
The Pennsylvania State University
The Graduate School

TOWARDS SECURE AND PERFORMANT CYBER-PHYSICAL

SYSTEMS: ESTIMATION, OPTIMIZATION, AND CONTROL

A Dissertation in
Computer Science and Engineering

by
Yudi Huang

© 2024 Yudi Huang

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 2024

The dissertation of Yudi Huang was reviewed and approved by the following:

Ting He
Associate Professor of the School of Electrical Engineering and Computer Science
Dissertation Advisor
Chair of Committee

Thomas F. La Porta
Evan Pugh Professor
William E. Leonhard Professor of the School of Computer Science and Engineering
and Electrical Engineering

Nilanjan Ray Chaudhuri
Associate Professor of the School of Electrical Engineering and Computer Science

Uday V. Shanbhag
Gary and Sheila Bello Chair and Professor in the Harold and Inge Marcus
Department of Industrial and Manufacturing Engineering

Chitaranjan Das
Program Head
Distinguished Professor of Computer Science and Engineering

ii

Abstract
Cyber-physical systems (CPSs) have risen to prominence across multiple domains, in-
cluding power grids, drone networks and transportation systems, owing to their ability
to significantly enhance these applications through the integration of modern commu-
nication networks. Due to the existence of legacy devices and complex couplings of
cyber-physical spaces, secure and efficient management of CPSs imposes formidable
challenges. This dissertation aims at systematically exploring the CPSs in the dimensions
of attack recovery, system resilience, routing control, and attack design, through the lens
of estimation, optimization, and control.

In our first piece of work, we study the link state inference problem for attack recovery
in the smart grid through the lens of estimation. We consider a challenging attack
form named the joint cyber-physical attacks, where the physical part disconnects links
while the cyber part blocks the measurements from the attacked area. We try to fill
the gap that the existing works always assume a connected post-attack grid by jointly
inferring the link states and the power injection changes due to grid islanding using
unattacked observations. We first propose a linear programming-based algorithm for
link state estimation for the cases that islanding is possible. We develop a new analysis
framework to characterize the accuracy of the proposed algorithm at a finer granularity
than existing works. In addition, we extend the analysis into efficient polynomial-time
algorithms to verify the correctness of the link state estimation. Finally, we extend the
DC-based algorithms to AC model. The evaluations show that we can not only estimate
the line states with low error rate, but also verify the most of them.

In our second piece of work, we study a new trade-off between system resilience and
limited defending budget in smart grid, through the lens of optimization of the secured
PMU deployment. Specifically, instead of preventing the existence of all attacks through
achieving full observability by secured PMUs, we propose to deploy secured PMUs
to limit the attack impact so that any undetectable false data injection cannot cause
overload-induced link tripping. We formulate the problem as a tri-level mixed-integer
optimization problem. Then, we propose an alternating optimization framework together
with two constraint generation algorithms to solve PPOP optimally. For large grids,
we further develop a scalable polynomial-time heuristic algorithm. Finally, we extend
our solution to achieve the defense goal under AC power flow model. The numerical
evaluations demonstrate that our algorithms can significantly reduce the required number
of PMUs.

In our third piece of work, we aim to design performant overlay communication

iii

networks for CPSs through the lens of network state estimation and routing control.
Considering the demand of timely delivery of measurements and commands in CPSs,
and the trend of communication network virtualization, our objective is to achieve
congestion-free overlay routing over an uncooperative underlay network. To this end, we
first identified the minimum information necessary for such routing and introduced the
first-known polynomial-complexity algorithms to infer this information with guaranteed
accuracy. For the special case of symmetric tree-based routing, we developed an alternative
algorithm to enhance the inference accuracy. Subsequently, we devised a greedy algorithm
to estimate the required capacity information. Numerical evaluations, conducted using
the NS3 simulator, demonstrate the effectiveness of our proposed algorithms in avoiding
congestion.

In our fourth piece of work, we examined the attack design of cross-path attacks
in communication networks, through the lens of estimation of the shared network
components and optimization of the attack’s impact on the targeted services. We
initially developed novel reconnaissance algorithms to consistently reveal the locations
and parameters of the shared links through network tomography. Subsequently, we
explored two optimization objectives for allocating attack rates to maximally degrade
the performance of targeted paths. Extensive evaluations demonstrate that our proposed
algorithms can achieve a significantly larger performance impact compared to their
non-optimized counterparts.

In the ongoing work, we propose to develop a performant decentralized learning
framework for CPSs, through the lens of optimization of overlay routing and mixing
matrix. This endeavor is driven by the goal of enhancing CPSs with machine learning
capabilities and the necessity of distributing the training process across decentralized
agents. We aim to provide a strategy to minimize the total training time by balancing
the trade-off between the per-iteration communication time and the number of iterations
for convergence.

iv

Contents

List of Figures x

List of Tables xiv

Acknowledgments xvi

Chapter 1
Introduction 1
1.1 Background on Cyber-Physical Systems 1
1.2 Motivations . 2
1.3 An Illustrative Example: Smart Grid . 4
1.4 Roadmap and Research Problems . 6

Chapter 2
Link State Estimation under Cyber-Physical Attacks 9
2.1 Introduction . 9

2.1.1 Related Work . 10
2.1.2 Summary of Contributions . 11

2.2 Problem Formulation . 12
2.2.1 Power Grid Model . 13
2.2.2 Attack Model . 14
2.2.3 Voltage Recovery Problem . 16

2.3 Localizing Failed lines with Unknown Active Power Injections 17
2.3.1 Algorithm . 17
2.3.2 Analysis . 19

2.4 Verifying Estimated Line States . 24
2.4.1 Verification without Knowledge of Ground Truth 25

2.4.1.1 Verifiable Conditions . 25
2.4.1.2 Verification Algorithm 27

2.4.2 Verification with Partial Knowledge of Ground Truth 27
2.4.2.1 Verifiable Conditions . 28
2.4.2.2 Verification Algorithm 28

2.5 Extension to AC Power Flow Model . 30
2.5.1 Detection: Adaptation of FLD to AC-FLD 30

v

2.5.2 Verification: Adaptation of VOTE(-PG) to AC-VOTE(-PG) . . . 32
2.6 Performance Evaluation . 33

2.6.1 Performance Loss of DC-based Algorithms 34
2.6.2 Performance of Line State Recovery 35
2.6.3 Performance of Line State Verification 36
2.6.4 Summary of Observations . 39

2.7 Conclusion . 40
2.8 Appendices . 41

2.8.1 Appendix A: Additional Proofs 41
2.8.2 Appendix B: Proportional Loadshedding/generation Reduction . . 45
2.8.3 Appendix C: Recovery of Phase Angles and Voltages 46
2.8.4 Appendix D: Special Case: Known Post-Attack Power Injections . 49
2.8.5 Appendix E: Adaptation of Verification Algorithms to AC Power

Flow Model . 52
2.8.5.1 AC-VOTE . 53
2.8.5.2 AC-VOTE-PG . 55

Chapter 3
Preventing Outages under Coordinated Cyber-Physical Attack with

Secured PMUs 57
3.1 Introduction . 57

3.1.1 Related Work . 58
3.1.2 Summary of Contributions . 59

3.2 Problem formulation . 60
3.2.1 Power Grid Modeling . 60
3.2.2 Modeling Coordinated Cyber-Physical Attack (CCPA) 62
3.2.3 Modeling the Protection Effect of Secured PMUs 65
3.2.4 Optimal PMU Placement Problem 66

3.3 Solving PPOP . 69
3.3.1 Hardness and Conversion to Bi-Level MILP 70
3.3.2 An Alternating Optimization Framework 71
3.3.3 Alternating Optimization with No-Good Constraints (AONG) . . 71
3.3.4 Alternating Optimization with Double Constraints (AODC) . . . 72
3.3.5 Efficient Heuristics . 76

3.4 Extension to AC Power Flow Model . 79
3.4.1 Testing a PMU Placement under AC Model 80
3.4.2 Refining PMU Placement . 82

3.5 Numerical Experiments . 83
3.6 Conclusion . 88
3.7 Appendices . 89

3.7.1 Appendix A: MILP Formulation of Attacker’s Problem 89
3.7.2 Appendix B: Calculation of Big-M 92
3.7.3 Appendix C: The Coefficient Matrices in Attacker’s Problem . . . 94

vi

3.7.4 Appendix D: Details of the Attacker’s Problem Under AC Power
Flow Model . 95

3.7.5 Appendix E: Additional Proofs 99

Chapter 4
Overlay Routing Over an Uncooperative Underlay 105
4.1 Introduction . 105

4.1.1 Related Work . 107
4.1.2 Summary of Contributions . 109

4.2 Problem Formulation . 109
4.2.1 Network Model . 109
4.2.2 Objective of Overlay Routing . 110
4.2.3 Problem Statement . 112

4.3 Overlay-based Inference . 112
4.3.1 Minimum Information for Overlay Routing 112
4.3.2 Identification of Nonempty Categories 114

4.3.2.1 Defining Additive Metrics 114
4.3.2.2 Inferring Category Metrics 115
4.3.2.3 Taming Exponential Complexity 116
4.3.2.4 Handling Estimation Errors 118
4.3.2.5 Performance Analysis 120
4.3.2.6 Special Case: Symmetric Tree-based Routing 123

4.3.3 Estimation of Category Capacities 127
4.4 Underlay-aware Overlay Routing . 130

4.4.1 Overall Solution . 130
4.4.2 Performance Analysis . 131

4.5 Performance Evaluation . 132
4.5.1 Evaluation Setup . 132
4.5.2 Benchmarks . 133
4.5.3 Evaluation Results . 133

4.5.3.1 Nonempty Category Identification 133
4.5.3.2 Category Capacity Estimation 134
4.5.3.3 Approximation of Feasible Region 134
4.5.3.4 Performance of Overlay Routing 135

4.6 Conclusion . 136
4.7 Appendix . 137

4.7.1 Supporting Proofs . 137
4.7.2 Supplementary Details . 144

Chapter 5
Optimized Cross-Path Attacks via Adversarial Reconnaissance 148
5.1 Introduction . 148

5.1.1 Related Work . 149
5.1.2 Summary of Contributions . 151

vii

5.2 Problem Formulation . 151
5.2.1 Network and Threat Model . 151
5.2.2 Problem Statement . 153
5.2.3 Illustrative Example . 154

5.3 Adversarial Reconnaissance . 155
5.3.1 Preliminaries . 155
5.3.2 Shared Weight Inference . 157

5.3.2.1 Algorithm . 158
5.3.2.2 Illustrative Example . 160
5.3.2.3 Correctness . 160
5.3.2.4 Complexity . 161

5.3.3 Parameter Inference . 161
5.3.3.1 Algorithm . 161
5.3.3.2 Queueing Models . 163
5.3.3.3 Correctness . 164
5.3.3.4 Complexity . 164

5.4 Optimized Attack Design . 164
5.4.1 Attacker’s Optimization . 165
5.4.2 Attack Design . 166

5.4.2.1 Attack under M/M/1 166
5.4.2.2 Attack under M/D/1 . 167
5.4.2.3 Attack under G/G/1 . 167

5.4.3 Other Attack Objectives . 168
5.5 Performance Evaluation . 168

5.5.1 NS3-based Simulation of Backbone Network 169
5.5.1.1 Simulation Setup . 169
5.5.1.2 Results on Reconnaissance 170
5.5.1.3 Results on Attack Design 171

5.5.2 NS3-based Simulation of Integrated Access and Backhaul (IAB)
Network . 173
5.5.2.1 Simulation Setup . 173
5.5.2.2 Results on Reconnaissance 174
5.5.2.3 Results on Attack Design 175

5.6 Concluding Discussion . 176
5.7 Appendices . 176

5.7.1 Appendix A: Proofs of Theorems 176
5.7.2 Appendix B: Supplementary Evaluation Results for Backbone

Network . 180
5.7.2.1 Measurement Calibration in NS3 Simulation of Backbone

Network . 180
5.7.2.2 NS3 Simulation of Backbone Network under an Alterna-

tive Background Traffic Model 180

viii

5.7.2.3 Evaluation Results for NS3 Simulation of Backbone Net-
work with NA = 20 . 181

5.7.2.4 Evaluation Results for NS3 Simulation of Backbone Net-
work with 50 Gbps Link Capacity 182

5.7.3 Appendix C: Supplementary Evaluation Results for Integrated
Access and Backhaul (IAB) Network 184
5.7.3.1 Results on Reconnaissance 184
5.7.3.2 Results on Attack Design 185

5.7.4 Appendix D: Discussion on detecting false alarms through param-
eter estimation . 186

Chapter 6
Conclusion and Future Work 188
6.1 Future Work . 188
6.2 Illustrative Example: Overlay-Based Decentralized Learning 189

6.2.0.1 Related Work . 191
6.2.1 Background and Problem Formulation 194

6.2.1.1 Notations . 194
6.2.1.2 Network Model . 194
6.2.1.3 Decentralized Federated Learning (DFL) 194
6.2.1.4 Communication Optimization for Overlay-based DFL . . 196

6.2.2 Proposed Solution . 196
6.2.2.1 Overlay-based Communication Schedule Optimization . 196
6.2.2.2 Conditional Link Weight Optimization 201
6.2.2.3 Link Activation Optimization 204

6.2.3 Future Directions . 207
6.2.3.1 Lower-Level Optimization Approach 207
6.2.3.2 Monolithic Approach . 208

6.3 Concluding Remarks . 208

Bibliography 210

ix

List of Figures

1.1 A systematical securing solution for CPSs. 3

1.2 An example of smart grid network . 5

2.1 The defense system in smart grid. The proposed methods focus on
Topology Recovery and Topology Verification. 10

2.2 A cyber-physical attack that blocks information from the attacked area
H while disconnecting certain lines within H. 15

2.3 An example of hyper-node (arrow denotes the direction of a power flow
or a hypothetical power flow). 23

2.4 Guidelines for applying the proposed algorithms. 29

2.5 Performance of DC-FLD under the AC power flow model in Polish system
(|VH | = 40). 34

2.6 Performance of DC-VOTE + DC-VOTE-PG under the AC power flow
model in Polish system (|VH | = 40). 35

2.7 Prob. that assuming ∆ = 0 leads to a feasible solution in Polish system
(|VH | = 40). 35

2.8 Performance comparison on miss rate in Polish system (|VH | = 40). . . . 36

2.9 Performance comparison on false alarm rate in Polish system (|VH | = 40). 37

2.10 Number of false alarms/misses of FLD in Polish system (|VH | = 40). . . . 37

2.11 Fraction of testable/verifiable lines in Polish system (|VH | = 40). 38

x

2.12 Comparison between verifiable lines, theoretically guaranteed lines, and
actually correctly identified lines in Polish system (|VH | = 40). 39

2.13 Comparison between verifiable lines, theoretically guaranteed lines, and
actually correctly identified lines in IEEE 300-bus system (|VH | = 40). . . 39

2.14 Performance comparison for connected post-attack Polish system (|VH | =
40). 52

2.15 Performance comparison for connected post-attack IEEE 300-bus system
(|VH | = 20). 53

3.1 Timeline of an instance of CCPA . 62

3.2 #PMUs required by PPOP
#PMUs required by full observability (ξc=|V |+|E| means no ξc-constraint). 86

3.3 The performance of Alg. 5 under different Kc, KA, and KL. 88

3.4 Overview of the PPOP . 89

4.1 Example of underlay-aware overlay routing. 106

4.2 Errors of COIN with varying #tunnels under the same settings as Ta-
bles 4.2-4.3 in Section 4.5. 119

4.3 Example for tree-based category identification: Overlay nodes V :=
{1, . . . , 4}; link labels in (b) denote the detected sets of traversing tunnels. 125

4.4 Counterexample: The links shared by tunnels (s, t) and (i, j) between u
and v are undetectable from 1-by-2 components formed by the nodes in
{s, t, i, j}. 126

4.5 Example for estimating the effective category capacity for F = {(v1, v4), (v2, v5), (v3, v6)}
(suppose that links (h1, h2) and (h3, h4) have unit capacity, and other
links have unlimited capacities). 129

4.6 Illustration of overall solution. 130

4.7 Constraint violation for randomly-sampled extreme points of the estimated
feasible region. 135

4.8 Performance of overlay routing. 137

xi

4.9 Cases for two tunnels without common endpoints. 142

4.10 Cases for three tunnels with each pair having shared links. 146

4.11 Illustration of the hash table for ρ̂F . 147

5.1 Cross-path attack in the context of network slicing. 154

5.2 Cross-path attack in the context of SDN. 154

5.3 Illustration for Alg. 15 (shared links are marked in green). 160

5.4 Sample topology in the simulation of backbone network (NA = NB = 10),
with shared links highlighted as thick lines. 170

5.5 Performance of reconnaissance in backbone network simulation (NA =
NB = 10). 171

5.6 Performance of attack design in backbone network simulation (NA =
NB = 10). 171

5.7 Sample topology in the simulation of IAB network (NA = 19, NB = 10),
with shared links highlighted as thick lines. 173

5.8 Performance of reconnaissance in IAB network simulation (NA = 19, NB =
10). 174

5.9 Performance of attack design in IAB network simulation (NA = 19, NB =
10). 175

5.10 Performance of reconnaissance in backbone network simulation under
ON-OFF background traffic (NA = NB = 10). 181

5.11 Performance of attack design in backbone network simulation under ON-
OFF background traffic (NA = NB = 10). 181

5.12 Performance of reconnaissance in backbone network simulation (NA =
20, NB = 10). 182

5.13 Performance of attack design in backbone network simulation (NA =
20, NB = 10). 182

xii

5.14 Performance of reconnaissance in backbone network simulation (NA =
NB = 10). 183

5.15 Average delay over all the target paths (NA = NB = 10)). 184

5.16 Performance in detecting shared links in IAB network simulation. 184

5.17 Performance in inferring parameters of shared links in IAB network
simulation. 185

5.18 Probability that the attack can destabilize the queue for at least one
shared link in IAB network simulation. 185

5.19 Delay increase under different λ in IAB network simulation (NB = 5). . 186

5.20 Delay increase under different λ in IAB network simulation (NB = 10). . 186

6.1 Overlay-underlay structure for learning over a communication network (learning
agents: {A,B,C,D}; underlay nodes: {h1, h2}). 191

6.2 Underlay-aware communication schedule optimization (learning agents: {A,B,C,D};
underlay nodes: {h1, h2}). 197

6.3 Challenge for in-overlay aggregation (learning agents: {A,B,C,D,E}; underlay
nodes: {h1, h2}). 200

xiii

List of Tables

2.1 Notations . 16

2.2 Notations for AC power flow . 31

2.3 Percentage of cases that VOTE-PG verifies additional lines in Polish system 38

2.4 Percentage of cases of connected post-attack Polish system (|VH | = 40) . 52

2.5 Percentage of cases of connected post-attack IEEE 300-bus system (|VH | =
20) . 52

3.1 Notations v.s. Timeline . 63

3.2 PMU Locations of PPOP under DC Model 84

3.3 PMU Locations of PPOP under AC Model 85

3.4 Comparison of the Required Number of PMUs 85

3.5 Comparison of #PMUs under Temporary/Long-term Placement 85

3.6 Number of PMUs in PPOP under varying α 86

3.7 Number of iterations/Convergence time (103 sec) 87

3.8 Number of PMUs Under AC Power Flow Model 88

3.9 Notations for AC power flow . 95

4.1 Characteristics of the tested underlay topologies. 132

4.2 Misses in category identification (|V | = 10). 133

xiv

4.3 False alarms in category identification (|V | = 10). 133

4.4 Errors in effective category capacity estimation. 134

xv

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Ting He, for her continuous
encouragement and selfless help during my Ph.D. study at Penn State. She not only
directly teaches me with passion and patience, but also guides me to be a good researcher
as a role model. I am really grateful for her help with everything although she is so busy.
She is the best advisor I can imagine.

Besides, I would like to thank Prof. Nilanjan Ray Chaudhuri and Prof. Tom La Porta
as my co-authors and committee members. I really appreciate their time, help, and also
criticism. I would also like to thank Prof. Uday V. Shanbhag for being my committee
member. Thanks for the time and help.

I am grateful to my teammates Hanlin Lu, Yilei Lin, Cho-Chun (Daniel) Chiu, Tian
Xie, Akash Kumar, and Tingyang Sun. You make my study much more easier and
interesting. I am also grateful to my other friends Zhikun Lei, Bo Pan, Dongrui Zeng,
Shen Liu, Huaiyuan Zhang, Zhexi Zhu, Junxin Wang, Jie Chen, Junjie Tan, Qian Shi,
Ke Liang, Xusheng Zhang, Xiaodong Jia, Jian Zhao, Sitao Zhang, etc. It is great to have
them in my life. I want to give my sincerest thanks to PeiJhen Gong. It is one of the
luckiest things to have her company during my Ph.D. years.

Last, I would like to thank my parents, Qiang Huang and Qingmei Zhang, for their
support. They not only give me birth but also build my personality. Through the best
and the worst, through the difficult and the easy, they always respect my thoughts and
give me full support. I would also like to give sincere thanks to my grandparents Bairong
Zhang and Jinmei Shen, and my aunt Li Zhang for the unconditional love you share with
me.

The work in this dissertation was generously supported by the National Science
Foundation under awards ECCS-1836827, CNS-1946022, and CNS-2106294. Any opinions,
findings, and conclusions or recommendations expressed in this dissertation are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

xvi

Chapter 1 |
Introduction

1.1 Background on Cyber-Physical Systems
Cyber-physical systems (CPSs) have widely been recognized as a promising paradigm for
transforming industrial systems such as power grid [1], drone networks [2], transporta-
tion [3], and health care [4], etc. The opportunities of CPSs lie in the close integration of
advanced sensing, communication, computation, and control with the physical compo-
nents. The advanced communication networks in CPSs help achieve better monitoring
and control in the physical spaces.

The current state-of-the-art in CPSs reflects a dynamic interplay between advanced
technological innovations and practical applications across various domains. Recent
advancements have seen the integration of cutting-edge technologies such as the Internet
of Things (IoT), artificial intelligence (AI), and machine learning (ML) with CPSs,
driving significant improvements in system responsiveness, adaptability, and efficiency [5].
For instance, in smart grids, AI-driven predictive models are being employed to enhance
energy distribution and optimize renewable energy usage, reflecting a shift towards more
sustainable and efficient energy systems [6].

Moreover, the advent of 5G technology and beyond promises to revolutionize CPSs
by providing ultra-reliable low-latency communication (URLLC), which is crucial for
applications requiring real-time data processing and control [7]. This technological leap is
expected to unlock new possibilities in autonomous vehicle networks, remote healthcare,
and smart cities, where seamless and instantaneous communication is paramount. The
integration of these technologies within CPSs facilitates not only enhanced performance
but also new functionalities that were previously unattainable, highlighting the evolving
nature of CPS capabilities.

Looking ahead, the future of CPSs appears to be geared towards achieving higher

1

levels of autonomy, intelligence, and inter-connectivity. The convergence of AI and ML
with CPSs is set to deepen, with systems becoming increasingly capable of autonomous
decision-making, predictive analytics, and self-optimization. This evolution will likely
usher in a new era of smart infrastructure, where CPSs can anticipate and respond to
changes in their environment in a proactive and efficient manner. Additionally, the focus
on enhancing cybersecurity measures and developing robust frameworks for data privacy
and ethics in CPSs will remain a critical area of research and development, ensuring the
trustworthiness and reliability of these systems.

In essence, the trajectory of CPSs points towards an increasingly interconnected and
intelligent ecosystem of cyber and physical components. The ongoing advancements
in technology and the continuous integration of these advancements into CPSs suggest
a future where these systems play a central role in driving innovation, efficiency, and
sustainability across all sectors of society. The challenge lies in harnessing these technolo-
gies in a manner that maximizes their potential while mitigating the associated risks,
particularly those related to security and privacy.

1.2 Motivations
However, the great opportunities come with greater challenges in system design and
management [8], among which we focus on the secure and efficient management in this
dissertation.

The inherent complexity of CPSs arises from their tightly coupled cyber and physical
components, which necessitate sophisticated algorithms for real-time data processing
and decision-making [9]. This complexity is further magnified by the need for robust
measures to defend against increasingly sophisticated attacks. As such, ensuring the
security and integrity of CPSs is paramount, particularly given their critical role in
infrastructure and their potential impact on public safety and economic stability [10].
The integration of advanced sensing and control technologies enables CPSs to respond
dynamically to changing environmental conditions and operational demands, thereby
enhancing efficiency and sustainability.

As discussed in [11], securing CPSs requires a systematical defending mechanism,
which can be decomposed into four components, as shown in Fig. 1.1. The first component
is prevention, which aims at postponing the attack onset by reducing information
leakage and detecting intrusion. However, there always exist attacks that can bypass
the prevention, which leads to the requirements of resilience. A resilient CPS is still

2

Motivation: CPS Security
• Systematical view of CPS security

• Prevention
• Information leakage prevention
• Intrusion detection

• Resilience/impact control
• Make the damage acceptable

• Isolation
• Distablization detected
• Isolate the attacked part

• Attack recovery
• Regain situation awareness
• Allocate resource for repairing

Dibaji, S. M., M. Pirani, D. B. Flamholz, A. M. Annaswamy, K. H. Johansson, and A. Chakrabortty
(2019) “A systems and control perspective of CPS security,” Annual Reviews in Control, 47, pp.
394–411.

Time

Impact

Prevention

Attack Onset

Resilience

Isolation Recovery

Propagation of attack without defense

Propagation of attack with defense mechanism

Figure 1.1. A systematical securing solution for CPSs.

functional (in an abnormal state without being broken) under attack by limiting the
attack’s impact. After observing the existence of attacks that have bypassed the detection
mechanism, we need to isolate the attacks for further actions. Finally, recovery of the
system back into its normal state is vital for maintaining a stable system.

Furthermore, the scalability of CPSs presents both a challenge and an opportunity
for the design of its communication networks [12]. These networks are crucial for
facilitating real-time data exchange and coordination, which become increasingly complex
as systems grow. Addressing scalability involves ensuring network robustness against
disruptions, achieving low latency for immediate system responsiveness, and securing
networks against cyber threats, notably Denial of Service (DoS) attacks [13]. Overlay
routing design is particularly significant in this context, offering a strategic approach
to optimize communication pathways, thereby enhancing efficiency and resilience [14].
Through adeptly tackling these design challenges, communication networks play a vital
role in enabling CPSs to scale effectively, ensuring reliable performance across a spectrum
of demands and conditions.

The evolution of CPSs is also driven by advancements in artificial intelligence (AI) and
machine learning (ML), which offer the potential to significantly enhance decision-making
processes within these systems [15]. By leveraging AI and ML, CPSs can learn from data,

3

adapt to new situations, and predict future states, thereby improving their efficiency,
reliability, and overall performance. However, the integration of AI and ML into CPSs
introduces additional layers of complexity, particularly in terms of ensuring the security
and efficiency.

In conclusion, the development and deployment of CPSs hold the promise of revolu-
tionizing not only traditional industrial systems but also extending beyond them. The
challenges associated with their complexity, scalability, security, and the integration of
AI and ML, while significant, are not insurmountable. Overcoming these challenges is
both urgent and crucial for realizing the full potential of CPSs.

1.3 An Illustrative Example: Smart Grid
In this subsection, we use the smart grid as an example, as shown in Fig. 1.2, to
demonstrate the problems we plan to solve. In Fig. 1.2, the power grid is the physical
space to manage, where nodes are connected through power lines. Together with
switches and routers, the sensors for monitoring the power grid are connected in the
communication layer so that the control center can collect the sensor measurements for
further actions such as state estimation and load forecasting. It is worth noting that a
large portion of nodes (e.g., routers) for networking may be provided by the third party
(e.g., Internet Service Provider, ISP) and thus invisible to the grid operator. We will call
the communication network managed by the grid operator the overlay since it is layered
on the underlay ISP’s network. That is to say, a direct communication link from the
perspective of overlay may be composed of multiple underlay links.

The security threat to smart grid has long been an active research area. For example,
adversary may attack the power grid for manipulating the market to obtain a financial
gain [16]. The adversary may also be motivated by causing large-scale blackout [17], such
as the attacks on the Ukrainian power grid in 2015 [18]. Due to the severe consequences
of destabilization, secure control of the CPSs to stay stable is deemed necessary.

The joint cyber-physical attacks as shown in Fig. 1.2 has attracted lots of attention.
Specifically, the physical attack refers to the disconnection of links, while the cyber attack
can be either information blockage (also named denial-of-service attack) [19] or false
data injection [20]. According to [11], a comprehensive solution for CPS security requires
attack prevention, impact control, attack detection and attack recovery. The first problem
in this dissertation to solve is the attack recovery, which requires post-attack situation
awareness. Since the topological information, i.e., the link states, is vital for attack

4

An Illustrative Example of Smart Grid
• Security issues

• Cyber/physical attacks

Power Grid Nodes

Overlay
Communication node

Power
grid
layer

Comm.
Layer

App.
Layer

Load
forecasting

SCED
Pricing

Contingency
Analysis

Attack
Detection

State
Estimation

Restoration

Underlay
Switches/Routers

Underlay Links

Control Center

Physical Attack

Cyber Attack

Figure 1.2. An example of smart grid network

recovery, we will study the link state inference after joint cyber-physical attacks.
The close integration of advanced networking system [21] introduce new challenges,

such as false data injection [20]. The second problem to study is the trade-off between
limited security budget and system resilience during the attack. It has long been realized
that advanced sensing equipment, such as phasor measurement units (PMUs), can help
defend against the attacks since they are not subjected to data injections. Many existing
works have studied optimal PMU deployment achieving full observability of the grid to
eliminate the existence of attacks. However, the high cost prevents PMU from being
fully deployed to achieve full observability in the short future, which results in a need for
a trade-off between full prevention and impact control under budget constraints. Thus,
we propose a new trade-off as well as the associated optimal deployment of PMUs
under the new defending goal.

The timely transmission of measurements from sensors and commands from the
control center is crucial for maintaining the controllability of smart grids [22], which is
essential for their efficiency and resilience. The virtualization and softwarization make
the congestion-free overlay routing design a challenging problem. Therefore, the third
problem addressed in this dissertation concentrates on the optimal control of overlay
routing over an uncooperative underlay network. One major challenge in operating
overlay networks lies in the uncooperative nature of the underlay networks, which implies
no direct information of the underlay network. Such lack of information results in possible
sub-optimal performance of the overlay applications due to the black-box optimization.
We will study the necessary information for achieving congestion-free overlay routing

5

and algorithms to estimate this information.
The trend of network softwarization and virtualization has fundamentally altered

the way we build network systems, and makes modern communication networks appear
easier to manage. However, the complex interactions within the networks open the door
for new security threats. Thus, in the fourth problem in this dissertation, we study a
particular type of DoS attacks, called cross-path attacks, which stem from the sharing of
links between high-priority paths and low-priority paths. We will explore the impact of
this security threat on the performance degradation of the target service, which is the
high-priority communications for CPSs.

Due to the potential of significantly improving the system efficiency, introducing
machine learning into CPSs has been widely deemed promising. However, traditional
centralized training paradigm based on parameter server may not be suitable for CPSs
due to the data privacy requirements. In addition, centralized server is likely to be the
communication bottleneck and thus slows down the training. In the ongoing work, we
will study the decentralized learning over overlay networks. The objective is to minimize
the training time without causing congestion.

1.4 Roadmap and Research Problems
This dissertation has four main chapters addressing four different problems, focusing
onattack recovery, system resilience, routing control, and attack design problems of the
CPSs, through the lens of estimation, optimization, and control. Specifically:

1. Effective defense against cyber-physical attacks in power grids requires accurate
damage assessment. While some solutions have been proposed to recover the link
states within the attacked area, existing solutions are limited by the assumption of
a connected post-attack grid and the lack of verifiable performance guarantees. To
fill this gap, we study in Chapter 2 the recovery of link states under a cyber-physical
attack that disconnects links within the attacked area while blocking information
from that area. In contrast to existing solutions assuming a connected post-attack
grid or known post-attack power injections, we consider a more challenging scenario
where the attack may partition the grid into islands, which causes unknown changes
in power injections. To address this problem, we (i) propose a linear programming-
based algorithm to recover the link states within the attacked area under unknown
post-attack power injections, (ii) characterize the accuracy of the proposed recovery
algorithm under certain conditions, and (iii) develop efficient algorithms to verify

6

the recovery results using observable information. Our numerical evaluations based
on the IEEE 300-bus system and the Polish grid demonstrate that the proposed
recovery algorithm is highly accurate in localizing failed links, most of which can
be successfully verified by the proposed verification algorithms.

2. Next, we consider the optimal PMU deployment for defending against coordinated
cyber-physical attacks to prevent severe consequences in Chapter 3. Existing
approaches focus on eliminating the existence of attacks by either securing existing
sensors or deploying secured PMUs. In this work, we improve this approach
by lowering the defense target from eliminating attacks to preventing outages
and reducing the required number of PMUs. To this end, we formulate the
problem of PMU Placement for Outage Prevention (PPOP) as a tri-level non-
linear optimization problem and transform it into a bi-level mixed-integer linear
programming (MILP) problem. Then, we propose an alternating optimization
framework to solve PPOP by iteratively adding constraints, for which we develop
two constraint generation algorithms. In addition, for large-scale grids, we propose
a polynomial-time heuristic algorithm to obtain suboptimal solutions. Finally, we
evaluate our algorithm on IEEE 30-bus, 57-bus, 118-bus, and 300-bus systems,
which demonstrates the potential of the proposed approach in greatly reducing the
required number of PMUs.

3. In Chapter 4, we study the optimal overlay routing control over an uncooperative
underlay for timely delivery of measurements and control commands. Overlay
network is a non-intrusive mechanism to enhance the existing network infrastructure
by building a logical distributed system on top of a physical underlay. A major
difficulty in operating overlay networks is the lack of cooperation from the underlay,
which is usually under a different network administration. In particular, the lack
of knowledge about the underlay topology and link capacities makes the design of
efficient overlay routing extremely difficult. In contrast to existing solutions for
overlay routing based on simplistic assumptions such as known underlay topology
or disjoint routing paths through the underlay, we aim at systematically optimizing
overlay routing without causing congestion, by extracting necessary information
about the underlay from measurements taken at overlay nodes. To this end, we
(i) identify the minimum information for congestion-free overlay routing, and (ii)
develop polynomial-complexity algorithms to infer this information with guaranteed
accuracy. Our evaluations in NS3 based on real network topologies demonstrate

7

notable performance advantage of the proposed solution over existing solutions.

4. Then, we consider the impact of a particular DoS attack paradigm on modern
communication networks in Chapter 5. While softwarization and virtualization
technologies make modern communication networks appear easier to manage, they
also introduce highly complex interactions within the networks that can cause
unexpected security threats. In this work, we study a particular security threat
due to the sharing of links between high-security paths and low-security paths,
which enables a new type of DoS attacks, called cross-path attacks, that indirectly
attack a set of targeted high-security paths (target paths) by congesting the shared
links through a set of attacker-controlled low-security paths (attack paths). While
the feasibility of such attacks has been recently demonstrated in the context of
SDN, their potential performance impact has not been characterized. To this
end, we develop an approach for designing an optimized cross-path attack under
a constrained total attack rate, consisting of (i) novel reconnaissance algorithms
that can provide consistent estimates of the locations and parameters of the
shared links via network tomography, and (ii) efficient optimization methods to
design the optimal allocation of attack rate over the attack paths to maximally
degrade the performance of the target paths. The proposed attack has achieved
a significantly larger performance impact than its non-optimized counterparts in
extensive evaluations based on multiple network settings, signaling the importance
of addressing such intelligent attacks in network design.

5. At last in Chapter 6, we will discuss the limitations and potential extensions of the
works in this dissertation. Furthermore, we will demonstrate some details of optimal
overlay network design for decentralized learning as an illustrative example. Since
the training time is determined by both the per-iteration communication delay
and the number of interactions for convergence, we propose to find the optimal
trade-off between them to minimize the total training wall-clock time.

8

Chapter 2 |
Link State Estimation under Cyber-
Physical Attacks

2.1 Introduction
Modern power grids are interdependent cyber-physical systems consisting of a power
transmission system (power lines, substations, etc.) and an associated control system
(Supervisory Control and Data Acquisition - SCADA and Wide-Area Monitoring Pro-
tection and Control - WAMPAC) that monitors and controls the states of the power
grid. This interdependency raises a legitimate concern: what happens if an attacker
attacks both the physical grid and its control system simultaneously? The resulting
attack, known as a joint cyber-physical attack, can cause large-scale blackouts, as the
cyber attack can blindfold the control system and thus make the physical attack on the
power grid more damaging. For example, one such attack on Ukraine’s power grid left
225,000 people without power for days [23].

One of the challenges in dealing with such attacks is that in case the measurements
(e.g., breaker status) within the attacked area are blocked by the cyber attacks, the
control center is unable to accurately identify the damage caused by the physical attack
(e.g., which lines are disconnected) and hence unable to efficiently schedule the repair-
ing/restoration. To address this challenge, solutions [19,24–27] have been proposed to
recover the state and topology of the power grid inside the attacked area under either
direct-current (DC) or alternating-current (AC) power flow models. However, existing
works are based on the limiting assumption that either the grid remains connected after
attack, or the post-attack power injections at all the buses are known, which is often
violated by large-scale attacks. In addition, most of the existing solutions lack the ability
to verify the correctness of the recovered state in real time, which can result in a costly

9

Failure
Localization

Verify
Correctness of 𝐹෠

𝐹෠ Repair
Scheduling

verified link
states

Step 1 Step 2 Step 3

Figure 2.1. The defense system in smart grid. The proposed methods focus on Topology
Recovery and Topology Verification.

waste of time and resources during restoration due to false alarms.
As shown in Fig. 2.1, the defense system in the smart grid is usually composed

of multiple subsystems [11], which can be categorized into pre-attack and post-attack
subsystems. The pre-attack subsystem aims to prevent the attack from taking effect.
For example, the prevention subsystem will reduce the information leakage, while the
detection subsystem intends to detect the invasion. For the advanced attacks that can
bypass all pre-attack modules, efficient recovery from the attacks, which is the focus of the
work, is desired. A key step before repairing/restoration is to learn the current topology
through line state estimation. In this work, we address this problem under a joint
cyber-physical attack, where the cyber attack blocks information from an attacked area
while the physical attack disconnects lines (i.e., transmission lines) within the area, with a
focus on scenarios where the physical attack causes islanding and hence unknown changes
in the power injections within the attacked area. Our first goal is to compute an estimate
F̂ of the failed lines within the attacked area (Topology Recovery). Then, in contrast
to existing works [24, 25, 28, 29], we add a novel step called Topology Verification
before repairing/restoration, to guide resource dispatch during repairing/restoration by
avoiding the cost due to false alarms.

2.1.1 Related Work

Power grid state estimation, as a key functionality for supervisory control, has been
extensively studied in the literature [30, 31]. Secure state estimation under attack is
of particular interest [20, 32]. Specifically, the attackers can launch denial-of-service
attacks [11, 19] or false data injection attacks [19, 20, 26, 32, 33] so that the control center
cannot correctly estimate the phase angles [34] or/and the topology [35] of the power
grid. Recently, joint cyber-physical attacks are gaining attention due to their stealthiness
and severe consequences [19,26].

10

The resilience of the power grid to attacks requires both pre-attack prevention [36] and
post-attack restoration, the latter being the focus of this work. To facilitate the restoration,
several approaches have been proposed for detecting failed lines. In [28, 29], the problem
was formulated as a mixed-integer program, which becomes computationally inefficient
when multiple lines fail. The problem was formulated as a sparse recovery problem over an
overcomplete representation in [24, 25], where the combinatorial sparse recovery problem
was relaxed to a linear programming (LP) problem. Machine learning-based recovery
strategy was studied in [27]. All works discussed above assume DC power flow model.
Recently, the detection of failed link caused by attack was studied under the AC power flow
model [37–39]. Although the above works can successfully identify failures in some cases,
they all assume a connected post-attack grid and their recovery results cannot be verified
in real time. The works closest to ours are [19, 39], which established graph-theoretic
conditions to guarantee the recovery accuracy. Our work differs from [19, 39] in the
following aspects: (1) they still assume the grid to remain connected after attacks, while
our solution is applicable to a partitioned post-attack grid where the power injections
within the attacked area are unknown; (2) their conditions only characterize when all
the line states can be identified correctly, while we provide recovery conditions at a finer
granularity of individual lines. Such a finer granularity allows us to verify the states of
a subset of lines (in Step 2 in Fig. 2.1) when the conditions in [19,39] are not satisfied.

Besides blocking information as considered in this work, other types of cyber at-
tacks are also possible, e.g., injecting false data into measurements. We refer readers
to [17,33,40] and the references therein for details and leave failure localization under
such attacks to future work.

The recovery from the joint cyber-physical attacks considered in this work is more
challenging than traditional failure detection [41], since the jointly launched cyber attack
will block the information from the attacked area and thus obfuscate the locations of
the physical attack. Moreover, line failures due to naturally occurring faults typically
do not occur at the same time and are mostly self-clearing, i.e., they rarely lead to
line disconnection. On the contrary, a coordinated physical attack could take place
simultaneously at multiple places, which may even lead to islanding.

2.1.2 Summary of Contributions

We aim at estimating the power grid state within an attacked area from which measure-
ments have been blocked, with the following contributions:

11

1. Motivated by an observation that the existing method and condition for recovering
the phase angles within the attacked area, previously developed for the case of
connected post-attack grid, remain valid in the case of islanding, we focus on the
recovery of the line states (i.e., breaker status of lines) within the attacked area
using the phase angles, for which under the DC power flow model we develop an
LP-based algorithm that allows for unknown changes in the power injections within
the attacked area (due to islanding).

2. We establish conditions under which the accuracy of the proposed algorithm is
guaranteed, which are further developed into verifiable conditions that can be
tested using observable information.

3. Based on the above conditions, we develop a polynomial-time algorithm to verify
the correctness of the estimated line states. We further provide an algorithm for
verifying the states of potentially more lines based on the line states verified by the
previous algorithm.

4. We extend the DC-based failed line detection and line state verification algorithms
to their AC-based variants.

5. Our evaluations on real grid topologies show that the proposed recovery algorithm
is highly accurate in localizing the failed lines with very few false alarms, and
most of the failed lines can be successfully verified by the proposed verification
algorithms.

Roadmap. Section 2.2 presents our models and problem formulation. Under the DC
power flow model, Section 2.3 presents the proposed algorithm for localizing failed lines
and its performance analysis. Section 2.4 presents conditions and algorithms for verifying
the correctness of the estimated line states. In Section 2.5, we extend the DC-based line
state detection and verification algorithms to the AC model. Section 2.6 evaluates our
solutions on real grid topologies, and Section 2.7 concludes the paper. All appendices
can be found in the supplementary file (proofs in Appendix 2.8.1).

2.2 Problem Formulation
Notation. The main notations are summarized in Table 2.1. Moreover, given a subgraph
X of G, VX and EX denote the subsets of nodes/lines in X, and xX denotes the subvector

12

of a vector x containing elements corresponding to X. Similarly, given two subgraphs X
and Y of G, AX|Y denotes the submatrix of a matrix A containing rows corresponding
to X and columns corresponding to Y . For a set A, IC = 1 if condition C holds and
IC = 0 otherwise. We use Λ(·) ∈ {0, 1}m×n with one nonzero element in each row to select
entries from a vector such that Λ(·)x is a subvector of x. For a vector x, [x] denotes a
diagonal matrix with x on the main diagonal. For a complex-valued number x, we use
Re(x) and Im(x) to denote its real and imaginary part, respectively.

2.2.1 Power Grid Model

We model the power grid as a connected undirected graph G = (V,E), where V is the
set of nodes (buses) and E the set of lines (transmission lines). Each line e = (s, t) is
associated with a reactance rst (rst = rts) and a state ∈ {operational, failed} (assumed
to be operational before attack). Each node v is associated with a phase angle θv and an
active power injection pv. The phase angles θ := (θv)v∈V and the active power injections
p := (pv)v∈V are related by

Bθ = p, (2.1)

where B := (buv)u,v∈V ∈ R|V |×|V | is the admittance matrix, defined as:

Buv =


0 if u ̸= v, (u, v) ̸∈ E,
−1/ruv if u ̸= v, (u, v) ∈ E,
−∑w∈V \{u} buw if u = v.

(2.2)

By arbitrarily assigning an orientation for each line, the topology of G can also be
represented by the incidence matrix D ∈ {−1, 0, 1}|V |×|E|, whose (i, j)-th entry is defined
as

Dij =


1 if line ej comes out of node vi,
−1 if line ej goes into node vi,
0 otherwise.

(2.3)

It is worth noting that the proposed algorithms and analysis are not restricted to any
specific orientation assignment.

As illustrated in Fig. 2.2, we assume that the grid is organized as a composition of
multiple areas. Each area has a hybrid deployment of remote terminal units (RTUs) and

13

phasor measurement units (PMUs), which are responsible for collecting measurements.
The measurements will be communicated to Supervisory Control and Data Acquisition
(SCADA) or Wide Area Monitoring Protection and Control (WAMPAC) system for power
grid management. As envisioned by [42], we consider a heterogeneous smart grid with
several operators where multiple communication networks and protocols coexist. More
specifically, the measurements and control instructions can be communicated through
traditional fiber optic cables, power lines [43] or wireless links [44]. Due to the wide
range of communication media, heterogeneous protocols (such as DNP3 [45], IEEE 1901
FFT-OFDM [43], etc.) can coexist.

2.2.2 Attack Model

As illustrated in Fig. 2.2, we consider an adversary who launches joint cyber-physical
attacks during the interval between two consecutive state estimations for a specific area
H = (VH ⊆ V,EH ⊆ E). We assume that the attacks have successfully bypassed both
prevention and detection measures.

The physical part will disconnect a set F (|F | > 0) of lines within H by either
manipulating the breaker status or cutting the power lines.

The cyber part will take the form of Denial-of-Service (DoS) attacks to block
the measurements within H. In other words, although the control center can observe
the information in H̄ = (VH̄ ⊆ V,EH̄ ⊆ E), information within the attacked area H,
especially the post-attack topology and power injections, is blocked. Such DoS attacks
can be achieved by destroying communication media (wireless or wired link), congesting
the communication network (e.g., through telephonic floods), or remotely wiping the
data in servers [23].

One of the motivations behind such joint attacks is to cause service disruption for
consumers, especially critical infrastructures. Specifically, a large-scale line disconnection
due to physical attacks can cause islanding and the associated load shedding, which can
cause disruption of service to affected customers, and in the worst case, the collapse of
the whole island in absence of generation. It is worth noting that the role of cyber attack
considered in this work is not to hide the existence of physical attacks as considered in
false data injection [17, 33], but to hinder the recovery process [23]. More specifically,
repairing/restoration usually requires the knowledge of topology [46], which is normally
available at the control center through binary breaker status measurements. However,
the DoS attack will block such information and thus make the repairing/restoration
scheduling challenging.

14

H𝐻ഥ

RTUs
&PMUs

RTUs
&PMUs

RTUs
&PMUs

RTUs
&PMUs

Comm.
Netw.

Control
Center

Power Grid SCADA and WAMPAC System

Operational
Link in 𝐸ுഥ

Operational
Link in 𝐸ு

Failed link Node in 𝑉ு

Node in 𝑉ுഥComm. link

Figure 2.2. A cyber-physical attack that blocks information from the attacked area H while
disconnecting certain lines within H.

Formally, we denote x′ as the post-attack counterpart of the pre-attack value x.
Before attack, the control center has full access to measurements on power injections, line
flows, and the information of breaker status (the topology G = (E, V)). The physical
attack will change G to G′ = (V,E ′), where E ′

H̄
= EH̄ while E ′

H ̸= EH , as illustrated in
Fig. 2.2. The cyber attack will block the information within H = (VH , EH). To schedule
the repairing/restoration to recover from the attack, we need to recover the topology
information E ′

H or equivalently detecting the failed lines F .
This work focuses on “Topology Recovery” (detecting F̂) and “Topology verification”

during the recovery from a general class of attacks that result in power line disconnection
and information loss.

15

Table 2.1. Notations
Notation Description
G = (V,E) power grid
H, H̄ attacked/unattacked area
F , Eo set of failed/operational lines after attack
B, D admittance/incidence matrix
θ, θ′ phase angles before/after attack
p, p′ active power injections before/after attack
Γ [1

re
]e∈E (re: reactance of line e)

∆ change in active power injections
D̃ hypothetical post-attack power flows (2.5)
η rounding threshold in FLD

SU , fU,g, fU,1(0) definitions related to hyper-node (2.16)

2.2.3 Voltage Recovery Problem

Our goal is to recover the post-attack state within H, based on the grid state before the
attack (e.g., B and θ) and the information from the unattacked area H̄ after the attack
(e.g., θ′

H̄
). In contrast to the previous works, we consider cases where the attack may

partition the grid into multiple islands, which can cause changes in active power injections
to maintain the supply-demand balance in each island. Let ∆ = (∆v)v∈V := p − p′

denote the change in active power injections due to such supply-demand balance, where
∆v > 0 if v is a generator bus and ∆v ≤ 0 otherwise.

We observe in [47, Theorem A.1] that the existing condition in [19, Theorem 1] for
recovering the phase angles θ′

H in a connected post-attack grid remains valid under an
attack that possibly partitions the grid into islands, which allows θ′

H to be recovered
through solving a linear system. Thus, we assume θ′

H to be known in the sequel to focus
on the recovery of the line states within H, i.e., the localization of F .

Remark: Alternatively, θ′
H can be obtained from secured PMUs as assumed in [48–50].

We refer to Appendix 2.8.3 for details, which which also provides guidelines on placing
secured PMUs for recovering θ′

H .

16

2.3 Localizing Failed lines with Unknown Active Power
Injections
Although providing theoretical guarantees, the existing solutions for localizing failed
lines in [19,39] assume either a connected post-attack grid or a known ∆H , which cannot
be guaranteed in practice. To address this limitation, we will first present an algorithm
extended from [19] that can jointly estimate the failed lines F and the changes in power
injections ∆H (Section 2.3.1), and then analyze the algorithm’s accuracy in estimating
F under unknown ∆H (Section 2.3.2).

2.3.1 Algorithm

Our algorithm extends the failure localization algorithm in [19] (which assumes ∆H = 0)
by formulating the (F,∆H) joint estimation problem as the following optimization.

Constraints: Let x ∈ {0, 1}|E| be an indicator vector such that xe = 1 if and only if
e ∈ F . Due to B = DΓDT (see Table 2.1 for the definitions), we can write the post-attack
admittance matrix as B′ = B −DΓ[x]DT , which together with ∆ = p− p′ implies

∆H = BH|G(θ − θ′) + DHΓH [DT
G|Hθ

′]xH , (2.4)

where DG|H ∈ {−1, 0, 1}|V |×|EH | is the submatrix of the incidence matrix D only con-
taining the columns corresponding to lines in H1. For simplicity, we define

D̃ := DΓ[DTθ′]. (2.5)

For line ek = (i, j), D̃i,k = −D̃j,k = θ′
i−θ

′
j

rij
, which indicates the post-attack power flow on

line ek if it is operational.
In addition, ∆H is subject to the following constraints:

pv ≥ ∆v ≥ 0, ∀v ∈ {u |u ∈ VH , pu > 0} , (2.6a)

pv ≤ ∆v ≤ 0, ∀v ∈ {u |u ∈ VH , pu ≤ 0} , (2.6b)

1T∆ = 0, (2.6c)
1Because we focus on the post-attack recovery stage as shown in Fig. 2.1, we implicitly assume in

(2.4) that the grid has reached the post-attack steady state. This means that each island is assumed to
have reached a steady state in the case of islanding.

17

which ensure that (i) the bus type will remain the same after attack, (ii) the load will
not increase after islanding, and (iii) the total power is balanced. It is worth noting that
(2.6c) is ensured by (2.4), which implies that 1T∆H −1TBH|G(θ−θ′) = (1TD̃H)xH = 0
since 1TD̃H = 0 by definition (2.5). This implies that any ∆H satisfying (2.4) will satisfy
1T∆H = 1TBH|G(θ − θ′) = 1T∆∗

H (∆∗
H : the ground-truth power injection changes in

H), and thus satisfy (2.6c). Hence, we will omit (2.6c) in the sequel.
Objective: The problem of failure localization aims at finding a failed line set F̂ that

is as close as possible to the ground-truth set F , while satisfying all the constraints. The
solution is generally not unique, e.g., if both endpoints of a line l ∈ EH are disconnected
from H̄ after the attack, then the states of l will have no impact on any observable
variable, and hence cannot be determined. To resolve this ambiguity, we set our objective
as using the fewest failed lines to satisfy all the constraints. This idea has been applied
to failure localization in power grid in various forms [19, 24, 25]. Mathematically, the
problem is formulated as

(P0) min
xH ,∆H

1TxH (2.7a)

s.t. (2.4), (2.6a)− (2.6b), (2.7b)

xe ∈ {0, 1}, ∀e ∈ EH , (2.7c)

where the decision variables are xH and ∆H . Although binary linear programming is
generally hard, (P0) is only a special case and hence needs to be analyzed separately.

Lemma 2.3.1. The optimization (P0) is NP-hard.

By relaxing the integer constraint (2.7c), (P0) is relaxed into

(P1) min
xH ,∆H

1TxH (2.8a)

s.t. (2.4), (2.6a)− (2.6b), (2.8b)

0 ≤ xH ≤ 1. (2.8c)

where 0 ≤ xH ≤ 1 denotes element-wise inequality. To take into account the error on
recovered θ′, we can add a noise term in (2.6a)-(2.6b). For example, by denoting ϵ as a
tunable noise term, (2.6a) becomes pv + ϵ ≥ ∆v ≥ −ϵ. We assume ϵ = 0 in the rest of
the paper to focus on the recovery from the information loss caused by the attack. The
problem (P1) is a linear program (LP) which can be solved in polynomial time. Based on
(P1), we propose an algorithm for localizing the failed lines, called Failed Line Detection

18

(FLD) as given in Alg. 1, where the input parameter η ∈ (0, 1) is a threshold for rounding
the factional solution of xH to an integral solution (η = 0.5 in our experiments). We will
illustrate how to set η at the end of Section 2.4.

Algorithm 1: Failed Line Detection (FLD)
Input: B,p,∆H̄ ,θ,θ

′,D, η
Output: F̂

1 Solve the problem (P1) to obtain xH ;
2 Return F̂ = {e : xe ≥ η}.

2.3.2 Analysis

We now analyze when FLD can correctly localize the failed lines, the results of which will
lay the groundwork for the verifiable conditions in the next section. In the sequel, ∆∗

H

denotes the ground-truth power injection changes in H and x∗
H denotes the ground-truth

failure indicators.
According to (2.6), we decompose VH into VH,L for nodes with pv ≤ 0 and VH,S for

the rest. Define Eo ⊆ EH as the set of lines that operate normally after failure, and
F ⊆ EH as the failed lines. We make the following assumption:

Assumption 1. As in [19], we assume that for each line (s, t) ∈ EH , θ′
s ̸= θ′

t, as
otherwise the line will carry no power flow and hence its states cannot be identified2.

First, we simplify (P1) into an equivalent but simpler optimization problem. To
this end, we combine the decision variables ∆H and xH of (P1) into a single vector
yH = [∆T

H ,x
T
H]T ∈ R(|EH |+|VH |) (where [A,B] denotes horizontal concatenation), and

explicitly represent the solution to yH that satisfies (2.4). Notice that (2.4) can be
written as [I|VH |,−D̃H]yH = BH|G(θ − θ′) (I|VH |: the |VH | × |VH | identity matrix). The
ground-truth solution y∗

H = [(∆∗
H)T , (x∗

H)T]T certainly satisfies (2.4). Next, consider the
null space of [I|VH |,−D̃H], whose dimension is |EH |. It is easy to verify that [d̃Te ,uTe]T

(e ∈ EH) are |EH | independent vectors spanning the null space of [I|VH |,−D̃H], where
d̃e is the column vector of D̃H corresponding to line e, and ue is a unit vector in R|EH |

2This assumption essentially means that we will ignore the existence of such lines in failure localization.
Specifically, in the case of islanding, if an island has a total blackout (because of not containing
load/generation or frequency collapse), then lines in this island will be excluded from failure localization.

19

with the e-th element being 1 and the other elements being 0. Therefore, any pair of
(∆H ,xH) satisfying (2.4) can be expressed as

yH =
 ∆H

xH

 =
 ∆∗

H

x∗
H

+
∑
e∈EH

ce

 d̃e

ue

, (2.9)

where ce’s are the coefficients. Based on the decomposition of VH into VH,L and VH,S,
D̃H and ∆H can be written as

D̃H =

Eo F[]
VH,L D̃H,L,o D̃H,L,F

VH,S D̃H,S,o D̃H,S,F

, (2.10a)

∆H =

[]
VH,L ∆H,L

VH,S ∆H,S
. (2.10b)

Let D̃H,L := [D̃H,L,o, D̃H,L,F], D̃H,S := [D̃H,S,o, D̃H,S,F], and c := (ce)e∈EH
∈ R|EH |.

Since ∆H,L and ∆H,S are constrained differently in (2.6a) and (2.6b), we introduce
ΛL = [I|VH,L|,0] and ΛS = [0, I|VH,S |] such that ∆H,L = ΛL∆H , ∆H,S = ΛS∆H ,
D̃H,L = ΛLD̃H and D̃H,S = ΛSD̃H . According to (2.9), for FLD to correctly lo-
calize the failed lines, it suffices to have x∗

e + ce ≥ η for all e ∈ F and x∗
e + ce < η for

all e ∈ Eo. Equivalently, it suffices to ensure that the optimal solution ĉ to the following
optimization problem satisfies ĉe ≥ η − 1 for all e ∈ F and ĉe < η for all e ∈ Eo:

min
c

1Tc (2.11a)

s.t. D̃H,Lc ≤ −∆∗
H,L, (2.11b)

− D̃H,Lc ≤ −(ΛLpH −∆∗
H,L), (2.11c)

− D̃H,Sc ≤∆∗
H,S, (2.11d)

D̃H,Sc ≤ ΛSpH −∆∗
H,S, (2.11e)

− c ≤ x∗
H , (2.11f)

c ≤ 1− x∗
H , (2.11g)

where (2.11a) is equivalent to (2.8a), (2.11b)-(2.11c) correspond to (2.6b), (2.11d)-(2.11e)
correspond to (2.6a), (2.11f)-(2.11g) correspond to (2.8c), and the change of variables
xH ,∆H into c based on (2.9) ensures the satisfaction of (2.4). This equivalent formulation

20

of (P1) will help to simplify our analysis by eliminating the equality constraint (2.4). For
notational simplicity, we will omit the subscript H in the sequel unless it causes confusion.

Next, we use (2.11) to analyze the accuracy of FLD. Let F̂ be the failed line set
returned by FLD. We first define Qm = F \ F̂ as the set of missed failed lines, and
Qf = F̂ \ F as the set of operational lines that are falsely detected as failed. Note that
according to (2.11), a failed line e ∈ F is missed if and only if ĉe < η − 1. Similarly,
an operational line e ∈ Eo is falsely detected as failed if and only if ĉe ≥ η. To express
this in a vector form, we define Wm ∈ {0, 1}|Qm|×|EH | as a binary matrix, where for
each i = 1, . . . , |Qm|, (Wm)i,e = 1 if the i-th missed line is line e and thus we have
Wmĉ ≤ (η − 1)1. Similarly, Wf ∈ {0, 1}|Qf |×|EH | is defined such that (Wf)i,e = 1 if the
i-th false-alarmed line is line e, which leads to −Wf ĉ ≤ −η1. For ease of presentation,
we define

AT
D := [D̃T

L ,−D̃T
L ,−D̃T

S , D̃
T
S] ∈ R|EH |×2|VH |, (2.12a)

AT
x := [−I|EH |, I|EH |] ∈ R|EH |×2|EH |, (2.12b)

W T := [W T
m ,−W T

f] ∈ R|EH |×(|Qm|+|Qf |), (2.12c)

gTD := [−(∆∗
L)T , (−p′

L)T , (∆∗
S)T , (p′

S)T], (2.12d)

gTx := [(x∗)T ,1T − (x∗)T] ∈ R1×2|EH |, (2.12e)

gTw := [(η − 1)1T ,−η1T] ∈ R1×(|Qm|+|Qf |), (2.12f)

where p′
L = pL−∆∗

L and p′
S = pS−∆∗

S denote the post-attack active power injections at
VH,L and VH,S. Then the constraints in (2.11) can be written as [AT

D,A
T
x]Tc ≤ [gTD, gTx]T ,

and the optimal solution must satisfy Wc ≤ gw. The following observation is the
foundation of our analysis.

Lemma 2.3.2. A line e ∈ F cannot be missed by FLD if for Qm = {e} and Qf = ∅,
there is a solution z ≥ 0 to

[AT
D,A

T
x ,W

T ,1]z = 0, (2.13a)

[gTD, gTx , gTw,0]z < 0. (2.13b)

Similarly, a line e′ ∈ Eo cannot be falsely detected as failed by FLD if there exists a
solution z ≥ 0 to (2.13) where W is constructed according to Qf = {e′} and Qm = ∅.

The proof is by contradiction: if e ∈ F \ F̂ , then for W corresponding to Qm = {e}
and Qf = ∅, there must be no z ≥ 0 satisfying (2.13); similar argument holds for e′ ∈ Eo

21

by assuming e′ ∈ F̂ \ F . See detailed proof in Appendix 2.8.1.
For ease of presentation, we will introduce a few notations as follows. Denote D̃u as

the row in D̃ corresponding to node u, and D̃u,e as the entry in D̃u corresponding to line
e. Recall that as defined in (2.5), if e = (u, v), then D̃u,e = (θ′

u − θ′
v)r−1

uv . We decompose
the l.h.s of (2.13a) into AT

DzD + AT
x [zx−, zx+] + W T

mzw,m + W T
f zw,f + z∗1 such that its

row corresponding to line e can be written as

∑
u∈VH

(
D̃u,ezD,u − D̃u,ezD,−u

)
+
(
zx+,e − zx−,e

)
+ IQm(e)zw,m,e − IQf

(e)zw,f,e + z∗. (2.14)

Similarly, the l.h.s of (2.13b) can be expanded into

∑
u∈VH

(
gD,uzD,u + gD,−uzD,−u

)
+

∑
e∈EH

[zx+,e(1− x∗
e) + zx−,ex

∗
e] + gTwzw + z∗, (2.15)

where gTwzw = ∑
e∈EH

[IQm(e)zw,m,e(η−1)− IQf
(e)zw,f,eη], gD,u := −∆∗

u and gD,−u := −p′
u

if pu ≤ 0, whereas gD,u := p′
u and gD,−u := ∆∗

u if pu > 0. Then, a solution z ≥ 0 satisfies
(2.13) if ∀e ∈ EH , we have (2.14) equal to 0 and (2.15) less than 0.

Equipped with Lemma 2.3.2, we are ready to explicitly characterize what types of
lines are guaranteed to be correctly identified. Specifically, we will show that a line
will satisfy the conditions in Lemma 2.3.2 if its endpoints satisfy certain conditions. To
make our conditions as general as possible, we introduce a generalization of node called
hyper-node as follows (a single node is also a hyper-node):

Definition 2.3.1. A set of nodes U ⊆ VH is a hyper-node if they induce a connected
subgraph before attack.

We define a few properties of a hyper-node U . Define EU as the set of lines with
exactly one endpoint in U , i.e, EU := {e|e = (s, t) ∈ EH , s ∈ U, t /∈ U}. If EU ∩ F ̸= ∅,
we define

D̃U,e :=
∑
u∈U

D̃u,e, (2.16a)

SU := {e ∈ EU \ F | ∃l ∈ EU ∩ F, D̃U,lD̃U,e > 0}, (2.16b)

fU,0 := max
e∈SU

|D̃U,e|, where fU,0 := 0 if SU = ∅, (2.16c)

fU,1 := min
e∈EU ∩F

|D̃U,e|, (2.16d)

fU,g :=


∑
u∈U gD,u if ∃l ∈ EU ∩ F, D̃U,l < 0,∑
u∈U gD,−u otherwise.

(2.16e)

22

H

 !

 "

 #
 $

 %

 &

 '

($

(%

(!

(#

("

()

(&

('

Failed Links Operational Links

Figure 2.3. An example of hyper-node (arrow denotes the direction of a power flow or a
hypothetical power flow).

Example 1. Consider an attacked area H as shown in Fig. 2.3, where blue circles
denote nodes (buses) while the direction of each line indicates the direction of power flow3.
Suppose that F = {l2, l6} and all nodes are load buses. Nodes u1, u2 and u3 form a hyper-
node U , where EU = {l2, l4, l6, l7}, SU = {l7}, fU,0 = |D̃U,l7|, fU,1 = min{|D̃U,l2 |, |D̃U,l6|}
and fU,g = −∑v∈U ∆∗

v. D̃U,l1 = D̃u1,l1 + D̃u2,l1 = 0 since l1 /∈ EU , while D̃U,l2 = D̃u2,l2 ̸= 0
since l2 ∈ EU .

Based on these definitions and Lemma 2.3.2, we are ready to present a condition
under which a failed line l ∈ F will not be missed by FLD (see proof in Appendix 2.8.1).

Theorem 2.3.1. A failed line l ∈ F will be detected by FLD, i.e., l ∈ F̂ , if there exists
at least one hyper-node (say U) such that l ∈ EU , for which the following conditions hold:

1. ∀e, l ∈ EU ∩ F , D̃U,eD̃U,l > 0,

2. SU = ∅, and

3. fU,g + (η − 1)|D̃U,l| < 0.

Based on similar arguments, the following condition can guarantee that an operational
line l ∈ Eo will not be falsely detected by FLD (l /∈ F̂) (see proof in Appendix 2.8.1). For
notational simplicity, we extend the definition of fU,g to a hyper-node U with EU ∩F = ∅:

fU,g :=


∑
u∈U gD,u if ∃l ∈ EU \ F, D̃U,l > 0,∑
u∈U gD,−u otherwise.

(2.17)

3These may be hypothetical power flows, as a failed line carries no flow.

23

Theorem 2.3.2. An operational line l ∈ Eo will not be detected (as failed) by FLD, i.e.,
l /∈ F̂ , if there exists at least one hyper-node (say U) such that l ∈ EU , for which the
following conditions hold:

1. ∀l, l′ ∈ EU ∩ Eo : D̃U,lD̃U,l′ > 0,

2. SU = ∅ if EU ∩ F ̸= ∅, and

3. fU,g − η|D̃U,l| < 0.

