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Abstract

We construct all NkMHV six-particle amplitude integrands in color-dressed, maximally
supersymmetric Yang-Mills theory at two loops in a single prescriptive basis of master
integrands. We outline the concrete steps involved in building prescriptive master
integrand bases for scattering amplitudes beyond the planar limit. We highlight the
role of contour choices in such bases, and illustrate the full process by constructing a
complete, triangle power-counting basis at two loops for six particles. We show how
collinear contour choices can be used to divide integrand bases into separately finite and
divergent subspaces, and how double-poles can be used to further subdivide these spaces
according to (transcendental) weight. We prove that all tree-level amplitudes in pure
(super-)gravity can be expressed as term-wise, gauge-invariant double-copies of those of
pure (super-)Yang-Mills obtained via BCFW recursion. These representations are far
from unique: varying the recursive scheme leads to a wide variety of distinct, but equally
valid representations of gravitational amplitudes, all realized as double-copies.
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Introduction

Recent years have been witness to incredible advances in our understanding of per-
turbative quantum field theory; much of this has resulted from concrete applications
of generalized unitarity: through constructions of specific target amplitudes, matching
field theory cuts at the integrand-level. In particular, such investigations [1–3] led to the
discovery of tree-level [4, 5] (and loop-level [6]) on-shell recursion relations; the discovery
of dual-conformal (and ultimately, Yangian-)invariance [7–10] of planar, maximally su-
persymmetric Yang-Mills theory; the connection between on-shell diagrams and subspaces
of Grassmannian manifolds [11–17]; and the amplituhedron [18–20]—among much else.

Perhaps not surprisingly, the vast majority of this progress has been made in the
context of planar theories. For one thing, loop integrands in planar theories can be
assigned (symmetrized) dual-momentum coordinates for loop momenta in which all
Feynman diagrams depend universally. This allows for the loop integrand to correspond
to a specific, unambiguous rational function of internal and external (dual) momenta.
Moreover, dual coordinates allow a preferential stratification—or organization—of loop
integrand bases according to their UV behavior in these coordinates.

Beyond the planar limit, the non-existence of a particular rational function has
dramatically hindered progress. This is somewhat surprising, because very little about
generalized unitarity depends on the coordinates used to describe loop momenta or
how momentum-conservation is solved to express an L-loop integrand in terms of some
particular choice of loop momenta to be integrated (how the loop momenta are ‘routed’
in the language of ref. [21]). Nevertheless, applications of generalized unitarity beyond
the planar limit have been surprisingly sparse. Due to the importance of the possible
UV divergence of maximally supersymmetric (N =8) supergravity and the connections
between this theory and (N =4) supersymmetric Yang-Mills theory (‘sYM’), the most
impressive results that exist are for four-point amplitudes—which are known through five
loops [22–29]. Outside of this case, only relatively isolated examples of amplitudes are
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known. These include the five and six-point MHV amplitudes in sYM [30,31] and a more
recent, general formula for all-multiplicity MHV amplitudes at two loops [32]. Compare
this with planar sYM, for which local integrand representations of all-multiplicity, all
NkMHV amplitudes are known through three loops [33–35], and isolated examples of
integrands at lower-multiplicity are known as high as ten loops [36–38].

Interestingly, and in contrast with the work on planar amplitudes, none of the previous
applications of generalized unitarity to non-planar amplitudes built upon a complete
basis of integrands in which to express the result. Rather, all such results were obtained
by starting from a reasonably good guess for a sufficient subspace of integrands and
amending this guess only as far as needed to match the amplitudes in question.

In this work, we would like to take some of the guess-work and cleverness out of the
construction of non-planar amplitudes by illustrating the construction of a complete and
prescriptive basis for all (not necessarily planar) integrands with triangle power-counting,
(denoted ‘B(4)

3 ’ in [21]) involving six particles at two loops, following the general strategy
described in ref. [21]. To be clear, although ref. [21] described how to define and enumerate
the space of such integrands beyond the planar limit, it did not discuss how particular
choices of basis elements should be chosen.

A prescriptive basis of integrands {Ii}—viewed as a basis for cohomology on the
space of differential forms on loop momenta—is one which is the cohomological dual
of some choice of integration contours {Ωj}. That is, a basis of loop integrands {Ii} is
called prescriptive if there exists a set of cycles {Ωj} such that

∮
Ωj

Ii = δi,j . (1)

When this is the case, amplitudes may be expanded in this basis simply as

A=
∑
i

aiIi (2)

with coefficients ai being directly (possibly generalized [21,39]) ‘leading singularities’

ai :=
∮
Ωi

A (3)

—on-shell functions computed in terms of tree-amplitudes.
Obviously, the particular integrands appearing in a prescriptive basis will depend

strongly on the integration contours {Ωj} to which they are dual. One motivation for our
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present work is to illustrate the scope of possible choices for these cycles, and how these
choices affect the resulting integrand basis in a concrete case of relevance to amplitudes
in sYM. For example, by choosing as many contours as possible to encompass all regions
responsible for IR-divergence [40], diagonalization of the basis implicit in (1) should
render all integrands not manifestly dual to such contours IR-finite. Such a splitting of
integrands in the basis should simplify the computation of finite quantities (such as the
ratio function)—possibly even achieving local finiteness as described in [40]. It remains
to be seen how these ideas generalize to beyond the planar limit, and it may be viewed as
a conjecture—to be tested by direct integration—that the integrand basis we construct
here has this property.

Regardless of the integration contours chosen for the basis, it is empirically the case
that prescriptive integrand bases turn out to be ‘simple’ with respect to the difficult
challenge of loop integration. Specifically, we mean that they are almost certainly ‘pure’
(at least when maximal in weight) [41,42]; that is, viewed as master integrals, they are
found to satisfy nilpotent systems of differential equations [43,44]. This property may be
complicated by the presence of integrals with double-poles (or equivalently, integrals that
should be viewed as maximal in weight for a lower spacetime dimension of integration).
The basis we construct certainly includes such integrands; and so it may be viewed as
a conjecture—again, to be tested by direct integration—as to whether the full-weight
subspace of integrands we construct are indeed ‘pure’ after loop integration.

The existence of integrand basis elements with less than maximal transcendental
weight—features widely believed to be absent from amplitudes in sYM—illustrates
another motivation for this work: to explore and clarify the ways in which the basis
of triangle power-counting integrands (‘B(4)

3 ’) as defined in ref. [21] is too large for
amplitudes in sYM. As we will see, many integration contours can be chosen for which
all amplitudes in sYM are known to vanish. In addition to integrands with double-poles,
there are many which can be normalized on contours involving poles at infinity—for which
amplitudes in sYM are known (at this loop order) or widely expected to vanish [23,45].

Finally, a practical motivation for this present work is the prospect of constructing
a single integrand basis large enough to span all NkMHV amplitudes in sYM at some
fixed multiplicity. Although the six-particle MHV amplitudes at two loops are known
in multiple forms [31, 32], the six-point NMHV amplitude remains an important, and
open target for investigation. By expressing both amplitudes in the same basis of master
integrands, there is some hope that it may simplify the work of loop integration for some
analogue of the ratio function in the planar case. The analogous results in the planar
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limit proved important seeds for future discovery and development [46–49], and we hope
this work may inspire some ambitious loop-integrators to take up this challenge once the
corresponding amplitudes are known [50].

Let us briefly describe why we have chosen to use the case of non-planar integrands
at two-loops involving six external particles as the primary example discussed in this
work. As discussed at length in [31], six-particle amplitudes are the last multiplicity
which can be represented in terms of manifestly (and individually) polylogarithmic
integrands. In the context of maximal sYM, this can be made obvious by considering the
seven-point ‘tardigrade’ topology, whose maximal cut surface has support on an elliptic
sub-topology [51],

Res
a2=···=f2=0

 a

b c

d
e

f

1

2

3

4

5

6

7

∝
dx

y
, where y2 :=Q(x) , (4)

where Q(x) is an irreducible quartic in the remaining loop variable; as such, this integral
involves the geometry of an elliptic curve. Because the integral in (4) has NMHV coloring,
any representation of the 7-point NMHV amplitude necessarily requires terms with
support on this elliptic integral. To be clear, although the maximal cut (4) has no
further residues on which to define a contour, this presents no fundamental obstacle to
defining a spanning set of contours with which to diagonalize numerators. Indeed, the
recent works [39,52] (see also [51,53–55]) demonstrate that for any topology with elliptic
(or worse) structures a natural choice of contours may be furnished by some choice of
homological cycles within the cut-surface’s geometry. In the above example, these would
simply be a choice of either the a- or b-cycle of the elliptic curve.

Another reason we have chosen to focus on the case of six particles is primarily
pragmatic: integrals with this multiplicity are (or just beyond) the current state-of-
the-art in loop integration. Moreover, a six-point prescriptive basis (in which both the
MHV and NMHV amplitudes were expressed) would allow for the direct search of some
non-planar analogue of the ratio function beyond the planar limit.

In our basis, all six-particle helicity amplitudes in color-dressed, maximally supersym-
metric (N =4) Yang-Mills theory (‘sYM’) or maximal (N =8) supergravity (‘SUGRA’)
should be expressible. In this work, we use unitarity to determine the coefficients of
all six-particle NkMHV amplitudes in this basis—of which the NMHV amplitude is
entirely new. These coefficients are each simple leading singularities, expressible as (fully
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color-dressed) on-shell functions, valid for any choice of gauge group.
The rich connections between scattering amplitudes in gauge theory and gravity has

been a source of tremendous progress in our understanding of both theories. Among the
most seminal of these is so-called color-kinematic (or ‘BCJ’) duality [56], which states
that gravitational scattering amplitudes may be represented as ‘double-copies’ of those of
Yang-Mills theory, provided the latter is represented in terms of color-kinematic satisfying
(‘dual’) numerators with denominators (typically) built from scalar ϕ3 field theory (see
e.g. [57–60]). The existence of such numerators was first conjectured, but can be proven
at tree-level in a number of ways [61–65], with much evidence suggesting that color-
kinematic duality should continue to the level of loop integrands (see e.g. [29,30,66–74]).
The potential form, structure, and scope of these numerators, as well as the theoretical
origins of this story more generally have been the subject of a great deal of research (see
e.g. [75–81]).

Prior to the discovery of color-kinematic duality, on-shell recursion relations [82–84]
for tree-level scattering amplitudes led to similarly great leaps in our understanding of
gravitational and gauge-theory amplitudes [85–92]. Some of this work connected directly
to results derived from string and twistor string theory (e.g. [93–97]).

In this work, we show that BCFW recursion relations directly lead to representations
of amplitudes in color-dressed Yang-Mills theory (YM) and gravity (GR) that may be
expressed in the form

AYM(1, · · · ,n) =
∑

~a∈S(A)

∑
Γ

c ~aαβ n
(
Γ~aαβ

)
D
(
Γ~aαβ

) δ2×2
(
λ·λ̃

)

AGR(1, · · · ,n) =
∑

~a∈S(A)

∑
Γ

n
(
Γ~aαβ

)
n
(
Γ~aαβ

)
D
(
Γ~aαβ

) δ2×2
(
λ·λ̃

) (5)

for any choice {α,β}⊂ [n] of the external legs, where A:=[n]\{α,β}. For Yang-Mills
theory, the form (5) will be seen to be somewhat quixotic, as the color-kinematic dual
‘numerators’ will be simply defined to be the product of D

(
Γ~aαβ

)
and a more familiar

gauge-invariant, on-shell function [98]; as such, the real novelty arises in the identification
of the denominators D

(
Γ~aαβ

)
, which we define recursively. It is worth pointing out that

because the color-factors appearing in (5) are entirely independent, these numerators are
only ‘color-kinematic dual’ in a rather trivial sense: neither satisfies any identities.

The existence of formulae such as (5) follows from the on-shell diagrammatic interpre-
tation of BCFW recursion in YM. Ignoring factors of color and momentum conservation,
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the double-copy follows from the fact that for any primitive1 on-shell diagram Γ, the
on-shell functions fΓ of gravity and Yang-Mills differ by a simple factor depending on
the graph:

fGR
Γ = J(Γ)

(
fYMΓ

)2
. (6)

This general fact (see e.g. [99–103]) is a simple consequence of the definition of an on-shell
function and the relationship between the 3-particle S-matrices of the two theories: an
on-shell function may be defined as the product of amplitudes evaluated on the residue
1/J(Γ) of the scalar graph which puts all internal lines on-shell; squaring an on-shell
function in YM gives the correct product of 3-particle amplitudes in GR, but squares
also 1/J(Γ)—which must be corrected by the numerator of (6).

