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Abstract
Topology has revolutionized our understanding of physics: physical observables are fully
defined – up to natural constants – by topological invariants and thus independent of
the exact details of the device. As a general wave phenomena, topological protection
has found its way into many fields of physics, including photonics, that could profit
tremendously from topologically protected transport of photons given that photons are
the main information carriers in today’s communication infrastructure and projected to
be an integral part of next-generation on-chip computation and quantum information
devices. While non-interacting/linear topological photonics has been well understood, less
is known in the presence of inter-particle interactions. In optics and at high optical power,
interactions between photons are mediated by an underlying medium and described in
the mean-field limit via Kerr nonlinearities, with spectacular consequences, amongst
others: generation of entangled photon pairs, frequency combs, and solitons, the latter
being self-forming, localized nonlinear eigenstates.

This dissertation pioneers the field of topologically quantized transport in interact-
ing/nonlinear Thouless pumps – 1+1 dimensional reduced versions of the integer quantum
Hall effect, where one wavevector dimension is replaced with a periodic modulation as a
synthetic dimension. We show theoretically and experimentally that nonlinearity can act
to quantize transport via soliton formation in Thouless pumps and the emergence of a
rich plateaux structure with integer as well as fractionally quantized transport, despite a
non-uniform band projection required for linear Thouless pumps. Quantization occurs as
the soliton solutions at the beginning and end of each cycle are identical – apart from
translation invariance. By expanding the discrete nonlinear Schrödinger equation into
Wannier states, we show analytically that the center of mass of a low-power soliton, and
therefore its trajectory, tracks the position of Wannier states, that are dictated by the
Chern number. Using evanescently coupled waveguides, we observe integer quantized
soliton transport by one unit cell, with a nonlinear phase transition to a trapped soliton
at higher power due to spontaneous symmetry breaking nonlinear bifurcations. In a
separate experiment and at intermediate power, we observe fractionally quantized soliton
Thouless pumping with a fraction of -1/2 after one period and integer quantization of -1
after two periods, as the soliton follows the trajectory of maximally-localized multi-band
Wannier states. Furthermore, we theoretically describe fractional Thouless pumping
in fermionic few-particle systems with integer filling and strong repulsive interactions,
when every second multi-band Wannier is occupied. Using exact diagonalization and
density matrix renormalization group calculations we confirm that small systems have
a degenerate ground state manifold separated from higher bands and support average
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pumping of 1/2 particles per period at intermediate adiabaticity. Finally, we present
experimental advances in the fabrication of deep-etched two-dimensional photonic crystals
in doped crystalline YAG and demonstrate the ability to fabricate large arrays with
sub-micrometer lattice constants and deterministically varying etching depth.
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input power. Fitting numerical propagation simulations gives a value of
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3.3 Linear and nonlinear propagation in topological Thouless pumps.
a, Normalized amplitude of the discrete wavefunction, |ϕn|, for a linear
evolution over three periods for an input state with uniform excitation
of the lowest band (chosen as a maximally-localized Wannier state). It
develops a discrete diffraction pattern, while its centre of mass is being
pumped to the left by three unit cells after three periods. b, Nonlinear
evolution for a pumped soliton with a degree of nonlinearity gP/Jmax = 1.9.
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of the system. c, Same as b but with gP/Jmax = 2.1 and showing a
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soliton. a, Stacked images of the output facet, showing the intensities in
the waveguide modes after propagation for two periods. Each row was
imaged separately at different input power. The bottom row shows the
output facet for linear propagation (gP/Jmax=0.04). The next row was
taken for gP/Jmax=0.09 and then for each row the power was increased
in equal steps of gP/Jmax≈0.09 until the top row, with a maximum input
power of gP/Jmax=2.15. b,c, Normalized integrated intensities in each
waveguide for different z-slices for an input power of gP/Jmax=0.04 (c)
and gP/Jmax=2.15 (b). The white dashed lines mark one unit cell. After
one period, the soliton is peaked on a single site, and its centre of mass
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the experiment, the plotted intensities are normalized for each z. . . . . . 72

5.6 Adiabaticity of soliton propagation. a, Overlap of a numerically
propagated soliton with the instantaneous soliton after one pump cycle
with period L. b, Same data as a, but plotted as deviation from perfect
overlap on a log-log scale confirming the existence of an adiabatic limit.
The blue (orange) line depicts gP/Jmax = 0.55 (gP/Jmax = 1.65), which
corresponds to the integer (fractionally) pumped soliton in the adiabatic
limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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n ||ϕ(S)
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Chapter 1 |
Introduction

Topological protection is a powerful concept. Its first observation was reported by
Nobel Laureate von Klitzing and co-workers Dorda and Pepper [3], who measured
precisely quantized conductance (in integer multiples of fundamental constants) in two-
dimensional electron gases with a perpendicular magnetic field. This effect is known as
the integer quantum Hall effect and laid the foundation for the discovery of topological
phases of matter in which physical observables are fully defined – up to fundamental
constants – by topological invariants and therefore independent of the exact details of the
sample. The importance of this finding cannot be overstated: As physical observables
are completely independent of the system parameters and topologically protected against
small perturbations, devices are possible that are robust against disorder and fabrication
imperfections. Perhaps most spectacular, the quantization of conductance in the integer
quantum Hall effect is so precise (less than one part in 1010) that it is now incorporated
into the international system of units (SI). [4].

Shortly after the discovery of the integer quantum Hall effect, two complementary
explanations for the quantization were published. The first explanation was brought
forward by Laughlin and is based on a simple but elegant gauge argument [5]. It shows
that the conductance has to be quantized upon threading a single flux quantum (that
can be gauged away) through the annulus of a Corbino disk. While this explanation is
independent of the exact system parameters, it is limited to the very special Corbino
disk geometry. The second explanation was brought forward by Thouless, Kohmoto,
Nightingale, and den Nijs who used Kubo’s formula to calculate the conductance of
isolated bands in the bulk of a system with a periodic potential [6]. They found that
each band can be associated with an integer number – called the first Chern number –
that describes its quantized conductance when fully filled, as is the case for a Fermi level
in a bandgap.
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Another important milestone was the realization that the observed quantization in
the integer quantum Hall effect is more general and does not necessarily need a magnetic
field. Instead, a system needs to break time-reversal symmetry, as shown in a discrete
model with a staggered flux but net zero magnetic field, which is now known as Haldane
model [7]. Furthermore, it was realized that topology is a general wave phenomena and
can be observed for fermions as well as bosons [8, 9] in continuous and discrete systems.
Experimental observations have been made in numerous two-dimensional platforms,
including microwaves [10], acoustics [11], photonic waveguides [12], ring resonators [13],
twisted cavities [14], ultracold atoms in optical lattices [15, 16], mechanical pendulum
systems [17], exciton-polaritons [18], and electronics [19]. But only few experiments (for
example [10]) are direct analogues of the integer quantum Hall effect by breaking time-
reversal symmetry using magnetic fields. This is especially prevalent in optics where the
magneto-optical response is negligible at visible and telecommunication wavelengths [20].
Instead, a variety of methods to create artificial gauge fields [20,21] have been developed,
amongst others rotation [14, 22, 23], shaking [12, 15], displaced resonators [13], and
strain [24–27]. More recently, a further alternative has emerged using a time-periodic
modulation of the refractive index [28].

Another particular elegant way to avoid the experimental difficulty of time-reversal
symmetry breaking was developed by Thouless, which is known as Thouless pumping [29].
Thouless pumps are dimensional reduced versions of the integer quantum Hall effect, in
which one wavevector dimension is replaced by a periodic modulation. Hence they are 1+1
dimensional, with one spatial dimension and an additional synthetic dimension. Using
Thouless pumps, significant progress has been made in the understanding of topological
protection: In fermionic Thouless pumps it was rigorously shown for the first time that
topological protection can be extended to interacting and disordered systems [30]. Later,
this proof was extended to the two-dimensional case, laying the basis for the definition of
the many-body Chern number [31]. Apart from pioneering the theoretical side, Thouless
pumps are also ideal models to study in photonics, where design flexibility allows simple
implementations, in particular using coupled waveguides.

While non-interacting/linear topological systems have been well understood, less
is known in the presence of inter-particle interactions. Spectacular results are known
from condensed matter, where strong interactions lead to the fractional quantum Hall
effect [32], known to host quasi-particle excitations with non-Abelian braiding statistics,
predicted to be useful for topological quantum computation [33]. That said, the behaviour
of interacting bosonic and in particular photonic systems can be very different from the
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electronic case. As photons are not charged they do not interact strongly, but at high
optical power and in the mean-field limit, interactions between photons are described
using nonlinearities. Its interplay with topology has shown first novel results, for example,
the generation of entangled photons in edge states [34], nonlinearly-induced edge states
in anomalous topological insulators [35], the observation of solitons in the bulk of an
anomalous topological insulator executing cyclotron-like rotations [36,37], the observation
of nonlinear wave propagation in edge states [38], as well as topologically protected lasing
in edge states [39]. As another example, it has been proposed that edge states can be
used as a super-ring resonator modes to generate dissipative Kerr solitons more efficiently
and with smaller mode spacing [40].

Despite those promising first results, topology in the presence of interactions/nonlin-
earity is still far from being well understood given the lack of broad theoretical frameworks.
Furthermore, many studies have focused on properties of topological edge states and no
studies have shown the emergence of quantization, the hall-mark feature of topology,
due to nonlinearity. In this dissertation, we study the interplay between topology (and
especially topologically protected quantization of transport) and interactions/nonlin-
earity using Thouless pumps. In particular we will show that nonlinearity can act to
quantize transport via soliton motion. The emergent quantization can be integer as well
as fractionally quantized, with no counterpart in non-interacting/linear systems. This
dissertation is structured as follows:

In Chapter 2, we review the theoretical background necessary to understand this dis-
sertation. First, we introduce Thouless pumps and rederive the formulas for quantization
of particle transport. On the way, we define important topological quantities, namely
the Berry phase, Berry curvature, and the Chern number. Furthermore, we show the
intricate relationship between Thouless pumps and their two-dimensional counterparts
of Chern insulators via dimensional reduction, that constitutes a simple way to create
Thouless pumping models. Second, we discuss single-band and multi-band Wannier
functions and their relation to Thouless pumping. We explicitly show that the winding of
the center of mass of Wannier states is equal to the Chern number. Third, we introduce
femto-second laser-written waveguide arrays, the main experimental platform used in
this dissertation. We discuss their fabrication and introduce the paraxial equation that
governs the dynamics of light propagation in waveguide arrays. Finally, we discuss
soliton formation at high optical input power and show how most relevant parameters in
waveguide systems can be investigated with a single device: a directional coupler.

In Chapter 3, we show experimentally and theoretically the emergence of quantization
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in nonlinear Thouless pumps via soliton motion, despite non-uniform band occupations, as
necessary for quantization in non-interacting Thouless pumps. Quantization follows from
the fact, that the soliton comes back to itself after each period – apart from a translation
by an integer number of unit cells due to translation invariance. Using evanescently
coupled waveguide arrays, we observe soliton pumping by up to one lattice constant with
a subsequent nonlinear phase transition to a trapped soliton via spontaneous symmetry-
breaking nonlinear bifurcations. Theoretically, we show that soliton pumping is a general
phenomena and we observe that solitons from all bands are pumped by the Chern number
of the band from which they bifurcate.

In Chapter 4, we present an analytic proof of this quantization mechanism. By
expanding the discrete nonlinear Schrödinger equation into Wannier functions, we show
that low-power solitons track the position of the single-band Wannier states of the band
from which the solitons bifurcate. Thus, the displacement of a soliton is dictated by the
Chern number of the respective band. The transport remains quantized for increasing
power, as long as no nonlinear bifurcations destroy the trajectory of the soliton and the
soliton stays stable. Furthermore, we find trajectories of unstable solitons that represent
mathematical solutions but are experimentally unobservable. We close this chapter by
showing quantized diagonal pumping in a two-dimensional Thouless pump.

In Chapter 5, we exploit that our analytic proof is only valid at low power. We
theoretically and experimentally show that, at intermediate power and when the strength
of the nonlinearity overcomes the band gap, soliton transport in Thouless pumps can
be fractionally quantized. This happens, as the soliton follows the maximally-localized
multi-band Wannier states that have fractional winding. To experimentally prove this
point, we map out the propagation of a soliton in a suitable Thouless pump over two
periods. We experimentally observe fractional pumping by -1/2 unit cells after one
period and -1 after two periods. Furthermore, we numerically show that in a Thouless
pump with more bands, a rich plateaux structure emerges with integer and fractionally
quantized plateaux.

In Chapter 6, we theoretically describe fractional Thouless pumping in fermionic
few-particle systems with integer filling and strong repulsive interactions. The effect
occurs for two energetically close energy bands, when every second multi-band Wannier
is occupied, which have fractional winding. Using exact diagonalization and density
matrix renormalization group calculations we show that finite systems (up to a maximum
system size) have a degenerate ground state manifold separated from higher bands that
support average pumping of 1/2 particles per period at intermediate adiabaticity, without

4



breaking the underlying discrete translation symmetry.
Finally, in Chapter 7, we present experimental advances in the fabrication of deep-

etched two-dimensional photonic crystals in doped crystalline YAG. We explore the
influence of crucial fabrication parameters, particularly analyzing the impact of the
writing power on the etching depth. By controlling the power as a function of writing
depth, we demonstrate the ability to fabricate large arrays with sub-micrometer lattice
constants and deterministically varying etching depth.

We conclude this dissertation with a summary of the work, outlining its impacts and
providing an outlook.
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Chapter 2 |
Theoretical and experimental back-
ground

This chapter introduces the theoretical and experimental background knowledge. Firstly,
Thouless pumps – the central topological system investigated in this dissertation – are
discussed, with emphasis on deriving the equations for the anomalous velocity and
quantization of particle transport. Afterwards, we will introduce the Wannier basis,
which is central for the theoretical understanding of soliton Thouless pumping. Finally,
we introduce coupled waveguide arrays – the main experimental platform used in this
dissertation. We discuss the fabrication and experimental properties of waveguides arrays
and the formation of spatial solitons at high intensities due to Kerr nonlinearities.

2.1 Thouless pumps
The work in this dissertation is centered around discovering and exploring topological
protection and the emergence of quantization in nonlinear optical systems, where the
nonlinearity describes the interactions between photons in the mean-field limit. In the
following, we will provide a brief theoretical introduction to the topological model used
in this dissertation: Thouless pumps. Additional information about Thouless pumps can
be found in the review paper in Ref. [41].

2.1.1 Introduction to Thouless pumps

Thouless pumps are spatially periodic, one-dimensional systems, with an additional
time-periodic modulation. Often referred to as 1+1 dimensional models (one space
and one time/modulation dimension), transport in Thouless pumps – integrated over
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Figure 2.1. Prototypical Thouless pump. A periodic potential landscape (with lattice
constant L) is slowly sliding to the right. The system is time-periodic with period T . Gray
areas highlight one unit cell. Red arrows show the displacement of the potential at times t=T/3,
2T/3 and T . According to Thouless, particle transport is quantized in an infinite system with
adiabatic modulation and filled bands.

one modulation cycle and across a boundary – is integer quantized for infinite systems,
adiabatic modulation and full bands [29]. Thouless pumps were introduced by David
J. Thouless. By way of example he considered a slowly sliding potential, V (x, t) =
V0(x) + V1(x − vt), where x denotes the spatial coordinate, v the speed of the sliding
potential and t time (see Fig. 2.1). In this setting, the potential is also periodic in time
as the system comes back to itself after a period T = v/a, where a is the lattice constant.
Thouless showed that the integrated current over one period can vary continuously in a
torus, but is integer quantized (in multiples of the lattice constant) in an infinite periodic
system with filled bands when the adiabatic theorem applies. Under these conditions,
transport is topologically protected and does not depend on the exact details of the
potential or the modulation. This makes Thouless pumps formidable topological models
to study the topological protection of transport.

Furthermore, Thouless pumps have a deep connection with the integer quantum Hall
effect, and the quantization of particle transport in Thouless pumps directly relates to the
quantized conductance in the integer quantum Hall effect. When the time/modulation
dimension is replaced with a second wavevector dimension, quantization is described
mathematically identically and by the same topological invariant, the Chern number. We
will make use of this connection in Chapter 2.1.3 to derive a specific example of a Thouless
pump via dimensional reduction. In contrast to two-dimensional Chern insulators and
their continuous counterpart the integer quantum Hall effect, Thouless pumps do not
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need to explicitly break time-reversal symmetry using gauge fields; instead, it is in-built
into the modulation. This facilitates implementations in photonics due to the design
flexibility available in fabricated structures (see also Chapter 2.3.1) to realize arbitrary
modulations but stands in the way of condensed matter implementations, where it is a
challenge to precisely engineer time-dependent Hamiltonians.

Originally developed for electronic systems, it has been realized that topological
protection and therefore also Thouless pumping is a general wave phenomena. Indeed,
experimentally, Thouless pumps are mostly studied in bosonic platforms. To observe
quantization, bosonic systems must mimic their electronic counterpart with a uniform
band occupation, typically achieved by exciting the system with a localized Wannier
state (see Chapter 2.2 for an introduction to Wannier states) that by definition has a
uniform band projection. Alternatively, Bloch oscillations [42] have been used or coupling
to a bath has been proposed [43]. In photonics, the first observation of Thouless pumping
was reported in a quasi-periodic array of evanescently coupled waveguides [44] with end
state to end state pumping. Since then, Thouless pumping has also been observed in
ultracold atoms in optical lattices with effectively hard-core bosons [45] and fermions [46].
To name a few more works, dissipative Thouless pumps have been studied in Ref. [47]
and building upon their synthetic dimension, Thouless pumps have also been used to
simulate properties of the four-dimensional quantum Hall effect [48, 49]. A recent review
on Thouless pumps can be found in Ref. [41].

On the theory side, Thouless pumps have had tremendous success explaining topolog-
ical behavior in the presence of disorder and interactions. It was first shown for fermionic
Thouless pumps that topological protection persists even in the case of many-body interac-
tions and substrate disorder, as long as the bandgap stays open [30]. The proof was later
generalized to two-dimensional systems [31] and led to the introduction of the many-body
Chern number (a generalized version of the Chern number), which is calculated using
twisted boundary conditions. In a numerical study it has been shown that for large
systems the calculation can be reduced to a single boundary condition as the the bulk
behavior is boundary independent [50]. For bosons, robustness against disorder has been
studied experimentally in coupled waveguide arrays [51]. For interacting bosonic systems
less is known. Amongst others, it has been predicted that few attractively interacting
particles can show pumping [52, 53] and that repulsive bosons show integer quantized
pumping, as long as the superfluid phase is avoided [54]. Disordered fermionic Thouless
pumps have been studied in Ref. [55] and the effect of interactions on quantization in
Ref. [56].
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2.1.2 Adiabatic evolution, Berry phase and quantization of pumping

In this section, we derive the quantization of particle transport in Thouless pumps as
originally shown in Ref. [29]. Further information can be found in Refs. [57,58]. Along
the way we introduce important concepts of topological physics, namely the Berry phase,
the Berry curvature, and the Chern number.

Suppose a system is described by a Hamiltonian Ĥ(R) that depends on some arbitrary
parameter R(t) that is slowly (and we will later define what slowly means) modulated
in time. Our aim is to calculate the particle transport induced by this modulation. As
we will see in Chapter 2.3, for coupled waveguide arrays, time t has to be replaced with
the propagation distance z, but the physics remains the same. We revert here to using
time t, as this is the stereotypical case the reader would see the derivation also elsewhere.
Instead of staying completely general, we assume the system is a Thouless pump, that
is spatially one-dimensional with translation symmetry and we work in the wavevector
representation using Ĥk(R), where k is the Bloch wavevector. At each point in time t,
the instantaneous eigenstates |uα,k(t)⟩ with eigenenergy Eα,k(t) are given by:

Ĥk(R(t))|uα,k(t)⟩ = Eα,k(t)|uα,k(t)⟩. (2.1)

Here, we have introduced another quantum number, α, that denotes the band index (and
possibly other relevant quantum numbers) as known from condensed matter systems.
(Note, that we do not use the standard notation of n for the band index, as n will later
enumerate the sites of tight-binding lattices). The |uα,k(t)⟩ are the cell-periodic parts of
the Bloch wavefunction. An introduction to the Bloch basis is given in Appendix A. A
general wave function |ϕ(t)⟩ must satisfy the time-dependent Schrödinger equation (we
have set ℏ = 1)

i∂t|ϕ(t)⟩ = Ĥ(t)|ϕ(t)⟩. (2.2)

and we have dropped the quantum number k for the moment, as translation invariance
forbids coupling between different k values. The expansion of the wavefunction in terms
of the instantaneous eigenstates of the Hamiltonian is

|ϕ(t)⟩ =
∑
α

cα(t)e−i
∫ t

0 Eα(t′)dt′ |uα(t)⟩, (2.3)

where the dynamical phase is factored out. Plugging Eq. (2.3) back into Eq. (2.2) and
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using orthonormality between eigenstates results in

ċα(t) = −cα(t)⟨uα(t)|∂t|uα(t)⟩ −
∑
β ̸=α

cβ(t)e−i
∫ t

0 (Eβ(t′)−Eα(t′))dt′⟨uα(t)|∂t|uβ(t)⟩. (2.4)

Time differentiating Eq. (2.1), taking the internal product with ⟨uβ(t)|, and switching
the index labels (α ↔ β), leads to

⟨uα(t)|∂t|uβ(t)⟩ = −⟨uα(t)|Ḣ|uβ(t)⟩
Eα(t) − Eβ(t) (2.5)

and we realize that we can neglect the second term on the right-hand side of Eq. (2.4),
as long as as the rate of change of the Hamiltonian is small compared to the energy
spacing between energy levels. This is the adiabatic approximation [59]. Of course, this
can always be achieved for systems with finite energy gaps in the limit of Ṙ → 0, which
is refered to as the adiabatic limit.

When neglecting the second term on the right-hand side, Eq. (2.4) decouples and
subsequently can easily be solved via

cα(t) = eiγα(t)cα(0), (2.6)

where we have defined the Berry phase γα(t) = i
∫ t

0 ⟨uα(t′)|∂t′|uα(t′)⟩dt′. It is easy to show
that the Berry phase is real. Thus, during an adiabatic time evolution, the expansion
coefficients, cα are only multiplied by a complex phase and do not change their magnitude.
This constitutes the main message of the adiabatic theorem: For an adiabatic modulation,
no excitations to energy states of higher or lower bands occur, as |cα(t)|2 = |cα(0)|2. Most
importantly for Thouless pumps, this means that an initial uniform band occupation
will stay a uniform band occupation during the complete pumping cycle.

The Berry phase can be rewritten as an integral over parameter space

γα(t) = i
∫ t

0
⟨uα(t′)|∂t′ |uα(t′)⟩dt′ = i

∫ R(t)

R(0)
⟨uα(R′)|∂R′ |uα(R′)⟩dR′, (2.7)

which shows that it only depends on the path that is taken in parameter space, but not
on the elapsed time. Hence, it is called a geometric phase. Originally, it was thought
that this geometric phase is merely a phase choice and can be gauged away by redefining
the eigenstates. While this is true for open paths, Berry realized that this is not true
anymore if the path is closed in parameter space (e.g. the modulation is cyclic) and
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the Hamiltonian comes back to itself [60]. In this case, γα becomes a gauge invariant
quantity and has physical consequences [61]. We will revisit this point in Chapter 2.2.3
when we discuss the relation between Wannier states and Thouless pumps.

Before we can derive the quantization of particle transport, we have to consider the
wavefunction to first-order correction. Suppose we initially have cα(0) = 1, such that
cα(t) ≈ 1 and cβ ̸=α is of first order in the rate of change of R. Then, to first order in the
rate of change of R (neglecting terms such as Ṙ2, R̈ and cβṘ), the wavefunction is given
by [29]

|ϕ(t)⟩ = e−i
∫ t

0 Eα(t′)dt′eiγα(t)

|uα(t)⟩ + i
∑
β ̸=α

⟨uβ(t)|∂t|uα(t)⟩
Eβ − Eα

|uβ(t)⟩
 . (2.8)

As expected, this quasiadiabatic wavefunction mostly occupies |uα(t)⟩ with slight correc-
tions stemming from other bands due to non-perfect adiabaticity.

Using Ehrenfest’s theorem, the expectation value for the velocity (in the wavevector
representation) of a particle with quantum numbers k and α is

vα,k(t) = d⟨x⟩
dt

= i⟨[Ĥ, x̂]⟩ =
〈
∂Ĥk(t)
∂k

〉
, (2.9)

where we have reintroduced the wavevector k. Using Eq. (2.8) and only keeping terms
to first order, leads to [57]

vα,k(t) = ∂Eα,k(t)
∂k

+ i
∑
β ̸=α

⟨uα,k(t)|∂t|uβ,k(t)⟩⟨uβ,k(t)|∂Ĥk(t)
∂k

|uα,k(t)⟩
Eα,k(t) − Eβ,k(t)

− c.c.

 , (2.10)

where c.c. denotes the complex conjugate. The first term on the right hand side of
Eq. (2.10) is the group velocity, v(gr)

α,k (t), defined by the band structure of the sys-
tem. The second term is called the anomalous velocity, v(a)

α,k(t). On first sight, this
result is puzzling as the velocity is determined as a function of unoccupied bands [58].
But we know that in the adiabatic limit, those states do not participate. To re-
solve this, we use ⟨uβ,k(t)|∂Ĥk(t)

∂k
|uα,k(t)⟩ = (Eβ,k(t) − Eα,k(t)) ⟨uβ,k(t)|∂k|uα,k(t)⟩ and∑

β |uβ,k(t)⟩⟨uβ,k(t)| = 1 to rewrite the anomalous velocity as [57]

v
(a)
α,k(t) ≡ ṘΩα(k,R), (2.11)

where we have defined Ωα(k,R) as the gauge-invariant Berry curvature over the two-
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dimensional parameter space (k,R) as

Ωα(k,R) = i

[〈
∂uα,k(t)
∂R

∣∣∣∣∣∂uα,k(t)∂k

〉
−
〈
∂uα,k(t)
∂k

∣∣∣∣∣∂uα,k(t)∂R

〉]
. (2.12)

Finally, we are in the position to calculate the transport of a single particle during one
adiabatic cyclic modulation. The center of mass displacement per period of a particle in
a state labelled by wavevector k and in band α is given by the time-integrated velocity as

∆xα,k =
∫ T

0
v

(gr)
α,k (t)dt+

∫ R(T )

R(0)
Ωα(k,R)dR. (2.13)

It is simple to see, that this quantity is non-quantized as the first term ins unbounded.
Instead, we consider a particle that uniformly occupies all k states within an isolated
band. Equivalently we can consider a completely filled band. In both cases the integrated
group velocity is zero and the first term vanishes. Thus, the center of mass displacement
after one period is

∆xα = a

2π

∫
BZ
dk
∫ R(T )

R(0)
Ωα(k,R)dR

= a

2π

∮
Ωα(k,R) dk dR

≡ a · C (2.14)

where a is the lattice constant and the integral is over the first Brillouin zone (BZ). In
the third line we combined the integrals to show that the integral is closed due to the
periodicity of the Brillouin zone as well as the periodicity of the modulation. The last
equality defines the Chern number, C, via

∮
Ωα(k,R) dk dR = 2πC. By converting the

surface integral (of a closed torus) into a contour integral using Stoke’s theorem, it can
be shown that the Chern number is integer quantized [6, 57]. It is called the topological
invariant of the system and characterized the transport properties of single isolated
bands.

In summary, for an adiabatic modulation, and a uniformly filled band, the center of
mass displacement per period is integer quantized by the Chern number in units of the
lattice constant. Apart from the mathematical description presented in this section, there
is a more intuitive way to understand the quantization of Thouless pumps in terms of
the the center of mass positions of Wannier states. We discuss this approach in Chapter
2.2.3, after introducing the Wannier basis.
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2.1.3 Relation to 2D systems and dimensional reduction

Finally, we discuss the question, how to find a nontrivial (Chern number different
from zero) Thouless pumping model. The simplest and often most practical way is
through dimensional reduction: Take any two-dimensional Chern insulator system, that
is described by the Hamiltonian Ĥ(kx, ky), and promote one of the wavevectors to denote
the cyclic modulation kya → R(t). Then, the new Hamiltonian Ĥ(kx, R) represents a
spatially one-dimensional system that is periodically modulated in time. By definition
the resulting Thouless pump will show quantized pumping dictated by the Chern number
of the two-dimensional Chern insulator. While this method is general, the resulting
Thouless pumps can have complicated Hamiltonians and long-range hoppings which
are difficult to realize experimentally. Of course, also the reverse way of dimensional
extension is possible: Any Thouless pump can be promoted to be a two-dimensional
Chern insulator and the quantization of transport is directly related to the quantization
of conductance in the two-dimensional case.