Remark: Theorems 2.3.1 and 2.3.2 provide sufficient conditions for FLD to correctly
identify the states of a line l based on the direction and magnitude of “power flows”
around a hyper-node U at the “endpoint” of l (i.e., l ∈ EU): The (hypothetical) power
flows on all the lines of the same state (failed or operational) around U should be in
the same direction, i.e., all going into or out of U (condition 1); all lines of different
states around U should have opposite (hypothetical) power flow directions (condition 2);
the magnitude of the (hypothetical) power flow on the line of interest (i.e., l) should be
sufficiently large (condition 3).

2.4 Verifying Estimated Line States
Although the conditions in Section 2.3.2 can guarantee the accuracy of FLD, they are
not testable in practice since the ground-truth (F and ∆∗) is required. In this section,
we will develop conditions requiring only observable information such that they can be
verified during operation.

To this end, we first notice that ∆u for some u ∈ VH can be recovered directly. For
example, if the adjustment of power injections after islanding follows proportional load
shedding/generation reduction [51, 52]4, then we have the following observations (see
proof in Appendix 2.8.1):

Lemma 2.4.1. Let N(v; H̄) denote the set of all the nodes in H̄ that are connected to node
v via lines in E\EH . Then under the assumption of proportional load shedding/generation
reduction, ∆v for v ∈ VH can be recovered unless N(v; H̄) = ∅ or every u ∈ N(v; H̄) is
of a different type from v with ∆u = 0.

4Under this assumption, either the load or the generation (but not both) will be reduced upon the
formation of an island. Moreover, if nodes u and v are in the same island and of the same type (both
load or generator), then p′

u/pu = p′
v/pv. More details are given in Appendix 2.8.2.

24

Define UB ⊆ VH as the node set such that ∀u ∈ UB, ∆u has been recovered (e.g.,
through Lemma 2.4.1). Our key observation is that for any hyper-node U , D̃U,l for any
l ∈ EU can be computed with the knowledge of θ′, and fU,g can be upper-bounded by

f̂U,g :=
∑

u∈U∩UB

fu,g +
∑

u∈U\UB

|pu|, (2.18)

where fu,g is defined in (2.16e) for U = {u}. Since fu,g is known for nodes in UB and pu

(power injection at u before attack) is also known, f̂U,g is computable. We now show
how to use this information to verify the results of FLD based on Lemma 2.3.2 and
Theorems 2.3.1–2.3.2. We note that our solution remains valid even if UB = ∅, which
only affects the tightness of the upper bound f̂U,g.

2.4.1 Verification without Knowledge of Ground Truth

We first tackle the lines whose states can be verified without any knowledge of the ground
truth line states.

2.4.1.1 Verifiable Conditions

The basic idea is to rule out the other possibility by constructing counterexamples to the
theorems in Section 2.3.2 if the estimated line state is incorrect.

lines in 1-edge cuts: If line e = (u1, u2) forms a cut of H, i.e., (VH , EH \ {e}) contains
more connected components than H, then by breadth-first search (BFS) starting from
u1 and u2 respectively without traversing e, we can construct two hyper-nodes U1 and
U2 such that EU1 = EU2 = {e} and thus SU1 = SU1 = ∅. For example, in Fig. 2.3, line
e := l6 is a 1-edge cut, and thus U1 := {u4, u5} and U2 := VH \ U1 satisfy this condition.
Then the following verifiable conditions are directly implied by Theorems 2.3.1–2.3.2:

Corollary 2.4.0.1. If e ∈ F̂ and min{f̂U1,g, f̂U2,g} − η|D̃U1,e| < 0, then we can verify
e ∈ F . If e ∈ EH \ F̂ and min{f̂U1,g, f̂U2,g} + (η − 1)|D̃U1,e| < 0, then we can verify
e ∈ EH \ F .

Proof. If e ∈ F̂ and min{f̂U1,g, f̂U2,g}− η|D̃U1,e| < 0, then e must have failed, since other-
wise e would have been estimated as operational according to Theorem 2.3.2. Similarly,
if e ∈ EH \ F̂ and min{f̂U1,g, f̂U2,g}+ (η− 1)|D̃U1,e| < 0, then e must be operational, since
otherwise e would have been estimated as failed according to Theorem 2.3.1. Note that
as our verification is based on contradiction, f̂Ui,g should be computed as if e ∈ EH \ F
to verify e ∈ F̂ and vice-versa.

25

lines in 2-edge cuts: If lines e1, e2 ∈ EH together form a cut of H but each individual
line does not, then by BFS starting from the endpoints of e1 (or e2) without traversing
e1 or e2, we can construct two hyper-nodes U1, U2 such that EU1 = EU2 = {e1, e2}. For
example, as e1 := l4 and e2 := l7 form a 2-edge cut of H in Fig. 2.3, U1 := {u6, u7} and
U2 := VH \ U1 satisfy this condition. Moreover, any pair of lines in a cycle C form a
2-edge cut if they are not in any other cycle in H, e.g., any pair of lines in the cycle
{l1, l3, l5} satisfy this condition. Based on this observation, we provide the following
conditions for verifying the states of such lines

Theorem 2.4.1. Consider a hyper-node U with EU = {e1, e2} and e1, e2 ∈ EH \ F̂ . If
D̃U,e1D̃U,e2 < 0, then e1, e2 are guaranteed to both belong to EH \ F if

1. f̂U,g + (η − 1) min{|D̃U,e1|, |D̃U,e2|} < 0, and

2. η < 1−min{ f̂U,g+|D̃U,e1 |
|D̃U,e2 | ,

f̂U,g+|D̃U,e2 |
|D̃U,e1 | }.

If D̃U,e1D̃U,e2 > 0, then we can verify:

1. e1 ∈ EH \ F if (1− η)|D̃U,e1| > f̂U,g + |D̃U,e2 |,

2. e2 ∈ EH \ F if (1− η)|D̃U,e2| > f̂U,g + |D̃U,e1 |.

Theorem 2.4.2. Consider a hyper-node U with EU = {e1, e2} and e1 ∈ F̂ , e2 ∈ EH \ F̂ .
If D̃U,e1D̃U,e2 > 0, then the states of e1, e2 are guaranteed to be correctly identified if

1. f̂U,g − η|D̃U,e1| < 0, f̂U,g + (η − 1)|D̃U,e2| < 0, and

2. either η > f̂U,g+|D̃U,e2 |
|D̃U,e1 | or η < 1− f̂U,g+|D̃U,e1 |

|D̃U,e2 | .

If D̃U,e1D̃U,e2 < 0, then we can verify:

1. e1 ∈ F if η|D̃U,e1| > f̂U,g + |D̃U,e2 |,

2. e2 ∈ EH \ F if (1− η)|D̃U,e2| > f̂U,g + |D̃U,e1 |.

Theorem 2.4.3. Consider a hyper-node U with EU = {e1, e2} and e1, e2 ∈ F̂ . Then, we
can verify:

1. e1 ∈ F if η|D̃U,e1| > f̂U,g + |D̃U,e2 |,

2. e2 ∈ F if η|D̃U,e2| > f̂U,g + |D̃U,e1 |.

While in theory such verifiable conditions can also be derived for lines in larger cuts,
the number of cases will grow exponentially. We also find 1–2-edge cuts to cover the
majority of lines in practice (see Fig. 2.11).

26

2.4.1.2 Verification Algorithm

Based on Theorems 2.4.1–2.4.3, we develop an algorithm Verification Of sTatEs (VOTE)
(Alg. 2) for verifying the line states estimated by FLD, which can be applied to lines
in 1–2-edge cuts. Here, Ea denotes the set of all the lines in 1-edge cuts of H, while Ec
denotes the set of 2-edge cuts. In the algorithm, lines in Ea are tested before lines in Ec
since it is easier to extend the knowledge of UB based on the test results for Ea. As for
the complexity, we first note that the time complexity of each iteration is O(|EH |+ |VH |)
due to BFS. Then, it takes O(|EH |) iterations to verify Ea and O(|EH |2) iterations for
Ec, which results in a total complexity of O(|EH |2(|EH |+ |VH |)).

Algorithm 2: Verification Of sTatEs (VOTE)
Input: D̃,p,∆H̄ , UB, η, Ea, Ec, F̂
Output: Ev

1 Ev ← ∅; /* verifiable lines */
2 foreach e = (u1, u2) ∈ Ea do
3 Construct hyper-nodes U1 and U2 such that EU1 = EU2 = {e};
4 if e ∈ F̂ then
5 Add e to Ev if min{f̂U1,g, f̂U2,g} − η|D̃U1,e| < 0;
6 else
7 Add e to Ev if min{f̂U1,g, f̂U2,g}+ (η − 1)|D̃U1,e| < 0;
8 if e is verified to be in EH \ F then
9 Add ui to UB if ∆ui

(i = 1, 2) can be recovered through Lemma 2.4.1;
10 foreach {e1, e2} ∈ Ec do
11 Construct hyper-nodes U1 and U2 such that EU1 = EU2 = {e1, e2};
12 Test the satisfaction of Lemma 2.4.1, 2.4.2, or 2.4.3 for U1 and U2,

respectively;
13 Add ei (i = 1, 2) to Ev if it is verified;

2.4.2 Verification with Partial Knowledge of Ground Truth

VOTE assumes no knowledge of the ground-truth line states, even if the states of some
lines are already verified, e.g., line set Ev verified by VOTE. We observe that such
partial knowledge of the ground truth can be exploited for better approximation of the
unknown terms in (2.13) and thus verifying lines where VOTE fails. Following this idea,
we propose a follow-up step designed to verify the states of additional lines in EH \ Ev.

27

2.4.2.1 Verifiable Conditions

Recall that the idea for verifying the correctness of e ∈ F̂ (or e ∈ EH \ F̂) is to construct
a solution to (2.13) as if e ∈ EH \ F (or e ∈ F). Specifically, it can be shown that for
a line e ∈ F̂ , if there exists z ≥ 0 for (2.13) where W is constructed for Qf = {e} and
Qm = ∅, then e is guaranteed to have failed since otherwise it must have been estimated
to be operational. The challenge is the unknown gD, gx, and gw due to unknown F and
∆∗

H . To tackle this challenge, we approximate these parameters by their worst possible
values (in terms of satisfying (2.13)), which leads to the following result (see proof in
Appendix 2.8.1).

Theorem 2.4.4. Given a set Ev of lines with known states, we define ĝD ∈ R2|VH | and
ĝx ∈ R2|EH | as follows:

ĝD,u =

gD,u if u ∈ UB
|pu| if u /∈ UB

ĝx,e =

gx,e if e ∈ Ev
1 if e /∈ Ev

(2.19)

and define ĝD,−u and ĝx,−e similarly. Then, a line l ∈ F̂ is verified to have failed if there
exists a solution z ≥ 0 to

[AT
D,A

T
x ,w

T ,1]z = 0, (2.20a)

[ĝTD, ĝTx , gw,0]z < 0, (2.20b)

where w ∈ {0, 1}|EH | is defined to be Wf with Qf = {l}, and gw := −η. Similarly,
a line e ∈ EH \ F̂ is verified to be operational if ∃z ≥ 0 that satisfies (2.20), where
w ∈ {0, 1}|EH | is defined to be Wm with Qm = {e}, and gw := η − 1.

2.4.2.2 Verification Algorithm

All the elements in (2.20) are known, and thus the existence of a solution can be checked
by solving an LP. Based on this result, we propose an algorithm VOTE with Partial
Ground truth (VOTE-PG) (Alg. 3) for verifying the estimated states of the remaining
lines, which iteratively updates Ev. Each iteration of VOTE-PG involves solving O(|EH |)
LPs, each of which has a time complexity that is polynomial5 in the number of decision
variables (|EH |) and the number of constraints (|VH |+ |EH |) [53]. Since VOTE-PG has
at most |EH | iterations, the total time complexity of VOTE-PG is polynomial in |EH |

5The exact order of the polynomial depends on the specific algorithm used to solve the LP [53].

28

Prevention

Crypto MTD …

Detection

Bad Data
Detection

Advanced
Detection

Recovery

Voltage
Recovery

Topology Verification
(VOTE and VOTE-PG)

Repair
Scheduling

Alg. 1: FLD
𝐹෠ଵ

verified line
states 𝐸௩

…

Alg. 2:
VOTE

Alg. 3:
VOTE-PG

𝐸௩,ଵ 𝐸௩,ଵ𝜂ଵ

Alg. 1: FLD
𝐹෠ଶ Alg. 2:

VOTE
Alg. 3:

VOTE-PG

𝐸௩,ଶ 𝐸௩,ଶ𝜂ଶ

…

Alg. 1: FLD
𝐹෠௄ Alg. 2:

VOTE
Alg. 3:

VOTE-PG

𝐸௩,௄ 𝐸௩,௄𝜂௄

ራ 𝐸௩,௞
௞ୀଵ⋯,௄

Figure 2.4. Guidelines for applying the proposed algorithms.

and |VH |.

Algorithm 3: VOTE with Partial Ground truth (VOTE-PG)
Input: D̃,p,∆H̄ , UB, η, EH , Ev, F̂ , ĝD, ĝx

1 while EH \ Ev ̸= ∅ do
2 Ēv ← Ev;
3 foreach e ∈ EH \ Ev do
4 if ∃z ≥ 0 satisfying (2.20) for e then
5 Ēv ← Ēv ∪ {e};
6 Update ĝx;
7 if |Ēv| > |Ev| then
8 Ev ← Ēv;
9 else

10 break;

Summary and Guidelines: In summary, Lemma 2.3.2 is the foundation of our
results. Based on Lemma 2.3.2, we develop Theorems 2.3.1-2.3.2 to understand the
relationship between the feasibility of (2.13) in Lemma 2.3.2 and the magnitudes/direc-
tions of power flows. Equipped with Lemma 2.3.2 and Theorems 2.3.1-2.3.2, we develop
Theorems 2.4.1-2.4.3 based on verifiable conditions, which lead to the first verification
algorithm (VOTE in Alg. 2). Then, we develop Theorem 2.4.4 to provide more verifiable
conditions, which supports the second verification algorithm (VOTE-PG in Alg. 3).

The proposed algorithms form a three-step pipeline: FLD → VOTE → VOTE-PG,
where FLD will estimate a set of failed lines (F̂), based on which VOTE will identify a
subset of lines (Ev) whose estimated states can be verified to be correct, and VOTE-PG
will try to expand Ev.

All the proposed algorithms contain a parameter η. From Line 2 of FLD in Alg. 1, it
is easy to see that a smaller η will make FLD less likely to miss failed lines. However, a

29

smaller η will also make a failed line harder to be verified as analyzed in Theorem 2.4.1-
2.4.3. Similarly, an operational line is less likely to be detected as failed by FLD but
harder to be verified with a larger η. Fortunately, there is no need to tune η. As shown in
Fig. 2.4, the operator can run the proposed method with different values of η in parallel.
For each value of η, the proposed method will return a set of lines with verified states
(which are guaranteed to be consistent with the ground-truth states). Then, the operator
can take the union of the sets obtained under different η values to recover more line
states.

Remark: If control center knows that the post-attack grid remains connected, both
Lemma 2.3.2 and VOTE can be enhanced. The details are given in Appendix 2.8.4.

2.5 Extension to AC Power Flow Model
So far we have assumed the DC power flow approximation as described in Section 2.2.
As the real grid behaves according to the AC power flow model, the natural questions
are: (i) if we can directly apply the DC-based solution (FLD) under the AC model, and
(ii) if we can adapt these algorithms to work better under the AC model.

For the first question, it is easy to see that FLD can be directly applied under the
AC model. As for the verification algorithms, we have the following result (see proof in
Appendix 2.8.1).

Lemma 2.5.1. The DC-based line state verification algorithms VOTE can correctly
verify the line states under the AC model.

Despite the applicability of DC-based algorithms, the approximation error in the DC
power flow model degrades the performance of failure detection and verification (see
Section 2.6.1). Fortunately, we will show that FLD can be easily adapted to suit the
AC model. Since only minor modification is needed, we will use “AC-X” to denote the
AC-based modification of result “X”.

2.5.1 Detection: Adaptation of FLD to AC-FLD

We first show how to adapt the failure detection algorithm FLD. Some notations neces-
sary for presenting the results under the AC model are shown in Table 2.2. Specifically,
Df,u,e = 1 and Dt,v,e = 1 if and only if ∃e = (u, v) ∈ E, i.e., D = Df −Dt. Based on
a similar discussion as in Section 2.2.3, we assume that the voltage after attack (v⃗′) has

30

been recovered through existing mechanisms [39, Lemma 1] or secured PMUs. We refer
to Appendix 2.8.3 for details.

Table 2.2. Notations for AC power flow
Notation Description
p/q ∈ C|V | Active/reactive power injection

∆p/∆q ∈ C|V | Active/reactive power injection change
v⃗u = vue

j·θu / lu Nodal voltage/current
Y = G + jB Bus admittance matrix

Df/Dt ∈ {0, 1}|V |×|E| From/to end incidence matrix
Yf/Yt ∈ C|E|×|V | From/to end line admittance matrix

The key is to extend (P1) in (2.7) to the AC model. To this end, we first derive
the counterpart of (2.4). Recall that x ∈ {0, 1}|E| indicates which lines have failed,
i.e., xe = 1 indicates e ∈ F . Recalling that [x] denotes the diagonal matrix with
x on the main diagonal and noticing that the post-attack bus admittance matrix is
Y ′ = Y −Df [x]Yf +Dt[x]Yt, we can transform the AC power flow equation l′H = Y ′

H|Gv⃗
′

into

l′H = YH|Gv⃗
′ −Df,H|G[xH]Yf,H|Gv⃗

′ −Dt,H|G[xH]Yt,H|Gv⃗
′. (2.21)

Then, by left multiplying the conjugate of both sides of (2.21) by [v⃗′
H], we have

∆p,H = pH − Re
(
[v⃗′
H]YH|Gv⃗′

)
+ D̃p,HxH , (2.22a)

∆q,H = qH − Im
(
[v⃗′
H]YH|Gv⃗′

)
+ D̃q,HxH , (2.22b)

where D̃p,H = Re
(
D̃H

)
, D̃p,H = Im

(
D̃H

)
, and

D̃H = [v⃗′
H]
(
Df,H|G[Yf,H|Gv⃗′] + Dt,H|G[Yt,H|Gv⃗′]

)
. (2.23)

Here we slightly abuse the notation for D̃H since it indicates the hypothetical power
flow after attack in (2.4) for DC model and (2.23) for AC model, respectively. Let
VH,L,I = {u ∈ VH,L : qH,u ≤ 0}. Then, we introduce the row selection matrix ΛI ∈
{0, 1}|VH,L,I |×|VH | to select entries in qH corresponding to nodes in VH,L,I . Similarly, we
introduce VH,L,C = {u ∈ VH,L : qH,u > 0} and the associated ΛC ∈ {0, 1}|VH,L,C |×|VH |. As
the counterpart of (2.6b) for reactive power, we have

0 ≥ ΛI∆q,H ≥ ΛIqH ,0 < ΛC∆q,H ≤ ΛCqH . (2.24)

31

Now, we are ready to give the counterpart of (P1) in (2.8) under the AC power flow
model, referred to as AC-(P1), as follows

min
xH

1TxH (2.25a)

s.t. (2.22), (2.24), (2.6a)− (2.6b), (2.25b)

0 ≤ xH,e ≤ 1,∀e ∈ EH , (2.25c)

Thus, FLD can be adapted to the AC model by replacing (P1) in (2.8) by AC-(P1) in
(2.25), which will be called AC-FLD in the sequel.

2.5.2 Verification: Adaptation of VOTE(-PG) to AC-VOTE(-PG)

We now show how to adapt the verification algorithms VOTE. Although Lemma 2.5.1
guarantees that VOTE/VOTE-PG can still be used to verify the estimated line states
under the AC model, they are developed under the DC model and thus have degraded
performance (see Section 2.6.1). To address this issue, we will develop AC-based counter-
parts of VOTE(-PG) by deriving the counterpart of Lemma 2.3.2 for AC-FLD, which is
the foundation of the verification algorithms.

To begin with, we will transform (2.25) into an equivalent LP without equality
constraints, as in the transformation of (P1) into (2.11). To achieve this, we notice that
any feasible (p′

H , q
′
H ,xH) satisfying (2.22) can be represented as (2.26):


∆p,H

∆q,H

xH

 =


∆∗

p,H

∆∗
q,H

x∗
H

+
∑
e∈EH

ce


d̃p,H,e

d̃q,H,e

ue

. (2.26)

Then, we modify the definitions in (2.12) as follows: we keep Ax,W , gx, gw the same,
and redefine AD and gD as

AT
D :=

[
ΛT
LD̃

T
p,H ,−ΛT

LD̃
T
p,H ,−ΛT

SD̃
T
p,H ,Λ

T
SD̃

T
p,H

ΛT
I D̃

T
q,H ,−ΛT

I D̃
T
q,H ,−ΛT

CD̃
T
q,H ,Λ

T
CD̃

T
q,H

]
, (2.27a)

gTD :=
[
−ΛT

L∆
∗T
p,H ,−ΛT

Lp
′∗T
H ,ΛT

S∆
∗T
p,H ,ΛSp

′∗T
H

−ΛT
I ∆

∗T
q,H ,−ΛT

I q
′∗T
H ,ΛT

C∆
∗T
q,H ,Λ

T
Cq

′∗T
H

]
. (2.27b)

Equipped with (2.26) and (2.27), we can obtain the following LP that is equivalent to

32

(2.25):

min
c

1Tc (2.28a)

s.t. ADc ≤ gD, (2.28b)

Axc ≤ gx, (2.28c)

where (2.28b) corresponds to (2.25b) while (2.28c) corresponds to (2.25c). Since the fea-
sible region of (2.11) can also be written in the form of (2.28b)-(2.28c), AC-Lemma 2.3.2
for AC-FLD has the same form as Lemma 2.3.2 with AD and gD redefined as in (2.27).
See Appendix 2.8.1 for the proof of AC-Lemma 2.3.2.

Since Theorem 2.4.1-2.4.4 are all proved by contradiction based on Lemma 2.3.2, the
corresponding algorithms (VOTE based on Theorem 2.4.1-2.4.3 and VOTE-PG based on
Theorem 2.4.4) can be easily adapted to AC-VOTE and AC-VOTE-PG with changed
AD and gD. In Appendix 2.8.5, we provide the adapted theorems and discuss how they
are used in AC-VOTE and AC-VOTE-PG.

2.6 Performance Evaluation
We will primarily evaluate our findings on the Polish power grid (“Polish system - winter
1999-2000 peak”) [54] with 2383 nodes and 2886 lines (where parallel lines are combined).
The ground-truth power grid states are generated according to AC power flow model.
Key solutions (FLD, VOTE and VOTE-PG) will also be evaluated on the IEEE 300-bus
system extracted from MATPOWER [54] to test their generality. We generate the
attacked area H by randomly choosing one node as a starting point and performing
a BFS to obtain H with a predetermined |VH |. The generated H consists of buses
topologically close to each other, which will intuitively share communication lines in
connecting to the control center and can thus be blocked together once a cyber attack
jams some of these lines. Note, however, that our solution does not depend on this
specific way of forming H. We then randomly choose |F | lines within H to fail. We vary
|VH | and |F | to explore different settings, and for each setting, we generate 70 different
H’s and 300 different F ’s per H. In contrast to previous works [19,24–27] where |F | ≤ 3,
we focus on the scenarios where both |VH | and |F | are large such that there are likely to
be internal nodes in H whose post-attack active power injections cannot be recovered,
and there are likely to be island formation in the post-attack grid. In our simulations,
we assume that all viable islands have survived the attack (i.e., no frequency collapse),

33

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
ne

s

DC-FLD
AC-FLD

(a) Miss rate

3 6 9 12
|F|

0

1

2

3

4

5

6

7

F
ra

ct
io

n
of

 li
ne

s

10-3

DC-FLD
AC-FLD

(b) False alarm rate
Figure 2.5. Performance of DC-FLD under the AC power flow model in Polish system
(|VH | = 40).

but this assumption is not necessary for our algorithms.
We evaluate two types of metrics: (1) how accurate FLD is, and (2) how often the

line states estimated by FLD can be verified. Each evaluated metric is shown via the
mean and the 25th/75th percentile (indicated by the error bars) when applicable. The
threshold η is set to 0.5.

2.6.1 Performance Loss of DC-based Algorithms

We start by evaluating the performance of the DC-based versions of FLD, VOTE, and
VOTE-PG (denoted by DC-*) under the AC power flow model, since they are applicable
under the AC model as discussed in Lemma 2.5.1. In Fig. 2.5, we compare the performance
of DC-FLD and AC-FLD in terms of miss rate and false alarm rate. In Fig. 2.6, we
compare the performance of the combination of DC-VOTE and DC-VOTE-PG with
their AC variants. We observe that although the DC-based algorithms are still applicable
under the AC power flow model, the approximation error of the DC model leads to
performance degradation in both detection and verification. Such observations validate
the importance of deriving their AC variants, as shown in Section 2.5. In the rest of this
section, all algorithms (including both proposed and benchmark algorithms) refer to their
AC variants developed as in Section 2.5.

34

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
ne

s

DC-VOTE + DC-VOTE-PG
AC-VOTE + AC-VOTE-PG

(a) Failed lines

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
ne

s

DC-VOTE + DC-VOTE-PG
AC-VOTE + AC-VOTE-PG

(b) Operational lines
Figure 2.6. Performance of DC-VOTE + DC-VOTE-PG under the AC power flow model in
Polish system (|VH | = 40).

1 2 3 4 5 6 7 8 9 101112131415
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 c
as

es

Figure 2.7. Prob. that assuming ∆ = 0 leads to a feasible solution in Polish system
(|VH | = 40).

2.6.2 Performance of Line State Recovery

First, we observe that for a nontrivial size of H (|VH | ≥ 20), there almost always exists u ∈
VH for which we cannot recover ∆H,u by Lemma 2.4.1. We also observe that the solution
in [19] (which assumes ∆ = 0) is often infeasible, as shown in Fig. 2.7. These observations
confirm the necessity of jointly estimating F and ∆H during failure localization.

Next, we compare FLD with benchmarks in localizing the failed lines. We consider
two benchmarks: (i) the solution extended from [39], i.e., i.e., estimating F by supp(y)
for the solution to min ∥y∥1 s.t. (2.22), assuming the knowledge of true ∆p,H and ∆q,H ,
and (ii) min ∥y∥1 s.t. ∥pH−Re

(
[v⃗′
H]YH|Gv⃗′

)
+D̃p,HyH∥ ≤ ∥pH∥, which is adapted from

35

3 6 9 12
|F|

0

0.05

0.1

0.15

0.2

F
ra

ct
io

n
of

 li
ne

s

Benchmark (i)
FLD
FLD without (22b) and (24)
Benchmark (ii)

(a) Miss rate

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 c
as

es

Benchmark (i)
FLD
FLD without (22b) and (24)
Benchmark (ii)

(b) Probability of no miss
Figure 2.8. Performance comparison on miss rate in Polish system (|VH | = 40).

the solutions in [24, 25]. In addition, we consider a variant of AC-FLD that removes the
constraints (2.24) and (2.22b) to see the importance of adding constraints on reactive
power. Note that benchmark (i) should be treated as a “performance upper bound” as it
assumes more knowledge (of ∆H) than our proposed algorithm.

As shown in Fig. 2.8, benchmark (i) demonstrates the best performance with regard to
both the miss rate and the probability of having no miss, while FLD performs much better
than benchmark (ii). This confirms the importance of knowing or estimating power injec-
tion changes in failure localization. Regarding the false alarm as shown in Fig. 2.9, FLD
performs even better than benchmark (i). This is because the decision variable x in bench-
mark (i) combines the information about both the failed lines and the phase angles θ′

H , and
thus does not fully exploit the knowledge of θ′

H . We also notice that adding the constraints
(2.24) and (2.22b) can significantly improve detection accuracy by exploiting the knowl-
edge on reactive power injections. Furthermore, from the specific number of false alarm-
s/misses in Fig. 2.10, we see that besides having very few false alarms, FLD also correctly
detects most of the failed lines with only a couple of misses for the majority of the time.

2.6.3 Performance of Line State Verification

In this subsection, we evaluate the performance of the proposed verification algorithms
(VOTE and VOTE-PG) in terms of the fraction of verifiable lines.

We first evaluate the fraction of verifiable lines in Ea (lines in 1-edge cuts) and Ec

(lines in 2-edge cuts, i.e., Ec := ⋃
s∈Ec

s), as shown in Fig. 2.11. For each generated
case (combination of H and F), denote Ea,v := Ea ∩ Ev and Ec,v := Ec ∩ Ev. Then in

36

3 6 9 12
|F|

0

0.01

0.02

0.03

0.04

0.05

F
ra

ct
io

n
of

 li
ne

s

Benchmark (i)
FLD
FLD without (22b) and (24)
Benchmark (ii)

(a) False alarm rate

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 c
as

es

Benchmark (i)
FLD
FLD without (22b) and (24)
Benchmark (ii)

(b) Probability of no false alarm
Figure 2.9. Performance comparison on false alarm rate in Polish system (|VH | = 40).

3 4 5 6 7 8 9 10 11 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 c
as

es

fa=0
fa=1
fa=2
fa=3
fa >= 4

(a) False alarm

3 4 5 6 7 8 9 10 11 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 c
as

es

Miss=0
Miss=1
Miss=2
Miss=3
Miss >= 4

(b) Miss
Figure 2.10. Number of false alarms/misses of FLD in Polish system (|VH | = 40).

Fig. 2.11(a), we evaluate the fractions of testable and verifiable lines in Ea (Ec) among
failed lines, i.e., |Ea∩F |

|F | (|Ec∩F |
|F |) and |Ea,v∩F |

|F | (|Ec,v∩F |
|F |). The evaluation for operational

lines is conducted similarly in Fig. 2.11(b). As can be seen, (i) the fractions of testable
and verifiable lines both stay almost constant with varying |F |, which demonstrates the
robustness of VOTE; (ii) among the testable lines (Ea ∪ Ec), most of the failed lines are
verifiable, but only half of the operational lines are verifiable.

Next, we use two metrics to evaluate the value of VOTE-PG. The first metric is
the fraction of lines verified by VOTE-PG but not VOTE, as shown in Fig. 2.11 as
‘VOTE-PG’. The second is the percentage of cases that VOTE-PG can verify additional
lines, given in Table 2.3. We observe that VOTE-PG can usually verify more lines based
on the results of VOTE.

37

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
ne

s

Testable 1-edge cut
Verifiable 1-edge cut
Testable 2-edge cut
Verifiable 2-edge cut
VOTE-PG

(a) Fraction of failed lines

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

F
ra

ct
io

n
of

 li
ne

s

Testable 1-edge cut
Verifiable 1-edge cut
Testable 2-edge cut
Verifiable 2-edge cut
VOTE-PG

(b) Fraction of operational lines
Figure 2.11. Fraction of testable/verifiable lines in Polish system (|VH | = 40).

Table 2.3. Percentage of cases that VOTE-PG verifies additional lines in Polish system
Type of lines |F | = 3 |F | = 6 |F | = 9 |F | = 12
Failed lines 24.12% 38.94% 48.72% 57.43%

Operational lines 88.15% 91.45% 92.13% 92.45%
All lines 90.34% 93.61% 95.22% 95.71%

Then, we compare the fraction of verifiable lines (‘Verifiable – VOTE + VOTE-PG’)
to the fraction of lines whose states are guaranteed to be correctly estimated by FLD
according to Lemma 2.3.2 (‘Guaranteed’) and the actual fraction of lines whose states
are correctly estimated by FLD (‘Experiment Results’), as shown in Fig. 2.12. We see
that over 80% of the lines are verifiable. Nevertheless, the fraction of lines whose states
are correctly estimated by FLD is even higher: out of all the failed lines, over 80% will
be estimated as failed and verified as so, while another 10% will be estimated as failed
but not verified; out of all the operational lines, over 80% will be estimated and verified
as operational, while the rest will also be estimated as operational but not verified. We
have confirmed that the set of verifiable lines is a subset of the set of lines for which
FLD is guaranteed to be correct (by Lemma 2.3.2), which is in turn a subset of the set
of correctly identified lines.

To validate our key observations, we repeat the experiments in Fig. 2.12 on the IEEE
300-bus system, as shown in Fig. 2.13. Compared with the results from the Polish system,
most of the results from the IEEE 300-bus system are qualitatively similar. One notable
difference is that although most of the failed lines remain verifiable in the 300-bus system,
only half of the operational lines are verifiable. This indicates that most (80-90%) of the
unverifiable lines are operational. To understand such a phenomenon, we observe that

38

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
ne

s

Verifiable: VOTE + VOTE-PG
Guanranteed
Experiment Results

(a) Fraction of failed lines

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
ne

s

Verifiable: VOTE + VOTE-PG
Guanranteed
Experiment Results

(b) Fraction of operational lines
Figure 2.12. Comparison between verifiable lines, theoretically guaranteed lines, and actually
correctly identified lines in Polish system (|VH | = 40).

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
ne

s

Verifiable: VOTE + VOTE-PG
Guanranteed
Experiment Results

(a) Fraction of failed lines

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
ne

s

Verifiable: VOTE + VOTE-PG
Guanranteed
Experiment Results

(b) Fraction of operational lines
Figure 2.13. Comparison between verifiable lines, theoretically guaranteed lines, and actually
correctly identified lines in IEEE 300-bus system (|VH | = 40).

many operational lines carry small post-attack power flows, which makes the conditions
in Theorem 2.4.1-2.4.3 hard to satisfy. On the contrary, the values of hypothetical power
flows on failed lines are usually large.

2.6.4 Summary of Observations

1. While the DC-based detection/verification algorithms can be applied in a grid
that follows AC power flow equations, their AC-based variants provide better
performance.

39

2. Under the possibility of islanding caused by the physical attack, existing failed line
detection algorithms fail with high probability due to the change of power injections
(Fig. 2.7), but the proposed FLD can handle the change of power injections and
achieve high accuracy.

3. Despite its high accuracy, FLD can still miss failed lines and falsely report failures
on operational lines, which will cause problems during recovery.

4. The proposed line state verification algorithms (VOTE and VOTE-PG) can substan-
tially reduce the waste of resources during recovery by providing reliable information
on the verifiable line states.

2.7 Conclusion
We investigated the problem of power grid state estimation under cyber-physical attacks
that may decompose the grid into islands. Our focus was on recovering the line states
within the attack area, due to an observation that existing solutions and their recovery
conditions for recovering the phase angles (developed for the case of connected post-attack
grid) remain applicable in the case of islanding. To handle the challenge of unknown
changes in the power injections within the attack area caused by islanding, under the
DC model we proposed an LP-based algorithm to jointly estimate the line states and the
power injection changes within the attacked area. We established theoretical conditions
under which the line states estimated by the proposed algorithm are guaranteed to be
correct, including both more general conditions that depend on the ground-truth line
states and less general conditions that only depend on observable information. The
latter conditions are further used to develop two polynomial-time algorithms to verify
the correctness of the estimated line states. In addition, we extend all results obtained
under the DC model to their variants under the AC power flow model. Our evaluations
based on the Polish power grid and the IEEE 300-bus system showed that the proposed
algorithm is highly accurate in localizing the failed lines, and the correctness of its output
can be verified in the majority of cases.

Compared to the previous solutions for line state estimation that label lines with
binary states (failed/operational) without guaranteed correctness, our solution labels
lines with ternary states (failed/operational/unverifiable), where the states of verifiable
lines are identified with guaranteed correctness. This, together with the observation that
most of the unverifiable lines are operational, provides valuable information for planning

40

repair/restoration in the recovery process.

2.8 Appendices

2.8.1 Appendix A: Additional Proofs

Lemma 2.3.1. We will prove the claim by a reduction from the subset sum problem, which
is known to be NP-hard [55]. Given any set of non-negative integers {fi ≥ 0}ni=1 and a
target value T , the subset sum problem determines whether there exists {xi ∈ {0, 1}}ni=1

such that ∑n
i=1 fixi = T . For each subset sum instance, we construct the following

star-shaped attacked area H: let H = (VH , EH) such that VH is composed of n + 1
nodes, where node u0 is the hub with pu0 = 0 and θ′

u0 = 0, and node ui (i ∈ [n] for
[n] := {1, . . . , n}) is incident to only one link ei = (u0, ui), with pui

= −fi, θ′
ui

= −fi,
and rei

= 1. In addition, u0 is connected to v ∈ VH̄ , with θ′
v = ∑n

i=1 fi − T , through link
e0 = (u0, v) with re0 = 1.

By substituting (2.4) and pu0 = 0, (2.6b) for node u0 becomes D̃H,u0xH = Bu0|Gθ
′,

where D̃H,u0 is the row of D̃H corresponding to node u0. Since (D̃H,u0)i = θ′
u0 −θ′

ui

rei
, it

is easy to check that D̃H,u0xH = ∑n
i=1 fixi. Moreover, Bu0|Gθ

′ = ∑n
i=1 fi + θ′

u0 −θ′
v

re0
= T .

Since ui (i ∈ [n]) is connected to only one link ei = (u0, ui), we have that D̃H,ui
xH = −fixi

and Bui|Gθ
′ = −fi. Thus, (2.6b) for ui becomes −fi ≤ −fixi ≤ 0, which is satisfied

whatever value xi takes. Therefore, a subset sum instance returns true if and only if the
instance of (P0) constructed as above is feasible, which completes the proof.

Lemma 2.3.2. We prove the lemma in two steps. First, note that c∗ = 0 corresponding
to the ground-truth F is feasible for (2.11). If F̂ is returned by Alg. 1 with e ∈ Qm,
there must exist a corresponding optimal solution ĉ to (2.11) with ĉe ≤ η − 1 and
1T ĉ ≤ 1Tc∗ = 0. Together with the feasibility constraints in (2.11), ĉ must satisfy

[AT
D,A

T
x ,W

T ,1]T ĉ ≤ [gTD, gTx , gTw, 0]T , (2.29)

where W and gw are defined such that e ∈ Qm. To prove e /∈ Qm, we only need to
show the infeasibility of (2.29), which can be proved if there is no solution to (2.29)
when W and gw are defined for Qm = {e}, Qf = ∅. This is because a linear system
must be infeasible if there is no solution to a subset of its inequalities. According to
Gale’s theorem of alternative [56], there is no solution to (2.29) if and only if there exists
solutions z ≥ 0 to (2.13), which completes the proof.

41

Theorem 2.3.1. We will prove by showing that there is a solution to (2.13) for Qf = ∅
and Qm = {l} where l ∈ EU . We prove this by directly constructing a solution z for
(2.13) as follows: ∀u ∈ U , if D̃U,l < 0, set zD,u = 1; otherwise, set zD,−u = 1. Set
zw,m,l = |D̃U,l|, zx−,e′ = |D̃U,e′| for e′ ∈ EU \ F , zx+,e = |D̃U,e| for e ∈ EU ∩ F \ {l}, and
other entries of z to 0. Note that (x∗)e′ = 0,∀e′ ∈ EU \F , and (1−x∗)e = 0,∀e ∈ EU ∩F .
Then, we will demonstrate why (2.13) is satisfied under this assignment of z. First, (2.14)
for link l is expanded as −|D̃U,l|+ zw,m,e = 0, and (2.14) for e ∈ F \ {l} is expanded as
−|∑u∈U D̃u,e|+ zx+,e = −|D̃U,e|+ zx+,e = 0 due to condition 1). Second, since SU = ∅,
for all e′ ∈ EU \ F , the corresponding row in (2.13a) is expanded into |D̃U,e′ | − zx−,e′ = 0.
Other rows of (2.13a) holds trivially since they only involve the zero-entries in the
constructed z. Thus, (2.13a) holds under this assignment. As for (2.13b), its l.h.s can
be expanded as fU,g + (η − 1)|D̃U,l| < 0 due to condition 3). According to Lemma 2.3.2,
l ∈ EU ∩ F will not be missed, which completes the proof.

Theorem 2.3.2. Similar to the proof of Theorem 2.3.1, we will prove by showing that
there is a solution to (2.13) for Qf = {l} and Qm = ∅ where l ∈ EU . We construct the
following z: ∀u ∈ U , if D̃U,l < 0, set zD,u = 1; otherwise, set zD,−u = 1. Set zw,f,l = |D̃U,l|,
zx−,e′ = |D̃U,e′ | for e′ ∈ EU \ (F ∪ {l}), zx+,e = |D̃U,e| for e ∈ EU ∩ F , and other entries
of z to 0. Then, it is easy to check that (2.13a) is satisfied. As for (2.13b), considering
that gTx zx = ∑

e′∈EU \F x
∗
e′ + ∑

e∈EU ∩F (1 − x∗
e) = 0 since (x∗)e′ = 0, ∀e′ ∈ EU \ F and

(1− x∗)e = 0, ∀e ∈ EU ∩ F , the l.h.s of (2.13b) can be expanded as

gTDzD + gTx zx − ηzw,f,l = fU,g − η|D̃u,l| < 0, (2.30)

where fU,g = ∑
u∈U gD,u if D̃U,l > 0 and fU,g = ∑

u∈U gD,−u if D̃U,l < 0, and the last
inequality holds due to condition 3). Thus, according to Lemma 2.3.2, l /∈ F̂ , which
completes the proof.

Lemma 2.4.1. As failures can only occur within EH , nodes in N(v; H̄) must be in the
same island as v after the attack. Under the proportional load shedding policy, we know
that (i) if ∃u ∈ N(v; H̄) of the same type as v, then we can recover the post-attack active
power at v by p′

v = pvp
′
u/pu and thus recover ∆v; (ii) if ∃u ∈ N(v; H̄) of a different type

from v (e.g., u is a generator bus but v is a load bus) and ∆u ̸= 0, then ∆v must be zero.
This proves the claim.

Theorem 2.4.1. We first prove the case that D̃U,e1D̃U,e2 < 0. Given e1, e2 ∈ EH \ F̂ where
F̂ is returned by Alg. 1, there are 3 possible forms of mistakes when the ground truth

42

failed link set F is unknown, and we will prove the impossibility for each of them. If
e1 ∈ F, e2 ∈ EH \ F , Theorem 2.3.1 guarantees that e1 /∈ Qm due to condition 1), which
introduces contradiction. Similarly, e2 ∈ F, e1 ∈ EH \F is also impossible. If e1, e2 ∈ Qm,
assume without loss of generality that η < 1 − f̂U,g+|D̃U,e1 |

|D̃U,e2 | . Then, we construct the
following z: ∀u ∈ U , zD,u = 1 if D̃U,e2 < 0 or zD,−u = 1 if D̃U,e2 > 0, zw,m,e2 = |D̃U,e2|,
zx−,e1 = |D̃U,e1 |, and other entries of z are 0. Then, (2.13a) holds for sure and (2.13b)
holds since it can be expanded as f̂U,g + (η − 1)|D̃U,e2|+ |D̃U,e1| < 0 due to condition 2).
According to Lemma 2.3.2, it is impossible to have e1, e2 ∈ Qm, which verifies that
e1, e2 ∈ EH \ F .

Next, for D̃U,e1D̃U,e2 > 0, we show how to verify e1. If e1 ∈ Qm, regardless of the true
state of e2, we construct the following z for Lemma 2.3.2: ∀u ∈ U , zD,u = 1 if D̃U,e1 < 0
or zD,−u = 1 if D̃U,e1 > 0, zw,m,e1 = |D̃U,e1|, zx+,e2 = |D̃U,e2|, and other entries of z are 0.
Then (2.13) holds due to condition 1), which contradicts the assumption that e1 ∈ Qm.
The verification condition for e2 can be derived similarly.

Theorem 2.4.2. We first prove the impossibility of each possible mistake if D̃U,e1D̃U,e2 > 0.
First, we rule out the possibility that e1 ∈ Qf , e2 ∈ EH \ F according to Theorem 2.3.2
and condition 1). Similarly, according to Theorem 2.3.1 and condition 1), e1 ∈ F while
e2 ∈ Qm is also impossible. Next, we prove the impossibility of e1 ∈ Qf , e2 ∈ Qm by
constructing a solution z to (2.13). Specifically, if η > f̂U,g+|D̃U,e2 |

|D̃U,e1 | , then ∀u ∈ U , we set
zD,u = 1 if D̃U,e1 > 0 or zD,−u = 1 if D̃U,e1 < 0, zw,f,e1 = |D̃U,e1|, zx−,e2 = |D̃U,e2 |, and
other entries of z as 0. If η < 1− f̂U,g+|D̃U,e1 |

|D̃U,e2 | , then ∀u ∈ U , we set zD,u = 1 if D̃U,e2 < 0 or
zD,−u = 1 if D̃U,e2 > 0, zw,m,e2 = |D̃U,e2|, zx+,e1 = |D̃U,e1|, and other entries of z as 0. It is
easy to check the satisfaction of (2.13) under both constructions above, which rules out
the possibility of e1 ∈ Qf , e2 ∈ Qm according to Lemma 2.3.2 and e1 ∈ F, e2 ∈ EH \ F is
thus guaranteed.

Next, we prove the verification condition for e1 /∈ Qf if D̃U,e1D̃U,e2 < 0. We prove by
constructing a solution z as follows regardless of the states of e2: ∀u ∈ U , if D̃U,e1 < 0, we
set zD,−u = 1; otherwise, we set zD,u = 1. Then, we set zw,f,e1 = |D̃U,e1|, zx+,e2 = |D̃U,e2 |,
and other entries of z as 0. Then, (2.13a) holds for sure and (2.13b) holds since it can
be expanded as f̂U,g − η|D̃U,e1| + |D̃U,e2| < 0 due to condition 1), which rules out the
possibility of e1 ∈ Qf according to Lemma 2.3.2 and thus verifies that e1 ∈ F . The
verification condition for e2 /∈ Qm can be proved similarly.

Theorem 2.4.3. We only prove the verification condition for e1 ∈ F since the condition
for e2 can be proved similarly. We prove by contradiction that constructs a solution to

43

(2.13) if e1 ∈ Qf . Specifically, with condition 1), we can always construct a z for (2.13)
as follows regardless of the states of e2: ∀u ∈ U , zD,u = 1 if D̃U,e1 > 0 or zD,−u = 1 if
D̃U,e1 < 0 and zw,f,e1 = |D̃U,e1 |. In addition, if D̃U,e1D̃U,e2 > 0, we set zx−,e2 = |D̃U,e2|;
otherwise, we set zx+,e2 = |D̃U,e2|. Finally, other entries of z are set as 0. It is easy
to check the satisfaction of (2.13a), and (2.13b) holds since it can be expanded as
[gTD, gTx , gTw,0]z ≤ f̂U,g + |D̃U,e2| − η|D̃U,e1| < 0, where the last inequality holds due to
condition 1). Thus, we must have e1 /∈ Qf according to Lemma 2.3.2.

Theorem 2.4.4. We only prove for the case that l ∈ F̂ since the case that e ∈ EH \ F̂ is
similar. First note that if ∃z0 ≥ 0 that satisfies (2.13) for W constructed according to
Qf = {l} and Qm = ∅, then for any W corresponding to Qf that contains l, we can always
construct a non-negative solution to (2.13) based on z0 by setting zw,f,e′ = 0,∀e′ ∈ Qf \{l}.
Thus, according to Lemma 2.3.2, l can be verified as l ∈ F if ∃z ≥ 0 for (2.13) where W

is constructed for Qf = {l} and Qm = ∅, since otherwise l must have been estimated to
be operational. Thus, we only need to prove that any solution to (2.20) is a solution to
(2.13) when Qf = {l} and Qm = ∅. To this end, let z̄ ≥ 0 be a feasible solution to (2.20).
First, (2.13a) holds since it is the same as (2.20a) in this case. As for (2.13b), we have

[gTD, gTx , gw,0]z̄ ≤ [ĝTD, ĝTx , gw,0]z̄ < 0, (2.31)

where the first inequality holds since 0 ≤ [gTD, gTx] ≤ [ĝTD, ĝTx] (element-wise inequality),
while the second inequality holds since z̄ satisfies (2.20). Therefore, z̄ is also a feasible
solution to (2.13), which verifies that l ∈ F .

Lemma 2.5.1. It is easy to see that Alg. 1 without modification is applicable under the
AC model.

To prove the applicability of Alg. 2-3, we only need to prove that DC-based Lemma 2.3.2
holds under the AC model since Theorem 2.4.1-2.4.4 are proved by contradiction based
on Lemma 2.3.2. It is worth noting that (2.4) no longer holds for the ground-truth ∆p, x
and θ′ due to the difference between DC model and AC model. However, suppose θ′

DC is
the recovered phase angles under the DC model, then there exists a corresponding ∆∗

DC

that is compatible with (2.4) under x∗. Then, any solution of (P1) will be in the form of
 ∆H

xH

 =
 ∆∗

DC

x∗
H

+
∑
e∈EH

ce

 d̃e

ue

, (2.32)

which is similar to (2.9) with ∆∗ changed into ∆∗
DC. That is to say, (2.11) is still an

44

equivalent LP of (P1) in (2.8) by replacing gD as

gTD = [−(∆∗
DC,L)T , (−p′

DC,L)T , (∆∗
DC,S)T , (p′

DC,S)T]. (2.33)

Thus, with gD changed into (2.33), DC-based Lemma 2.3.2 holds under the AC model,
which completes the proof.

AC-Lemma 2.3.2. Similar to the proof of Lemma 2.3.2, we have c∗ = 0 that corresponds
to the ground-truth F and is feasible for (2.28). If F̂ is returned by AC-Alg. 1 with
e ∈ Qm, there must exist a corresponding optimal solution ĉ to (2.25) with ĉe ≤ η − 1
and 1T ĉ ≤ 1Tc∗ = 0. Together with the feasibility constraints (2.28b)-(2.28c), ĉ must
satisfy

[AT
D,A

T
x ,W

T ,1]T ĉ ≤ [gTD, gTx , gTw, 0]T , (2.34)

where gD and AD are defined in (2.27). It can be seen that (2.34) has exactly the same
form of (2.29). Then, following the same proving procedure in Lemma 2.3.2, we can have
AC-Lemma 2.3.2.

2.8.2 Appendix B: Proportional Loadshedding/generation Reduction

We consider adjusting load/generation in the case of islanding [51,52], under which either
the load or the generation (but not both) will be reduced upon the formation of an island.
Moreover, if nodes u and v are in the same island and of the same type (both load or
generator), then p′

u/pu = p′
v/pv.

We take the island that initially has supply > demand as an example to explain the
policy. Typically, this reduction is performed through governor action, whose droop
coefficient (say, Ri for the ith generator) determines the ratio in which generation is
decreased. The total reduction in generation is equal to

supply− demand = ∆f
∑
i∈I

1
Ri

,

where I is the set of generators in this island, and ∆f is the change in frequency in the
island after generation reduction, i.e., pu − p′

u = ∆f
Ru

. Typically, 1
Ri

is chosen proportional
to the machine rating of the generator – the higher the machine rating, the larger the
value of 1

Ri
. By assuming the proportional load shedding/generation reduction, we

consider the generators to be fully loaded before the disturbance.. This implies that

45

1
Ru

= Kpu for some constant K, and thus p′
u

pu
= p′

v

pv
= 1−K∆f for any two generators

u, v in this island.
In the case of demand more than supply in an island, the frequency nadir during

the inertial phase becomes low enough to activate underfrequency relays, and the load
shedding action that follows leads to balance of supply and demand. Since generators
are assumed fully loaded, we do not consider increase of generation.

2.8.3 Appendix C: Recovery of Phase Angles and Voltages

Under the assumption that G remains connected after the attack and thus ∆ = 0, [19]
showed that the post-attack phase angles θ′

H can be recovered if the submatrix BH̄|H

of the admittance matrix has a full column rank. Below, we will show that the same
condition holds without this limiting assumption.

Specifically, we have the following lemma that extends [19, Lemma 1] to the case of
arbitrary ∆ (“supp”: indices of non-zero entries in the input vector).

Lemma 2.8.1. supp(B(θ − θ′)−∆) ⊆ VH .

Proof. For a link (s, t), define a column vector xst ∈ {−1, 0, 1}|V |, which has 1 in s-th
element, −1 in t-th element, and 0 elsewhere. The failure of links in F changes the
admittance matrix by6

B′ = B +
∑

(s,t)∈F
Bstxstx

T
st, (2.35)

where Bst is the (s, t)-th element in B. Before the attack, we have Bθ = p. After the
attack, we have B′θ′ = p′ = p−∆. Therefore, the following holds:

Bθ −B′θ′ = ∆ (2.36)

⇒ B(θ − θ′)−∆ =
∑

(s,t)∈F
Bstxstx

T
stθ

′ (2.37)

⇒ supp(B(θ − θ′)−∆) ⊆
⋃

(s,t)∈F
{s, t} ⊆ VH , (2.38)

where (2.37) is obtained by plugging in (2.35) into (2.36).

Using Lemma 2.8.1, we prove that the recovery condition in [19, Theorem 1] remains
sufficient even if the post-attack grid may be disconnected.

6There was a typo in the proof of [19, Lemma 1], which claimed that B′ = B −
∑

(s,t)∈F bstxstx
T
st.

46

Theorem 2.8.1. The phase angles θ′
H within the attacked area can be recovered correctly

if BH̄|H has a full column rank.

Proof. By Lemma 2.8.1, we see that BH̄|G(θ − θ′)−∆H̄ = 0. Writing this equation in
more detail shows that

BH̄|H(θH − θ′
H) + BH̄|H̄(θH̄ − θ′

H̄)−∆H̄ = 0 (2.39)

⇒ BH̄|Hθ
′
H = BH̄|HθH + BH̄|H̄(θH̄ − θ′

H̄)−∆H̄ . (2.40)

Since both BH̄|H and the righthand side of (2.40) are known to the control center, we
can uniquely recover θ′

H if BH̄|H has a full column rank.

The phase angles θ′
H can be recovered not only through Theorem 2.8.1, but also

through the secured PMUs, whose measurements and communications to the control
center are much harder to attack due to the security mechanisms in modern WAMPAC
network design [57]. It is widely accepted that secured PMUs can be used to defend
against cyber attacks [48–50].

In the following, we provide guidelines for choosing nodes on which to install secured
PMUs.

Corollary 2.8.1.1. Let EM,H̄|H ⊆ EH̄|H denote a matching (a set of links without
common endpoints) covering nodes VH̄M

⊆ VH̄ and VHM
⊆ VH . Then θ′

H can be recovered
almost surely 7 if there is a secured PMU measuring the (voltage) phase angle at each
u ∈ VH \ VHM

.

Proof. Since the PMUs at u ∈ VH \ VHM
will directly report θ′

u, the only unknown term
left in (2.40) is θ′

HM
. Next, we will show that θ′

HM
can be uniquely determined by (2.40)

with the aid of θ′
u, u ∈ VH \ VHM

measured by secured sensors. To achieve this, we
re-write the left-hand-side (l.h.s) of (2.40) as

BH̄|Hθ
′
H = BH̄|HM

θ′
HM

+
∑

u∈VH\VHM

BH̄|u · θ′
u, (2.41)

where the second term on the right-hand-side is known due to PMUs. By plugging
(2.41) back into (2.40), we obtain an equation in θ′

HM
that can uniquely determine

θ′
HM

if BH̄|HM
has a full column rank. This condition holds almost surely according

7In probability theory, an event happens almost surely if it happens with probability one. In other
words, among all possible combinations of {re}e∈E , the set of reactance values for EH̄|H resulting in θ′

H

uncoverable is a measure zero set in the real space.

47

to [19, Corollary 2] since the subgraph corresponding to BH̄|HM
contains the matching

EM,H̄|H .

Discussion: Under the North American SynchroPhasor Initiative (NASPI) [58], the
number of PMUs is steadily growing [59], and installing PMUs is becoming part of routine
transmission system upgrades and new construction [60]. Some utilities have achieved
full observability in their networks, e.g., Dominion Power has piloted the PMU-based
linear state estimator [61,62]. These trends motivate us to consider failure localization
based on phase angles.

Although fully equipped PMUs can measure both voltage phasors at buses and current
phasors at their incident lines, each phasor to be measured requires extra instrumentation.
To this end, we will show that measuring voltage phasors alone is almost good enough in
that: under normal conditions, voltage phasors can be used to compute line currents;
after attacks, the voltage phase angles can be used to estimate link states (and hence
currents) with high accuracy (see Sections 2.3). Measuring only voltage phasors by PMUs
has also been assumed in prior works [48].

Previous discussion is based on DC power flow model. In [39, Lemma 1], the conditions
for recovering phase angles [19, Lemma 1] are extended to the AC power flow model to
recover complex-valued voltages (v⃗′

H) after attack. Next, we will show that the conditions
in [39, Lemma 1] still hold even if the post-attack grid may be disconnected, as in our
extension of [19, Lemma 1] to Theorem 2.8.1.

Theorem 2.8.2. The voltages v⃗′
H within the attacked area can be recovered almost surely

if ∃EM,H̄|H ⊆ EH̄|H with VHM
= VH .

Proof. Due to the attack model discussed in Section 2.2.2, we have l′
H̄

= Y ′
H̄|Gv⃗

′ = YH̄|Gv⃗
′.

Then, by denoting x as the conjugate of x and [x] as the diagonal operation of x, we
have

[v⃗′
H̄]Y ′

H̄|Gv⃗
′ = [v⃗′

H̄]l′
H̄

= p′
H̄ + jq′

H̄ , (2.42)

which leads to

ΞH̄|H

 Re(v⃗′
H)

Im(v⃗′
H)

 =
 p′

H̄
− Re([v⃗′

H̄
]Y ′

H̄|H̄ v⃗
′
H̄

)
q′
H̄
− Im([v⃗′

H̄
]Y ′

H̄|H̄ v⃗
′
H̄

)

 (2.43)

ΞH̄|H =
 GH̄|H −BH̄|H

BH̄|H GH̄|H

 . (2.44)

48

It is easy to see that we can uniquely recover both Re(v⃗′
H) and Im(v⃗′

H) if ΞH̄|H has full
column rank. According to [39, Lemma 1] and [19, Corollary 2], ΞH̄|H has full column
rank almost surely if there is a matching between the nodes VH and VH̄ that covers the
nodes VH .

It is easy to see that Corollary 2.8.1.1 holds under the AC power flow model by
comparing (2.43) and (2.40).

2.8.4 Appendix D: Special Case: Known Post-Attack Power Injec-
tions

In this section, we extend our results to the special case that the control center can either
know that the grid after attack remains connected or fully recover the power injections.
We first extend [19, Lemma 2] as follows.

Lemma 2.8.2. There exists a vector x ∈ R|EH | that satisfies supp(x) = F , and

DHx = BH|G(θ − θ′)−∆H . (2.45)

Proof. Note that by definition, xst defined in the proof of Lemma 2.8.1 is the same as
the column corresponding to link (s, t) in D. Define a vector y ∈ R|E| by

ye =

 Bst(θ′
s − θ′

t) if e = (s, t) ∈ F,
0 o.w.

(2.46)

Then it is easy to see that ∑(s,t)∈F Bstxstx
T
stθ

′ = Dy. By (2.37), we have B(θ−θ′)−∆ =
Dy. Considering only the equations corresponding to VH yields

BH|G(θ − θ′)−∆H = DHyH , (2.47)

where we have used the fact that yH̄ = 0. Thus x = yH satisfies the conditions in the
lemma.

Based on this result, [19, Theorem 2] can be easily extended as follow:

Theorem 2.8.3. The failed links F within the attacked area can be localized correctly if:

1. H is acyclic (i.e., a tree or a set of trees), in which case (2.45) has a unique
solution x for which supp(x) = F , or

49

2. H is a planar graph satisfying (i) for any cycle C in H, |C ∩ F | < |C \ F |, and
(ii) F ∗ is H∗-separable8, in which case the optimization min ∥x∥1 s.t. (2.45) has a
unique solution x for which supp(x) = F .

Proof. Condition (1) is implied by [19, Lemma 3], which proved that DH has a full
column rank if and only if H is acyclic. This combined with Lemma 2.8.2 shows that if
H is acyclic, then (2.45) only has one solution, and hence the support of this solution
must be F .

Condition (2) is implied by the proof of [19, Theorem 2], which showed that if H
satisfies this condition, then any x for (2.45) satisfies ∥x∥1 ≥ ∥x∗∥1, where x∗ is a vector
satisfying the conditions in Lemma 2.8.2. Moreover, it showed that ∥x∥1 = ∥x∗∥1 only if
x = x∗. Thus, x∗, whose support equals F , can be computed by minimizing ∥x∥1 s.t.
(2.45).

Next, based on Theorem 2.3.1-2.3.2, we give an specific condition of H under which
F can be correctly recovered even if ∆∗ is unknown.

Corollary 2.8.3.1. If the grid stays connected after failure, H is acyclic, and H contains
either no load bus or no generator bus, then Alg. 1 is guaranteed to detect F correctly,
i.e., F̂ = F .

Proof. We only prove the case that H contains no generator bus since the other case can
be proved similarly. We first prove that any failed link l ∈ F will not be missed (l ∈ F̂).
Under Assumption 1, link l must have one endpoint (say u) such that D̃u,l < 0. Next,
we will build a hyper-node U such that the induced subgraph is a tree rooted at node u.
Specifically, such hyper-node can be constructed by breadth-first search (BFS) starting
from node u. In the first iteration of BFS, we start with U = {u} and add a neighbor vi
of u into U if e = (u, vi) ∈ F with D̃u,lD̃u,e < 0 or e = (u, vi) ∈ EU \F with D̃u,lD̃u,e > 0.
Then, we repeatedly add node v into U if ∃e = (s, v) ∈ EU ∩ F such that D̃U,lD̃U,e < 0
or ∃e = (s, v) ∈ EU \F such that D̃U,lD̃U,e > 0. This procedure will terminate since H is
acyclic, and the constructed U will satisfy condition 1) and condition 2) of Theorem 2.3.1.
Since all nodes u ∈ U are load buses, D̃U,l < 0, and the grid stays connected after failure,
we have fU,g = −∑u∈U ∆u = 0, which satisfies condition 3) of Theorem 2.3.1. Thus, we
have F ⊆ F̂ .

Next, we show that any operational link e ∈ EH \ F will not be falsely detected by
8Here H∗ is the dual graph of H, and F ∗ is the set of edges in H∗ such that each edge in F ∗ connects

a pair of vertices that correspond to adjacent faces in H separated by a failed link.

50

Alg. 1 (e /∈ F̂). Under Assumption 1, link e must have have one endpoint (say u) such
that D̃u,e > 0. The hyper-node U can be constructed as follows: start with U = {u}, add
node v into U if ∃e′ = (s, v) ∈ EU ∩ F or ∃e′ = (s, v) ∈ EU \ F such that D̃U,eD̃U,e′ < 0.
The resulting hyper-node must satisfy condition 1) and condition 2) of Theorem 2.3.2.
Again, we have fU,g = −∑u∈U ∆u = 0, which leads to satisfaction of condition 3) in
Theorem 2.3.2. Therefore, we have F̂ ⊆ F .

Now we demonstrate how to modify Alg. 1-3 if the grid after attack is known to stay
connected. In this case, Alg. 1 is modified by replacing constraints (2.6a) and (2.6b)
with ∆H = 0 (implied by the assumption of the connected post-attack grid). Next, we
demonstrate how Alg. 2-3 will change in this case. To this end, we study the effect of
∆H = 0 on Lemma 2.3.2. Noting that according to (2.9), any pair of (∆H ,xH) satisfying
(2.4) can be represented by c ∈ R|EH | as

∆H = ∆∗
H + D̃Hc, xH = x∗

H + I|EH |c. (2.48)

Thus, we have D̃Hc = 0 due to ∆H = ∆∗
H = 0, which is equivalent to requiring D̃Hc ≤ 0

and −D̃Hc ≤ 0. Accordingly, AD and gD in (2.13), which is used to model (2.6a) and
(2.6b) in Lemma 2.3.2, now become AT

D := [D̃T
H ,−D̃T

H], gD := 0. The direct implication
of gD = 0 is that fU,g = ∑

u∈U fu,g = 0,∀U ⊆ VH . That is to say, Theorems 2.4.1-2.4.3
still hold for the modified Alg. 1 except that f̂U,g = 0, which implies the following result:

Corollary 2.8.3.2. If it is known that the post-attack grid G′ = (V,E \ F) is connected,
then the state of any link that forms a 1-edge cut of H will be identified correctly by a
variation of Alg. 1 that replaces the constraints (2.6a) and (2.6b) by ∆H = 0.

Proof. As in the proof of Corollary 2.4.0.1, for any link e = (u1, u2) ∈ F̂ forming a cut of
H, we can verify that e ∈ F if min{fU1,g, fU2,g} − η|D̃U1,e| < 0 (otherwise, e must have
been estimated as operational by Theorem 2.3.2). Since fUi,g = 0 (i = 1, 2) if the grid
remains connected after the attack and |D̃U1,e| > 0 by Assumption 3, e ∈ F can always
be verified. Similar argument applies to any link l ∈ EH \ F̂ .

By Corollary 2.8.3.2, the verification of the link states in Ea can be skipped if the
post-attack grid is known to stay connected.

Finally, we experimentally study the benefits of knowing the connectivity, as shown
in Fig. 2.14 and Table 2.4. Specifically, ‘X-agnostic’ denotes the performance of ‘X’
without knowing the connectivity, while ‘X-known’ denotes the counterpart that adopts
the modification in this section. The meaning of ‘X’ is the same as that in Fig. 2.12. In

51

Table 2.4. Percentage of cases of connected post-attack Polish system (|VH | = 40)
|F | = 3 |F | = 6 |F | = 9 |F | = 12
57.12% 26.33% 11.87% 5.04%

Table 2.5. Percentage of cases of connected post-attack IEEE 300-bus system (|VH | = 20)
|F | = 2 |F | = 4 |F | = 6 |F | = 8
73.73% 51.10% 32.89% 18.54%

Table 2.4, we evaluate the percentage of randomly generated cases (H and F) in which
the post-attack grid G′ remains connected. We observe that (i) the knowledge of
connectivity can help verify more than 10% additional failed links and 30% additional
operational links; (ii) when |F | is small (e.g., |F | ≤ 3), G′ remains connected in the
majority of the cases. These results indicate the value of the knowledge of connectivity.
In Fig. 2.15 and Table 2.5, we evaluate the same metrics on IEEE 300-bus system, the
results of which are similar as that in Polish grid.