This work is organized as follows. In section 1 we review the relevant aspects and
benefits of the prescriptive approach to generalized unitarity, as well as the graph-
theoretic definition of power-counting for multi-loop integrand bases introduced in [21].
In section 2 we explore the relation between contour choices and the properties of the
induced prescriptive integrand bases at one loop, and provide a pedagogical derivation of
novel triangle power-counting bases related to the chiral box expansion of [33]. Section 3
contains a thorough outline of the steps involved in constructing prescriptive integrand
bases, and the application of these ideas to the case of six particles at two loops. we
also discuss desirable features and possible applications of the aforementioned basis,
both from the perspective of amplitude integrand construction and for loop integration.
Section 4 discusses the the application of unitarity to determine the coefficients of all
six-particle NkMHV amplitudes in this basis. In section 5, we show that BCFW recursion
relations directly lead to representations of amplitudes in color-dressed Yang-Mills theory
(YM) and gravity (GR) which are related by double copies. Section 6 gives a summary
and a discussion of natural directions for further research.

1A primitive diagram is one involving only three-point amplitudes at its vertices. Any diagram with
higher-point amplitudes can be expanded as a sum of primitives via BCFW recursion.

6



Chapter 1 |
Review: Essential Elements of
Integrand-Basis Building

Even before we describe the choices involved in making a particular choice for the
basis elements of set of loop integrands, it is important to first enumerate the space of
integrands under consideration. Typically, this consists of a choice of Feynman integral
topologies—defining the propagators of the integrands in the basis—and then some
stratum of allowed loop-dependent numerator degrees of freedom. These loop-dependent
numerators are usually organized according to some notion of power-counting—limiting
the degree of polynomial loop-dependence of the numerators to be considered in the
basis.

In [21] it was argued at length that the numerators of any basis are best organized
not by Lorentz-invariant scalar products as is more typical, but rather in terms of the
translates of inverse propagators involving the momentum flowing through some choice
of edges of the graph. This choice manifests both the identification of some of these
polynomial degrees of freedom as ‘contact terms’ and this organization is naturally
translationally invariant—independent of how the origins of loop momenta are chosen,
or how the loop momenta are ‘routed’ through a Feynman graph—how momentum
conservation is solved in order to specify some number L independent loop momenta.
Thus, this framework organizes loop-dependent numerators in a purely graph-theoretic
way.

As this formalism is still somewhat novel, we begin with a rapid but largely self-
contained review of the essential ideas and notation introduced in [21] which will be
required later in this work.

At one loop, the loop-dependent part of the denominator of any Feynman integrand
consists of a single, closed cycle of some number of Feynman propagators. A graph
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involving p propagators (and any loop-dependent polynomial in the numerator) is called
a ‘p-gon’. The denominator of a p-gon consists of a product of factors of the form
(̀ |Di):= (`−Di)2; provided the Di are indexed cyclically around the graph, consecutive
Di’s differ by the total (external) momentum flowing into a given vertex along the cycle.
(Obviously, translation-invariance in ` allows us to set any Di to ~0; but it is best if we
leave this redundancy in place.)

To describe loop-dependent numerators, we choose (without any loss of generality) to
use the same building blocks as the factors appearing in the denominator. Namely, we
choose to write any loop-dependent numerator as a polynomial involving products of
inverse propagators as monomials. Specifically, we may define

[`]:= spanQ{(̀ |Q)} for Q∈R4 . (1.1)

That is, [`] consists of all polynomials in ` that can be written as single inverse propagators
with loop-independent coefficients. (These coefficients may depend arbitrarily—typically
algebraically—on the external momenta.) It is not hard to see that for four dimensions,
rank

(
[`]
)

=6. Moreover, it is easy to see that this vector space is equivalent to [`]'
span{1,(`·ei), `2} where ei are some basis vectors for the space of external momenta, R4.
Notice that [`]=[`+Q] for any Q∈R4; thus, this is a naturally translationally-invariant
notion for a set of loop-dependent numerators.

Higher-order polynomials in ` can be constructed as products of inverse propagators.
Specifically, we may define

[`]q := span⊕Qi

{ q∏
i=1

(̀ |Qi)
}

for Qi∈R4 . (1.2)

It not hard to see that [`]a⊂ [`]b for any a<b. In particular, [`]0 ={1}⊂ [`], as seen above.
These spaces form symmetric, traceless products of 6-dimensional representations of
SO6—a fact that is easy to see in the embedding formalism (see e.g. [104]). For this
work, we will mostly be interested in spaces [`]0, [`]1, [`]2, [`]3, which have ranks 1, 6, 20,
and 50, respectively.

We can discuss the space of loop-dependent numerators assigned to a given set of
Feynman propagators using the following graphical notation:

~̀
:= [`]

`2 ' span
{

1
`2 ,

`i

`2 ,1
}
. (1.3)
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(Notice that this space is large enough to include the propagators of scalars, fermions,
and vector bosons (in any gauge).) To illustrate how this notation can be used, consider
the space of box integrands with triangle power-counting:

[`]
(̀ |D1)(̀ |D2)(̀ |D3)(̀ |D4)

↔
P1

P2 P3

P4

. (1.4)

(Momentum conservation requires, for example, that D2−D1 =P1; but to specify the D’s
would require that we eliminate the translational-invariance of the loop momentum—
something we’d like to avoid.) Because the space [`] is invariant under translations,
decorating any pair of propagators whose momenta differ by some sum of external
momenta would result in the same vector space of loop-dependent numerators; in
particular, the decoration on the top edge in (1.4) can be placed on any edge of the graph
and would define precisely the same set of Feynman-like loop integrands.

Notice that any element of the space of integrands in (1.4) scales manifestly like a
scalar triangle integral as `→∞. Because of this, we describe this space of box integrands
in (1.4) as those with ‘triangle’ power-counting.

It is natural to partition the space of loop-dependent numerators as much as possible
into ‘contact-terms’—monomials which eliminate one (or more) of the propagators of
the graph. In the case of the box in (1.4), the space of contact terms are obviously
span{(̀ |D1), (̀ |D2), (̀ |D3), (̀ |D4)}⊂ [`]. The space of numerators not spanned by contact
terms is called the numerator’s top-level degrees of freedom. This space can be spanned
by {(̀ |Qi)} for i=1,2 where Qi represents one of the solutions to the ‘quad-cut’ equation
(Qi|D1)= (Qi|D2)=(Qi|D3)=(Qi|D4)=0.

Thus, any particular numerator for a box with ‘triangle’ power-counting—any element
of (1.4)—could be expressed by

[`] 3 n(`) =: c1(`|Q1) + c2(`|Q2)︸ ︷︷ ︸
top-level

+c3(`|P1) + · · ·c6(`|P4)︸ ︷︷ ︸
contact terms

(1.5)

where the coefficients {ci}i=1,...,6 are some `-independent ‘constants’ (arbitrary functions of
the external momenta). We would say that a box integral with triangle power-counting’s
six-dimensional space of numerators consists of 2 ‘top-level’ degrees of freedom and 4
‘contact-terms’.

In four dimensions, it turns out that any pentagon (or higher) with triangle power-
counting can be expanded into the boxes (1.4) and scalar triangle integrands. Thus, the
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complete basis of one-loop integrands with triangle power-counting would be given by

B
(4),L=1
3 := span⊕Di

{
1

(̀ |D1)(̀ |D2)(̀ |D3)
,

[`]
(̀ |D1)(̀ |D2)(̀ |D3)(̀ |D4)

}

= span⊕Pi


P1

P2

P3

,

P1

P2 P3

P4

.
(1.6)

To specify a particular basis for this space, both top-level and contact-term degrees
of freedom must be defined for every integrand in the basis. It may seem tempting to
simply set all contact-terms to zero in the space of numerators, but this is not obviously
in line with prescriptivity (1); rather, in any prescriptive basis the contact terms of
the boxes are uniquely fixed by the requirement that the box integrands in the basis
vanish on the contours to which the triangles are dual. Provided any contour used
for diagonalization includes ‘cutting’ of every propagator of the integrand, all triangle
integrands will automatically vanish on any contour defining a box integrand. This is
an illustration of the upper-triangular nature of bases with<d-gon power-counting in d
dimensions—something we will discuss in more detail below.

At two-loops (or higher), loop-dependent numerators are organized in a similar
way. Before we discuss this, it is worthwhile to review the possible loop dependence in
the denominator of any two-loop Feynman graph. Any such graph can be labelled by
three numbers, {a,b, c} which indicate the number of propagators that are related by
translates involving only external momenta; we can see this graphically by describing the
denominator of any two-loop integrand as

Γ[a,b,c]⇔ (1.7)

When discussing loop-dependent numerators for such integrands, we may use inverse
propagators involving translates of the momenta flowing through the edges each type in
the graph:

[`A]:= spanQ{(`A|Q)} ,

[`B]:= spanR {(`B|R)} , where Q,R,S ∈ R4,

[`C ]:= spanS {(`C |S)} ,

(1.8)
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as well as (sums of) products thereof. Of course, [`B]' [`A−`C ]; but as before, we choose
to avoid making any choice of loop-momentum routing in order to eliminate one of the
three labels.

For any choice of numerators constructed in this way, there will be a natural decompo-
sition into top-level degrees of freedom and contact terms. But to specify a particular set
of such numerators (even before we discuss choosing particular representative integrands
to span that set) requires that we make some choice of which numerators to include for
each topology in the basis. Complicating matters is the fact that for non-planar graphs
the naïve notion of ‘scaling like a p-gon’ as `→∞ depends strongly on how the loop
momenta are routed—which two cycles of unfixed, internal loop momenta are considered
as independent. A proposal for a space of triangle power-counting integrands at any loop
order for non-planar graphs was defined in ref. [21], which we review presently.

1.1 Power-Counting of Integrands Beyond the Planar
Limit
The essential idea behind the graph-theoretic definition of power-counting described in
ref. [21] is that when spaces of loop-dependent numerators are constructed using (1.3) it
is clear how every integrand in this space behaves as the loop momentum through any
edge goes to infinity: like a constant. That is, putting a decoration as in (1.3) on any
edge of a graph results in a space of integrands that scales exactly like the Feynman
integrand where all decorated-edges have collapsed.

Thus, while there may be no invariant notion of how a Feynman integrand scales at
‘infinity’ without specifying a particular routing of loop momenta, there is an invariant
sense in which one loop integrand can scale like one (or more) among its contact-terms.
Thus, the starting point for defining Bp—the space of integrands with ‘p-gon’ power-
counting—beyond one loop is a specification of which integrands in the basis should
be defined as ‘scalars’—those integrands with loop-independent numerators, like which
every other integrand in the basis scales at infinity.

Given any choice of ‘scalar’ Feynman graphs, a complete space of integrands which
scale like these may be constructed by adding decorated edges (1.3) to these. In any
fixed spacetime dimension, there is an upper bound on the number of edges that can be
added before the rank of that graph’s top-level degrees of freedom vanishes.

The authors of [21] defined the set of p-gon scalars as any graph with girth p which

11



would be lowered by the collapse of any edge. At two loops, these scalar 3-gons are
defined to be

S3 :=

 a
b

c d
e

f
,

a

b c

d

e

 . (1.9)

From these, the basis B3 would be generated by adding any number of decorated edges
(1.3) to either of these graphs (without increasing the loop number). Said another way,
any graph that contains either of (1.9) as a contact term would be endowed with a
vector-space of numerators given by the product of the translates of inverse propagators
corresponding to each edge in the quotient of the parent relative to the daughter. For
graphs where more than one edge-sets exists, the space of numerators is defined as the
outer-sum of the vector-spaces generated by each.

1.2 Non-Planar, Triangle Power-Counting Basis at Two
Loops
The set of triangle power-counting integrands consists of all graphs which scale like
one or the other of (1.9). In any fixed spacetime dimension (or equivalently, external
multiplicity), the space of such integrands is in fact finite dimensional: all but a finite
number of integrands with a bounded number of propagators is reducible—meaning that
its numerator space would entirely spanned by contact terms (its top-level rank would
be zero).

In four dimensions, any integrand with more than eight propagators is reducible in
B3, and those integrands with precisely eight propagators will have precisely as many
top-level degrees of freedom as there are solutions to the maximal-cut equations (defining
contours which ‘encircle’ all of the propagators of the graph). The complete space of
such integrands was described in some detail in [21], which is summarized in table 1.1.

In the case of six external particles, the integrands in table 1.1 involve 94 distinct
(graph non-isomorphic) instances of distinct leg distributions. Among these, we have
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Table 1.1: The starting point in our basis construction: the complete list of integrand
topologies compatible with triangle power-counting, as defined in [21], reproduced
from [31]. Included is the total rank of the vector space of numerators in B3, as well as
the decomposition of these ranks into top-level and contact terms.

chosen to disregard 7 of which include massless-triangle sub-topologies—for example,

1

2

3
4 5

6

ab

c
d

e

f

g . (1.10)

Such integrands are problematic from a unitarity point of view for the simple reason that
when the internal propagators flowing into the massless triangle (a and d above) and any
two within the triangle (e, f , and g above) are cut, the third propagator of the triangle
will automatically be on-shell (in four dimensions). Thus, the five propagators involved
in a massless triangle do give rise to a co-dimension 5, transverse residue. This technical
problem can be easily resolved by considering the propagators as massive, for example;
but as such integrands form a closed subspace under edge contractions (no integrand
without a massless triangle has one as a contact term) and as their coefficients would
always vanish in sYM, we have chosen to ignore them in our classification.