One simple Thouless pumping model can be derived from the Harper-Hofstadter
model, which describes a square lattice with nearest-neighbor hoppings of strength |J |
and a perpendicular magnetic field. Assuming a threaded flux of one third of a flux
quantum per plaquette, the tight-binding Hamiltonian (in wavevector representation) is

H(kx, ky) =


−2J cos(kya) −J −Je−ikxa

−J −2J cos
(
kya+ 2π

3

)
−J

−Jeikxa −J −2J cos
(
kya+ 4π

3

)
 . (2.15)

Replacing kya → R(t) = Ωt, turns Eq. (2.15) into a spatially one-dimensional model
with a three-site unit-cell. Thouless pumping is realized through periodically modulating
the strength of the on-site potential with different phase offsets for the three sites per
unit cell. This model is called the diagonal Aubry-André-Harper (AAH) model [62–64].
In femto-second laser written waveguides the on-site potential modulation can be realized
by changing the speed of translation during the fabrication process. But the level
of control is much lower compared to a modulation of the nearest-neighbor hopping
strengths. Therefore, we use the off-diagonal version of the AAH model, in which the
modulation occurs in the hopping strengths. Equation (2.16) shows the Hamiltonian of
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the off-diagonal version

H(kx,Ωt) =


0 −J12(t) −J31(t)e−ikxa

−J12(t) 0 −J23(t)
−J31(t)eikxa −J23(t) 0)

 (2.16)

with

J12(t) = J + ∆J cos (Ωt) (2.17)

J23(t) = J + ∆J cos
(

Ωt+ 2π
3

)
(2.18)

J34(t) = J + ∆J cos
(

Ωt+ 4π
3

)
(2.19)

In this model, the hoppings have a mean strength of J , modulated with a strength of ∆J .
In typical experiments |∆J/J | < 1, such that the hoppings do not change their phase (e.g.
change from positive to negative) during the pumping cycle. Despite their similarities,
the diagonal and the off-diagonal AAH models are topologically not equivalent [64].
Using the above description it is easy to generalize the AAH model to models with more
sites per unit cell (as will be necessary in Chapter 5).

2.2 The Wannier basis
Wannier functions are an essential ingredient for the understanding of the theory and the
experiments presented within this dissertation and perhaps the simplest way to understand
Thouless pumping. In particular, Wannier functions will be of fundamental importance
for the derivations presented in Chapter 4. In the following, we will first introduce
single-band Wannier states and their most important properties, before extending the
discussion to multi-band Wannier states. Finally, we will show the relation between
Wannier states and Thouless pumping. We exclusively discuss one-dimensional Wannier
states as are important in Thouless pumping. This section is based on an a review of
Wannier functions in the context of topology that can be found in Ref. [65].
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2.2.1 Single-band Wannier states

Assuming an isolated energy band, the single-band Wannier functions of band α, |wR,α⟩,
are defined as [66]

|wR,α⟩ = 1√
N

∑
k

e−ikR|Bk,α⟩, (2.20)

where N is the number of unit cells and the sum over k includes all values of the
wavevector k in the Brillouin zone that are consistent with periodic boundary conditions.
|Bk,α⟩ denotes the Bloch states of band α. We define the Bloch basis in Appendix A.
There are as many single-band Wannier states as unit cells. Hence we use the lattice
vector R to enumerate them. We have given the discrete definition here; in the continuum
formulation the summation over k is replaced with an integral over the 1-dimensional
Brillouin zone ∑k → N

ΩBZ

∫
BZ, where ΩBZ = 2π/a is the volume of the Brillouin zone.

Examples of single-band Wannier states for two different bands in a three band model
are shown in Fig. 2.2a and c.

In other words, single-band Wannier states are the Fourier transform pairs of the Bloch
states of a single band. Furthermore, in Appendix A, we prove the following important
properties of Wannier states: (1) We show the orthogonality and completeness of Wannier
states. And (2), we show that different Wannier states are related by translations of
multiples of the lattice vector (see also Fig. 2.2a and c). This means, that once a single
Wannier function is found, all others are easy to construct. From Eq. (2.20) it is also
apparent, that Wannier states are not uniquely defined. Instead, each Bloch wavefunction
Bk,α can be defined with a different phase Bk,α(r) → eiζk,αBk,α(r). This gauge choice can
be used to change the localization properties of the Wannier states. In one-dimensional
systems, it has been shown that Wannier states can always be chosen to be real and
exponentially localized. A proof for crystals with inversion symmetry can be found in
Ref. [67], and for more general crystals without inversion symmetry in Ref. [68].

As all Wannier states are just translational copies of each other, we can select one
individual, discuss its properties, and then generalize. For simplicity, we focus on the
Wannier state denoted by R = 0. From Eq. (2.20) it is now easy to see, that Wannier
states are simply a summation over all Bloch states. Thus, if we prepare a particle in a
Wannier state, its wavefunction has a uniform projection onto the respective energy band,
as illustrated in Fig. 2.2b and d, in which a single-band Wannier state is projected onto
the Bloch eigenstates. Hence, Wannier states meet the requirements necessary to observe
quantized transport in Thouless pumps. In particular, an adiabatically-modulated system
initially excited with a Wannier state, will have a uniform band projection at all times.
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Furthermore, Wannier states can be chosen strongly localized, and are therefore ideal
excitations in photonic waveguide experiments, where localized excitations are simpler to
realize.

The localization properties [69] are one main advantage of the Wannier basis compared
to the Bloch basis. Typically, the most important Wannier states are the most localized
ones (e.g. with the smallest spread) which are referred to as maximally-localized Wannier
states and are the solid state equivalent of localized molecular orbitals. A localized basis
bears advantage as short-range interactions will only mediate interactions between few,
not too distanced Wannier states, but all Bloch states are needed to equivalently describe
the interactions.

While it is simple to define Wannier functions in any dimension, it took until Marzari
and Vanderbilt [70] to introduce a practical way to numerically find maximally-localized
Wannier states. The exception is one dimension, for which maximally-localized Wannier
states can be conveniently calculated as the eigenvectors of the projected position operator
P̂ X̂P̂ [71], where P̂ = ∑occ

k |Bk,n⟩⟨Bk,n| is the projection operator of the occupied band
and X̂ = diag(ei2πx̂/N) is the Resta position operator [72] with x̂ being the standard
position operator.

Given the exponential localization of Wannier states, their center of mass position is
meaningful. Due to its relevance for Thouless pumping, we explicitly derive it here in
one dimension. For simplicity, we use R = 0 and the continuum formulation and first
calculate the effect of the position operator on a Wannier state:

x̂|w0,α⟩ = a

2π

∫ 2π/a

0
dk xeikx|uk,α⟩

= a

2π

∫ 2π/a

0
dk (−i∂keikx)|uk,α⟩

= a

2π

∫ 2π/a

0
dk eikx(i∂k|uk,α⟩), (2.21)

where we have used partial integration for the third line. The center of mass position of
a single-band Wannier state (defined as the diagonal position operator matrix element)
in one dimension is given by:

⟨w0,α|x̂|w0,α⟩
V

=
(
a

2π

)2 ∫ 2π/a

0
dq
∫ 2π/a

0
dk ⟨uq,α|(ei(q−k)xi∂k|uk,α⟩

V

=
(
a

2π

)2 ∫ 2π/a

0
dq
∫ 2π/a

0
dk ⟨uq,α|(ei(q−k)xi∂k|uk,α⟩

UC

∑
R

ei(k−q)R
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Figure 2.2. Wannier functions in a multi-band model. a, Maximally-localized single-
band Wannier functions of the lowest (α=1) band shown in three neighboring unit cells.
Equivalently, these are non-maximally-localized multi-band Wannier states. b, Projection of
a single-Wannier state from a onto the Bloch states showing with uniform occupation of the
lowest band. The dashed lines illustrates the position of bands with no projection. c,d, Similar
to a,b, but for the second-lowest band (α=2). e, Examples of maximally-localized multi-band
Wannier functions of the lowest two bands localized in three neighboring unit cells. There are
two Wannier functions localized in each unit cell. f, Projection of the two different multi-band
Wannier functions from e onto the Bloch states, that show nonuniform occupation. When both
panels are overlaid, the occupation becomes uniform in both bands.
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= a

2π

∫ 2π/a

0
dq
∫ 2π/a

0
dk ⟨uq,α|(ei(q−k)xi∂k|uk,α⟩

UC
δ(k − q)

= a

2π

∫ 2π/a

0
dk ⟨uk,α|i∂k|uk,α⟩

UC

= a

2πγα, (2.22)

where the subscript V denotes an integration over the whole system, while UC denotes
an integration over the unit cell only. In the last line, we have used the definition of the
Berry phase. Importantly, the Berry phase is calculated for a closed path through the one-
dimensional Brillouin zone, instead of an externally modulated parameter (as described
in Chapter 2.1.2), a far from trivial realization first made by Zak [73]. According to
equation 2.22, the center of mass of a single-band Wannier state within a unit cell is given
by the Berry phase that is gauge independent, confirming that gauge invariant quantities
are important as they often have physical meaning. In this case, it has been realized that
the Berry phase (and therefore the position of the Wannier state) can be used to define
the polarization, in what is now known as the modern theory of polarization [72,74,75].

2.2.2 Multi-band Wannier states

If two or more energy bands are degenerate, single-band Wannier states cannot be
defined anymore [69]. Instead, if a group of bands is isolated from all other energy bands,
multi-band Wannier states can be defined as

|wR,α̃⟩ = 1√
N

∑
k

e−ikR|B̃k,α̃⟩, (2.23)

where, importantly, |B̃k,β̃⟩ are not Bloch states, but rather a combination of Bloch states
(of same k) from different bands:

|B̃k,α̃⟩ =
∑
α

Uα̃,α(k)|Bk,α⟩. (2.24)

Here, Uα̃,α(k) is a unitary matrix that defines the degree of mixing of the Bloch states
of different bands within the multi-band Wannier state and defines the gauge for the
multi-band Wannier states. For multi-band Wannier states α̃ looses its meaning as a
band index, but merely enumerates the multi-band Wannier states ranging from one
to the number of bands involved and we find the same number of Wannier states in
each unit cell. Most properties of single-band Wannier states carry over to multi-band

18



Wannier states, including orthogonality, completeness and relation via translation.
Due to the k dependent mixing of Bloch states of different bands, multi-band Wannier

states generally cannot be identified with a single band, but only with a group of bands.
Furthermore, multi-band Wannier states show nonuniform (and non-universal) occupation
of the bands (see Fig. 2.2f) and no quantization is expected in linear Thouless pumping
for such an excitation. Using a particular gauge choice, namely Uα̃,α = δα̃,α, we see that
single-band Wannier states are one example of multi-band Wannier states.

The possibility of different gauge choices lead to different multi-band Wannier states
and gauge dependent centers of mass, which is in contrast to the single-band Wannier
states. The analogue gauge-invariant quantity is the sum of the centers of mass of
the multi-band Wannier states [65]. We show examples of multi-band Wannier states
(with different gauge choices) in Fig. 2.2 a,c,e. Clearly, the center of mass of individual
multi-band Wannier states is gauge-dependent. Similar to the single-band Wannier
states, typically, maximally-localized multi-band Wannier states are desired. In one
dimension maximally-localized multi-band Wannier states can be efficiently calculated
as eigenstates of the projected position operator, when projecting into the subspace
of multiple bands. We point out that multi-band Wannier states can be calculated
for groups of energetically separated bands, but must be used (instead of single-band
Wannier functions) for degenerate bands.

2.2.3 Relation to Thouless pumping

In Chapter 2.2.1, we have shown that the center of mass position of single-band Wannier
state is given by the Berry phase. In Chapter 2.1.2 we have derived an equation for the
center of mass displacement of a wavefunction with a uniform band projection during an
adiabatic Thouless pumping process. Here, we combine both results to show that the
quantization in Thouless pumping can be analyzed by the center of mass displacement
of single-band Wannier states. In other words, in Thouless pumps, the winding of the
Wannier states is equal to the Chern number.

Using Eq. (2.14), the center of mass displacement after one period and for a particle
that uniformly occupies a single band is given by

∆xα = a · C

= a

2π

∮
Ωα(k,R) dk dR
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= a

2π

∫ R(T )

R(0)
dR

(∫ 2π
a

0
dkΩα(k,R)

)

= a

2π

∫ R(T )

R(0)
dR

(
i
∫ 2π

a

0
dk (⟨∂Ruk,α(R)|∂kuk,α(R)⟩ − ⟨∂kuk,α(R)|∂Ruk,α(R)⟩)

)

= a

2π

∫ R(T )

R(0)
dR

(
i
∫ 2π

a

0
dk (⟨∂Ruk,α(R)|∂kuk,α(R)⟩ + ⟨uk,α(R)|∂R∂kuk,α(R)⟩)

)

= a

2π

∫ R(T )

R(0)
dR

∂

∂R

(
i
∫ 2π

a

0
dk ⟨uk,α(R)| ∂

∂k
|uk,α(R)⟩

)

= a
∫ R(T )

R(0)
dR

(
1

2π
∂

∂R
γα(R)

)
. (2.25)

This set of equations is most easily verified from bottom to top, where we have used the
product rule for differentiation from the sixth to the fifth line, and partial integration
from the fifth to the forth line. The result shows that the integrated change of the Berry
phase divided by 2π is equal to the Chern number. As the Berry phase (calculated
over the Brillouin zone) determines the position of the single-band Wannier states, the
change of the Berry phase is equal to change of the position of the Wannier states. As
a result, tracking the position of the instantaneous Wannier states as a function of the
adiabatic parameter R, is perhaps the easiest way to calculate the Chern number and to
analyze the topology of Thouless pumps. For a Chern number C, the Wannier states are
being displaced by C unit cells after each period and the position of the Wannier states
(projected into one unit cell) winds C times around the unit cell. This argument can be
generalized to multi-band Wannier states, where the winding of sum of the centers of the
multi-band Wannier states gives the sum of the Chern numbers of the respective bands.

2.3 Coupled waveguides
The extremely rich and versatile world of coupled waveguides forms the basis of the
experimental work in Chapters 3 and 5. For this dissertation, we define a waveguide
as a structure that confines light in two spatial directions while it is free to propagate
in the remaining third. The transverse spatial shape of the waveguide determines the
mode of the waveguide, meaning the electric field profile that is supported. Waveguides
can support multiple modes (multi-mode waveguides) but here we are only concerned
with single-moded waveguides. Perhaps the most commonly known waveguides are
optical fibers that form the backbone of today’s internet architecture and can be drawn
with lengths of tens of kilometers. Apart from drawing optical fibers, waveguides can
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be fabricated and explored in a variety of ways, amongst them in silicon photonics,
plasmonics, or using laser writing. The techniques differ in precision, propagation losses,
and their capabilities to write arbitrary configurations. In this dissertation, we use femto-
second laser written waveguides [76,77], which can be fabricated with high precision, low
propagation losses and in arbitrary 3D configurations [78].

In the following, we first introduce the fabrication of waveguides using femto-second
laser writing. Second, we rederive the paraxial equation that governs the propagation of
light in our waveguide arrays. As the paraxial equation is mathematically identical to the
Schrödinger equation, waveguide arrays can be used to investigate a plethora of physical
effects, including Hamiltonians known from condensed matter. We further introduce
the tight-binding approximation and the effects of nonlinearities on the propagation of
light, in particular the formation of spatial solitons. Finally, we will introduce directional
couplers, the workhorse device to measure the most important experimental parameters
in coupled waveguide arrays.

2.3.1 Direct femto-second laser writing

Perhaps the most versatile technique for the fabrication of coupled waveguides is direct
femto-second laser writing [76, 77, 79, 80]: A high power laser beam is focused into a
suitable host material, that is translated through the focal point. At the focal point
(more precisely, focal volume), multi-photon processes lead to a permanent change of the
refractive index [78]. For an illustration of this process, see Fig. 2.3.

The index changing process depends on the material and can lead to a increase of the
refractive index (densification) or decrease of the refractive index, typically on the order
of 10−3. To guide light, an increase in the refractive index is needed (as will become clear
in Chapter 2.3.2) and the properties of such waveguides are highly analogous to those
of drawn optical fibers. Popular materials, that lead to a refractive index increase, are
fused silica [78] and borosilicate glass (e.g. Corning Eagle XG). The latter is the material
used in this dissertation. But even in the case of a decrease in the refractive index,
waveguides can be written (see for example the review in Ref. [81]). Those, so-called,
type-2 waveguides, typically consist of two patterned regions that embrace an unperturbed
region, which therefore locally has a higher refractive index compared to its surrounding.
While waveguiding is possible in this configuration, it is comparatively harder to write
low-loss waveguides with reproducible coupling strengths. Type-2 waveguides are used
when there is no alternative material with a refractive index increase, as is the case
for doped glasses suitable for lasing [82]. Typically, type-2 waveguides are not used for
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Figure 2.3. Direct femto-second laser writing. Focusing a femto-second laser beam into
a suitable material leads to a permanent change in the refractive index. a, In the multi-pass
technique, the sample is translated multiple times with small transverse displacements, to build
up the desired refractive index profile, as illustrated in the inset. b, An adjustable slit, placed
before the focusing lens, widens the focal spot such that waveguides can be written using only
a single translation. This figure is replicated from Ref. [1]

waveguide arrays.
Simply focusing a laser beam into a suitable material, will lead to a change of

the refractive index with a highly elliptical cross-section. In the transverse direction
(orthogonal to the axis of the fabrication laser beam), the width of the created refractive
index profile can even be smaller than the linear diffraction limit, as it stems from a
multi-photon absorption process. In the longitudinal direction (parallel to the axis of the
fabrication laser beam), the width of the created refractive index profile is typically larger.
While those structures can guide light, it can be difficult to make them single-moded and
write structures with well defined couplings in all directions. Furthermore, the modes
typically have large propagation losses. More suitably shaped refractive index profile
changes can be fabricated, for example, using the multi-pass technique or slit-beam
shaping.

In the multi-pass technique, the sample is translated through the focus multiple
times, with a small transverse off-set to build up the desired refractive index profile
shape (see Fig. 2.3a). In principle, this technique allows for a precise control of the
shape of the refractive index profile on the expense of being very time-consuming as
each waveguide needs multiple passes. Using slit-beam shaping [83], waveguides can be
written via a single translation. A mechanical slit is inserted in front of the focusing lens
parallel to the writing direction (see Fig. 2.3b). As a result, the focal spot widens in
the transverse direction, while simultaneously decreasing in the longitudinal direction.
Typical fabrication parameters (as used for the work within this dissertation) are listed
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Central wavelength of fabrication laser 1030 nm
Laser repetition rate 500 kHz
Temporal pulse width ≈260 fs

Average power 500-550 mW
Laser polarization circular

Slit width 1.8 mm
Numerical Aperture 0.4
Translation speed 8 mm/s

Table 2.1. Fabrication parameters. Typical fabrication parameters for Eagle XG substrates
using a Menlo BlueCut femto-second fiber laser system.

in Table 2.1. The resulting waveguides are slightly elliptical and have propagation losses
as low as 0.3 dB/mm.

2.3.2 Paraxial equation and tight binding

In the following subsection we turn to the mathematical description of electromagnetic
wave propagation in femto-second laser written waveguide structures. The propagation
of electromagnetic fields is described by Maxwell’s equations. Directly solving Maxwell’s
equation (as done in finite-difference time domain simulations), is not efficient for
typical waveguide configurations. Instead, the propagation in waveguides with a small
refractive index change (as in femto-second laser written waveguides) is described by
the paraxial equation. We first rederive the paraxial equation and make the analogy
to the Schrödinger equation apparent. Afterwards, we will introduce a corresponding
tight-binding description that simplifies numerical calculations and is used throughout
this dissertation. More information can be found for example in Refs. [84,85].

Suppose we are given a system described by the refractive index profile n(r) =
n0 + ∆n(r), where n0 denotes the refractive index of the ambient medium (e.g. Eagle
XG glass) and ∆n(r) describes the small refractive index changes due to femto-second
laser writing. r is the position vector, with components in the x−, y− and z-direction.
We assume that the propagation direction of the waveguides is parallel to the z-direction.
The four macroscopic Maxwell’s equations in matter that describe the propagation of
electromagnetic waves are as follows (using SI convention):

∇ · D = ρf (2.26)

∇ · B = 0 (2.27)
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∇ × E = −∂B

∂t
(2.28)

∇ × H = Jf + ∂D

∂t
(2.29)

Here, E and B denote the electric and magnetic field, D and H denote the displacement
and magnetic induction field, ρf and Jf are the free charge and current densities and t

is time. To keep the equations short, we mostly omit to explicitly denote the spatial and
temporal dependence of the fields.

The definition of the auxiliary displacement field D is given by the constitutive
relation that relates the components Di of the displacement field D with the components
Ei of the electric field E via a power series (see for example Ref. [86]) as

Di/ϵ0 =
∑
j

ϵijEj +
∑
j,k

χ
(2)
ijkEjEk +

∑
j,k,l

χ
(3)
ijklEjEkEl +O(E4). (2.30)

Here, ϵ0 is the vacuum permittivity. A similar equation exists for the relation between
H and B, but for most dielectric materials (including the materials used within this
dissertation), the relative magnetic permeability is scalar and close to unity (µr ≈ 1),
such that H = B/µ0, with µ0 the vacuum permeability.

To simplify the equations further, we assume the following: (1) The structure is
time-independent with no free charges and currents. (2) The field strengths are small,
such that we are in the linear regime. (3) The material is macroscopic and isotropic. (4)
We assume monochromatic light.

From assumptions (2) and (3) follows that E and D are related by a scalar dielectric
function, ϵr, also called the relative permittivity:

D = ϵ0ϵrE. (2.31)

Using Eqs. (2.28) and (2.29), together with H = B/µ0 leads to the wave equation in
medium

∇ × (∇ × E) = −∇ × ∂B

∂t
= − ∂

∂t
(∇ × B) = −µ0ϵ0ϵr

∂2E

∂t2
= −n2

c2
∂2E

∂t2
, (2.32)

where we have introduced the speed of light, c = 1/√µ0ϵ0, and the refractive index,
n = √

ϵrµr. The operator on the left-hand side couples the different polarizations and
makes Eq. (2.32) computationally intensive to solve. This is the case for regular photonic
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crystals (with large refractive index contrasts). After rewriting

∇ × (∇ × E) = ∇ (∇ · E) − ∇2E (2.33)

we can neglect the first term on the right-hand side by using the weakly guiding approxi-
mation [87], that is justified as the refractive index change in femto-second laser written
waveguides is on the order of 10−3. As a result, Eq. 2.32 becomes a scalar equation. If
we furthermore assume monochromatic light with angular frequency w0 (assumption 4),
we can write E(r, t) = E(r)e−iw0t and we are left with

∇2E = −n2w
2
0
c2 E, (2.34)

which is the Helmholtz equation.
We will now transform this equation into the paraxial equation. We start by writing

the electric field as a transverse envelope function ψ(x, y, z) that slowly changes in the
propagation direction z and a carrier part that changes rapidly: E(x, y, z) = ψ(x, y, z)eik0z.
Here, k0 = w0n0

c
is the wavevector of the carrier.

Plugging this into Eq. (2.34), and neglecting ∂2ψ
∂z2 , which is justified when |∂2ψ

∂z2 | ≪
k0|∂ψ∂z |, we find

i
∂

∂z
ψ = − 1

2k0
∇2

⊥ψ − k0

n0

n2 − n2
0

2n0
ψ, (2.35)

where ∇2
⊥ denotes the Laplacian in the transverse (x, y) directions. For femto-second

laser written waveguide arrays the refractive index change is small and we approximate
n2 ≈ n2

0 + 2n0∆n to first order in ∆n to obtain

i
∂

∂z
ψ(x, y, z) = − 1

2k0
∇2

⊥ψ(x, y, z) − k0
∆n(x, y, z)

n0
ψ(x, y, z), (2.36)

where we made the dependencies explicit again. Equation (2.36) is the paraxial equation
that governs the dynamics of light in waveguide arrays. It is mathematically identical
to the Schrödinger equation, with the propagation distance z playing the role of time
t, and the electric field envelope ψ(x, y, z) playing the role of the quantum mechanical
wavefunction. At this point, it is also clear, why we strive to create a refractive index
increase, as this leads to a potential decrease and thus to bound states and waveguiding.

Equation (2.36) can be efficiently solved using a symmetrized split step method (also
referred to as beam propagation method) [84]. For simplicity, we introduce the kinetic
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operator T̂ ≡ − 1
2k0

∇2
⊥ and the potential operator V̂ ≡ −k0

∆n(x,y,z)
n0

, such that

i
∂

∂z
ψ(x, y, z) = (T̂ + V̂ )ψ(x, y, z) (2.37)

For each operator individually, Equation (2.37) is simple to solve by exponentiation.
For example, neglecting the kinetic part, the solution is ψ(x, y, z) = e−iV̂Dzψ(x, y, 0),
where the subscript D makes it apparent that the potential operator is a diagonal operator
when acting on ψ(x, y, z). Thus, the matrix exponential reduces to an exponential of a
diagonal matrix which is simple to evaluate. When neglecting the potential operator,
the equation is solved via ψ(x, y, z) = e−iT̂ zψ(x, y, 0) = F−1

(
e−iT̂DZ Fψ(x, y, z)

)
, where

we have introduced the spatial Fourier transform, F, and its inverse, F−1, as the kinetic
operator T̂ becomes a diagonal operator (T̂D), when acting on the Fourier transformed
wavefunction Fψ(x, y, z). In the general case, when neither T̂ nor V̂ are neglected, this
procedure will has to be modified as T̂ and V̂ do not commute. We can solve for small
step sizes ∆z via

ψ(x, y, z + ∆z) = e−i(T̂+V̂ )∆z

= e−iT̂D∆z/2e−iV̂∆ze−iT̂∆z/2ψ(x, y, z)

= F−1
(
e−iT̂∆z/2 F

(
e−iV̂D∆z F−1

(
e−iT̂D∆z/2 Fψ(x, y, z)

)))
, (2.38)

where we have used the Baker-Campbell-Hausdorff formula up to second order in ∆z in
the second line. In the last line we have made explicit, how the matrix exponentials are
solved most easily. Using Fourier transforms we make sure that the matrix operators are
each time evaluated as exponentials of a diagonal matrix.

It is possible to further simplify Eq. (2.36) for waveguides arrays using a tight-binding
description when the distance between waveguides is large compared to the mode size.
Taking inspiration from condensed matter systems, we assume that the wavefunction of
the system can be approximated as a superposition of isolated orbital wavefunctions. This
is a well suited approximation for coupled waveguide systems, for which the exponentially
localized modes of isolated waveguides play the role of the the tightly-bound atomic
orbital wavefunctions. As our waveguides are single-moded we only have to take into
account one orbital per site.

