
The Pennsylvania State University
The Graduate School

REACHABILITY ANALYSIS OF NONLINEAR AND HYBRID SYSTEMS

USING HYBRID ZONOTOPES AND GRAPHS OF FUNCTIONS

A Dissertation in
Mechanical Engineering

by
Jacob A. Siefert

© 2024 Jacob A. Siefert

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 2024

The dissertation of Jacob A. Siefert was reviewed and approved by the following:

Herschel C. Pangborn
Assistant Professor of Mechanical Engineering
Thesis Advisor

Sean B. Brennan
Professor of Mechanical Engineering

Constantino M. Lagoa
Professor of Electrical Engineering

Jack W. Langelaan
Professor of Aerospace Engineering

Brandon M. Hencey
Senior Mechanical Engineer, Air Force Research Laboratory

Robert F. Kunz
Professor of Mechanical Engineering
Associate Department Head for Graduate Programs

ii

Abstract
Reachable sets are used to evaluate system performance and ensure constraint satisfaction
in safety-critical applications while accounting for the effects of input, disturbance, and
parameter uncertainties. However, many reachability approaches are not applicable to
nonlinear systems or hybrid dynamics consisting of both continuous and discrete dynamics.
Furthermore, both computational complexity and set representation complexity grow
rapidly with system dimension and the duration over which sets are propagated. While
computational complexity and set representation complexity can be reduced by over-
approximating reachable sets, approximation techniques can suffer from significant error
as over-approximations are propagated through the dynamics. This dissertation develops
methods to enable efficient reachability analysis of hybrid and nonlinear systems using
a novel set representation, the hybrid zonotope, with sets representing the mapping of
functions called graphs of functions. Examples demonstrate how these methods can
be applied to verify safety and performance of many classes of systems of engineering
interest, including closed-loop systems with advanced controllers.

First, this dissertation proposes methods using graphs of functions, including set iden-
tities for calculating a set of outputs given a set of inputs, and vice versa. For reachability
analysis of an autonomous system, this corresponds to one-step forward and backward
reachability. The computational complexity and memory complexity of the proposed
identities, when executed using hybrid zonotopes, motivates additional contributions.
This includes techniques to represent and approximate graphs of functions as hybrid
zonotopes by leveraging special ordered sets (SOS), and methods to improve scalability
for constructing graphs of high-dimensional functions via functional decomposition.

Then, the proposed techniques are applied to perform reachability analysis of diverse
classes of systems including mixed-logical dynamical (MLD) systems, linear systems in
closed-loop with model predictive control (MPC), discrete hybrid automata (DHA), logical
systems, neural nets, and nonlinear systems. Methods exploit the structure inherent to
many of these classes of systems to generate a functional decomposition, which can be
used to efficiently construct graphs of functions. The reachability techniques for each
class are compared to existing state-of-the-art techniques using benchmark problems
where applicable.

Lastly, the dissertation applies the techniques to set-valued state estimation (SVSE)
and set-valued parameter identification (SVPI). Examples demonstrate how nonlinear
measurement models can result in nonconvex and disjoint sets, and compare results to
an idealized convex approach.

Numerical results demonstrate that proposed methods enable analyses which cannot
be performed with other state-of-the-art tools, such as verification of large initial sets.

iii

Table of Contents

List of Figures viii

List of Tables xii

Acknowledgments xiv

Chapter 1
Introduction 1
1.1 Motivation and Background . 1

1.1.1 Reachability Analysis . 1
1.1.2 Set Representations . 2
1.1.3 Set Propagation Techniques for Discrete-Time Hybrid Systems . . 4
1.1.4 Set Propagation Techniques for Nonlinear Systems 5
1.1.5 Set-Based Methods for State Estimation and Parameter Identification 6

1.2 Contributions . 7
1.3 Document Organization . 8

Chapter 2
Preliminaries 10
2.1 Notation . 10
2.2 Set Operations . 11
2.3 Set Representations . 12

2.3.1 Ellipsoids, Convex Polytopes, and Zonotopes 12
2.3.2 Constrained Zonotopes . 13
2.3.3 Hybrid Zonotopes . 14

2.3.3.1 Introduction . 14
2.3.3.2 Definition . 15
2.3.3.3 Analyses . 17
2.3.3.4 Set Operations . 19

2.3.3.4.1 Linear Mapping, Minkowski Sum, Generalized
Intersection, and Generalized Halfspace Inter-
section . 19

2.3.3.4.2 Unions of Hybrid Zonotopes 20
2.3.3.4.3 Minkowski Difference with a Zonotope 26

iv

2.3.3.5 Exact Set Representation Conversions 26
2.3.3.5.1 Collections of CG-rep Polytopes to HCG-rep . . 26
2.3.3.5.2 Collections of H-rep Polytopes to HCG-rep . . . 27
2.3.3.5.3 Collections of V-rep Polytopes to HCG-rep . . . 28