Thus, including all non-graph-isomorphic leg distributions, and excluding any graphs
with massless triangles, we find 87 distinct integrand topologies for six external particles
at two loops. We summarize the basis that results in table 1.2.

In total, we have 87 six-particle, two-loop integrand topologies spanning a space of
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Table 1.2: Enumeration of the topology distributions and rank-counts for graphs with six
external legs. The index ranges are those used to identify integrands in the ancillary files.

topology # index
range N3

total rank= top-level rank
+contact-terms

Γ[4,0,4] 1 [1] [`A][`C ] 36= 4+32
Γ[4,1,3] 4 [2-5] [`A]2[`C ]⊕[`A][`B] 120= 4+116
Γ[4,2,2] 4 [6-9] [`A]3⊕[`A]2[`C ]⊕[`A]2[`B] 164= 4+160
Γ[3,2,3] 3 [10-12] [`B]2⊕[`A]2[`C ]⊕[`A]2[`B]⊕[`A][`B][`C ]229= 8+221
Γ[3,0,4] 4 [13-16] [`C ] 6= 2+4
Γ[3,1,3] 8 [17-24] [`B]⊕[`A][`C ] 36= 8+28
Γ[4,1,2] 9 [25-33] [`A]2 20= 2+18
Γ[3,2,2] 10 [34-43] [`A]2⊕[`A][`C ]⊕[`A][`B] 55=10+45
Γ[3,1,2] 17 [44-60] [`A] 6= 3+3
Γ[2,2,2] 9 [61-69] [`A]⊕[`B]⊕ [`C ] 12= 6+6
Γ[3,0,3] 5 [70-74] 1 1= 1+0
Γ[2,1,2] 13 [75-87] 1 1= 1+0

373 top-level degrees of freedom (3129 degrees of freedom in total). This is the number
of contours which must be specified to define a prescriptive basis. All 3129 degrees of
freedom will be fixed by these contours, together with their graph-isomorphic images as
contact-term conditions according to (1).

We will return to the details of this integrand basis in section 3; but first, let us
briefly return to one loop in order to better understand role of contour choices in the
prescriptivity condition (1).

14



Chapter 2 |
Illustrating Implications of Contour-
Choices at One Loop

Generalized unitarity at one loop has a long and rich history [1–3, 105–109], and its
many refinements have yielded many practical and theoretical discoveries [4, 5, 7–9,15].
Examples of pedagogical reviews of this material can be found in [110–112] as well as
in recent, related works by some of the authors [21, 31, 35]. Before proceeding to the
main two-loop results of this paper, in this section we shall take a detour to re-analyze
one-loop bases with box and triangle-power counting, with a particular focus on the
relation between the contour choices and the properties of the associated bases. In
addition to providing some simple examples of the kinds of contour prescriptions we
use throughout this work, the main results of this section are two different and novel
triangle-power-counting bases which are related to—but slightly different than—the
‘chiral box’ expansion of [33].

2.1 Box Power-Counting Basis and the No-Triangle Prop-
erty
The standard lore of one-loop generalized unitarity in maximally supersymmetric Yang-
Mills (sYM) is that, because amplitudes scale as ∼ (`2)−4 as `→∞, a natural choice of
power-counting is ‘4-gon’, which in four dimensions consists of scalar boxes and pentagons
with a single loop-momentum numerator insertion:

B4↔
{

,
}
. (2.1)
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The numerator space for the pentagons is conveniently described in a basis of the five
inverse propagators of the graph, plus a single top-level numerator in the complement of
that subspace. As every topology has a single top-level degree of freedom, the contour
prescriptions of this part of the basis are simple: every box may be normalized to be unit
on the parity-even combination (the difference of residues) of its respective quad-cuts
f 1,2
A,B,C,D, which we may denote diagrammatically as

1
2

(
1 + 2

)
↔ , (2.2)

while each pentagon can be normalized on a parity-odd contour which results in inte-
grands which integrate to zero. As has been discussed at length in [35], this basis is
unfortunately over-complete because the parity-odd pentagons are not all independent:
the

(
n
5

)
pentagons satisfy

(
n−1

5

)
linear relations. Eliminating the resulting redundancy

requires an (arbitrary) choice of an independent subset of pentagons. This choice, while
not a significant roadblock at one loop—especially if one were only interested in inte-
grated expressions—becomes substantially more problematic at higher loops. Fortunately,
considering a basis with triangle power-counting is an elegant way of resolving this issue,
at the cost of losing manifest dual conformal invariance in the planar part of the basis.

2.2 Possible Choices of Triangle Power-Counting Bases
at One Loop
The box power-counting basis of the previous subsection is perfectly natural for rep-
resenting all one-loop amplitudes in sYM post-integration. However, integrand-level
representations of these amplitudes require an arbitrary choice of an independent set
of parity-odd pentagons. This led to the development of the ‘upgraded’ basis of [33]
resulting in the ‘chiral box’ expansion, which made use of a particular, prescriptive basis
of triangle power-counting integrands, cleanly separated into infrared finite and divergent
subsets. These integrands were designed to have support on one solution to the box-cut,
and vanish on the other. In addition, they were designed to vanish on the parity-even
contour (including infinity) of any three-mass triangle sub-topology and on any soft
and/or collinear region of any triangle with a massless corner. Thus, the ‘chiral box’
basis described in [33], while not adequately described in these terms, corresponded to a
prescriptive basis with the following choice of contours: chiral box-cut contours for each
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box integrand; soft and/or collinear regions and parity-even at infinity for all divergent
or finite triangle integrals, respectively.

To clarify the role of the contour choices involved, it is worthwhile to revisit the
question of triangle power-counting at one loop and derive two new prescriptive bases
based upon slightly different contour choices.

2.2.1 Option 1: Exploiting Residues on Poles at Infinity

In a basis with triangle power-counting in four dimensions, every scalar triangle integral
has one simple pole at infinite loop momentum along each triple-cut. Thus, a natural
choice for their contours would be the parity-even combination of these (which is the
difference of the two contours), resulting in a normalization of the integrands given by

A

B

C

↔ nA,B,C :=
1
2

√
(p2
C−p2

A−p2
B)2−4p2

A p
2
B . (2.3)

This normalization smoothly degenerates to all cases involving massless external momenta
(the argument of the square root becoming a perfect square for all such degenerations).

As amplitudes in sYM (and SUGRA) have no support on poles at infinity at one
loop, the coefficient of any all scalar triangle integrand for amplitudes in sYM will be
zero. (This is much more in line with the original observation leading to the ‘no triangle’
hypothesis for these theories [113–118].)

What about the box integral contours? Rather than taking the chiral solutions to
the quad-cuts, let’s use the parity-even and parity-odd combinations of contours—that
is, the difference and sum of the chiral contours, respectively. Even before we discuss the
numerators that result from this choice of contours, it is interesting to note that in the
representation of a loop integrand, we would have coefficients arranged according to

1
2

(
1 + 2

)
↔ e , (2.4)

1
2

(
1 − 2

)
↔ o . (2.5)

For the parity-even contour, a loop-independent ‘scalar’ box is an obvious candidate
numerator—and obviously an element of B3 (as B3⊃B4). Moreover, the scalar box
integral is free of any poles at infinite loop momentum, making them automatically
vanish on the contours defining the scalar triangle integrands.
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For the parity-odd contours for the boxes, it is clear that we must choose integrands
that have equal residues on the two box-cuts so that these integrals vanish on the even-
contours (so that the 2×2 system of top-level numerators for each box is diagonal). It turns
out to be fairly easy to guess such numerators—which turn out to vanish automatically
on all parity-even contours defining all triangle daughter topologies (contact terms).

The final set of numerators will be

Ie,oA,B,C,D↔ b

c

d
a

A

B C

D

↔


neA,B,C,D :=

1
2

√
(p2
ABp

2
BC−p2

Ap
2
C−p2

Bp
2
D)2−4p2

A p
2
B p

2
C p

2
D

noA,B,C,D :=
1
2 ([[pA, b, c,pC ]]− [[b,c,pC ,pA]])

(2.6)

(Here we use the kinematic bracket conventions from [31,32] to denote contractions of

momenta
[[a1,a2, · · · , c1, c2]] :=

[
(a1 ·a2)αβ · · ·(c1 ·c2)γα

]
, (2.7)

where (a1 ·a2)αβ := aαα̇1 εα̇γ̇a
γ̇γ
2 εγβ and aαα̇ := aµσαα̇µ are ‘2×2’ four-momenta, defined via

the Pauli matrices. The ‘[[· · · ]]’ object may be more familiar to some readers if written
equivalently as ‘tr+[· · · ]’.) Both of these numerators smoothly degenerate under all
massless limits of the corners. It is not hard to check that the entire basis is diagonal in
the choice of contours described—and is hence prescriptive.

Notice that this basis is complete and not over-complete. Thus, the odd numerators
for the box integrands are full-rank. Thus, considering that B3⊃B4, although each
of these integrands scale like scalar triangle integral at infinite loop momentum, it is
interesting to note that all parity-odd pentagon integrands are in fact spanned by these
‘parity-odd’ boxes. This fact is further emphasized by the form that amplitudes take in
this basis. For theories with maximal supersymmetry (which have box power-counting,
and hence are expressible within B4), amplitudes will take the form

A=
∑

A,B,C,D

1
2
(
f 1
A,B,C,D+f 2

A,B,C,D

)
IeA,B,C,D + 1

2
(
f 1
A,B,C,D−f 2

A,B,C,D

)
IoA,B,C,D (2.8)

=
∑

A,B,C,D

1
2

(
1 + 2

)
× e + 1

2

(
1 − 2

)
× o . (2.9)

As far as integrals are concerned, this is essentially identical to the representation in
B4—namely, the only integrands that contribute upon integration are the scalar boxes
IeA,B,C,D.

One disadvantage of this choice of contours, however, is that the IR structure of
amplitudes is far from manifest: any scalar box with a massless leg will be IR divergent,
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and it is a non-trivial fact (an identity that led to the discovery of tree-level recursion
relations for amplitudes, in fact [83]) that the total IR divergence of an amplitude would
be proportional to the tree.

2.2.2 Option 2: Contours Supported in Regions of IR Divergence

Rather than choosing contours at infinity for all the triangles, let us now consider
choosing contours that (in addition to cutting all three propagators) enclose any soft
and/or collinear region that may exist. These are the regions in loop-momentum space
responsible for IR-divergences [40].

This difference has very little effect on the triangle integrands (whose normalization
changes merely by a sign—and by a factor of 2 if there are two branches for a triple-cut).
However, it has a very strong effect on the box integrands in our basis: they must be
altered so that each vanishes in all such regions of soft and/or collinear divergence.

Interestingly, the odd box integrands IoA,B,C,D in (2.6) already vanish in every collinear
region by virtue of the fact that these regions are parity-even. However, the scalar boxes,
IeA,B,C,D in (2.6) must be modified accordingly. Moreover, this modification will change
which if any of the inflowing momenta {pA,pB,pC ,pD} are massless.

Let us use (lower-case) Greek letters to denote a massless momentum; thus, we’ll
write ‘pα’ for ‘pA’ if p2

A=0 and similarly for pβ,pγ,pδ. Using this, there are three cases
to consider, each with different contact terms added to remove their regions of collinear
divergence. The result is a basis of numerators for the boxes given by

n̂eA,B,C,D := neA,B,C,D (2.10)

n̂eα,B,C,D := 1
2
(
[[pα, b, c,C]]+[[b,c,pC ,pα]]+[[pB,pC ]]a2− [[pαB,pC ]]b2

)
, (2.11)

n̂eα,β,C,D := 1
2
(
[[pα, b, c,pC ]]+[[b,c,pC ,pα]]− [[pαB,pC ]]b2

)
, (2.12)

n̂eα,B,γ,D := 1
2 ([[pα, b, c,pγ]]+[[b,c,pγ,pα]]) . (2.13)

Notice that we have used ‘̂’s’ to disambiguate these numerators from those constructed
in (2.6).

By virtue of diagonalization implicit in the prescriptivity condition (1), every even box
integrand now automatically vanishes in all soft and/or collinear region of loop-momenta
and is therefore IR-finite(!). Where do the divergences of amplitudes now go? The answer
is that amplitudes in maximally supersymmetric theories, while vanishing on any contour
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taken at infinity, no longer vanish on the contours chosen for the triangle integrals. In
particular, amplitudes always have support on the one-mass triangles’ contours (the only
ones responsible soft and collinear IR divergences)—with their leading singularities on
these contours being simply the tree amplitude.