2.8.5 Appendix E: Adaptation of Verification Algorithms to AC Power
Flow Model

In this section, we will show how to obtain AC-Theorem 2.4.1–2.4.4 and the associated
AC-VOTE and AC-VOTE-PG.

Recall that the AC variants of gD and AD are given in (2.27). In this section, gD, AD,
and the associated fU,g refer to the values given in (2.27). For the ease of presentation,

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
nk

s

Verifiable-agnostic
Verifiable-known
Guaranteed-agnostic
Guaranteed-known
Experiment Results-agnostic
Experiment Results-known

(a) Fraction of failed links.

3 6 9 12
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
nk

s

Verifiable-agnostic
Verifiable-known
Guarantee-agnostic
Guarantee-known
Experiment Results-agnostic
Experiment Results-known

(b) Fraction of operational links.
Figure 2.14. Performance comparison for connected post-attack Polish system (|VH | = 40).

52

2 4 6 8
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
nk

s

Verifiable-agnostic
Verifiable-known
Guaranteed-agnostic
Guaranteed-known
Experiment Results-agnostic
Experiment Results-known

(a) Fraction of failed links.

2 4 6 8
|F|

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 li
nk

s

Verifiable-agnostic
Verifiable-known
Guarantee-agnostic
Guarantee-known
Experiment Results-agnostic
Experiment Results-known

(b) Fraction of operational links.
Figure 2.15. Performance comparison for connected post-attack IEEE 300-bus system
(|VH | = 20).

we first give the complete statement of AC-Lemma 2.3.2.

Lemma 2.8.3 (AC-Lemma 2.3.2). A line e ∈ F cannot be missed by FLD if for Qm = {e}
and Qf = ∅, there is a solution z ≥ 0 to

[AT
D,A

T
x ,W

T ,1]z = 0, (2.49a)

[gTD, gTx , gTw,0]z < 0. (2.49b)

Similarly, a line e′ ∈ Eo cannot be falsely detected as failed by FLD if there exists a
solution z ≥ 0 to (2.13) where W is constructed according to Qf = {e′} and Qm = ∅.

2.8.5.1 AC-VOTE

Recall from (2.23) that the counterpart of (2.5) under the AC model is

D̃ = [v⃗′]
(
Df [Yf v⃗′] + Dt[Ytv⃗′]

)
, (2.50)

which indicates the “power flows” after attack. Recall from (2.22b) that D̃p,H = Re
(
D̃H

)
and D̃q,H = Im

(
D̃H

)
. Then, we define D̃p,U,e and D̃q,U,e following (2.16), where D̃ is

replaced by D̃p and D̃q. Then, AC-Theorem 2.4.1-2.4.3 are given as follows:

Theorem 2.8.4 (AC-Theorem 2.4.1). Consider a hyper-node U with EU = {e1, e2} and
e1, e2 ∈ EH \ F̂ . If D̃p,U,e1D̃p,U,e2 < 0, then e1, e2 are guaranteed to both belong to EH \ F
if

53

1. f̂U,g + (η − 1) min{|D̃p,U,e1|, |D̃p,U,e2|} < 0, and

2. η < 1−min{ f̂U,g+|D̃p,U,e1 |
|D̃p,U,e2 | ,

f̂U,g+|D̃p,U,e2 |
|D̃p,U,e1 | }.

If D̃p,U,e1D̃p,U,e2 > 0, then we can verify:

1. e1 ∈ EH \ F if (1− η)|D̃p,U,e1| > f̂U,g + |D̃p,U,e2|,

2. e2 ∈ EH \ F if (1− η)|D̃p,U,e2| > f̂U,g + |D̃p,U,e1|.

Theorem 2.8.5 (AC-Theorem 2.4.2). Consider a hyper-node U with EU = {e1, e2} and
e1 ∈ F̂ , e2 ∈ EH \ F̂ . If D̃p,U,e1D̃p,U,e2 > 0, then the states of e1, e2 are guaranteed to be
correctly identified if

1. f̂U,g − η|D̃p,U,e1| < 0, f̂U,g + (η − 1)|D̃p,U,e2 | < 0, and

2. either η > f̂U,g+|D̃p,U,e2 |
|D̃p,U,e1 | or η < 1− f̂U,g+|D̃p,U,e1 |

|D̃p,U,e2 | .

If D̃p,U,e1D̃p,U,e2 < 0, then we can verify:

1. e1 ∈ F if η|D̃p,U,e1| > f̂U,g + |D̃p,U,e2|,

2. e2 ∈ EH \ F if (1− η)|D̃p,U,e2| > f̂U,g + |D̃p,U,e1|.

Theorem 2.8.6 (AC-Theorem 2.4.3). Consider a hyper-node U with EU = {e1, e2} and
e1, e2 ∈ F̂ . Then, we can verify:

1. e1 ∈ F if η|D̃p,U,e1| > f̂U,g + |D̃p,U,e2|,

2. e2 ∈ F if η|D̃p,U,e2| > f̂U,g + |D̃p,U,e1|.

We sketch the proofs below. Recall that the key of our proof for Theorem 2.4.1-2.4.3
is to find a solution for (2.13a). That is to say, the key to prove their AC variants is to
find solution for (2.49). To achieve this, we first rewrite (2.49) as follows

[AT
p,D,A

T
q,D,A

T
x ,W

T ,1]z = 0, (2.51a)

[gTp,D, gTq,D, gTx , gTw,0]z < 0. (2.51b)

where Ap,D (Aq,D) denotes the submatrix of AD that involves D̃p,H (D̃q,H), and gp,D

(D̃q,H) denotes the subvector of gD that involves active (reactive) power injections. Next,
we consider a subsystem of (2.51) given below:

[AT
p,D,A

T
x ,W

T ,1]z = 0, (2.52a)

54

[gTp,D, gTx , gTw,0]z < 0. (2.52b)

Suppose there exists a solution [zp, zA, zx, zw, z∗] that is feasible to (2.52), then it is easy
to see that [zp,0, zA, zx, zw, z∗] must also be feasible to (2.51). Notice that (2.52) is the
same as (2.13a) with D̃ replaced as D̃p. Thus, following the proof of Theorem 2.4.1-2.4.3,
we have AC-Theorem 2.4.1-2.4.3.

Considering the similarity between Theorem 2.4.1-2.4.3 and their AC variants, AC-
VOTE takes the same form as VOTE with D̃ replaced as D̃p.

2.8.5.2 AC-VOTE-PG

It is worth noting that the only difference in gD between (2.27b) and (2.12) is the
additional part corresponding to the reactive power qH and q′∗

H in (2.27). Thus, as
shown in (2.53), we denote gp,D,L,u := −∆∗

p,H,u and gp,D,L,−u := −p′∗
H,u, gp,D,S,u := p′∗

H,u

and gp,D,S,−u := ∆∗
p,H,u. Similarly, we denote gq,D,I,u := −∆∗

q,H,u and gq,D,I,−u := −q′∗
H,u,

gq,D,C,u := q′∗
H,u and gq,D,C,−u := ∆∗

q,H,u.

gD AD



gp,D,L,u −ΛL∆
∗
p,H ΛLD̃p,H

gp,D,L,−u −ΛLp
′∗
H −ΛLD̃p,H

gp,D,S,−u ΛS∆
∗
p,H −ΛSD̃p,H

gp,D,S,u ΛSp
′∗
H ΛSD̃p,H

gq,D,I,u −ΛI∆
∗
q,H ΛID̃q,H

gq,D,I,−u −ΛIq
′∗
H −ΛID̃q,H

gq,D,C,−u ΛC∆
∗
q,H −ΛCD̃

T
q,H

gq,D,C,u ΛCq
′∗
H ΛCD̃q,H

. (2.53)

Then, by following the proof of Theorem 2.4.4, we have

Theorem 2.8.7 (AC-Theorem 2.4.4). Given a set Ev of lines with known states, we
define ĝx ∈ R2|EH | exactly the same as that in Theorem 2.4.4. We define ĝp,D,L,u as
follows:

ĝp,D,L,u =

gp,D,L,u if u ∈ UB
|pu| if u /∈ UB

(2.54)

55

and define ĝp,D,L,−u, ĝp,D,S,u and ĝp,D,S,−u similarly. Then, we define ĝq,D,I,u as follows:

ĝq,D,I,u =

gq,D,I,u if u ∈ UB
|qu| if u /∈ UB

(2.55)

and define ĝp,D,I,−u, ĝq,D,C,u and ĝq,D,C,−u similarly. Then, a line l ∈ F̂ is verified to have
failed if there exists a solution z ≥ 0 to

[AT
D,A

T
x ,w

T ,1]z = 0, (2.56a)

[ĝTD, ĝTx , gw,0]z < 0, (2.56b)

where w ∈ {0, 1}|EH | is defined to be Wf with Qf = {l}, and gw := −η. Similarly,
a line e ∈ EH \ F̂ is verified to be operational if ∃z ≥ 0 that satisfies (2.20), where
w ∈ {0, 1}|EH | is defined to be Wm with Qm = {e}, and gw := η − 1.

Thus, AC-VOTE-PG takes the same form as VOTE-PG, where solving (2.20) in
Line 4 becomes solving (2.56).

56

Chapter 3 |
Preventing Outages under Coordi-
nated Cyber-Physical Attack with
Secured PMUs

3.1 Introduction
Coordinated cyber-physical attacks (CCPA) [33] have gained a great deal of attention due
to the stealthiness of such attacks and the potential for severe damage on to the smart
grid. The power of CCPA is that its physical component damages the grid while its cyber
component masks such damage from the control center (CC) to prolong outages and po-
tentially enable cascades. For instance, in the Ukrainian power grid attack [23], attackers
remotely switched off substations (damaging the physical system) while disrupting the
control through telephonic floods and KillDisk server wiping (damaging the cyber system).

Defenses against CCPA can be broadly categorized into detection and prevention.
Attack detection mechanisms aim at detecting attacks that are otherwise undetectable
using traditional bad data detection (BDD) by exploiting knowledge unknown to the
attacker [63]. However, the knowledge gap between the attacker and the defender may
disappear due to more advanced attacks, and relying on detection alone risks severe
consequences in case of misses. Therefore, in this work, we focus on preventing attacks
using secured sensors.

We consider a powerful attacker with full knowledge of the pre-attack state of the grid
and the locations of secured PMUs. The attacker launches an optimized CCPA where the
physical attack disconnects a limited number of lines and the cyber attack falsifies the
breaker status and the measurements from unsecured sensors to mask the physical attack

57

while misleading security constrained economic dispatch (SCED) at the CC. Such attacks
can result in severe cascading failures. For example, under the setting in Section 3.5,
CCPA in absence of secured PMUs can cause initial overload-induced tripping at 2, 1,
and 2 lines in IEEE 30-bus, 57-bus, and 118-bus systems, respectively. Moreover, the
re-distribution of power flows on the initially tripped lines may cause cascading outages.
Take IEEE 118-bus system as an example. There is an attack that physically disconnects
line 144 and manipulates the measurements to cause overload-induced tripping at line
109. These initial outages will trigger a cascade that eventually results in outages at 82
lines 1. This observation highlights the importance of defending against such attacks.

While attack prevention traditionally aims at eliminating undetectable attacks by
deploying secured PMUs to achieve full observability [67], this approach can require a
large number of PMUs. With budget constraint, the operator may want to gradually
deploy PMUs with a lower defending goal as the trade-off. To address this issue, we lower
the goal to preventing undetectable attacks from causing outages. Specifically, we want
to deploy the minimum number of secured PMUs such that the attacker will not be able
to cause overload-induced line tripping due to overcurrent protection devices. The key
novelty of our approach is that we allow undetectable attacks to exist but prevent them
from causing any outages, hence potentially requiring fewer secured PMUs. For instance,
we can prevent overload-induced tripping using 71% fewer secured PMUs compared to
the requirement of full observability in IEEE 118-bus system.

3.1.1 Related Work

Attacks: False data injection (FDI) is widely adopted to launch cyber attacks in CCPA
to bypass the traditional BDD [33]. A typical form of FDI is load redistribution at-
tack [68], which together with physical attacks [17,33,69] that alter grid topology, aims
to mislead SCED by injecting false data for economic loss or severe physical consequences
such as sequential outages [17]. Bi-level optimization is widely adopted for analyzing
the impact of CCPA on state deviation [70] or line flow changes [71–74]. In this work,
we extend them into a stronger attacker that jointly optimizes the location of physical
attacks and the attacking target.

Defenses: To eliminate the existence of FDI with minimal cost, different strategies
1This simplified example is based on the DC power flow model for illustrative purposes. Under the

quasi-steady-state modeling assumption, it is assumed that the power grid can always reach a steady
state. In practice, factors such as voltage collapse during the transient phase [64], preventive control
measures [65], and other considerations [66] may lead to a different number of tripped lines than initially
anticipated from such line tripping in this example.

58

have been studied, such as directly protecting meters [48, 74–78] or deploying secured
PMUs [50,67, 79]. Due to the connection between observability of the grid and FDI [80],
solutions on achieving full observability through PMUs [81,82] can also be leveraged to
defend against FDI. Unlike the aforementioned works, our work only aims to prevent
attacks from causing outages, which can significantly reduce the required number of
secured PMUs.

Tri-level optimization is widely used for modeling interactions among the defender,
the attacker and the operator in smart grid. To name a few, a tri-level model is proposed
in [83] to find the optimal set of lines to protect from physical attacks to minimize load
shedding. In [84,85], budget-constrained equipment protection are studied. In [86], the
network component hardening problem is studied in distribution networks. The work
closest to ours is [74], which formulates a tri-level optimization to defend against CCPAs
by securing sensor measurements, with a different objective of minimizing the number
of overloaded lines under a budget constraint. Besides the different objective, [74] also
differs from our work in that: (i) their physical attack is limited to a single line and not
optimized, and accordingly, their defender simply minimizes the sum of overloaded lines
across all attack instances (each disconnecting a single line); (ii) their defender is allowed
to select individual meters to protect. In contrast, we consider physical attacks that
can disconnect multiple lines at optimized locations, and our defense is via deploying
secured PMUs that offer protection at the granularity of one-hop neighborhoods. These
differences make our problem much more challenging, while enabling our solution to
defend against stronger attacks.

3.1.2 Summary of Contributions

We summarize our contributions as follows:

1. Instead of eliminating the existence of FDI, we investigate the optimal secured
PMU Placement for Outage Prevention (PPOP) problem to defend against CCPA,
where we formulate a strong attacker that jointly optimizes physical attack locations
and target lines. The proposed approach can potentially require fewer PMUs than
approaches that eliminate FDI.

2. We propose an alternating optimization algorithm to solve PPOP by generating
additional constraints from each infeasible PMU placement. Specifically, we demon-
strate how to generate “No-Good” constraints and “Attack-Denial” constraints to
solve PPOP optimally.

59

3. We develop a heuristic algorithm for PPOP to produce a possibly suboptimal
solution. The complexity of the proposed heuristic is polynomial in the grid size,
which makes it scalable to large networks.

4. We systematically evaluate the proposed solution on IEEE 30-bus, IEEE 57-bus,
IEEE 118-bus, and IEEE 300-bus systems. The results demonstrate that the
proposed solution can help to save the secured PMUs, which sheds light on the
practical deployment of secured sensors to defend against CCPA.

Roadmap: We formulate our PPOP problem in Section 3.2 and demonstrate both
exact algorithms and inexact heuristic to solve PPOP in Section 3.3. We evaluate the
performance of PPOP in Section 3.5 and conclude the paper in Section 3.6. For the ease
of reading, we put some technical details and proofs in the Section 3.7.

3.2 Problem formulation
Notations: For a matrix A, we denote by ai its i-th column and Ak its k-th row. We
slightly abuse the notation | · | in that |A| indicates the cardinality if A is a set and the
element-wise absolute value if A is a vector or matrix. Logical expression↔ indicates the
“if and only if” logic, while → denotes the “if then” logic. When the operators ≥,≤,=
are applied to two vectors, they indicate element-wise operations. Let a ∈ Rna , b ∈ Rnb

be two vectors, then a⊕ b ∈ Rna+nb indicates the vertical concatenation of a and b. Let
⌈a⌉ denote the element-wise ceiling. If na = nb = n, then a⊙ b := (aibi)ni=1 denotes the
Hadamard product, i.e., the element-wise product. We use Λ(·) ∈ {0, 1}m×n with one
nonzero element in each row to select entries from a vector such that Λ(·)x is a subvector
of x.

3.2.1 Power Grid Modeling

We model the power grid as a connected undirected graph G = (V,E), where E denotes
the set of lines (lines) and V the set of nodes (buses). Under the DC power flow
approximation, which is widely adopted for studying security issue on grid [17,33,67–74],
each line e = (s, t) is characterized by reactance re = rst = rts. The grid topology can be

60

represented by the admittance matrix B := (Buv)u,v∈V ∈ R|V |×|V |, defined as

Buv =


0 if u ̸= v, (u, v) ̸∈ E,
−1/ruv if u ̸= v, (u, v) ∈ E,
−∑w∈V \{u} Buw if u = v.

(3.1)

Besides B, the grid topology can also be described by incidence matrix D ∈ {−1, 0, 1}|V |×|E|,
which is defined as follows:

Dij =


1 if line ej comes out of node vi,
−1 if line ej goes into node vi,
0 otherwise,

(3.2)

where the orientation of each line is assigned arbitrarily. By defining Γ ∈ R|E|×|E| as
a diagonal matrix with diagonal entries Γe = 1

re
(e ∈ E), we have B = DΓDT and

f = ΓDTθ ∈ R|E| where f denotes the line flows. By defining network states as phase
angles θ := (θu)u∈V and active powers as p = (pu)u∈V , the relationship between p,θ and
f is given as

p = Bθ = Df , (3.3)

The CC will periodically conduct state estimation, whose results will be used for SCED to
re-plan the power generation [17, 68]. Formally, let z = [zTN , zTL]T ∈ Rm denote the unse-
cured meter measurements, where zN ∈ RmN denotes the power injection measurements
over (a subset of) nodes and zL ∈ RmL denotes the power flow measurements over (a sub-
set of) lines. Let ΛN and Λp be two row selection matrices such that zN = ΛNz = Λpp.
Similarly, we define row selection matrices ΛL and Λf such that zL = ΛLz = Λff .
Then, we have

z = Hθ + ϵ for H :=
 ΛpB

ΛfΓD
T

 , (3.4)

where H is the measurement matrix based on the meter locations and the reported
breaker status, and ϵ is the measurement noise. In the rest of the paper, we assume that
the measurements satisfy the conditions of [87, Theorem 5] such that H has full column
rank to support unique recovery of θ from (3.4) (before attack). If θ̄ is the estimated
phase angle from z and H, then BDD will raise alarm if ∥z −Hθ̄∥ is greater than a

61

predefined threshold.
Given p0 := Bθ̄, the CC will conduct SCED to calculate new generation to meet

the demand with minimal cost. Specifically, let Λg ∈ {0, 1}|Vg |×|V |, Λd ∈ {0, 1}|Vd|×|V | be
row selection matrices for generator/load buses in p, where Vd and Vg denote the sets
of load buses and generator buses, respectively. Denote θ̂ as the decision variable where
Bθ̂ represents the new power injection after SCED, and ϕ ∈ R|Vg | as the cost vector for
power generation. Then, SCED can be formulated as follows [17]:

ψs(p0,D) = arg min
θ̂

ϕT (ΛgBθ̂) (3.5a)

s.t. ΛdBθ̂ = Λdp0, (3.5b)

ΓDT θ̂ ∈ [−fmax,fmax], (3.5c)

ΛgBθ̂ ∈ [pg,min,pg,max], (3.5d)

where fmax ∈ R|E| indicates the normal line flow limits, pg,min and pg,max denote lower/up-
per bounds on generation, and (3.5b) indicates that demands on all load buses are satisfied.

3.2.2 Modeling Coordinated Cyber-Physical Attack (CCPA)

In this section, we formulate the attack model according to a load redistribution attack [68]
that aims at causing the maximum outages, so that a defense against this attack can
prevent outage under any attack under the same constraints. In the sequel, “ground
truth” means the estimated value based on unmanipulated measurements, which may
contain noise.

t0 t1 t2 timet3

෩𝐻, ෨𝐵, ෩𝐷 𝐻, 𝐵, 𝐷

Physical attack

Before

attack

CCPA

deployed

SCED

at CC

Post-SCED

steady state

𝑢0

𝑢5

𝑢1

𝑢3 𝑢4

𝑢2

Figure 3.1. Timeline of an instance of CCPA

For ease of presentation, we summarize the timeline of the entire attack process, as
shown in Fig 3.1. Specifically,

• At t0, the attacker estimates θ0 and p0 := B̃θ0 by eavesdropping on z0 and H̃ .

• At t1, CCPA is deployed to change the ground-truth from z0, H̃ ,θ0 to z1,H and
θ1, respectively.

62

• At t2, the CC receives falsified information, i.e., H̃ and z̃2, which leads to θ̃2. Then
the CC will deploy a new dispatch of power generation as p̃3 := B̃θ̃3, where θ̃3

denotes the associated predicted phase angles.

• At t3, the new dispatch takes effect and reaches steady state, with the true phase
angles θ3 and power flows f3.

Key notations at different time instances are summarized in Table 3.1, where “—” means
that the information is not available to the CC at the given time instance.

Table 3.1. Notations v.s. Timeline
time t0 t1 t2 t3

True measurement matrix H̃ H H H

Measurement matrix at CC — — H̃ H̃

True phase angle θ0 θ1 θ2 = θ1 θ3

Phase angle at CC — — θ̃2 θ̃3

True measurement z0 z1 z2 = z1 z3

measurement at CC — — z̃2 —

First, we model the influence of attacks on SCED. We define ac ∈ Rm to be the
cyber-attack vector, which changes the measurements received by the CC to z̃2 = z2 +ac,
and ap ∈ {0, 1}|E| the physical-attack vector, where ap,e = 1 indicates that line e is
disconnected by the physical attack. As the physical attack changes the topology, we
use G̃ to denote the pre-attack topology and G the post-attack topology. Accordingly,
B̃, D̃, H̃ denote the pre-attack admittance, incidence, and measurement matrices, and
B,D,H their (true) post-attack counterparts, related by

B = B̃ − D̃Γdiag(ap)D̃T , D = D̃ − D̃diag(ap), (3.6)

and H = H̃ − [(ΛpD̃Γdiag(ap)D̃T)T , (ΛfD̃diag(ap))T]T . Falsified measurements in z̃2

and breaker status will mislead CC to an incorrect state estimation and thus falsified
SCED decisions. Hence, overload-induced line tripping can happen at t3.

To bypass BDD, the attacker has to manipulate breaker status information to mask
the physical attack, misleading the CC to believe that the measurement matrix is H̃

instead of H . Also, measurements have to be modified into z̃2 such that BDD with z̃2

and H̃ as input will not raise any alarm. Below, we will derive constraints on ap and ac

such that the modified data can pass BDD under the assumption that the pre-attack

63

data can pass BDD as assumed in FDI [33]. Considering that z̃2 = z2 + ac, ac should be
constructed such that

∥z̃2 − H̃θ̃2∥ = ∥z0 − H̃θ0 + z2 + ac − z0 + H̃θ0 − H̃θ̃2∥

= ∥z0 − H̃θ0∥, (pre-attack residual) (3.7)

which leads to the following construction of ac:

ac = z0 − z2 + H̃(θ̃2 − θ0) (3.8)

= H̃θ0 + ϵ0 − (Hθ2 + ϵ0) + H̃(θ̃2 − θ0) (3.9)

=
 ΛpB̃

ΛfΓD̃
T

 θ̃2 −

 ΛpB

ΛfΓD
T

θ2. (3.10)

Besides (3.8), there may be additional constraints on ac to avoid causing suspicion.
Specifically, following [68], we assume that all the power injections at generator buses
are measured and not subject to attacks, i.e.,

ΛgD̃f̃2 = ΛgB̃θ̃2 = ΛgBθ2 = ΛgDf2 = Λgp0, (3.11)

recalling that Λg is the row selection matrix corresponding to generator buses. Moreover,
by representing the maximum normal load fluctuation through α ≥ 0, the magnitude of
falsification at load buses needs to be constrained due to load forecasting [17,68], which
can be modeled by 2

−α|p0| ≤ B̃θ̃2 − p0 ≤ α|p0|. (3.12)

Following the convention in [68,72], the attack is constrained by a predefined constant
ξp denoting the maximum number of attacked lines and another constant ξc denoting the
maximum number of manipulated measurements, i.e.,

∥ap∥0 ≤ ξp, ∥ac∥0 ≤ ξc. (3.13)

In addition, we constrain ap so that the graph after physical attack remains connected,
2In contrast to [88] that only imposes the magnitude constraint on measured buses, constraint (3.12)

is imposed on all buses (although subsumed by (3.11) for generator buses). This is because under the
assumption of full-rank measurement matrix (Section 3.2.1), the CC can recover all the phase angles
and hence the power injections at all the buses, and thus the attacker needs to avoid causing too much
deviation in the power injections at all the buses.

64

which is needed for stealth of the attack according to [17, 70]. Specifically, defining
fcon ∈ R|E| as a pseudo flow and u0 as the reference node, we can guarantee network
connectivity at t2 by ensuring

D̃ufcon =

|V | − 1, if u = u0,

−1, if u ∈ V \ {u0},
(3.14a)

−|V | · (1− ap,e) ≤ fcon,e ≤ |V | · (1− ap,e). (3.14b)

With lines oriented as in D̃, (3.14a) (flow conservation constraint) and (3.14b) (line
capacity constraint) ensure the existence of a unit pseudo flow from u0 to every other
node in the post-attack grid and hence the connectivity of the post-attack grid, where
fcon,e > 0 if the flow on e is in the same direction of the line and fcon,e < 0 otherwise.

As shown in [17], attacks that mislead SCED can cause initial outage at t3, which
can cause cascading outages at other lines since significantly overloaded lines will be
automatically tripped by protective devices and the associated power flow will be re-
distributed. Specifically, let fmax ∈ R|E| be the power flow limits imposed in SCED and
γ := (γe)e∈E be the threshold for overload-induced tripping, i.e., e will be tripped by
protection devices (i.e., having an outage) if

|fe| > γefmax,e. (3.15)

3.2.3 Modeling the Protection Effect of Secured PMUs

Phasor Measurement Units (PMUs) exhibit enhanced resilience against false data injection
attacks [50], attributed to their advanced features. Firstly, PMU measurements are
marked with high-precision timestamps, synchronized via GPS, complicating the execution
of covert attacks. Secondly, PMUs sample the grid’s state at a rate of 60 to 120 frames
per second [89], a frequency significantly higher than that of traditional Remote Terminal
Units (RTUs). This high sampling rate generates time series data that characterizes the
system’s dynamics, thereby facilitating the use of advanced detection algorithms [90].

Let β ∈ {0, 1}|V | be the indicator vector for PMU placement such that βu = 1 if
and only if a secured PMU is installed at node u. We define Ω(β) := {u|βu > 0} and
the inverse process β(Ω) : βu = 1 if u ∈ Ω and βu = 0 otherwise. Let Nu be the node
set containing neighbors of node u (including u) and Eu be the line set composed of
lines incident on u. According to [50], by measuring both voltage and current phasor, a
PMU on node u can guarantee the correctness of phase angles in Nu and protect lines in

65

Eu from both cyber and physical attacks. Formally, we define xN ∈ {0, 1}|V | such that
(xN,u = 1)↔ (∃v ∈ Nu such that βv = 1), which can be modeled as

∆−1Aβ ≤ xN ≤∆−1Aβ + ∥∆∥∞ − 1
∥∆∥∞

, (3.16)

where ∆ ∈ Z|V |×|V | is a diagonal matrix with ∆uu = |Nu|, while A := A + I is the
adjacency matrix of the grid with added self-loops at all nodes. Similarly, we define ζ to
be any constant within [0.5, 1) and xL ∈ {0, 1}|E| satisfying (xL,e = 1)↔ (∃v with e ∈
Ev and βv = 1), which can be linearlized as

0.5|D|Tβ ≤ xL ≤ 0.5|D|Tβ + ζ. (3.17)

We assume that the PMU locations are known to the attacker, thus the cyber attack
is constrained as follows:

xN,u = 1→ θ̃2,u = θ2,u,∀u ∈ V, (3.18a)

xL,e = 1→ ap,e = 0, ∀e ∈ E. (3.18b)

Note that (3.16)-(3.18) implicitly protect the power flow measurements on lines incident
to a PMU. To see this, suppose that e = (s, t) and βs = 1. Then we must have
xN,s = xN,t = xL,e = 1 due to (3.16)-(3.17). By (3.18), it is guaranteed that z̃2,e :=
(θ̃2,s − θ̃2,t)/rst = (θ2,s − θ2,t)/rst =: z2,e.

3.2.4 Optimal PMU Placement Problem

Our main problem, named PMU Placement for Outage Prevention (PPOP), aims at
placing the minimum number of secured PMUs so that no undetectable CCPA can
cause overload-induced tripping. To achieve this, we model the problem as a tri-level
optimization problem (an overview of PPOP is given in Fig. 4 in Appendix 3.7.1).

The middle-level optimization is the attacker’s problem, which aims to maximize
the number of overloaded lines without being detected. Instead of using ac as decision
variable, we propose to formulate over f̃i,fi and θ̃i,θi where i ∈ {2, 3}. In the rest of the
paper, we will apply big-M modeling technique that introduces sufficiently large constants
denoted as M(·) for linearization. The calculation of M(·) is given in Appendix 3.7.2.

66

Specifically, the constraints on θ2 and f2 are:

−M2,a,e (1− ap) ≤ f2 ≤M2,a,e (1− ap) , (3.19a)

D̃f2 = p0, (3.19b)

−M2,fap ≤ ΓDθ2 − f2 ≤M2,fap. (3.19c)

The constraints (3.19a) and (3.19b) guarantee the consistency between f2 and p0 given
ap, where ap,e = 1 will force f2,e = 0. The role of (3.19c) is to force the consistency
between f2 and θ2 for all e with ap,e = 0, which is necessary for the uniqueness of f2.
Similarly, we can transform (3.7)-(3.13) into constraints over f̃2, θ̃2, and ap, which are

− fmax ≤ f̃2 ≤ fmax, (3.20a)

ΓD̃T θ̃2 − f̃2 = 0, (3.20b)

θ̃2,u − θ2,u ≤M2,θ · (1− xN,u), (3.20c)

θ̃2,u − θ2,u ≥ −M2,θ · (1− xN,u), (3.20d)

− α|p0| ≤ D̃f̃2 − p0 ≤ α|p0|, (3.20e)

ΛgD̃f̃2 = Λgp0, (3.20f)

∥Λf

(
f̃2 − f2

)
∥0 + ∥Λp

(
D̃f̃2 − p0

)
∥0 ≤ ξc, (3.20g)

∥ap∥0 ≤ ξp, (3.20h)

where (3.20a)-(3.20b) guarantee the validity of f̃2 as in (3.19a)-(3.19c), (3.20c)-(3.20d)
linearize (3.18a) (M2,θ defined in Appendix 3.7.2), while (3.20e), (3.20f), and (3.20g)–
(3.20h) correspond to (3.12), (3.11), and (3.13), respectively. It is worth noting that
there exists an ac in the form of (3.10) for any f̃2 and θ̃2 satisfying (3.20) due to the
relationship between f̃2, θ̃2 and ac shown in (3.10) and (3.20b). Moreover, the constraints
on θ3, θ̃3, and f3 are

pg,min ≤ ΛgB̃θ̃3 ≤ pg,max (3.21a)

− fmax ≤ ΓDT θ̃3 ≤ fmax, (3.21b)

ΛdB̃θ̃3 = ΛdD̃f̃2 (3.21c)

−M3,a(1− ap) ≤ f3 ≤M3,a(1− ap), (3.21d)

ΛdD̃f3 = Λdp0, ΛgD̃f3 = ΛgB̃θ̃3, (3.21e)

−M3,fap ≤ ΓD̃Tθ3 − f3 ≤M3,fap, (3.21f)

67

where (3.21a)-(3.21c) describe the feasible region of θ̃3 under false data injection, and
(3.21d)–(3.21f) are used to enforce the power flow equation (3.3) at t3, where ΛgB̃θ̃3 is
the post-SCED generation predicted by the attacker. While a straightforward formulation
of the power flow equation should be

ΓDTθ3 = f3, ΛdDf3 = Λdp0, ΛgDf3 = ΛgB̃θ̃3, (3.22)

such a formulation will introduce bilinear terms DTθ3 and Df3, as the post-attack inci-
dence matrix D is a function of the physical-attack vector ap that is also a decision variable
for the attacker. To avoid the bilinear terms, we use (3.21d) to force f3,e = 0 when ap,e = 1
(line e is disconnected), and (3.21f) to force Γed̃Te θ3 = ΓedTe θ3 = f3,e when ap,e = 0.
Moreover, under (3.21d), we observe that Df3 = ∑

e∈E def3,e = ∑
e∈E d̃ef3,e = D̃f3, as

de = d̃e if ap,e = 0 and def3,e = d̃ef3,e = 0 if ap,e = 1, which explains (3.21e).
Thus, the attacker’s problem, which defines the optimal attack strategy, can be

formulated as:

ψa(β) := max ∥π∥0 (3.23a)

s.t. (3.14), (3.16)− (3.21), (3.23b)

θ2,u0 = θ3,u0 = θ̃2,u0 = θ̃3,u0 = 0, (3.23c)

θ̃3 = ψs(B̃θ̃2, D̃), (3.23d)
|f3,e|
fmax,e

> γe ↔ πe = 1,∀e ∈ E, (3.23e)

where yc := θ̃2 ⊕ θ̃3 ⊕ θ2 ⊕ θ3 ⊕ f2 ⊕ f3 ⊕ f̃2 ⊕ fcon and yb := π ⊕ ap ⊕ xN ⊕ xL

are continuous and binary decision variables, respectively. Here, πe = 1 if and only if
line e is overloaded to be tripped, which is ensured by (3.23e). Thus, the objective is
to maximize the number of overload-induced tripped lines due to the attack-induced
load redistribution. The constraints (3.23c) fixes the phase angle at the reference node,
denoted as node u0. The constraint (3.23d) incorporates the lower-level optimization of
SCED (3.5) by specifying the post-SCED generation, determined by θ̃3.

We formulate the upper-level PMU placement problem as

min ∥β∥0 (3.24a)

s.t. ψa(β) = 0 (3.24b)

where the decision variable is β ∈ {0, 1}|V |, and ψa(x) defined in (3.23) denotes the

68

maximum number of lines that will be tripped according to (3.15) at t3. In the sequel,
we call (ap,ac, e) an attack tuple, which is called “successful” under PMU placement β if
there exists a feasible solution to (3.23) with physical attack ap and cyber attack ac such
that πe = 1. Moreover, we call (ap, e) a successful attack pair under β if it can form a
successful attack tuple under β.

Remark 1: While the above formulation treats the load profile p0 as a constant, it can
be easily extended to handle the fluctuations in loads. This can be modeled by treating
p0 as a decision variable in the attacker’s optimization, constrained by the expected range
of fluctuation, e.g., p0 ∈ [κp(0), κp(0)], or the union of ranges around multiple operating
points:

p0 ∈
i0⋃
i=1
{κip(i) ≤ p ≤ κip

(i)}. (3.25)

This enlarges the solution space for the attacker, which changes the meaning of ψa(β) to
the maximum number of tripped lines under the worst load profile and the worst attack
under this load profile. Clearly, a PMU placement that avoids overload-induced tripping
in this worst scenario can avoid overload-induced tripping in any scenario encountered
during operation, as long as the load profile stays within the predicted range.

Remark 2: In practice, PMUs are often deployed in stages. Thus, it may be desirable
that a temporary PMU placement designed to prevent outages can be augmented into an
optimal PMU placement βopt in the long run (e.g., a minimum placement that provides
full observability). This can be modeled by adding a constraint in (3.24) that requires
β ≤ βopt.

3.3 Solving PPOP
The PPOP problem (3.23)-(3.24) is a tri-level non-linear mixed integer problem, which
is notoriously hard [91]. In this section, we first formally prove that the problem is
NP-hard, and then demonstrate how to transform it into a bi-level mixed-integer linear
programming (MILP) problem. Next, we propose an alternating optimization framework
based on constraint generation to solve the problem optimally. Finally, to accelerate the
computation, we develop a polynomial-time heuristic.

69

3.3.1 Hardness and Conversion to Bi-Level MILP

Although multi-level non-linear mixed integer programming is generally hard, PPOP is
only a special case and hence needs to be analyzed separately. Nevertheless, we show
that PPOP is NP-hard (See proof in Section. 3.7.5).

Theorem 3.3.1. The PPOP problem (3.24) is NP-hard.

The attacker’s problem (3.23) can be linearized into a MILP (see details in Sec-
tion 3.7.1), which implies that PPOP can be converted into a bi-level MILP.

Instead of solving the PPOP problem (3.24), we will focus on a variant by considering
a stronger attacker that relaxes the constraints in (3.23). Specifically, we will relax (3.23d)
by omitting the optimality requirements in (3.5), i.e., (3.23d) is replaced by (3.5b)-(3.5d).
Such replacement results in a relaxed attacker’s problem ψ

a
(β), whose feasible region is

described by (3.23b), (3.23c), (3.23e) and (3.5b)-(3.5d). The relationship between ψ
a
(β)

and ψa(β) is summarized as follows:

Lemma 3.3.1. Every feasible solution to ψa(β) is also feasible to ψ
a
(β).

Proof. In terms of the feasible region, the only difference between ψa(β) and ψ
a
(β) is

the constraint on θ̃3. It is easy to see that ψ
a
(β) has less constraints on θ̃3 than ψa(β),

which completes the proof.

Then, we denote PPOP-r as the PMU placement problem that replace (3.24b) as

ψ
a
(β) = 0. (3.26)

The relationship between PPOP and PPOP-r is summarized as follows:

Theorem 3.3.2. Every feasible PMU placement (i.e., β) to PPOP-r is also feasible to
PPOP.

Proof. The direct implication of Lemma. 3.3.1 is that if there exists (yc,yb) such that
ψa(β) ≥ 1, we must have ψ

a
(β) with (yc,yb). In other words, if ψ

a
(β) = 0 for the given

β, we must have ψa(β) = 0, which completes the proof.

In the sequel, we will replace PPOP as PPOP-r and use these two terms interchange-
ably. It is reasonable to consider PPOP-r instead of PPOP since the cost in SCED (i.e.,
ϕ) may change over time. Therefore, a PMU placement should be be robust under all
possible costs in SCED.

70

3.3.2 An Alternating Optimization Framework

Algorithm 4: Alternating Optimization
1 Initialization: k = 1, β̂(k) = 0;
2 while True do
3 Solve (3.23) under β̂(k) to obtain ψa(β̂(k));
4 if ψa(β̂(k)) > 0 then
5 Add constraints to (3.24);
6 k ← k + 1, obtain β̂(k) by solving (3.24), with (3.24b) replaced by the

generated constraints
7 else break ;
8 Return β̂(k), indicators of the selected PMU placement;

As a bi-level MILP, PPOP is still difficult to solve due to the integer variables in
(3.23) and (3.24). Since one of the fundamental challenges in solving bi-level MILPs is the
lack of explicit description of the upper-level optimization’s feasible region, we propose
an alternating optimization framework shown in Alg. 4 to solve PPOP by gradually
approximating the feasible region of the upper-level optimization through constraint
generation. In Sections 3.3.3–3.3.4, we will give two concrete constraint generation
methods for Line 5 of Alg. 4 based on the results of (3.23).

In the sequel, we assume that solving (3.23) returns a successful attack tuple
(a(k)

p ,a(k)
c , e(k)) if ψa(β̂(k)) > 0.

3.3.3 Alternating Optimization with No-Good Constraints (AONG)

In this section, we give the first specific algorithm under the framework of Alg. 4, in
which the added constraints in Line 5 are motivated by the following observation:

Lemma 3.3.2. Given β̂ and Ω(β̂) := {u ∈ V : β̂u > 0}, if there exists a successful
attack tuple (ap,ac, e), then for all β with Ω(β) ⊆ Ω(β̂), there exists a successful attack
tuple.

Proof. For any β with Ω(β) ⊆ Ω(β̂), (ap,ac, e) remains a successful attack tuple.

The above observation indicates that at least one PMU must be placed in Ω(β̂)c :=
V \ Ω(β̂). Therefore, the optimal β can be obtained in an iterative manner: during each
iteration, we use the PMU placement β̂ from the previous iteration (initially, β̂ = 0) to
solve (3.23) for ψa(β̂). If ψa(β̂) = 0, β̂ is the final solution; otherwise, we will add the

71

following “No-Good” constraint: ∑i:β̂i=0 βi ≥ 1 to (3.24) for the next iteration to rule
out the infeasible solution β̂.

However, the above procedure will converge very slowly as |Ω(β̂)c| is usually large. To
speed up convergence, we augment each discovered infeasible solution β̂ into a maximal
infeasible solution β̂′ to narrow down candidate solutions. This can be achieved by
solving the following problem:

max ∥β̂′∥0 (3.27a)

s.t. ψa(β̂′) ≥ 1, (3.27b)

β̂′
u = 1,∀u ∈ V with β̂u = 1, (3.27c)

which has the same decision variables as (3.23) and the additional β̂′. Algorithm AONG
adds the following “No-Good” constraint in Line 5 of Alg. 4:

∑
i:β̂′

i=0

βi ≥ 1. (3.28)

AONG solves PPOP optimally, as proved in Appendix 3.7.5.

Theorem 3.3.3. AONG converges in finite time to an optimal solution to (3.24).

Given the MILP formulation of (3.23) in Appendix 3.7.1, it is easy to write (3.27)
as a MILP and solve it by existing MILP solvers. It is worth noting that solving (3.27)
suboptimally does not affect the optimality of AONG. Thus, we can also apply heuristic
algorithms (e.g., LP relaxation with rounding).

3.3.4 Alternating Optimization with Double Constraints (AODC)

Building on AONG, we develop an additional constraint as a complement of (3.28) to accel-
erate convergence, in the special case where ξc =∞ and ψs(p,D) returns the set of θ’s sat-
isfying (3.5b)-(3.5d), i.e., it returns the feasible region of SCED rather than a single solu-
tion. Such a special case is worth consideration because (i) ξc =∞ represents the strongest
cyber attack, and (ii) relaxing the optimality requirement in (3.23d) means that the at-
tacker is allowed to pick a solution for SCED within its feasible region, both making the at-
tack stronger and hence the resulting PMU placement more robust in preventing outages.

Below we will first introduce the new constraints, called “Attack-Denial” constraints,
and then give the AODC algorithm, in which both “No-Good” constraints and “Attack-

72

Denial” constraints are added in Line 5 of Alg. 4. The new constraints are motivated by
the following observations about AONG:

1. Cold start. The efficiency of (3.28) can be characterized by the number of infeasible
β’s that are cut out. Let {β̂(k)}Kk=1 be the PMU placements obtained in the first
K iterations of Alg. 4 and {β̂′(k)}Kk=1 the corresponding augmented placements
obtained from (3.27). Then, the number of feasible β’s for the next iteration is at
least (

2|
⋂K

k=1 Ω(β̂′(k))c| − 1
)
· 2|V |−|

⋂K

k=1 Ω(β̂′(k))c| (3.29)

if ⋂Kk=1 Ω(β̂′(k))c ̸= ∅, as placing at least one PMU in ⋂K
k=1 Ω(β̂′(k))c will satisfy

(3.28) for every placement in {β̂′(k)}Kk=1. This implies that the number of β’s
that are cut out is at most 2|V |−|

⋂K

k=1 Ω(β̂′(k))c|. Therefore, the first K “No-Good”
constraints (3.28) added in Alg. 4 will be inefficient if |⋂Kk=1 Ω(β̂′(k))c| is large.
We observe that |⋂Kk=1 Ω(β̂′(k))c| is large at the beginning of Alg. 4 and decreases
quickly as ∥β̂(k)∥0 increases.

2. Repeated successful attacks. Another cause of inefficiency is that for many PMU
placements enumerated by AONG, there exist successful attacks based on the same
attack pair (ap, e), indicating that new constraints are needed to better defend
against identified attacks.

These observations motivate us to generate constraints that can invalidate the identified
attack pairs.

The above observations motivate the following idea of “Attack-Denial” constraints:
given a successful attack pair (a(k)

p , e(k)) under β(k), the added constraints should guarantee
that any PMU placement satisfying the constraints can prevent attacks that fail lines
according to a(k)

p from causing overload-induced tripping at line e(k). We focus on
(a(k)

p , e(k)) instead of (a(k)
p ,a(k)

c , e(k)) due to the following observations:

1. The number of (a(k)
p ,a(k)

c , e(k))’s is infinite since a(k)
c is continuous, but the number

of (a(k)
p , e(k))’s is finite.

2. Given xN and (a(k)
p , e(k)), (3.23b)-(3.23e) reduce to a linear system with only the

continuous variables contained in yc under the assumptions that ξc = ∞ and
ψs(p,D) returns the set of θ’s satisfying (3.5b)-(3.5d). The linear system can be

73

summarized as

F
(k)
1 yc = s

(k)
1 , (3.30a)

F
(k)
2 yc ≤ s

(k)
2 + F3xN , (3.30b)

where F
(k)
1 , F

(k)
2 , F3, s

(k)
1 , s

(k)
2 are constant matrices/vectors defined in Ap-

pendix 3.7.3. An attack pair (a(k)
p , e(k)) can form a successful attack if and only

if (3.30) has a feasible solution.

The above assumptions (i.e., ξc =∞ and ψs(p,D) returns all the θ’s satisfying (3.5b)-
(3.5d)) are needed because: (i) ξc = ∞ implies that we no longer need the binary
variables used to linearize (3.20g) (i.e., wf and wp in (40) in Appendix 3.7.1); (ii) when
the lower-level optimization returns the feasible region of (3.5), (3.23d) can be replaced
by (3.5b)-(3.5d) without introducing binary variables required for transforming (3.5) into
its KKT conditions [68].

Our key observation is that a PMU placement β can defend against an attack pair
(a(k)

p , e(k)) by either preventing the physical attack a(k)
p or making (3.30) infeasible. The

former can be achieved by adding constraint ∑
l:a(k)

p,l
=1 xL,l ≥ 1 (i.e., at least one attacked

line must be incident to a PMU). The latter holds according to Gale’s theorem of
alternative [56] if and only if there exists q

(k)
1 and q

(k)
2 ≥ 0 satisfying

(F (k)
1)Tq(k)

1 + (F (k)
2)Tq(k)

2 = 0, (3.31a)

(s(k)
1)Tq(k)

1 + (s(k)
2 + F3xN)Tq(k)

2 < 0, (3.31b)

where q
(k)
1 ∈ Rm1 and q

(k)
2 ∈ Rm2 can be treated as the dual variables for (3.30a) and

(3.30b), respectively.
Based on the above observation, the “Attack-Denial” constraints for defending against

(a(k)
p , e(k)) are:

(F (k)
1)Tq(k)

1 + (F (k)
2)Tq(k)

2 = 0, (3.32a)

(s(k)
1)Tq(k)

1 + (s(k)
2 + F3xN)Tq(k)

2 ≤ wa,k − 1, (3.32b)∑
l:a(k)

p,l
=1

xL,l ≥ wa,k, (3.32c)

q
(k)
2 ≥ 0, wa,k ∈ {0, 1}, (3.32d)

where q
(k)
1 , q(k)

2 , and wa,k are newly introduced variables. Note that (3.31b) and (3.32b)

74

are equivalent when wk = 0 since we can scale q
(k)
1 and q

(k)
2 to satisfy (3.32b) if (3.31b)

holds. The binary variable wa,k indicates which approach to use for defending against
(a(k)

p , e(k)). When wa,k = 0, (3.32c) holds trivially, in which case β defends against
(a(k)

p , e(k)) by satisfying (3.31), i.e., preventing the cyber attack from causing overload-
induced tripping at line e(k). When wa,k = 1, q(k)

1 = 0 and q
(k)
2 = 0 will satisfy the

constraints (3.32a)-(3.32b), in which case β defends against (a(k)
p , e(k)) by preventing the

physical attack a(k)
p .

Now, we are ready to present the AODC algorithm, where β̂(K+1) in Line 6 of Alg. 4
is obtained by solving:

min ∥β∥0 (3.33a)

s.t. (3.16)− (3.17), (3.32) for k = 1, · · · , K, (3.33b)∑
i:β̂′(k)

i =0

βi ≥ 1, k = 1, · · · , K, (3.33c)

β ∈ {0, 1}|V |, (3.33d)

where the decision variables are β, xN , xL, q(k)
1 , q(k)

2 , and wa,k for k = 1, · · · , K.
To convert (3.33) to a MILP, we linearize (F3xN)Tq(k)

2 using McCormick’s relaxation.
Concretely, note that

(F3xN)Tq(k)
2 =

∑
u∈V

xN,u

(
m2∑
i=1

F3,i,uq
(k)
2,i

)
,∀k. (3.34)

Assuming that ∑i F3,i,uq
(k)
2,i ∈ [MF ,MF], we introduce a continuous auxiliary variable yu

and the following constraints:

MFxN,u ≤ yu ≤MFxN,u, (3.35a)

yu ≤
(
m2∑
i=1

F3,i,uq
(k)
2,i

)
+MFxN,u −MF , (3.35b)

yu ≥
(
m2∑
i=1

F3,i,uq
(k)
2,i

)
+MFxN,u −MF . (3.35c)

Note that yu = ∑m2
i=1 F3,i,uq

(k)
2,i if xN,u = 1 and yu = 0 otherwise, i.e., yu = xN,u

(∑m2
i=1 F3,i,uq

(k)
2,i

)
.

Then, (F3xN)Tq(k)
2 in (3.32b) can be replaced by ∑u∈V yu subject to (3.35).

AODC guarantees an optimal solution at convergence in the considered special case
(see proof in Appendix 3.7.5).

75

Theorem 3.3.4. If ξc =∞ and ψs(p,D) returns the feasible region of (3.5), then AODC
will converge in finite time to an optimal solution to (3.24).

Although in the worst case AODC may still enumerate all the attack pairs, which
can be exponential in |E|, we have observed that in practice it usually converges after
identifying a relatively small set of “typical attack pairs”, as shown in Table 3.7.

3.3.5 Efficient Heuristics

Although Alg. 4 is guaranteed to find the optimal solution, the computational complexity
can grow exponentially with the network size due to the requirement of solving MILPs
in each iteration, which motivates us to develop polynomial-time heuristics. A scenario
of particular interest is when ξp is small, i.e., ξp = O(1). In this case, the total number
of attack pairs is polynomial in |E|, and thus the number of iterations in AODC and the
complexity of computing a new attack pair in each iteration are both polynomial in |E|.
Our focus in this case is thus on solving (3.33) approximately in polynomial time.

Relaxation: One idea is to directly relax the MILP version of (3.33) into an LP.
However, simple LP relaxation will not work:

1. The LP relaxation will invalidate the McCormick relaxation (3.35) for the bilinear
term (F3xN)Tq(k)

2 .

2. The feasible region is significantly extended by the LP relaxation due to the adopted
big-M modeling technique.

3. Given a continuous solution β̃ obtained from the LP relaxation, it is non-trivial to
determine which subset of Ω(β̃), if any, can achieve our defense goal.

We have developed a polynomial-time heuristic that can find a better PMU placement.
The core of our heuristic is a different “LP relaxation” of (3.33). Recall that the main
challenge in directly relaxing the MILP version of (3.33) is the invalidation of (3.35) for
linearizing (F3xN)Tq(k)

2 . To overcome this issue, we make the following observation (see
proof in Appendix 3.7.5):

Lemma 3.3.3. Define Λx,p,Λx,n ∈ {0, 1}|V |×m2 such that (Λx,pq2)u is the dual variable
for (3.20c) and (Λx,nq2)u is the dual variable for (3.20d). Suppose that the linear system

(F (k)
1)Tq(k)

1 + (F (k)
2)Tq(k)

2 = 0, (3.36a)

76

(s(k)
1)Tq(k)

1 + (s(k)
2 + F3)Tq(k)

2 ≤ −1, (3.36b)

(Λx,p + Λx,n)q2 ≤MqAβ, (3.36c)

q
(k)
2 ≥ 0, 1 ≥ β ≥ 0 (3.36d)

for attack pair (a(k)
p , e(k)) is feasible under β = β̌, where Mq is a large constant (defined

in Appendix 3.7.2). Then, β = ⌈β̌⌉ satisfies (3.16)–(3.17) and (3.32) with wa,k = 0 for
the attack pair (a(k)

p , e(k)).

Lemma 3.3.3 suggests that given an attack pair (a(k)
p , e(k)), we can relax the mixed

integer “Attach-Denial” constraints (3.32) into the linear constraints (3.36) and round up
the fractional solution to obtain a valid PMU placement, which is guaranteed to prevent
the given attack pair from forming successful attack tuples. According to Gale’s theorem
of alternative,

(
(Λx,p + Λx,n)q(k)

2

)
u
> 0 only if at least one of (3.20c) and (3.20d) is

effective for making (3.30) infeasible3. Since (3.20c)-(3.20d) is effective if and only if
xN,u = 1 (under the constraint of xN,u ∈ {0, 1}), we use (Λx,p + Λx,n)q(k)

2 as a proxy of
xN in Lemma 3.3.3.

Lemma 3.3.3 motivates us to formulate the following LP based on a given set C of
infeasible PMU placements and a given set {(a(k)

p , e(k))}Kk=1 of attack pairs:

min
∑
u∈V

βu (3.37a)

s.t. (3.36) for k = 1, · · · , K, (3.37b)∑
i:β̂i=0

βi ≥ 1,∀β̂ ∈ C, (3.37c)

where (3.37b) models relaxed “Attack-Denial” constraints and (3.37c) models relaxed
“No-Good” constraints. In this sense, (3.37) is a “LP relaxation” of (3.33). However,
instead of directly computing a PMU placement from (3.37) which still faces some of
the issues for simple LP relaxation, our idea is to use the result of (3.37) to identify
important nodes for PMU placement to defend against the given attack pairs in the case
of wa,k = 0 in (3.32). We will account for the case of wa,k = 1 separately in the proposed
algorithm to avoid scaling and numerical issues.

Algorithm: The details of the proposed heuristic is given in Alg. 5, which relies on the
function UpdateCandidate(·) shown in Alg. 6. The logic behind the heuristic is similar to
that in AODC, i.e., iteratively updating PMU placements based on newly found attack

3We say that an inequality in (3.30) is effective for making (3.30) infeasible if removing it will change
the feasibility of (3.30).

77

Algorithm 5: 3-phase Secured PMU Placement
/* Phase-1: find a set A0 of attack pairs */

1 Initialization: k = 1, β̂(k) = 0, A0 = ∅, C = ∅;
2 while ψa(β̂(k)) > 0 do
3 A0 ← A0 ∪ {(a(k)

p , e(k))}, where (a(k)
p , e(k)) is obtained by solving (3.23) under

β̂(k);
4 C ← C ∪ {β̂(k)}, k ← k + 1;
5 obtain β̌(k) by solving (3.37) over C and A0;
6 Rounding: β̂(k) ← ⌈β̌(k)⌉;

/* Phase-2: find candidate placements {Ωi}Kc
i=1 to defend against A0

*/
7 Set Ωi := {ui}, i = 1, · · · , Kc, where {ui}Kc

i=1 are the indices of the largest Kc

elements of β̌(k) that is obtained in the last iteration of phase-1;
8 {Ωi}Kc

i=1, C ← UpdateCandidate
(
{Ωi}Kc

i=1,A0, C
)
;

/* Phase-3: augment {Ωi}Kc
i=1 to find a placement Ω with

ψa (β(Ω)) = 0 */
9 while True do

10 A ← ∅;
11 for i← 1 to Kc do
12 if ψa (β(Ωi)) > 0 then Generate (a(i)

p , e
(i)) and A ← A∪ (a(i)

p , e
(i));

13 else Return Ω∗ = arg minΩj :ψa(β(Ωj))=0 |Ωj| if
|Ω∗| ≤ 1 + minΩj :ψa(β(Ωj))>0 |Ωj|;

14 {Ωi}Kc
i=1, C ← UpdateCandidate

(
{Ωi}Kc

i=1,A, C
)
;

pairs. The questions are: (i) how to generate initial placements, (ii) how to find attack
pairs that can cause outages under given placements, and (iii) how to update the given
placements to defend against the newly found attack pairs, all in polynomial time. Since
this algorithm is designed for the case of ξp = O(1), under which question (ii) is easily
solvable, our focus will be on questions (i) and (iii).

We answer question (i) in two phases. Specifically, in phase-1, we iteratively find a set
of attack pairs A0 such that solving (3.37) over A0 leads to a fractional solution β̌ with
ψa
(
⌈β̌⌉

)
= 0. Then in phase-2, we search for a set of candidate PMU placements {Ωi}Kc

i=1

to defend against A0 in the hope that |Ωi| < |Ω(⌈β̌⌉)|. The motivation for maintaining
Kc > 1 candidates is to avoid the situation where the computed placement is effective in
defending against the given attacks but ineffective for other attacks.

We answer (iii) in Alg. 6, which iteratively augments a given set of candidate place-
ments {Ωi}Kc

i=1 to defend against a given set A of attack pairs. For each candidate

78

placement not effective against all the attack pairs in A, Alg. 6 will generate KL and
KA new candidate placements in Line 7 and Lines 8-9, respectively. Then, Line 10 will
select the Kc placements most effective in defending against the attack pairs in A from
the pool of Kc · (KA +KL) candidate placements. We now characterize the complexity
of Alg. 5 (see proof in Appendix 3.7.5).

Theorem 3.3.5. If ξp = O(1), then the complexity of Alg. 5 is polynomial in |V |, |E|,
and Kc.

Algorithm 6: UpdateCandidate
(
{Ωi}Kc

i=1, A, C
)

1 Initialization: Ai = A, i = 1, · · · , Kc;
2 while ∃i such that Ai ̸= ∅ do
3 Q ← ∅;
4 for i← 1 to Kc do
5 if Ai = ∅ then Q ← Q⋃{Ωi} and continue;
6 else C ← C ∪ {β(Ωi)} ;
7 Q ← Q⋃(Ωi ∪ {vj}) for j = 1, · · · , KL, where vj can prevent the j-th

most physical attacks in Ai ;
8 Solve (3.37) over A, C, and the constraints βu = 1, ∀u ∈ Ωi, which results

in β̌;
9 Q ← Q⋃(Ωi ∪ {uj}) for j = 1, · · · , KA, where uj is the index of the j-th

largest element in {β̌u}u∈V \Ωi
;

10 Update {Ωi}Kc
i=1 as the Kc elements in Q that can defend against the most

attack pairs in A;
11 Ai ← {(ap, e) ∈ A|Ωi cannot defend against (ap, e)}, ∀i = 1, . . . , Kc;
12 Return {Ωi}Kc

i=1 and C;

3.4 Extension to AC Power Flow Model
So far we have assumed the DC power flow approximation for the power grid given in
Section 3.2.1. It remains to validate the resulting PMU placement under the AC power
flow model that describes the grid state more accurately. To this end, we will address
the following questions: given a PMU placement ΩDC ⊆ V obtained under the DC power
flow model, (i) how to test the feasibility of ΩDC in preventing outages under the AC
power flow model, and (ii) how to refine ΩDC if needed to achieve our defense goal under
the AC power flow model.

79

3.4.1 Testing a PMU Placement under AC Model

One challenge to answer the first question is the nonlinear and nonconvex nature of AC
power flow based SCED (AC-SCED), which invalidates the transformation of (3.23) into a
single-level MILP through KKT conditions. Another challenge lies in formulating a single
optimization to maximize the overloading of a target line after SCED (at t3 in Fig. 3.1).
Specifically, since solving nonlinear AC power flow equations usually requires iterative
methods (e.g., Newton-Raphson method [31]), we cannot directly formulate the AC-SCED
at t2 and the corresponding ground-truth grid state at t3 in an optimization problem.
Existing works handled this challenge by approximating the grid state at t3 by the DC
power flow model [92, 93] or DC-based line outage distribution factors [40, 94]. However,
such DC-based approximations cannot be directly used to compute the magnitude of
currents, which determines the overloading and related tripping of lines.

In the following, we provide a method, as shown in Alg. 7, to check the existence of an
AC-based CCPA that can cause overloading under a given PMU placement. To overcome
the challenges discussed before, we first remove the optimality requirement in AC-SCED,
similar to our derivation of “Attack-Denial” constraints in Section 3.3.4. Omitting this
optimality requirement is equivalent to allowing the attacker to choose the objective for
AC-SCED, which enlarges the feasible region for the attacker’s optimization. To jointly
model the current at t3 and the AC-SCED at t2, we adopt the linearized approximation of
AC power flow equations [95]. Based on these two strategies, we formulate the following
optimization problem for the attacker to maximize the magnitude of current on a given
target line et under a given physical attack (i.e., ap):

max |Î3,et|2 (3.38a)

s.t. Constraints on ṽ2, θ̃2 to bypass BDD, (3.38b)

ACOPF constraints on ṽ3, θ̃3, (3.38c)

Constraints to solve v̂3, θ̂3, |Î3|, (3.38d)

where ṽ2, θ̃2 denote the voltage magnitudes and phase angles estimated at t2 by the
control center based on falsified measurements, ṽ3, θ̃3 denote the same variables predicted
by AC-SCED for t3 (computed at t2), and v̂3, θ̂3, |Î3| denote the approximated ground-
truth of voltage magnitudes, phase angles and line current magnitude at t3. The details
of (3.38) are given in Appendix 3.7.4. Similar to Table 3.1, for a given variable x, we
use x̃2 to denote its estimate based on falsified measurements at t2, x2 to denote its

80

ground-truth value at t2, x̃3 to denote the value predicted by AC-SCED (at t2) for t3,
and x3 to denote the ground-truth value at t3. Given the voltage magnitudes ṽ3 and the
phase angles θ̃3, the approximated values of x at t3 is denoted as x̂3.

In (3.38), we have the following three types of constraints and decision variables:

1. Constraint (3.38b) is the counterpart of (3.20) under the AC power flow model, in
which the main decision variables are ṽ2 and θ̃2. Similar to (3.20), we use ṽ2 and
θ̃2 as the decision variables to model the cyber attack that can bypass the BDD.
Following [40], we adopt the quadratic convex (QC) relaxation [96] in (3.38b) to
model the AC power flow equations.

2. As the counterpart of (3.21a)-(3.21c) under the AC power flow model, (3.38c)
models the reaction of AC-SCED to the falsified measurements based on the QC
relaxation.

3. The real grid state at t3 is formulated in (3.38d) as the counterpart of (3.21d)-(3.21f),
based on the approximation of AC power flow equations proposed in [95].

As we have enlarged the feasible region for the attacker in (3.38b)-(3.38c) by using the QC
relaxation, (3.38) models a stronger attack, and hence a PMU placement that prevents
overloading under this attack can prevent overloading under the original attack. We will
use x∗ to denote the value of decision variable x in the optimal solution to (3.38).

Based on (3.38), we develop an algorithm to check the feasibility of a PMU placement
Ω ⊆ V in preventing outages under AC-based CCPA, shown in Algorithm 7. Specifically,
at Lines 2, we compute v2,θ2, |I2| by solving power flow equations. Thus, the counterpart
of (3.19) is no longer needed to compute the real grid states after physical attacks. Then,
at Line 3, we obtain the optimal solution (|Î∗

3,et
|, ṽ∗

3, θ̃
∗
3) to (3.38) for the given attack

pair (ap, et) (recall that |Î∗
3,et
| is the approximated current magnitude on line et at time

t3 while |I∗
3,et
| is the corresponding true value). Alg. 7 considers the PMU placement Ω to

successfully defend against (ap, et) (i.e., preventing overloading at line et under physical
attack ap) if one of the following conditions hold:

1. no cyber attack ac can bypass the BDD, i.e., (3.38) is infeasible, as checked in
Line 9, or

2. |Î∗
3,et
| ≤ Îmax,et and |I∗

3,et
| ≤ γeImax,et , as checked in Lines 4–7, where Îmax,et (derived

in Theorem 3.4.1) is the threshold used by Alg. 7 to detect the tripping of line et
based on the approximated current magnitude |Î∗

3,et
|.

81

The use of Îmax,e rather than γeImax,e allows us to compensate for the approximation
error at t3. As stated in Theorem 3.4.1, under a properly-set Îmax,e, a PMU placement
Ω is guaranteed to achieve our defense goal under the AC model if Ω can pass the test
of Alg. 7, i.e., no overloading is reported. How to bound the approximation errors as
assumed in Theorem 3.4.1 is not the focus of this work; we refer interested readers to [95]
for details.

Theorem 3.4.1. Assume that the approximation used in (3.38d) satisfies |v̂3,u − v3,u| ≤
ϵv,u, |θ̂3,u − θ3,u| ≤ ϵθ,u, ∀u ∈ V and |p̂3,f,e − p3,f,e| ≤ ϵp,e, |q̂3,f,e − q3,f,e| ≤ ϵq,e, ∀e ∈ E.
Then, there exists ϵI,e,∀e ∈ E (see proof in Appendix 3.7.5 for details) and Îmax,e :=
γeImax,e − ϵI,e such that any PMU placement passing the test of Alg. 7 can prevent
overload-induced tripping under the AC power flow model.

Algorithm 7: Test Feasibility of Ω under AC Model
1 for each possible attack pair (ap, et) under the given PMU placement Ω do
2 Obtain v2,θ2, |I2| from AC power flow equations;
3 Solve (3.38) to obtain |Î∗

3,et
|, ṽ∗

3, θ̃
∗
3;

4 if (3.38) is feasible AND |Î∗
3,et
| ≤ Îmax,et then

5 Compute |I∗
3,et
| from AC power flow equations;

6 if |I∗
3,et
| ≤ γeImax,et then

7 Continue;
8 else Terminate and report overloading;
9 else if (3.38) is infeasible then

10 Continue;
11 else Terminate and report overloading;

3.4.2 Refining PMU Placement

In the case that the DC-based PMU placement ΩDC fails the test by Alg. 7, we provide
a simple heuristic to augment it into a new placement ΩAC that can achieve our defense
goal under the AC model. The intuition is to iteratively augment ΩDC by placing more
PMUs until the resulting placement ΩAC can pass the test of Alg. 7. The key question is
which node to add. To answer this question, we first augment ΩDC into a PMU placement
ΩC := Ω(βC) that can achieve full observability by solving (3.39):

min
βC ∈ {0, 1}|V |

∥βC∥1 (3.39a)

82

s.t. βC ≥ β(ΩDC), (3.39b)

AβC ≥ 1, (3.39c)

where (3.39b) guarantees ΩDC ⊆ ΩC , and (3.39c) forces ΩC to achieve full observability.
Then equipped with ΩC , we augment ΩDC into ΩAC by Alg. 8. If a PMU placement cannot
defend against an attack pair (ap, et) (Line 6), then we update the PMU placement by
the following rules:

1. If there exists a node u ∈ ΩC that can prevent the physical attack ap as in (3.18b),
we add node u to the current PMU placement (Line 8).

