
The Pennsylvania State University

The Graduate School

SIDE CHANNEL ATTACK FOR KEYSTROKE LOGGING

A Thesis in

Computer Science and Engineering

by

Albert Tannous

© 2008 Albert Tannous

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

May 2008

The thesis of Albert Tannous was reviewed and approved∗ by the following:

Trent Jaeger

Professor of Computer Science and Engineering

Thesis Advisor

Bhuvan Urgaonkar

Professor of Computer Science and Engineering

Raj Acharya

Department Head and Professor of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

The problem of maintaining the confidentiality of sensitive information in computer systems is
typically addressed by mechanisms such as memory protection and access controls to resources.
These techniques only protect confidential information through overt channels. Computer hard-
ware and software both can leak sensitive information through covert or side channels. Side
channels leak secrets through some observable aspect of a program’s execution, such as memory
access patterns and power usage. We examine here a side channel created by the X11 window
system’s translation of keyboard codes to printable character strings. We present an attack
method involving timing the translation of keyboard input to printable strings. Finally, we in-
vestigate ways in which an unprivileged process can be used to guess passwords via brute force
or dictionary, without having subverted the system in any way.

iii

Table of Contents

List of Figures vi

List of Tables vii

Acknowledgments viii

Chapter 1

Introduction 1

Chapter 2

Background 5

2.1 Related Work . 5
2.2 Threat Model . 7
2.3 X11 Keyboard Input Handling . 7
2.4 Linux 2.6 Scheduler . 8

Chapter 3

Experimental Setup and Preliminary Experiments 11

3.1 Experimental Setup . 11
3.2 Initial Experiment . 13

3.2.1 Overview . 13
3.2.2 Results . 14

3.3 Password Guessing . 16
3.3.1 Overview . 16
3.3.2 Results . 17

Chapter 4

Experiment 1 : Within the Victim Program 19

4.1 Overview . 19
4.2 Results . 21

Chapter 5

Experiment 2 : Synchronizing the Victim and the Attack Programs 24

5.1 Overview . 24

iv

5.2 Results . 28

Chapter 6

Experiment 3 : Scheduling the Attack Program 30

6.1 Overview . 30
6.2 Results . 32

Chapter 7

Conclusion 36

Appendix A

XLookupString Code Paths 38

A.1 KeyBind.c Code . 38

Bibliography 48

v

List of Figures

1.1 Attack Overview . 3

3.1 Initial Experiment . 15

4.1 Experiment 1 . 21

5.1 Experiment 2 . 27

6.1 Experiment 3 . 33

vi

List of Tables

2.1 System Calls for the Linux 2.6 Scheduler . 10

3.1 The results of timing the keypresses from trace . 14

4.1 The results of timing the keypresses from kltest . 22

5.1 The results of timing the keypresses from trace using a semaphore 28

6.1 The results of timing the keypresses from a multithreaded trace program 34

vii

Acknowledgments

I am most grateful and indebted to my thesis advisor, Dr. Trent Jaeger, for the guidance, patience
and encouragement he has shown me during my time here at Penn State. I would also like to
thank my other committee member, Dr. Bhuvan Urgaonkar, for his insightful commentary on
my work.

viii

Chapter 1
Introduction

One of the fundamental problems of computer security is the protection of the confidentiality

of sensitive information in computer systems. The traditional methods of protecting such confi-

dentiality involve imposing restrictions on access to resources which are shared between multiple

subjects. Such resources include main memory and non-volatile storage, access to which is con-

trolled by memory protection and access controls respectively. Such traditional methods only

protect sensitive information through overt communication channels. That is, they only provide

security for channels explicitly defined for the sharing of data.

Along with overt channels, computer systems also contain covert channels [1], which were

never intended to transmit data, but can be used for doing so anyway. Covert channels have

been studied in the context of MLS systems [2], in which they may be used to leak secrets from

subjects at high security levels to those at low security levels. A relative of covert channels which

is pertinent to a much broader range of systems is the side channel [3].

A side channel is any characteristic of a shared resource through which information may

be leaked. Normally, side channels are created when the behavior of a program is observably

different depending on the data that program is operating on. Thus, some information about

that data is leaked through observation of the program’s behavior via the side channel. Examples

2

of side channels include timing channels, through which sensitive information can be leaked by

observing execution times, cache channels, where information is leaked based on memory access

patterns, power consumption, electromagnetic leaks or even acoustic emanations.

Usually attacks rely on the behavior of specific implementations of cryptographic algorithms,

or weaknesses in the algorithm itself to reveal the secret or key. A side channel attack is rather

based on information gained from the physical implementation of the system. By observing

secrets leaked from privileged processes through these side channels, unprivileged processes can

obtain sensitive data without compromising the OS or exploiting bad policy. Thus side channel

attacks make it possible to extract secrets with unprivileged processes.

In this work, we focus mainly on a timing attack to recover passwords via keystroke logging.

The attack works by observing how long it takes to transfer key information related to the

processing of a keyboard input through the timing side channel. To do so, we measure the

processing time for each keystroke of the XLookupString function, which plays an important

part of translating a keystroke to a string. This timing information will help us determine which

key was pressed.

Our attack program is an unprivileged process running in user space. The victim program

is an X client, also running in user space. Figure 1.1 shows a layout of this attack. When a

user enters a key from the X client, it generates a hardware interrupt. The processing then goes

through the operating system, the X server, and back to the X client. Our program measures

the delay from when the key is entered to when the X client receives the string associated with

the key. This timing information, leaked from the X client, allows us to recover the password.

We consider the amount of prerequisite knowledge an attacker must have regarding the target

system’s behavior, as well as the factors limiting the effectiveness of the attack. We then evaluate

feasibility given the aforementioned two constraints. We conclude that the timing attack is a

reasonable approach to obtaining passwords, or reducing the password keyspace. Finally, we

consider the design and implementation of a program to guess passwords using the system tool

3

Figure 1.1. Attack Overview

su as a password oracle. This method of password guessing was chosen as it requires no special

privileges.

This project showed that a timing side channel exists, that the victim program leaks timing

information, and that it was possible to get accurate measurements of victim program processing.

Using timestamps, we were able to find the keypresses, and even without them, we could signifi-

cantly reduce the number of possible keypress operations in the output of our attack program.

In the 1st experiment, we claim that we can detect the timing difference of the long XLookup-

4

String code path when unusual keys are pressed. In the 2nd experiment, we claim that we can

detect the timing difference from the attack program if we synchronize it with the victim pro-

gram. In the 3rd experiment, we make the attack program schedulable to accurately measure

the victim’s program processing times.

The remainder of this paper is organized as follows. Chapter 2 covers the related work in the

area of keylogging and side channel attacks, and explains the necessary background knowledge

of the X-Windows system and the Linux 2.6 scheduler. Chapters 3, 4, 5 and 6 describe the

experiments we performed to evaluate the side channel attack as well as a method for password

guessing by an unprivileged process. We conclude in Chapter 7.

Chapter 2
Background

2.1 Related Work

Keystroke logging refers to any technique by which the keypresses entered at a terminal may

be captured and delivered to a third party [4]. Keyloggers manifest themselves in a variety of

ways. Some exist as user-space processes which utilize GUI APIs to collect keypresses. Others

exist in the kernel, possibly as part of a rootkit, and log all keypresses as keyboard interrupts

arrive. These kernel based keyloggers are difficult to discover as their operation is completely

transparent to applications. Another class of keylogger relies on hardware between the keyboard

and the motherboard [5]. Such external keyloggers are normally inserted between the keyboard

and the PS/2 or USB port on the motherboard.

Keystroke loggers must transmit the data they collect to a third party via some means of

data exfiltration [6]. Data exfiltration may occur over overt or covert channels. In the overt case,

a well known channel such as a network protocol or the physical removal of a storage device is

used. In the case of covert channels, data is exfiltrated through a channel not normally used

for communication such as disk usage or unused fields in transport level packet headers. One

class of keylogger, the keyboard jitterbug [7] exfiltrates keypresses by perturbing the timing of

6

their transmission. Regardless of the method of exfiltration, the aforementioned methods of

keystroke logging rely on an attacker having established some degree of control over the system,

whether it be a physical device between the keyboard and computer or malware installed in user

or kernel-space.

By utilizing an attack known as a side channel attack [8], we evaluate a method for keylog-

ging which gathers information about passwords without subverting the system. Side channel

attacks rely on aspects of a program’s execution which give insights into the data the program is

acting upon. Some common examples of side channels through which data is leaked are timing

information [3], processor caches [9], power usage [10] or even electromagnetic emanations [11].

A process may leak sensitive data through one of these side channels to a spy process monitoring

the channel. Cache based attacks normally rely on the spy process timing memory accesses to

detect when a victim process has evicted some cache lines [12]. This information combined with

knowledge of the algorithm used can give insight into the key used to perform cryptographic

operations. Power analysis involves the monitoring of current across wires in a cryptographic

device, in order to determine the values being used at various stages of execution.

Virtually all currently known side channel attacks are against cryptographic algorithms. At-

tacks on the OpenSSL implementation of RSA leverage timing variations in the implementation

of modular exponentiation to recover keys [13]. Bernstein [14] describes an attack in which an

AES key may be recovered due to the use of parts of the key to index memory locations, allowing

for a cache timing attack. Side channel cryptanalysis can even use data implementation to attack

product ciphers [15].

Work has been done to investigate the use of side channels to obtain data leaked from the

trusted path [16]. Information about passwords can be obtained via a timing attack against the

xlock [17] process. Xlock locks the user’s screen until the correct password is entered. The timing

attack relies on the fact that a keypress event will take longer to process if the user presses a

key for which the keysym to string mapping has not yet been loaded into memory. The details

7

of this mapping are covered in Section 2.3.

Side channels are hard to detect and mitigate and nearly impossible to completely remove [18].

