χ[i] ≜ 1

(σ
[i]
e)2

+ 1
σ2
f

χ[i] = lim
t→∞

σ̌−2
z∗|D[i](t)

ψ[i] ψ[i] ≜
σ2
f

σ2
f+(σ

[i]
e)2

µχ µχ ≜ 1
n

∑n
i=1 χ

[i] µ−1
χ = lim

t→∞
(σ̂

[i]
z∗|D(t))

2 = lim
t→∞

(σ̌
(agg)
z∗|D(t))

2

c
c ≜

µ−1
χ

(
1
n

∑n
j=1 χ

[j]ψ[j]
)

σ2
χ σ2

χ ≜
∑n

i=1(χ
[i] + µχ)

2

ϵ+
ϵ+ ≜ mini∈V+{cσ2

f −
ψ[i]}

Table 3.1: Table of symbols

3.4 Proofs

In this section, we present the derivation of Line 11-12 in fused GPR and the proofs

of Theorem 3.3.3 and Theorem 3.3.8. Table 3.1 shows the symbols that are used

in multiple important results and the relation among them.

39

3.4.1 Derivation of Line 11-12 in fused GPR

Recall that P̃ [i]{η(z∗)|η(zagg),D(t))} is given by applying identities of joint Gaus-

sian distribution (page 200, [54]) to

P̃{

[
η(z∗)

η(zagg)

]
|D[i](t)} = N (

[
µ̌z∗|D[i](t)

µ̌zagg |D[i](t)

]
, Σ̃z∗,zagg |D[i](t)).

This gives P̃ [i]{η(z∗)|η(zagg),D(t))} as a Gaussian distribution with mean and

variance

µ̃
[i]
z∗|zagg ,D(t) = µ̌z∗|D[i](t) + g(z∗, t)k(z∗, zagg)σ̌

−2
zagg |D[i](t)

(η(zagg)− µ̌zagg |D[i](t)),

(σ̃
[i]
z∗|zagg ,D(t))

2 = σ̌2
z∗|D[i](t) − g(z∗, t)k(z∗, zagg)σ̌

−2
zagg |D[i](t)

k(z∗, zagg)g(z∗, t).

Notice that the mean and variance of P̃ [i]{η(zagg)|D(t)} is given in distributed

GPR. Then we have the product

P̃ [i]{η(z∗), η(zagg)|D(t)} = P̃ [i]{η(zagg)|D(t)} · P̃ [i]{η(z∗)|η(zagg),D(t))}

= N (µ̂
[i]
zagg |D(t), (σ̂

[i]
zagg |D(t))

2) · N (µ̃
[i]
z∗|zagg ,D(t), (σ̃

[i]
z∗|zagg ,D(t))

2).

After some basic algebraic manipulations (finding the corresponding terms in (A.6)

[54]) or directly plugging the terms in equation (9) of [81], we have

P̃ [i]{η(z∗), η(zagg)|D(t)} = N (

[
µ̃
[i]
z∗|D(t)

µ̃
[i]
zagg |D(t)

]
,

[
(σ̃

[i]
z∗|D(t))

2 σ̃
[i]
z∗,zagg |D(t)

σ̃
[i]
zagg ,z∗|D(t) (σ̃

[i]
zagg |D(t))

2

]
).

Replacing zagg with z
[i]
agg∗(t), µ̃

[i]
z∗|D(t) and (σ̃

[i]
z∗|D(t))

2 have the forms in Line 11-12

in fused GPR. Hence we have the marginal distribution P̃ [i]{η(z∗)|D(t)}.

3.4.2 Proof of Theorem 3.3.3

In this section, we first derive the lower bound and the upper bound of the pre-

dictive variance of agent-based GPR and prove Part I of Theorem 3.3.3 in Section

3.4.2.1. Then we derive the bounds of distributed GPR in Proposition 3.4.4 in

Section 3.4.2.2. Lastly, we derive the bounds of fused GPR and prove Part II of

40

Theorem 3.3.3 in Section 3.4.2.3.

First of all, we introduce some properties of functions f1 : R>0 → R>0 as

f1(x) =
1
x
and f2 : R>0 → R>0 as f2(x) = σ2

f −
σ4
f

σ2
f+x

. These will be used in later

analysis.

Lemma 3.4.1. It holds that

f1(
1

n

n∑
i=1

xi) ⩽
1

n

n∑
i=1

f1(xi),

f2(
1

n

n∑
i=1

xi) ⩾
1

n

n∑
i=1

f2(xi),

(1
n

n∑
i=1

f2(xi)
)−1

⩽
1

n

n∑
i=1

(
f2(xi)

)−1
.

Proof: It is obvious that f1 is convex. Then Jensen’s inequality (page 77,

[86]) gives f1(
1
n

∑n
i=1 xi) ⩽

1
n

∑n
i=1 f1(xi).

It is obvious that f2 is concave. By Jensen’s inequality and concavity, we have

f2(
1
n

∑n
i=1 xi) ⩾

1
n

∑n
i=1 f2(xi).

Applying Jensen’s inequality utilizing the monotonicity and the convexity of

inverse function f3(x) = 1
x
for x > 0, we can also obtain

(
1
n

∑n
i=1 f2(xi)

)−1
⩽

1
n

∑n
i=1

(
f2(xi)

)−1
. ■

3.4.2.1 Variance analysis of agent-based GPR

In this section, we present the proof of Theorem 3.3.3 Part I.

Proof of Theorem 3.3.3 Part I: Pick any z∗ ∈ Z. By monotonicity of

κ in Assumption 3.3.1, Line 5 in agent-based GPR gives the predictive variance

σ̌2
z∗|D[i](t)

= σ2
f −

k(z∗,z
[i]
∗ (t))2

σ2
f+(σ

[i]
e)2

. Note that the definition of z
[i]
∗ (t) renders ρ

z
[i]
∗ (t)

z∗ =

ρ
Z [i](t)
z∗ . Combining this with the decomposition property of κ in Assumption 3.3.1

gives

σ̌2
z∗|D[i](t) = σ2

f −
κ(ρ

Z [i](t)
z∗)2

σ2
f + (σ

[i]
e)2

. (3.5)

The definition of local dispersion d[i](t) renders d[i](t) ⩾ ρ(z∗,Z [i](t)). Combin-

41

ing this with the monotonicity of κ in Assumption 3.3.1 gives κ(d[i](t)) ⩽ κ(ρ
Z [i](t)
z∗),

which renders

σ̌2
z∗|D[i](t) ⩽ σ2

f −
κ(d[i](t))2

σ2
f + (σ

[i]
e)2

, ∀z∗ ∈ Z.

Applying the boundedness of κ in Assumption 3.3.1 to (3.5), we have σ̌2
z∗|D[i](t)

⩾
σ2
f (σ

[i]
e)2

σ2
f+(σ

[i]
e)2

. ■

As lim
t→∞

d[j](t) = 0, ∀j ∈ V , the upper bound of σ̌2
z∗|D[i](t)

converges to its lower

bound.

Corollary 3.4.2. Suppose Assumption 3.3.1 holds. If lim
t→∞

d[j](t) = 0 for all j ∈ V ,

it holds that lim
t→∞

σ̌2
z∗|D[i](t)

=
σ2
f (σ

[i]
e)2

σ2
f+(σ

[i]
e)2

. ■

3.4.2.2 Variance analysis of distributed GPR

First, we define the following notations. We let operators ∆, sup, max and min be

applied element-wise across the vectors:

m̄(t) ≜ max
i∈V

ξ[i](t),
¯
m(t) ≜ min

i∈V
ξ[i](t),

δm(t) ≜ m̄(t)−
¯
m(t), r

[i]
ξ (t) ≜ [r

[i]
ξ,z∗

(t)]z∗∈Zagg ,

∆rmax(t) ≜ max
i∈V

∆r
[i]
ξ (t), ∆rmin(t) ≜ min

i∈V
∆r

[i]
ξ (t),

∆̄rmax(t) ≜ max
i∈V
{sup
s⩾1

r
[i]
ξ (s)− r

[i]
ξ (t− 1)},

δrξ(t) ≜ ∆rmax(t)−∆rmin(t), ζ ≜ α
1
2
n(n+1)b−1.

First of all, we introduce several properties in Lemma 3.4.3.

Lemma 3.4.3. Suppose Assumptions 3.2.2 and 3.3.1 and lim
t→∞

d[j](t) = 0 for all

j ∈ V hold. For each z∗ ∈ Zagg:

Claim 3.4.3.1. It holds that 1
σ2
f
⩽ r

[i]
ξ,z∗

(t) ⩽ (
σ2
f (σ

min
e)2

σ2
f+(σmin

e)2
)−1, ∀i ∈ V , t ⩾ 0.

Claim 3.4.3.2. It holds that r
[i]
ξ,z∗

(t) ⩾ r
[i]
ξ,z∗

(t− 1), ∀t ⩾ 0.

Claim 3.4.3.3. It holds that 1
σ2
f
⩽ ξ

[i]
z∗(t) ⩽ n(

σ2
f (σ

min
e)2

σ2
f+(σmin

e)2
)−1, ∀i ∈ V , t ⩾ 1.

Claim 3.4.3.4. It holds that δrξ(t) ⪯ ∆̄rmax(t), ∀t ⩾ 0.

Claim 3.4.3.5. It holds that ∆̄rmax(t) ⪯ ∆̄rmax(t− 1), ∀t ⩾ 1.

42

Claim 3.4.3.6. It holds that ∥∆̄rmax(t)∥∞ ⩽ O(σ4
f − κ(dmax(t− 1))2), ∀t ⩾ 1.

Proof: We prove the claims one-by-one:

Proof of Claim 3.4.3.1: Recall the boundedness property in Assumption 3.3.1

requires that κ(·) > 0. Therefore it follows from Part I of Theorem 3.3.3 that

σ2
f (σ

[i]
e)2

σ2
f + (σ

[i]
e)2

⩽ σ̌2
z∗|D[i](t) ⩽ σ2

f , ∀t ⩾ 1.

Combining this with the definition of r
[i]
ξ,z∗

(t) on Line 5 in distributed GPR, gives

1

σ2
f

⩽ r
[i]
ξ,z∗

(t) ⩽ (
σ2
f (σ

[i]
e)2

σ2
f + (σ

[i]
e)2

)−1 ⩽ (
σ2
f (σ

min
e)2

σ2
f + (σmin

e)2
)−1.

Combining with initial condition r
[i]
ξ,z∗

(0) = 1
σ2
f
gives the above inequalities hold for

t ⩾ 0.

Proof of Claim 3.4.3.2: Due to incremental sampling, the local collection of in-

put data Z [i](t) = Z [i](t−1)∪z[i](t) monotonically expands, hence ρ
Z [i](t)
z∗ decreases.

By monotonicity of κ in Assumption 3.3.1, equation (3.5) indicates σ̌2
z∗|D[i](t)

de-

creases as ρ
Z [i](t)
z∗ decreases. This renders that r

[i]
ξ,z∗

(t) = σ̌−2
z∗|D[i](t)

is non-decreasing,

i.e., r
[i]
ξ,z∗

(t) ⩾ r
[i]
ξ,z∗

(t− 1), for all t ⩾ 1. With initial conditions r
[i]
ξ,z∗

(−1) = 0 and

Claim 3.4.3.1, we have r
[i]
ξ,z∗

(t) ⩾ r
[i]
ξ,z∗

(t− 1) for t ⩾ 0.

Proof of Claim 3.4.3.3: Outline: We first show that

1

σ2
f

⩽ ξ[i]z∗(t) ⩽
t−1∑
τ=0

max
j∈V

∆r
[j]
ξ,z∗

(τ)

using induction, then we find an upper bound for
∑t−1

τ=0 maxj∈V ∆r
[j]
ξ,z∗

(τ).

First, we show the induction. For t = 1, by Line 6 in distributed GPR and

initial condition ξ[i](0) = r
[i]
ξ (−1) = 0|Zagg |, we have

ξ[i]z∗(1) = r
[i]
ξ,z∗

(0) = ∆r
[i]
ξ,z∗

(0) ⩽ max
j∈V

∆r
[j]
ξ,z∗

(0).

Since we have initial condition r
[i]
ξ (0) =

1
σ2
f
1|Zagg |, the claim holds for t = 1. Sup-

pose it holds for t = m. Then for t = m + 1, according to distributed GPR Line

43

6, we have

ξ[i]z∗(m+ 1) =
n∑
j=1

aij(m)ξ[j]z∗(m) + ∆r
[i]
ξ,z∗

(m) (3.6)

⩽
m−1∑
τ=0

max
j∈V

∆r
[j]
ξ,z∗

(τ) + max
j∈V

∆r
[j]
ξ,z∗

(m) =
m∑
τ=0

max
j∈V

∆r
[j]
ξ,z∗

(τ),

where the inequality follows from the row stochasticity in Assumption 3.2.2. This

proves the upper bound of the induction.

By Claim 3.4.3.2, ∆r
[j]
ξ,z∗

(m) ⩾ 0 for all m ⩾ 0. Since r
[j]
ξ,z∗

(0) = 1
σ2
f
⩽ ξ

[i]
z∗(m),

following from (3.6) we have

ξ[i]z∗(m+ 1) ⩾
n∑
j=1

aij(t)r
[j]
ξ,z∗

(0) + ∆r
[i]
ξ,z∗

(m) ⩾
1

σ2
f

.

The proof for the induction is completed.

Second, we find the upper bound of
∑t−1

τ=0maxj∈V ∆r
[j]
ξ,z∗

(τ). Claim 3.4.3.2

implies ∆r
[j]
ξ,z∗

(τ) ⩾ 0 for all τ ⩾ 0 and all j ∈ V . Hence

t−1∑
τ=0

max
j∈V

∆r
[j]
ξ,z∗

(τ) ⩽
t−1∑
τ=0

n∑
j=1

∆r
[j]
ξ,z∗

(τ). (3.7)

Given initial condition r
[j]
ξ,z∗

(−1) = 0 and recall the definition of operator ∆ where

∆r(t) ≜ r(t)− r(t−1), it follows that
∑t−1

τ=0∆r
[j]
ξ,z∗

(τ) = r
[j]
ξ,z∗

(t− 1). Therefore

t−1∑
τ=0

n∑
j=1

∆r
[j]
ξ,z∗

(τ) =
n∑
j=1

t−1∑
τ=0

∆r
[j]
ξ,z∗

(τ) =
n∑
j=1

r
[j]
ξ,z∗

(t− 1).

Applying the upper bound in Claim 3.4.3.1, we have

n∑
j=1

r
[j]
ξ,z∗

(t− 1) ⩽ n(
σ2
f (σ

min
e)2

σ2
f + (σmin

e)2
)−1,

which, by (3.7), is also an upper bound for
∑t−1

τ=0maxj∈V ∆r
[j]
ξ,z∗

(τ).

Proof of Claim 3.4.3.4: By Claim 3.4.3.2, we have ∆rmin,ξ(t) ⪰ 0|Zagg |, and

44

hence

δrξ(t) = ∆rmax,ξ(t)−∆rmin,ξ(t) ⪯ ∆rmax,ξ(t) = max
i∈V
{r[i]

ξ (t)− r
[i]
ξ (t− 1)}

⩽ max
i∈V
{sup
s⩾1

r
[i]
ξ (s)− r

[i]
ξ (t− 1)} = ∆̄rmax,ξ(t), ∀t ⩾ 0.

Proof of Claim 3.4.3.5: In Claim 3.4.3.2 r
[i]
ξ,z∗

(t) being non-decreasing implies

0 ⩽ ∆̄rmax(t) ⪯ ∆̄rmax(t− 1).

Proof of Claim 3.4.3.6: Notice that

sup
s⩾1

r
[i]
ξ,z∗

(s)− r[i]ξ,z∗(t− 1) ⩽ sup
s⩾1

r
[i]
ξ,z∗

(s)− min
z∈Zagg

r
[i]
ξ,z(t− 1).

The definition of rξ,z∗(t) on Line 5 in distributed GPR gives

min
z∈Zagg

r
[i]
ξ,z(t− 1) = (max

z∈Zagg

σ̌2
z|D[i](t−1))

−1.

Applying the upper bound in Theorem 3.3.3 Part I renders

min
z∈Zagg

r
[i]
ξ,z(t− 1) ⩾ (σ2

f −
κ(d[i](t− 1))2

σ2
f + (σ

[i]
e)2

)−1.

Combining the definition of rξ,z∗(t) and Theorem 3.3.3 Part I renders

sup
s⩾1

r
[i]
ξ,z∗

(s) ⩽ (
σ2
f (σ

[i]
e)2

σ2
f + (σ

[i]
e)2

)−1,∀i ∈ V .

Therefore, we have

sup
s⩾1

r
[i]
ξ,z∗

(s)− r[i]ξ,z∗(t− 1) ⩽ (
σ2
f (σ

[i]
e)2

σ2
f + (σ

[i]
e)2

)−1 − (σ2
f −

κ(d[i](t− 1))2

σ2
f + (σ

[i]
e)2

)−1.

Let p[i] ≜
σ2
f (σ

[i]
e)2

σ2
f+(σ

[i]
e)2

and q[i](t) ≜ σ2
f −

κ(d[i](t−1))2

σ2
f+(σ

[i]
e)2

. Based on the monotonicity of

κ in Assumption 3.3.1 and since lim
t→∞

d[i](t) = 0 for all i ∈ V , we have q[i](t)↘ p[i].

45

Since q[i](t) > p[i] > 0 for all t ⩾ 0, we can apply manipulation

1

p[i]
− 1

q[i](t)
=
q[i](t)− p[i]

p[i]q[i](t)
⩽
q[i](t)− p[i]

(p[i])2
.

Then we can further obtain

sup
s⩾1

r
[i]
ξ,z∗

(s)− r[i]ξ,z∗(t− 1) ⩽ β[i]
r (σ

4
f − κ(d[i](t− 1))2),

where β
[i]
r ≜

σ2
f+(σ

[i]
e)2

σ4
f (σ

[i]
e)4

.

Plugging the above inequality back into the definition of ∆̄rmax(t) and apply

the monotonicity of κ in Assumption 3.3.1, it follows that

∥∆̄rmax(t)∥∞ ⩽ max
i∈V

β[i]
r (σ

4
f − κ(d[i](t− 1))2)

⩽ βmax
r (σ4

f − κ(dmax(t− 1))2).

The proof of the lemma is completed. ■

We define the subsequence {tj} as follows: t−1 ≜ 1,

t0 ≜ ceil
((log(2(nb− 1)∥∆rmax(1)∥∞)

log(1− ζ)ζ||δm(1)||∞
+ 1

)(
nb− 1

))
,

where ceil(x) ≜ min{x′ ∈ Z | x′ ⩾ x}, and for all j ⩾ 1,

tj ≜ ceil
((log(∥∆rmax(tj−1)∥∞)

2 log(1− ζ)∥∆rmax(tj−2)∥∞
+ 1

)(
nb− 1

))
.

The proposition below characterizes the convergence of predictive variance from

distributed GPR.

Proposition 3.4.4. (Convergence of distributed GPR). Suppose Assumptions 3.2.1,

3.2.2, 3.2.3 and 3.3.1 hold. For all z∗ ∈ Zagg, for all i ∈ V and t ⩾ 1, the con-

vergence of (σ̂
[i]
z∗|D(t))

2 in distributed GPR to (σ̌
(agg)
z∗|D(t))

2 is characterized by: For

t < t0:

|(σ̂[i]
z∗|D(t))

2 − (σ̌
(agg)
z∗|D(t))

2| ⩽ 2σ4
f (1− ζ)

t
nb−1

−1||δm(1)||∞;

46

For t ⩾ t0:

|(σ̂[i]
z∗|D(t))

2 − (σ̌
(agg)
z∗|D(t))

2| ⩽
4σ4

f

ζ
(nb− 1)∥∆̄rmax(tl(t)−1)∥∞,

where l(t) is the largest integer such that t ⩾
∑l(t)

j=−1 tj.

Proof: Line 9 in distributed GPR indicates that ξ
[i]
z∗(t) = (σ̂

[i]
z∗|D(t))

−2, and

combining Line 5 in distributed GPR with (3.3) gives 1
n

∑n
j=1 r

[j]
ξ,z∗

(t) = (σ̌
(agg)
z∗|D(t))

−2.

Hence, we have

(σ̂
[i]
z∗|D(t))

2 − (σ̌
(agg)
z∗|D(t))

2 =
ξ
[i]
z∗(t)− 1

n

∑n
j=1 r

[j]
ξ,z∗

(t)

1
n
ξ
[i]
z∗(t)

∑n
j=1 r

[j]
ξ,z∗

(t)
. (3.8)

The upper bound of ξ
[i]
z∗(t)− 1

n

∑n
j=1 r

[j]
ξ,z∗

(t) is found by the following two claims,

whose proofs are at the end.

Claim 3.4.4.1. It holds that

max
i∈V
||ξ[i](t)− 1

n

n∑
j=1

r
[j]
ξ (t)||∞ ⩽ ||δm(t)||∞.

Claim 3.4.4.2. It holds that

||δm(t)||∞ ⩽ 2(1− ζ)
t

nb−1
−1||δm(1)||∞, ∀t < t0;

||δm(t)||∞ ⩽ 4(nb− 1)∥∆̄rmax(tl(t)−1)∥∞
1

ζ
, ∀t ⩾ t0.

Claim 3.4.3.1 and Claim 3.4.3.3 in Lemma 3.4.3 provide that ξ
[i]
z∗(t) ⩾

1
σ2
f
and

r
[i]
ξ,z∗

(t) ⩾ 1
σ2
f
respectively. Combining this and Claim 3.4.4.1 and 3.4.4.2 with (3.8)

finishes the proof. ■

Proof of Claim 3.4.4.1: Assumption 3.2.2, the initial condition ξ[i](0) = r
[i]
ξ (0),

∀i ∈ V and the update rule on Line 6 in distributed GPR render

n∑
j=1

ξ[j](t) =
n∑
j=1

ξ[j](t− 1) +
n∑
j=1

∆r
[j]
ξ (t) =

n∑
j=1

r
[j]
ξ (t).

47

Hence we have

¯
m(t) = min

j∈V
ξ[j](t) ⩽

1

n

n∑
j=1

r
[j]
ξ (t) ⩽ max

j∈V
ξ[j](t) = m̄(t)

max
j∈V
||ξ[j](t)− 1

n

n∑
j=1

r
[j]
ξ (t)||∞ ⩽ ∥m̄(t)−

¯
m(t)∥∞ = ||δm(t)||∞.

Proof of Claim 3.4.4.2: Outline: Write t = τ0 + τ for some τ0, τ > 0. We first

derive a general form of ||δm(τ0 + τ)||∞. Then we prove the cases when t < t0 and

t ⩾ t0 respectively.

First, we give the general form. Applying inequality (B.1) in [78] in vector

form, we have

||δm(τ0 + τ)||∞ ⩽ max{2(1− ζ)
τ

nb−1
−1||δm(τ0)||∞, 2||ω(τ0, τ0 + τ)||∞}, (3.9)

ω(τ0, τ) ≜ (1− ζ)ℓτ−1

τ1+τ0−1∑
q=τ0

δrξ(q) + · · ·+ (1− ζ)
τℓτ−1+τ0−1∑
q=τℓτ−2+τ0

δrξ(q)

+

τℓτ+τ0−1∑
q=τℓτ−1+τ0

δrξ(q) +
τ−1∑

q=τℓτ+τ0

δrξ(q).

Second, we prove the case of t < t0. Let τ0 = 0, τ = t in (3.9). We first

find a uniform upper bound for ω(0, t). Recall that Claim 3.4.3.4 shows that

δrξ(t) ⪯ ∆̄rmax(t) and Claim 3.4.3.5 shows that ∆̄rmax(t) is element-wise non-

increasing. It follows that δrξ(t) ⪯ ∆̄rmax(1) for all t ⩾ 1 and hence

∥ω(0, t)∥∞ ⩽ (nb− 1)∥∆̄rmax(1)∥∞(1 +
∞∑
l=0

(1− ζ)l)

= (nb− 1)∥∆̄rmax(1)∥∞(
1

ζ
+ 1).

Since 0 < ζ ⩽ 1, we can further write that ||ω(0, t)||∞ ⩽ 2(nb− 1)∥∆̄rmax(1)∥∞ 1
ζ
.

Then (3.9) becomes

||δm(t)||∞ ⩽ max{2(1− ζ)
t

nb−1
−1∥δm(1)∥∞, 4(nb− 1)∥∆̄rmax(1)∥∞

1

ζ
}. (3.10)

48

Note that the time-dependent term on the right hand side of (3.10) is expo-

nentially decreasing. Suppose t0 is the smallest integer such that

(1− ζ)
t0

nb−1
−1∥δm(1)∥∞ ⩽ 2(nb− 1)∥∆̄rmax(1)∥∞

1

ζ
,

where t0 can be obtained as defined. Hence we have

∥δm(t)∥∞ ⩽ 2(1− ζ)
t

nb−1
−1||δm(1)||∞, ∀t < t0.

which proves Claim 3.4.4.2 for t < t0, and for t ⩾ t0, we have

||δm(t)||∞ ⩽ 4(nb− 1)∥∆̄rmax(1)∥∞
1

ζ
. (3.11)

Finally, we prove the case of t ⩾ t0. Write τ0 = t0. Then (3.9) becomes

||δm(t0 + τ)||∞ ⩽ max{2(1− ζ)
τ

nb−1
−1||δm(t0)||∞, 2||ω(t0, t0 + τ)||∞}. (3.12)

Applying analogous algebra as of ω(0, t) gives

||ω(t0, t0 + τ)||∞ ⩽ 2(nb− 1)∥∆̄rmax(t0)∥∞
1

ζ
.

Using this and (3.11) as the upper bound for ||δm(t0)||∞, we can rewrite (3.12) as

||δm(t0 + τ)||∞ ⩽ max{8(1− ζ)
τ

nb̄−1
−1(nb− 1)

∥∆̄rmax(1)∥∞
ζ

,

4(nb− 1)∥∆̄rmax(t0)∥∞
1

ζ
}.

Similarly, let t1 be the smallest integer such that

∥∆̄rmax(t0)∥∞ ⩾ 2(1− ζ)
t1

nb−1
−1∆̄rmax(1).

Using similar manipulation as t0 renders t1 as defined and

||δm(t)||∞ ⩽ 4(nb− 1)∥∆r̄max,ξ(t0)∥∞
1

ζ
, ∀t ⩾ t0 + t1.

49

By similar logic, we have tj as defined for all j ⩾ 1 and ||δm(t)||∞ ⩽ 4(nb −
1)∥∆̄rmax(tl(t)−1)∥∞ 1

ζ
.

Corollary 3.4.5 shows that the predictive variance from distributed GPR con-

verges to that from aggregated method.

Corollary 3.4.5. Suppose the same conditions as in Proposition 3.4.4 hold. If

lim
t→∞

d[i](t) = 0 for all i ∈ V , then lim
t→∞
|(σ̂[i]

z∗|D(t))
2 − (σ̌

(agg)
z∗|D(t))

2| = 0. ■

3.4.2.3 Variance analysis of fused GPR

First of all, we show that lim
t→∞
Z [i]
agg(t) exists.

Lemma 3.4.6. It holds that lim
t→∞
Z [i]
agg(t) exists.

Proof: By Corollary 3.4.2, σ̌2
z∗|D[i](t)

converges. Hence in distributed GPR

∆r
[i]
λ,z∗

(t)→ 0. By Line 11 in distributed GPR and Corollary 3.1 in [78], lim
t→∞

(σ̂
ave,[i]
zagg |D(t))

2

exists. By Corollary 3.4.5 and (3.3), the convergence of σ̌2
z∗|D[i](t)

also implies

the convergence of (σ̂
[i]
z∗|D(t))

2. Hence by definition of Z [i]
agg(t) in Section 3.3.3,

lim
t→∞
Z [i]
agg(t) exists. ■

Lemma 3.4.7 below presents two properties of agent i where lim
t→∞
Z [i]
agg(t) ̸= ∅.

Lemma 3.4.7. Suppose the same conditions for Corollary 3.4.5 hold and d[j](t)→
0, ∀j ∈ V . If lim

t→∞
Z [i]
agg(t) ̸= ∅ for some i ∈ V , then ψ[i] < 1

n

∑n
j=1 ψ

[j] ⩽

c and µ−1
χ χ[i] < 1.

Proof: Outline: We first show that ψ[i] < 1
n

∑n
j=1 ψ

[j] ⩽ c. Then we show

µ−1
χ χ[i] < 1.

First, we show that ψ[i] < 1
n

∑n
j=1 ψ

[j] ⩽ c. Since lim
t→∞
Z [i]
agg(t) ̸= ∅, we pick

z∗ ∈ lim
t→∞
Z [i]
agg(t). Note that λ

[i]
z∗(t) is tracking the signal r

[i]
λ,z∗

(t) = σ̌2
z∗|D[i](t)

using

FODAC algorithm in [78]. By Corollary 3.4.2 and Corollary 3.1 in [78], lim
t→∞

λ
[i]
z∗(t) =

lim
t→∞

1
n

∑n
j=1 σ̌

2
z∗|D[j](t)

. By Line 11 in distributed GPR, we have lim
t→∞

(σ̂
ave,[i]
z∗|D(t))

2 =

lim
t→∞

λ
[i]
z∗(t). Since z∗ ∈ lim

t→∞
Z [i]
agg(t), by Corollay 3.4.2 and the definition of Z [i]

agg(t)

on Line 2 in fused GPR, we have

σ2
f − σ2

fψ
[i] = σ2

f −
σ4
f

σ2
f + (σ

[i]
e)2

=
σ2
f (σ

[i]
e)2

σ2
f + (σ

[i]
e)2

= lim
t→∞

σ̌2
z∗|D[i](t)

50

> lim
t→∞

(σ̂
ave,[i]
z∗|D(t))

2 = lim
t→∞

1

n

n∑
j=1

σ̌2
z∗|D[j](t)

=
1

n

n∑
j=1

(σ2
f −

σ4
f

σ2
f + (σ

[j]
e)2

) = σ2
f −

σ2
f

n

n∑
j=1

ψ[j],

which renders ψ[i] < 1
n

∑n
j=1 ψ

[j].

Since both ψ[i] and χ[i] are monotonically decreasing as σ
[i]
e increases, χ[i] ⩽ χ[j]

if and only if ψ[i] ⩽ ψ[j]. Without loss of generality, assume that χ[1] ⩽ · · · ⩽ χ[n]

and ψ[1] ⩽ · · · ⩽ ψ[n]. Then Chebyshev’s sum inequality [87] gives

1

n

n∑
j=1

ψ[j] ⩽ (
1

n

n∑
j=1

χ[j])−1
(1
n

n∑
j=1

χ[j]ψ[j]
)
= c. (3.13)

Hence ψ[i] < 1
n

∑n
j=1 ψ

[j] ⩽ c.

Second, we show that µ−1
χ χ[i] < 1. By definition and Corollary 3.4.2, χ[i] =

lim
t→∞

σ̌−2
z∗|D[i](t)

. By (3.3), µ−1
χ = lim

t→∞
(σ̌

(agg)
z∗|D(t))

2 for all z∗ ∈ Z. Since z∗ ∈ lim
t→∞
Z [j]
agg(t),

lim
t→∞

σ̌2
z∗|D[i](t)

> lim
t→∞

(σ̂
[i]
z∗|D(t))

2 = lim
t→∞

(σ̌
(agg)
z∗|D(t))

2, where the equality follows from

Corollary 3.4.5. Hence

µ−1
χ χ[i] = lim

t→∞
(σ̌

(agg)
z∗|D(t))

2σ̌−2
z∗|D[i](t)

< 1. ■

Now we present of proof of Theorem 3.3.3 Part II.

Proof of Theorem 3.3.3 Part II: By Line 4 in fused GPR, it is obvious that

if Z [i]
agg(t) = ∅, γ[i]σ,z∗(t) = 0. Now we consider the case when Z [i]

agg(t) ̸= ∅.
Outline: The proof is composed of three parts: expression of γ

[i]
σ,z∗(t) and its uni-

form lower bound; verfication of the selection of g(z∗, t); derivation of the growth

factor of γ
[i]
σ,z∗(t).

First, we show the expression of γ
[i]
σ,z∗(t) and derive its uniform lower bound.

According to Line 12 in fused GPR, we have (σ̃
[i]
z∗|D(t))

2 = σ̌2
z∗|D[i](t)

−γ[i]σ,z∗(t), where

γ[i]σ,z∗(t) ≜ γ
[i]
σ,z∗,1(t)γ

[i]
σ,z∗,2(t)γ

[i]
σ,z∗,3(t)

(
σ̌
[i]
min,z∗

(t)
)2
,(

σ̌
[i]
min,z∗

(t)
)2

≜ min{σ̌2

z
[i]
agg∗(t)|D[i](t)

, σ̌2
z∗|D[i](t)},

51

γ
[i]
σ,z∗,1(t) ≜

k
(
z∗, z

[i]
agg∗(t)

)2 ·max{0, (c− ψ[i])2}
k
(
z∗, z∗

)2 ,

γ
[i]
σ,z∗,2(t) ≜

σ̌2

z
[i]
agg∗(t)|D[i](t)

− (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2

σ̌2

z
[i]
agg∗(t)|D[i](t)

,

γ
[i]
σ,z∗,3(t) ≜

(
σ̌
[i]
min,z∗

(t)
)2

σ̌2

z
[i]
agg∗(t)|D[i](t)

. (3.14)

Line 2 of fused GPR rules that (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2 < σ̌2

z
[i]
agg∗(t)|D[i](t)

. Obviously, γ
[i]
σ,z∗(t) ⩾

0.

Second, we verify the selection of g(z∗, t). We verify that the selection of g(z∗, t)

is valid by showing (σ̃
[i]
z∗|D(t))

2 > 0. We analyze each factor of γ
[i]
σ,z∗(t) as follows.

Note that c, ψ[i] ∈ (0, 1), hence 0 ⩽ max{0, (c−ψ[i])2} ⩽ 1. The decomposition

and monotonicity properties in Assumption 3.3.1 gives 0 ⩽
k
(
z∗,z

[i]
agg∗(t)

)2

}

k
(
z∗,z∗

)2 ⩽ 1.

Combining these gives 0 ⩽ γ
[i]
σ,z∗,1 ⩽ 1.

Line 2 of fused GPR rules that (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2 < σ̌2

z
[i]
agg∗(t)|D[i](t)

. By Claim 3.4.3.3

and Line 9 in distributed GPR, (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2 > 0. Therefore 0 < γ
[i]
σ,z∗,2 < 1.

By definition,
(
σ̌
[i]
min,z∗

(t)
)2

⩽ σ̌2

z
[i]
agg∗(t)|D[i](t)

, which renders 0 < γ
[i]
σ,z∗,3 ⩽ 1.

The above upper bounds give γ
[i]
σ,z∗(t) <

(
σ̌
[i]
min,z∗

(t)
)2

⩽ σ̌2
z∗|D[i](t)

and (σ̃
[i]
z∗|D(t))

2 >

σ̌2
z∗|D[i](t)

− σ̌2
z∗|D[i](t)

= 0.

Finally, we derive the growth factor of γ
[i]
σ,z∗(t). According to the definition

of γ
[i]
σ,z∗(t) in (3.14), we can derive the growth factor of γ

[i]
σ,z∗(t) by analyzing the

growth factor of γ
[i]
σ,z∗,1(t), γ

[i]
σ,z∗,2(t), γ

[i]
σ,z∗,3(t) and

(
σ̌
[i]
min,z∗

(t)
)2

respectively.

We first consider γ
[i]
σ,z∗,2(t). Let

ĉ ≜ max{
4σ4

f

ζ
(nb− 1), 2σ4

f ||δm(1)||∞}.

The upper bound given in Proposition 3.4.4 can be written as

h(t) ≜

ĉ(1− ζ)
t

nb−1
−1, t < t0,

ĉ∥∆̄rmax(tl(t)−1)∥∞, t ⩾ t0.
(3.15)

52

Then Proposition 3.4.4 gives

(σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2 ⩽ (σ̌
(agg)

z
[i]
agg∗(t)|D(t)

)2 + h(t).

Hence we have lower bound

γ
[i]
σ,z∗,2(t) ⩾

σ̌2

z
[i]
agg∗(t)|D[i](t)

− (σ̌
(agg)

z
[i]
agg∗(t)|D(t)

)2 − h(t)

σ̌4

z
[i]
agg∗(t)|D[i](t)

.

The upper bound and lower bound of (σ̌
(agg)
z∗|D(t))

2 is given below, whose proof

can be found at the end of the proof.

Claim 3.4.7.1. For each z∗ ∈ Z∗, the aggregated variance returned from (3.3) can

be characterized as

σ2
f (σ

min
e)2

σ2
f + (σmin

e)2
⩽ (σ̌

(agg)
z∗|D(t))

2 ⩽ σ2
f −

1
n

∑n
i=1 κ

(
ρ
Z [i](t)
z∗

)2
σ2
f + (σmax

e)2
.

Denote ϕ[i] ≜ σ2
f + (σ

[i]
e)2. Plugging in equality (3.5) for σ̌2

z
[i]
agg∗(t)|D[i](t)

and the

upper bound in Claim 3.4.7.1 for (σ̌
(agg)

z
[i]
agg∗(t)|D(t)

)2 in the inequality above gives

γ
[i]
σ,z∗,2(t) ⩾

ϕ[i]

ϕmax

(ϕ[i]

n

∑n
j=1 κ

(
ρ
Z [j](t)

z
[i]
agg∗(t)

)2
(
σ2
fϕ

[i] − κ(ρZ
[i](t)

z
[i]
agg∗(t)

)2
)2 −ϕ

maxκ
(
ρ
Z [i](t)

z
[i]
agg∗(t)

)2 − ϕmaxϕ[i]h(t)(
σ2
fϕ

[i] − κ(ρZ
[i](t)

z
[i]
agg∗(t)

)2
)2)

.

The boundedness of κ in Assumption 3.3.1 gives |σ2
fϕ

[i] − κ(ρ
Z [i](t)

z
[i]
agg∗(t)

)2| ⩽ σ2
fϕ

[i].

Applying this upper bound to the denominator of the lower bound above gives

γ
[i]
σ,z∗,2(t) ⩾

1

ϕ[i]ϕmaxσ4
f

(ϕ[i]

n

n∑
j=1

κ(ρ
Z [j](t)

z
[i]
agg∗(t)

)2 − ϕmaxκ(ρ
Z [i](t)

z
[i]
agg∗(t)

)2 − ϕmaxϕ[i]h(t)
)
.

Now we characterize the rest of factors of γ
[i]
σ,z∗(t). Theorem 3.3.3 By mono-

tonicity and decomposition in Assumption 3.3.1, we have k
(
z∗, z∗

)2
= σ4

f and

53

k(z∗, z
[i]
agg∗(t))2 = κ(ρ

z
[i]
agg∗(t)

z∗)2. By Lemma 3.4.7, we have

c− ψ[i] ⩾
1

n

n∑
j=1

ψ[j] − ψ[i] = σ2
fβ

[i]
ψ > 0,

where β
[i]
ψ ≜ (1

n

∑n
j=1(ϕ

[j])−1 − (ϕ[i])−1). This gives γ
[i]
σ,z∗,1(t) ⩾ κ(ρ

z
[i]
agg∗(t)

z∗)2β
[i]
ψ /σ

2
f .

Part I indicates that σ̌2

z
[i]
agg∗(t)|D[i](t)

⩾
σ2
f (σ

[i]
e)2

σ2
f+(σ

[i]
e)2

. Therefore we have
(
σ̌
[i]
min,z∗

(t)
)4

⩾

σ4
f (σ

[i]
e)4

(ϕ[i])2
.

Equality (3.5) indicates σ̌2

z
[i]
agg∗(t)|D[i](t)

⩽ σ2
f . Combining this with the lower

bound of
(
σ̌
[i]
min,z∗

(t)
)4

above gives γ
[i]
σ,z∗,3(t) ⩾

σ2
f (σ

[i]
e)4

(ϕ[i])2
.

Combining the lower bounds of all the factors gives

γ[i]σ,z∗(t) ⩾ κ(ρ
z
[i]
agg∗(t)

z∗)2
((σ

[i]
e)8

(ϕ[i])3ϕmax

(ϕ[i]

n

n∑
j=1

κ(ρ
Z [j](t)

z
[i]
agg∗(t)

)2

− ϕmaxκ(ρ
Z [i](t)

z
[i]
agg∗(t)

)2 − ϕmaxϕ[i]h(t)
))
β
[i]
ψ .

The definition in (3.15) and Claim 3.4.3.6 renders h(t)→ 0. This renders the Big

O notion. ■

Proof of Claim 3.4.7.1: Using equality (3.5), we can characterize (σ̌
(agg)
z∗|D(t))

2 in

(3.3) as

(σ̌
(agg)
z∗|D(t))

−2 =
1

n

n∑
i=1

(σ2
f −

κ
(
ρ
Z [i](t)
z∗

)2
σ2
f + (σ

[i]
e)2

)−1.

Taking the inverse and applying Lemma 3.4.1 by substituting xi with (σ2
f −

κ
(
ρ
Z[i](t)
z∗

)2

σ2
f+(σ

[i]
e)2

)−1 to f1 gives

(σ̌
(agg)
z∗|D(t))

2 ⩽ σ2
f −

1

n

n∑
i=1

κ
(
ρ
Z [i](t)
z∗

)2
σ2
f + (σ

[i]
e)2

⩽ σ2
f −

1
n

∑n
i=1 κ

(
ρ
Z [i](t)
z∗

)2
σ2
f + (σmax

e)2
.

The lower bound provided in Part I of Theorem 3.3.3 and equation (3.5) give

(σ̌
(agg)
z∗|D(t))

−2 ⩽
1

n

n∑
j=1

(
σ2
f (σ

[j]
e)2

σ2
f + (σ

[j]
e)2

)−1 ⩽ (
σ2
f (σ

min
e)2

σ2
f + (σmin

e)2
)−1,

54

where the last inequality follows from the fact that
σ2
fσ

2
e

σ2
f+σ

2
e
monotonically increases

with respect to σ2
e , i.e.,

d
dσ2

e

σ2
fσ

2
e

σ2
f+σ

2
e
=

σ4
f

(σ2
f+σ

2
e)

2 > 0. Taking the inverse gives the lower

bound.

3.4.3 Proof of Theorem 3.3.8

In this section, we present the theoretical results that leads to Theorem 3.3.8.

We first present the error between the predictive mean of agent-based GPR and

the ground truth, which is the result of Theorem 3.3.8 Part I, in Section 3.4.3.1.

Secondly, we characterize the predictive mean returned from distributed GPR in

Proposition 3.4.9 in Section 3.4.3.2. Lastly, we finish the proof for Part II of

Theorem 3.3.8 in Section 3.4.3.3.

3.4.3.1 Mean analysis of agent-based GPR

In this section, we provide the proof of Part I of Theorem 3.3.8.

Proof of Part I of Theorem 3.3.8: By Assumption 3.3.5 and decomposi-

tion and monotonicity properties in Assumption 3.3.1, Line 4 of agent-based GPR

becomes µ̌z∗|D[i](t) =
κ(ρ
Z[i](t)
z∗)

σ2
f+(σ

[i]
e)2
· y[i]

z
[i]
∗ (t)

. It implies that

µ̌z∗|D[i](t) − η(z∗) =(1− κ(ρ
Z [i](t)
z∗)

σ2
f + (σ

[i]
e)2

)(−η(z∗)) +
κ(ρ

Z [i](t)
z∗)

σ2
f + (σ

[i]
e)2

(
y
[i]

z
[i]
∗ (t)
− η(z[i]

∗ (t))
)

+
κ(ρ

Z [i](t)
z∗)

σ2
f + (σ

[i]
e)2

(
η(z[i]

∗ (t))− η(z∗)
)
.

By boundedness of κ in Assumption 3.3.1, 0 <
κ(ρ
Z[i](t)
z∗)

σ2
f+(σ

[i]
e)2

< 1. Combining this with

triangular inequality gives

|µ̌z∗|D[i](t) − η(z∗)| <(1−
κ(ρ

Z [i](t)
z∗)

σ2
f + (σ

[i]
e)2

)|η(z∗)|+ |y[i]
z
[i]
∗ (t)
− η(z[i]

∗ (t))| (3.16)

+ |η(z[i]
∗ (t))− η(z∗)|. (3.17)

Now we analyze the upper bound of each term on the right hand side of (3.16).

55

Recall that z
[i]
∗ (t) ∈ proj(z∗,Z [i](t)). Utilizing the Lipschitz continuity of η in

Assumption 3.3.7 gives

|η(z[i]
∗ (t))− η(z∗)| ⩽ ℓηρ(z∗, z

[i]
∗ (t)) = ℓηρ

Z [i](t)
z∗ .

The observation model (4.1) gives y
[i]

z
[i]
∗ (t)
∼ N (η(z

[i]
∗ (t)), (σ

[i]
e)2). Therefore by

Chebyshev inequality (page 151, [88]), for all ϵ > 0, we have

P{|y[i]
z
[i]
∗ (t)
− η(z[i]

∗ (t))| ⩾ ϵ} ⩽ (σ
[i]
e)2

ϵ2
.

Note that |η(z∗)| ⩽ ∥η∥Z . Applying these two inequalities to (3.16) gives

|µ̌z∗|D[i](t) − η(z∗)| ⩽ (1− κ(ρ
Z [i](t)
z∗)

σ2
f + (σ

[i]
e)2

)∥η∥Z + ϵ+ ℓηρ
Z [i](t)
z∗

with probability at least 1− (σ
[i]
e)2

ϵ2
⩾ 1− (σmax

e)2

ϵ2
. The proof is completed by using

inequality d[i](t) ⩾ ρ
Z [i](t)
z∗ and the monotonicity property of κ in Assumption 3.3.1.

■

Remark 3.4.8. We can write µ̌z∗|D[i](t) = ř
[i]
z∗(t)+ě

[i]
z∗(t), where ř

[i]
z∗(t) ≜

κ(ρ
Z[i](t)
z∗)η(z

[i]
∗ (t))

σ2
f+(σ

[i]
e)2

depends on latent function η and ě
[i]
z∗(t) ≜

κ(ρ
Z[i](t)
z∗)

σ2
f+(σ

[i]
e)2

(
y
[i]

z
[i]
∗ (t)
− η(z[i]

∗ (t))
)
depends on

measurement noise. Denote ř
[i]
z∗ ≜ lim

t→∞
ř
[i]
z∗(t) =

σ2
fη(z∗)

σ2
f+(σ

[i]
e)2

and ě
[i]
z∗ ≜ lim

t→∞
ě
[i]
z∗(t) =

σ2
f

σ2
f+(σ

[i]
e)2

e
[i]
z∗ , where e

[i]
z∗ ≜ y

[i]
z∗ − η(z∗) ∼ N (0, (σ

[i]
e)2) independent over agent i ∈ V

and input z∗ ∈ Z. It is obvious that lim
t→∞

µ̌z∗|D[i](t) = ř
[i]
z∗ + ě

[i]
z∗ . ■

3.4.3.2 Mean analysis of distributed GPR

Before presenting the results, we derive the solution to the consensus state θ
[i]
z∗(t),

i ∈ V , in terms of input signal ∆r
[i]
θ,z∗

(t). We also show the decompositions of

r
[i]
θ,z∗

(t) and θ
[i]
z∗(t), which separate the two terms into real-valued parts and stochas-

tic parts.

First, we give the solution to θ
[i]
z∗(t). Let vectors θz∗(t) ≜ [θ

[1]
z∗(t), · · · , θ

[n]
z∗ (t)]

T

and rθ,z∗(t) ≜ [r
[1]
θ,z∗

(t), · · · , r[n]θ,z∗
(t)]T . Line 4 of distributed GPR across the net-

work V can be represented by discrete linear time-varying (LTV) system: θz∗(t) =

56

A(t− 1)θz∗(t− 1) + ∆rθ,z∗(t). By page 111 in [89], the solution to this system is:

θz∗(t) = Φ(t, 0)θz∗(0) +
t∑
l=1

Φ(t, l)∆rθ,z∗(l), (3.18)

where Φ(t, l) ≜
∏t−1

τ=lA(τ).