Thus, amplitudes in maximally supersymmetric theories would take the form

A =: Afin +Adiv, where

Afin :=
∑

A,B,C,D

1
2
(
f 1
A,B,C,D+f 2

A,B,C,D

)
ÎeA,B,C,D + 1

2
(
f 1
A,B,C,D−f 2

A,B,C,D

)
ÎoA,B,C,D ,

Adiv:=
∑
α,β,C

AtreeÎα,β,C .

(2.14)

Notice that this is remarkably similar to the form of the ‘chiral box expansion’ described
in [33]; in fact, the only distinction between the basis here and that of [33] is that we
have taken the even and odd combinations of chiral numerators.
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Chapter 3 |
Building a Non-Planar Integrand
Basis at Two Loops

To choose particular set of prescriptive integrand basis elements—for any power-counting,
for any multiplicity—requires a spanning set of contours. As enumerated in table 1.2
above, the complete, non-planar triangle power-counting basis for six external particles
requires that we specify 373 contours of integration. From only these, the integrand basis
would be uniquely specified by the prescriptivity requirement (1). However, this is easier
said than done.

To help illustrate how this can be done iteratively, with only minimal cleverness (or
headache), it is worthwhile to describe how this can be done in stages:

1. For each integrand topology ΓI ,

(a) choose a spanning set of maximal-dimensional contours {Ωi
I} to define its

top-level numerators—each of which encircles all propagators of the given
integrand topology.
The number of such numerators must equal the number of top-level degrees
of freedom in the integrand basis.

n.b. ensure the set of contours is invariant under all graph isomorphisms.

(b) choose a spanning set of initial numerators {n̂iI} in the chosen integrand basis
(with the desired power-counting) which is full-rank on the chosen contours;
that is, make sure the period matrix

∮
ΩiI

IjI =:Mij (3.1)
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is full-rank.

(c) diagonalize these initial numerators to give ‘block-diagonal’ top-level numera-
tors {ñiI}; specifically, define

ñiI := (M−1)j in̂jI . (3.2)

The set of these numerators for each topology are now ‘block-diagonal’—meaning
that they are diagonal on their defining contours.

2. Diagonalize each numerator against the entire basis.
Provided all propagators of each graph are cut as part of each of its defining
contours, then the only contours which need be checked are those which involve
subsets of a given graph’s propagators—that is, its daughter topologies (or ‘contact
terms’). Because graph inclusion is triangular, diagonalization is analogous to
diagonalizing an upper-triangular matrix.

(a) for each daughter topology ΓJ≺ΓI determine the period integrals
∮

ΩjJ

Ĩ iI =: (MIJ)ij , (3.3)

and remove these ‘contact terms’ according to

Ĩ iI 7→ Ĩ iI − (MIJ)ijĨjJ . (3.4)

Notice that each of these subtractions involves terms proportional to inverse
propagators appearing in ΓI ; thus, these subtractions have no effect on the
periods of the integrands involving their own defining contours.

Provided this is done iteratively, starting with the graphs with the fewest
daughters, this process is guaranteed to result in numerators which are globally
diagonal—and hence, a basis which is prescriptive.

Of course, once contours have been chosen for all topologies (step 1 above), the
resulting basis according to the prescriptivity condition (1) will be unique. However, the
process above makes this much more manageable—with the most artful step being the
choice of initial numerators.
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In this section, we’d like to walk the reader through how this was done in the case of
B3 for the case of six external particles at two loops.

3.1 Identifying Candidate Numerators and Contours
The starting point in our construction of a basis of two-loop, triangle power-counting
integrands in four dimensions is the enumeration of graph topologies and the counting
of the number of independent degrees of freedom for which contours must be specified.
This data was generated in the recent work [21] and has been summarized in table 1.1 of
section 1.2.

For the case of six-particles, varying all the particular distributions of external legs,
we find a total of 87 integrand topologies as enumerated in table 1.2. Because each
vector space of numerators can be spanned with (sums of) products of generalized inverse
propagators, it is straightforward to construct a complete—albeit far from diagonal—
initial basis of integrands.

As a representative example, consider a typical non-planar double pentagon, or Γ[3,2,3]

topology (integrand #11 in our list):

a

b

c d

e

f

g

h

1

2 3

45

6 N3(Γ[3,2,3]) = span
{

[`A]3⊕[`A]2[`C ]⊕[`A][`C ]2⊕[`A][`B][`C ]
}
. (3.5)

Here, [`A]=[a]=[b]=[c], [`B]=[g]=[h], and [`C ]=[d]=[e]=[f ]. As indicated in table 1.2,
this vector space of numerators for this topology has 229 total degrees of freedom, of
which 8 top-level and the rest (221) are contact terms. A random choice of 8 elements
involving inverse-propagators not manifestly included in the graph would likely span the
space of top-level numerators (and therefore suffice), but would be very far from diagonal
in the contours chosen (or in any illuminating form).

Even before discussing the choices for 8 contours required to specify these top-level
degrees of freedom, it is worthwhile to build some intuition about what numerators
may be close to diagonal. Conveniently, for any eight-propagator graph at two loops
(Γ[4,0,4],Γ[4,1,3],Γ[4,2,2],Γ[3,2,3] in table 1.2—topologies indexed by I ∈{1, . . . , 12} in our
basis), the number of top-leveldegrees of freedom exactly matches the number of solutions
to the maximal-cut equations which put all eight propagators on-shell. Thus, there
is a one-to-one correspondence between these cut configurations and initial top-level
numerators ñi11 for i∈{1, . . . ,8}.
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To be slightly pedantic, it is worth remembering that our first step is merely to find
initial ‘block-diagonal’ numerators—which give integrands which satisfy

∮
Ωj11

Ĩ i11 = δij . (3.6)

Such integrands are not yet prescriptive—as they may have support on the contours
involving subsets of propagators (those used to define the top-level degrees of freedom of
daughter (‘contact term’) integrand topologies). It is obvious that (3.6) is unchanged by
the addition of any such contact terms. And so we still have work to do before we have
fully diagonal—prescriptive—integrands.

3.2 Step 1. Guessing a Spanning Set of Top-Level Nu-
merators
As emphasized in section 2, once a spanning set of contours has been chosen, this uniquely
fixes every integrand in the basis. This means that in principle the choice of an initial
set of spanning numerators for a given topology is unimportant, as the diagonalized
numerators are entirely subservient to the contours. In practice, however, carrying
out the diagonalization procedure is significantly easier if some thought is given to the
initial, pre-diagonal basis of numerators. In particular, the chiral numerators appearing
throughout [31,32] often serve as excellent starting points, even when they require contact
term corrections to be rendered diagonal with respect to subtopologies.

There is little subtlety (or mystery) in the construction of ‘nice’ chiral numerators
for the eight-propagator integrands in our basis. To illustrate this, let us continue the
double-pentagon example of (3.5). In the notation of the ancillary files, this graph is
numbered #11, and has the topology shown above:

I11↔
a

b

c d

e

f

g

h

1

2 3

45

6 (3.7)

As mentioned above, the eight solutions to the cut equations correspond to the eight
leading singularities associated to this graph. A block-diagonal set of numerators can be
systematically constructed by the subspace of N3(Γ[3,2,3]) not spanned by this graph’s
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contact terms. In practice, however, it is often easier to guess a representative numerator
by considering the kinematic conditions imposed on the on-shell loop momenta for each.
For the topology (3.7), the top-level degrees of freedom {ñi11}—which, we stress, are only
block-diagonal, and not yet diagonal with respect to this topology’s daughter graphs—can
be chosen by inspection of the solutions to the cut equations.

For most cases of interest, the particular solutions to the cut equations can be
identified by the parity of its three-point vertices—with blue for the ‘mhv’ solution (all
λ̃’s proportional) and white for the ‘mhv’ solution (all λ’s proportional). When a vertex
has multiplicity>3, no such parity can be indicated—so black vertices are used in our
contour diagrams.

For example, we may identify and number the 8 solutions to the maximal-cut equations
for the topology I11 in (3.7) as follows:1

2 3

45

6 ,

1

2 3

45

6 ,

1

2 3

45

6 ,

1

2 3

45

6 ,

1

2 3

45

6 ,

1

2 3

45

6 ,

1

2 3

45

6 ,

1

2 3

45

6



(3.8)

These figures represent contours {Ω1
11, . . . ,Ω8

11}.
It is easier than it may at first appear to construct a numerator which has support

on each of the corresponding contours. For example, to construct a numerator which
vanishes on all but the first contour, one need only require that it vanish whenever the
vertices have the wrong parity. For example, consider the tentative numerator

ñ1
11 := [[p1, b, c,h,g,p4, e,d]] ; (3.9)

this numerator vanishes whenever λ1∝λb or λc∝λh or when λe∝λd—that is, on all cases
where the vertex involving p1, p3 or the top-middle vertex is colored blue, at least one
of which is the case for every contour except Ω1

11. (To see this, recall the definition of
“[[· · · ]]” in (2.7).) Moreover, it is not hard to verify that this numerator gives rise to an
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integrand which integrates to 1 on Ω1
11. That is,

∮
Ωi11

Ĩ1
11 :=

∮
Ωi11

d4`1 d
4`2

ñ1
11

a2 b2 c2 d2 e2 f 2 g2h2 =

1 i= 1
0 i 6= 1

. (3.10)

Continuing in this way results in an initial ‘block-diagonal’ set of numerators for
topology #11. Specifically, we find that the following numerators are diagonal on the
contours for Ω11:

ñ1
11 := [[p1, b, c,h,g,p4, e,d]] , ñ5

11 := 1
2

(
[[e,d,c,b,p1,g,h,p4]]

ñ2
11 := 1

2

(
[[p1, b, c,h,g,p3, e,f ]] − [[b,c,d,e,p4,g,h,p1]]

)
,

− [[p4, e,d,h,g,p2, b,a]]
)
, ñ6

11 :=− [[p4, e,d,h,g,p1, b, c]] ,
ñ3

11 := [[e,d,h,g,a,b,p2,p4]] , ñ7
11 := 1

2

(
[[f,p1, b, c,h,g,p3, e]]

ñ4
11 := 1

2

(
[[p4, e,d,c,b,p1,g,h]] − [[a,p4, e,d,h,g,p2, b]]

)
,

− [[p1, b, c,d,e,p4,g,h]]
)
, ñ8

11 :=− [[b,c,h,g,f,e,p3,p1]] .

(3.11)

In cases where these numerators have factors of 2, this reflects contour-graph isomorphisms
in (3.8). It is not hard to verify that these numerators are all unit on their corresponding
contour, and vanish on all the others. Thus, these numerators provide good starting
points for further diagonalization (against daughter-topology contours).

Since all eight-propagator integrands have exactly the same number of solutions to the
cut equations as numerator degrees of freedom, this procedure can be repeated without
any subtlety whatsoever for every such topology.

There is a single case at six particles, however, where coloring of the vertices alone
does not suffice to distinguish all solutions to the maximal cut equations. The exceptional
case involves topology #10 in our basis:

I10↔
a

b

c d

e

f

g

h

1

2 3

4

5
6

. (3.12)

For two sets of ‘colorings’ of this graph (contours encoded by the parity of the three-point
vertices), there are two pairs of solutions to the cut equations related to the choice of sign
in front of the square root of ∆2 := [[p12,p34]]2−4s12s34. In each case, we may match these
two leading singularities with numerators that are chiral, or parity-even and parity-odd;
throughout this work, we always choose the latter. Thus, for example, we choose the
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following pair of contours:

Ω2
10 :=

1

2 3

4

5
6

(odd)

↔ ñ2
10 :=−

1
2 [[e,p4,p1, b, c,d]]∆;

Ω4
10 :=

1

2 3

4

5
6

(even)

↔ ñ4
10 := 1

4

(
[[g,p2, b,a,f,e,p3,h]]− [[p1, b, c,d,e,p4,g,h]]

+[[p4, e,d,c,b,p1,g,h]]− [[g,p3, e,f,a,b,p2,h]]
)
.

(3.13)

Nota bene: the labels ‘even’ and ‘odd’ do not refer to parity: they refer to the even or
odd sum of the multiple solutions to the corresponding contour. In addition to these,
there are two more cases which have been split into even/odd combinations; these are
related to those of (3.13) by an up/down flip of the graphs.