For the derivation, we assume that we know the eigenstates of the isolated waveguides,
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given by

Ĥi|ψi⟩ = Ei|ψi⟩ ∀i = 1, 2, ..., N. (2.39)

Here, N is the number of waveguides and Ĥi = T̂ + V̂i is the Hamiltonian, T̂ is the
kinetic operator and V̂i is the potential operator defined by the refractive index change
of waveguide i only. Furthermore, we assume that ⟨ψj|ψi⟩ = δj,i, hence the states are
orthonormal. We aim to solve the paraxial equation for the full system, given by

i
∂

∂z
|ψ⟩ = Ĥ|ψ⟩, (2.40)

where the Hamiltonian of the full system is given by Ĥ = T̂ + ∑
i V̂i = Ĥi + ∆Ui

and the wavefunction |ψ⟩ is unknown. Analogue to tight-binding, we assume that the
wavefunction can be sufficiently well approximated by a linear combination of atomic
orbitals: |ψ⟩ = ∑

j ϕj|ψj⟩, where the ϕj are complex expansion coefficients. Using this
ansatz in Eq. (2.40) and multiplying from the left with ⟨ψi| results in:

i
∂

∂z
ϕi = ⟨ψi|Ĥ|ψ⟩

=
∑
j

⟨ψi|Ĥi + ∆Ui|ψj⟩ϕj

= ⟨ψi|Ĥi + ∆Ui|ψi⟩ϕi +
∑
j ̸=i

⟨ψi|Ĥi + ∆Ui|ψj⟩ϕj

= (Ei + ⟨ψi|∆Ui|ψi⟩)ϕi +
∑
j ̸=i

⟨ψi|∆Ui|ψj⟩ϕj

≡ Viϕi −
∑
j ̸=i

Ji,jϕj

≡ Hi,jϕj (2.41)

In the last two lines, we have defined the tight-binding Hamiltonian Hi,j , whose diagonal
entries are the on-site potentials Vi for sites i and whose off-diagonal entries are the hopping
parameters Ji,j between modes i and j. These tight-binding parameters are typically
treated as fitting parameters that are determined from the experiment. Often only the
hopping between nearest-neighbor (and sometimes next-nearest neighbor) waveguides are
taken into account, as the overlap between the tightly bounded wavefunction decreases
exponentially the further the waveguides are apart. The resulting set of N coupled
differential equations can be solved numerically extremely efficiently. Eigenvalues (and
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therefore band structures) can be calculated by diagonalization. To solve for z propagation,
we use a fourth order Runge-Kutta algorithm.

2.3.3 Nonlinearity and solitons

In the derivation of Eq. (2.36), we assumed only weak electric fields, and Eq. (2.30)
was truncated after the linear term. In the presence of strong electric fields, this is
not a good approximation anymore and higher order terms cannot be neglected. For
inversion symmetric materials (as borosilicate glass), it can be shown that the second
order terms are zero [87]. Thus, the next relevant order is three. Third order nonlinearity
is commonly known as Kerr nonlinearity. Its effect can be incorporated as an intensity
dependent change of the refractive index via n = n0 + n2|E|2.

In the paraxial approximation, the nonlinearity can be added perturbatively

i
∂

∂z
ψ = − 1

2k0
∇2

⊥ψ − k0
∆n
n0

ψ − n2|ψ|2

n0
ψ, (2.42)

where we have suppressed the spatial dependence of n(x, y, z) and ψ(x, y, z). In the
tight-binding approximation this straightforwardly translates into

i
∂

∂z
ϕj =

∑
j

Hj,iϕi − g|ϕj|2ϕj, (2.43)

where g can be treated as a parameter describing the strength of the nonlinearity that is
determined from the experiment. For a focusing nonlinearity g>0. A different derivation
can be found in Ref. [88].

Equations (2.42) and (2.43) are known as the continuum and discrete nonlinear
Schrödinger equation, respectively. The continuum version (with ∆n = 0) is also known
as Gross-Pitaevskii equation for Bose-Einstein condensates. In that case, ψ describes
the condensate wavefunction in the mean-field limit and n2 is proportional to the s-wave
scattering strength between the atomic constituents [89]. The nonlinearity therefore
describes the interaction between bosonic particles in the mean-field limit (in which
the operators are replaced with complex numbers and fluctuations around their mean
values are small). In the photonics case, the nonlinearity describes the collective effect of
photons interacting with each other mediated by the underlying medium.

The introduction of nonlinearity has severe consequences: (1) The eigenstates of the
(nonlinear) Hamiltonian do not form a complete basis anymore. As a result, most useful
tools for solving linear differential equations and even tools for an intuitive understanding,
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Figure 2.4. Observation of discrete soliton formation. Intensity distribution at the
output facet of a 76-mm-long array of straight waveguides with a separations of 19µm between
waveguides. The upper panel shows discrete diffraction for linear propagation at input power
of P=0.1 mW. The lower panel shows discrete spatial soliton formation at high input power of
P=5.5 mW.

become invalid. In non-integrable systems, not even the number of nonlinear eigenstates
is known and we have to rely on numerical techniques to find the nonlinear eigenstates.
(2) Nonlinear equations allow for particular eigenstates: solitons1 [90,91]. Solitons are
localized states even in systems with underlying translation symmetry, as the nonlinearity
breaks translation symmetry.

Solitons forming in waveguide arrays according to Eqs. (2.42) or (2.43) are localized in
space and therefore called discrete spatial solitons. They can exist when the nonlinearity
balances the (spatial) diffraction. In Fig. 2.4 we show the formation of a discrete
spatial soliton in an array of femto-second laser written waveguides at high optical power.
Intuitively, spatial solitons can be understood as eigenstates of their self-induced potential
well. In this dissertation, we work exclusively with spatial solitons, but we note that
there also exist other types, for example temporal solitons, for which the nonlinearity
balances the (temporal) dispersion and the solitons are localized in time. Temporal
solitons have important application in optical fiber systems, where they are, for example,
used to generate a supercontinuums and frequency combs. Discrete spatial solitons in
waveguide arrays were first predicted [92] and early observations of spatial solitons in
waveguides were conducted in AlGaAs [93]. In two dimensions, spatial solitons were first
observed in optically induced photonic lattices [94].

In contrast to their continuum counterpart (∆n = 0), there is no known analytical
solution for discrete solitons in the discrete nonlinear Schrödinger equation and we
rely on numerical techniques to find discrete solitons. In this dissertation, we use a
self-consistency method and a Newton iteration scheme. Both algorithms are described in
Appendix B. The discreteness has further consequences: While solitons in the continuum

1In the literature solitons are sometimes defined more strictly as nonlinear, travelling, nondissipative
wave that emerges spatially unchanged from a collision with other solitons. In this dissertation, we use a
less restrictive definition.
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can propagate shape-preserving in any direction, moving solitons in lattices radiate due
to a Peierls-Nabarro (PN) potential barrier [95]. When the soliton is localized at different
positions within the lattice, its energy is different. Thus, a moving soliton effectively
travels in a changing potential and radiates. Ultimately, after looses enough intensity,
the soliton motion comes to a stop [96,97].

The discrete solitons, discussed in later chapters of this dissertation, can be divided
into two classes: stable and unstable solitons. Stable solitons can exist infinitely long,
while unstable solitons will eventually fall apart. Already the slightest perturbations
(e.g. numerical imprecision’s) will perturb the unstable soliton enough to fall apart.
The stability of solitons can be analyzed using linear stability analysis. Linear stability
analysis is described in Appendix B.

2.3.4 Calibration of parameters using directional couplers

In this section, we will apply the tight-binding description and show how to experimentally
extract the most important parameters for waveguide systems, namely: The coupling
strength between waveguides as a function of separation, the on-site potential differences
between waveguides, and the strength of nonlinearity. These parameters can be extracted
from a two waveguide system, called directional coupler. While directional couplers are
often portrayed in a form where two waveguides are well separated, then come close
together and then separate again, we use an experimentally much simpler version as
illustrated in Fig. 2.5, consisting of two straight waveguides with a separation s over a
coupling length l.

In the tight-binding approximation (including Kerr nonlinearity), a two-waveguide
system is described by the following two equations

i
∂

∂z
ϕ1 = V1ϕ1 − J1,2ϕ2 − g|ϕ1|2ϕ1 (2.44)

i
∂

∂z
ϕ1 = V2ϕ2 − J2,1ϕ1 − g|ϕ2|2ϕ2 (2.45)

with J1,2 = J2,1 ≡ J due to reciprocity. For low input power (g = 0), the resulting set of
equations can be solved exactly and for an initial condition of ϕ1(0) = 1 and ϕ2(0) = 0,
we find for the intensity in waveguide 2 [98]:

|ϕ2(z)|2 = 1
1 +

(
∆
2J

)2 sin2

Jz
√√√√1 +

(
∆
2J

)2
 . (2.46)
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Figure 2.5. Illustration of directional couplers. Three directional couplers with equal
separation s and decreasing coupling length d (from left to right). The black arrow indicates
the excitation direction. Many relevant waveguide parameters can be calibrated using only
directional couplers, including the coupling strength J(s), an on-site potential difference V and
the strength of nonlinearity g.

This formula can be used to determine J for a given separation s between the
waveguides. For this, we excite waveguide one and measure the relative intensity |ϕ2|2

in waveguide 2, as a function of propagation length z which is given by the length
of the coupler l (see Fig. 2.6a). Fitting Eq. (2.46) to the measurement gives J as
well as an on-site potential difference ∆ = V1 − V2. Repeating this measurement for
couplers with different separations s, results in a functional form of J(s), which can be
well described by an exponentially decaying function. A typical result is shown in Fig.
2.6b. Intuitively, this can be understood by the exponentially decaying overlap (and
thus hopping strength) between the two waveguide modes for increasing separation. To
determine a relative on-site potential difference ∆, similar experiments can be performed
by writing waveguides with increasing (or decreasing) speed.

In our experiments we observe small on-site potential differences also for directional
couplers, for which both waveguides are written with identical power and speed (see Fig.
2.6c), indicating that the writing of the first waveguide leads to small environmental
changes that effect the writing of the second. While we expect that this effect is strongly
suppressed in the bulk of the system, we take care, especially in Chapter 5, that the
on-site differences can be neglected. As an alternative to directional couplers, lattices
can be used with equally spaced waveguides. While lattices have the advantage of no
on-site potential differences in the bulk, they need more space.
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Figure 2.6. Waveguide characterization using directional couplers. a, Experimentally
measured normalized intensity in waveguide 2 (red) as a function of coupling length l. The
separation s=18µm. The black line is a fit according to Eq. 2.46 resulting in J=0.10/mm and
∆=0.07/mm. b, Hopping strength J as function of separation. c, On-site potential difference
∆ as a function of separation. d, Experimentally measured normalized intensity in waveguide
1 (red) and 2 (blue) as a function of input power. Fitting numerical propagation simulations
gives a value of g=0.07/mm per mW input power.

At high power (g > 0) a single directional couplers can be used to determine the
strength of nonlinearity g. We fit the output of numerical propagation simulations to
experimentally measured output intensities, given that we have determined the hopping
strength at low power. A typical result is shown in Fig. 2.6d.
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Chapter 3 |
Integer quantized soliton Thou-
less pumping

This chapter describes the theoretical and experimental discovery of integer quantized
pumping of solitons in nonlinear photonic Thouless pumps despite a nonuniform band
projection. We find quantized soliton pumping by the Chern number for all bands. At
higher power, spontaneous symmetry-breaking nonlinear bifurcations lead to a nonlinear
phase transition resulting in a trapped soliton and zero pumping. Our implementation
using coupled waveguides is amongst the first experimental works showing the emergence
of topologically protected quantization in interacting bosonic systems. This chapter is
based on work that was done in collaboration with Sebabrata Mukherjee and Mikael C.
Rechtsman and has been published in Ref. [99].

Figure 3.1. Photonic implementation of a topological Thouless pump. a, Schematic
illustration of the implementation of a pump model in a one-dimensional waveguide array where
the waveguides are modulated in plane. b, Micrograph of the output facet showing six out of
ten unit cells for one lattice implementation.
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3.1 Introduction
In the previous chapter, we have discussed that quantized transport is topologically
protected in noninteracting/linear Thouless pumps with filled bands. Furthermore, we
introduced soliton formation in coupled waveguide arrays at high optical power. In this
chapter, we will combine both and show quantized soliton transport despite a nonuniform
band projection.

Originally, topological protection was observed in the context of the integer quantum
Hall effect [3] in two-dimensional electron gases. There, completely filled bands (for
electrons, this means low temperature and a Fermi level in a bandgap) show topologically
protected transport that results in a quantized conductance [3, 6] and, according to the
bulk-boundary correspondence, leads to unidirectional edge states. For electron gases,
it has been shown that topological protection not only occurs in clean systems, but
instead persists even in the presence of many-body interaction and disorder, as long as
the bandgap stays open, and interactions and correlations are short-ranged [31]. As a
result, the conductance in the integer quantum Hall effect is precisely quantized (better
than one part in 10−10 [4]) for a wide range of parameters and independent of sample
details. Having said this, the significance of topology reaches far beyond two-dimensional
electron gases. As a general wave phenomena, topology has been shown to apply broadly
to a range of physical platforms, including fermionic platforms, like solid states, as well as
bosonic platforms, like photonics, ultracold atoms in optical lattices, and others [20, 58].

For non-interacting systems, topology has been fully classified in the tenfold way
based on the internal symmetries, time-reversal, charge conjugation symmetry, and a
combination of both [100]. An extension to higher order topology has been brought
forward, where the protection is based on spatial symmetries [101,102], and d-dimensional
systems have d-2 dimensional boundary phenomena. However, if topological protection
is based on spatial symmetries, topology only protects against disorder that preserves
that symmetry, which is typically not the case for random fabrication disorder [103], but
could be applicable in certain solid state materials.

In photonics, a particularly suitable way to study topological protection of bulk
transport is by using Thouless pumps [29], due to the design flexibility of fabricated
photonic structures. A schematic of an implementation using waveguides is shown in Fig.
3.1. In summary (for more details see Chapter 2.1), a Thouless pump is a one-dimensional
model that captures the topological quantization of transport in the integer quantum
Hall effect using the notion of dimensional reduction: an adiabatically, time-varying
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potential mathematically maps onto a momentum coordinate in a conceptual second
dimension [29]. Analogue to the integer quantum Hall effect, quantization for Thouless
pumps assumes uniformly filled electron bands below a Fermi energy, or an equivalent
occupation for non-equilibrium bosonic systems. For bosons, this is experimentally often
achieved using localized Wannier states, but it has also been proposed to use Bloch
oscillations [42] or dissipation [43].

In complete analogy to the two-dimensional case, interparticle interactions and
disorder do not destroy quantization in a fermionic Thouless pump as long as it is
short-ranged and the bandgap stays open [30]. In contrast, disordered bosonic Thouless
pumps might loose quantization in the thermodynamic limit as the bandgap goes to zero
when different k-states can couple, but average quantization has been experimentally
observed in finite disordered waveguide systems [51]. For interacting bosons even less
is known and mostly theoretical work has been done. For example, Ref. [54] suggested
that quantization persists for strong repulsive interactions as long as the superfluid
phase is avoided. Although individual photons typically do not interact with each other,
interactions between photons can be mediated by an underlying medium at high power,
described collectively using nonlinearities in the mean-field limit (see also Chapter 2.3.3).
Nonlinearities have shown to give raise to a variety of fascinating optical effects with
significant technological application potentials for complex on-chip operations, including
solitons, frequency combs and supercontinuum generation. Thus, it is important to
understand the robustness of topological protection under the influence of particle
interactions/nonlinearities and to study the emergence of novel topological protection
schemes due to nonlinearities.

In this chapter we theoretically propose and experimentally demonstrate quantized
nonlinear Thouless pumping of photons with a band projection that is decidedly nonuni-
form. In our system, nonlinearity acts to quantize transport via soliton formation. At
even higher power spontaneous symmetry-breaking bifurcations lead to a transition
to a trapped soliton and zero pumping. Quantization follows from the fact that the
instantaneous soliton solutions centred upon a given unit cell are identical after each
pump cycle, up to translation invariance; this is an entirely different mechanism from
traditional Thouless pumping. This result shows that nonlinearity and interparticle
interactions can induce quantized transport and topological behaviour without a linear
counterpart.
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3.2 The 3-site AAH model
We illustrate our findings of quantized nonlinear Thouless pumping in an array of coupled
waveguides. In the scalar-paraxial regime, the propagation of monochromatic light in the
array is governed by the discrete nonlinear Schrödinger equation (see Chapter 2.3.2):

i
∂

∂z
ϕn =

∑
m

H lin
n,m(z)ϕm − g|ϕn|2ϕn. (3.1)

Here, ϕn(z) is the wavefunction, that describes the strength of the electric field
envelope in waveguide n; m and n run over all waveguides, H lin

n,m is the linear z-dependent
tight-binding Hamiltonian (for example, describing a linear Thouless pump) and z is the
propagation distance, which for Thouless pumps plays the part of a synthetic wavevector
dimension. The parameter g describes the strength of the nonlinearity and is positive
(negative) for a focusing (defocusing) Kerr nonlinearity. In the case of sufficiently low
intensities, the equation reduces to the linear Schrödinger equation. From an experimental
point of view, g is dependent on the nonlinear refractive index coefficient of the underlying
material, on the effective area of the waveguide modes, and on the wavelength. This
nonlinear Schrödinger equation with g > 0 is equivalent to an attractive Gross-Pitaevskii
equation describing bosonic interactions in a Bose-Einstein condensate in the mean-field
limit. Indeed, the results we obtain below are generically applicable to a range of bosonic
wave systems.

We use an off-diagonal implementation of the Aubry-André-Harper (AAH) [62,63]
model with three sites per unit cell labelled A, B and C (Fig. 3.2a). The off-diagonal
AAH model is described by a tight-binding Hamiltonian with equal on-site potential
(which can be set to zero at all lattice sites) and real off-diagonal nearest-neighbour
couplings Jn(z) that are periodic functions with modulation frequency Ω. The modulation
of the couplings over one period is displayed in Fig. 3.2b, where the choice of colours
corresponds to Fig. 3.2a. Replacing the general linear Hamiltonian in equation (3.1)
with the AAH model results in:

i
∂

∂z
ϕn = Jn(z)ϕn+1 + Jn−1(z)ϕn−1 − g|ϕn|2ϕn. (3.2)

This equation conserves the norm of the solution: P ≡ ∑
n |ϕn|2.

To emphasize the relationship between a 1+1-dimensional pumping model (1 spatial
and 1 propagation/temporal dimension) to a two-dimensional Chern insulator, we plot
the band structure in Fig. 3.2c. At each point z within a period, the energy eigenvalues
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Figure 3.2. Photonic implementation of a topological Thouless pump. a, Schematic
illustration of a Thouless pump model with three sites (A,B,C) per unit cell and z-dependent
couplings between neighboring sites. b, Evolution of the couplings during one driving period.
c, Band structure calculated with open boundary conditions showing three bands with Chern
numbers C = {−1, 2,−1}. Red lines denote localized edge states.

of the instantaneous Hamiltonian (calculated for an array of 30 waveguides with open
boundary conditions) are calculated and plotted. The band structure shows three
bands with Chern numbers C={-1, 2, -1} connected via topological end states (red).
A schematic illustration of a realization in a one-dimensional array of evanescently
coupled waveguides is shown in Fig. 3.1a. The modulation of the coupling is achieved
by periodically modulating the waveguide positions and therefore changing the spatial
overlap of neighbouring waveguide modes. The position of waveguide n in the transverse
direction is given by xn(z) = n · d + δ cos(2πn/3 + Ωz + α0) with d being the average
separation between two waveguides, δ the spatial modulation strength and α0 an initial
phase. The white-light micrograph in Fig. 3.1b shows the output facet of a waveguide
array with six out of ten unit cells.

3.3 Numerical Propagation Simulations
Using this Thouless pump, we demonstrate the differences between linear and nonlinear
quantized pumping in three distinct regimes with different powers: (1) a low-power, linear
regime in which the wavefunction evolves according to the linear Schrödinger equation;
(2) an intermediate-power regime in which we observe the formation of a soliton that
is pumped by a fixed number of unit cells during a pump period; and (3) a high-power
regime in which we observe a trapped soliton. We refer to the three regimes as the

37



linear, pumped and trapped regimes, respectively. Numerical propagation simulations
of equation (2) with a 4th-order Runge-Kutta scheme are shown in Fig. 3.3 for three
periods. We use periodic boundary conditions; the number of waveguides exceeds the
number of waveguides shown.

Figure 3.3. Linear and nonlinear propagation in topological Thouless pumps. a,
Normalized amplitude of the discrete wavefunction, |ϕn|, for a linear evolution over three periods
for an input state with uniform excitation of the lowest band (chosen as a maximally-localized
Wannier state). It develops a discrete diffraction pattern, while its centre of mass is being
pumped to the left by three unit cells after three periods. b, Nonlinear evolution for a pumped
soliton with a degree of nonlinearity gP/Jmax = 1.9. The excitation is an instantaneous
nonlinear eigenstate (that is, a soliton) of the system. c, Same as b but with gP/Jmax = 2.1
and showing a trapped soliton. d, Displacement of the centre of mass for the cases shown
in a-c. The parameters for all figures are d=22µm, δ=2µm, α0=–2π/12 and Ω=2π/L with
L=8,000 mm.

In the linear regime (Fig. 3.3a) the excitation is chosen as a maximally-localized
Wannier state of the lowest band with Chern number C = −1 (see Fig. 3.2c) that
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uniformly populates all Bloch states within that band. This occupation is analogous to a
low temperature Fermionic system with the Fermi level in a bandgap, as is necessary for
quantized pumping. Owing to diffraction, the wavefunction spreads during evolution,
showing two dominant outer lobes similar to diffraction in a trivial array of straight
waveguides. The bulk topological properties of the model are manifested in the transverse
displacement of the centre of mass by C times the lattice constant (see also Fig. 3.3d).

Characteristic nonlinear behaviour (at a power at which we may clearly see the
formation of discrete solitons) is displayed in Fig. 3.3b and c. In both cases, the
excitation is a nonlinear eigenstate (that is, a soliton) of the instantaneous nonlinear
Hamiltonian, which bifurcates from the lowest band and is found using Newton’s method
or a self-consistent algorithm (for more information see Appendix B). Here, bifurcation
from a band means means that in the low-power limit the nonlinear eigenvalue of the
soliton approaches the band from which it bifurcates. Thus the soliton can be clearly
identified with a single band. In this limit the soliton can be approximated as the lowest
Bloch state within that band multiplied with a hyperbolic secant envelope function.
We point out that bifurcation from a band does not imply a uniform band occupation,
but instead the projection of the soliton wavefunction onto the linear Bloch states is a
strong function of power. The difference between the pumped regime (Fig. 3.3b) and
the trapped regime (Fig. 3.3c) is dictated by the amount of power injected into the
system, gP/Jmax = 1.9 and gP/Jmax = 2.1, respectively. In both regimes, a suppression
of spatial diffraction due to the focusing Kerr nonlinearity is observed. Although the
shape of the wavefunction changes during one period, it remains strongly peaked and
reproduces itself after each period, so that its shape resembles the shape of the input
state. In the pumped regime (Fig. 3.3b), the wavefunction travels across the lattice
with a displacement identical to the Chern number of the band from which it bifurcates
(C = −1). After each period, the soliton is displaced by three lattice sites (one unit
cell), which can be clearly seen in Fig. 3.3d. At high power (Fig. 3.3c), the nonlinearly
induced potential effectively decouples the waveguide and the wavefunction is trapped
within the single site into which it was injected: the soliton’s centre of mass oscillates
around one lattice site (Fig. 3.3d), but never crosses onto another site. After each cycle
the trapped soliton ends up in the starting position. The solutions shown in Fig. 3.3b
and c are the pumped and trapped solitons, respectively.

We find analogue behavior for higher bands. In particular, in Fig. 3.4 we contrast
linear propagation and nonlinear soliton propagation related to the middle band over
three periods, showing distinct differences in the band projections. In the linear regime
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Figure 3.4. Linear and nonlinear higher band Thouless pumping. a, Numerically
calculated z-evolution for an initial excitation of a maximally-localized Wannier state of the
middle band. The displacement of the centre of mass is dictated by the Chern number of the
occupied band (C = +2). b, Uniform projection of the propagated wavefunction, ψ(z), in a
onto the instantaneous Bloch states, B(z), of the linear Thouless pump, with increasing energy
from bottom to top. c, Similar to a, but with an initial excitation of a nonlinear eigenstate
bifurcated from the middle band with gP/Jmax=0.2. The displacement of the centre of mass
is identical to the Chern number of the band from which the soliton bifurcates (C = +2). d,
Projection of the propagated soliton onto the instantaneous Bloch states of the linear Thouless
pump. The projection shows a strongly nonuniform occupation of the linear Bloch states.
Parameters for the system are chosen to be identical to those in Fig. 3.3, except L=4×103 mm
with a size of 900 sites for a,b and L=8×105 mm for c,d.

(Fig. 3.4a) the excitation is chosen to be a maximally-localized Wannier function of
the middle band. By definition, this initially ensures a uniform band occupation of the
respective band. Analogue to Fig. 3.3a, we then numerically evolve the wavefunction
over three periods and choose the modulation frequency such that the adiabatic theorem
applies and excitations between bands are negligible. Due to translation symmetry,
coupling between states within the same band are forbidden. Thus, the occupation of
the middle band stays uniform over the entire pumping cycle, as shown in Fig. 3.4b.
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Figure 3.5. Adiabaticity of soliton pumping. Absorbed intensity (relative to the total
intensity) during one driving period in relation to the driving frequency. Blue circles are
numerical values and the red line has a slope of −2. The parameters for the simulation are
180 sites with absorbing boundary conditions using 40 sites at each end, d=24µm, δ=2µm,
α0=−2π/12 and gP/Jmax=1.9.

During propagation, the wavefunction diffracts and the centre of mass is displaced (in
units of the lattice constant) by the Chern number of the uniformly excited band, which
is +2 for the middle band.

In contrast, Fig. 3.4c and d show the nonlinear propagation and band projection,
respectively, when the system is initially excited with an instantaneous soliton, that
bifurcates from the middle band. Analogue to Fig. 3.4b the wavefunctions stays localized
during the nonlinear propagation, but is displaced by +2 unit cells after each period,
corresponding to the Chern number of the band from which the soliton bifurcates. We find
those solitons using Newton’s method (see Appendix B) and use a maximally-localized
Wannier state of the respective band as initial guess. The strength of the nonlinearity
is gP/Jmax=0.2, one order of magnitude lower than used for Fig. 3.3. We choose a
lower power compared to Fig. 3.3, as we find that solitons from higher bands become
unstable at higher input power. Owing to the lower power, the solitons extend over
several unit cells during propagation and mainly occupy the lowest-energy eigenstate.
The overlap of the soliton’s wavefunction with the instantaneous linear Bloch states
(Fig. 3.4d) unequivocally shows a distinctly nonuniform occupation of any band, that is
furthermore power dependent.

The displacement of the wavefunction’s centre of mass in the linear case is well
understood and arises from a uniform occupation of a topologically nontrivial band. The
same principle is responsible for quantized charge transport in Fermionic pumps even
when disorder and interparticle interactions are present [30]. In stark contrast, here, the
projection of the pumped soliton state onto the complete set of linear Bloch states does
not show a uniform occupation of any band; indeed, the occupation is a strong function
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of power. This means that the band occupation (to the extent that it is meaningful in
this nonlinear system) is nonuniform and non-universal; thus quantized soliton motion is
dictated by the band from which it bifurcates, rather than by the population within each
band. Not surprisingly, propagation with the same input wavefunction but in the linear
regime does not show quantized pumping. In the nonlinear regime we find numerically
that the input soliton ‘tracks’ the instantaneous localized stable soliton solutions at
every value of z during propagation. In other words, it behaves much as an eigenstate
would in a linear time-varying, but adiabatic, system, despite being a fundamentally
nonlinear entity. Strictly speaking, these solitons radiate because of the z-dependence of
the Hamiltonian. To show that nonlinear Thouless pumps, similarly to linear pumps,
have an adiabatic regime and therefore show perfectly quantized pumping in the adiabatic
limit, we numerically evaluate the intensity radiated by the soliton during propagation.
We use a system of 180 sites and numerically calculate the remaining intensity with
absorbing boundary conditions on 40 waveguides at each end. We find that the radiated
intensity is proportional to Ω2 (see Fig. 3.5) and therefore becomes negligible for Ω → 0.
This agrees with the results of Ref. [104,105], which proposes this as a nonlinear version
of the adiabatic theorem. Thus, we can analyse the pumped and trapped solitons in
terms of instantaneous nonlinear eigenstates.

3.4 Nonlinear bifurcations as phase transition
To explain the mechanism of pumping, we examine the position of the centres of mass
of instantaneous solitons found at each time slice, z, as shown in Fig. 3.6a-d. The
instantaneous nonlinear eigenstates (solitons) are obtained using a Newton iteration
scheme. For that purpose, we use the FindRoot function in Mathematica [106] (with a
precision of more than 15 digits). This method depends critically on the initial ansatzes.
At high power, gP/Jmax = 5, we use six different ansatzes to evaluate the relevant soliton
eigenstates, belonging to six different branches. Three of the initial ansatzes are localized
on a single site, while the other three ansatzes are localized between two sites with equal
intensity in two neighbouring sites. We then iteratively use the solitons at higher power
as ansatzes for lower power.