2.3.3.6 Approximate Set Representation Conversion 29
2.3.3.6.1 Interval Over-approximation of HCG-rep 30
2.3.3.6.2 Polytope Over-approximation of HCG-rep . . . 30

Chapter 3
Graphs of Functions 31
3.1 Definition and Input-Output Identities 31

3.1.1 Set Representations for Graph of Function Input-Output Identities 33
3.1.1.1 Hybrid Zonotopes for Graph of Function Input-Output

Identities . 35
3.2 Special Ordered Set Approximations . 37

3.2.1 SOS Approximations Using Hybrid Zonotopes 37
3.2.2 Hybrid Zonotope Over-approximations for Graphs of Nonlinear

Functions . 39
3.2.2.1 Bounding SOS Approximation Error 40

3.2.3 Unary SOS Construction . 41
3.2.3.1 Method 1 (Bisection Advance): 42
3.2.3.2 Method 2 (Thrice Differentiable Functions): 43
3.2.3.3 Comparison of SOS Construction Methods 46

3.3 Functional Decomposition . 48
3.3.1 Introduction and Definition . 48
3.3.2 Construction of High-Dimensional Graphs of Functions 49

3.3.2.1 Avoiding the Curse of Dimensionality 55
3.3.3 Automated Functional Decomposition 56

3.3.3.1 Reverse Polish Notation 56
3.3.3.2 RPN to Functional Decomposition (Scalar-valued Function) 57

3.3.3.2.1 Redundant Observables 58
3.3.3.2.2 Excessive Decomposition of Unary Functions . . 60

3.3.3.3 RPN to Functional Decomposition (Vector-valued Func-
tion) . 63

3.3.4 Separable Bilinear Functions . 65
3.4 Hybrid Zonotope Graphs of Common Functions 70

3.4.1 Absolute Value (Exact) . 71
3.4.2 Satisfaction of Inequality (Approximate) 72
3.4.3 Sign (Approximate) . 73
3.4.4 Rectified Linear Unit (Exact) . 73
3.4.5 Minimum (Exact) . 74
3.4.6 Boolean (Exact) . 75
3.4.7 Identity with Boolean On/Off Switch (Exact) 76

v

Chapter 4
Reachability Analysis 77
4.1 Introduction . 77
4.2 Hybrid Systems . 79

4.2.1 Literature Review . 79
4.2.2 Mixed Logical Dynamical Systems 80

4.2.2.1 Introduction . 80
4.2.2.2 Proposed Method . 81
4.2.2.3 Numerical Examples . 84

4.2.2.3.1 Two-Equilibrium System 84
4.2.2.3.2 Thermostat-Controlled Heated Room 86

4.2.3 Linear Systems with Model Predictive Controllers 87
4.2.3.1 Introduction . 87
4.2.3.2 Proposed Method . 88
4.2.3.3 Numerical Example . 89

4.2.3.3.1 Maximal Positive Invariant Set for a Double
Integrator Under MPC 89

4.2.4 Discrete Hybrid Automata . 91
4.2.4.1 Introduction . 91
4.2.4.2 Numerical Examples . 91

4.2.4.2.1 Example DHA Functional Decomposition . . . 91
4.2.4.2.2 Thermostat-Controlled Heated Room Revisited 93

4.3 Logical Systems . 99
4.3.1 Introduction . 99
4.3.2 Proposed Method . 100
4.3.3 Numerical Example: High Dimensional Boolean Function 103

4.4 Neural Network Control Systems . 104
4.4.1 Introduction . 104
4.4.2 Proposed Method . 106

4.4.2.1 Dynamics . 106
4.4.2.2 Open-Loop and Closed-Loop State-Update Sets 106
4.4.2.3 Functional Decomposition of Neural Networks 110

4.4.3 Numerical Examples . 111
4.4.3.1 Single Pendulum with Neural Network Controller 111

4.4.3.1.1 Case 1: . 111
4.4.3.1.2 Case 2 (ARCH-COMP Single Pendulum): . . . 117

4.4.3.2 Vertical Collision Avoidance System 119

Chapter 5
Set-Valued State Estimation and Parameter Identification 127
5.1 Introduction . 127
5.2 Set-Valued State Estimation . 128