Second, we show the decomposition of ∆rθ,z∗(l) into a signal depending on η

and a zero-mean stochastic process. By definition of r
[i]
θ,z∗

(t) in Line 3 in distributed

GPR and Remark 3.4.8, it holds that

r
[i]
θ,z∗

(t) = σ̌−2
z∗|D[i](t)

(ř[i]z∗(t) + ě[i]z∗(t)) = r̂[i]z∗(t) + ê[i]z∗(t),

where r̂
[i]
z∗(t) ≜ σ̌−2

z∗|D[i](t)
ř
[i]
z∗(t) and ê

[i]
z∗(t) ≜ σ̌−2

z∗|D[i](t)
ě
[i]
z∗(t) is a Gaussian random

variable with zero mean. Hence we have

∆r
[i]
θ,z∗

(t) = ∆r̂[i]z∗(t) + ∆ê[i]z∗(t). (3.19)

Denote r̂
[i]
z∗ ≜ lim

t→∞
r̂
[i]
z∗(t). Corollary 3.4.2 and Remark 3.4.8 give

r̂[i]z∗ = lim
t→∞

σ̌−2
z∗|D[i](t)

ř[i]z∗(t) = (
σ2
f (σ

[i]
e)2

σ2
f + (σ

[i]
e)2

)−1ř[i]z∗

and

lim
t→∞

ê[i]z∗(t) = (
σ2
f (σ

[i]
e)2

σ2
f + (σ

[i]
e)2

)−1ě[i]z∗ (3.20)

is zero mean Gaussian.

Third, we show the decomposition of (3.18). The solution (3.18) can be de-

composed into a solution to FODAC [78] with respect to a signal depending on η

and a solution to FODAC with respect to a zero-mean stochastic process.

Let r̂z∗(t) ≜ [r̂
[1]
z∗(t), · · · , r̂

[n]
z∗ (t)]

T and êz∗(t) ≜ [ê
[1]
z∗(t), · · · , ê

[n]
z∗ (t)]

T . By (3.19),

we can write (3.18) as

θz∗(t) = θz∗,r(t) + θz∗,e(t), (3.21)

57

θz∗,r(t) ≜ Φ(t, 0)θz∗(0) +
t∑
l=1

Φ(t, l)∆r̂z∗(l),

θz∗,e(t) ≜
t∑
l=1

Φ(t, l)∆êz∗(l).

Then Proposition 3.4.9 characterizes the predictive mean.

Proposition 3.4.9. (Prediction decomposition). Suppose Assumptions 3.2.1, 3.2.2,

3.2.3 and 3.3.1 hold. If lim
t→∞

d[j](t) = 0 for all j ∈ V , then for all z∗ ∈ Zagg,

µ̂
[i]
z∗|D(t) = (σ̂

[i]
z∗|D(t))

2
(
θ[i]z∗,r(t) + θ[i]z∗,e(t)

)
,

where lim
t→∞

θ
[i]
z∗,r(t) =

1
n

∑n
j=1 r̂

[j]
z∗ , θ

[j]
z∗,e(t) is a Gaussian random variable with zero

mean and lim
t→∞

∑n
j=1 θ

[j]
z∗,e(t) =

∑n
j=1(σ

[j]
e)−2e

[j]
z∗ .

Proof: By (3.21) and Line 10 of distributed GPR, we have

µ̂
[i]
z∗|D(t) = (σ̂

[i]
z∗|D(t))

2
(
θ[i]z∗,r(t) + θ[i]z∗,e(t)

)
.

First, we show that lim
t→∞

θ
[i]
z∗,r(t) =

1
n

∑n
j=1 r̂

[j]
z∗ . Analogous to θz∗(t), θz∗,r(t) is

the solution for tracking the average of the signal r̂z∗(t) using FODAC algorithm

[78]. Since r̂
[i]
z∗ = (

σ2
f (σ

[i]
e)2

σ2
f+(σ

[i]
e)2

)−1ř
[i]
z∗ , ∀i ∈ V , we have lim

t→∞
∆r̂

[i]
z∗(t) = 0. Combining

this with Corollary 3.1 in [78] gives

lim
t→∞

θz∗,r(t) = lim
t→∞

(1
n

n∑
j=1

r̂[j]z∗(t)
)
1n =

(1
n

n∑
j=1

r̂[j]z∗

)
1n.

Second, we show that θ
[j]
z∗,e(t) is a Gaussian random variable with zero mean.

Note that θz∗,e(t) = [θ
[1]
z∗,e(t), · · · , θ

[n]
z∗,e(t)]

T . Similar to θz∗(t), θz∗,e(t) is the solu-

tion for tracking the average of e
[i]
z∗(t) using FODAC:

θ[i]z∗,e(t) =
n∑
l=1

aij(t− 1)θ[j]z∗,e(t− 1) + ∆ê[i]z∗(t), (3.22)

58

with initial state θ
[i]
z∗,e(0) = 0. Note that

∆ê[j]z∗(t) = σ̌−2
z∗|D[j](t)

ě[j]z∗(t)− σ̌
−2
z∗|D[j](t−1)

ě[j]z∗(t− 1).

Recall that ě
[j]
z∗(t) =

κ(ρ
Z[j](t)
z∗)

σ2
f+(σ

[j]
e)2

e
[j]

z
[j]
∗ (t)

in Remark 3.4.8 where e
[j]
z is a zero-mean Gaus-

sian random variable independent over j ∈ V and z ∈ V . Hence ě
[j]
z∗(t) and ê

[j]
z∗(t)

are both zero-mean Gaussian random variables. Therefore, it follows from (3.22)

that θ
[i]
z∗,e(t) is a Gaussian random variable with zero mean for all t ⩾ 1 (Theorem

5.5-1, [90]).

Finally, we show that lim
t→∞

∑n
j=1 θ

[j]
z∗,e(t) =

∑n
j=1(σ

[j]
e)−2e

[j]
z∗ . By Assumption

3.2.2 and initial state θ
[j]
z∗(0) = r

[j]
θ,z∗

(0), which indicates θ
[j]
z∗,e(0) = ê

[j]
z∗(0) = 0 for

each j ∈ V , (3.22) renders

n∑
j=1

θ[j]z∗,e(t) =
n∑
j=1

θ[j]z∗,e(t− 1) +
n∑
j=1

∆ê[j]z∗(t) =
n∑
j=1

ê[j]z∗(t),

for all t ⩾ 1. Therefore lim
t→∞

∑n
j=1 θ

[j]
z∗,e(t) = lim

t→∞

∑n
j=1 ê

[j]
z∗(t). Combining this

with (3.20) and the definition of ě
[j]
z∗ in Remark 3.4.8 gives lim

t→∞

∑n
j=1 θ

[j]
z∗,e(t) =∑n

j=1(σ
[j]
e)−2e

[j]
z∗ . ■

3.4.3.3 Mean analysis of fused GPR

This section provides the analysis of predictive mean returned by fused GPR.

Recall that Lemma 3.4.6 shows that lim
t→∞
Z [i]
agg(t) exists. Hence, the main results in

this section are Proposition 3.4.13, where the case lim
t→∞
Z [i]
agg(t) ̸= ∅ is discussed, and

Lemma 3.4.14, where a sufficient condition for lim
t→∞
Z [i]
agg(t) ̸= ∅ is presented. Then

we discuss the case of lim
t→∞
Z [i]
agg(t) = ∅ to conclude the proof of Theorem 3.3.8. We

first discuss the case of lim
t→∞
Z [i]
agg(t) ̸= ∅.

Remark 3.4.8 and Proposition 3.4.9 respectively render

µ̌z∗|D[i](t) = ř[i]z∗(t) + ě[i]z∗(t), (3.23)

µ̂
[i]
z∗|D(t) = r̃[i]z∗(t) + ẽ[i]z∗(t), (3.24)

59

where r̃
[i]
z∗(t) ≜ (σ̂

[i]
z∗|D(t))

2θ
[i]
z∗,r(t) and ẽ

[i]
z∗(t) ≜ (σ̂

[i]
z∗|D(t))

2θ
[i]
z∗,e(t) is zero-mean, ∀z∗ ∈

Z. Lemma 3.4.10 summarizes the limiting behaviors of the above variables.

Lemma 3.4.10. Suppose the same conditions for Proposition 3.4.9 hold and

d[j](t)→ 0, ∀j ∈ V . It holds that ∀z∗ ∈ Z,

ř[i]z∗ = ψ[i]η(z∗), limt→∞r̃
[i]
z∗(t) = cη(z∗)

ě[i]z∗ = ψ[i]e[i]z∗ , limt→∞

n∑
j=1

ẽ[j]z∗(t) =
n∑
j=1

(
µ−1
χ χ[j]ψ[j]e[j]z∗

)
.

Proof: Combining the definition of ψ[i] and Remark 3.4.8 directly renders

ř
[i]
z∗ = ψ[i]η(z∗) and ě

[i]
z∗ = ψ[i]e

[i]
z∗ .

Corollary 3.4.2 shows that lim
t→∞

σ̌−2
z∗|D[i](t)

= χ[i]. Then Corollary 3.4.5 and (3.3)

render

lim
t→∞

(σ̂
[i]
z∗|D(t))

2 = lim
t→∞

(σ̌
(agg)
z∗|D(t))

2 = µ−1
χ .

Combining this with the definition of r̃
[i]
z∗(t), Proposition 3.4.9, and the above result

about ř
[i]
z∗ renders lim

t→∞
r̃
[i]
z∗(t) = cη(z∗).

Combining the definition of ẽ
[j]
z∗(t) with Proposition 3.4.9 gives lim

t→∞

∑n
j=1 ẽ

[j]
z∗(t) =∑n

j=1

(
µ−1
χ χ[j]ψ[j]e

[j]
z∗

)
. ■

Next we introduce necessary notations to continue the analysis. Since lim
t→∞
Z [i]
agg(t) ̸=

∅ and Corollary 3.4.2 hold, z
[i]
agg∗ ∈ lim

t→∞
proj(z∗,Z [i]

agg(t)) and g(z∗) ≜ lim
t→∞

g(z∗, t)

exist. Line 11 of fused GPR gives

(µ̃
[i]
z∗|D(t) − η(z∗))

2 = (µ̌z∗|D[i](t) − η(z∗))
2 + s[i]z∗(t),

where s
[i]
z∗(t) ≜ s

[i]
z∗,1(t) + s

[i]
z∗,2(t) with

s
[i]
z∗,1(t) ≜ 2(µ̌z∗|D[i](t) − η(z∗))v

[i]
z∗(t)µ

′[i]
z
[i]
agg∗(t)|D(t)

,

s
[i]
z∗,2(t) ≜

(
v[i]z∗(t)µ

′[i]
z
[i]
agg∗(t)|D(t)

)2
.

Let v
[i]
z∗ ≜ lim

t→∞
v
[i]
z∗(t), whose existence, according to its definition, is guaranteed by

60

the existences of z
[i]
agg∗, g(z

[i]
agg∗), and Corollary 3.4.2. Denote

q
[i]
z∗,1 ≜ (ψ[i] − 1)(c− ψ[i])k(z∗, z

[i]
agg∗),

q
[i]
z∗,2 ≜ (c− ψ[i])2σ2

f + lim sup
t→∞

E[(ẽ[i]
z
[i]
agg∗

(t)− ě[i]
z
[i]
agg∗

(t))2].

Lemmas 3.4.11 and 3.4.12 characterize the limit of E[s[i]z∗,1(t)] and E[s[i]z∗,2(t)] in
terms of q

[i]
z∗,1 and q

[i]
z∗,2, respectively.

Lemma 3.4.11. Suppose the same conditions in Theorem 3.3.8 Part II hold and

d[j](t) → 0, ∀j ∈ V . If lim
t→∞
Z [i]
agg(t) ̸= ∅ for some i ∈ V , then lim sup

t→∞
E[s[i]z∗,1(t)] ⩽

2v
[i]
z∗q

[i]
z∗,1.

Proof: Outline: We first give the expression of E[s[i]z∗,1(t)]. Then we analyze

the limit of each term in the expression E[s[i]z∗,1(t)]. Finally, we plug in the terms

and derive the upper bound of lim sup
t→∞

E[s[i]z∗,1(t)].

First, we give the expression of E[s[i]z∗,1(t)]. Using the definition of µ
′[i]
z
[i]
agg∗(t)|D(t)

in Line 10 of fused GPR and plugging in (3.23) and (3.24), we have

µ′[i]
z
[i]
agg∗(t)|D(t)

= r̃
[i]

z
[i]
agg∗(t)

(t) + ẽ
[i]

z
[i]
agg∗(t)

(t)− ř[i]
z
[i]
agg∗(t)

(t)− ě[i]
z
[i]
agg∗(t)

(t), (3.25)

s
[i]
z∗,1(t) = 2

(
ř[i]z∗(t) + ě[i]z∗(t)− η(z∗)

)
v[i]z∗(t)

(
r̃
[i]

z
[i]
agg∗(t)

(t) + ẽ
[i]

z
[i]
agg∗(t)

(t)

− ř[i]
z
[i]
agg∗(t)

(t)− ě[i]
z
[i]
agg∗(t)

(t)
)
.

Note that v
[i]
z∗(t) = g

[i]
z∗(t)σ̌

−2

z
[i]
agg∗(t)|D[i](t)

, where the right hand side only depends on

z∗ and z
[i]
agg∗(t) instead of η or e

[i]
z that is random. This gives

E[s[i]z∗,1(t)] =2v[i]z∗(t)E[ř
[i]
z∗(t)r̃

[i]

z
[i]
agg∗(t)

(t) + ř[i]z∗(t)ẽ
[i]

z
[i]
agg∗(t)

(t)− ř[i]z∗(t)ř
[i]

z
[i]
agg∗(t)

(t)

− ř[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t) + ě[i]z∗(t)r̃
[i]

z
[i]
agg∗(t)

(t) + ě[i]z∗(t)ẽ
[i]

z
[i]
agg∗(t)

(t)

− ě[i]z∗(t)ř
[i]

z
[i]
agg∗(t)

(t)− ě[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t)− η(z∗)r̃
[i]

z
[i]
agg∗(t)

(t)

− η(z∗)ẽ
[i]

z
[i]
agg∗(t)

(t) + η(z∗)ř
[i]

z
[i]
agg∗(t)

(t) + η(z∗)ě
[i]

z
[i]
agg∗(t)

(t)].

Second, we analyze the limit of each term. The limits of the twelve terms in the

expectation are given in the claim below.

61

Claim 3.4.11.1. It holds that

lim
t→∞

E[ř[i]z∗(t)r̃
[i]

z
[i]
agg∗(t)

(t)] = ψ[i]ck(z∗, z
[i]
agg∗);

lim
t→∞

E[ř[i]z∗(t)ẽ
[i]

z
[i]
agg∗(t)

] = 0;

lim
t→∞

E[ř[i]z∗(t)ř
[i]

z
[i]
agg∗(t)

(t)] = (ψ[i])2k(z∗, z
[i]
agg∗);

lim
t→∞

E[ř[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t)] = 0;

lim
t→∞

E[ě[i]z∗(t)r̃
[i]

z
[i]
agg∗(t)

(t)] = 0;

lim sup
t→∞

E[ě[i]z∗(t)ẽ
[i]

z
[i]
agg∗(t)

(t)] ⩽
χ[i](ψ[i])2(σ

[i]
e)2

µχ
, if z∗ = z[i]

agg∗,

lim
t→∞

E[ě[i]z∗(t)ẽ
[i]

z
[i]
agg∗(t)

(t)] = 0, otherwise;

lim
t→∞

E[ě[i]z∗(t)ř
[i]

z
[i]
agg∗(t)

(t)] = 0;

lim
t→∞

E[ě[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t)] = (ψ[i])2(σ[i]
e)

2, if z∗ = z[i]
agg∗,

lim
t→∞

E[ě[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t)] = 0, otherwise;

lim
t→∞

E[η(z∗)r̃
[i]

z
[i]
agg∗(t)

(t)] = ck(z∗, z
[i]
agg∗);

lim
t→∞

E[η(z∗)ẽ
[i]

z
[i]
agg∗(t)

(t)] = 0;

lim
t→∞

E[η(z∗)ř
[i]

z
[i]
agg∗(t)

(t)] = ψ[i]k(z∗, z
[i]
agg∗);

lim
t→∞

E[η(z∗)ě
[i]

z
[i]
agg∗(t)

(t)] = 0.

Finally, we find the upper bound of lim sup
t→∞

E[s[i]z∗,1(t)]. Plugging in the terms in

Claim 3.4.11.1 gives

when z∗ = z[i]
agg∗, lim sup

t→∞
E[s[i]z∗,1(t)] ⩽ 2v[i]z∗

(
(ψ[i] − 1)(c− ψ[i])k(z∗, z

[i]
agg∗)

+ (µ−1
χ χ[i] − 1)(ψ[i])2(σ[i]

e)
2
)
;

when z∗ ̸= z[i]
agg∗, lim

t→∞
E[s[i]z∗,1(t)] = 2v[i]z∗

(
(ψ[i] − 1)(c− ψ[i])k(z∗, z

[i]
agg∗)

)
.

Invoking Lemma 3.4.7 gives lim sup
t→∞

E[s[i]z∗,1(t)] ⩽ 2v
[i]
z∗

(
(ψ[i]−1)(c−ψ[i])k(z∗, z

[i]
agg∗)

)
,

∀z∗ ∈ Z. ■

62

Proof of Claim 3.4.11.1: We analyze the limit of each of the twelve terms in

expectation as follows.

Term 1. The solution of the LTV system (3.21) gives

θ
[i]

z
[i]
agg∗(t),r

(t) =
∑
j∈V

ϕij(t, 0)θ
[j]

z
[i]
agg∗(t)

(0) +
t∑
l=1

∑
j∈V

ϕij(t, l)∆σ̌
−2

z
[i]
agg∗(t)|D[j](t)

ř
[j]

z
[i]
agg∗(t)

(t),

where by Remark 3.4.8, ř
[j]
z∗(t) = ψ

[i]
z∗(t)η(z

[i]
∗ (t)), ψ

[i]
z∗(t) ≜ κ(ρ

Z[i](t)
z∗)

σ2
f+(σ

[i]
e)2

, ∀z∗ ∈ Z.

Combining this with the definition of r̃
[i]

z
[i]
agg∗(t)

(t) gives

r̃
[i]

z
[i]
agg∗(t)

(t) = c
[i]

z
[i]
agg∗(t)

(t)η(z[i]
agg∗,p(t)),

where z
[i]
agg∗,p(t) ∈ proj(z

[i]
agg∗(t),Z [i](t)),

c
[i]

z
[i]
agg∗(t)

(t) ≜(σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2
(∑
j∈V

ϕij(t, 0)θ
[j]

z
[i]
agg∗(t)

(0)/η(z[i]
agg∗,p(t))+

t∑
l=1

∑
j∈V

(
ϕij(t, l)∆σ̌

−2

z
[i]
agg∗(t)|D[j](t)

ψ
[j]

z
[i]
agg∗(t)

(t)
))

Therefore, we have

E[ř[i]z∗(t)r̃
[i]

z
[i]
agg∗(t)

(t)] = E[ψ[i]
z∗(t)η(z

[i]
∗ (t))c

[i]

z
[i]
agg∗(t)

(t)η(z[i]
agg∗,p(t))]

= ψ[i]
z∗(t)c

[i]

z
[i]
agg∗(t)

(t)E[η(z[i]
∗)η(z[i]

agg∗,p(t))]

= ψ[i]
z∗(t)c

[i]

z
[i]
agg∗(t)

(t)k(z[i]
∗ (t), z[i]

agg∗,p(t)).

where the last equality follows from Assumption 3.3.5. Note that Lemma 3.4.10

indicates ∀z ∈ Z, lim
t→∞

ψ
[i]
z (t) = ψ[i] and lim

t→∞
c
[i]
z (t) = c. Hence

lim
t→∞

E[ř[i]z∗(t)r̃
[i]

z
[i]
agg∗(t)

(t)] = lim
t→∞

ψ[i](t)c[i](t)k(z[i]
∗ (t), z[i]

agg∗,p(t)) = ψ[i]ck(z∗, z
[i]
agg∗).

Terms 3, 9, 11. Similar to Term 1, we have

lim
t→∞

E[ř[i]z∗(t)ř
[i]

z
[i]
agg∗(t)

(t)] = (ψ[i])2k(z∗, z
[i]
agg∗)

63

lim
t→∞

E[η(z∗)r̃
[i]

z
[i]
agg∗(t)

(t)] = ck(z∗, z
[i]
agg∗)

lim
t→∞

E[η(z∗)ř
[i]

z
[i]
agg∗(t)

(t)] = ψ[i]k(z∗, z
[i]
agg∗).

Term 2. By definitions, ř
[i]
z∗(t) and ẽ

[i]

z
[i]
agg∗(t)

(t) only depend on η(z
[i]
∗ (t)) and

e
[i]

z
[i]
agg∗(t)

, respectively. Since ẽ
[i]

z
[i]
agg∗(t)

is zero-mean, we have ∀t ⩾ 1,

E[ř[i]z∗(t)ẽ
[i]

z
[i]
agg∗(t)

] = Eη[ř[i]z∗(t)]Ee[i]
z
[i]
agg∗(t)

[ẽ
[i]

z
[i]
agg∗(t)

(t)] = 0.

Terms 4, 5, 7, 10, 12. Similar to Term 2,

E[ř[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t)] = E[ě[i]z∗(t)r̃
[i]

z
[i]
agg∗(t)

(t)]

= E[ě[i]z∗(t)ř
[i]

z
[i]
agg∗(t)

(t)] = E[η(z∗)ẽ
[i]

z
[i]
agg∗(t)

(t)]

= E[η(z∗)ě
[i]

z
[i]
agg∗(t)

(t)] = 0, ∀t ⩾ 1.

Terms 6, 8. Since e
[i]
z∗ and e

[j]
z∗ are independent zero-mean measurement noises,

we have E[e[i]z∗e
[j]
z∗] = 0. Since Remark 3.4.8 states that ě

[i]
z∗(t) = ψ[i](t)e

[i]
z∗ , we have

ě
[i]
z∗(t) and ě

[j]
z∗(t) are also zero-mean and independent. Therefore,

E[ě[i]z∗(t)ě
[j]
z∗(t)] = 0, ∀j ̸= i.

Since ê
[j]
z∗(t) is linear in ě

[j]
z∗(t), we have

E[ě[i]z∗(t)ê
[j]
z∗(t)] = 0,∀j ̸= i.

Recall that ẽ
[i]

z
[i]
agg∗(t)

(t) ≜ (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2θ
[i]

z
[i]
agg∗(t),e

(t) and the LTV solution gives

θ
[i]
z,e(t) ≜

∑t
l=1

∑n
j=1 ϕij(t, l)∆ê

[j]
z (l). Then

E[ě[i]z∗(t)ẽ
[i]

z
[i]
agg∗(t)

(t)] = (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2E[ě[i]z∗(t)(
t∑
l=1

n∑
j=1

ϕij(t, l)∆ê
[j]

z
[i]
agg∗(t)

(l))]

= (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2E[ě[i]z∗(t)(
t∑
l=1

ϕii(t, l)∆ê
[i]

z
[i]
agg∗(t)

(l))]

64

= (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2ϕii(t, t)E[ě[i]z∗(t)ê
[i]

z
[i]
agg∗(t)

(t)]

= (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2σ̌−2

z
[i]
agg∗(t)|D[i](t)

ϕii(t, t)E[ě[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t)] (3.26)

where the third equality follows from the initial condition ê
[j]

z
[i]
agg∗(t)

(0) = 0 and

ϕij(t, l) = ϕij(t, l
′) for all 0 < l, l′ ⩽ t implied by Assumption 3.3.6.

The independence of e
[i]
z over z ∈ Z gives:

if z[i]
∗ (t) = z[i]

agg∗(t), E[ě[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t)] = E[ě[i]z∗(t)ě
[i]
z∗(t)];

otherwise, E[(ě[i]z∗(t))
2] = 0.

Notice lim
t→∞

z
[i]
∗ (t) = z∗ and lim

t→∞
z
[i]
agg∗,p(t) = z

[i]
agg∗. Hence

if z∗ = z[i]
agg∗, lim

t→∞
E[ě[i]z∗(t)ě

[i]

z
[i]
agg∗(t)

(t)] = E[ě[i]z∗ ě
[i]
z∗];

otherwise, lim
t→∞

E[ě[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t)] = 0.

The definition of ě
[i]
z∗ in Remark 3.4.8 gives

E[ě[i]z∗ ě
[i]
z∗] = (ψ[i])2E[(e[i]z∗)

2] = (ψ[i])2(σ[i]
e)

2.

Hence for Term 8, we have

if z∗ = z[i]
agg∗, lim

t→∞
E[ě[i]z∗(t)ě

[i]

z
[i]
agg∗(t)

(t)] = (ψ[i])2(σ[i]
e)

2;

otherwise, lim
t→∞

E[ě[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t)] = 0. (3.27)

By Corollary 3.4.2,

χ[i] = lim
t→∞

σ̌−2
z|D[i](t)

, ∀z ∈ Z,

and by Corollary 3.4.5,

µ−1
χ = lim

t→∞
(σ̌

(agg)
z|D(t))

2 = lim
t→∞

(σ̂
[i]
z|D(t))

2, ∀z ∈ Z.

Note that ϕii(t, t) ⩽ 1 implied by Assumption 3.3.6. Combining these with (3.26)

65

and (3.27) gives Term 6

lim sup
t→∞

E[ě[i]z∗(t)ẽ
[i]

z
[i]
agg∗(t)

(t)] ⩽ lim
t→∞

(σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2σ̌−2

z
[i]
agg∗(t)|D[i](t)

E[ě[i]z∗(t)ě
[i]

z
[i]
agg∗(t)

(t)]

⩽ µ−1
χ χ[i]E[ě[i]z∗ ě

[i]
z∗] = µ−1

χ χ[i](ψ[i])2(σ[i]
e)

2

when z∗ = z
[i]
agg∗; otherwise lim

t→∞
E[ě[i]z∗(t)ẽ

[i]

z
[i]
agg∗(t)

(t)] = 0.

Lemma 3.4.12 shows the limiting behavior of E[s[i]z∗,2(t)].

Lemma 3.4.12. Suppose the same conditions in Theorem 3.3.8 part II hold and

d[j](t) → 0, ∀j ∈ V . If lim
t→∞
Z [i]
agg(t) ̸= ∅ for some i ∈ V , then lim sup

t→∞
E[s[i]z∗,2(t)] =

(v
[i]
z∗)

2q
[i]
z∗,2.

Proof: The proof is done by combining (3.25) with the definition of s
[i]
z∗,2(t)

and applying similar term-by-term analysis as in Lemma 3.4.11. ■

Proposition 3.4.13 shows the limiting behavior of E[s[i]z∗(t)] when lim
t→∞
Z [i]
agg(t) ̸=

∅.

Proposition 3.4.13. Suppose the same conditions in Theorem 3.3.8 Part II hold

and d[j](t)→ 0, ∀j ∈ V . If lim
t→∞
Z [i]
agg(t) ̸= ∅ for some i ∈ V , then lim sup

t→∞
E[s[i]z∗(t)] ⩽

−O
(
k(z∗, z

[i]
agg∗)

)
< 0.

Proof: Denote b
[i]
z∗ ≜ −2q

[i]
z∗,1/q

[i]
z∗,2. Then Lemma 3.4.11 and 3.4.12 imply

lim sup
t→∞

E[s[i]z∗(t)] ⩽ v[i]z∗q
[i]
z∗,2(−b

[i]
z∗ + v[i]z∗). (3.28)

We first show that 0 < v
[i]
z∗ < b

[i]
z∗ . The definition of v

[i]
z∗(t) on Line 9 in fused

GPR gives

v[i]z∗ = lim
t→∞
{g[i]z∗(t)σ̌

−2

z
[i]
agg∗|D[i](t)

}. (3.29)

Corollary 3.4.2 renders lim
t→∞

σ̌−2

z
[i]
agg∗|D[i](t)

> 0 and lim
t→∞

g
[i]
z∗(t) > 0; hence v

[i]
z∗ > 0. This

also indicates that

v[i]z∗ =
lim
t→∞

g
[i]
z∗(t)

lim
t→∞

σ̌2

z
[i]
agg∗(t)|D[i](t)

. (3.30)

66

By boundedness in Assumption 3.3.1 and Corollary 3.4.2, Line 8 in fused GPR

renders

lim
t→∞

g[i]z∗(t) = (1− ψ[i])(c− ψ[i])k(z∗, z
[i]
agg∗)σ

−2
f = −q[i]z∗,1/σ

2
f . (3.31)

The following claim characterizes the lower bound of lim
t→∞

σ̌2

z
[i]
agg∗(t)|D[i](t)

in terms of

q
[i]
z∗,2.

Claim 3.4.13.1. It holds that lim
t→∞

σ̌2

z
[i]
agg∗(t)|D[i](t)

>
q
[i]
z∗,2

2(cσ2
f−ψ[i])

> 0.

Combining (3.31) and Claim 3.4.13.1 with (3.30) gives

v[i]z∗ =
lim
t→∞

g
[i]
z∗(t)

lim
t→∞

σ̌2

z
[i]
agg∗(t)|D[i](t)

=
−q[i]z∗,1/σ

2
f

lim
t→∞

σ̌2

z
[i]
agg∗(t)|D[i](t)

<
−q[i]z∗,1/σ

2
f

q
[i]
z∗,2/2(cσ

2
f − ψ[i])

<
−q[i]z∗,1/σ

2
f

q
[i]
z∗,2/2σ

2
f

= b[i]z∗ ,

noticing that 0 < c < 1.

Notice that Lemma 3.4.7 implies q
[i]
z∗,2 > 0. Since 0 < v

[i]
z∗ < b

[i]
z∗ , (3.28) implies

lim sup
t→∞

E[s[i]z∗(t)] < 0. Combining (3.29) and (3.31) renders v
[i]
z∗ = O

(
k(z∗, z

[i]
agg∗)

)
.

Combining this with (3.28) renders lim sup
t→∞

E[s[i]z∗(t)] ⩽ −O
(
k(z∗, z

[i]
agg∗)

)
. ■

Proof of Claim 3.4.13.1: Outline: Based on the definition of q
[i]
z∗,2, the proof

is broken down into two parts: deriving the upper bound of (c − ψ[i])σ2
f and the

upper bound of lim sup
t→∞

E[
(
ẽ
[i]

z
[i]
agg∗(t)

(t)− ě[i]
z
[i]
agg∗(t)

(t)
)2
].

First, we derive the upper bound of (c − ψ[i])σ2
f . Since ψ[j] < 1, ∀j ∈ V and c

is a convex combination of ψ[j], we have c < 1 and

(c− ψ[i])σ2
f < (1− ψ[i])σ2

f = σ2
f −

σ4
f

σ2
f + (σ

[i]
e)2

= lim
t→∞

σ̌2

z
[i]
agg∗(t)|D[i](t)

, (3.32)

where the equality follows from Corollary 3.4.2.

Second, we derive the upper bound of lim sup
t→∞

E[
(
ẽ
[i]

z
[i]
agg∗(t)

(t)−ě[i]
z
[i]
agg∗(t)

(t)
)2
]. Con-

sider the following properties regarding the covariances involving ẽ
[i]
z∗(t) and ě

[j]
z∗(t),

where the proofs are at the end.

67

Claim 3.4.13.2. It holds that cov
(
ẽ
[j]
z∗(t), ě

[i]
z∗(t)

)
= E[ẽ[j]z∗(t)ě

[i]
z∗(t)] ⩾ 0, ∀t ⩾ 1,

z∗ ∈ Z, i, j ∈ V .

Claim 3.4.13.3. It holds that cov(ẽ
[i]
z∗(t)+ě

[i]
z∗(t), ẽ

[j]
z∗(t)+ě

[j]
z∗(t)) ⩾ 0, ∀t ⩾ 1, z∗ ∈ Z,

i, j ∈ V .

Since ẽ
[j]

z
[i]
agg∗(t)

(t) and ě
[j]

z
[i]
agg∗(t)

(t) are zero-mean, we have

E[
(
ẽ
[j]

z
[i]
agg∗(t)

(t)− ě[j]
z
[i]
agg∗(t)

(t)
)2
] = var

(
ẽ
[j]

z
[i]
agg∗(t)

(t)− ě[j]
z
[i]
agg∗(t)

(t)
)
.

By Claim 3.4.13.2, we have

var
(
ẽ
[j]

z
[i]
agg∗(t)

(t)− ě[j]
z
[i]
agg∗(t)

(t)
)

= var
(
ẽ
[j]

z
[i]
agg∗(t)

(t)
)
− 2cov

(
ẽ
[j]

z
[i]
agg∗(t)

(t), ě
[j]

z
[i]
agg∗(t)

(t)
)
+ var

(
ě
[j]

z
[i]
agg∗(t)

(t)
)

⩽ var
(
ẽ
[j]

z
[i]
agg∗(t)

(t) + ě
[j]

z
[i]
agg∗(t)

(t)
)
⩽

n∑
j=1

var
(
ẽ
[j]

z
[i]
agg∗(t)

(t) + ě
[j]

z
[i]
agg∗(t)

(t)
)
.

By Claim 3.4.13.3, we have

n∑
j=1

var
(
ẽ
[j]

z
[i]
agg∗(t)

(t) + ě
[j]

z
[i]
agg∗(t)

(t)
)

⩽
n∑
j=1

var
(
ẽ
[j]

z
[i]
agg∗(t)

(t) + ě
[j]

z
[i]
agg∗(t)

(t)
)
+

n∑
j=1

∑
l ̸=j

cov
(
ẽ
[j]

z
[i]
agg∗(t)

(t) + ě
[j]

z
[i]
agg∗(t)

(t),

ẽ
[l]

z
[i]
agg∗(t)

(t) + ě
[l]

z
[i]
agg∗(t)

(t)
)

= var(
n∑
j=1

(
ẽ
[j]

z
[i]
agg∗(t)

(t) + ě
[j]

z
[i]
agg∗(t)

(t)
)
).

The above three statements render

E[
(
ẽ
[j]

z
[i]
agg∗(t)

(t)− ě[j]
z
[i]
agg∗(t)

(t)
)2
] ⩽ var(

n∑
j=1

(
ẽ
[j]

z
[i]
agg∗(t)

(t) + ě
[j]

z
[i]
agg∗(t)

(t)
)
). (3.33)

By Lemma 3.4.10, we have lim
t→∞

∑n
j=1

(
ẽ
[j]

z
[i]
agg∗(t)

(t)+ě
[j]

z
[i]
agg∗(t)

(t)
)
=

∑n
j=1

(
µ−1
χ χ[j]ψ[j]+

68

ψ[j]
)
e
[j]

z
[i]
agg∗

. Taking limit on both sides of (3.33) renders

lim sup
t→∞

E[
(
ẽ
[j]

z
[i]
agg∗(t)

(t)− ě[j]
z
[i]
agg∗(t)

(t)
)2
] ⩽ lim

t→∞
var(

n∑
j=1

(
ẽ
[j]

z
[i]
agg∗(t)

(t) + ě
[j]

z
[i]
agg∗(t)

(t)
)
)

= var(
n∑
j=1

(
µ−1
χ χ[j]ψ[j] + ψ[j]

)
e
[j]

z
[i]
agg∗

=
n∑
j=1

(
(µ−1

χ χ[j] + 1)2(ψ[j])2(σ[j]
e)2

)
⩽

n∑
j=1

(
(µ−1

χ χ[j] + 1)2
)
(ψmax)2(σmax

e)2. (3.34)

Note that
∑n

j=1(µ
−1
χ χ[j] + 1)2 =

σ2
χ

µ2χ
based on the definitions in Section 3.3.4.

Lemma 3.4.7 indicates c − ψ[i] > 0. Since σ2
f ⩾ 1 in Section 3.3.4, we have

cσ2
f −ψ[i] > 0. By definition of ϵ+ in Section 3.3.4, we further have cσ2

f −ψ[i] ⩾ ϵ+.

Combining this with (3.34) gives

lim sup
t→∞

E[
(
ẽ
[i]

z
[i]
agg∗(t)

(t)− ě[i]
z
[i]
agg∗(t)

(t)
)2
] ⩽

σ2
χ(ψ

max)2(σmax
e)2(cσ2

f − ψ[i])

µ2
χϵ+

⩽ (ψmax)2(σmin
e)2(cσ2

f − ψ[i]),

where the last inequality follows from (3.4). Notice that ψmax =
σ2
f

σ2
f+(σ

[min]
e)2

< 1

and hence

(ψmax)2(σmin
e)2 <

σ2
f (σ

[min]
e)2

σ2
f + (σ

[min]
e)2

= σ2
f −

σ4
f

σ2
f + (σ

[min]
e)2

⩽ σ2
f −

σ4
f

σ2
f + (σ

[i]
e)2

= lim
t→∞

σ̌2

z
[i]
agg∗(t)|D[i](t)

where the last equality follows from Corollary 3.4.2. Therefore,

lim sup
t→∞

E[
(
ẽ
[i]

z
[i]
agg∗(t)

(t)− ě[i]
z
[i]
agg∗(t)

(t)
)2
] ⩽ lim

t→∞
σ̌2

z
[i]
agg∗(t)|D[i](t)

(cσ2
f − ψ[i]). (3.35)

Finally, we find the lower bound of lim
t→∞

σ̌2

z
[i]
agg∗(t)|D[i](t)

. Since σ2
f ⩾ 1, cσ2

f > c.

Combining this with (3.32) and (3.35) renders

q
[i]
z∗,2 = (c− ψ[i])2σ2

f + lim sup
t→∞

E[(ẽ[i]
z
[i]
agg∗

(t)− ě[i]
z
[i]
agg∗

(t))2] < 2(cσ2
f − ψ[i]) lim

t→∞
σ̌2

z
[i]
agg∗(t)|D[i](t)

,

69

and obviously q
[i]
z∗,2 > 0.

Proof of Claim 3.4.13.2: Since ẽ
[j]
z∗(t) and ě

[i]
z∗(t) are zero-mean, it follows that

cov(ẽ
[j]
z∗(t), ě

[i]
z∗(t)) = E[ẽ[j]z∗(t)ě

[i]
z∗(t)].

Recall that ẽ
[i]
z∗(t) ≜ (σ̂

[i]
z∗|D(t))

2θ
[i]
z∗,e(t) and the LTV solution (3.21) gives

θ[i]z∗,e(t) =
t∑
l=1

n∑
j=1

ϕij(t, l)∆ê
[j]
z∗(l).

By Assumption 3.3.6, ϕij(t, l) = ϕij(t, l
′) for all 0 < l, l′ ⩽ t. Therefore,

θ[i]z∗,e(t) =
t∑
l=1

n∑
j=1

ϕij(t, t)∆ê
[j]
z∗(l).

Because of the initial condition ê
[j]
z∗(0) = 0, we have θ

[i]
z∗,e(t) =

∑n
j=1 ϕij(t, t)ê

[j]
z∗(t).

Then

E[ě[i]z∗(t)ẽ
[j]
z∗(t)] = (σ̂

[i]
z∗|D(t))

2E[ě[i]z∗(t)(
n∑
j=1

ϕij(t, t)ê
[j]
z∗(t))].

Since e
[i]
z∗ and e

[j]
z∗ are zero-mean and independent if i ̸= j, we have E[e[i]z∗e

[j]
z∗] = 0.

Since Remark 3.4.8 indicates that ě
[i]
z∗(t) = σ̌−2

z∗|D[i](t)
e
[i]
z∗ , we have ě

[i]
z∗(t) and ě

[j]
z∗(t)

are also zero-mean and independent. Therefore, E[ě[i]z∗(t)ě
[j]
z∗(t)] = 0, ∀j ̸= i. Since

ê
[i]
z∗(t) is linear in ě

[i]
z∗(t), we have E[ě

[i]
z∗(t)ê

[j]
z∗(t)] = 0, j ̸= i. Hence, we further have

E[ě[i]z∗(t)ẽ
[j]
z∗(t)] = (σ̂

[i]
z∗|D(t))

2σ̌−2
z∗|D[i](t)

ϕii(t, t)E[(ě[i]z∗(t))
2].

Since ϕii(t, t) ⩾ 0 implied by Assumption 3.2.3, we have E[ě[i]z∗(t)ẽ
[j]
z∗(t)] ⩾ 0.

Proof of Claim 3.4.13.3: Recall that ẽ
[p]
z∗(t) and ě

[p]
z∗(t) are zero mean for all

p ∈ V , hence

cov(ẽ[i]z∗(t) + ě[i]z∗(t), ẽ
[j]
z∗(t) + ě[j]z∗(t)) = E[

(
ẽ[i]z∗(t) + ě[i]z∗(t)

)(
ẽ[j]z∗(t) + ě[j]z∗(t)

)
].

Recall that ê
[p]
z∗(l) = σ̌−2

z∗|D[p](l)
ě
[p]
z∗(l), ě

[p]
z∗(l) =

κ(ρ
Z[p](l)
z∗)

σ2
f+(σ

[i]
e)2

e
[p]

z
[p]
∗ (l)

. By independence of

70

e
[p]
z over p ∈ V , we have E[e[p]z e

[p′]
z] = 0 and hence E[ě[p]z ě

[p′]
z] = 0 if p ̸= p′, and then

cov(ẽ[i]z∗(t) + ě[i]z∗(t), ẽ
[j]
z∗(t) + ě[j]z∗(t))

⩾ E[ẽ[i]z∗(t)ẽ
[j]
z∗(t)] + E[ẽ[i]z∗(t)ě

[j]
z∗(t)] + E[ẽ[j]z∗(t)ě

[i]
z∗(t)] ⩾ E[ẽ[i]z∗(t)ẽ

[j]
z∗(t)], (3.36)

where the last inequality follows from Claim 3.4.13.2. Obviously, E[ẽ[i]z∗(t)ẽ
[j]
z∗(t)] ⩾

0 if i = j. Next, we consider i ̸= j.

By definition of ẽ
[i]
z∗(t) and the LTV solution (3.21) of θ

[i]
z∗,e(t), we can write

ẽ[i]z∗(t) = (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2
t∑
l=1

n∑
p=1

ϕip(t, l)∆ê
[p]
z∗(l).

Assumption 3.3.6 implies ϕip(t, l) = ϕip(t, l
′) ∀l, l′ ∈ [1, t], t ⩾ 1. Therefore, we

can denote ϕ̃ip(t) ≜ (σ̂
[i]

z
[i]
agg∗(t)|D(t)

)2ϕip(t, l), ∀l ∈ [1, t]. Due to the initial condition

ê
[j]
z∗(0) = 0, we can further write ẽ

[i]
z∗(t) =

∑n
p=1 ϕ̃ip(t)ê

[p]
z∗(t). It gives

E[ẽ[i]z∗(t)ẽ
[j]
z∗(t)] = E[

n∑
p=1

(
ϕ̃ip(t)ê

[p]
z∗(t)

) n∑
p′=1

(
ϕ̃jp′(t)ê

[p′]
z∗ (t)

)
],

Since E[e[p]z e
[p′]
z] = 0 if p ̸= p′ (the independence of e

[p]
z over p ∈ V) and ê

[p]
z (t) is

linear in e
[p]
z , we have E[ê[p]z (t)ê

[p′]
z (t)] = 0 if p ̸= p′. This gives

E[ẽ[i]z∗(t)ẽ
[j]
z∗(t)] = E[

n∑
p=1

ϕ̃ip(t)ϕ̃jp(t)
(
ê[p]z∗(t)

)2
].

Assumption 3.2.3 implies ϕip(t, l) ⩾ 0, ∀l ∈ [1, t], i ∈ V . Hence ϕ̃ip(t)ϕ̃jp(t) ⩾ 0.

Therefore, E[ẽ[i]z∗(t)ẽ
[j]
z∗(t)] ⩾ 0. Combining this with (3.36) finishes the proof.

Lemma 3.4.14 shows a sufficient condition for lim
t→∞
Z [i]
agg(t) ̸= ∅.

Lemma 3.4.14. Suppose the same conditions for Corollary 3.4.5 hold and d[j](t)→
0 for all j ∈ V . If (σ[i]

e)2 > 1
n

∑n
j=1(σ

[j]
e)2 for some i ∈ V , then lim

t→∞
Z [i]
agg(t) = Zagg.

Proof: Since function f2 in Lemma 3.4.1 is strictly increasing, we have

f2((σ
[i]
e)

2) > f2(
1

n

n∑
j=1

(σ[j]
e)2) ⩾

1

n

n∑
j=1

f2((σ
[j]
e)2). (3.37)

71

By Corollary 3.4.2, f2((σ
[i]
e)2) = lim

t→∞
σ̌2
zagg |D[i](t)

for any zagg ∈ Zagg, and by Corol-

lary 3.1 in [78],

lim
t→∞

(σ̂
ave,[i]
zagg |D(t))

2 = lim
t→∞

λ[i]zagg(t) = lim
t→∞

1

n

n∑
j=1

σ̌2
zagg |D[j](t) =

1

n

n∑
j=1

f2((σ
[j]
e)2)

Combining these two statements with (3.37) gives

lim
t→∞

σ̌2
zagg |D[i](t) > lim

t→∞
(σ̂

ave,[i]
zagg |D(t))

2. (3.38)

Taking the inverse of (3.37) gives

(
f2((σ

[i]
e)

2)
)−1

<
(1
n

n∑
j=1

f2((σ
[j]
e)2)

)−1
⩽

1

n

n∑
j=1

(
f2((σ

[j]
e)2)

)−1
,

where the last inequality follows from Lemma 3.4.1. This gives

lim
t→∞

σ̌−2
zagg |D[i](t)

<
1

n

n∑
j=1

lim
t→∞

σ̌−2
zagg |D[j](t)

= lim
t→∞

(σ̌
(agg)
zagg |D(t))

−2

where the equality follows from (3.3). This is equivalent to

lim
t→∞

σ̌2
zagg |D[i](t) > lim

t→∞
(σ̌

(agg)
zagg |D(t))

2 = lim
t→∞

(σ̂
[i]
zagg |D(t))

2,

where the equality follows from Corollary 3.4.5. Given (3.38) and the inequality

above, since zagg ∈ Zagg is arbitrary, we have lim
t→∞
Z [i]
agg(t) = Zagg. ■

We now proceed to finish the proof of Part II of Theorem 3.3.8.

Proof of Theorem 3.3.8 Part II: By Line 3-4 in fused GPR, it is obvious

that if lim
t→∞
Z [i]
agg(t) = ∅, then lim

t→∞
(µ̃

[i]
z∗|D(t) − η(z∗))

2 = lim
t→∞

(µ̌z∗|D[i](t) − η(z∗))
2.

Proposition 3.4.13 presents the case of lim
t→∞
Z [i]
agg(t) ̸= ∅. Lemma 3.4.14 corresponds

to the sufficient condition for Proposition 3.4.13, which is the sufficient condition

for lim
t→∞
Z [i]
agg(t) ̸= ∅. ■

72

3.5 Simulation

In this section, we conduct Monte Carlo simulation to evaluate the developed al-

gorithm. For the algorithms introduced below, we use (NN) to denote the version

of the algorithm related to Nearest-neighbor GPR and (full) to denote the ver-

sion related to full GPR. We compare LiDGPR (NN), i.e., Algorithm 1, with five

benchmarks: (i) agent-based GPR (NN), i.e., Nearest-neighbor GPR (Algorithm

2); (ii) agent-based GPR (full), i.e., Algorithm 2 is replaced by (2.1) and hence

µ̌Z∗|D[i](t) = µZ∗|D[i](t), σ̌
2
Z∗|D[i](t)

= [Σz∗|D[i](t)]z∗∈Z∗ ; (iii) LiDGPR (full), i.e., Al-

gorithm 1 with Algorithm 2 replaced by agent-based GPR (full); (iv) centralized

Nearest-neighbor GPR (cNN-GPR, the centralized counterpart of LiDGPR (NN)),

i.e., Nearest-neighbor GPR using all the data collected by all the agents; (v) cen-

tralized full GPR, i.e., (2.1) using all the data collected by all the agents. The

simulations are run in Python, Linux Ubuntu 18.04 on an Intel Xeon(R) Silver

4112 CPU, 2.60 GHz with 32 GB of RAM.

Consider the scenario where four mobile robots are wandering in Z ≜ [1, 10]×
[1, 10] and learning spatial signals, such as temperature or wind fields. Specifically,

the robots are learning 10 different signals in the form η(z) = β
∑10

m=1 αm sin(wm,1z1+

wm,2z2), where αm ∼ N (0, 0.01), wm,1 ∼ N (0, 1), wm,2 ∼ N (0, 1), β is chosen such

that SNR ≜
∫
η(z)2dz

σ2
e

= 2. A realization of η is shown in Figure 3.2b. For each

signal, the robots repeat the trajectories for 10 times, and the observations along

each trajectory are subject to a different noise, where the variances of the obser-

vation noises follow (σ
[i]
e)2 = σ2

e ∼ U(0, 0.25) for all i ∈ V . Notice that there are

totally 100 simulations.