We see that in Fig. 3.6a, in the pumped regime (gP/Jmax = 1.5), the soliton solutions
follow a contiguous path through the lattice. For this power, we find a soliton solution
(per unit cell), which is displaced along its path by one unit cell. For higher power
(gP/Jmax = 1.9, Fig. 3.6b), new nonlinear eigenstates emerge via saddle-node nonlinear
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Figure 3.6. Mechanism of nonlinear pumping. a-d, Centres of mass of available soliton
solutions at each value of z in the pump cycle, showing contiguous paths. Black solid (dashed)
lines indicate the position of the centre of mass for stable (unstable) nonlinear eigenstates of the
instantaneous Hamiltonian. Gray-hatched areas at Ωz/2π=0.5 and Ωz/2π=2/3 illustrate the
positions for which the bifurcation diagrams in Fig. 3.7 are calculated. Blue and red symbols
label specific soliton positions of different branches, as shown in Fig. 3.7a,b. Each lattice
consists of 30 sites and the parameters are the same as in Fig. 3.3.

bifurcations (see Fig. 3.7b; for a classification of bifurcations see, for example, chapter
21 in Ref. [107].) However, at this power, these bifurcations do not divert the original
path of the soliton. In contrast, for still higher power (gP/Jmax=2.1, 2.5, Fig. 3.6c
and d, respectively), a pitchfork bifurcation (see Fig. 3.7a) of nonlinear eigenstates,
associated with a spontaneous symmetry breaking, gives rise to the splitting of the path
of the soliton’s centre of mass, causing it to return to the site from which it started
at the beginning of the cycle. A depiction of the centres of mass of the bifurcating
nonlinear solutions as a function of power, including the pitchfork and the saddle node
bifurcation, are shown in Fig. 3.7a,b, and a clear animation of this process can be seen
in Supplementary Video 2 in Ref. [99].

As we have described, owing to the periodic Hamiltonian, the nonlinear eigenstates
at the beginning and end of each pump cycle are identical, and, owing to translation
invariance, exist for each unit cell. During adiabatic evolution, the soliton then tracks
these eigenstates and when coming back to the beginning of a pump cycle, the soliton is
forced to occupy the initial state either in the same unit cell or displaced by an integer
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Figure 3.7. Nonlinear bifurcations. a,b, Bifurcation diagrams for the nonlinear eigenstates
at Ωz/2π=0.5 (a) and Ωz/2π=2/3 (b), as a function of power. Blue and red symbols label
specific soliton positions of different branches, as shown in Fig. 3.6 a-d.

number of unit cells. In our model the Hamiltonian takes on the same form after 1/3
(2/3) of one full period, including a translation by one (two) sites. This allows us to
observe quantized pumping of single sites as well, in addition to integer unit cells.

Although no topological invariants are known for nonlinear systems, we can a posteriori
define a topological invariant for nonlinear pumping. To that end, we define an extended
unit cell such that the exponential tails of the localized soliton become negligible within
it. We then solve for periodic evolution of the soliton therein and include the potential
induced by the nonlinearity as a linear potential in the Hamiltonian. With this, we
are able to calculate the Chern number using the techniques of Ref. [108] for the band
describing the soliton evolution, which is C=-1 for the cases shown in Fig. 3.6a,b and
C=0 for those in Fig. 3.6c,d.

In Fig. 3.8 we show such calculated Chern numbers for the soliton when tuning the
system through a nonlinearly induced topological phase transition (by increasing the
power) as well as through a linear topological phase transition (by changing the hopping
strength). We find that the nonlinear topological transition is not instantaneous as it is
not associated with a linear gap closing point. Instead, there exists a transition region,
in which pumping with no quantization is observed. The width of the transition region
is model dependent, but follows the same principle: For a range of power values above
the pitchfork bifurcation threshold (that splits the path) and below the threshold power
to form a new contiguous path (e.g. for the trapped soliton), no contiguous trajectory
exists. In this region the soliton follows its stable instantaneous soliton trajectory until,
at some point during the pumping cycle, the soliton becomes unstable and diffracts.

We observe a different picture for linear topological phase transitions. To tune
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Figure 3.8. Linear and nonlinear phase transitions. a, Nonlinearly induced topological
phase transition. The Chern number associated with the soliton is calculated for increasing
power gP/Jmax. In the grey area, no contiguous path for an adiabatic soliton evolution is found.
The red line indicates the Chern number of the lowest band in the linear model from which
the soliton bifurcates. b, Linearly induced topological phase transition. The Chern number
associated with the soliton is calculated as a function of decreasing hopping strength J . The
red line indicates the linear Chern number of the band from which the soliton bifurcates. The
topological phase transition occurs at J = 0.25.

the off-diagonal AAH model through a (standard linear) topological phase transition,
we parameterize the (dimensionless) nearest-neighbour couplings in the following way:
Jn(z) = J + K · cos (2πn/3 + Ωz + 2π/6), with K = 1. For J > 0.25 the system
is topologically equivalent to the model described before, having Chern numbers of
C = {−1, 2,−1}. For J = 0.25 a gap closing occurs, changing the Chern numbers to
C = {2,−4, 2} for J < 0.25 [64]. We calculate the Chern number associated with the
soliton propagation for a soliton (with gP/K = 0.7), which bifurcates from the lowest
linear energy band, while sweeping downward from J = 0.7 to J = 0 and therefore
through a linear topological phase transition. Figure 3.8b shows that the soliton is
pumped by the Chern number of the band from which it bifurcates and changes its
behaviour at the topological phase transition point, when the Chern number of the lowest
band itself changes from -1 to +2. We expect the transition point of soliton pumping
and the Chern number change to coincide exactly in the limit of low power, but this is
difficult to numerically verify as the the calculation of solitons is challenging at extremely
low power. For increasing soliton power, we observe increasing (but small) deviations
between the linear phase transition and the soliton behavior.
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3.5 Experimental Observation
We experimentally probe the three regimes (linear, pumped and trapped) in a one-
dimensional laser-written array of evanescently coupled waveguides [76,78] with a focusing
Kerr nonlinearity, which is present owing to the ambient borosilicate glass. To reach the
necessary degree of nonlinearity, we launch intense laser pulses into single waveguides,
mostly exciting the soliton. To reduce additional, unwanted nonlinear effects, especially
the generation of new wavelengths via self-phase modulation, the pulses are temporally
stretched to 2 ps and down-chirped accordingly. As a result, 76% of the pulse intensity
(equivalent to the full-width at half-maximum (FWHM) of a Gaussian) is found in a
range of 20 nm for input powers up to 6 mW (see also Refs. [36,38] and Appendix C).
The wavelength-dependent change in the couplings is therefore similar to the intrinsic
coupling strength uncertainty ∆J/J ≈ ± 10% [99]. For the maximum propagation length
of the waveguide arrays used in our experiments, chromatic dispersion effects can be
neglected. The losses in the waveguides are about 0.7 dB cm−1 and independent of
power. Under these conditions, we can approximate the dynamics in our system with
the nonlinear Schrödinger equation (see Eq. (3.2)).

In separate experiments, we observe nonlinear soliton pumping by one, two and three
sites. Figure 3.9a-c shows the observed waveguide occupancies at the output facet. We
use (time-averaged) optical input powers of ⟨P ⟩t={0.1, 2.0, 3.5, 5.0, 6.0} mW, which
we convert into gP/Jmax for each individual experiment with g=(0.07±0.01) mm−1 per
mW of (time-averaged) input power (see Fig. 2.6d). For low power (gP/Jmax=0.1 and
0.2), linear diffraction is observed and the intensity spreads over several sites. The
displacement of the centre of mass is not quantized, because the single-site excitation
does not uniformly populate a band. For increasing input power, we observe strong
localization of the wavepacket caused by soliton formation (blue arrow): this is the
pumped regime. A further increase in the input power causes light to strongly localize in
the waveguide into which it was injected (green arrow): this is the trapped regime. This
transition from linear diffraction to a pumped soliton and finally to a trapped soliton is
the experimental signature of quantized nonlinear pumping.

For the corresponding simulations in Fig. 3.9d-f, we scaled the coupling function
using the linear propagation in the individual array and included realistic optical losses
(measured to be approximately 0.7 dB cm−1). Owing to the losses, the power thresholds
to observe the pumped and trapped soliton are higher than those in the idealized lossless
case (Fig. 3.3 and 3.6). In Fig. 3.9, simulations that take into account such loss agree well
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Figure 3.9. Experimental observation of quantized nonlinear topological pumping.
a, Experimentally observed normalized intensity pattern at the output facet of a 76-mm-long
waveguide array consisting of 30 waveguides (d=24µm, δ=2µm) after 1/3 of a full period.
White circles denote the excited waveguide; input power increases from top to bottom. The blue
arrow denotes the observation of the pumped soliton; the green arrow shows the trapped soliton.
b, Same as a except for an array covering 2/3 of a full pumping period (d=23µm, δ=2µm).
c, Same as a except for an array covering one full pumping period (d=21µm, δ=1µm). d-f,
Corresponding nonlinear tight-binding simulations for a-c, respectively, including propagation
loss.

with the experimental results. The lower contrast in the experiment arises from the fact
that the tails of the pulse (in time) propagate linearly and diffract, while only the region
of high power in the temporal centre of the pulse is affected by strong nonlinearity [36].
Nonetheless, the pumped soliton and a transition to a trapped soliton is clearly observed
in simulation and experiment.

Finally, we also experimentally confirm our theoretical prediction that the trapping
of the soliton is due to a pitchfork bifurcation (as shown in Fig. 3.7a). We measure the
output power in the waveguide in which we expect the pumped soliton to be localized
as a function of input power. Once the pumped soliton appears, a further increase of
the input power leads to an increase of the peak power of the pumped soliton (when the
wavefunction is normalized to the total power) owing to the soliton’s stronger confinement.
For a sufficiently high input power, the pitchfork bifurcation is triggered. At this point,
the power in the waveguide where the pumped soliton is localized decreases relative to
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Figure 3.10. Parameter dependence of pitchfork bifurcation. Input power (relative to
the mean input power at modulation δ=1.5µm) required for maximum relative intensity in the
pumped soliton as a function of spatial modulation strength δ of the waveguides. Dots in colour
are measurements, black lines are the respective mean values with one standard deviation. The
black dotted line shows the numerically obtained threshold power for the pitchfork bifurcation
point.

that in the injected waveguide. This point marks the onset of trapping, and thus the
appearance of the pitchfork bifurcation. We can test the dependence of this threshold
power on the spatial modulation strength δ. We measure the threshold power for three
different arrays with varying δ, as well as in six different unit cells within the same
waveguide array (with the same δ). In Fig. 3.10, we plot the experimentally obtained
optical input power required to observe the onset of trapping, as a function of the degree
of waveguide modulation, δ. We compare this to the numerically obtained power for
which the pitchfork bifurcation occurs. To directly compare the two, we normalize
the power to unity at δ = 1.5 µm; on this basis, clear agreement between theory and
simulation is observed.

3.6 Conclusion and Outlook
In summary, our results show the emergence of quantization in interacting topological
systems described via nonlinearities in the mean-field limit. We theoretically proposed
and experimentally observed integer quantized soliton Thouless pumping, that is, a self-
forming localized state shows quantized pumping despite a nonuniform band projection.
Using evanescently coupled waveguides, we directly observed soliton pumping by 1/3,
2/3 and one full unit cell after (1/3, 2/3 and one full pumping cycle), corresponding
to a Chern number of -1. At high optical power, we observe a transition to a trapped
soliton, caused by spontaneous symmetry-breaking nonlinear bifurcations. We found
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that quantized soliton pumping applies to all bands, in particular we find solitons that
bifurcate from higher bands and are pumped by the Chern number of the respective
band, e.g. by more lattice constants and against the modulation direction.

We anticipate this work to be a starting point for the exploration of topologically
quantized transport in nonlinear and interacting systems. Possible future directions of
interest are quantized nonlinear pumping in higher-order topological systems, as well
as a complete understanding of the dynamics of Thouless pumping in systems with
interactions on the few-particle level. The perhaps most pressing question at this point
will be answered in the next chapter: Is it a general rule that solitons pump by the Chern
number of the band from which they bifurcate or is it model dependent?
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Chapter 4 |
Analytical proof of quantization
of soliton Thouless pumping

This chapter is purely theoretical and presents an analytic proof that the pumping of
low-power solitons in Thouless pumps is dictated by the Chern number of the band
from which they bifurcate. By expanding the discrete nonlinear Schrödinger equation
in the Wannier basis, we show that the trajectory of stable solitons tracks the position
of Wannier states. Hence, soliton pumping is quantized by the Chern number which
can thus be considered to be a physically meaningful topological invariant for describing
nonlinear systems. Finally, we show quantized pumping in 2+2 dimensions. This chapter
is based on work that was done in collaboration with Mikael C. Rechtsman and has been
published1 in Ref. [109].

4.1 Introduction
In the previous chapter, we have theoretically described and experimentally observed
quantized nonlinear Thouless pumping via soliton motion despite nonuniform band
occupation [99]. The quantization followed from the fact that the Hamiltonian of a
Thouless pump is time periodic and thus comes back to itself after a period. For an
adiabatic modulation, in which the propagation is dictated by the instantaneous solitons,
this implies that the soliton wavefunction must – in the low-power regime – return to
itself (apart from a translation by an integer number of unit cells) as the same solitons
exist at the beginning and end of each pumping cycle. We observed experimentally and
numerically that solitons bifurcating from a given band are transported in accordance
with the Chern number of that band. However, no proof for the amount of pumping was

1Copyright (2022) by The American Physical Society.
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provided and a comprehensive theoretical understanding of this effect has not yet been
presented.

Our goal is to predict if, under what conditions, and by what amount a soliton
is pumped, and to define a topological invariant for the nonlinear system. This is a
highly challenging task due to the lack of a broad theoretical framework for topological
invariants and associated physical observables in any interacting system. One approach
that comes to mind is to calculate the many-body Chern number using twisted boundary
conditions. This requires full knowledge of the wavefunction, which means that we have
to solve first for the propagation before we can use the propagated wavefunction to
calculate the topological invariant. Therefore, it has no predictive power. In the previous
chapter we used a similar approach and calculated the Chern number for the linearized
system that included the nonlinearly-induced on-site potential. Similarly, this approach
lacks predictive power as the propagation already has to be solved before attempting to
calculate the invariant. Thus, an entirely new approach is needed.

In our approach we restrict ourselves to low-power solitons and show that their
trajectories are dictated by the Chern number of the band from which they bifurcate.
During an adiabatic modulation a stable soliton remains a soliton of the instantaneous
Hamiltonian. Hence, it is sufficient to show the existence of a stable soliton for all
times, and that its position is linked to the position of the Wannier states. Specifically,
we solve for the instantaneous solitons in the basis of Wannier functions, in which the
equations take the form of a simple one-dimensional lattice with Kerr nonlinearity. We
illustrate the resulting quantization in a Rice-Mele model. For each band we find a stable
instantaneous soliton centered upon a Wannier function for all times during the pump
cycle. Additionally, we find an unstable soliton centered between two Wannier functions.
Finally, we show quantized nonlinear pumping in a 2+2-dimensional pump.

4.2 The Wannier function picture
In this chapter we revert to using time t instead of propagation distance z, as no
experiments are presented and Thouless pumps were originally defined with modulations
in time. Of course, all results are independent of this change of variables. Our focus
lies on systems with a slowly varying, time-periodic Hamiltonian describing a (linear)
Thouless pump. The pump is entirely general at this stage; later we illustrate the
results in a Rice-Mele model. The time dynamics are described by the discrete nonlinear
Schrödinger equation with a focusing Kerr nonlinearity [88,110] (although the results
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generalize straightforwardly to localized-bright-solitons in the discrete defocusing case),

i
∂

∂t
ϕn(t) =

∑
m

Hn,m(t)ϕm(t) − g|ϕn(t)|2ϕn(t). (4.1)

Here, ϕn(t) is the amplitude of the wave function at site n and time t, Hn,m(t) is a time-
periodic tight-binding Hamiltonian and g > 0 is the strength of the focusing nonlinearity.
For our analysis it does not make a difference if Hn,m describes hoppings between sites
or orbitals on a given site. Thus, we refer to both as sites. The indices n and m run
over all sites with periodic boundary conditions. As already mentioned in the previous
chapter, Eq. (4.1) describes a range of systems, including the propagation of intense
light through nonlinear media [88, 110], the dynamics of Bose-Einstein condensates [111],
and exciton-polariton condensates [112–114]. It conserves the norm of the wave function
(P = ∑

n |ϕn|2) and, without loss of generality, in this chapter, we use normalized wave
functions (P = 1) and vary g. The degree of nonlinearity is then given by g with respect
to the hopping parameters in Hn,m. We refer to solitons as having “low power” if they
are calculated with small g/J .

In the linear case (g = 0), quantized Thouless pumping necessarily requires adiabatic
time modulation and uniform band occupation. For fermionic systems (like electrons
in the solid state), this corresponds to a Fermi level within a bandgap. For bosonic
systems, a simple way to obtain uniform band filling is via the initial excitation of a single
Wannier function. Over time, the wave function will evolve but retain a uniform band
occupation throughout the pump cycle as dictated by the adiabatic theorem. Quantized
pumping itself can be understood as the flow of the instantaneous Wannier functions,
as displayed in Fig. 4.1a and b, whose winding around the unit cell as a function of
the pump parameter is equivalent to the Chern number of the occupied band (see also
Chapter 2.2.3).

In the nonlinear case (g ̸= 0), the time evolution of stable solitons (i.e., nonlinear
eigenstates) has similarities to the adiabatic time evolution of eigenstates in linear
systems [104,105]: For sufficiently slow driving, excitations of other states are negligible
and the wave function continues to occupy the instantaneous soliton for all times
during the pump cycle. It is therefore possible to calculate the adiabatic time evolution
for solitons in two ways: (1) numerically solving Eq. (4.1) as a function of time or
(2) solving for the instantaneous nonlinear eigenstates at different time slices in the
pump cycle. Importantly, the instantaneous states must be stable, as otherwise small
perturbations around the linearized solution exponentially increase (see Appendix B
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Figure 4.1. Wannier states and soliton functions. a, Instantaneous maximally-localized
Wannier wave function for one pump cycle calculated for the lower band in a Rice-Mele model
with Chern number C=+1. b, Similar to a, but calculated for the upper band with a Chern
number of C=-1. c,d Similar to a and b, but showing the instantaneous soliton wave function.
The degree of nonlinearity is g/J=2 and g/J=3 for c and d, respectively.

for more information on linear stability analysis). We illustrate the second method in
Fig. 4.1c and d, which show the wave function of instantaneous solitons. Strikingly,
the trajectories of the instantaneous solitons are noticeably similar to those of the
instantaneous Wannier functions of the bands from which the solitons bifurcate. As
the available solitons at the beginning and at the end of each pump cycle are identical
in each unit cell, quantized motion of solitons is expected, even for nonuniform band
occupation [99]. Below, we prove that the number of unit cells which the solitons are
pumped corresponds to the Chern number of the band from which they bifurcate.

4.3 Derivation of the Discrete Nonlinear Schrödinger
Equation in Wannier basis
We now present the missing link to show that the position of the instantaneous soliton is
indeed intimately related to that of the Wannier functions. Showing that the solitons
pump by the same number of unit cells as the Wannier functions will prove that the
solitons are transported by C unit cells, where C is the Chern number. As we are only
concerned with finding the instantaneous solitons for a static Hamiltonian at a given
point in the pump cycle, we use ϕn(t) → e−iλtϕN , where λ is the nonlinear eigenvalue,
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such that Eq. (4.1) takes the following form:

λϕn =
∑
m

Hn,mϕm − g|ϕm|2ϕm. (4.2)

We first rewrite Eq. (4.2) in the basis of Wannier functions as in Ref. [115] by expanding
the wave function in the Wannier basis,

ϕn =
∑
R,α

cR,αwR,α,n, (4.3)

with expansion coefficients cR,α and Wannier functions wR,α,n that are labelled by the
lattice vector R and a band index α. Wannier functions form a complete and orthonormal
set: ∑

n

w∗
R′,α′,nwR,α,n = δR′,Rδα′,α. (4.4)

Furthermore, the Wannier states form Fourier pairs with the Bloch states, Bk,α,n, which
are labelled by the crystal momentum k:

wR,α,n = 1√
N

∑
k
e−ikRBk,α,n, (4.5a)

Bk,α,n = 1√
N

∑
R
eikRwR,α,n. (4.5b)

Bloch states form the energy eigenstates of the linear Hamiltonian, Hn,m, with eigenenergy
Ek,α and obey the following eigenvalue equation:

Ek,αBk,α,n =
∑
m

Hn,mBk,α,m. (4.6)

More information on the Wannier basis can be found in Chapter 2.2 and in Appendix A.
Replacing the wave function in Eq. (4.2) via Eq. (4.3), multiplying from the left

with w∗
R′,α′,n, summing over all sites, and using the orthogonality relation of Wannier

functions (Eq. (4.4)), results in:

λcR′,α′ =
∑
R,α

cR,α
∑
n,m

w∗
R′,α′,nHn,mwR,α,m −

∑
R,R′′,R′′′

α,α′′,α′′′

gWα,α′,α′′,α′′′

R,R′,R′′,R′′′c∗
R,αcR′′,α′′cR′′′,α′′′ , (4.7)
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where W is an overlap integral between four Wannier functions:

Wα,α′,α′′,α′′′

R,R′,R′′,R′′′ =
∑
n

w∗
R,α,nw

∗
R′,α′,nwR′′,α′′,nwR′′′,α′′′,n. (4.8)

The first term on the right-hand side of Eq. (4.7) can be simplified, using the Fourier
series description of the band structure:

Ek,α =
∑
R̃
eikR̃ϵR̃,α. (4.9)

In the Thouless pumps under consideration Ek,α is real, periodic and even around k = 0.
It follows that ϵR̃,α = ϵ−R̃,α = ϵ∗

R̃,α. Thus the Fourier series coefficients are a real and
even function of R̃. With this:

∑
R,α
cR,α

∑
n,m

w∗
R′,α′,nHnmwR,α,m

=
∑

R,α,n
cR,αw

∗
R′,α′,n

1√
N

∑
k
Ek,αe

−ikRBk,α,n

=
∑

R,R̃,α,n
cR,αw

∗
R′,α′,nϵR̃,α

1√
N

∑
k
e−ik(R−R̃)Bk,α,n

=
∑
R
ϵR′−R,α′cR,α′ , (4.10)

where we have used Eq. (4.5a) and Eq. (4.6) for the first equality, Eq. (4.9) for the
second and Eq. (4.5a) and Eq. (4.4) for the third. Plugging Eq. (4.10) into Eq. (4.7)
directly gives

λcR,α =
∑
R′
ϵR−R′,αcR′,α −

∑
R′,R′′,R′′′

α′,α′′,α′′′

gWα,α′,α′′,α′′′

R,R′,R′′,R′′′c∗
R′,α′cR′′,α′′cR′′′,α′′′ . (4.11)

Up until now, no assumptions have been made and Eqs. (4.2) and (4.11) are equally valid
to find static solitons, apart from the fact that they are written in different bases: ϕn
describes the amplitude on individual real space sites, while cR,α describes the amplitude
of Wannier functions. We refer to the two descriptions as “real space” and “Wannier
space,” respectively. To proceed, we make the following reasonable simplifications: (1)
We focus on static solitons at low power, whose occupation for isolated (nondegenerate)
energy bands tends to be in one band only, due to the large energy difference separating
the bands. Therefore, we can neglect any nonlinear inter-band coupling terms in Eq.
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(4.11) and only focus on individual bands. (2) We restrict ourselves to systems that allow
exponentially localized Wannier functions, such that the dominant term in the overlap
integral is given by the Wannier functions localized at the same position, which applies to
a Thouless pump at any given time slice. Then, the static discrete nonlinear Schrödinger
equation takes the following fully simplified form in the Wannier basis:

λcR,α =
∑
R′
ϵR−R′,αcR′,α − gWα,α,α,α

R,R,R,R|cR,α|2cR,α (4.12)

This equation has an intuitive interpretation: It describes hopping in a lattice with a
Kerr nonlinearity, where the hopping strengths are given by the Fourier coefficients of the
(linear) energy bands. In contrast to Eq. (4.2), the sites in this lattice do not represent
sites in real space, but rather Wannier functions. Furthermore, and importantly, the
unit cell in the Wannier space only consists of a single site. This allows us to use the
knowledge about solitons in simple 1D lattices (see, for example, Refs. [88,92,95,110]),
where we already know that two types of static solitons exist: one stable on-site soliton
and one unstable inter-site soliton (see also Fig. 4.3a). In Wannier space, the on-site
soliton is always centered on a single Wannier function. After transforming back from
Wannier into real space, the obtained real space soliton is localized near the Wannier
center. (Its center of mass (c.m.) is not necessarily identical to the c.m. of the Wannier
function due to interference effects between multiple occupied Wannier functions.) As
this is valid for all times t during a pump cycle, and the on-site soliton is expected to
be stable for all times, we have shown that the motion of the soliton is dictated by the
motion of the Wannier centers. As the displacement of a Wannier center over a full cycle
in a Thouless pump is equal to the Chern number of their respective band [58, 72, 73]
(see also Chapter 2.2.3), the displacement of low-power pumped solitons is given by the
Chern number of the band from which they bifurcate.

4.3.1 Example: Rice-Mele model

To numerically illustrate our findings by example, we use a Rice-Mele model [116] with a
focusing nonlinearity (g > 0). The Rice-Mele model has two sites per unit cell and is
the Thouless pump model with the smallest number of sites per unit cell. The linear
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Figure 4.2. Rice-Mele model. a, Schematic illustration of the Rice-Mele model showing
the inter-unit cell hopping (Jinter(t)), intra-unit cell hopping (Jintra(t)) and a staggered on-site
potential ∆(t). b, Band structure of the Rice-Mele model showing two bands with Chern
number C = +1 for the lower and C = −1 for the upper band. c,d Center of mass position of
the instantaneous Wannier functions for the upper (c) and lower band (d) as a function of the
pumping parameter Ωt.

Hamiltonian of the Rice-Mel model is schematically illustrated in Fig. 4.2a and given by

HRM
nm (t) = −[J + (−1)m+1δ cos(Ωt)]δn−1,m

−[J + (−1)mδ cos(Ωt)]δn+1,m

−∆(−1)m sin(Ωt)δn,m

(4.13)

Here, Ω is the modulation frequency. The parameter J describes the average hopping
strength between nearest-neighbor sites, which is modulated with strength δ, introducing
a difference between intra- and inter-unit cell hoppings. The parameter ∆ gives the
strength of modulation of the staggered on-site potential. For specific numerical examples
throughout this chapter, we use δ/J = 0.5, ∆/J = 1, and 200 sites with periodic
boundary conditions. The band structure of this model shows two bands (see Fig. 4.2)
with Chern number C = +1 and −1 for the lower and upper band, respectively. A simple
way to calculate the Chern number is to plot the position of the Wannier centers for one
pump cycle t ∈ [0, 2π/Ω] and evaluate their winding around the unit cell, as shown in
Fig. 4.2c and d.

We illustrate the intimate link between the position of the soliton and the Wannier
function in the Rice-Mele model for Ωt = 2π/8, where no spatial symmetries pin the
soliton to a fixed position. We calculate the instantaneous solitons in two ways and then
compare their shape in real and Wannier space: (1) The exact soliton (Fig. 4.3b-e; shown
in red) is calculated via Eq. (4.2) in real space and then transformed via change of basis
into Wannier space. (2) We use Eq. (4.12) and calculate the soliton (Fig. 4.3b-e; shown
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Figure 4.3. Comparison between soliton calculation in real space via Eq. (4.2) and
Wannier space via Eq. (4.12) for the lower band of a Rice-Mele model. a, Left:
band structure for a simple 1D lattice with hopping J > 0. Bifurcation of solitons (for focusing
nonlinearity) occurs from the bottom of the band. Right: The two types of possible solitons:
on-site and inter-site solitons. b, c, Expansion coefficients, ϕn and cR,α, of the instantaneous
on-site soliton in real space (b) and Wannier space (c) for Ωt = 2π/8 and the lower band in a
Rice-Mele model with g/J=1. The soliton calculated in real space via Eq. (4.2) is shown in
red. The soliton calculated in Wannier space via Eq. (4.12) is shown in black. α is the band
index and a is the length of the unit-cell. d, e, Similar to b and c but for the inter-site soliton.

in black) in Wannier space, which is then transformed into real space. For low degree
of nonlinearity, excellent agreement is observed, both for the on-site and the inter-site
solitons (see Fig. 4.3b–e).