Most side channel countermeasures attempt to introduce noise into channels by randomizing

some aspect of program execution or underlying system behavior. These techniques usually

only increase the number of measurements needed for the spy process to reconstruct the leaked

information. There has been some work with configurable cache architecture to provide hardware

assisted defence [19].

2.2 Threat Model

The threat model we are considering is an unprivileged process obtaining entire passwords or

parts of passwords without subverting the system. This is done through the use of a side-channel

attack which relies on the implementation details of X-windows keyboard input handling [20].

This technique can be used to reduce the keyspace of any user’s password including the root

user. The timing attack evaluated here deviate from this threat model to varying degrees, the

details of which are described in Chapter 3.

2.3 X11 Keyboard Input Handling

We now briefly examine X11’s handling of keyboard input [21, 22] for the sake of understanding

how these attacks would ideally leverage it. There are three mappings that occur between the

time a key is pressed, and the time a character is displayed on the screen in the X Windows

system [23]. They are as follows.

1. Physical keys to keycodes: This translation is xserver dependent, and client processes

cannot detect this. We will not mention it any further.

2. Keycodes to keysyms: This mapping can be modified by the X clients themselves, but

8

applies system wide. As we will see, this is a key factor in making the timing attack

possible. The keysym is a logical entity which carries the meaning of a keypress. Examples

of keysyms include XK Return and XK Space, which represent the return key and the space

bar respectively.

3. Keysyms to strings: A keysym itself contains no information about whether or not a

character should be displayed for a given keypress or how. It is up to the client process to

work with the xserver to perform the keysym to string mapping, where the string is zero

or more characters to be printed for a given keypress.

Our timing attack measures the time necessary to complete the XLookupString function,

which essentially performs phase 3 of the translation. This translation is done via a keysym to

string map stored as a linked list.

2.4 Linux 2.6 Scheduler

The new Linux scheduler solved shortcomings of the previous versions and introduces new fea-

tures [24].

Processes can be classified as I/O bound or processor bound. I/O bound processes spend

most of their time submitting and waiting on I/O requests, so they are often runnable, but only

for short periods of time. Processor or CPU bound processes execute code most of the time, so

they run less frequently, but for longer periods. The scheduler policy in Linux favors I/O bound

processes to provide good interactive response.

The Linux scheduler uses a dynamic priority-based scheduling. The processes are ranked

based on their worth and need for processor time, but their priority can dynamically change to

fulfill scheduling objectives. The Linux kernel implements two separate priority ranges: the nice

value, from -20 to 19 with a default of 0, and the real-time priority, from 0 to 99. The nice value

is the static priority, because it doesn’t change. The decisions of the scheduler are hence based

9

on the dynamic priority, which is calculated as a function of the static priority and the task’s

interactivity. To determine whether a process is interactive (I/O bound), the scheduler uses a

heuristic based on how long the process sleeps.

The scheduler offers a relatively high default timeslice (100ms), and also dynamically deter-

mines the timeslice of a process based on priority. Thus higher priority processes can run longer

and more often. When a process enters the TASK RUNNING state, the kernel checks its priority.

If it is higher than the priority of the currently executing process, the scheduler is invoked and

picks a new process to run. When the timeslice of a process reaches zero, it is preempted, and

another process is selected.

The runqueue is the basic data structure of the scheduler. It’s the list of runnable processes on

a given processor. Each runqueue contains two priority arrays: the active and the expired array.

These arrays contain queues of runnable processes per priority level, as well as a priority bitmap

used to find the runnable process with the highest priority. By default, there are 140 priority

levels. The active array contains the tasks in the associated runqueue that have timeslice left,

while the expired array contains the tasks in the runqueue that have exhausted their timeslice.

When the timeslice of a process reaches zero, it’s recalculated based on the dynamic priority of

the process before the process is moved to the expired array. In addition, if a task is sufficiently

interactive, it will be reinserted back into the active array instead of the expired array when it

exhausts its timeslice.

A sleeping task is in a non-runnable state. It’s removed from the runqueue and put in a wait

queue. When the task wakes up, it’s runnable again. It’s removed from the wake queue and put

back in the runqueue.

User preemption is when the kernel is about to return to user-space. It’s usually when

returning from a system call or an interrupt handler. The scheduler is invoked to continue

executing the current task or to pick a new task to execute. The kernel is also preemptive. As

long as it is safe to reschedule, a task in the kernel can be preempted at any point. Kernel

10

System Call Description
nice() Set a process’s nice value
sched setscheduler() Set a process’s scheduling policy
sched getscheduler() Get a process’s scheduling policy
sched setparam() Set a process’s real-time priority
sched getparam() Get a process’s real-time priority
sched get priority max() Get the maximum real-time priority
sched get priority min() Get the minimum real-time priority
sched rr get interval() Get a process’s timeslice value
sched setaffinity() Get a process’s processor affinity
sched getaffinity() Set a process’s processor affinity
sched yield() Temporarily yield the processor

Table 2.1. System Calls for the Linux 2.6 Scheduler

preemption can occur when returning to kernel-space from an interrupt handler, or when the

kernel code becomes preemtible again. It can also occur explicitly, when a task blocks or calls

the scheduler. Linux provides 2 real-time scheduling policies, both of which implement static

priorities. The kernel doesn’t calculate dynamic priority values for real-time tasks. Hence, a

real-time process at a given priority will always preempt a process at a lower priority.

System calls are used for the management of scheduler parameters. A list is showed in

Table 2.1.

When a process yields, it is removed from the active array and inserted into the expired array.

Chapter 3
Experimental Setup and Preliminary

Experiments

3.1 Experimental Setup

Here are the specifications of the machine used for the experiments.

• Processor: Intel Pentim M-740 (1.73GHz)

• Memory: 2x1GB OCZ DDR2 667 (PC2 5400)

• Hard Disc: Western Digital Scorpio WD1200VE 120GB 5400 RPM ATA-6

• Operating System: Ubuntu 6.10 (Edgy Eft), Linux Kernel version 2.6.17-11

The goal of this timing attack is to use timing information to guess the keys typed by the

user. Two programs were used for the experiments. The first one, kltest, is used to simulate

the X client. Running this program creates a basic X window with a field to type a text. The

program waits for a key to be pressed, and then calls the XLookupString function - target of our

attack - for each character typed. kltest also associates a timestamp (using the gettimeofday()

function) with each keypress. Here are the relevant code sections of the program:

while (1) {

12

XNextEvent(display, &report);

switch (report.type) {

case KeyPress:

count = XLookupString(&report, buffer, bufsize, &keysym, &compose);

gettimeofday(&time1, NULL);

}

}

The second program, trace, uses the rdtsc [25, 26] instruction to measure the processor’s

activity. It runs in a tight loop for a predetermined amount of time, continuously taking times-

tamps and measuring the difference in the number of cycles between each loop iteration. When

the program gets context switched out by the scheduler, the cycle difference is significantly higher,

indicating that the activity of other processes has been recorded. In such case, the timestamp

and the cycle count values are recorded. When the program exits, these values are printed out.

Here’s the code explaining how it runs:

while (time_diff < DURATION) {

cycles2 = cycles_ia32();

cycle_diff = cycles2 - cycles1;

timestamp = gettimeofday(&end,NULL);

if (cycle_diff > RUN) {

time_array[i] = timestamp;

cycle_array[i] = cycle_diff;

i++;

}

cycles1 = cycles2;

}

13

3.2 Initial Experiment

3.2.1 Overview

The first step of the experiment is to remap characters on the keyboard to another character.

This means modifying the binding between the keycode and the associated keysym, thus hav-

ing the keypress resulting in typing the character we chose. By analyzing the source code of

XLookupString, we noticed that it uses different code paths to process different kinds of char-

acters. This code is shown in Appendix A. We can thus carefully choose to which character we

will remap a part of the keyboard, so it will take longer to process these keys.

Here are the basic steps of the experiments:

1. Remap one or more characters

2. Enter a password in the X window

3. Record the processing time for each character

4. Observe the results to determine which keys in the password correspond to a remapped key

5. Repeat until the password is found or the keyspace is significantly reduced.

We decided to remap the chosen characters to the euro sign. It’s a Unicode character unlikely

to be found in a password since it doesn’t exist on the QWERTY keyboard, and will cause the timing

difference we want to exploit. After remapping characters, we launch kltest and trace, enter the

password in kltest and take measurements with trace. Then we remap other characters on the

keyboard, and take other measurements, until we’ve remapped all the alphanumeric characters.

One run of the experiment lasts 10 seconds. We use a shell script to handle the remapping and

launch the programs, and Perl scripts [27] to analyze the results.

This experiment has a straightforward approach, as shown in Figure 3.1: run kltest and

trace, enter some characters in kltest and take the measurements with trace. The first problem

we ran into is that keypresses were indistinguishable from the rest of the timing measurements

given by trace. To identify them, we had to use the timestamps recorded in both kltest

14

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Averages
Duration t 409934 418637 356566 372966 404937 353466 469217 401685 419610.6
Duration e 442933 371930 325033 412428 397869 371348 310033 328947 369507.8
Duration s 324851 292542 307238 324029 353783 368236 437017 284597 340186.1
Duration t 357627 407183 354707 367217 373951 316557 317754 336602 354211.5
Duration € 382847 328927 349502 371340 389249 285492 400560 428232 364253.3
Duration n 434505 373474 358490 456907 387863 335688 376276 388302 401824.8
Duration g 320409 376545 353430 329089 402035 340785 338765 355164 355895.6
Duration 4 402501 315377 352529 354530 378134 284130 346382 394931 361164.3

Table 3.1. The results of timing the keypresses from trace

and trace. Kltest associates a timestamp every time XLookupString is called, and trace

associates one every time it measures a difference in CPU cycles. We used Perl scripts to analyze

both outputs and match processing times recorded by trace with keypress event times recorded

by kltest.