2. Otherwise, we add the node in ΩC with the maximum deviation in phase angle due
to false data injection (Line 11), with ties broken arbitrarily.

Algorithm 8: Augment PMU Placement for AC Model
1 Initialization: ΩAC = ΩDC;
2 while True do
3 Test ΩAC through Alg. 7;
4 if No overloading is reported then Return ΩAC;
5 else
6 Let (ap, et) be the attack pair under which overloading is reported, and

U := {u ∈ V : ∃e with ap,e = 1, Du,e ̸= 0} (all end-nodes of
physically-attacked lines);

7 if ΩC ∩ U ̸= ∅ then
8 Arbitrarily choose a node u ∈ ΩC ∩ U ;
9 else

10 Let θ̃2,θ2 be the falsified/true phase angles at t2 under attack pair
(ap, et);

11 Set u := arg maxv∈ΩC
|θ̃2,v − θ2,v|;

12 ΩAC ← ΩAC ∪ {u};

3.5 Numerical Experiments
Simulation Settings: We evaluate our solution against benchmarks in several standard
systems: IEEE 30-bus, IEEE 57-bus, IEEE 118-bus, and IEEE 300-bus system, where
the system parameters as well as load profiles are obtained from [97]. The parameters for
our evaluation are set as follows unless specified otherwise: We set α = 0.25 according

83

to [17]. We allow θ̃3 to take any value specified by the attacker subject to (3.5b)-(3.5d),
which makes our defense effective under any SCED cost vector. The attacker’s capability
is set as ξp = 2, ξc =∞ (no constraint on the number of manipulated meters). We set the
overload-induced tripping threshold to γe = 1.2,∀e ∈ E, which is slightly smaller than the
one used in [17] to make the solution more robust. For Alg. 5, we set Kc = KA = KL = 10.

In the rest of this section, we will compare the performance of Alg. 4 (AONG or
AODC) and Alg. 5 with the following benchmarks: (i) PMU placement to achieve full
observability as proposed in [98]; (ii) greedily placing PMUs in the descending order of
node degrees until attack-induced overload-induced tripping is prevented, referred to
as “GreedyDegree”. Benchmark (i) represents the current approach, and benchmark (ii)
represents a baseline solution under the lowered goal of defense.

Savings in the Number of PMUs: In Table 3.4, we compare the number of secured
PMUs required by the proposed algorithms (Alg. 4, Alg. 5) with the benchmarks under
the nominal operating point [97]. The minimum number of PMUs required to avoid
outages, given by Alg. 4 (either AONG or AODC), is significantly smaller than what is
required to achieve full observability. Alg. 5 closely approximates the minimum for the
tested systems, but a simple heuristic such as GreedyDegree does not. For IEEE 300-bus
system, we have skipped Alg. 4 as neither AODC nor AONG can converge within 72
hours. The details of PMU locations are given in Table 3.2 for DC model and Table 3.3
for AC model. Specifically, in Table 3.2, we give the PMU locations according to the
best proposed solution ΩPPOP to PPOP, which is consistent with Table 3.4. In Table 3.3,
we present the PMU locations of the solution that can pass the test of Alg. 7 under AC
power flow model, obtained by Alg. 8.

First, in Table 3.2, we give the PMU locations according to the best proposed solution
ΩPPOP to PPOP, which is consistent with Table 3.4.

Table 3.2. PMU Locations of PPOP under DC Model
Location of PMUs

IEEE 30-bus system 15, 23
IEEE 57-bus system 12,13,25
IEEE 118-bus system 17,34,37,42,49,72,85,100,118

IEEE 300-bus system
8,20,22,34,38,43,44,48,49,54,64,68,
74,77,79,89,90,94,99,109,119,132,

138,152,185,190,203,216,221,270,271

Then, we evaluate the scenario when the solution by PPOP is used as a temporary
PMU placement that will eventually be augmented into a placement achieving full
observability, as discussed at the end of Section 3.2 (Remark 2). To this end, we evaluate

84

Table 3.3. PMU Locations of PPOP under AC Model
Location of PMUs

IEEE 30-bus system 5,15,23
IEEE 57-bus system 12,13,25
IEEE 118-bus system 17,34,37,42,49,62,72,85,100,118

IEEE 300-bus system

8,20,22,34,38,43,44,48,49,54,64,68,
74,77,79,81,89,90,94,99,109,119,132,

138,152,175,185,190,197,203,216,
221,270,271

Table 3.4. Comparison of the Required Number of PMUs
30-bus 57-bus 118-bus 300-bus

Alg. 4 (optimal) 2 3 9 —
Alg. 5 2 3 10 31

GreedyDegree 3 3 14 85
Full observability 10 17 32 87

the following metrics: (i) the minimum number of PMUs required by PPOP |ΩPPOP|, (ii)
the minimum number of PMUs for achieving full observability |ΩFO|, (iii) the size of a
full-observability placement ΩC augmented from ΩPPOP given by (3.39), and (iv) the size
of the optimal solution Ω′

PPOP to a variation of PPOP with the additional constraint that
Ω′

PPOP ⊆ ΩFO. In Table 3.5, we observe that (i) |Ω′
PPOP| is only slightly larger than |ΩPPOP|,

i.e., most of the cost savings by PPOP is still achievable when its solution is required to
be consistent with the optimal long-term solution that achieves full observability, but (ii)
|ΩC | can be notably larger than |ΩFO| for large systems, i.e., augmenting an arbitrary
solution to PPOP to achieve full observability may require notably more PMUs compared
to a clean-slate solution.

Table 3.5. Comparison of #PMUs under Temporary/Long-term Placement
30-bus 57-bus 118-bus 300-bus

|ΩPPOP| 2 3 9 31
|Ω′

PPOP| 2 3 10 34
|ΩC | 10 17 33 95
|ΩFO| 10 17 32 87

Impact of System Parameters: We evaluate the impact of various system parameters
on the number of PMUs required by PPOP, given by Alg. 4 (by Alg. 5 for the 300-bus
system).

First, we study the effect of α introduced in (3.12), where a larger α implies a larger
feasible region for the attacker. It can be seen from Table 3.6 that (i) PPOP can still

85

30-bus 57-bus 118-bus 300-bus
Test systems

0

0.1

0.2

0.3

0.4

F
ra

ct
io

n
of

 s
ec

ur
ed

 P
M

U
s p

 = 1

p
 = 2

p
 = 3

(a) Effect of ξp

30-bus 57-bus 118-bus 300-bus
Test systems

0

0.1

0.2

0.3

0.4

F
ra

ct
io

n
of

 s
ec

ur
ed

 P
M

U
s c

 = 0.7(|V|+|E|)

c
 = 0.8(|V|+|E|)

c
 = 0.9(|V|+|E|)

c
 = (|V|+|E|)

(b) Effect of ξc

Figure 3.2. #PMUs required by PPOP
#PMUs required by full observability (ξc=|V |+|E| means no ξc-constraint).

significantly reduce the required number of PMUs compared to “Full observability” (see
Table 3.4) even if α is large, and (ii) PPOP benefits from a small value of α, which
signifies the importance of precise load forecasting in defending against CCPA.

Table 3.6. Number of PMUs in PPOP under varying α
30-bus 57-bus 118-bus 300-bus

α = 0.01 1 1 4 24
α = 0.10 1 2 6 30
α = 0.25 2 3 9 31
α = 0.50 3 3 11 34

Then, we vary ξp and ξc to evaluate the impact of the attacker’s capability. As shown
in Figure 3.2, (i) defending against a stronger attacker requires more PMUs as expected,
(ii) PPOP still requires much fewer PMUs than “Full observability” when the attacker can
disconnect multiple lines and manipulate all the meters (except for the secured PMUs),
which is stronger than the attack model considered in [17,74], and (iii) PPOP can save
a larger fraction of PMUs in IEEE 57-bus system since fmax given in [97] is large.

In addition, we consider the case that the load profile p0 can vary as shown in
(3.25). We assume p0 ∈ [κp(0), κp(0)], where p(0) is the nominal load profile from [97],
κ = 0.5 and κ is set to the maximum value that keeps (3.5) feasible under κp(0). In
our evaluations, we set κ as 1.95, 2.69, 2.41 and 1.61 for IEEE 30-bus, 57-bus, 118-bus
and 300-bus systems, respectively. For the given range, PPOP requires 3, 4, 19, and 33
PMUs for the 30-bus, 57-bus, 118-bus, and 300-bus systems, which is more than what
is required under a single load profile as expected. Nevertheless, PPOP can still save

86

PMUs compared to “Full observability” as shown in Table 3.4.
Computational Efficiency: We compare AODC and AONG in terms of the number

of iterations (which is also the number of examined attack pairs) and the running time,
which is evaluated in a platform with Intel i7-8700 CPU with Gurobi as the solver. Since
any feasible solution to (3.27) can form an “No-Good” constraint, we set an upper-bound
on the time for solving (3.27), which is 1200 seconds. As shown in Table 3.7, while the
two algorithms perform similarly for small systems, AODC converges notably faster for
larger systems such as the 118-bus system thanks to its reduced solution space due to the
adoption of both “No-Good” and “Attack-Denial” constraints. Note that both algorithms
converge after examining a small fraction of possible attack pairs (the total number of
attack pairs is 33620, 252800, and 3200130 for these systems, respectively).

Table 3.7. Number of iterations/Convergence time (103 sec)
30-bus 57-bus 118-bus

AODC 8/0.021 3/2.188 16/26.64
AONG 7/0.014 4/2.163 78/74.44

Moreover, we use IEEE 118-bus system as an example to demonstrate the trade-off in
tuning the parameters Kc, KA, KL for Alg. 5 (assuming KA = KL). We run Alg. 5 for 5
times under each setting due to the randomness in solving (3.23) and breaking ties. The
results are given in Fig. 3.3, where the bar denotes the mean and the error bar denotes
the minimum/maximum. In Fig. 3.3 (b), we show the speedup of the heuristic compared
to AODC in convergence time, i.e., (time of AODC)/(time of heuristic). We observe
that (i) Alg. 5 can return a good solution when Kc ≥ %10 · |V | and KA = KL ≥ Kc, and
(ii) under this configuration, Alg. 5 is significantly faster than AODC at a small cost of
requiring a couple of more PMUs.

Extension to AC model: We compare the solution ΩAC obtained by Alg. 8 with the
best previous solution ΩDC obtained under the DC approximation. As shown in Table 3.8,
although the DC-based solution may need augmentation to defend against AC-based
CCPA, the gap (i.e., |ΩAC|− |ΩDC|) is small. More importantly, |ΩAC| is still much smaller
(by 60–80%) than the number of PMUs |ΩFO| required to achieve full observability (see
Table 3.5), indicating the efficacy of our approach of first computing an initial solution
under the DC approximation and then augmenting it to achieve our defense goal under
the AC model. We note that the values of |ΩAC| in Table 3.8 are only upper bounds on
the number of PMUs required to prevent outages under AC-based CCPA, suggesting
great potential of saving PMUs by adopting the proposed defense goal.

87

1 5 10 15 20
The value of K

a
 and K

L

0

5

10

15

20

N
um

be
r

of
 P

M
U

s

K
c
 = 1

K
c
 = 4

K
c
 = 7

K
c
 = 10

AODC

(a) Number of secured PMUs

1 5 10 15 20
The value of K

a
 and K

L

0

5

10

15

20

25

S
pe

ed
up

K
c
 = 1

K
c
 = 4

K
c
 = 7

K
c
 = 10

(b) Computation time
Figure 3.3. The performance of Alg. 5 under different Kc, KA, and KL.

Table 3.8. Number of PMUs Under AC Power Flow Model
30-bus 57-bus 118-bus 300-bus

|ΩAC| 3 3 10 34
|ΩDC| 2 3 9 31

3.6 Conclusion
We formulate a tri-level optimization problem under the DC power flow model to find
the optimal secured PMU placement to defend against the coordinated cyber-physical
attack (CCPA) in the smart grid. Rather than completely eliminating the attack, we
propose to limit the impact of the attack by preventing overload-induced outages. To
solve the proposed problem, we first transform it into a bi-level MILP and then propose
an alternating optimization algorithm framework to obtain optimal solutions. The core of
the proposed algorithm framework is constraint generation based on infeasible placements,
for which we develop two constraint generation approaches. Furthermore, we propose a
polynomial-time heuristic algorithm that can scale to large-scale grids. In addition, we
demonstrate how to extend the obtained PMU placement to achieve our defense goal
under the AC power flow model. Our experimental results on standard test systems
demonstrate great promise of the proposed approach in reducing the requirement of
PMUs. Our work lays the foundation for tackling a number of further questions in future
work, e.g., how to characterize the optimal attack without solving MILPs, how to directly
optimize the PMU placement for outage prevention under the AC model, and how to
improve the robustness of the solution against the failures of PMUs themselves.

88

3.7 Appendices

3.7.1 Appendix A: MILP Formulation of Attacker’s Problem

In this section, we will demonstrate how to transform (3.23) into a MILP, which can be
efficiently solved by existing solver such as Gurobi.

To begin with, we give an overview of the PPOP, as shown in Fig. 3.4.

The Proposed Formulation (PPOP)
• Framework

• Tri-level optimization problem

PMU deployment
Optimization

Attacker’s problem

SCED

Whether successful
attack exists

PMU placement

Result of SCED under
the given attack

An attack

Figure 3.4. Overview of the PPOP

We first consider the case that lower-level optimization (3.5) returns the set of θ’s
satisfying (3.5b)-(3.5d), i.e., it returns the feasible region of SCED rather than a single
solution. In this case, (3.23) becomes a single-level problem.

Below, we show how to convert the single-level formulation of (3.23) into a MILP. To
convert (3.18) and (3.23e) into linear constraints, we introduce a constant M2,θ (defined
in Appendix 3.7.2) such that (3.18a) holds if and only if the following holds:

θ̃2,u − θ2,u ≤M2,θ · (1− xN,u), (3.40a)

θ̃2,u − θ2,u ≥ −M2,θ · (1− xN,u), (3.40b)

and similar conversion applies to (3.18b). As for (3.23e), by defining a sufficiently large
constant Mπ,e (see Appendix 3.7.2) and two binary auxiliary variables πn,e, πp,e to get

89

rid of the absolute value operation, (3.23e) is transformed into

−Mπ,e · (1− πp,e) <
f3,e

fmax,e
− γe ≤Mπ,e · πp,e, (3.41a)

−Mπ,e · (1− πn,e) <
−f3,e

fmax,e
− γe ≤Mπ,e · πn,e. (3.41b)

We claim that πe = πn,e + πp,e. To see this, suppose that f3,e ≥ 0. Then, we must have
− f3,e

fmax,e
− γe ≤ 0 and thus πn,e = 0, while |f3,e|

fmax,e
− γe = f3,e

fmax,e
− γe and thus πp,e = πe.

Notice that we must have πe = 1 if |f3,e| − γe · fmax,e > 0, while |f3,e| − γe · fmax,e ≤ 0
leads to πe = 0.

To linearize (3.20g), we introduce binary variables wf ∈ {0, 1}|mL| and wp ∈ {0, 1}|mN |

for data injection on line measurements and node measurements, respectively. Then,
(3.20g) can be transformed into (see definitions of Mc,f , Mc,p in Appendix 3.7.2)

−Mc,fwf ≤ Λf

(
f̃2 − f2

)
≤Mc,fwf , (3.42a)

−Mc,pwp ≤ Λp

(
B̃θ̃2 − p0

)
≤Mc,pwp, (3.42b)

1Twf + 1Twp ≤ ξc. (3.42c)

Together, the above techniques transform (3.23) into a MILP. Specifically, the binary
decision variables are {πn,πp,ap,wf ,wp}, continuous variables are {θ̃2, θ̃3,θ2,θ3,f2,f3, f̃2,fcon},
where wf ,wp are introduced auxiliary variables. Then, the full formulation without
considering the optimality of (3.5) is given as follows.

max ∥πp + πn∥0 (3.43a)

s.t.

∆−1Aβ ≤ xN ≤∆−1Aβ + ∥∆∥∞ − 1
∥∆∥∞

, (3.43b)

1
2 |D|

Tβ ≤ xL ≤
1
2 |D|

Tβ + ζ, (3.43c)

− (1− ap) ≤ diag (γ ⊙ fmax)−1 f2 ≤ 1− ap, (3.43d)

D̃f2 = p0,−M2,fap ≤ ΓDθ2 − f2 ≤M2,fap, (3.43e)

− fmax ≤ f̃2 ≤ fmax, ΓD̃
T θ̃2 − f̃2 = 0, (3.43f)

− α|p0| ≤ D̃f̃2 − p0 ≤ α|p0|, (3.43g)

ΛgD̃f̃2 = Λgp0, (3.43h)

−Mc,fwf ≤ Λf

(
f̃2 − f2

)
≤Mc,fwf , (3.43i)

90

−Mc,pwp ≤ B̃θ̃2 − p0 ≤Mc,pwp, (3.43j)

1Twf + 1Twp ≤ ξc, ∥ap∥0 ≤ ξp, (3.43k)

θ̃2,u − θ2,u ≤M2,θ · (1− xN,u), (3.43l)

θ̃2,u − θ2,u ≥ −M2,θ · (1− xN,u), (3.43m)

pg,min ≤ ΛgB̃θ̃3 ≤ pg,max, (3.43n)

− fmax ≤ ΓDT θ̃3 ≤ fmax, (3.43o)

ΛdB̃θ̃3 = ΛdD̃f̃2, (3.43p)

−M3,a(1− ap) ≤ f3 ≤M3,a(1− ap), (3.43q)

ΛdD̃f3 = Λdp0, ΛgD̃f3 = ΛgB̃θ̃3, (3.43r)

−M3,fap ≤ ΓD̃Tθ3 − f3 ≤M3,fap, (3.43s)

θ2,u0 = θ3,u0 = θ̃2,u0 = θ̃3,u0 = 0, (3.43t)

− ·(1− πp,e) <
f3,e

Mπ,efmax,e
− γe
Mπ,e

≤ ·πp,e,∀e, (3.43u)

− ·(1− πn,e) <
−f3,e

Mπ,efmax,e
− γe
Mπ,e

≤ ·πn,e,∀e, (3.43v)

D̃ufcon =

|V | − 1, if u = u0,

−1, if u ∈ V \ {u0},
, (3.43w)

− |V | · (1− ap,e) ≤ fcon,e ≤ |V | · (1− ap,e) (3.43x)

The constraints (3.43b)-(3.43c) correspond to (3.16)-(3.17), (3.43d)-(3.43e) correspond
to (3.19a)-(3.19c), (3.43f)-(3.43k) correspond to (3.20), (3.43l)-(3.43m) correspond to
(3.40), (3.43n)-(3.43s) correspond to (3.21), (3.43t) corresponds to (3.23c), (3.43u)-(3.43v)
correspond to (3.23e), (3.43w)-(3.43x) correspond to (3.14).

If we do not relax the optimality requirements in (3.5), we need to introduce additional
binary variables {rfl, rfu, rgl, rgu} and continuous dual variables {µb,µc,µd,µe,µg} to
transform (3.5) into a linear system by using its KKT conditions [68]. Specifically, we
add the following linear system into (3.43) for the completeness of KKT conditions of
(3.5):

B̃ΛT
dµb + D̃Γµc + D̃Γµd + B̃ΛT

g µe − B̃ΛT
g µg = −B̃ΛT

g ϕ (3.44a)

µc −Mrfl ≤ 0, (3.44b)

ΓD̃T θ̃3 +Mrfl ≤M − fmax (3.44c)

µd −Mrfu ≤ 0, (3.44d)

91

− ΓD̃T θ̃3 +Mrfl ≤M − fmax (3.44e)

µe −Mrgl ≤ 0, (3.44f)

ΛgB̃θ̃3 +Mrgl ≤ pg,min +M1 (3.44g)

µg −Mrgu ≤ 0, (3.44h)

−ΛgB̃θ̃3 +Mrgu ≤ −pg,max +M1 (3.44i)

rgl + rgu ≤ 1 (3.44j)

rfl + rfu ≤ 1 (3.44k)

µc,µd,µe,µg ≥ 0 (3.44l)

Compared to the attacker’s formulations in [71, 88] that also optimize the location of
physical attacks, the key advantage of (3.23) is avoiding McCormick’s relaxation for
bilinear terms (3.22) and reducing the numbers of variables and constraints. Specifically,
McCormick’s relaxation in [88] will introduce 2|E||V | additional continuous variables
and 8|E||V | additional constrains. The cost of avoiding bilinear term in (3.23) is the
additional variables f2,f3, f̃2 and the associated constraints, although the benefit usually
outweighs the cost. For example, for the IEEE 118-bus system, the formulation in [88]
has 44436 continuous variables and 178, 596 constraints, while (3.23) only has 1216
continuous variables and 5, 802 constraints.

3.7.2 Appendix B: Calculation of Big-M

In this section, we will explain how to calculate M2,a,e in (3.19a), M2,f in (3.19c), M3,a

in (3.21d), M2,θ in (3.40), M3,f in (3.21f), Mπ,e in (3.41), MF ,MF in (3.35), Mc,f ,Mc,p

in (3.42) and Mq in (3.36c). In this section, we denote N = (V,E) as the graph before
physical attack while N ′ = (V,E ′) as the graph after attack.

We first show how to calculate M2,a, M2,f and M2,θ. Suppose that the power grid is
designed to be robust to N − k contingency. Then, the value of M2,a depends on ξp − k.
If ξp− k ≤ 0, then we can set M2,a,e := fmax,e or M2,a,e := γefmax,e, since no ap can cause
overloading. Otherwise, we set M2,a,e := C2,aγefmax,e with a parameter C2,a > 1. In our
simulations, we find that C2,a := 3 suffices since ξp − k is usually small. Next, we bound
|θ2| by defining Mθ2,u ≥ maxap |θ2,u| and Mθ2 ≥ maxap maxu |θ2,u| since the value of θ2

depends on ap. An intuitive way of obtaining Mθ2,u is enumerating all possible values of
ap, whose time complexity is polynomial in |E| and |V | if ξp = O(1). Here we provide
another way of bounding Mθ2,u. Due to our assumption of the connected N , there exists
at least one path in N connecting the reference node u0 to each node u ∈ V . Moreover,

92

for each path connecting u0 and u, say Pa(u0, u) := (e0, e1, · · · , eJ) where e0 = (u0, v1),
ej = (vj, vj+1) and eJ = (vJ , u), we have θ2,u− θ2,u0 = θ2,s− θ2,v1 + θ2,v1−· · ·+ θ2,vJ

− θ2,t,
which leads to

max
ap
|θ2,u| = max

ap
|θ2,u − θ2,u0|

≤
J∑
j=0

rej
M2,a,ej

:= MPa(θ2,u) (3.45)

since θ2,u0 = 0 in our assumption and |θ2,vj
− θ2,vj+1 | ≤ rej

M2,a,ej
due to (3.19a). Denote

np as the number of different paths connecting u and u0. Then, since the physical attack
will disconnect at most ξp lines, we set Mθ2,u := max{MPai

(θ2,u)}min{ξp+1,np}
i=1 .

Equipped with Mθ2,u, u ∈ V , we can calculate M2,f and M2,θ. We define an intermedi-
ate constant M2,f,e for each line such that M2,f = maxe∈EM2,f,e. Then, for e = (u, v) we
can set M2,f,e := re(Mθ2,u +Mθ2,v) since |Γed̃Te θ2 − f2,e| > 0 only if ap,e = 1 and f2,e = 0.

To obtain M2,θ, we first bound Mθ̃2,u
≥ maxap,ac |θ̃2,u|, u ∈ V in a similar way as that

in (3.45). Specifically, since θ̃2 is estimated by CC based on the topology N , we can
arbitrarily choose one path (e0, e1, · · · , eJ) in N that connects u and u0 and set

Mθ̃2,u
:=

J∑
j=0

rej
fmax,ej

≥ max
ap,ac
|θ̃2,u|. (3.46)

Then, we can set M2,θ := maxu∈V (Mθ̃2,u
+Mθ2,u).

Now, we are ready to demonstrate the calculation of M3,a and M3,f . As for M3,a, we
only require M3,a,e > γefmax,e and M3,a ≥ maxe∈E γefmax,e so that the attacker can cause
outages over any lines. In practice, we can set M3,a := cmaxe∈E γefmax,e with c > 1.
As for M3,f , we again first show that we can bound |θ3,u| ≤ Mθ3,u without hurting the
attacker’s objective. We notice that the topology of grid at t3 before lines facing outage
automatically disconnect themselves is still N ′. Thus, we can set Mθ3,u similarly as Mθ2,u,
except that (3.45) becomes:

max
ap
|θ3,u| ≤

J∑
j=0

rej
Ma,ej

:= MPa(θ3,u). (3.47)

Then, we can set Mθ3,u := max{MPai
(θ3,u)}min{ξp+1,np}

i=1 , M3,f,e := re(Mθ3,u + Mθ3,v) for
e = (u, v) ∈ E, and M3,f = maxe∈EM3,f,e.

Equipped with M3,a,e, Mπ,e can be easily set as c · (M3,a,e

fmax,e
+ γe) with any constant

93

c > 1.
We can set MF as 0 since q2 ≥ 0 and F3,i,u ∈ {0,−M2,θ}, ∀i, u. There is no simple

guidelines for MF in (3.35) since it is the bound for dual variables. In practice, we can
initialize MF to a given value and solve (3.33) for each attack pair separately. Then, we
iteratively decrease MF until (3.33) is feasible under each attack pair separately. In our
simulations, we set MF := −M2

2,θ. Equipped with MF , we can set Mq := 2MF

M2,θ
.

Finally, we demonstrate how to set Mc,f and Mc,p. Due to (3.19a) and (3.20a), we have
|f̃2,e − f2,e| ≤ (1 + γe)fmax,e, which implies that we can set Mc,f := maxe∈E(1 + γe)fmax,e.
Similarly, we can set Mc,p := α∥p0∥∞ due to (3.20e).

3.7.3 Appendix C: The Coefficient Matrices in Attacker’s Problem

In this section, we will demonstrate the details of (3.30). The linear system (3.30a) is
the composition of (3.20f), (3.21e) and (3.21c), which can be expanded into:


ΛgB̃ 0 0

0 0 ΛdB

0 −ΛgB̃ ΛgB

ΛdB̃ −ΛdB̃ 0



θ̃2

θ̃3

θ3

 =


Λgp0

Λdp0

0

0

 (3.48)

as well as θ̃2,u0 = θ̃3,u0 = θ3,u0 = 0. For a given attack pair (ap, e) and the corresponding
θ2, the expansion of (3.30b) is

θ̃2 θ̃3 θ3 s2 + F3xN



B̃ 0 0 p0 + α|p0|
−B̃ 0 0 −p0 + α|p0|
I|V | 0 0 θ2 +Mθ(1− xN)
−I|V | 0 0 −θ2 +Mθ(1− xN)

0 0 −ΓedTe −γefmax,e

0 D̃TΓ 0 fmax

0 −D̃TΓ 0 fmax

0 ΛgB̃ 0 pg,max

0 −ΛgB̃ 0 −pg,min
D̃TΓ 0 0 fmax

−D̃TΓ 0 0 fmax

(3.49)

94

Table 3.9. Notations for AC power flow
Notation Description
p/q ∈ C|V | Active/reactive power injection
v⃗u = vue

j·θu node voltage
Ỹbus = G̃bus + jB̃bus Bus admittance matrix
Ỹf/Ỹt ∈ C|E|×|V | From/to end admittance matrix

Cf/Ct ∈ {0, 1}|E|×|V | From/to end incidence matrix
pf/pt ∈ C|E| From/to end active power flow
qf/qt ∈ C|E| From/to end reactive power flow
|If |2/|It|2 ∈ C|E| Square of from/to end current magnitude

Imax ∈ R|E| Limit on line current magnitude
Îmax ∈ R|E| Threshold for line tripping

Ỹc = G̃c + jB̃c ∈ C|E| line charging
Z̃ = Z̃R + jZ̃I ∈ C|E| line impedance
ỸL = G̃L + jB̃L ∈ C|E| line admittance

Vmax/Vmin ∈ R|V | Limit on node voltage magnitude
θmax/θmin ∈ R|E| Limit on phase angle difference for lines

p̂3/q̂3 ∈ R|V | approximated power injections at t3
p̂f,3/q̂f,3 ∈ R|E| approximated line power flow at t3

Specifically, the first two rows of (3.49) correspond to (3.20e), the next two rows corre-
spond to (3.40), the 5-th row indicates the outage at the target line, the 6-th and 7-th
rows correspond to (3.21b), the 8-th and 9-th rows correspond to (3.21a), and the last
two rows correspond to (3.20a).

3.7.4 Appendix D: Details of the Attacker’s Problem Under AC
Power Flow Model

For completeness, we summarize the necessary notations for presenting AC power flow
model in Table 3.9. Specifically, we denote Cf as the From end incidence matrix, in
which Cf,e,i = 1 if and only if we have e = (i, k) ∈ E. The To end incidence matrix Ct is
defined similarly, where Ct,e,k = 1 if and only if we have e = (i, k) ∈ E.

We provide details about (3.38), where we adopt QC relaxation proposed in [96] for
(3.38c) and linearized approximation proposed in [95] for (3.38d). As for the constraint
on false data injection to bypass BDD (3.38b), we follow [40] to formulate QC relaxation-
based constraints.

To begin with, we demonstrate the basics on QC relaxation for AC power flow

95

equations. Recall from Table 3.9 that the complex voltage on node i is v⃗i := vie
j·θi . Then,

we introduce auxiliary variables cii, cik and sik in the hope that

cii = v2
i , (3.50a)

cik = vivk cos θik (3.50b)

sik = vivk sin θik, (3.50c)

where θik = θi − θk. As proposed in [96], we first introduce the notation ⟨x⟩·, which
indicates an auxiliary variable as well as the associated constraints with x as input.
Concretely, ⟨x2⟩T indicates the auxiliary variable x̆ together with the following constraints:

〈
x2
〉T
≡

 x̆ ⩾ x2

x̆ ⩽ (xu + xl)x− xuxl
, (3.51)

where x ∈ [xl, xu] is pre-assigned bound. Similarly, we have

⟨xy⟩M :=



x̆y ⩾ xly + ylx− xlyl
x̆y ⩾ xuy + yux− xuyu
x̆y ⩽ xly + yux− xlyu
x̆y ⩽ xuy + ylx− xuyl

(3.52a)

⟨sin x⟩S :=

 s̆x ⩽ cos
(
xu

2

) (
x− xu

2

)
+ sin

(
xu

2

)
s̆x ⩾ cos

(
xu

2

) (
x+ xu

2

)
− sin

(
xu

2

) (3.52b)

⟨cosx⟩C :=

 cx ⩽ 1− 1−cos(xu)
(xu)2 x2

c̆x ⩾ cos (xu)
(3.52c)

Equipped with (3.51) and (3.52), the QC relaxation-based constraints on cii for each i ∈ V
can be written as cii ∈ ⟨v2

i ⟩
T , while the constraints on cik and sik for each e = (i, k) ∈ E

are

cik = cki, (3.53a)

sik = −ski, (3.53b)

c2
ik + s2

ik ≤ ciickk, (3.53c)

cik ∈
〈
⟨vivk⟩M · ⟨cos θik⟩C

〉M
, (3.53d)

sik ∈
〈
⟨vivk⟩M · ⟨sin θik⟩S

〉M
. (3.53e)

96

For simplicity, we will omit the auxiliary variables and the associated constraints
for modeling (3.53d) and (3.53e). We assume that (3.53d) and (3.53e) are imposed
when QC relaxation is adopted. For (3.38b), the decision variables we focus are
c̃2,ii, ∀i ∈ V, c̃2,ik, s̃2,ik,∀e = (i, k) ∈ E, e = (k, i) ∈ E, θ̃2, ṽ2 and |Ĩ2,f |2, |Ĩ2,t|2. Then, the
constraints (3.38b) can be written as

Λg(p̃2 − p0) = 0,Λg(q̃2 − q2) = 0 (3.54a)

Λg(ṽ2 − v2) = 0, (3.54b)

c̃2,ii = v2
2,i,∀i ∈ Vg, (3.54c)

−Λd|p̃0| ≤ αΛd(p̃2,i − p̃0) ≤ αΛd|p̃0|, (3.54d)

−Λd|q̃0| ≤ αΛd(q̃2,i − q̃0) ≤ αΛd|q̃0|, (3.54e)

(1− η)Vmin ≤ ṽ2 ≤ (1 + η)Vmax (3.54f)

(1− η)θmin,e ≤ θ̃2,e ≤ (1 + η)θmax,e,∀e ∈ E (3.54g)

|Ĩ2,f | ≤ Imax, |Ĩ2,t| ≤ Imax (3.54h)

p̃2,i =
∑

k=1,...,n
G̃ikc̃2,ik − B̃iks̃2,ik, (3.54i)

q̃2,i =
∑

k=1,...,n
−B̃ikc̃2,ik − G̃iks̃2,ik, (3.54j)

p̃2,f,e = G̃f,e,ic̃2,ii + G̃f,e,kc̃2,ik − B̃f,e,ks̃2,ik, (3.54k)

q̃2,f,e = −B̃f,e,ic̃2,ii − B̃f,e,kc̃2,ik − G̃f,e,ks̃2,ik, (3.54l)

p̃2,t,e = G̃∗
t,e,kc̃2,kk + G̃t,e,ic̃2,ik + B̃t,e,is̃2,ik, (3.54m)

q̃2,t,e = −B̃∗
t,e,kc̃2,kk − B̃t,e,ic̃2,ik + G̃t,e,is̃2,ik, (3.54n)

p̃2,i = cTf,ip̃f,2 + cTt,ip̃t,2 +R(Ysh,ic̃2,ii) (3.54o)

q̃2,i = cTf,iq̃f,2 + cTt,iq̃t,2 − I(Ysh,ic̃2,ii) (3.54p)

c̃2,ii = v2
2,i, ṽ2,i = v2,i, θ̃2,i = θ2,i,∀i with xN,i = 1, (3.54q)

c̃2,ik = v2,iv2,k cos θik,∀e = (i, k) with xL,e = 1, (3.54r)

p̃2,e = p2,e, q̃2,e = q2,e, ∀e = (i, k) with xL,e = 1, (3.54s)

Ĩ2,f,e = I2,f,e, Ĩ2,t,e = I2,t,e,∀e = (i, k) with xL,e = 1, (3.54t)

where p0 and q0 indicates the ground-truth power injections at t0, (3.54i)-(3.54j) are
imposed for each node i ∈ V , (3.54k)-(3.54n) are imposed for all e = (i, k) ∈ E,
cf,i/ct,i is the i-th column of Cf/Ct, Ysh denotes the diagonal matrix of node shunt,
R(x)/I(x) denotes the real/imaginary part of x, (3.54q)-(3.54t) indicates the protection

97

effect of PMUs, and η ∈ [0, 1) is a manually assigned factor for ṽ2 and θ̃2 not to raise
alarms in control center. Besides (3.54), we impose the following constraints according
to [99, Chapter 5] for each e = (i, k) ∈ E into (3.38b) :

|Ĩ2,f,e|2 = 1
|Ze|2

(c̃2,ii + c̃2,kk − 2c̃2,ik) + 2G̃c,ep̃2,f,e − 2B̃c,eq̃2,f,e − |Yc,e|2 c̃2,ii, (3.55a)

p̃2,f,e + q̃2,f,e = Z̃R,e
(
|Ĩ2,f,e|2 − 2(G̃c,ep̃2,f,e − B̃c,eq̃2,f,e)

+ |Yc,e|2 c̃2,ii
)

+ G̃c,e(c̃2,ii + c̃2,kk), (3.55b)

p̃2,f,e + q̃2,f,e = Z̃I,e
(
|Ĩ2,f,e|2 − 2(G̃c,ep̃2,f,e − B̃c,eq̃2,f,e)

+ |Yc,e|2 c̃2,ii
)
− B̃c,e(c̃2,ii + c̃2,kk), (3.55c)(

1 + 2Z̃R,eG̃c,e − 2Z̃I,eB̃c,e

)
c̃2,ii − c̃2,kk = 2(Z̃R,ep̃2,f,e

+ Z̃I,eq̃2,f,e)− |Z̃e|2
(
|Ĩ2,f,e|2 − 2(G̃c,ep̃2,f,e − B̃c,eq̃2,f,e)

+
∣∣∣Ỹc,e∣∣∣2 c̃2,ii

)
(3.55d)

All equations in (3.55) should hold simultaneously.
Similarly, the decision variables we will focus on in (3.38c) are c̃3,ii,∀i ∈ V, 3̃2,ik, s̃3,ik, ∀e =

(i, k) ∈ E, e = (k, i) ∈ E, θ̃3, ṽ3 and |Ĩ3,f |2, |Ĩ3,t|2. Then, the constraints (3.38c) are
similar to (3.54) and (3.55), with (3.54a)-(3.54h) changed into

pg,min ≤ Λgp̃3 ≤ pg,max, qg,min ≤ Λgq̃3 ≤ qg,max, (3.56a)

Λd(p̃3,i − p̃2,i) = 0, Λd(q̃3,i − q̃2,i) = 0, (3.56b)

Λg(p̃3,i − p̃2,i) = 0 (3.56c)

Vmin ≤ ṽ3 ≤ Vmax, θmin,e ≤ θ̃3,e ≤ θmax,e,∀e ∈ E, (3.56d)

|Ĩ3,f | ≤ Imax, |Ĩ3,t| ≤ Imax. (3.56e)

Following [95], the decision variables in (3.38d) are v̂2
3,i, θ̂3,i, p̂3,i, q̂3,i,∀i ∈ V , p̂f,3 ∈

R|E|, q̂f,3 ∈ R|E| and |Î3|2 ∈ R|E|. Next, we define pLf,3,e and qLf,3,e for e = (i, k) ∈ E with
ap,e = 0 as follows:

pLf,3,e = G̃L,e

(
θ̂ik,0θ̂3,ik −

θ̂2
ik,0

2 + v̂i,0 − v̂k,0
v̂i,0 + v̂k,0

(v̂2
3,i − v̂2

3,k)−
(v̂i,0 − v̂k,0)2

2

)
+R(Ỹc,e)v̂2

3,i

(3.57a)

98

qLf,3,e = −B̃L,e

(
θ̂ik,0θ̂3,ik −

θ̂2
ik,0

2 + v̂i,0 − v̂k,0
v̂i,0 + v̂k,0

(v̂2
3,i − v̂2

3,k)−
(v̂i,0 − v̂k,0)2

2

)
− I(Ỹc,e)v̂2

3,i,

(3.57b)

where v̂ik,0 and θ̂ik,0 are obtained from any base case system operating condition. In our
work, we set it as v̂ik,0 = v2,ik and θ̂ik,0 = θ2,ik for each given (ap, et). Then, we have
three types of constraints in (3.38d). Specifically, by appropriately setting η3,p,i and η3,q,i

(see proof of Theorem 3.4.1 for details) to tolerate the approximation error, for each
i ∈ V , we have

−η3,p,i ≤Dip̂3,f + v̂2
3,i

|V |∑
k=1

G̃ik − p0,i ≤ η3,p,i. (3.58)

For each i ∈ Vd, we have

−η3,q,i ≤Diq̂3,f − v̂2
3,i

|V |∑
k=1

B̃ik − q̃3,i ≤ η3,q,i, . (3.59)

For each e = (i, k) ∈ E with ap,e = 0, we have

pf,3,e = G̃L,e

v̂2
3,i − v̂2

3,k

2 − B̃L,eθ̂ik + pLf,3,e, (3.60a)

qf,3,e = −B̃L,e

v̂2
3,i − v̂2

3,k

2 − G̃L,eθ̂ik + qLf,3,e, (3.60b)(
1 + 2Z̃R,eG̃c,e − 2Z̃I,eB̃c,e

)
v̂2

3,i − v̂2
3,k = 2(Z̃R,ep̂3,f,e

+ Z̃I,eq̂3,f,e)− |Z̃e|2
(
|Î3,f,e|2 − 2(G̃c,ep̂3,f,e

− B̃c,eq̂3,f,e) +
∣∣∣Ỹc,e∣∣∣2 v̂2

3,i

)
(3.60c)

3.7.5 Appendix E: Additional Proofs

Theorem 3.3.1. We will reduce the dominating set problem to PPOP. Given a graph
N = (V,E), the dominating set problem aims to find a minimum set of vertices V1 ∈ V
such that ∀u ∈ V \ V1, u has at least one neighbor in V1. The dominating set problem is
known to be NP-hard. Notice that given the grid N = (V,E) the parameters for the
proposed problem (3.24)-(3.23) are p0,Γ, ξp, ξc,α and {γe}e∈E. We will prove for any
given connected grid and the associated dominating set problem, there exists a parameter

99

setting for the proposed problem such that V1 is a minimal dominating set if and only if
V1 is an optimal solution to (3.24), i.e., ∀u ∈ V, xN,u = 1.

Given any p0, suppose that θ0 is the associated phase angle without attack, i.e., p0 =
B̃θ0, and θ̂0 is the the solution to (3.5), i.e., θ̂0 = ψs(p0, D̃), which gives f̂0 := ΓD̃T θ̂0.

Then, we set p0 = 0, ξp = 0, ξc =∞, α =∞ and Γ as identity matrix, which results
in θ0 = θ̂0 = 0 and f̂0 = 0. In addition, we set γe = 0, ∀e ∈ E, which transform (3.23e)
to

|ΓedTe θ3| = 0↔ πe = 0. (3.61)

Next, we show by contradiction that |ΓedTe θ3| = 0 holds for all e ∈ E only if θ̃2 = 0 = θ0.
Suppose θ̃2 ̸= 0, we must have B̃θ̃2 ̸= 0, which leads to 0 ̸= θ̃3 = ψs(B̃θ̃2, D̃) and thus
ΛgB̃θ̃3 ̸= 0 due to the constraint (3.23c). The non-zero ΛgB̃θ̃3 implies that ∃e ∈ E such
that ΓedTe θ3 ̸= 0. That is to say, the constraint (3.24b) holds only when θ̃2 = θ0 = 0,
which indicates that the defender has to place PMUs to guarantee that the only feasible
solution to (3.23) is ac = 0. In another word, β needs to satisfy ∀u ∈ V, xN,u = 1, which
completes the proof.

Theorem 3.3.3. First, we introduce some definitions: B := {β|ψa(β) = 0} denotes
the set of feasible solutions, Bc := {β|ψa(β) ≥ 1} the infeasible solutions, M(Bc) :=
{β|(β,β′ ∈ Bc) ∧ (β′ ≥ β) → (β′ = β)} the maximal infeasible solutions, and P :=
{β̌ ∈ [0, 1]|V ||∀β ∈ M(Bc) : ∑u:βu=0 β̌u ≥ 1} the polytope excluding all the maximal
infeasible solutions.

Then, based on the results in [100], we have the following characterization:

Lemma 3.7.1. The following statements hold: (i) P ∩ {0, 1}|V | = B; (ii) ∀β′ ∈M(Bc),∑
u:β′

u=0 βu ≥ 1 defines a facet of P.

Proof. To prove statement (i), we first prove that B ⊆ (P ∩ {0, 1}|V |) by contradiction.
Suppose ∃β1 ∈ B but β1 /∈ P . Then by definition of P , there must exist β′

1 ∈ Bc such that∑
u:β′

1,u=0 β1,u = 0, which implies Ω(β1) ⊆ Ω(β′
1). By Lemma 3.3.2, we must have β1 ∈ Bc,

which contradicts with the assumption that β1 ∈ B. Thus, B ⊆ (P ∩ {0, 1}|V |). Then,
we prove (P ∩ {0, 1}|V |) ⊆ B by contradiction. Suppose there exists β̌ ∈ (P ∩ {0, 1}|V |)
but β̌ /∈ B, which implies that β̌ ∈ Bc. That is to say, ∃β̌′ ≥ β̌ such that β̌′ ∈ M(Bc).
Then by definition of P, we have ∑u:β̌′

u=0 β̌u ≥ 1. However, since β̌′ ≥ β̌, ∀u : β̌u = 0,
we must have β̌u = 0 and leads to ∑u:β̌′

u=0 β̌u = 0, which introduces contradiction. In
summary, P ∩ {0, 1}|V | = B.

100

We then prove statement (ii) by contradiction, i.e., ∃β̌′ ∈M(Bc) such that when we
remove the inequality ∑u:β̌′

u=0 βu ≥ 1 from P, we still have P. By definition of M(Bc),
we must have β̌′ ∈ Bc, which implies ∑u:β̌′

u=0 β̌
′
u = 0, i.e., β̌′ /∈ P. That is to say, there

exists some inequality to cut β̌′ out from P, i.e., ∃β̌′′ ∈M(Bc) and β̌′′ ̸= β̌′ such that∑
u:β̌′′

u=0 β̌
′
u = 0. Notice that ∀u : (β̌′′

u = 0) → (β̌′
u = 0), which implies Ω(β̌′) ⊆ Ω(β̌′′).

By definition of M(Bc), we must have β̌′′
u = β̌′

u, which contradicts with β̌′′
u ̸= β̌′

u and
completes the proof.

We now prove Theorem 3.3.3 based on Lemma 3.7.1. First notice that each β̂ ∈ Bc

will be enumerated at most once in Alg. 4 due to the “no-good” constraints, and hence
the algorithm will converge in finite time. Then, consider an arbitrary β̂′ obtained
through (3.27). The generated “no-good” constraint ∑i:β̂′

i=0 βi ≥ 1 must be satisfied by
all the feasible solutions in B, as any PMU placement violating this constraint must be
infeasible according to Lemma 3.3.2. Finally, for any β1,β2 ∈ B with ∥β1∥0 < ∥β2∥0, β1

will be found by Alg. 4 before β2, since each guess of PMU placement is obtained by
minimizing ∥β∥0 in (3.24), which completes the proof.

Theorem 3.3.4. As Alg. 4 always returns a feasible solution that defends against all
attack pairs, we only need to prove that the solution β1 returned by AODC requires the
minimum number of PMUs. We will prove this by contradiction. Suppose that there
exists β2 such that ∥β2∥0 < ∥β1∥0 and ψa(β2) = 0. Then β2 must be feasible to the
instance of (3.33) constructed based on the attack pairs {(a(k)

p , e(k))}Kk=1 and the maximal
infeasible solutions {β̂′(k)}Kk=1 found by AODC as it defends against all attacks. This
contradicts with the fact that β1 is optimal to (3.33).

Lemma 3.3.3. We first observe that xN and xL are unique under the constraints (3.16)-
(3.17). Thus, we will use xN (β) and xL(β) to denote the values of xN and xL satisfying
(3.16)-(3.17) for a given β ∈ {0, 1}|V |.

For a given attack pair (ap, e), (q̌1, q̌2, β̌) can be feasible to (3.36) in two different
cases. The first case is that

∑
ap,e=1

xL,e(⌈β̌⌉) ≥ 1, (3.62)

which makes (q1 = 0, q2 = 0, ⌈β̌⌉,xN(⌈β̌⌉),xL(⌈β̌⌉)) feasible for (3.32) with wa = 1.
The second case is that xL,e(⌈β̌⌉) = 0 for all e with ap,e = 1, in which case we must

have (q̌1, q̌2, ⌈β̌⌉,xN(⌈β̌⌉),xL(⌈β̌⌉)) feasible to (3.32) with wa = 0. To prove this, we

101

only need to show that

(
F3xN(⌈β̌⌉)

)T
q̌2 ≤ F3q̌2. (3.63)

According to (3.49), F3,i,u is either 0 or −Mθ, which together with the fact that
xN,u(⌈β̌⌉) ≥ 0 and q̌2,i ≥ 0 implies that

(
F3xN(⌈β̌⌉)

)T
q̌2 =

∑
u∈V

xN,u(⌈β̌⌉)
(
m2∑
i=1

F3,i,uq̌2,i

)
(3.64)

≤
∑
u∈V

1

(
m2∑
i=1

F3,i,uq̌2,i

)
= F3q̌2, (3.65)

which completes the proof.

Theorem 3.3.5. Under the assumption of ξp = O(1), the number of possible attack pairs
is |E|

(∑ξp

i=1

(
|E|
i

))
≤ ξp|E|ξp+1 = O

(
|E|ξp+1

)
. Therefore, the time complexity of solving

(3.23) for a given β is polynomial in |E| and |V |, since in the worst case (3.23) can be
solved by checking the feasibility of (3.30) for all the O

(
|E|ξp+1

)
attack pairs.

We first characterize the complexity of Alg. 6. Since each candidate placement Ωi either
has one more node or can defend against all attack pairs in A after one iteration of the
while loop, Alg. 6 converges within |V | iterations. Each iteration of Alg. 6 is dominated by
solving (3.37) (Line 8) for at mostKc times. Since the numbers of variables and constraints
of (3.37) are both O((|E|+ |V |)|A|) and |A| = O

(
|E|ξp+1

)
, the complexity of solving

(3.37) is polynomial 4 in |V | and |E|. In summary, the complexity of Alg. 6 is polynomial
in |V |, |E|, and Kc since it solves a polynomial-sized LP for at most Kc|V | times. It is
worth noting that the effect of KA and KL in Alg. 6’s complexity is dominated by |V | and
|E|. To see this, we note that KL only appears in Line 7 of Alg. 6, in which we must have
KL ≤ |E|. Then, KA only appears in Line 9 of Alg. 6, in which we must have KA ≤ |V |.
Thus, we do not consider the effect of KA and KL in Alg. 6’s computational complexity.

The complexity of Alg. 5 comes from: (i) solving (3.23) O(|E|ξp+1) times (Line 3 and
Line 12); (ii) solving (3.37) for |A0| = O(|E|ξp+1) times (Line 5), each of which deals with
an LP containing O((|E|+ |V |)|A0|) variables and constraints and thus takes polynomial
time; (iii) calling Alg. 6 at Line 8 for 1 time and at Line 14 for O(|E|ξp+1) times, whose
complexity is polynomial in |V |, |E|, and Kc. In summary, Alg. 5 is a polynomial-time
algorithm in terms of |V |, |E|, and Kc.

4The exact order depends on the specific algorithm used to solve LP [53].

102

Theorem 3.4.1. According to [95,99] and (3.60), we have

|Î3,f,e|2 = 1
|Ze|2

(
2(Z̃R,ep̂3,f,e + Z̃I,eq̂3,f,e) + v̂2

k−

(1 + 2Z̃R,eG̃c,e − 2Z̃I,eB̃c,e)v̂2
i

)
+ 2(G̃c,ep̂3,f,e−

B̃c,eq̂3,f,e)− |Ỹc,e|2v̂2
i (3.66)

for each e = (i, k) ∈ E with ap,e = 0. Based on (3.66) and the assumption on ϵθ =
(ϵθ,u)u∈V , ϵv = (ϵv,u)u∈V , ϵp = (ϵp,e)e∈E and ϵq = (ϵq,e)e∈E, we can easily derive an
upperbound ϵI,e ≥ ||Î3,e| − |I3,e||,∀e ∈ E. Specifically, we can set

ϵI,e := 1
|Ze|2

(
2(|Z̃R,e|ϵp,e + |Z̃I,e|ϵq,e) + ϵ2

v,i+

|1 + 2Z̃R,eG̃c,e + 2Z̃I,eB̃c,e|ϵ2
v,i

)
+ 2(|G̃c,e|ϵp,e+

|B̃c,e|ϵq,e) + |Ỹc,e|2ϵ2
v,i. (3.67)

If there exists an successful attack pair (ap, e) that cannot be found by Alg. 7 for a
given PMU placement, we must have one of the following cases:

1. There exists ṽ2, θ̃2 such that |I3,e| > γeImax,e. In the meantime, at least one of
(3.58) and (3.59) are violated.

2. Let |Î∗
3,f,e| be the optimal solution of (3.38). There exists ṽ

(1)
2 , θ̃

(1)
2 , ṽ

(1)
3 , θ̃

(1)
3 such

that |I(1)
3,e | > γeImax,e. Let |Î(1)

3,f,e| be the corresponding approximated solution for
ṽ

(1)
2 , θ̃

(1)
2 , ṽ

(1)
3 , θ̃

(1)
3 . Then we must have Îmax,e ≥ |Î∗

3,f,e| ≥ |Î
(1)
3,f,e|.

We first show that the case one can be avoided if we properly set η3,p,i in (3.58) and η3,q,i

in (3.59). Specifically, according to (3.58), we must have

Dip̂3,f + v̂2
3,i

|V |∑
k=1

G̃ik − p0,i ≤ η3,p,i (3.68)

if we set

η3,p,i ≥ (∆ii − 1)ϵp,i + |
|V |∑
k=1

G̃ik|ϵv,i, (3.69)

where (∆ii− 1) denotes the number of neighbors of node i as defined in (3.16). Similarly,
we can define η3,q,i to avoid the first case. Then, we will show how to set Îmax,e so that

103

the second case will not happen. In case two, we must have

Îmax,e ≥ |Î∗
3,f,e| ≥ |Î

(1)
3,f,e| ≥ |I

(1)
3,e | − ϵI,e > γeImax,e − ϵI,e (3.70)

Thus, if we set Îmax,e ≤ γeImax,e− ϵI,e, (3.70) cannot hold, which rules out the possibility
of case two. In summary, by properly setting η3,p,i, η3,q,i and set Îmax,e ≤ γeImax,e − ϵI,e,
a PMU placement that can pass the test of Alg. 7 will achieve our defense goal.

104

Chapter 4 |
Overlay Routing Over an Uncoop-
erative Underlay

4.1 Introduction
Overlay networks, referring to logical distributed systems running on top of a physical
communication underlay, have been widely adopted to enhance the existing network
infrastructure due to the difficulty of deploying infrastructure-wide upgrades. Frequently,
overlay networks are used to provide value-adding functionalities that a best-effort IP-
based underlay network cannot provide, such as caching, traffic engineering, fast failover,
and attack mitigation [101]. Meanwhile, the performance of an overlay network heavily
relies on the proper control of overlay routing. For instance, caching overlay requires
efficient routing between origin servers and edge servers to provide notable performance
gain in the case of cache misses [101]. Large-scale applications spreading across multiple
datacenters need careful routing of inter-datacenter flows to avoid congestion [102]. For
mission-critical overlay applications, a proper selection of backup routes between overlay
nodes that are maximally disjoint with primary routes is necessary for maintaining high
Quality of Service (QoS) in the case of failures [103].

Due to its importance, tremendous efforts have been devoted to the design of overlay
routing, e.g., [101–104]. Compared to classical routing problems, one of the unique
challenges in overlay routing is the lack of knowledge about the underlay, which can
lead to incorrect overlay routing decisions. As a concrete example, consider the overlay-
underlay network in Fig. 4.1, where link labels denote their (propagation) delays, and
each overlay link maps to the shortest path (in delay) between its endpoints in the
underlay. Suppose that the overlay needs to route two large flows with source-destination
pairs (a, e) and (b, d), respectively. Further suppose that each link in the underlay has

105

b

a

c

d

e

b

a

c
d

e

10 ms

10 ms

20 ms

40 ms
10 ms

10 ms

30 ms 30 ms
20 ms

ov
er

la
y

un
de

rla
y

20 ms 20 ms

60 ms

60 ms

50 ms 50 ms

h1
h2

h3 h4

Figure 4.1. Example of underlay-aware overlay routing.

sufficient capacity for one of the flows but not both. Given the objective of minimizing the
total delay, an underlay-agnostic routing algorithm that is only aware of the individual
delays and capacities of overlay links will route both flows over the direct overlay paths
a→ e and b→ d. However, as these paths share a common link (h1, h2) in the underlay,
this routing solution will cause congestion and hence poor performance. Meanwhile, an
underlay-aware routing algorithm that has knowledge of how the overlay links share links
in the underlay will choose the overlay paths a→ e and b→ c→ d, which will minimize
the total delay while avoiding congestion.

The need for overlay routing to be aware of the internal parameters of the underlay
(e.g., topology, routing protocol, link characteristics) has been widely recognized. However,
most of the existing works either assume such information to be directly provided by the
underlay [105,106], or avoid explicitly requiring such knowledge by performing overlay
routing on a trial-and-error basis [103]. The former approach is often inapplicable in
practice due to the lack of cooperation from the underlay, and the latter approach is
inefficient due to the exponentially large search space.

In this work, we aim at addressing these limitations by developing a framework
for underlay-aware overlay routing that can systematically optimize the routing among
overlay nodes without cooperation from the underlay. The core of our framework is a set

106

of network inference algorithms that can extract the necessary information about the
underlay from measurements within the overlay to enable overlay route optimization
while avoiding congestion.

4.1.1 Related Work

Overlay routing: Overlay routing aims at controlling data forwarding among overlay
nodes to optimize certain performance metrics while avoiding congestion. Typical perfor-
mance metrics include routing cost [104,107], route update cost [105], and completion
time of peer-to-peer data distribution [108] or inter-datacenter data transfer [102,106].
Most of these works either assumed a cooperative underlay network whose internal
parameters can be directly observed by the overlay [105,106,108], or ignored the sharing
of underlay links by the logical links between overlay nodes [102,107]. In contrast, we
address the more challenging problem of overlay routing over an uncooperative underlay
network, while accounting for the underlay link sharing between overlay links.

The works most related to ours are [109,110], which encoded the knowledge about
the underlay as linear capacity constraints (LCCs). Intuitively, each LCC, with a form
similar to (4.1b), ensures that the total traffic load from the overlay does not exceed the
capacity of an underlay link. Thus, the complete set of LCCs contains all the information
an overlay needs to optimize its routing without incurring congestion. However, [109,110]
only focused on overlay routing based on given LCCs, leaving the challenging problem of
inferring LCCs to a simple heuristic based on an existing technique for shared bottleneck
detection (SBD) [111]. This heuristic was vulnerable to the error of SBD and could only
discover the LCCs corresponding to the bottlenecks shared by tunnels ending at the
same overlay node. The resulting LCCs were thus incomplete and inaccurate, causing
suboptimal routing decisions in the overlay. In this work, we address these issues by de-
veloping algorithms that can infer the minimum necessary set of LCCs from observations
at the overlay with guaranteed accuracy.

Network (topology) tomography: One key piece of information for routing is
network topology. In the face of an uncooperative underlay, the overlay can try to infer its
topology from end-to-end measurements on the underlay routing paths between overlay
nodes, known as network topology inference/tomography [112].

Although extensively studied, topology inference is far from being completely solved.
Earlier works tried to construct a tree topology based on various measurements from
multicast probes [113–115] or unicast probes [116–118] sent by a single source. Later
works aimed at combining measurements from multiple sources [119–122], but still made

107

the assumption that the routing paths for each source/destination form a tree. See [123]
for a more detailed summary. The assumption of tree-based routing is frequently violated
due to round-trip probing, load balancing, and network function traversals, but removing
this assumption significantly complicates topology inference, for which only a few results
exist [123–125]. Without the assumption of tree-based routing, the routing topology
can no longer be uniquely identified from end-to-end measurements [123]. However, it
is still possible to detect the existence of links shared by a subset of paths [123, 125].
Although not enough for identifying the topology, the information about which subsets
of paths (i.e., overlay links) share links in the underlay is very useful for overlay routing
as explained in Section 4.3.1. However, the existing solutions in [123, 125] both had
exponential complexity in the number of paths. In this regard, we improve network
tomography by developing the first polynomial-complexity algorithm for inferring how a
set of arbitrary paths share links from end-to-end measurements.

Available capacity estimation: Another key piece of information for overlay
routing is the available capacities of underlay links (after subtracting background traffic).
Available capacity estimation is a classical problem for which many tools have been
developed; see [126] for a comprehensive survey. In an uncooperative underlay as
considered in our work, tools based on ICMP such as pathchar [127] are inapplicable.
Instead, the focus was on inferring the available capacity at the bottleneck link of a path
from end-to-end measurements. To this end, one line of works was based on the probe
gap model (PGM) [128,129], which calculated the path capacity based on the interarrival
time at the receiver between a pair of back-to-back probes. Another line of works was
based on the probe rate model (PRM) [130], which gradually varied the probing rate while
measuring the end-to-end delays, and estimated the available capacity as the probing
rate associated with a turning point in the delays. All these methods considered a single
path. To support overlay routing, we leverage the existing single-path capacity estimation
methods as subroutines and develop an algorithm to estimate the total available capacity
over multiple paths with possibly shared links.

In this regard, our work is related to shared bottleneck detection (SBD) [111,131–133],
which aims to detect which subset of flows share a bottleneck. However, most SBD
methods only detect the existence of a shared bottleneck without estimating its available
capacity. Although the algorithm in [111] can estimate the bottleneck capacity, it was only
applicable to paths with the same destination. More importantly, SBD can only estimate
the capacities of the links acting as bottlenecks under a given flow assignment, and cannot
characterize the feasible region for all flow assignments, which is the focus of our work.

108

4.1.2 Summary of Contributions

We study the problem of overlay routing over an uncooperative underlay, with the
following contributions:

1) We identify the minimum information about the underlay that is both sufficient
for congestion-free overlay routing and uniquely identifiable from measurements between
overlay nodes.

2) We develop the first polynomial-complexity algorithm to detect the existence of
underlay links shared (exclusively) by each subset of paths from end-to-end measurements
between overlay nodes, under arbitrary routing in the underlay. We also develop an
alternative algorithm to detect the same from the metrics of 1-by-2 components in the
special case of symmetric tree-based routing. Furthermore, we develop a greedy algorithm
to estimate the effective capacity of the detected links based on existing single-path
available capacity estimation methods.

3) We prove that our detection results have error probabilities that decay exponentially
with the sample size, and our estimation results are no more than a constant factor away
from the ground truth.

4) We test our solution against benchmarks via packet-level simulations in NS3
based on real network topologies and link parameters. Our results show that despite
facing inference errors, our algorithms can still better characterize the feasible region for
overlay routing than existing solutions, which leads to notably less congestion and better
communication performance.

Roadmap. Section 4.2 formulates our overlay routing problem, for which Section 4.3
addresses how to infer the required information about the underlay, and Section 4.4 shows
how to use the inferred information in overlay routing. Both solutions are evaluated in
Section 4.5. Finally, Section 4.6 concludes the paper. All the proofs can be found in
Appendix 4.7.1.

4.2 Problem Formulation

4.2.1 Network Model

The underlay network is modeled as a connected undirected graph G = (V ,E), where V
denotes the set of underlay nodes and E the set of underlay links. Each link e ∈ E has a
finite capacity Ce.

109

The overlay network, managed by a centralized entity such as an overlay network
operation center (ONOC) [134] or a software defined wide area network (SD-WAN)
controller [104], is modeled as a connected directed graph G = (V,E), where V ⊆ V is
the set of nodes that are part of the overlay (e.g., running the overlay application), and
each overlay link e = (i, j) ∈ E denotes a tunnel between two overlay nodes that maps
to the underlay routing path p

i,j
from node i to node j. We do not impose any limiting

assumption on the underlay routes, and allow asymmetric routing (i.e., p
i,j

and p
j,i

may
not be the same). In the sequel, we will use “tunnel” and “overlay link” interchangeably.

Remark: The assumption of centralized management of the overlay is used to study
the overlay routing problem without worrying about coordination within the overlay; the
extension to distributed solutions is left to future work.

4.2.2 Objective of Overlay Routing

Given a set of flow demands H, the goal of overlay routing is to optimally satisfy
these demands by controlling the data forwarding among overlay nodes. We consider an
uncooperative underlay by assuming that: (i) the overlay can control how to route its flows
among the overlay nodes, but not how to route between adjacent overlay nodes within
the underlay; (ii) the overlay can observe the overlay topology G and the parameters
of overlay links, but not the underlay topology G, its routing paths {p

i,j
}(i,j)∈E, or the

parameters of underlay links.
In the above context, a basic need of the overlay is to route its flows to optimize

certain performance metric of interest, subject to capacity constraints imposed by the
underlay. As a concrete example, consider the objective of minimizing the overlay routing
cost as formulated below. Suppose that each flow demand h ∈ H specifies a source
sh ∈ V , a destination th ∈ V , and a fixed flow rate dh. Sending a unit of flow over tunnel
(i, j) ∈ E incurs a routing cost of cij ≥ 0, which can model considerations like bandwidth
leasing cost or QoS degradation cost (e.g., delay). The overlay can control how the flows
traverse overlay nodes through a decision variable xhij ∈ {0, 1}, which indicates whether
flow h ∈ H traverses tunnel (i, j) (in the direction of i→ j). Define bhi as 1 if i = sh, −1
if i = th, and 0 otherwise. The minimum cost overlay routing problem can be formulated
as follows:

min
x

∑
(i,j)∈E

cij
∑
h∈H

dhx
h
ij (4.1a)

110

s.t.
∑

(i,j)∈E: e∈p
i,j

∑
h∈H

dhx
h
ij ≤ Ce, ∀e ∈ E, (4.1b)

∑
j∈V

xhij =
∑
j∈V

xhji + bhi , ∀h ∈ H, i ∈ V, (4.1c)

xhij ∈ {0, 1}, ∀h ∈ H, (i, j) ∈ E. (4.1d)

The objective (4.1a) is the total routing cost for the overlay. Constraint (4.1b) is the
per-link capacity constraint to ensure that the load on each underlay link is within its
capacity, constraint (4.1c) is the flow conservation constraint to ensure that the overlay
links in {(i, j) ∈ E : xhij = 1} form a path from sh to th (∀h ∈ H), and constraint (4.1d)
ensures that only one path is selected for each flow (assuming single-path routing is
required). Therefore, the optimal solution to (4.1) provides the set of overlay paths to
route the flows in H that achieves the minimum routing cost without causing congestion.