Similar behavior is found for solitons that bifurcate from the upper band, as shown
in Fig. 4.4. For a focusing nonlinearity solitons bifurcate from the bottom of the band,
which for the upper band is located at k = ±π/a. As a consequence those solitons
inherit a staggered phase. This is most clearly visible in Wannier space, where the phase
structure is decisively staggered. In real space, the staggered phase is visible but follows
a more intricate pattern, as can be understood from transforming the staggered phase in
Wannier space back into real space. In the Wannier picture, the upper band is described
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Figure 4.4. Comparison between soliton calculation in real space via Eq. (4.2) and
Wannier space via Eq. (4.12) for the upper band of a Rice-Mele model. Similar
to Fig. 4.3, but with the following differences: a, Left: For the upper band (and a focusing
nonlinearity) the soliton bifurcates from the bottom of the band at k = ±π/a. Right: Note the
phase structure due to the bifurcation from k = ±π/a for the on-site and the inter-site solitons.
b-g, Expansion coefficients, ϕn and cR,α, of the instantaneous on-site soliton in real space
(b,d,f) and Wannier space (c,e,g) for Ωt = 2π/8 and the upper band in a Rice-Mele model
calculated for increasing nonlinearity. (b),(c) are calculated with g/J=1; d, e, are calculated
with g/J=1.4; f,g, are calculated with g/J=2.5. Not the increasing occupation of the lower
band for increasing nonlinearity in the exact calculation (Eq. (4.2)) that is not captured in the
simplified Wannier picture (Eq. (4.12)).
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Figure 4.5. Soliton and Wannier flow. Position of the center of mass (c.m.) of the
instantaneous solitons that bifurcate from the lower band with Chern number C=+1 for one
pump cycle and projected into one unit cell. Stable on-site (unstable inter-site) soliton is shown
with solid (dashed) lines. Different degrees of nonlinearity are shown in color. Black line shows
the c.m. position of the Wannier function.

by Wannier sites and a positive nearest-neighbor hopping between them - in contrast to
a negative nearest-neighbor hopping between the Wannier sites of the lower band. This
allows the conclusion, that our discussion is equally valid for a defocusing nonlinearity,
since after replacing J → −J and multiplying Eq. 4.2 (with g < 0) with minus one, the
resulting equation is analogue to finding solitons with with eigenvalue −λ in the focusing
case. With increasing nonlinearity (Fig. 4.4 b-g), the projection of the exact soliton
calculated via Eq. (4.2) shows more and more occupation of Wannier states of the lower
band, suggesting that the approximations made in Eq. (4.12) become less accurate.

In order to show the pumping process, we calculate the position (modulo a unit cell)
of the lower-band soliton for one complete pump cycle. Figure 4.5 shows the position of
the stable on-site soliton (solid lines) and the position of the unstable inter-site soliton
(dashed lines) for different degrees of nonlinearity (g/J) calculated via Eq. (4.2). While
the unstable inter-site solitons (dashed lines) are mathematical solutions, propagation
simulations via Eq. (4.1) show that the soliton breaks apart almost immediately due to
its instability. In contrast, the on-site soliton is stable and follows the position of the
Wannier function (black). We point out that, even at low power, due to interference
terms between the occupied Wannier functions, the c.m. of the soliton does not have to
be centered exactly upon the c.m. of the Wannier function, but is localized close to it.
For stronger nonlinearity, the approximations of Eq. (4.12) become less accurate and
larger deviations occur, due to the increasing occupation of Wannier functions of the
upper band. Nevertheless, for increasing power, soliton motion remains quantized to the
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Figure 4.6. Two-dimensional quantized nonlinear pumping. a, Schematic of the unit
cell with nine sites and three different hoppings, which are modulated in time. b, Band structure
for the system shown in a. c, Instantaneous soliton localized at the corner of the unit cell for
Ωt/2π=0. d, Same as c, but showing the movement of the soliton for evolving pump parameter.
The parameters for the AAH-model are chosen as K̃/K=0.7. In c,d the degree of nonlinearity
is g/K=5.

Chern number: the solitons at the beginning and end of each pump cycle continue to be
identical (apart from a translation by an integer number of unit cells). However, at some
finite power a nonlinear bifurcation may act to split the trajectory or make the soliton
unstable. This would change, or destroy, quantization.

4.3.2 Example: 2+2D pumping

Finally, we show that quantized nonlinear pumping can be extended to higher dimensions,
by using a two-dimensional model consisting of the sum of two Thouless pumps in
orthogonal spatial directions. Here, we use the off-diagonal version of the Aubry-André-
Harper (AAH) model [62–64]. A schematic of the model is depicted in Fig. 4.6a, where
only the hoppings are modulated: Kj = −K − K̃ cos(4πj/3 + Ωt) with j ∈ {1, 2, 3}.
This model has been used to simulate the 4D quantum Hall effect and its topological
properties are described by the second Chern number, which is the product of first Chern
numbers for the two orthogonal directions [49]. The band structure for the pump cycle
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is shown in Fig. 4.6b. We focus on a soliton that bifurcates from the lowest band. We
point out that, while the linear model is separable in the x and y directions, the nonlinear
model is not. Figure 4.6c shows the soliton at the beginning of the pump cycle Ωt/2π = 0,
pinned to the corner of the unit cell, due to symmetries. During the pump cycle (see
Fig. 4.6d), the soliton is pumped by +1 unit cell in the x direction and +1 unit cell in
the y direction, corresponding to the Chern numbers of the pumps in those directions,
respectively.

4.4 Conclusion
In summary, we have shown that solitons in weakly interacting bosonic systems are
pumped by the Chern number of the band from which they bifurcate, despite nonuniform
band occupation. This proves that quantized nonlinear Thouless pumping is protected
by the Chern number, which can thus be considered to be a physically meaningful
topological invariant for describing nonlinear systems. We expect the soliton motion to
remain quantized for increasing power until a nonlinear bifurcation splits the path of the
soliton or makes it unstable. Furthermore, we described the Thouless pumping of unstable
inter-site solitons and showed that quantized nonlinear pumping can also be observed in
two-dimensional systems. Our results pave the way to a broader understanding of the
interface between interacting systems (in particular described by nonlinearities in the
mean-field limit) and topology.

Before the submission of the work presented in this chapter, we became aware of a
related work by Nader Mostaan and co-workers [117].
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Chapter 5 |
Fractionally quantized soliton Thou-
less pumping

This chapter describes the theoretical and experimental discovery of fractionally quantized
pumping of solitons in nonlinear Thouless pumps at intermediate power. In contrast to
previous chapters, the soliton exhibits integer quantized pumping only after multiple
periods, but is displaced by a fraction after each period, as the soliton follows the
maximally-localized multi-band Wannier state with fractional winding. At high power
spontaneous symmetry breaking bifurcations lead to trapping. Our results are amongst
the first observations of topologically protected fractional quantization in bosonic systems.

Figure 5.1. Photonic implementation of a five site AAH model. a, Schematic of
the implementation of the model in arrays of evanescently coupled waveguides. Only two
waveguides per unit cell extend to the input facet, with an additional waveguide fabricated on
top to transform a single-site excitation into an effective two-site excitation. b,c, White-light
micrographs showing the input (b) and output (c) facets.
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This chapter is based on work that was done in collaboration with Sebabrata Mukherjee,
Christina Jörg and Mikael C. Rechtsman and has been published in Ref. [2].

5.1 Introduction
In the previous two chapters we studied Thouless pumps [29], dimensional reduced
versions of the integer quantum Hall effect. In the integer quantum Hall effect, a gas
of non-interacting electrons can be rigorously shown to exhibit integer-quantized Hall
conductance [3, 6, 118], fixed to a topological invariant – the Chern number. It was
therefore a surprise when plateaux of fractional conductance appeared in the experiment
of Tsui, Stormer and Gossard [32]. There, the strong interaction between electrons played
the key role, giving rise to the formation of fractionally charged quasiparticles [119–121].
While the physics of the integer quantum Hall effect has been predicted and observed in
a variety of experimental platforms including photonics [20] the physics of the fractional
quantum Hall effect is experimentally mostly unexplored apart from its original electronic
system. First experiments in bosonic platforms created bosonic two-particle fractional
quantum Hall states using repulsive interactions between polaritons mediated by Rydberg
atoms in a twisted cavity [122] and using ultracold atoms in an Harper-Hofstadter optical
lattice model [123].

A conceptually different approach to incorporate interactions has been taken by
treating the interactions of many photons in the mean-field limit using nonlinearity.
This approach has led to the prediction and observation of various new topological
phenomena in one-dimensional topological systems [124,125], two-dimensional topological
insulators [35–38], as well as in 1+1 dimensional Thouless pumps [99]. The latter system
is specifically suitable for studies in photonics due to the design flexibility available in
fabricated structures. In particular, the results of Ref. [99] are described in Chapter 3
and show integer quantized nonlinear Thouless pumping via soliton motion, despite a
decisively nonuniform band projection. Quantization stems from the fact that the soliton
comes back to itself – modulo a translation by an integer number of unit cells due to
translation invariance – after each period. In the previous Chapter 4, we analytically
proofed that the position of low-power solitons is dictated by the position of the Wannier
state of the band from which the soliton bifurcates. Hence, soliton pumping is not just
quantized, but quantized by the Chern number of the respective band [109,117].

In this chapter we theoretically predict and experimentally demonstrate quantized frac-
tional pumping via soliton motion at higher power, when the strength of the nonlinearity
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exceeds the relevant bandgap. We experimentally observe fractional soliton pumping by a
fraction of f = −1/2 in arrays of evanescently coupled waveguides with Kerr nonlinearity.
Fractional pumping occurs as the soliton follows the maximally-localized multi-band
Wannier functions and returns to itself – modulo a translation by an integer number of
unit cells – only after multiple periods. There is no known analogue in linear systems.
Finally, we numerically show how tuning the strength of the nonlinearity leads to multiple
plateaux of integer and fractionally quantized displacement within one Thouless pump
model.

5.2 The 5-site AAH model
Experimentally, we realize a nonlinear Thouless pump by focusing high-peak-power laser
pulses into arrays of single-mode evanescently coupled waveguides. Due to the Kerr
effect, the refractive index becomes intensity-dependent, and the propagation of photons
in the system is described by the discrete nonlinear Schrödinger equation [88, 90–94,110]

i
∂

∂z
ϕn(z) =

∑
m

Hn,mϕm(z) − g|ϕn(z)|2ϕn(z) (5.1)

where m,n denote lattice sites, ϕn(z) is the amplitude of the wavefunction at propagation
distance z for site n, Hnm(z) is a z-dependent tight-binding Hamiltonian describing
a topological Thouless pump, and g > 0 describes the strength of the focusing Kerr
nonlinearity. In waveguide systems, z plays the role of a temporal coordinate. Equation
(5.1) is also known as the Gross-Pitaevskii equation, which describes interacting bosons in
a Bose–Einstein condensate in the mean-field limit [89,111]. Therefore, our results are not
restricted to photonics, but hold for a range of interacting and nonlinear bosonic systems
[22, 112–114, 126]. In waveguides, the nonlinearity describes an effective interaction
between photons mediated by the ambient material. To treat experiment and theory on
the same footing, we define P = ∑

n |ϕn(z = 0)|2, and refer to the strength of nonlinearity
as a dimensionless quantity, gP/Jmax, where Jmax is the largest hopping value in the
Hamiltonian. We illustrate fractional Thouless pumping in an off-diagonal Aubry-André-
Harper (AAH) model [44,62–64] with five sites per unit cell and zero on-site detuning
(Fig. 5.2a). Its nearest-neighbour couplings Jn(z) are periodically modulated in z, and
the Hamiltonian is given by Hnm(z) = −Jn(z)δm,n+1 − Jn−1(z)δm,n−1. Figure 5.2b shows
the strength of the hoppings over one period, as used in the experiment. The band
structure of this model is depicted in Fig. 5.2c and has five bands with Chern numbers
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Figure 5.2. Model for quantized fractional Thouless pumping. a, Illustration of the
off-diagonal AAH model, with five sites per unit cell and z-dependent hoppings Jn(z) between
nearest-neighbour sites. b, Modulation of the hopping strength over one period. c, Band
structure (instantaneous energy eigenvalues) of the Hamiltonian, showing five bands (grey)
with Chern numbers C = {2,−3, 2,−3, 2}, end states (black lines) crossing the bandgaps, and
nonlinear eigenvalues (red and blue lines) of instantaneous solitons that are pumped by a
fraction f = −1/2.

C = {2,−3, 2,−3, 2}. A schematic illustration of the implementation in an array of
evanescently coupled waveguides is shown in Fig. 5.1, where the periodic modulation of
the distance between neighbouring waveguides changes the evanescent hopping strength.
In the experiment the position of waveguide n is xn(z) = n·d+δ cos(Ωz + 4πn/5 − 6π/20),
where d defines the average separation between waveguides, δ is the spatial modulation
strength, and Ω is the modulation frequency. Throughout this chapter, we use d=17.25µm
and δ=1µm. Figure 5.1a also schematically shows an input region, where only two
waveguides per unit cell are extended all the way to the input facet with an additional
waveguide on top. We use this ‘triple coupler’ to transform a single-site excitation of
the upper waveguide into an effective two-site excitation of the two lower waveguides.
White-light images of the input and output facets are shown in Fig. 5.1b,c, respectively.

5.3 Propagation simulations
Quantized pumping in linear Thouless pumps (g=0) requires uniform band occupation
and adiabatic driving. Under these conditions, the displacement per period is dictated by
the Chern number of the occupied band. The scenario is very different in the nonlinear
domain, which we explain as follows. Nonlinear systems allow for spatially localized
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eigenstates, so-called solitons [92,127–130] and we are only concerned with bright discrete
spatial solitons, for which the focusing nonlinearity balances the spatial diffraction. For
decreasing power, solitons can be traced back to the (linear) band from which they
bifurcate (see Appendix B). In the previous chapter, it has been shown that low-power
solitons in Thouless pumps move (that is, are pumped) according to the Chern number
of the band from which they bifurcate, despite non-uniform band occupation, because
they follow the position of the instantaneous single-band Wannier functions [109]. An
equivalent result has also been reported in Ref. [117]. Integer quantization occurs because,
after each period, the soliton returns to its initial state, apart from a translation by an
integer number of unit cells [99]. Throughout this chapter, Wannier functions are defined
for the linear (non-interacting) model. In the adiabatic limit, the propagation of a stable
soliton can be examined by calculating the instantaneous soliton for each z-slice. We
confirm the existence of an adiabatic limit for soliton pumping numerically, which agrees
with the results of Refs. [104,105].

We focus on the propagation of a soliton that, at z=0 and P → 0, bifurcates from the
lowest band. Figure 5.3a (left) shows one example of a low-power soliton (gP/Jmax=0.55)
for two pumping periods. After each period, the soliton’s wavefunction returns to its
initial wavefunction (as shown by the insets), only translated by two unit cells, as dictated
by the Chern number of the band from which the soliton bifurcates (the band has Chern
number +2). The propagation of a soliton for higher power (gP/Jmax=1.65), which shows
fractional pumping, is displayed in the centre of Fig. 5.3a. In this case, the soliton after
one period is clearly different from the soliton at z=0. The wavefunction is not peaked
on two sites, but instead on a single site, and its center of mass displacement is -1/2
unit cells. Only after two periods is the soliton’s wavefunction identical to the initial one
modulo a translation by one unit cell in the negative direction (leftward). This behaviour
goes hand in hand with the presence of two soliton solutions that are degenerate at
certain points in the pump cycle (these are the nonlinear eigenvalues plotted in Fig. 5.2c
in red and blue), as we explain in the following. For even higher power, the soliton is
trapped (Fig. 5.3a, right side). Although we show only one example of each regime in
Fig. 5.3a, quantization of soliton transport occurs over a wide range of nonlinearity and
has a rich plateau structure, as shown below.

To explain this behaviour, and especially the origin of fractional pumping, we plot
in Fig. 5.3b–d the center of mass positions of the instantaneous solitons from Fig. 5.3a
together with the position of the relevant maximally-localized instantaneous Wannier
functions, projected into a single unit cell. For single bands, the latter are identical to
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Figure 5.3. Theory of quantized fractional Thouless pumping. a, Individually
normalized wavefunctions of instantaneous solitons (gP/Jmax=0.55, 1.65 and 2.75, from left to
right), calculated for two periods. The insets show the shape of the solitons at z=0 and after
each full period. Arrows denote the displacement of the soliton after one and two periods in
units of the lattice vector a. Notice that the shape of the fractionally pumped soliton (in the
centre) changes after each period, and its displacement is only 1/2 of a unit cell per period.
b–d, Comparison between the center of mass trajectory of the relevant instantaneous Wannier
functions (black) of the linear model and the instantaneous solitons (purple, red) projected
into one unit cell (with sites 1 to 5). The low-power soliton (gP/Jmax=0.55; shown in b in
purple) follows the single-band Wannier function of the lowest band. The trajectory of the
fractionally pumped soliton (gP/Jmax=1.65; shown in c in red) follows the maximally-localized
multi-band Wannier function calculated for the two lowest bands combined. The position of
the trapped soliton (gP/Jmax=2.75; shown in d in orange) follows the multi-band Wannier
functions calculated for all five bands combined.

the gauge-invariant eigenvalues of Wilson loops. As proved in Refs. [109, 117], the stable
low-power soliton follows (with small deviations) the position of the Wannier functions of
the band from which it bifurcates. Hence, the gauge-invariant positions of the single-band
Wannier function for each z-slice dictates the path of the low-power (gP/Jmax=0.55)
soliton as depicted in Fig. 5.3b. As the two lowest bands of the AAH model are only
separated by a small bandgap, the underlying assumption that the soliton’s dynamics
are determined by a single band is no longer justified for increasing power. Instead,
an effective description has to take into account the lowest two bands, for which their
multi-band Wannier functions have to be calculated, which means that there are two
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Wannier functions per unit cell. Importantly, multi-band Wannier functions are typically
quite different in shape compared with each of the single-band Wannier functions (see,
for example, Ref. [65] for details). Although the center of mass positions of multi-band
Wannier functions are not gauge-invariant, the positions of the maximally-localized
Wannier functions are unique, as in the single band case. In Fig. 5.3c we show that, for
gP/Jmax=1.65, the soliton follows the position of the instantaneous maximally-localized
multi-band Wannier functions. As those are displaced by only 1/2 of a unit cell per cycle
(and transform into each other), the soliton pumps fractionally. With further increasing
power, the soliton becomes trapped and follows the instantaneous maximally-localized
multi-band Wannier functions of all bands, which are delta functions for each site in a
tight-binding model, shown in Fig. 5.3d. Thus, the trapped regime can be thought of
as the trivial limit of multi-band pumping. Although the winding of the trajectories in
Fig. 5.3b,c looks deceptively similar, there are distinct differences between integer and
fractional pumping. First, while at each z-slice there is only one position value in Fig.
5.3b, there are two in Fig. 5.3c, as the number of Wannier functions per unit cell equals
the number of participating bands. Second, the winding of the Wannier function in Fig.
5.3b over one period is equal to the Chern number of the band (C1=+2) and dictates
the pumping. In Fig. 5.3c, the combined winding of both Wannier functions gives the
combined Chern number of both bands, C1−2 = +2 − 3 = −1.

In a conventional fermionic Thouless pump with a Fermi level in the bandgap above
the second band, both multi-band Wannier states are simultaneously occupied and
therefore only integer-quantized pumping occurs. Remarkably, for the soliton it is
possible to track a single maximally-localized multi-band Wannier function along its
trajectory (as shown in Fig. 5.3c), and the soliton is therefore pumped by a fraction
after one period and by an integer after two periods. Fractional pumping is therefore an
intrinsically nonlinear effect, because the projection of the multi-band Wannier function
onto the linear energy eigenstates (that is, the occupation of the Bloch states) changes
with z. In contrast, any linear pumping process with non-degenerate bands has—in the
adiabatic limit—a constant occupation by definition. Observing that the soliton follows
the maximally-localized multi-band Wannier function, whose combined displacement is
given by the sum of the Chern numbers Ci of the respective bands denoted by i, we label
the fractionally pumped soliton by the fraction f that describes the average displacement
per period:

f =
∑Nb
i=1 Ci
Nb

(5.2)
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Figure 5.4. Band occupations in different regimes of quantized Thouless pumping.
a, In the linear regime a uniform band occupation during the complete pumping cycle is
necessary for quantization. b-d, Band occupation of the propagated solitons in the integer
quantized (fractionally quantized, trapped) regime are shown in b (c,d), respectively. Band
occupations are calculated as projections of the propagated wavefunction onto the instantaneous
Bloch functions of the linear model. Dashed lines indicate the nonlinear eigenvalues of the
solitons. Each subfigure is individually normalized.

where Nb denotes the number of participating bands. In this way, the numerator defines
the number of unit cells by which the soliton is pumped in the x-direction before returning
to the same wavefunction, and the denominator defines the number of pump cycles (in
z) over which this process occurs. For the cases shown in Fig. 5.3b–d, f = 2/1 = 2,
f = (2 − 3)/2 = −1/2 and f = (2 − 3 + 2 − 3 + 2)/5 = 0, respectively. From Eq.
(5.2) it is clear that bandgap closings (including topological transitions) within the
group of participating bands will not change f and therefore do not change the soliton’s
fractionally quantized displacement.

To further distinguish the different regimes of Thouless pumping, we analyze their
band projections. We compare all four regimes, namely linear Thouless pumping, integer
and fractionally quantized nonlinear Thouless pumping, and the trapped regime. Figure
5.4 shows the projection of the propagated wavefunction onto the band structure (i.e.
the projection onto the instantaneous energy eigenstates.) In the linear case quantization
occurs only for uniform band occupations. This can be achieved by exciting the system
using a state with a uniform band projection (e.g. a Wannier state) and subsequently
modulating the Thouless pump slowly enough, such that the adiabatic theorem applies and
the band occupations stay constant, as shown in Fig. 5.4a. Distinctly different pictures
emerge in the case of nonlinear pumping. For integer quantized pumping, the projection
of the propagated soliton wavefunction onto the the bands shows maximal occupation
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for the lowest state of the lowest band and decreasing occupations of energetically higher
lying states (see Fig. 5.4b). This distribution becomes increasingly sharp for decreasing
power when the soliton can be approximated by the lowest Bloch state multiplied with a
wide hyperbolic secant envelope function. In the regime of fractional soliton pumping,
we find significant occupations of the two lowest bands (see Fig. 5.4c). This is in
agreement with our assessment that the fractionally pumped soliton follows the multi-
band Wannier states of the lowest two bands. Furthermore, the band occupations are
decisively non-uniform and varying during the pumping cycle, underlining that fractional
soliton pumping has no linear analogue. As the soliton only comes back to itself after
two periods, fractional pumping implies a ground state degeneracy, as indicated by the
two dashed lines in Fig. 5.4c that represent the nonlinear eigenvalues of the two possible
solitons at each z-slice. It is only after two periods, that the eigenvalue curves come back
to themselves. Finally, the band projection of the trapped soliton shows occupation also
of higher bands.

5.4 Experimental observation
We experimentally observed quantized fractional Thouless pumping in evanescently
coupled waveguide arrays with Kerr nonlinearity. The waveguides were fabricated
by means of femtosecond direct laser writing in borosilicate glass [76, 78]. Straight
waveguides showed propagation losses of (0.33 ± 0.02) dB cm−1, and we measured no
additional nonlinear losses. To excite the system, we focused high-power laser pulses
into the waveguides; these were temporally stretched to 2 ps and down-chirped [36]. This
configuration minimizes the generation of new wavelengths via self-phase modulation
while reaching the necessary degree of nonlinearity. Maintaining a narrow spectrum is
essential, as the hopping constant is a function of wavelength. In our experiment, the
spectrum at the position of the pumped soliton broadened to 14 nm for maximum input
power and propagation distance [2]. Because the coupling constants between waveguides
vary minimally over this range of wavelengths [36, 99], Eq. (5.1) describes our system
well, provided we include unavoidable propagation losses. We measured a fractional
pumping of f = −1/2, meaning that the soliton is pumped to the left by one unit cell
after two periods. For our experiment, it is crucial to efficiently excite the soliton, whose
wavefunction is mainly peaked on two sites for z=0, as shown in Fig. 5.3a. To facilitate
this, our sample contained a 5-mm-long input region, in which only two waveguides per
unit cell extend all the way to the input facet, together with one additional waveguide on
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Figure 5.5. Experimental observation of an f = −1/2 fractionally pumped soliton.
a, Stacked images of the output facet, showing the intensities in the waveguide modes after
propagation for two periods. Each row was imaged separately at different input power. The
bottom row shows the output facet for linear propagation (gP/Jmax=0.04). The next row
was taken for gP/Jmax=0.09 and then for each row the power was increased in equal steps
of gP/Jmax≈0.09 until the top row, with a maximum input power of gP/Jmax=2.15. b,c,
Normalized integrated intensities in each waveguide for different z-slices for an input power of
gP/Jmax=0.04 (c) and gP/Jmax=2.15 (b). The white dashed lines mark one unit cell. After
one period, the soliton is peaked on a single site, and its centre of mass has shifted by half a
unit cell. After two periods, the soliton is peaked on two sites and displaced by -1 unit cell. d,e,
Tight-binding propagation simulations corresponding to b and a, including propagation losses
and using the measured initial two-site excitation. For direct comparison with the experiment,
the plotted intensities are normalized for each z.

top (also Fig. 5.1a,b). This ‘triple coupler’ converts a single-site excitation of the upper
waveguide into an effective two-site excitation of the lower waveguides.

We detected the fractional pumping behaviour of the soliton at high power by
measuring the intensity distribution of the waveguide modes at the output facet as
a function of the input power for a lattice with 12 unit cells. Figure 5.5a shows the
normalized mode intensities at the output facet after two periods. Each row of modes
corresponds to an individual measurement, and the input power increases from bottom
to top. For the lowest input power (gP/Jmax=0.04; Fig. 5.5a, bottom row), the system
behaves linearly, and the intensity diffracts widely in the waveguide array. For increasing
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Figure 5.6. Adiabaticity of soliton propagation. a, Overlap of a numerically propagated
soliton with the instantaneous soliton after one pump cycle with period L. b, Same data as
a, but plotted as deviation from perfect overlap on a log-log scale confirming the existence of
an adiabatic limit. The blue (orange) line depicts gP/Jmax = 0.55 (gP/Jmax = 1.65), which
corresponds to the integer (fractionally) pumped soliton in the adiabatic limit.

input power, the nonlinearity counteracts the diffraction, and less spreading is visible.
At the maximum input power of gP/Jmax=2.15 (Fig. 5.5a, top row), the intensity at the
output facet is localized mainly to two waveguides, one unit cell away from the excited
waveguides. This is the signature of the f = −1/2 fractionally pumped soliton after
two periods. To further verify the fractional pumping behaviour, we mapped out the
propagation of the soliton by repeatedly cutting the sample and imaging the output
facet. The normalized integrated intensities per mode (which are equivalent to |ϕn|2)
are shown over two periods in Fig. 5.5c for linear propagation (gP/Jmax=0.04) and in
Fig. 5.5b nonlinear propagation (gP/Jmax=2.15). Corresponding numerical simulations
using the experimentally measured mode intensities of the effective two-site excitation
and including realistic losses are shown in Fig. 5.5e for the linear and Fig. 5.5d for the
fractionally pumped case.