5.2.1 Numerical Example: Sum of Signal Strengths 129
5.3 Set-Valued Parameter Identification . 133

vi

5.3.1 Numerical Example: Sum of Signal Strengths 134

Chapter 6
Conclusion 140

Appendix
Computer Hardware Specifications 141

Bibliography 142

vii

List of Figures

1.1 Chapter Overview and Key Concepts: Solid lines indicate the flow of
theoretical concepts and dashed lines are used to indicate how specific
system models and problems are posed in terms of the fundamental
theoretical framework in Chapter 2 and Chapter 3. 9

2.1 Example of a constrained zonotope. 14

2.2 Example from [58] of generating a hybrid zonotope by adding one binary
factor to the constrained zonotope (2.8) for Gb = 1 and Ab = 1. 16

2.3 “Chessboard” set given by the compact representation of the hybrid
zonotope defined in (2.11). 17

2.4 Example of supplemental union of hybrid zonotopes using (2.31). 24

2.5 Memory complexity growth comparison of two methods to compute unions
of hybrid zonotopes. 25

3.1 Example graph of a function for q = sin(p). 32

3.2 Example of input set to output set via graph of a function (3.3) for
q = sin(x). 34

3.3 Example of output set to input set via graph of a function (3.5) for
q = sin(x). 35

3.4 SOS approximation of y = sin(x) for x ∈
[
−4 , 4

]
with 11 evenly spaced

breakpoints. 39

3.5 Hybrid zonotope over-approximation of the graph of the function y = sin(x). 41

3.6 Bisection-based construction of SOS approximation. 44

viii

3.7 Comparison of SOS Construction Methods. 47

3.8 Number of Breakpoints required to meet a specified tolerance for the
function sin(x) x ∈ [0, 2π] using Method 1 (Algorithm 1). 48

3.9 Visual depiction of functional decomposition and Theorem 3.4 applied to
xk+1 = cos(π sin(xk)) with the decomposition shown in Table 3.3. 54

3.10 Hybrid zonotopes generated using functional decompositions with and
without redundant observables. 60

3.11 Visualization of graph defined by adjacency matrix (3.47). 63

3.12 Graph representation of (3.45) being simplified to (3.46) according to
Algorithm 5. 65

3.13 Graph representation of (3.45) being simplified to (3.46) according to
Algorithm 5 with V4 and V8 listed as protected vertices. 66

3.14 Comparison of 2-D and 1-D sampling methods for over-approximating
{xy | x, y ∈ [−1 1]}. 70

4.1 Forward (R4,R5,R6) and backward (R0,R1,R2) reachable sets of a two-
equilibrium system from R3 for three cases of input and disturbance sets.
Sets from the Case 1 subplot are also shown in wire frame in the Case 2
and 3 subplots for comparison. 84

4.2 Room layout and heater locations for a varying number of rooms. [58] . . 86

4.3 Projections of backward reachable sets calculated from R50 for 50 steps.
Guards determining heater logic (green dashed lines) and the region over
which the MLD is defined (black dashed lines) are also plotted. 87

4.4 Maximal positive invariant sets under MPC for a double integrator. . . . 90

4.5 Graph of the heater logic function for (4.14) and (4.15) 94

4.6 HCG-rep graph of the heater logic function for Method 1. 95

4.7 HCG-rep graph of the heater logic function for Method 2. 97

ix

4.8 Forward reachable sets of heated room example case (6,2) using state-
update set calculated using functional decomposition. See [22, Figure 4]
for comparison. 100

4.9 Computation time of reachable sets of a logical function. 104

4.10 The closed-loop successor set identity uses a set-based representation
of the closed-loop dynamics, called the closed-loop state-update set Φ,
to generate the one-step forward reachable set Rk+1 from Rk. The
closed-loop state-update set is created by combining sets representing the
open-loop dynamics and a state-feedback controller, called the open-loop
state-update set Ψ and the state-input map Θ, respectively. 107

4.11 (a) Projection of over-approximated open-loop state-update set Ψ̄ bound-
ing dynamics of a pendulum at discrete time steps. (b) State-input map
Θ of a neural network trained to mimic NMPC. (c) Projection of over-
approximated closed-loop state-update set found using Theorem 4.5 by
coupling Ψ̄ and Θ. 113

4.12 (a) Over-approximation of reachable sets R0 → R3 of the inverted pendu-
lum in closed-loop with a saturated neural network controller, overlaid by
samples of exact trajectories in green. (b) Over-approximated reachable
sets R0 → R15 with over-approximations taken every three time steps.
(c) Memory complexity of the over-approximated reachable sets. 116