3.3 Step 2. Block-Diagonalization with Respect to a
Choice of Contours
While the contour specification for eight-propagator integrand topologies is quite rigid,
for integrands with fewer propagators there is significantly more freedom. By virtue of the
requirement that the basis be diagonal in contours, these choices have significant effects
on the rest of the basis, including the contact terms of the eight-propagator integrands.
A simple one-loop analogue of this freedom is in the normalization of the (scalar) triangle
integrand. In sections 2.2.1 and 2.2.2 we emphasized that the form of the triangle
power-counting basis, as well as what features were made manifest, depended heavily on
whether the (one and two-mass) triangles were normalized at infinite loop momentum
or in the soft and/or collinear regions. This phenomenon is even more prominent at
two loops, where every integrand topology with fewer than eight propagators requires a
choice of contours which has trickle-up (and down) effects on the rest of the basis.

The conventions for our contour choices are as follows. Whenever an integrand topol-
ogy is such that soft and/or collinear residues are accessible, we choose a corresponding
contour as part of our spanning set. When there are no such contours (analogous to
the three-mass triangle at one loop) we choose contours involving (at least) one loop-
momentum cycle in the graph being sent to infinity. In addition, when the scalar graph
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topology has non-trivial graph automorphisms, our contour choices are such that the
entire set (but not necessarily the individual contours themselves) is invariant up to
overall signs. We shall illustrate the rôle of graph symmetries in greater detail below.

The motivation for our preference for soft and/or collinear contours is simple: we
aim to construct a basis of integrands maximally stratified according to IR finiteness
or divergence. We expect that every integrand not normalized on a soft or collinear
contour will vanish entirely in every such region of loop momentum space, which is
highly suggestive of it being infrared finite upon integration. In the representation of an
amplitude, our basis is designed to match the IR-divergence of the amplitude manifestly,
while every other integrand with a non-vanishing coefficient vanishing (by construction)
in all collinear regions.

3.3.1 Requiring the Set of Contours be Graph Symmetric

The attentive reader may have noted that in the top-level numerators of the non-planar
double pentagon example (3.11), several of the numerators had ‘symmetry factors’ in
their definition. In this case, it is natural—though not essential—to use numerators which
respect the symmetries of the leading singularity graphs associated with the contours. For
contours involving composite conditions, wherein at least one set of momenta are either
soft and/or collinear, our prescriptive basis of integrands always respects the symmetries
of the composite leading singularities. Provided this is done throughout the basis for
leading singularities with amplitude support in sYM, any such amplitude integrand’s
representation is simple to write down—namely, in the diagonal basis, the integrand will
be a sum of inequivalent leading singularities, each decorated by the corresponding basis
element [35].

In addition to contours which have amplitude-support in sYM, there are many degrees
of freedom in our basis normalized on contours involving infinite loop momenta. In these
cases, our convention is to impose a slightly less restrictive symmetry constraint: we
require only that the set of numerators associated with contours defined at infinity to be
closed under the automorphism group of the graph.

To explain our conventions in further detail, let us consider an example in which the
automorphism group is non-trivial. Among others, we have a double-box topology #17
with eight degrees of freedom
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I17↔
a

b

c d

e

f

g

1

2 3

456

, (3.14)

two contours of which are defined as even combinations of contours taken by starting
from a heptacut and sending one loop-momentum cycle to infinity:

Ω4
17 :=

 ∞

1

2 3

456

+
∞

1

2 3

456


↔ ñ4

17 :=
1
2 [[c,d,e,p4,p1, b]] , (3.15)

Ω8
17 :=

 ∞

1

2 3

456

+
∞

1

2 3

456


↔ ñ8

17 :=
1
2 [[b,c,d,e,p4,p1]] . (3.16)

In addition to these, there are four degrees of freedom normalized on soft contours
associated with either the momentum through edges b or e to zero. These contours—and
corresponding numerators which are unit on them—are easy to identify:

Ω1
17 :=

1

2 3

456

↔ ñ1
17 := s12 [[e,d,c,p4]]+1

2 [[b,c,d,e,p4,p1]] , (3.17)

Ω5
17 :=

1

2 3

456

↔ ñ5
17 := s12 [[d,c,p4, e]]+

1
2 [[c,d,e,p4,p1, b]] , (3.18)

Ω3
17 :=

1

2 3

456

↔ ñ3
17 := s34 [[c,d,p1, b]]−

1
2 [[d,c,b,p1,p4, e]] , (3.19)
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Ω7
17 :=

1

2 3

456

↔ ñ7
17 := s34 [[b,c,d,p1]]−1

2 [[e,d,c,b,p1,p4]] . (3.20)

The appearance of the colored numerators in the expressions (3.17) are needed in order
for the combined numerators to vanish on the defining contours in (3.15). The rest of
the eight-dimensional basis of numerators is furnished by contours defined by starting
from a hepta-cut and imposing collinearity at the vertex involving edges {c,d,g},

Ω2
17 :=

1

2 3

456

↔ ñ2
17 := − [[e,d,a,b,p2,p4]] , (3.21)

Ω6
17 :=

1

2 3

456

↔ ñ6
17 := − [[p4, e,d,a,b,p2]] . (3.22)

(3.23)

3.3.2 Contours Involving Double-Poles

There is one additional complication regarding contour choices: for triangle power-
counting, there are an insufficient number of maximal co-dimension residues of logarithmic
type to fill out the basis. Said differently, the basis of integrands cannot be spanned by
polylogarithmic integrals of uniform and maximal transcendental weight. Instead, there
are some degrees of freedom must be normalized on contours involving double-poles. This
phenomenon first appears at the six-propagator level, and is exemplified by considering
the following example, #47 in our basis:

I47↔
a

b

c
d

e
f

1

2
3
4
5

6
. (3.24)

For triangle power-counting, this topology requires a choice of three contours. However,
in this case, due to the degenerate kinematics where only a single vertex is massive, there
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is only a single independent contour which is logarithmic. We can detect the presence
of double-poles in this topology’s cut structure by considering a hexa-cut where all six
propagators are on-shell. One solution to the cut equations may be parametrized in a
basis of spinors {λ1, λ̃1,λ2, λ̃2} as,

a

b

c
d

e
f

1

2
3
4
5

6
↔ b? = αλ2λ̃1 , d? = [βλ1 +α(1− β)λ2]

(
λ̃1 + 1

α
λ̃2

)
, (3.25)

where the Jacobian of the hexa-cut is J=s2
12αβ. Trivially, we see that the scalar numerator

ñ1
47 =s2

12 yields a logarithmic two-form d logαd logβ, and the corresponding contour may
be normalized at some combination of α,β→{0,∞}. However, it is also easy to see that
there is no other independent contour (accessible using a loop-momentum dependent
numerator) which does not involve a double-pole (at infinity) in either α or β. Indeed,
to span the full space of triangle power-counting numerators for this topology, we are
forced to introduce two double-pole numerators ñ2,3

47 . Since the power-counting allows an
`1-dependent numerator, we see that any integrand proportional to α on the cut (3.25)
will have a double-pole in the (ordered) limit β,α→∞; these two conditions, together
with the hexacut, define the double-pole contour. The parity conjugate of this contour
fills out the rest of the basis, and a block-diagonal set of numerators is:

Ω1
47 :=

1

2
3
4
5

6
↔ ñ1

47 := s12 [[c,p12]] , (3.26)

Ω2
47 :=

∞
∞

1

2
3
4
5

6
(double-pole)

↔ ñ2
47 :=

1
2 ([[a,p1,p2,p45]] + [[p2,p1,p45, c]]) , (3.27)

Ω3
47 :=

∞
∞

1

2
3
4
5

6
(double-pole)

↔ ñ3
47 :=

1
2 ([[c,p2,p1,p45]] + [[p1,p2,p45,a]]) . (3.28)

While the appearance of double-pole degrees of freedom may seem avoidable in the
previous example, at the five propagator level there are, in fact, topologies where there
exists no logarithmic contours whatsoever. An example of this is #85 in our basis, the
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Γ[2,1,2] topology:

I85↔
a

b c

d

e

1

2 3
4
5

6
. (3.29)

The only allowed numerator for triangle power-counting is a scalar and—regardless of its
normalization—the resulting integrand has double-poles in its cut structure (indicative
of a drop in transcendental weight upon integration). In particular, a contour defined by
imposing collinearity at both three-point vertices in (3.29) and sending the loop momenta
to infinity may be accessed by starting from the co-dimension six configuration

a= d= (αλ1 + βλ2)
[
λ̃1−

(
α+ 1
β

)
λ̃2

]
, J =−s12β . (3.30)

Upon taking a residue at β→∞, the integrand with scalar numerator s12 evaluates on
(3.30) to

Res
(3.30)

(
I1

85

)
= −dαdβ

β
. (3.31)

After taking an additional residue at β→∞, we may choose to normalize this degree of
freedom to be 1 at the double-pole at α→∞. In fact, however, this contour prescription
does not enjoy the up-down flip symmetry of the scalar graph in (3.29). Using a contour
which is compatible with the symmetries of the scalar graph produces a symmetry
factor in the corresponding numerator, which is n1

85 := 1
2s12. (Note that this is indeed the

globally diagonal numerator because this integrand has no contact terms whatsoever,
which explains why we have omitted the ∼ label above n1

85.) Diagrammatically, we
indicate this contour as:

Ω1
85 := ∞ ∞

1

2 3
4
5

6
(odd) double-pole

. (3.32)

3.4 Step 3. Global Diagonalization of the Basis
The numerators obtained as described in the previous section 3.2 are locally-diagonal, and
provide an excellent starting point in the construction of a complete, globally-diagonal
basis. If we denote the set of block-diagonal integrands for topology I as {Ĩ iI} and
the corresponding contours as {Ωi

I}, where i is an index running over the number of
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top-level degrees of freedom in triangle power-counting basis for the Ith topology, then
by construction we have ∮

ΩjI

Ĩ iI = δi,j. (3.33)

However, generically the integrands of the parent topologies will still have support on
the contours of their daughters (the set of graphs generated by contracting some number
of internal edges). That is, the complete top-level and contact term period matrix is of
the form ∮

ΩjJ

Ĩ iI =:
 δij I = J,

(MI J)ij I 6= J.
(3.34)

By contrast, in a globally diagonal basis the contact-term matrices (MIJ) must vanish
identically for all pairs I,J .

Notice that the set of period matrices MI J above is automatically upper-triangular
in its indices {I,J}: it is a consequence of the triangular-nature of graph inclusion: MI J

vanishes for any graph ΓJ⊀ΓI—that is for any set of contours {ΩJ} not corresponding
to a daughter of the graph ΓI . This makes it extremely easy to diagonalize the entire
matrix.

To diagonalize the partially-diagonal basis (3.34), it is useful to take a ‘bottom-up’
approach. To begin, we partition the 87 integrand topologies relevant for two-loop,
triangle power-counting at six particles according to the number of propagators. Thus,
at the ‘bottom’ of the list are the five-propagator, Γ[2,1,2] topologies, each with a single
degree of freedom. Trivially, these basis elements already vanish on every other defining
contour by virtue of the fact that they lack the additional propagators necessary to access
the six-propagator and higher contours. That is, in a slight abuse of notation we have
schematically ∮

Ω6,7, or 8 props

I[2,1,2] = 0, (3.35)

where Ω6,7, or 8 props denotes any six-, seven- or eight-propagator-cutting contour, and
I[2,1,2] any five-propagator integrand in the basis.