Imperfect adiabaticity leads to radiation from the soliton into linearly diffracting
modes and our waveguide system does not behave perfectly adiabatically; it is sufficiently
adiabatic to observe the fractionally pumped but not the integer-pumped soliton, which
has weaker confinement. Fig. 5.6a shows the calculated overlap, |∑n ϕ

∗(S)
n (L)ϕn(L)|2,

between the propagated wavefunction ϕn(L) and the instantaneous soliton ϕ(S)
n (L) after

one period. For perfect adiabaticity the overlap is one. The deviation from perfect
overlap is shown in Fig. 5.6b on a log–log scale, which demonstrates the presence of
an adiabatic limit. These results agree with the adiabatic time-evolution studies of
nonlinear systems in Refs. [104, 105]. Fig. 5.6 clearly indicates that the lower-power
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Figure 5.7. Verification of soliton’s pumping behavior in the experiment. a, Am-
plitude overlap,

∑
n |ϕ(Exp.)

n ||ϕ(S)
n |, between the measured output wavefunction, ϕ(Exp.)

n , and
the numerically-calculated instantaneous soliton wavefunction, ϕ(S)

n , as a function of propa-
gation length for linear propagation (gP/Jmax=0.04; shown in blue) and soliton propagation
(gP/Jmax=2.15; shown in red). b, Center of mass displacement of the experimentally ob-
served soliton and linear propagation (calculated using a higher order norm to suppress linear
background effects; see text). Gray line indicates the numerically-calculated displacement
of an instantaneous fractionally pumped soliton. c, Experimentally observed center of mass
displacement after two periods for increasing input power showing a plateau at high input
power. Gray line indicates the expected theoretical displacement of five sites (one unit cell)
after two periods for the fractionally pumped soliton. Solid lines with squares show mean values,
and shaded areas show one standard deviation for independently measured soliton propagation
in eight different unit cells of the same lattice.

(integer-pumped) soliton needs slower driving frequencies compared to the higher-power
(fractionally pumped) soliton to be similarly adiabatic and experimentally observable.
Furthermore, Fig. 5.6a confirms that our experiment is sufficiently adiabatic to detect the
signature of the fractionally pumped soliton. In the experiment, the contrast is further
lowered by the tails of the laser pulses, which have lower intensity and thus behave more
linearly. Nonetheless, our experiment (Fig. 5.5) clearly shows a soliton displaced to the
left by one unit cell after two periods with the characteristic shape of being localized on
two sites after two periods and localized on just one site after one period (see also the
instantaneous soliton in the centre of Fig. 5.3a). We expect that the solitons that we
observe here would also be formed under spatial modulation instability, starting from a
broad input beam. The solitons that form spontaneously would then exhibit quantized
motion in the course of the pump.

We quantify our observation of fractional Thouless pumping by calculating the
amplitude overlap of the measured soliton with the instantaneous soliton of a perfectly
adiabatic system. The results for eight measurements from different unit cells within the
same lattice are shown in Fig. 5.7a. We found a decreasing overlap for linear propagation
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Figure 5.8. Band structure of a 13 site AAH model. a, Additionally to the 13 linear
energy bands (black) the nonlinear eigenvalues of four pumped solitons with gP/Jmax = 0.04,
0.10, 0.78 and 3.08, which are part of the plateaux in Fig. 5.9 are shown in green, red, blue
and yellow, respectively. b, Zoom-in onto the central group of three energy bands. c, Zoom-in
onto the lowest group of five energy bands.

with a low overlap of about 30% after two periods, and an overlap of about 70% for
the nonlinear propagation (see Fig. 5.7a). Deviations from perfect overlap mainly stem
from losses and imperfect adiabaticity. We further quantify the soliton’s center of mass
displacement using a higher order norm:

⟨x8⟩ =
∑
n

n|ϕn|8/|ϕn|8 (5.3)

This quantity reduces the influence of the experimentally unavoidable linearly propagating
background in the calculation of the centre of mass. These results are shown in Fig. 5.7b:
the experimentally observed wavefunction clearly follows the position of the numerically
calculated instantaneous soliton. In contrast, the center of mass position of the linear
propagation is non-quantized and individual measurements show strong deviations.
Finally, we evaluate the center of mass displacement (using the higher order norm) as a
function of input power, and observe clear features of a plateau of fractional displacement
per period (see Fig. 5.7c).
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Figure 5.9. center of mass displacement. Average center of mass displacement per period,
⟨x⟩, calculated for an off-diagonal AAH model with 13 bands. For low power (gP/Jmax < 0.04),
soliton motion is determined by the integer-quantized Chern number of the band from which the
soliton bifurcates (C = −8). With increasing nonlinearity, plateaux of fractionally quantized
displacement of -3/2 and -1/5 appear. For gP/Jmax > 2.2, the soliton is trapped and the
average displacement is zero. Note that data points for gP/Jmax < 0.06 and gP/Jmax > 0.06
are calculated for different propagation lengths and periods to ensure adiabaticity (see also
Supplementary Information in Ref. [2]).

5.5 Multiple fractional plateaux
Finally, we demonstrate numerically that multiple plateaux of integer and fractionally
quantized pumping can occur within one Thouless pump model for increasing nonlinearity.
We numerically solve Eq. (5.1) for an off-diagonal AAH model with 13 sites per unit
cell using periodic boundary conditions and modulate the hoppings according to Jn(z) =
J + δ cos(Ωz + 10πn/13 + 2π/13), and ∆/J = 0.95. This model has 13 bands (see 5.8)
that are distributed symmetrically around zero energy and which can be clustered into
five bands at low energy (see 5.8c), three bands around zero energy (see 5.8b) and
five high energy bands. The group of the lowest five bands has another subgroup of
energetically close bands, consisting of the two lowest bands. The Chern numbers of the
bands are: C = {-8,5,5,- 8,5,5,-8,5,5,-8,5,5,-8} from bottom to top, respectively.

The initial excitation is chosen to be a power-dependent, instantaneous soliton
that bifurcates from the lowest band. In Fig. 5.9 we plot the average center of mass
displacement per period ⟨x⟩, showing four plateaux of quantized displacement. At
low power the center of mass displacement is integer-quantized, as dictated by the
Chern number of the band from which the soliton bifurcates: C=-8. With increasing
nonlinearity, the two lowest bands participate in soliton pumping, resulting in a fractional
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Figure 5.10. Wannier function positions of a 13 site AAH model. a, Center of mass
position of single-band Wannier functions calculated for each of the 13 bands individually
over one period and projected into a single unit cell. The number of windings is equal to the
Chern number C of the corresponding band. b-g, similar to a but for multi-band Wannier
functions in c-g, The position of pumped solitons from the plateaus of Fig. 5.9 at nonlinearities
gP/Jmax = 0.04, 0.10, 0.78 and 3.08, are shown in green, red, blue and yellow, respectively.

pumping of f = (−8 + 5)/2 = −3/2. At even higher power, another fractionally
pumped soliton emerges, which is described by the participation of the five lowest bands:
f = (−8 + 5 + 5 − 8 + 5)/5 = −1/5. Finally, at very high power, the soliton is trapped as
the strong nonlinearly induced on-site detuning effectively detaches the soliton from the
lattice. Therefore, the soliton’s displacement per period is zero [99]. In our framework
this corresponds to the Chern number average of all bands, which is known to be zero in
tight-binding models. We confirmed that, similar to Fig. 5.3b-d, all pumped solitons
follow the center of mass positions of the respective maximally-localized multi-band
Wannier functions (see Fig. 5.10).

5.6 Conclusion
In summary, we have theoretically predicted fractional pumping of solitons in nonlinear
photonic Thouless pumps and experimentally observed a fractional f = -1/2 displacement.
Furthermore, we have numerically shown the occurrence of a rich structure of multiple
quantized plateaux of integer and fractional displacement. This is evocative of features
of the fractional quantum Hall effect, which has recently been studied in similar but
two-dimensional models with small bandgaps [131,132]. The connection is particularly
compelling in that both phenomena seem to require degenerate ground states (the solitons
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residing below the lowest band are nonlinear ground states and their eigenvalues are
degenerate at certain points within the pumping cycle). That said, our results here
occur for effectively attractive bosons described by a localized mean-field single-particle
wavefunction. This result implies that the fractionalization of transport in interacting
topological systems is perhaps more general than was previously understood in the
context of the fractional quantum Hall effect.

While finalizing the experiments of this chapter, we became aware of a related
theoretical work [133].
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Chapter 6 |
Fractional many-body Thouless
pumping

This chapter describes fractional fermionic Thouless pumping with an integer filling
fraction. Conventionally, in such Thouless pumps transport is dictated by the integer
winding of single-band Wannier states. Although, multi-band Wannier states with
fractional winding can be mathematically constructed, they cannot be adiabatically
followed due to a varying band projection. Here, we show that repulsive interactions can
stabilize a Mott insulator state in a Thouless pump at integer filling, such that only every
second multi-band Wannier state per unit cell is occupied. Due to the fractional winding,
the average pumped charge per period at intermediate adiabaticity is fractional and
integer quantized only after multiple periods. We use exact diagonalization supplemented
by density matrix renormalization group calculations to illustrate the concept in few-
particle systems. This chapter is based on work that was done in collaboration with
Jacob Steiner, Gil Refael, and Mikael C. Rechtsman.

6.1 Introduction
Thouless pumps [29] are dimensionally reduced versions of Chern insulators with analogue
topology; they can be obtained from their two-dimensional counterpart by replacing one
wavevector dimension with a time-periodic modulation. In Thouless pumps, topology
manifests through a quantization of particles transport: per cycle, an integer number of
particles are transported through any cross-section, dictated by the Chern number(s)
of the occupied band(s). Being spatially one-dimensional systems, Thouless pumps
can be advantageous to study experimentally, and have been observed in a variety of
platforms [41], including fermionic and bosonic ultra-cold atoms in lattices [45,46], as
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well as in photonic waveguide arrays [44].
In Thouless pumps, transport is integer quantized for isolated filled bands, given an

adiabatic modulation [29]. In electronic Thouless pumps integer quantization is protected
even in the presence of substrate disorder and many-body interactions – as long as the
(many-body) bandgap stays open [30]. Recent experimental studies have investigated
the breakdown of quantization due to interactions [56] as well as interaction induced
quantization [134]. For bosons, it has been suggested that quantization persists in the
presence of interactions as long as the superfluid phase is avoided [54]. Similar to the
fractional quantum Hall effect [32], interactions in combination with fractional fillings
can lead to the emergence of fractionally quantized transport. Fractional pumping has
been theoretically studied in the thin-torus limit of two-dimensional fermionic [135,136]
as well as bosonic [137] systems. In these studies, fractional fillings lead to the formation
of degenerate charge density waves with periodicities of multiple lattice constants. One
exception is the experimental observation of fractional Thouless pumping of solitons in
waveguide arrays based on attractive bosons [2].

Here, we show fractionally quantized transport in interacting Thouless pumps with few
particles at integer filling (and hence limited system size). Fractional quantization occurs
at intermediate modulation frequencies, when the many-body wavefunction occupies
every second multi-band Wannier state within a unit cell, whose windings are fractional.
Fractional pumping occurs within a degenerate ground state manifold but without
breaking translation symmetry in real space. We illustrate the concept numerically
in few-particle systems using exact diagonalization simulations, supplemented by a
density-matrix-renormalization group analysis.

6.2 The model
We demonstrate fractional Thouless pumping using an interacting, spinless, off-diagonal
version of the Aubry-André-Harper (AAH) model [62, 63]. The Hamiltonian is given by
H(t) = H0(t) +Hint with:

H0(t) = −
∑
n

Jn(t)ĉ†
n+1ĉn + c.c.

Hint =
∑
n,i

Uin̂nn̂n+i, (6.1)
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Figure 6.1. Properties of the noninteracting AAH-model. a, Schematic of the off-
diagonal AAH-model with (time-periodic) nearest neighbor hoppings Jn(t) and five sites per
unit cell. b, Band structure of the noninteracting model showing five bands with Chern numbers
C = {−3,+2,+2,+2,−3}. Band 1 and 2 are close in energy and well separated from all other
bands. c,d, Center of mass of the single-band Wannier functions of band 1 (d) and band 2
(c) projected into a single unit cell. The number of windings is equal to the Chern number of
the band. e, Schematic of the model in Wannier space with (time-periodic) nearest neighbor
hoppings J̃AB and J̃BA and (time-periodic) on-site potentials ṼA and ṼB. f, Center of mass of
the maximally-localized multi-band Wannier states of the lowest two bands. Note the individual
fractional winding, but the combined integer winding.

where c.c. denotes the complex conjugate, ĉ†
n (ĉn) is the fermionic creation (annihilation)

operator on site n, n̂n is the particle number operator on site n and Ui describes the
strength of interactions between fermions at nearest neighbor (i=1), next nearest neighbor
(i=2) sites and so on. The noninteracting Hamiltonian, H0(t), describes a Thouless pump;
we choose an AAH-model with five sites per unit cell and time-periodic nearest neighbor
hopping strengths Jn(t) = J +K cos(Ωt+ 4πn/5). Ω = 2π/T defines the frequency of
the periodic modulation with period T and goes to zero in the limit of adiabatic driving.
A schematic of the noninteracting AAH model is shown in Fig. 6.1a. For definiteness, we
choose K/J = 0.7 in the following unless otherwise stated and we will work with integer
filling of ν = 1, that is, the number of particles equals the number of unit cells.

In the adiabatic limit of slow driving the behavior of Thouless pumps can be con-
veniently analyzed using the instantaneous eigenstates. Before turning towards the
interacting model, we discuss the simpler, noninteracting case (Ui = 0). The band
structure of the off-diagonal AAH model is shown in Fig. 6.1b and consists of five bands.
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We chose this model because the lowest two bands lie close together in energy, but are
well separated from all higher energy bands. In the following, our focus lies on the lowest
two bands. The topological quantization of transport in Thouless pumps is intimately
related to the winding of Wannier states. In particular, the winding of the center of mass
trajectory of the instantaneous single-band Wannier states projected into a single unit
cell is equal to the Chern number and the transported charge per period – given a Fermi
level in a bandgap. For single bands, there exists one Wannier state per unit cell and,
in Fig. 6.1c,d, we show exemplary the winding of the Wannier states of the lowest two
bands, with Chern numbers of C = −3 (band 1) and C = +2 (band 2). Importantly,
the center of mass position of single-band Wannier states is gauge invariant and the
projection of a Wannier state onto the respective band is uniform, such that single-band
Wannier states can be adiabatically followed. Intuitively, given a filled band, one can
think of each Wannier state in each unit cell being occupied and being displaced by the
Chern number during one pumping cycle.

If multiple bands are filled (i.e. the Fermi level is in a higher bandgap), multi-band
Wannier states are defined, whose number per unit cell is equal to the number of bands
involved. In contrast to single-band Wannier states, their center of mass trajectories
are gauge dependent. However, the sum of the windings is gauge invariant and equal
to the sum of the Chern number of the bands involved. In Fig. 6.1f we show the
trajectories for the maximally-localized multi-band Wannier states of the lowest two
bands. Each individual multi-band Wannier state shows fractional winding of -1/2;
when summed, this is equal to the sum of the Chern number of the lowest two bands
C1−2 = −3 + 2 = −1. Importantly, this does not allow the observation of fractional
quantization in noninteracting systems as multi-band Wannier states with a fractional
winding have a varying band occupation over the pumping cycle and therefore cannot
be followed adiabatically. We should intuitively always think about all multi-band
Wannier states being occupied, once multi-band Wannier states play a descriptive role
in non-interacting systems. Hence, integer quantization is recovered. Only recently, the
fractional winding has been exploited to observe fractional soliton pumping in bosonic
systems with attractive interactions using solitons [2] but its implication on Thouless
pumping in interacting electronic systems is unclear.
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6.3 Wannier picture
Famously, it has been shown by Niu and Thouless, that – starting from a system with
integer filling – transport in Thouless pumps stays integer quantized as long as interactions
do not close the bandgap [30]. Hence, fractionalization needs a novel concept. Previously,
this has been achieved by fractional fillings that lead to the formation of charge density
waves that break translation symmetry [135–137]. Here, we work in the regime, in which
the interactions exceed the bandgap, e.g. the interactions close the bandgap between the
lowest two bands, but not for higher bands and we will only focus on the lowest two bands
in the following. Our goal is to take advantage of repulsive interactions to form a Mott
insulator in Wannier space, such that only every second maximally-localized multi-band
Wannier state within one unit cell is occupied (given ν = 1). If such an occupation
can be followed adiabatically, charge is transported according to the trajectory of the
multi-band Wannier states, that is, fractionally quantized.

Figure 6.2. Wannier expansion coefficients. a, Expansion of H0(0) in the basis of
instantaneous maximally-localized multi-band Wannier states of the lowest two bands. The
labels i and j label the multi-band Wannier states in increasing order by their position in
the lattice. Diagonal elements are not shown. b, Horizontal slice through a, that shows the
exponential decay of the hopping strengths as a function of distance between Wannier states. c,
On-site potential in Wannier space during one period. d, Nearest neighbor hopping in Wannier
space during one period.

Assuming such interactions, we treat the lowest two bands as a composite energy band
and write Eq. (6.1) in the basis of the respective maximally-localized multi-band Wannier
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states. Importantly, this means that a static state within this basis is actually moving
according to the fractionally winding trajectory. We show the expansion graphically in Fig.
6.2. Keeping only the dominant nearest neighbor hopping terms (longer-range hoppings
fall off exponentially; see Fig. 6.2a,b), the noninteracting part of the Hamiltonian,
restricted to the two lowest two bands, is given by

H0 =
∑
R,α

Ṽαŵ
†
α,Rŵα,R +

∑
Nearest
neighbor

J̃α,α′ŵ†
α,Rŵα′,R′ , (6.2)

where ŵ†
α,R (ŵ†

α,R) creates (annihilates) a maximally-localized multi-band Wannier state.
α ∈ {A,B} denote the two types of multi-band Wannier states per unit cell (which we
will refer to as “flavors”), labelled by the lattice vector R. The summation in the second
line is restricted to nearest neighbors and we omit to write the explicit time dependence
of all terms. Equation (6.2) describes a Rice-Mele model [116] with a two-site unit cell,
on-site potentials Ṽα and nearest neighbor hoppings J̃α,α′ . A schematic of this model
is shown in Fig. 6.1e. Importantly, the sites are not physical sites, but represent the
maximally-localized multi-band Wannier states, that can be localized over more than
one site and are moving during the pumping cycle dictated by the fractional winding.

Expressing the interacting part of the Hamiltonian in the basis of multi-band Wannier
states is more complicated, and to be able to proceed we make the following assumption:
Due to the exponential localization of the Wannier states, we assume that the most
dominant interaction occurs between nearest neighbor Wannier states. Furthermore,
restricting ourselves to the two lowest bands, results in:

Hint =
∑

Nearest
neighbor

Ũ n̂α,Rn̂α′,R′ (6.3)

with interaction strength Ũ between nearest neighbor Wannier states and n̂α,R = ŵ†
α,Rŵα,R.

In the following we analyze the properties of the simplified model in Wannier space (Eqs.
(2) and (3)). Later, we will compare it with the results obtained via exact diagonalization
of Eq. (6.1).

In the limit of strong interactions (Ũ ≫ (Ṽ , J̃)), we can treat the noninteracting
part H0 as a perturbation to the interacting part Hint of the Hamiltonian. To zeroth
order (neglecting H0), there exists a degenerate ground state manifold of two states
with zero energy, well separated from all other states, given by: |ΨA⟩ = ∏

R ŵ
†
R,A |∅⟩ and

|ΨB⟩ = ∏
R ŵ

†
R,B |∅⟩, where |∅⟩ denotes the vacuum. Including first order corrections
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from the on-site potential term in Eq. (6.2), the energies of the two ground states split
into EA = NpṼA and EB = NpṼB, where Np is the number of particles, that equals the
number of unit cells for ν = 1. Despite their splitting, we will continue to refer to the two
states as ground state manifold, as long as they are separated from higher energy states.
For finite interaction strength the energy of the first excited state is (assuming ṼA < ṼB):
EE = ṼA · (N − 1) + ṼB + Ũ . Thus, the energy gap, ∆EE, between the ground state
manifold (using Np · EB) and the first excited state is linearly decreasing with Np, as:

∆EE = (Ũ + ∆) − ∆ ·Np, (6.4)

where we have defined ∆ = (ṼB − ṼA).
Assuming that, during the pumping cycle, there is a point of ∆ = 0 and small but

finite hopping, J̃ ≪ Ũ (see Fig. 6.2c,d), the two states in the ground state manifold
hybridize through higher order hopping processes of order Np, resulting in a gap, ∆EG,
that scales as

log(∆EG) ∝ −Np (6.5)

We conclude that, in principal, this model fulfils the necessary requirements for
fractional pumping: In the moving frame of multi-band Wannier states, there exist two
degenerate Mott insulator type ground states, that are – for finite systems – gapped from
excited states. In the following, we use exact diagonalization to verify these predictions
and analyze the model exactly.

6.4 Exact diagonalization results
Using exact diagonalization we solve Eq. (6.1) for the eigenstates for an interacting,
few-particle system and at integer filling of ν = 1, that is, with as many particles as unit
cells. The resulting many-body band structures for Np=2,3,4 and 5 particles are shown
in Fig. 6.3a-d, respectively. We find a ground state manifold of two states separated
from higher energy states. As expected, each of the two many-body eigenstates in the
ground state manifold shows substantial overlap with only one of the two instantaneous
maximally-localized multi-band Wannier states. We quantify this by calculating the
“Wannier contrast” between the projections onto the two multi-band Wannier states,
defined as (IA−IB)/(IA+IB), where Iα = ∑

R ⟨Ψ| n̂α,R |Ψ⟩, with |Ψ⟩ being the respective
many-body eigenstate. In Fig. 6.3a-d, blue (purple) color means that the state is
made up by one flavor of Wannier states, while black has projections onto both flavors.
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Figure 6.3. Many-body band structure of an interacting few-particle Thouless
pump. a-d, Band structures for Np=2,3,4 and 5 particles in a system with 2,3,4 and 5 unit
cells, respectively. Each line represents the energy of an interacting many-body eigenstate
as a function of the pump parameter. Color coding represents the projection strength of the
many-body eigenstate onto the maximally-localized multi-band Wannier states. Note that a
shows one full pumping cycle, while b-d only show one fifth of a pumping cycle. The inset in
a shows a schematic of the AAH model with nearest neighbor hoppings Jn and interactions
Ui. The inset in b defines the bandgap within the ground state manifold ∆EG, and between
the ground state manifold and the first excited state ∆EE . e, bandgap between the ground
state manifold and the first excited state as a function of particle number for Ωt/2π=0. Circles
represent exact diagonalization (ED) results and crosses represent DMRG calculations. The
linear fit is based on Np=6 to 12. f, bandgap within the ground state manifold as a function of
particle number Np for Ωt/2π = 0.1. Here, U1/J = 40, U2/J = 10, U3/J = 3 and K/J = 0.7.
Note that, for better comparison, a-d show the energy per particle.

Importantly, note that, while the system comes back to itself after each period, the color
coding does not, as the Wannier states are exchanged after each period due to their
fractional winding.

With increasing particle number (and corresponding system size), the energy gap
between the ground state manifold and the first excited state, ∆EE, decreases (see Fig.
6.3f). We extend our calculations to larger particle numbers using DMRG (density matrix
renormalization group) calculations and find that the energy gap decreases linearly before
the bandgap eventually closes, as predicted by Eq. (6.4). Furthermore, we evaluate the
energy splitting within the ground state manifold, ∆EG, using exact diagonalization that
shows an exponential decrease as a function of particle number/system size (agreeing
with Eq. (6.5) and shown in Fig. 6.3e).

Having demonstrated that the instantaneous eigenstates are in agreement with our
simplified model in Wannier space, we are left to show that those eigenstates can be
adiabatically followed. The calculated band structure of the instantaneous many-body
eigenstates supports the following crucial observation: There exist two adiabatic time
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Figure 6.4. Integrated current. a, Number of pumped particles averaged over two periods
for increasing system size but constant filling factor of one particle per unit cell (µ = 1). b-d,
One particle density matrix for three different driving regimes: fast driving (b) with excited
state excitations; intermediate adiabaticity (c), where the bandgap in the ground state manifold
can be crossed, but not the bandgap to the excited states; and adiabatic limit (d), where not
even the bandgap within the ground state manifold can be crossed. Parameters are identical to
Fig. 6.3.

scales: First, in the adiabatic limit (T → ∞) a wavefunction initially prepared to be in
the lowest energy eigenstates will rigorously follow the lowest energy eigenstate within
the ground state manifold. Second, there exists an intermediate adiabatic regime, where
the wavefunction can cross the (exponentially suppressed) bandgap within the ground
state manifold, while excitations to any other states are negligible. In this regime,
the wavefunction follows one of the multi-band Wannier states (i.g. the purple line).
Importantly, this means that the the wavefunction needs two periods to come back to
itself (as purple turns into blue and vice-versa after each period). This is because the
multi-band Wannier states are only pumped by a fraction of a unit cell and end up in
the other flavor after a single pumping cycle. Therefore, we expect fractional pumping
after a single period and integer quantized pumping only after after two periods.

We confirm this behavior by numerically solving the time-dependent Schrödinger
equation as a function of adiabaticity and particle number. We calculate the integrated
current, J(t), over two periods via J(2T ) =

∫ 2T
0 dt i ⟨Ψ(t)| Jn(t)ĉ†

nĉn+1−Jn(t)ĉ†
n+1ĉn |Ψ(t)⟩.

For a meaningful comparison with traditional Thouless pumps, we plot the averaged
number of pumped particles per period in Fig. 6.4a. For fast and slow driving (small
and large T ), the integrated current is non-quantized. However, for intermediate driving
speeds, the current forms a plateau at 1/2. With increasing particle number, this effect
becomes more pronounced, as the bandgap within the ground state manifold becomes
(exponentially) smaller and therefore easier to cross.

To gain further insight, we plot the density distribution of the propagated wavefunction
for the three regimes over two pumping cycles: At fast driving, excitations to higher
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Figure 6.5. Analysis of the band crossings. a, Three particle band structure, similar
to Fig. 6.3b. The red lines represents EA and EB. b, Same as a, but for slightly disturbed
parameters (J1 → J1/1.5 and J2 → J2/1.5) that gap out two pairs of crossings. Here, U1/J = 10,
U2/J = 2.5 and K/J = 0.9.

states occur, which is visible in the “smearing out” of the density in Fig. 6.4b. In the
intermediate pumping regime, the wavefunction clearly shows a different density pattern
after one cycle, and needs two periods to come back to itself (see Fig. 6.4c). Importantly,
this is different from a typical charge density wave, as the integrated density per unit
cell is uniform and translation symmetry is not broken. In the adiabatic limit, the
wavefunction rigorously follows the lowest energy eigenstate, switching five times between
the two flavors of Wannier states during one cycle (see Fig. 6.4d).

To observe fractional pumping, the wavefunction has to switch character after each
period. Thus, there must be an odd number of crossings within the ground state
manifold. To analyze the number of crossings within the ground state manifold, we show
an exemplary many-body band structure in Fig. 6.5a (similar to Fig. 6.3a, but for U3 = 0)
with five crossings per period. By modifying J1(t) → J1(t)/1.5 and J1.5(t) → J2(t)/2,
we deform the band structure, such that two pairs of crossings annihilate each other and
we are left with only one crossing in Fig. 6.5b. This behavior can be understood from
Eq. (6.2). In the Mott insulator state, the energies are dominated by the on-site energies
EA and EB as shown by the red lines in Fig. 6.5a and b. It remains to be argued that at
least one crossing must occur. Given a model where the multi-band Wannier states have
fractional winding, we know that one state has to turn into the other after each period.
Thus, at least one crossing must exist.

Furthermore, we suggest a way to extend our results into the thermodynamic limit:
Although the system’s bandgap closes for increasing system size at fixed interaction
strengths, when fine-tuning the interactions such that interactions between Wannier
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states of different flavors (and to all Wannier states of higher bands) are infinite, the
bandgap will not close even in the thermodynamic limit. This situation is similar to the
case of hard-core bosons (where the on-site interaction strength is infinite), which can
be described as noninteracting fermions. Similarly, in our case, the interacting fermions
turn into hard-core multi-band Wannier state crystals and follow their fractional winding.
In this case, during the first cycle, the Wannier states of flavor α = A will be occupied
and in the subsequent cycle Wannier states of flavor α = B. Hence after two periods the
projection onto the two lowest band will be uniform.