3.2.2 Results

The results of that experiment are shown in Table 3.1. As we can see there, the measurements

given by trace were not precise enough. The durations of all the characters were all in the

same range (around 350,000 cycles), and we couldn’t distinguish the remapped characters from

the non-remapped. That’s because the Linux 2.6 scheduler gives a higher priority to I/O bound

processes to improve the system’s responsiveness and interactivity. Since trace runs all the time

and exhausts its timeslice every time it’s swapped in, the scheduler considers it CPU bound and

lowers its priority. Therefore, when trace is switched out, the scheduler puts it at the bottom

of the runqueue. After kltest is done running, trace doesn’t get switched back in right away.

Instead, other processes are allowed to run, like Figure 3.1 shows, and we end up having a lot

of noise in our measurements. The behavior of the scheduler is explained more in detail in

Section 2.4.

The rest of the experiments will now focus on solving the problems we ran into, to reach

a point where we’re able to accurately detect a timing difference between remapped and non-

15

Figure 3.1. Initial Experiment

16

remapped characters.

Let’s note that with the experimental procedure we’re following, we can only identify one

remapped character per run, and only the first time it’s typed (in the case this character is

redundant in the input string). After that, the processing time of other remapped characters

will be in the same range than the processing time of non remapped characters. The timing

difference on the first character is due to the fact that the new code path has to be brought into

the cache, so the miss in the L1 instruction cache causes the delay. For the following remapped

characters, the code path, and therefore the instructions used will already be in the cache, so

they are processed faster. We will confirm that in our next experiment in Chapter 4.

Let’s also note that the first character always takes significantly longer to process than the

others. That’s because when the first character is entered, the keymap is built and brought into

the cache. To solve this problem, we sacrificed a character by pressing a random key before

starting to input the password in all the experiments.

3.3 Password Guessing

3.3.1 Overview

The attack described here needs several iterations to be able to retrieve a password. Each

iteration requires a different character to be mapped, and the user to enter his password. As

mentioned in Section 3.2.2, we can detect a remapped character only the first time it’s entered,

so if a password has a repeated character, we can’t detect the second occurrence.

Since the timing attack might not always reveal an entire password, we wanted to investi-

gate methods for guessing passwords given that some characters of the password are known.

Because the threat model requires the attacker in the ideal case remain unprivileged, we did

not want to use a brute force attack using obtained password hashes such as those stored in

/etc/shadow. Instead, we chose to use the program su as a password oracle, passing it guesses

17

at the administrator password until we are granted root access.

As it is impractical to attempt to test passwords by hand, we needed to automate the process

by writing a password guessing program, pass. We encountered several interesting challenges

while writing pass. First, most implementations programs such as su, sudo, and ssh verify

that stdin, the file handle for standard input, is associated with a terminal (TTY) device. This

prevented us from using simple methods such as:

% echo -e "test_password\n" | su

to enter passwords. In order to implement pass we used Expect [28]. Expect interacts with

programs according to a script which specifies the strings to feed to a process inputing from a

TTY, and the strings to expect from a process outputting to a TTY. We wrote a Perl script which

created many simultaneous instances of Expect, each attempting to send a different password to

su.

The need to run simultaneous instances was due to another security measure taken by su

and related programs, the one or two second wait time incurred for an incorrect password. By

guessing many passwords in parallel, we significantly mitigated the affects of this wait time by

increasing the throughput of password guesses without decreasing the latency for any single guess.

We used the script described above to measure the rate at which we could guess passwords

using su. This rate may then be used in calculations to find the average time to crack a password

of reduced keyspace.

3.3.2 Results

The experiment was run on an Intel Core II Duo processor running Linux kernel 2.6.20-16 with 1

GB RAM. The average rate of password guessing using our script is approximately 90 guesses per

second. The average number of instances of Expect running at any given time is approximately

54, with approximately 1,400 additional processes in a “sleeping” state while waiting for su to

18

complete the delay incurred by an incorrect password guess.

To reduce I/O latency due to the writing, executing and deleting of many Expect scripts,

the script was run from a ramdisk device, a capability which may or may not be available to

an unprivileged process depending on the system. Note that this only minimally increased the

guessing rate, suggesting that this method is CPU bound. This is still a very simple approach,

and large improvements could be made by implementing the logic of the Perl and Expect scripts

in a lower level language such as C. Because of the largely parallel nature of this method, the

speedup afforded by additional processors is approximately equal to the number of processor

cores on the target system. We verified this by running the script with only one processor

core enabled. Under such a restriction, a rate of only approximately 46 guesses per second was

achieved, slightly over half of the rate with both processor cores enabled.

At the rate of 90 guesses per second, an eight character UNIX password for which half of

the characters were known could be guessed via brute force in approximately ten to eleven

days. In the case of an account which is not frequently logged in to, this would be preferable

to attempting to remap each character in the keyspace until the full password is recovered. A

dictionary constrained by the known characters could further reduce this time.

Chapter 4
Experiment 1 : Within the Victim

Program

4.1 Overview

As we saw in 3.2.2, a naive and straightforward approach wasn’t successful. In that experiment,

trace was running all the time, exhausting all its timeslices and behaving like a CPU bound

process. The Linux scheduler, designed to favor I/O bound processes over CPU bound ones, as

detailed in Section 2.4, would thus lower the priority of trace. When a keypress occurs and

kltest gets swapped in, trace enters the runqueue at the bottom, allowing a bunch of processes

to run before it runs again. Therefore, the measurements we got had a lot of noise, which made

it impossible to detect a timing difference.

However, we feel confident that this difference would be noticeable if measured from within

kltest. As explained in Section 3.1, XLookupString takes a different code path depending on

the kind of character entered. Remapping some keys to a Unicode character such as the euro

sign ‘€’ would force XLookupString to take a new code path to process it. Since the instructions

20

of this new path won’t be in the L1 instruction cache, that will result in a cache miss, giving us

the timing difference that we need.

This timing difference should also be consistent and large enough during the whole password

recovery process. To confirm this hypothesis, we tried to recover a password by measuring

XLookupString directly from kltest. The code of kltest had to be modified to include the

timing information:

while (1) {

XNextEvent(display, &report);

switch (report.type) {

case KeyPress:

cycles_start = cycles_ia32();

count = XLookupString(&report, buffer, bufsize, &keysym, &compose);

cycles_end = cycles_ia32();

cycles_array[j] = cycles_end - cycles_start;

gettimeofday(&time1, NULL);

j++;

}

}

This approach would also prevent the scheduler of interfering with our measurements since

everything would be happening sequentially, wihin the same process, as Figure 4.1 shows.

To conduct the experiment, we chose an alphanumeric password (that doesn’t have any re-

peated character). The steps were somewhat similar to the ones described in Section 3.2.1:

1. Remap one character

2. Run kltest

3. Enter a password in the X window

We used the shell script to remap all the 36 alphanumeric characters, one at a time, to

the euro sign. For each character, we entered the chosen password in kltest (after hitting

a random sacrifice character to build the keymap). At each run, we collected the durations

21

Figure 4.1. Experiment 1

of XLookupString for every keypress. After remapping all the 36 characters and entering the

password 36 times, we used a Perl script to analyze the results, discussed below.

4.2 Results

This experiment was a success. Table 4.1 summarizes the results. We only display the runs were

a remapped character was found. Each column contains the duration of XLookupString in CPU

cycles for each character of the password “trying57”.

As we can see, we were able to detect the timing difference. It consistently takes over 15,000

additional cycles to process a remapped character. Non-remapped characters are processed in

5,000 to 7,000 cycles, while remapped ones would take over 25,000 cycles. For example, in the

column ‘run 5’, the duration of the 7th character is 26,864 which means that this character is

remapped. The 5th run corresponds to remapping the alphanumeric character ‘5’. From that we

can deduce that the 7th character of the password is ‘5’.

22

Run 5 Run 7 Run 14 Run 15 Run 16 Run 18 Run 25 Run 35
Duration t 5560 6865 5920 27794 6927 5110 6649 5635
Duration r 3248 4122 29264 4344 4252 6750 4162 4398
Duration y 4422 4378 4655 3164 37204 5520 6391 5569
Duration i 6413 6051 3537 5930 5492 26498 3525 3971
Duration n 3749 4123 6634 2937 6348 3785 3493 27069
Duration g 5997 5800 4842 3670 5540 6310 29193 4257
Duration 5 26864 3485 6778 6519 6451 4283 3304 3351
Duration 7 4230 26762 5813 3681 4096 3822 5243 3861

Table 4.1. The results of timing the keypresses from kltest

Similarly, we were able to find the other 7 characters, and successfully guess the password.

For each run (each column), the character that was remapped to the euro sign can easily be

determined, as its time is an order of magnitude greater than the others in the same column.

We need at most 36 iterations to get the exact password, but having less than that is also

very helpful. Every time the password is entered, additional information is leaked, which reduces

the keyspace of the password. This considerably helps a brute force attack, as we discussed in

Section 3.3.

To confirm that the timing difference is indeed caused by a miss in the L1 instruction cache,

and not by anything else, we expanded this experiment a little. We programmed kltest to

detect a remapped character as soon as it was entered, so we wouldn’t have to wait for the

post-processing scripts to analyze the data. If the character entered was a remapped one, we

would flush both the L2 cache and the L1 data cache, and then reenter the remapped character.

The output of kltest showed that we still couldn’t identify a second remapped character, which

confirmed our previous assumptions. The timing difference was due to a miss in the L1 instruction

cache, since the instructions of the different code path of XLookupString weren’t there.

At this point, our timing attack can discover every letter of a password in a number of attempts

equal to the size of the password keyspace by remapping one character at a time. However, it

can do this with the extra knowledge of the exact times at which keypress events arrive at the X

client, and by measuring their processing times from the X client itself. This shows the next steps

23

to take in order to reach our final goal. First we need to be able to detect the timing difference

from outside the X client. This means we need to be able to get measurements accurate enough

from trace instead of kltest. The main difficulty that arises comes from the Linux scheduler.

By lowering the priority of trace, it makes it very difficult to get our processes scheduled the

way we need them to be. In order to do that, one idea would be to make the scheduler believe

that trace is an I/O bound process.