The optimization (4.1) is NP-hard, as it is a generalization of the minimum-cost
multiple-source unsplittable flow problem (MMUFP) that is NP-hard [135]. Nevertheless,
as an integer linear programming (ILP) problem, it can be tackled by a number of
heuristics developed for MMUFP, e.g., greedy and LP relaxation with randomized
rounding [135], and the optimal solution can also be computed for small instances by
existing ILP solvers via algorithms such as branch-and-price-and-cut [136].

Remark 1: The formulation (4.1) is just an example of the possible objectives of
overlay routing. Other formulations can also be considered. For instance, in addition
to the routing cost (4.1a), there may also be a cost in setting up tunnels as considered
in [104], and instead of fixing the flow rate dh, the overlay may want to design dh to
finish data transfer as soon as possible [102,106]. We will focus on the formulation (4.1)
in this work for concreteness and leave the study of other formulations to future work.

Remark 2: The optimization (4.1) assumes that there exists at least one solution x

that can satisfy all the demands in H within the capacity constraint (4.1b), i.e., (4.1) is
feasible. When this assumption is violated, we can relax the constraint (4.1b) into

∑
(i,j)∈E: e∈p

i,j

∑
h∈H

dhx
h
ij ≤ Ceω, ∀e ∈ E, (4.2)

by introducing a new variable ω ≥ 1 to denote the maximum overloading factor for the
underlay links. We can ensure feasibility while discouraging overloading by adding a
penalty term “cω(ω − 1)” to the objective function (4.1a), where the parameter cω ≥ 0
controls the tradeoff between cost and congestion. Setting cω to a large value will make

111

congestion avoidance the primary objective and cost minimization the secondary objective,
which reduces the relaxed formulation to (4.1) in underloaded cases and to a minimum
overload overlay routing problem, i.e., min ω s.t. (4.2), (4.1c), (4.1d), in overloaded cases.

4.2.3 Problem Statement

From (4.1), we can see that overlay routing depends on the underlay primarily through
the capacity constraint (4.1b), which requires two pieces of information: (i) how the
tunnels are routed through the underlay (p

i,j
)(i,j)∈E, and (ii) the underlay link capacities

(Ce)e∈E. While the overlay may have other considerations requiring further information
about the underlay, satisfying the capacity constraint is a basic requirement, and is thus
the focus of our work.

Compared to routing in flat networks, the main challenge for routing in overlay
networks is the lack of information about the underlay. In contrast to existing works on
overlay routing that resorted to either the underlay’s cooperation or heuristic inference
methods to obtain the information they required (see Section 4.1.1), we aim at developing
a complete solution that infers the minimum information needed for overlay routing
based on measurements at overlay nodes with guaranteed accuracy, and then optimizes
overlay routing based on the inferred information, using the minimum cost overlay routing
problem (4.1) as a concrete example.

4.3 Overlay-based Inference
We will first analyze the minimum information the overlay needs about the underlay and
then address how to infer this information.

4.3.1 Minimum Information for Overlay Routing

A straightforward implementation of (4.1) requires detailed knowledge of the underlay
topology in terms of the routes (p

i,j
)(i,j)∈E and the link capacities (Ce)e∈E, in order to

formulate constraint (4.1b). A natural question is thus whether we can directly apply
solutions from topology inference to obtain this information. At a first look, the answer
seems negative without further assumptions, because topology inference faces an inherent
ambiguity that the routing topology capable of generating a given set of end-to-end
measurements is generally not unique [123]. However, to support overlay routing, there

112

is actually no need to infer the underlay topology. Instead, it suffices to infer just enough
information to compute the feasible region defined by constraint (4.1b).

To formalize this idea, we introduce the following notion, adapted from [123,125] to
our problem.

Definition 4.3.1. A category of links traversed by F out of E (F ⊆ E) is the set
of underlay links traversed by and only by the tunnels in F out of all the tunnels in E,
i.e,1

ΓF (E) :=
(⋂

(i,j)∈F
p
i,j

)
\
(⋃

(i,j)∈E\F
p
i,j

)
. (4.3)

A straightforward implication of the above definition is that the paths measurable by
the overlay induce the following partition of the underlay links:

E =
⋃
F⊆E

ΓF (E). (4.4)

For example, in Fig. 4.1, if E contains all the tunnels between the nodes {a, b, c, d, e},
then link (h1, h2) ∈ ΓF (E) for F := {(a, e), (e, a), (a, d), (d, a), (b, e), (e, b), (b, d), (d, b)},
because (h1, h2) is traversed by all the tunnels in F but no other tunnel in E.

Our key observation is that since all the links in the same category are traversed by the
same set of tunnels, they must carry the same traffic load from the overlay. Therefore, we
can reduce the per-link capacity constraint (4.1b) to the following per-category capacity
constraint:

∑
(i,j)∈F

∑
h∈H

dhx
h
ij ≤ CF , ∀F ⊆ E with ΓF (E) ̸= ∅, (4.5)

where CF , referred to as the category capacity, is the minimum capacity of all the links
in category ΓF (E), i.e.,

CF := min
e∈ΓF (E)

Ce. (4.6)

The new constraint (4.5) is equivalent to the original constraint (4.1b) in that an
overlay routing solution satisfies one of these constraints if and only if it satisfies the other.
However, instead of requiring detailed information about the underlay (i.e., (p

i,j
)(i,j)∈E

and (Ce)e∈E), implementing constraint (4.5) only requires the knowledge of the nonempty
1We abuse the notation a little to use p to denote the set of links traversed by path p.

113

categories and their capacities.

4.3.2 Identification of Nonempty Categories

The identification of nonempty categories from end-to-end measurements has been used
as an intermediate step in topology inference [123,125]. The idea is to define an additive
metric such that the path-level metrics can be estimated from end-to-end measurements
and the category-level metrics can be estimated from the path-level metrics. Then under
the following assumption, we can detect the nonempty categories as those with non-zero
metrics.

Assumption 2. All nonempty categories have non-zero metrics.

This assumption holds as long as all the underlay links have positive metrics, which
intuitively means that every link imposes non-zero performance degradation (e.g., loss,
delay, delay variation) to packets traversing it. This assumption is reasonable, as a link
with no impact on communication performance will not be detectable from end-to-end
measurements.

4.3.2.1 Defining Additive Metrics

We first need to define a performance metric θ· such that: (i) the link metrics are
nonnegative and additive, and (ii) the corresponding path metrics can be reliably inferred
from end-to-end performance measurements. Following [123], we adopt a metric of the
form:

θe := − logαe, (4.7)

where αe ∈ (0, 1) denotes the probability for a packet transmitted over link e to experience
the “good state”, with different versions of this metric for different definitions of αe. For
example, if αe is the probability for a packet to successfully traverse e without being lost,
then (4.7) is the loss-based metric [116], and if αe is the probability for a packet to traverse
e without incurring queueing delay, then (4.7) is the utilization-based metric [116].

To make this metric additive, we assume that the states of different underlay links
are independent of each other, which is a common assumption in topology inference [116,
119, 123,125]. Moreover, to discover shared links, we adopt a commonly-used probing
method of sending batches of concurrent probes over all the tunnels. Due to the fact that
packets arriving at a link in quick succession experience very similar performance, probes

114

in the same batch are assumed to experience the same link state when traversing a shared
link, which is again a common assumption [116,117,123,125]. Let SF ∈ {0, 1} indicate
whether the probes in a batch experience good states on all the tunnels in F ⊆ E. As
SF = 1 if and only if all the underlay links in ⋃(i,j)∈F pi,j are in good states, we have

ρF := − log Pr{SF = 1} = − log

 ∏
e∈
⋃

(i,j)∈F
p

i,j

αe


=

∑
e∈
⋃

(i,j)∈F
p

i,j

θe, (4.8)

which means that θe defined in (4.7) is an additive metric over a union of simultaneously
probed paths. Here ρF denotes the metric for the union of paths for the tunnels in F ,
which can be estimated consistently by the overlay from observations of SF .

Remark: The assumptions of independent states at different links and identical states
at a shared link for probes in the same batch are simplifying assumptions that may not
hold strictly in practice. Nevertheless, solutions derived from these assumptions have
been validated in Internet experiments [116]. We will stress-test our solution derived
from these assumptions in NS3 simulations where the assumptions may not hold (see
Section 4.5).

4.3.2.2 Inferring Category Metrics

The overlay cannot directly generate equation (4.8) as it does not know the routing path
p
i,j

for each tunnel (i, j) ∈ E. Nevertheless, the overlay can utilize the estimate of ρF
to infer the following information about the categories without any knowledge of the
routing paths.

Definition 4.3.2. For a given category ΓF (E), the associated category metric wF (E) is
defined as the sum metric for all the links in category ΓF (E), i.e., wF (E) := ∑

e∈ΓF (E) θe.

The key is to note that by the definition of category, we have

⋃
(i,j)∈F

p
i,j

=
⋃

F ′⊆E:F ′∩F ̸=∅
ΓF ′(E), ∀F ⊆ E, (4.9)

which allows (4.8) to be rewritten as an equation of category metrics:

ρF =
∑

F ′⊆E: F ′∩F ̸=∅
wF ′(E), ∀F ⊆ E. (4.10)

115

Equations like (4.10) can be generated without prior knowledge of the underlay topology.
Moreover, these equations are known to uniquely determine the category metrics.

Theorem 4.3.1 (Theorem III.1 in [124]). Given the path metrics (ρF)F⊆E,F ̸=∅, the
category metrics (wF)F⊆E,F ̸=∅ are uniquely determined by (4.10).

This theorem, together with the fact that link metrics affect path metrics only through
category metrics, implies that the category metrics are the metrics of the finest granularity
that can be uniquely identified by the overlay.

Example: Consider the network in Fig. 4.1. If only considering the tunnels in
E = {(a, e), (a, d)}, we can partition the traversed underlay links into three nonempty
categories: ΓF1(E) = {(h2, e)} for F1 := {(a, e)}, ΓF2(E) = {(h2, d)} for F2 := {(a, d)},
and ΓE(E) = {(a, h1), (h1, h2)} (the other links are in category Γ∅(E)). Thus, the
category metrics are wF1(E) = θ(h2,e), wF2(E) = θ(h2,d), and wE(E) = θ(a,h1) + θ(h1,h2).
Based on (4.10), we have a linear system:

ρF1 = wE(E) + wF1(E), (4.11a)

ρF2 = wE(E) + wF2(E), (4.11b)

ρE = wE(E) + wF1(E) + wF2(E), (4.11c)

which uniquely determines (wF1(E), wF2(E), wE(E)). Meanwhile, the same path metrics
(ρF1 , ρF2 , ρE) can be generated by many different topologies (e.g., there may be multiple
links between h2 and e, or the tunnels (a, e) and (a, d) may join/branch multiple times)
as long as the category metrics (wF1(E), wF2(E), wE(E)) remain the same, making the
category metrics the finest granularity information that the overlay can reliably infer
from its measurements.

4.3.2.3 Taming Exponential Complexity

A straightforward solution for detecting nonempty categories based on solving (4.10)
faces a severe limitation that the complexity grows at O(2|E|), where |E| = O(|V |2), as
the number of equations/variables is O(2|E|). This renders the straightforward solution
inapplicable beyond overlays with just a few nodes. To address this limitation, we develop
a novel polynomial-complexity algorithm for category metric inference.

Our solution is based on dynamic programming. Instead of considering all the tunnels
in one shot, we start with only a small subset of tunnels, for which (4.10) can be solved
within acceptable time/space to obtain coarse-grained category metrics, and then we

116

Algorithm 9: CategOry IdeNtification (COIN)
input : Set of all tunnels E, metric ρ, detection threshold η
output : Set of detected nonempty categories F

1 solve (4.10) to compute w(E0) for an initial set of tunnels E0 ⊆ E;
2 for t = 1, . . . , |E| − |E0| do
3 Et ← Et−1 ∪ {e} for an arbitrary tunnel e ∈ E \ Et−1;
4 w{e}(Et)← ρEt − ρEt−1 ;
5 for F ∈ supp(w(Et−1)) in increasing order of |F | do
6 wF∪{e}(Et)←

ρ(Et−1\F)∪{e} − ρEt−1\F − w{e}(Et)−
∑
F ′⊂F :F ′∈supp(w(Et−1))wF ′∪{e}(Et);

7 wF (Et)← wF (Et−1)− wF∪{e}(Et);
8 return F = {F ∈ supp(w(E)) : wF (E) > η};

gradually expand the set of considered tunnels to refine the category metrics until all the
tunnels are included. Our approach is motivated by the following observations:

Lemma 4.3.1. The number of nonempty categories is upper-bounded by the number of
links in the underlay, i.e., |{ΓF (E ′) : F ⊆ E ′,ΓF (E ′) ̸= ∅}| ≤ |{e : e ∈ ∪(u,v)∈E′p

u,v
}| ≤

|E| for any E ′ ⊆ E.

Lemma 4.3.2. For any E ′ ⊂ E and e ∈ E \ E ′, wF (E ′) = 0 implies wF (E ′ ∪ {e}) =
wF∪{e}(E ′ ∪ {e}) = 0, for all F ⊆ E ′ and F ̸= ∅.

Lemma 4.3.3. For any E ′ ⊂ E and e ∈ E\E ′, wF (E ′) = wF (E ′∪{e})+wF∪{e}(E ′∪{e}).

Lemma 4.3.1 means that the vector of category metrics is sparse, and Lemma 4.3.2
means that the sparsity pattern of this vector for a subset of tunnels can be used to
estimate its sparsity pattern as we consider more tunnels. Lemma 4.3.3 allows us to use
the previously computed category metrics defined for a subset of tunnels to solve for the
new category metrics when considering one more tunnel.

Algorithm: Based on the above observations, we develop CategOry IdeNtification
(COIN), a dynamic programming algorithm for identifying the nonempty categories, as
shown in Algorithm 9. We ignore estimation error in ρ for now to focus on the main
idea; how to handle estimation error will be discussed later in Section 4.3.2.4. Here,
Et denotes the set of tunnels considered in iteration t, w(Et) := (wF (Et))F⊆Et,F ̸=∅, and
supp(w(Et)) := {F ⊆ Et : F ̸= ∅, wF (Et) ̸= 0}. The algorithm first uses measurements
from a small set of tunnels E0 to compute a vector of coarse-grained category metrics
w(E0) by directly solving (4.10). It then gradually refines the solution by expanding the
set of considered tunnels. In iteration t, the equations corresponding to Et = Et−1 ∪ {e}

117

can be classified into two types:

ρF =
∑

F ′⊆Et−1,F ′∩F ̸=∅

(
wF ′(Et) + wF ′∪{e}(Et)

)
, (4.12)

ρF∪{e} =
∑

F ′⊆Et−1,F ′∩F ̸=∅

(
wF ′(Et) + wF ′∪{e}(Et)

)
+

∑
F ′⊆Et−1\F

wF ′∪{e}(Et), (4.13)

where (4.12) is ∀F ⊆ Et−1, F ̸= ∅ and (4.13) is ∀F ⊆ Et−1. Given the solution
w(Et−1) from the previous iteration, equations of type (4.12) become redundant, as their
information is already contained in the simpler equations wF (Et−1) = wF (Et)+wF∪{e}(Et)
based on Lemma 4.3.3. Equations of type (4.13) can be rewritten as

∑
F ′⊆F

wF ′∪{e}(Et) = ρ(Et−1\F)∪{e} − ρEt−1\F . (4.14)

For F = ∅, (4.14) contains only one unknown variable w{e}(Et), and hence can be used
to compute w{e}(Et) as in line 4. Based on this initial solution, we can use (4.14) to
gradually solve wF∪{e}(Et) in the increasing order of |F | as in line 6, because when we
try to solve wF∪{e}(Et), the values of wF ′∪{e}(Et) for any F ′ ⊂ F have been obtained.
Once wF∪{e}(Et) is obtained, we can apply Lemma 4.3.3 to compute wF (Et) as in line 7.
In this process, we use the observation in Lemma 4.3.2 to reduce complexity by only
computing wF (Et) and wF∪{e}(Et) for F ⊆ Et−1 satisfying F ̸= ∅ and wF (Et−1) ̸= 0.
Note that E|E|−|E0| = E.

Complexity: Algorithm 9 significantly improves the complexity of category metric
inference compared to the straightforward solution. Specifically, under perfect estimation
of the path metrics, each iteration (lines 2–7) incurs O(|E|2) operations, stores O(|E|)
variables, and performs O(|E|) estimations of path metrics, because the number of
non-zero category metrics |supp(w(Et−1))| ≤ |E| by Lemma 4.3.1. As there are O(|E|)
iterations, the total complexity is O(|E| · |E|2) in time, O(|E|) in space (reused across
iterations), and O(|E| · |E|) in the number of path metric estimations.

4.3.2.4 Handling Estimation Errors

In practice, errors in the estimated path metrics ρ̂ are inevitable, which will cause errors
in the inferred category metrics ŵ(Et). In particular, such errors may even cause some
of the inferred category metrics to be negative. To mitigate the impact of estimation

118

20 40 60 80

|E
t
|

0

10

20

30

40

#m
is

s

AttMpls
Abovenet
GtsCe
BellCanada

(a) misses

20 40 60 80

|E
t
|

0

1000

2000

3000

4000

5000

#f
al

se
 a

la
rm

AttMpls
Abovenet
GtsCe
BellCanada

(b) Computation time
Figure 4.2. Errors of COIN with varying #tunnels under the same settings as Tables 4.2-4.3
in Section 4.5.

errors on nonempty category identification, we propose the following two enhancements
for Algorithm 9.

The first enhancement is based on the observation that Lines 4-7 in Algorithm 9 is
equivalent to solving the linear system below: ρ̂t

wt−1

 =
At,1

At,2

wt. (4.15)

Here, wt is a vector containing w{e}(Et) and wFt−1(Et), wFt−1∪{e}(Et), ∀Ft−1 ∈ supp(w(Et−1));
ρ̂t = At,1wt is (4.13) in matrix form with ρ̂t containing ρ̂(Et−1\Ft−1)∪{e} for all Ft−1 ∈
supp(w(Et−1)) ∪ {∅}; wt−1 = At,2wt contains the equations wFt−1(Et−1) = wFt−1(Et) +
wFt−1∪{e}(Et),∀Ft−1 ∈ supp(w(Et−1)). Considering the errors in ρ̂t, we propose to infer
wt by solving the following non-negative least squares problem instead of (4.15):

min
wt≥0

∥∥∥∥∥∥
 ρ̂t

wt−1

−
At,1

At,2

wt

∥∥∥∥∥∥
2

. (4.16)

The second enhancement is based on the observation in Fig. 4.2, that COIN is highly
accurate when the number of considered tunnels |Et| is small. Closer examination shows
that COIN is particularly accurate when Et ⊆ E(s), where E(s) := {(s, t) ∈ E : ∀t ∈ V }
is the subset of tunnels with the same source s. Thus, we propose to use the inferred
supp

(
w(E(s))

)
(∀s ∈ V) to further improve (4.16). To this end, we have the following

observations.

119

Lemma 4.3.4. For any Et and F ⊆ E ′ ⊆ Et, if ∄F ′ ⊆ supp (w(Et)) such that F ⊆ F ′,
then wF (E ′) = 0.

Lemma 4.3.5. Given E0, E1 with E0 ∩ E1 = ∅, we must have wF0∪F1(E0 ∪ E1) = 0 if
wF0(E0) = 0 or wF1(E1) = 0, for all F0 ⊆ E0 and F1 ⊆ E1.

Theorem 4.3.2. Given Et := Et−1 ∪ {e} for e = (s, t), then ∀F ′ = F ∪ {e} for
F ∈ supp(w(Et−1)), we must have wF ′(Et) = 0 if there is no F ′′ ⊆ supp

(
w(E(s))

)
such

that
(
F ′ ∩ E(s)

)
⊆ F ′′.

Theorem 4.3.2 implies that we can reduce the number of variables in each iteration with
the knowledge of (supp

(
w(E(s))

)
)s∈V , by ignoring wF∪{e}(Et) for F ∈ supp(w(Et−1))

that is known to be zero.
We refer to the variation of Algorithm 9 with the above two enhancements as Robust

CategOry IdeNtification (R-COIN), which is presented in Algorithm 10. R-COIN follows
the same idea of COIN in Algorithm 9 with the following differences:

• During initialization, instead of computing the category metrics for a single initial
set of tunnels E0, R-COIN computes the category metrics for all the sets of tunnels
with the same source (E(vi))vi∈V , as in Lines 1–2.

• R-COIN solves for a smaller set of variables in each iteration based on Theorem 4.3.2,
as shown in Line 6.

• R-COIN estimates the category metrics by solving the non-negative least squares
problem (4.16) as in Line 7.

4.3.2.5 Performance Analysis

We now quantify the error in detecting nonempty categories using the inferred category
metrics. Let ŵF (E) denote the inferred metric of category ΓF (E) and η > 0 denote the
detection threshold. To gain explicit insights, our analysis will focus on the vanilla case
where ŵ(E) is obtained by directly solving (4.10) based on the estimated path metrics
ρ̂. The modifications introduced in Sections 4.3.2.3–4.3.2.4 make it difficult to obtain
explicit insights through analysis, and thus will be evaluated empirically (see Section 4.5).

All the errors originate from the error in estimating the path metric ρF defined in
(4.8). As common in the literature [116,117], we assume that ρF is estimated by plugging
the empirical probability SF := 1

T

∑T
t=1 SF,t into (4.8):

ρ̂F := − logSF , (4.17)

120

Algorithm 10: Robust CategOry IdeNtification (R-COIN)
input : All tunnels E, estimated metric ρ̂, detection threshold η
output : Set of detected nonempty categories F

1 foreach vi ∈ V , i = 0, . . . , |V | − 1 do
2 apply Algorithm 9 to obtain w(E(vi));
3 set E0 ← E(v0), t = 1;
4 for i = 1, · · · , |V | − 1 do
5 while ∃e ∈ E(vi) \ Et−1 do
6 for Et ← Et−1 ∪ {e}, construct wt containing

{wF (Et), wF∪{e}(Et) : F ∈ supp(w(Et−1))}, except those ruled out by
Theorem 4.3.2;

7 solve (4.16) for wt;
8 supp(w(Et))← {F ⊆ E : wF (Et) contained in wt, wF (Et) > η};
9 t← t+ 1;

10 return F = supp(w(E));

where SF,t ∈ {0, 1} indicates whether the probes in the t-th batch experience good states
on all the tunnels in F . We now analyze the error in identifying nonempty categories as
a function of the sample size T and other parameters.

We start by deriving the solution to (4.10) in closed form.

Lemma 4.3.6. Each category metric is related to the path metrics by

wF (E) =
∑
F ′⊆F

(−1)|F ′|+1ρ(E\F)∪F ′ , ∀F ⊆ E,F ̸= ∅. (4.18)

We then analyze the error in estimating ρF by (4.17). Let sF := Pr{SF = 1} for ease
of presentation.

Lemma 4.3.7. For T ≫ 1, the bias of (4.17) satisfies

E[ρ̂F]− ρF ≈
1− sF
2sFT

, (4.19)

and the variance satisfies

var[ρ̂F] ≈ 1− sF
sFT

, (4.20)

where smaller terms at the order of o(1/T) have been ignored.

By the central limit theorem, the distribution of SF is asymptotically Gaussian.
While due to the nonlinear transform − log(·), the distribution of ρ̂F is not exactly

121

Gaussian, the delta method [137] suggested that it is well approximated by the Gaussian
distribution for large T . Formally, the delta method [137] states that for a sequence of
random variables (Xn)n≥1 satisfying

√
n (Xn − µ) D−→ N (0, σ2) and a function f(x) such

that the first derivative f ′(x) exists and is non-zero, we have

√
n (f(Xn)− f(µ)) D−→ N

(
0, (f ′(µ))2σ2

)
, (4.21)

where D−→ denotes the convergence in distribution. Our problem satisfies these conditions
with

√
T (SF − sF) D−→ N (0, sF (1− sF)), f(x) = − log(x), f(SF) = ρ̂F , and f(sF) = ρF .

Under the Gaussian approximation, we can analyze the error in nonempty category
identification in closed form as follows.

Theorem 4.3.3. Suppose that the path metric estimation errors {ρ̂F − ρF}F⊆E,F ̸=∅ can
be modeled as independent Gaussian random variables with mean and variance given by
Lemma 4.3.7. If wF (E) = 0, then

Pr{ŵF (E) > η} = 1− Φ
(
η
√
T − δ̃F (E)/

√
T

δF (E)

)
(4.22)

≈ δF (E)
η
√

2πT
exp

(
− η2

2δF (E)2T

)
, (4.23)

and if wF (E) > η, then

Pr{ŵF (E)≤η} = Φ
(

(η − wF (E))
√
T − δ̃F (E)/

√
T

δF (E)

)
(4.24)

≈ δF (E)
(wF (E)− η)

√
2πT

exp
(
−(η − wF (E))2

2δF (E)2 T

)
, (4.25)

where Φ(·) is the CDF of the standard Gaussian distribution,

δF (E) :=
√ ∑
F ′:E\F⊆F ′

(1− sF ′)/sF ′ , (4.26)

δ̃F (E) :=
∑

F ′:E\F⊆F ′

(−1)|F ′|−|E\F |+1(1− sF ′)/(2sF ′), (4.27)

and the “≈” in (4.23) and (4.25) holds for T ≫ 1.

Remark: Theorem 4.3.3 states that both the false alarm probability (4.23) and the
miss probability (4.25) decay exponentially with the sample size T , with the error expo-
nent controlled by the detection threshold η. The threshold η essentially controls what

122

kinds of categories are detectable, in the sense that a category must have at least one
link in the “bad state” (e.g., with backlogged queue) with probability > 1− e−η to be
detectable with exponentially decaying error.

4.3.2.6 Special Case: Symmetric Tree-based Routing

Although the previous solution is applicable under arbitrary routing, it has limited
accuracy in large networks due to the difficulty in accurately estimating ρ. Below, we
will present a more accurate solution for the special case of symmetric tree-based routing,
where there is a unique path followed by all the routes traversing any two nodes u, v ∈ V ,
p
u,v

= p
v,u

, and θs,t = θt,s,∀(s, t) ∈ E. In this special case, the underlay routes originated
from each overlay node v ∈ V form a tree, and the routing topology connecting the
overlay nodes is a union of the trees rooted at each of the overlay nodes. Tree-based
routing is a common assumption in topology inference (see Section 4.1.1). This special
case is particularly attractive because:

1. The union of trees was believed to be uniquely determined by all the 1-by-2
components2 formed by the routes from each source to each pair of destinations [119].

2. The additive metrics for 1-by-2 components are much easier to estimate than those
for general categories, as they only require us to probe two tunnels at a time that
share the same source.

These observations motivate us to detect nonempty categories based on the estimated
metrics of 1-by-2 components. Note that in our context, a “1-by-2 component” refers
to the union of underlay routes from an overlay node to two other overlay nodes.

Algorithm: Let bstv denote the branching point between the tunnels (s, t) and (s, v),
ℓstv denote the additive metric for the path between s and bstv (i.e., the metric of the
shared path between (s, t) and (s, v)), and ℓst denote the additive metric for the entire
path between s and t. Algorithm 11 uses this information to detect categories with
sufficiently large (> η) metrics. For each tunnel (s, t) ∈ E, it detects the categories of
the links on path p

s,t
through the following steps: (1) locate the branching/joining points

between (s, t) and every other tunnel (lines 4–12), indicated by their distances from s

on path p
s,t

; (2) go through these branching/joining points from s to t (lines 13–15)
to identify the set of tunnels traversing the links between each pair of consecutive points

2The original statement in [119, Theorem 1] requires all the 1-by-2 and all the 2-by-1 components,
but the latter become redundant under the assumption of route symmetry.

123

Algorithm 11: Tree-based CategOry IdeNtification (T-COIN)
input : Set of tunnels E, estimated path metrics (ℓst)(s,t)∈E , estimated shared path

metrics (ℓstv)(s,t),(s,v)∈E , detection threshold η
output : Set of detected nonempty categories F

1 F ← ∅;
2 expand E if needed to include each tunnel in both directions;
3 for each (s, t) ∈ E do
4 for each (s, v) ∈ E (v ̸= t) do
5 record a branching point with (s, v) at distance ℓstv;
6 for each (v, t) ∈ E (v ̸= s) do
7 record a joining point with (v, t) at distance ℓst − ℓtsv;
8 for each (i, j) ∈ E ({i, j} ∩ {s, t} = ∅) do
9 if ℓstj > ℓsj − ℓ

j
si then

10 record a joining point with (i, j) at distance ℓsj − ℓ
j
si, and a branching point

with (i, j) at distance ℓstj ;
11 else if ℓitj > ℓit − ℓtsi then
12 record a joining point with (i, j) at distance ℓst − ℓtsi, and a branching point

with (i, j) at distance ℓst − (ℓit − ℓitj);
13 sort the set Bs

t of branching/joining points on p
s,t

into {b(1), . . . , b(|Bs
t |)} with

increasing distances from s;
14 set b(0) ← s and b(|Bs

t |+1) ← t;
15 for k = 1, . . . , |Bs

t |+ 1 do
16 if b(k−1) = s then
17 F ← {(s, v) : (s, v) ∈ E};
18 else if b(k−1) is a branching point with tunnel (i, j) then
19 F ← F \ {(i, j)};
20 else if b(k−1) is a joining point with tunnel (i, j) then
21 F ← F ∪ {(i, j)};
22 if distance between b(k) and b(k−1) > η then
23 F ← F ∪ {F};
24 return F ;

(lines 16–21), and record this set as the index of a nonempty category if the corresponding
category metric exceeds a given threshold η (lines 22–23).

Example: To understand the idea in Algorithm 11, consider the topology spanned by
a 4-node overlay in Fig. 4.3 (a). When considering the tunnel (1, 2), Algorithm 11 first
locates all the branching/joining points between (1, 2) and the other tunnels based on the
given metrics of 1-by-2 components, as shown in Fig. 4.3 (b). Each tunnel (1, v) (v = 3, 4)
branches from (1, 2) at distance ℓ1

2v from node 1, and each tunnel (v, 2) (v = 3, 4) joins
(1, 2) at distance ℓ1

2−ℓ2
1v from node 1. For tunnel (3, 4) not sharing any endpoint with (1, 2),

we need to consider a tunnel like (1, 4) that shares an endpoint with each. Since (1, 4) co-

124

1

3

2

4

𝑏23
1

𝑏13
2 𝑏24

1
𝑏14
2

(a) routes (b) branching/joining points

{ 1,2 , 1,3 , (1,4)}

{ 1,2 , (1,4)}

{ 1,2 , 1,4 , 3,2 , (3,4)}

{ 1,2 , (3,2)}

{ 1,2 , 3,2 , (4,2)}

1

3

2

4

Figure 4.3. Example for tree-based category identification: Overlay nodes V := {1, . . . , 4};
link labels in (b) denote the detected sets of traversing tunnels.

incides with (1, 2) for the first portion of length ℓ1
24, and (3, 4) joins (1, 4) after a portion of

length ℓ1
4−ℓ4

13, we know that (3, 4) has non-zero overlap with (1, 2) if ℓ1
24 > ℓ1

4−ℓ4
13, which

is satisfied in this case. Then Algorithm 11 identifies the set of tunnels traversing each pair
of consecutive branching/joining points via dynamic programming: starting from the set
{(1, 2), (1, 3), (1, 4)} of all the tunnels originating from node 1, it updates this set by ex-
cluding a tunnel branching from (1, 2) when moving past a branching point (e.g., excluding
(1, 3) when moving past b1

23), and including a tunnel joining (1, 2) when moving past a join-
ing point (e.g., including (3, 2) and (3, 4) when moving past b2

13, which is a joining point be-
tween (1, 2) and both of these tunnels). The distance between consecutive points indicates
the metric of the corresponding category, which is then used to detect nonempty categories.

Complexity: For any (s, t) ∈ E, there are at most one branching point and one joining
point with every other tunnel, i.e., |Bs

t | = O(|E|). Thus, it takes O(|E| log |E|) time to
locate the branching/ joining points and sort them in order (lines 4–13). Moreover, as
|F | = O(|E|), the for loop in lines 15–23 takes O(|E|2) time. This leads to a total time
complexity of O(|E|3). Meanwhile, since for each of the |E| tunnels, lines 15–23 may
construct O(|E|) sets of tunnels, each of size O(|E|), the total space complexity is also
O(|E|3).

Accuracy: Although [119] claimed that the 1-by-2 components (and 2-by-1 compo-
nents in the case of asymmetric routing) can uniquely determine the topology of a union
of routing trees, their analysis is insufficient for our algorithm for two reasons: (i) [119]
only considered a special case where the sets of sources and destinations are disjoint,
while Algorithm 11 handles a more general case where the destinations of some tunnels
can be the sources of some other tunnels; (ii) the proof of [119] contains a critical flaw
that it ignored the existence of branching/joining points that are not branching/joining

125

𝑠𝑖

𝑡 𝑗

𝑏𝑡𝑗
𝑖 𝑏𝑡𝑗

𝑠

𝑏𝑠𝑖
𝑡

𝑏𝑠𝑖
𝑗

𝑢
𝑣

Figure 4.4. Counterexample: The links shared by tunnels (s, t) and (i, j) between u and v are
undetectable from 1-by-2 components formed by the nodes in {s, t, i, j}.

points of any 1-by-2 or 2-by-1 components. It is therefore necessary to independently
analyze the accuracy of Algorithm 11, as stated below.

Theorem 4.3.4. Given accurate estimates of the path metrics (ℓst)(s,t)∈E and the shared
path metrics (ℓstv)(s,t),(s,v)∈E, Algorithm 11 will correctly detect all the nonempty categories
in {ΓF (E)}F⊆E,F ̸=∅ if (i) ∀(s, t), (i, j) ∈ E such that {s, t} ∩ {i, j} = ∅, every branch-
ing/joining point between (s, t) and (i, j) is a branching point of some 1-by-2 component
formed by three nodes from {s, t, i, j}, and (ii) every link e ∈ E has a metric θe > η.

Remark 1: Assumption (ii) in Theorem 4.3.4 is not a critical assumption as one can
tune the detection threshold η to achieve any desired detection sensitivity (while trading
off with false alarms). Assumption (i), however, is a limiting assumption that may be
violated, in which case Algorithm 11 will miss some categories. Consider the example in
Fig. 4.4, even if tunnels (s, t) and (i, j) share some links between points u and v (each being
an underlay node), the existence of these branching/joining points is undetectable from
1-by-2 components formed by {s, t, i, j} as neither of them coincides with the branching
point of any such component. Nevertheless, as shown in Table 4.2-4.3 in Section 4.5,
Algorithm 11 can detect the majority of nonempty categories under symmetric tree-based
routing, even if the ground-truth topology may violate assumptions (i–ii).

Remark 2: The assumption of symmetric link metrics θs,t = θt,s,∀(s, t) ∈ E can be
relaxed by measuring the 2-by-1 components in addition to the 1-by-2 components, at
the cost of requiring calibration of the probe transmission times between each pair of
overlay nodes. Detailed study of this case is left to future work.

126

4.3.3 Estimation of Category Capacities

We now address the estimation of the capacity for each detected nonempty category. In
the sequel, we will simply denote a category ΓF (E) as ΓF and a category metric wF (E)
as wF since they are always defined with respect to all the tunnels in E.

In absence of any prior knowledge, the overlay has to measure the category capac-
ities. However, the minimum link capacity CF for a nonempty category ΓF will not
be measurable by the overlay if no flow assignment in the overlay can saturate the
minimum-capacity link. To address this issue, we define a notion called effective category
capacity C̃F as follows.

Definition 4.3.3. For each F ⊆ E, the effective category capacity C̃F is the maximum
flow the overlay can send through the tunnels in F , i.e.,

C̃F := max
(fe)e∈E

∑
e∈F

fe (4.28a)

s.t.
∑
e′∈F ′

fe′ ≤ CF ′ , ∀F ′ ⊆ E, ΓF ′ ̸= ∅, (4.28b)

fe ≥ 0, ∀e ∈ E. (4.28c)

The effective category capacity is equivalent to the category capacity defined in (4.6)
in that they induce the same feasible region for overlay routing, except that the effective
category capacity is always achievable by the overlay. Thus, it suffices for the overlay
to estimate the effective capacity of each nonempty category.

Although how to estimate the combined capacity over multiple tunnels (i.e., paths)
has not been solved systematically, how to estimate the available capacity of a single
tunnel has been well understood [129,130]. Thus, we will build on top of these existing
solutions to develop an algorithm for estimating C̃F . Our algorithm assumes a subroutine
that can estimate the residual capacity of a tunnel e under an existing flow assignment f ,
which can be implemented by any of the existing available capacity estimation methods.
Let C̃e(f) denote the true residual capacity of e under f and Ĉe(f) the estimate given
by the subroutine.

Algorithm: Given this subroutine, we propose an algorithm in Algorithm 12. For each
tunnel set of interest F , this algorithm goes through the tunnels in F in an arbitrary
order, and tries to assign as much flow as possible onto each tunnel eij according to the
residual capacity estimated by the subroutine, without backtracking the flow assignment
for ei1 , . . . , eij−1 (lines 2–4). The effective category capacity is then estimated as the sum

127

Algorithm 12: Effective Category Capacity Estimation
input : set F of category indices of interest (e.g., F := {F ⊆ E : ŵF > η}
output : Estimated effective category capacities {ĈF }F∈F

1 for each F := {ei1 , · · · , ei|F |} ∈ F do
2 fei1

← Ĉei1
(0);

3 for j = 2, · · · , |F | do
4 feij

← Ĉeij
(f);

5 ĈF ←
∑|F |
j=1 feij

;
6 return {ĈF }F∈F ;

flow (line 5).
Complexity: As Algorithm 12 invokes an existing single-path available capacity

estimation method as subroutine, its exact complexity will depend on the complexity
of the subroutine. Nevertheless, as the complexity of the subroutine is independent of
the size of the overlay-underlay network, we can analyze the complexity of Algorithm 12
in terms of the number of invocations of the subroutine, which equals O(|F| · |E|). As
the number of nonempty categories is upper-bounded by the number of underlay links
|E|, under reasonably accurate nonempty category identification, the number of detected
nonempty categories |F| will be O(|E|), and thus the complexity of Algorithm 12 will be
O(|E| · |E|).

Accuracy: We now analyze how the estimated effective category capacity ĈF provided
by Algorithm 12 compares to the true value. Under the assumption that the subroutine
does not overestimate the residual capacities of individual tunnels, which is typical for
PGM-based methods [129], it is easy to see that the flow assignment in Algorithm 12 is
feasible for the underlay link capacities, i.e., feasible for (4.28). Thus, the achieved sum
rate can only underestimate the effective category capacity, i.e., ĈF ≤ C̃F . Meanwhile, if
the subroutine is accurate, then the estimate can only be a constant factor smaller as
stated below.

Theorem 4.3.5. If the estimation for single-tunnel residual capacity is accurate (i.e.,
Ĉe(f) = C̃e(f)), then Algorithm 12 achieves 1/qF -approximation. More precisely, C̃F ≥
ĈF ≥ C̃F/qF , where

qF := max
e∈F
|{F ′⊆E : e ∈ F ′,ΓF ′ ̸= ∅, |F ′ ∩ F |>1}| (4.29)

is the maximum number of nonempty categories a tunnel in F traverses that are shared
by at least another tunnel in F .

128

h1

v1

v2

v3 v6

v5

v4

h2 h4

1

1

overlay node underlay node

h3

Figure 4.5. Example for estimating the effective category capacity for F =
{(v1, v4), (v2, v5), (v3, v6)} (suppose that links (h1, h2) and (h3, h4) have unit capacity, and
other links have unlimited capacities).

Even if the subroutine incurs error, Algorithm 12 still achieves a constant-factor
approximation under the following condition.

Corollary 4.3.5.1. If the estimate Ĉe(f) for any single-tunnel residual capacity C̃e(f)
satisfies C̃e(f) ≥ Ĉe(f) ≥ C̃e(f)/q, then Algorithm 12 achieves 1/(q · qF)-approximation.
More precisely, C̃F ≥ ĈF ≥ C̃F/(q · qF), where qF is defined in (4.29).

We note that the approximation ratio in Theorem 4.3.5 is tight, i.e., there exist
instances where Algorithm 12 underestimates the effective capacity of a category by a
factor arbitrarily close to 1/qF . Consider the example in Fig. 4.5. The effective category
capacity for F = {(v1, v4), (v2, v5), (v3, v6)} is C̃F = 2, achieved by sending one unit of
flow on tunnel (v1, v4) and one unit of flow on tunnel (v3, v6). Note that the category
capacity CF = ∞ as category ΓF only contains one link (h2, h3) which has unlimited
capacity. However, following the order of (v2, v5), (v1, v4), and (v3, v6), Algorithm 12 will
only obtain ĈF = 1, as assigning a unit flow on tunnel (v2, v5) will reduce the residual
capacities of the other tunnels to zero. In this case, qF = 3, as tunnel (v2, v5) traverses
shared links (h1, h2), (h2, h3), (h3, h4) that belong to three different categories. This
example can be extended to the scenario where a given tunnel e0 shares unit-capacity
links with each of n other tunnels e1, . . . , en as well as an unlimited-capacity link with
all these tunnels. For F = {ei}ni=0, we have C̃F = n, qF = n + 1, and ĈF = 1 by
Algorithm 12 if following the order of e0, e1, . . . , en, yielding an approximation ratio of
ĈF/C̃F = 1/n ≈ 1/qF for n≫ 1.

Remark: Although the above example shows that the greedy procedure of Algorithm 12

129

Overlay controller

Category
detection

Capacity
estimation

Overlay
routing

Underlay network

Overlay control link

Overlay data link

Figure 4.6. Illustration of overall solution.

can lead to substantial underestimation in the worst case, we note that such a worst
case is only achieved under a specific topology and a specific order of assigning flows
to the tunnels. In practice, we have observed that the worst case rarely occurs and
Algorithm 12 is accurate as long as its subroutine for estimating single-tunnel residual
capacity is accurate (see Table 4.4).

4.4 Underlay-aware Overlay Routing
We now discuss how to leverage the inference techniques discussed in Section 4.3 in
overlay routing.

4.4.1 Overall Solution

By detecting the nonempty categories F (via Algorithm 9) and estimating the effective
category capacities {ĈF}F∈F (via Algorithm 12), the overlay can generate capacity
constraints in the form of

∑
(i,j)∈F

∑
h∈H

dhx
h
ij ≤ ĈF , ∀F ∈ F , (4.30)

and use them in place of (4.1b) in overlay routing optimizations such as (4.1). Fig. 4.6
illustrates the workflow of the overall proposed solution. Note that the centralized
controller is just an illustration of the fact that the current work does not focus on the
coordination within the overlay (which is left to future work).

130

4.4.2 Performance Analysis

Both nonempty category identification and category capacity estimation are subject to
inference errors, which will affect the accuracy of the generated constraint (4.30) and
thus the performance of overlay routing. We now analyze the impact of these errors.

There are four types of inference errors: false alarm/miss in nonempty category
identification and under/over-estimation of category capacity. A false alarm in nonempty
category identification will cause the generation of a superfluous constraint in overlay
routing, which may lead to suboptimal routing decisions. Meanwhile, a miss will cause
a constraint to be missing, which may lead to an infeasible routing decision that causes
congestion in the underlay. Similarly, an underestimated category capacity will lead to
a constraint that is too tight, potentially causing suboptimality, while an overestimated
category capacity will lead to a constraint that is too loose, potentially causing conges-
tion. While the extent of suboptimality will depend on the specific routing objective and
network instance, which is hard to characterize analytically, the congestion probability
can be analyzed in closed form. Specifically, as discussed in Section 4.3.3, the category
capacity estimation typically incurs only underestimation errors, which will not cause
congestion. Thus, the only cause of congestion is the failure in detecting some nonempty
category, the probability of which will decay exponentially in T (#batches of probes for
estimating the path metrics) as follows.

Theorem 4.4.1. Let F∗ := {F ⊆ E : ΓF ̸= ∅} be the true set of nonempty categories.
Suppose that the (effective) category capacity estimation is performed by Algorithm 12 with
a subroutine for single-tunnel residual capacity estimation that has no overestimation error,
and every nonempty category satisfies wF > η, where η is the threshold for nonempty
category identification. Then under the assumption of Theorem 4.3.3, the probability for
the proposed underlay-aware overlay routing to cause congestion is upper-bounded by

|F∗|Φ
(

(η − wF ∗)
√
T − δ̃F ∗/

√
T

δF ∗

)

≈ |F∗|δF ∗

(wF ∗ − η)
√

2πT
exp

(
−(wF ∗ − η)2

2δ2
F ∗

T

)
, (4.31)

where δF , δ̃F , and Φ are defined as in Theorem 4.3.3 (omitting “(E)”), and F ∗ :=
arg maxF∈F∗ Pr{ŵF ≤ η}.

131

AttMpls AboveNet GTS-CE BellCanada
|V | 25 23 149 48
|E| 114 62 386 130

Ce (Gbps) 1 1 1 1
link delays (µs) [206,4973] [100, 13800] [5,1081] [78, 6160]

Table 4.1. Characteristics of the tested underlay topologies.

4.5 Performance Evaluation

4.5.1 Evaluation Setup

In this section, we will test the proposed solutions via packet-level simulations in NS3,
which is a widely used discrete event simulator. To construct diverse and realistic scenarios,
we simulate the underlay network according to four real networks from the Internet
Topology Zoo [138] with different densities and sizes, and set the link capacities and delays
according to [139]. The characteristics of each topology are summarized in Table 4.1.

Each underlay is assumed to follow shortest path routing based on hop count. Follow-
ing [140], we generate cross traffic on each underlay link according to an ON-OFF process,
where the duration of each ON period follows a truncated Pareto distribution, with
shape parameter 2.04 and scale/upper-bound parameter set to the minimum/maximum
round-trip time (RTT) of the tunnels traversing this link. The duration of each OFF
period follows the same distribution with a different scale parameter, configured to yield
a link utilization randomly drawn from [10%, 40%]. Following [141], we randomly draw
the sizes of cross-traffic packets from 50, 576, and 1460 bytes with probabilities 0.4, 0.2,
and 0.4, respectively. We set the overlay packet size to 50 bytes for probing and 1000
bytes for routing.

To create the overlay, we select 10 nodes with the lowest degree as the overlay nodes
while maintaining a pairwise distance of at least two hops, which leads to 90 (directed)
overlay tunnels and 290 potential categories. The number of nonempty categories for each
topology is given in Table 4.2. As for the demands d = (dh)h∈H in (4.1), we first generate
an initial demand d0 based on the gravity model [142]. Then, we scale it by a factor
α to ensure that there exists a routing solution to satisfy αd0 with a given maximum
link utilization. All results are the median of 20 Monte Carlo runs with randomized
background traffic and demands.

132

AttMpls AboveNet GTS-CE BellCanada
#nonempty cat. 68 52 56 52

COIN 22 27 40 28
R-COIN 8 14 32 16
T-COIN 1 1 17 5

Table 4.2. Misses in category identification (|V | = 10).

AttMpls AboveNet GTS-CE BellCanada
#empty cat. 290 − 68 290 − 52 290 − 56 290 − 52

COIN 1093 1230 4997 2576
R-COIN 1013 1202 2293 2564
T-COIN 815 1072 1493 828

Table 4.3. False alarms in category identification (|V | = 10).

4.5.2 Benchmarks

We evaluate the following solutions:

1. “Agnostic”: an underlay-agnostic solution that treats all the tunnels as independent
logical links, i.e., ignoring their link sharing in the underlay;

2. “LCC”: the state-of-the-art solution from [109], where we make two optimistic
assumptions: (i) perfect clustering of the detected flows based on their shared
dominant bottlenecks, and (ii) improved accuracy in the capacity constraints based
on the residual capacities instead of the total capacities as originally estimated
in [109];

3. “x-COIN”: our proposed solution as depicted in Section 4.4.1, which contains three
variations differentiated by the adopted category identification algorithms (i.e.,
COIN, R-COIN, T-COIN).

4.5.3 Evaluation Results

4.5.3.1 Nonempty Category Identification

We estimate ρF as in (4.17), with implementation details presented in Appendix 4.7.2. A
category ΓF is detected to be nonempty if its estimated metric satisfies ŵF > η. As our
estimation of the effective category capacities is accurate (see Table 4.4), false alarms will
not hurt overlay routing, and thus we set η to a small value (10−10 in our simulation) to
minimize misses. The resulting numbers of false alarms/misses are given in Table 4.2-4.3,
with each Monte Carlo run containing 2× 104 batches of probes.

133

AttMpls AboveNet GTS-CE BellCanada
ideal subroutine 0.10% 0.13% 0.13% 0.4%

pathload 1.07% 1.18% 1.15% 1.49%

Table 4.4. Errors in effective category capacity estimation.

Despite the large number of false alarms, the false alarm rate is very low due to
the exponentially many categories that are empty. Meanwhile, the miss rates are non-
negligible, although T-COIN outperforms R-COIN, which in turn outperforms COIN.
Such errors come from two causes: (i) for tunnels with different sources, probes in the
same batch may arrive at a shared link at different times and experience different queueing
delays; (ii) a link shared by a large number of tunnels will receive many probes in a
batch, where the earlier probes will experience different queueing delays from the later
ones. In this regard, T-COIN performs much better since it only requires the estimation
of ρF for F containing two tunnels with the same source.

4.5.3.2 Category Capacity Estimation

Next, we evaluate the normalized mean absolute error (|ĈF − C̃F |/C̃F) of Algorithm 12.
To separate the impact of errors in its subroutine, we evaluate two versions of Algorithm 12,
one using the true value of Ceij

(f) in Line 5 (i.e., ideal subroutine) and the other using
the estimated Ĉeij

(f) obtained from pathload3 [130]. The results averaged over 20 Monte
Carlo runs are given in Table 4.4. Surprisingly, Algorithm 12 can estimate the effective
category capacities almost perfectly when the subroutine estimates the single-tunnel
residual capacities correctly, indicating that the worst-case ratio in Theorem 4.3.5 is
rarely achieved. Slightly more error is incurred when using a realistic subroutine, but
the overall estimation remains highly accurate.

4.5.3.3 Approximation of Feasible Region

Despite the large numbers of misses and false alarms, the feasible region induced by the
inferred capacity constraint (4.30) may still approximate the true feasible region induced
by (4.1b) (equivalently (4.5)), if the superfluous constraints caused by false alarms have
similar effect as the missing constraints caused by misses. Denote the true feasible region
of the rates through the tunnels as P := {y ≥ 0 : ∑(i,j)∈E:e∈p

i,j
yij ≤ Ce, ∀e ∈ E}, and

the inferred feasible region as P̂ := {y ≥ 0 : ∑(i,j)∈F yij ≤ ĈF , ∀F ∈ F}. We define
3Pathload is an adaptive algorithm that sends a train of probes at a time and tunes its rate to

measure the residual capacity. In our simulation, the train length is set to 5000 probes, but the total
number of trains is a variable in [2, 15].

134

P̂ similarly for each of the benchmarks. We measure the consistency between these
two regions by randomly sampling extreme points from one region and calculating the
maximum constraint violation for the other region. We observe that the extreme points
of P almost always satisfy the constraints of P̂ for all the solutions (omitted), but the
extreme points of P̂ can violate the constraints of P (i.e., causing congestion), as shown
in Fig. 4.7. We see from Fig. 4.7 that (i) the constraint violation of “Agnostic” is most
severe, and (ii) our proposed solutions (COIN, R-COIN and T-COIN) can all notably
reduce the constraint violation compared to both “Agnostic” and “LCC”, where T-COIN
achieves nearly zero constraint violation on the first two topologies due to its low miss
rate in these cases. Despite the notable inference errors, our solution can characterize
the feasible region for overlay routing much more accurately than the existing solutions.

AttMpls Abovenet GtsCe BellCanada
0

0.5

1

1.5

2

2.5

C
on

st
ra

in
t v

io
la

tio
n

(G
bp

s)

T-COIN
R-COIN
COIN
LCC
Agnostic

Figure 4.7. Constraint violation for randomly-sampled extreme points of the estimated feasible
region.

4.5.3.4 Performance of Overlay Routing

When the demands are sufficiently light such that even “Agnostic” does not encounter
any congestion, there is no need to consider link sharing among tunnels and all the overlay
routing solutions achieve similar performance (omitted). We thus focus on scenarios
where at least one link will be congested under one of the tested routing solutions, by
scaling the demands to achieve (i) a maximum link utilization of 90% under the optimal

135

routing (with perfect knowledge about the underlay) and (ii) a maximum excess load
of 10% under “Agnostic”. We evaluate the performance of minimum cost overlay routing
in terms of both congestion and routing cost. Here, we set the routing cost cij for each
tunnel (i, j) ∈ E to the sum (propagation) delay of the links traversed by this tunnel.

To measure congestion, we evaluate the maximum load on any underlay link in excess
of its capacity. The result in Fig. 4.8(a) shows that “Agnostic” incurs the most congestion
due to ignoring link sharing among the tunnels, followed by “LCC” that only considers
a subset of the capacity constraints corresponding to the bottlenecks shared by tunnels
with the same destination. Due to their better accuracy in approximating the feasible
region (Fig. 4.7), our solutions can substantially outperform the state of the art (“LCC”),
particularly with the knowledge of symmetric tree-based routing in the underlay (“T-
COIN”). Among the underlay topologies, we observe more improvement for the topologies
(AttMpls, Abovenet, BellCanada) supporting rich overlay routing choices; in contrast, the
topology GtsCe yields less improvement as all the overlay nodes in this topology reside at
degree-1 nodes and hence their incident links become the common bottleneck under all
the overlay routing solutions. These observations also apply to the sum of excess loads.

To measure routing cost, we simulate overlay routing for 20,000 milliseconds and mea-
sure the average end-to-end delay over all the received packets. We then normalize the aver-
age delay to enable comparison across topologies. Given the average delay ϕ̄ obtained from
simulation, we evaluate the relative delay (ϕ̄− ϕ̄0)/ϕ̄0, where ϕ̄0 is the average delay under
the optimal routing solution based on perfect knowledge about the underlay. The result in
Fig. 4.8(b) confirms that (i) underlay-aware overlay routing (our solutions and “LCC”) can
notably outperform underlay-agnostic overlay routing (“Agnostic”), and (ii) by inferring
the key information to characterize the feasible region, our solutions, especially T-COIN,
can substantially improve the performance compared to the state of the art (“LCC”).

4.6 Conclusion
We studied the problem of overlay routing over an uncooperative underlay with unknown
topology and link capacities. We identified the minimum information needed to achieve
congestion-free overlay routing, and then developed polynomial-complexity algorithms to
infer this information with guaranteed accuracy. Our NS3 simulations based on realistic
settings demonstrated the superior performance of our algorithms in characterizing the
feasible region and improving the performance of overlay routing. Our solution paves
the way for overlay-based communication optimization without cooperation from the

136

AttMpls Abovenet GtsCe BellCanada
0

0.1

0.2

0.3

0.4

E
xc

es
s

lo
ad

 (
G

bp
s)

T-COIN
R-COIN
COIN
LCC
Agnostic

(a) max excess load

AttMpls Abovenet GtsCe BellCanada
10-4

10-3

10-2

10-1

100

101

R
el

at
iv

e
de

la
y

T-COIN
R-COIN
COIN
LCC
Agnostic

(b) avg relative delay
Figure 4.8. Performance of overlay routing.

underlying network infrastructure.

4.7 Appendix

4.7.1 Supporting Proofs

Proof of Lemma 4.3.1. This is a direct consequence of the property that different cate-
gories are disjoint, as implied by Definition 4.3.1.

Proof of Lemma 4.3.2. By Assumption 2, wF (E ′) = 0 implies that ΓF (E ′) = ∅. This
means that either (i) no link is traversed by all the tunnels in F , or (ii) every link
traversed by F is also traversed by at least another tunnel in E ′\F . In case (i), categories
ΓF (E ′ ∪ {e}) and ΓF∪{e}(E ′ ∪ {e}) must both be empty, as any link in either of these
categories must be traversed by all the tunnels in F . The same conclusion holds in case (ii),
as any link in either ΓF (E ′∪{e}) or ΓF∪{e}(E ′∪{e}) must be traversed by all the tunnels
in F but none of the tunnels in E ′ \ F . Thus, wF (E ′ ∪ {e}) = wF∪{e}(E ′ ∪ {e}) = 0.

Proof of Lemma 4.3.3. First, by the same argument as in the proof of Lemma 4.3.2,
any e ̸∈ ΓF (E ′) must not be in either ΓF (E ′ ∪ {e}) or ΓF∪{e}(E ′ ∪ {e}). Moreover,
by the definition of category, any e ∈ ΓF (E ′) must be in ΓF (E ′ ∪ {e}) if e is not
traversed by tunnel e and in ΓF∪{e}(E ′ ∪ {e}) if it is traversed by tunnel e. Thus,
ΓF (E ′) = ΓF (E ′ ∪ {e}) ∪ ΓF∪{e}(E ′ ∪ {e}), which implies the conclusion.

Proof of Lemma 4.3.4. We prove by contradiction. Suppose that we have wF (E ′) > 0
and Et := E ′ ∪ {e1, · · · , et} where E ′ ∩ {e1, · · · , et} = ∅. We will iteratively add

137

ei, i = 1, · · · , t into E ′. In the first iteration, according to Lemma 4.3.3, we have
wF (E ′) = wF (E1) + wF∪{e1}(E1) where E1 := E ′ ∪ {e1}. Then, at least one of wF (E1)
and wF∪{e1}(E1) has non-zero value. In other words, there exists F ′ ⊆ supp (w(E1)) such
that F ⊆ F ′. Similarly, in adding e2 to have E2 := E1 ∪ {e2}, at least one of wF (E2),
wF∪{e2}(E2), wF∪{e1}(E2) and wF∪{e1,e2}(E2) must have non-zero values by applying
Lemma 4.3.3 to wF (E1) and wF∪{e1}(E1). By repeatedly applying Lemma 4.3.3 when
adding ej to Ej−1, j = 2, · · · , t, there always exists F ′ ⊆ supp (w(Ej)) such that F ⊆ F ′,
which introduces contradiction and completes the proof.

Proof of Lemma 4.3.5. Suppose that contrary to the lemma, there exists F0 ⊆ E0 and
F1 ⊆ E1 such that wF1(E1) = 0 but wF0∪F1(E0 ∪E1) > 0. Then there must exist at least
one underlay link e with non-zero metric that is traversed by all the tunnels in F1 but
none of the tunnels in E1 \F1, because E0∩E1 = ∅. However, by Definition 4.3.1, e must
belong to ΓF1(E1), and thus wF1(E1) > 0, contradicting with the assumption. Similar
contradiction can be derived if wF0(E0) = 0 but wF0∪F1(E0 ∪ E1) > 0.

Proof of Theorem 4.3.2. We first notice that Et =
(
Et \ E(s)

)⋃ (
Et ∩ E(s)

)
, where(

Et \ E(s)
)⋂ (

Et ∩ E(s)
)

= ∅. Similarly, we have the following decomposition F ′ =(
F ′ \ E(s)

)⋃ (
F ′ ∩ E(s)

)
. According to Lemma 4.3.4, we must have wF ′∩E(s)(Et∩E(s)) =

0 if there is no F ′′ ⊆ supp
(
w(E(s))

)
such that

(
F ′ ∩ E(s)

)
⊆ F ′′. Consequently, accord-

ing to Lemma 4.3.5, we must have wF ′(Et) = 0 by setting E0 and E1 to Et \ E(s) and
Et ∩ E(s) respectively, which completes the proof.

Proof of Lemma 4.3.6. We prove (4.18) by performing induction on |E| and leveraging
the relationships derived in Algorithm 9. First, for |E| = 2 (denoted by E = {e1, e2}),
it is easy to see that w{ei}(E) = ρE − ρE\{ei} (i = 1, 2) and wE(E) = ρe1 + ρe2 − ρE,
satisfying (4.18). Now consider |E| > 2 and suppose that (4.18) is satisfied by wF (E ′)
for any |E ′| ≤ |E| − 1. Let E ′ := E \ {e} for any e ∈ E. By line 4,

w{e}(E) = ρE − ρE′ = (−1)ρE\{e} + (−1)2ρ(E\{e})∪{e}, (4.32)

satisfying (4.18). Now consider F ⊆ E ′ with F ̸= ∅. Suppose that wF ′∪{e}(E) satisfies
(4.18) for any |F ′| < |F |. By line 6,

wF∪{e}(E) = ρ(E′\F)∪{e} − ρE′\F − ρE + ρE′

−
∑

F ′⊂F,F ′ ̸=∅

∑
F ′′⊆F ′∪{e}

(−1)|F ′′|+1ρ(E′\F ′)∪F ′′ . (4.33)

138

The last term in (4.33) can be decomposed into the summation of the following two terms

∑
F ′⊂F,F ′ ̸=∅

∑
F ′′⊆F ′

(−1)|F ′′|+1ρ(E′\F)∪((F\F ′)∪F ′′), (4.34)

∑
F ′⊂F,F ′ ̸=∅

∑
F ′′⊆F ′

(−1)|F ′′|ρ(E′\F)∪((F\F ′)∪F ′′∪{e}). (4.35)

With F0 := (F \ F ′) ∪ F ′′, we can rewrite (4.34) as

∑
F0⊂F,F0 ̸=∅

ρ(E′\F)∪F0

∑
F ′′⊂F0

(−1)|F ′′|+1

+ ρ(E′\F)∪F
∑

F ′′⊂F,F ′′ ̸=∅
(−1)|F ′′|+1

=
∑

F ′⊆F,F ′ ̸=∅
(−1)|F ′|ρ(E′\F)∪F ′ + ρE′ , (4.36)

where we have plugged in ∑
F ′′⊂F0(−1)|F ′′|+1 = ∑|F0|−1

i=0

(
|F0|
i

)
(−1)i+1 = (−1)|F0| and∑

F ′′⊂F,F ′′ ̸=∅(−1)|F ′′|+1 = ∑|F |−1
i=1

(
|F |
i

)
(−1)i+1 = (−1)|F | + 1. Similarly, we can rewrite

(4.35) as

∑
F0⊂F,F0 ̸=∅

ρ(E′\F)∪F0∪{e}
∑

F ′′⊂F0

(−1)|F ′′|

+ ρ(E′\F)∪F∪{e}
∑

F ′′⊂F,F ′′ ̸=∅
(−1)|F ′′|

=
∑

F ′⊆F,F ′ ̸=∅
(−1)|F ′|+1ρ(E′\F)∪F ′∪{e} − ρE. (4.37)

Plugging (4.36) and (4.37) into (4.33) yields

wF∪{e}(E) = ρ(E′\F)∪{e} − ρE′\F − ρE + ρE′

+
∑

F ′⊆F,F ′ ̸=∅
(−1)|F ′|+1ρ(E′\F)∪F ′ − ρE′

+
∑

F ′⊆F,F ′ ̸=∅
(−1)|F ′∪{e}|+1ρ(E′\F)∪F ′∪{e} + ρE

=
∑
F ′⊆F

(−1)|F ′|+1ρ(E′\F)∪F ′

+
∑
F ′⊆F

(−1)|F ′∪{e}|+1ρ(E′\F)∪(F ′∪{e}), (4.38)

which satisfies (4.18). Finally, by plugging in the expression for wF (E ′) (from the

139

induction assumption) and the expression (4.38) for wF∪{e}(E) into the formula in line 7,
we have

wF (E) = wF (E ′)− wF∪{e}(E)

=
∑
F ′⊆F

(−1)|F ′|+1ρ(E′\F)∪F ′ −
∑
F ′⊆F

(−1)|F ′|+1ρ(E′\F)∪F ′ −
∑
F ′⊆F

(−1)|F ′|ρ(E′\F)∪F ′∪{e}

=
∑
F ′⊆F

(−1)|F ′|+1ρ(E\F)∪F ′ (4.39)

for any F ⊆ E ′ and F ≠ ∅, which also satisfies (4.18). Together, (4.32), (4.38), and
(4.39) complete the induction.

Proof of Lemma 4.3.7. By Taylor expansion of − logSF at sF , we have

ρ̂F = − log sF −
SF − sF
sF

+ (SF − sF)2

2s2
F

+O((SF − sF)3).

By ignoring the high-order terms O((SF − sF)3), we have

E[ρ̂F] ≈ − log sF −
E[SF]− sF

sF
+ var[SF]

2s2
F

= ρF + 1− sF
2sFT

,

where we have plugged in ρF = − log sF , E[SF] = sF , and var[SF] = sF (1 − sF)/T .
Similarly, we have

var[ρ̂F] ≈ E
[(
− SF − sF

sF
+ (SF − sF)2

2s2
F

− 1− sF
2sFT

)2
]

≈ var[SF]
s2
F

+ (1− sF)2

4s2
FT

2 − (1− sF)var[SF]
2s3

FT
(4.40)

= 1− sF
sFT

+O(1
T 2),

where we have ignored terms of the order O(E[(SF − sF)i]) with i > 2 in (4.40).

Proof of Theorem 4.3.3. By the independent Gaussian assumption for {ρ̂F −ρF}F⊆E,F ̸=∅

and (4.18), ŵF (E)− wF (E) has a Gaussian distribution with mean

∑
F ′:E\F⊆F ′

(−1)|F ′|−|E\F |+1(E[ρ̂F ′]− ρF ′)

=
∑

F ′:E\F⊆F ′

(−1)|F ′|−|E\F |+1 (1− sF ′)
2sF ′T

=: δ̃F (E)
T

, (4.41)

140

and variance

∑
F ′:E\F⊆F ′

((−1)|F ′|−|E\F |+1)2var[ρ̂F ′]

=
∑

F ′:E\F⊆F ′

1− sF ′

sF ′T
=: δF (E)2

T
. (4.42)

Thus, if wF (E) = 0, we have

Pr{ŵF (E) > η} = Pr{ŵF (E)− wF (E) > η}

= 1− Φ
η − δ̃F (E)/T√

δF (E)2/T

 , (4.43)

which proves (4.22). Moreover, as 1− Φ(x) ≈ e−x2/2/(x
√

2π) for x≫ 1, for T ≫ 1, we
have

(4.43)≈ 1− Φ
(
η
√
T

δF (E)

)
≈ δF (E)
η
√

2πT
exp

(
− η2

2δF (E)2T

)
, (4.44)

which proves (4.23). Similarly, if wF (E) > η, we have

Pr{ŵF (E) ≤ η} = Pr{ŵF (E)− wF (E) ≤ η − wF (E)}

= Φ
η − wF (E)− δ̃F (E)/T√

δF (E)2/T


≈ Φ

(
(η − wF (E))

√
T

δF (E)

)
. (4.45)

Moreover, as Φ(x) = 1− Φ(−x) ≈ −e−x2/2/(x
√

2π) for x≪ 0, we have (for T ≫ 1)

(4.45) ≈ δF (E)
(wF (E)− η)

√
2πT

exp
(
−(η − wF (E))2

2δF (E)2 T

)
, (4.46)

which proves (4.25).