Finally, we comment on the relation of our work with the fractional quantum Hall
effect. While noninteracting Thouless pumps have a well defined connection to their
two-dimensional counterpart, the integer quantum Hall effect, via dimensional extension
(the opposite of dimensional reduction), no such rigorous connection has been established
for interacting Thouless pumps and the fractional quantum Hall effect. However, in the
thin-torus limit of the fractional quantum Hall effect, the Laughlin state continuously
transitions into the charge-density-wave-like Tao-Thouless state [138–140]. A pumped
charge density wave can therefore be regarded as the interacting Thouless pumping
analogue of the fractional quantum Hall effect. However, due to the effective 1/2 filling,
we do not expect the described fermionic state to be adiabatically continuable into a
two-dimensional fractional quantum Hall state. Instead, a different model with three
energetically closely lying bands and effective 1/3 filling is necessary. This is supported
by Ref. [132], that has shown the emergence of a fractional Chern insulator state in a
two-dimensional Harper-Hofstadter model with integer filling but three closely almost
degenerate bands and therefore effective 1/3 fractional filling. Similar results have also
been reported in Ref. [131].

6.5 Summary & Outlook
In summary, we introduced fractional Thouless pumping at integer fillings. For suitable
interactions exceeding the bandgap, only every second multi-band Wannier state per unit
cell is occupied and, due to their fractional winding, transport is integer quantized only
after multiple periods. We illustrated the concept in few-particle systems, using exact
diagonalization calculations. Our work bridges the gap between the recently observed
fractional Thouless pumping of solitons (attractive bosons) and fermionic systems with
repulsive interactions and highlights intriguing physical consequences of the fractional
winding of multi-band Wannier states.
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Chapter 7 |
Towards deep-etched photonic struc-
tures in doped YAG

This chapter describes the experimental advances in the development of a fabrication
technique for deep-etched photonic structures in doped YAG (yttrium aluminium garnet).
We use femto-second laser writing to create a large etching sensitivity for a subsequent
chemical wet-etching process, that in principle enables the fabrication of two-dimensional
photonic crystals with large refractive index contrast. We analyze the effects of the most
important fabrication parameters on the structures, show selected results and discuss
future improvements.

7.1 Introduction
In the previous chapters, we used direct femto-second laser writing to create waveguide
arrays in borosilicate glass: By translating the sample through the focal spot of a high-
power laser beam, the local refractive index changes. When using suitable materials
(like borosilicate glass), the refractive index increases and, due to index guiding, optical
waveguides can be fabricated in the bulk with a large degree of customizability. However,
this process only leads to relatively small (on the order of 10−3 to 10−2) refractive index
changes. Distinctly different physics emerges for large refractive index changes. For
example, periodically varying the refractive index profile in one (two, three) dimensions
allows to deliberately engineer the photonic density of states. For a pronounced effect,
the lattice constant has to be smaller or equal to the wavelength. Furthermore, as a rule
of thumb, the larger the index contrast, the more pronounced the effect. Such structures
are called photonic crystals (in analogy to condensed matter crystals) and engineering the
photonic density of states results in a variety of interesting physical effects, like photonic
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bandgaps, Purcell enhancement, or defect modes [85]. Despite their theoretical promise,
large two- and three-dimensional photonic crystals are challenging to fabricate. Amongst
others, multi-photon stimulated photopolymerization has been shown [141, 142], but
those methods are incompatible with common crystalline materials and new fabrication
methods are highly sought after.

In this chapter, we use direct femto-second laser writing to create a large etching
selectivity between the pristine and the photo-irradiated parts of a YAG crystal. In a
subsequent wet-etching process, only the pristine material remains, resulting in photonic
crystals with a refractive index contrasts of 1:1.83. The material of choice for this chapter
is YAG (Y3Al5O12), a synthetic crystal with high thermal and mechanical robustness.
YAG has become increasingly popular over the last decades as solid-state gain material for
lasers, when dopants are added, such as Nd (Neodymium), Tm (Thulium), Er (Erbium),
Cr (Chromium), Yb (Ytterbium), or Ho (Holmium). Furthermore, a doping with Ce
(Cerium), makes YAG:Ce a fast scintillator (decay constant 70 ns), that efficiently converts
radiation (e.g X-rays) into photons in the visible regime (550 nm). While the surface of
YAG:Ce has recently been patterned (using focused ion beam) to increase the out-coupled
scintillation yield and resolution [143], the effect of volumetric patterning on scintillation
is largely unexplored. Recently, a theoretical framework [144] and first experiments for
one-dimensional photonic crystals have been reported [145].

For undoped YAG, femto-second laser writing has shown to create an etching selectivity
of more than 10−5, which means, that the photo-irradiated YAG crystal etches more
than 105 times faster than pristine YAG [146]. This permits reasonable etching times
for the irradiated YAG on the order of ≈100µm per hour. In principle this allows to
create large and arbitrary two-dimensional, as well three-dimensional photonic crystals.
This is remarkable, as typical fabrication techniques, such as laser lithography, as used in
the semiconductor industry, only pattern the surface of structures, and are incompatible
with materials like YAG. In their work in Ref. [146], Ródenas and co-workers showed
that etching of centimeter-long structures is possible, with feature sizes down to 100 nm
(see also Ref. [147]). However, due to the chosen transverse writing configuration, large
arrays were out of reach, and only index-guiding waveguides and gratings (which are
surface effects) have been shown.

In the following, we will show how femto-second laser writing in the longitudinal
configuration and subsequent wet-etching allows to fabricate large two-dimensional
photonic crystals in doped YAG with sub-micron lattice constants, few-hundred nanometer
feature sizes, and up to mm-long depth. We anticipate that our findings will enhance
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the efficiency of scintillation in Cerium-doped YAG. Additionally, it could enable other
materials such as Yb-doped YAG to improve their scintillation yield, making them
potential choices for scintillators.

7.2 Fabrication and surface effects
We use femto-second laser writing in the longitudinal configuration, as illustrated in Fig.
7.1), and write parallel to the axis of the laser beam. While this configuration limits
the length of the structures to the working distance (WD) of the objective (times the
refractive index of the material), making it unsuitable for evanescently coupled waveguide
arrays, it offers two main advantages: (1) The circular cross-section of the beam results
in circular holes after etching. (2) It allows the fabrication of large arrays of identical
waveguides. Both (1) and (2) are in stark contrast to the transverse writing configuration,
where writing large, dense arrays of circularly shaped waveguides is challenging. In
the previous chapters, we addressed this challenge using a slit, which improved the
circularity of the cross-section at the expanse of a larger focal spot size. However, this is
not a viable option here, as we are aiming for minimal cross-sections. Without the slit,
Ródenas [146] demonstrated almost circular features using a high numerical aperture
(NA=1.4) oil-immersion objective in combination with a laser power slightly above the
modification threshold power. The downside is the need for an extremely fine-tuned
power and the method’s limited applicability within a small depth range, preventing the
fabrication of large arrays.

When writing in the longitudinal configuration, the beam is initially focused onto the
bottom of the sample. Subsequently, the sample is moved downward, causing the focal
spot to move upward within the sample. We observed that this writing technique leads
to the formation of craters (see Fig. 7.2) on the upper surface, a phenomenon known
as laser ablation [148]. As these craters can impact the writing process of neighboring
sites, we prevent their formation by reducing the laser power just before the laser focus
reaches the upper surface. Initial tests using an external mechanical shutter, showed that
the delay time between the command to close and the performed closing of the shutter
required careful calibration for different speeds. Consequently, we moved to utilize the
internal acousto-optic modulator (AOM) of the fabrication laser, which has a maximum
modulation frequency of 80 MHz. This allows us to (essentially) instantaneously reduce
the power fine-tune the laser power as a function of writing depth. Since the waveguides
are buried within the bulk material and do not extend to the top surface, we manually
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Figure 7.1. Direct femto-second laser writing in longitudinal configuration. The
sample is translated parallel to the laser beam axis. Due to multi-photon processes, the material
modification cross-section (as illustrated in the inset) can be below the linear diffraction limit.

Figure 7.2. Formation of surface craters. a, SEM image of a 5x5 array after etching. b,
Zoomed-in image of a single crater of diameter >1µm and corresponding hole (black) in the
center.

expose them by grinding/polishing the crystal with diamond sanding paper. Once the
surfaces are exposed, we etch the photonic structures using phosphoric acid in deionized
water (44 wt% H3PO4) at 78◦C. Additional details of the fabrication procedure can be
found in Appendix D.

We examine the resulting photonic structures through both an optical microscope
and via a scanning electron microscope (SEM). The latter is mostly used to analyze
and measure hole dimensions. Due to the challenge of locating individually written
features, we typically write arrays. Crater formation, if present, is clearly visible under
the optical microscope and is used to calibrate the writing position. In the absence
of craters, unetched arrays can be observed in transmission. After etching, the etched
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structures become easily visible in both reflection and transmission. To assess the etching
depth, we use a side view. The structures are written close to the sample edge, but not
too close to avoid edge effects while writing. For clearer results, polishing of the sides
may be necessary, which we perform either before or after the writing process.

7.3 Calibration of writing power and etching depth
Our objective is to fabricate large, mm-deep arrays with sub-wavelength feature sizes
and small lattice constants, which is strongly influenced by the focusing lens/objective
and the writing power.

First, we discuss the choice of the focusing lens/objective. In principle, higher
numerical aperture (NA) lenses/objectives allow tighter focusing, resulting in smaller
feature sizes. However, an increasing NA comes with a reduction in working distance
(WD), ultimately limiting the depth to which structures can be written. For instance,
objectives with NA=1.4, typically have a working distance of <0.2 mm. In air, spherical
aberrations, caused by the refractive index difference between air and YAG, become
more prominent for higher NA objectives. This challenge can be overcome by using
oil-immersion objectives for which the refractive index contrast is significantly smaller,
reducing the effects of spherical aberrations. While experimenting with an oil-immersion
objective (Nikon Plan 50x; NA=0.9, WD=0.35 mm), we observed that seemingly random
waveguides were not etched. We attribute this to the movement of the oil during the
fabrication process, which could impact the writing. Based on those experiences, we
opted for using a NA=0.68, WD=1.8 mm lens (Thorlabs C330TMD-B), as a suitable
trade-off between high NA, a sufficiently large WD, and ease of use.

Second, we discuss the power requirements. Because femto-second laser writing is
based on a multi-photon process, feature sizes are not given or limited by the diffraction
limit. Instead, they are a strong function of power. Thus, the fabrication power has to
be carefully calibrated for small feature sizes, that are etched through the whole crystal
at reasonably fast etching speed. In order to calibrate the power we write arrays of 10 by
10 waveguides close to the sample edge, using a fixed power per array, but varying the
power between arrays. Fig. 7.3a shows an optical side view (in transmission), after about
one hour of etching. Notably, the threshold power for etched structures at the bottom is
higher, due to internal absorption as well as increasing spherical aberrations with depth,
resulting to a lower peak power. Figure 7.3b,c further presents optical images of arrays
at the top surface (90 mW) and the bottom surface (175 mW) after etching, respectively.
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Figure 7.3. Calibration of writing power. a, Transmission microscopy side view image of
10x10 arrays written with constant power per array after about one hour etching. b, Optical
microscopy image of the top surface showing an array written with 90 mW. c, Optical microscopy
image of the bottom surface showing an array written with 175 mW. d, Optical microscopy
side view image of two single waveguides written with 90 mW, showing a blob-like structure. e,
Measured hole diameter as a function of writing power obtained from SEM images of the top
surface.

Based on this measurement, we calibrate the fabrication power to be between 80 mW to
90 mW for the top surface and around 150 mW to 175 mW at the bottom surface and use
a linear interpolation in between. All power measurements reported within this chapter
are measured before the focusing lens.

We also analyze single waveguides at a typical writing power of 90 mW. We find that
the etched structures exhibit a distinct recurring blob-like pattern, resembling pearls on
a string (see Fig. 7.3d). This pattern seems to be dependent on the writing power, and
while the exact reason for its occurrence is not known, our observations suggest that the
writing parameter regime might require optimization. The parameter space is extensive,
and possible adjustments include the writing speed, the laser repetition rate, the laser
wavelength, and temporal pulse length. Using single waveguides, we calibrate the etched
hole size as a function of writing power, revealing that our fabrication configuration
allows sizes down to ≈ 270 nm for writing powers of 60 mW. For typical writing powers
in the range of 80 mW to 90 mW, sizes of < 400 nm are possible.

Additional challenges arise when writing arrays. Figure 7.4 shows SEM images of
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Figure 7.4. Influence of writing power and lattice constant. SEM images of arrays
with lattice constant a=0.8µm, 1.0µm and 1.5µm and writing powers of 100 mW, 150 mW and
200 mW. Clearly visible is the seemingly random size variation of the holes for 100 mW. The
scale depicts 10µm.

etched arrays at different lattice constants (a=0.8µm, 1.0µm and 1.5µm) and writing
powers (100 mW, 150 mW and 200 mW). We observe that is is necessary to use lower power
for arrays with smaller lattice constant to maintain structural integrity. Furthermore,
within one array, we note variations in hole sizes, consistent with our observation of the
blob-like structure in single waveguides. Moreover, as the size of the arrays increases,
the likelihood of creating cracks during writing also increases.
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Figure 7.5. Selected etching results. a, SEM image of a part of a 150x150 square lattice
array with lattice constant a=1µm. Clearly visible is the fabrication disorder that stems from
the large array size. Furthermore, micro-cracs between different holes are visible. b, Similar to
a, but with strong random position disorder drawn from a random distribution [-0.4a,0.4a].
c, Optical microscope side view image of four arrays fabricated with depth-adjusted writing
power and different starting depth.

7.4 Selected results
Finally, we present some obtained results that demonstrate the capability of the developed
fabrication method to (1) write large arrays and (2) deterministically etch deep structures.
In Fig. 7.5a,b we show parts of a 150 by 150 hole array (lattice constant 1µm), arranged in
a square lattice without and with nominal random disorder, respectively. The fabrication
of the nominally disorder-free square lattice exhibits some fabrication disorder, which
we attribute to imprecise stage movement and temperature changes, and becomes more
pronounced with increasing array size. Additionally, micro-cracks between holes are
visible. Both arrays in (7.5a,b are written with a fixed power of 85 mW. In Fig. 7.5c,
we demonstrate that by adjusting the writing power as a function of the writing depth,
and deterministically switching on/off the beam using the internal AOM, we are able to
write arrays for different etching depths.

7.5 Conclusion and Outlook
In this chapter, we have presented experimental progress towards the fabrication of deep-
etched photonic crystal structures in doped crystalline YAG. Femto-second laser writing
was used to create a large etching sensitivity between pristine and the photo-irradiated
YAG, that was exploited in a subsequent wet-etching step. We successfully etched large
arrays of 300x300 sites, and established an experimental procedure to etch structures
with varying etching depth. This capability may be crucial in future to test observables
as a function of etching depth, confirming a volume effect. For example, we anticipate
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increasing scintillation yield with etching depth in volumetrically patterned scintillators
when the density of states of out-coupled modes is increased.

Apart from Cerium-doped YAG (from crytur), we also successfully etched Ytterbium-
doped YAG (from optogama; doping: 15%). The change in the dopant leads to a change
in the scintillation emission wavelength from approximately 550 nm (Cerium-doped YAG)
to around 1030 nm (Ytterbium-doped YAG), respectively. Therefore, for the same feature
sizes, the photonic crystal effects are expected to be stronger in Ytterbium-doped YAG.
While not described in detail here, we have irradiated etched and unetched Cerium-doped
YAG structures with x-rays and observed scintillation enhancement. These measurements
were conducted in collaboration with Sachin Vaidya, Charles Roques-Carmes and Simo
Pajovic at MIT. However, the increased scintillation could not be unequivocally attributed
to a volume effect, as there was no significant dependence on etching depth.

In the future, a significant effort needs to be undertaken to analyze the quality of
the fabricated photonic crystals. A first analysis should involve looking for Bragg peaks
to determine the quality of the photonic crystal. Second, a reliable method should
be developed to image the cross-section of the etched holes and investigate the wall
straightness of the etched structures. One possible approach might be to fabricate large
arrays and mechanically break the etched crystal, ensuring that the break line passes
through the patterned array. The broken structure could then be imaged using SEM
to gain insight into the cross-section and sidewall roughness. Furthermore, the writing
parameters may need systematic optimization. This includes the laser repetition rate,
writing power, writing speed, and the choice of the focusing lens/objective. Testing
different dopants with varying concentrations and exploring other etching solutions or a
fabrication laser at a lower wavelength are further avenues for potential improvement. It
is worth noting that it might be worthwhile to test materials that, in their unpatterned
state, are not considered good scintillators but could prove more effective after patterning.
We envision that our results will finally lead to the observation of volumetrically enhanced
bulk scintillation.
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Chapter 8 |
Summary

In this dissertation, we presented four studies examining interacting/nonlinear Thouless
pumps and one study presenting advances in the fabrication of deep-etched photonic
crystals.

We theoretically predicted and experimentally observed integer and fractionally
quantized Thouless pumping of solitons. In both cases, the wavefunction’s projection onto
the band structure is decidedly non-uniform. This is in stark contrast to non-interacting
systems, that require a strictly uniform band occupation for quantization. Hence, we
have shown the emergence of quantization due to a new mechanism: Quantization occurs
as the soliton solutions at the beginning and end of each period are identical – apart
from translation invariance. Consequently, when a soliton comes back to itself after each
period – modulo an integer number of unit cells – its displacement is integer quantized.
For low power, we showed analytically that the movement of solitons tracks the trajectory
of single-band Wannier states, whose winding is – by definition – integer quantized by
the Chern number. At higher power, and when the interactions exceed the relevant
bandgap, the soliton follows the trajectory of maximally-localized multi-band Wannier
states, whose winding is fractional. In this case, the soliton comes back to itself only after
multiple periods. Using evanescently coupled waveguides and high-power laser pulses, we
observed integer soliton pumping by one unit cell with a transition to a trapped soliton at
higher power due to symmetry breaking nonlinear bifurcations. In a separate experiment,
we observed fractional soliton pumping by -1/2 unit cells after one period and -1 unit cell
after two periods. We furthermore extended the concept of fractional Thouless pumping
from the nonlinear bosonic platforms into the strongly-interacting regime and showed
fractional pumping also in fermionic few-particle systems at integer filling, when only
every second multi-band Wannier state, with fractional winding, is occupied.

Our results show the emergence of quantization in bosonic topological systems through
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interactions. They demonstrate that the Chern number remains a meaningful topological
invariant also in the presence of nonlinearities. Additionally, our findings underscore
the significance and impact of the fractional winding of multi-band Wannier states
in interacting systems. Future research directions include investigating the effect of
disorder on the quantization of Thouless pumping. While soliton transport may not
be quantized after each period, we anticipate that quantization will be restored in the
average displacement over many periods, as long as the disorder does not cause nonlinear
bifurcations that split the contiguous trajectory of the soliton. Furthermore, it would be
interesting to explore the effects of nonlinearities in the synthetic pumping dimension.

Finally, we presented advances in the fabrication of deep-etched photonic crystals
in crystalline YAG. Despite the well-understood theory of photonic crystals, only few
fabrication techniques are available and novel fabrication approaches are highly sought
after, especially for technologically relevant crystals like YAG. Our results demonstrate
the feasibility of deep-etched structures of large arrays, sub-micrometer lattice constants,
and millimeter-deep, varying etching depth. These advancements pave the way for
volumetrically enhanced scintillation or lasing in doped YAG. Moving forward, immediate
research efforts should focus on investigating and improving the quality of the etched
structures. In the long term, the fabrication of three-dimensional photonic crystals is
conceivable, and exploring the interaction between two dimensional crystals and free
electron radiation, notably Cerenkov radiation, holds promise for further studies.
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Appendix A|
Additional Properties of Bloch and
Wannier basis

A.1 Definition and Normalization of the Bloch basis
In this section, we define the Bloch basis and show its normalization properties. We
restrict ourselves to spatially one-dimensional systems. According to Bloch’s theorem,
the eigenstates in a translationally invariant system with lattice vector R are given by
Bloch wavefunctions, which we define as Bα,k(r) = 1√

N
eikruα,k(r) with a cell-periodic

part uα,k(r + R) = uα,k(r). Here, k denotes the wavevector, α the band index, r the
position, and N the number of unit cells. We use the definition that uα,k(r) is normalized
to one over one unit cell:

∫
UC dr uα,k(r)∗uβ,k(r) = δα,β.

Using this definition, the normalization of the Bloch wavefunction is

⟨Bα,k|Bβ,q⟩ = 1
N

∫
V
dre−ikru∗

α,k(r)eiqruβ,q(r)

= 1
N

∑
R

∫
UC

dre−i(k−q)(r−R)u∗
α,k(r −R)uβ,q(r −R)

= 1
N

∑
R

ei(k−q)R
∫
UC

dre−i(k−q)ru∗
α,k(r)uβ,q(r)

= δk,q

∫
UC

dru∗
α,k(r)uβ,q(r)

= δk,qδα,β, (A.1)

where V denotes the volume of the system.
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A.2 Further information of Wannier states
Here, we show the orthonormality of Wannier states using the discrete formulation, based
on the definition in 2.20:

⟨wR,α|wS,β⟩ = 1
N

∑
k,q

eikRe−iqS⟨Bα,k|Bβ,q⟩

= 1
N

∑
k,q

eikRe−iqSδk,qδα,β

= 1
N

∑
k

eik(R−S)δα,β

= δR,Sδα,β, (A.2)

where we have used the results from Eq. A.1 for the second line.
Furthermore, we show that Wannier states are translational copies of each other:

wR,α(r) = 1√
N

∑
k

e−ikRBα,k(r)

= 1
N

∑
k

eik(r−R)uα,k(r)

= 1
N

∑
k

eik(r−R)uα,k(r −R)

= 1√
N

∑
k

Bα,k(r −R)

= w0,α(r −R). (A.3)

Third, we show that the Wannier functions span the same subspace as the Bloch
functions:

∑
R

|wα,R⟩⟨wα,R| =
∑
R

∑
k,k′

|Bα,k⟩⟨Bα,k|wα,R⟩⟨wα,R|Bα,k′⟩⟨Bα,k′ |

= 1
N

∑
R

∑
k,k′

|Bα,k⟩⟨Bα,k′ | e−i(k−k′)R

=
∑
k

|Bα,k⟩⟨Bα,k|. (A.4)
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Appendix B|
Further information on solitons

In this appendix, we give further information on the bifurcation of solitons, how to
numerically find solitons, and how to determine their stability.

B.1 Soliton bifurcations
In this section, we will show the bifurcation of solitons from their respective bands at low
power. Fig. B.1a shows the nonlinear eigenvalue as a function of strength of nonlinearity.
At low nonlinearity, the soliton eigenvalue is close to the bottom of a band and can
therefore be uniquely identified with a single band. With increasing power, the soliton
becomes more localized (see Fig. B.1b), and the eigenvalue diverges from the band into
the respective lower bandgap. The projection of the soliton that bifurcates from the
lowest band is shown in Fig. B.1c, and confirms the identification of the soliton with a
single band for lower power. At extremely low power, a discrete soliton is well described
by the energetically lowest Bloch state of a given band multiplied with a wide hyperbolic
secant envelope function.

B.2 Numerical methods to find solitons
In this dissertation we use two methods to find solitons: (1) A self-consistent method
and (2) a Newton iteration scheme. We found that the self-consistent method is com-
putationally faster, but often converges only to few dominant solitons, while Newton
iteration is computationally slower but allows to find more solitons.
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Figure B.1. Analysis of soliton bifurcation. a, Energy eigenvalues for the linear eigenstates
at z=0 (black) (from Chapter 3) showing three bands. Nonlinear eigenvalues for solitons
bifurcating from the upper (middle, lower) band are shown in green (blue, red) and are
decreasing with increasing power. b, Degree of soliton localization as measured by the Inverse
Participation Ratio IPR =

∑
n |ϕn|4/(

∑
n |ϕn|2)2 for the solitons shown in a. c, Spectral

overlap coefficients between the soliton bifurcating from the lowest band and the linear energy
eigenstates are a strong function of power. The two upper panels show the occupation at
gP/Jmax = 0.2 and 1.9. Note the non-uniform occupation of the lowest band (from which the
soliton bifurcates), which is particularly pronounced at low power.

B.2.1 Self-consistency algorithm

The self-consistency algorithm described in the following is a simple and computationally
extremely efficient way to find solitons. Convergence depends critically on the starting
guess. We have made the experience, that the algorithm tends to converge to stable
solitons and often to solitons that are strongly localized. Typical initial guesses with a
high success rate are single-site excitations and the maximally-localized Wannier state of
the band from which the soliton is intended to bifurcate.

The self-consistent algorithm converges exponentially using the following iterative
steps:

1. Choose an initial guess, ψ(i), for the wave function.

2. Calculate the full Hamiltonian, which includes the linear Hamiltonian and the
nonlinearly-induced potential: H = Hlin − g|ψ|2

3. Calculate the eigenvectors of H and choose the eigenvector with the largest overlap
with ψ(i) as the initial guess for the next iteration.

4. Iterate steps 2 and 3 until the desired convergence is achieved.
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B.2.2 Newton-Iteration

We use Newton’s method to find low-power and inter-site solitons. To be specific,
we solve the set of N (with N being the number of sites) equations describing the
stationary discrete nonlinear Schrödinger equation for a given degree of nonlinearity g,
while simultaneously constraining the power of the wave function.

0 =
∑
m

Hn,mϕm − g|ϕn|2ϕn − λϕn ∀n ∈ {1, 2..., N} (B.1)

0 =
∑
n

|ϕn|2 − P (B.2)

Here, Hnm is the tight-binding real space Hamiltonian and the algorithm solves for the
amplitudes of the wave function, ϕn, and the nonlinear eigenvalue λ. A similar set of
equations (that follows straightforwardly from Eq. (4.12) is used when solving for the
soliton in simplified Wannier space. We use Mathematica’s FindRoot [106] to solve the
set of N+1 equations. Especially for low power, successful convergence critically depends
on the initial guess.

The solitons shown in Fig. 4.3 and 4.4 of chapter 4, are first solved for in Wannier
space using the following starting guess derived from the continuum approximation:

c
(0)
R,α,n = −sign[ϵR1,α]n

√√√√2Ẽ|ϵR1,α|
gW

sech(
√
Ẽ(n− n0)) (B.3)

where ϵR1,α is the first Fourier coefficient of the band structure for band α, describing
the nearest-neighbor hoppings, n0 is the center of the soliton, which can be chosen
on-site or inter-site, W ≡ Wα,α,α,α

R,R,R,R is the overlap integral as defined in Eq. (4.8), and

Ẽ =
(

PgW
4|ϵR1,α|2

)2
is the energy difference between the (linear) band minimum and the

energy of a continuum approximated soliton. The solitons found in Wannier space (shown
in black in Fig. 4.3 and Fig. 4.4) are then transformed into real space and subsequently
used as seeds to calculate the solitons in real space (shown in red in Fig. 4.3 and Fig.
4.4). When calculating solitons for a full pumping cycle, we use the soliton of each time
step as the starting guess for the next time step.

B.3 Linear stability analysis
Assuming a static (for example, z-independent) Hamiltonian, a system prepared in an
unstable nonlinear eigenstate does not guarantee a static evolution of the system, because
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small fluctuations (even those caused by the limits of numerical precision) can amplify,
and thus the soliton has a finite lifetime. We test the stability of solitons using linear
stability analysis, which indicates when solitons are linearly unstable. We follow Ref. [88]
and start with a nonlinear eigenstate ϕ(0)(z) = e−iΛzϕ(0) for the nonlinear Schrd̈inger
equation i∂zϕ = Hϕ − g|ϕ|2ϕ, where H is the linear tight-binding Hamiltonian of the
system, the parameter g describes the strength of the nonlinearity, ϕ is the (discrete)
wavefunction and Λ describes the eigenvalue of the eigenstate ϕ(0). We have dropped the
subscripts, but it is clear that this equation should be understood as a tight-binding matrix
equation. To test for stability, we take the following ansatz for a small perturbation
around the solution: ϕ = eiΛz[ϕ(0) + ϵ(v(z) + iw(z))]. Plugging this ansatz into the
nonlinear Schrödinger equation and using the fact that ϕ(z) solves the equation, we
arrive (after some algebra) to first order in ϵ at the following two equations for the real
and the imaginary parts of the perturbation

d

dz
v =

(
−Λ +H − 2g|ϕ(0)|2 + g(ϕ(0))2

)
w ≡ L−w (B.4)

d

dz
w = −

(
−Λ +H − 2g|ϕ(0)|2 − g(ϕ(0))2

)
v ≡ −L+wv (B.5)

These coupled equations are solved by separating the z-dependence via v = eκzv̄ and
w = eκzw̄, which leads to κw̄ = −L+v̄ and κv̄ = L−w̄. The values of κ2 can now be
calculated as eigenvalues of the matrix −L−L+. If κ2 is positive, then κ is real and
the perturbations can build up exponentially. In contrast, if κ2 is negative, then κ is
imaginary and the perturbations are oscillating waves that do not grow exponentially.
In the latter case the soliton is linearly stable. In the main text, we identify solitons as
stable if κ2 < 10−15
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Appendix C|
Additional details on the experi-
ments

C.1 Experimental setups
In this section, we describe the two main experimental setups used for the fabrication
and characterization of evanescently coupled waveguide arrays.