Chapter 5
Experiment 2 : Synchronizing the

Victim and the Attack Programs

5.1 Overview

We first tried to measure the duration of XLookupString from trace by running kltest and

trace simultaneously. The full experiment is described in Section 3.2. That naive and straight-

forward approach didn’t work, and we know it’s because of the Linux 2.6 scheduler. It makes

it impossible to have accurate measurements by simply running trace in parallel with kltest.

The scheduler gives a higher priority to I/O bound processes, and lowers the priority of CPU

bound processes. Since trace runs during its whole timeslice, it is considered CPU bound by the

scheduler. It gets rescheduled at the bottom of the runqueue, and doesn’t get to run immediately

after kltest, thus giving widely inaccurate measurements. The behavior of the scheduler is more

thoroughly explained in Section 2.4.

Looking for another approach, we found something we could use in the victim code. By

measuring the duration of XLookupString directly from kltest, our attack was successful. As

25

we explain in Section 4.2, we were able to detect the timing difference, and even recover the pass-

word. We also confirmed that the timing difference is due to a miss in the L1 instruction cache.

XLookupString takes different code paths to process remapped and non-remapped characters,

so the first time a remapped character is entered, the instructions of the new code path have to

be brought into the cache. That gives the timing difference.

Now we want to achieve the same results by using trace to take the measurements. Based on

what we know, we need to work on getting finer grained measurements around kltest, and we’ll

have to do that despite the scheduler’s behavior. Since trace was being penalized for being CPU

bound, we will have the scheduler consider it I/O bound, and give it a higher priority. In order to

do that, the program has to spend most of its time sleeping, and wake up at the right moments,

for very short periods. We are confident that it would make the measurements recorded by trace

accurate enough to detect the timing difference, and hence the remapped keys.

A semaphore [29] is a primitive synchronization mechanism, part of the Inter-Process Com-

munication techniques. Using one for this experiment seems to help us do what we want and

has several advantages. By having our 2 programs use the same semaphore, we can run trace

at the exact time we need by triggering it from kltest, at the cost of some minor modifications.

Here’s the modified kltest code:

while (1) {

XNextEvent(display, &report);

switch (report.type) {

case KeyPress:

unlock_sem(semid);

lock_sem(semid);

cycles_start = cycles_ia32();

count = XLookupString(&report, buffer, bufsize, &keysym, &compose);

cycles_end = cycles_ia32();

cycles_array[j] = cycles_end - cycles_start;

26

unlock_sem(semid1);

lock_sem(semid1);

gettimeofday(&time1, NULL);

j++;

}

}

Since kltest will be holding the semaphore while waiting for a keypress, trace will be

blocked, and will only get switched in when it needs to take the measurements. Even then it

will only run for 1 loop, which is a very short period (around 7,000 cycels). This means that

it will be sleeping most of the time instead of running. The scheduler will increase its priority,

increasing the chances that it gets at the top of the runqueue, and runs right when we want it

to. This also required some minor changes in the code of trace:

while (time_diff < DURATION) {

lock_sem(semid);

cycles2 = cycles_ia32();

cycle_diff = cycles2 - cycles1;

timestamp = gettimeofday(&end,NULL);

if (cycle_diff > RUN) {

time_array[i] = timestamp;

cycle_array[i] = cycle_diff;

i++;

}

cycles1 = cycles2;

unlock_sem(semid);

}

Using the approach explained above, we were able to schedule trace and kltest in the

order we needed to get good measurements, as Figure 5.1 shows. Kltest starts by locking the

semaphore, and waits for a keypress. At this time, trace is on hold, trying to lock the semaphore.

27

Figure 5.1. Experiment 2

28

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8
duration t 17411 18530 13699 16581 16095 17856 18885 16145
duration r 11917 12123 15643 10424 13821 11791 15281 11400
duration y 11290 14653 10735 14674 12776 16545 11473 15337
duration € 37942 39439 37272 32001 37410 34030 38692 33046
duration f 12901 12288 11615 15361 11746 15822 12345 18327
duration i 12171 16296 15445 11777 17146 11040 14656 12119
duration n 15950 11359 12209 12882 10830 14846 11497 15692
duration d 12563 14813 17275 13609 14462 11441 15997 11042

Table 5.1. The results of timing the keypresses from trace using a semaphore

After a key is entered, kltest unlocks the semaphore, allowing trace to lock it. Trace is allowed

to run for 1 loop iteration, takes a measurement, and then unlocks the semaphore, giving it back

to kltest. Kltest locks the semaphore, runs XLookupString, and unlocks the semaphore again.

Trace locks it, takes another measurement, and unlocks it again, so kltest can wait for another

keypress. That way, we wrapped the measurements of trace around XLookupString, since we

get it to run just before and just after the victim function.

5.2 Results

By calculating the difference between 2 consecutive measurements of trace, we can measure

XLookupString duration. The results are summarized in Table 5.1. In this experiment, we

entered the string “try2find”, with the character ‘2’ remapped. Here again, we used perl scripts

to go through the outputs and match the timestamps between kltest and trace.

As we can see, we were perfectly able to detect the timing difference. The durations we got

here are higher than the durations of XLookupStringmeasured from kltest in Experiment 1, but

they are still consistent. More importantly, the duration of a remapped character is consistently

and noticeably higher (by 10,000-15,000 cycles) than the duration of a non-remapped character.

The duration of the ‘€’ character is both time above 30,000 cycles, whereas the durations of

non-remapped keys are in the 10,000-20,000 cycles range.

The results of this experiment show us that by using a semaphore to prevent trace from

29

running all the time, trigger it from kltest and synchronize between the 2, the scheduler would

consider trace as an I/O bound process. The measurements are fine-grained enough around

XLookupString. Their precision would allow us to fully recover a password if we remapped all

the characters one by one, and entered the password a sufficient number of times, as explained

in Chapter 4.

Let’s also note that we got similar results by using 2 different semaphores and 2 different trace

processes running simultaneously. In that case, we used one trace to take the first measure and

the other one to take the second. Then we calculated the difference between the outputs of both

processes. By running 2 different processes, we increased their chances of getting a high priority,

since the total run time of trace would be divided among them. It wasn’t necessary in this

experiment, but it’s that same reasoning that lead to the next one.

The results we got here strengthen our belief that the scheduler is responsible for the problems

we got initially. If we can get it to consider trace as I/O bound and increase its priority, we should

be able to get consistent measurements and detect the timing difference in XLookupString. The

challenge now is to be able to have trace run all the time to wrap the measurements as close as

possible around kltest, and still be considered I/O bound by the scheduler. To achieve that,

we used multithreading, as our next experiment will show.

Chapter 6
Experiment 3 : Scheduling the

Attack Program

6.1 Overview

We’ve established in Chapter 3 that a straightforward approach didn’t work because of the

scheduler. In that initial experiment, tracewas continuously running, so the scheduler considered

it CPU bound and reduced its priority. More information about the behavior of the scheduler

can be found in Section 2.4. The result of that behavior is that when trace would get switched

out, a bunch of processes not relevant to our experiment were given a chance to run, and trace

would end up at the bottom of the runqueue. Therefore the measurements we got were too

coarse grain to be able to detect any timing difference between a remapped and a non-remapped

character.

We also know that XLookupString takes different code paths to process remapped and non-

remapped characters. When processing the first remapped character, the instructions of the new

code path have to be brought into the cache, and that’s what causes the delay we want to detect.

31

We confirmed that in Chapter 4, when we were able to detect the timing difference by measuring

the duration of XLookupString directly from kltest. In that experiment, we were also able to

recover a whole password.

We then tried to detect the timing difference from trace. To avoid being handicapped by

the scheduler, we allowed trace to run for only 1 loop and take a measurement when needed.

Because of the fast and precise nature of those measurements, we triggered them from within

kltest, using a semaphore. That experiment was also successful. Running trace at the right

time gave measurements precise enough to detect the timing difference and allow us to recover

the password.

Our goal now is to be able to schedule trace just before and just after keypresses without

any trigger or signal from kltest. For that we need trace to be running all the time, so we can

wrap the measurements just around kltest, and it has to keep a high enough priority to remain

at the top of the runqueue, and not allow other undesirable processes to run in between. If we get

the scheduler to give trace a high priority by considering it I/O bound, then the measurements

taken should be accurate enough to detect remapped characters.

To achieve that, we decided to use multithreading. We launch multiple trace threads, each

would run for a small portion of its timeslice before being switched out and replaced by another

thread. This way, there will always be a trace thread running, and another one with a high

priority, waiting to replace it at the top of the runqueue. We are sure this approach will allow

us to detect the timing difference we need.

We used pthreads [30] to conduct this experiment. We launched a large number of trace

threads, and we allow each one to run for only 1 loop iteration before getting switched out, and

replaced by another thread. We used a semaphore to synchronize between all the threads. A

thread would lock the semaphore, and unlock it after 1 loop, so another thread can run. That

way, all the threads are considered I/O bound, are given a high priority, and at any given time

during the experiment, trace is running and taking measurements. Here are the relevant parts

32

of the code used for this experiment:

unsigned long long int cycles_global;

void *measure(void *threadid) {

while (time_diff < DURATION) {

lock_sem(semid);

cycles_local = cycles_ia32();

cycle_diff = cycles_local - cycles_global;

timestamp = gettimeofday(&end,NULL);

if (cycle_diff > RUN) {

measures_array[array_index].thread_id = tid;

measures_array[array_index].time_measure = timestamp;

measures_array[array_index].cycle_measure = cycles_local;

measures_array[array_index].diff_measure = cycle_diff;

array_index++;

}

cycles_global = cycles_local;

unlock_sem(semid);

}

int main () {

for(tc=0;tc<NUM_THREADS;tc++)

rc = pthread_create(&threads[tc], &attr, measure, (void *)tc);

}

In this experiment, all the events are scheduled the way we want, and the measurements from

trace are nicely wrapped around the kltest loop when a keypress in entered. Figure 6.1 shows

the sequentiality of the events.