The communication graph of the robots is characterized by adjacency matrix

A(t) = 1−(−1)t

2

0.5 0 0.5 0

0 0.5 0 0.5

0.5 0 0.5 0

0 0.5 0 0.5

+ 1+(−1)t

2

0.5 0.25 0 0.25

0.25 0.5 0.25 0

0 0.25 0.5 0.25

0.25 0 0.25 0.5

 , which sat-

isfies Assumption 3.2.1, 3.2.2 and 3.2.3. As shown in Figure 3.2a, the robots have

spiral trajectories generated by dynamics

[
z
[i]
1 (t)

z
[i]
2 (t)

]
=

[
z
[i]
1 (t− 1)

z
[i]
2 (t− 1)

]
+0.05t

[
sin(0.5t)

cos(0.5t)

]
,

where the initial states of the robots are (2.5, 2.5), (2.5, 7.5), (7.5, 7.5) and (7.5, 2.5)

respectively. Each robot i collects training data along its trajectory, i.e.,
(
z[i](t), η(z[i](t))+

73

(a) The trajectories of the robots (b) Ground truth of η

Figure 3.2: Robot trajectories and ground truth of η

e[i](t)
)
, e[i](t) ∼ N (0, (σ

[i]
e)2), t ⩾ 1. The set Z∗ of test points are uniformly sep-

arated over Z, and |Z∗| = 1600. We use 25% of the test points for the set Zagg,
i.e., |Zagg| = 400. The points in Zagg are uniformly separated. The kernel is

k(z, z′) = σ2
f exp(−2∥z − z′∥2), where σ2

f is chosen following the procedure under

Remark 3.3.2. The resulting σ2
f ranges from 1.1 to 5.8 for each experiment in the

Monte Carlo simulation. The prior mean is µ(z) = 0 for all z ∈ Z.

(a) Predictive variance (b) Predictive error

Figure 3.3: Predictive variance and error of cNN-GPR

The performances of the robots are similar, and we present the figures for robot

1 due to space limitation. Let the predictive error at z∗ ∈ Z∗ be the distance

between predictive mean and the ground truth of η at z∗, where the distance

adopts 2-norm. For example, the predictive error at z∗ of agent-based GPR (NN)

is (µ̌z∗|D[i](t) − η(z∗))
2. When robots’ trajectories and η are those in Figure 3.2,

Figure 3.3 shows the predictive variance and predictive error over Z∗ of cNN-GPR.

We can see that the predictive variances and errors are smaller near the trajectories

74

of the robots.

Figure 3.4 shows the predictive variances and predictive errors of agent-based

GPR (NN) and LiDGPR (NN) over Z∗ of robot 1. We can see that by only

communicating a portion of the testing sets, LiDGPR (NN) improves the learning

performances over agent-based GPR (NN) with reduced predictive variances and

errors. The red dots in Figures 3.4c and 3.4d are the points of Zagg, and the “holes”

indicate that the improvements take place around the trajectories (training data) of

the other robots, which corresponds to the term κ(ρ
Z [j](t)

z
[i]
agg∗(t)

)2 in Part II of Theorem

3.3.3. In addition, the improvements reduce as the test points are moving away

from Zagg, which corresponds to the terms κ(ρ
z
[i]
agg∗(t)

z∗)2 in Part II of Theorem 3.3.3

and κ(ρ
Zagg
z∗) in Part II of Theorem 3.3.8 respectively.

Figures 3.5a compares the average predictive errors and variances of LiDGPR

(NN) with the five benchmarks. The x-axis is the iteration number, corresponding

to the size of training data. The predictive variance and error at each iteration are

represented by the corresponding averages over Z∗.

Note that the complexities in computation and memory are respectively O(nt)
and O(nt) for cNN-GPR, and O((nt)3) and O((nt)2) for centralized full GPR.

Notice that the differences in predictive variances and errors between cNN-GPR

and centralized full GPR are small, while the diminishing rates are comparable.

This shows that cNN-GPR has small performance loss compared to the benefit in

reducing the complexities in computation and memory.

Comparing the curves of LiDGPR (NN) with agent-based GPR (NN) and

agent-based GPR (full), we can see that LiDGPR (NN) not only compensates

the information loss of using agent-based GPR (NN) to approximate agent-based

GPR (full), but also gains extra information from the other robots.

Figures 3.5a plots the theoretic error bounds in Part I of Theorems 3.3.3 and

3.3.8 over the whole Monte Carlo simulation. By multiplying by a constant, we

scale down the bound by factor 0.023 in Part I of Theorem 3.3.8 for better visual

comparison. The orders of rates of the bounds remain the same regardless of the

scaling. Comparisons between the theoretic improvement and the actual improve-

ment of LiDGPR (NN) over agent-based GPR (NN) are shown in Figures 3.5b and

3.5c. Since the theoretic bounds are not tight, to make a meaningful comparison,

we scale up the bounds by factor 10 in Part II of Theorem IV.3 and IV.8.

75

(a) Variance of agent-based GPR (NN) (b) Predictive error of agent-based GPR
(NN)

(c) Variance of LiDGPR (NN) (d) Predictive error of LiDGPR (NN)

Figure 3.4: Comparison of agent-based GPR (NN) and LiDGPR (NN)

76

(a) Comparison in predictive errors and variances (The upper bound in Theorem
3.3.8 Part 1 is scaled by 0.023)

(b) σ̌2
z∗|D[i](t)

− (σ̃
[i]
z∗|D(t))

2 vs. Theorem

3.3.3 Part II (scaled by 10)

(c) µ̌z∗|D[i](t) − (σ̃
[i]
z∗|D(t))

2 vs. Theorem

3.3.8 Part II (scaled by 10)

Figure 3.5: Average performance of robot 1 versus iteration number

77

The wall clock time for prediction using LiDGPR (NN) versus t, the number

of local data points, after linear least-square fitting, has a slope 2.13e-6 second

per test point per data point and a bias 1.19e-3 second per test point. Recall

that Section 5.3.3 indicates that agent-based GPR (NN) has complexity O(t) and
agent-based GPR (full) has complexity O(t3). The growth rate of the computation

times (milliseconds) of LiDGPR (NN) and LiDGPR (full) in the simulation are

respectively 33.2t+200 and 0.256t3−0.1t2−0.512t+27.6. Over the simulation, the

average is 1000 test-point predictions/second, or 1 kHz, with standard deviation

153 predictions/second.

3.6 Conclusion

We propose the algorithm LiDGPR which allows a group of agents to collabora-

tively learn a common static latent function through streaming data. The algo-

rithm is cognizant of agents’ limited resources in communication, computation and

memory. We analyze the transient and steady-state behaviors of the algorithm and

quantify the improvement brought by inter-agent communication. Simulations are

conducted to confirm the theoretical findings.

78

Chapter 4
Distributed safe learning and

planning

4.1 Introduction

Chapter 3 propose a class of distributed GPR algorithm for multi-robot systems.

In this chapter, we introduce a framework that merges GPR with control to ensure

physical safety of multi-robot systems. In particular, we consider the problem of

safe navigation, where the robots are required to travel to their destination from

initial locations under uncertain environments.

Motion planning is a fundamental problem in robotics, and it aims to generate a

series of low-level specifications for a robot to move from one point to another [91].

In the real world, robots’ operations are usually accompanied by uncertainties,

e.g., from the environments they operate in and from the errors in the modeling of

robots’ dynamics. To deal with the uncertainties and ensure safety, i.e., collision

avoidance, existing methods leverage techniques in robust control, e.g., [92, 93, 94],

stochastic control, e.g., [95, 96, 97], and learning-based control e.g., [98, 99, 100].

Robust control-based approaches model the uncertainties as bounded sets and

synthesize control policies that tolerate all the uncertainties in the sets. Note

that considering all possible events can result in over-conservative policies whereas

extreme events may only take place rarely. Stochastic control-based approaches

model the uncertainties as known probability distributions. The generated motion

79

plans enforce chance constraints, i.e., the probability of collision is less than a

given threshold. On the other hand, learning-based approaches relax the need

of prior explicit uncertainty models by directly learning the best mapping from

sensory inputs to control inputs from repetitive trials. Paper [100] leverages PAC-

Bayes theory to provide guarantees on expected performances over a distribution

of environments.

The aforementioned approaches can all be classified as offline approaches where

control policies are synthesized before the deployment of the robots. When robots

encounter significant changes of environments during online operation, online learn-

ing of the uncertainties is desired to ensure safe arrival to the goals. Recently, a

class of methods on safe learning and control have been developed to safely steer

a system to a goal region while learning uncertainties online. These approaches

usually adopt a switching strategy between a learning-based controller, which up-

dates online in light of new observations, and a backup safety controller, which is

suboptimal but can guarantee safety. The backup safety controllers can be synthe-

sized through solving a two-player zero-sum differential game [44], model predictive

control (MPC) [101][34], control barrier function [102, 103], robust optimization

[104], reachability analysis [105] and regions of attraction [46]. The aforementioned

papers only consider single-robot systems and static state constraints (e.g., static

obstacles). In multi-robot systems, from the perspective of each single robot and

when centralized planning is not used, the state constraints are dynamic due to

the motion of the other robots, analogous to moving obstacles.

Motion planning problems are known to be computationally challenging even

for single-robot systems. Paper [106] shows that the generalized mover’s problem

is PSPACE-hard in terms of degrees of freedom. Multi-robot motion planning is

an even more challenging problem as the computation complexity scales up by

the number of robots. Centralized planners [107][108] consider all the robots as a

single entity such that methods for single-robot motion planning can be directly

applied. However, as [107] points out, its worst-case computation complexity grows

exponentially with the number of robots. Consequently, distributed methods are

developed to address the scalability issue. Most of these methods are featured

with each robot conducting a single-robot motion planning strategy but coupled

with a coordination scheme to resolve conflicts. These works can be categorized

80

as fully synthesized design or switching-based design. A fully synthesized design

[109][110] incorporates simple collision avoidance methods, such as artificial poten-

tial field, into the decoupled solution. Under switching-based design, a switching

controller is developed such that each robot executes a nominal controller synthe-

sized in a decoupled manner but switches to a local coordination controller when

it is close to other robots [111, 112, 113]. Prioritized planning, where a priority

is assigned to the robots such that robots with lower priority make compromises

for the robots with higher priority, is further adopted to reduce the need of co-

ordination [114][115]. There have been recent works which study dynamic and

environmental uncertainties in multi-robot motion planning. For example, robust

control-based approaches are studied in [116][117], and stochastic control-based

approaches are studied in [118][119][120]. In [121][122], deep reinforcement learn-

ing is applied to train multiple robots to avoid collisions in an offline manner when

explicit uncertainty models are not available. In this chapter, we consider learn-

ing the uncertainties in an online fashion with data collected sequentially on the

robots’ trajectories.

Contribution statement. We consider the problem of online multi-robot

motion planning with general nonlinear dynamics subject to unknown external

disturbances. We propose dSLAP, the distributed Safe Learning And Planning

framework, where the robots collect streaming data to online learn about the

disturbances, use the learned model to compute a set of safe actions that avoid

collisions against the learning uncertainty, and then choose an action that bal-

ances between reaching the goals and actively exploring the disturbances. Our

contribution is summarized as follows:

• We propose dSLAP, a distributed two-stage motion planner. It utilizes set-

valued analysis to allows for fast adaptation to the sequence of dynamic

models resulted from online learning. The planner first constructs a directed

graph through connecting a robot’s one-step forward sets, and then obtains a

set of safe control inputs by removing the control inputs leading to collisions.

Then a distributed model predictive controller selects safe control inputs

balancing moving towards the goals and actively learning the disturbances.

• Our two-stage motion planning is in contrast to the classic formulation

81

[123][124] of optimal multi-robot motion planning, whose solutions solve col-

lision avoidance and optimal arrival simultaneously and are known to be

computationally challenging (PSPACE-hard [106]). Instead, dSLAP first

solves for collision avoidance and then for optimal arrival. The worst-case

onboard computational complexity of each robot grows linearly with respect

to the number of the robots.

• We derive sufficient conditions to guarantee the safety of the robots in the

absence of backup policies.

Monte Carlo simulation is conducted for evaluations.

Notations. We use superscript (·)[i] to distinguish the local values of robot

i. Define the distance metric ρ(x, x′) ≜ ∥x − x′∥∞, the point-to-set distance as

ρ(x,S) ≜ infx′∈S ρ(x, x
′) for a set S, the closed ball centered at x ∈ Rnx with

radius r as B(x, r) ≜ {x′ ∈ Rnx|ρ(x, x′) ⩽ r}, and shorthand B the closed unit

ball centered at 0 with radius 1. Let Z be the space of integers and N the space of

natural number. Denote the cardinality of a set S as |S|.
Below are the implementations of common procedures. Element removal :

Given a set S and an element s, procedure Remove removes element s from S;
i.e., Remove(S, s) ≜ S \ {s}. Element addition: Given a set S and an element s,

procedure Add appends s to S, i.e., Add(S, s) ≜ S ∪ {s}. Nearest neighbor : Given

a state s and a finite set S, Nearest chooses a state in S that is closest to s; i.e.,

Nearest(s,S) picks y ∈ S, where ρ(s, y) = ρ(s,S).

4.2 Problem formulation

In this section, we introduce the model of the multi-robot system, describe the

formulation of the motion planning problem, and state the objective of this chapter.

Mobile multi-robot system. Consider a network of robots V ≜ {1, · · · , n}. The
dynamic system of each robot i is given by the following differential equation:

ẋ[i](t) = f [i](x[i](t), u[i](t)) + g[i](x[i](t), u[i](t)), (4.1)

where x[i](t) ∈ X ⊆ Rnx is the state of robot i at time t, u[i](t) ∈ U ⊆ Rnu is its

82

control input, f [i] denotes the system dynamics of robot i, and g[i] represents the

external unknown disturbance. We impose the following assumption:

Assumption 4.2.1.(A1) (Lipschitz continuity). The system dynamics f [i] and

the unknown disturbance g[i] are Lipschitz continuous.

(A2) (Compactness). Spaces X and U are compact. ■

Assumption (A1) implies that f [i] + g[i] is Lipschitz continuous. Choose con-

stant ℓ[i], which is larger than the Lipschitz constant of f [i] + g[i] and constant

m[i], which is larger than the supremum of f [i] + g[i] over X and U . Usually these

constants can be estimated. For example, by the Bernoulli equation [125], the vari-

ation and magnitude of wind speed can be bounded due to the limited variation

in temperature and air pressure.

Motion planning. We denote closed obstacle region by XO ⊆ X , goal region by

X [i]
G ⊆ X\XO, and free region at time t by X [i]

F (x[¬i](t)) ≜ X\
(
XO

⋃
∪j ̸=iB(x[j](t), 2ζ)

)
,

where ¬i ≜ V \ {i} and ζ > 0 is the diameter of an overestimation of the robot

size. Each robot i aims to synthesize a feedback policy π[i] : X n → U such that the

solution to system (4.1) under π[i] satisfies x[i](t
[i]
∗) ∈ X [i]

G , x[i](τ) ∈ X [i]
F (x[¬i](τ)),

0 ⩽ τ ⩽ t
[i]
∗ <∞, where t

[i]
∗ is the first time when robot i reaches X [i]

G . That is, each

robot i needs to reach the goal region within finite time and be free of collision.

Problem statement. This chapter aims to solve the above multi-robot motion

planning problem despite unknown function g[i]. Since g[i] is unknown, it is nec-

essarily to learn g[[i]] online to ensure each robot reaches the goal safe and fast.

The challenge of the problem stems from the need of (fast) distributed planning

with respect to a sequence of general nonlinear dynamic models resulted from

online learning subject to dynamic constraints. Specifically, since the unknown

function g[i] is learned online, each robot i should quickly adapt its motion planner

in response to a sequence of newly learned models and the motion of the other

robots.

4.3 Distributed safe learning and planning

In this section, we propose the dSLAP framework. Figure 4.1 shows one iteration

of the algorithm in robot i. In each iteration k, the robot executes two modules in

83

Figure 4.1: Implementation of dSLAP over one iteration

parallel. One is the computation module where robot i first collects a new dataset

D[i]
k and performs system learning (SL) to update the predictive mean µ

[i]
k and

standard deviation σ
[i]
k of the unknown dynamics. Next safe motion planning is

performed, which includes dynamics discretization (Discrete) that outputs one-step

forward sets FR
[i]
k under discretization parameter pk, obstacle collision avoidance

(OCA) that outputs a preliminary set of safe states X [i]
safe,k, and inter-robot collision

avoidance (ICA) that outputs a final X [i]
safe,k. Finally, active learning (AL) is applied

to synthesize control policy π
[i]
k . The discretization parameter is incremented in

each iteration to obtain finer discretization for tighter approximation FR
[i]
k . The

other is the control module where the control policy π
[i]
k−1, computed in iteration

k − 1, is executed for all t ∈ [kξ, (k + 1)ξ), where ξ is the discrete time unit. The

dSLAP framework is formally stated in Algorithm 5.

4.3.1 System learning

In this section, we introduce the SL procedure for learning the external disturbance

g[i]. In each iteration k, each robot i first collects a new dataset D[i]
k through the

CollectData procedure, which returns

D[i]
k ≜ {g[i](x[i](τ), u[i](τ)) + e[i](τ), x[i](τ), u[i](τ)}(k−1)ξ+δτ̄

τ=(k−1)ξ ,

where e[i](τ) ∼ N (0, (σ
[i]
e)2Inx) is robot i’s local observation error, δ is the sampling

period, and τ̄ is the number of samples to be obtained. Then robot i indepen-

dently estimates g[i] through Gaussian process regression (GPR) [54] using all the

collected data ∪kk′=1D
[i]
k′ . By specifying prior mean function µ0 : X × U → Rnx ,

and prior covariance function κ : [X × U] × [X × U] → R>0, GPR models g[i]

as a sample from a Gaussian process prior GP(µ0, κ) and predicts g[i](x[i], u[i]) ∼

84

Algorithm 5 The dSLAP framework

1: Input: State space: X ; Control input space: U ; Obstacle: XO; Goal: X [i]
G , i ∈

V ; Kernel for GPR: κ; Initial discretization parameter: pinit; Termination
iteration: k̃; Number of samples to be obtained: τ̄ ; Discrete time unit: ξ;
Time horizon for MPC: φ; Weight in the MPC: ψ; Sampling period: δ; Utility
function r

[i]
k ; Lipschitz constant ℓ[i]; Prior supremum of dynamic model m[i]

2: Init: p1 ← pinit; π
[i]
0 ,∀i ∈ V

3: for k = 1, 2, · · · , k̃ do
4: for i ∈ V (Computation module) do

5: D[i]
k ← CollectData

6: µ
[i]
k , σ

[i]
k ← SL(D[i]

k)

7: FR
[i]
k ← Discrete(pk)

8: X [i]
safe,k ← OCA

9: X [i]
safe,k ← ICA

10: π
[i]
k ← AL(X [i]

safe,k)
11: pk+1 ← pk + 1
12: end for
13: for i ∈ V (Control module) do

14: Execute(π
[i]
k−1, [kξ, (k + 1)ξ))

15: end for
16: end for

85

N (µ
[i]
k (x

[i], u[i]), (σ
[i]
k (x

[i], u[i]))2). We use recursive GPR [81] to maintain constant

complexity.

4.3.2 Safe motion planning

Safe motion planning is a multi-grid algorithm utilizing set-valued analysis. In-

spired by [123][124], we propose a new set-valued dynamics to discretize robot

dynamics (4.1). We use the set-valued dynamics to approximate the one-step for-

ward set and construct a directed graph. We then identify safe states and remove

control inputs which lead to collision with the obstacles and other robots.

Dynamics discretization. First, we use confidence interval µ
[i]
k (x

[i], u[i])+γσ
[i]
k (x

[i],

u[i])B, where γ is the reliability factor, to approximate the unknown function

g[i](x[i], u[i]). Then in each iteration k, inspired by [123][124], we incorporate the

GPR prediction of g[i] and approximate the one-step forward reachability set start-

ing from state x[i] under control input u[i] using discretized set-valued dynamics

FR
[i]
k

(
x[i], u[i]

)
≜
[
x[i] + ϵ[i](f [i](x[i], u[i]) + µ

[i]
k (x

[i], u[i]))

+ (ϵ[i]γσ̄
[i]
k + α[i]

pk
+ hpk)B

]
∩ Xpk ,

where ϵ[i] is the time duration, σ̄
[i]
k ≜ supx[i]∈X ,u[i]∈U σ

[i]
k (x

[i], u[i]), α
[i]
pk ≜ 2hpk +

2ϵ[i]hpkℓ
[i] + (ϵ[i])2ℓ[i]m[i], and spatial discretization parameters are

hpk ≜ 2−pk ,Xpk ≜ hpkZ
nx ∩ X ,Upk ≜ hpkZ

nu ∩ U . (4.2)

Furthermore, we write temporal resolution ϵ[i] = λ[i]ξ, where λ[i] is a constant that

ensures each iteration k with duration ξ can be partitioned into an integer number

of small intervals with duration ϵ[i]. Notice that, by (4.2), finer discretization, cor-

responding to a larger pk, provides tighter approximation of the dynamic model,

whereas coarser discretization returns solutions faster. Hence, we increment the

discretization parameter at each iteration to refine the discretization such that the

spatial resolution is reduced by half and less conservative actions can be incremen-

tally uncovered.

Obstacle collision avoidance (Algorithm 6). Procedure OCA aims to identify

the safe states of the set-valued dynamic system and remove the control inputs

86

Algorithm 6 Procedure OCA

1: X [i]
unsafe,k,0 ← ∅

2: for x[i] ∈ Xpk do
3: if ρ(x[i],XO) ⩽ m[i]ϵ[i] + hpk then

4: Add(X [i]
unsafe,k,0, x

[i])
5: else
6: U [i]

pk(x
[i])← Upk

7: for u[i] ∈ U [i]
pk(x

[i]) do

8: for y[i] ∈ FR
[i]
k (x

[i], u[i]) do

9: Add(BR
[i]
k (y

[i], u[i]), x[i])
10: end for
11: end for
12: end if
13: end for
14: X̄ [i]

unsafe,k,0 ← UnsafeUpdate(X [i]
unsafe,k,0)

15: X [i]
safe,k ← Xpk \ X̄

[i]
unsafe,k,0

16: Return X [i]
safe,k

that lead to collision with the obstacles. Informally, a state is safe if there is a

controller that can keep the robot from colliding with the obstacles when the robot

starts from the state. Otherwise, the state is unsafe. Then procedure OCA consists

of two steps as follows.

First, each robot identifies a preliminary set of unsafe states if the distance

ρ(x[i],XO) between state x[i] and the obstacle XO is less than m[i]ϵ[i] + hpk . The

distancem[i]ϵ[i]+hpk represents an over-approximation of the distance the robot can

reach within one time step with size ϵ[i] on Xpk . This distance prevents the robot

from “cutting the corner” of the obstacles due to the discretization. If state x[i] is

more than this distance away from XO, BR[i]
k , the one-step ϵ[i]-duration backward

set of y[i] applied u[i], is constructed as follow

∀y[i] ∈ FR
[i]
k (x

[i], u[i]), x[i] ∈ BR
[i]
k (y

[i], u[i]),

for each u[i] ∈ Upk .
In the second step, robot i runs procedure UnsafeUpdate (Algorithm 7) to

iteratively remove all the control inputs that lead to the identified unsafe states.

If all the control inputs U [i]
pk(x

[i]) are removed, state x[i] is identified as unsafe and

87

Algorithm 7 UnsafeUpdate(X [i]
unsafe,k,j)

1: X̄ [i]
unsafe,k,j ← X

[i]
unsafe,k,j

2: Flag ← 1
3: while Flag == 1 do
4: Flag ← 0
5: for y[i] ∈ X̄ [i]

unsafe,k,j do

6: for u[i] ∈ Upk do

7: for x[i] ∈ BR
[i]
k (y

[i], u[i]) do

8: Remove(U [i]
pk(x

[i]), u[i])

9: if U [i]
pk(x

[i]) == ∅ and x[i] ̸∈ X̄ [i]
unsafe,k,j then

10: Add(X̄ [i]
unsafe,k,j, x

[i])
11: Flag ← 1
12: end if
13: end for
14: end for
15: end for
16: end while
17: Return X̄ [i]

unsafe,k,j

(a) (b) (c)

Figure 4.2: A graphical illustration of obstacle collision avoidance

included in the set X [i]
unsafe,k,0, together with the states that are within m[i]ϵ[i] + hpk

of the obstacles. Robot i’s set of unsafe states X̄ [i]
unsafe,k,0 is then completed. For

each state in Xpk \ X̄
[i]
unsafe,k,0, we have U [i]

pk(x
[i]) ̸= ∅ and any control u[i] ∈ U [i]

pk(x
[i])

can ensure collision avoidance with the obstacles for one iteration.

A graphical illustration of OCA is shown in Figure 4.2. The square denotes the

obstacle and the intersections on the grid denote the states on the discrete state

space Xp. The triangle states are unsafe. The arrows show the state transitions

given the control input, which is the FR procedure. Starting from Figure 4.2a, the

one-step forward reachability sets of state B under all the control inputs, u1, u2

and u3, have intersections with the obstacle, and hence these are unsafe control

88

Algorithm 8 Procedure ICA

1: X [i]
k ← x

[i]
q (kξ) + (2ξm[i] + 2ζ +m[i]ϵ[i] + 2hpk)B

2: Broadcast(X [i]
k)

3: for j ∈ V , j ̸= i do
4: if j < i then
5: X [i]

unsafe,k,j ←
[
X [j]
k + ϵ[i]γσ̄

[i]
k B

]
∩ Xpk

6: X̄ [i]
unsafe,k,j ← UnsafeUpdate(X [i]

unsafe,k,j, k)

7: X [i]
safe,k ← X

[i]
safe,k \ X̄

[i]
unsafe,k,j

8: end if
9: end for
10: Return X [i]

safe,k

inputs and removed from state B. Since there is no more (safe) control input left

for state B, i.e., U [i]
pk(state B) = ∅, it is labeled as unsafe as in Figure 4.2b. Since

state B is unsafe, control input u2 is removed from state A. This gives Figure

4.2c, where state A is safe with control inputs u1 and u3, and state A is in the sets

BR[i](state D, u3) and BR[i](state C, u1).

Inter-robot collision avoidance (Algorithm 8). Procedure ICA adopts a priority

planning scheme in each iteration and aims to further remove the control inputs

that lead to collision with the robots with higher priority. Each robot is assigned

with a unique priority level. The robots with higher priority are treated as moving

obstacles and removes all the control inputs that lead to these obstacles. First,

each robot i broadcasts its reachability sets X [i]
k within an iteration at the begin-

ning of each iteration k. Upon receiving the messages from each robot j with

higher priority, i.e., j < i, robot i identifies a new set of unsafe states X [i]
unsafe,k,j

induced by X [i]
k in the discrete state space Xpk . Second, robot i invokes procedure

UnsafeUpdate to remove all the control inputs leading to the newly identified un-

safe states. Robot i then updates the set of the safe states X [i]
safe,k by removing

the new unsafe states X̄ [i]
unsafe,k,j. For each state x[i] ∈ X [i]

safe,k, U
[i]
k (x[i]) ̸= ∅ and any

control u[i] ∈ U [i]
k (x[i]) can ensure collision avoidance with the obstacles and the

robots with higher priority for one iteration. Notice that in the worst case, each

robot removes all the control inputs in its own state-control space. Therefore, the

worst-case computation complexity is independent of the number of robots.

89

Algorithm 9 AL

1: Procedure π
[i]
k (x

[i](t))
2: w[k]← e−ψk

3: x̂[i](t)← Nearest(x[i](t),X [i]
safe,k)

4: (u
[i]
∗ (t), · · · , u[i]∗ (t+ φϵ[i]))← solve MPC in (4.3)

5: Return u
[i]
∗ (t)

4.3.3 Active learning and real-time control

In this section, we utilize the safe control inputs obtained above and synthesize

a model predictive controller (MPC) to actively learn the disturbance g[i] and

approach the goal.

First, the current state x[i](t) of robot i is projected onto X [i]
safe,k; the pro-

jection is x̂[i](t) ≜ Nearest(x[i](t),X [i]
safe,k). Second, we capture the objective of

goal reaching using distance ρ(x̂[i](t + φϵ[i]),X [i]
G), where φ ∈ N is the discrete

horizon of the MPC formulated below. Then the objective of exploration is de-

scribed by a utility function r
[i]
k (x̂

[i](t), u[i](t)); candidate utility functions, e.g.,

r
[i]
k (x̂

[i](t), u[i](t)) = σ
[i]
k (x̂

[i](t), u[i](t)), are available in [126]. Next, the safety con-

straint is honored by choosing control inputs from the safe control set U [i]
k (x̂[i](t)).

Lastly, the dynamic constraint is approximated by the one-step forward set FR
[i]
k .

Formally, the controller π
[i]
k : X → U returns control inputs by solving the finite-

horizon optimal control problem:

min (1− w[k])ρ(x̂[i](t+ φϵ[i]),X [i]
G) + w[k]

t+φϵ[i]∑
τ=t

r
[i]
k (x̂

[i](τ), u[i](τ)), (4.3)

where the decision variables are u[i](t) ∈ U [i]
k (x̂[i](t)), · · · , u[i](t+φϵ[i]) ∈ U [i]

k (x̂[i](t+

φϵ[i])), subject to x̂[i](τ + ϵ[i]) ∈ FR
[i]
k (x̂

[i](τ), u[i](τ)) for all τ ∈ {t, t + ϵ[i], · · · , t +
(φ− 1)ϵ[i]}. To ensure the robot eventually reaches the goal, we select the weight

w[k] ≜ e−ψk for some ψ > 0 such that w[k] diminishes.

The above finite-horizon optimal control problem is solved once for every time

duration ϵ[i], and the returned control input is fixed for a duration ϵ[i]. Specifically,

consider a sequence {t[i]k+1,n}
n̄
[i]
k+1

n=0 ⊂ [(k + 1)ξ, (k + 2)ξ], where t
[i]
k+1,0 = (k + 1)ξ,

t
[i]
k+1,n = t

[i]
k+1,n−1+ϵ

[i] and n̄
[i]
k+1 ≜ ξ/ϵ[i]. Procedure π

[i]
k (x

[i](t
[i]
k+1,n)) solves the above

finite-horizon optimal control problem at n = 0, 1, · · · , n̄[i]
k+1 − 1. The solution has

90

the form (u
[i]
∗ (t

[i]
k+1,n), · · · , u

[i]
∗ (t

[i]
k+1,n + φϵ[i])), and π

[i]
k (x

[i](t
[i]
k+1,n)) = u

[i]
∗ (t

[i]
k+1,n) is

returned as the control input, and for all t ∈ [t
[i]
k+1,n, t

[i]
k+1,n+1), we have u[i](t) =

u
[i]
∗ (t

[i]
k+1,n). The controller execution is denoted as procedure Execute in Algorithm

5.

4.3.4 Performance guarantees

In this section, we provide the performance guarantees for dSLAP. To obtain the-

oretic guarantees, we assume that g[i] is a realization of a known Gaussian process.

For notational simplicity, we assume g[i] ∈ R. Generalizing g[i] to multi-dimensional

can be done by applying the union bound.

Assumption 4.3.1. (Realization of process). It satisfies that g[i] ∈ R and g[i] ∼
GP(µ0, κ). ■

That is, function g[i] is a realization of Gaussian process with prior mean µ0

and kernel κ. This assumption is common in the analysis of GPR (Theorem 1,

[84]). Theorem 4.3.2 below provides the probability of the robots being safe until

the end of an iteration if they are around the set of safe states at the beginning of

the iteration.

Theorem 4.3.2. (One-iteration safety). Suppose Assumptions 4.2.1 and 4.3.1

hold. If B(x[i](kξ), hpk−1
) ∩ X [i]

safe,k−1 ̸= ∅ , k ⩾ 1, for all i ∈ V , then dSLAP

renders x
[i]
q (t) ∈ X [i]

F (x
[¬i]
q (t)) for all time t ∈ [kξ, kξ + ξ) with probability at least

1− |V||Xp||Up|e−γ
2/2. ■

The proof of Theorem 4.3.2 can be found in Section 4.4.3.

Denote σ̄ ≜ ∥κ∥[X×U]×[X×U]. Then Theorem 4.3.3 below provides the probabil-

ity as well as the requirement on discretization and the computation speed of the

robots such that they can be safe throughout the entire mission.

Theorem 4.3.3. (All-time safety). Suppose 4γσ̄ϵ[i] ⩽ hpk̃ and Assumptions 4.2.1

and 4.3.1 hold. Suppose ξ ⩽
hp

k̃

maxj∈V m[j] . For all i ∈ V , if B(x[i](kξ), hpk−1
) ∩

X [i]
safe,k−1 ̸= ∅, for some k ⩾ 1, then the dSLAP algorithm renders that x

[i]
q (t) ∈

X [i]
F (x

[¬i]
q (t)), for all t ⩾ kξ with probability at least 1− k̃|V||Xpk̃ ||Upk̃ |e

−γ2/2. ■

91

The proof of Theorem 4.3.3 can be found in Section 4.4.4.

The requirement for ξ indicates that the robots’ onboard computation should

be fast with respect to the speed of robots, while the computation can be relieved

with coarse discretization. This provides the required update frequency for the

decoupled controller.

The sufficient condition 4γσ̄ϵ[i] ⩽ hpk̃ imposes a requirement in designing set-

valued dynamics to discretize robot dynamics (4.1) using FR
[i]
k . Given Assumption

4.3.1, γσ̄ represents an upper bound over the variability of the disturbances the

robots want to tolerate. On the right hand side, hpk̃ represents the minimal spatial

resolution. Then the sufficient condition implies that the product between the

variability of the disturbances and the temporal resolution should be small with

respect to and the spatial resolution.

4.3.5 Discussion

(Probabilistic safety). The probability of the safety guarantees stems from the

analysis of GPR estimates being able to capture the ground truth dynamics over

the whole state-action space (and over all the iterations). The analysis can be

conservative but is independent of the other components in the proposed algorithm.

In order to reduce the probability of unsafe execution, or increase the probability

of safe execution, the robots can increase γ according to the theorems. This may

cause conservative actions as γ is a factor for constructing the one-step forward

set FR
[i]
k and could lead to no solution at all if γ is too large. However, this can be

addressed by having the robots collecting more data online to train the GPR such

that σ
[i]
k (x

[i], u[i]) becomes small.

(Verification of B(x[i](0), hp0) ∩ X
[i]
safe,0 ̸= ∅). To ensure the robots are safe for

all the time, Theorem 4.3.3 implies that it suffices to satisfy the sufficient condition

B(x[i](0), hp0) ∩ X
[i]
safe,0 ̸= ∅ a priori. To achieve this, one can compute X [i]

safe,0 using

data collected a priori or a prior conservative estimates of the disturbances. This

prior knowledge can be obtained in most situations by, e.g., using historical data.

Examples include wind speed, water current, and road texture in a local area. In

addition, smaller hp0 can enlarge the set X [i]
safe,0 such that more initial states x[i](0)

can satisfy the condition.

92

(Computation complexity). The algorithms in [123][124] aim for solving optimal

arrival and collision avoidance simultaneously in a centralized manner. The com-

putation complexities scale as O((|Xpk ||Upk |)n), which grows exponentially in the

number of robots. In order to reduce the computational complexity, dSLAP has

two stages. The first stage includes procedure OCA and ICA, which are distributed

and remove unsafe control inputs on the discrete state-control space of each robot.

OCA is independent of the other robots. ICA augments the reachability sets of

higher priority robots and correspondly removes the unsafe control inputs. Its

worst-case onboard computational complexity of each robot scales linearly with n.

The local safe control inputs enable decoupled planning through AL in the second

stage, whose computation complexity is also independent of n. Furthermore, the

computation complexity can be reduced during the implementation by successively

removing the unsafe state-control pairs. Each state-control pair only needs to be

removed at most once, and in each robot there are at most |Xpk ||Upk | pairs to be

removed, which is independent of n.

(Strength and weakness). The proposed framework dSLAP is able to compute

safe control inputs for a multi-robot system with general nonlinear dynamics in a

distributed manner amid online uncertainty learning. Nevertheless, dSLAP can be

conservative for the following two reasons. First, it overapproximates the continu-

ous dynamics using discretized set-valued dynamics. To enable fast computation,

the discretization is usually coarse and hence the approximation error can be large,

which leads to conservative actions. However, this conservativeness can be reduced

via finer discretization provided sufficient computation power. Second, the coor-

dination among the robots is simple. The application of prioritized planning is

suboptimal and can lose completeness [127]. Furthermore, higher priority robots

are viewed as moving obstacles by lower priority robots. The overapproximation of

the reachability sets in two iterations of the higher priority robots are conservatives

since the overapproximation is determined by the maximum speed of the robots

multiplied by the duration of two iterations. This conservativeness can be reduced

by developing a more sophisticated scheme of coordination among the robots, op-

timizing the assignment of priority levels, and/or shortening the duration of one

iteration. We leave this for future work. Furthermore, dSLAP can suffer from the

curse-of-dimensionality for each individual system.

93

4.4 Proof

In this section, we prove Theorems 4.3.2 and 4.3.3. Below is a roadmap for the

proofs.

1. We present the concentration inequality resulted from GPR in Section 4.4.1.

This provides the probability of the event that g[i] belongs to the tube µ
[i]
k ±

γσ
[i]
k . The rest of the analysis is performed under this event.

2. Section 4.4.2 introduces a set of preliminary notations for set-valued map-

pings and the related properties. The properties examine the approximation

of system dynamics (4.1) through the set-valued mappings.

3. Utilizing the set-valued approximations of dynamics (4.1), Section 4.4.3 de-

rives that B(x[i](kξ), hpk−1
) ∩ X [i]

safe,k−1 ̸= ∅ for some k ⩾ 1 is a sufficient

condition to ensure that robot i being collision-free during iteration k and

hence proves Theorem 4.3.2.

4. Given one-iteration safety in iteration k, Section 4.4.4 examines the distance

between x[i]((k+1)ξ) and X̄ [i]
unsafe,k−1,j as well as the inclusion of X̄ [i]

unsafe,k,j in

terms of X̄ [i]
unsafe,k−1,j.

5. Utilizing the two relations in (iv), the distance ρ(x[i]((k + 1)ξ), X̄ [i]
unsafe,k,j)

can be characterized. This is further used in Section 4.4.4 to establish the

sufficient condition for B(x[i]((k + 1)ξ), hpk) ∩ X
[i]
safe,k ̸= ∅ to hold, given

B(x[i](kξ), hpk−1
) ∩ X [i]

safe,k−1 ̸= ∅. This ensures one-iteration safety hold in

iteration k + 1 and completes the proof of Theorem 4.3.3.

4.4.1 Concentration inequality of Gaussian process

The concentration inequality resulted from GPR is presented in Lemma 4.4.1 be-

low.

Lemma 4.4.1. Under Assumption 4.3.1, for any discretization parameter p and

each robot i, the following holds with probability at least 1−|Xp||Up|e−γ
2/2: ∀x[i] ∈

Xp, u[i] ∈ Up,

|µ[i]
k (x

[i], u[i])− g[i](x[i], u[i])| ⩽ γσ
[i]
k (x

[i], u[i]). (4.4)

94

Proof: The proof mainly follows the proof of Lemma 5.1 in [84]. At iteration

k, we have the input dataset Z
[i]
1:k and output dataset y

[i]
1:k, where

y
[i]
1:k ≜ [[y

[i]
1]T , · · · , [y[i]k]

T]T ,

y
[i]
l ≜ [g(x[i](τ), u[i](τ)) + e[i](τ)]

(l−1)ξ+δτ̄
τ=(l−1)ξ ,

Z
[i]
l ≜ {x[i](τ), u[i](τ)}(l−1)ξ+δτ̄

τ=(l−1)ξ , Z
[i]
1:k ≜ {Z

[i]
l }

k
l=1,

Let test input z
[i]
∗ ∈ Zp ≜ Xp × Up. Assumption 4.3.1 gives[

y
[i]
1:k

g[i](z
[i]
∗)

]
= N (

[
µ0(Z

[i]
1:k)

µ0(z
[i]
∗)

]
,

[
κ(Z

[i]
1:k, Z

[i]
1:k) + (σ

[i]
e)2I κ(Z

[i]
1:k, z

[i]
∗)

κ(z
[i]
∗ , Z

[i]
1:k) κ(z

[i]
∗ , z

[i]
∗)

]
),

where κ(Z
[i]
1:k, z

[i]
∗) ≜ [κ(z[i], z

[i]
∗)]

z[i]∈Z[i]
1:k
, and κ(Z

[i]
1:k, Z

[i]
1:k) ≜ [κ(z[i], z̃[i])]

z[i],z̃[i]∈Z[i]
1:k
.

Applying identities of joint Gaussian distribution (page 200, [54]), we obtain

the posterior distribution g[i](z
[i]
∗) ∼ N (µ

[i]
k (z

[i]
∗), (σ

[i]
k (z

[i]
∗))2), where

µ
[i]
k (z

[i]
∗) ≜ µ

[i]
0 (z

[i]
∗) + κ(z[i]∗ , Z

[i]
1:k)(κ(Z

[i]
1:k, Z

[i]
1:k) + (σ[i]

e)
2)−1 · (y[i]1:k − µ0(Z

[i]
1:k)),

(σ
[i]
k (z

[i]
∗))2 ≜ κ(z[i]∗ , z

[i]
∗) + κ(z[i]∗ , Z

[i]
1:k,)(κ(Z

[i]
1:k, Z

[i]
1:k) + (σ[i]

e)
2)−1κ(Z

[i]
1:k, z

[i]
∗).

Consider r ∼ N (0, 1). It holds that for c > 0,

Pr{r > c} = e−c
2/2(2π)−1/2

∫ ∞

c

e−
(r−c)2

2
−c(r−c)dr

⩽ e−c
2/2Pr{r > 0} = 1

2
e−c

2/2

where the inequality uses the fact e−c(r−c) ⩽ 1 for r ⩾ c. Analogously, Pr{r <
−c} ⩽ 1

2
e−c

2/2. Therefore, let r =
g[i](z

[i]
∗)−µ[i]k (z

[i]
∗)

σ
[i]
k (z

[i]
∗)

and c = γ, we have Pr{|g[i](z[i]∗)−

µ
[i]
k (z

[i]
∗)| > γσ

[i]
k (z

[i]
∗)} ⩽ e−γ

2/2. Denote event E
z
[i]
∗

≜ {|g[i](z[i]∗) − µ
[i]
k (z

[i]
∗)| >

γσ
[i]
k (z

[i]
∗)}. Applying the union bound (Theorem 2-3, [88]), we have

Pr{∪
z
[i]
∗ ∈Zp

E
z
[i]
∗
} ⩽ |Zp|e−γ

2/2.

95

Note that Pr{∩
z
[i]
∗ ∈Zp

E
z
[i]
∗
} = 1− Pr{∪

z
[i]
∗ ∈Zp

E
z
[i]
∗
}. Hence,

|g[i](z[i]∗)− µ[i]
k (z

[i]
∗)| ⩽ γσ

[i]
k (z

[i]
∗),

simultaneously for all z
[i]
∗ ∈ Zp with probability at least 1 − |Zp|e−γ

2/2 = 1 −
|Xp||Up|e−γ

2/2. ■

4.4.2 Set-valued approximation

In this section, we first introduce a set of set-valued notations from [124] to dis-

cretize system (4.1) in the time and state spaces. Lemma 4.4.2 shows that the

set-valued discretization is a good approximation of the continuous system (4.1).

Then we discuss other properties in the discrete space.

Define

F [i](x[i], u[i]) ≜ f [i](x[i], u[i]) + g[i](x[i], u[i]),

F [i]
ϵ (x[i], u[i]) ≜ F [i](x[i], u[i]) +m[i]ℓ[i]ϵB,

G[i]
ϵ (x

[i], u[i]) ≜ x[i] + ϵF [i]
ϵ (x[i], u[i]).

Page 222 of [124] uses the following discrete set-valued map

Γ
[i]
ϵ,h(x

[i], u[i]) ≜ [G[i]
ϵ (x

[i], u[i]) + 2(1 + ℓ[i]ϵ)hB] ∩ Xp, (4.5)

which is discrete in time and state, to approximate system (4.1), which is contin-

uous in time and state. Let

x[i](t0, t0 + ϵ, u[i]) ≜x[i](t0) +
∫ ϵ

0

f [i](x[i](t0 + τ), u[i]) + g[i](x[i](t0 + τ), u[i])dτ

be the state at time t0 + ϵ when system (4.1) starts from x[i](t0) at time t0 and

applies constant input u[i] ∈ U within the time interval [t0, t0 + ϵ]. Lemma 4.4.2

below shows that G
[i]
ϵ (x[i](t0), u

[i]) contains the trajectory of system (4.1) under

constant control for any duration ϵ.

Lemma 4.4.2. Under Assumption 4.2.1, for any x[i](t0) ∈ X , t0 ⩾ 0, u[i] ∈ U and

ϵ > 0, it holds that x[i](t0, t0 + ϵ, u[i]) ∈ G[i]
ϵ (x[i](t0), u

[i]).

96

Proof: The proof is part of the proof on page 194 in [124]. Let τ ∈ [0, ϵ].

By (A1) in Assumption 4.2.1 and the definitions of m[i] and x[i](t0, t0 + ϵ, u[i]),

we have ∥x[i](t0, t0 + τ, u[i])− x[i](t0)∥ ⩽ τm[i] ⩽ ϵm[i]. Lipschitz continuity further

gives that

F [i](x[i](t0, t0 + τ, u[i]), u[i]) ∈ F [i](x[i](t0), u
[i]) +m[i]ℓ[i]ϵB = F [i]

ϵ (x[i](t0), u
[i]).

Then

ẋ[i](t0, t0 + τ, u[i]) = (f [i] + g[i])(x[i](t0, t0 + τ, u[i]), u[i])

= F [i](x[i](t0, t0 + τ, u[i]), u[i]) ∈ F [i]
ϵ (x[i](t0), u

[i]). (4.6)

By definition, F
[i]
ϵ (x[i], u[i]) is compact and convex since it is just a closed ball,

which indicates that G
[i]
ϵ (x[i], u[i]) is also convex and compact. For any state λ ∈ X ,

(4.6) renders

sup
y[i]∈F [i]

ϵ (x[i](t0),u[i])

⟨y[i], λ⟩ ⩾ ⟨ẋ[i](t0, t0 + τ, u[i]), λ⟩, τ ∈ [0, ϵ].

Applying integration gives

sup
y[i]∈x[i](t0)+ϵF [i]

ϵ (x[i](t0),u[i])

⟨y[i], λ⟩ ⩾ ⟨x[i](t0, t0 + ϵ, u[i]), λ⟩.

Therefore, applying the Separating Hyperplane Theorem on page 46 in [86], we

prove the lemma. ■

Similarly, let

F̃
[i]
k (x[i], u[i]) ≜ f [i](x[i], u[i]) + µ

[i]
k (x

[i], u[i]) + γσ
[i]
k (x

[i], u[i])B,

F̃
[i]
ϵ,k(x

[i], u[i]) ≜ F̃
[i]
k (x[i], u[i]) +m[i]ℓ[i]ϵB,

G̃
[i]
ϵ,k(x

[i], u[i]) ≜ x[i] + ϵF̃
[i]
ϵ,k(x

[i], u[i]),

F̃R
[i]
k (x

[i], u[i], p, ϵ) ≜ [G̃
[i]
ϵ,k(x

[i], u[i]) + 2(1 + ℓ[i]ϵ)hpB] ∩ Xp. (4.7)

97

Denote δγ,p ≜ |Xp||Up|e−γ
2/2. By Lemma 4.4.1, we have

g[i](x[i], u[i]) ∈ µ[i]
k (x

[i], u[i]) + γσ
[i]
k (x

[i], u[i])B (4.8)

for all x[i] ∈ Xp and u[i] ∈ Up with probability at least 1− δγ,p. This gives each of

the followings holds with probability at least 1− δγ,p for all x[i] ∈ Xp, u[i] ∈ Up:

F [i](x[i], u[i]) ⊆ F̃
[i]
k (x[i], u[i]), F [i]

ϵ (x[i], u[i]) ⊆ F̃
[i]
ϵ,k(x

[i], u[i]),

G[i]
ϵ (x

[i], u[i]) ⊆ G̃
[i]
ϵ,k(x

[i], u[i]), Γ
[i]
ϵ,hp

(x[i], u[i]) ⊆ F̃R
[i]
k (x

[i], u[i], p, ϵ).

Lemma 4.4.3 characterizes the relation between F̃R and FR.