The next step is to diagonalize each of the six-propagator integrands, which are of
either Γ[3,0,3], Γ[2,2,2] or Γ[3,1,2] type, with respect to every five-propagator graph obtained
by single internal edge contractions. Let us illustrate how this works in practice with a
particular example: in the notation of the ancillary files of this paper, one of the degrees
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of freedom of topology #61,

I61↔
a

b c

d
e

f
1

2
3
4

5
6 , (3.36)

is naturally associated with a contour where edges a,f → 0 are soft. A corresponding
numerator which is unit on this contour (and which is already diagonal with respect to
the other five top-level contours of this topology) is,

1
2
3
4

5
6 ↔ ñ1

61 = [[c,d,p1,p6]] . (3.37)

The six contact-term degrees of freedom of this integrand are proportional to the inverse
propagators of the graph; thus, the final, diagonalized numerator n1

61 will take the form

n1
61 := ñ1

61+c1a
2 + · · ·+ c6f

2 . (3.38)

Consider the term proportional to e2. Upon collapsing this edge in (3.36), we obtain (a
re-labelled version of) the five-propagator topology #78,

I78↔
a

b c

d

e1
2

3
4

5

6

, (3.39)

whose scalar degree of freedom is normalized on the contour

Ω1
78 := ∞

(odd)

1
2

3
4

5

6

↔ n1
78 :=−

1
2s16 . (3.40)

While this contour is an odd combination of two residues, the top-level numerator (3.37)
happens to have support on only one of them. An analytic representation of the relevant
part of this contour is given by parametrizing b=0 and c=(λ1+αλ6)λ̃1 with Jacobian
J=αs16, and where the final residue is taken at α→∞. The residue of the pre-diagonal
integrand #61, degree of freedom i=1 may be computed by evaluating the numerator
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and dividing by both the Jacobian and the uncut propagator, and we find

∮
Ω1

78

Ĩ1
61 = Res

α→∞

(
[[c,d,p1,p6]]dα
J(d− a)2

)
= Res

α→∞

(
dα

α

)
=−1 . (3.41)

To remove the integrand’s support on this contour fixes the contact term involving e2 to
have the coefficient c5 =2n1

78 :=−s16. Similar calculations for the remaining five contact
terms of integrand #61 lead to the final expression for the diagonalized numerator,

n1
61 := [[c,d,p1,p6]]− s16

2
[
c2 + d2 + 2(b2 + e2)

]
. (3.42)

This procedure must be repeated for every degree of freedom and every topology with
six propagators. Once this is done, the resulting basis is diagonal and fully fixed at both
the five- and six-propagator levels, and we have

∮
Ω[2,1,2]

Iγ = 0 , (3.43)

where γ∈{[3,0,3], [2,2,2], [3,1,2]} and Ω[2,1,2] denotes any five-cut contour.
This same procedure must be iteratively repeated to fix the contact terms of the

seven-propagator integrands by demanding orthogonality with respect to both the five-
and six-propagator basis elements. For example, the 45 contact term degrees of freedom
for topology #38 are fixed by enumerating the daughter topologies (and counting with
the appropriate multiplicity)

1

2 3

4

5

6 �

2×
1

2

3

45

6

,1×
1

2

3

4

5

6

,4×


1

2 3

4

56

,

6×
1

2

3

4
5

6

, 5×
1

2 3

4

56

, 4×
1

2

3

4
56

.
(3.44)

A final, prescriptive and globally-diagonal basis is obtained by removing all relevant
contact terms from the eight-propagator integrands.

The end result of the above procedure is a fully diagonal basis of integrands and
contours {I iI ,Ωi

I}, ∮
ΩjJ

I iI =

 δij I = J,

0 I 6= J.
(3.45)
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3.5 Features of the Resulting Basis of Integrands
The triangle power-counting basis of local integrands constructed according to the
procedure of section 3 has several noteworthy properties worth emphasizing. First, this
basis is prescriptive: every integrand is normalized to be unit on a single co-dimension
eight contour, and vanishes on every other contour in the spanning set. Producing a unique
representation of an amplitude integrand A which is of box or triangle power-counting
amounts to computing a set of contour integrals

A=
∑
I,i

aiII i, where aiI :=
∮

ΩiI

A . (3.46)

The non-zero coefficients aii are the non-vanishing leading singularities of the amplitude in
question. To be clear, this procedure does not require computing every leading singularity
of an amplitude, but only those in the spanning set of contours {Ωi

I}; all other contours
are matched automatically in (3.46) by the completeness of the basis. Furthermore, for all
contours not manifestly matched in (3.46), each integrand {I i} which is not normalized
on a double-pole at infinity evaluates to either ±1 or ±1

2 . Our basis therefore splits
into pure, unit-leading-singularity polylogarithmic integrals as well as integrals which
have simple transcendental weight drops upon integration. As amplitude integrands
in sYM are free of double-poles, we expect the representation (3.46) is entirely free of
transcendental weight drops.

Our basis is also partitioned according to infrared structure. From the complete
list of contours (which can be found in the ancillary files), every integrand normalized
on a contour in the collinear region of loop momentum space may be identified; these
integrands generate infrared divergences upon integration, while every other basis element
are explicitly infrared finite. The partitioning according to IR finiteness/divergence will
obviously descend to the expression for amplitude integrands (3.46), where every soft-
collinear divergence of the amplitude is matched manifestly by individual elements of
basis designed to have support on the corresponding soft-collinear contours.

The final basis includes 183 IR-finite integrands and 190 IR-divergent integrands; and
of these only 24 have support on double-poles—which should be the only integrands with
less than maximal weight.
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Chapter 4 |
Six-Particle NkMHV Amplitudes
at Two-Loops

As the basis constructed in ref. [119] is complete, it should contain both MHV and
NMHV six-particle amplitude integrands. Although the MHV amplitude has been known
for some time (given both in [31] and as a special case of [32]), our current basis is
distinct; and thus the presentation given here represents a novel cross check on those
results. Moreover, representing both the MHV and the NMHV amplitude in the same
basis of master integrands may facilitate the computation of IR-finite quantities such as
a non-planar analogue of the ratio function.

For either the MHV or the NMHV amplitude, the leading singularities correspond
to color-dressed on-shell functions which are fully Bose-symmetric in the legs entering
each vertex tree-amplitude. Each vertex amplitude can be decomposed into color- times
kinematic-factors with precise ordering of external according to DDM [120]. Graphically,
we can denote this decomposition by the following: for any subset of two legs labelled
{α,β}, of each vertex amplitude of an on-shell diagram, we write

α

A

β
=

∑
~a∈S(A)

× , (4.1)

where the sum is over all (n−2)! permutations ~a=:(a1, . . . , a−1) of the unordered set
A:= [n]\{α,β} and with color-factors defined as

f ~a
α β :=

∑
ei

fαa1 e1f e1 a2 e2 · · ·f e-1 a-1 β

=: =: ,
(4.2)
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with fabc being the structure constants of the relevant gauge group. Applying this
expansion at every vertex of a two-loop leading singularity results in an expansion in
terms of kinematic-dependent on-shell functions built with amplitudes involving locally
ordered legs times general color-factors of the form

f
[
~a,~b,~c

]
:=

=
∑
ei

f e1 e3 e6f ~a
e1 e2f

~c
e3 e4f

~b
e5 e6f

e2 e5 e4 .

(4.3)

This is similar to the decomposition described in [121]. For examples of how this works
for color-dressed leading singularities in sYM, see e.g. [31,32].

4.1 Summing Terms for Amplitudes
The basis of integrands constructed in [119] involved 87 integrand topologies corresponding
to specific Feynman-propagator graphs which encode their loop-dependent denomina-
tors; each of these topologies was then provided with a collection of specific triangle
power-counting, loop-dependent numerators—the number of which is determined by the
integrand’s propagator-graph according to [21]; their precise form of these numerators
was determined by the requirement of prescriptivity (1) with respect to a corresponding
choice of contours.

We may denote the integrand with the ith topology (i∈{1, . . . ,87}) and the jth loop-
dependent numerator by Iji := Iin

j
i , where Ii consists of all loop-dependent denominators

corresponding to some Feynman graph and nji denotes a particular, loop-dependent
numerator for this integrand topology. In all, the basis described in [119] consists of 373
integrands, each written with a particular choice of external momenta flowing into the
graph.

Consider for example the integrand topology numbered 35, with denominator encoded
by the Feynman propagators given by

I35 ⇔
a

b

c
d

ef

g

1

2

3

45
6

. (4.4)
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For this integrand, there are 10 distinct loop-dependent numerators nj35. For example,
the 6th such numerator is defined to be [119]

n6
35 :=−s12

(
[[a,e,d,c]]−a2d2 + c2e2

)
, (4.5)

in terms of the bracket [[· · · ]] := tr+(· · ·) and momenta flowing through the various edges
of the graph (4.4). This numerator has been fixed by the requirement that

∮
Ω6

35
I6

35 = 1,
where the contour Ω6

35 can be represented according to

Ω6
35 ⇔

1

2

3

45
6

. (4.6)

In (4.6), the particular choice of contour is encoded graphically as described in [119]—to
which we refer the reader for complete details. (The apparent ‘contact-terms’ appearing
in (4.5) are fixed by prescriptivity (1).)

The reader will notice that a particular choice of external legs have been used to
encode the representative basis integrand Iji . Naturally, permutations of the external
legs must be included as well in the summation (2). We may use ‘Iji [σ]’ to denote the
integrand with topology Ii and numerator nji for which the external legs have been
relabelled relative to the reference integrand according to [1, . . . ,6] 7→ [σ(1), . . . ,σ(6)] for
any permutation σ∈S6. We may use similar notation Ωj

i [σ] to denote contours involving
permuted leg labels relative to the seeds defined in [119] and aji [σ] for leading singularities.
For example,

I35[351264] ⇔
a

b

c
d

ef

g

3

5

1

26
4

. (4.7)

Clearly, not all relabelings are inequivalent. For example, the integrand I6
35 has only

45=6!/(24) inequivalent permutations of the external legs, as permuting the pairs of legs
(3↔4) or (5↔6); and swapping the sets (3,4)↔(5,6) or flipping the graph vertically
each leave the integrand invariant after relabeling the (arbitrary) edge labels.

In general, the number of inequivalent relabelings of a given integrand depends not
only on the integrand topology (which may have nontrivial graph automorphisms), but
also on the symmetries of its numerator—or, equivalently, the symmetries enjoyed by
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its defining contour of integration. Letting Sj
i ⊂S6 denote the subset of inequivalent

relabelings of the external legs, the complete form of the summand in (2) can be written
as

A=
∑
i,j

∑
σ∈Sji

aji [σ] Iji [σ] . (4.8)

Actually, there is one final subtlety to mention. Although for any given distribution
of external legs Iji [σ] encodes a distinct integrand for each j, it may be that the jth
contour/integrand for one permutation of legs corresponds to the k 6=jth integrand/con-
tour for a different permutation of legs. For example, consider two of the eight contours
defining the integrands Ij10:

Ω4
10[123456]

1

2 3

4

5
6

(even)

Ω7
10[123456]

1

2 3

4

5
6

(even)

(4.9)

It is easy to see that Ω4
10[214356]'Ω7

10[123456]; as such, including both terms in the
summand (4.8) would double-count such contributions. For all cases where this occurs,
we choose to sum over all the leg-permuted images of only one choice of the relevant
seeds.

Among the 373 contours used to define the basis given in [119], a large fraction of these
have manifestly no support for amplitudes in sYM. Specifically, the basis contours include
96 involving poles at infinity, 23 involving double-poles (associated with transcendental
weight-drops), and 137 which have support on collinear but not soft regions of loop
momenta; all these integrands have vanishing leading singularities. In all, there are only
139 (of the 373) contours which define the basis that have support for amplitudes of
some NkMHV-degree.

As most of the contours defining the integrand basis do not have support of amplitudes,
relatively few are required to express each NkMHV amplitude. In particular, we find
that the MHV (or MHV'N2MHV) amplitude requires only 38 permutation-seeds, and
the NMHV amplitude requires only 80. Summing over all relevant relabelings of external
legs, these amplitudes involve a total of 7,680 and 21,135 terms, respectively.
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4.2 The Six-Particle MHV Amplitude
The relevant on-shell functions for MHV amplitudes (at any loop order or multiplicity)
were classified in [17] and can be represented at two loops concretely in terms of a function

Γ
[
(a1, . . . ,a−1),(b1, . . . , b−1),(c1, . . . , c−1)

]
(4.10)

defined in [31,32] (see also [45]). This function is invariant under permutations of the
ordering of its arguments and under cyclic rotations of each argument separately.

All non-vanishing leading singularities of the six particle MHV amplitude were given
in [31]; these correspond to 38 particular contours for (3). As these 38 contours were
among those used in the prescriptive basis of ref. [119], each of these coefficients will be
the same (while the integrands are rather different). Beyond permuting the leg-labels for
the permutation-seeds of each basis integrand of ref. [119] (used here) relative to those
used in ref. [31], these coefficients are identical.

4.3 The Six-Particle NMHV Amplitude
For the six-particle NMHV amplitude, the kinematic part of all leading singularities (for
arbitrary loop-order) were classified in ref. [122]. For each of the defining contours of the
basis B3, identifying the correct kinematic superfunction from among those classified
in [122] was done by explicit calculation—by computing the products of on-shell (locally
cyclically-ordered, tree-)amplitudes evaluated on the corresponding maximal-cut in loop-
integrand space, and summing over all the states that could be exchanged between
them.

For example, consider the following color-dressed on-shell function for NMHV—which
would appear as the coefficient of I1

11 in the basis of [119]:

1

2 3

45

6 =

1

2 3

45

6
1

2 3

4

5

6

+

1

2 3

4

56
1

2 3

4

6
5 .

(4.11)
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Comparing against the reference formulae in ref. [122], we may identify the relevant
kinematic factors as being identified with the functions

1

2 3

45

6

1

2 3

4

56

=−fc2[263451] =−f5[145632]

(4.12)

We refer the reader to [122] for details on the definitions of these superfunctions.
In all, we find 80 non-vanishing leading singularities for the contours {Ωi} defining the

basis in [119]. Interestingly, of the 10 classes of leading singularities enumerated in [122],
the only ones that appear at two loops are f1, f2, fc2, f3, f4, f5, and f8—with various
permutations of the external legs as arguments. Actually, for f8, the authors of [122]
considered only the sum of particular solutions to the cut equations: feven8 := f+8 +f−8 , where
the superscript indicates the sign of the square root in the solution to the final quadratic
cut-equation; for us, both feven8 and fodd8 := f+8 −f−8 are required. The set of kinematic
factors appearing are not all functionally independent; they satisfy the relations also
classified in [122].