6.2 Results

The outputs of all the threads are recorded in a single array. By using local and global variables,

we can calculate the timing difference between a thread and the next. If the switching is fast, it

means that no other process ran, and the 2 threads were scheduled consecutively. Each keypress

33

Figure 6.1. Experiment 3

34

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8
duration t 47147 42468 47223 42488 47572 47920 46662 39489
duration r 31598 33740 32462 30385 43398 42509 42267 26908
duration y 29026 39900 35825 26788 30639 27895 34018 26476
duration € 64316 53888 62909 59987 65099 63281 63402 55778
duration f 31195 39115 32239 35956 28793 35788 27456 26395
duration i 27953 33941 40367 32694 45323 39672 38302 35659
duration n 40314 40005 28643 46316 33041 28648 28388 29220
duration d 27704 32707 28644 29866 43798 43699 41480 27444

Table 6.1. The results of timing the keypresses from a multithreaded trace program

corresponds to a timestamp in the output of kltest. By looking for the timestamp that comes

just after in the output of trace, we can find the duration of the processing of that keypress.

This experiment yielded the best results when we launched 50 threads. The results are

summarized in Table 6.1. Here again, we entered the string “try2find”, with the character ‘2’

remapped. As we can see, the remapped character stands out very clearly. Regular characters

are in the range of 30,000 to 45,000 cycles. The line “Duration €” shows that the duration of

the remapped characters ranges between 55,000 and 75,000 cycles.

This experiment was successful. The measurements were precise enough to allow us to ac-

curately detect keypresses, and better yet, the timing difference between remapped and non-

remapped characters was consistent. These results tell us that we should be able to find the

password if we remapped all the characters, and entered the password a sufficient number of

times, like we did in Experiment 1, previously explained in Chapter 4.

This confirms that the key to conducting a successful attack is to get the scheduler to consider

trace as I/O bound and still have our program running the whole duration of the experiment.

Doing so gave us accurate measurements and noticeable timing differences between remapped

and non-remapped characters, which is what we need.

Let’s note that we also tried this experiment, but using multiprocessing instead of multi-

threading. We launched multiple trace processes, and allowed each one to run for 1 loop only

before unlocking the semaphore and getting swapped out. We couldn’t find a good number

35

of processes that would give us accurate measurements. Too few processes weren’t enough to

run during the whole experiment while keeping a high priority, so other processes were able to

run between kltest and trace. Increasing the number of processes lead to other problems. It

increased the overhead of switching processes to a point where even if 2 trace processes were

wrapped around a kltest loop, the measurements we got weren’t accurate enough to detect

consistent timing difference between remapped and non remapped characters.

At this point, we still need to match either timestamps or cycle counts between kltest and

trace to identify keypresses among the measurements. Our attack can’t rely on this information.

We can’t expect the victim program to let us know when a key was pressed. Future work should

focus on detecting keypresses from the output of trace alone, without using timestamps. That

implies we should be able to tell the difference between the duration of a keypress processing and

other processes. The problem here is that a lot of measurements recorded by trace are in the

same range as a keypress. We can also try to find an alternative method of detecting a keypress,

and combine that information with our output.

Chapter 7
Conclusion

We have presented here a side channel attack method for keystroke logging. The timing based

attack is feasible given a modicum of extra information about a system. We showed that knowing

the exact times at which keypress events arrived at the X clients, we could determine a password

in at most as many tries as there are possible password characters.

We learned here that the Linux 2.6 scheduler I/O bound processes over CPU bound ones, like

our attack program. The key to the success of our attack was to fool the scheduler and have it

consider our program as I/O bound. That allowed it to keep a high enough priority throughout

its execution, and not be interrupted by other processes. To give accurate measurements, our

program needs to run just before and just after the victim program, and if its priority is lowered

by the scheduler, other processes might run in between. In that case, the attack would fail.

We also created a simple program to test the ability of an unprivileged subject to use common

programs such as su as a password oracle for the sake of guessing passwords based on the reduced

keyspace. We showed that such a program can guess a password for which some characters are

known in a reasonable amount of time. So even if we don’t get as many tries as our timing attack

needs to fully recover the password, the keyspace would have been reduced enough to make a

brute force attack possible, and we can still find that password.

37

Our timing attack still needs timestamps to be successful. A real life victim client won’t

provide us with such information. Future work should focus on detecting keypresses without

timestamps. The fact that a keypress doesn’t have an uniquely identifiable processing time

makes that challenging.

Appendix A
XLookupString Code Paths

A.1 KeyBind.c Code

static void

UCSConvertCase(register unsigned code,

KeySym *lower,

KeySym *upper)

{

/* Case conversion for UCS, as in Unicode Data version 4.0.0 */

/* NB: Only converts simple one-to-one mappings. */

/* Tables are used where they take less space than */

/* the code to work out the mappings. Zero values mean */

/* undefined code points. */

static unsigned short const IPAExt_upper_mapping[] = { /* part only */

0x0181, 0x0186, 0x0255, 0x0189, 0x018A,

0x0258, 0x018F, 0x025A, 0x0190, 0x025C, 0x025D, 0x025E, 0x025F,

0x0193, 0x0261, 0x0262, 0x0194, 0x0264, 0x0265, 0x0266, 0x0267,

0x0197, 0x0196, 0x026A, 0x026B, 0x026C, 0x026D, 0x026E, 0x019C,

0x0270, 0x0271, 0x019D, 0x0273, 0x0274, 0x019F, 0x0276, 0x0277,

0x0278, 0x0279, 0x027A, 0x027B, 0x027C, 0x027D, 0x027E, 0x027F,

0x01A6, 0x0281, 0x0282, 0x01A9, 0x0284, 0x0285, 0x0286, 0x0287,

0x01AE, 0x0289, 0x01B1, 0x01B2, 0x028C, 0x028D, 0x028E, 0x028F,

0x0290, 0x0291, 0x01B7

};

static unsigned short const LatinExtB_upper_mapping[] = { /* first part only */

0x0180, 0x0181, 0x0182, 0x0182, 0x0184, 0x0184, 0x0186, 0x0187,

39

0x0187, 0x0189, 0x018A, 0x018B, 0x018B, 0x018D, 0x018E, 0x018F,

0x0190, 0x0191, 0x0191, 0x0193, 0x0194, 0x01F6, 0x0196, 0x0197,

0x0198, 0x0198, 0x019A, 0x019B, 0x019C, 0x019D, 0x0220, 0x019F,

0x01A0, 0x01A0, 0x01A2, 0x01A2, 0x01A4, 0x01A4, 0x01A6, 0x01A7,

0x01A7, 0x01A9, 0x01AA, 0x01AB, 0x01AC, 0x01AC, 0x01AE, 0x01AF,

0x01AF, 0x01B1, 0x01B2, 0x01B3, 0x01B3, 0x01B5, 0x01B5, 0x01B7,

0x01B8, 0x01B8, 0x01BA, 0x01BB, 0x01BC, 0x01BC, 0x01BE, 0x01F7,

0x01C0, 0x01C1, 0x01C2, 0x01C3, 0x01C4, 0x01C4, 0x01C4, 0x01C7,

0x01C7, 0x01C7, 0x01CA, 0x01CA, 0x01CA

};

static unsigned short const LatinExtB_lower_mapping[] = { /* first part only */

0x0180, 0x0253, 0x0183, 0x0183, 0x0185, 0x0185, 0x0254, 0x0188,

0x0188, 0x0256, 0x0257, 0x018C, 0x018C, 0x018D, 0x01DD, 0x0259,

0x025B, 0x0192, 0x0192, 0x0260, 0x0263, 0x0195, 0x0269, 0x0268,

0x0199, 0x0199, 0x019A, 0x019B, 0x026F, 0x0272, 0x019E, 0x0275,

0x01A1, 0x01A1, 0x01A3, 0x01A3, 0x01A5, 0x01A5, 0x0280, 0x01A8,

0x01A8, 0x0283, 0x01AA, 0x01AB, 0x01AD, 0x01AD, 0x0288, 0x01B0,

0x01B0, 0x028A, 0x028B, 0x01B4, 0x01B4, 0x01B6, 0x01B6, 0x0292,

0x01B9, 0x01B9, 0x01BA, 0x01BB, 0x01BD, 0x01BD, 0x01BE, 0x01BF,

0x01C0, 0x01C1, 0x01C2, 0x01C3, 0x01C6, 0x01C6, 0x01C6, 0x01C9,

0x01C9, 0x01C9, 0x01CC, 0x01CC, 0x01CC

};

static unsigned short const Greek_upper_mapping[] = {

0x0000, 0x0000, 0x0000, 0x0000, 0x0374, 0x0375, 0x0000, 0x0000,

0x0000, 0x0000, 0x037A, 0x0000, 0x0000, 0x0000, 0x037E, 0x0000,

0x0000, 0x0000, 0x0000, 0x0000, 0x0384, 0x0385, 0x0386, 0x0387,

0x0388, 0x0389, 0x038A, 0x0000, 0x038C, 0x0000, 0x038E, 0x038F,

0x0390, 0x0391, 0x0392, 0x0393, 0x0394, 0x0395, 0x0396, 0x0397,

0x0398, 0x0399, 0x039A, 0x039B, 0x039C, 0x039D, 0x039E, 0x039F,

0x03A0, 0x03A1, 0x0000, 0x03A3, 0x03A4, 0x03A5, 0x03A6, 0x03A7,

0x03A8, 0x03A9, 0x03AA, 0x03AB, 0x0386, 0x0388, 0x0389, 0x038A,

0x03B0, 0x0391, 0x0392, 0x0393, 0x0394, 0x0395, 0x0396, 0x0397,

0x0398, 0x0399, 0x039A, 0x039B, 0x039C, 0x039D, 0x039E, 0x039F,

0x03A0, 0x03A1, 0x03A3, 0x03A3, 0x03A4, 0x03A5, 0x03A6, 0x03A7,

0x03A8, 0x03A9, 0x03AA, 0x03AB, 0x038C, 0x038E, 0x038F, 0x0000,

0x0392, 0x0398, 0x03D2, 0x03D3, 0x03D4, 0x03A6, 0x03A0, 0x03D7,

0x03D8, 0x03D8, 0x03DA, 0x03DA, 0x03DC, 0x03DC, 0x03DE, 0x03DE,

0x03E0, 0x03E0, 0x03E2, 0x03E2, 0x03E4, 0x03E4, 0x03E6, 0x03E6,

0x03E8, 0x03E8, 0x03EA, 0x03EA, 0x03EC, 0x03EC, 0x03EE, 0x03EE,

0x039A, 0x03A1, 0x03F9, 0x03F3, 0x03F4, 0x0395, 0x03F6, 0x03F7,

0x03F7, 0x03F9, 0x03FA, 0x03FA, 0x0000, 0x0000, 0x0000, 0x0000

};