Lemma 4.4.3. For any x[i] ∈ X and u[i] ∈ U , it holds that [F̃R[i]
k

(
x[i], u[i], pk, ϵ

[i]
)
+

hpkB] ∩ Xpk ⊂ FR
[i]
k

(
x[i], u[i]

)
.

Proof: Consider state y[i] ∈ F̃R
[i]
k

(
x[i], u[i], pk, ϵ

[i]
)
. Then

y[i] ∈[x[i] + ϵ[i](f [i](x[i], u[i]) + µ
[i]
k (x

[i], u[i])) + (γσ
[i]
k (x

[i], u[i])ϵ[i] + α[i]
pk
)B].

Hence y[i] + hpkB ⊂ [x[i] + ϵ[i](f [i](x[i], u[i]) +µ
[i]
k (x

[i], u[i])) + (γσ̄
[i]
k ϵ

[i] +α
[i]
pk + hpk)B].

This gives

[y[i] + hpkB] ∩ Xpk ⊂[x[i] + ϵ[i](x[i](f [i](x[i], u[i]) + µ
[i]
k (x

[i], u[i]))

+ (γσ̄
[i]
k ϵ

[i] + α[i]
pk

+ hpk)B] ∩ Xpk ,

where the right hand side is equivalent to FR
[i]
k

(
x[i], u[i]

)
. ■

Recall that Assumption 4.2.1 implies that the system dynamics f [i] + g[i], or

F [i], is Lipschitz continuous. In particular, F
[i]
ϵ is identical to the example in the

Lipschitz case on page 191 in [124], and hence it satisfies Assumptions H0, H1, and

H2 in [124]. Therefore, applying Lemma 4.13 [124] gives

∪
ρ(x̃[i],x[i])⩽hp

[G[i]
ϵ (x̃

[i], u[i]) + hpB] ∩ Xp ⊂ Γ
[i]
ϵ,hp

(x[i], u[i]). (4.9)

Below are the other properties in the discrete space. Lemmas 4.4.4 and 4.4.5

show that F̃R
[i]
k (x

[i], u[i], p, ϵ) almost contains the union of G
[i]
ϵ (x[i], u[i]).

98

Lemma 4.4.4. Suppose that Assumptions 4.2.1 and (4.8) hold ∀x[i] ∈ Xpk−1
, u[i] ∈

Upk−1
, i ∈ V . For any x[i] ∈ X , u[i] ∈ U and ϵ > 0, for all y[i] ∈ ∪ρ(x̃[i],x[i])⩽hpG

[i]
ϵ (x̃[i], u[i]),

it holds that Nearest(y[i],Xp) ∈ F̃R
[i]
k (x

[i], u[i], p, ϵ).

Proof: Since y[i] ∈ ∪ρ(x̃[i],x[i])⩽hpG
[i]
ϵ (x̃[i], u[i]), we have

y[i] + hpB ⊂ ∪ρ(x̃[i],x[i])⩽hpG
[i]
ϵ (x̃

[i], u[i]) + hpB.

Combining this with (4.9), we have

[y[i] + hpB] ∩ Xp ⊂ Γ
[i]
ϵ,hp

(x[i], u[i]).

Since (4.8) holds, we have

[y[i] + hpB] ∩ Xp ⊂ F̃R
[i]
k (x

[i], u[i], p, ϵ).

Note that Discrete renders [y[i] + hpB] ∩ Xp ̸= ∅. Hence Nearest(y,Xp) ∈ [y[i] +

hpB] ∩ Xp ⊂ F̃R
[i]
k (x

[i], u[i], p, ϵ). ■

Lemma 4.4.5. Consider closed set A ⊂ X and ∆ > 1
2
hpk . Suppose event (4.8) is

true ∀x[i] ∈ Xpk−1
, u[i] ∈ Upk−1

, i ∈ V . For any x̃[i] ∈ X , u[i] ∈ U and ϵ > 0, if

ρ
(
x[i],A

)
⩾ ∆,∀x[i] ∈ F̃R

[i]
k (x̃

[i], u[i], pk, ϵ), (4.10)

then ∀y[i] ∈ ∪ρ(̊x[i],x̃[i])⩽hpG
[i]
ϵ (̊x[i], u[i]), ρ(y[i],A) ⩾ ∆.

Proof: We prove the claim by contradiction. Suppose (4.10) is true but there

exists y[i] ∈ G[i]
ϵ (̊x[i], u[i]), x̊[i] ∈ B(x̃[i], hpk) such that ρ(y[i],A) < ∆.

Since A is closed, there exists x̂[i] ∈ A such that ρ(y[i], x̂[i]) = ρ(y[i],A) < ∆.

Let y
[i]
j be the j-th element of y[i]. Define operation Floor(z) ≜ max{z′ ∈ Z|z′ ⩽ z}

that finds the largest integer no greater than z ∈ R and recall Ceil(z) = min{z′ ∈
Z|z′ ⩾ z}. Denote real values

¯
y
[i]
j ≜ hpkFloor(

y
[i]
j

hpk
) and ȳ

[i]
j ≜ hpkCeil(

y
[i]
j

hpk
). Then for

each dimension j, we have two cases:

1). x̂
[i]
j ∈ [

¯
y
[i]
j , ȳ

[i]
j]. Notice that 0 ⩽ ȳ

[i]
j −

¯
y
[i]
j ⩽ hpk . Choose x̌

[i]
j = 1

2
(ȳ

[i]
j +

¯
y
[i]
j).

It is easy to see that |x̌[i]j − x̂
[i]
j | ⩽ 1

2
hpk < ∆.

2). x̂
[i]
j ̸∈ [

¯
y
[i]
j , ȳ

[i]
j]. We can select x̌

[i]
j =

¯
y
[i]
j if x̂

[i]
j <

¯
y
[i]
j ; otherwise, we have

x̂
[i]
j > ȳ

[i]
j , and we can select x̌

[i]
j = ȳ

[i]
j . Note that y

[i]
j ∈ [

¯
y
[i]
j , ȳ

[i]
j]. Therefore under

99

this selection, we have |x̌[i]j − x̂
[i]
j | ⩽ |y

[i]
j − x̂

[i]
j | < ∆.

Since x̂[i] ∈ A, the above two cases imply that ρ(x̌[i],A) ⩽ ρ(x̌[i], x̂[i]) < ∆ and

x̌[i] ∈ Xpk . Note that

x̌[i] ∈ B(y[i], hpk) = y[i] + hpkB ⊂ [G[i]
ϵ (̊x

[i], u[i]) + hpkB].

Combining this with (4.9) renders x̌[i] ∈ Γ
[i]
ϵ,hpk

(x̃[i], u[i]). Since (4.8) is true, we have

x̌[i] ∈ F̃R
[i]
k (x̃

[i], u[i], pk, ϵ), which contradicts (4.10). ■

Let x[i] ∈ Xpk and u[i] ∈ Upk . By definition, we can write

FR
[i]
k (x

[i], u[i]) = B[i]

x[i],u[i],k
∩ Xpk , (4.11)

where B[i]

x[i],u[i],k
≜ x[i] + ϵ[i](f(x[i], u[i]) + µ

[i]
k (x

[i], u[i])) + (γσ̄
[i]
k ϵ

[i] + α
[i]
pk + hpk)B. Let

y[i] ∈ [x[i] + hpkB] ∩ Xpk−1
. Lemma 4.4.6 below characterizes the relation between

B[i]

x[i],u[i],k
and B[i]

y[i],u[i],k−1
.

Lemma 4.4.6. Suppose 4γσ̄ϵ[i] ⩽ hpk̃ and (4.8) holds. It holds that B[i]

x[i],u[i],k
+

hpkB ⊂ B
[i]

y[i],u[i],k−1
.

Proof: Let x̌[i] ∈ B[i]

x[i],u[i],k
+ hpkB. Denote f̃

[i]
k (x[i], u[i]) ≜ f [i](x[i], u[i]) +

µ
[i]
k (x

[i], u[i]). Then applying triangular inequality, we have

ρ
(
x̌[i], y[i] + ϵ[i]f̃

[i]
k−1(y

[i], u[i])
)
⩽ρ

(
x̌[i], x[i] + ϵ[i]f̃

[i]
k (x[i], u[i])

)
+ ρ

(
x[i] + ϵ[i]f̃

[i]
k (x[i], u[i]), y[i] + ϵ[i]f̃

[i]
k (y[i], u[i])

)
+ ρ

(
y[i] + ϵ[i]f̃

[i]
k (y[i], u[i]), y[i] + ϵ[i]f̃

[i]
k−1(y

[i], u[i])
)
.

(4.12)

Next we find the upper bound of each term on the right hand side of (4.12). Since

x̌[i] ∈ B[i]

x[i],u[i],k
+ hpkB, we have

ρ
(
x̌[i], x[i] + ϵ[i]f̃

[i]
k (x[i], u[i])

)
⩽ γσ̄

[i]
k ϵ

[i] + α[i]
pk

+ 2hpk . (4.13)

Since ρ(x[i], y[i]) ⩽ hpk , Lipschitz continuity yields ∥f [i](x[i], u[i])−f [i](y, u[i])∥ ⩽
ℓ[i]hpk . Then applying triangular inequality gives

ρ
(
x[i] + ϵ[i]f̃

[i]
k (x[i], u[i]), y[i] + ϵ[i]f̃

[i]
k (y[i], u[i])

)
100

⩽ ∥x[i] − y[i]∥+ ∥ϵ[i]f̃ [i]
k (x[i], u[i])− ϵ[i]f̃ [i]

k (y[i], u[i])∥

⩽ hpk + ϵ[i]∥f [i](x[i], u[i])− f [i](y[i], u[i])∥

+ ϵ[i]∥µ[i]
k (x

[i], u[i])− µ[i]
k (y

[i], u[i])∥

⩽ hpk + ϵ[i]ℓ[i]hpk + ϵ[i]∥µ[i]
k (x

[i], u[i])− µ[i]
k (y

[i], u[i])∥. (4.14)

Since (4.8) holds for all x[i] ∈ X and u[i] ∈ U , we have

∥g[i](x[i], u[i])− µ[i]
k (x

[i], u[i])∥ ⩽ γσ
[i]
k (x

[i], u[i]) ⩽ γσ̄
[i]
k

and ∥g[i](y[i], u[i])− µ[i]
k−1(y

[i], u[i])∥ ⩽ γσ̄
[i]
k−1. (4.15)

Since ρ(x[i], y[i]) ⩽ hpk , the Lipschitz continuity of g[i] renders ∥g[i](x[i], u[i]) −
g[i](y[i], u[i])∥ ⩽ ℓ[i]hpk . Then applying triangular inequality gives

∥µ[i]
k (x

[i], u[i])− µ[i]
k (y

[i], u[i])∥

= ∥µ[i]
k (x

[i], u[i])− g[i](x[i], u[i]) + g[i](x[i], u[i])g[i](y[i], u[i]) + g[i](y[i], u[i])− µ[i]
k (y

[i], u[i])∥

⩽ ∥µ[i]
k (x

[i], u[i])− g[i](x[i], u[i])∥+ ∥g[i](x[i], u[i])− g[i](y[i], u[i])∥

+ ∥g[i](y[i], u[i])− µ[i]
k (y

[i], u[i])∥

⩽ ℓ[i]hpk + 2γσ̄
[i]
k .

Combining the above inequality with (4.14) gives

ρ
(
x[i] + ϵ[i]f̃

[i]
k (x[i], u[i]), y[i] + ϵ[i]f̃

[i]
k (y[i], u[i])

)
⩽ hpk + 2ϵ[i]ℓ[i]hpk + 2γσ̄

[i]
k ϵ

[i]. (4.16)

Applying triangular inequality, we can further write

ρ
(
y[i] + ϵ[i]f̃

[i]
k (y[i], u[i]), y[i] + ϵ[i]f̃

[i]
k−1(y

[i], u[i])
)

= ∥ϵ[i]f̃ [i]
k (y[i], u[i])− ϵ[i]f̃ [i]

k−1(y
[i], u[i])∥

= ∥ϵ[i](f + g[i] − g[i] + µ
[i]
k)(y

[i], u[i])− ϵ[i](f + g[i] − g[i] + µ
[i]
k−1)(y

[i], u[i])∥

⩽ ϵ[i]∥(µ[i]
k − g

[i])(y[i], u[i])∥+ ϵ[i]∥(µ[i]
k−1 − g

[i])(y[i], u[i])∥

⩽ ϵ[i]γσ̄
[i]
k + ϵ[i]γσ̄

[i]
k−1, (4.17)

101

where the last inequality follows from (4.15).

Returning to (4.12), combining (4.13), (4.16) and (4.17) gives

ρ
(
x̌[i], y[i] + ϵ[i]f̃

[i]
k−1(y

[i], u[i])
)

⩽ 4γσ̄
[i]
k ϵ

[i] + α[i]
pk

+ 3hpk + 2ϵ[i]ℓ[i]hpk + γσ̄
[i]
k−1ϵ

[i]. (4.18)

Note that 4γσ̄ϵ[i] ⩽ hpk̃ ⩽ hpk . By equation (2.24) in [54], σ̄ ⩾ σ̄
[i]
k′ for all k

′ ⩾ 0.

Note that α
[i]
pk = 2hpk +2ϵ[i]hpkℓ

[i]+(ϵ[i])2ℓ[i]m[i] and hpk−1
= 2hpk . Combining these

gives

ρ
(
x̌[i], y[i] + ϵ[i]f̃

[i]
k−1(y

[i], u[i])
)

⩽ α[i]
pk

+ 4hpk + 2ϵ[i]ℓ[i]hpk + γσ̄
[i]
k−1ϵ

[i] = α[i]
pk−1

+ hpk−1
+ γσ̄

[i]
k−1ϵ

[i],

which implies x̌[i] ∈ B[i]

y[i],u[i],k−1
. ■

4.4.3 Proof of Theorem 4.3.2

Denote X̄ [i]
O [k0, k1) ≜ XO

⋃
∪j<i,t∈[k0ξ,k1ξ)B(x

[j]
q (t), 2ζ) the obstacle regions (i.e.,

static obstacles and the robots with higher priority) for robot i from time t0 to t1.

Denote shorthand x[i][k] ≜ x[i](kξ) for the state in discrete time.

Roadmap of the proof: First, in Lemma 4.4.7, we establish that FR
[i]
k (x

[i], u[i])

is invariant in X [i]
safe,k under inputs in U [i]

pk(x
[i]). Then we examine the distance

between X [i]
safe,k and X̄ [i]

O [k, k + 2) in Lemma 4.4.8. Next Lemma 4.4.10 utilizes

the previous two lemmas to show that system (4.1) stays safe throughout for a

duration [t
[i]
k+1,n, t

[i]
k+1,n+1] under constant control, and Lemma 4.4.11 extends the

safety result to the piecewise constant control law rendered by dSLAP for one

iteration. Finally, we incorporate the concentration inequality in Lemma 4.4.1 and

prove Theorem 4.3.2.

Lemma 4.4.7. For all x[i] ∈ X [i]
safe,k, it holds that U

[i]
pk(x

[i]) ̸= ∅ and FR
[i]
k (x

[i], u[i]) ⊂
X [i]

safe,k for all u[i] ∈ U [i]
pk(x

[i]).

Proof: We prove the lemma by contradiction.

Suppose U [i]
pk(x

[i]) = ∅. Control input removal only takes place in the OCA

procedure and the UnsafeUpdate procedure. In both procedures, when it reduces

102

to U [i]
pk(x

[i]) = ∅, the procedures rule that x[i] ∈ X [i]
unsafe,k,0 or x[i] ∈ X̄ [i]

unsafe,k,j, j < i,

through the Add procedure. Therefore, x[i] ̸∈ X [i]
safe,k.

Suppose there exists u[i] ∈ U [i]
pk(x

[i]), such that FR
[i]
k (x

[i], u[i])∩ [∪j<iX̄ [i]
unsafe,k,j] ̸=

∅. Note that the OCA procedure constructs the BR
[i]
k set such that x[i] ∈ BR

[i]
k (x̃

[i], u[i])

for all x̃[i] ∈ FR
[i]
k (x

[i], u[i]). Due to the UnsafeUpdate procedure, if x̃[i] ∈ [∪j<iX̄ [i]
unsafe,k,j]

and x[i] ∈ BR[i](x̃[i], u[i]), we must have u[i] ̸∈ U [i]
pk(x

[i]). Hence, this case is impossi-

ble. ■

The following lemma characterizes the distance between X [i]
safe,k and X̄

[i]
O [k, k+2).

Lemma 4.4.8. It holds that ρ(x[i], X̄ [i]
O [k, k+2)) > m[i]ϵ[i]+hpk for all x

[i] ∈ X [i]
safe,k.

Proof: Let x[i] ∈ X [i]
safe,k. In OCA, when ρ(x[i],XO) ⩽ m[i]ϵ[i]+hpk , Add(X

[i]
unsafe,k,0, x

[i])

is executed such that x[i] ∈ X [i]
unsafe,k,0. Since X

[i]
safe,k ⊂ Xpk \ X

[i]
unsafe,k,0 ̸= ∅,

ρ(x[i],XO) > m[i]ϵ[i] + hpk . (4.19)

In ICA, when j < i, X [i]
unsafe,k,j ⊃ X

[j]
k ∩ Xpk . Therefore, by definition of X [j]

k , if

ρ(x[i], x[j][k] + 2ξm[j]B) ⩽ 2ζ +m[i]ϵ[i] + hpk ,

we must have x[i] ∈ X [i]
unsafe,k,j. Hence

ρ(x[i], x[j][k] + 2ξm[j]B) > 2ζ +m[i]ϵ[i] + hpk . (4.20)

Note that (A1) in Assumption 4.2.1 implies

ẋ[i](τ) = f [i](x[i](τ), u[i](τ)) + g[i](x[i](τ), u[i](τ)) ∈ m[i]B,

for all u[i](τ) ∈ U . This implies

x[j](t) ∈ x[j][k] + 2ξm[j]B, ∀t ∈ [kξ, (k + 2)ξ).

Combining this with (4.20) gives, ∀t ∈ [kξ, (k + 2)ξ),

ρ(x[i],B(x[j](t), 2ζ)) > m[i]ϵ[i] + hpk . (4.21)

103

By definition, obstacle region X̄ [i]
O [k, k+2) = XO

⋃
∪j<i,t∈[kξ,(k+2)ξ)B(x[j](t), 2ζ).

Hence the lemma directly follows from (4.19) and (4.21). ■

Recall that, for all iterations k ⩾ 1, AL and controller execution render {u[i](t[i]k,n)}
n̄
[i]
k −1
n=0 ,

u[i](t
[i]
k,n) ∈ U

[i]
pk−1 , as control inputs, each executed for a duration ϵ[i] by robot i

such that u[i](t) = u[i](t
[i]
k,n) for all t ∈ [t

[i]
k,n, t

[i]
k,n+1). Then we have x[i](t

[i]
k,n) =

x[i](t
[i]
k,n−1, t

[i]
k,n−1 + ϵ[i], u[i](t

[i]
k,n−1)). The following lemma gives the sufficient condi-

tions such that the robots are near the safe states within one iteration.

Lemma 4.4.9. Suppose Assumption 4.2.1 holds and (4.8) is true ∀x[i] ∈ Xpk−1
,

i ∈ V . If B(x[i][k], hpk−1
) ∩ X [i]

safe,k−1 ̸= ∅ for all i ∈ V for some k > 1, then

B(x[i](t[i]k,n), hpk−1
) ∩ X [i]

safe,k−1 ̸= ∅ for all n = 0, 1, · · · , n̄[i]
k , i ∈ V .

Proof: We prove the lemma using induction. For the base case n = 0,

the condition in the lemma statement and the definition t
[i]
k,0 = kξ indicate that

B(x[i](t[i]k,0), hpk−1
) ∩ X [i]

safe,k−1 ̸= ∅.
Now suppose that B(x[i](t[i]k,n), hpk−1

)∩X [i]
safe,k−1 ̸= ∅ holds up until n = n′. Then

there exists x̃
[i]
n′ ∈ B(x[i](t

[i]
k,n′), hpk−1

) ∩ X [i]
safe,k−1. By AL and controller execution,

we have u[i](t
[i]
k,n′) ∈ U

[i]
pk−1(x̃

[i]
n′). By definition of x̃

[i]
n′ , ρ(x

[i](t
[i]
k,n′), x̃

[i]
n′) ⩽ hpk−1

. By

Lemma 4.4.2, we have

x[i]
(
t
[i]
k,n′ , t

[i]
k,n′ + ϵ[i], u[i](t

[i]
k,n′)

)
∈ Gϵ[i](x

[i](t
[i]
k,n′), u

[i](t
[i]
k,n′)).

Then Lemma 4.4.4 renders

Nearest(x[i]
(
t
[i]
k,n′ , t

[i]
k,n′ + ϵ[i], u[i](t

[i]
k,n′)

)
,Xpk−1

) ∈ F̃R
[i]
k−1(x̃

[i]
n′ , u

[i](t
[i]
k,n′), pk−1, ϵ

[i]).

Note that (4.2) implies

Nearest(x[i]
(
t
[i]
k,n′ , t

[i]
k,n′ + ϵ[i], u[i](t

[i]
k,n′)

)
,Xpk−1

) ∈ B(x[i]
(
t
[i]
k,n′ , t

[i]
k,n′ + ϵ[i], u[i](t

[i]
k,n′)

)
, hpk−1

).

Since x[i](t
[i]
k,n′+1) = x[i](t

[i]
k,n′ , t

[i]
k,n′+ϵ

[i], u[i](t
[i]
k,n′)), then the above two statements

give

B(x[i](t[i]k,n′+1), hpk−1
) ∩ F̃R

[i]
k−1(x̃

[i]
n′ , u

[i](t
[i]
k,n′), pk−1, ϵ

[i]) ̸= ∅. (4.22)

104

Lemma 4.4.3 implies

F̃R
[i]
k−1(x̃

[i]
n′ , u

[i](t
[i]
k,n′), pk−1, ϵ

[i]) ⊂ FR
[i]
k−1(x̃

[i]
n′ , u

[i](t
[i]
k,n′)).

Since x̃
[i]
n′ ∈ X

[i]
safe,k−1, Lemma 4.4.7 implies FR

[i]
k−1(x̃

[i]
n′ , u

[i](t
[i]
k,n′)) ⊂ X

[i]
safe,k−1. Com-

bining these two statements with (4.22) gives B(x[i](t[i]k,n′+1), hpk−1
) ∩ X [i]

safe,k−1 ̸= ∅.
The induction is completed. ■

The following lemma characterizes a sufficient condition for the trajectory of

system (4.1) under constant control input in U [i]
pk−1 to be safe for a duration ϵ[i].

Lemma 4.4.10. Suppose Assumption 4.2.1 holds and (4.8) is true ∀x[i] ∈ Xpk−1
,

i ∈ V . If x̃[i] ∈ B(x[i](t[i]k,n), hpk−1
)∩X [i]

safe,k−1 for all i ∈ V and some t
[i]
k,n ∈ {t

[i]
k,n}

n̄
[i]
k −1
n=0 ,

it holds that

x[i](t
[i]
k,n, t

[i]
k,n + ϵ, u[i]) ∈ X [i]

F (x[¬i](t)), ∀ϵ ∈ [0, ϵ[i]],

for all u[i] ∈ U [i]
pk−1(x̃

[i]), t ∈ [t
[i]
k,n, t

[i]
k,n + ϵ[i]) and i ∈ V .

Proof: Recall that Lemma 4.4.3 implies F̃R
[i]
k−1

(
x[i], u[i], pk−1, ϵ

[i]
)
⊂ FR

[i]
k−1

(
x[i], u[i]

)
for all x[i] ∈ X and u[i] ∈ U . Since x̃[i] ∈ X [i]

safe,k−1, Lemma 4.4.7 renders FR
[i]
k−1(x̃

[i], u[i]) ⊂
X [i]

safe,k−1. Thus, F̃R
[i]
k−1

(
x[i], u[i], pk−1, ϵ

[i]
)
⊂ X [i]

safe,k−1. Combining these with Lemma

4.4.8 gives

ρ
(
x[i], X̄ [i]

O [k − 1, k + 1)
)
> m[i]ϵ[i] + hpk−1

, (4.23)

for all x[i] ∈ F̃R
[i]
k−1(x̃

[i], u[i], pk−1, ϵ
[i]).

Lemma 4.4.2 gives x[i](t
[i]
k,n, t

[i]
k,n + ϵ[i], u[i]) ∈ G

[i]

ϵ[i]
(x[i](t

[i]
k,n), u

[i]). Since x̃[i] ∈
B(x[i](t[i]k,n), hpk−1

), we have x[i](t
[i]
k,n) ∈ B(x̃[i], hpk−1

). Combining these two state-

ments and (4.23) with Lemma 4.4.5 renders

ρ(x[i](t
[i]
k,n, t

[i]
k,n + ϵ[i], u[i]), X̄ [i]

O [k − 1, k + 1)) > m[i]ϵ[i] + hpk−1
. (4.24)

Then by the definition of m[i], we have ρ(x[i](t
[i]
k,n, t

[i]
k,n + ϵ, u[i]), x[i](t

[i]
k,n)) ⩽ m[i]ϵ[i]

for all ϵ ∈ [0, ϵ[i]] Combining this with (4.24), it renders that, for all ϵ ∈ [0, ϵ[i]],

ρ(x[i](t
[i]
k,n, t

[i]
k,n + ϵ, u[i]), X̄ [i]

O [k − 1, k + 1) > hpk−1
.

105

Combining this with the definition of X̄ [i]
O [·, ·) renders that

x[i](t
[i]
k,n, t

[i]
k,n + ϵ, u[i]) ∈ X \ [XO

⋃
∪j<i,t∈[(k−1)ξ,(k+1)ξ)B(x[j](t), 2ζ)]. (4.25)

Note that (4.25) holds for all i ∈ V , it further gives

x[i](t
[i]
k,n, t

[i]
k,n + ϵ, u[i]) ∈ X \ [XO

⋃
∪j ̸=i,t∈[(k−1)ξ,(k+1)ξ)B(x[j](t), 2ζ)].

By definitions, for any t ∈ [(k − 1)ξ, (k + 1)ξ),

X [i]
F (x[¬i](t)) = X \ [XO

⋃
∪j ̸=iB(x[j](t), 2ζ)].

Combining the above two statements completes the proof. ■

The following lemma gives the sufficient conditions such that the robots steered

by dSLAP are safe within one iteration.

Lemma 4.4.11. Suppose Assumption 4.2.1 holds and (4.8) is true ∀x[i] ∈ Xpk−1
, u[i] ∈

Upk−1
, i ∈ V . If B(x[i][k], hpk−1

) ∩ X [i]
safe,k−1 ̸= ∅ for all i ∈ V for some k > 1, then

x[i](t) ∈ X [i]
F (x[¬i](t)) for all t ∈ [kξ, kξ + ξ) and all i ∈ V .

Proof: Lemma 4.4.9 shows that there exists x̃
[i]
n ∈ B(x[i](t[i]k,n), hpk−1

)∩X [i]
safe,k−1

for each n = 0, 1, n̄
[i]
k − 1, i ∈ V . By Lemma 4.4.10, we have

x[i](t
[i]
k,n, t

[i]
k,n + ϵ, u[i](t

[i]
k,n)) ∈ X

[i]
F (x[¬i](t)),

for all ϵ ∈ [0, ϵ[i]), t ∈ [kξ, (k + 1)ξ), and u[i](t
[i]
k,n) ∈ U

[i]
pk−1(x̃

[i]
n) for each n =

0, 1, · · · , n̄[i]
k − 1. Recall that the definition that t

[i]
k,0 = kξ, t

[i]
k,n = t

[i]
k,n−1 + ϵ[i] and

t
[i]

k,n̄
[i]
k

= (k + 1)ξ. Hence, the lemma is proved. ■

Now we are ready to prove Theorem 4.3.2.

Proof of Theorem 4.3.2: Given Assumptions 4.2.1 and 4.3.1 hold, for each

robot i, (4.8) holds with probability at least 1 − δγ,pk−1
∀x[i] ∈ Xpk−1

, u[i] ∈ Upk−1
.

Applying the union bound, this gives (4.8) holds with probability at least 1 −
|V|δγ,pk−1

, ∀x[i] ∈ Xpk−1
, u[i] ∈ Upk−1

, i ∈ V . Notice that Lemma 4.4.11 is given

in the event of (4.8) is true ∀x[i] ∈ Xpk−1
, u[i] ∈ Upk−1

, i ∈ V . Therefore, we have

Lemma 4.4.11 hold with probability at least 1− |V|δγ,pk−1
. ■

106

4.4.4 Proof of Theorem 4.3.3

Recall that X̄ [i]
unsafe,k,j is the set of unsafe states induced by robot 1 ⩽ j < i and

X̄ [i]
unsafe,k,0 is the set of unsafe states induced by static obstacles. Given Theorem

4.3.2, we can prove Theorem 4.3.3 by showing that if B(x[i][k], hpk−1
)∩X [i]

safe,k−1 ̸= ∅
holds for iteration k, it implies that B(x[i][k + 1], hpk) ∩ X

[i]
safe,k ̸= ∅ also holds, and

hence Theorem 4.3.3 can be proved by induction. Therefore, under the condition

of B(x[i][k], hpk−1
)∩X [i]

safe,k−1 ̸= ∅, we study: 1) the distance between x[i][k+1] and

X̄ [i]
unsafe,k−1,j (Lemma 4.4.12); 2) the inclusion of X̄ [i]

unsafe,k,j in terms of X̄ [i]
unsafe,k−1,j

(Lemma 4.4.14). The two results imply the distance between x[i][k + 1] and

X̄ [i]
unsafe,k,j and further characterize the conditions for B(x[i][k+1], hpk)∩X

[i]
safe,k ̸= ∅

(Lemma 4.4.16). Then the proof is concluded by combining these results.

D.1) The distance between x[i][k + 1] and X̄ [i]
unsafe,k−1,j

Lemma 4.4.12. Given Assumption 4.2.1 and event (4.8) hold ∀x[i] ∈ Xpk−1
, u[i] ∈

Upk−1
, i ∈ V and B(x[i][k], hpk−1

)∩X [i]
safe,k−1 ̸= ∅, it holds that ρ(x[i][k+1], X̄ [i]

unsafe,k−1,j) ⩾

2hpk−1
, for all j < i.

Proof: Lemma 4.4.9 shows that there exists x̃
[i]
n ∈ B(x[i](t[i]k,n), hpk−1

)∩X [i]
safe,k−1

for each n = 0, 1, · · · , n̄[i]
k − 1, i ∈ V . Therefore, by Lemma 4.4.7, for all control

inputs u[i](t
[i]
k,n) ∈ Upk−1

(x̃
[i]
n), we have FR

[i]
k−1

(
x̃
[i]
n , u[i](t

[i]
k,n)

)
⊂ X [i]

safe,k−1. Based on

OCA and ICA, we have

X [i]
safe,k = Xpk \ [∪j=0,··· ,i−1X̄ [i]

unsafe,k,j]. (4.26)

It implies that X [i]
safe,k−1 ∩ X̄

[i]
unsafe,k−1,j = ∅ for all j < i. By Discrete, this renders

ρ(FR
[i]
k−1

(
x̃[i]n , u

[i](t
[i]
k,n)

)
, X̄ [i]

unsafe,k−1,j) ⩾ hpk−1
,

for each n = 0, 1, · · · , n̄[i]
k −1. Combining this with Lemma 4.4.3, we have, for each

n = 0, 1, · · · , n̄[i]
k − 1,

ρ(F̃R
[i]
k−1

(
x̃[i]n , u

[i](t
[i]
k,n), pk−1, ϵ

[i]
)
, X̄ [i]

unsafe,k−1,j) ⩾ 2hpk−1
. (4.27)

107

By Lemma 4.4.2, we have, for each n = 0, 1, · · · , n̄[i]
k − 1,

x[i](t
[i]
k,n, t

[i]
k,n + ϵ[i], u[i](t

[i]
k,n)) ∈ G

[i]

ϵ[i]
(x[i](t

[i]
k,n), u

[i](t
[i]
k,n)). (4.28)

By definition of x̃
[i]
n , we have, for each n = 0, 1, · · · , n̄[i]

k − 1,

ρ(x[i](t
[i]
k,n), x̃

[i]
n) ⩽ hpk−1

. (4.29)

Combining (4.27), (4.28) and (4.29) with Lemma 4.4.5, we have

ρ(x[i](t
[i]
k,n, t

[i]
k,n + ϵ[i], u[i](t

[i]
k,n)), X̄

[i]
unsafe,k−1,j) ⩾ 2hpk−1

,

for each n = 0, 1, · · · , n̄[i]
k − 1. Recall that the definition that t

[i]
k,0 = kξ, t

[i]
k,n =

t
[i]
k,n−1 + ϵ[i] and t

[i]

k,n̄
[i]
k

= (k + 1)ξ. Hence, the lemma is proved. ■

D.2) The inclusion of X [i]
unsafe,k,j

Denote β
[i]
k,1 ≜ 2ξm[i]+2ζ+m[i]ϵ[i]+2hpk and β

[i]
k,2 ≜ ϵ[i]γσ̄

[i]
k . Then in ICA, we have

X [i]
k = x[i][k] + β

[i]
k,1B and X [i]

unsafe,k,j = [X [j]
k + β

[i]
k,2B] ∩ Xpk . Lemma 4.4.13 below

renders a monotonic property.

Lemma 4.4.13. It holds that β
[i]
k+1,2 ⩽ β

[i]
k,2.

Proof: Let z ∈ X × U . Equation (11) in [81] shows that (σ
[i]
k (z))

2 can be

expressed recursively as

(σ
[i]
k+1(z))

2 = (σ
[i]
k (z))

2 − (σ
[i]
k (z))

2a
[i]
k+1(σ

[i]
k (z))

2

where a
[i]
k+1 ⩾ 0. Hence, σ

[i]
k+1(z) ⩽ σ

[i]
k (z) and σ̄

[i]
k+1 ⩽ σ̄

[i]
k . Then the definition of

β
[i]
k,2 yields β

[i]
k+1,2 ⩽ β

[i]
k,2. ■

The following lemma characterizes the inclusion of X [i]
unsafe,k,j in terms of X [i]

unsafe,k−1,j.

Lemma 4.4.14. Suppose ξ ⩽
hp

k̃

maxj∈V m[j] and (4.8) holds for all pk, k ⩾ 1. Sup-

pose Assumption 4.2.1 holds. Then, for all j < i, dSLAP renders X [i]
unsafe,k,j ⊂

[X [i]
unsafe,k−1,j + hpkB] ∩ Xpk .
Proof: Consider j = 0. Let x[i] ∈ X [i]

unsafe,k,0. By definition in OCA, it holds that

x[i] ∈ Xpk and ρ(x[i],XO) ⩽ mϵ[i] + hpk . Since Discrete renders hpk−1
= 2hpk , there

108

exists y[i] ∈ Xpk−1
satisfying ρ(y[i], x[i]) ⩽ hpk . Then by triangular inequality, it

holds that ρ(y[i],XO) ⩽ mϵ[i] +2hpk = mϵ[i] + hpk−1
. This implies y[i] ∈ X [i]

unsafe,k−1,0

and hence x[i] ∈ X [i]
unsafe,k−1,0 + hpkB. Since x[i] ∈ Xpk , we further have X [i]

unsafe,k,0 ⊂
[X [i]

unsafe,k−1,0 + hpkB] ∩ Xpk .
Consider j = 1, 2, · · · , i− 1. Let x[i] ∈ X [i]

unsafe,k,j. By definition in ICA, it holds

that x[i] ∈ [x[j][k] + (β
[j]
k,1 + β

[i]
k,2)B] ∩ Xpk . Since Discrete renders hpk−1

= 2hpk , we

have β
[i]
k,1 < β

[i]
k−1,1 − 2hpk . Recall that Lemma 4.4.13 renders β

[i]
k,2 ⩽ β

[i]
k−1,2. Since

ξ ⩽
hp

k̃

maxj∈V m[j] , it holds that ρ(x
[j][k], x[j][k − 1]) ⩽ m[j]ξ ⩽ hpk̄ ⩽ hpk . Combining

the above three statements renders

x[i] ∈ x[j][k] + (β
[j]
k,1 + β

[i]
k,2)B

⊂ x[j][k − 1] + (β
[j]
k,1 + β

[i]
k,2 + hpk)B

⊂ x[j][k − 1] + (β
[j]
k−1,1 + β

[i]
k−1,2 − hpk)B.

This implies ρ(x[i], x[j][k−1]) ⩽ β
[j]
k−1,1+β

[i]
k−1,2−hpk Similar to the logic above, Dis-

crete renders that there exists y[i] ∈ Xpk−1
satisfying ρ(y[i], x[i]) ⩽ hpk . Triangular

inequality further renders ρ(y[i], x[j][k − 1]) ⩽ β
[j]
k−1,1 + β

[i]
k−1,2, or

y[i] ∈ [x[j][k − 1] + (β
[j]
k−1,1 + β

[i]
k−1,2)B] ∩ Xpk−1

= X [i]
unsafe,k−1,j

and hence x[i] ∈ X [i]
unsafe,k−1,j + hpkB. Since x[i] ∈ Xpk , we have x[i] ∈ [X [i]

unsafe,k−1,j +

hpkB] ∩ Xpk . ■

D.3) Conditions for B(x[i][k + 1], hpk) ∩ X
[i]
safe,k ̸= ∅

Define a sequence of sets such that P [i]
k,j,1 ≜ X [i]

unsafe,k,j, j ⩾ 1, and P [i]
k,j,l ≜

{x[i] ∈ Xpk \ [∪l′⩽l−1P [i]
k,j,l′] | ∀u[i] ∈ Upk , x[i] ∈ BR

[i]
k (x̃

[i], u[i]) for some x̃[i] ∈
[∪l′⩽l−1P [i]

k,j,l′]
⋃
[∪j′⩽j−1X̄ [i]

unsafe,k,j]}. Lemma 4.4.15 below characterizes X̄ [i]
unsafe,k,j

using P(l)
k,i,j.

Lemma 4.4.15. Suppose Assumption 4.2.1 holds. For all iterations k, it holds

that X̄ [i]
unsafe,k,j = ∪

n
[i]
k,j

l=1P
[i]
k,j,l for some n

[i]
k,j <∞. Furthermore, it holds that P [i]

k,j,l ̸= ∅
for all l = 1, · · · , n[i]

k,j and P
[i]
k,j,l = ∅ for all l > n

[i]
k,j.

109

Proof: By definition of P [i]
k,j,l, if P

[i]
k,j,l = ∅, then

P [i]
k,j,l+1 = {x

[i] ∈ Xpk \ [∪l′⩽lP
[i]
k,j,l′] | ∀u

[i] ∈ Upk , x[i] ∈ BR
[i]
k (x̃

[i], u[i]) for some

x̃[i] ∈ ∪l′⩽lP [i]
k,j,l′

⋃
[∪j′⩽j−1X̄ [i]

unsafe,k,j]}

= {x[i] ∈ Xpk \ [∪l′⩽l−1P [i]
k,j,l′] | ∀u

[i] ∈ Upk , x[i] ∈ BR
[i]
k (x̃

[i], u[i]) for some

x̃[i] ∈ ∪l′⩽l−1P [i]
k,j,l′

⋃
[∪j′⩽j−1X̄ [i]

unsafe,k,j]}

= P [i]
k,j,l = ∅.

Therefore, we have P [i]
k,j,l = ∅ for all l > l′. The definition indicates that P [i]

k,j,l′′ and

∪l′l=1P
[i]
k,j,l are mutually disjoint for any l′′ > l′. Hence n

[i]
k,j is finite since Xpk is finite

due to the compactness of X in Assumption 4.2.1, and P [i]
k,j,l ̸= ∅, ∀l = 1, · · · , n[i]

k,j

and P [i]
k,j,l = ∅ ∀l > n

[i]
k,j.

Now we show ∪n
[i]
k,j

l=1P
[i]
k,j,l ⊂ X̄

[i]
unsafe,k,j. For j = 0, 1, · · · , i − 1, according to the

UnsafeUpdate procedure, we have P [i]
k,j,1 = X [i]

unsafe,k,j ⊂ X̄
[i]
unsafe,k,j. For any x[i] in

non-empty P [i]
k,j,l′ , l

′ > 1, since x[i] ∈ BR
[i]
k (x̃

[i], u) for some x̃[i] ∈ ∪l′−1
l=1 P

(l)
k,i,j for all

control inputs u[i] ∈ Upk , it renders that U [i]
pk(x

[i]) = ∅, and hence x[i] ∈ X̄ [i]
unsafe,k,j

according to UnsafeUpdate. Therefore, we have P [i]
k,j,l ⊂ X̄

[i]
unsafe,k,j for all non-empty

P [i]
k,j,l, l = 1, · · · , n[i]

k,j. This shows ∪
n
[i]
k,j

l=1P
[i]
k,j,l ⊂ X̄

[i]
unsafe,k,j.

We show X̄ [i]
unsafe,k,j ⊂ ∪

n
[i]
k,j

l=1P
[i]
k,j,l using contradiction. Suppose there exists a

state x(1) ∈ X̄ [i]
unsafe,k,j and x

(1) ̸∈ P [i]
k,j,l for all P

[i]
k,j,l, l = 1, · · · , n[i]

k,j.

Obviously, we have x(1) ̸∈ X [i]
unsafe,k,j because otherwise x(1) ∈ P(1)

k,i,j according

to the definition of P [i]
k,j,1, j ⩾ 0. Then x(1) can only be added to X̄ [i]

unsafe,k,j by

UnsafeUpdate. Then there exists x(2) ∈ X̄ [i]
unsafe,k,j such that x(1) ∈ BR

[i]
k (x

(2), u[i]),

which reduces the control set U [i]
pk(x

(1)) to an empty set and leads to the addition of

x(1) to X̄ [i]
unsafe,k,0. Furthermore, we also have x(2) ̸∈ P [i]

k,j,l for any l = 1, · · · , n[i]
k,j − 1

since otherwise we have x(1) ∈ P [i]
k,j,l+1. By induction, we have a set {x(l)}nl

l=1 ⊂

X̄ [i]
unsafe,k,j but {x(l)}nl

l=1 ̸⊂ ∪
n
[i]
k,j

l=1P
[i]
k,j,l for any nl = 1, · · · , |Xpk |. However, this is

impossible because Xpk is finite and ∪n
[i]
k,j

l=1P
[i]
k,j,l ⊃ P

(1)
k,i,j ̸= ∅. This gives X̄

[i]
unsafe,k,j ⊂

∪n
[i]
k,j

l=1P
[i]
k,j,l. ■

The following lemma shows that the robot after one iteration is near the safe

states under the priority assignment in the previous iteration.

110

Lemma 4.4.16. Suppose Assumption 4.2.1 holds. Suppose 4γσ̄ϵ[i] ⩽ hpk̃ and (4.8)

holds for all x[i] ∈ Xpk , u[i] ∈ Upk , k ⩾ 1. Suppose ξ ⩽
hp

k̃

maxj∈V m[j] . For each i ∈ V ,
if B(x[i][k], hpk−1

) ∩ X [i]
safe,k−1 ̸= ∅, k ⩾ 1, then B(x[i][k + 1], hpk) ∩ X

[i]
safe,k ̸= ∅.

Proof: Let j = 0, 1, · · · , i−1. Lemma 4.4.12 shows that ρ(x[i][k+1], X̄ [i]
unsafe,k−1,j)

⩾ 2hpk−1
. By (4.26), this implies that B(x[i][k + 1], hpk−1

) ∩ X [i]
safe,k−1 ̸= ∅. Let

x̃[i] ∈ B(x[i][k + 1], hpk−1
) ∩ X [i]

safe,k−1. Then Lemma 4.4.7 renders that there exists

ũ[i] ∈ U [i]
pk−1(x̃

[i]) such that FR
[i]
k−1(x̃

[i], ũ[i]) ⊂ X [i]
safe,k−1. By Discrete and (4.26), this

implies that, for all j ∈ [0, i),

ρ(FR
[i]
k−1(x̃

[i], ũ[i]), X̄ [i]
unsafe,k−1,j) ⩾ hpk−1

= 2hpk . (4.30)

Based on the UnsafeUpdate procedure, it is obvious that X [i]
unsafe,k,j ⊂ X̄

[i]
unsafe,k,j.

Then (4.30) renders

ρ(FR
[i]
k−1(x̃

[i], ũ[i]),X [i]
unsafe,k−1,j) ⩾ hpk−1

= 2hpk . (4.31)

Consider the rewriting in (4.11) and recall that FR
[i]
k−1(x̃

[i], ũ[i]) ⊂ Xpk−1
and X [i]

unsafe,k−1,j

⊂ Xpk−1
. Then (4.31) implies

ρ(B[i]

x̃[i],ũ[i],k−1
,X [i]

unsafe,k−1,j) > 0. (4.32)

Due to the Discrete procedure, there exists y[i] ∈ Xpk such that ρ(x[i][k + 1], y[i]) ⩽

hpk and ρ(x̃[i], y[i]) ⩽ hpk . Then combining (4.32) with Lemma 4.4.6 renders

ρ(B[i]

y[i],ũ[i],k
,X [i]

unsafe,k−1,j) > hpk . (4.33)

Recall that Lemma 4.4.14 renders

X [i]
unsafe,k,j ⊂ [X [i]

unsafe,k−1,j + hpkB] ∩ Xpk . (4.34)

Then combining (4.33) and (4.34) renders

ρ(B[i]

y[i],ũ[i],k
,X [i]

unsafe,k,j) > 0. (4.35)

111

Note that (4.35) holds for all j < i. Then it follows that

FR
[i]
k (y

[i], ũ[i]) ∩ [∪j<iX [i]
unsafe,k,j] = ∅. (4.36)

Combining the claim below with (4.26) renders that y[i] ∈ X [i]
safe,k. Combining this

with ρ(x[i][k + 1], y[i]) ⩽ hpk concludes the proof. ■

Claim 4.4.16.1. It holds that y[i] ̸∈ [∪j<iX̄ [i]
unsafe,k,j].

Proof of Claim 4.4.16.1: The proof of the claim is composed of three parts.

Part (i). We show that

y[i] ̸∈ [∪j<iX [i]
unsafe,k,j]. (4.37)

Let j = 0, 1, · · · , i− 1. Since x̃[i] ∈ X [i]
safe,k−1, by (4.26) and Discrete, it renders that

ρ(x̃[i], X̄ [i]
unsafe,k−1,j) ⩾ hpk−1

. According to the construction of X̄ [i]
unsafe,k−1,j through

UnsafeUpdate, it holds that X [i]
unsafe,k−1,j ⊂ X̄

[i]
unsafe,k−1,j. Combining the above two

statements renders

ρ(x̃[i],X [i]
unsafe,k−1,j) ⩾ hpk−1

= 2hpk . (4.38)

Next we show that y[i] ̸∈ X [i]
unsafe,k,j through two cases.

Case 1: j = 0. By construction of X [i]
unsafe,k,0 in OCA, it holds that x[i] ∈

X [i]
unsafe,k,0 if and only if ρ(x[i],XO) ⩽ mϵ[i]+hpk . Combining this with (4.38) renders

ρ(x̃[i],XO) ⩾ mϵ[i] + 2hpk−1
. Recall that hpk−1

= 2hpk . Since ρ(x̃[i], y[i]) ⩽ hpk ,

triangular inequality further gives ρ(y[i],XO) ⩾ mϵ[i]+3hpk . Hence y
[i] ̸∈ X [i]

unsafe,k,0.

Case 2: j = 1, · · · , i − 1. Recall the definitions of β
[i]
k,1 and β

[i]
k,2 above Lemma

4.4.13. By construction of X [i]
unsafe,k,j in ICA, it holds that x[i] ∈ X [i]

unsafe,k,j if and

only if ρ(x[i], x[j][k]) ⩽ β
[i]
k,1 + β

[i]
k,2. Combining this with (4.38) renders

ρ(x̃[i], x[j][k − 1]) ⩾ β
[i]
k−1,1 + β

[i]
k−1,2 + hpk−1

.

Since hpk−1
= 2hpk , we have β

[i]
k,1 < β

[i]
k−1,1−2hpk . Recall that Lemma 4.4.13 renders

β
[i]
k,2 ⩽ β

[i]
k−1,2. Then combining the above three statements renders

ρ(x̃[i], x[j][k − 1]) ⩾ β
[i]
k,1 + β

[i]
k,2 + 4hpk .