C.1.1 Fabrication setup

The fabrication setup is based on a higher-power pulsed laser pulse that is focused into
a borosilicate glass sample that is mounted onto a high-precision computer-controlled
xyz-translation stage (Aerotech ANT 130). Figure C.1 shows a schematic of the setup.
The laser (Menlo Blucut) emits ≈260 fs laser pulses with a (tunable) repetition rate
of 500 kHz and central wavelength of 1030nm. We use a system of a half-wave plate
(WP1) and a polarization beam splitter (PBS) to adjust the power. With a second set of
half-wave (WP2) and quarter-wave plate (WP3), we enable to set all possible polarization
outputs. For waveguide fabrication we typically use circular polarization. The laser beam
then passes through a mechanical slit (typically set to 1.8 mm) for beam-shaping and is
focused into the sample via an aspheric lens (Thorlabs A110TM-B, f=6.24 mm, NA=0.4).
We use an additional flip mirror before the slit to measure the power, defined as writing
power. A 90:10 beam splitter (Thorlabs BSX11) allows to image the back-reflected light
from the sample onto a camera, which is used to calibrate the position of the upper
sample surface.

107



Figure C.1. Fabrication setup. The laser power is adjusted using a wave plate (WP1) and
a polarization beam splitter (PBS) and turned into circular polarization using WP2 and WP3.
After passing through a mechanical slit, the beam is focused using lens L1 onto the borosilicate
glass sample mounted on a computer-controlled high-precision xyz-stage. Reflected power is
passed through a 90:10 beamsplitter (BS) and focused via lens L2 onto a camera. The writing
power is typically measured before the slit using a flip mirror.

C.1.2 Nonlinear experiments

We perform the nonlinear experiments with the same laser (Menlo Bluecut) as used
for fabrication. A schematic of the setup is shown in Fig. C.2. As short laser pulses
lead to significant self-phase modulation, we stretch the pulses using two gratings G1

and G2 (Thorlabs GR25-0610). The beam is focused into the waveguide array using
lens L1 (Thorlabs LB1761-B-ML) and imaged onto a camera using lens L2 (Thorlabs
AC127-030-B-ML or LB1811-B-ML). The incoupling power Pin is measured before L1

and the outcoupled power Pout is measured after L2. A beam splitter (BS) is used to
send some part of the out-coupled light into a fiber-coupled optical spectrum analyzer
(OSA).

C.2 Spectral measurements
Self-phase modulation leads to the generation of new wavelengths for high power laser
pulses. As the hopping between waveguides is a function of the wavelength, maintaining
a narrow spectrum is important. We measure the spectrum of the laser after passing
through a single waveguide as a function of input power (see Fig. C.3). For increasing
input power, the width of the spectrum broadens from initially 7 nm to 20 nm (calculated

108



Figure C.2. Experimental setup for nonlinear waveguide characterization. After
adjusting the laser power using a half-wave plate (WP) and a polarization beam splitter (PBS),
the laser pulses are temporally stretched to about 2 ps using gratings G1 and G2. Lenses L1
and L2 couple the beam into the waveguide array and image it onto a camera, respectively.
Using flip mirrors, we measure the in-coupled power Pin and the out-coupled power Pout. A
beam splitter (BS) allows the simultaneous analysis of the out-coupled light via a fiber coupled
optical spectrum analyzer (OSA).

Figure C.3. Nonlinear output spectrum. Optical spectrum for temporally stretched pulses
(about 2 ps) after propagation through a 7.6 cm-long waveguide. Due to self-phase modulation
the spectrum broadens from initially 7 nm to around 20 nm for the highest input power used in
the experiments.

as the spectral width that contains 76% of the intensity). Within this range the change of
the hopping is on the order of the uncertainty of the on-site potential due to fabrication.
We can therefore neglect its effects and simulate the propagation using a mono-chromatic
nonlinear Schrödinger equation.
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Appendix D|
Deep-etching recipe

In this appendix, we describe the fabrication process of deep-etched structures, consisting
of three parts:

Part 1: Direct femto-second laser writing.

We write the structures in longitudinal writing configuration. Furthermore,
we note the following:

• No slit is used (equivalently, the slit is fully open) to allow for the
smallest focus.

• Good results have been obtained with an NA=0.68 objective, that is a
good trade-off between high numerical aperture, large working distance
and manageable spherical aberrations.

• We start writing at the bottom of the sample and write towards the
top by moving the sample downwards. We switch off the laser (using
the internal acousto-optic modulator) before the laser reaches the top
surface to avoid laser ablation (the formation of craters) at the top
surface.

• Typical fabrication parameters are: laser repetition rate: 500 kHz; tem-
poral pulse width: ≈ 270 fs; time-averaged power: 90 mW (175 mW) at
the top (bottom) surface; writing speed: 1 mm/s.

Optional: For a good side-view, the side facet should be polished either before
or after the writing step.

Part 2: Grinding & Polishing
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In this step, both surfaces are mechanically grinded and polished to expose
the waveguides. A typical grinding/polishing process is first applied to the
bottom surface and finally to the top surface. We use a precision polisher
(Allied Hightech Multiprep) with the following steps:

• We glue the sample to the holder and measure the sample height. We
are careful to use only small amounts of glue that is evenly spread to
avoid breaking the sample when pressure is applied during the grinding
process.

• Optional: To thin the sample by hundreds of microns, we use the 30µm
diamond sanding paper and 100 rpm to grind down the crystal.

• We use the 10µm diamond sanding paper and 100 rpm to sand down
about 30-50µm.

• We use the 3µm diamond polishing paper and 100 rpm to polish down
about 10µm.

During the changes of the sanding/polishing paper, the remaining height of
the sample can be measured to compare the nominal change in height to the
actual change.

Part 3: Chemical wet-etching

• We clean the sample using Acetone in an ultrasonic bath (5 mins),
Isopropanol in an ultrasonic bath (5 mins), and finally rinse the sample
with deionised (DI) water.

• We wet-etch the resulting structures in 44 wt% Phosphoric acid. As the
cleanroom at Penn State only stocks 85% Phosphoric acid, we measure
178 g of DI water and add 200 g of Phosphoric Acid 85%. We heat the
solution to 78 degree Celsius while using a magnetic stirrer on a heat
plate covered with an hourglass.

• We repeat the cleaning procedure after etching.
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[21] Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge
fields for ultracold atoms. Reports on Progress in Physics 77, 126401 (2014).

[22] Abo-Shaeer, J. R., Raman, C., Vogels, J. M. & Ketterle, W. Observation of Vortex
Lattices in Bose-Einstein Condensates. Science 292, 476–479 (2001).

[23] Fletcher, R. J. et al. Geometric squeezing into the lowest Landau level. Science
372, 1318–1322 (2021).

[24] Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau
levels in dielectric structures. Nature Photonics 7, 153 (2012).

[25] Guglielmon, J., Rechtsman, M. C. & Weinstein, M. I. Landau levels in strained
two-dimensional photonic crystals. Physical Review A 103, 013505 (2021).

[26] Barczyk, R., Kuipers, L. & Verhagen, E. Observation of Landau levels and
topological edge states in photonic crystals through pseudomagnetic fields induced
by synthetic strain. arxiv preprint arXiv:2306.03860 (2023). 2306.03860.

[27] Barsukova, M. et al. Direct Observation of Landau Levels in Silicon Photonic
Crystals. arxiv preprint arXiv:2306.04011 (2023). 2306.04011.

113



[28] Jin, J. et al. Observation of Floquet Chern insulators of light. arxiv preprint
arXiv:2304.09385 (2023). 2304.09385.

[29] Thouless, D. J. Quantization of particle transport. Physical Review B 27, 6083–6087
(1983).

[30] Niu, Q. & Thouless, D. J. Quantised adiabatic charge transport in the presence of
substrate disorder and many-body interaction. Journal of Physics A: Mathematical
and General 17, 2453 (1984).

[31] Niu, Q., Thouless, D. J. & Wu, Y.-S. Quantized Hall conductance as a topological
invariant. Physical Review B 31, 3372–3377 (1985).

[32] Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-Dimensional Magnetotransport
in the Extreme Quantum Limit. Physical Review Letters 48, 1559–1562 (1982).

[33] Freedman, M., Kitaev, A., Larsen, M. & Wang, Z. Topological quantum computa-
tion. Bulletin of the American Mathematical Society 40, 31–38 (2003).

[34] Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light.
Nature 561, 502–506 (2018).

[35] Maczewsky, L. J. et al. Nonlinearity-induced photonic topological insulator. Science
370, 701–704 (2020).

[36] Mukherjee, S. & Rechtsman, M. C. Observation of Floquet solitons in a topological
bandgap. Science 368, 856–859 (2020).

[37] Mukherjee, S. & Rechtsman, M. C. Period-doubled Floquet solitons. Optica 10,
1310 (2023).

[38] Mukherjee, S. & Rechtsman, M. C. Observation of Unidirectional Solitonlike Edge
States in Nonlinear Floquet Topological Insulators. Physical Review X 11, 041057
(2021).

[39] Bandres, M. A. et al. Topological insulator laser: Experiments. Science 359 (2018).

[40] Mittal, S., Moille, G., Srinivasan, K., Chembo, Y. K. & Hafezi, M. Topological
frequency combs and nested temporal solitons. Nature Physics 17, 1169–1176
(2021).

[41] Citro, R. & Aidelsburger, M. Thouless pumping and topology. Nature Reviews
Physics 5, 87–101 (2023).

[42] Ke, Y. et al. Topological pumping assisted by Bloch oscillations. Physical Review
Research 2, 033143 (2020).

[43] Leykam, D. & Smirnova, D. A. Probing bulk topological invariants using leaky
photonic lattices. Nature Physics 17, 632–638 (2021).

114



[44] Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological States
and Adiabatic Pumping in Quasicrystals. Physical Review Letters 109, 106402
(2012).

[45] Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless
quantum pump with ultracold bosonic atoms in an optical superlattice. Nature
Physics 12, 350–354 (2016).

[46] Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. Nature
Physics 12, 296–300 (2016).

[47] Fedorova, Z., Qiu, H., Linden, S. & Kroha, J. Observation of topological transport
quantization by dissipation in fast Thouless pumps. Nature Communications 11,
3758 (2020).

[48] Lohse, M., Schweizer, C., Price, H. M., Zilberberg, O. & Bloch, I. Exploring 4D
quantum Hall physics with a 2D topological charge pump. Nature 553, 55–58
(2018).

[49] Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D
quantum Hall physics. Nature 553, 59–62 (2018).

[50] Kudo, K., Watanabe, H., Kariyado, T. & Hatsugai, Y. Many-Body Chern Number
without Integration. Physical Review Letters 122, 146601 (2019).

[51] Cerjan, A., Wang, M., Huang, S., Chen, K. P. & Rechtsman, M. C. Thouless
pumping in disordered photonic systems. Light: Science & Applications 9, 178
(2020).

[52] Tangpanitanon, J. et al. Topological Pumping of Photons in Nonlinear Resonator
Arrays. Physical Review Letters 117, 213603 (2016).

[53] Ke, Y., Qin, X., Kivshar, Y. S. & Lee, C. Multiparticle Wannier states and Thouless
pumping of interacting bosons. Physical Review A 95, 063630 (2017).

[54] Hayward, A., Schweizer, C., Lohse, M., Aidelsburger, M. & Heidrich-Meisner, F.
Topological charge pumping in the interacting bosonic Rice-Mele model. Physical
Review B 98, 245148 (2018).

[55] Nakajima, S. et al. Competition and interplay between topology and quasi-periodic
disorder in Thouless pumping of ultracold atoms. Nature Physics 17, 844–849
(2021).

[56] Walter, A.-S. et al. Quantization and its breakdown in a Hubbard–Thouless pump.
Nature Physics 1–5 (2023).

[57] Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties.
Reviews of Modern Physics 82, 1959–2007 (2010).

115



[58] Asbóth, J. K., Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators,
vol. 919 (Springer, 2016).

[59] Born, M. & Fock, V. Beweis des Adiabatensatzes. Zeitschrift für Physik 51,
165–180 (1928).

[60] Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proceedings
of the Royal Society of London. A. Mathematical and Physical Sciences 392, 45–57
(1984).

[61] Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry
and beyond. Nature Reviews Physics 1, 437–449 (2019).

[62] Harper, P. G. Single band motion of conduction electrons in a uniform magnetic
field. Proceedings of the Physical Society. Section A 68, 874 (1955).

[63] Aubry, S. & André, G. Analyticity breaking and Anderson localization in incom-
mensurate lattices. Ann. Israel Phys. Soc 3, 18 (1980).

[64] Ke, Y. et al. Topological phase transitions and Thouless pumping of light in
photonic waveguide arrays. Laser & Photonics Reviews 10, 995–1001 (2016).

[65] Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization,
Orbital Magnetization and Topological Insulators (Cambridge University Press,
2018).

[66] Wannier, G. H. The Structure of Electronic Excitation Levels in Insulating Crystals.
Physical Review 52, 191–197 (1937).

[67] Kohn, W. Analytic Properties of Bloch Waves and Wannier Functions. Physical
Review 115, 809–821 (1959).

[68] Cloizeaux, J. D. Analytical Properties of n -Dimensional Energy Bands and Wannier
Functions. Physical Review 135, A698–A707 (1964).

[69] Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally
localized Wannier functions: Theory and applications. Reviews of Modern Physics
84, 1419–1475 (2012).

[70] Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions
for composite energy bands. Physical Review B 56, 12847–12865 (1997).

[71] Kivelson, S. Wannier functions in one-dimensional disordered systems: Application
to fractionally charged solitons. Physical Review B 26, 4269–4277 (1982).

[72] Resta, R. Quantum-Mechanical Position Operator in Extended Systems. Physical
Review Letters 80, 1800–1803 (1998).

116



[73] Zak, J. Berry’s phase for energy bands in solids. Physical Review Letters 62,
2747–2750 (1989).

[74] King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids.
Physical Review B 47, 1651–1654 (1993).

[75] Resta, R. Macroscopic polarization in crystalline dielectrics: The geometric phase
approach. Reviews of Modern Physics 66, 899–915 (1994).

[76] Davis, K. M., Miura, K., Sugimoto, N. & Hirao, K. Writing waveguides in glass
with a femtosecond laser. Optics Letters 21, 1729–1731 (1996).

[77] Miura, K., Qiu, J., Inouye, H., Mitsuyu, T. & Hirao, K. Photowritten optical
waveguides in various glasses with ultrashort pulse laser. Applied Physics Letters
71, 3329–3331 (1997).

[78] Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic
structures. Journal of Physics B: Atomic, Molecular and Optical Physics 43, 163001
(2010).

[79] Pertsch, T. et al. Discrete diffraction in two-dimensional arrays of coupled waveg-
uides in silica. Optics Letters 29, 468 (2004).

[80] Itoh, K., Watanabe, W., Nolte, S. & Schaffer, C. B. Ultrafast Processes for Bulk
Modification of Transparent Materials. MRS Bulletin 31, 620–625 (2006).

[81] Jia, Y., Wang, S. & Chen, F. Femtosecond laser direct writing of flexibly configured
waveguide geometries in optical crystals: Fabrication and application. Opto-
Electronic Advances 3, 190042–190042 (2020).

[82] Osellame, R. et al. Lasing in femtosecond laser written optical waveguides. Applied
Physics A 93, 17–26 (2008).

[83] Ams, M., Marshall, G. D., Spence, D. J. & Withford, M. J. Slit beam shaping
method for femtosecond laser direct-write fabrication of symmetric waveguides in
bulk glasses. Optics Express 13, 5676–5681 (2005).

[84] Kawano, K. & Kitoh, T. Introduction to Optical Waveguide Analysis: Solving
Maxwell’s Equation and the Schrödinger Equation (John wiley & sons, 2004).

[85] Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals.
Molding the Flow of Light. (Princeton University Press, 2008), 2nd edn.

[86] Bloembergen, N. Nonlinear Optics (World Scientific, 1996).

[87] Boyd, R. W. Nonlinear Optics (Academic Press, Inc., USA, 2008), 3rd edn.

117



[88] Kevrekidis, P. G. The Discrete Nonlinear Schrödinger Equation: Mathematical
Analysis, Numerical Computations and Physical Perspectives, vol. 232 (Springer
Science & Business Media, 2009).

[89] Pitaevskii, L. & Stringari, S. Bose-Einstein Condensation and Superfluidity, vol.
164 (Oxford University Press, 2016).

[90] Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behaviour
in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003).

[91] Lederer, F. et al. Discrete solitons in optics. Physics Reports 463, 1–126 (2008).

[92] Christodoulides, D. N. & Joseph, R. I. Discrete self-focusing in nonlinear arrays of
coupled waveguides. Optics Letters 13, 794–796 (1988).

[93] Eisenberg, H. S., Silberberg, Y., Morandotti, R., Boyd, A. R. & Aitchison, J. S.
Discrete spatial optical solitons in waveguide arrays. Physical Review Letters 81,
3383 (1998).

[94] Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation
of two-dimensional discrete solitons in optically induced nonlinear photonic lattices.
Nature 422, 147–150 (2003).

[95] Kivshar, Y. S. & Campbell, D. K. Peierls-Nabarro potential barrier for highly
localized nonlinear modes. Physical Review E 48, 3077–3081 (1993).

[96] Aceves, A. B. et al. Discrete self-trapping, soliton interactions, and beam steering
in nonlinear waveguide arrays. Physical Review E 53, 1172–1189 (1996).

[97] Morandotti, R., Peschel, U., Aitchison, J. S., Eisenberg, H. S. & Silberberg, Y.
Dynamics of Discrete Solitons in Optical Waveguide Arrays. Physical Review
Letters 83 (1999).

[98] Yariv, A. Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum
Electronics 9, 919–933 (1973).

[99] Jürgensen, M., Mukherjee, S. & Rechtsman, M. C. Quantized nonlinear Thouless
pumping. Nature 596, 63–67 (2021).

[100] Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators
and superconductors: Tenfold way and dimensional hierarchy. New Journal of
Physics 12, 065010 (2010).

[101] Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole
insulators. Science 357, 61–66 (2017).

[102] Schindler, F. et al. Higher-order topological insulators. Science Advances 4,
eaat0346 (2018).

118



[103] Rosiek, C. A. et al. Observation of strong backscattering in valley-Hall photonic
topological interface modes. Nature Photonics 17, 386–392 (2023).

[104] Pu, H., Maenner, P., Zhang, W. & Ling, H. Y. Adiabatic Condition for Nonlinear
Systems. Physical Review Letters 98, 050406 (2007).

[105] Liu, J., Wu, B. & Niu, Q. Nonlinear Evolution of Quantum States in the Adiabatic
Regime. Physical Review Letters 90, 170404 (2003).

[106] Wolfram Research, I. Mathematica, Version 12.0 (2019).

[107] Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos,
vol. 2 (Springer Science & Business Media, 2003).

[108] Fukui, T., Hatsugai, Y. & Suzuki, H. Chern Numbers in Discretized Brillouin Zone:
Efficient Method of Computing (Spin) Hall Conductances. Journal of the Physical
Society of Japan 74, 1674–1677 (2005).

[109] Jürgensen, M. & Rechtsman, M. C. Chern Number Governs Soliton Motion in
Nonlinear Thouless Pumps. Physical Review Letters 128, 113901 (2022).

[110] Kivshar, Y. S. & Agrawal, G. P. Optical Solitons: From Fibers to Photonic Crystals
(Academic press, 2003).

[111] Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose-Einstein
condensation in trapped gases. Reviews of Modern Physics 71, 463–512 (1999).

[112] Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of
Semiconductor Microcavity Exciton Polaritons. Science 298, 199–202 (2002).

[113] Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443,
409–414 (2006).

[114] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose-Einstein Condensa-
tion of Microcavity Polaritons in a Trap. Science 316, 1007–1010 (2007).

[115] Alfimov, G. L., Kevrekidis, P. G., Konotop, V. V. & Salerno, M. Wannier functions
analysis of the nonlinear Schrödinger equation with a periodic potential. Physical
Review E 66, 046608 (2002).

[116] Rice, M. J. & Mele, E. J. Elementary excitations of a linearly conjugated diatomic
polymer. Physical Review Letters 49, 1455 (1982).

[117] Mostaan, N., Grusdt, F. & Goldman, N. Quantized topological pumping of solitons
in nonlinear photonics and ultracold atomic mixtures. Nature Communications 13,
5997 (2022).

[118] Simon, B. Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase. Physical
Review Letters 51, 2167–2170 (1983).

119



[119] Laughlin, R. B. Anomalous Quantum Hall Effect: An Incompressible Quantum
Fluid with Fractionally Charged Excitations. Physical Review Letters 50, 1395–1398
(1983).

[120] Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect.
Physical Review Letters 63, 199–202 (1989).

[121] Jain, J. K. Composite Fermions (Cambridge University Press, 2007).

[122] Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin
states made of light. Nature 582, 41–45 (2020).

[123] Léonard, J. et al. Realization of a fractional quantum Hall state with ultracold
atoms. Nature 619, 495–499 (2023).

[124] Pernet, N. et al. Gap solitons in a one-dimensional driven-dissipative topological
lattice. Nature Physics 18, 678–684 (2022).

[125] Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological
states. Science 372, 72–76 (2021).

[126] Donley, E. A. et al. Dynamics of collapsing and exploding Bose–Einstein condensates.
Nature 412, 295–299 (2001).

[127] Askaryan, G. A. Effect of the gradient of a strong electromagnetic ray on electrons
and atoms. Zhur. Eksptl’. i Teoret. Fiz. 42, 1567–1570 (1962).

[128] Chiao, R. Y., Garmire, E. & Townes, C. H. Self-Trapping of Optical Beams.
Physical Review Letters 13, 479–482 (1964).

[129] Ablowitz, M. J. & Segur, H. Solitons and the Inverse Scattering Transform (SIAM,
1981).

[130] Stegeman, G. I. & Segev, M. Optical Spatial Solitons and Their Interactions:
Universality and Diversity. Science 286, 1518–1523 (1999).

[131] Luo, W.-W., He, A.-L., Wang, Y.-F., Zhou, Y. & Gong, C.-D. Bosonic fractional
Chern insulating state at integer fillings in a multiband system. Physical Review B
104, 115126 (2021).

[132] Schoonderwoerd, L., Pollmann, F. & Möller, G. Interaction-driven plateau
transition between integer and fractional Chern Insulators. arXiv preprint
arXiv:1908.00988v2 (2022). 1908.00988v2.

[133] Fu, Q., Wang, P., Kartashov, Y. V., Konotop, V. V. & Ye, F. Nonlinear Thouless
Pumping: Solitons and Transport Breakdown. Physical Review Letters 128, 154101
(2022).

120



[134] Viebahn, K. et al. Interaction-induced charge pumping in a topological many-body
system. arXiv preprint arXiv:2308.03756 (2023). 2308.03756.

[135] Grusdt, F. & Höning, M. Realization of fractional Chern insulators in the thin-torus
limit with ultracold bosons. Physical Review A 90, 053623 (2014).

[136] Taddia, L. et al. Topological Fractional Pumping with Alkaline-Earth-Like Atoms
in Synthetic Lattices. Physical Review Letters 118, 230402 (2017).

[137] Zeng, T.-S., Zhu, W. & Sheng, D. N. Fractional charge pumping of interacting
bosons in one-dimensional superlattice. Physical Review B 94, 235139 (2016).

[138] Tao, R. & Thouless, D. J. Fractional quantization of Hall conductance. Physical
Review B 28, 1142–1144 (1983).

[139] Rezayi, E. H. & Haldane, F. D. M. Laughlin state on stretched and squeezed
cylinders and edge excitations in the quantum Hall effect. Physical Review B 50,
17199–17207 (1994).

[140] Bergholtz, E. J. & Karlhede, A. Quantum Hall system in Tao-Thouless limit.
Physical Review B 77, 155308 (2008).

[141] Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with
two-photon-absorbed photopolymerization. Optics letters 22, 132–134 (1997).

[142] Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal tem-
plates for telecommunications. Nature Materials 3, 444–447 (2004).

[143] Roques-Carmes, C. et al. A framework for scintillation in nanophotonics. Science
375, eabm9293 (2022).

[144] Kurman, Y., Shultzman, A., Segal, O., Pick, A. & Kaminer, I. Photonic-Crystal
Scintillators: Molding the Flow of Light to Enhance X-Ray and γ -Ray Detection.
Physical Review Letters 125, 040801 (2020).

[145] Kurman, Y. et al. Purcell-enhanced X-ray scintillation. arXiv preprint
arXiv:2302.01300 (2023). 2302.01300.

[146] Ródenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals.
Nature Photonics 13, 105–109 (2019).

[147] Paz-Buclatin, F. et al. Circularly symmetric nanopores in 3D femtosecond laser
nanolithography with burst control and the role of energy dose. Nanophotonics 12,
1511–1525 (2023).

[148] Stafe, M., Marcu, A. & Puscas, N. N. Pulsed Laser Ablation of Solids: Basics,
Theory and Applications, vol. 53 (Springer Science & Business Media, 2013).

121



Vita
Marius Jürgensen

Education:

• Ph.D. in Physics (expected), Pennsylvania State University, 2019-2024

• M.Sc. in Condensed Matter Physics, Technical University of Munich, 2016-2018

• B.Sc. in Physics, University of Münster, 2012-2015

Publications:

• M. Jürgensen, S. Mukherjee, C. Jörg and M.C. Rechtsman, ’Quantized fractional
Thouless pumping of solitons,’ Nature Physics, 19(3) 2023.

• M. Jürgensen, M.C. Rechtsman, ’Chern Number Governs Soliton Motion in
Nonlinear Thouless Pumps,’ Phys. Rev. Lett., 128(11) 2022.

• M. Jürgensen, S. Mukherjee, and M.C. Rechtsman, ’Quantized Nonlinear Thouless
Pumping,’ Nature, 596(7870) 2021.

• A. Cerjan, M. Jürgensen, W.A. Benalcazar, S. Mukherjee and M.C. Rechtsman,
Observation of a higher-order topological bound state in the continuum,’ Phys.
Rev. Lett., 125(21) 2020.

• M. Blauth, M. Jürgensen, G. Vest, O. Hartwig, M. Prechtl, J. Cerne, J.J.
Finley and M. Kaniber, ’Coupling Single Photons from Discrete Quantum Emitters
in WSe2 to Lithographically Defined Plasmonic Slot Waveguides,’ Nano Letters,
18(11), 2018.

• M. Blauth, G. Vest, S.L. Rosemary, M. Prechtl, O. Hartwig, M. Jürgensen, M.
Kaniber, A.V. Stier and J.J. Finley, ’Ultracompact Photodetection in Atomically
Thin MoSe2,’ ACS Photonics, 6(8), 2019.

• T. Stiehm, J. Kern, M. Jürgensen, S.M de Vasconcellos and R. Bratschitsch,
’Nanoantenna-controlled radiation pattern of the third-harmonic emission,’ Applied
Physics B, 122, 1-6 2016.

Selected Awards:

• Physics Department Peter Eklund Award for Scientific Communication, Pennsylva-
nia State University, 2023

• W. Donald Miller (2023, 2024), David C. Duncan (2022, 2023, 2024) and Downs-
brough (2022, 2023, 2024) Graduate Fellowship, Pennsylvania State University

• Verne M. Willaman Distinguished Graduate Fellowship, Pennsylvania State Uni-
versity, 2019