static unsigned short const Greek_lower_mapping[] = {

0x0000, 0x0000, 0x0000, 0x0000, 0x0374, 0x0375, 0x0000, 0x0000,

0x0000, 0x0000, 0x037A, 0x0000, 0x0000, 0x0000, 0x037E, 0x0000,

0x0000, 0x0000, 0x0000, 0x0000, 0x0384, 0x0385, 0x03AC, 0x0387,

0x03AD, 0x03AE, 0x03AF, 0x0000, 0x03CC, 0x0000, 0x03CD, 0x03CE,

0x0390, 0x03B1, 0x03B2, 0x03B3, 0x03B4, 0x03B5, 0x03B6, 0x03B7,

40

0x03B8, 0x03B9, 0x03BA, 0x03BB, 0x03BC, 0x03BD, 0x03BE, 0x03BF,

0x03C0, 0x03C1, 0x0000, 0x03C3, 0x03C4, 0x03C5, 0x03C6, 0x03C7,

0x03C8, 0x03C9, 0x03CA, 0x03CB, 0x03AC, 0x03AD, 0x03AE, 0x03AF,

0x03B0, 0x03B1, 0x03B2, 0x03B3, 0x03B4, 0x03B5, 0x03B6, 0x03B7,

0x03B8, 0x03B9, 0x03BA, 0x03BB, 0x03BC, 0x03BD, 0x03BE, 0x03BF,

0x03C0, 0x03C1, 0x03C2, 0x03C3, 0x03C4, 0x03C5, 0x03C6, 0x03C7,

0x03C8, 0x03C9, 0x03CA, 0x03CB, 0x03CC, 0x03CD, 0x03CE, 0x0000,

0x03D0, 0x03D1, 0x03D2, 0x03D3, 0x03D4, 0x03D5, 0x03D6, 0x03D7,

0x03D9, 0x03D9, 0x03DB, 0x03DB, 0x03DD, 0x03DD, 0x03DF, 0x03DF,

0x03E1, 0x03E1, 0x03E3, 0x03E3, 0x03E5, 0x03E5, 0x03E7, 0x03E7,

0x03E9, 0x03E9, 0x03EB, 0x03EB, 0x03ED, 0x03ED, 0x03EF, 0x03EF,

0x03F0, 0x03F1, 0x03F2, 0x03F3, 0x03B8, 0x03F5, 0x03F6, 0x03F8,

0x03F8, 0x03F2, 0x03FB, 0x03FB, 0x0000, 0x0000, 0x0000, 0x0000

};

static unsigned short const GreekExt_lower_mapping[] = {

0x1F00, 0x1F01, 0x1F02, 0x1F03, 0x1F04, 0x1F05, 0x1F06, 0x1F07,

0x1F00, 0x1F01, 0x1F02, 0x1F03, 0x1F04, 0x1F05, 0x1F06, 0x1F07,

0x1F10, 0x1F11, 0x1F12, 0x1F13, 0x1F14, 0x1F15, 0x0000, 0x0000,

0x1F10, 0x1F11, 0x1F12, 0x1F13, 0x1F14, 0x1F15, 0x0000, 0x0000,

0x1F20, 0x1F21, 0x1F22, 0x1F23, 0x1F24, 0x1F25, 0x1F26, 0x1F27,

0x1F20, 0x1F21, 0x1F22, 0x1F23, 0x1F24, 0x1F25, 0x1F26, 0x1F27,

0x1F30, 0x1F31, 0x1F32, 0x1F33, 0x1F34, 0x1F35, 0x1F36, 0x1F37,

0x1F30, 0x1F31, 0x1F32, 0x1F33, 0x1F34, 0x1F35, 0x1F36, 0x1F37,

0x1F40, 0x1F41, 0x1F42, 0x1F43, 0x1F44, 0x1F45, 0x0000, 0x0000,

0x1F40, 0x1F41, 0x1F42, 0x1F43, 0x1F44, 0x1F45, 0x0000, 0x0000,

0x1F50, 0x1F51, 0x1F52, 0x1F53, 0x1F54, 0x1F55, 0x1F56, 0x1F57,

0x0000, 0x1F51, 0x0000, 0x1F53, 0x0000, 0x1F55, 0x0000, 0x1F57,

0x1F60, 0x1F61, 0x1F62, 0x1F63, 0x1F64, 0x1F65, 0x1F66, 0x1F67,

0x1F60, 0x1F61, 0x1F62, 0x1F63, 0x1F64, 0x1F65, 0x1F66, 0x1F67,

0x1F70, 0x1F71, 0x1F72, 0x1F73, 0x1F74, 0x1F75, 0x1F76, 0x1F77,

0x1F78, 0x1F79, 0x1F7A, 0x1F7B, 0x1F7C, 0x1F7D, 0x0000, 0x0000,

0x1F80, 0x1F81, 0x1F82, 0x1F83, 0x1F84, 0x1F85, 0x1F86, 0x1F87,

0x1F80, 0x1F81, 0x1F82, 0x1F83, 0x1F84, 0x1F85, 0x1F86, 0x1F87,

0x1F90, 0x1F91, 0x1F92, 0x1F93, 0x1F94, 0x1F95, 0x1F96, 0x1F97,

0x1F90, 0x1F91, 0x1F92, 0x1F93, 0x1F94, 0x1F95, 0x1F96, 0x1F97,

0x1FA0, 0x1FA1, 0x1FA2, 0x1FA3, 0x1FA4, 0x1FA5, 0x1FA6, 0x1FA7,

0x1FA0, 0x1FA1, 0x1FA2, 0x1FA3, 0x1FA4, 0x1FA5, 0x1FA6, 0x1FA7,

0x1FB0, 0x1FB1, 0x1FB2, 0x1FB3, 0x1FB4, 0x0000, 0x1FB6, 0x1FB7,

0x1FB0, 0x1FB1, 0x1F70, 0x1F71, 0x1FB3, 0x1FBD, 0x1FBE, 0x1FBF,

0x1FC0, 0x1FC1, 0x1FC2, 0x1FC3, 0x1FC4, 0x0000, 0x1FC6, 0x1FC7,

0x1F72, 0x1F73, 0x1F74, 0x1F75, 0x1FC3, 0x1FCD, 0x1FCE, 0x1FCF,

0x1FD0, 0x1FD1, 0x1FD2, 0x1FD3, 0x0000, 0x0000, 0x1FD6, 0x1FD7,

0x1FD0, 0x1FD1, 0x1F76, 0x1F77, 0x0000, 0x1FDD, 0x1FDE, 0x1FDF,

0x1FE0, 0x1FE1, 0x1FE2, 0x1FE3, 0x1FE4, 0x1FE5, 0x1FE6, 0x1FE7,

0x1FE0, 0x1FE1, 0x1F7A, 0x1F7B, 0x1FE5, 0x1FED, 0x1FEE, 0x1FEF,

0x0000, 0x0000, 0x1FF2, 0x1FF3, 0x1FF4, 0x0000, 0x1FF6, 0x1FF7,

0x1F78, 0x1F79, 0x1F7C, 0x1F7D, 0x1FF3, 0x1FFD, 0x1FFE, 0x0000

};