112

Since ξ ⩽
hpk̄

maxj∈V m[j] , it holds that ρ(x
[j][k − 1], x[j][k]) ⩽ ξm[j] ⩽ hpk . Combining

the above two statements with triangular inequality renders

ρ(x̃[i], x[j][k]) ⩾ β
[i]
k,1 + β

[i]
k,2 + 3hpk .

Since ρ(x̃[i], y[i]) ⩽ hpk , triangular inequality further gives

ρ(y[i], x[j][k]) ⩾ β
[i]
k,1 + β

[i]
k,2 + 2hpk .

Hence y[i] ̸∈ X [i]
unsafe,k,j. The proof of Part (i) is concluded.

Part (ii). Consider a sequence of states and control inputs pairs {(x[i]pk,n, x
[i]
pk−1,n, u

[i]
pk,n)},

n = 0, 1, 2, · · · , where

x
[i]
pk,0

≜ y[i], x
[i]
pk−1,0

≜ x̃[i], u
[i]
pk,0

≜ ũ[i], u[i]pk,n ∈ Upk−1
,

x
[i]
pk,n+1 ∈ FR

[i]
k (x

[i]
pk,n

, u[i]pk,n), ρ(x
[i]
pk,n

, x[i]pk−1,n
) ⩽ hpk .

We use induction to show that, for all n = 0, 1, 2, · · · ,

FR
[i]
k (x

[i]
pk,n

, u[i]pk,n) ∩ [∪j<iX [i]
unsafe,k,j] = ∅ (4.39a)

FR
[i]
k−1(x

[i]
pk−1,n

, u[i]pk,n) ∩ [∪j<iX̄ [i]
unsafe,k−1,j] = ∅. (4.39b)

The base case n = 0 is obvious by (4.36) and (4.30) as well as the definitions

of x
[i]
pk,0

, x
[i]
pk−1,0

and u
[i]
pk,0

.

Now consider (4.39) holds until n = m. By the definition of FR
[i]
k and recall the

rewriting in (4.11), it holds that

B[i]

x
[i]
pk,m,u

[i]
pk,m,k

⊃ x[i]pk,m + ϵ[i](f [i](x[i]pk,m, u
[i]
pk,m

) + µ
[i]
k (x

[i]
pk,m

, u[i]pk,m)) + 2hpkB.

Recall that Discrete renders hpk−1
= 2hpk . Therefore, it holds that B[i]

x
[i]
pk,m,u

[i]
pk,m,k

∩

Xpk−1
̸= ∅, and for every x

[i]
pk,m+1 ∈ FR

[i]
k (x

[i]
pk,m, u

[i]
pk,m), there exists x

[i]
pk−1,m+1 ∈ Xpk−1

satisfying ρ(x
[i]
pk,m+1, x

[i]
pk−1,m+1) ⩽ hpk . Lemma 4.4.6 renders B[i]

x
[i]
pk,m,u

[i]
pk,m,k

+hpkB ⊂

113

B[i]

x
[i]
pk−1,m

,u
[i]
pk,m,k−1

. Combining the above two statements renders

x
[i]
pk−1,m+1 ∈[B

[i]

x
[i]
pk−1,m

,u
[i]
pk,m,k−1

∩ Xpk−1
] = FR

[i]
k−1(x

[i]
pk−1,m

, u[i]pk,m).

Then it follows from the induction hypothesis that

FR
[i]
k−1(x

[i]
pk−1,m

, u[i]pk,m) ∩ [∪j<iX̄ [i]
unsafe,k−1,j] = ∅

and hence x
[i]
pk−1,m+1 ∈ X

[i]
safe,k−1. Furthermore, it follows from Lemma 4.4.7 that

there exists u
[i]
pk−1,m+1 ∈ Upk−1

such that FR
[i]
k−1(x

[i]
pk−1,m+1, u

[i]
pk−1,m+1) ⊂ X

[i]
safe,k−1,

which implies

ρ(FR
[i]
k−1(x

[i]
pk−1,m+1, u

[i]
pk−1,m+1), X̄

[i]
unsafe,k−1,j) ⩾ hpk−1

.

Note that Discrete renders Upk−1
⊂ Upk . Hence, we can set u

[i]
pk,m+1 = u

[i]
pk−1,m+1 ∈

Upk . Then following the same logic of (4.30) to (4.36) by replacing x̃[i] with

x
[i]
pk−1,m+1, ũ

[i] with u
[i]
pk−1,m+1, and y

[i] with x
[i]
pk,m+1, we have

FR
[i]
k (x

[i]
pk,m+1, u

[i]
pk,m+1) ∩ [∪j<iX [i]

unsafe,k,j] = ∅.

The induction is completed.

Part (iii). Recall the definition of P [i]
k,j,l. Next we use induction to show that

x[i]pk,n ̸∈ ∪
n
[i]
k,j

l=1P
[i]
k,j,l, ∀j = 0, 1, · · · , i− 1 and n = 0, 1, · · · . (4.40)

Consider the base case j = 0 and all n = 0, 1, 2, · · · . By (4.37) and (4.39a), we

have x
[i]
pk,n ̸∈ P

[i]
k,0,1. By (4.39a), we have FR

[i]
k (x

[i]
pk,n, u

[i]
pk,n) ∩ X

[i]
unsafe,k,0] = ∅. Hence,

we have x
[i]
pk,n ̸∈ P

[i]
k,0,2. Since x

[i]
pk,n ∈ FR

[i]
k (x

[i]
pk,n−1, u

[i]
pk,n−1), we have x

[i]
pk,n−1 ̸∈ P

[i]
k,0,3.

Following the same logic, it follows that x
[i]
pk,n ̸∈ P

[i]
k,0,l for all l = 1, · · · , n[i]

k,0. This

renders x
[i]
pk,n ̸∈ ∪

n
[i]
k,0

l=1 P
[i]
k,0,l.

Now suppose (4.40) holds until j = j̃ < i − 1. By (4.37) and (4.39a), we

have x
[i]
pk,n ̸∈ P

[i]

k,j̃+1,1
. Since the induction hypothesis renders x

[i]
pk,n ̸∈ ∪

n
[i]
k,j

l=1P
[i]
k,j,l

for all j ⩽ j̃ and (4.39a) implies FR
[i]
k (x

[i]
pk,n, u

[i]
pk,n) ∩ X

[i]

unsafe,k,j̃+1
] = ∅, it renders

114

x
[i]
pk,n ̸∈ P

[i]

k,j̃+1,2
for all n = 0, 1, 2, · · · . By similar logic, we have x

[i]
pk,n−1 ̸∈ P

[i]

k,j̃+1,3

and hence x
[i]
pk,n ̸∈ ∪

n
[i]

k,j̃

l=1P
[i]

k,j̃+1,l
. This concludes the proof of (4.40).

Since y[i] = x
[i]
pk,0

and Lemma 4.4.15 renders X̄ [i]
unsafe,k,j = ∪n

[i]
k,j

l=1P
[i]
k,j,l, (4.40)

renders y[i] ̸∈ [∪j<iX̄ [i]
unsafe,k,j].

D.4) Proof of Theorem 4.3.3

Given (4.8) holds for all x[i] ∈ Xpk , u[i] ∈ Upk , k ⩾ 1, Lemma 4.4.16 implies that if

B(x[i][k], hpk−1
)∩X [i]

safe,k−1 ̸= ∅, for some k > 1, then it holds that B(x[i][k′], hpk′−1
)∩

X [i]
safe,k′−1 ̸= ∅ for all k′ ⩾ k. Then Lemma 4.4.11 implies that x

[i]
q (t) ∈ X [i]

F (x
[¬i]
q (t)),

∀t ∈ [k′ξ, k′ξ + ξ), k′ ⩾ k; i.e., ∀t ⩾ kξ.

Note that (4.2) renders that Xp ⊂ Xp′ and Up ⊂ Up′ ∀p < p′, and dSLAP renders

that pk ⩽ pk̃ ∀k ⩾ 1. Hence, the definition of δγ,p above (4.8) implies δγ,pk̃ ⩾ δγ,pk ,

∀k ⩾ 1. Therefore, for each i ∈ V , for each k ⩾ 1, (4.8) holds for all x[i] ∈ Xpk ,
u[i] ∈ Upk , with probability at least 1− δγ,pk ⩾ 1 − δγ,pk̃ . Denote E

[i]
k as the event

of (4.8) being violated for some x[i] ∈ Xpk̃ and/or u[i] ∈ Upk̃ at iteration k by robot

i. Then we have Pr{E[i]
k } ⩽ δγ,pk . Applying the union bound (Theorem 2-3, [88])

renders that Pr{∪k̃k=1E
[i]
k } ⩽ k̃δγ,pk̃ . Note that Pr{∩k̃k=1E

[i]
k } = 1− Pr{∪k̃k=1E

[i]
k }.

Hence, we have (4.8) holds ∀k ∈ {1, · · · , k̃} with probability at least 1 − k̃δγ,pk̃ .

Further applying the union bound renders that (4.8) holds ∀k ∈ {1, · · · , k̃} and

i ∈ V with probability at least 1− k̃|V|δγ,pk̃ . ■

4.5 Simulation

In this section, we conduct a set of Monte Carlo simulations to evaluate the perfor-

mance of the dSLAP algorithm. The simulations are run in Python, Linux Ubuntu

18.04 on an Intel Xeon(R) Silver 4112 CPU, 2.60 GHz with 32 GB of RAM.

Simulation scenarios. We evaluate the dSLAP algorithm using Zermelo’s nav-

igation problem [128] in a 2D space under the following scenario: A group of

robots are initially placed evenly on the plane and switch their positions at the

destinations. The robots are immediately retrieved once they reach the goals.

This example is also used in [129] [130] to demonstrate complicated multi-robot

coordination scenarios.

115

Dynamic models. Consider constant-speed boat robots with length L = 1.5

meters (m) moving at speed v = 0.5 meters/seconds (m/s). For each robot i, let

x
[i]
q,1 and x

[i]
q,2 be the x and y coordinates on a 2D plane, x

[i]
r be the angle between

the heading and the x-axis, and u[i] be the steering angle. The state space is given

by X = [0, 100] × [0, 100] × [−π, π]. External wind disturbance ν is applied at

x
[i]
q,1 such that the system dynamics has the following form: ẋ

[i]
q,1(t) = 0.5 cosx

[i]
r (t),

ẋ
[i]
q,2(t) = 0.5 sinx

[i]
r (t), ẋ

[i]
r (t) = 0.5

1.5
tanu[i](t). The control u[i] takes discrete values

and the control space is U = {±0.3π,±0.15π, 0}.
Parameters. The kernel of GPR is configured as κ(z, z′) = 0.0025 exp(−∥z−z′∥22

2
),

which is 0.0025 times the RBF kernel in the sklearn library. The factor 0.0025 is

selected such that the supremum of the predictive standard deviation is 0.05, or

10% of the robots’ speed. This can be selected based on the prior knowledge of the

variability of the disturbance. Other parameters are selected as γ = 1, pinit = 4,

k̄ = 200, τ̄ = 20, ξ = 8, q = 2, ψ = 1, δ = 0.1, and r
[i]
k = −σ[i]

k , which are

determined according to the desired learning confidence level and the computation

capability of the robots. To prevent prolonged computation due to unnecessarily

fine discretization, we set a maximum such that pk+1 ← min{pk, 5} ∀k ⩾ 1.

Random wind fields with different magnitudes. We randomly generate 2D spa-

tial wind fields, with average speed ν in different ratios of the robots’ speed, i.e.,

ν = rwv, rw > 0, and standard deviation 2% of the robots’ speed, using the Von

Karman power spectral density function as described in [131]. This wind model

is used to test multi-robot navigation in [131] [132]. A sample with rw = 0.2

is shown in Figure 4.4a. We randomly generate 60 different wind fields for each

rw ∈ {0.1, 0.2, · · · , 1}.

4.5.1 Safe grid vs. safe region

To visualize how safety is guaranteed by dSLAP, in this section, we compare the

safe grids X [i]
safe,k under the wind field in Figure 4.4a with the corresponding safe

regions, which are the set of initial states that render safe arrival by applying the

control policy returned. The comparison is similar for other wind fields. Since

the dynamics of the robots has three dimensions, for simplicity of visualization,

we only show the screen- shots of the 2D grids/regions with four different heading

116

(a) Grid: θ[i] = 0 (b) Grid: θ[i] = π
2 (c) Grid: θ[i] = −π

2 (d) Grid: θ[i] = π

(e) Region: θ[i] = 0 (f) Region: θ[i] = π
2 (g) Region: θ[i] =
−π

2

(h) Region: θ[i] = π

Figure 4.3: Safe grid computed by dSLAP vs. actual safe region

angles (i.e., θ[i] = 0, π
2
,−π

2
and π). For the simplicity of illustration, we only

compare the safe grids X [i]
safe,k of robot i, in the presence of only one obstacle, with

the corresponding safe regions. Since the figures are similar for grids with different

resolutions, due to space limitation, we only show the comparison for safe grids

X [i]
safe,k in one resolution, i.e., pk = 5. In each figure, the safe region is approximated

by 10,000 evenly distributed initial states.

Figure 4.3 shows the comparison for iteration k = 1, where the unsafe grids/regions

are dark-colored and the safe grids/regions are light-colored. We can see that the

safe grids are strictly subsets of the safe regions, which verifies the sufficient con-

dition in Theorem 4.3.2 and Theorem 4.3.3, where the robots are guaranteed to

be safe if B(x[i](0), hp0) ∩ X
[i]
safe,0 ̸= ∅. Furthermore, by comparing Figures 4.3a -

4.3d with Figures 4.3e - 4.3h, we can see that the identification of safe grids by

dSLAP and the safety guarantees by Theorem 4.3.2 and Theorem 4.3.3 are con-

servative. This is due to the fact that the safe control inputs are spatially similar,

and hence some unsafe states labeled by dSLAP can still be safe by applying the

control inputs on the nearest safe states. The conservativeness comes from the

over-approximation of the one-step forward reachability sets in FR
[i]
k and the errors

in discretization. Nevertheless, the conservativeness can be reduced by refining the

discretization at the expense of more computation power.

117

4.5.2 Multi-robot maneuver.

We evaluate the dSLAP algorithm using 30,000 scenarios generated as follows.

Different initial configurations. We deploy n robots with 10 different initial

configurations in the simulation, where n ∈ {1, 2, 4, 6, 8}. Figure 4.4b shows one

configuration of 8 robots’ initial states and goal regions, and the corresponding

trajectories under dSLAP in the wind field in Figure 4.4a. The circular disks are

the goal regions of the robots and the red rectangle is the static obstacle. Other

configurations are generated by different permutations and removals of robots from

that in Figure 4.4b.

(a) A sample of wind field experienced
by the robots

(b) Trajectories of the robots

Figure 4.4: A sample of wind fields and robot trajectories

Ablation study. To the best of our knowledge, this chapter is the first to consider

multi-robot motion planning coupled with online learning. Hence, we compare

dSLAP with its three variants, Vanilla, Robust and Known, that do not learn the

wind disturbances. Vanilla assumes g[i] = 0, ∀i ∈ V , whereas Robust assumes

supx[i]∈X ,u[i]∈U |g[i](x[i], u[i])| ⩽ r̂wv and thus ẋ[i] ∈ f [i](x[i], u[i]) + r̂wvB, where r̂w >
0. We adopt r̂w = 0.1 such that Robust has the same level of conservativeness as

dSLAP before collecting any data. The benchmark Known is obtained by running

the dSLAP framework with the disturbances exactly known, which is the control

law obtained by dSLAP when the amount of data of g[i] goes to infinity.

Results. The average safe arrival rates of dSLAP, Robust, Vanilla and Known

among the 30,000 cases are shown in Figure 4.5. From Figure 4.5a, we can see

that dSLAP’s performance is superior to those of Robust and Vanilla. This is due

to the fact that dSLAP online learns about the unknown disturbances and adjusts

118

the policies accordingly. On the other hand, Robust (or Vanilla) only captures part

of (or none of) the disturbances through the prior estimates, which can be unsafe

when the disturbances exceed the estimates. Furthermore, we can observe that

the safe arrival rate for dSLAP decreases linearly with respect to the number of

robots. This corresponds to the probability with respect to the number of robots

in Theorems 4.3.2 and 4.3.3. Notice that the gap between Known and dSLAP is

small. The cases that are unsafe even in Known are due to the robots being too

close to each other or the magnitude of the disturbances being too large to tolerate

(note that the magnitude of the disturbances can be as large as the speed of the

robots in the simulation). This indicates that dSLAP enables safe arrival in most

feasible cases.

(a) Percentage of safe arrivals (b) Average time of safe arrivals

Figure 4.5: Ablation study of dSLAP

Arrival time. Figure 4.5b compares the average safe arrival times among

dSLAP, Robust and Known. We exclude the comparison with Vanilla since its

safe arrival rate is far lower than the other three while safety is this chapter’s top

priority. The arrival times of the three algorithms are comparable. This indicates

dSLAP improves safe arrival rate without sacrificing arrival time, i.e., being more

conservative.

4.5.3 Run-time computation.

This section shows the wall computation time of dSLAP when the robots are

deployed in the wind field in Figure 4.4a with configuration in Figure 4.4b, as

an example. Table 4.1 presents the average plus/minus one standard deviation

119

ID Total time
SL Discrete+OCA

time Percentage time Percentage
1 5.71±0.45 0.84±7.87e−3 14.73±1.08 4.26±0.12 74.91±3.95
2 5.93±0.47 0.81±0.01 13.70±1.03 4.21±0.06 71.32±5.10
3 5.69±0.34 0.82±1.43e−3 14.48±0.88 4.14±0.04 73.10±3.90
4 5.18±0.14 0.82±2.03e−3 15.85±0.43 4.01±0.04 77.37±1.98
5 5.90±0.35 0.82±0.01 13.96±0.65 4.30±0.08 73.10±3.41
6 5.66±1.29 0.88±0.16 15.7±0.65 4.55±1.08 80.26±1.58
7 5.94±0.99 0.88±0.10 14.96±0.82 4.49±0.65 75.85±2.69
8 5.94±1.14 0.88±0.13 14.90±0.55 4.65±0.83 78.53±1.30

ID
ICA AL

time Percentage time Percentage
1 6.03e−3±1.85e−3 0.11±9.44e−3 0.61±0.32 10.26±5.07
2 0.06±0.03 1.08±0.59 0.85±0.41 13.90±6.38
3 0.14±0.01 2.56±0.32 0.58±0.32 9.87±5.08
4 0.16±0.09 3.07±1.76 0.20±0.15 3.70±2.81
5 0.23±0.03 3.96±0.51 0.54±0.27 8.98±4.10
6 0.13±0.11 2.57±2.23 0.10±0.13 1.46±1.64
7 0.19±0.10 3.39±2.03 0.38±0.38 5.79±5.19
8 0.29±0.07 5.02±1.62 0.12±0.22 1.56±2.45

Table 4.1: Computation time (seconds) for each robot in one iteration

of each robot’s onboard computation time for one iteration for each component

of dSLAP and the corresponding percentages (%) of the total computation time.

Discrete+OCA consumes most of the computation resources because a discrete

set-valued approximation of the continuous dynamics over the entire state-action

space is constructed through these two procedures, especially in OCA. Table 4.1

shows that the computation costs of the other procedures are mostly sub-second.

Table 4.2 shows that the average wall time plus/minus one standard deviation per

iteration for each robot versus the number of robots deployed. This shows that

the computation time within each robot is nearly independent of the number of

robots.

4.5.4 Hyperparameter tuning

The parameters in Algorithm 5, include mission and system parameters (i.e., X ,
U , XO, X [i]

G , ℓ[i] and m[i]) and tuned parameters: Kernel for GPR: κ; Initial dis-

120

Number of robots 1 2 4 6 8

Wall time
5.837±
0.085

5.843±
0.118

5.830±
0.102

5.832±
0.129

5.839±
0.119

Table 4.2: dSLAP Wall clock time (seconds) per iteration

cretization parameter: pinit; Termination iteration: k̃; Number of samples to be

obtained in each iteration: τ̄ ; Discrete time unit: ξ; Time horizon for MPC: φ;

Weight in the MPC: ψ; Sampling period: δ; Utility function r
[i]
k . Below we provide

an overall guidance on tuning these parameters.

Parameters pinit, k̃, τ̄ , ξ, and φ, are referred as the computation parameters,

since they are related to the computation power of the machine performing the

simulation or the onboard computer of the robots. In the simulation, these param-

eters, though can affect performance, determine how much computation power is

needed to compute the safe control inputs. Therefore, they can be mainly tuned

based on how much computation power is available and how much computation

time is desired in one iteration. The remaining parameters, referred as the learning

parameters, to be tuned are: κ, δ, r
[i]
k and ψ. Notice that the above parameters

are more related to the learning of the unknown dynamics using GPR and active

learning. Therefore, standard/common parameters in the related literature are

used in the simulation. They can be tuned by following the general guidance of

hyperparameter tuning for GPR [54] and active learning [126].

4.6 Conclusion

We study the problem where a group of mobile robots subject to unknown external

disturbances aim to safely reach goal regions. We propose the dSLAP algorithm

that enables the robots to quickly adapt to a sequence of learned models resulted

from online Gaussian process regression, and safely reach the goal regions. We

provide sufficient conditions to ensure the safety of the system. The developed

algorithm is evaluated by Monte Carlo simulation.

121

Chapter 5
Federated reinforcement learning

with zero-shot generalization

5.1 Introduction

The previous chapter considers online learning and imposes safety as a hard con-

straint. In this chapter, we consider offline learning and imposes safety as a soft

constraint. The goal is to synthesize a control policy for robot motion planning

with good zero-shot generalization.

Classic motion planning methods usually assume perfect knowledge of the dy-

namics of the robots and the environments they operate in. Examples of methods

includes cell decomposition, roadmap, sampling-based approaches, and feedback

motion planning. Interested readers are referred to [91] for more details. However,

robots’ operations in the real world are usually accompanied by uncertainties, such

as the external disturbances in the natural environments they operate in and the

modeling errors of the dynamics. To deal with the uncertainties, a number of

methods utilize techniques in robust control (e.g., [133, 134, 94]), where bounded

uncertainties are considered, and stochastic control (e.g., [95, 96, 97]), where the

uncertainties are modeled in terms of known probability distributions. Recently,

reinforcement learning-based approaches have been developed to relax the need of

prior explicit uncertainty models (and even the dynamic models) by directly learn-

ing the best mapping from sensory data to control inputs from repetitive trials. For

122

example, paper [98] uses kernel methods to learn the control policy for a spider-like

robot with 18 degrees of freedom using GPS data. Deep neural networks are used

in [135, 136] to synthesize control policies using camera/LiDAR data.

Classic reinforcement learning problems consider learning an optimal control

policy over a single environment [137]. The policy can either be learned online

through agent’s repetitive interaction and data collection in the environment [137]

or learned offline using a fixed dataset of past interaction with the environment

[138]. Although the methods can deal with complex environments, the agents

struggle to generalize their experiences to new environments [139, 140]. This chap-

ter focuses on the generalization of reinforcement learning, that is, obtaining a

control policy which performs well in new environments unseen during training.

Depending on whether or not the approaches require data collection and policy

adaptation in a new environment, existing works on this problem can be catego-

rized into few-shot generalization and zero-shot generalization.

Meta reinforcement learning (MRL) is a widely-used approach for few-shot gen-

eralization. More specifically, MRL aims to address the fundamental problem of

quickly learning an optimal control policy in a new environment after collecting

a small amount of data online and performing a few updates for policy adap-

tations [141, 142, 143, 144, 145, 146]. The problem is usually formulated as an

optimization problem, where the objective function is the expected performance

of the control policy adapted from a meta control policy after a few updates in

a new environment. When it is applied to robots with unknown dynamics, MRL

faces a particular challenge. Since they usually operate in real time, robots only

have limited time to collect data in new environments and perform policy adapta-

tion. When the dynamics of the robots are uncertain, data collection requires that

the robots execute the meta control policies in physical environments and obtain

the induced trajectories. The physical execution can be time-consuming and not

suitable or even impractical for real-time applications.

Zero-shot generalization considers the performance of a single control policy in

new environments without additional data collection and policy adaptation [140].

It is typically formulated as expected cost minimization of a control policy over a

distribution of environments. As the distribution of the environments is generally

complicated or even unknown, it is challenging, if not impossible, to solve the ex-

123

pected cost minimization problem in closed form. Therefore, the methods, which

target zero-shot generalization, instead solve an empirical mean minimization prob-

lem (possibly with regularization) given a finite amount of training environments.

Related methods can be categorized into two classes. The first one is modifying an

expected cost function and solving the modified problem through empirical cost

minimization [27, 147, 28, 29, 32, 33]. For example, risk-sensitive criterion can be

introduced to balance between a return and a risk, where the risk can be the vari-

ance of the return [28, 29]. Worst-case criterion is used to mitigate the effects of

the variability induced by a given policy due to the stochastic nature of the unseen

environments or the dynamic systems [32, 33]. The other class is incorporating reg-

ularizers into empirical mean minimization to improve the generalizability of the

solution. A necessarily incomplete list of references includes [100, 148, 149, 150].

While most regularization methods are heuristic, paper [100] uses the sum of the

empirical cost and the generalization error from PAC-Bayes theory as an upper

bound of the expected cost and synthesizes a control policy which can minimize the

upper bound. Nevertheless, empirical mean minimization (with regularization) is

an approximation to the expected cost minimization problem, and the optimality

loss is not quantified. In this chapter, we aim to directly solve the expected cost

minimization problem and analyze the properties of the solution.

The papers aforementioned focus on centralized reinforcement learning, where

all the training data are possessed by a single learning agent. On the other hand,

the advent of ubiquitous sensing and mobile storage renders some scenarios, in

which training data are distributed across multiple entities, e.g., the driving data

in different autonomous cars. It is well-known that control policies trained with

more data have better performance [51]. However, directly using the raw data

for collective learning can risk compromising the privacy of the data owners, e.g.,

exposing the living and working locations of the drivers. To tackle this challenge,

distributed reinforcement learning is usually leveraged, where multiple learning

agents perform training collaboratively by exchanging their locally learned mod-

els. There are mainly two approaches: decentralized reinforcement learning and

federated reinforcement learning. In decentralized reinforcement learning, learning

agents directly communicate with each other over P2P networks [151]. In feder-

ated reinforcement learning, learning agents cannot directly talk to each other and

124

instead are orchestrated by a Cloud, i.e., the learning agents download shared

control policies from the Cloud, implement local updates based on local data and

report the local control policies to the Cloud for the updates of the shared models

[152, 153]. With the support of a Cloud, federated learning has access to more

resources in, e.g., computation, memory and power, and hence enables a much

larger scale of learning processes. The analysis of the above works is limited to

the convergence of the proposed learning algorithms. The generalization of the

learned control policies remains an open question.

Contribution statement: In this chapter, we propose a novel framework,

FedGen, to tackle the challenge of robot motion planning with zero-shot gener-

alization in the presence of distributed data across multiple learning entities. A

network of learners aim to collaboratively learn a single control policy which can

safely drive a robot to goal regions in different environments without data collec-

tion and policy adaptation during policy execution. The problem is formulated as

federated optimization with an unknown objective function, which is the expected

cost of navigation over a distribution of environments. Specifically, each learner

updates its local control policy and sends its observation of the objective function

to a central Cloud for global minimization among the control policies of the learn-

ers. The global minimizer is then sent back to the learners for updates of the local

control policies. We characterize the upper bounds for the expected arrival time

and safe arrival rate for each control policy. The upper bounds are used to find

the control policy with the best zero-shot generalization performance among the

learners. Theoretical guarantees on almost-sure convergence, almost consensus,

Pareto improvement and global convergence are also provided. In addition, the

algorithm can be executed over P2P networks after a minor change.

In summary, our contributions are: (C1) The development of the FedGen algo-

rithm for robot motion planning with zero-shot generalization subject to multiple

learning entities. (C2) The theoretic guarantees on the zero-shot generalization

of local control policy to new environments in terms of arrival time and safety,

the almost-sure convergence and the global convergence of the local estimates, the

consensus of the local values and Pareto improvement of the local values. Monte

Carlo simulations are conducted for evaluations.

Notations. We use superscript (·)[i] to distinguish the local values of robot i

125

and ∥ · ∥ to denote 2-norm. For notional simplicity, for any local value a[i], we

denote amax ≜ maxi∈V a
[i] and amin ≜ mini∈V a

[i]. Define closed ball B(θ, ϵ) ≜ {θ′ ∈
Rnθ | ∥θ − θ′∥ ⩽ ϵ}, and β(A) the measure of set A.

5.2 Problem formulation

In this section, we introduce the dynamics of the robot, the problem of motion

planning, the setting of federated reinforcement learning, and the objective of this

chapter.

5.2.1 Environment-specific motion planning

In this chapter, we consider environment-dependent dynamics. Let X ⊆ Rnx be the

state space of the robot and U ⊆ Rnu be the control input space. An environment E

is fully specified by the inherent external disturbance dE : X×U → X , the obstacle
region XO,E ⊆ X and the goal region XG,E ⊂ X \XO,E; i.e., E ≜ (dE,XO,E,XG,E).
For each environment E, denote free region XF,E ≜ X \XO,E. Denote GE the space

of goal regions induced by the space of environments E .
In each environment E, the dynamic system of the robot is given by the fol-

lowing difference equation:

xt+1 = f(xt, ut) + dE(xt, ut), ot = h(xt,XO,E), (5.1)

where xt ∈ X is the state of the robot, ut ∈ U is its control input, ot ∈ O is the

sensor output of the system observing the obstacle region XO,E at state xt and h

is the observation function. Once environment E is revealed, XG,E is known, XO,E
can only be observed through h and may not be fully known, but dE is unknown.

The objective of the environment-specific motion planning problem is to synthe-

size a control policy, which can drive system (5.1) to the goal region with obstacle

collision avoidance. The arrival time under control policy π : O × GE → U for

system (5.1) starting from initial state xint is given by

tE(xint; π) ≜ inf{t > 0 | xt ∈ XG,E, x0 = xint,

xτ+1 = f(xτ , uτ) + dE(xτ , uτ), oτ = h(xτ ,XO,E),

126

uτ = π(oτ ;XG,E), xτ ∈ XF,E,∀0 ⩽ τ ⩽ t}.

If the robot never reaches the goal, or hits the obstacles before arrival, then

tE(xint; π) = ∞. We say safe arrival is achieved from initial state xint under

control policy π if tE(xint; π) < ∞. Note that tE(xint; π) is potentially infi-

nite, and it can cause numerical issues. Therefore, we normalize the arrival time

function through Kruzkov transform such that the normalized cost function is

given by JE(xint; π) ≜ 1 − e−tE(xint;π). Note that when tE(xint;π) = ∞, we have

JE(xint; π) = 1.

5.2.2 Robot motion planning with zero-shot generalization

In the problem of robot motion planning with zero-shot generalization, the goal is

to synthesize a single control policy that performs well in different environments

without data collection and policy adaptation during policy execution. In statis-

tical learning theory [51], this can be formulated as minimizing the expectation of

the normalized arrival time over different environments. In particular, we assume

the environments follow an unknown distribution.

Assumption 5.2.1. (Stochastic environment). There is an unknown distribution

PE over E from which environments are drawn from. ■

For example, the obstacle regions of the environments can be composed of

a number of circular obstacles, where the numbers, locations, and the radii of

the obstacles follow an unknown distribution, and the disturbances can follow an

unknown Gaussian process.

Further, we assume that the initial state is a random variable which is condi-

tional on the environment.

Assumption 5.2.2. (Stochastic initialization). There is an unknown conditional

distribution Pint|E from which xint is drawn conditional on environment E ∈ E . ■

Formally, the objective of the problem of robot motion planning with zero-

shot generalization is to synthesize a control policy π∗ ∈ Γ ≜ {u(·) : O × GE →
U ,measurable}, such that the expected normalized cost over all possible, including

127

unseen, environments is minimized:

π∗ = argmin
π∈Γ

E[JE(xint; π)], (5.2)

where the expectation is taken over the environment E ∼ PE and initialization

xint ∼ Pint|E. Note that by taking the expectation, we are considering all possi-

ble environments following the distribution. Therefore, we measure the zero-shot

generalization of a control policy using its expected cost of solving the motion

planning problems in a distribution of environments.

Since Γ is a function space, problem (5.2) is a functional optimization problem

and hard to solve in general. In order to make the problem tractable, we approxi-

mate the space Γ using, e.g., deep neural networks and basis functions. Consider

a class of control policies πθ ∈ Γ parameterized by θ ∈ Rnθ , e.g., the weights

of a deep neural network. Denote η(θ) ≜ E[JE(xint; πθ)]. Then for the learners,

problem (5.2) becomes:

θ∗ = arg min
θ∈Rnθ

η(θ). (5.3)

Problem (5.3) is a standard expected cost minimization problem. However, since

the distribution of the environments is unknown, (5.3) cannot be solved directly.

A typical practice is to approximate it by empirical cost minimization (with reg-

ularization), e.g., [28, 29, 30, 32, 33, 100, 148, 149, 150], where a control policy

is synthesized by minimizing the empirical cost (with regularization) over a finite

number of training environments. Nevertheless, to the best of our knowledge, there

is no theoretic guarantee on the optimality of the solutions to the original problem

(5.3). In this chapter, we aim to directly solve (5.3) and analyze the properties of

the solutions.

5.2.3 Federated reinforcement learning

Through federated learning, a group of learners aim to solve (5.3) collaboratively

and achieve better results than solving on their own. Each learner i ∈ V ob-

serves function η by sampling a set of environments E
[i]
l

i.i.d.∼ PE, l = 1, · · · , n[i]
E ,

and a set of initial states x
[i]

int|E[i]
l ,l′
∼ P

int|E[i]
l
, l′ = 1, · · · , n[i]

int|E , for each E
[i]
l .

128

We consider general on-policy reinforcement learning methods. Given a triple of

(θ[i], E
[i]
l , x

[i]

int|E[i]
l ,l′

), learner i measures the value J
E

[i]
l
(x

[i]

int|E[i]
l ,l′

; πθ[i]) through pol-

icy evaluation, i.e., running the robot under control policy πθ[i] from initial state

x
[i]

int|E[i]
l ,l′

in environment E
[i]
l , measuring the arrival time and taking the Kruzkov

transform. Then learner i finds (or approximate using, e.g., natural evolution

strategies [154]) the policy gradient ∇θ[i]JE[i]
l
(x

[i]

int|E[i]
l ,l′

; πθ[i]). The learners commu-

nicate to a Cloud but do not communicate with each other.

The objective of the multi-learner network and the Cloud is to collaboratively

solve problem (5.3). The problem is challenged by the fact that the objective

function η is non-convex and can only be estimated by sampling over the envi-

ronments and the initial states in general. As stated in Assumption 5.2.1, the

environments at training and testing follow an unknown distribution. The estima-

tion error is the difference between the true value of η and the empirical average

of the normalized cost, and the distribution of the estimation error is unknown

and non-Gaussian in general. Notice that when expected cost minimization is

approximated by empirical cost minimization (possibly with regularization) as in

[28, 29, 30, 31, 32, 33, 100, 148, 149, 150], the surrogate objective function is the

sum of the empirical cost and the regularizer, which has closed-form and is free of

estimation error.

5.3 Algorithm statement

In this section, we propose a federated optimization framework, FedGen in Algo-

rithm 10, and analyze the generalized performances and the properties of the local

estimates of the solution to problem (5.3) the algorithm renders. Overall, the pro-

posed solution enables learning with distributed data without data sharing. The

generalizability of a control policy is characterized by an upper bound of η, the ex-

pected adjusted arrival time, using the empirical mean of the adjusted arrival time

in Theorem 5.3.1. We leverage the architecture of federated optimization, where

the learners only exchange the parameters of their control policies and minimize

the above upper bound to optimize the generalizability of its control policy. More

detailed description of the proposed framework can be found in the subsection

below.

129

Local update
or not?

(θ
[i]
k−1

, y
[i]
k−1

, z
[i]
k−1

)Learner i

Yes No

Stop
[i]
k
← True

Switch to the
estimate from the

Cloud or not?

No yes

Switch and
collect new

measurements

θ
[i]
k
← θ

[j]
l

Stop
[i]
k
← False

Maintain previous
estimate and
measurements

θ
[i]
k
← θ

[i]
k−1

Update estimate
and collect new
measurements

θ
[i]
k
← θ

[i]
k−1

− r[i]

kρ z
[i]
k−1

(θ
[i]
k

, y
[i]
k

, z
[i]
k

)

Cloud
update

Global optimal
estimates

(θ
[j]
l

, y
[j]
l

, b
[j]
γ)

Figure 5.1: Implementation FedGen for learner i in iteration k

5.3.1 The FedGen algorithm

Denote θ
[i]
k the empirical estimate of the solution to problem (5.3) by learner i at

iteration k. Denote y
[i]
k , the empirical estimate of η(θ

[i]
k), and z

[i]
k , the empirical

estimate of ∇η(θ[i]k) as follows.

y
[i]
k ≜

1

n
[i]
E n

[i]
int|E

n
[i]
E∑

l=1

n
[i]
int|E∑
l′=1

J
E

[i]
l
(x

[i]

int|E[i]
l ,l′

; π
θ
[i]
k
),

z
[i]
k ≜

1

n
[i]
E n

[i]
int|E

n
[i]
E∑

l=1

n
[i]
int|E∑
l′=1

∇J
E

[i]
l
(x

[i]

int|E[i]
l ,l′

; π
θ
[i]
k
).

The FedGen algorithm is composed of three components: (i) Learner-based

update, where each learner updates its estimate θ
[i]
k using local data only. (ii)

Cloud update, where the Cloud identifies the estimate with the best generalized

performance among the learners. (iii) Learner-based fusion, where the learner

decides whether it should keep its local estimate or switch to the one returned by

the Cloud. The algorithm utilizes the power of the Cloud to identify the control

130

Figure 5.2: Parameter update logic at each iteration

policy that can potentially achieve better performance in expectation and allow

the learners to escape from their local minima. Figure 5.1 is a detailed flowchart

representation of Algorithm 10, demonstrating the decision making process within

learner i. Figure 5.2 presents the logic of the update of the parameter estimates

in one iteration. More detailed description of the each module in each iteration k

can be found below.

5.3.1.1 Learner-based update

First, each learner i performs local learning using its local data. Specifically, each

learner i collects the measurement (y
[i]
k−1, z

[i]
k−1) of the estimate θ

[i]
k−1 in the previous

iteration if it is not stopped. The measurements are sent to the Cloud for global

minimization. If ∥z[i]k−1∥ is greater than a local threshold q[i], which indicates that

learner i’s estimate is far from convergence and has potential for improvement,

the learner makes one gradient descent step and updates its local estimate to θ̂
[i]
k .

The threshold q[i] indicates whether a local minimum of η is achieved. If ∥z[i]k−1∥
is not greater than q[i], the learner stops its local gradient descent and maintains

the previous measurement. The learner resumes data collection for potential local

gradient descent when it adopts the policy parameter from the Cloud later in

Learner-based fusion for further optimization.

131

5.3.1.2 Cloud update

Note that the learners’ estimates have different update trajectories due to the

differences in initialization and data. Since objective η is nonconvex in general,

different learners’ estimates can stuck at different local minima. Therefore, the

Cloud aims to identify which learner is around a better local minimum such that

the other learners can later switch to this local minimum when their estimates con-

verges in Learner-based update. Specifically, upon the receipt of local estimates

of η, (y
[i]
k−1, θ

[i]
k−1), from each i ∈ V , the Cloud aims to find the policy parame-

ter with the best generalized performance among the learners. Denote local bias

b
[i]
γ ≜

√
log(2/γ)

2n
[i]
E n

[i]
int|E

, γ ∈ (0, 1). The following theorem characterizes the zero-shot

generalization error between y
[i]
k and η(θ

[i]
k) and the zero-shot generalized safety in

terms of local bias, where the proof can be found in Section 5.4.

Theorem 5.3.1. Suppose Assumptions 5.2.1 and 5.2.2 hold. The following prop-

erties are true for all i ∈ V :

(T1, Generalization error). For each k ⩾ 0, it holds that η(θ
[i]
k) ⩽ y

[i]
k + b

[i]
γ with

probability at least 1− γ.

(T2, Generalized safety). For each k ⩾ 0, the policy π
θ
[i]
k

is able to achieve safe

arrival with probability at least 1 − γ − (1 − γ)(y[i]k + b
[i]
γ) for E ∼ PE and

xint ∼ Pint|E. ■

In order to obtain the best zero-shot generalized performance, based on The-

orem 5.3.1, the Cloud returns the global minimizer of y
[i]
l′ + b

[i]
γ over all the local

estimates θ
[i]
l′ , i ∈ V , l′ = 0, · · · , k − 1, and sends the global minimizer and min-

imum to the learners. Different from the regularizers used in the literature of

empirical cost minimization, the local bias b
[i]
γ is a constant value and does not

depend on the estimate θ
[i]
k . This procedure can be implemented recursively by

comparing the learner-wise global minimum in the previous iteration with the val-

ues obtained in the current iteration. If one wants to implement Algorithm 10 over

P2P networks without the Cloud, this step can be executed using the minimum

consensus algorithm [155].

132

5.3.1.3 Learner-based fusion

For each learner, it may not be always the case that the global minimizer of the

Cloud outperforms the local estimate. The learner’s estimate only switches to the

estimate returned from the Cloud if its estimate converges in Learner-based update

and the estimate from the Cloud is significantly better than the local estimate.

Specifically, Learner i only chooses the global minimizer θ
[j]
l sent by the Cloud

when two conditions are satisfied: (i) estimate θ
[j]
l achieves a smaller estimate of η,

i.e., y
[j]
l + b

[j]
γ is less than the minimum between y

[i]
k−1 − b

[i]
γ , and ζ

[i]
k−1, the previous

global minimum adopted by learner i; and (ii) local gradient descent is stopped,

i.e., z
[i]
k−1 is small. When the global minimizer is chosen, learner i is then not

stopped and resumes Learner-based update in the next iteration. Notice that if

it never chooses the global minimizer from the Cloud after it is stopped, learner i

maintains the estimate and measurement for the remaining iterations.

5.3.2 Performance guarantees

In this section, we investigate the limiting behavior of the algorithm. Similar to

most analysis of stochastic gradient descent (please see [156, 157] and the references

therein), we assume η is Lipschitz continuous and L∇η-smooth.

Assumption 5.3.2. (Lipschitz continuity). There exists positive constant Lη such

that |η(θ)− η(θ′)| ⩽ Lη∥θ − θ′∥ for all θ, θ′ ∈ Rnθ . ■

Assumption 5.3.3. (L∇η-smooth). There exists positive constant L∇η such that

∥∇η(θ)−∇η(θ′)∥ ⩽ L∇η∥θ − θ′∥ for all θ, θ′ ∈ Rnθ . ■

Furthermore, we assume that the variance of the errors of gradient estimation is

bounded. This is a standard assumption in the analysis of stochastic optimization

[156][157].

Assumption 5.3.4. (Bounded variance). It holds that E[∥z[i]k − ∇η(θ
[i]
k)∥2] ⩽

(σ[i])2 for some σ[i] > 0. ■

Notice that the updates of the variables θ
[i]
k , y

[i]
k and z

[i]
k , k ⩾ 1, depends on the

sampling of the environments and the initial states in all the learners, which are

the only randomness in this chapter. Therefore, in the sequel, all the expectations

133

of these local variables are taken over the sampling E
[j]
l ∼ PE, l = 1, · · · , n[j]

E , and

x
[j]

int|E[j]
l ,l′
∼ P

int|E[j]
l
, l′ = 1, · · · , n[j]

int|E for all j ∈ V . The lemma below shows that

z
[i]
k is an unbiased estimate of ∇η(θ[i]k).

Lemma 5.3.5. (Unbiased estimator). Suppose Assumptions 5.2.1, 5.2.2 and 5.3.2

hold. Then it holds that E[z[i]k]−∇η(θ
[i]
k) = 0 for all k ⩾ 1. ■

Since z
[i]
k is an unbiased estimate of ∇η(θ[i]k), by the law of large numbers

(Proposition 6.3 in [158]), (σ[i])2 diminishes as n
[i]
E and n

[i]
int|E increase.

The following theorem summarizes the properties of almost-sure convergence,

almost consensus and Pareto improvement of the algorithm.

Theorem 5.3.6. Suppose Assumptions 5.2.1, 5.2.2, 5.3.2 5.3.3 and 5.3.4 hold. For

all i ∈ V , if r[i] ⩽ 1
2L∇η

and q[i] ⩾ 4σ[i], then the followings hold:

(T3, Almost-sure convergence). There exists θ
[i]
∞ ∈ Rnθ such that θ

[i]
k → θ

[i]
∞ almost

surely.

(T4, Almost consensus). It holds that E[maxj∈V η(θ
[j]
∞)−minj∈V η(θ

[j]
∞)] ⩽ 2bmax

γ .

Denote k
[i]
fs ≜ min{k ⩾ 0 | ∥z[i]k ∥ < q[i]} the first time learner i is stopped. Then

we further have

(T5, Pareto improvement). If θ
[i]
∞ ̸= θ

[i]

k
[i]
fs

, then E[η(θ[i]∞)− η(θ[i]
k
[i]
fs

)] ⩽ −2bmin
γ . ■

Note that θ
[i]
∞ ̸= θ

[i]

k
[i]
fs

implies that learner i adopts the estimates from the Cloud

at least once. Theorem 5.3.6 (T5) implies that communication with the Cloud can

potentially improve the optimality of the learners’ estimates.

Denote the set of global minimizers that are regular in the sense of Hurwitz as

Θ∗ ≜ {θ ∈ Rnθ | θ = arg min
θ′∈Rnθ

η(θ′),∇2η(θ) ≻ 0}.

Lemma 1 in [159] indicates that for each θ∗ ∈ Θ∗, there exists a convex compact

neighborhood K(θ∗) and constant α > 0 such that

α∥θ − θ∗∥2 ⩽ ⟨∇η(θ), θ − θ∗⟩, ∀θ ∈ K(θ∗). (5.4)

134

Define ϵ0(θ∗) ≜ max{ϵ > 0 | B(θ∗, 4ϵ + 2
√
ϵ) ⊂ K(θ∗)} for each θ∗ ∈ Θ∗. Denote

η∗ ≜ minθ∈Rnθ η(θ) the minimum value of η. Theorem 5.3.7 below characterizes

the global convergence of FedGen.

Theorem 5.3.7. (Global convergence). Suppose Θ∗ is non-empty, and θ
[i]
0 is

independently uniformly sampled over a compact set Θ0 for all i ∈ V , where

β(Θ0 ∩ [∪θ∗∈Θ∗B(θ∗, 2ϵ0(θ∗))]) > 0. Suppose all the conditions in Theorem 5.3.6

hold. There exist β̄ ∈ (0, 1] and class K∞ function κ(·) such that, ∀i ∈ V and any

ϵ1, ϵ2, ϵ3 > 0,

η(θ[i]∞)− η∗ ⩽
Lη(q

max + ϵ1)

α
+ ϵ2 + 2ϵ3b

max
γ (5.5)

with probability at least

1−(σmax)2

ϵ21
− 2 exp(−2ϵ22)−

1

ϵ3
− (1− β̄)|V| − κ(rmax).■ (5.6)

5.3.3 Discussion

(Adjusting generalized safety through b
[i]
γ). By (T2) in Theorem 5.3.1, the prob-

ability of safe arrival in a new environment is lower bounded by the (adjusted)

empirical normalized arrival time (1 − γ)(1 − y[i]k) and the estimation error term

(1 − γ)b
[i]
γ . Since y

[i]
k ∈ [0, 1], we always have (1 − γ)(1 − y

[i]
k) ⩾ 0, the equality

holds only when y
[i]
k = 1, i.e., the policy π

θ
[i]
k

renders collision in all the training

environments and initial states. This also implies that γ should be small in order

to have a high safe arrival rate. Given any γ ∈ (0, 1), b
[i]
γ in the error term (1−γ)b[i]γ

can be reduced to an arbitrarily small value by increasing n
[i]
E and n

[i]
int|E for any

γ > 0.

(Hyperparameter tuning of r and q[i]). Similar to the literature in non-convex

stochastic optimization [156][157], Theorem 5.3.6 requires hyperparameters r and

q[i] to satisfy certain conditions that depend on parameters L∇η and σ
[i], which can

be unknown a priori. However, these parameters can be estimated numerically;

e.g., L∇η can be estimated using finite differences and σ[i] can be estimated using

empirical variance. In practice, these conditions can also be satisfied by tuning

r small enough and q[i] large enough through trial and error, a standard practice

135

of hyperparameter tuning in training machine learning models, e.g., deep neural

networks.