4.3.1 Integration, Infrared Structure, and Regularization

The particular basis described in ref. [119] has several features that make it promising for
loop integration and for exposing critical information about IR-structure of amplitudes.
In particular, it is empirically true that prescriptive integrands are often maximally-
transcendental and pure [41,42] and thus satisfy canonical, nilpotent differential equations
[43, 44, 123]. This should make them comparatively easy to integrate—for example,
according to the methods outlined in [43, 124–126]; but perhaps also more directly as
illustrated in [127–129].

Another aspect of the basis which may prove valuable is that it was fully divided
into infrared-finite and divergent subspaces. This was achieved by choosing as many
contours {ΩJ} as possible in the diagonalization (1) to encompass regions responsible
for infrared divergences. Moreover, the coefficients of each IR-divergent integral are
manifestly given by lower-loop expressions; thus, the universal behavior of divergences
should be manifested, making it easier to cancel them prior to loop integration. Ideally,
we are optimistic that the ratio of different helicity amplitudes could be rendered locally
finite in the sense of [40] in this basis, but we must leave such questions to future work
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(see e.g. [130,131])
In particular, the MHV amplitude involves 17 and 21 integrands (seed terms for

leg-permutation sums) which are manifestly infrared-finite and divergent, respectively;
the NMHV amplitude involves 36 finite integrands and 44 divergent integrands.

One final comment is in order regarding regularization. Because the basis of integrands
in ref. [119] was defined in strictly four spacetime dimensions and the coefficients aJ

were computed using four-dimensional contours, our integrands are not ensured to give
the correct regulated expressions if integrated using dimensional regularization: O(ε)
corrections to coefficients can lead to finite corrections to divergent integrals. Nevertheless,
we strongly suspect that all regulator dependence will cancel for any finite observable.

Although dimensional regularization is unquestionably the most familiar and most
widely used regulator, it is important to note that infrared divergences can be regulated
faithfully using massive propagators—by going to the Higgs branch of the theory as
in [132, 133]. Importantly, O(m2) corrections to integrand coefficients always lead to
O(m2) contributions to regulated expressions (never canceling a divergence as in ε/ε in
dimensional regularization); as such, our unregulated expressions will yield the correct,
regulated results on the Higgs branch.

4.3.2 Consistency Checks

For both the MHV and NMHV amplitudes, the planar parts—the leading (in 1/Nc)
coefficient of tr(123456) in the expansion of the color-factors—were compared directly
against the known results [34, 41]. As these formulae are novel (and non-manifestly
dual-conformal) representations of these amplitudes, this is a highly non-trivial check on
the correctness of our result.

Beyond the planar limit, it is worth noting that relatively few leading-singularities
appear among the contours chosen for the basis. All other leading singularities of the
amplitude must get matched indirectly in the basis via global residue theorems. Such
identities were used to fix all relative signs of terms appearing in these expressions. We
have checked that all such residue theorems for both the MHV and NMHV amplitudes
are satisfied by our expressions—ensuring that all leading singularities of each amplitude
are matched.
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Chapter 5 |
Gauge-Invariant Double-Copies via
Recursion

5.1 Tree-Level, On-Shell Recursion for YM and GR
The starting point for on-shell (‘BCFW’) recursion [84] is to consider an amplitude as
meromorphic function of external momenta and deform the momenta of any two particles
labelled {α,β} according to

pα 7→ p̂α(z):=pα+z λαλ̃β, pβ 7→ p̂β(z):=pβ−z λαλ̃β, (5.1)

where pa=:λaλ̃a are spinor-helicity variables [134]; this deformation preserves momentum
conservation and keeps each particle on-shell. Note that the choice {α,β} is distinct
from the choice {β,α}: they differ by parity. At tree-level, amplitudes have poles at
finite z corresponding to factorization channels—the residues of which we may represent
diagrammatically as

AL

�
b↵⇤,· · ·,I

� 1

p2
L

AR

�
I,· · ·, b�⇤� =:

1

p2
L

I

b↵⇤ b�⇤

L R , (5.2)

where 1/p2
L is the off-shell propagator being cut, with the left/right amplitudes evaluated

with pα∗,β∗:=pα,β(z∗) on the location of the pole z∗=p2
L/〈α|(pL)|β] and summed over the

states I that can be exchanged. Importantly, the deformed legs must necessarily be on
opposite sides of the factorization channel for the simple reason that p̂α+p̂β = pα+pβ is
z-independent.

Provided there are no poles at infinity, Cauchy’s theorem allows us to write an
amplitude as a sum over all residues of the form (5.2) [135]. For YM or GR, this will be
the case provided the deformed momenta are chosen judiciously according to their helicity
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(see e.g. [136]), while amplitudes in maximally supersymmetric (N =4) YM (‘sYM’) or
(N =8) GR (‘sGR’) will be free of poles at infinity regardless of which legs are chosen.
Because tree-level amplitudes in pure (or any degree of less supersymmetric) YM/GR
are identical to those of sYM/sGR for appropriately restricted sets of external states, we
may therefore consider the case of maximally supersymmetric YM/GR without loss of
generality [137], ensuring that amplitudes are free of poles at infinity for any choice of
legs {α,β}.

Notice that the channels (5.2) allow for arbitrary distributions of the other (n−2)
legs A:=[n]\{α,β}. Thus, on-shell recursion results in a sum of terms of the form

A=
∑

~a∈S(A)
(~aL,~aR) = ~a

AL
(
α̂∗,~aL,I

) 1
p2
αaL

AR
(
I,~aR,β̂

∗
)
=:
∑

~a∈S(A)
A
(
α,~a,β

)
, (5.3)

where A
(
α,~a,β

)
:=A

(
α,a1, · · ·,a-1,β

)
are partial amplitudes involving external momenta

with specific ordering.
As amplitudes in color-dressed YM and gravity are fully permutation-invariant (due

to Bose symmetry), any choice of legs {α,β} may be taken; and any particular ordering
of the other legs ~a∈S(A) will suffice to generate the full amplitude upon summation
over permutations of the labels ~a. Thus we may without loss of generality focus our
attention on the determination of the partial amplitude A

(
1,2, · · ·,n−1,n

)
.

It is important to note that in neither theory is the partial amplitude unique: not
only does it depend on the legs chosen, but also the specific sequence of choices made for
iterated recursion. (This may seem surprising for YM, as it is common to consider ‘color-
stripped’ partial-amplitudes (‘primitives’), which do enjoy many scheme-independent
properties.)

One particularly convenient recursion scheme would be to always choose the first
and last leg of every iteratively recursed amplitude, and use the same parity of bridge
at each stage of recursion. In the case of Yang-Mills, this results in partial amplitudes
dressed by the color-factors appearing in the familiar ‘DDM’ representation [120]. Letting
AYM

(
α,~a, β

)
=:c ~aαβAYM

(
α,~a, β

)
, it is easy to see that the recursion (5.3) separates

color and kinematics cleanly so that—upon recursing iteratively down to factorizations
involving only three-point amplitudes—we find

c ~aαβ :=
∑
ei

cα,a1,e1ce1,a2,e2 · · ·ce-1,a-1,β (5.4)

where c cab are the structure constants of some Lie algebra (into which we may freely absorb
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Table 5.1: On-shell, gauge-invariant contributions to the 6-point NMHV partial ampli-
tudes of Yang-Mills and gravity.
The Grassmann δ-functions δ3×4

(
Ci·η̃

)
appearing in these numerators are defined in

(5.17).

�i �1 :=

1 6

2

3
4

5 �2 :=

1 6

2

3 4

5 �3 :=

1 6

2

3
4

5

J(�i) s61 s234 s34 D(�1) s61 s23 s45 D(�2) s61 s345 s34 D(�3)

D(�i) s56
h1|(2)|(34)|5i

h15i
h1|(23)|(4)|(3)|2]

h1|(43)|2]
s123

h1|(2)|(3)|(45)|6]

h1|(23)|6]

h1|(23)|(4)|(5)|6]

h1|(45)|6]
s12

[2|(34)|(5)|6]

[26]

h5|(4)|(3)|(45)|6]

h5|(34)|6]

n(�i)
h12ih34i[56]�3⇥4

�
C3·e⌘

�

s234h1|(56)|2][34]h51ih61i
[23]h45i�3⇥4

�
C5·e⌘

�

h1|(23)|6]2[45]h23i
h12i[34][56]�3⇥4

�
C1·e⌘

�

s345h5|(34)|6]h34i[26][61]

any coupling constant), and {a,b,c} are (adjoint) color-labels for the gluons. These color
tensors are all independent under Jacobi-relations, and the so-called ‘primitive’ ordered
amplitudes of YM turn out to be gauge-invariant, local, dihedrally symmetric, and to
enjoy KK relations. (All of these properties can be deduced from the Jacobi identity
and Bose symmetry of color-dressed amplitudes alone.) Besides gauge-invariance, none
of these properties will be enjoyed by the partial amplitudes of gravity—the meaning
of which will depend strongly on how recursion is implemented (analogously to color
tensors for YM).

Because this recursion scheme results in the same color-factor c ~aαβ coefficient for
every term, it is common to factor it out entirely and focus on the color-stripped partial
amplitude primitive AYM

(
1,2, · · ·,n−1,n

)
.

5.2 On-Shell Diagrammatics of YM and GR
For color-stripped partial amplitudes in YM, there exists a powerful diagrammatic
manifestation of recursion relations following from the simple fact that

1

p2
12···j

b1⇤ bn⇤

YM YM =

1 n

YM . (5.5)

Here, we have introduced ‘flat’ vertices to denote ordered partial amplitude primitives.
The right hand side represents an on-shell function of YM: the product of (color-stripped)
amplitudes at the vertices, summing over all the on-shell, internal states that can be
exchanged between them. These functions are extremely well understood: they are
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classified combinatorially, and all their functional relations can be understood to arise
homologically from an auxiliary Grassmannian ‘positive’ geometry (see e.g. [16,98]).

Applying recursion successively results in a representation of color-stripped YM
partial amplitudes as sums over on-shell functions encoded by specific on-shell diagrams
{Γ}

AYM
(
1,2, · · ·,n−1,n

)
=
∑
Γ
fYMΓ =:

∑
Γ

f̂YMΓ δ2×2
(
λ·λ̃

)
(5.6)

where the sum is over on-shell diagrams {Γ} of the form (5.5) involving exclusively three-
point vertices. The NkMHV-degree of an amplitude is encoded by the graph according to
k=2nB+nW −nI−2, where nB(nW ) denotes the number of blue(white) vertices and nI
the number of internal lines. Even for MHV amplitudes, there are vastly more on-shell
diagrams than on-shell functions—as diagrams related by mergers and square moves
leave on-shell functions unchanged in YM [98]. On-shell diagrams in gravity enjoy only
the square move as an (un-modified) equivalence relation [99].

5.3 Color-Kinematic Denominators for Gravity
For amplitudes in GR, there is no simple analogue of (5.5) (see e.g. [99, 100]); but,
supposing that there is some diagrammatic representation for partial amplitudes in GR
in terms of on-shell diagrams of YM, we may recursively conclude that

1

p2
L

b1⇤ bn⇤

�L
GR �R

GR = p2
L J(�L)J(�R)

0
B@ 1

p2
L

b1⇤ bn⇤

�L
YM �R

YM

1
CA

2

=: D(�)
�bfYM

�

�2
�2⇥2

�
�·e�

�
.