static unsigned short const GreekExt_upper_mapping[] = {

41

0x1F08, 0x1F09, 0x1F0A, 0x1F0B, 0x1F0C, 0x1F0D, 0x1F0E, 0x1F0F,

0x1F08, 0x1F09, 0x1F0A, 0x1F0B, 0x1F0C, 0x1F0D, 0x1F0E, 0x1F0F,

0x1F18, 0x1F19, 0x1F1A, 0x1F1B, 0x1F1C, 0x1F1D, 0x0000, 0x0000,

0x1F18, 0x1F19, 0x1F1A, 0x1F1B, 0x1F1C, 0x1F1D, 0x0000, 0x0000,

0x1F28, 0x1F29, 0x1F2A, 0x1F2B, 0x1F2C, 0x1F2D, 0x1F2E, 0x1F2F,

0x1F28, 0x1F29, 0x1F2A, 0x1F2B, 0x1F2C, 0x1F2D, 0x1F2E, 0x1F2F,

0x1F38, 0x1F39, 0x1F3A, 0x1F3B, 0x1F3C, 0x1F3D, 0x1F3E, 0x1F3F,

0x1F38, 0x1F39, 0x1F3A, 0x1F3B, 0x1F3C, 0x1F3D, 0x1F3E, 0x1F3F,

0x1F48, 0x1F49, 0x1F4A, 0x1F4B, 0x1F4C, 0x1F4D, 0x0000, 0x0000,

0x1F48, 0x1F49, 0x1F4A, 0x1F4B, 0x1F4C, 0x1F4D, 0x0000, 0x0000,

0x1F50, 0x1F59, 0x1F52, 0x1F5B, 0x1F54, 0x1F5D, 0x1F56, 0x1F5F,

0x0000, 0x1F59, 0x0000, 0x1F5B, 0x0000, 0x1F5D, 0x0000, 0x1F5F,

0x1F68, 0x1F69, 0x1F6A, 0x1F6B, 0x1F6C, 0x1F6D, 0x1F6E, 0x1F6F,

0x1F68, 0x1F69, 0x1F6A, 0x1F6B, 0x1F6C, 0x1F6D, 0x1F6E, 0x1F6F,

0x1FBA, 0x1FBB, 0x1FC8, 0x1FC9, 0x1FCA, 0x1FCB, 0x1FDA, 0x1FDB,

0x1FF8, 0x1FF9, 0x1FEA, 0x1FEB, 0x1FFA, 0x1FFB, 0x0000, 0x0000,

0x1F88, 0x1F89, 0x1F8A, 0x1F8B, 0x1F8C, 0x1F8D, 0x1F8E, 0x1F8F,

0x1F88, 0x1F89, 0x1F8A, 0x1F8B, 0x1F8C, 0x1F8D, 0x1F8E, 0x1F8F,

0x1F98, 0x1F99, 0x1F9A, 0x1F9B, 0x1F9C, 0x1F9D, 0x1F9E, 0x1F9F,

0x1F98, 0x1F99, 0x1F9A, 0x1F9B, 0x1F9C, 0x1F9D, 0x1F9E, 0x1F9F,

0x1FA8, 0x1FA9, 0x1FAA, 0x1FAB, 0x1FAC, 0x1FAD, 0x1FAE, 0x1FAF,

0x1FA8, 0x1FA9, 0x1FAA, 0x1FAB, 0x1FAC, 0x1FAD, 0x1FAE, 0x1FAF,

0x1FB8, 0x1FB9, 0x1FB2, 0x1FBC, 0x1FB4, 0x0000, 0x1FB6, 0x1FB7,

0x1FB8, 0x1FB9, 0x1FBA, 0x1FBB, 0x1FBC, 0x1FBD, 0x0399, 0x1FBF,

0x1FC0, 0x1FC1, 0x1FC2, 0x1FCC, 0x1FC4, 0x0000, 0x1FC6, 0x1FC7,

0x1FC8, 0x1FC9, 0x1FCA, 0x1FCB, 0x1FCC, 0x1FCD, 0x1FCE, 0x1FCF,

0x1FD8, 0x1FD9, 0x1FD2, 0x1FD3, 0x0000, 0x0000, 0x1FD6, 0x1FD7,

0x1FD8, 0x1FD9, 0x1FDA, 0x1FDB, 0x0000, 0x1FDD, 0x1FDE, 0x1FDF,

0x1FE8, 0x1FE9, 0x1FE2, 0x1FE3, 0x1FE4, 0x1FEC, 0x1FE6, 0x1FE7,

0x1FE8, 0x1FE9, 0x1FEA, 0x1FEB, 0x1FEC, 0x1FED, 0x1FEE, 0x1FEF,

0x0000, 0x0000, 0x1FF2, 0x1FFC, 0x1FF4, 0x0000, 0x1FF6, 0x1FF7,

0x1FF8, 0x1FF9, 0x1FFA, 0x1FFB, 0x1FFC, 0x1FFD, 0x1FFE, 0x0000

};

*lower = code;

*upper = code;

/* Basic Latin and Latin-1 Supplement, U+0000 to U+00FF */

if (code <= 0x00ff) {

if (code >= 0x0041 && code <= 0x005a) /* A-Z */

*lower += 0x20;

else if (code >= 0x0061 && code <= 0x007a) /* a-z */

*upper -= 0x20;

else if ((code >= 0x00c0 && code <= 0x00d6) ||

(code >= 0x00d8 && code <= 0x00de))

*lower += 0x20;

else if ((code >= 0x00e0 && code <= 0x00f6) ||

(code >= 0x00f8 && code <= 0x00fe))

*upper -= 0x20;

else if (code == 0x00ff) /* y with diaeresis */

*upper = 0x0178;

42

else if (code == 0x00b5) /* micro sign */

*upper = 0x039c;

return;

}

/* Latin Extended-A, U+0100 to U+017F */

if (code >= 0x0100 && code <= 0x017f) {

if ((code >= 0x0100 && code <= 0x012f) ||

(code >= 0x0132 && code <= 0x0137) ||

(code >= 0x014a && code <= 0x0177)) {

*upper = code & ~1;

*lower = code | 1;

}

else if ((code >= 0x0139 && code <= 0x0148) ||

(code >= 0x0179 && code <= 0x017e)) {

if (code & 1)

*lower += 1;

else

*upper -= 1;

}

else if (code == 0x0130)

*lower = 0x0069;

else if (code == 0x0131)

*upper = 0x0049;

else if (code == 0x0178)

*lower = 0x00ff;

else if (code == 0x017f)

*upper = 0x0053;

return;

}

/* Latin Extended-B, U+0180 to U+024F */

if (code >= 0x0180 && code <= 0x024f) {

if (code >= 0x01cd && code <= 0x01dc) {

if (code & 1)

*lower += 1;

else

*upper -= 1;

}

else if ((code >= 0x01de && code <= 0x01ef) ||

(code >= 0x01f4 && code <= 0x01f5) ||

(code >= 0x01f8 && code <= 0x021f) ||

(code >= 0x0222 && code <= 0x0233)) {

*lower |= 1;

*upper &= ~1;

}

else if (code >= 0x0180 && code <= 0x01cc) {

*lower = LatinExtB_lower_mapping[code - 0x0180];

*upper = LatinExtB_upper_mapping[code - 0x0180];

}

else if (code == 0x01dd)

43

*upper = 0x018e;

else if (code == 0x01f1 || code == 0x01f2) {

*lower = 0x01f3;

*upper = 0x01f1;

}

else if (code == 0x01f3)

*upper = 0x01f1;

else if (code == 0x01f6)

*lower = 0x0195;

else if (code == 0x01f7)

*lower = 0x01bf;

else if (code == 0x0220)

*lower = 0x019e;

return;

}

/* IPA Extensions, U+0250 to U+02AF */

if (code >= 0x0253 && code <= 0x0292) {

*upper = IPAExt_upper_mapping[code - 0x0253];

}

/* Combining Diacritical Marks, U+0300 to U+036F */

if (code == 0x0345) {

*upper = 0x0399;

}

/* Greek and Coptic, U+0370 to U+03FF */

if (code >= 0x0370 && code <= 0x03ff) {

*lower = Greek_lower_mapping[code - 0x0370];

*upper = Greek_upper_mapping[code - 0x0370];

if (*upper == 0)

*upper = code;

if (*lower == 0)

*lower = code;

}

/* Cyrillic and Cyrillic Supplementary, U+0400 to U+052F */

if ((code >= 0x0400 && code <= 0x04ff) ||

(code >= 0x0500 && code <= 0x052f)) {

if (code >= 0x0400 && code <= 0x040f)

*lower += 0x50;

else if (code >= 0x0410 && code <= 0x042f)

*lower += 0x20;

else if (code >= 0x0430 && code <= 0x044f)

*upper -= 0x20;

else if (code >= 0x0450 && code <= 0x045f)

*upper -= 0x50;

else if ((code >= 0x0460 && code <= 0x0481) ||

(code >= 0x048a && code <= 0x04bf) ||

(code >= 0x04d0 && code <= 0x04f5) ||

(code >= 0x04f8 && code <= 0x04f9) ||

44

(code >= 0x0500 && code <= 0x050f)) {

*upper &= ~1;

*lower |= 1;

}

else if (code >= 0x04c1 && code <= 0x04ce) {

if (code & 1)

*lower += 1;

else

*upper -= 1;

}

}

/* Armenian, U+0530 to U+058F */

if (code >= 0x0530 && code <= 0x058f) {

if (code >= 0x0531 && code <= 0x0556)

*lower += 0x30;

else if (code >=0x0561 && code <= 0x0586)

*upper -= 0x30;

}

/* Latin Extended Additional, U+1E00 to U+1EFF */

if (code >= 0x1e00 && code <= 0x1eff) {

if ((code >= 0x1e00 && code <= 0x1e95) ||

(code >= 0x1ea0 && code <= 0x1ef9)) {

*upper &= ~1;

*lower |= 1;

}

else if (code == 0x1e9b)

*upper = 0x1e60;

}

/* Greek Extended, U+1F00 to U+1FFF */

if (code >= 0x1f00 && code <= 0x1fff) {

*lower = GreekExt_lower_mapping[code - 0x1f00];

*upper = GreekExt_upper_mapping[code - 0x1f00];

if (*upper == 0)

*upper = code;

if (*lower == 0)

*lower = code;

}

/* Letterlike Symbols, U+2100 to U+214F */

if (code >= 0x2100 && code <= 0x214f) {

switch (code) {

case 0x2126: *lower = 0x03c9; break;

case 0x212a: *lower = 0x006b; break;

case 0x212b: *lower = 0x00e5; break;

}

}

/* Number Forms, U+2150 to U+218F */

else if (code >= 0x2160 && code <= 0x216f)

45

*lower += 0x10;

else if (code >= 0x2170 && code <= 0x217f)

*upper -= 0x10;

/* Enclosed Alphanumerics, U+2460 to U+24FF */

else if (code >= 0x24b6 && code <= 0x24cf)

*lower += 0x1a;

else if (code >= 0x24d0 && code <= 0x24e9)

*upper -= 0x1a;

/* Halfwidth and Fullwidth Forms, U+FF00 to U+FFEF */

else if (code >= 0xff21 && code <= 0xff3a)

*lower += 0x20;

else if (code >= 0xff41 && code <= 0xff5a)

*upper -= 0x20;

/* Deseret, U+10400 to U+104FF */

else if (code >= 0x10400 && code <= 0x10427)

*lower += 0x28;

else if (code >= 0x10428 && code <= 0x1044f)

*upper -= 0x28;

}

void

XConvertCase(sym, lower, upper)

register KeySym sym;

KeySym *lower;

KeySym *upper;

{

/* Latin 1 keysym */

if (sym < 0x100) {

UCSConvertCase(sym, lower, upper);

return;