(Trade-off between consensus gap and improvement by the selection of b
[i]
γ).

Theorem 5.3.6 (T4) implies that the consensus gap can be reduced by reducing

b
[i]
γ for all i ∈ V . However, a small b

[i]
γ can delay the convergence of the algorithm

as Lemma 5.4.5 later shows that the number of times the learners adopts the

estimates from the Cloud is upper bounded by 1

minj∈V b
[j]
γ

. Similarly, there is also a

trade-off in the selection of b
[i]
γ in (T5) of Theorem 5.3.6. Theorem 5.3.6 (T5) shows

that the improvement can be increased by increasing b
[i]
γ for all i ∈ V . However, as

Lemma 5.4.5 later shows, this can reduce the number of times the learners adopt

the estimates from the Cloud and hence reduce the probability P
(
θ
[i]
∞ ̸= θ

[i]

k
[i]
fs

)
.

This can eventually increase the total expectation E[η(θ[i]∞) − η(θ[i]
k
[i]
fs

)]. Informally

speaking, the selection of b
[i]
γ determines the minimal gain learner i demands after

adopting the estimates from the Cloud. Therefore, larger b
[i]
γ can prevent learner i

from adopting the estimates from the Cloud with small optimality improvement.

Consider the extreme case when minj∈V b
[j]
γ is so large that the learners would never

adopt the estimates from the Cloud. Then we have θ
[i]
∞ = θ

[i]

k
[i]
fs

for all i ∈ V , and
there would be no improvement benefited from communication. Nevertheless, the

right hand side in (T5) of Theorem 5.3.6 is always non-positive, which implies that

the adopted estimate is at least as optimal as the estimate without communication.

(The number of learners versus sample sizes in the learners). The upper bound

in (5.5) implies that smaller q[j] and smaller b
[j]
γ for all j ∈ V can reduce the

optimality gap. Recall the condition q[j] ⩾ 4σ[j] and the definition of b
[j]
γ above

Theorem 5.3.1. Then (5.5) implies that large sample sizes, i.e., n
[j]
E and n

[j]
int|E , for all

the learners can reduce the optimality gap. The probability bound (5.6) indicates

that smaller variance of the estimation error σmax and larger |V| can increase the

probability of achieving the optimality gap in (5.5). The class K∞ function κ(rmax)

imposes a preference on small step size r[j].

136

5.4 Proofs

5.4.1 Proof of Theorem 5.3.1

We first quantify the estimation error of y
[i]
k and prove (T1). Then we summarize

the safety of the estimates and prove (T2).

The proof of (T1) is an adoption of Hoeffding’s inequality below.

Theorem 5.4.1. (Hoeffding’s inequality, [160]). Let q1, · · · , qn be independent

random variables such that ql takes its values in [al, bl] almost surely for all 1 ⩽

l ⩽ n. Then for every ϵ > 0, it holds that

P
(
|

n∑
l=1

ql − E[
n∑
l=1

ql]| ⩾ ϵ
)
⩽ 2 exp

(
− 2ϵ2∑n

l=1(bl − al)2
)
. ■

Proof of (T1): Assumptions 5.2.1 and 5.2.2 imply E[JE(x[i]int|E; πθ[i]k
)] = η(θ

[i]
k).

Note that JE ∈ [0, 1]. Let qll′ ≜ J
E

[i]
l
(x

[i]

int|E[i]
l ,l′

; π
θ
[i]
k
) and hence

E[qll′] = E[J
E

[i]
l
(x

[i]

int|E[i]
l ,l′

; π
θ
[i]
k
)] = η(θ

[i]
k).

Then we have

n
[i]
E∑

l=1

n
[i]
int|E∑
l′=1

qll′ =

n
[i]
E∑

l=1

n
[i]
int|E∑
l′=1

J
E

[i]
l
(x

[i]

int|E[i]
l ,l′

; π
θ
[i]
k
) = n

[i]
E n

[i]
int|Ey

[i]
k ,

n
[i]
E∑

l=1

n
[i]
int|E∑
l′=1

E[qll′] = n
[i]
E n

[i]
int|Eη(θ

[i]
k).

Then Theorem 5.4.1 gives n
[i]
E n

[i]
int|E |y

[i]
k − η(θ

[i]
k)| ⩽ n

[i]
E n

[i]
int|Eϵ with probability at

least 1 − 2 exp
(
− 2ϵ2n

[i]
E n

[i]
int|E

)
for each k ⩾ 0. After some simple algebraic

transformations, we have

|y[i]k − η(θ
[i]
k)| ⩽

√
log(2/γ)

2n
[i]
E n

[i]
int|E

, (5.7)

with probability at least 1− γ, ∀i ∈ V and k ⩾ 0. ■

137

Notice that JE(xint; πθ[i]k
) ∈ [0, 1] for any E ∈ E and xint ∈ X , and by definition

of JE, safe arrival is equivalent to JE(xint; πθ[i]k
) < 1. Then the proof of (T2) is

given as follows.

Proof of (T2): (T1) renders that η(θ
[i]
k) ⩽ y

[i]
k + b

[i]
γ with probability at least

1− γ. Since Assumptions 5.2.1 and 5.2.2 imply E[JE(xint; πθ[i]k
)] = η(θ

[i]
k), we have

E[JE(xint; πθ[i]k
) | η(θ[i]k) ⩽ a] ⩽ a for any a ∈ R. Combining this with Markov’s

inequality (page 151, [88]), we have

P
(
JE(xint; πθ[i]k

) ⩾ 1 | η(θ[i]k) ⩽ y
[i]
k + b[i]γ

)
⩽ E[JE(xint; πθ[i]k

) | η(θ[i]k) ⩽ y
[i]
k + b[i]γ] ⩽ y

[i]
k + b[i]γ .

Then we further have

P
(
JE(xint; πθ[i]k

) < 1, η(θ
[i]
k) ⩽ y

[i]
k + b[i]γ

)
= P

(
JE(xint; πθ[i]k

) < 1 | η(θ[i]k) ⩽ y
[i]
k + b[i]γ

)
P
(
η(θ

[i]
k) ⩽ y

[i]
k + b[i]γ

)
⩾

(
1− (y

[i]
k + b[i]γ)

)
(1− γ). (5.8)

Notice that

P
(
JE(xint; πθ[i]k

) < 1
)
⩾ P

(
JE(xint; πθ[i]k

) < 1, η(θ
[i]
k) ⩽ y

[i]
k + b[i]γ

)
.

Hence, the proof is concluded. ■

5.4.2 Proof of Theorem 5.3.6

In this section, we first provide a set of preliminary results in Section 5.4.2.1, which

mainly discusses the properties of the estimation of z
[i]
k−1 and the estimates after

the last time the learner adopts the estimate returned from the Cloud. Then the

proofs of (T3), (T4) and (T5) of Theorem 5.3.6 are presented in Sections 5.4.2.2,

5.4.2.3 and 5.4.2.4, respectively.

To facilitate the proof, some important iterations of the algorithm FedGen are

defined/repeated in Table 5.1.

138

Symbol Definition

k
[i]
n , n = 1, 2, · · ·

The iteration when Lines 20-23 are executed; i.e., learner
i adopts the estimates from the Cloud.

k
[i]
∗

The last time Lines 20-23 are executed. If Lines 20-23
are never executed, then k

[i]
∗ = 0.

k
[i]
fs

The first time learner i is stopped: k
[i]
fs ≜ min{k ⩾ 0 |

∥z[i]k ∥ < q[i]}.

k
[i]
ls

The last time learner i is stopped: k
[i]
ls ≜ min{k ⩾ k

[i]
∗ |

∥z[i]k ∥ < q[i]}.

Table 5.1: Definitions of important iterations

Notice that the above iterations satisfy:

k
[i]
fs + 1 ⩽ k

[i]
1 < k

[i]
2 < · · · < k[i]∗ ⩽ k

[i]
ls . (5.9)

5.4.2.1 Preliminary results

First of all, we provide the proof of Lemma 5.3.5.

Proof of Lemma 5.3.5: Assumption 5.3.2 implies that η is almost every-

where differentiable (Theorem 3.1.6 [161]). Hence, Interchange of Differentiation

and Integration (Corollary 2.8.7, [162]) and Assumptions 5.2.1 and 5.2.2 give

E[z[i]k] = E
[
∇[1

n
[i]
E n

[i]
int|E

n
[i]
E∑

l=1

n
[i]
int|E∑
l′=1

J
E

[i]
l
(x

[i]

int|E[i]
l ,l′

; π
θ
[i]
k
)]
]

= ∇E[1

n
[i]
E n

[i]
int|E

n
[i]
E∑

l=1

n
[i]
int|E∑
l′=1

J
E

[i]
l
(x

[i]

int|E[i]
l ,l′

; π
θ
[i]
k
)] = ∇η(θ[i]k). ■

Denote the estimation error ξ
[i]
k ≜ ∇η(θ[i]k)− z

[i]
k . Lemma 5.4.2 quantifies ∥ξ[i]k ∥.

Lemma 5.4.2. Suppose Assumption 5.3.4 holds. Then it holds that ∥ξ[i]k ∥ ⩽ ϵ,

ϵ > 0, with probability at least 1− (σ[i])2

ϵ2
.

Proof: Combining Assumption 5.3.4 and Markov’s inequality renders ∥ξ[i]k ∥2 ⩾
ϵ2, ϵ > 0, with probability at most

E[∥ξ[i]k ∥2]
ϵ2

⩽ (σ[i])2

ϵ2
, or ∥ξ[i]k ∥ ⩽ ϵ with probability

at least 1− (σ[i])2

ϵ2
. ■

The following lemma provides a property of the expectation of ∥ξ[i]k ∥.

139

Lemma 5.4.3. It holds that E[∥ξ[i]k ∥] =
∫∞
0
P
(
∥ξ[i]k ∥ > t

)
dt.

Proof: For all t ⩾ 0, it holds that t(1− P
(
∥ξ[i]k ∥ ⩽ t

)
) ⩾ 0. By Lemma 5.4.2,

we also have

lim
t→∞

t(1− P
(
∥ξ[i]k ∥ ⩽ t

)
) ⩽ lim

t→∞
t(1− (1− (σ[i])2

t2
)) = 0.

Therefore, limt→∞ t(1 − P
(
∥ξ[i]k ∥ ⩽ t

)
) = 0. Denote p(·) the probability density

function of random variable ∥ξ[i]k ∥. By integration by parts, we have∫ ∞

0

(1− P
(
∥ξ[i]k ∥ ⩽ t

)
)dt = t(1− P

(
∥ξ[i]k ∥ ⩽ t

)
)
∣∣∣∞
t=0

+

∫ ∞

0

tp(∥ξ[i]k ∥ = t)dt

=

∫ ∞

0

tp(∥ξ[i]k ∥ = t)dt.

Since ∥ξ[i]k ∥ ⩾ 0, we have p(∥ξ[i]k ∥ = t) = 0 for all t < 0. Therefore, we have

E[∥ξ[i]k ∥] =
∫ ∞

−∞
tp(∥ξ[i]k ∥ = t)dt =

∫ ∞

0

tp(∥ξ[i]k ∥ = t)dt =

∫ ∞

0

P
(
∥ξ[i]k ∥ > t

)
dt. ■

The following lemma finds a lower bound of ⟨∇η(θ[i]k−1 − λz
[i]
k−1), z

[i]
k−1⟩ for all

λ ∈ [0, r
[i]

kρ
].

Lemma 5.4.4. Suppose Assumptions 5.3.3 and 5.3.4 hold. It holds that, for any

ϵ > 0 and λ ∈ [0, r
[i]

kρ
],

⟨∇η(θ[i]k−1 − λz
[i]
k−1), z

[i]
k−1⟩ ⩾(1− L∇η

r[i]

kρ
)∥z[i]k−1∥

2 − ∥ξ[i]k−1∥∥z
[i]
k−1∥.

Proof: Denote ν ≜ ∇η(θ[i]k−1)−∇η(θ
[i]
k−1 − λz

[i]
k−1). Write

⟨∇η(θ[i]k−1 − λz
[i]
k−1), z

[i]
k−1⟩ = ⟨∇η(θ

[i]
k−1)− ν, z

[i]
k−1⟩ = ⟨∇η(θ

[i]
k−1), z

[i]
k−1⟩ − ⟨ν, z

[i]
k−1⟩.
(5.10)

Next we find the lower bounds of the two terms on the right hand side of (5.10).

Consider the first term. Then we have

⟨∇η(θ[i]k−1), z
[i]
k−1⟩ = ⟨z

[i]
k−1 + ξ

[i]
k−1, z

[i]
k−1⟩ = ∥z

[i]
k−1∥

2 + ⟨ξ[i]k−1, z
[i]
k−1⟩. (5.11)

140

By the Cauchy-Schwartz inequality, we have

⟨∇η(θ[i]k−1), z
[i]
k−1⟩ ⩾ ∥z

[i]
k−1∥

2 − ∥ξ[i]k−1∥∥z
[i]
k−1∥. (5.12)

Consider the second term in (5.10). Assumption 5.3.3 implies

∥ν∥ ⩽ L∇η∥θ[i]k−1 − (θ
[i]
k−1 − λz

[i]
k−1)∥ = L∇ηλ∥z[i]k−1∥ ⩽ L∇η

r[i]

kρ
∥z[i]k−1∥. (5.13)

Using the Cauchy-Schwartz inequality and (5.13) render

⟨ν, z[i]k−1⟩ ⩽ ∥ν∥∥z
[i]
k−1∥ ⩽ L∇η

r[i]

kρ
∥z[i]k−1∥

2. (5.14)

Combining (5.12) and (5.14) with (5.10) gives the lemma. ■

Next Lemma 5.4.5 shows that each learner i only adopts the estimates from

the Cloud for a finite number of times.

Lemma 5.4.5. It holds that n ⩽ 1

minj∈V b
[j]
γ

for all k
[i]
n , i ∈ V .

Proof: Pick any i ∈ V . Note that when Lines 20-23 are executed at iteration

k
[i]
n , we must have

ζ
[i]

k
[i]
n

= y
[j]
l < ζ

[i]

k
[i]
n −1
− b[j]γ ⩽ ζ

[i]

k
[i]
n −1
− bmin

γ , (5.15)

where (j, l) = argmin
i∈V,l′=0,··· ,k[i]n −1

y
[i]
l′ + b

[i]
γ . Since initialization gives ζ

[i]
0 = 1,

(5.15) implies

ζ
[i]

k
[i]
n

⩽ 1− nbmin
γ . (5.16)

Since ζ
[i]

k
[i]
n

∈ [0, 1], (5.16) renders n ⩽ 1
bmin
γ

. ■

Next we show that the event ∥z[i]k ∥ < q[i] happens almost surely, which indicates

convergence to a local minimum, by showing the almost sure existence of k
[i]
ls .

Lemma 5.4.6. Suppose Assumptions 5.2.1, 5.2.2, 5.3.2, 5.3.3 and 5.3.4 hold. If

q[i] ⩾ 4σ[i], then it holds that k
[i]
ls exists almost surely.

Proof: By definition of k
[i]
ls , we have ∥z

[i]
k ∥ ⩾ q[i] for all k ∈ [k

[i]
∗ , k

[i]
ls] and hence

Lines 20-23 are never executed for all k ∈ [k
[i]
∗ , k

[i]
ls]. Denote event A ≜ {k[i]ls exists.}

141

and the complement Ac ≜ {k[i]ls does not exist.}. Notice that we can equivalently

write Ac = {∥z[i]k ∥ ⩾ q[i],∀k ⩾ k
[i]
∗ }. Then Ac implies Lines 12 and 25 are executed

for all k ⩾ k
[i]
∗ and hence θ

[i]
k = θ̂

[i]
k = θ

[i]
k−1 − r[i]

kρ
z
[i]
k−1 for all k ⩾ k

[i]
∗ , which

is a stochastic gradient descent step [157]. Given Assumptions 5.3.2, 5.3.3 and

5.3.4, and Lemma 5.3.5, Corollary 3.3 and inequality (3.32) in [157] show that

∥∇η(θ[i]k)∥ → 0 almost surely. Then, for any δ > 0, there exists some Kδ > k
[i]
∗

such that ∥∇η(θ[i]k)∥ < δ for all k ⩾ Kδ almost surely. Since q[i] ⩾ 4σ[i], we can

pick δ ∈ (0, σ[i]) and let ϵ ≜ q[i] − δ. By the above construction, we have ϵ > σ[i].

Then Lemma 5.4.2 implies

∥z[i]k ∥ =∥z
[i]
k −∇η(θ

[i]
k) +∇η(θ

[i]
k)∥ ⩽ ∥z

[i]
k −∇η(θ

[i]
k)∥

+ ∥∇η(θ[i]k)∥ ⩽ ϵ+ ∥∇η(θ[i]k)∥ < q[i] (5.17)

with probability at least 1 − (σ[i])2

ϵ2
, (σ[i])2

ϵ2
< 1, for each k ⩾ Kδ. Due to the

independent estimate of z
[i]
k over k, we have

P
(
Ac

)
= lim

k̃→∞
P
(
∥z[i]k ∥ ⩾ q[i],∀k ∈ [k[i]∗ , k̃]

)
⩽ lim

k̃→∞
P
(
∥z[i]k ∥ ⩾ q[i],∀k ∈ [Kδ, k̃]

)
⩽ lim

k̃→∞

((σ[i])2

ϵ2

)k̃−Kδ

= 0.

Therefore, P
(
A
)
= 1− P

(
Ac

)
= 1. ■

The following lemma shows that η(θ
[i]
k) ⩽ η(θ

[i]

k
[i]
∗
), for all k ⩾ k

[i]
∗ in expectation.

Lemma 5.4.7. Suppose Assumptions 5.3.3 and 5.3.4 hold, r[i] ⩽ 1
2L∇η

and q[i] ⩾

4σ[i]. It holds that E[η(θ[i]k)− η(θ
[i]

k
[i]
∗
)] ⩽ 0 for all k ⩾ k

[i]
∗ .

Proof: Recall that k
[i]
∗ is the last time learner i adopts the estimate from the

Cloud, and Lemma 5.4.5 shows that k
[i]
∗ exists. Note that Figure 5.2 indicates that

θ
[i]
k = θ

[i]

k
[i]
ls

= θ
[i]
∞ for all k ⩾ k

[i]
ls . When k

[i]
ls = k

[i]
∗ , we have E[η(θ[i]k) − η(θ

[i]

k
[i]
∗
)] = 0

for all k ⩾ k
[i]
∗ . Hence, in the sequel, we consider the case where θ

[i]
k = θ̂

[i]
k =

θ
[i]
k−1 − r[i]

kρ
z
[i]
k−1 is executed for all k ∈ [k

[i]
∗ + 1, k

[i]
ls], when k

[i]
ls ⩾ k

[i]
∗ + 1.

Denote g : R → R such that g(λ) ≜ η(θ
[i]
k−1 − λz

[i]
k−1). Then by chain rule, we

142

have
d

dλ
g(λ) = −⟨∇η(θ[i]k−1 − λz

[i]
k−1), z

[i]
k−1⟩.

Therefore, we have

η(θ
[i]
k)− η(θ

[i]
k−1) = η(θ

[i]
k−1 −

r[i]

kρ
z
[i]
k−1)− η(θ

[i]
k−1) = g(

r[i]

kρ
)− g(0) =

∫ r[i]

kρ

0

d

dλ
g(λ)dλ

= −
∫ r[i]

kρ

0

⟨∇η(θ[i]k−1 − λz
[i]
k−1), z

[i]
k−1⟩dλ.

Combining this with Lemma 5.4.4, we have

η(θ
[i]
k)− η(θ

[i]
k−1) ⩽−

r[i]

kρ
(
(1− L∇η

r[i]

kρ
)∥z[i]k−1∥

2 − ∥ξ[i]k−1∥∥z
[i]
k−1∥

)
.

For notational simplicity, we denote

δ
[i]
k ≜ η(θ

[i]
k)− η(θ

[i]
k−1), b

[i]
k−1 ≜

r[i]

kρ
∥z[i]k−1∥, a

[i]
k−1 ≜

r[i]

kρ
(1− L∇η

r[i]

kρ
)∥z[i]k−1∥

2.

Therefore, the above inequality can be rewritten to

δ
[i]
k ⩽ −a[i]k−1 + ∥ξ

[i]
k−1∥b

[i]
k−1. (5.18)

Combining Lemma 5.4.3 and Markov’s inequality renders

E[∥ξ[i]k ∥] =
∫ σ[i]

0

P
(
∥ξ[i]k ∥ > t

)
dt+

∫ ∞

σ[i]

P
(
∥ξ[i]k ∥ > t

)
dt

⩽ σ[i] +

∫ ∞

σ[i]

(σ[i])2

t2
dt = 2σ[i].

for all k ⩾ 1. Therefore, combining this with (5.18) implies

E[δ[i]k | z
[i]
k−1] ⩽ E[−a[i]k−1 + ∥ξ

[i]
k−1∥b

[i]
k−1 | z

[i]
k−1] = −a

[i]
k−1 + b

[i]
k−1E[∥ξ

[i]
k−1∥]

⩽ −a[i]k−1 + 2b
[i]
k−1σ

[i]. (5.19)

Since k ∈ [k
[i]
∗ + 1, k

[i]
ls], ∥z

[i]
k−1∥ ⩾ q[i]. Plugging in the definitions of a

[i]
k−1 and

143

b
[i]
k−1 and combining with r[i] ⩽ 1

2L∇η
renders

a
[i]
k−1

b
[i]
k−1

= (1− L∇ηr
[i]/kρ)∥z[i]k−1∥ ⩾

(q[i])

2
. (5.20)

Since q[i] > 4σ[i], (5.20) renders that
a
[i]
k−1

b
[i]
k−1

⩾ 2σ[i] and hence−a[i]k−1+2b
[i]
k−1σ

[i] ⩽ 0

for k ∈ [k
[i]
∗ + 1, k

[i]
ls]. Then combining this with (5.19) renders E[δ[i]k | z

[i]
k−1] ⩽ 0,

which implies

E[δ[i]k] =
∫

E[δ[i]k | z
[i]
k−1]p(z

[i]
k−1)dz

[i]
k−1 ⩽ 0, (5.21)

for all k ∈ [k
[i]
∗ + 1, k

[i]
ls].

Notice that the definition of δ
[i]
k renders

η[i](θ
[i]
k)− η

[i](θ
[i]

k
[i]
∗
) =

k∑
k′=k

[i]
∗ +1

δ
[i]
k′ ,

for any k ⩾ k
[i]
∗ + 1. Then by (5.21) we have

E[η[i](θ[i]k)− η
[i](θ

[i]

k
[i]
∗
)] = E[

k∑
k′=k

[i]
∗ +1

δ
[i]
k′] =

k∑
k′=k

[i]
∗ +1

E[δ[i]k′] ⩽ 0.

The proof is conluded. ■

5.4.2.2 Proof of (T3) in Theorem 5.3.6

Lemma 5.4.6 shows that k
[i]
ls exists almost surely. Therefore, Lines 25 and 12 implies

that θ
[i]
k = θ̂

[i]
k = θ

[i]
k−1 for all k ⩾ k

[i]
ls + 1 and hence limk→∞ θ

[i]
k = θ

[i]
∞ = θ

[i]

k
[i]
ls

. ■

5.4.2.3 Proof of (T4) in Theorem 5.3.6

Notice that for any k, k′ ⩾ 1 it holds that

E[η(θ[i]k)− η(θ
[j]
k′)] = E[η(θ[i]k)− y

[i]
k + y

[i]
k − η(θ

[j]
k′)− y

[j]
k′ + y

[j]
k′].

144

Since estimation error η(θ
[i]
k)−y

[i]
k is independent of θ

[i]
k and Assumptions 5.2.1 and

5.2.2 imply E[η(θ[i]k)− y
[i]
k] = 0, the above equality becomes

E[η(θ[i]k)− η(θ
[j]
k′)] = E[y[i]k − y

[j]
k′]. (5.22)

Recall that Lemma 5.4.6 shows that θ
[i]

k
[i]
ls

exists almost surely. Denote j∗ ≜

argminj∈V η(θ
[j]

k
[j]
ls

). Since learner i does not execute Line 20 at iteration k
[i]
ls , we

have

y
[j∗]

k
[j∗]
ls

+ b[j
∗]

γ ⩾ min{y[i]
k
[i]
ls

− b[i]γ , ζ
[i]

k
[i]
ls

}.

We now distinguish two cases.

Case 1: y
[i]

k
[i]
ls

− b[i]γ < ζ
[i]

k
[i]
ls

. This implies y
[j∗]

k
[j∗]
ls

+ b
[j∗]
γ ⩾ y

[i]

k
[i]
ls

− b[i]γ , or

y
[i]

k
[i]
ls

− y[j
∗]

k
[j∗]
ls

⩽ b[i]γ + b[j
∗]

γ ⩽ 2max
j∈V

b[j]γ . (5.23)

Case 2: ζ
[i]

k
[i]
ls

⩽ y
[i]

k
[i]
ls

− b[i]γ . Line 26 implies

y
[j∗]

k
[j∗]
ls

+ b[j
∗]

γ ⩾ ζ
[i]

k
[i]
ls

= ζ
[i]

k
[i]
∗
= y

[j]
l ,

(j, l) = arg min
i∈V,l′=0,··· ,k[i]∗ −1

y
[i]
l′ + b[i]γ

Therefore, y
[j]
l − y

[j∗]

k
[j∗]
ls

⩽ b
[j∗]
γ . Recall that Line 21 implies θ

[i]

k
[i]
∗

= θ
[j]
l and hence

y
[i]

k
[i]
∗
= y

[j]
l . This renders

y
[i]

k
[i]
∗
− y[j

∗]

k
[j∗]
ls

⩽ bmax
γ . (5.24)

Lemma 5.4.7 and (5.22) render E[y[i]
k
[i]
ls

− y[i]
k
[i]
∗
] = E[η(θ[i]

k
[i]
ls

)−η(θ[i]
k
[i]
∗
)] ⩽ 0. Combining

this with (5.24) renders

E[y[i]
k
[i]
ls

− y[j
∗]

k
[j∗]
ls

] = E[y[i]
k
[i]
ls

− y[i]
k
[i]
∗
+ y

[i]

k
[i]
∗
− y[j

∗]

k
[j∗]
ls

]

= E[y[i]
k
[i]
ls

− y[i]
k
[i]
∗
] + E[y[i]

k
[i]
∗
− y[j

∗]

k
[j∗]
ls

] ⩽ E[y[i]
k
[i]
∗
− y[j

∗]

k
[j∗]
ls

] ⩽ bmax
γ . (5.25)

145

By (5.22), combining (5.23) and (5.25) renders

E[η(θ[i]
k
[i]
ls

)− η(θ[j
∗]

k
[j∗]
ls

)] = E[y[i]
k
[i]
ls

− y[j
∗]

k
[j∗]
ls

] ⩽ 2bmax
γ .

Recall that k
[i]
∗ is the last time adopting estimates from the Cloud (Lines 20-23 are

executed). Figure 5.2 implies that θ
[i]
k = θ̂

[i]
k = θ

[i]
k−1 for all k ⩾ k

[i]
ls + 1 and hence

limk→∞ θ
[i]
k = θ

[i]
∞ = θ

[i]

k
[i]
ls

. Therefore, we have θ
[i]
∞ = θ

[i]

k
[i]
ls

for all i ∈ V . Hence, the

above inequality implies that, for any i ∈ V ,

E[η(θ[i]∞)− η(θ[j∗]∞)] = E[y[i]∞ − y[j
∗]

∞] ⩽ 2bmax
γ . ■

.

5.4.2.4 Proof of (T5) in Theorem 5.3.6

Since Lemma 5.4.6 shows that k
[i]
ls exists almost surely, by (5.9), we have k

[i]
fs exists

almost surely. Recall that k
[i]
fs + 1 ⩽ k

[i]
1 from (5.9). Notice that at iteration k

[i]
fs,

agent i stops its local gradient descent, and its estimate remains the same for the

following iterations until it adopts an estimate from the Cloud. Since θ
[i]
∞ ̸= θ

[i]

k
[i]
fs

,

agent i adopts estimates from the Cloud, executing Lines 20-23, at least once after

iteration k
[i]
fs. This implies that k

[i]
∗ ⩾ k

[i]
1 ⩾ 1 and

θ
[i]

k
[i]
fs

= θ
[i]

k
[i]
fs+1

= · · · = θ
[i]

k
[i]
1 −1

. (5.26)

Recall that (T3) of Theorem 5.3.6 shows that θ
[i]
∞ exists almost surely. By

Lemma 5.4.5, k
[i]
∗ exists. Since k

[i]
∗ ⩾ k

[i]
1 ⩾ 1, Lines 20-23 imply that there exists

(j1, l1) = argmin
i∈V,l′=0,··· ,k[i]1 −1

y
[i]
l′ +b

[i]
γ such that y

[j1]
l1

+b
[j1]
γ < y

[i]

k
[i]
1 −1
−b[i]γ . Consider

(j∗, l∗) = argmin
i∈V,l′=0,··· ,k[i]∗ −1

y
[i]
l′ +b

[i]
γ . It is obvious that y

[j∗]
l∗

+b
[j∗]
γ ⩽ y

[j1]
l1

+b
[j1]
γ <

y
[i]

k
[i]
1 −1
− b[i]γ , or

y
[j∗]
l∗
− y[i]

k
[i]
1 −1

< −(b[i]γ + b[j∗]γ). (5.27)

Since learner i adopts the estimate from the Cloud, i.e., executes Lines 20-23, at

iteration k
[i]
∗ , Line 21 implies θ

[i]

k
[i]
∗

= θ
[j∗]
l∗

. Following the same logic of (5.22) and

146

combining with (5.27), we have

E[η(θ[i]
k
[i]
∗
)− η(θ[i]

k
[i]
1 −1

)] = E[η(θ[i]
k
[i]
∗
)− y[j

∗]
l∗

+ y
[j∗]
l∗
− η(θ[i]

k
[i]
1 −1

) + y
[i]

k
[i]
1 −1
− y[i]

k
[i]
1 −1

]

= E[y[j
∗]

l∗
− y[i]

k
[i]
1 −1

] < −(b[i]γ + b[j∗]γ).

Combining this with Lemma 5.4.7 renders

E[η(θ[i]∞)− η(θ[i]
k
[i]
1 −1

)] = E[η(θ[i]∞)− η(θ[i]
k
[i]
∗
) + η(θ

[i]

k
[i]
∗
)− η(θ[i]

k
[i]
1 −1

)]

= E[η(θ[i]∞)− η(θ[i]
k
[i]
∗
)] + E[η(θ[i]

k
[i]
∗
)− η(θ[i]

k
[i]
1 −1

)]

< −(b[i]γ + b[j∗]γ) ⩽ −2bmin
γ .

Combining this with θ
[i]

k
[i]
fs

= θ
[i]

k
[i]
1 −1

in (5.26), the proof is concluded. ■

5.4.3 Proof of Theorem 5.3.7

For notational simplicity, we define two closed neighborhoods for each θ∗ ∈ Θ∗:

Ψ(θ∗) ≜ B(θ∗, 4ϵ0(θ∗) + 2
√
ϵ0(θ∗)) and Ψ1(θ∗) ≜ B(θ∗, 2ϵ0(θ∗)). Then the proof of

the theorem is composed of four parts. First, we assume that there exists some

i ∈ V such that θ
[i]

k
[i]
fs

∈ Ψ(θ∗) for some θ∗ ∈ Θ∗ and derive the probabilistic upper

bound of η(θ
[i]

k
[i]
fs

)−η∗ in part (i). Then in part (ii) we further derive the probabilistic

upper bound of η(θ
[i]
∞)−η∗ leveraging the result of Pareto improvement in [T5] of in

Theorem 5.3.6. In part (iii), we extend the upper bound to η(θ
[j]
∞)−η∗ for all j ∈ V

leveraging the result of Almost-consensus in [T4] of in Theorem 5.3.6. Finally, we

characterize the probability of θ
[i]

k
[i]
fs

∈ Ψ(θ∗).

Part (i): Probabilistic upper bound of η(θ
[i]

k
[i]
fs

)− η∗. Suppose there exists i ∈ V

such that θ
[i]

k
[i]
fs

∈ Ψ(θ∗) for some θ∗ ∈ Θ∗. The definition of k
[i]
fs renders that

∥z[i]
k
[i]
fs

∥ < q[i]. Combining this with Lemma 5.4.2 renders that

P
(
∥∇η(θ[i]

k
[i]
fs

)∥ ⩽ q[i] + ϵ1

)
⩾ 1− (σ[i])2

ϵ21
. (5.28)

147

Combining (5.4) with Cauchy-Schwartz inequality implies

α∥θ − θ∗∥ ⩽ ∥∇η(θ)∥, ∀θ ∈ K(θ∗). (5.29)

Since θ
[i]

k
[i]
fs

∈ Ψ(θ∗) ⊂ K(θ∗), combining (5.28) with inequality (5.29) renders

P
(
∥θ[i]

k
[i]
fs

− θ∗∥ ⩽
q[i] + ϵ1
α

| θ[i]
k
[i]
fs

∈ Ψ(θ∗)
)
⩾ 1− (σ[i])2

ϵ21
.

Combining this with Assumption 5.3.2 further renders

P
(
η(θ

[i]

k
[i]
fs

)− η∗ ⩽
Lη(q

[i] + ϵ1)

α
| θ[i]

k
[i]
fs

∈ Ψ(θ∗)
)
⩾ 1− (σ[i])2

ϵ21
. (5.30)

Part (ii): Probabilistic upper bound of η(θ
[i]
∞)−η∗. Denote δ[i] ≜ η(θ

[i]
∞)−η(θ[i]

k
[i]
fs

).

Notice that the definition of JE renders that JE ∈ [0, 1]. Then the definition of η

renders that η ∈ [0, 1]. Then it holds that δ[i] ∈ [−1, 1]. Theorem 5.3.6 [T3] implies

that E[δ[i] | θ[i]∞ ̸= θ
[i]

k
[i]
fs

] ⩽ −2bmin
γ . Then let ϵ2 > 0, by leveraging Hoeffding’s

inequality in Theorem 5.4.1, we have

P
(
η(θ[i]∞)− η(θ[i]

k
[i]
fs

) ⩾ ϵ2

)
⩽ P

(
η(θ[i]∞)− η(θ[i]

k
[i]
fs

) ⩾ ϵ2 | θ[i]∞ ̸= θ
[i]

k
[i]
fs

)
⩽ P

(
δ[i] − E[δ[i]|θ[i]∞ ̸= θ

[i]

k
[i]
fs

] ⩾ ϵ2 + 2bmin
γ | θ[i]∞ ̸= θ

[i]

k
[i]
fs

)
⩽ 2 exp

(
− 2(ϵ2 + 2bmin

γ)2
)
⩽ 2 exp

(
− 2ϵ22

)
.

Combining this with (5.30) renders that

η(θ[i]∞)− η∗ ⩽
Lη(q

[i] + ϵ1)

α
+ ϵ2 (5.31)

with probability at least (1− (σ[i])2

ϵ21
)(1− 2 exp

(
− 2ϵ22

)
) ⩾ 1− (σ[i])2

ϵ21
− 2 exp

(
− 2ϵ22

)
,

given θ
[i]

k
[i]
fs

∈ Ψ(θ∗).

Part (iii): Probabilistic upper bound of η(θ
[j]
∞) − η∗ for all j ∈ V. Denote

δ∞ ≜ maxj∈V η(θ
[j]
∞) −minj∈V η(θ

[j]
∞). It is obvious that δ∞ ⩾ 0. Then combining

148

Markov inequality with Theorem 5.3.6 [T4], we have

P
(
δ∞ ⩾ 2ϵ3b

max
γ

)
⩽

1

ϵ3
. (5.32)

Combining this with (5.31) renders that, given there exists i ∈ V such that

θ
[i]

k
[i]
fs

∈ Ψ(θ∗), it holds that, for all j ∈ V ,

η(θ[j]∞)− η∗ ⩽
Lη(q

[i] + ϵ1)

α
+ ϵ2 + 2ϵ3b

max
γ (5.33)

with probability at least 1− (σ[i])2

ϵ21
− 2 exp(−2ϵ22)− 1

ϵ3
.

Part (iv): Probability of there exists i ∈ V such that θ
[i]

k
[i]
fs

∈ Ψ(θ∗). Given

Assumption 5.3.4 holds, Theorem 4 in [159] indicates that for each θ∗ ∈ Θ∗, it

holds that

P
(
θ
[i]

k
[i]
fs

∈ Ψ(θ∗) | θ[i]0 ∈ Ψ1(θ∗)
)
⩾ 1− R∗(θ∗;σ

[i])Γ

ϵ0(θ∗)
, (5.34)

where R(θ∗;σ
[i]) ≜ L2

η + (1 + (4ϵ0(θ∗) + 2
√
ϵ0(θ∗))

2)(σ[i])2 and Γ ≜ r[i]
∑∞

k=1
1
k2ρ

.

Denote β̄ ≜ β(Θ0∩[∪θ∗∈Θ∗Ψ1(θ∗)])

β(Θ0)
. Since β(Θ0 ∩ [∪θ∗∈Θ∗Ψ1(θ∗)]) > 0, it is obvious

that β̄ ∈ (0, 1]. Since θ
[i]
0 is uniformly sampled over compact set Θ0, we have

P
(
θ
[i]
0 ∈ Ψ1(θ∗) | θ∗ ∈ Θ∗

)
= β̄. Since there are |V| learners in V and θ

[i]
0 are

independently sampled for all i ∈ V , then we further have

P
(
∃i ∈ V such that θ

[i]
0 ∈ Ψ1(θ∗) | θ∗ ∈ Θ∗ ∩Θ0

)
= 1− P

(
θ
[i]
0 ̸∈ Ψ1(θ∗; ϵ), ∀i ∈ V | θ∗ ∈ Θ∗ ∩Θ0

)
= 1− (1− β̄)|V|. (5.35)

Combining (5.34) with (5.35) renders

P
(
∃i ∈ V such that θ[i]∞ ∈ Ψ(θ∗) | θ∗ ∈ Θ∗ ∩Θ0

)
⩾ 1− (1− β̄)|V| − max

θ∗∈Θ∗

R∗(θ∗;σ
max)Γ

ϵ0(θ∗)
. (5.36)

Combining (5.36) with (5.33) concludes the proof. ■

149

Figure 5.3: A sample environment in PyBullet

5.5 Simulation

In this section, we conduct a set of Monte Carlo simulations to evaluate the perfor-

mance of the FedGen algorithm in the PyBullet simulator [163]. All the simulations

are conduct in Python on an Intel Core i5 CPU, 4.10 GHz, with 16 GB of RAM.

(Environment configuration). The evaluation is conducted using Zermelo’s

navigation problem [128] in a 2D space, where the environments are randomly

generated. A sample of the environments is shown in Figure 5.3. Each environ-

ment E consists of nobs cylinder obstacles and three walls as the boundary of the

2D environment with horizontal coordinate x1 ∈ [−5, 5] and vertical coordinate

x2 ∈ [0, 10]. The environments are generated by sampling the obstacle number

nobs uniformly between 15 and 30, and then independently sampling the centers

of the cylinders from a uniform distribution over the ranges [−5, 5] × [2, 10]. The

radius of each obstacle is sampled independently from a uniform distribution over

[0.1, 0.25]. The goal of the robot is to reach the open end of the environment while

avoiding collision with the walls and the obstacles.

(Robot dynamics). We consider a four-wheel robot with constant speed v = 2.5

and length L = 0.08 subject to unknown environment-specific disturbances dE.

The dynamics of the robot with state x = [x1, x2, x3] is given by ẋ1 = v cos(x3) +

dE(x1, x2), ẋ2 = v sin(x3), ẋ3 = tan(u)/L, where x3 is the heading of the robot,

control u ∈ [−0.25π, 0.25π], and dE is generated using the Von Karman power

spectral density function as described in [131] representing the road texture dis-

turbance (e.g., bumps and slippery surface) in environment E.

(Sensor model). In the simulation, the robots are equipped with a sensor able

to obtain the robot’s state information x and a depth sensor (e.g., LIDAR) able

to measure the distances between the robot and the obstacles. The sensors are

perfect. The readings of the depth sensor depend on the environment E and the

150

state of the robot. Specifically, the output of the sensor has 20 entries, where each

entry ϕ corresponds to the distance measurement at angle x3− π/3+ (ϕ− 1)π/60

with ϕ = 1, · · · , 20. The measurement hϕ(x,XO,E) provides the shortest distance

between the obstacles, if there is any, at the angle of entry ϕ of the robot and the

robot at location (x1, x2). The sensing range is 5, i.e., hϕ(x,XO,E) ∈ [0, 5]. That is,

the observation function is given by h(x,XO,E) = [x, h1(x,XO,E), · · · , h20(x,XO,E)].

5.5.1 Training

We consider a deep neural network-based control policy πθ, that is parameter-

ized by θ, the weights of the neural network. Note that the control policy is

periodic in φ. Thus, the input φ is replaced by two inputs sin(φ) and cos(φ).

During training, especially during the early phase, the original cost functional

JE(xint, πθ) may have zero gradient for some initial state xint since collisions

with obstacles dominate most of the trial runs. Therefore, to facilitate train-

ing, we consider the surrogate ĴE(xint, θ) ≜ 0.1ρE(xint, πθ) + JE(xint, πθ), where

ρE(xint, πθ) ≜ minxG∈XG,E
∥x(tend(xint, πθ;E)) − xG∥ is the distance between the

location of the first collision and the goal region. The cost ρE(xint, πθ) is to drive

the robot approaching the goal without collision, and the cost JE(xint, πθ) is to

minimize the arrival time when the robot is able to safely reach the goal.

Since it is challenging to derive the analytical expression of ∇ĴE(xint, θ), we
approximate it by natural evolution strategies [154, 164]. In particular, we suppose

θ follows a multivariate Gaussian distribution such that θ ∼ N (µ,Σ) with mean

µ ∈ Rnθ and diagonal covariance Σ ∈ Rnθ×nθ . Let σ ∈ Rnθ be a vector aggregating

the square-root of the diagonal elements of Σ. The gradients of Eθ
[
ĴE(xint, πθ)

]
with respect to µ and σ are

∇µ E
θ∼N (µ,Σ)

[
ĴE(xint, πθ)

]
= E

ϵ∼N (0,I)

[
ĴE(xint, πµ+σ⊙ϵ)ϵ

]
⊘ σ,

∇σ E
θ∼N (µ,Σ)

[
ĴE(xint, πθ)

]
= E

ϵ∼N (0,I)

[
ĴE(xint, πµ+σ⊙ϵ)(ϵ⊙ ϵ− 1)

]
⊘ σ,

where ⊘ is the element-wise division, ⊙ is the elementwise product, and 1 is a

vector of 1’s with dimension nθ. We approximate the expectation by collecting

30 samples of ϵ ∼ N (0, I) and taking the average. To reduce the variance in the

151

expectation approximation, antithetic sampling [165] is employed. That is, the

update of θ is then replaced by the updates of µ and σ, and µ is returned as the

estimate of θ.

(Selection of hyperparameters). The neural network control policy consists

of an input layer of size 24, followed by 3 hidden layers of size 20 with ReLu

nonlinearities and an output layer of size 1. We pick n
[i]
E = 10, n

[i]
int|E = 1, γ = 0.01,

r = 0.01, Lη = 0.1, q[i] = 0.04, and 8 learners, i.e., |V| = 8, for the experiments.

The generalized performance in unseen environments is defined as an expectation

over all possible environments, which cannot be obtained exactly. Therefore, we

estimate the generalized performances using 104 sample environments.

5.5.2 Results

(Generalization and convergence). Figure 5.4 compares the upper bound on the

expected normalized arrival time (T1) and the lower bound on the safe arrival rate

(T2) in Theorem 5.3.1 respectively with the actual expected normalized arrival

time and the actual safe arrival rate of learner 1. Other learners have similar

behaviors. As the figure illustrates, the upper bound and the lower bound derived

in the theorem are valid. This shows that the control policy trained can zero-

shot generalize well to the 104 unseen environments. Converging behavior is also

obvious in Figure 5.4, which aligns with (T3) of Theorem 5.3.6.

(a) Expected normalized arrival time (b) Safe arrival rate

Figure 5.4: Generalized performances to unseen environments

(Near consensus and Pareto improvement). In Table 5.2 below, we show the

performances of the learners’ estimates in terms of the expected distance-to-goal

152

0.1ρE, the expected normalized arrival time JE, and the expected safe arrival

rate. We compare with the control policy at initialization (θ
[i]
0), the control policy

obtained without communication (θ
[i]

k
[i]
fs

), i.e., the control policy obtained by running

FedGen using V = {i}, and the final convergence (θ
[i]
∞) under FedGen. We can

observe that all the expected costs, expected normalized arrival times and expected

safe arrival rates at θ
[i]
∞ are roughly equal. This aligns with the almost consensus

(T4) in Theorem 5.3.6. Furthermore, we can observe that all the expected costs

and the expected normalized arrival times at θ
[i]
∞ are no larger than those of θ

[i]
0

and θ
[i]

k
[i]
fs

, while the expected safe arrival rates at θ
[i]
∞ are no smaller than those at

θ
[i]
0 and θ

[i]

k
[i]
fs

. This shows that FedGen brings Pareto improvement for each learner

through communication, which is also shown in (T5) of Theorem 5.3.6.

(Performance vs. the number of learners). Table 5.3 presents the expected

distance-to-goal, normalized arrival time, and safe arrival rate of the limiting esti-

mate θ
[i]
∞ when FedGen is run using different number of learners. The table shows

that with more learners involved in FedGen, the performances of the control poli-

cies are better. This shows a stronger result than that in Theorem 5.3.7, where

more learners can only improve the probability of achieving the optimality gap in

(5.5).

Graphically, Figure 5.5 respectively shows the trajectories of the robot in a

sample of unseen environments using learner 1’s initial policy θ
[1]
0 , locally converged

policy θ
[1]

k
[1]
fs

and finally converged policy θ
[1]
∞ . The red disks represent the obstacles.

The cyan square represents the initial location. The green line represents the goal

region. The blue curves are the trajectories of the robot. Both the initial control

policy (Figure 5.5a) and the locally converged control policy (Figure 5.5b) cannot

bring the robot to the open end, despite the locally converged control policy is able

to drive the robot closer to the open end. Nevertheless, the path generated by the

final control policy θ
[1]
∞ is able to drive the robot to the open end. This illustrates

that FedGen helps the learners escape from their local minima and achieve better

generalizability.

153

5.6 Conclusion

We propose FedGen, a federated reinforcement learning algorithm which allows a

group of learners to collaboratively learn a single control policy for robot motion

planning with zero-shot generalization. The problem is formulated as an expected

cost minimization problem and solved in a federated manner. The proposed algo-

rithm is able to provide zero-shot generalization guarantees on the performances

of the local control policies in unseen environments as well as almost-sure con-

vergence, almost consensus and Pareto improvement. The algorithm is evaluated

using Monte Carlo simulations.

−4 −2 0 2 4
0

2

4

6

8

10

(a) Trajectory produced by

θ
[1]
0

−4 −2 0 2 4
0

2

4

6

8

10

(b) Trajectory produced by

θ
[1]

k
[1]
fs

−4 −2 0 2 4
0

2

4

6

8

10

(c) Trajectory produced by

θ
[1]
∞

Figure 5.5: Comparison between initial policy, locally converged policy and glob-
ally converged policy

154

Algorithm 10 FedGen

1: Input: Local sample sizes: n
[i]
E , n

[i]
int|E ; Kruzkov transform constant: α; Initial

step size: r[i]; Initial estimate: θ
[i]
0 ; Threshold for gradient: q[i]; Local bias: b

[i]
γ ;

Step exponent: ρ ∈ (2/3, 1).

2: Init: ζ
[i]
0 ← 1, Stop

[i]
0 ← False.