4.13 Reachable sets for VCAS, calculated and falsified in 0.8 seconds, and
plotted in 4.3 seconds. 124

4.14 Reachable sets for VCAS with a simplifying “worst-case” assumption are
calculated in 16 seconds. The reachable set loses pieces associated with
the portion of a reachable set at the previous time step not included in
the domain of the state-update set h /∈

[
−400 −100

]
. 126

5.1 Comparison of methods for hybrid zonotope over-approximation of (5.8).
M1: uniformly spaced breakpoints and M3: trained neural network. A
surface plot of (5.8) is also shown in both (a) and (b). 131

5.2 Set valued state estimation (5.5)-(5.6) of (5.7) with measurement model
(5.8) and its over-approximation represented as a hybrid zonotope given
by Figure 5.1(b). 136

5.3 Measurement and signal source locations. 137

x

5.4 (a) Parameter identification of the location of the first source, p1 = (−3, 2).
(b) Parameter identification of the location of second source p2 = (2,−2). 138

5.5 (a) Bounds in axis-aligned directions for p1 = (−3, 2) found by support
functions. (b) Bounds in axis-aligned directions for p2 = (2,−2) found by
support functions. The 80 support functions used to find the axis-aligned
bounds were evaluated in 132 seconds. 139

xi

List of Tables

3.1 Functions and domains used to compare Method 1 and Method 2 for SOS
construction. 46

3.2 Functional decomposition of T2 (3.27) . 50

3.3 Functional decomposition and domain propagation of xk+1 = cos(π sin(xk))
over a domain DH = [−π, π]. 53

3.4 Memory complexity of hybrid zonotope over-approximations of graphs
of sin(w1) + sin(w1)2 with (3.43) and without (3.42) redundancy in the
functional decomposition. 59

3.5 Complexity comparison of three methods for approximating the bilinear
function f(x, y) = xy. 71

4.1 Forward and backward reachable set complexities and computation times
for the two-equilibrium system. 85

4.2 Backward reachability with nominal (row 1) vs. reduced (row 2) state-
update set for the two-equilibrium system. 85

4.3 Memory complexity of the open-loop state-update set, state-input map,
and closed-loop state-update set. 112

4.4 Comparison of state-of-the-art tools for reachability analysis of an inverted
pendulum with a neural network controller from a small initial set. . . . 118

4.5 Comparison of state-of-the-art tools for reachability analysis of an inverted
pendulum with a neural network controller from a large initial set. 119

4.6 VCAS Advisories . 120

xii

4.7 Functional decomposition of VCAS: States →Advisory 122

4.8 Iterative domain propagation of advisories for an assumed domain of
interest. 123

4.9 Functional decomposition of VCAS: States →Updated States 125

5.1 Memory complexity for set-based over-approximations of (5.8). 130

xiii

Acknowledgments

First, I would like to recognize my advisor, Professor Herschel Pangborn, who always
made time for thoughtful research discussions. His feedback was instrumental to my work
as a graduate student, and his continued collaboration will undoubtedly contribute to
my future work as a researcher. Professor Pangborn has also demonstrated compassion
and patience throughout my doctoral studies, especially as my wife and I welcomed our
first child. His combination of academic excellence and unfailing kindness played a key
role in my positive graduate school experience.

In addition to Professor Pangborn, Professor Justin Koeln (University of Texas at
Dallas), Professor Neera Jain (Purdue University) and Dr. Trevor Bird (formerly Purdue
University) have contributed significantly to my graduate work through our hybrid
zonotope collaboration. Our meetings have continuously generated fruitful research
and thoughtful feedback. I’d especially like recognize Dr. Trevor Bird as a fellow
graduate student and mentor. Mirroring a statement from the acknowledgements of his
own dissertation, Trevor and I often solved problems using very different approaches.
Trevor was always willing to explain his approach to me and I believe this greatly
benefited my own understanding, and our co-authored papers. I’d also like to thank my
committee members, Professor Sean Brennan, Professor Constantino Lagoa, Professor
Jack Langelaan, and Dr. Brandon Hencey, for their guidance, support, and feedback
throughout the course of my doctoral studies.

I’m proud to have worked alongside many gifted and hardworking students, including
those from my bachelor’s degree at the University of Maryland and my master’s degree at
the University of Minnesota (SKI-U-MAH), and my doctoral degree. This includes (from
UMD) Kelly, J.W., Carey, (from UMN) Brian, Justinus, Aditya, Aleksander, Arpan,
(and from PSU) Andrew I., Jason, Adim, Josh, Michael, Jacob, Madison, Dor, Nick,
Ahmed M., Ahmed A., Haley, Shanthan, Shashank, Pete, and Troy. I would especially
like to thank those with whom I spent many early mornings and late nights studying
for qualifying exams, Seho, Changik, Garrett, and John, and those with whom I have
collaborated closely on publications, Andrew T. and Jonah.