Proof of Theorem 4.3.4. It suffices to show that Algorithm 11 correctly detects all the
nonempty categories on a given tunnel (s, t).

First, we argue that lines 4–12 correctly locate all the branching/joining points
between (s, t) and the other tunnels. This is easy to see for the tunnels sharing the
starting point (lines 4–5) or the ending point with (s, t) (lines 6–7). Any other tunnel

141

𝑠

𝑖

𝑡

𝑗
(a.1) intersect

𝑏𝑠𝑖
𝑗

𝑏𝑡𝑗
𝑠

ℓ𝑡𝑗
𝑠

ℓ𝑗
𝑠 − ℓ𝑠𝑖

𝑗

𝑠

𝑖

𝑡

𝑗

(b) not intersect

𝑏𝑠𝑖
𝑡

𝑏𝑡𝑗
𝑠

ℓ𝑡𝑗
𝑠

ℓ𝑗
𝑠 − ℓ𝑠𝑖

𝑗

𝑏𝑠𝑖
𝑗ℓ𝑡

𝑖 − ℓ𝑠𝑖
𝑡

ℓ𝑡𝑗
𝑖

𝑠 𝑡

𝑖

𝑗

𝑏𝑡𝑗
𝑠 𝑏𝑠𝑖

𝑡
𝑏𝑡𝑗
𝑖

𝑏𝑠𝑖
𝑗

ℓ𝑡𝑗
𝑖

ℓ𝑡
𝑖 − ℓ𝑠𝑖

𝑡

(a.2) intersect

𝑏𝑡𝑗
𝑖

Figure 4.9. Cases for two tunnels without common endpoints.

(i, j) may or may not intersect with (s, t). Under the assumption (i) in the theorem, if
they intersect, then the branching/joining points of their intersection must coincide with
the branching points of some 1-by-2 components formed by {s, t, i, j}. As illustrated in
Fig. 4.9 (a.1), if ℓstj > ℓsj − ℓ

j
si, then there must be a joining point at distance ℓsj − ℓ

j
si and

a branching point at distance ℓstj from s on path p
s,t

, as recorded in line 10. If, instead,
ℓitj > ℓit− ℓtsi, then as illustrated in Fig. 4.9 (a.2), there will be a joining point at distance
ℓst − ℓtsi and a branching point at distance ℓst − (ℓit − ℓitj) from s on path p

s,t
, as recorded

in line 12. By symmetry of the tunnels (line 2), any intersection between (s, t) and (i, j)
that satisfies ℓtsi > ℓti − ℓitj or ℓjsi > ℓjs − ℓstj will also be detected when considering tunnels
(t, s) in line 3 and (j, i) in line 8. If none of the above detects any intersection between
tunnels (s, t) and (i, j), i.e., ℓstj ≤ ℓsj − ℓ

j
si, ℓitj ≤ ℓit − ℓtsi, ℓtsi ≤ ℓti − ℓitj, and ℓjsi ≤ ℓjs − ℓstj,

then tunnels (i, j) and (s, t) must not intersect as illustrated in Fig. 4.9 (b). This is
because: (i) the intersection cannot occur on the path segment s → bstj, as (i, j) must
be disjoint from (s, j) before bjsi, and bstj must be before bjsi (i.e., closer to s) due to
ℓstj ≤ ℓsj − ℓ

j
si, and similarly the intersection cannot occur on the path segments btsi → t,

i→ bitj , or bjsi → j; (ii) the intersection cannot occur between the path segments bstj → btsi

and bitj → bjsi either, as otherwise the resulting branching/joining points will not coincide

142

with the branching point of any 1-by-2 component formed by {s, t, i, j} as illustrated in
Fig. 4.4, violating assumption (i).

Next, since all the links between consecutive branching/joining points belong to the
same category, Algorithm 11 will discover all the categories appearing on (s, t) by going
through these points from s to t, while updating the set F to track the set of tunnels
traversing the links (if any) between the last and the current branching/joining points
(lines 13–21).

Finally, as the distance between consecutive branching/joining points equals the sum
metric of the involved links and every link metric > η, the condition in line 22 will be
satisfied for every nonempty category on (s, t). This completes the proof.

Proof of Theorem 4.3.5. We first prove the approximation ratio for a discretized version
of (4.28). Suppose that we can only assign flow in integer multiples of a constant δ > 0.
This discretization converts (4.28) to a set function maximization problem as follows:

max
(Xe)e∈F

δ
∑
e∈F
|Xe| (4.47a)

s.t. δ
∑

e∈F∩F ′
|Xe| ≤ CF ′ , ∀F ′ ⊆ E,ΓF ′ ̸= ∅, F ′ ∩ F ̸= ∅, (4.47b)

where Xe denotes the set of δ-flows assigned to tunnel e. In this conversion, we have
used the simplification to (4.28) that restricts the nonzero variables to (fe)e∈F (as fe for
e ∈ E \ F does not contribute to the objective function), and ignores the constraints
corresponding to F ′ with F ′ ∩ F = ∅ (as ∑e′∈F ′ fe′ ≡ 0 when fe ≡ 0 for all e ∈ E \ F).
According to the definitions in [143], the objective function (4.47a) is a modular function,
as each item (i.e., a δ-flow) contributes a fixed value to the objective function regardless
of the selection of other items. Moreover, the constraints (4.47b) form a qF -system for
qF defined in (4.29), as to add an item into Xe for some e ∈ F , we need to remove at
most qF existing items, each representing a δ-flow on some tunnel e′ for e′ ∈ F ′ to avoid
violating the constraint (4.47b) associated with F ′. For maximizing a modular function
subject to a qF -system constraint, the greedy algorithm that incrementally adds one
item at a time to maximize the increase in the objective function within the constraint is
guaranteed to achieve a 1/qF -approximation [143].

We then argue that Algorithm 12 essentially implements the greedy algorithm. In
our problem, all feasible δ-flows yield the same increase in the objective function (4.47a),
and thus it suffices for the greedy algorithm to go through e ∈ F sequentially, assigning
as many δ-flows to a tunnel as possible before moving to the next tunnel. Letting δ → 0

143

will reduce this sequential version of the greedy algorithm to lines 2–4 in Algorithm 12.
The 1/qF -approximation remains valid as it does not depend on the value of δ.

Proof of Corollary 4.3.5.1. First, as the subroutine only underestimates the residual
capacities, we have C̃F ≥ ĈF as argued before Theorem 4.3.5. Let Ĉ ′

F denote the
estimate by an ideal version of Algorithm 12, where the estimation of residual capacity in
lines 2 and 4 is accurate. Then under the condition in Corollary 4.3.5.1, the actual estimate
by Algorithm 12 satisfies ĈF ≥ Ĉ ′

F/q. Meanwhile, by Theorem 4.3.5, Ĉ ′
F ≥ C̃F/qF . Thus,

ĈF ≥ C̃F/(q · qF), completing the proof.

Proof of Theorem 4.4.1. Under the conditions of the theorem, congestion can only occur
if there exists a nonempty category that is missed by nonempty category detection. We
can bound the probability of this event by

Pr{∃F ∈ F∗, ŵF ≤ η} ≤
∑
F∈F∗

Pr{ŵF ≤ η} (4.48)

≤ |F∗|Pr{ŵF ∗ ≤ η} (4.49)

= |F∗|Φ
(

(η − wF ∗)
√
T − δ̃F ∗/

√
T

δF ∗

)
(4.50)

≈ |F∗|δF ∗

(wF ∗ − η)
√

2πT
exp

(
−(wF ∗ − η)2

2δ2
F ∗

T

)
, (4.51)

where (4.48) is by union bound, and (4.50)–(4.51) are by Theorem 4.3.3.

4.7.2 Supplementary Details

In this section, we will present the implementation details on estimating ρF as in (4.17).
In the sequel, we denote the T end-to-end delay measurements on tunnel e ∈ E as
{ϕte1}

T
t=1.

The first issue is to determine whether a packet has experienced links with “bad
status”. We consider a packet as in “good status” on a tunnel if its end-to-end delay is
below the mean of the 100 smallest delays on this tunnel plus 0.5 ms. Based on this
detection criteria, the end-to-end delay measurements {ϕte1}

T
t=1 can be detected to be a

binary sequence {qte}Tt=1, where qte = 0 if the t-th measurement is detected to experience
links with “bad status” and qte1 = 1 otherwise.

144

With {qte}Tt=1, ρF for Alg. 11 (T-COIN) can be calculated as

ρ̂F = − log
(∑T

t=1 q
t
e1q

t
e2

T

)
, (4.52)

since 1-by-2 structure contains only two tunnels sharing the same source.
For COIN and R-COIN, another issue is to calibrate measurements for tunnels in

F with various sources so that the measurements can mimic the multicast probing. To
begin with, we present the adopted heuristic for calibrating two tunnels. Suppose that we
have {ϕte1}

T
t=1 and {qte1}

T
t=1 for e1 = (u1, v1). Similarly, we have measurements {ϕte2}

T
t=1

and the associated {qte2}
T
t=1 for tunnel e2 = (u2, v2). To calculate ρ̂F as in (4.17) through

mimicking multicast probes [113–115], we need to find an offset κe1,e2 so that the i-th
probe on e1 and the (i + κe1,e2)-th probe on e2 traverse the shared links (if any) at
approximately the same time. To this end, we maximize the correlation between {qte1}

T
t=1

and {qte2}
T
t=1 by solving

κ∗ = arg max
1−T≤κ≤T−1

1
min(T, T − κ)−max(1, 1− κ) + 1

min(T,T−κ)∑
i=max(1,1−κ)

qie1q
i+κ
e2 . (4.53)

We then identify the i-th packet on e1 and the (i+ κ∗)-th packet on e2 as a mimicked
multicast.

Then, we will use an example to show that the method above is only applicable to the
case with two tunnels. As shown in Fig. 4.10, suppose that we have three tunnels, which
are e1 : u1 → u2 → u3 → u4, e2 : u1 → u2 → u5 → u6 and e3 : u7 → u2 → u5 → u3 → u4.
We can observe that (i) each pair of tunnels have a shared link, and (ii) κe1,e2 , κe1,e3 and
κe2,e3 may not be the same. In other words, there may not exist a common κ for more
than two tunnels.

Next, we will present the employed heuristic to obtain ρ̂F based on the obtained
κe,e′ ,∀e, e′ ∈ E if |F | ≥ 3. Denote nb(F) as the number of events that SF = 1 transits to
SF = 0 out of T measurements on tunnels in F , we approximate ρF as ρ̂F = nb(F)

T
. The

challenge is to find nb(F), which requires one and only one count of each event without
repeating. In other words, a status transition event on link e will be counted only once
even if it may be observed on all tunnels traversing e.

Formally, qte is detected to experience a status transition event on tunnel e if ϕt−1
e < ϕte

and qte = 0. Then, two probes qt0e0 and qt1e1 are identified to experience the same status

145

Implementation Details
• Calibration among more than 2 tunnels

• Simplistic assumption: at any time, at most one link transits into queueing status
• For each tunnel, we record the time a “burst” happens, i.e., transition to queueing
• Suppose

𝑢ଵ𝑢ଵ

𝑢଻𝑢଻

𝑢ଶ𝑢ଶ

𝑢ଷ

𝑢ହ𝑢ହ

𝑢ସ𝑢ସ

𝑢଺𝑢଺

Figure 4.10. Cases for three tunnels with each pair having shared links.

transition event if there exists an ϵ ∈ [−ηρ, ηρ] such that t0 = t1 + κe0,e1 + ϵ, where ηρ is
a manually defined tolerance range.

Although the method discussed above is enough for computing nb(F), it is computa-
tionally inefficient if we need to compute from scratch for each F , especially when |F | is
large. Thanks to the iterative nature of the proposed category identification algorithm
(COIN and R-COIN), we have the following observations:

Lemma 4.7.1. We only need to compute ρ(Et−1\F)∪{e} and ρEt−1\F for all candidate
category F in COIN.

Proof. This can be proved by enumerating all the required ρF in Line 6 of Alg. 9.

Lemma 4.7.2. For any ρ(Et−1\F)∪{e} and ρEt−1\F required in iteration t, we must have
calculated ρEt−1\F in iteration t− 1, where Et = Et−1 ∪ {e}.

Proof. As can be seen in Line 6 of Alg. 9, for any Ft−1 ∈ supp (w(Et−1)), we must have
calculated ρ(Et−2\Ft−1)∪{e′} and ρEt−2\Ft−1 where Et−1 = Et−2 ∪ {e′}. By noticing that
ρ(Et−2\Ft−1)∪{e′} = ρEt−1\F , we complete the proof.

The observations above imply that ρ(Et−1\F)∪{e} can be calculated by counting the
incremental events based on nb(Et−1 \ F). Based on these observations, we devised a
mechanism to recursively compute the required ρ· for COIN and R-COIN. As shown in
Alg. 13, the proposed mechanism is based on a multi-level hash table Π, as shown in
Fig. 4.11. Concretely, the keys of the first level table are categories F ⊆ E, while the
value, i.e., Π[F], is the the second level hash table. In each second level hash table Π[F],
the keys are the tunnels e ∈ F , while the value, i.e., Π[F][e] is a set of time indices t
satisfying ϕt−1

e < ϕie and qte = 0.

146

Implementation Details
• Calibration among more than 2 tunnels

• Simplistic assumption: at any time, at most one link transits into queueing status
• For each tunnel, we record the time a “burst” happens, i.e., transition to queueing
• Suppose

𝑢ଵ𝑢ଵ

𝑢଻𝑢଻

𝑢ଶ𝑢ଶ

𝑢ଷ

𝑢ହ𝑢ହ

𝑢ସ𝑢ସ

𝑢଺𝑢଺

{category F: table_of_events}

{tunnel e: table_of_occurance}

{occurance t: index}

Figure 4.11. Illustration of the hash table for ρ̂F
Algorithm 13: Recursively Update Hash Table Π

input : Π containing the entry Π(F), tolerance ηρ
1 Initialize Π[F ∪ {e}] as Π(F) and Π[F ∪ {e}][e] as ∅, where Π[F ∪ {e}][e] is the hash

value of e in Π[F ∪ {e}] ;
2 for t ∈ {t : ϕt−1

e < ϕie, q
t
e = 1} do

3 for e′ ∈ E do
4 if Π[F] does not contain key e′ then
5 Continue ;
6 for ϵ ∈ [−ηρ, ηρ] do
7 if Π[F][e′] has t− κe,e′ + ϵ as key then
8 Go to Line 2;
9 Add t to Π[F ∪ {e}][e] ;

10 return nb(F ∪ {e}) = ∑
e′∈Π[F∪{e}] |Π[F ∪ {e}][e′]|;

The basic idea of Alg. 13 for computing ρ(Et−1\F)∪{e} is to test for each event t ∈ {t :
ϕt−1
e < ϕie, q

t
e = 1} whether it is already contained in Π[(Et−1 \ F)] (Line 7). If not, add

the event into Π[(Et−1 \ F)][e] (Line 9). Now, we characterize the complexity of Alg. 13.

Lemma 4.7.3. The complexity of computing Π[F ∪ {e}] in Alg. 13 is O(Tηρ|V |2).

Proof. In the loop traversing Π[F] (Line 3), we have at most 2ηρ hashing operations for
each e′ ∈ E. Thus, for each t ∈ {t : ϕt−1

e < ϕie, q
t
e = 1} in Line 2, we have at most 2ηρ|E|

hashing operations. Since we have O(T) elements to loop in Line 2, the complexity for
computing Π[F ∪ {e}] is O(Tηρ|E|) = O(Tηρ|V |2)

Since COIN and R-COIN have O(|E|) iterations, in each of which we need to compute
ρ· for O(|E|) times. Thus, the total complexity in computing ρ· during COIN and
R-COIN is O(|E||E|Tηρ|V |2) = O(Tηρ|E||V |4), which is still polynomial in the network
size.

147

Chapter 5 |
Optimized Cross-Path Attacks via
Adversarial Reconnaissance

5.1 Introduction
The trend of network softwarization and virtualization has fundamentally altered the
way we build network systems. While the logically centralized control plane provides
convenient ways to manage the network resources through various abstractions, such
abstractions also hide the complex interactions within the network, which can cause
unexpected security threats. In this work, we focus on a particular security threat due
to the sharing of links between high-security paths and low-security paths, which enables
a new type of denial-of-service (DoS) attacks called cross-path attacks.

Intuitively, cross-path attacks are indirect DoS attacks, where instead of directly
attacking the paths of interest (target paths), the attacker sends attack traffic on some
other paths (attack paths) sharing resources (e.g., link bandwidth) with the target paths,
so as to degrade the performance of the target paths by consuming the shared resources.
Such attacks are of interest when the target paths are difficult to attack directly, but share
network resources with some low-security paths that are more susceptible to attacks.

One scenario for cross-path attacks is in the context of a Software Defined Network
(SDN) [13], where the target paths are control-plane paths connecting switches to the
controller and the attack paths are data-plane paths originating from attacker-controlled
hosts that share links with some of the control-plane paths. Instead of directly triggering
a flood of control messages to attack the control-plane paths as in earlier attacks [144], a
cross-path attack only floods selected paths in the data plane, which makes it both stealth-
ier and more resilient to state-of-the-art control plane defenses such as FloodGuard [145],
FloodDefender [146], and SPHINX [147]. Another scenario for cross-path attacks is in

148

the context of network slicing [148], which is a technology in 5G networks that allows
the network provider to set up multiple virtual networks over a shared infrastructure.
To improve resource utilization and support elasticity, different slices may share network
and computing resources [148]. Meanwhile, slices created for different applications can
follow different security standards [149,150], and some slices may even be managed by
less trusted third parties [151]. These practices create opportunities for an attacker to
attack paths in a high-security slice (target paths) by consuming resources shared with
some paths the attacker can access in a low-security slice (attack paths), while remaining
stealthy to intrusion detection systems in the high-security slice.

Despite the demonstration of feasibility in [13], there is little quantitative understand-
ing about cross-path attacks. In this work, we will address this gap by designing an
optimized attack strategy that can achieve the maximum impact with a constrained
total attack rate. At a high level, our strategy works by (i) inferring the locations
and parameters of network elements shared between the target paths and the attack
paths, and then (ii) optimally allocating the total attack rate over the attack paths to
maximize the performance degradation of the target paths. By analyzing the optimal
attack strategy, we not only quantify the maximum damage due to cross-path attacks as
a function of the attack rate, but also shed light on possible defenses.

5.1.1 Related Work

As a newly identified attack, cross-path attack has not been extensively studied previously.
Therefore, we will provide background by reviewing some relevant security problems and
solution techniques.

Security vulnerabilities in SDN: As the architectures and protocols of SDN
are designed to facilitate performance and programmability, there are many security
vulnerabilities, mainly due to the interdependency between the controller and the switches.
In particular, the switch→controller dependency that arises due to the need for the data
plane to obtain instructions from the control plane can create a communication bottleneck,
which has been exploited in active attacks [144], adversarial reconnaissance [152], and
joint reconnaissance and attack [13,153]. The cross-path attack in this context [13] is
a reconnaissance-based attack that exploits the switch→controller dependency to infer
which attacker-controlled data-plane paths share links with at least one control-plane
path, in order to identify the data-plane paths that can be used to launch a cross-path
attack on the control plane. The reconnaissance strategy in [13] only infers whether
there exists at least one shared link between a data-plane path and the targeted control-

149

plane paths, and thus can only support a non-optimized cross-path attack. In contrast,
we will provide a way to design an optimized cross-path attack through fine-grained
reconnaissance based on network tomography.

Security vulnerabilities in network slicing: Network slicing introduces both
content-level threats such as unauthorized access, compromise of functions/devices, and
side-channels across slices [154, 155], and performance-level threats due to malicious
abuse of resource quotas [154, 156]. The cross-path attack in this context belongs to
performance-level threats. While cross-path attack under network slicing can be defended
by detecting the attack through the cooperation of its control plane [157] or completely
isolating different slices [158], both approaches have severe limitations: the former will fail
if the attack slice’s control plane is compromised, and the latter will cause poor resource
utilization. In this regard, our work helps to strike a balance between resource utilization
and security in network slicing by quantifying the maximum impact of cross-path attacks.

Network interdiction: Traditional network interdiction refers to a problem where
an interdictor tries to reduce the throughput of network users by removing selected links
under a budget constraint [159]. A variation of this problem, recently proposed in [160], is
conceptually similar to cross-path attack in that instead of removing links, the interdictor
tries to reduce the available capacities of links traversed by target paths by injecting flows
on selected paths. Despite the conceptual similarity, [160] addressed a fundamentally dif-
ferent problem of optimizing the (possibly multi-path) routing of injected traffic in a clair-
voyant setting where the network topology and the links traversed by each target path are
known to the interdictor, and the routing of injected traffic is controllable, which generally
requires the cooperation of the network. In contrast, cross-path attack is based on a much
weaker threat model where the attacker is an outsider of the network without internal sup-
port or information. Therefore, how to learn the internal information required for effective
attack design is a critical question in cross-path attack, which is the focus of this work.

Network tomography: The optimal design of cross-path attacks requires the at-
tacker to infer the network elements shared between two sets of paths from end-to-end
measurements, which is similar to the problem addressed by network topology tomogra-
phy/inference [112]. With few exceptions (e.g., [161, 162]), topology inference algorithms
generally require active probing on all the paths; see [123] and references therein. This
can be used to generate carefully crafted probes, such as “packet strings” [163] or “packet
sandwiches” [164], which produce correlated measurements that can reveal the existence
and parameters of the links shared by different paths. Our problem is different in that
the attacker can only probe a subset of paths (i.e., the attack paths) but wants to infer

150

the elements they share with the other paths (i.e., the target paths).

5.1.2 Summary of Contributions

Our goal is to understand the strategy and impact of the optimal cross-path attack under
a constrained total rate, with the following contributions:

1) We develop novel inference algorithms that can consistently estimate the locations
and parameters of the links shared between attack paths and target paths via active
probing on the attack paths and passive monitoring on the target paths.

2) Under the assumption that each shared link can be modeled as an M/M/1, M/D/1,
or G/G/1 queue, we derive the optimal attack design that can maximally degrade the
performance of the target paths under a bounded total attack rate.

3) We evaluate the proposed algorithms by high-fidelity packet-level simulations under
various settings, which show that (i) our inference algorithms can estimate the (topological)
locations of shared links with good accuracy but not their detailed parameters, but (ii)
our attack strategy designed based on these estimates can still cause substantially more
performance degradation than some intuitive ways of launching cross-path attacks, which
signals the importance of considering such intelligent attack strategies in the design of
defenses.

Roadmap. We formulate our problem in Section 5.2, present the algorithms to infer
the locations and parameters of shared links in Section 5.3, and present the corresponding
attack design in Section 5.4. We then evaluate our solutions in Section 5.5 and conclude
the paper in Section 5.6. All the proofs are provided in Appendix 5.7.1.

5.2 Problem Formulation

5.2.1 Network and Threat Model

Consider two sets of paths in a network, referred to as the attack paths PA := {sAi →
tAi}NA

i=1 and the target paths PB := {sBi → tBi}NB
i=1, where s→ t denotes the routing path

from source s to destination t and NA/NB the number of paths in PA/PB. Suppose
that an attacker is interested in attacking the target paths in PB, but can only passively
monitor the end-to-end performance (e.g., delays) on these paths. Meanwhile, the attacker
can actively send packets on the attack paths in PA. We will focus on the important
special case of sAi ≡ sA (i = 1, . . . , NA), as it represents a most easily-deployable attack
with only one active malicious node (i.e., sA). Let TA := {tAi|i = 1, · · · , NA} denote

151

the set of destinations of the attack paths. We note that the multi-source case, where
the attacker controls multiple active malicious nodes, is not a trivial extension of the
single-source case. We leave the study of the multi-source case to future work.

The two sets of paths may share some network elements. For clarity, we will model
all the shared elements as “shared links”, which can represent any shared resources (e.g.,
communication links, network functions, and other services). Here, “shared” means shared
by attack traffic and target traffic without isolation. While traffic isolation technologies
exist, applying them will lower resource utilization and hence the revenue of the network
provider [148,165]. In this regard, our work aims at quantifying the risk due to lack of
isolation to inform a proper tradeoff. We model such link sharing by a (logical) routing
topology G = (V,E), which is a graph formed by all the paths in PA ∪ PB. According
to [163,166], V is a set of vertices representing sources, destinations, and branching/join-
ing points between paths, and E is a set of edges representing the connections between the
vertices, where a sequence of consecutive links without branching/joining points is repre-
sented by a single edge. We assume that the attacker does not have access to the control
plane, i.e., he does not know the ground truth of G. Instead, the attacker can infer infor-
mation about G from end-to-end measurements on PA and PB. We will use “link” to refer
to a communication link in the underlying network and “edge” to refer to a point-to-point
connection in the routing topology. Similarly, we will use “node” to refer to a physical node
in the underlying network and “vertex” to refer to a logical node in the routing topology.
As commonly assumed in the literature [163,166], we assume that during the inference
and attack, there is a fixed and unique routing path from each node to every other node.

Remark: While there may be other paths carrying co-existing flows in the network,
it suffices to focus on the target and the attack paths for the purpose of modeling the
cross-path attack. The impact of co-existing flows will be captured as background traffic
on the links traversed by PA ∪ PB. Our threat model depicts a pure cross-path attack
where the attacker can only actively send packets on the attack paths and thus can
only attack the target paths through “cross-path” influence. In some scenarios such
as the cross-path attack between the data plane and the control plane in SDN [13], it
is possible for the attacker to generate packets on the target paths (e.g., by triggering
“packet-in” messages). However, to evade existing defenses against direct attacks, such
attacker-triggered traffic on the target paths must resemble the normal traffic on these
paths, which is usually insufficient to cause notable performance degradation. Intuitively,
the ability to passively monitor the performance of the target paths is the minimum
requirement for designing a nontrivial cross-path attack. We thus adopt this threat

152

model to maximize the applicability of our result.
We assume the following capabilities of the attacker. First, the attacker can observe

packets on each target path sBi → tBi as soon as they are transmitted, even if sBi differs
from sA. For example, the attacker may intersect target traffic at locations (sBi)NB

i=1 (i.e.,
sBi denotes the starting point of intersection for a path of interest). Instead of directly
attacking target traffic at these points of intersection, the attacker only uses them to
passively monitor the target traffic to launch a stealthier attack. Second, the attacker
can measure the end-to-end one-way delays of packets on both the attack paths PA and
the target paths PB. Third, the attacker will not be exposed by sending traffic on the
attack paths. For example, the attacker may control many edge devices, which connect
to the same ingress point sA or egress point tAi (i.e., sA and tAi may each represent a
set of devices), and thus the attack flows can evade detection by the network operator
even if the aggregate flow rate is high.

5.2.2 Problem Statement

While the sharing of links makes the paths in PB vulnerable to cross-path attacks launched
from the paths in PA, the impact of such attacks greatly depends on the attack strategy.
To understand the maximum impact of cross-path attacks, we develop an intelligent
attack strategy by combining fine-grained adversarial reconnaissance with optimized
attack design, by solving the following problems:

1) Adversarial Reconnaissance. We investigate to what extent the attacker can learn
about the shared links based on active probing on PA and passive monitoring on PB.

2) Optimized Attack Design. Based on the inferred information, we investigate the
optimal allocation of attack traffic over the attack paths to maximize the performance
degradation (e.g., increase in average delay) inflicted on the target paths.

Remark: Our threat model requires the attacker to monitor end-to-end performance
on the target paths. While this is arguably the minimum information needed for any
nontrivial attack design, it does impose limitations on which paths can be set as the
target. For example, in the context of SDN [13], only the control-plane paths for switches
traversed by attacker-controlled data-plane paths can be the target paths. In the context
of network slicing, the target paths can be the backhaul paths to cells containing attacker-
controlled user equipments (UEs), which are likely to share the same paths with other
UEs in the same cell and can thus be used as their proxies in collecting measurements.
Instead of directly launching attacks from these attacker-controlled UEs, a cross-path
attack only uses them to passively collect measurements so as to launch an effective

153

DU
RU

DU
RU

DU
RU

DU
RU

5G
control plane

UPF
CU

slice A

5G transport network

slice B

target path attack path

sA

tA1

tA2

tA3

sB

tB

UPF
CU

(a) physical network

sA sB

tBtA1 tA2 tA3

shared
linksb2

b1

(b) routing topology G

Figure 5.1. Cross-path attack in the context of network slicing.

b3
tB1

sA sB

tA1 tA3

b2

b1

sA

sB (controller)

tA1

tA2 tA3

tB1
tB2

tB3 tB4

(a) physical network (b) routing topology G

tB3 tB4tA2tB2

target path attack path

shared
links

Figure 5.2. Cross-path attack in the context of SDN.

attack from elsewhere in the network, and is thus stealthier.

5.2.3 Illustrative Example

Example in network slicing: Consider the scenario in Fig. 5.1 (a), where the attacker
controls a malicious node sA that can send traffic on a set of paths sA → tAi (i = 1, 2, 3)
in slice A but wants to attack another path sB → tB in slice B. The attack paths share
the following network elements with the target path: sA → tA1 only shares the source-side
central unit (CU) and user plane function (UPF); sA → tA2 also shares backhaul links
between the cell sites and the destination-side CU and UPF; sA → tA3 further shares
midhaul links and the destination-side radio unit (RU) and distributed unit (DU). These
relationships can be modeled by the routing topology in Fig. 5.1 (b).

Example in SDN: Consider the scenario in Fig. 5.2 (a), where the attacker wants to
attack the control paths between the controller sB and the switches tBi (i = 1, . . . , 4) by
sending traffic on the data paths sA → tAi (i = 1, 2, 3). Assume shortest path routing
for both data and control paths (assuming that tB2 connects to the controller via tB1

and sA connects to tA3 via tB2). Each data path shares some links with the control

154

paths: sA → tA1 shares a link with sB → tB2, sA → tA2 shares a link with sB → tB1 and
sB → tB2, and sA → tA3 shares a link with sB → tB2. Meanwhile, due to the separate
processing of data and control packets within a switch, the shared nodes (i.e., switches)
will not cause performance correlation between data and control paths and can thus be
ignored. These relationships can be modeled by the routing topology in Fig. 5.2 (b),
where we have inserted zero-delay edges (b1, tB1), (b2, tB2), and (b3, tB3) to make each
source/destination have degree one.

While it is relatively easy to identify which attack paths share at least one link with the
target paths (e.g., by measuring the target path delays with/without traffic on each attack
path as in [13]), different attack paths can influence the target paths to different extents.
Given the routing topology G, one can intuitively identify the most useful attack path, e.g.,
sA → tA3 in Fig. 5.1, but the attacker cannot directly observe such internal information.
Therefore, when the attacker has access to multiple attack paths but only resources to
generate a limited amount of traffic, it is unclear how he can attack most effectively.
Below, we will show that the attacker can actually infer sufficient information about the
routing topology to design the optimal attack that causes the maximum performance
degradation to the target paths, by only passively monitoring the target paths.

5.3 Adversarial Reconnaissance
We will show that under mild assumptions, the attacker can consistently infer both the
locations and the parameters of the links shared between the attack paths and the target
paths.

5.3.1 Preliminaries

The problem of inferring the relationship between paths from end-to-end measurements
belongs to a branch of network tomography focusing on topology inference, for which
many algorithms have been proposed (see Section 5.1.1). However, these algorithms
typically require active probing on all the paths and hence are not applicable to our
problem. Nevertheless, there are some results we can leverage, as summarized below.

The foundation of topology inference is using end-to-end measurements to infer the
“lengths” of links defined by certain additive performance metrics. As a concrete example,
we will adopt a canonical metric that can be inferred from delay measurements, but
our reconnaissance algorithm can work with any additive metric for which the so-called

155

“category weight” (see Definition 5.3.1) can be inferred from end-to-end measurements.
The metric we adopt is called utilization-based metric [163,167], which is a classical

additive metric used in topology inference. Let γe denote the probability that a packet
traversing link e does not experience any queueing delay. The utilization-based metric
for link e is defined as ue := −logγe, which is additive across independent links. By
comparing the end-to-end delay of a packet with the minimum delay on the measured
path, we can infer whether the packet incurs any queueing delay and hence estimate
the utilization-based metric for the path. It was shown in [124] that with simultaneous
measurements from multiple paths (obtained via multicast or back-to-back unicast), we
can uniquely identify the utilization-based metric1 at a certain granularity as follows.

Definition 5.3.1. Given a set C of paths, we define the following:

1. the cast weight ϕC is the sum of metrics for all the links traversed by any of the
paths in C;

2. a category ΓC′
C

for C ′ ⊆ C and C ′ ̸= ∅ is the set of links traversed by every path in
C ′ but none of the paths in C \ C ′;

3. the category weight for a category ΓC′
C

, denoted by wC′
C

, is the sum of the metrics
for all the links in ΓC′

C
.

For example, consider the set of paths C := {sA → tA1, sA → tA2, sA → tA3, sB → tB}
in Fig. 5.1 (b). The cast weight ϕsA→tA1 , sA→tA2,sA→tA3 is the sum metric for all the blue
and green links. Category Γ sA→tA1,sA→tA2,sA→tA3

sA→tA1,sA→tA2,sA→tA3,sB→tB

only contains link (sA, b1), and
category Γ sA→tA1,sA→tA2,sA→tA3,sB→tB

sA→tA1,sA→tA2,sA→tA3,sB→tB

only contains link (b1, b2).
Let C := 2C \ {∅} denote all the nonempty subsets of C and UC′ (C ′ ∈ C) denote a

Bernoulli variable that equals 1 if and only if a multicast probe on C ′ does not incur any
queueing delay. Under the assumption that different links have independent queue states
as in [124,163,167] (which holds approximately under heavy independent cross-traffic),
we have

− log(Pr{UC′ =1}) = − log(
∏

e∈
⋃

p∈C′ p

γe) =
∑

e∈
⋃

p∈C′ p

ue =: ϕC′ . (5.1)

1The empirical evaluations in [124] were based on loss-based metric defined as u′
e := − log γ′

e, where
γ′

e denotes the no-loss probability at link e, but the theoretical result in Theorem III.1 in [124] held for
any additive metric for which the cast weights can be estimated from end-to-end measurements.

156

This, together with Definition 5.3.1, implies the following relationship between the cast
weights and the category weights:

∑
C1∈C:C1∩C2 ̸=∅

wC1
C

= ϕC2 , ∀C2 ∈ C. (5.2)

Using (approximated) multicast on C, we can infer all the cast weights in (ϕC′)C′∈C,
which can then be used to uniquely identify the category weights as shown below.

Theorem 5.3.1 (Theorem III.1 in [124]). Given the cast weights (ϕC′)C′∈C, all the
category weights (wC′

C
)C′∈C are uniquely determined by (5.2).

Below, we will show how to use this existing result to detect the links shared between
the target paths and the attack paths.

5.3.2 Shared Weight Inference

Category weights provide valuable information about the relationship between paths.
Specifically, if wC′

C
> 0, then we know that ΓC′

C
̸= ∅, i.e., there is at least one link shared

by the paths in C ′ but not those in C \ C ′. Moreover, under the assumption that every
link has a non-zero metric (i.e., non-zero queueing probability), wC′

C
= 0 implies that

ΓC′
C

= ∅. However, applying this idea directly to the paths in PA ∪ PB will require active
probing on all the paths. Nevertheless, with active probing only on PA, we can still infer
the relationship between each target path p ∈ PB and all the attack paths in PA, which
turns out to be sufficient for the design of the optimal cross-path attack as explained
in Section 5.4. The idea is to mimic a multicast on PA ∪ {p} by monitoring path p

and sending a multicast probe (or back-to-back unicast probes) on PA when a packet
is transmitted on p. Because these packets are sent very close to each other, they will
observe similar queue states at shared links [163], thus mimicking a multicast on PA∪{p}.

Using such mimicked multicast, one may try to apply existing topology inference
algorithms. However, most of such algorithms are heuristics without guaranteed accuracy,
and the existing algorithms with performance guarantee all address scenarios different
from ours. For example, [163] requires all the paths to share a single source, [166,168]
require all the sources to share the same set of destinations, and [169] requires the ability
to probe the path between any pair of boundary vertices (in our case, these are the
endpoints of all the paths in PA ∪ {p}). These differences make the existing algorithms
inapplicable to our problem. Below, we will show an algorithm that can infer the shared
links between the attack paths in PA and a given target path p with guaranteed accuracy,

157

which is then repeated for each p ∈ PB. To our knowledge, this is the first algorithm
that can infer the routing topology formed by a set of single-source paths and another
path with arbitrary source and destination by only measuring these paths.

5.3.2.1 Algorithm

Under the assumptions in Section 5.2.1, the paths in PA form a (logical) routing tree T
with the source sA as root and the destinations in TA as leaves. Since the attacker can
send active probes on PA, he can infer T using existing topology inference algorithms
such as Rooted Neighbor Joining (RNJ) [163]. Without loss of generality, we assume that
T is a binary tree, as non-binary trees can be represented as binary trees by inserting
zero-weight edges. Our focus is thus on inferring the relationship between T and a given
target path p := sB → tB. We model this relationship by a vector W := (We)e∈T , where
We denotes the sum metric of the links shared between edge e ∈ T and the target path
(We := 0 if they do not share any link). We will refer to We as the shared weight on e for
simplicity.

We define a few notations for the ease of presentation. Given a binary tree T , sT

denotes the root, bT denotes the first branching point from the root, δlT is the set of
leaves located in the left subtree of T , and δrT is the set of leaves in the right subtree of
T . If T only has one leaf t, then δlT = δrT = {t}. We denote the shared weight on a
subpath v1 → v2 in T by Wv1→v2 := ∑

e∈v1→v2 We.
The overall algorithm is given in Alg. 14, which prepares the routing tree T formed

by the attack paths and then invokes Alg. 15. Alg. 15 is a recursive algorithm. Given a
binary tree T ′ (initially T ′ = T), each recursion estimates the shared weight on the stem
of T ′, i.e., edge (sT ′ , bT ′). To this end, the attacker mimics tri-cast by sending two back-
to-back probes from sA to two destinations τ1, τ2 from different subtrees of T ′ whenever
observing a packet on the target path sB → tB (lines 1–2). The measured delays are used
to estimate a subset of the category weights, stored in variables ρl, ρr, and ρs as in line 3.
If we measure the category weights by the utilization-based metric, then the category
weights can be inferred by first using the measured delays to estimate the no-queueing
probability on each subset of C := {sA → τ1, sA → τ2, sB → tB} and compute the cast
weights (ϕC′)C′⊆C , which are then plugged into (5.2) to solve for the category weights.
We can adopt other metrics by modifying the implementation of line 3, as long as the
corresponding category weights can be inferred from end-to-end measurements. The
shared weight on edge (sT ′ , bT ′) is estimated as ρs minus the shared weight on sA → sT ′ ,
which has been estimated in previous recursions (line 4). The recursion is then repeated

158

for each subtree of T ′. The recursion stops when either (i) T ′ has no subtree (line 5),
or there is no overlap between the target path and either subtree (line 8).

Algorithm 14: Shared_Weight_Inference
input : sA, TA := {tAi}i=1,··· ,NA

, sB, tB
output : shared weight vector W

1 T ← ⋃
i=1,··· ,NA

(sA → tAi); // inferred by RNJ
2 W ← 0;
3 W ← Recursive_Inference(T , sA, TA, sB, tB,W);

Algorithm 15: Recursive_Inference
input : T ′, sA, TA, sB, tB, previously inferred W
output : updated shared weight vector W

1 randomly pick τ1 from δlT ′ and τ2 from δrT ′ ;
2 send probes on sA → τ1, sA → τ2 concurrently2 with packets monitored on

sB → tB;
3 use the measured delays to infer the category weights: ρl ← w sA→τ1,sB→tB

sA→τ1,sA→τ2,sB→tB

,
ρr ← w sA→τ2,sB→tB

sA→τ1,sA→τ2,sB→tB

, ρs ← w sA→τ1,sA→τ2,sB→tB
sA→τ1,sA→τ2,sB→tB

;
4 W(sT ′ ,bT ′) ← ρs −WsA→sT ′ ;
5 if δlT ′ = δrT ′ then
6 return;
7 if ρs ̸= 0 then
8 if ρl = ρr = 0 then
9 return;

10 if ρl > 0 then
11 T ′ ← ⋃

tAi∈δlT ′ (bT ′ → tAi);
12 W ← Recursive_Inference(T ′, sA, TA, sB, tB,W);
13 if ρr > 0 then
14 T ′ ← ⋃

tAi∈δrT ′ (bT ′ → tAi);
15 W ← Recursive_Inference(T ′, sA, TA, sB, tB,W);
16 else
17 T ′ ← ⋃

tAi∈δlT ′ (bT ′ → tAi);
18 W ← Recursive_Inference(T ′, sA, TA, sB, tB,W);
19 T ′ ← ⋃

tAi∈δrT ′ (bT ′ → tAi);
20 W ← Recursive_Inference(T ′, sA, TA, sB, tB,W);

2For simplicity, here we assume that the attacker can observe packets on the target path as soon as
they are transmitted, and sA, sB have similar distances to the shared links. This assumption will be
relaxed by aligning the measurements via correlation maximization as discussed in Appendix 5.7.2.1.

159

sAsB

tB

tA1

tA2 tA3

sA → tA1

sA → tA2

sB → tB

sA → tA1

sA → tA1

sB → tB

tA1

tA2 tA3

sA

sT’

tA1

tA2 tA3

sA

bT’

(sT’)

sA → tA2

sA → tA2

sB → tB

tA1

tA2 tA3

sA

sT’

bT’ tA1

tA2 tA3

sA

sT’

sA → tA2

sA → tA3

sB → tB

Ground truth

Step 1: Step 2:

Step 3: Step 4:

b1

b2

Figure 5.3. Illustration for Alg. 15 (shared links are marked in green).

5.3.2.2 Illustrative Example

Fig. 5.3 illustrates the steps of Alg. 15. On the left is the ground truth topology containing
the attack paths from sA to destinations tA1, tA2, tA3 and a target path sB → tB, where
the shared links are marked in green. Alg. 15 infers the locations and weights of these
shared links in 4 steps. In each step, we mark the tree T ′ in red and label nodes sT ′

and bT ′ (if any). In step 1, we mimic tri-cast probes on sA → tA1, sA → tA2 (or tA3),
and sB → tB. The results should show that ρs = 0, indicating that sB → tB has no
overlap with sA → bT ′ . Then we search both subtrees. In the left subtree (step 2), we
mimic bi-cast on sA → tA1 and sB → tB to find out the shared weight between sB → tB

and sT ′ → tA1. In the right subtree (steps 3–4), we first mimic tri-cast on sA → tA2,
sA → tA3, and sB → tB to find out the shared weight on sT ′ → bT ′ (step 3), and then
since ρl > 0, we will search the left subtree (step 4) to obtain all the shared weights.

5.3.2.3 Correctness

Alg. 14 gives consistent estimates of the shared weights in the following sense.

Theorem 5.3.2. If all the shared links have non-zero metrics and the category weights
are accurately inferred in line 3 of Alg. 15, then Alg. 14 will accurately infer the shared
weight vector W .

As the number of probes increases, the estimated path-level statistics (i.e., no-queueing
probabilities) will converge to their true values, so will the estimated category weights
by Theorem 5.3.1. Thus, Alg. 14 provides consistent estimates of the shared weights.

160

5.3.2.4 Complexity

Each recursion of Alg. 15 takes O(1) time (excluding probing time) as it only estimates
a constant number of cast/category weights. For the number of recursions, the worst
case is when all the non-zero shared weights are associated with the last edges to the
destinations in T , in which case Alg. 15 needs to perform a recursion for each edge. As a
tree with NA leaves (NA: #attack paths) and no degree-2 vertices (implied by RNJ [163])
has at most 2NA − 2 edges, the complexity of Alg. 15 is O(NA). The overall complexity
of Alg. 14 is O(N2

A logNA), dominated by the complexity of RNJ [163].

5.3.3 Parameter Inference

For simplicity, we will refer to the shared portion between each edge e ∈ T and the target
path as a shared link (although it can correspond to a sequence of links in the underlying
network). Although the shared weight vector W provides both the locations and the
metrics of the shared links, this information is not sufficient for optimal attack design.
Specifically, by Alg. 15, each We is inferred under a probing rate that is only twice of the
traffic rate on the target path, which is generally not enough to cause congestion. To
design an effective attack, the attacker needs to predict the impact of higher attack rates
on the shared links. Our idea for addressing this challenge is to model each shared link
(detected by We > 0) as a queue with unknown parameters, and conduct further probing
experiments with varying rates to infer these parameters.

Algorithm 16: Parameter_Inference
input : T , W , sA, TA, sB, tB
output : parameters ξ := (ξe)e∈T of shared links

1 ξ ← 0;
2 ξ ← Parameter_Update(T ,W , sA, TA, sB, tB, ξ);

5.3.3.1 Algorithm

Let ξe denote the unknown parameter (or parameter vector) of the shared link on edge
e ∈ T . We infer ξ := (ξe)e∈T through a recursive procedure similar to Alg. 14–15, as
shown in Alg. 16–17.

Specifically, given a binary tree T ′ (initially T ′ = T), each recursion of Alg. 17
estimates the parameter of the shared link on the stem of T ′, if any. If the shared link
exists (i.e., W(sT ′ ,bT ′) > 0), then either the left or the right subtree does not share any

161

Algorithm 17: Parameter_Update
input : T ′, W , sA, TA,sB,tB, previous ξ
output : updated ξ

1 if W(sT ′ ,bT ′) > 0 then
2 if δlT ′ ̸= δrT ′ then
3 randomly choose a destination τ∗ from the subtree of T ′ not sharing any link

with sB → tB;
4 else
5 set τ∗ to the only destination in T ′;
6 vary the probing rate on path sA → τ∗ among λ̄k (k = 1, . . . ,K) and measure the

corresponding average delay ψk of path sB → tB;

7 ξ(sT ′ ,bT ′) ← arg minξ(sT ′ ,bT ′)

K∑
k=1

(
ψk −Dτ∗(ξ; λ̄k)

)2;

8 if δlT ′ = δrT ′ then
9 return

10 if τ∗ ∈ δlT ′ then
11 T ′ ←

⋃
τ∈δrT ′ (bT ′ → τ);

12 if τ∗ ∈ δrT ′ then
13 T ′ ←

⋃
τ∈δlT ′ (bT ′ → τ);

14 ξ ← Parameter_Update(T ′,W , sA, TA, sB, tB, ξ);
15 else
16 if δlT ′ = δrT ′ then
17 return
18 T ′ ←

⋃
τ∈δlT ′ (bT ′ → τ);

19 ξ ← Parameter_Update(T ′,W , sA, TA, sB, tB, ξ);
20 T ′ ←

⋃
τ∈δrT ′ (bT ′ → τ);

21 ξ ← Parameter_Update(T ′,W , sA, TA, sB, tB, ξ);

link with the target path as explained in the proof of Theorem 5.3.2 (e.g., if the stem
(bT ′ , blT ′) of the left subtree has W(bT ′ ,blT ′) = 0, then the left subtree contains no shared
link). Therefore, we can pick a destination τ ∗ from the subtree without any shared link
(line 3). We then conduct a number of probing experiments on sA → τ ∗ with varying
rates, while measuring the average delay of the target path (line 6). Under probing rate
λ̄k, the true average delay of sB → tB is given by

Dτ∗(ξ; λ̄k) := cτ∗ +
∑

e∈sA→τ∗:We>0
d(ξe; λ̄k), (5.3)

where cτ∗ denotes the average queueing and transmission delay on the links of sB → tB

that are not shared with sA → τ ∗ plus the propagation delay on sB → tB, and d(ξe; λ̄k)
denotes the average queueing and transmission delay of the shared link on edge e, which is

162

a function of the link parameter ξe and the probing rate λ̄k. Using (5.3) and the measured
average delays, we can estimate the parameter for (sT ′ , bT ′) through least square fitting
(line 7). The process is then repeated for other edges of T ′ through recursions. Note
that the selection of τ ∗ and the top-down approach ensure that the parameters of other
shared links on sA → τ ∗ would have been estimated, leaving ξ(sT ′ ,bT ′) (and possibly cτ∗)
as the only unknown parameter to estimate in line 7.

5.3.3.2 Queueing Models

As concrete examples, we consider the following queueing models (λ̄ denotes probing
rate):
• M/M/1: If each shared link is modeled as an M/M/1 queue with residual capacity

re − λ̄, its average delay equals [170]

d(re; λ̄) = 1
re − λ̄

, (5.4)

where re is the residual capacity before probing, which is the unknown parameter to
infer.
• M/D/1: If each shared link is modeled as an M/D/1 queue, the average delay

depends on two unknown parameters [170]

d(λe, µe; λ̄) = 2µe − λe − λ̄
2µe(µe − λe − λ̄)

, (5.5)

where λe is the background arrival rate (excluding probing traffic) and µe is the service
rate.
• G/G/1: In general, we can model the shared link as a G/G/1 queue. By Kingman’s

formula [170], the average delay (including service time) can be approximated by

d(λe, µe, σae, σse; λ̄) ≈ 1
2µe

λe + λ̄

µe − λe − λ̄

(
σ2
ae(λe + λ̄)2 + σ2

seµ
2
e

)
+ 1
µe
, (5.6)

which requires four unknown parameters: the background arrival rate λe, the service
rate µe, the variance of the interarrival time σ2

ae, and the variance of the service time
σ2
se. Note that treating σ2

ae as a constant is an approximation as it generally depends
on the probing traffic.

Discussion: It is known that the delay in traversing an IP network can be modeled as
a deterministic propagation delay (incorporated into cτ∗) plus random delays to traverse

163

a series of single-server FIFO queues [171]. The main restrictive assumptions here are
that the background traffic is Poisson (for M/M/1 and M/D/1), and packet sizes are
exponentially distributed (for M/M/1) or constant (for M/D/1). While these assumptions
are not satisfied exactly in practice, studies have shown that when multiplexing a large
number of independent flows as in the case of heavy background traffic, the packet arrivals
tend to a Poisson process, and the queue length distribution tends to that of a M/D/1
queue [172]. In our evaluations (see Section 5.5.2), we will stress-test our algorithms
derived from these queueing models in a realistic setting which does not follow these
models exactly.

5.3.3.3 Correctness

Alg. 16 provides consistent estimates of the parameters of the shared links in the following
sense.

Theorem 5.3.3. Given an accurate estimate of the shared weight vector W , if all the
shared links have non-zero metrics, and the estimated average delay ψk in line 6 of Alg. 17
is accurate and consistent with the model in (5.3), then Alg. 16 will accurately estimate
the parameters of all the shared links as long as (i) K > 2 under the M/M/1 or M/D/1
model, and (ii) K > 4 under the G/G/1 model.

5.3.3.4 Complexity

The number of recursions of Alg. 17 is O(NA) (NA: #attack paths) as T has O(NA) edges,
i.e., the parameter estimation (lines 2–7) is repeated for O(NA) times. For K = O(1),
solving the least square fitting problem (line 7) takes O(1) time as it fits an O(1)-variable
function at O(1) points. Thus, excluding the measurement time (which is independent
of NA), the complexity of Alg. 16 is O(NA).

5.4 Optimized Attack Design
Given the locations and parameters of the shared links, the attacker can use this infor-
mation to design optimized attacks. To quantify the potential impact of such attacks,
we investigate attack strategies that can cause the maximum performance degradation
on the target paths at a bounded cost.

164

5.4.1 Attacker’s Optimization

As a concrete example, we consider the attacker’s objective as maximally increasing the
total average delay of the target paths. Our approach is extensible to other objectives,
as demonstrated in Section 5.4.3.

Specifically, let Wie denote the shared weight between target path sBi → tBi and
edge e ∈ T (recall T denotes the routing tree formed by attack paths) and ξie the
corresponding queueing parameter (if Wie > 0), both inferred as in Section 5.3. Let
hek ∈ {0, 1} indicate whether attack path sA → tAk traverses edge e, βi > 0 denote the
importance of target path sBi → tBi, and r̃e denote the minimum residual capacity of
links from sA to e (excluding e) before attack. Given a total attack rate λ, the attacker
wants to find the rate allocation λ̄ := (λ̄k)NA

k=1 that maximizes the weighted sum average
delay of all the target paths, i.e.,

max f(λ̄) :=
NB∑
i=1

βi
∑

e∈T :Wie>0
d(ξie;

NA∑
k=1

hekλ̄k) (5.7a)

s.t.
NA∑
k=1

λ̄k ≤ λ, (5.7b)

NA∑
k=1

hekλ̄k ≤ r̃e, ∀e ∈ T , (5.7c)

λ̄k ≥ 0, k = 1, . . . , NA, (5.7d)

where d(ξie; λ̄) represents the average queueing and transmission delay of the link shared
between edge e ∈ T and target path sBi → tBi.

Remark: First, (5.7a) excludes both the propagation delays and the queueing and
transmission delays at links on the target paths that are not shared with any attack
path, because these delays are not affected by the attack traffic and thus only contribute
a constant shift. Moreover, the attacker does not need to know the exact locations of
the shared links and their relationships. To explain this, let ei denote the link shared
between edge e ∈ T and path sBi → tBi. We observe that: (i) ei will experience the same
load ∑NA

k=1 hekλ̄k from attack traffic regardless of its exact location on e, and (ii) even
if ei and ej for i ̸= j have some overlap (i.e., sharing links in the underlying network),
the load imposed by sBj → tBj on ei is part of the background traffic that has been
incorporated into the parameter ξie and vice versa.

165

5.4.2 Attack Design

We now derive explicit solutions to (5.7) under each of the queueing models considered
in Section 5.3.3.2. When the attacker can destabilize the queue at some shared link,
i.e., ∃i ∈ {1, . . . , NB} and e ∈ T with Wie > 0 such that ∑NA

k=1 hekλ̄k ≥ rie for some
λ̄ satisfying (5.7b)–(5.7d) (rie: residual capacity of the shared link ei excluding attack
traffic), then the attacker should simply allocate sufficient traffic to the attack paths
traversing e to congest the shared link ei and drive the average delay of path sBi → tBi

(and hence (5.7a)) to infinity. Thus, below we will focus on the nontrivial case when

max
s.t. (5.7b)–(5.7d)

NA∑
k=1

hekλ̄k < min
i∈{1,...,NB}:Wie>0

rie, ∀e ∈ T . (5.8)

We will show that in this case, the optimal attack strategy is similar under all the
considered queueing models.

5.4.2.1 Attack under M/M/1

When modeling each shared link as an M/M/1 queue, plugging (5.4) into (5.7a) yields

fM/M/1(λ̄) :=
NB∑
i=1

βi
∑

e∈T :Wie>0

1
rie −

∑NA
k=1 hekλ̄k

, (5.9)

which has the following property:

Lemma 5.4.1. Under (5.8), fM/M/1(λ̄) is convex in the feasible region of (5.7).

The convexity of the objective function implies the following property of the optimal
solution:

Theorem 5.4.1. Under (5.8), the solution λ̄∗ that maximizes fM/M/1(λ̄) s.t. (5.7b)–
(5.7d) must achieve “=” for NA of the constraints.

Corollary 5.4.1.1. Under λ ≤ mine∈T r̃e and (5.8), the solution λ̄∗ that maximizes
fM/M/1(λ̄) s.t. (5.7b)–(5.7d) must satisfy λ̄∗

k = λ for some k ∈ {1, . . . , NA} and λ̄∗
k′ = 0

for all k′ ∈ {1, . . . , NA} \ {k}.

For a resource-constrained attacker that faces the case in Corollary 5.4.1.1, our
analysis shows that the optimal attack strategy is to enumerate all the NA candidate
solutions, each allocating all the attack rate onto a single attack path, and pick the
solution maximizing fM/M/1(λ̄).

166

5.4.2.2 Attack under M/D/1

When modeling each shared link as an M/D/1 queue, plugging (5.5) into (5.7a) yields

fM/D/1(λ̄):=
NB∑
i=1

βi
∑

e∈T :Wie>0

2µie − λie −
∑NA
k=1 hekλ̄k

2µie(µie − λie −
∑NA
k=1 hekλ̄k)

, (5.10)

where µie and λie are the service/arrival rate at the link shared between sBi → tBi and
e ∈ T before attack. This objective function has a property similar to fM/M/1:

Lemma 5.4.2. Under (5.8) (where rie := µie − λie), fM/D/1(λ̄) is convex in the feasible
region of (5.7).

The same argument as in the proofs of Theorem 5.4.1 and Corollary 5.4.1.1 leads to
a similar attack design under M/D/1:

Theorem 5.4.2. Under (5.8), the solution λ̄∗ that maximizes fM/D/1(λ̄) s.t. (5.7b)–
(5.7d) must achieve “=” for NA of the constraints. Furthermore, if λ ≤ mine∈T r̃e, then λ̄∗

must satisfy λ̄∗
k = λ for some k ∈ {1, . . . , NA} and λ̄∗

k′ = 0 for all k′ ∈ {1, . . . , NA} \ {k}.

5.4.2.3 Attack under G/G/1

When each shared link is modeled as a G/G/1 queue, plugging (5.6) into (5.7a) yields

fG/G/1(λ̄) :=
NB∑
i=1

βi
∑

e∈T :Wie>0

λie +∑NA
k=1 hekλ̄k

2µie(µie − λie −
∑NA
k=1 hekλ̄k)

·

σ2
aie

(
λie +

NA∑
k=1

hekλ̄k
)2

+ σ2
sieµ

2
ie

 ,
(5.11)

where we have omitted the average service time (i.e., transmission delay) 1/µie as it does
not depend on the attack traffic. This function is again convex as stated below:

Lemma 5.4.3. Under (5.8), fG/G/1(λ̄) is convex in the feasible region of (5.7).

By the same argument as in Theorem 5.4.1 and Corollary 5.4.1.1, Lemma 5.4.3 implies
the following attack design under G/G/1:

Theorem 5.4.3. Under (5.8), the solution λ̄∗ that maximizes fG/G/1(λ̄) s.t. (5.7b)–
(5.7d) must achieve “=” for NA of the constraints. Furthermore, if λ ≤ mine∈T r̃e, then λ̄∗

must satisfy λ̄∗
k = λ for some k ∈ {1, . . . , NA} and λ̄∗

k′ = 0 for all k′ ∈ {1, . . . , NA} \ {k}.

167

Remark: The above analysis shows that the optimal strategy for a resource-constrained
attacker is to focus all the attack traffic on a single attack path, selected based on the lo-
cations and parameters of the shared links learned through the reconnaissance techniques
presented in Section 5.3.

5.4.3 Other Attack Objectives

If the total attack rate violates (5.8), i.e., the attacker can destabilize the queue for at
least one shared link, an objective that can differentiate the different ways of destabilizing
queues is needed. As a concrete example, if the attacker wants to cause the worst
congestion on any of the shared links, he can maximize the following objective function:

max
e∈T :∃Wie>0

NA∑
k=1

hekλ̄k − min
i∈{1,...,NB}:Wie>0

rie

 , (5.12)

subject to constraints (5.7b)–(5.7d), which will maximize the maximum excess load on a
shared link. Maximizing (5.12) s.t. (5.7b)–(5.7d) is a maximization of a piece-wise linear
convex function under linear constraints, for which the optimal solution must be achieved
at an extreme point of the feasible region [173]. In our context, this will be a vertex of the
polytope defined by (5.7b)–(5.7d), where “=” is achieved for NA of the constraints. In the
special case of λ ≤ mine∈T r̃e, (5.7c) is redundant, and thus the optimal attack must allo-
cate all the attack traffic onto a single path as in the case of optimizing the objective (5.7a).
Note that the new objective (5.12) is invariant to the queueing model. The above result
together with the results of Section 5.4.2 suggests the efficacy of the generic attack strategy
that focuses resources on an attack path selected based on the information learned through
reconnaissance. When the objectives in (5.7a) and (5.12) are both applicable, (5.7a) is
usually a more meaningful objective for the attacker as it represents the end-to-end perfor-
mance impact across all the target paths. Nevertheless, these are just concrete examples
of the attacker’s objectives to illustrate the impact of adversarial reconnaissance. What
objective is most suitable will depend on the application scenario and is left to future work.

5.5 Performance Evaluation
In this study, we evaluate the performance of our algorithms under two types of
networks using NS3 [174], a widely-used discrete-event network simulator. First, we
conduct simulations in the context of an IP-based backbone network (Section 5.5.1).

168

Then, we validate our results by repeating the experiments in the context of a 5G
Integrated Access and Backhaul (IAB) network (Section 5.5.2), leveraging the 5G-LENA
module [175] for the radio access network (RAN).

5.5.1 NS3-based Simulation of Backbone Network

5.5.1.1 Simulation Setup

We simulate an IP-based backbone network based on GtsCe (GTS Central Europe)
from the Internet Topology Zoo [138], which is a network with 149 nodes and 193 links.
Following [176], we set the link capacities and delays using the dataset from [139], in
which all link capacities are treated as 1 Gbps. In Appendix 5.7.2.4, we additionally study
a case with higher link capacities, which yields similar results. We generate attack paths
by randomly picking a source sA and NA destinations {tAi}NA

i=1 from the network and
computing the shortest paths (in hop count). We generate target paths {sB → tBi}NB

i=1

similarly, while ensuring that each target path shares at least one link with the attack
paths. Here each node in GtsCe represents a point of presence (PoP) so that multiple
source/destination hosts can attach to the same node (through ‘other links’ outside the
simulated network). Fig. 5.4 shows an example topology formed by the generated paths.

To evaluate the robustness of our approach, we have examined its performance under
two types of background traffic. In the experiments presented here, we generate back-
ground traffic by a recently proposed methodology from [177], wherein the background
traffic rate for each link is periodically sampled from a log-normal distribution charac-
terized by parameters (µ, σ). In this study, we regenerate the rate every 0.5 ms and set
σ as 1. Following [178], each background packet has a size randomly selected from 50,
576 and 1460 bytes with probabilities 0.4, 0.2 and 0.4, respectively. The µ-parameter of
background traffic is designed to achieve a total utilization that is randomly distributed in
[10%, 50%] prior to attack. In Appendix 5.7.2.2, we provide additional simulation results
under background traffic generated according to ON-OFF processes as in Section 5.5.2.
Here, we set NA = NB = 10, while in Appendix 5.7.2.3, we additionally study the case
of NA = 20. All the additional studies yield qualitatively similar results.

We configure each link to have a FIFO queue with a large buffer to guarantee no
packet loss during the simulation. We set the rate on each target path to 50 Mbps with
a constant packet size of 1000 bytes. The packet size on each attack path is 50 bytes
for shared link detection and 1000 bytes for parameter inference and attack. We set the
importance of target paths to βi = 1 for i = 1, . . . , NB. All our results are based on 20

169

a) full topology b) routing tree

𝑆஺ 𝑆஻ PoP 𝑡஺௜𝑡஻௜ other link
unused backbone link
routed backbone link

1

23 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

2526

27

28

29

30

31 32

33

3435

3637

38

39

40

41

42

43 44

Figure 5.4. Sample topology in the simulation of backbone network (NA = NB = 10), with
shared links highlighted as thick lines.

Monte Carlo runs.
In shared weight inference (Alg. 14), we consider a packet as not incurring queueing

on a path if its end-to-end delay is smaller than the mean of the 10 smallest delays on
this path plus 0.1 ms. We detect a shared link exists between a target path sB → tBi and
an edge e ∈ T if the inferred value of Wie exceeds 0.005. To reduce correlation across
measurements, we maintain a spacing of at least 2 ms between consecutive measurements.
Since the distances from sA and sB to the shared links may be different, we find an offset
κ by correlation maximization to identify measurements forming a mimicked multicast,
as detailed in Appendix 5.7.2.1. In parameter inference, we vary the probing rate among
K = 20 values evenly distributed between 0 and 80% of the minimum residual capacity
at shared links, and solve the least square fitting problem (line 7 in Alg. 17) by the
trust-region-reflective least squares algorithm [179].

5.5.1.2 Results on Reconnaissance

Fig. 5.5 (a) shows the accuracy in detecting shared links, measured by the fraction of
errors in inferring whether Wie is non-zero for all i = 1, . . . , NB and e ∈ T . In addition,
we also evaluate the number of false alarms (detected shared links that do not exist) and
the number of misses (shared links that are not detected) averaged over all the target
paths. Each measurement here corresponds to a mimicked tri-cast. The results show
that our algorithms (Alg. 14–15) can detect the majority of the shared links with some
errors (around 20% error if we collect 5× 104 measurements for each tri-cast for both
calibration and detection). Among the errors, there are more false alarms than misses.

170

0 1 2 3 4 5
number of measurements 104

0

0.1

0.2

0.3

0.4

0.5

0.6

re
lat

ive
 e

rro
r

0

1

2

3

4

nu
m

be
r o

f li
nk

s

relative error
number of misses
number of false alarms

(a) Performance in detecting shared links

2000 4000 6000 8000 10000
number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
lat

ive
 e

rro
r

MM1:r
MD1:
MD1:
GG1:
GG1:

(b) Performance in inferring shared link parameters

Figure 5.5. Performance of reconnaissance in backbone network simulation (NA = NB = 10).

0 0.2 0.4 0.6 0.8
attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ilit
y

optimal
MM1
MD1
GG1
max share
random
evenly

(a) Probability of congesting at least one shared link

0.1 0.3 0.5 0.7 0.8
 (Gbps)

0

100

200

300

400

av
er

ag
e

de
lay

s (
m

s)

optimal
MM1
MD1
GG1
max share
random
evenly
no attack

(b) Average delay over all the target paths

Figure 5.6. Performance of attack design in backbone network simulation (NA = NB = 10).