3: for k = 1, 2, · · · , K do
{Learner-based update}

4: for i ∈ V do
5: if Stop

[i]
k−1 == False then

6: Collects (y
[i]
k−1, z

[i]
k−1)

7: end if
8: Sends (θ

[i]
k−1, y

[i]
k−1) to the Cloud

9: if ∥z[i]k−1∥ ⩾ q[i] and Stop
[i]
k−1 == False then

10: θ̂
[i]
k ← θ

[i]
k−1 − r[i]

kρ
z
[i]
k−1

11: else
12: θ̂

[i]
k ← θ

[i]
k−1

13: (y
[i]
k , z

[i]
k)← (y

[i]
k−1, z

[i]
k−1)

14: Stop
[i]
k ← True

15: end if
16: end for
{Cloud update}

17: (j, l)← argmini∈V,l′=0,··· ,k−1 y
[i]
l′ + b

[i]
γ

18: Sends (θ
[j]
l , y

[j]
l , b

[j]
γ) to all i ∈ V

{Learner-based fusion}
19: for i ∈ V do
20: if j ̸= i and y

[j]
l + b

[j]
γ < min{y[i]k−1 − b

[i]
γ , ζ

[i]
k−1} and Stop

[i]
k−1 == True

then
21: θ

[i]
k ← θ

[j]
l

22: ζ
[i]
k ← y

[j]
l

23: Stop
[i]
k ← False

24: else
25: θ

[i]
k ← θ̂

[i]
k

26: ζ
[i]
k ← ζ

[i]
k−1

27: end if
28: end for
29: end for

155

Learner ID (i) 1 2 3 4 5

Distance-to-goal(
0.1E[ρE(xint, πθ[i])]

) Init(θ
[i]
0) 0.5198 0.5170 0.5208 0.5210 0.5148

Local(θ
[i]

k
[i]
fs

) 0.0436 0.0396 0.0331 0.4810 0.4105

Final(θ
[i]
∞) 0.0374 0.0396 0.0331 0.0335 0.0353

Normalized arrival time(
E[JE(xint;πθ[i])]

) Init(θ
[i]
0) 0.8743 0.8761 0.8744 0.8782 0.8692

Local(θ
[i]

k
[i]
fs

) 0.3759 0.3763 0.3701 0.8385 0.7815

Final(θ
[i]
∞) 0.3748 0.3763 0.3701 0.3679 0.3711

Safe arrival rate
Init(θ

[i]
0) 0.1802 0.1776 0.1800 0.1746 0.1876

Local(θ
[i]

k
[i]
fs

) 0.9320 0.9408 0.9522 0.2314 0.3172

Final(θ
[i]
∞) 0.9386 0.9408 0.9522 0.9452 0.9432

Learner ID (i) 6 7 8

Distance-to-goal(
0.1E[ρE(xint, πθ[i])]

) Init(θ
[i]
0) 0.5231 0.5237 0.5167

Local(θ
[i]

k
[i]
fs

) 0.0341 0.3992 0.4989

Final(θ
[i]
∞) 0.0341 0.0363 0.0335

Normalized arrival time(
E[JE(xint;πθ[i])]

) Init(θ
[i]
0) 0.8748 0.8797 0.8732

Local(θ
[i]

k
[i]
fs

) 0.3700 0.7622 0.8569

Final(θ
[i]
∞) 0.3700 0.3716 0.3704

Safe arrival rate
Init(θ

[i]
0) 0.1794 0.1724 0.1818

Local(θ
[i]

k
[i]
fs

) 0.9450 0.3426 0.2054

Final(θ
[i]
∞) 0.9450 0.9428 0.9468

Table 5.2: The expected distance-to-goal, normalized arrival times, safe arrival
rates of the estimates at initialization, local convergence and final convergence.

156

Number of learners (|V|) 1 2 4

Distance-to-goal(
0.1E[ρE(xint, πθ

[i]
∞
)]
) 0.4989 0.1548± 0.0132 0.1391± 0.0247

Normalized arrival time(
E[JE(xint;πθ

[i]
∞
)]
) 0.8569 0.4997± 0.0158 0.4910± 0.0234

Safe arrival rate 0.2054 0.7325± 0.0225 0.7563± 0.0338

Number of learners (|V|) 6 8

Distance-to-goal(
0.1E[ρE(xint, πθ

[i]
∞
)]
) 0.0760± 0.0126 0.0354± 0.0021

Normalized arrival time(
E[JE(xint;πθ

[i]
∞
)]
) 0.4111± 0.0169 0.3715± 0.0027

Safe arrival rate 0.8717± 0.0256 0.9442± 0.0038

Table 5.3: The expected distance-to-goal, normalized arrival times, safe arrival
rates of the limiting estimates for different number of learners. The table shows
the average values over the learners plus-minus one standard deviation.

157

Chapter 6
Online safe meta reinforcement

learning

6.1 Introduction

Chapter 4 considers online learning where a group of robots aim to ensure safety

and mission completion amid unknown uncertainties. Chapter 5 considers offline

learning and investigates how a group of robot learners can collaboratively learn a

control policy with good zero-shot generalization. In this chapter, we consider how

online learning and offline learning can be combined to improve the performances

of a robot through a sequence of tasks. Particularly, we consider how sample-

efficient data collection and policy adaptation together with all-time safety can be

achieved throughout the process.

Meta reinforcement learning (MRL) aims to address the fundamental problem

of quickly learning an optimal control policy in a new task using less data and

less training time [141, 142, 166, 143]. The problem is usually formulated as an

unconstrained optimization problem over a meta control policy and an adaptation

procedure, where the objective function is the expected performance of the adapted

control policy in a new task.

Offline MRL learns a meta control policy using a fix set of tasks [141, 144, 167].

Online MRL, in contrast, updates the meta control policy sequentially by the

arrival of training tasks [168, 169, 170]. A large number of physical real-world

158

agents operate in changing environments, and therefore online MRL is desired for

these applications. To successively optimize the control policies, MRL algorithms

sample trajectories of the policies to evaluate the performance of the policies and

determine how the update should be conducted. However, trajectory samples

can be limited in these applications since not only it can be costly to generate

trajectories for physical applications, but also there is only limited time to online

roll out the trajectories in a task since the environments are changing. Therefore,

sample efficiency should be considered in these applications such that the update

of the meta policy (and the adapted policy) can be effectively done with as few

samples as possible.

Many physical real-world applications (e.g., mobile robots) are safety-critical.

These applications require that physical agents satisfy certain safety constraints

(e.g., collision avoidance) during the entire deployment stage. Furthermore, the

safety constraints may vary among different tasks in general. This implies that the

safe policies in one task are not necessarily safe in another task, especially for those

tasks with large variation. Safe MRL imposes safety constraints on the execution

of the control policy. Offline safe MRL is studied in [171], which aims to achieve

all-time safety, when the safety constraints are invariant over the tasks, by offline

learning a neural network to suppress all the unsafe actions. Online safe MRL

is considered in [172], which shows that safety can be guaranteed asymptotically

with respect to the number of tasks and the number of adaptation steps. However,

all-time safety during the online learning and deployment of control policies in

changing environments remains an open question.

Gradient-based methods are the most prevalent methods to update meta pa-

rameters in online meta learning [168, 169, 170, 167, 173]. The meta parameters

are updated along the (approximate) gradients of the objective functions. In re-

inforcement learning, the gradients of the objective functions with respect to the

meta (control policy) parameters are unknown in most cases. Therefore, each new

gradient step requires new samples to estimate the gradient with respect to the

meta parameters [141, 166]. This makes the update of the meta control policy ex-

ceedingly inefficient as the numbers of gradient steps and samples per step increase

in order to update the control policy effectively.

To this end, we develop masked Follow-the-Last-Parameter-Policy (FTLPP),

159

an online safe meta reinforcement learning algorithm, which explicitly considers

all-time safety at the deployment of the control policy and sample efficiency in

online update of the meta control policy. In this chapter, we consider safety as

the agent not entering a set of unsafe states. Our contributions are summarized

as follows:

1. All-time safety through policy masking. We develop a novel proce-

dure, such that the safety-constrained MRL problem is transformed into an

unconstrained optimization problem over the masked control policy space.

Specifically, we construct a masking function for an arbitrary control policy

such that the masked control policy has small probability, if not zero, in

driving the agent into unsafe states in a task. Safety is formally guaranteed

for any control policy within the masked control policy space. The policy

masking framework allows optimization over the safe actions with respect to

the task objectives.

2. Sample-efficient meta update through learning a parameter pol-

icy over task space. We propose FTLPP, a novel online meta learning

framework which does not require estimating the gradients of the objective

functions with respect to the decision variable. By modeling the temporal

relation for the sequence of tasks using Markov process, the online learning

of the meta (control policy) parameter is solved as an online policy optimiza-

tion problem with tasks as the states and meta (control policy) parameters

as the actions. An online off-policy algorithm, which requires the parameter

policy to be updated after taking an action in each step, is developed to

achieve high sample efficiency and sublinear growth of dynamic regret. To

the best of our knowledge, this is the first attempt to solve an online learning

problem using an off-policy reinforcement learning method.

We present empirical results that show masked FTLPP achieves all-time safety

and efficient meta update. We also compare with three baselines: Meta SRL [172],

FTML [168] with the policy masking framework we propose for all-time safety, and

SAILR [174] with FTLPP we propose for meta update.

160

6.2 Related work

Our masked FTLPP framework incorporates two key components: a policy mask-

ing framework for all-time safety and a policy optimization formulation for online

meta update. In this section, we review prior works that draw inspirations.

Safe (reinforcement) learning. In the literature of safe (reinforcement)

learning, all-time safety can be guaranteed by switching between a learning-based

control policy and a backup control policy that is suboptimal but is able to guar-

antee safety [27]. The backup safety controllers can be synthesized through solv-

ing a two-player zero-sum differential game [44], model predictive control (MPC)

[101][34], control barrier function [102, 103], robust optimization [104], reachability

analysis [105] and regions of attraction [46]. However, the safety actions in these

works are decoupled from the task objectives. Our work is inspired by the idea

of backup control policies. Instead of synthesizing a backup control policy that

outputs a single safe action at critical states for a task, we consider removing the

unsafe actions in the task and performing optimization within the space of control

policies without these unsafe actions. This framework can be treated as consider-

ing all possible backup control policies and allows optimization within the space

of backup control policies, coupled with the optimization of the learning-based

control policy.

Online (meta) learning. As shown in [168], an online meta learning problem

can be transformed into a standard online learning problem. A majority of the on-

line learning methods achieving low regret are gradient-based [175, 176, 177, 178],

but as previously mentioned, gradient-based methods are not sample-efficient in

reinforcement learning. Papers [172, 179] circumvent the issue by considering the

(weighed) average of the previous adapted control policies as the meta control

policies of a new task. The weights are computed based on the state visitation

probability of the control policies, which is estimated through sampling trajectories

under the control policies. Sample efficiency is enhanced in these works as the tra-

jectories used in the previous weight computation are reused to compute the new

weights in the future rounds. However, as empirically shown in [172], this method

may not work well when the task similarity is low. In this work, we also seek for a

non-gradient-based approach to enhance sample efficiency. Our proposed FTLPP

161

framework is inspired by [180], which leverages a known dynamic model of the

optimal decision variables for online update. In contrast, we assume the existence,

though unknown, of such dynamic model among the transition of tasks in the form

of Markov process. Then we transform the online learning problem of the meta

(control policy) parameter into a policy optimization problem, where tasks are the

states and the meta (control policy) parameters in the next round are the actions,

and solve it by developing an online off-policy reinforcement learning algorithm.

The assumption of a latent Markov process for task transition is actually mild as

not only it can be justified by real-world examples, but also the standard assump-

tion in meta learning, where tasks follow a common latent distribution, is a special

case of it. Furthermore, this allows the task distribution to be time-varying, which

is more realistic for agents operating in changing environments.

On/Off-policy reinforcement learning. As the above paragraph discusses,

the FTLPP framework is closely related to reinforcement learning algorithms. It

is inspired by the differences between on-policy methods and off-policy methods in

reinforcement learning. A major feature of on-policy methods is updating the pol-

icy through policy gradient [181, 182, 183], which is similar to the gradient-based

methods in online learning. However, on-policy methods are not sample-efficient

due to the need of gradient estimation at each step. In contrast, off-policy meth-

ods aim to reuse past experience and incrementally learn the Q-function [184, 185].

Our FTLPP framework can be treated as an off-policy method for online learn-

ing, and the major contribution is connecting the online learning problem to a

reinforcement learning problem. The online meta control policy learning problem

is then transformed into an optimization problem of a hypernetwork [186], where

the output of a network (i.e., the parameter policy in FTLPP) is the parameter of

another network (i.e., the meta control policy). Furthermore, the FTLPP frame-

work is agnostic to the adaptation procedure and hence can be applied to the

online meta learning of any reinforcement learning algorithms when encountered

by changing environments.

162

6.3 Problem statement

Safe reinforcement learning. Consider a space of tasks T , where each task

τ ∈ T admits a Markov decision process (MDP) Mτ ≜ (S,A, T S , rτ , ρτ , Hτ),

where S ∈ Rns is the state space, A is the action space, T S : S×S×A → R⩾0 is the

state transition function such that st+1 ∼ T S(st+1 | st, at), rτ : S×A → [rmin, rmax]

is the bounded reward function, ρτ : S → R⩾0 is the initial state distribution,

and Hτ is the time horizon. Notice that the reward function, the initial state

distribution and the time horizon are task-dependent while others are not. Denote

a stochastic control policy π : S × A → R⩾0 such that at ∼ π(at | st). Denote a

trajectory realization of time horizon Hτ under policy π in task τ starting from

state s0 as cπτ (s0) ≜ (s0, a0, r0, s1, a1, r1, · · · , sHτ−1, aHτ−1, rHτ−1), where at is a

realization of π(· | st) and st+1 is a realization of T S(· | st, at) for t = 0, · · · , Hτ−1.

For each task τ , we consider safety as the agent not entering a set of unsafe states

Sunsafeτ ⊂ S during the execution of a control policy. The set Sunsafeτ is known

once task τ is revealed. Since the state transition function and the control policy

are stochastic, we formulate the safety constraint for task τ as a chance constraint

P
(
cπτ (s0) ∩ Sunsafeτ ̸= ∅

)
⩽ ϵ, for some small positive constant ϵ. That is, the rate

of unsafe accidents of the agent entering unsafe states needs to be below ϵ. Here,

we assume s0 ̸∈ Sunsafeτ . For safe reinforcement learning in task τ , we aim to find

a control policy π to maximize the expected reward

ητ (π) ≜ E[
Hτ−1∑
t=0

γtrτ (st, at)],

where the expectation is taken over the state transition st+1 ∼ T S(st+1 | st, at),
stochastic policy at ∼ π(at | st) and initial state s0 ∼ ρτ , and γ is the discount

factor, without violating the safety constraint.

Online safe MRL. In this chapter, we consider the situation where the agent

is in a changing environment and aims to accomplish a sequence of tasks {τk}∞k=1

online, each arrives in round k. Furthermore, we assume there is a temporal

relation between the tasks such that the dynamical model of the tasks follows a

Markov process τk+1 ∼ T T (τk+1 | τk), where T T : T × T → R ⩾ 0 is referred as

the task transition function, and ρT : T → R⩾0 is the initial task distribution. For

163

notational simplicity, we write shorthand πk ≜ πτk and ηk ≜ ητk . Denote U as a

pre-specified adaptation procedure. In online MRL, the agent aims to determine

a meta policy approximate π̂k before task τk is revealed. The goal for the agent is

to online determine the sequence of meta control policy estimates {π̂τk}∞k=1 which

can maximize the expected total cumulative rewards while satisfying the safety

constraint for each task:

max
{π̂k}Kk=1

Eτk∼TT
[K∑
k=1

ηk(U(π̂k; τk))
]
, (6.1a)

s.t. P
(
cπkτk (s0) ∩ S

unsafe
τk

̸= ∅
)
⩽ ϵ, πk = U(π̂k; τk), k = 1, · · · , K. (6.1b)

The discussion on the feasibility of the above problem is deferred to Lemma 6.5.5.

Remark 6.3.1. (Modeling task transition using Markov process). The assump-

tion of the transition of tasks following a Markov process is mild. In a majority

literature of meta learning [141, 144, 187, 142, 188, 189, 166], the tasks are usually

assumed to be drawn independently from a common latent distribution, which can

be mathematically written as τk ∼ P(T) for all k ⩾ 1. This is actually a special

case of the Markov process modeling of task transition, as the standard case can

be written as τk+1 ∼ T T (τk+1 | τk) = P(T) for all k ⩾ 1. Real-world applications

can also be found below to justify the Markov process modeling of task transitions.

(i) Piecewise time-varying systems PTVS). In PTVS, the behaviors of the sys-

tems change in a discontinuous way at specific times or intervals. Examples include

switched-mode power supply [190], hybrid electric vehicles [191] and robotic ma-

nipulator using different strategies (e.g., pulling, pushing or pick-and-place) [192].

The control of a system within a time interval when the dynamics is time-invariant

can be treated as a task, and therefore the tasks share a temporal relation due to

the evolution of the system/mission. In terms of MDP, the states and actions can

be the states and control inputs of the system, respectively. The reward func-

tion captures the control objective of the systems (e.g., stabilization and reference

tracking). Since these systems are usually physical systems, they are safety criti-

cal. Online safe MRL can therefore be leveraged to allow these systems to adapt in

time to changing environments during online missions with safety guaranteed. (ii)

Real-time motion planning (RTMP). In RTMP for long-horizon navigation mis-

164

sions, especially amid dynamical obstacles, motion plans are synthesized online as

a vehicle encounters new scenarios [193, 194]. The query of a solution to a new

scenario can be treated as a task, which shares a strong temporal relation with the

previous one. The reward function captures the traveling time and/or control effort

of the vehicle, and the unsafe sets can be the locations of obstacles. Since planning

is done in real time and safety is critical, online safe meta learning is leveraged for

fast approximations of the optimal motion plans with safety guaranteed. ■

6.4 The masked Follow-the-Last-Parameter-Policy

framework

In this section, we first transform problem (6.1) into an unconstrained problem

over a masked control policy space, where all the masked control policies therein

satisfy the constraint in (6.1). Next we develop the FTLPP algorithm to output

π̂k sequentially for each k = 1, · · · , K.

Consider a class of learning-based control policy πθ : S ×A → R⩾0 parameter-

ized by θ ∈ Rnθ , such as a deep neural network. Then given a task τ and a policy

πθ, we develop a masking function mτ,πθ : S × A → R⩾0 such that the masked

control policy π̌θ,τ ≜ πθ ·mτ,πθ has small probability at most ϵ in driving the MDP

to unsafe set Sunsafeτ ; i.e., for any task τ , P
(
c
π̌θ,τ
τ (s0) ∩ Sunsafeτ ̸= ∅

)
⩽ ϵ for all

θ ∈ Rnθ . More detailed explanation can be found in Section 6.5. Then for a task

τ , the masked control policy can be optimized as

θτ = arg max
θ∈Rnθ

ητ (π̌θ,τ). (6.2)

Notice that for each task τ , the expected reward ητ (π̌θ,τ) only depends on pa-

rameter θ, and hence, in the sequel, we use shorthand ηk(θ) ≜ ητk(π̌θ,τk). Then

U can be any reinforcement learning algorithms such as [184][181][182] for policy

parameter optimization. Correspondingly, problem (6.1) can be reformulated into

an unconstrained optimization problem defined as follows:

max
{θ̂k}Kk=1

Eτk∼TT
[K∑
k=1

ηk(U(θ̂k; τk))
]
. (6.3)

165

Next we develop the FTLPP algorithm to solve the above problem.

6.4.1 The Follow-the-Last-Parameter-Policy (FTLPP) al-

gorithm

Since the task of each round k arrives following the distribution τk ∼ T T (τk |
τk−1), there is a latent dependency of the optimal meta (control policy) param-

eters for task τk given τk−1, which can be modeled as θ̂k ∼ ζ(θ̂k | τk−1), where

ζ : Rnθ × T → R⩾0 can also be treated as the optimal policy for selecting

the next meta (control policy) parameter given the previous task. We refer ζ

as the parameter policy, whereas π is the control policy. Then the learning of

the optimal θ̂k is transformed into the learning of the optimal policy for an in-

finite horizon MDP, denoted as MΘ, with task τk as the state and meta (con-

trol policy) parameter θ̂k+1 as the action at round k, reward function given by

R(τk, θ̂k+1) ≜ Eτk+1∼TT (τk+1|τk)[ηk+1(U(θ̂k+1; τk+1))], and state transition function

T T . That is, the online learning of meta (control policy) parameter θ̂k is then

transformed into an optimization problem of a hypernetwork [186], where the out-

put of a network (i.e., parameter policy ζ) is the parameter θ̂k of another network

(i.e., the meta control policy). Notice that T T (τk | τk−1) is unknown a priori but

is only realized through the tasks {τk}∞k=1 arriving sequentially. This implies that

the update of the parameter policy ζ can only be done in an online manner; i.e.,

update at each step after taking an action; i.e., selecting the next meta (control

policy) parameter θ̂k+1, at each state; i.e., the current task τk, and receiving the

corresponding reward R(τk, θ̂k+1). Next we present the novel FTLPP framework

for online learning the parameter policy ζ. The formal algorithm is presented in

Algorithm 11.

The algorithm is built atop of the SAC algorithm [184] due to its sample ef-

ficiency and the theoretical guarantees on monotonic convergence to the optimal

policy. Following [184], the soft Q-value function, value function, and the update

for the parameter policy are respectively given by

Qζ
α(τk, θ̂k+1) ≜ R(τk, θ̂k+1) + γEτk+1∼TT [V

ζ
α (τk+1)],

V ζ
α (τk) ≜ Eθ̂τk+1

∼ζ [Q
ζ(τk, θ̂k+1)− α log ζ(θ̂k+1 | τk)],

166

ζ(l+1)
αk

= argmin
ζ
DKL
αk

(
ζ(· | τ)

∥∥∥exp(Qζ
(l)
αk
αk (τ, ·))

Zζ
(l)
αk (τ)

)
. (6.4)

where γ ∈ (0, 1) is the discount factor, αk ∈ R>0 determines the relative weight on

the entropy term against the reward and DKL
αk

(p∥q) ≜ Ex∼p(x)[αk log p(x)−log q(x)]
is the KL divergence.

Regret analysis. Consider a positive sequence {αk}Kk=1. Denote {θ̃k}Kk=1 as the

optimal solution to Problem 6.5. The following theorem shows that the optimality

gap between θ̂k and θ̃k can be controlled by αk.

Theorem 6.4.1. Suppose θ̂k, θ̃k ∈ Θ ⊂ Rnθ . Update rule (6.4) renders that there

exists ζk such that liml→∞ ζ
(l)
αk = ζαk

for any k = 1, · · · , K. Furthermore, it holds

that Eτk+1∼TT ,θ̂k+1∼ζαk
[ηk+1(U(θ̃k+1; τk+1))− ηk+1(U(θ̂k+1; τk+1))] ⩽

αk

1−γ log |Θ|. ■

The proof of the theorem can be found in Section 6.6.1. Theorem 6.4.1 implies

that if αk diminishes, then we have limk→∞ Eτk+1∼TT ,θ̂k+1∼ζk [ηk+1(U(θ̃k+1; τk+1))−
ηk+1(U(θ̂k+1; τk+1))] = 0. Define dynamic regret [175] as

RegretK ≜
K∑
k=1

ηk(U(θ̃k; τk))−
K∑
k=1

ηk(U(θ̂k; τk)). (6.5)

The expectation of the dynamic regret RegretK has sublinear growth if αk dimin-

ishes. For example, if αk = 1/k, then we have

E[RegretK] =
K∑
k=1

Eτk∼TT ,θ̂k∼ζk [ηk(U(θ̃k; τk))− ηk(U(θ̂k; τk))]

⩽
K−1∑
k=1

αk
1− γ

log |Θ|+ Eτ1∼ρT [ηk(U(θ̃1; τ1))− η1(U(θ̂1; τ1))]

⩽
logK − 1

1− γ
log |Θ|+ Eτ1∼ρT [ηk(U(θ̃1; τ1))− η1(U(θ̂1; τ1))],

where the second term is caused by the initialization of the meta (control policy)

parameter θ̂1. This also reflects a guideline for exploration-exploitation. Paper

[184] derives (6.4) based on the maximum entropy principle such that exploration

is encouraged and weighed by αk. A diminishing sequence of {αk}Kk=1 indicates

that there are less incentives for exploration in the later period of learning. This

167

is consistent with the fact that as learning proceeds, the learning agent is more

knowledgeable and becomes more capable of approximating an optimal parameter

policy using the given information. Therefore, more effort should be given to

exploitation. Notice that we cannot set αk = 0 for any k since it would no longer

fit into the framework in [184], and convergence to the optimal policy is no longer

guaranteed, which is a crucial property leveraged in the proof of Theorem 6.4.1.

Algorithm 11 Online meta reinforcement learning

1: Init: Initial meta parameter: θ̂1; Parameters for function approximation: ψ,
ϕ, ξ; Step sizes: βV , βQ, βζ ; Number of initial state samples: ns0 ; Factor for
moving average: ν ∈ (0, 1); Entropy weight factor: {αk}Kk=1

2: for k = 1, · · · , K do
3: Obtain task τk and adapt parameter θτk ← U(θ̂k; τk) Sample initial state
sj0 ∼ ρτk for j = 1, · · · , ns0

4: for j = 1, · · · , ns0 do
5: rj ← 0
6: for t = 1, · · · , Hτk do
7: Sample at ∼ π̌θτk ,τk
8: Sample st+1 ∼ T S(st+1 | st, at)
9: rj ← rj + γtrτk(st, at)
10: end for
11: end for
12: R̂(τk, θ̂k+1)← 1

ns0
rj

13: ψ ← ψ − βV
∑k

k′=1 ∇̂ψJ
V
k′ (ψ)

14: ϕ← ϕ− βQ
∑k

k′=1 ∇̂ϕJ
Q
k′ (ϕ)

15: ξ ← ξ − βζ
∑k

k′=1 ∇̂ξJ
ζ
k′(ξ)

16: ψ̄ ← νψ + (1− ν)ψ̄
17: Sample θ̂k+1 ∼ ζξ(· | τk)
18: end for

Practical implementation. Algorithm 11 presents the practical implementation

of (6.4). As in [184], we consider the parametric representations of the above three

functions, denoted by Qϕ, Vψ and ζξ. Since the state transition of the MDPMΘ

is inherently driven by the transition of tasks, which arrives online sequentially by

round, the loss functions for training parameters ϕ, ψ and ξ are rewritten as the

sum of loss over each round k, instead of as the expectation over a fixed dataset

168

in [184]. Then the loss functions have the form

JV (ψ) ≜
K∑
k=1

JVk (ψ), J
Q(ϕ) ≜

K∑
k=1

JQk (ϕ), J
ζ(ξ) ≜

K∑
k=1

Jζk (ξ),

JVk (ψ) ≜
1

2

(
Vψ(τk−1)− Eθ̂k∼ζξ [Qθ(τk−1, θ̂k)− αk log ζξ(θ̂k | τk−1)]

)2

,

JQk (ϕ) ≜
1

2

(
Qθ(τk−1, θ̂k)− Q̂(τk−1, θ̂k)

)2

,

Q̂(τk−1, θ̂k) ≜ R̂(τk−1, θ̂k) + γVψ̄(τk),

Jζk (ξ) ≜ αk log ζξ(θ̂k | τk−1)−Qθ(τk−1, θ̂k),

where ψ̄ is the moving average of ψ, and R̂(τk−1, θ̂k) is the empirical estimate of

ηk(U(θ̂k; τk)) and the one-sample empirical estimate of R(τk−1, θ̂k), noting that only

a single task τk is revealed at each round k. All the above loss functions resem-

ble the standard form for online optimization [175], and therefore the parameters

can be updated each round using online gradient-based methods (e.g., Follow-the-

Leader [195]). As in [184], the gradients can be estimated using stochastic gradient,

denoted by ∇̂. Note that no gradient of the objective function ηk with respect to

θ̂k is needed, and loss functions JV , JQ and Jζ serve to solve regression problems

provided a fixed dataset, which is sample-efficient due to backward propagation.

Hence, the stochastic gradients with respect to ψ, ϕ and ξ can be computed using

a fixed set of samples {τk′−1, θ̂k′ , R̂(τk′−1, θ̂k′)}kk′=1 for an arbitrary number of steps

at each round k. Given a new estimate of ξ at the end of iteration k, the parameter

of the meta control policy for next iteration is predicted using the new parameter

policy ζξ.

6.5 Policy masking

In this section, we provide a detailed procedure and justification for constructing

the masking function mτ,πθ mentioned in the beginning of Section 6.4. Denote

S̄unsafeϵ,τ ≜ Sunsafeτ ∪ {s ∈ S | P
(
cπτ (s) ∩ Sunsafeτ ̸= ∅

)
> ϵ for any π} the set of

ϵ-inevitably unsafe states in task τ and Aunsafeϵ,τ (s) ≜ {a ∈ A |
∑

s′∈S̄unsafe
ϵ,τ

T S(s′ |
s, a) > ϵ

2Hτ
} the set of ϵ-unsafe actions that drive the MDP Mτ to S̄unsafeϵ,τ from

state s in task τ . We define a (1− ϵ)-safe control policy space below.

169

Algorithm 12 Construction of mτ,πθ

1: Init: BRϵ(s, a)← ∅, S̄unsafeϵ,τ ← Sunsafeτ , Aunsafeϵ,τ (s)← ∅, Flag ← 1
2: (Construction of BRϵ)
3: for s ∈ S do
4: for a ∈ A do
5: for s′ ∈ S do
6: if T S(s′ | s, a) ⩾ ϵ

2Hτ |S| then

7: BRϵ(s
′, a)← BRϵ(s

′, a) ∪ {s}
8: end if
9: end for
10: end for
11: end for
12: (Construction of S̄unsafeϵ,τ and Aunsafeϵ,τ (s))
13: while Flag == 1 do Flag ← 0
14: for s′ ∈ S̄unsafeϵ,τ do
15: for s ∈ BRϵ(s

′, a), a ∈ A do
16: Aunsafeϵ,τ (s) = Aunsafeϵ,τ (s) ∪ {a}
17: if Aunsafeϵ,τ (s) == A and s ̸∈ S̄unsafeϵ,τ then
18: S̄unsafeϵ,τ ← S̄unsafeϵ,τ ∪ {s}
19: Flag ← 1
20: end if
21: end for
22: end for
23: end while
24: (Construction of masking function mτ,πθ)
25: for s ∈ S, a ∈ A do
26: if s ∈ S \ S̄unsafeϵ,τ and Aunsafeϵ,τ (s) ̸= ∅ then
27: if a ∈ Aunsafeϵ,τ (s) then

28: mτ,πθ(s, a; πθ)←
ϵ/2Hτ∑

a′∈Aunsafe
ϵ,τ (s)

πθ(a′|s;τ)

29: else
30: mτ,πθ(s, a; πθ)←

1−ϵ/2Hτ

1−
∑

a′∈Aunsafe
ϵ,τ (s)

πθ(a′|s;τ)

31: end if
32: else
33: mτ,πθ(s, a; πθ)← 1
34: end if
35: end for
36: return mτ,πθ , S̄unsafeϵ,τ

170

Definition 6.5.1. ((1− ϵ)-safe control policy space). A control policy space Π is

(1 − ϵ)-safe for task τ if P
(
cπτ (s0) ∩ Sunsafeτ ̸= ∅

)
⩽ ϵ for any s0 ∈ S \ S̄unsafeϵ,τ for

all control policy π ∈ Π.

Proposition 6.5.2 below characterizes a property for a control policy space being

(1− ϵ)-safe for task τ .

Proposition 6.5.2. Consider a control policy space Π. If
∑

a∈Aunsafe
ϵ,τ (s) π(a | s) ⩽

ϵ
2Hτ

for each s ∈ S \ S̄unsafeϵ,τ for all π ∈ Π, then Π is a (1 − ϵ)-safe control policy

space for task τ . ■

The proof of the proposition can be found in Section 6.6.2.

In this chapter, for simplicity of exposition, we assume the state transition

function T S is known and fixed across different tasks, which is usually the case in

the motivating examples in Section 3. If the model is unknown, model learning

can be performed using the collection of tasks during meta training as in [187, 196,

188, 44]. Inspired by Proposition 6.5.2, we can construct a masked control policy

space for each task τ by multiplying each πθ ∈ Π by a masking function mτ,πθ such

that for each s ∈ S \ S̄unsafeϵ,τ , the following two criteria are satisfied:

(M1)
∑

a∈Aunsafe
τ (s) πθ(a | s) ·mτ,πθ(a, s) ⩽

ϵ
2Hτ

.

(M2)
∑

a∈A πθ(a | s) ·mτ,πθ(a, s) = 1.

The following theorem shows that the masking functionmτ,πθ constructed following

these criteria induces a (1− ϵ)-safe control policy space for task τ .

Theorem 6.5.3. If masking function mτ,πθ is constructed satisfying (M1) and

(M2), then the control policy space Πτ ≜ {πθ ·mτ,πθ | θ ∈ Rnθ} is (1 − ϵ)-safe for

task τ . ■

The proof of the theorem can be found in Section 6.6.3. The above result

inspires the algorithm for constructing mτ,πθ in three steps. First, since the state

space is finite, we can construct a directed graph to store the one-step backward

sets of model T S . Then given the directed graph, the states that inevitably drive

into Sunsafeτ with probability at least ϵ can be identified as S̄unsafeϵ,τ together with

Aunsafeϵ,τ (s), s ∈ S \S̄unsafeϵ,τ . Finally, the masking function mτ,πθ can be constructed

following (M1) and (M2). Next we explain each step in details.

171

Construction of one-step backward sets. Define the one-step backward

set BRϵ of rate of accident ϵ for state-action pair (s, a) as

BRϵ(s, a) ≜ {s′ ∈ S | T S(s′ | s, a) > ϵ

2Hτ |S|
}. (6.6)

The formal construction procedure of BRϵ can be found in Algorithm 12 Lines 3

to 7.

Construction of ϵ-inevitably unsafe states and actions. Utilizing the

information stored in the one-step backward sets BRϵ, upon reveal of task τ , the

corresponding ϵ-inevitably unsafe states S̄unsafeϵ,τ and actions Aunsafeϵ,τ (·) can be con-

structed following three criteria:

(C1) All the states in Sunsafeτ are included into S̄unsafeϵ,τ ; i.e., Sunsafeτ ⊂ S̄unsafeϵ,τ .

(C2) For each state s, all the actions driving the MDPMτ into S̄unsafeϵ,τ are included

into Aunsafeϵ,τ (s); i.e., a ∈ Aunsafeϵ,τ (s) if s ∈ BRϵ(s
′, a), s′ ∈ S̄unsafeϵ,τ .

(C3) If state s has all the actions included in Aunsafeϵ,τ (s), it is included into S̄unsafeϵ,τ ;

i.e., s ∈ S̄unsafeϵ,τ if Aunsafeϵ,τ (s) = A.

The formal algorithm statement for constructing S̄unsafeϵ,τ andAunsafeϵ,τ (·) is presented
in Algorithm 12 Lines 13 to 19.

Remark 6.5.4. (Computation complexity of S̄unsafeϵ,τ and Aunsafeϵ,τ (·)) Notice that

(C2) and (C3) can trigger recursive procedures because if (C3) is satisfied for some

state s ∈ S \Sunsafeτ , we have s ∈ S̄unsafeϵ,τ and a ∈ Aunsafeϵ,τ (s′) for all s′ ∈ BRϵ(s, a),

according to (C2). The update of Aunsafeϵ,τ (s′) may in turn trigger (C3). Yet the

procedure would eventually terminate in time at most O(|S||A|) as there are only
a finite number of states and actions.

The following lemma provides a sufficient condition on the feasibility of Problem

(6.1) .

Lemma 6.5.5. If S \ S̄unsafeϵ,τ ̸= ∅ and s0 ̸∈ S̄unsafeϵ,τ for all task τ , then Problem

(6.1) is feasible. ■

The proof of the lemma can be found in Section 6.6.4. Lemma 6.5.5 implies

that the feasibility of Problem (6.1) can be verified by running Line 3 to Line 22

in Algorithm 12 for each task.

172

Construction of masking function. Given the ϵ-inevitably unsafe states

S̄unsafeϵ,τ and ϵ-unsafe actions Aunsafeϵ,τ , for each learning-based policy πθ, the value

of masking function mτ,πθ can be obtained through Algorithm 12 Lines 25 to 33

for each state-action pair (s, a) ∈ S ×A such that (M1) and (M2) are satisfied.

Since the model is known a priori, the construction of BRϵ (Lines 3 to 7) can

be done one time and offline. Since the unsafe states Sunsafeτ are available once

task τ is revealed, the construction of ϵ-inevitably unsafe states and actions (Lines

13 to 19) only needs to be run one time once task τ is revealed. In practice,

instead of storing the table of values for each state-action pair, the value of mτ,πθ

can be queried online together with that of πθ at each state s using Lines 26 to

33. Therefore, the masking function mτ,πθ can be available quickly once task τ is

revealed, especially when the unsafe sets are sparse.

6.6 Proofs

6.6.1 Proof of Theorem 6.4.1

Recall that in the MDPMΘ, task τk is the state and θ̂k+1 is the action at round

k. Following the proof of Theorem 1 in [184], we have that there exists ζαk
such

that liml→∞ ζ
(l)
αk = ζαk

and

ζαk
= argmax

ζ
Qζ(τk, θ̂k+1). (6.7)

Recursively applying the definition of Qζ renders

Qζ(τk, θ̂k+1) = R(τk, θ̂k+1) + γEτk+1∼TT [V
ζ
αk
(τk+1)] (6.8)

for all (τk, θ̂k+1) ∈ T ×Θ. Combining (6.7) with (6.8) also implies

ζk = argmax
ζ

[V ζ
αk
(τk)]

=
∞∑
l=1

γlEτk+l∼TT ,θ̂k+1+l∼ζk [R(τk+l, θ̂k+l+1)− αk log ζ(θ̂k+l+1 | τk+l)]

173

Denote

V ζ(τk) ≜ Eτk+l∼TT ,θ̂k+l+1∼ζ [
∞∑
l=0

γlR(τk+l, θ̂k+l+1) | τ0 = τ]

= Eτk+l∼TT ,θ̂l+1∼ζ [
∞∑
l=1

γl−1ηk+l(U(θ̂k+l; τk+l))],

ζV ≜ argmax
ζ
V ζ(τ) = Eτk+l∼TT [

∞∑
l=1

γl−1ηl(U(θ̃k+l; τk+l))],

recalling the definition of θ̃l above Theorem 6.4.1. Inequality (12) in [197] shows

that V ζk(τk) ⩽ V ζV (τk) ⩽ V ζk(τk) +
αk

1−γ log |Θ|, or equivalently,

V ζV (τk)− V ζk(τk)

= Eτk+l∼TT ,θ̂k+l∼ζk

[∞∑
l=1

γl−1
(
ηl(U(θ̃k+l; τk+l))− ηl(U(θ̂k+l; τk+l))

)]
⩽

αk
1− γ

log |Θ|.

Notice that

∞∑
l=1

γl−1
(
ηk+l(U(θ̃k+l; τk+l))− ηk+l(U(θ̂k+l; τk+l))

)
⩾ ηk+1(U(θ̃k+1; τk+1))− ηk+1(U(θ̂k+1; τk+1)).

This implies Eτk+1∼TT ,θ̂k+1∼ζk

[
ηk+1(U(θ̃k+1; τk+1))−ηk+1(U(θ̂k+1; τk+1))

]
⩽ αk

1−γ log |Θ|.
■

6.6.2 Proof of Proposition 6.5.2

Let π ∈ Π and s0 ∈ S\S̄unsafeϵ,τ . Let sequence of states {st}Hτ−1
t=0 be in the trajectory

cπτ (s0). Recall that the construction of S̄unsafeϵ,τ renders Sunsafeτ ⊂ S̄unsafeϵ,τ . Then

probability

P
(
cπτ (s0) ∩ Sunsafeτ = ∅

)
= P

(
s0 ̸∈ Sunsafeτ , · · · , sHτ−1 ̸∈ Susτ

)
174

⩾ P
(
s0 ̸∈ S̄unsafeϵ,τ , · · · , sHτ−1 ̸∈ S̄unsafeϵ,τ

)
= P

(
sHτ−1 ̸∈ S̄unsafeϵ,τ | s0 ̸∈ S̄usϵ,τ , a0 ∼ π(· | s0), · · · ,

sHτ−2 ̸∈ S̄unsafeϵ,τ , aHτ−2 ∼ π(· | sHτ−2)
)
· · ·

· P
(
s1 ̸∈ S̄unsafeϵ,τ | s0 ̸∈ S̄unsafeϵ,τ , a0 ∼ π(· | s0)

)
P
(
s0 ̸∈ S̄unsafeϵ,τ

)
= P

(
sHτ−1 ̸∈ S̄unsafeϵ,τ | sHτ−2 ̸∈ S̄unsafeϵ,τ , aHτ−2 ∼ π(· | sHτ−2)

)
· P

(
sHτ−2 ̸∈ S̄unsafeϵ,τ | sHτ−3 ̸∈ S̄unsafeϵ,τ , aHτ−3 ∼ π(· | sHτ−3

)
· · ·

· P
(
s1 ̸∈ S̄unsafeϵ,τ | s0 ̸∈ S̄unsafeϵ,τ , a0 ∼ π(· | s0)

)
P
(
s0 ̸∈ S̄unsafeϵ,τ

)
(6.9)

where the last equality follows from the definition of MDP. Since policy π sat-

isfies
∑

a∈Aunsafe
ϵ,τ (s) π(a | s) ⩽ ϵ

2Hτ
and the definition renders Aunsafeϵ,τ (s) = {a ∈

A |
∑

s′∈S̄unsafe
ϵ,τ

T S(s′ | s, a) > ϵ
2Hτ
} for each s ∈ S \ S̄unsafeϵ,τ , then for any

t = 0, · · · , Hτ − 1, we have

P
(
st+1 ̸∈ S̄unsafeϵ,τ | st ̸∈ S̄unsafeϵ,τ , at ∼ π(· | st)

)
= P

(
st+1 ̸∈ S̄unsafeϵ,τ | st ̸∈ S̄unsafeϵ,τ , at ∈ Aunsafeϵ,τ (st)

)
P
(
at ∈ Aunsafeϵ,τ (st) | at ∼ π(· | st)

)
+ P

(
st+1 ̸∈ Sunsafeτ | st ̸∈ S̄unsafeϵ,τ , at ̸∈ Aunsafeϵ,τ (st)

)
P
(
at ̸∈ Aunsafeϵ,τ (st) | at ∼ π(· | st)

)
⩾ P

(
st+1 ̸∈ S̄unsafeϵ,τ | st ̸∈ S̄unsafeϵ,τ , at ̸∈ Aunsafeϵ,τ (st)

)
P
(
at ̸∈ Aunsafeϵ,τ (st) | at ∼ π(· | st)

)
> (1− ϵ

2Hτ

)(1− ϵ

2Hτ

)

where the last equality utilizes the definition of Aunsafeϵ,τ (·). Combining this with

(6.9) and s0 ∈ S \ S̄unsafeϵ,τ , we have

P
(
cπτ (s0) ∩ Sunsafeτ ̸= ∅

)
= 1− P

(
cπτ (s0) ∩ Sunsafeτ = ∅

)
⩽ 1− (1− ϵ

2Hτ

)2Hτ ⩽ 1− (1− ϵ) = ϵ.

By Definition 6.5.1, the proof is completed. ■

175

6.6.3 Proof of Theorem 6.5.3

Criterion (M2) ensures the masked policy π̌θ,τ = πθ · mτ,πθ is a valid probability

distribution and hence a valid policy. Hence, space Πτ ≜ {π̌θ,τ | θ ∈ Rnθ} is a valid

policy space. Criterion (M1) ensures that
∑

a∈Aunsafe
ϵ,τ (s) π̌(a | s) ⩽ ϵ

2Hτ
for each

s ∈ S \ S̄unsafeϵ,τ for all π̌ ∈ Πτ . By Proposition 6.5.2, Πτ is a (1 − ϵ)-safe policy

space for task τ . ■

6.6.4 Proof of Lemma 6.5.5

Since S \ S̄unsafeϵ,τ ̸= ∅, then by (C3), for all s ∈ S \ S̄unsafeϵ,τ , there exists a ∈ A such

that a ̸∈ Aunsafeϵ,τ (s). Then (C2) also implies that s ̸∈ BRϵ(s
′, a) for all s′ ∈ S̄unsafeϵ,τ .

The definition of BRϵ in (6.6) implies that T S(s′ | s, a) ⩽ ϵ
2Hτ |S| for all s

′ ∈ S̄unsafeϵ,τ .

This implies that

P
(
st+1 ∈ S \ S̄unsafeϵ,τ | st = s, at = a

)
=1− P

(
st+1 ∈ S̄unsafeϵ,τ | st = s, at = a

)
=1−

∑
s′∈S̄unsafe

ϵ,τ

T S
(
s′ | s, a

)
⩾ 1−

∑
s′∈S

T S
(
s′ | s, a

)
⩾ 1− ϵ

2Hτ

. (6.10)

Consider policy πτ , where for s ̸∈ S̄unsafeϵ,τ , πτ (a | s) = 1 for some a ̸∈ Aunsafeϵ,τ (s)

and πτ (a | s) = 0 otherwise. Then (6.10) implies that

P
(
cπττ (s0) ∩ S̄unsafeϵ,τ = ∅ | s0 ̸∈ S̄unsafeϵ,τ

)
=

Hτ−1∏
t=0

P
(
st+1 ∈ S \ S̄unsafeϵ,τ | st ∈ S \ S̄unsafeϵ,τ , at ∼ πτ (· | st)

)
⩾(1− ϵ

2Hτ

)Hτ ⩾ 1− ϵ

2
⩾ 1− ϵ.

This implies that P
(
cπττ (s0) ∩ S̄unsafeϵ,τ ̸= ∅ | s0 ̸∈ S̄unsafeϵ,τ

)
⩽ ϵ. By (C1), we have

Sunsafeτ ⊂ S̄unsafeϵ,τ . Therefore, we have P
(
cπττ (s0) ∩ Sunsafeτ ̸= ∅ | s0 ̸∈ S̄unsafeϵ,τ

)
⩽ ϵ

Hence, πτ is a feasible policy for each task τ and Problem (6.1) is feasible. ■

176

6.7 Experimental evaluation

In this section, we conduct simulation experiments to evaluate the proposed masked

FTLPP framework. The experiments serve to study two main questions: (i) Is the

policy masking framework able to guarantee constraint satisfaction during the

whole deployment process? (ii) Is the FTLPP framework effective in online meta

update?

Our experiments consider two different scenarios from OpenAI gym [198]:

Frozen Lake with maps generated from a Markov process and Acrobot with dy-

namics generated from a distribution of large variance. In Frozen Lake, the agent

gets reward +2 when it reaches the goal; otherwise, it gets reward 0. In Acrobot,

the agent gets reward equal to its height plus 2 at each step, but gets reward 0 if

it violates the constraint. We also compare our masked FTLPP framework with

the following three baselines: (i) Meta SRL [172], where the meta policy for the

next task is given by the weighed average of the adapted policies in the previous

task obtained through CRPO [199]. (ii) Masked FTML, where FTML proposed

in [168] for meta update is combined with the policy masking framework we pro-

pose for all-time safety. (iii) SAILR with FTLPP, where SAILR proposed in [174]

for all-time safety is combined with the FTLPP framework we propose for meta

update.

Figure 6.1 presents the experiment results. Specifically, it shows that the pol-

icy masking framework, in contrast to Meta SRL, is able to satisfy the safety

constraints all the time. Note that the curves of reward for SAILR with FTLPP,

in constrast to masked FTLPP and masked FTML, are relatively flat. This is be-

cause SAILR adopts a fixed backup policy, and the performance of the algorithm is

mainly determined by the backup policy when the agent is around the boundary of

the unsafe sets most of the time. This shows that the masking framework provides

a much larger space for optimization, especially at the boundary of the unsafe sets.

Comparing with masked FTLPP with masked FTML, it shows that the FTLPP

framework has higher sample efficiency by achieving superior performance without

using additional samples for gradient estimation in each step as in FTML. Notice

that in the experiment of Acrobot, Meta SRL achieves comparable reward with

masked FTLPP and masked FTML, but with high rate of unsafe accidents. This

177

(a) Results of Frozen Lake

(b) Results of Acrobot

Figure 6.1: Experiment results. Left: The reward of 50 testing tasks for the
policies adapted 1 step from the meta parameter obtained after training with each
number of tasks. Middle left: The rate of unsafe accidents of 50 testing tasks for
the policies adapted 1 step from the meta parameter obtained after training with
each number of tasks. Middle right: The reward of 50 testing tasks for each
step of adapted policy from the meta parameter obtained using 100 training tasks.
Right: The rate of unsafe accidents of 50 testing tasks for each step of adapted
policy from the meta parameter obtained using 100 training tasks.

is due to the fact that, in this experiment, the unsafe accidents conflict with the

reward, and the accidents usually bring higher reward. However, in this chapter,

ensuring all-time safety is the top priority.