}

/* Unicode keysym */

if ((sym & 0xff000000) == 0x01000000) {

UCSConvertCase((sym & 0x00ffffff), lower, upper);

*upper |= 0x01000000;

*lower |= 0x01000000;

return;

}

/* Legacy keysym */

*lower = sym;

*upper = sym;

switch(sym >> 8) {

case 1: /* Latin 2 */

/* Assume the KeySym is a legal value (ignore discontinuities) */

if (sym == XK_Aogonek)

*lower = XK_aogonek;

else if (sym >= XK_Lstroke && sym <= XK_Sacute)

46

*lower += (XK_lstroke - XK_Lstroke);

else if (sym >= XK_Scaron && sym <= XK_Zacute)

*lower += (XK_scaron - XK_Scaron);

else if (sym >= XK_Zcaron && sym <= XK_Zabovedot)

*lower += (XK_zcaron - XK_Zcaron);

else if (sym == XK_aogonek)

*upper = XK_Aogonek;

else if (sym >= XK_lstroke && sym <= XK_sacute)

*upper -= (XK_lstroke - XK_Lstroke);

else if (sym >= XK_scaron && sym <= XK_zacute)

*upper -= (XK_scaron - XK_Scaron);

else if (sym >= XK_zcaron && sym <= XK_zabovedot)

*upper -= (XK_zcaron - XK_Zcaron);

else if (sym >= XK_Racute && sym <= XK_Tcedilla)

*lower += (XK_racute - XK_Racute);

else if (sym >= XK_racute && sym <= XK_tcedilla)

*upper -= (XK_racute - XK_Racute);

break;

case 2: /* Latin 3 */

/* Assume the KeySym is a legal value (ignore discontinuities) */

if (sym >= XK_Hstroke && sym <= XK_Hcircumflex)

*lower += (XK_hstroke - XK_Hstroke);

else if (sym >= XK_Gbreve && sym <= XK_Jcircumflex)

*lower += (XK_gbreve - XK_Gbreve);

else if (sym >= XK_hstroke && sym <= XK_hcircumflex)

*upper -= (XK_hstroke - XK_Hstroke);

else if (sym >= XK_gbreve && sym <= XK_jcircumflex)

*upper -= (XK_gbreve - XK_Gbreve);

else if (sym >= XK_Cabovedot && sym <= XK_Scircumflex)

*lower += (XK_cabovedot - XK_Cabovedot);

else if (sym >= XK_cabovedot && sym <= XK_scircumflex)

*upper -= (XK_cabovedot - XK_Cabovedot);

break;

case 3: /* Latin 4 */

/* Assume the KeySym is a legal value (ignore discontinuities) */

if (sym >= XK_Rcedilla && sym <= XK_Tslash)

*lower += (XK_rcedilla - XK_Rcedilla);

else if (sym >= XK_rcedilla && sym <= XK_tslash)

*upper -= (XK_rcedilla - XK_Rcedilla);

else if (sym == XK_ENG)

*lower = XK_eng;

else if (sym == XK_eng)

*upper = XK_ENG;

else if (sym >= XK_Amacron && sym <= XK_Umacron)

*lower += (XK_amacron - XK_Amacron);

else if (sym >= XK_amacron && sym <= XK_umacron)

*upper -= (XK_amacron - XK_Amacron);

break;

case 6: /* Cyrillic */

/* Assume the KeySym is a legal value (ignore discontinuities) */

if (sym >= XK_Serbian_DJE && sym <= XK_Serbian_DZE)

47

*lower -= (XK_Serbian_DJE - XK_Serbian_dje);

else if (sym >= XK_Serbian_dje && sym <= XK_Serbian_dze)

*upper += (XK_Serbian_DJE - XK_Serbian_dje);

else if (sym >= XK_Cyrillic_YU && sym <= XK_Cyrillic_HARDSIGN)

*lower -= (XK_Cyrillic_YU - XK_Cyrillic_yu);

else if (sym >= XK_Cyrillic_yu && sym <= XK_Cyrillic_hardsign)

*upper += (XK_Cyrillic_YU - XK_Cyrillic_yu);

break;

case 7: /* Greek */

/* Assume the KeySym is a legal value (ignore discontinuities) */

if (sym >= XK_Greek_ALPHAaccent && sym <= XK_Greek_OMEGAaccent)

*lower += (XK_Greek_alphaaccent - XK_Greek_ALPHAaccent);

else if (sym >= XK_Greek_alphaaccent && sym <= XK_Greek_omegaaccent &&

sym != XK_Greek_iotaaccentdieresis &&

sym != XK_Greek_upsilonaccentdieresis)

*upper -= (XK_Greek_alphaaccent - XK_Greek_ALPHAaccent);

else if (sym >= XK_Greek_ALPHA && sym <= XK_Greek_OMEGA)

*lower += (XK_Greek_alpha - XK_Greek_ALPHA);

else if (sym >= XK_Greek_alpha && sym <= XK_Greek_omega &&

sym != XK_Greek_finalsmallsigma)

*upper -= (XK_Greek_alpha - XK_Greek_ALPHA);

break;

case 0x13: /* Latin 9 */

if (sym == XK_OE)

*lower = XK_oe;

else if (sym == XK_oe)

*upper = XK_OE;

else if (sym == XK_Ydiaeresis)

*lower = XK_ydiaeresis;

break;

}

}

Bibliography

[1] Lampson, B. W. (1973) “A Note on the Confinement Problem,” Commun. ACM, 16(10),
pp. 613–615.
URL http://dx.doi.org/10.1145/362375.362389

[2] Getta, J. R. (2002) “Scrambling Covert Channels in Multilevel Secure Database Systems,”
in SIS, pp. 81–93.

[3] Kocher, P. C. (1996) “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems,” in CRYPTO, pp. 104–113.

[4] Wikipedia, “Keystroke logging,” .
URL http://en.wikipedia.org/wiki/Keystroke logging

[5] Ltd., K., “Key Ghost the Hardware Keylogger,” .
URL http://www.keyghost.com

[6] Giani, A., V. H. Berk, and G. V. Cybenko (2006) “Data exfiltration and covert chan-
nels,” in Sensors, and Command, Control, Communications, and Intelligence (C3I) Tech-
nologies for Homeland Security and Homeland Defense V. Edited by Carapezza, Edward M..
Proceedings of the SPIE, Volume 6201, pp. 620103 (2006)., vol. 6201 of Presented at the
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference.

[7] Shah, G., A. Molina, and M. Blaze (2006) “Keyboards and covert channels,” in
USENIX-SS’06: Proceedings of the 15th conference on USENIX Security Symposium,
USENIX Association, Berkeley, CA, USA, pp. p5–5.

[8] Bar-El, H. (2003), “Introduction to Side Channel Attacks - White Paper,” .
URL http://www.discretix.com/PDF/Introduction%20to%20Side%20Channel%20Attacks.pdf

[9] Page, D. (2002), “Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel,”
Tech. report CSTR-02-003, Computer Science Dept., Univ. of Bristol, June 2002.

[10] Kocher, P. C., J. Jaffe, and B. Jun (1999) “Differential Power Analysis,” in CRYPTO
’99: Proceedings of the 19th Annual International Cryptology Conference on Advances in
Cryptology, Springer-Verlag, London, UK, pp. 388–397.

[11] Agrawal, D., B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM SideChan-
nel(s):Attacks and Assessment. Methodologies,” .
URL www.research.ibm.com/intsec/emf-paper.ps

49

[12] Percival, C. (2005), “Cache missing for fun and profit,” .
URL http://www.daemonology.net/papers/htt.pdf

[13] Brumley, D. and D. Boneh (2005) “Remote timing attacks are practical,” Computer
Networks, 48(5), pp. 701–716.

[14] Bernstein, D. J. (2004), “Cache-timing attacks on AES,” .
URL http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[15] Kelsey, J., B. Schneier, D. Wagner, and C. Hall (1998) “Side Channel Cryptanalysis
of Product Ciphers,” in ESORICS ’98: Proceedings of the 5th European Symposium on
Research in Computer Security, Springer-Verlag, London, UK, pp. 97–110.

[16] Trostle, J. T. (1998) “Timing Attacks Against Trusted Path,” in IEEE Symposium on
Security and Privacy, pp. 125–134.

[17] Bagley, D., “X Windows System Lock Screen,” .
URL http://www.tux.org/~bagleyd/xlockmore.html

[18] Tiri, K. (2007) “Side-Channel Attack Pitfalls,” in Design Automation Conference.

[19] Page, D. (2005), “Partitioned Cache Architecture as a Side Channel Defence Mechanism,”
Cryptography ePrint Archive, Report 2005/280, August.

[20] Foundation, X., “X.Org Documentation,” .
URL http://wiki.x.org/wiki/Documentation

[21] Scheifler, R. W. (1998), “X Window System Protocol, X Consortium Standard, X Version
11, Release 6,” .
URL http://www.msu.edu/~huntharo/xwin/docs/xwindows/PROTO.pdf

[22] Wikipedia, “X Window System core protocol,” .
URL http://en.wikipedia.org/wiki/X Window core protocol

[23] Nye, A. (1992) Xlib Programming Manual, vol. 1, O’Reilly.

[24] Love, R. (2004) Linux Kernel Development, Developer’s Library.

[25] Intel (1997), “Using the RDTSC Instruction for Performance Monitoring,” .
URL http://cs.smu.ca/~jamuir/rdtscpm1.pdf

[26] Vaughn, R., “Testing Times,” .
URL http://www.dodeca.co.uk/a Testing Times.htm

[27] “The Perl Homepage,” .
URL http://www.perl.org

[28] NIST, “The Expect Homepage,” .
URL http://expect.nist.gov

[29] Wikipedia, “Semaphore,” .
URL http://en.wikipedia.org/wiki/Semaphore (programming)

[30] “POSIX Threads Programming,” .
URL https://computing.llnl.gov/tutorials/pthreads