Fig. 5.5 (b) shows the accuracy of inferring the parameters of the shared links, mea-
sured by the relative error ∥ξ̂−ξ∗∥1/∥ξ∗∥1 (ξ̂: estimate, ξ∗: ground truth). Although the
queues at the links do not exactly follow any of the assumed queueing models, we can still
compare the estimated parameters with the best-fitting parameters based on per-link mea-
surements. The results show that: (i) although the real queueing behavior does not exactly
fit any of the assumed queueing models, the inference results based on these models are rea-
sonable, (ii) while the link capacities (‘µ’) and the residual capacities (‘r’) can be inferred
with good accuracy (< 10% of error), there is notable error in estimating the background
traffic loads (‘λ’), and (iii) G/G/1-based estimation performs slightly worse due to the dif-
ficulty of jointly estimating more parameters. There are two other parameters (variance of
interarrival/service time) under G/G/1, for which the trend is similar. Although the infer-
ence process involves active probing, each probing experiment only lasts for a short period
(e.g., 0.8 seconds for 5000 measurements, each corresponding to a packet on a target path).

5.5.1.3 Results on Attack Design

Since the original design of cross-path attack [13] only ensures to use some attack paths
that share at least one link with the target paths, we compare the proposed attack design

171

with the following intuitive rate allocation strategies over such attack paths3:

1. ‘Evenly’: A natural strategy is to evenly split the total attack rate λ among all the
attack paths that share at least one link with the target paths.

2. ‘Random’: Given that the optimal strategy is usually to focus on one path (see
Section 5.4.2), the attacker may also allocate all the rate to a randomly selected
attack path.

3. ‘Max share’: The attacker chooses the attack path traversing the maximum number
of shared tree links, i.e., t∗A = maxtAk∈TA

{∑e∈T hekI(
∑NB
i=1 Wi,e > 0)} (I(·): indicator

function).

The results presented in Fig. 5.6 show that despite containing notable error, the infor-
mation obtained by our reconnaissance algorithms is still useful for attack design. Here,
‘optimal’ denotes the optimal attack designed based on the true locations/parameters of
the shared links, and ‘MM1’/‘MD1’/‘GG1’ denotes the proposed attack design based on
the parameters inferred from 10,000 measurements under the model of M/M/1 or M/D/1
or G/G/1. Fig. 5.6 (a) shows the probability that the attack can congest (i.e., destabilize)
at least one shared link. The results show that: (i) the proposed reconnaissance-based
optimized attack design (‘MM1’, ‘MD1’, ‘GG1’) can achieve near-optimal impact despite
the notable estimation errors, (ii) the non-optimized attack strategies based on [13]
(‘random’, ‘even’) are much less effective, and (iii) knowing the locations of shared links
(‘max share’) helps but is not enough. A closer examination shows that the estimated
parameters can reveal which attack paths traverse the weakest shared link (the one with
the minimum residual capacity), even if the estimated parameters are inaccurate. In
Fig. 5.6 (b), we evaluate the impact of attacks on the delays of the target paths, computed
over 10,000 measurements. As the objective of delay maximization is only meaningful
at attack rates that are within the stability region, we combine multiple attack designs
as follows: when λ ≤ mine∈T r̃e which satisfies the condition of Corollary 5.4.1.1, the
attacker will send all the attack traffic on the attack path predicted to maximize the
delay increase over all the target paths; when λ > mine∈T r̃e, the attacker will maximize
the maximum excess load (5.12) as in Section 5.4.3. We observe that (i) the proposed
attack designs produce near-optimal delay increase regardless of the assumed queueing
model, and (ii) there is a wide variation among the impacts of different cross-path attacks,

3The set of attack paths sharing at least one link with the target paths can be inferred by a simple
reconnaissance method proposed in [13]. Here, we use the true set for a conservative comparison.

172

a) full topology b) routing tree

𝑆஺ 𝑆஻ base station 𝑡஺௜𝑡஻௜ IAB-UE link Fiber link

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

394041

42

43444546

47

48

unused IAB-IAB link
routed IAB-IAB link

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

394041

42

43

44
45 46

47

48

49 50

Figure 5.7. Sample topology in the simulation of IAB network (NA = 19, NB = 10), with
shared links highlighted as thick lines.

where the carefully-designed attacks can generate a substantially higher performance
impact than the straightforward attacks. These observations signal the importance of
considering intelligent attack models in security analysis.

5.5.2 NS3-based Simulation of Integrated Access and Backhaul (IAB)
Network

5.5.2.1 Simulation Setup

To test the generalizability of our observations, we repeat our experiments in the scenario
of an IAB network with multiple slices. IAB network is a form of backhaul for 5G [180],
where base stations (BS) are implemented as IAB nodes, among which only a subset of
nodes (called IAB donors) are connected to the 5G core through fiber. An IAB node
has both a DU and a mobile termination function. Thus, it can function not only as a
traditional BS for UEs, but also as a relay for other IAB nodes through millimeter wave.
In the process of downlink transmission, parent IAB nodes relay traffic to their child
IAB nodes, and the process is reversed for uplink transmission. We simulate the IAB-UE
links by 5G-LENA [175], which is a pluggable module in NS3 for simulating 5G RAN,
and the rest of the links by point-to-point links4.

Following [180], we consider an IAB network with 19 BSs in a hexagonal topology
4Although the IAB-IAB links are supposed to be through millimeter wave [180], this feature is not

officially supported in NS3 to our knowledge, and hence we mimic them by point-to-point links with
lower capacities than the fiber links.

173

0 500 1000 1500 2000
number of measurements

0

0.05

0.1

0.15

0.2

0.25

0.3

re
lat

ive
 e

rro
r

0

0.5

1

1.5

2

2.5

3

nu
m

be
r o

f li
nk

s

relative error
number of misses
number of false alarms

(a) Performance in detecting shared links

2000 4000 6000 8000 10000
number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
lat

ive
 e

rro
r

MM1:r
MD1:
MD1:
GG1:
GG1:

(b) Performance in inferring shared link parameters

Figure 5.8. Performance of reconnaissance in IAB network simulation (NA = 19, NB = 10).

with one IAB donor at the center as illustrated in Fig. 5.7 (a). The network is shared
by a slice A containing attack paths, a slice B containing target paths, and other slices
treated as background traffic. We focus on downlink communication, where packets
enter the IAB network through the IAB donor (node 2) and are then routed towards
their destination UEs along a routing tree rooted at the donor. The links in the routing
tree are highlighted as thick lines in Fig. 5.7 (a) and also depicted in Fig. 5.7 (b). We
assume that there is at least one UE in slice A in each cell, and the UEs in slice B are
randomly distributed among the cells. According to [180], we assign each slice a separate
Bandwidth Part (BWP) for the IAB-UE links. We set the numerology in 5G-LENA to 5.

Following [180,181], we set the capacity of IAB-IAB links to 2 Gbps, IAB-UE links
to 0.5 Gbps, and fiber links to 100 Gbps. We limit the total flow rate to each cell in
slice A to 1 Gbps. We set the flow rate for each UE in slice B to 0.1 Gbps to represent
emerging applications like panoramic video streaming [182, 183]. Following [140, 184],
we independently generate background traffic on each IAB-IAB link according to an
ON-OFF process. The duration of each ON period follows the Pareto distribution with
shape parameter set to 2.04 and scale parameter ζON set to the average length of 13
packets. The duration of each OFF period follows the same distribution with a different
scale parameter ζOFF, tuned to yield a link utilization randomly drawn from [15%, 35%].
To detect no queueing events for shared weight inference, we measure the delays during
light traffic and set a threshold based on the 3σ rule. The rest of the setup is the same
as that in Section 5.5.1. In the sequel, we will present our results in the case of NB = 10.
More results are given in Appendix 5.7.3.

5.5.2.2 Results on Reconnaissance

First, we evaluate the accuracy of shared link detection as in Fig. 5.5 (a). The error in
shared link detection is shown in Fig. 5.8 (a). The results show similar observations as

174

0 0.5 1 1.5
attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ilit
y

optimal
MM1
MD1
GG1
max share
random
evenly

(a) Probability of congesting at least one shared link

0.2 0.4 0.6 0.8 1 1.2 1.4
attack rates (Gbps)

0

10

20

30

40

50

60

70

av
er

ag
e

de
lay

s (
m

s)

optimal
MM1
MD1
GG1
max share
random
evenly
no attack

(b) Average delay over all the target paths

Figure 5.9. Performance of attack design in IAB network simulation (NA = 19, NB = 10).

Fig. 5.5 (a): the proposed algorithms (Alg. 14–15) can detect the shared links with good
accuracy (< 5% error), and the errors are mostly due to false alarms.

In Fig. 5.8 (b), we evaluate the accuracy of parameter inference under each of the
queueing models as in Fig. 5.5 (b). Similar to Fig. 5.5 (b), we observe that (i) the
residual capacity (‘r’) and the capacity (‘µ’) can be estimated more accurately than the
load (‘λ’), and (ii) G/G/1-based estimation performs slightly worse. The main difference
from Fig. 5.5 (b) is that the errors become larger. This is because the delays in the IAB
network are affected by not only queueing in the backhaul but also MAC scheduling at
the IAB-UE links. We also notice that the proposed parameter estimation method can
help detect false alarms in shared link detection, as detailed in Appendix 5.7.4.

5.5.2.3 Results on Attack Design

We evaluate our attack design in comparison with the same benchmarks as in Sec-
tion 5.5.1.3. The results, presented in Fig. 5.9, show similar observations as Fig. 5.6: (i)
the attacks designed based on the results of our reconnaissance algorithms (‘MM1’, ‘MD1’,
‘GG1’) perform close to the optimal in terms of both the probability of congestion and
the delay increase, and (ii) the proposed optimized attacks generate a higher performance
impact than the straightforward attacks according to [13], especially under a limited
total attack rate. Compared to Fig. 5.6, the gap between the optimized attacks and the
baselines is smaller in Fig. 5.9. This is because on the average more links are shared
between the attack paths and the target paths in the IAB network due to the single
ingress point (the IAB donor), as shown in Fig. 5.7, making it easier to impact the target
paths by launching attack on randomly selected attack paths.

175

5.6 Concluding Discussion
We studied a newly identified stealthy DoS attack called cross-path attack, with focus on
quantifying the maximum impact of such attacks through optimized attack design. To
this end, we developed a novel extension to network topology inference that allows the
attacker to consistently estimate the locations and parameters of the links shared between
the attack paths and the target paths by only passively monitoring the target paths, and
provided an efficient method to compute the optimal attack rate allocation based on the
estimated information. Our optimized attack achieved a much greater performance impact
than its non-optimized counterparts in high-fidelity simulations. Besides quantifying the
maximum impact of cross-path attacks, our work also sheds light on possible defenses.
The root cause of such attacks is the sharing of network resources across flows of different
levels of security. Although completely isolating flows (e.g., by assigning each flow a
fixed share of bandwidth) can prevent cross-path attacks, it also sacrifices the benefits of
resource sharing such as throughput elasticity and higher resource utilization. Meanwhile,
allowing unlimited resource sharing will make the network vulnerable to malicious abuses
of the shared resources as demonstrated in our work. Intuitively, an effective network
design should strike a balance between the benefit of elastic resource allocation and the
risk of abused elasticity. Determining the right balance will depend on a variety of factors,
such as the capacity of the resource, the criticality of the supported application, and
the perceived level of threat, which may vary over time. Due to the inherent ambiguity
between attack traffic maliciously consuming resources and normal bursty traffic genuinely
in need of more resources, the network will face an inevitable tradeoff between performance
and security, the detailed investigation of which is left to future work.

5.7 Appendices

5.7.1 Appendix A: Proofs of Theorems

Proof of Theorem 5.3.2. First, we prove that given accurate estimates of the category
weights, the shared weight on the stem of each tree considered by Alg. 15 will be accurately
inferred. Since sA → τ1 and sA → τ2 branches at bT ′ , ρs is the shared weight on sA → bT ′ .
Moreover, as Alg. 15 works in a top-down manner, the shared weights on edges above
sT ′ must have been inferred before considering T ′. Thus, ρs −WsA→sT ′ (line 4) must be
the true shared weight on edge (sT ′ , bT ′).

176

Moreover, we prove that every edge with non-zero shared weight will be the stem of a
tree considered by Alg. 15. After inferring the shared weight on the stem of T ′, Alg. 15
will perform recursion for both subtrees of T ′ to consider the remaining edges except for
two cases. The first case is when δlT ′ = δrT ′ (line 5), in which case T ′ has no other edge.
The second case is when ρs ̸= 0 and ρl = 0 (or ρr = 0), in which case we can skip the left
(or right) subtree of T ′ as all its edges have zero shared weight. To see this, suppose that
ρs ≠ 0 and ρl = 0, but ∃ edge e in the left subtree of T ′ with We ̸= 0. Let e′ be the stem
of the left subtree. Suppose that sB → tB intersects with sA → bT ′ at node v1 (which
exists because ρs ̸= 0), and intersects with e at node v2 (which exists because We ̸= 0).
Then there exist two routing paths between v1 and v2, one follows T and traverses e′,
and the other follows sB → tB without traversing e′ (as ρl = 0), which contradicts with
the unique route assumption in Section 5.2.1. Similar argument holds for ρs ̸= 0 and
ρr = 0.

Proof of Theorem 5.3.3. First, we argue that all the shared inks will be considered in
parameter estimation. As the given weight vector W is accurate and all the shared
links have non-zero metrics, every edge e containing a shared link will have We > 0, and
thus will be considered in the parameter estimation when e is the stem of the tree T ′

under consideration. As the recursion examines the edges of T in a top-down manner, it
remains to show that when W(sT ′ ,bT ′) > 0, we can safely skip one of the subtrees of T ′

as long as δlT ′ ̸= δrT ′ (otherwise T ′ only has one edge, i.e., the stem). This is because
conditioned on W(sT ′ ,bT ′) > 0, sB → tB cannot intersect with both of the subtrees of T ′,
or there will be a contradiction with the unique route assumption in Section 5.2.1.

Next, we argue that the parameter for each shared link considered in lines 2–7 of
Alg. 17 will be estimated accurately. We start by considering the top-most shared link,
assumed to reside on an edge e ∈ T . Our selection of the probing destination τ ∗ ensures
that it is the only shared link between sB → tB and sA → τ ∗, for which the objective of
the least square fitting in line 7 is reduced to ∑K

k=1

(
ψk − cτ∗ − d(ξe; λ̄k)

)2
. Let (c∗

τ∗ , ξ∗
e)

denote the ground truth parameters. By our assumption, (c∗
τ∗ , ξ∗

e) achieves a zero fitting
error. Suppose that the estimated parameters (ĉτ∗ , ξ̂e) ̸= (c∗

τ∗ , ξ∗
e). Then (ĉτ∗ , ξ̂e) must

also achieve a zero fitting error, i.e.,

ĉτ∗ + d(ξ̂e; λ̄k) = c∗
τ∗ + d(ξ∗

e ; λ̄k), k = 1, . . . , K. (5.13)

177

Under M/M/1, plugging (5.4) into (5.13) implies that λ̄k (k = 1, . . . , K) must all satisfy

ĉτ∗ + 1
r̂e − λ̄

= c∗
τ∗ + 1

r∗
e − λ̄

. (5.14)

For K > 2, this leads to a contradiction as (5.14) is a quadratic equation in λ̄ with at
most two distinct solutions. Similarly, under M/D/1, plugging (5.5) into (5.13) gives a
quadratic equation of λ̄ with at most two distinct solutions, contradicting with K > 2;
under G/G/1, plugging (5.6) into (5.13) gives a quartic equation of λ̄ with at most four
distinct solutions, contradicting with K > 4. The same argument applies to every other
shared link, as our selection of the probing destination ensures that when estimating ξe,
all the other shared links between the target path and the probing path are above e,
whose parameters should already be accurately inferred by induction.

Proof of Lemma 5.4.1. As fM/M/1 is a non-negative linear combination of functions of

the form g1(λ̄) := 1
p−
∑NA

i=1 qiλ̄i
, where p −

NA∑
i=1

qiλ̄i > 0, it suffices to prove that g1(λ̄) is
convex.

To this end, it suffices to show that for any λ̄j (j = 1, 2) satisfying p−
NA∑
i=1

qiλ̄ji > 0,

g1(λ̄1) + g1(λ̄2) ≥ 2g1(λ̄1+λ̄2
2), since a continuous function that is midpoint convex must

be convex [185]. The proof completes by (⇔ means equivalence):

1

p−
NA∑
i=1

qiλ̄1i

+ 1

p−
NA∑
i=1

qiλ̄2i

≥ 2

p−
NA∑
i=1

qi
λ̄1i+λ̄2i

2

⇔ (
NA∑
i=1

qiλ̄1i)(
NA∑
i=1

qi
λ̄1i + λ̄2i

2)

+ (
NA∑
i=1

qiλ̄2i)(
NA∑
i=1

qi
λ̄1i + λ̄2i

2) ≥ 2(
NA∑
i=1

qiλ̄1i)(
NA∑
i=1

qiλ̄2i)

⇔ (
NA∑
i=1

qiλ̄1i)2 + (
NA∑
i=1

qiλ̄2i)2 ≥ 2(
NA∑
i=1

qiλ̄1i)(
NA∑
i=1

qiλ̄2i)

⇔

NA∑
i=1

qiλ̄1i −
NA∑
i=1

qiλ̄2i

2

≥ 0. (5.15)

Proof of Theorem 5.4.1. By Lemma 5.4.1, the attacker’s optimization is a maximization
of a convex function over a polytope defined by (5.7b)–(5.7d), for which the optimal
solution must be achieved at an extreme point of the feasible region [173]. In our context,

178

this will be a vertex of the polytope, which achieves “=” for NA of the constraints in
(5.7b)–(5.7d).

Proof of Corollary 5.4.1.1. Under λ ≤ mine∈T r̃e, the constraint in (5.7c) can be ignored.
The remaining constraints define a polytope with only NA non-zero vertices, each in the
form of λ̄∗

k = λ and λ̄∗
k′ = 0 for all k′ ∈ {1, . . . , NA} \ {k}. The optimal solution must be

one of them by Theorem 5.4.1.

Proof of Lemma 5.4.2. As fM/D/1 is a non-negative linear combination of functions of
the form

g2(λ̄) :=
2µ− λ−

NA∑
i=1

qiλ̄i

2µ(µ− λ−
NA∑
i=1

qiλ̄i)
, (5.16)

where µ−λ−
NA∑
i=1

qiλ̄i > 0, it suffices to prove that g2(λ̄) is convex. To this end, note that

g2(λ̄) = 1
2µ + 1

2(µ− λ−
NA∑
i=1

qiλ̄i)
= 1

2µ + 1
2g1(λ̄), (5.17)

where g1(λ̄) is defined as in the proof of Lemma 5.4.1 with p := µ− λ. Since g1(λ̄) is
convex, g2(λ̄) is convex.

Proof of Lemma 5.4.3. Function fG/G/1 is a non-negative linear combination of functions
of the form

g3(λ̄) := θ

t− θ
(θ2 + s) (5.18)

with θ := p+
NA∑
i=1

qiλ̄i, where θ ≥ 0, t− θ > 0, and s > 0. Thus, it suffices to prove that

g3(λ̄) is convex.
To this end, note that

∂g3

∂θ
= 3θ2(t− θ) + θ3

(t− θ)2 + st

(t− θ)2 > 0, (5.19)

∂2g3

∂θ2 = 6tθ
(t− θ)2 + 2θ3

(t− θ)3 + 2st
(t− θ)3 > 0, (5.20)

179

i.e., g3 is an increasing convex function of θ. Since θ is a linear function of λ̄, g3 is a
convex function of λ̄.

5.7.2 Appendix B: Supplementary Evaluation Results for Backbone
Network

5.7.2.1 Measurement Calibration in NS3 Simulation of Backbone Network

As discussed in Section 5.5.1.1, during shared weight inference, we need to estimate
an offset κ between measurements on a pair of probed attack paths (pA1, pA2) and
measurements on a target path pB to mimic tri-cast, as the delays from sA and sB to the
links shared by all these paths (if any) may be different. We use the following heuristic
to estimate κ.

We send a flow on each probed attack path to collect a sequence of end-to-end delay
measurements. We also collect end-to-end delays on the target path in the meanwhile.
For the target path, we directly transform the delay measurements into a binary sequence
of queueing indicators using the threshold given in Section 5.5.1.1, denoted as {qtB}Tt=1,
where qtB = 1 if the t-th measurement is detected to experience queueing and qtB = 0
otherwise. Since pA1, pA2 share the same source sA, we combine the delay measurements
on pA1, pA2 by adding the delays of the i-th packets from both paths, and then transform
the combined delay measurements into a binary sequence {qtA}Tt=1 as for {qtB}Tt=1. To
find κ so that the i-th packet on pB and the (i+ κ)-th packet pair on (pA1, pA2) traverse
the shared links (if any) at approximately the same time, we maximize the correlation
between {qtB}Tt=1 and {qtA}Tt=1 by solving

κ∗ = arg max
1−T≤κ≤T−1

1
min(T, T − κ)−max(1, 1− κ) + 1

min(T,T−κ)∑
i=max(1,1−κ)

qiBq
i+κ
A . (5.21)

We then identify the i-th packet on pB and the (i+ κ∗)-th packet pair on (pA1, pA2) as a
mimicked tri-cast.

5.7.2.2 NS3 Simulation of Backbone Network under an Alternative Back-
ground Traffic Model

In Section 5.5.1, we showed the results in the scenario where the background traffic follows
log-normal distribution. In this section, we validate our algorithms under background
traffic generated according to ON-OFF process [140, 186, 187]. More specifically, the

180

0 1 2 3 4 5
number of measurements 104

0

0.2

0.4

0.6

0.8

re
lat

ive
 e

rro
r

0

1

2

3

4

5

nu
m

be
r o

f li
nk

s

relative error
number of misses
number of false alarms

(a) Performance in detecting shared links

2000 4000 6000 8000 10000
number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
lat

ive
 e

rro
r

MM1:r
MD1:
MD1:
GG1:
GG1:

(b) Performance in inferring shared link parameters

Figure 5.10. Performance of reconnaissance in backbone network simulation under ON-OFF
background traffic (NA = NB = 10).

0 0.2 0.4 0.6 0.8
attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ilit
y

optimal
MM1
MD1
GG1
max share
random
evenly

(a) Probability of congesting at least one shared link

0.1 0.3 0.5 0.7 0.8
 (Gbps)

0

100

200

300

400

500

av
er

ag
e

de
lay

s (
m

s)

optimal
MM1
MD1
GG1
max share
random
evenly
no attack

(b) Average delay over all the target paths

Figure 5.11. Performance of attack design in backbone network simulation under ON-OFF
background traffic (NA = NB = 10).

duration of each ON period is sampled from a Pareto distribution with the shape
parameter as 2.04 and the scale parameter as the average length of 13 packets. The
duration of each OFF period is sampled from the same distribution with a different
scale parameter, configured to result in the same utilization of each link as the values
used in Section 5.5.1 for log-normally distributed background traffic. The results for
reconnaissance are shown in Fig. 5.10 as the counterpart of Fig. 5.5, while the results for
attack design are given in Fig. 5.11 as the counterpart of Fig. 5.6. We observe that the
results under ON-OFF background traffic are similar to those in Section 5.5.1, which
confirms the robustness of the proposed methods under different background traffic
patterns.

5.7.2.3 Evaluation Results for NS3 Simulation of Backbone Network with
NA = 20

In Section 5.5.1, we evaluate our algorithms with NA = 10. A larger NA will result in
fewer links on each edge in the routing tree T , which makes it harder for Alg. 14 to
accurately detect the shared links. To test its impact, we evaluate our algorithms with

181

0 1 2 3 4 5
number of measurements 104

0

0.1

0.2

0.3

0.4

0.5

0.6

re
lat

ive
 e

rro
r

0

1

2

3

4

nu
m

be
r o

f li
nk

s

relative error
number of misses
number of false alarms

(a) Performance in detecting shared links

2000 4000 6000 8000 10000
number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
lat

ive
 e

rro
r

MM1:r
MD1:
MD1:
GG1:
GG1:

(b) Performance in inferring shared link parameters

Figure 5.12. Performance of reconnaissance in backbone network simulation (NA = 20, NB =
10).

0 0.2 0.4 0.6 0.8
attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ilit
y

optimal
MM1
MD1
GG1
max share
random
evenly

(a) Probability of congesting at least one shared link

0.1 0.3 0.5 0.7 0.8
 (Gbps)

0

100

200

300

400

av
er

ag
e

de
lay

s (
m

s)

optimal
MM1
MD1
GG1
max share
random
evenly
no attack

(b) Average delay over all the target paths

Figure 5.13. Performance of attack design in backbone network simulation (NA = 20, NB =
10).

NA = 20 in the same scenario as in Section 5.5. The results are given in Fig. 5.12-5.13, as
the counterparts of Fig. 5.5-5.6. We observe that (i) the performance of reconnaissance
slightly degraded, but (ii) the attack design still achieved significantly better performance
than the baselines (i.e., “max share”, “random”, and “evenly”). This result demonstrates
the robustness of our methods to the number of attack paths. We have also verified that
the performance of our methods is not sensitive to the number of target paths.

5.7.2.4 Evaluation Results for NS3 Simulation of Backbone Network with
50 Gbps Link Capacity

Building on Section 5.5.1.1, where the link capacity is normalized to 1 Gbps, this
section validates those results under increased link capacities. Specifically, we repeat the
NS3 simulation for the backbone network GtsCe with a link capacity of 50 Gbps. To
accommodate this, the rate for background traffic is regenerated every 0.05 ms, compared
to the previous 0.5 ms in Section 5.5.1.1. Moreover, the flow rate on the target paths has
been adjusted from 50 Mbps to 2500 Mbps, and the background traffic rates have been

182

0 1 2 3 4 5
number of measurements 104

0.1

0.2

0.3

0.4

0.5

0.6

re
lat

ive
 e

rro
r

0

1

2

3

4

nu
m

be
r o

f li
nk

s

relative error
number of misses
number of false alarms

(a) Performance in detecting shared links

0 2000 4000 6000 8000 10000
number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
lat

ive
 e

rro
r

MM1:r
MD1:
MD1:
GG1:
GG1:

(b) Performance in inferring shared link parameters

Figure 5.14. Performance of reconnaissance in backbone network simulation (NA = NB = 10).

increased by 50 times too, while all other settings remain the same as Section 5.5.1.1.
Results from a single Monte Carlo run are presented below.

The reconnaissance results as the counterpart of Fig. 5.5 are given in Fig. 5.14,
in which we observe similar trends as in Fig. 5.5. We then assess the rate at which
each attack method induces congestion on at least one shared link, as a counterpart to
Fig. 5.6 (a). For this specific Monte Carlo run, the benchmarks “optimal” and “max
share”, and all the proposed methods (i.e., “MM1”/“MD1”/“GG1”) begin to induce
congestion when the total attack rate exceeds 48.7% of the link capacity. At this rate,
“random” starts exhibiting a non-zero (0.3) probability of causing congestion. Moreover,
“random” only reaches a 0.5 congestion probability even when the attack rate surpasses
70% of the link capacity. In contrast, “evenly” fails to induce congestion even when the
attack rate reaches 80% of the link capacity.

As the counterpart of Fig. 5.6 (b), we analyze the average delay induced by various
attack designs in Fig. 5.15, computed over 30, 000 packets on the target paths. We
observe that “max share” and all the proposed methods (i.e., “MM1”/“MD1”/“GG1”)
achieve the same performance as “optimal” since they all correctly identify the attack
path traversing the weakest shared link5. Notably, the proposed methods markedly
outperform the non-optimized benchmarks “random” and “evenly”. These findings, which
are consistent with Fig. 5.6 (b), underscore the efficacy of our proposed methods.

5The absolute delays in Fig. 5.15 are smaller than those in Fig. 5.6 (b) due to the increased link
capacity.

183

5 15 25 35 40
 (Gbps)

0

2

4

6

8

10

12

14

av
er

ag
e

de
la

ys
 (

m
s)

optimal
MM1
MD1
GG1
max share
random
evenly
no attack

Figure 5.15. Average delay over all the target paths (NA = NB = 10)).

0 500 1000 1500 2000
number of measurements

0

0.05

0.1

0.15

0.2

0.25

0.3

re
lat

ive
 e

rro
r

0

0.5

1

1.5

2

2.5

3

nu
m

be
r o

f li
nk

s

relative error
number of misses
number of false alarms

(a) NB = 5

0 500 1000 1500 2000
number of measurements

0

0.05

0.1

0.15

0.2

0.25

0.3

re
lat

ive
 e

rro
r

0

0.5

1

1.5

2

2.5

3

nu
m

be
r o

f li
nk

s

relative error
number of misses
number of false alarms

(b) NB = 10

Figure 5.16. Performance in detecting shared links in IAB network simulation.

5.7.3 Appendix C: Supplementary Evaluation Results for Integrated
Access and Backhaul (IAB) Network

In this section, we will present the supplementary experimental results for Section 5.5.2
in the case of NB = 5. The previously presented results under NB = 10 are also shown
here for comparison.

5.7.3.1 Results on Reconnaissance

In Fig. 5.16, we present the performance of shared link detection for different numbers of
target paths. We observe that the results are insensitive to the number of target paths
NB. Next, we show the results of parameter estimation for the detected shared links, as
given in Fig. 5.17. Again, the observations under different values of NB are qualitatively
similar.

184

2000 4000 6000 8000 10000
number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
lat

ive
 e

rro
r

MM1:r
e

MD1:
MD1:
GG1:
GG1:

(a) NB = 5

2000 4000 6000 8000 10000
number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
lat

ive
 e

rro
r

MM1:r
MD1:
MD1:
GG1:
GG1:

(b) NB = 10

Figure 5.17. Performance in inferring parameters of shared links in IAB network simulation.

0 0.5 1 1.5
attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ilit
y

optimal
MM1
MD1
GG1
random
even

(a) NB = 5

0 0.5 1 1.5
attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ilit
y

optimal
MM1
MD1
GG1
random
even

(b) NB = 10

Figure 5.18. Probability that the attack can destabilize the queue for at least one shared link
in IAB network simulation.

5.7.3.2 Results on Attack Design

We first evaluate the probability that the proposed design with objective (5.12) can
destabilize at least one queue, as shown in Fig. 5.18. As before, the results for NB = 5
and NB = 10 show the same trend.

Finally, we compare the delays of target paths under various attack designs in Fig. 5.19-
5.20, where Fig. 5.19 (a) and Fig. 5.20 (a) show the overall average delay (averaged
over all the target paths), while Fig. 5.19 (b) and Fig. 5.20 (b) show the maximum
average delay (maximized over all the target paths). Similar to the results discussed in
Section 5.5.2.3, we observe that the proposed attack designs generate higher impacts
than the benchmarks, regardless of the number of target paths and the performance
metric (either the average delay over all the target paths or the average delay of the
worst-performing target path).

185

0.4 0.6 0.8 1 1.2 1.4 1.6
attack rates (Gbps)

0

10

20

30

40

50

60

av
er

ag
e

de
lay

s (
m

s)

optimal
MM1
MD1
GG1
random
evenly
no attack

(a) average delays

0.4 0.6 0.8 1 1.2 1.4 1.6
attack rates (Gbps)

0

20

40

60

80

100

m
ax

im
um

 d
ela

ys
 (m

s)

optimal
MM1
MD1
GG1
random
evenly

(b) maximum delays

Figure 5.19. Delay increase under different λ in IAB network simulation (NB = 5).

0.2 0.4 0.6 0.8 1 1.2 1.4
attack rates (Gbps)

0

10

20

30

40

50

60

70

av
er

ag
e

de
lay

s (
m

s)

optimal
MM1
MD1
GG1
max share
random
evenly
no attack

(a) average delays

0.2 0.4 0.6 0.8 1 1.2 1.4
attack rates (Gbps)

0

20

40

60

80

100

m
ax

im
um

 d
ela

ys
 (m

s)

optimal
MM1
MD1
GG1
random
evenly

(b) maximum delays

Figure 5.20. Delay increase under different λ in IAB network simulation (NB = 10).

5.7.4 Appendix D: Discussion on detecting false alarms through
parameter estimation

In this section, we will discuss an observation that the proposed parameter estimation
method (Alg. 16–17) can help detect the false alarms in shared link detection (based on
Alg. 14–15).

In the case of a false alarm, the “shared link” under consideration does not actually
exist, and thus varying probing rate (line 6 in Alg. 17) will not impact the average delay
of the target path under consideration as expected. This will manifest as an abnormally
large estimated link capacity, which can then be used to detect that this “shared link”
does not exist. To see the reason, let us consider the example in Fig. 5.7. If Alg. 14 falsely
detects (2, 6) to be a shared link for the target path 2→ 43 and Alg. 17 tries to estimate
its capacity by varying probing rate on the path 2→ 25, then the best-fitting capacity
will be infinity as the average delay on 2→ 43 will not increase with the probing rate on
2→ 25. Even if the probing path and the target path have shared links, false alarms may
still be detected. For example, suppose that link (5, 18) in Fig. 5.7 is falsely detected
as a shared link for the target path 2→ 46, and 2→ 37 is selected as the probing path

186

for estimating its parameters, then the delay increase on 2→ 46 caused by the probing
on 2→ 37 will be captured by the delay increase on the truly shared links (2, 14) and
(14, 5) (if they are detected), still making the best-fitting capacity of link (5, 18) infinity.
This observation together with the fact that there are fewer misses than false alarms (see
Fig. 5.8 (a)) allows our solution to detect the shared links with high accuracy.

187

Chapter 6 |
Conclusion and Future Work

In this section, we first outline the limitations of the studies presented in this dissertation,
followed by a discussion on potential future directions for each. Subsequently, we will
delve deeper into one of these topics, using it as an illustrative example to explore further.

6.1 Future Work
In Chapter 2, we addressed the issue of power line state estimation following joint cyber-
physical attacks. It was assumed that the phase angles for the DC power flow model,
as outlined in (2.8), or the voltages for the AC power flow model, as detailed in (2.25),
could be restored using the methods described in Section 2.8.3. However, the methods in
Section 2.8.3 are applicable if certain topological conditions are satisfied, which may not
be the case in practice. Our findings have illustrated that line states can be estimated
with high accuracy provided that the post-attack phase angles/voltages are successfully
restored. This underscores the critical need for precise recovery of phase angles/voltages
across diverse power grid configurations. While initial studies, such as [188], have shown
promising outcomes, they lack guaranteed performance. Comprehensive solutions for
attack recovery thus require further research.

In Chapter 3, we examined the optimal secure PMU placement strategy to prevent
overload-induced line tripping. Our modeling includes some limiting assumptions. Firstly,
we presuppose that the load remains constant during line tripping incidents. However,
due to preventive control measures [65], the load, particularly the reactive power, might
adjust dynamically. Incorporating this factor could introduce more potent attack vectors
and present new challenges for developing defensive mechanisms. Additionally, we assume
that the power grid invariably achieves a steady state. This quasi-steady-state modeling
assumption overlooks the effects of angle stability, frequency stability, and dynamic

188

voltage stability. Considering the transient phase of line tripping [64, 66] in modeling
adversarial behavior necessitates further research. For additional details, we direct the
reader to [189] and references therein.

In Chapter 4, we explored congestion-free overlay routing, focusing on the catego-
rization of underlay links and the inference of the associated capacities. While the
proposed algorithms are designed to be applicable under any underlay topology, accu-
rately estimating overlay metrics remains a significant challenge that warrants further
study. Additionally, the current algorithms operate in an offline mode. Adapting these
algorithms for use in a dynamic underlay network by developing an online version would
enhance their applicability. Moreover, minimizing routing delay, although crucial, may
not suffice for several overlay applications that depend on routing, such as decentral-
ized learning [190]. Therefore, optimizing application-specific quality-of-service, while
balancing the trade-off with routing delay, presents an interesting avenue for future
research.

In Chapter 5, we examined the optimization of cross-path attacks to maximize
their impact on the target path. The proposed methods depend on the ability to
estimate the end-to-end delays of target paths to infer the locations of shared network
components. This assumption constrains the practical deployment of the proposed
approaches. Furthermore, our optimization of attack impact is confined to scenarios
where the adversary controls only a single source. The question of how to maximize
attack impact when multiple adversarial sources are involved remains an unresolved
challenge.

6.2 Illustrative Example: Overlay-Based Decentralized
Learning
In this section, we will explore in greater detail the design of overlay networks to
accelerate decentralized learning [190], serving as an illustrative example to extend the
work presented in this dissertation.

As an emerging machine learning paradigm, federated learning allows multiple learning
agents to collaboratively learn a shared model from the union of their local data without
directly sharing the data [190]. To achieve this goal, the agents repeatedly exchange
model updates, through a centralized parameter server [190], a hierarchy of parameter
servers [191], or peer-to-peer links between neighboring agents [192], which are then

189

aggregated to update the shared model. Due to its promise in protecting data privacy,
this learning paradigm has found many applications, such as improving mobile apps
[193, 194] and browsers [195, 196]. In particular, federated learning via decentralized
optimization [197] has attracted significant attention. Instead of forming a star [190]
or hierarchical topology [191], agents in decentralized federated learning (DFL) can
communicate along an arbitrary topology, where parameter exchanges only occur between
neighbors. This framework also avoids a single point of failure or hot spot at the central
aggregator, and is known to reduce the communication complexity at the busiest node
without increasing the computational complexity [197].

Meanwhile, federated learning still faces significant performance challenges due to
the extensive data transfer. Although the training data stay local, the agents still need
to communicate frequently to exchange local model updates, which incurs a nontrivial
communication cost for training deep learning models due to the large model size.
Such communication cost can dominate the total cost of the learning task, e.g., up
to 90% of time in cloud-based learning is spent on communications [198], and the
problem is exacerbated when the agents are distributed across a bandwidth-limited
network. This issue has attracted tremendous interests in reducing the communication
cost, including compression-based methods for reducing the amount of data in each
communication [199–201] and optimizations for reducing the number of communications
through hyperparameter optimization [202–206] or adaptive communications [207–210].

However, most existing works make simplistic assumptions about the connection
between agents, where each pair of logically adjacent agents is assumed to be connected
by a link that incurs a fixed cost when used in communication, regardless of the commu-
nications between other agents. This is not true when the agents are connected through
an underlying communication network (referred to as an underlay), as the connections
between different agents may map to multi-hop paths that share links. For example,
consider a set of learning agents with the physical connectivity in Fig. 6.1a and the logical
connectivity in Fig. 6.1b. Although connections (A,B) and (C,D) appear disjoint to the
learning agents, they actually map to paths sharing link (h1, h2) in the underlay, and
thus concurrent communications over these connections can take longer than stand-alone
communication on each of them. Moreover, links in the underlay may have heterogeneous
capacities and various loads of background traffic. Most existing works on communication
optimization in federated learning have ignored such complications by assuming the
communication time to be proportional to the maximum number of neighbors an agent
communicates with [205,206, 211–213]. Such simplistic assumption will lead to incorrect

190

A B

C D

(a) underlay topology (b) overlay topology

A B

C D

h1 h2

Figure 6.1. Overlay-underlay structure for learning over a communication network (learning
agents: {A,B,C,D}; underlay nodes: {h1, h2}).

prediction of the communication time and suboptimal designs in the case of overlay-based
DFL.

We want to address this gap in the context of overlay-based DFL without requiring
explicit cooperation from the underlay network, i.e., the agents can neither directly observe
the internal state of the underlay (e.g., routing topology, link capacities) nor control its
internal behavior. Such scenarios arise naturally when the agents are interconnected by a
public network controlled by a third party. In particular, we are interested in running DFL
over bandwidth-limited underlay networks. In contrast to high-bandwidth underlays such
as inter-datacenter networks as considered in [214], bandwidth-limited underlays are more
sensitive to communication demands generated by the learning task and can thus benefit
more from underlay-aware designs. Examples of such bandwidth-limited underlays include
but are not limited to: cellular edge network [215], power line communication [216,217],
device-to-device communication [218], underwater communication networks [219], and
multi-hop IoT networks [220].

To this end, we propose an overlay-based framework to jointly design the communica-
tion demands between learning agents and the communication schedule for serving these
demands, without explicit cooperation from the underlay. Building upon recent advances
in network tomography [221] and mixing matrix design [206], we cast the problem into a
set of optimizations that collectively minimize the completion time of the learning task
in achieving a given level of convergence.

6.2.0.1 Related Work

Decentralized federated learning. Initially proposed under a parameter server archi-
tecture [190], learning from decentralized data was later extended to a fully decentralized
architecture [197], which was shown to achieve the same computational complexity but

191

a lower communication complexity than training via a central server. Since then a
number of improvements have been developed, e.g., [222] improved the robustness to data
variance, and [223] provided a lower bound on the iteration complexity and an algorithm
that achieves the bound. These works only focused on reducing the number of iterations.

Communication cost reduction. There are two general approaches for reducing the
communication cost. One approach is to reduce the amount of data per communication
through model compression, e.g., [199–201]. The other approach is to reduce the number
of communications, e.g., by reducing the communication frequency [202–204]. It was
shown that model compression and infrequent communications can be combined to further
improve the communication efficiency [209, 210]. Instead of either activating all the links
or activating none, it has been recognized that better tradeoffs can be achieved by
activating subsets of links. To this end, [209,210] proposed an event-triggered mechanism
where a node sends its local model to neighbors only if the model has changed sufficiently,
and [205,206,211] proposed to activate subsets of links with predetermined probabilities.
In this regard, our work designs predetermined link activation as in [205,206,211], which
provides more predictable performance than event-triggered mechanisms, but we consider
a cost model that is more practical in overlay-based DFL: instead of measuring the
communication time by the number of matchings as in [205,206,211] or the maximum
degree as in [212, 213], we use the minimum time to complete all the activated agent-
to-agent communications over a bandwidth-limited underlay, while taking into account
heterogeneous residual capacities and possibly shared links.

Topology design in DFL. The logical topology connecting learning agents is an
important design parameter in DFL that controls the communication demands during
training, as only neighboring agents will communicate. Much has been done on charac-
terizing the impact of this topology on the convergence rate of DFL. Most convergence
analysis captures this impact through the spectral gap of the mixing matrix [197,224–227]
or equivalent parameters [205,211]. Recent works have identified other parameters through
which the topology can impact the convergence rate, such as the effective number of
neighbors [228] and the neighborhood heterogeneity [213]. Yet, these results did not
invalidate the impact of spectral gap; they just pointed out additional factors that also
matter in some cases. Based on the convergence parameters identified in such analysis,
several solutions have been proposed to design the logical topology to balance the conver-
gence rate and the cost per communication round [205,206,211, 213], and some solutions
combined topology design with other optimizations (e.g., bandwidth allocation [229],
model pruning [227]) for further improvement. In this regard, part of our work also

192

addresses the topology design problem based on a parameter related to the spectral gap,
but we explicitly design the communication schedule to serve the demands triggered by
the designed topology through a bandwidth-limited underlay to optimize the wall-clock
time of overlay-based DFL.

To our knowledge, the only existing work addressing topology design in overlay-based
DFL is [214]. However, it assumed a special underlay where the paths connecting learning
agents only share links at the first and the last hops, and the internal links are effectively
not shared. While this model may suit high-bandwidth underlays such as inter-datacenter
networks where dedicated capacity shares can be reserved for each overlay link, it fails
to capture the impact of overlay topology on the time to complete the corresponding
communications in a bandwidth-limited underlay, as addressed in our work.

Network-aware distributed computing. Broadly speaking, it was known that
awareness to the state of the communication underlay is important for data-intensive
distributed computing tasks [198]. Several works attempted to solve this problem for
a black-box cloud network based on simple heuristics (e.g., clustering nodes based on
pairwise performance metrics [198, 230]) or limiting assumptions about the network (e.g.,
multi-rooted tree [231]), and another work [232] proposed a white-box solution by asking
the cloud provider to provide the required network information. In this regard, our work
assumes a black-box underlay as in [198,230,231], but unlike the simple heuristics in these
works, we leverage state-of-the-art techniques from network tomography to estimate the
necessary parameters about the underlay with guaranteed accuracy.

Network tomography. Network tomography can provide critical information for
overlay-based DFL by enabling the learning agents to infer the topology and parameters
of the underlay from end-to-end measurements between themselves [112]. Many solutions
for topology inference have been developed (see [123] and references therein), but most are
based on the limiting assumption of tree-based routing. Recently, it was discovered that
the existence of links shared by subsets of paths can be reliably detected under arbitrary
routing [123–125]. While this information is not enough for identifying the underlay
topology, it is useful for optimizing communications in the overlay, as the knowledge of
shared links together with the ability to estimate available path capacities [126] allows
the overlay to estimate the capacity region for communications between the overlay
nodes [221]. In this work, we leverage this capability to optimize how the learning agents
communicate over an uncooperative underlay.

In summary, we proposed to jointly design the communication demands and the
communication schedule for overlay-based DFL over a bandwidth-limited uncooperative

193

underlay.

6.2.1 Background and Problem Formulation

6.2.1.1 Notations

Let a ∈ Rm denote a vector and A ∈ Rm×m a matrix. We use ∥a∥ to denote the ℓ-2
norm, ∥A∥ to denote the spectral norm, and ∥A∥F to denote the Frobenius norm. We
use diag(a) to denote a diagonal matrix with the entries in a on the main diagonal,
and diag(A) to denote a vector formed by the diagonal entries of A. We use λi(A)
(i = 1, . . . ,m) to denote the i-th smallest eigenvalue of A.

6.2.1.2 Network Model

Consider a network of m learning agents connected through a logical base topology G =
(V,E) (|V | = m), that forms an overlay on top of a communication underlay G = (V ,E).
Unless otherwise stated, both overlay and underlay links are considered directed. Each
underlay link e ∈ E has a finite capacity Ce. Each overlay link e = (i, j) ∈ E indicates
that agent i is allowed to communicate to agent j during learning, and is implemented
via a routing path p

i,j
from the node running agent i to the node running agent j in the

underlay. We assume that if (i, j) ∈ E, then (j, i) ∈ E (agents i and j are allowed to
exchange results). The routing paths are determined by the topology and the routing
protocol in the underlay. Let li,j denote the propagation delay on p

i,j
. We assume that

neither the routing paths nor the link capacities in the underlay are observable by the
overlay, but the propagation delays between overlay nodes (e.g., li,j) are observable1.

6.2.1.3 Decentralized Federated Learning (DFL)

Consider a DFL task, where each agent i ∈ V has a possibly non-convex objective
function Fi(x) that depends on the parameter vector x ∈ Rd and the local dataset
Di, and the goal is to find the parameter vector x that minimizes the global objective
function F (x), defined as

F (x) := 1
m

m∑
i=1

Fi(x). (6.1)

1This can be obtained by measuring the delays of small probing packets.

194

For example, we can model the objective of empirical risk minimization by defining the
local objective as Fi(x) := ∑

s∈Di
ℓ(x, s), where ℓ(x, s) is the loss function for sample

s under model x, and the corresponding global objective is proportional to the empirical
risk over all the samples.

We consider a standard decentralized training algorithm called D-PSGD [197], where
each agent repeatedly updates its own parameter vector and aggregates it with the pa-
rameter vectors of its neighbors to minimize the global objective function. Specifically, let
x

(k)
i (k ≥ 1) denote the parameter vector at agent i after k− 1 iterations and g(x(k)

i ; ξ(k)
i)

the stochastic gradient computed by agent i in iteration k (where ξ(k)
i is the mini-batch).

In iteration k, agent i updates its parameter vector by

x
(k+1)
i =

m∑
j=1

W
(k)
ij x

(k)
j − ηg(x

(k)
i ; ξ(k)

i), (6.2)

where W (k) = (W (k)
ij)mi,j=1 is the m × m mixing matrix in iteration k, and η > 0

is the learning rate. To be consistent with the base topology, W (k)
ij ≠ 0 only if

(i, j) ∈ E. The update rule in (6.2) has the same convergence performance as x
(k+1)
i =∑m

j=1 W
(k)
ij (x(k)

j − ηg(x
(k)
j ; ξ(k)

j)) [197,205], but (6.2) allows each agent to parallelize the
parameter exchange with neighbors and the gradient computation.

The mixing matrix W (k) plays an important role in controlling the communication
cost, as agent j needs to send its parameter vector to agent i in iteration k if and
only if W (k)

ij ≠ 0. According to [197], the mixing matrix should be symmetric with
each row/column summing up to one2 in order to ensure convergence for D-PSGD. The
symmetry implies a one-one correspondence between distinct (possibly) non-zero entries
in W (k) and the undirected overlay links, denoted by Ẽ (i.e., each (i, j) ∈ Ẽ represents a
pair of directed links {(i, j), (j, i)} ∈ E), and thus W (k)

ij can be interpreted as the link
weight of the undirected overlay link (i, j) ∈ Ẽ. The requirement of each row summing
to one further implies that W (k)

ii = 1−∑m
j=1 W

(k)
ij . In the vector form, the above implies

the following decomposition of the mixing matrix

W (k) := I −B diag(α(k))B⊤, (6.3)
2In [197], the mixing matrix was assumed to be symmetric and doubly stochastic with entries

constrained to [0, 1], but we find this requirement unnecessary for the convergence bound we use
from [233, Theorem 2], which only requires the mixing matrix to be symmetric with each row/column
summing up to one.

195

where I is the m×m identity matrix, B is the |V | × |Ẽ| incidence matrix3 for the base
topology G, and α(k) := (α(k)

ij)(i,j)∈Ẽ is the vector of link weights. It is easy to verify that
W

(k)
ij = α

(k)
ij . This decomposition reduces the design of mixing matrix to the design of

link weights α(k) in the overlay, where agents i and j need to exchange parameter vectors
in iteration k if and only if α(k)

ij ̸= 0. Thus, we say that the (undirected) overlay link
(i, j) is activated in iteration k (i.e., both (i, j) and (j, i) are activated) if α(k)

ij ̸= 0.

6.2.1.4 Communication Optimization for Overlay-based DFL

Our goal is to jointly design the communication demands between the agents and the
communication schedule about how to service these demands so as to minimize the
total (wall-clock) time for the learning task to reach a given level of convergence. The
challenges are two-fold: (i) the design of communication demands faces the tradeoff
between communicating more per iteration and converging in fewer iterations versus
communicating less per iteration and converging in more iterations, and (ii) the design
of communication schedule faces the lack of observability and controllability within the
underlay network. Below, we will tackle these challenges by combining techniques from
network tomography and mixing matrix design.

6.2.2 Proposed Solution

Our approach is to first characterize the total training time as an explicit function of
the set of activated links in the overlay, and then optimize this set. We will focus on
a deterministic design that can give a predictable training time, and thus the iteration
index k will be omitted. For ease of presentation, we will consider the set of activated
overlay links, denoted by Ea ⊆ Ẽ, as undirected links, as the pair of links between two
agents must be activated at the same time.

6.2.2.1 Overlay-based Communication Schedule Optimization

Given a set of overlay links Ea ⊆ Ẽ activated in an iteration, each (i, j) ∈ Ea triggers
two communications, one for agent i to send its parameter vector to agent j and the
other for agent j to send its parameter vector to agent i. However, directly sending the
parameter vectors along the underlay routing paths can lead to suboptimal performance.
For example, consider Fig. 6.2. If Ea = {(A,B), (A,D)} but both p

A,B
and p

A,D
traverse

3This is defined under an arbitrary orientation of each link ej ∈ Ẽ as Bij = +1 if ej starts from i, −1
if ej ends at i, and 0 otherwise.

196

A B

C D

(a) underlay routes (b) activated overlay links

A B

C D

h1 h2

Figure 6.2. Underlay-aware communication schedule optimization (learning agents:
{A,B,C,D}; underlay nodes: {h1, h2}).

the same underlay link (h1, h2), directly communicating between the activated agent pairs
can take longer than redirecting part of the traffic through other agents (e.g., redirecting
A→ D traffic through the overlay path A→ C → D). The same holds if the capacity of
the direct path is low, but the capacity through other agents is higher (e.g., if (h2, D) is
a slow link, then redirecting A→ D traffic through C can bypass it to achieve a higher
rate). This observation motivates the need of optimizing how to serve the demands
triggered by the activated links by routing within the overlay.

Demand Model: Let κi denote the size of the parameter vector (or its compressed
version if model compression is used) at agent i. A straightforward way to model the
communication demands triggered by a set of activated links Ea is to generate two unicast
flows for each activated link (i, j) ∈ Ea, one in each direction. However, this model will
lead to a suboptimal communication schedule as it ignores the fact that some flows carry
identical content. Specifically, all flows originating from the same agent will carry the
latest parameter vector at this agent. Thus, the actual communication demands is a
set of multicast flows, each for distributing the parameter vector of an activated agent
(incident to at least one activated link) to the agents it needs to share parameters with.
Let NEa(i) := {j ∈ V : (i, j) ∈ Ea}. We can express the demands triggered by the
activated links Ea as

H = {(i, NEa(i), κi) : ∀i ∈ V with NEa(i) ̸= ∅}, (6.4)

where each h = (sh, Th, κh) ∈ H represents a multicast flow with source sh, destinations
Th, and data size κh.

Baseline Formulation: To help towards minimizing the total training time, the
communication schedule should minimize the time for completing all the communication
demands triggered by the activated links, within the control of the overlay. To this

197

end, we jointly optimize the routing and the flow rate within the overlay. The former is
represented by decision variables zhij ∈ {0, 1} that indicates whether overlay link (i, j)
is traversed by the multicast flow h and rh,kij ∈ {0, 1} that indicates whether (i, j) is
traversed by the flow from sh to k ∈ Th, both in the direction of i → j. The latter is
represented by decision variables dh ≥ 0 that denotes the rate of flow h and fhij ≥ 0 that
denotes the rate of flow h on overlay link (i, j) in the direction of i→ j. Define constant
bh,ki as 1 if i = sh, −1 if i = k, and 0 otherwise. We can formulate the objective of serving
all the multicast flows in H (6.4) within the minimum amount of time as the following
optimization:

min
z,r,d,f

τ (6.5a)

s.t. τ ≥ κh
dh

+
∑

(i,j)∈E
li,jr

h,k
ij , ∀h ∈ H, k ∈ Th, (6.5b)

∑
(i,j)∈E:e∈p

i,j

∑
h∈H

fhij ≤ Ce, ∀e ∈ E, (6.5c)

∑
j∈V

rh,kij =
∑
j∈V

rh,kji + bh,ki , ∀h ∈ H, k ∈ Th, i ∈ V, (6.5d)

rh,kij ≤ zhij, ∀h ∈ H, k ∈ Th, (i, j) ∈ E, (6.5e)

dh −M(1− zhij) ≤ fhij ≤ dh, ∀h ∈ H, (i, j) ∈ E, (6.5f)

fhij ≤Mzhij, ∀h ∈ H, (i, j) ∈ E, (6.5g)

rh,kij , z
h
ij ∈ {0, 1}, dh ∈ [0,M], fhij ≥ 0,

∀h ∈ H, k ∈ Th, (i, j) ∈ E, (6.5h)

where M is an upper bound on dh (∀h ∈ H). Constraint (6.5b) makes τ an upper bound
on the completion time of the slowest flow; (6.5c) ensures that the total traffic rate
imposed by the overlay on any underlay link is within its capacity; (6.5d)–(6.5e) are
the Steiner arborescence constraints [234] that guarantee the set of overlay links with
zhij = 1 will form a Steiner arborescence (i.e., a directed Steiner tree) that is the union
of paths from sh to each k ∈ Th (where each path is formed by the links with rh,kij = 1);
(6.5f) implies that fhij = dh if zhij = 1 and (6.5g) together with (6.5h) implies that fhij = 0
if zhij = 0, which allows the capacity constraint to be formulated as a linear inequality
(6.5c) instead of a bilinear inequality ∑(i,j)∈E:e∈p

i,j

∑
h∈H dhz

h
ij ≤ Ce. The optimal solution

(z∗, r∗,d∗,f ∗) to (6.5) provides an overlay communication schedule that minimizes the
communication time in a given iteration when the set of activated links is Ea.

Complexity: As |H| ≤ |V |, the optimization (6.5) contains O(|V |2|E|) variables

198

(dominated by r), and O(|E| + |V |2(|V | + |E|)) constraints. Since constraints (6.5c)–
(6.5f) are linear and constraint (6.5b) is convex, the optimization (6.5) is a mixed integer
convex programming (MICP) problem and thus can be solved by existing MICP solvers
such as Pajarito [235] at a super-polynomial complexity or approximate MICP algorithms
such as convex relaxation plus randomized rounding at a polynomial complexity.

Handling Uncooperative Underlay: When learning over an uncooperative un-
derlay as considered in this work, the overlay cannot directly solve (6.5), because the
capacity constraint (6.5c) requires the knowledge of the routing in the underlay and the
capacities of the underlay links. In absence of such knowledge, we leverage a recent result
from [221] to convert this constraint into an equivalent form that can be consistently
estimated by the overlay. To this end, we introduce the following notion from [221],
adapted to our problem setting.

Definition 6.2.1 ([221]). A category of underlay links ΓF for a set of overlay links
F (F ⊆ E) is the set of underlay links traversed by and only by the underlay routing
paths for the overlay links in F out of all the paths for E, i.e,4

ΓF :=
(⋂

(i,j)∈F
p
i,j

)
\
(⋃

(i,j)∈E\F
p
i,j

)
. (6.6)

The key observation is that since all the underlay links in the same category are
traversed by the same set of overlay links, they must carry the same traffic load from
the overlay. Therefore, we can reduce the per-link capacity constraint (6.5c) into the
following per-category capacity constraint:

∑
(i,j)∈F

∑
h∈H

fhij ≤ CF , ∀F ⊆ E with ΓF ̸= ∅, (6.7)

where CF := mine∈ΓF
Ce, referred to as the category capacity, is the minimum capacity

of all the links in category ΓF . The new constraint (6.7) is equivalent to the original
constraint (6.5c), as an overlay communication schedule satisfies one of these constraints
if and only if it satisfies the other. However, instead of requiring detailed internal
information about the underlay (i.e., (p

i,j
)(i,j)∈E and (Ce)e∈E), constraint (6.7) only

requires the knowledge of the nonempty categories and the corresponding category
capacities.

Under the mild assumption that every underlay link introduces a nontrivial perfor-
mance impact (e.g., non-zero loss/queueing probability), [221] provided an algorithm that

4Here p is interpreted as the set of underlay links traversed by path p.

199

A B

C D

(a) underlay routes (b) overlay routes

A B

C D

h1 h2

E E

Figure 6.3. Challenge for in-overlay aggregation (learning agents: {A,B,C,D,E}; underlay
nodes: {h1, h2}).

can consistently infer the nonempty categories from losses/delays of packets sent concur-
rently through the overlay links, under the assumption that concurrently sent packets
will experience the same performance when traversing a shared underlay link. Moreover,
by leveraging state-of-the-art single-path residual capacity estimation methods, [221]
gave a simple algorithm that can accurately estimate the effective category capacity C̃F
for each detected nonempty category, that can be used in place of CF in (6.7) without
changing the feasible region. Given the indices of inferred nonempty categories F̂ and
their inferred effective capacities (ĈF)F∈F̂ , we can construct the per-category capacity
constraint as

∑
(i,j)∈F

∑
h∈H

fhij ≤ ĈF , ∀F ∈ F̂ , (6.8)

which can then be used in place of (6.5c) in (6.5) to compute an optimized overlay
communication schedule.

Remark: First, the traversal of overlay paths through the overlay links is directional,
and the traversal of underlay routing paths through the underlay links is also directional.
Correspondingly, the overlay links in a category index F should be treated as directed
links (i.e., (i, j) ∈ F only implies that the underlay links in ΓF are traversed by the path
p
i,j

). This is not to be confused with treating the activated links in Ea as undirected
links, because each (i, j) ∈ Ea stands for a parameter exchange between agents i and j.
Moreover, we only use the activated links Ea to determine the flow demands H for the
overlay, but any link (i, j) ∈ E within the control of the overlay can be used in serving
these flows.

Additional Optimization Opportunities and Challenges: The formulation
(6.5) treats each overlay node that is neither the source nor one of the destinations of
a multicast flow as a pure relay, but this node is actually a learning agent capable of
aggregating the parameter vectors. This observation raises two questions: (i) Can an

200

agent include parameter vectors relayed through it in its own parameter aggregation?
(ii) If an agent relays multiple parameter vectors for different sources, can it forward the
aggregated vector instead of the individual vectors?

To answer the first question, consider the case in Fig. 6.2 when A sends its parameter
vector xA to D through the overlay path A → C → D. If C includes xA in its own
parameter aggregation with a non-zero weight WCA, then by the symmetry of the mixing
matrix, A must also include xC in its parameter aggregation with weight WAC = WCA,
which is equivalent to activating the overlay link (A,C). As we have left the optimization
of the activated links Ea to another subproblem (Section 6.2.2.3), there is no need
to include relayed parameter vectors in parameter aggregation when optimizing the
communication schedule for a given set of activated links.

To answer the second question, consider the case in Fig. 6.3 when the overlay routes
the multicast from A to {D,E} (for disseminating xA) over A→ C → D → E, and the
multicast from B to {D,E} (for disseminating xB) over B → C → D → E. Although
instead of separately forwarding xA and xB, C could aggregate them before forwarding,
the aggregation will not save bandwidth for C, as D needs WDAxA+WDBxB but E needs
WEAxA + WEBxB, which are generally not the same. Another issue with in-network
aggregation (within the overlay) is the synchronization delay introduced at the point
of aggregation, and thus in-network aggregation may not reduce the completion time
even when it can save bandwidth, e.g., at D. We thus choose not to consider in-network
aggregation in our formulation (6.5). Further optimizations exploiting such capabilities
are left to future work.

6.2.2.2 Conditional Link Weight Optimization

Given the set of activated links Ea ⊆ Ẽ, the communication time per iteration has been
determined as explained in Section 6.2.2.1, but the number of iterations has not, and is
heavily affected by the weights of the activated links. This leads to the question of how
to minimize the number of iterations for achieving a desired level of convergence, under
the constraint that only the activated links can have non-zero weights.

To answer this question, we leverage a state-of-the-art convergence bound for D-PSGD
under the following assumptions:

(1) Each local objective function Fi(x) is l-Lipschitz smooth, i.e., ∥∇Fi(x)−∇Fi(x′)∥ ≤
l∥x− x′∥, ∀i ∈ V .

(2) There exist constants M1, σ̂ such that 1
m

∑
i∈V IE[∥g(xi; ξi) − ∇Fi(xi)∥2] ≤ σ̂2 +

201

M1
m

∑
i∈V ∥∇F (xi)∥2, ∀x1, . . . ,xm ∈ Rd.

(3) There exist constants M2, ζ̂ such that 1
m

∑
i∈V ∥∇Fi(x)∥2 ≤ ζ̂2 +M2∥∇F (x)∥2,∀x ∈

Rd.

Let J := 1
m
11⊤ denote an ideal m×m mixing matrix with all entries being 1

m
.

Theorem 6.2.1. [233, Theorem 2] Under assumptions (1)–(3), if there exist constants
p ∈ (0, 1] and integer t ≥ 1 such that the mixing matrices {W (k)}Kk=1, each being
symmetric with each row/column summing to one5, satisfy

IE[∥X
(k′+1)t∏
k=k′t+1

W (k) −XJ∥2
F] ≤ (1− p)∥X −XJ∥2

F (6.9)

for all X := [x1, . . . ,xm] and integer k′ ≥ 0, then D-PSGD can achieve 1
K

∑K
k=1 E[∥∇F (xk)∥2] ≤

ϵ0 for any given ϵ0 > 0 (x(k) := 1
m

∑m
i=1 x

(k)
i) when the number of iterations reaches

K(p, t) := l(F (x(1))− Finf) ·O
 σ̂2

mϵ2
0

+ ζ̂t
√
M1 + 1 + σ̂

√
pt

pϵ
3/2
0

+
t
√

(M2 + 1)(M1 + 1)
pϵ0

 ,
(6.10)

where x(1) is the initial parameter vector, and Finf is a lower bound on F (·).

Remark: While there exist other convergence bounds for D-PSGD such as [205,213,
226,228], we choose Theorem 6.2.1 as the theoretical foundation of our design due to the
generality of its assumptions. For example, assumption (2) generalizes the assumption of
uniformly bounded variance of stochastic gradients in [205,213], assumption (3) generalizes
the assumption of bounded data heterogeneity in [205,226,228], and assumptions (2-3)
are easily implied by the bounded gradient assumption in [226] (see explanations in [233]).

For tractability, we will focus on the case of i.i.d. mixing matrices. In this case,
to achieve ϵ0-convergence, it suffices for the number of iterations to reach K(p, t) as in
(6.10) for t = 1. We note that K(p, 1) depends on the mixing matrix only through the
parameter p: the larger p, the smaller K(p, 1).

Recall that as explained in Section 6.2.1.3, the mixing matrix W is related to the
link weights α as W = I −B diag(α)B⊤. To restrict the activated links to Ea, we set
αij = 0 for all (i, j) ̸∈ Ea. Below, we will show that the following optimization gives a

5Originally, [233, Theorem 2] had a stronger assumption that each mixing matrix is doubly stochastic,
but we have verified that it suffices to have each row/column summing to one.

202

good design of the link weights:

min
α

ρ̃ (6.11a)

s.t. − ρ̃I ⪯ I −B diag(α)B⊤ − J ⪯ ρ̃I, (6.11b)

αij = 0, ∀(i, j) ̸∈ Ea. (6.11c)

Corollary 6.2.1.1. Under assumptions (1)–(3) and i.i.d. mixing matrices W (k) d= W

that is symmetric with each row/column summing to one, D-PSGD achieves ϵ0-convergence
as in Theorem 6.2.1 when the number of iterations reaches

K(1− IE[∥W − J∥2], 1). (6.12)

Moreover, conditioned on the set of activated links being Ea, (6.12) ≥ K(1 − ρ̃∗2, 1),
where ρ̃∗ is the optimal value of (6.11), with “=” achieved at W ∗ = I −B diag(α∗)B⊤

for α∗ being the optimal solution to (6.11).

Proof of Corollary 6.2.1.1. As K(p, 1) decreases with p, its minimum is achieved at the
maximum value of p that satisfies (6.9) for t = 1 and any value of X, i.e.,

p := min
X ̸=0

(
1− IE[∥X(W − J)∥2

F]
∥X(I − J)∥2

F

)
. (6.13)

By [236, Lemma 3.1], p defined in (6.13) satisfies p = 1− ρ for ρ := ∥IE[W⊤W]−J∥. By
Jensen’s inequality and the convexity of ∥·∥, ρ ≤ IE[∥W⊤W−J∥]. For every realization of
W that is symmetric with rows/columns summing to one, we have W⊤W−J = (W−J)2.
Based on the eigendecomposition W − J = Q diag(λ1, . . . , λm)Q⊤, we have

∥W⊤W − J∥ = ∥Q diag(λ2
1, . . . , λ

2
m)Q⊤∥ = max

i=1,...,m
λ2
i = ∥W − J∥2, (6.14)

where we have used the fact that ∥W −J∥ = maxi=1,...,m |λi|. Thus, K(p, 1) for p defined
in (6.13) is upper-bounded by K(1− IE[∥W − J∥2], 1), which is a sufficient number of
iterations for D-PSGD to achieve ϵ0-convergence by Theorem 6.2.1.