(5.7)

The fact that BCFW recursion for GR can be expressed in the form (5.7) is reasonably
well known [99–103]. The precise form of D(Γ) depends both on the graph Γ and the
recursion scheme followed. If we always choose the first and last labels for subsequent
recursion, so that every diagram appearing is of the form Γ~aαβ=ΓL

[
α̂∗,~aL,I

]
⊗ΓR

[
I,~aR, β̂

∗
]
,

then D(Γ) will be
D
(
Γ ~a
αβ

)
= p2

αaL
D
(
Γ~aL
α̂∗ I

)
D
(
Γ~aR
I β̂∗

)
. (5.8)

We call these factors color-kinematic denominators because if we let n(Γ):=D(Γ) f̂YMΓ

then individual terms appearing in the recursion of an amplitude in YM take the form
c ~aαβ n

(
Γ~aαβ

)
D
(
Γ~aαβ

) = c ~aαβ f̂
YM
Γ~a
αβ

(5.9)

while terms in gravity are given by the double-copy
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n
(
Γ~aαβ

)
n
(
Γ~aαβ

)
D
(
Γ~aαβ

) =D
(
Γ~aαβ

)(
f̂YMΓ~a
αβ

)2
. (5.10)

5.4 Illustrations of On-Shell Double-Copies
Arguably the simplest amplitudes in either theory are the so-called (Nk=0)MHV am-
plitudes [93, 97, 138]. On-shell recursion results in a single term for ordered partial
amplitudes in either theory:

AYM
MHV(1, · · ·,n) = c ~a1 n

δ2×4
(
λ·η̃

)
δ2×2

(
λ·λ̃
)

〈12〉〈23〉 · · · 〈n−1n〉〈n1〉

=:c ~a1 n
n
(
ΓMHV
1 n

)
D
(
ΓMHV
1 n

) δ2×2
(
λ·λ̃
)

=:c ~a1 nPT(1· · ·n)δ2×2
(
λ·λ̃),

(5.11)

where the denominators are determined recursively. In the default recursion scheme (5.8),
we find

D
(
ΓMHV
1 n

)
:= p2

n−1n

n−1∏
j=4

〈1|(2 · · ·j−2)|(j−1)|j〉
〈1j〉 ,

n
(
ΓMHV
1 n

)
:=D

(
ΓMHV
1 n

) δ2×4
(
λ·η̃

)
〈12〉〈23〉 · · · 〈n−1n〉〈n1〉

= [32]
〈23〉〈n1〉2

n−1∏
j=4

〈1|(2· · ·j−1)|j]
〈1j〉 δ2×4

(
λ·η̃

)
;

(5.12)

this representation immediately allows us to write the corresponding expressions for GR
as a double-copy:

AGR
MHV

(
1, · · ·,n

)
=
n
(
ΓMHV
1 n

)
n
(
ΓMHV
1 n

)
D
(
ΓMHV
1 n

) δ2×2
(
λ·λ̃

)
=D

(
ΓMHV
1 n

)(
PT(1· · ·n)

)2
δ2×2

(
λ·λ̃

)
.

(5.13)

Unlike the case of YM, these partial amplitudes in GR are non-cyclic and involve non-local
poles. Only upon summing over all (n−2)! orderings of {2, · · ·,n−1} do we recover a local,
permutation-invariant amplitude. We have checked that this formula agrees with the
closed-form expression of Hodges [139] through n=12 particles.

It is worth noting that this representation of MHV amplitudes in gravity (5.13) is
identical (upon a rotation of labels) to that found in [90]. And as with [90], the use of
the ‘bonus relations’ stemming from the good large-z behavior of amplitudes in GR [137]
allows us to re-write (5.13) as a sum over (n−3)! terms [89]:
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Table 5.3: Alternative recursion schemata resulting in distinct ordered, partial amplitudes
‘AGR

(
1,2,3,4,5,6

)
’.
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ÂGR
MHV =

∑
~a∈S(3,· · ·,n-1)

〈n1〉〈23〉
〈n2〉〈13〉D

(
Γ2~a
1n

)(
PT(12~an)

)2
. (5.14)

For higher Nk>0MHV-degrees, on-shell recursion typically involves a sum over terms,
each represented in YM by a particular, primitive on-shell diagram. The simplest non-
trivial example is the 6-particle NMHV amplitude, which involves 3 terms to represent
the ordered amplitude. Following the recursion scheme described above, the three on-shell
diagrams {Γ1,Γ2 Γ3} that result are given in Table 5.1, where we have also indicated the
numerators n(Γi) and denominators D(Γi) of each. Thus, we may write the ordered,
partial NMHV amplitude primitive in YM as

AYM
6,1

(
1,· · ·,n

)
=c ~a16

n
(
Γ1
)

D
(
Γ1
)+

n
(
Γ2
)

D
(
Γ2
)+

n
(
Γ3
)

D
(
Γ3
)
δ2×2

(
λ·λ̃
)

(5.15)

and the corresponding partial amplitude in GR as the double-copy

AGR
6,1

(
1,· · ·,n

)
=

n
(
Γ1
)2

D
(
Γ1
)+

n
(
Γ2
)2

D
(
Γ2
)+

n
(
Γ3
)2

D
(
Γ3
)
δ2×2

(
λ·λ̃
)
. (5.16)

In both cases, these partial amplitudes must be summed over the (n−2)! orderings of the
legs {2, · · ·,5}. We have checked this expression against KLT [140].

The numerators listed in Table 5.1 involve Grassmann δ-functions involving the η̃’s
which label the external states of each supermultiplet [137]; they are defined by

δ3×4
(
Ca·η̃

)
:=

δ2×4
(
λ·η̃

)
δ1×4

(
[aa+1]η̃a -1+[a+1 a−1]η̃a+[a−1a]η̃a+1

)
.

(5.17)

Notice that δ3×4
(
Ca·η̃

)
is invariant under permutations of both the set {a−1,a,a+1} and

its complement. This will turn out to have important consequences as we discuss in the
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Table 5.2: Alternative recursion schemata resulting in distinct ordered, partial amplitudes
‘AGR

(
1,2,3,4,5

)
’.

�i �a:=

1 5

2

3

4
�b:=

1 5

2

3

4

J(�i) s51 s23 D(�a) s51 s34 D(�b)

D(�i) s45
h1|(2)|(3)|4i

h14i s12
h2|(3)|(4)|5i

h25i

n(�i)
[23][45]

h14ih23ih51i�
2⇥4��·e⌘

� [12][34]

h34ih25ih51i�
2⇥4��·e⌘

�

forthcoming work [141].
Although the expression (5.15) may seem unusual, it is worth observing that, for

example,
n
(
Γ2
)

D
(
Γ2
) =

δ2×4
(
λ·η̃

)
δ1×4

(
[56]η̃4+[64]η̃5+[45]η̃6

)
[56]〈12〉〈3|(45)|6]s123[4|(56)1〉〈23〉[45] , (5.18)

is simply the (momentum-space version of the) familiar R-invariant R
[
1,3,4,5,6

]
(see

e.g. [9]).
Up to minor conventional differences, the recursion scheme used to construct denom-

inators (5.8) generally reproduces the form of amplitudes in GR as they were derived
in [91]. We have implemented in this in Mathematica and have verified agreement
against KLT [140] through the 10-particle N3MHV amplitude. These tools will be made
available in a forthcoming, public package for tree amplitudes more generally [142] (see
also [143]).

5.5 Non-Uniqueness of Dual Denominators
As emphasized above, even restricting ourselves to successively choosing the first last
legs for all iterated recursions, variability emerges from the chiral asymmetry of the
BCFW deformation (5.1). Even for 5 particles, choosing {α,β} to be {1,5} versus
{5,1} (conjugating the shifting rule) results in two distinct diagrams Γa and Γb and
correspondingly distinct primitives n(Γi)2/D(Γi)

AGR
a

(
1, · · ·,5

)
:=

〈1|(2)|(3)|4〉[45]δ2×8
(
λ·η̃

)
〈14〉〈45〉(〈12〉〈23〉〈34〉〈51〉)2 δ

2×2
(
λ·λ̃

)
;

AGR
b

(
1, · · ·,5

)
:=

〈2|(3)|(4)|5〉[12]δ2×8
(
λ·η̃

)
〈12〉〈25〉(〈23〉〈34〉〈45〉〈51〉)2 δ

2×2
(
λ·λ̃

)
.
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Nevertheless, it is easy to verify that the sum over their permuted images agree:

AGR=
∑
~a∈S([2,· · ·,4])
AGR
a

(
1,a1,· · ·,a-1,5

)
=
∑
~a∈S([2,· · ·,4])
AGR
b

(
1,a1,· · ·,a-1,5

)
.

This variability only proliferates for higher multiplicity, as evidenced by the four
examples for 6-point MHV given in Table 5.3. More generally, the equivalence of
expressions upon distinct variations gives powerful identities among not merely the
partial amplitudes in YM, but even among individual on-shell functions appearing
in Nk>0MHV amplitudes. We will explore the scope of these possibilities and their
consequences in a forthcoming work [141].
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Chapter 6 |
Conclusions and Future Directions

In this work, we have constructed a diagonal basis of four-dimensional local loop integrands
with triangle power-counting at two loops and six particles. As we have emphasized, the
properties of this basis are entirely dependent on the choice of eight-dimensional compact
contours on which the integrands are normalized to be unit. The specific choices in this
paper amount to making infrared structure, polylogarithmicity, and purity as manifest
as possible; this is important for practical applications including carrying out the loop
integrals, since uniformly transcendental integrals obey particularly simple differential
equations [43,124–126], among other nice properties [41]. Of course, integrating the basis
of this paper in dimensional regularization requires (at least for those elements with
infrared divergences) the addition of the extra-dimensional terms relevant for d=4−2ε
dimensions. In addition to this, we expect the finite part of our basis to be an ideal
testing ground for testing the methods of direct integration [128,129] in the non-planar
sector.

This basis is sufficient to express the six-particle MHV and NMHV amplitudes in
both sYM and SUGRA, and doing so requires only the computation of the physical
leading singularities which are among the spanning set chosen in this work. It should be
relatively straightforward to compute the relevant fully color-dressed leading singularities
in sYM.

Because the basis of integrands is identical for both MHV and NMHV helicity
configurations, having representations of both amplitude integrands in hand immediately
suggests an obvious application: namely, the study of non-planar versions of the two-loop
ratio function. The universal nature of the infrared divergence of non-planar amplitudes
strongly suggests that the ratio of the NMHV and MHV amplitudes should define a
locally-finite quantity according to the definition of [40], but due to the presence of color
factors, the details of how this works remain unclear.
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Another natural extension of this work would be to consider bubble or worse degrees
of power-counting. Although this introduces new degrees of freedom and higher poles
at infinity, because Bp⊂Bq for any p>q, every contour used in the basis constructed
in this work can be recycled and used to fill out a large subset of the spanning set of
contours for bubble power-counting (and beyond). Note that while the integrands will
be modified by both additional top-level and contact term numerators, the contours
themselves require no modification whatsoever.

Instead of boosting the power-counting, implementing the diagonalization procedure
of this work at higher multiplicities and higher loops offers an additional direction for
future investigations. Generating diagonal bases beyond this work will inevitably require
non-polylogarithmic contours and integrands [53,54]; here, we expect the extension of
prescriptive unitarity to elliptic (and beyond) leading singularities outlined in [39] to
prove quite useful.

The integration of non-planar Feynman integrands involving six particles is at or
arguably just beyond our present state of the art. Indeed, it was only recently that the
first non-planar amplitudes (in maximally supersymmetric theories) were computed for
five-particles [144–147]. In this work we have provided explicit representations of both
the NMHV and MHV six particle amplitude in precisely the same prescriptive basis of
integrands—engineered to simplify the work of loop integration and to maximally expose
the infrared structure of each amplitude. We suspect that there exists some non-planar
analogue of the IR-finite ratio function of planar theories, and the first non-trivial instance
of such should appear for six particles. Once the integrated expressions are found for
these integrands, we anticipate the discovery of simplifications as dramatic as for in the
case of planar amplitudes (see e.g. [48,49])—and we hope that these will lead to similarly
powerful new insights for amplitudes beyond the planar limit.

The number of terms generated by BCFW to represent the n-particle NkMHV
amplitude for a specific ordering is given by a Narayana number 1

n−3

(
n−3
k+1

)(
n−3
k

)
. It is

natural to suppose that including a sum over (n−2)! permutations of leg labels would
result in as many more terms in the expression for gravity. This turns out to not be the
case—as evidenced, for example, by the more compact expression for MHV amplitudes
(5.14).

Interestingly, for higher multiplicity and NkMHV-degree, considerations of Grassman-
nian geometry of the η̃-coefficients expose even more symmetry than would result from
mere permutation-invariance of amplitudes in GR [141]. For the 10-particle N3MHV
amplitude, for example, we require only 343,252 distinct superfunctions—about 20 times
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fewer than the naïve estimate of (175×8!). Moreover, the contributions that appear
are found to satisfy a number of novel functional relations—some of which can be
demonstrated using bonus relations or by equating formulae resulting from different
recursion schemata, but we have also stumbled into yet further relations that remain to
be understood. We explore some of these aspects of gravitational amplitudes in [141].
This additional, geometric structure hints at the possibility of a broader geometric story,
perhaps analogous to the ‘gravituhedron’ described in [102].

While the existence of color-kinematic dual numerators remains conjectural beyond
tree-level, there is a great deal of evidence from specific examples that the double-copy
should generalize to loop-integrands (in some form or other) [30,66–68,148–150]. In
ref. [99], Heslop and Lipstein gave evidence at one loop that the obvious extension of
on-shell recursion for loop-integrands for sYM [6] works also for sGR. It is natural to
wonder if this works more generally, and if loop amplitude integrands for sGR continue
to be generated as a double-copy of those for color-dressed sYM.
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