6.8 Conclusion

We present masked Follow-the-Last-Parameter-Policy (FTLPP), an online safe

MRL framework that ensures all-time safety and is sample-efficient in meta up-

date. Masked FTLPP is composed of a policy masking framework and an FTLPP

framework. All-time safety is achieved through the policy masking framework

that suppresses the probability of executing unsafe actions to a low value. FTLPP

formulates meta update as a policy optimization problem and solves it using an

online off-policy reinforcement learning algorithm. Our theoretical results derive

the policy masking framework and justify the FTLPP framework. The proposed

framework is evaluated using two case studies in OpenAI gym and compared with

178

three benchmarks.

179

Chapter 7
Conclusion and future works

7.1 Conclusion

This dissertation studies safe machine learning for intelligent multi-robot systems.

We first provide a class of distributed Gaussian process regression algorithms. The

algorithms are able to quantify the uncertainties of intermediate learning results

and cognizant of limited resources in computation, memory, and communication

budget in the robots. It shows that through limited inter-robot communication,

the algorithms achieve Pareto improvement for robots’ learning performances. We

next propose a distributed learning and planning framework for safe navigation.

The proposed algorithms can quickly update each robot’s safe control policy based

on the results from online learning and guarantee robots’ safety under certain

conditions. Then we propose a class of federated optimization algorithms which

leverages on zero-shot generalization guarantees. We further analyze the algorithm

for theoretical guarantees on almost-sure convergence, almost consensus, Pareto

improvement and global convergence. Finally, we propose a novel online meta

update method and a policy masking framework for online safe meta reinforcement

learning. The policy masking framework ensures all-time safety, while the online

meta update method is sample-efficient and is able to achieve sublinear growth of

dynamic regret.

180

7.2 Future works

In the future, we plan to address the following issues:

7.2.1 Transfer learning for generalizable reinforcement learn-

ing with heterogeneous distributions

Chapter 5 considers learning a single control policy using a network of learners

whose training environments follow the same distribution. To further enhance

the applicability of the multi-learner learning framework, we plan to relax this

assumption and assume that the training distributions of the learners may be

heterogeneous.

One potential direction can be applying transfer learning to facilitate the col-

laborative learning across different distributions. Transfer learning is originally

developed for scenarios where obtaining training data that matches the data dis-

tribution of the test data can be difficult and expensive [200]. It is used to improve

a learner from one (target) domain by transferring information from a related

(source) domain [200]. Depending on whether the target domain is identical to

the source domain, related literature can be classified into homogeneous transfer

learning and heterogeneous transfer learning. In our case, since the domains, the

space of the environments, are the same but distributions of the environments are

different, approaches from homogeneous transfer learning can be leveraged. The

major goal is to reduce the performance drop due to the distribution shift.

One possible approach is to adopt the idea of conditional probability based

multi-source domain adaptation [201], whose main idea is to use a combination

of source domain classifiers to generate labeled data in the domain. Note that

[201] studies a classification problem. When it comes to reinforcement learning

in our problem, some modifications are needed. For example, we may first assign

a latent variable z to represent for the distribution of the training environments

of each learner. We will learn the conditional probability ζ of the distribution

variable z givens a sequence of sensory data {oτ}tτ=1, which contains observations

in an environment. Then our control policy π takes three inputs: observation o,

goal region XG,E and distribution variable z sampled from ζ. The learners will

collaboratively learn ζ and π, and the objective can be minimizing the total costs

181

over all the learners. In this way, the learners are able to contribute to the learning

of control policies of other learners although they have different distributions of

training environments. We will develop the corresponding framework to ensure

the collaboration benefits the generalizability of all the learners.

7.2.2 Meta Bayesian learning for safe system identification

In Chapter 4 and Chapter 6, to obtain safety guarantees, explicit prior models

of the uncertainties or system dynamics are needed. However, this prior model-

ing may not be verified for some complex systems in the real world. Therefore,

to further enhance the applicability and validity of the safety guarantees, one fu-

ture work can be relaxing the need of the prior modeling and obtain safe system

identification.

One potential direction can be utilizing Bayesian learning to obtain dynamic

models with uncertainty quantification. Bayesian learning aims to predict with a

distribution of all possible values instead of a single value [202]. The predictive dis-

tribution is the posterior distribution obtained from the Bayesian inference frame-

work provided a dataset and a pre-specified prior distribution [202]. The nature of

making predictions through distributions in Bayesian learning innately quantifies

the prediction uncertainties. If the ground truth dynamic model truly follows the

prior distribution, Bayesian learning rules that the ground truth dynamic model

also follows the posterior distribution. Probabilistic safety can therefore be guar-

anteed by using the corresponding confidence set for analysis. Nevertheless, in the

real world, it is generally hard to verify the prior distribution of the ground truth

model.

One possible approach is to leverage the PAC-Bayes theorem. PAC-Bayes

theorem provides probability bounds for the expected cost when predictions are

made using Bayesian learning [203]. Leveraging this theorem we can define the cost

function as the number of times the confidence sets obtained from Bayesian learning

capturing the ground truths. Then the parameters in the Bayesian learning models,

such as Bayesian neural network and Gaussian process, can be selected such that

the corresponding upper bounds obtained from the theorem aligns with the desired

accuracy. The resulting predictive model would then have the desired rate of

182

capturing the ground truth model regardless of whether the ground truth model

follows the prior distribution or not.

7.2.3 Adversarial machine learning for environmental dis-

tribution generalization

Chapter 5 designs a single control policy that can provide guaranteed performances

in unseen environments. However, we restrict the unseen environments to be sam-

pled from the same distribution as those used for training. To further enhance the

intelligence of the robot, it is desired that the controller can generalize to unseen

environments from different distributions with performance guarantees.

One potential direction can be applying adversarial machine learning to train a

controller generalizable to as many environmental distributions as possible. Adver-

sarial machine learning investigates effective machine learning techniques against

an adversarial opponent in classification problems [204]. In general, an adversarial

opponent can launch attacks on different components of the learning algorithms,

e.g., poisoning training data by injecting false examples, altering the model outputs

at the inference phase by deliberately crafting the inputs, and compromising the

privacy of the users by obtaining information from the learning agent [204][205].

The goal of adversarial machine learning is to produce a learned model that is

robust to the adversarial attacks to some extent. In the context of safe machine

learning in robots, environment changes can be seen as attacks to the learned

model.

One possible approach is to adopt adversarial distributional training [206]. Sim-

ilar to [206], we plan to inject adversarial disturbance to the distribution of en-

vironments. Furthermore, instead of restricting the magnitude of distributional

disturbance, we plan to modify the optimization criterion and aim to maximize

the magnitude of disturbance to the distribution of environments while restricting

the performance of the control policy being above certain thresholds.

183

7.2.4 Real-time safety verification for high dimensional sys-

tems

In Chapter 5, the safety of the controller can only be verified after the robot

is run through the environment(s). If the robot driven under the controller can

reach the goal region without collision with the obstacle(s), the controller is safe.

It is desired that the safety of the controller can be verified before running the

robot through the environment(s). Existing approaches on safety verification are

mostly offline, that is, the model is deployed after safety verification and stays the

same throughout the whole system operation. However, changes of environments

motivate online updates of learned model for adaptation. Therefore, we plan to

develop a real-time safety verification framework for online learning algorithms.

Safety verification in machine learning, especially deep learning, aims to pro-

vide formal guarantees about the behavior properties and specifications, such as

reachability, of machine learning models, which is usually used for safety-assurance

purpose before deploying the model [207]. It has been demonstrated that even

validating simple properties about the behaviors of neural networks is an NP-

complete problem [208]. Online safety verification is non-trivial because existing

techniques majorly reply on over-approximation of the reachability set of learned

models/learning-enabled control systems, which is usually time-consuming [209].

In the problem of robotic motion planning, one possible solution is to reduce

computation by only considering part of the reachability set, e.g., only considering

the one-step backward reachable set of inevitable collision states (ICSs) [210]. ICSs

are the states that lead to collisions under any control inputs. For any state in the

one-step backward reachable set of ICSs, there exists one or more control inputs

that drive the system to the ICSs. Therefore, safety verification can be sufficiently

accomplished only through the one-step backward reachable set of ICSs, where a

state-feedback control policy is safe if it selects control inputs not leading to ICSs

when the system state is in the set of one-step backward reachable set of ICSs.

In the setting of multi-robot system, safety verification is also challenged by the

“curse of dimensionality”, that is, the state-action space grows exponentially with

respect to the number of robots [211].

184

7.2.5 Distributed online safe meta reinforcement learning

Chapter 6 considers online meta reinforcement learning in single-learner systems.

In the future, to improve learning efficiency, we plan to extend the work to dis-

tributed multi-learner systems where the robot learners can collaboratively solve

the problem subject to distributed data.

One possible direction can be applying the ideas in the literature of distributed

online optimization. Distributed online optimization considers the problem of

online optimization subject to distributed data sources [212]. In general, in a

distributed online optimization framework, the learners update local parameters

based on local data sources and periodically exchange information with a small

subset of neighbors in a communication network [212, 213, 214, 215]. The goals of

the distributed online optimization algorithms are usually to minimize the growth

rate of the regret bound.

One possible approach is to adopt the distributed autonomous online learning

method [212] to learn the optimal parameter policy as well as its value function

and Q function. Similar to [214], each learner will exchange its parameters with the

neighbors and perform local (sub)gradient descent. Notice that in multi-learner

systems, it is not necessarily that all the learners have the same amount of data, or

in this case, have experienced the same amount of tasks. This imbalance of data

is not considered in the literature of distributed online optimization [212]. On the

other hand, control policies trained with different amount data have different levels

of performance uncertainties [51]. Therefore, similar to Chapter 3 and Chapter 5,

how to quantify and be cognizant of the learning uncertainty in each learner is a

challenge to obtain efficient collaboration for distributed online meta reinforcement

learning.

185

Bibliography

[1] K. Matthews, “6 robotics applications demonstrating new tech markets,”
The Robot Report, May 2019.

[2] N. R. Gans and J. G. Rogers, “Cooperative multirobot systems for military
applications,” Current Robotics Reports, pp. 1–7, January 2021.

[3] K. Mizokami, “The navy takes another successful step toward mine-hunting
robots,” Popular Mechanics, September 2019.

[4] NASA, JPL-Caltech, and MSSS, “Mars report: Update on NASA’s Perse-
verance Rover & Curiosity Rover,” NASA Science, May 2021.

[5] “Size of the global market for industrial and non-industrial robots between
2018 and 2025,” Statista Research Department, March 2021.

[6] K. Geihs, “Engineering challenges ahead for robot teamwork in dynamic
environments,” Applied Sciences, vol. 10, p. 1368, 2020.

[7] J. Rey, “How robots are transforming amazon warehouse jobs — for better
and worse,” Vox Media, December 2019.

[8] “U.S. Navy could ‘swarm’ foes with robot boats,” CNN, October 2014.

[9] J. Peters, “Watch DARPA test out a swarm of drones,” The Verge, August
2019.

[10] P. O’Dowd and A. Hagan, “Take a ride through phoenix in a driverless car,”
WBUR, January 2021.

[11] C. Flanagan, “Waymo’s driverless ride service moves metro phoenix toward
autonomous future,” Cronkite News, December 2020.

[12] M. Machosky, “Two pittsburgh self-driving car giants combine forces as au-
rora acquires uber’s advanced technologies group,” Next Pittsburgh, Decem-
ber 2020.

186

[13] “Global autonomous cars market size to exceed usd 55.6 billion by 2032,”
Spherical Insights, November 2023.

[14] V. Trianni, “Multi-robot systems, swarm robotics and self-organisation,”
Evolutionary Swarm Robotics: Evolving Self-Organising Behaviours in
Groups of Autonomous Robots, pp. 23–46, 2008.

[15] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine
learning perspective,” Autonomous Robots, vol. 8, no. 3, pp. 345–383, June
2000.

[16] G. Yu, K. Ashmawy, E. Huang, and W. Zeng, “Under the hood of uber
atg’s machine learning infrastructure and versioning control platform for self-
driving vehicles,” Uber Engineering, March 2020.

[17] J. M. Fossaceca and S. H. Young, “Artificial intelligence and machine learning
for future army applications,” in Ground/Air Multisensor Interoperability,
Integration, and Networking for Persistent ISR IX, vol. 10635, p. 1063507,
International Society for Optics and Photonics, May 2018.

[18] D. S. Hoadley and N. J. Lucas, “Artificial intelligence and national security,”
Congressinal Research Service, April 2018.

[19] D. Yadron and D. Tynan, “Tesla driver dies in first fatal crash while using
autopilot mode,” The Guardian, June 2016.

[20] P. McCausland, “Self-driving uber car that hit and killed woman did not
recognize that pedestrians jaywalk,” NBC News, November 2019.

[21] F. Keating, “The ’suicidal robot’ that drowned in a fountain didn’t kill itself
after all,” Independent, July 2017.

[22] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey on deep learning for
Big Data,” Information Fusion, vol. 42, pp. 146–157, July 2018.

[23] D. Gunning and D. Aha, “DARPA’s explainable artificial intelligence (XAI)
program,” AI Magazine, vol. 40, pp. 44–58, June 2019.

[24] L. Longo, R. Goebel, F. Lecue, P. Kieseberg, and A. Holzinger, “Explain-
able artificial intelligence: Concepts, applications, research challenges and
visions,” in International Cross-Domain Conference for Machine Learning
and Knowledge Extraction, pp. 1–16, August 2020.

[25] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

187

[26] E. Ackerman, “Slight street sign modifications can completely fool machine
learning algorithms,” IEEE Spectrum, vol. 6, p. 103, 2019.

[27] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement
learning,” Journal of Machine Learning Research, vol. 16, no. 1, pp. 1437–
1480, August 2015.

[28] T. Moldovan and P. Abbeel, “Risk aversion in markov decision processes via
near optimal Chernoff bounds,” in Proc. Advances in Neural Information
Processing Systems (NeurIPS), pp. 3131–3139, 2012.

[29] A. Gosavi, “Reinforcement learning for model building and variance-
penalized control,” in Proc. Winter Simulation Conference (WSC), pp. 373–
379, 2009.

[30] N. Abe, P. Melville, C. Pendus, C. K. Reddy, D. L. Jensen, V. P. Thomas,
J. J. Bennett, G. F. Anderson, B. R. Cooley, M. Kowalczyk, M. Domick, and
T. Gardinier, “Optimizing debt collections using constrained reinforcement
learning,” in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, pp. 75–84, 2010.

[31] A. Tamar, D. Di Castro, and S. Mannor, “Policy gradients with vari-
ance related risk criteria,” in Proc. Int. Conf. Machine Learning (ICML),
p. 1651–1658, 2012.

[32] M. Heger, “Consideration of risk in reinforcement learning,” in Proc. Int.
Conf. Machine Learning (ICML), pp. 105–111, 1994.

[33] A. Nilim and L. El Ghaoui, “Robust control of markov decision processes
with uncertain transition matrices,” Operations Research, vol. 53, pp. 780–
798, October 2005.

[34] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based
model predictive control for safe exploration,” in Proc. IEEE Conf. Decision
and Control (CDC), pp. 6059–6066, 2018.

[35] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in finite
Markov decision processes with Gaussian processes,” in Proc. Advances in
Neural Information Processing Systems (NeurIPS), pp. 4312–4320, 2016.

[36] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of quadrotor
dynamics using barrier certificates,” in Proc. Int. Conf. Robotics and Au-
tomation (ICRA), pp. 2460–2465, 2018.

[37] Y. Sui, A. Gotovos, J. Burdick, and A. Krause, “Safe exploration for op-
timization with Gaussian processes,” in Proc. Int. Conf. Machine Learning
(ICML), pp. 997–1005, 2015.

188

[38] I. Usmanova, A. Krause, and M. Kamgarpour, “Safe convex learning under
uncertain constraints,” in Int. Conf. Artificial Intelligence and Statistics,
pp. 2106–2114, 2019.

[39] Y. Sui, V. Zhuang, J. Burdick, and Y. Yue, “Stagewise safe Bayesian op-
timization with Gaussian processes,” in Proc. Int. Conf. Machine Learning
(ICML), pp. 4781–4789, 2018.

[40] W. Sun, D. Dey, and A. Kapoor, “Safety-aware algorithms for adversarial
contextual bandit,” in Proc. Int. Conf. Machine Learning (ICML), pp. 3280–
3288, 2017.

[41] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Proc. Advances
in Neural Information Processing Systems (NeurIPS), pp. 908–918, 2017.

[42] A. Wachi, Y. Sui, Y. Yue, and M. Ono, “Safe exploration and optimiza-
tion of constrained MDPs using Gaussian processes.,” in Proc. AAAI Conf.
Artificial Intelligence (AAAI), pp. 6548–6556, 2018.

[43] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy opti-
mization,” in Proc. Int. Conf. Machine Learning (ICML), pp. 22–31, 2017.

[44] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and
C. J. Tomlin, “A general safety framework for learning-based control in un-
certain robotic systems,” IEEE Trans. Automatic Control, vol. 64, no. 7,
pp. 2737–2752, October 2018.

[45] A. K. Akametalu, S. Kaynama, J. F. Fisac, M. N. Zeilinger, J. H. Gillula, and
C. J. Tomlin, “Reachability-based safe learning with gaussian processes.,” in
Proc. IEEE Conf. Decision and Control (CDC), pp. 1424–1431, 2014.

[46] Z. Zhou, O. S. Oguz, M. Leibold, and M. Buss, “A general framework to
increase safety of learning algorithms for dynamical systems based on region
of attraction estimation,” IEEE Trans. Robotics, vol. 36, no. 5, pp. 1472–
1490, June 2020.

[47] T. Lew, A. Sharma, J. Harrison, A. Bylard, and M. Pavone, “Safe active
dynamics learning and control: A sequential exploration–exploitation frame-
work,” IEEE Trans. Robotics, vol. 38, no. 5, pp. 2888–2907, May 2022.

[48] D. K. Jha, M. Zhu, Y. Wang, and A. Ray, “Data-driven anytime algorithms
for motion planning with safety guarantees,” in Proc. American Control
Conf. (ACC), pp. 5716–5721, 2016.

189

[49] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of the
art,” Autonomous agents and multi-agent systems, vol. 11, no. 3, pp. 387–
434, November 2005.

[50] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Chal-
lenges, methods, and future directions,” IEEE Signal Processing Magazine,
vol. 37, pp. 50–60, February 2020.

[51] V. Vapnik, The Nature of Statistical Learning Theory. Springer Science &
Business Media, 2013.

[52] V. Trianni, Evolutionary swarm robotics: evolving self-organising behaviours
in groups of autonomous robots. Springer, 2008.

[53] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Pergament,
E. Cidon, S. Katti, and M. Pavone, “Network offloading policies for cloud
robotics: a learning-based approach,” Autonomous Robots, vol. 45, no. 7,
pp. 997–1012, July 2021.

[54] C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine Learn-
ing. MIT Press, 2006.

[55] T. Choi and M. J. Schervish, “On posterior consistency in nonparamet-
ric regression problems,” Journal of Multivariate Analysis, vol. 98, no. 10,
pp. 1969–1987, November 2007.

[56] K. Ritter, Average-Case Analysis of Numerical Problems. Springer, 2007.

[57] M. P. Deisenroth, C. E. Rasmussen, and J. Peters, “Gaussian process dy-
namic programming,” Neurocomputing, vol. 72, no. 7-9, pp. 1508–1524,
March 2009.

[58] M. Mukadam, X. Yan, and B. Boots, “Gaussian process motion planning,”
in Proc. Int. Conf. Robotics and Automation (ICRA), pp. 9–15, 2016.

[59] S. Anderson, T. D. Barfoot, C. H. Tong, and S. Särkkä, “Batch continuous-
time trajectory estimation as exactly sparse Gaussian process regression,”
Autonomous Robots, vol. 39, no. 3, pp. 221–238, October 2015.

[60] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian process meets big
data: A review of scalable GPs,” IEEE Trans. Neural Networks and Learning
Systems, vol. 31, no. 11, pp. 4405–4423, October 2020.

[61] A. V. Vecchia, “Estimation and model identification for continuous spatial
processes,” Journal of the Royal Statistical Society: Series B (Methodologi-
cal), vol. 50, no. 2, pp. 297–312, January 1988.

190

[62] A. Datta, S. Banerjee, A. O. Finley, and A. E. Gelfand, “Hierarchical nearest-
neighbor Gaussian process models for large geostatistical datasets,” Journal
of the American Statistical Association, vol. 111, no. 514, pp. 800–812, Au-
gust 2016.

[63] A. O. Finley, A. Datta, B. D. Cook, D. C. Morton, H. E. Andersen, and
S. Banerjee, “Efficient algorithms for Bayesian nearest neighbor Gaussian
processes,” Journal of Computational and Graphical Statistics, vol. 28, no. 2,
pp. 401–414, April 2019.

[64] M. Tavassolipour, S. A. Motahari, and M. T. M. Shalmani, “Learning
of Gaussian processes in distributed and communication limited systems,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 68, no. 2,
pp. 987–997, March 2019.

[65] J. Chen, K. H. Low, Y. Yao, and P. Jaillet, “Gaussian process decentralized
data fusion and active sensing for spatiotemporal traffic modeling and pre-
diction in mobility-on-demand systems,” IEEE Trans. Automation Science
and Engineering, vol. 12, no. 3, pp. 901–921, July 2015.

[66] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “A collaborative training al-
gorithm for distributed learning,” IEEE Trans. Information Theory, vol. 55,
no. 4, pp. 1856–1871, April 2009.

[67] G. Pillonetto, L. Schenato, and D. Varagnolo, “Distributed multi-agent gaus-
sian regression via finite-dimensional approximations,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 41, no. 9, pp. 2098–2111, September
2019.

[68] D. Varagnolo, G. Pillonetto, and L. Schenato, “Distributed parametric and
nonparametric regression with on-line performance bounds computation,”
Automatica, vol. 48, no. 10, pp. 2468–2481, July 2012.

[69] S. Mart́ınez, “Distributed interpolation schemes for field estimation by mo-
bile sensor networks,” IEEE Trans. Control Systems Technology, vol. 18,
no. 2, pp. 491–500, March 2010.

[70] Y. Xu, J. Choi, S. Dass, and T. Maiti, “Efficient Bayesian spatial predic-
tion with mobile sensor networks using Gaussian Markov random fields,”
Automatica, vol. 49, no. 12, pp. 3520–3530, October 2013.

[71] J. Choi, S. Oh, and R. Horowitz, “Distributed learning and cooperative
control for multi-agent systems,” Automatica, vol. 45, no. 12, pp. 2802–2814,
December 2009.

191

[72] M. Zhu and S. Mart́ınez, Distributed Optimization-Based Control of Multi-
Agent Networks in Complex Environments. Springer, 2015.

[73] R. Yu, Z. Yuan, M. Zhu, and Z. Zhou, “Data-driven distributed state esti-
mation and behavior modeling in sensor networks,” in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems (IROS), pp. 8192–8199, 2020.

[74] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A distribution-free theory
of nonparametric regression. Springer, 2002.

[75] G. E. Hinton, “Training products of experts by minimizing contrastive di-
vergence,” Neural Computation, vol. 14, no. 8, pp. 1771–1800, August 2002.

[76] V. Tresp, “A bayesian committee machine,” Neural Computation, vol. 12,
no. 11, pp. 2719–2741, November 2000.

[77] H. Liu, J. Cai, Y. Wang, and Y. S. Ong, “Generalized robust Bayesian
committee machine for large-scale Gaussian process regression,” in Proc.
Int. Conf. Machine Learning (ICML), pp. 3131–3140, 2018.

[78] M. Zhu and S. Mart́ınez, “Discrete-time dynamic average consensus,” Auto-
matica, vol. 46, no. 2, pp. 322–329, February 2010.

[79] N. A. Lynch, Distributed Algorithms. Elsevier, 1996.

[80] D. Romeres, M. Zorzi, R. Camoriano, and A. Chiuso, “Online semi-
parametric learning for inverse dynamics modeling,” in Proc. IEEE Conf.
Decision and Control (CDC), pp. 2945–2950, 2016.

[81] M. F. Huber, “Recursive Gaussian process: On-line regression and learning,”
Pattern Recognition Letters, vol. 45, pp. 85–91, August 2014.

[82] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Automatic
Control, vol. 49, no. 9, pp. 1520–1533, September 2004.

[83] E. Mueller, M. Zhu, S. Karaman, and E. Frazzoli, “Anytime computa-
tion algorithms for approach-evasion differential games,” arXiv preprint
arXiv:1308.1174, 2013.

[84] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-
theoretic regret bounds for Gaussian process optimization in the bandit
setting,” IEEE Trans. Information Theory, vol. 58, no. 5, pp. 3250–3265,
January 2012.

192

[85] M. R. Abbasifard, B. Ghahremani, and H. Naderi, “A survey on nearest
neighbor search methods,” International Journal of Computer Applications,
vol. 95, no. 25, June 2014.

[86] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[87] Á. Besenyei, “Picard’s weighty proof of Chebyshev’s sum inequality,” Math-
ematics Magazine, vol. 91, no. 5, pp. 366–371, December 2018.

[88] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic
Processes. New Delhi, India: Tata McGraw-Hill Education, 2002.

[89] C.-T. Chen, Linear System Theory and Design, 3rd Ed. Oxford University
Press, Inc., 1999.

[90] R. V. Hogg, E. A. Tanis, and D. L. Zimmerman, Probability and Statistical
Inference. Macmillan New York, 1977.

[91] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[92] L. Lindemann, M. Cleaveland, Y. Kantaros, and G. J. Pappas, “Robust
motion planning in the presence of estimation uncertainty,” in Proc. IEEE
Conf. Decision and Control (CDC), pp. 5205–5212, 2021.

[93] M. H. Cohen, C. Belta, and R. Tron, “Robust control barrier functions for
nonlinear control systems with uncertainty: A duality-based approach,” in
Proc. IEEE Conf. Decision and Control (CDC), pp. 174–179, 2022.

[94] A. Lakshmanan, A. Gahlawat, and N. Hovakimyan, “Safe feedback motion
planning: A contraction theory and l 1-adaptive control based approach,” in
Proc. IEEE Conf. Decision and Control (CDC), pp. 1578–1583, 2020.

[95] M. Omainska, J. Yamauchi, T. Beckers, T. Hatanaka, S. Hirche, and M. Fu-
jita, “Gaussian process-based visual pursuit control with unknown target
motion learning in three dimensions,” SICE Journal of Control, Measure-
ment, and System Integration, vol. 14, no. 1, pp. 116–127, June 2021.

[96] M. Ono, M. Pavone, Y. Kuwata, and J. Balaram, “Chance-constrained
dynamic programming with application to risk-aware robotic space explo-
ration,” Autonomous Robots, vol. 39, no. 4, pp. 555–571, August 2015.

[97] M. Castillo-Lopez, P. Ludivig, S. A. Sajadi-Alamdari, J. L. Sanchez-Lopez,
M. A. Olivares-Mendez, and H. Voos, “A real-time approach for chance-
constrained motion planning with dynamic obstacles,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 3620–3625, April 2020.

193

[98] N. Virani, D. K. Jha, Z. Yuan, I. Shekhawat, and A. Ray, “Imitation
of demonstrations using Bayesian filtering with nonparametric data-driven
models,” Journal of Dynamic Systems, Measurement, and Control, vol. 140,
no. 3, p. 030906, March 2018.

[99] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive
mapping and planning for visual navigation,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), pp. 2616–2625, 2017.

[100] A. Majumdar and M. Goldstein, “PAC-Bayes control: Synthesizing con-
trollers that provably generalize to novel environments,” in Conf. Robot
Learning (CoRL), pp. 293–305, 2018.

[101] K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger, “Probabilistic
model predictive safety certification for learning-based control,” IEEE Trans.
Automatic Control, vol. 67, no. 1, pp. 176–188, January 2022.

[102] K. P. Wabersich and M. N. Zeilinger, “Predictive control barrier functions:
Enhanced safety mechanisms for learning-based control,” IEEE Trans. Au-
tomatic Control, vol. 68, no. 5, pp. 2638–2651, May 2023.

[103] R. Cosner, M. Tucker, A. Taylor, K. Li, T. Molnar, W. Ubelacker, A. Alan,
G. Orosz, Y. Yue, and A. Ames, “Safety-aware preference-based learning for
safety-critical control,” in Learning for Dynamics and Control Conference,
pp. 1020–1033, 2022.

[104] S. Curi, A. Lederer, S. Hirche, and A. Krause, “Safe reinforcement learn-
ing via confidence-based filters,” in Proc. IEEE Conf. Decision and Control
(CDC), pp. 3409–3415, 2022.

[105] N. Kochdumper, H. Krasowski, X. Wang, S. Bak, and M. Althoff, “Provably
safe reinforcement learning via action projection using reachability analysis
and polynomial zonotopes,” IEEE Open Journal of Control Systems, vol. 2,
pp. 79–92, March 2023.

[106] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in
Annual Symposium on Foundations of Computer Science, pp. 421–427, 1979.

[107] J. T. Schwartz and M. Sharir, “On the “piano movers” problem. II. General
techniques for computing topological properties of real algebraic manifolds,”
Advances in applied Mathematics, vol. 4, no. 3, pp. 298–351, September 1983.

[108] G. Zhao and M. Zhu, “Pareto optimal multirobot motion planning,” IEEE
Trans. Automatic Control, vol. 66, no. 9, pp. 3984–3999, 2021.

194

[109] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, and M. M. Zavlanos,
“A feedback stabilization and collision avoidance scheme for multiple inde-
pendent non-point agents,” Automatica, vol. 42, no. 2, pp. 229–243, February
2006.

[110] D. V. Dimarogonas and K. J. Kyriakopoulos, “Connectedness preserving
distributed swarm aggregation for multiple kinematic robots,” IEEE Trans.
Robotics, vol. 24, no. 5, pp. 1213–1223, October 2008.

[111] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Trans. Robotics, vol. 33, no. 3,
pp. 661–674, June 2017.

[112] G. Zhao and M. Zhu, “Scalable distributed algorithms for multi-robot near-
optimal motion planning,” Automatica, vol. 140, p. 110241, June 2022.

[113] K. E. Bekris, D. K. Grady, M. Moll, and L. E. Kavraki, “Safe distributed
motion coordination for second-order systems with different planning cy-
cles,” International Journal of Robotics Research, vol. 31, no. 2, pp. 129–150,
February 2012.

[114] X. Ma, Z. Jiao, Z. Wang, and D. Panagou, “3-d decentralized prioritized
motion planning and coordination for high-density operations of micro aerial
vehicles,” IEEE Trans. Control Systems Technology, vol. 26, no. 3, pp. 939–
953, May 2018.

[115] J. Van Den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized path
planning for robots with motion uncertainty and imperfect state informa-
tion,” International Journal of Robotics Research, vol. 30, no. 7, pp. 895–913,
June 2011.

[116] T. Pan, C. K. Verginis, A. M. Wells, L. E. Kavraki, and D. V. Dimarogo-
nas, “Augmenting control policies with motion planning for robust and safe
multi-robot navigation,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS), pp. 6975–6981, 2020.

[117] Y. Zhou, H. Hu, Y. Liu, S.-W. Lin, and Z. Ding, “A distributed approach
to robust control of multi-robot systems,” Automatica, vol. 98, pp. 1–13,
December 2018.

[118] A. D. Saravanos, A. Tsolovikos, E. Bakolas, and E. A. Theodorou, “Dis-
tributed covariance steering with consensus admm for stochastic multi-agent
systems.,” in Proc. Robotics: Science and Systems (RSS), 2021.

195

[119] H. Zhu, B. Brito, and J. Alonso-Mora, “Decentralized probabilistic multi-
robot collision avoidance using buffered uncertainty-aware Voronoi cells,”
Autonomous Robots, vol. 46, no. 2, pp. 401–420, January 2022.

[120] R. Cheng, M. J. Khojasteh, A. D. Ames, and J. W. Burdick, “Safe multi-
agent interaction through robust control barrier functions with learned un-
certainties,” in Proc. IEEE Conf. Decision and Control (CDC), pp. 777–783,
2020.

[121] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement learn-
ing,” in Proc. Int. Conf. Robotics and Automation (ICRA), pp. 6252–6259,
2018.

[122] T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex scenar-
ios,” International Journal of Robotics Research, vol. 39, no. 7, pp. 856–892,
May 2020.

[123] G. Zhao and M. Zhu, “Pareto optimal multi-robot motion planning,” IEEE
Trans. Automatic Control, vol. 66, no. 9, pp. 3984–3999, September 2021.

[124] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre, “Set-valued numer-
ical analysis for optimal control and differential games,” in Stochastic and
differential games, pp. 177–247, Springer, 1999.

[125] C. K. Batchelor and G. Batchelor, An introduction to fluid dynamics. Cam-
bridge University Press, 2000.

[126] B. Settles, “Active learning literature survey,” tech. rep., University of
Wisconsin-Madison Department of Computer Sciences, 2009.

[127] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, “Searching with
consistent prioritization for multi-agent path finding,” in Proc. AAAI Con-
ference on Artificial Intelligence (AAAI), vol. 33, pp. 7643–7650, 2019.

[128] S. Zlobec, Zermelo’s Navigation Problems. Boston, MA: Springer US, 2001.

[129] H. G. Tanner and A. Boddu, “Multiagent navigation functions revisited,”
IEEE Trans. Robotics, vol. 28, no. 6, pp. 1346–1359, 2012.

[130] O. Arslan, D. P. Guralnik, and D. E. Koditschek, “Coordinated robot nav-
igation via hierarchical clustering,” IEEE Trans. Robotics, vol. 32, no. 2,
pp. 352–371, April 2016.

196

[131] K. Cole and A. Wickenheiser, “Impact of wind disturbances on vehicle sta-
tion keeping and trajectory following,” in AIAA Guidance, Navigation, and
Control Conference, p. 4865, 2013.

[132] K. Cole and A. M. Wickenheiser, “Reactive trajectory generation for multiple
vehicles in unknown environments with wind disturbances,” IEEE Trans.
Robotics, vol. 34, no. 5, pp. 1333–1348, October 2018.

[133] C. Danielson, K. Berntorp, A. Weiss, and S. Di Cairano, “Robust motion
planning for uncertain systems with disturbances using the invariant-set
motion planner,” IEEE Trans. Automatic Control, vol. 65, no. 10, pp. 4456–
4463, October 2020.

[134] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feedback
motion planning,” International Journal of Robotics Research, vol. 36, no. 8,
pp. 947–982, June 2017.

[135] Y. Kantaros, S. Kalluraya, Q. Jin, and G. J. Pappas, “Perception-based
temporal logic planning in uncertain semantic maps,” IEEE Trans. Robotics,
vol. 38, no. 4, pp. 2536–2556, August 2022.

[136] Y. Fu, D. K. Jha, Z. Zhang, Z. Yuan, and A. Ray, “Neural network-based
learning from demonstration of an autonomous ground robot,” Machines,
vol. 7, no. 2, p. 24, April 2019.

[137] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
Press, 2018.

[138] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learn-
ing: Tutorial, review, and perspectives on open problems,” arXiv preprint
arXiv:2005.01643, 2020.

[139] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying gen-
eralization in reinforcement learning,” in Proc. Int. Conf. Machine Learning
(ICML), pp. 1282–1289, 2019.

[140] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel, “A survey of zero-
shot generalisation in deep reinforcement learning,” Journal of Artificial In-
telligence Research, vol. 76, pp. 201–264, January 2023.

[141] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in Proc. Int. Conf. Machine Learning (ICML),
pp. 1126–1135, 2017.

[142] V. H. Pong, A. V. Nair, L. M. Smith, C. Huang, and S. Levine, “Offline
meta-reinforcement learning with online self-supervision,” in Proc. Int. Conf.
Machine Learning (ICML), pp. 17811–17829, 2022.

197

[143] K. Ji, J. D. Lee, Y. Liang, and H. V. Poor, “Convergence of meta-learning
with task-specific adaptation over partial parameters,” in Proc. Advances in
Neural Information Processing Systems (NeurIPS), pp. 11490–11500, 2020.

[144] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-policy
meta-reinforcement learning via probabilistic context variables,” in Proc. Int.
Conf. Machine Learning (ICML), pp. 5331–5340, 2019.

[145] X. Sun, W. Fatnassi, U. Santa Cruz, and Y. Shoukry, “Provably safe model-
based meta reinforcement learning: An abstraction-based approach,” in
Proc. IEEE Conf. Decision and Control (CDC), pp. 2963–2968, 2021.

[146] S. Xu and M. Zhu, “Meta value learning for fast policy-centric optimal mo-
tion planning,” in Proc. Robotics: Science and Systems (RSS), 2022.

[147] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function
approximators,” in Proc. Int. Conf. Machine Learning (ICML), pp. 1312–
1320, 2015.

[148] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,”
International Journal of Robotics Research, vol. 34, pp. 705–724, March 2015.

[149] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” Journal of Machine Learning Research, vol. 17, no. 1,
pp. 1334–1373, April 2016.

[150] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-net
3.0: Computing robust vacuum suction grasp targets in point clouds using
a new analytic model and deep learning,” in Proc. Int. Conf. Robotics and
Automation (ICRA), pp. 5620–5627, 2018.

[151] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proc. Int.
Conf. Machine Learning (ICML), pp. 5872–5881, 2018.

[152] X. Fan, Y. Ma, Z. Dai, W. Jing, C. Tan, and B. K. H. Low, “Fault-tolerant
federated reinforcement learning with theoretical guarantee,” in Proc. Ad-
vances in Neural Information Processing Systems (NeurIPS), pp. 1007–1021,
2021.

[153] S. Khodadadian, P. Sharma, G. Joshi, and S. T. Maguluri, “Federated re-
inforcement learning: Linear speedup under markovian sampling,” in Proc.
Int. Conf. Machine Learning (ICML), pp. 10997–11057, 2022.

[154] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhu-
ber, “Natural evolution strategies,” Journal of Machine Learning Research,
vol. 15, no. 1, pp. 949–980, January 2014.

198

[155] R. Olfati-Saber and R. M. Murray, “Distributed cooperative control of mul-
tiple vehicle formations using structural potential functions,” IFAC Proceed-
ings Volumes, vol. 35, no. 1, pp. 495–500, 2002.

[156] B. Fehrman, B. Gess, and A. Jentzen, “Convergence rates for the stochas-
tic gradient descent method for non-convex objective functions,” Journal of
Machine Learning Research, vol. 21, no. 136, pp. 1–48, June 2020.

[157] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for non-
convex stochastic programming,” SIAM Journal on Optimization, vol. 23,
no. 4, pp. 2341–2368, January 2013.

[158] R. Bhattacharya, L. Lin, and V. Patrangenaru, A course in mathematical
statistics and large sample theory. Springer, 2016.

[159] P. Mertikopoulos, N. Hallak, A. Kavis, and V. Cevher, “On the almost sure
convergence of stochastic gradient descent in non-convex problems,” in Proc.
Advances in Neural Information Processing Systems (NeurIPS), pp. 1117–
1128, 2020.

[160] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A
nonasymptotic theory of independence. Oxford University Press, 2013.

[161] H. Federer, Geometric measure theory. Springer, 2014.

[162] V. I. Bogachev, Measure theory, vol. 1. Springer Science & Business Media,
2007.

[163] “Pybullet,” https://pybullet.org/wordpress/.

[164] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmid-
huber, “Parameter-exploring policy gradients,” Neural Networks, vol. 23,
no. 4, pp. 551–559, 2010.

[165] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution strate-
gies as a scalable alternative to reinforcement learning,” arXiv preprint
arXiv:1703.03864, 2017.

[166] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, “Meta-
reinforcement learning of structured exploration strategies,” in Proc. Ad-
vances in Neural Information Processing Systems (NeurIPS), pp. 5302–5311,
2018.

[167] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” in Proc. Int. Conf. Machine Learning (ICML), 2018.

199

[168] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-learning,”
in Proc. Int. Conf. Machine Learning (ICML), pp. 1920–1930, 2019.

[169] D. A. E. Acar, R. Zhu, and V. Saligrama, “Memory efficient online meta
learning,” in Proc. Int. Conf. Machine Learning (ICML), pp. 32–42, 2021.

[170] G. Denevi, C. Ciliberto, R. Grazzi, and M. Pontil, “Learning-to-learn
stochastic gradient descent with biased regularization,” in Proc. Int. Conf.
Machine Learning (ICML), pp. 1566–1575, 2019.

[171] D. Grbic and S. Risi, “Safe reinforcement learning through meta-learned
instincts,” in Artificial Life Conference Proceedings 32, pp. 283–291, 2020.

[172] V. Khattar, Y. Ding, B. Sel, J. Lavaei, and M. Jin, “A CMDP-within-online
framework for meta-safe reinforcement learning,” in Proc. Int. Conf. Learn-
ing Representations (ICLR), 2022.

[173] J. Rothfuss, D. Lee, I. Clavera, T. Asfour, and P. Abbeel, “Promp: Proximal
meta-policy search,” in Proc. Int. Conf. Learning Representations (ICLR),
2019.

[174] N. C. Wagener, B. Boots, and C.-A. Cheng, “Safe reinforcement learning
using advantage-based intervention,” in Proc. Int. Conf. Machine Learning
(ICML), pp. 10630–10640, 2021.

[175] E. Hazan, “Introduction to online convex optimization,” Foundations and
Trends in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[176] E. Hazan and C. Seshadhri, “Efficient learning algorithms for changing en-
vironments,” in Proc. Int. Conf. Machine Learning (ICML), pp. 393–400,
2009.

[177] M. Herbster and M. K. Warmuth, “Tracking the best expert,”Machine learn-
ing, vol. 32, no. 2, pp. 151–178, August 1998.

[178] N. Hallak, P. Mertikopoulos, and V. Cevher, “Regret minimization in
stochastic non-convex learning via a proximal-gradient approach,” in Proc.
Int. Conf. Machine Learning (ICML), pp. 4008–4017, 2021.

[179] M.-F. Balcan, M. Khodak, and A. Talwalkar, “Provable guarantees
for gradient-based meta-learning,” in Proc. Int. Conf. Machine Learning
(ICML), pp. 424–433, 2019.

[180] E. C. Hall and R. M. Willett, “Online convex optimization in dynamic en-
vironments,” IEEE Journal of Selected Topics in Signal Processing, vol. 9,
no. 4, pp. 647–662, 2015.

200

[181] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Sil-
ver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement
learning,” in Proc. Int. Conf. Machine Learning (ICML), pp. 1928–1937,
2016.

[182] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[183] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust re-
gion policy optimization,” in Proc. Int. Conf. Machine Learning (ICML),
pp. 1889–1897, 2015.

[184] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in
Proc. Int. Conf. Machine Learning (ICML), pp. 1861–1870, 2018.

[185] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” in
Proc. Int. Conf. Learning Representations (ICLR), 2015.

[186] D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks,” in Proc. Int. Conf.
Learning Representations (ICLR), 2017.

[187] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and
C. Finn, “Learning to adapt in dynamic, real-world environments through
meta-reinforcement learning,” in Proc. Int. Conf. Learning Representations
(ICLR), 2019.

[188] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel,
“Model-based reinforcement learning via meta-policy optimization,” in Conf.
Robot Learning (CoRL), pp. 617–629, 2018.

[189] H. Liu, R. Socher, and C. Xiong, “Taming maml: Efficient unbiased meta-
reinforcement learning,” in Proc. Int. Conf. Machine Learning (ICML),
pp. 4061–4071, 2019.

[190] A. G. Beccuti, S. Mariéthoz, S. Cliquennois, S. Wang, and M. Morari, “Ex-
plicit model predictive control of dc–dc switched-mode power supplies with
extended kalman filtering,” IEEE Trans. Industrial Electronics, vol. 56, no. 6,
pp. 1864–1874, June 2009.

[191] A. Sciarretta and L. Guzzella, “Control of hybrid electric vehicles,” IEEE
Control Systems Magazine, vol. 27, no. 2, pp. 60–70, April 2007.

[192] F. Bertoncelli, F. Ruggiero, and L. Sabattini, “Linear time-varying mpc for
nonprehensile object manipulation with a nonholonomic mobile robot,” in
Proc. Int. Conf. Robotics and Automation (ICRA), pp. 11032–11038, 2020.

201

[193] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How, “Real-
time motion planning with applications to autonomous urban driving,” IEEE
Trans. Control Systems Technology, vol. 17, no. 5, pp. 1105–1118, September
2009.

[194] T. Mercy, W. Van Loock, and G. Pipeleers, “Real-time motion planning in
the presence of moving obstacles,” in Proc. European Control Conf. (ECC),
pp. 1586–1591, 2016.

[195] A. Kalai and S. Vempala, “Efficient algorithms for online decision problems,”
Journal of Computer and System Sciences, vol. 71, no. 3, pp. 291–307, Oc-
tober 2005.

[196] S. Belkhale, R. Li, G. Kahn, R. McAllister, R. Calandra, and S. Levine,
“Model-based meta-reinforcement learning for flight with suspended pay-
loads,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1471–1478,
April 2021.

[197] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi, “Fast global convergence
of natural policy gradient methods with entropy regularization,” Operations
Research, vol. 70, no. 4, pp. 2563–2578, December 2022.

[198] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “OpenAI GYM,” arXiv preprint arXiv:1606.01540, 2016.

[199] T. Xu, Y. Liang, and G. Lan, “CRPO: A new approach for safe reinforcement
learning with convergence guarantee,” in Proc. Int. Conf. Machine Learning
(ICML), pp. 11480–11491, 2021.

[200] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,”
Journal of Big Data, vol. 3, no. 1, pp. 1–40, May 2016.

[201] R. Chattopadhyay, Q. Sun, W. Fan, I. Davidson, S. Panchanathan, and
J. Ye, “Multisource domain adaptation and its application to early detection
of fatigue,” ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 6, no. 4, pp. 1–26, December 2012.

[202] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer Science
& Business Media, 2012.

[203] D. A. McAllester, “Some PAC-Bayesian theorems,” Machine Learning,
vol. 37, no. 3, pp. 355–363, 1999.

[204] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in Proc. ACM workshop on Security and
Artificial Intelligence, pp. 43–58, 2011.

202

[205] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security and
privacy in machine learning,” in IEEE European Symposium on Security and
Privacy, pp. 399–414, 2018.

[206] Y. Dong, Z. Deng, T. Pang, J. Zhu, and H. Su, “Adversarial distributional
training for robust deep learning,” in Proc. Advances in Neural Information
Processing Systems (NeurIPS), pp. 8270–8283, 2020.

[207] W. Xiang, P. Musau, A. A. Wild, D. M. Lopez, N. Hamilton, X. Yang,
J. Rosenfeld, and T. T. Johnson, “Verification for machine learning, auton-
omy, and neural networks survey,” arXiv preprint arXiv:1810.01989, 2018.

[208] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex:
An efficient SMT solver for verifying deep neural networks,” in Int. Conf.
Computer Aided Verification, pp. 97–117, 2017.

[209] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “ReachNN: Reachabil-
ity analysis of neural-network controlled systems,” ACM Trans. Embedded
Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[210] L. Janson, T. Hu, and M. Pavone, “Safe motion planning in unknown envi-
ronments: Optimality benchmarks and tractable policies,” in Proc. Robotics:
Science and Systems (RSS), 2018.

[211] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37,
1966.

[212] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi, “Distributed autonomous
online learning: Regrets and intrinsic privacy-preserving properties,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 11, pp. 2483–
2493, November 2013.

[213] B. McMahan and M. Streeter, “Delay-tolerant algorithms for asynchronous
distributed online learning,” in Proc. Advances in Neural Information Pro-
cessing Systems (NeurIPS), vol. 27, p. 2915–2923, 2014.

[214] Y. Wang, Y. Wan, S. Zhang, and L. Zhang, “Distributed projection-free
online learning for smooth and convex losses,” in Proc. AAAI Conf. Artificial
Intelligence (AAAI), vol. 37, pp. 10226–10234, 2023.

[215] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed
online prediction using mini-batches,” Journal of Machine Learning Re-
search, vol. 13, no. 1, p. 165–202, January 2012.

203

Vita

Zhenyuan Yuan

Zhenyuan Yuan is a Ph.D. candidate in the School of Electrical Engineering
and Computer Science at the Pennsylvania State University. He received B.S. in
Electrical Engineering and B.S. in Mathematics from the Pennsylvania State Uni-
versity in 2018. His research interests lie in machine learning and motion planning
with applications in robotic networks. He is a recipient of the Rudolf Kalman Best
Paper Award of the ASME Journal of Dynamic Systems Measurement and Control
in 2019 and the Penn State Alumni Association Scholarship for Penn State Alumni
in the Graduate School in 2021.