The matrix inequality (6.11b) implies that ρ̃ ≥ |λi| for all i = 1, . . . ,m, and thus
the optimal value of (6.11) must satisfy ρ̃ = maxi=1,...,m |λi| = ∥W − J∥. Hence, the
optimal value ρ̃∗ of (6.11) is the minimum value of ∥W − J∥ for any realization of W
that only activates the links in Ea. Therefore, 1 − IE[∥W − J∥2] ≤ 1 − ρ̃∗2 and (6.12)
≥ K(1− ρ̃∗2, 1), with “=” achieved at W ∗ = I −B diag(α∗)B⊤.

203

Corollary 6.2.1.1 implies that given the set of activated links, we can design the
corresponding link weights by solving (6.11), which will minimize an upper bound (6.12)
on the number of iterations to achieve ϵ0-convergence. Optimization (6.11) is a semi-
definite programming (SDP) problem that can be solved in polynomial time by existing
algorithms [237].

Remark: When W satisfies the additional property of I ⪰ W ⪰ −I, the largest
singular value of W is 1 [212], and thus ∥W − J∥ is the second largest singular value
of W . In this case, minimizing ρ̃ in (6.11) (which equals ∥W − J∥ under the optimal
solution) is equivalent to maximizing γ(W) := 1− ∥W − J∥, which is the spectral gap
of the mixing matrix W [226]. The spectral gap is the most widely-used parameter
to capture the impact of the mixing matrix on the convergence rate [197,224–227]. In
this sense, our Corollary 6.2.1.1 extends the relationship between the spectral gap and
the number of iterations to the case of random mixing matrices. As γ(W) → 0 (in
probability), the number of iterations according to (6.12) grows at

K
(
1− IE[(1− γ(W))2], 1

)
= O

(
1

1− IE[(1− γ(W))2]

)
= O

(
1

IE[γ(W)]

)
, (6.15)

which is consistent with the existing result of O(1/γ(W)) in the case of deterministic
mixing matrix [225]. While other parameters affecting the convergence rate have been
identified, e.g., the effective number of neighbors [228] and the neighborhood hetero-
geneity [213], these parameters are just additional factors instead of replacements of the
spectral gap. We thus leave the optimization of these other objectives to future work.

6.2.2.3 Link Activation Optimization

Given how to optimize the communication schedule and the link weights for a given
set Ea of activated links as explained in Sections 6.2.2.1–6.2.2.2, what remains is to
optimize Ea itself, which affects both the communication demands (and hence the time
per iteration) and the sparsity pattern of the mixing matrix (and hence the number of
iterations required). As mentioned in Section 6.2.1.4, our goal is to minimize the total
training time. For network-distributed learning, it is known that the training time is
dominated by the communication time [198]. We thus model the total training time by

τ(Ea) ·K(Ea), (6.16)

204

where we have used τ(Ea) to denote the communication time per iteration according
to (6.5), with (6.5c) replaced by (6.8), and K(Ea) to denote the number of iterations
K(1− ρ̃∗2, 1) to achieve a given level of convergence according to Corollary 6.2.1.1. Our
goal is to minimize (6.16) over all the candidate values of Ea ⊆ Ẽ.

Directly solving this optimization is intractable because the objective function (6.16)
is not given explicitly. To address this challenge, we will relax τ(Ea) and K(Ea) into
upper bounds that are explicit functions of Ea.

Relaxed Objective Function: We first upper-bound τ(Ea) by considering a
suboptimal but analyzable communication schedule. Consider a special solution to (6.5),
where zhij = 1 if i = sh, j ∈ Th and 0 otherwise, and rh,kij = 1 if i = sh, j = k and
0 otherwise, i.e., the parameter exchange triggered by each activated link (i, j) ∈ Ea
is performed directly along the underlay routing paths p

i,j
and p

j,i
. To achieve a per-

iteration communication time of τ , the rate di of sending the parameter vector of agent i
to its activated neighbors must satisfy

di ≥
κi

τ − li,j
, ∀j with (i, j) ∈ Ea. (6.17)

Let li := max(i,j)∈E li,j denote the maximum propagation delay from agent i to its
neighbors in the base topology. Then to satisfy (6.17), it suffices to have di = κi/(τ − li).
This communication schedule is feasible for (6.5) (with (6.5c) replaced by (6.8)) if and
only if

∑
(i,j)∈F∩Ea

κi
τ − li

≤ ĈF , ∀F ∈ F̂ , (6.18)

where “F∩Ea” denotes the set of directed links in F for which the undirected counterparts
belong to Ea. The minimum value of τ satisfying (6.18), denoted by τ(Ea), thus provides
an upper bound on the minimum per-iteration time τ(Ea) under the activated links in
Ea.

We then upper-bound K(Ea) by upper-bounding the optimal value ρ̃∗ of (6.11). To
this end, consider a specific solution to (6.11), where

αij =


1

max(|NEa (i)|,|NEa (j)|) if (i, j) ∈ Ea,
0 o.w.,

(6.19)

for NEa(i) (the set of activated neighbors of agent i) defined as in (6.4). Let LEa :=

205

B diag(α)B⊤ for α in (6.19). Under this solution, the objective value of (6.11) is

ρ̃ = ∥I −LEa − J∥ (6.20)

= max(1− λ2(LEa), λm(LEa)− 1), (6.21)

where (6.20) is proved in the proof of Corollary 6.2.1.1, and (6.21) is by [206, Lemma IV.2]
(here λi(LEa) denotes the i-th smallest eigenvalue of LEa). Since K(1 − ρ̃∗2, 1) is an
increasing function of ρ̃∗, we have

K(Ea) ≤ K
(
1− (max(1− λ2(LEa), λm(LEa)− 1))2 , 1

)
=: K(Ea). (6.22)

Bi-level Optimization: Relaxing (6.16) into its upper bound τ(Ea) ·K(Ea) provides
an objective function that can be easily evaluated for each candidate value of Ea without
solving any optimization. However, we still face the exponentially large solution space of
Ea ⊆ Ẽ. To address the complexity challenge, we decompose the relaxed optimization
into a bi-level optimization as follows.

Lemma 6.2.1. Let β be the maximum time per iteration. Then

min
Ea⊆Ẽ

τ(Ea) ·K(Ea) = min
β≥0

β ·
(

min
τ(Ea)≤β

K(Ea)
)
, (6.23)

and the optimal solution E∗
a to the RHS of (6.23) is also optimal for the LHS of (6.23).

Proof of Lemma 6.2.1. Let (β∗, E∗
a) be the optimal solution to the RHS of (6.23), and

Eo
a be the optimal solution to the LHS of (6.23). Let βo := τ(Eo

a). Then

min
τ(Ea)≤βo

K(Ea) ≤ K(Eo
a) (6.24)

⇒βo ·
(

min
τ(Ea)≤βo

K(Ea)
)
≤ τ(Eo

a) ·K(Eo
a) (6.25)

⇒min
β≥0

β ·
(

min
τ(Ea)≤β

K(Ea)
)
≤ τ(Eo

a) ·K(Eo
a). (6.26)

Meanwhile, β∗ must equal τ(E∗
a), as otherwise we can reduce β∗ to further reduce

the value of β ·
(
minτ(Ea)≤βK(Ea)

)
, contradicting with the assumption that (β∗, E∗

a) is
optimal. Therefore, by the definition of Eo

a,

min
β≥0

β ·
(

min
τ(Ea)≤β

K(Ea)
)

= τ(E∗
a) ·K(E∗

a) ≥ τ(Eo
a) ·K(Eo

a), (6.27)

206

which together with (6.26) proves (6.23).
Moreover, (6.23) implies that “=” must hold for (6.27), i.e., E∗

a is also optimal for
the LHS of (6.23).

The bi-level decomposition in (6.23) allows us to focus on the constrained optimization

min
τ(Ea)≤β

K(Ea), (6.28)

as the upper-level optimization only has one scalar variable β that can be optimized
numerically once we have an efficient solution to (6.28).

6.2.3 Future Directions

In this section, we summarize the possible approaches for solving (6.16), which will be
studied in the future.

6.2.3.1 Lower-Level Optimization Approach

The first approach focuses on solving (6.28). The feasible space of (6.28) has a special
structure. By (6.18), we see that Ea is feasible for (6.28) if and only if

∑
(i,j)∈F∩Ea

κi
β − li

≤ ĈF , ∀F ∈ F̂ . (6.29)

We further noticed that for the relaxed objective of minEa⊆Ẽ τ(Ea) ·K(Ea), we have

min
τ(Ea)≤β

K(Ea)⇔ min
τ(Ea)≤β

ρ(Ea), (6.30)

where ρ(Ea) denotes the optimal objective value of (6.11) when the set of activated links
is Ea.

Let yij ∈ {0, 1} (∀(i, j) ∈ Ẽ) indicate whether link (i, j) is activated. We can integrate
(6.30) and (6.11) into a joint optimization of whether each link will be activated (y) and
its weight if activated (α):

min
y,α

ρ̃ (6.31a)

s.t.
∑

(i,j)∈F
yij ·

κi
β − lij

≤ ĈF , ∀F ∈ F̂ , (6.31b)

− ρ̃I ⪯ I −B diag(α)B⊤ − J ⪯ ρ̃I, (6.31c)

207

0 ≤ αij ≤ yij, ∀(i, j) ∈ Ẽ, (6.31d)

yij ∈ {0, 1}, ∀(i, j) ∈ Ẽ, (6.31e)

where (6.31a), (6.31c), and (6.31d) are inherited from (6.11), (6.31b) enforces the con-
straint of (6.30) as explained in (6.29), and (6.31e) imposes the integer constraint on
y. Optimization (6.31) is again a MICP and thus can be solved by existing MICP
solvers [235].

In summary, this approach is transformed into developing algorithms to solve (6.31).

6.2.3.2 Monolithic Approach

Joint minimization of τ and ρ̃ can be formulated as an monolithic optimization problem.
More specifically, we can formulate a monolithic optimization as (6.32). Thus, we can
directly invoke solvers to solve this problem.

min
f ,d,z,τ

τ + λρρ̃ (6.32a)

s.t. τ ≥ k

de
+ le −M(1− ze), ∀e ∈ E (6.32b)

de −M(1− ze) ≤ fe ≤ de +M(1− ze),∀e ∈ E (6.32c)

0 ≤ fe ≤Mze,∀e ∈ E (6.32d)∑
e∈F

fe ≤ CF ,∀F ∈ F , (6.32e)

− ρ̃I ⪯ I −B diag(α)B⊤ − J ⪯ ρ̃I, (6.32f)

0 ≤ αe ≤Mze, ∀e ∈ E, (6.32g)

ze ∈ {0, 1},∀e ∈ E. (6.32h)

In summary, this approach is transformed into developing algorithms to solve (6.32).

6.3 Concluding Remarks
In this dissertation, we studied the secure and efficient operation of cyber-physical systems
(CPSs) through the lens of estimation, optimization and control. Under this context, we
studied several problems in both physical and cyber spaces as well as their interactions.

In Chapter 2, we studied the line state estimation problem for post-attack recovery
from the joint cyber-physical attacks in the smart grid. Under DC power flow model,
we first extended the existing results and algorithms to the unexplored cases that the

208

attack may disconnect the power grid. Then, we developed the first known verification
algorithms to verify the line state estimation results in the granularity of each single
line. Finally, both estimation and verification algorithms are extended for AC power flow
model. Evaluations over Polish grid and IEEE 300-bus system demonstrate that most of
the lines can be correctly identified and verified.

In Chapter 3, we considered the optimal PMU placement problem to prevent the
overload-induced line tripping. Under DC power flow model, we formulated a tri-level
optimization problem and transformed it into a bi-level mixed integer linear programming
(MILP). Then, we proposed a alternating optimization algorithm framework with two
constraint generation algorithms to solve the proposed formulation optimally. Further-
more, for large power grid, we developed a polynomial-complexity heuristic to trade the
solution quality for speed. Evaluation results over IEEE test systems showed that the
proposed solution can significantly reduce the number of PMUs compared to the one to
achieve full observability.

In Chapter 4, we revisited the overlay routing problem over an uncooperative underlay
network. We first identified the minimum required information to achieve congestion-
free overlay routing. Then, for general underlay networks, we developed polynomial-
complexity algorithms to infer such information with theoretical guarantees. Furthermore,
we proposed an additional algorithm for the special underlay network with symmetric tree-
based routing. Extensive evaluations have demonstrated that the proposed approaches
are capable of reducing the overlay routing delay by better avoiding congestion.

In Chapter 5, we investigated the optimal attack design problem for the cross-
path attack, which is a particular DoS attack paradigm. We first developed novel
reconnaissance algorithms to infer the locations and capacities of the shared network
components between the attack paths and the target paths. Then, we formulated two
attack budget allocation problems, for each of which we have demonstrated the optimal
allocation policy. The proposed solution has been shown to cause severer performance
degradation than its non-optimized counterparts in extensive evaluations, confirming the
necessity of defending against such attacks during operation.

In Chapter 6, we examined the limitations of the research presented in this dissertation
and proposed potential extensions. Following that, as an illustrative example, we
investigated the joint optimization of overlay routing and the mixing matrix to minimize
the total wall-clock time of decentralized learning over Cyber-Physical Systems (CPSs).
We formulated this challenge as a bi-level optimization problem and outlined potential
approaches for addressing it.

209

Bibliography

[1] Rehmani, M. H., A. Davy, B. Jennings, and C. Assi (2019) “Software
defined networks-based smart grid communication: A comprehensive survey,” IEEE
Communications Surveys & Tutorials, 21(3), pp. 2637–2670.

[2] Czentye, J., J. Dóka, Á. Nagy, L. Toka, B. Sonkoly, and R. Szabó (2018)
“Controlling drones from 5G networks,” in ACM SIGCOMM on Posters and Demos,
pp. 120–122.

[3] Liu, K., J. K. Ng, V. C. Lee, S. H. Son, and I. Stojmenovic (2015)
“Cooperative data scheduling in hybrid vehicular ad hoc networks: VANET as
a software defined network,” IEEE/ACM transactions on networking, 24(3), pp.
1759–1773.

[4] Aujla, G. S., R. Chaudhary, K. Kaur, S. Garg, N. Kumar, and R. Ranjan
(2018) “SAFE: SDN-assisted framework for edge–cloud interplay in secure healthcare
ecosystem,” IEEE Transactions on Industrial Informatics, 15(1), pp. 469–480.

[5] Sztipanovits, J., X. Koutsoukos, G. Karsai, N. Kottenstette,
P. Antsaklis, V. Gupta, B. Goodwine, J. Baras, and S. Wang (2011)
“Toward a science of cyber–physical system integration,” Proceedings of the IEEE,
100(1), pp. 29–44.

[6] Huang, H., H. Xu, Y. Cai, R. S. Khalid, and H. Yu (2018) “Distributed
machine learning on smart-gateway network toward real-time smart-grid energy
management with behavior cognition,” ACM Transactions on Design Automation
of Electronic Systems, 23(5), pp. 1–26.

[7] Li, S., Q. Ni, Y. Sun, G. Min, and S. Al-Rubaye (2018) “Energy-efficient
resource allocation for industrial cyber-physical IoT systems in 5G era,” IEEE
Transactions on Industrial Informatics, 14(6), pp. 2618–2628.

[8] Liu, Y., Y. Peng, B. Wang, S. Yao, and Z. Liu (2017) “Review on cyber-
physical systems,” IEEE/CAA Journal of Automatica Sinica, 4(1), pp. 27–40.

[9] Humayed, A., J. Lin, F. Li, and B. Luo (2017) “Cyber-physical systems
security—A survey,” IEEE Internet of Things Journal, 4(6), pp. 1802–1831.

210

[10] Pasqualetti, F., F. Dörfler, and F. Bullo (2013) “Attack detection and
identification in cyber-physical systems,” IEEE transactions on automatic control,
58(11), pp. 2715–2729.

[11] Dibaji, S. M., M. Pirani, D. B. Flamholz, A. M. Annaswamy, K. H.
Johansson, and A. Chakrabortty (2019) “A systems and control perspective
of CPS security,” Annual Reviews in Control, 47, pp. 394–411.

[12] Burg, A., A. Chattopadhyay, and K.-Y. Lam (2017) “Wireless communica-
tion and security issues for cyber–physical systems and the Internet-of-Things,”
Proceedings of the IEEE, 106(1), pp. 38–60.

[13] Cao, J., Q. Li, R. Xie, K. Sun, G. Gu, M. Xu, and Y. Yang (2019) “The
{CrossPath} Attack: Disrupting the {SDN} Control Channel via Shared Links,”
in 28th USENIX Security Symposium (USENIX Security 19), pp. 19–36.

[14] Andersen, D., H. Balakrishnan, F. Kaashoek, and R. Morris (2001)
“Resilient overlay networks,” in SOSP, pp. 131–145.

[15] Olowononi, F. O., D. B. Rawat, and C. Liu (2020) “Resilient machine learning
for networked cyber physical systems: A survey for machine learning security to
securing machine learning for CPS,” IEEE Communications Surveys & Tutorials,
23(1), pp. 524–552.

[16] Zhang, Q., F. Li, Q. Shi, K. Tomsovic, J. Sun, and L. Ren (2020) “Profit-
Oriented False Data Injection on Energy Market: Reviews, Analyses and Insights,”
IEEE Transactions on Industrial Informatics.

[17] Che, L., X. Liu, Z. Li, and Y. Wen (2018) “False data injection attacks induced
sequential outages in power systems,” IEEE Transactions on Power Systems, 34(2),
pp. 1513–1523.

[18] (2016), “Analysis of the cyber attack on the Ukrainian power grid,” https://ics.
sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf.

[19] Soltan, S., M. Yannakakis, and G. Zussman (2018) “Power grid state estima-
tion following a joint cyber and physical attack,” IEEE Transactions on Control of
Network Systems, 5(1), pp. 499–512.

[20] Liu, Y., P. Ning, and M. K. Reiter (2011) “False data injection attacks against
state estimation in electric power grids,” ACM Transactions on Information and
System Security, 14(1), pp. 1–33.

[21] Li, Z., M. Shahidehpour, F. Aminifar, A. Alabdulwahab, and Y. Al-
Turki (2017) “Networked microgrids for enhancing the power system resilience,”
Proceedings of the IEEE, 105(7), pp. 1289–1310.

211

[22] Hossain, M. B., S. R. Pokhrel, and J. Choi (2023) “Smart Grid Meets
URLLC: A Federated Orchestration With Improved Communication for Efficient
Energy Resources Management,” IEEE Internet of Things Journal.

[23] Fairley, P. (2016) “Cybersecurity at U.S. Utilities due for an Upgrade: Tech
to Detect Intrusions into Industrial Control Systems will be Mandatory,” IEEE
Spectrum, 53(5), pp. 11–13.

[24] Zhu, H. and G. B. Giannakis (2012) “Sparse Overcomplete Representations
for Efficient Identification of Power Line Outages,” IEEE Transactions on Power
Systems, 27(4), pp. 2215–2224.

[25] Chen, J.-C., W.-T. Li, C.-K. Wen, J.-H. Teng, and P. Ting (2014) “Efficient
identification method for power line outages in the smart power grid,” IEEE
Transactions on Power Systems, 29(4), pp. 1788–1800.

[26] Soltan, S., M. Yannakakis, and G. Zussman (2018) “REACT to cyber attacks
on power grids,” IEEE Transactions on Network Science and Engineering, 6(3),
pp. 459–473.

[27] Soltan, S., P. Mittal, and H. V. Poor (2019) “Line failure detection after a
cyber-physical attack on the grid using Bayesian regression,” IEEE Transactions
on Power Systems, 34(5), pp. 3758–3768.

[28] Tate, J. E. and T. J. Overbye (2008) “Line outage detection using phasor angle
measurements,” IEEE Transactions on Power Systems, 23(4), pp. 1644–1652.

[29] ——— (2009) “Double line outage detection using phasor angle measurements,” in
2009 IEEE Power & Energy Society General Meeting, IEEE, pp. 1–5.

[30] Huang, Y.-F., S. Werner, J. Huang, N. Kashyap, and V. Gupta (2012)
“State estimation in electric power grids: Meeting new challenges presented by the
requirements of the future grid,” IEEE Signal Processing Magazine, 29(5), pp.
33–43.

[31] Monticelli, A. (2000) “Electric power system state estimation,” Proceedings of
the IEEE, 88(2), pp. 262–282.

[32] Shoukry, Y., P. Nuzzo, A. Puggelli, A. L. Sangiovanni-Vincentelli,
S. A. Seshia, and P. Tabuada (2017) “Secure state estimation for cyber-physical
systems under sensor attacks: A satisfiability modulo theory approach,” IEEE
Transactions on Automatic Control, 62(10), pp. 4917–4932.

[33] Deng, R., P. Zhuang, and H. Liang (2017) “CCPA: Coordinated cyber-physical
attacks and countermeasures in smart grid,” IEEE Transactions on Smart Grid,
8(5), pp. 2420–2430.

212

[34] Vuković, O., K. C. Sou, G. Dán, and H. Sandberg (2011) “Network-layer
protection schemes against stealth attacks on state estimators in power systems,”
in 2011 IEEE International Conference on Smart Grid Communications (Smart-
GridComm), IEEE, pp. 184–189.

[35] Kim, J. and L. Tong (2013) “On topology attack of a smart grid: Undetectable
attacks and countermeasures,” IEEE Journal on Selected Areas in Communications,
31(7), pp. 1294–1305.

[36] Kaviani, R. and K. W. Hedman (2020) “A detection mechanism against load-
redistribution attacks in smart grids,” IEEE Transactions on Smart Grid.

[37] Garcia, M., T. Catanach, S. Vander Wiel, R. Bent, and E. Lawrence
(2016) “Line outage localization using phasor measurement data in transient state,”
IEEE Transactions on Power Systems, 31(4), pp. 3019–3027.

[38] Soltan, S. and G. Zussman (2017) “Power grid state estimation after a cyber-
physical attack under the AC power flow model,” in 2017 IEEE Power & Energy
Society General Meeting, IEEE, pp. 1–5.

[39] ——— (2018) “EXPOSE the line failures following a cyber-physical attack on the
power grid,” IEEE Transactions on Control of Network Systems, 6(1), pp. 451–461.

[40] Chung, H.-M., W.-T. Li, C. Yuen, W.-H. Chung, Y. Zhang, and C.-K.
Wen (2018) “Local cyber-physical attack for masking line outage and topology
attack in smart grid,” IEEE Transactions on Smart Grid, 10(4), pp. 4577–4588.

[41] Jamei, M., R. Ramakrishna, T. Tesfay, R. Gentz, C. Roberts,
A. Scaglione, and S. Peisert (2019) “Phasor Measurement Units Optimal
Placement and Performance Limits for Fault Localization,” IEEE Journal on
Selected Areas in Communications, 38(1), pp. 180–192.

[42] Yan, Y., Y. Qian, H. Sharif, and D. Tipper (2012) “A survey on smart grid
communication infrastructures: Motivations, requirements and challenges,” IEEE
communications surveys & tutorials, 15(1), pp. 5–20.

[43] Galli, S., A. Scaglione, and Z. Wang (2011) “For the grid and through the
grid: The role of power line communications in the smart grid,” Proceedings of the
IEEE, 99(6), pp. 998–1027.

[44] Liang, H., B. J. Choi, A. Abdrabou, W. Zhuang, and X. S. Shen (2012)
“Decentralized economic dispatch in microgrids via heterogeneous wireless networks,”
IEEE journal on Selected Areas in communications, 30(6), pp. 1061–1074.

[45] Association, I. S. et al. (2012), “IEEE 1815-2012–IEEE Standard for Electric
Power Systems Communications-Distributed Network Protocol (DNP3),” .

213

[46] Coffrin, C. and P. Van Hentenryck (2015) “Transmission system restoration
with co-optimization of repairs, load pickups, and generation dispatch,” Interna-
tional Journal of Electrical Power & Energy Systems, 72, pp. 144–154.

[47] Huang, Y., T. He, N. R. Chaudhuri, and T. L. Porta (2021),
“Link State Estimation under Cyber-Physical Attacks: Theory and Al-
gorithms,” Technical Report, https://sites.psu.edu/nsrg/files/2021/10/
YudiStateRecoveryReport.pdf.

[48] Bi, S. and Y. J. Zhang (2014) “Graphical methods for defense against false-data
injection attacks on power system state estimation,” IEEE Transactions on Smart
Grid, 5(3), pp. 1216–1227.

[49] Yang, Q., L. Jiang, W. Hao, B. Zhou, P. Yang, and Z. Lv (2017) “PMU
placement in electric transmission networks for reliable state estimation against
false data injection attacks,” IEEE Internet of Things Journal, 4(6), pp. 1978–1986.

[50] Yang, Q., D. An, R. Min, W. Yu, X. Yang, and W. Zhao (2017) “On optimal
PMU placement-based defense against data integrity attacks in smart grid,” IEEE
Transactions on Information Forensics and Security, 12(7), pp. 1735–1750.

[51] Kundur, P. (1994) Power System Stability and Control, ser. The EPRI power
system engineering series, New York: McGraw-Hill.

[52] Lu, M., W. ZainalAbidin, T. Masri, D. Lee, and S. Chen (2016) “Under-
Frequency Load Shedding (UFLS) Schemes-A Survey,” International Journal of
Applied Engineering Research, 11(1), pp. 456–472.

[53] Terlaky, T. (2013) Interior point methods of mathematical programming, vol. 5,
Springer Science & Business Media.

[54] Zimmerman, R. D. and C. E. Murillo-Sánchez (2019) “MATPOWER 7.0
user’s manual,” Power Systems Engineering Research Center, 9.

[55] Dasgupta, S., C. H. Papadimitriou, and U. V. Vazirani (2008) Algorithms,
McGraw-Hill Higher Education New York.

[56] Mangasarian, O. L. (1994) Nonlinear programming, SIAM.

[57] (2012), “Wide Area Monitoring, Protection, and Control Systems (WAMPAC)
Standards for Cyber Security Requirements,” National Electric Sector Cybersecurity
Organization Resource (NESCOR), https://smartgrid.epri.com/doc/ESRFSD.
pdf.

[58] Dagle, J. E. (2010) “The North American SynchroPhasor Initiative (NASPI),”
in IEEE PES General Meeting, IEEE, pp. 1–3.

214

[59] (2014), “SynchroPhasor Technology Fact Sheet,” North American SynchroPha-
sor Initiative, https://www.naspi.org/sites/default/files/reference\
_documents/33.pdf.

[60] (2015), “NASPI synchrophasor starter kit (draft),” North American Syn-
chroPhasor Initiative (NASPI), https://www.naspi.org/sites/default/files/
reference_documents/4.pdf.

[61] Jones, K. D., J. S. Thorp, and R. M. Gardner (2013) “Three-phase linear
state estimation using phasor measurements,” in 2013 IEEE Power & Energy
Society General Meeting, IEEE, pp. 1–5.

[62] Jones, K. D., A. Pal, and J. S. Thorp (2014) “Methodology for performing
synchrophasor data conditioning and validation,” IEEE Transactions on Power
Systems, 30(3), pp. 1121–1130.

[63] Chaojun, G., P. Jirutitijaroen, and M. Motani (2015) “Detecting false data
injection attacks in AC state estimation,” IEEE Transactions on Smart Grid, 6(5),
pp. 2476–2483.

[64] Bhatt, N., S. Sarawgi, R. O’keefe, P. Duggan, M. Koenig, M. Leschuk,
S. Lee, K. Sun, V. Kolluri, S. Mandal, et al. (2009) “Assessing vulnerability
to cascading outages,” in IEEE/PES Power Systems Conference and Exposition,
IEEE, pp. 1–9.

[65] Lachs, W. (1987) “Transmission-line overloads: real-time control,” in IEE Proceed-
ings C (Generation, Transmission and Distribution), vol. 134, IET, pp. 342–347.

[66] Pavella, M., D. Ernst, and D. Ruiz-Vega (2012) Transient stability of power
systems: a unified approach to assessment and control, Springer Science & Business
Media.

[67] Sou, K. C. (2019) “Protection Placement for Power System State Estimation
Measurement Data Integrity,” IEEE Transactions on Control of Network Systems,
7(2), pp. 638–647.

[68] Yuan, Y., Z. Li, and K. Ren (2011) “Modeling load redistribution attacks in
power systems,” IEEE Transactions on Smart Grid, 2(2), pp. 382–390.

[69] Lakshminarayana, S., E. V. Belmega, and H. V. Poor (2021) “Moving-
target defense against cyber-physical attacks in power grids via game theory,” IEEE
Transactions on Smart Grid.

[70] Liu, X., Z. Li, X. Liu, and Z. Li (2016) “Masking transmission line outages via
false data injection attacks,” IEEE Transactions on Information Forensics and
Security, 11(7), pp. 1592–1602.

215

[71] Li, Z., M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah (2015)
“Bilevel model for analyzing coordinated cyber-physical attacks on power systems,”
IEEE Transactions on Smart Grid, 7(5), pp. 2260–2272.

[72] Zhang, J. and L. Sankar (2016) “Physical system consequences of unobservable
state-and-topology cyber-physical attacks,” IEEE Transactions on Smart Grid,
7(4).

[73] Li, Z., M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah (2016)
“Analyzing locally coordinated cyber-physical attacks for undetectable line outages,”
IEEE Transactions on Smart Grid, 9(1), pp. 35–47.

[74] Tian, M., M. Cui, Z. Dong, X. Wang, S. Yin, and L. Zhao (2019) “Multilevel
programming-based coordinated cyber physical attacks and countermeasures in
smart grid,” IEEE Access, 7, pp. 9836–9847.

[75] Dan, G. and H. Sandberg (2010) “Stealth attacks and protection schemes for
state estimators in power systems,” in IEEE SmartGridComm, IEEE, pp. 214–219.

[76] Deng, R., G. Xiao, and R. Lu (2015) “Defending against false data injection
attacks on power system state estimation,” IEEE Transactions on Industrial
Informatics, 13(1), pp. 198–207.

[77] Liu, X., Z. Li, and Z. Li (2016) “Optimal protection strategy against false data
injection attacks in power systems,” IEEE Transactions on Smart Grid, 8(4), pp.
1802–1810.

[78] Kim, T. T. and H. V. Poor (2011) “Strategic protection against data injection
attacks on power grids,” IEEE Transactions on Smart Grid, 2(2), pp. 326–333.

[79] Li, Q., T. Cui, Y. Weng, R. Negi, F. Franchetti, and M. D. Ilic (2012)
“An information-theoretic approach to PMU placement in electric power systems,”
IEEE Transactions on Smart Grid, 4(1), pp. 446–456.

[80] Kosut, O., L. Jia, R. J. Thomas, and L. Tong (2011) “Malicious data attacks
on the smart grid,” IEEE Transactions on Smart Grid, 2(4), pp. 645–658.

[81] Aminifar, F., A. Khodaei, M. Fotuhi-Firuzabad, and M. Shahidehpour
(2009) “Contingency-constrained PMU placement in power networks,” IEEE Trans-
actions on Power Systems, 25(1), pp. 516–523.

[82] Li, X., A. Scaglione, and T.-H. Chang (2013) “A framework for phasor
measurement placement in hybrid state estimation via Gauss–Newton,” IEEE
Transactions on Power Systems, 29(2), pp. 824–832.

[83] Wu, X. and A. J. Conejo (2016) “An efficient tri-level optimization model for
electric grid defense planning,” IEEE Transactions on Power Systems, 32(4), pp.
2984–2994.

216

[84] Xiang, Y. and L. Wang (2017) “A game-theoretic study of load redistribution
attack and defense in power systems,” Electric Power Systems Research, 151, pp.
12–25.

[85] Yao, Y., T. Edmunds, D. Papageorgiou, and R. Alvarez (2007) “Trilevel
optimization in power network defense,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 37(4), pp. 712–718.

[86] Yuan, W., J. Wang, F. Qiu, C. Chen, C. Kang, and B. Zeng (2016) “Robust
optimization-based resilient distribution network planning against natural disasters,”
IEEE Transactions on Smart Grid, 7(6), pp. 2817–2826.

[87] Krumpholz, G., K. Clements, and P. Davis (1980) “Power system observabil-
ity: a practical algorithm using network topology,” IEEE Transactions on Power
Apparatus and Systems, PAS99(4), pp. 1534–1542.

[88] Huang, Y., T. He, N. R. Chaudhuri, and T. La Porta (2021) “Preventing
Outages under Coordinated Cyber-Physical Attack with Secured PMUs,” in IEEE
SmartGridComm, IEEE, pp. 258–263.

[89] Brahma, S., R. Kavasseri, H. Cao, N. Chaudhuri, T. Alexopoulos, and
Y. Cui (2016) “Real-time identification of dynamic events in power systems using
PMU data, and potential applications—models, promises, and challenges,” IEEE
transactions on Power Delivery, 32(1), pp. 294–301.

[90] Mahapatra, K., M. Ashour, N. R. Chaudhuri, and C. M. Lagoa (2019)
“Malicious corruption resilience in PMU data and wide-area damping control,”
IEEE Transactions on Smart Grid, 11(2), pp. 958–967.

[91] Fischetti, M., I. Ljubić, M. Monaci, and M. Sinnl (2017) “A new general-
purpose algorithm for mixed-integer bilevel linear programs,” Operations Research,
65(6), pp. 1615–1637.

[92] Chu, Z., J. Zhang, O. Kosut, and L. Sankar (2020) “Vulnerability assessment
of large-scale power systems to false data injection attacks,” in 2020 IEEE Inter-
national Conference on Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm), IEEE, pp. 1–6.

[93] Liang, J., L. Sankar, and O. Kosut (2015) “Vulnerability analysis and conse-
quences of false data injection attack on power system state estimation,” IEEE
Transactions on Power Systems, 31(5), pp. 3864–3872.

[94] Chu, Z., J. Zhang, O. Kosut, and L. Sankar (2021) “N-1 Reliability Makes It
Difficult for False Data Injection Attacks to Cause Physical Consequences,” IEEE
Transactions on Power Systems.

217

[95] Yang, Z., K. Xie, J. Yu, H. Zhong, N. Zhang, and Q. Xia (2018) “A general
formulation of linear power flow models: Basic theory and error analysis,” IEEE
Transactions on Power Systems, 34(2), pp. 1315–1324.

[96] Coffrin, C., H. L. Hijazi, and P. Van Hentenryck (2015) “The QC relaxation:
A theoretical and computational study on optimal power flow,” IEEE Transactions
on Power Systems, 31(4), pp. 3008–3018.

[97] Babaeinejadsarookolaee, S., A. Birchfield, R. D. Christie, C. Coffrin,
C. DeMarco, R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang,
et al. (2019) “The power grid library for benchmarking ac optimal power flow
algorithms,” arXiv preprint arXiv:1908.02788.

[98] Chakrabarti, S., E. Kyriakides, and D. G. Eliades (2008) “Placement of
synchronized measurements for power system observability,” IEEE Transactions
on power delivery, 24(1), pp. 12–19.

[99] Coffrin, C., H. L. Hijazi, and P. Van Hentenryck (2015) “DistFlow exten-
sions for AC transmission systems,” arXiv preprint arXiv:1506.04773.

[100] Vielma, J. P. (2015) “Mixed integer linear programming formulation techniques,”
Siam Review, 57(1), pp. 3–57.

[101] Sitaraman, R. K., M. Kasbekar, W. Lichtenstein, and M. Jain (2014)
“Overlay networks: An Akamai perspective,” Advanced Content Delivery, Streaming,
and Cloud Services, 51(4), pp. 305–328.

[102] Chen, L., S. Liu, and B. Li (2021) “Optimizing Network Transfers for Data
Analytic Jobs Across Geo-Distributed Datacenters,” IEEE Transactions on Parallel
and Distributed Systems, 33(2), pp. 403–414.

[103] Holterbach, T., S. Vissicchio, A. Dainotti, and L. Vanbever (2017)
“Swift: Predictive fast reroute,” in SIGCOMM, pp. 460–473.

[104] Tootaghaj, D. Z., F. Ahmed, P. Sharma, and M. Yannakakis (2020) “Homa:
An efficient topology and route management approach in SD-WAN overlays,” in
IEEE INFOCOM, pp. 2351–2360.

[105] Tran, H.-A., D. Tran, and A. Mellouk (2022) “State-Dependent Multi-
Constraint Topology Configuration for Software-Defined Service Overlay Networks,”
IEEE/ACM Transactions on Networking.

[106] Zhang, Y., J. Jiang, K. Xu, X. Nie, M. J. Reed, H. Wang, G. Yao,
M. Zhang, and K. Chen (2018) “BDS: a centralized near-optimal overlay network
for inter-datacenter data replication,” in EuroSys, pp. 1–14.

218

[107] Yang, Z., Y. Cui, X. Wang, Y. Liu, M. Li, S. Xiao, and C. Li (2019)
“Cost-efficient scheduling of bulk transfers in inter-datacenter WANs,” IEEE/ACM
Transactions on Networking, 27(5), pp. 1973–1986.

[108] Zheng, X., C. Cho, and Y. Xia (2008) “Optimal peer-to-peer technique for
massive content distribution,” in IEEE INFOCOM, IEEE, pp. 151–155.

[109] Zhu, Y. and B. Li (2008) “Overlay networks with linear capacity constraints,”
IEEE Transactions on Parallel and Distributed systems, 19(2), pp. 159–173.

[110] Zhu, Y., B. Li, and K. Q. Pu (2008) “Dynamic multicast in overlay networks
with linear capacity constraints,” IEEE Transactions on Parallel and Distributed
Systems, 20(7), pp. 925–939.

[111] Katabi, D. and C. Blake (2001) “Inferring congestion sharing and path charac-
teristics from packet interarrival times,” MIT Report.

[112] He, T., L. Ma, A. Swami, and D. Towsley (2021) Network Tomography:
Identifiability, Measurement Design, and Network State Inference, Cambridge
University Press.

[113] Ratnasamy, S. and S. McCanne (1999) “Inference of multicast routing trees
and bottleneck bandwidths using end-to-end measurements,” in IEEE INFOCOM,
vol. 1, IEEE, pp. 353–360.

[114] Duffield, N. G., J. Horowitz, F. L. Presti, and D. Towsley (2002)
“Multicast topology inference from measured end-to-end loss,” IEEE Transactions
on Information Theory, 48(1), pp. 26–45.

[115] Duffield, N. G. and F. L. Presti (2004) “Network tomography from measured
end-to-end delay covariance,” IEEE/ACM Transactions On Networking, 12(6), pp.
978–992.

[116] Ni, J., H. Xie, S. Tatikonda, and Y. R. Yang (2009) “Efficient and dy-
namic routing topology inference from end-to-end measurements,” IEEE/ACM
transactions on networking, 18(1), pp. 123–135.

[117] Ni, J. and S. Tatikonda (2011) “Network tomography based on additive metrics,”
IEEE Transactions on Information Theory, 57(12), pp. 7798–7809.

[118] Coates, M., R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang
(2002) “Maximum likelihood network topology identification from edge-based
unicast measurements,” ACM SIGMETRICS, 30(1), pp. 11–20.

[119] Rabbat, M. G., M. J. Coates, and R. D. Nowak (2006) “Multiple-source
Internet tomography,” IEEE Journal on Selected Areas in Communications, 24(12),
pp. 2221–2234.

219

[120] Sattari, P., M. Kurant, A. Anandkumar, A. Markopoulou, and M. G.
Rabbat (2014) “Active learning of multiple source multiple destination topologies,”
IEEE Transactions on Signal Processing, 62(8), pp. 1926–1937.

[121] Krishnamurthy, A. and A. Singh (2012) “Robust multi-source network tomog-
raphy using selective probes,” in IEEE INFOCOM, pp. 1629–1637.

[122] Berkolaiko, G., N. Duffield, M. Ettehad, and K. Manousakis (2018)
“Graph reconstruction from path correlation data,” Inverse Problems, 35(1), p.
015001.

[123] Lin, Y., T. He, S. Wang, K. Chan, and S. Pasteris (2020) “Looking glass of
NFV: Inferring the structure and state of NFV network from external observations,”
IEEE/ACM Transactions on Networking, 28(4), pp. 1477–1490.

[124] Lin, Y., T. He, S. Wang, K. Chan, and S. Pasteris (2019) “Multicast-Based
Weight Inference in General Network Topologies,” in ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), pp. 1–6.

[125] Smith, K. D., S. Jafarpour, A. Swami, and F. Bullo (2022) “Topology Infer-
ence With Multivariate Cumulants: The Möbius Inference Algorithm,” IEEE/ACM
Transactions on Networking.

[126] Chaudhari, S. S. and R. C. Biradar (2015) “Survey of bandwidth estimation
techniques in communication networks,” wireless personal communications, 83(2),
pp. 1425–1476.

[127] Downey, A. B. (1999) “Using pathchar to estimate Internet link characteristics,”
ACM SIGCOMM, 29(4), pp. 241–250.

[128] Dovrolis, C., P. Ramanathan, and D. Moore (2004) “Packet-dispersion
techniques and a capacity-estimation methodology,” IEEE/ACM Transactions On
Networking, 12(6), pp. 963–977.

[129] Liu, X., K. Ravindran, and D. Loguinov (2008) “A stochastic foundation of
available bandwidth estimation: Multi-hop analysis,” IEEE/ACM Transactions on
Networking, 16(1), pp. 130–143.

[130] Jain, M. and C. Dovrolis (2003) “End-to-end available bandwidth: measure-
ment methodology, dynamics, and relation with TCP throughput,” IEEE/ACM
Transactions on networking, 11(4), pp. 537–549.

[131] Hayes, D. A., S. Ferlin, and M. Welzl (2014) “Practical passive shared
bottleneck detection using shape summary statistics,” in Annual IEEE Conference
on Local Computer Networks, IEEE, pp. 150–158.

220

[132] Hayes, D., S. Ferlin, M. Welzl, and K. Hiorth (2018) “Shared bottleneck
detection for coupled congestion control for RTP media,” Internet Draft draft-ietf-
rmcat-sbd-01.

[133] Kanuparthy, P., C. Dovrolis, and M. Ammar (2008) “Spectral probing,
crosstalk and frequency multiplexing in internet paths,” in IMC, pp. 291–304.

[134] Chen, Y., D. Bindel, H. H. Song, and R. H. Katz (2007) “Algebra-based
scalable overlay network monitoring: algorithms, evaluation, and applications,”
IEEE/ACM Transactions on Networking, 15(5), pp. 1084–1097.

[135] Asano, Y. (2000) “Experimental Evaluation of Approximation Algorithms for the
Minimum Cost Multiple-source Unsplittable Flow Problem.” in ICALP Satellite
Workshops, pp. 111–122.

[136] Barnhart, C., C. A. Hane, and P. H. Vance (2000) “Using branch-and-
price-and-cut to solve origin-destination integer multicommodity flow problems,”
Operations Research, 48(2), pp. 318–326.

[137] Ver Hoef, J. M. (2012) “Who invented the delta method?” The American
Statistician, 66(2), pp. 124–127.

[138] Knight, S., H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan (2011)
“The internet topology zoo,” IEEE Journal on Selected Areas in Communications,
29(9), pp. 1765–1775.

[139] Gay, S., P. Schaus, and S. Vissicchio (2017) “Repetita: Repeatable experi-
ments for performance evaluation of traffic-engineering algorithms,” arXiv preprint
arXiv:1710.08665.

[140] Jiang, H. and C. Dovrolis (2005) “Why is the internet traffic bursty in short
time scales?” in SIGMETRICS, pp. 241–252.

[141] Svigelj, A., M. Mohorcic, G. Kandus, A. Kos, M. Pustisek, and J. Bester
(2004) “Routing in ISL networks considering empirical IP traffic,” IEEE Journal
on Selected areas in Communications, 22(2), pp. 261–272.

[142] Roughan, M. (2005) “Simplifying the synthesis of Internet traffic matrices,” ACM
SIGCOMM, 35(5), pp. 93–96.

[143] Calinescu, G., C. Chekuri, M. Pál, and J. Vondrák (2011) “Maximizing a
Monotone Submodular Function Subject to a Matroid Constraint,” SIAM Journal
on Computing, 40(6), pp. 1740–1766.

[144] Shin, S., V. Yegneswaran, P. Porras, and G. Gu (2013) “Avant-guard:
Scalable and vigilant switch flow management in software-defined networks,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pp. 413–424.

221

[145] Wang, H., L. Xu, and G. Gu (2015) “FloodGuard: A DoS Attack Prevention
Extension in Software-Defined Networks,” in 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 239–250.

[146] Shang, G., P. Zhe, X. Bin, H. Aiqun, and R. Kui (2017) “FloodDefender:
Protecting data and control plane resources under SDN-aimed DoS attacks,” in
IEEE INFOCOM, pp. 1–9.

[147] Dhawan, M., R. Poddar, K. Mahajan, and V. Mann (2015) “SPHINX:
detecting security attacks in software-defined networks.” in NDSS, vol. 15, pp. 8–11.

[148] Zhang, S. (2019) “An overview of network slicing for 5G,” IEEE Wireless Com-
munications, 26(3), pp. 111–117.

[149] Li, X., M. Samaka, H. A. Chan, D. Bhamare, L. Gupta, C. Guo, and
R. Jain (2017) “Network slicing for 5G: Challenges and opportunities,” IEEE
Internet Computing, 21(5), pp. 20–27.

[150] Kotulski, Z., T. W. Nowak, M. Sepczuk, M. Tunia, R. Artych, K. Bo-
cianiak, T. Osko, and J.-P. Wary (2018) “Towards constructive approach
to end-to-end slice isolation in 5G networks,” EURASIP Journal on Information
Security, 2018(1), pp. 1–23.

[151] 3GPP (2016), “Feasibility study on new services and markets technology enablers
for network operation; Stage 1,” TR 22.864.
URL https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3016

[152] Achleitner, S., T. La Porta, T. Jaeger, and P. McDaniel (2017) “Adver-
sarial Network Forensics in Software Defined Networking,” in ACM Symposium on
SDN Research (SOSR), ACM, pp. 8–20.

[153] Yu, M., T. Xie, T. He, P. McDaniel, and Q. K. Burke (2021) “Flow Table
Security in SDN: Adversarial Reconnaissance and Intelligent Attacks,” IEEE/ACM
Transactions on Networking, 29(6), pp. 2793–2806.

[154] Cunha, V. A., E. da Silva, M. B. de Carvalho, D. Corujo, J. P. Barraca,
D. Gomes, L. Z. Granville, and R. L. Aguiar (2019) “Network slicing security:
Challenges and directions,” Internet Technology Letters, 2(5), p. e125.

[155] Olimid, R. F. and G. Nencioni (2020) “5G network slicing: a security overview,”
IEEE Access, 8, pp. 99999–100009.

[156] security group, N. G. (2016), “5G security recommendations Package 2:
Network Slicing,” NGMN Alliance.
URL https://ngmn.org/wp-content/uploads/Publications/2016/160429_
NGMN_5G_Security_Network_Slicing_v1_0.pdf

222

[157] Liu, Q., T. Han, and N. Ansari (2020) “Learning-assisted secure end-to-end
network slicing for cyber-physical systems,” IEEE Network, 34(3), pp. 37–43.

[158] Sattar, D. and A. Matrawy (2019) “Towards secure slicing: Using slice isolation
to mitigate DDoS attacks on 5G core network slices,” in 2019 IEEE Conference on
Communications and Network Security (CNS), IEEE, pp. 82–90.

[159] Phillips, C. A. (1993) “The network inhibition problem,” in Proceedings of the
twenty-fifth annual ACM symposium on Theory of computing (STOC), pp. 776–785.

[160] Fu, X. and E. Modiano (2019) “Network Interdiction Using Adversarial Traffic
Flows,” in IEEE INFOCOM, pp. 1765–1773.

[161] Yao, H., S. Jaggi, and M. Chen (2012) “Passive Network Tomography for Erro-
neous Networks: A Network Coding Approach,” IEEE Transactions on Information
Theory, 58(9), pp. 5922–5940.

[162] Lin, Y., T. He, and G. Pang (2021) “Queuing Network Topology Inference Using
Passive Measurements,” in IFIP Networking, IEEE, pp. 1–9.

[163] Ni, J., H. Xie, S. Tatikonda, and Y. R. Yang (2010) “Efficient and Dy-
namic Routing Topology Inference From End-to-End Measurements,” IEEE/ACM
Transactions on Networking, 18(1), pp. 123–135.

[164] Coates, M., R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang
(2002) “Maximum likelihood network topology identification from edge-based
unicast measurements,” ACM SIGMETRICS, 30(1), pp. 11–20.

[165] Salvat, J. X., L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, and
X. Costa-Perez (2018) “Overbooking network slices through yield-driven end-to-
end orchestration,” in CoNEXT, pp. 353–365.

[166] Sattari, P., M. Kurant, A. Anandkumar, A. Markopoulou, and M. G.
Rabbat (2014) “Active Learning of Multiple Source Multiple Destination Topolo-
gies,” IEEE Transactions on Signal Processing, 62(8), pp. 1926–1937.

[167] Duffield, N. G., J. Horowitz, and F. L. Prestis (2001) “Adaptive multicast
topology inference,” in IEEE INFOCOM, vol. 3, pp. 1636–1645.

[168] Rabbat, M., M. Coates, and R. Nowak (2006) “Multiple Source Internet
Tomography,” IEEE Journal on Selected Areas in Communications, 24(12), pp.
2221–2234.

[169] Berkolaiko, G., N. Duffield, M. Ettehad, and K. Manousakis (2018)
“Graph reconstruction from path correlation data,” Inverse Problems, 35(1), p.
015001.

223

[170] Harrison, P. and N. M. Patel (1992) Performance Modelling of Communication
Networks and Computer Architectures, Addison–Wesley.

[171] Baccelli, F., B. Kauffmann, and D. Veitch (2009) “Inverse problems in
queueing theory and Internet probing,” Queueing Systems, 63, p. 59.

[172] Cao, J., W. S. Cleveland, D. Lin, and D. X. Sun (2001) “On the Nonstation-
arity of Internet Traffic,” SIGMETRICS Performance Evaluation Review, 29(1), p.
102–112.

[173] Hoffman, K. L. (1981) “A METHOD FOR GLOBALLY MINIMIZING CON-
CAVE FUNCTIONS OVER CONVEX SETS,” Mathematical Programming, 20,
pp. 22–32.

[174] Henderson, T. R., M. Lacage, G. F. Riley, C. Dowell, and J. Kopena
(2008) “Network simulations with the ns-3 simulator,” SIGCOMM demonstration,
14(14), p. 527.

[175] Patriciello, N., S. Lagen, B. Bojovic, and L. Giupponi (2019) “An E2E
simulator for 5G NR networks,” Simulation Modelling Practice and Theory, 96, p.
101933.

[176] Gvozdiev, N., S. Vissicchio, B. Karp, and M. Handley (2018) “On low-
latency-capable topologies, and their impact on the design of intra-domain routing,”
in SIGCOMM, pp. 88–102.

[177] Alasmar, M., R. Clegg, N. Zakhleniuk, and G. Parisis (2021) “Internet
traffic volumes are not Gaussian—They are log-normal: An 18-year longitudinal
study with implications for modelling and prediction,” IEEE/ACM Transactions
on Networking, 29(3), pp. 1266–1279.

[178] John, W. and S. Tafvelin (2007) “Analysis of internet backbone traffic and
header anomalies observed,” in Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, pp. 111–116.

[179] Conn, A. R., K. Scheinberg, and L. N. Vicente (2009) Introduction to
Derivative-Free Optimization, Society for Industrial and Applied Mathematics.

[180] 3GPP (2018), “NR; Study on integrated access and backhaul,” TR 38.874.
URL https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3232

[181] Ronkainen, H., J. Edstam, A. Ericsson, and C. Östberg (2020), “Integrated
access and backhaul – a new type of wireless backhaul in 5G,” Ericsson Technology
Review.
URL https://www.ericsson.com/4ac691/assets/local/
reports-papers/ericsson-technology-review/docs/2020/
introducing-integrated-access-and-backhaul.pdf

224

[182] De Cicco, L., S. Mascolo, V. Palmisano, and G. Ribezzo (2019) “Reducing
the network bandwidth requirements for 360◦ immersive video streaming,” Internet
Technology Letters, 2(4), p. e118.

[183] (2017), “Preparing for a Cloud AR/VR Future,” Huawei public white paper.
URL https://www-file.huawei.com/-/media/corporate/pdf/x-lab/cloud_
vr_ar_white_paper_en.pdf.

[184] Roughan, M. and C. Kalmanek (2003) “Pragmatic modeling of broadband
access traffic,” Computer Communications, 26(8), pp. 804–816.

[185] Donoghue, W. F. (2014) Distributions and Fourier transforms, Academic Press.

[186] Sohn, K.-S., S. Y. Nam, and D. K. Sung (2006) “A distributed LSP scheme
to reduce spare bandwidth demand in MPLS networks,” IEEE transactions on
communications, 54(7), pp. 1277–1288.

[187] Yang, X. (2002) “Designing traffic profiles for bursty internet traffic,” in Global
Telecommunications Conference, 2002. GLOBECOM’02. IEEE, vol. 3, IEEE, pp.
2149–2154.

[188] Hasnat, M. A. and M. Rahnamay-Naeini (2019) “A data-driven dynamic state
estimation for smart grids under DoS attack using state correlations,” in North
American Power Symposium (NAPS), IEEE, pp. 1–6.

[189] Chen, B., S. Mashayekh, K. L. Butler-Purry, and D. Kundur (2013)
“Impact of cyber attacks on transient stability of smart grids with voltage support
devices,” in IEEE Power & Energy Society General Meeting, IEEE, pp. 1–5.

[190] McMahan, B., E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas
(2017) “Communication-efficient learning of deep networks from decentralized data,”
in AISTATS, PMLR, pp. 1273–1282.

[191] Liu, L., J. Zhang, S. Song, and K. B. Letaief (2023) “Hierarchical Federated
Learning With Quantization: Convergence Analysis and System Design,” IEEE
Transactions on Wireless Communications, 22(1), pp. 2–18.

[192] Kairouz, P. et al. (2021) Advances and Open Problems in Federated Learning,
Now Foundations and Trends.

[193] “Google AI Blog: Federated Learning: Collaborative Machine Learning
without Centralized Training Data,” https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html.

[194] “Google Assistant using federated learning on Android to im-
prove ‘Hey Google’ accuracy,” https://9to5google.com/2021/03/26/
google-assistant-hotword-federated-learning/.

225

[195] “Federated Learning of Cohorts (FLoC),” https://github.com/WICG/floc.

[196] “Using Federated Learning to Improve Brave’s On-Device Recommendations While
Protecting Your Privacy,” https://brave.com/federated-learning/.

[197] Lian, X., C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu (2017)
“Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study
for Decentralized Parallel Stochastic Gradient Descent,” in NeurIPS, p. 5336–5346.

[198] Luo, L., P. West, J. Nelson, A. Krishnamurthy, and L. Ceze (2020)
“PLink: Discovering and Exploiting Locality for Accelerated Distributed Training
on the public Cloud,” in Proceedings of Machine Learning and Systems, vol. 2, pp.
82–97.

[199] Koloskova, A., T. Lin, S. U. Stich, and M. Jagg (2020) “Decentralized Deep
Learning with Arbitrary Communication Compression,” in ICLR.

[200] Lu, Y. and C. De Sa (2020) “Moniqua: Modulo quantized communication in
decentralized SGD,” in ICML, PMLR, pp. 6415–6425.

[201] Tang, H., S. Gan, C. Zhang, T. Zhang, and J. Liu (2018) “Communication
compression for decentralized training,” in NeurIPS.

[202] Wang, J. and G. Joshi (2019) “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” Proceedings of Machine
Learning and Systems, 1, pp. 212–229.

[203] Tran, N. H., W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong (2019)
“Federated learning over wireless networks: Optimization model design and analysis,”
in IEEE INFOCOM, IEEE, pp. 1387–1395.

[204] Wang, S., T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan (2019) “Adaptive Federated Learning in Resource Constrained Edge
Computing Systems,” IEEE Journal on Selected Areas in Communications, 37(6),
pp. 1205–1221.

[205] Wang, J., A. K. Sahu, Z. Yang, G. Joshi, and S. Kar (2019) “MATCHA:
Speeding up decentralized SGD via matching decomposition sampling,” in 2019
Sixth Indian Control Conference (ICC), IEEE, pp. 299–300.

[206] Chiu, C.-C., X. Zhang, T. He, S. Wang, and A. Swami (2023) “Laplacian
Matrix Sampling for Communication- Efficient Decentralized Learning,” IEEE
Journal on Selected Areas in Communications, 41(4), pp. 887–901.

[207] Hsieh, K., A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu (2017) “Gaia: Geo-Distributed machine learning
approaching LAN speeds,” in USENIX NSDI, pp. 629–647.

226

[208] Luping, W., W. Wei, and L. Bo (2019) “CMFL: Mitigating communication
overhead for federated learning,” in ICDCS, IEEE, pp. 954–964.

[209] Singh, N., D. Data, J. George, and S. Diggavi (2022) “SPARQ-SGD: Event-
triggered and compressed communication in decentralized optimization,” IEEE
Transactions on Automatic Control, 68(2), pp. 721–736.

[210] ——— (2021) “SQuARM-SGD: Communication-Efficient Momentum SGD for
Decentralized Optimization,” IEEE Journal on Selected Areas in Information
Theory, 2(3), pp. 954–969.

[211] Wang, J., A. K. Sahu, G. Joshi, and S. Kar (2020) “Exploring the error-
runtime trade-off in decentralized optimization,” in Asilomar Conference on Signals,
Systems, and Computers, IEEE, pp. 910–914.

[212] Hua, Y., K. Miller, A. L. Bertozzi, C. Qian, and B. Wang (2022) “Efficient
and reliable overlay networks for decentralized federated learning,” SIAM Journal
on Applied Mathematics, 82(4), pp. 1558–1586.

[213] Le Bars, B., A. Bellet, M. Tommasi, E. Lavoie, and A.-M. Kermarrec
(2023) “Refined convergence and topology learning for decentralized SGD with
heterogeneous data,” in International Conference on Artificial Intelligence and
Statistics, PMLR, pp. 1672–1702.

[214] Marfoq, O., C. Xu, G. Neglia, and R. Vidal (2020) “Throughput-optimal
topology design for cross-silo federated learning,” Advances in Neural Information
Processing Systems, 33, pp. 19478–19487.

[215] Chen, X., G. Zhu, Y. Deng, and Y. Fang (2022) “Federated learning over
multihop wireless networks with in-network aggregation,” IEEE Transactions on
Wireless Communications, 21(6), pp. 4622–4634.

[216] Jia, Z., Z. Yu, H. Liao, Z. Wang, Z. Zhou, X. Wang, G. He, S. Mumtaz,
and M. Guizani (2022) “Dispatching and Control Information Freshness-Aware
Federated Learning for Simplified Power IoT,” in GLOBECOM, IEEE, pp. 1097–
1102.

[217] Shu, Y., Z. Wang, H. Liao, Z. Zhou, N. Nasser, and M. Imran (2022) “Age-
of-Information-Aware Digital Twin Assisted Resource Management for Distributed
Energy Scheduling,” in GLOBECOM, IEEE, pp. 5705–5710.

[218] Xing, H., O. Simeone, and S. Bi (2021) “Federated learning over wireless
device-to-device networks: Algorithms and convergence analysis,” IEEE Journal
on Selected Areas in Communications, 39(12), pp. 3723–3741.

[219] Pei, J., W. Liu, L. Wang, C. Liu, A. K. Bashir, and Y. Wang (2023)
“Fed-IoUT: Opportunities and Challenges of Federated Learning in the Internet of
Underwater Things,” IEEE Internet of Things Magazine, 6(1), pp. 108–112.

227

[220] Pinyoanuntapong, P., W. H. Huff, M. Lee, C. Chen, and P. Wang (2022)
“Toward scalable and robust AIoT via decentralized federated learning,” IEEE
Internet of Things Magazine, 5(1), pp. 30–35.

[221] Huang, Y. and T. He (2023) “Overlay Routing Over an Uncooperative Underlay,”
in The 24th International Symposium on Theory, Algorithmic Foundations, and
Protocol Design for Mobile Networks and Mobile Computing (MobiHoc’23), pp.
151–160.

[222] Tang, H., X. Lian, M. Yan, C. Zhang, and J. Liu (2018) “D2: Decentralized
training over decentralized data,” in ICML, PMLR, pp. 4848–4856.

[223] Lu, Y. and C. De Sa (2021) “Optimal complexity in decentralized training,” in
ICML, PMLR, pp. 7111–7123.

[224] Nedić, A., A. Olshevsky, and M. G. Rabbat (2018) “Network Topology and
Communication-Computation Tradeoffs in Decentralized Optimization,” Proceed-
ings of the IEEE, 106(5), pp. 953–976.

[225] Neglia, G., G. Calbi, D. Towsley, and G. Vardoyan (2019) “The role of
network topology for distributed machine learning,” in IEEE INFOCOM, IEEE,
pp. 2350–2358.

[226] Neglia, G., C. Xu, D. Towsley, and G. Calbi (2020) “Decentralized gradient
methods: does topology matter?” in AISTATS, PMLR, pp. 2348–2358.

[227] Jiang, Z., Y. Xu, H. Xu, L. Wang, C. Qiao, and L. Huang (2023) “Joint
Model Pruning and Topology Construction for Accelerating Decentralized Machine
Learning,” IEEE Transactions on Parallel and Distributed Systems.

[228] Vogels, T., H. Hendrikx, and M. Jaggi (2022) “Beyond spectral gap: The
role of the topology in decentralized learning,” Advances in Neural Information
Processing Systems, 35, pp. 15039–15050.

[229] Wang, J., B. Liang, Z. Zhu, E. T. Fapi, and H. Dalal (2022) “Joint Consensus
Matrix Design and Resource Allocation for Decentralized Learning,” in 2022 IFIP
Networking Conference (IFIP Networking), pp. 1–9.

[230] Gong, Y., B. He, and J. Zhong (2015) “Network Performance Aware MPI
Collective Communication Operations in the Cloud,” IEEE Transactions on Parallel
and Distributed Systems, 26(11), pp. 3079–3089.

[231] LaCurts, K., S. Deng, A. Goyal, and H. Balakrishnan (2013) “Choreo:
Network-aware task placement for cloud applications,” in Proceedings of the 2013
conference on Internet measurement conference, pp. 191–204.

228

[232] Chen, J., H. Zhang, W. Zhang, L. Luo, J. Chase, I. Stoica, and D. Zhuo
(2022) “{NetHint}:{White-Box} Networking for {Multi-Tenant} Data Centers,” in
USENIX NSDI, pp. 1327–1343.

[233] Koloskova, A., N. Loizou, S. Boreiri, M. Jaggi, and S. Stich (2020) “A
unified theory of decentralized sgd with changing topology and local updates,” in
ICML, PMLR, pp. 5381–5393.

[234] Goemans, M. X. and Y.-S. Myung (1993) “A catalog of Steiner tree formula-
tions,” Networks, 23(1), pp. 19–28.

[235] Lubin, M. (2017) Mixed-integer convex optimization: Outer approximation algo-
rithms and modeling power, Ph.D. thesis, Massachusetts Institute of Technology,
Sloan School of Management, Operations Research Center.

[236] Zhang, X., C. Chiu, and T. He (2024) “Energy-efficient Decentralized Learning
via Graph Sparsification,” in The 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP).

[237] Jiang, H., T. Kathuria, Y. T. Lee, S. Padmanabhan, and Z. Song (2020)
“A faster interior point method for semidefinite programming,” in IEEE FOCS,
IEEE, pp. 910–918.

229

Vita
Yudi Huang

Education:

• Ph.D. in Computer Science, Pennsylvania State University, 2019-present

• M.S. in Telecommunications, University of Electronic Science and Technology of China, 2019

• B.S. in Telecommunications, University of Electronic Science and Technology of China, 2016

Selected Publication:

1. Y. Huang, Y. Lin, and T. He, “Optimized Cross-Path Attacks via Adversarial Reconnaissance,"
ACM SIGMETRICS, 2023.

2. Y. Huang, and T. He, “Overlay Routing Over an Uncooperative Underlay," ACM MobiHoc,
2023.

3. Y. Huang, T. He, N. R. Chaudhuri, and T. La Porta, “Preventing Outages under Coordinated
Cyber-Physical Attack with Secured PMUs," IEEE TSG, 2022.

4. Y. Huang, T. He, N. R. Chaudhuri, and T. La Porta, “Link State Estimation under Cyber-
Physical Attacks: Theory and Algorithms," IEEE TSG, 2022.

5. Y. Huang, T. He, N. R. Chaudhuri, and T. La Porta, “Preventing Outages under Coordinated
Cyber-Physical Attack with Secured PMUs," IEEE SmartGridComm, 2021.

6. Y. Huang, T. He, N. R. Chaudhuri, and T. La Porta, “Power grid state estimation under general
cyber-physical attacks," IEEE SmartGridComm, 2020. (Finalist of Best Paper Award)

7. Y. Huang, Y.-C. Liang, Feifei Gao, “Channel estimation in FDD massive MIMO systems based
on block-structured dictionary learning", IEEE GLOBECOM, 2019.

8. Y. Huang, P. Liang, Q. Zhang, Y.-C. Liang, “A Machine Learning Approach to MIMO Commu-
nications", IEEE ICC, 2018.

9. Y. Huang, J. Tan, Y.-C. Liang, “Wireless Big Data: Transforming Heterogeneous Networks to
Smart Networks", Journal of Communications and Information Networks, 2017.

10. Y. Huang, G. Yang, Y.-C. Liang, “A Fuzzy Support Vector Machine Algorithm for Cooperative
Spectrum Sensing with Noise Uncertainty", IEEE GLOBECOM, 2016.

Selected Honor and Award:

• NSF Student Travel Grant, ACM MobiHoc Oct. 2023

• Best Paper Finalist, IEEE SmartGridComm Oct. 2020

• NSF Student Travel Grant, IEEE SmartGridComm Oct. 2020

Selected Service:
Reviewer of IEEE TWC, TON, TNSE, TCAS-II, TCNS, TSG, INFOCOM, MILCOM