My family has been incredibly supportive. My parents, Ron and Julie, always believed
in me, cared for me, and loved me. I truly cannot thank them enough. Together they
have encouraged me to work hard and pursue my passions, taught me to treat others
kindly, and equipped me with the skills necessary to be successful. My mother-in-law,
Kathy, has also always believed in me since we met when I was in 7th grade. It took

xiv

my father-in-law, Scott, considerably longer acknowledge my existence, and so when he
encouraged me to go back to school six years ago, it gave me the confidence I needed to
fill out the applications. I’d also like to thank my sister, Tara, my sisters-in-law, Rachel
and Angela (also Josh), and my close friends, Steven and James.

Most importantly, I would not have been able to accomplish anything without my
wife and best friend, Allison. I am blessed to have met someone so kind, funny, brilliant,
and patient as you. From seventh grade algebra homework, to results presented in this
thesis, you have helped me with my studies. You are also an incredible mother to our
daughter, Mae. To Mae, your smile is a source of motivation more powerful than rice
puffs. I love you both.

xv

Dedication

To my wife, Allison,
my daughter, Mae,
my parents, Ron and Julie, and
my parents-in-law, Scott and Kathy.

Mae, represented using two hybrid zonotopes.

xvi

Chapter 1 |
Introduction

1.1 Motivation and Background
Certifying safety and performance is critical to the development of many engineered
systems, including autonomous vehicles, medical robotics, electrical grids, etc. [1–5].
Simulation over varied initial conditions, disturbances, and parameters allows for testing
of different scenarios but may fail to generate worst-case behavior or reveal critical
design flaws. Therefore, such simulations provide no guarantee of safety. Verification
and falsification refer to the process of rigorously proving a statement, e.g., “the system
will not achieve an unsafe state”. Simulations can be used to falsify such a statement by
counterexample if any simulated trajectory achieves an unsafe state, but in general, a
finite number of simulations cannot be used to verify the safety of a system.

1.1.1 Reachability Analysis

Set-based reachability analysis generates the set of all states a system can achieve from a
set of initial conditions for all admissible inputs, disturbances, and parameters. In lieu of
calculating exact reachable sets, over- and inner-approximations of reachable sets can
often be calculated with reduced complexity at the cost of conservatism. Both exact
and approximate reachability analysis can be used to guarantee safety. For example, if
an exact or over-approximated reachable set of a system does not intersect an unsafe
set, then no individual trajectory can enter the unsafe set and therefore the system is
safe. Similarly, exact and inner-approximations of reachable sets are often used to find
invariant sets. Once entered, no trajectory will leave an invariant set; a property often
exploited to guarantee recursive feasibility of receding-horizon control approaches like
Model Predictive Control (MPC).

1

Several fundamental approaches for reachability analysis have been developed to
provide guarantees of dynamic system behavior, each relying on different mathematical
methods. Hamilton-Jacobi reachability calculates reachable sets by numerically solving
nonlinear differential equations and is applicable to nonlinear dynamics including hybrid
systems; however, its computational complexity scales exponentially with the system
state dimension as partial differential equations are numerically solved by discretizing
the state space. Techniques to reduce computational complexity decompose the system
into subsystems based on its structure when possible [6–9].

Another approach for reachability analysis relies on generating barrier certificates to
separate reachable sets from unsafe sets using a zero-sublevel set of a function [10,11].
Barrier certificates are constructed such that no trajectory of the system can cross
from negative to positive values of the barrier certificate function. Thus if the initial
condition set is contained within negative values of the barrier certificate function, then
the non-positive values of the barrier certificate function provide an over approximation
of the reachable set. Deriving barrier certificates can be challenging, especially if the
reachable set is close to an unsafe region.

This dissertation focuses on set propagation methods, in which a sequence of reachable
sets, beginning with a set of initial conditions, are calculated using iterative set operations
to propagate the system dynamics forward or backward in time [12]. Depending on the
set representation used, set propagation methods have been shown to scale well with the
state dimension, but may not be capable of exactly representing reachable sets.

1.1.2 Set Representations

Set propagation techniques and their performance are highly dependent upon the choice
of set representation. Factors to consider include:

1. Reachable sets, the initial condition set and admissible input, disturbance, and
parameter sets must be able to be represented or adequately approximated by the
chosen set representation.

2. The set representation should be closed under operations used for set propagation.
A class of sets is said to be closed under a given operation if the operation acting
on that class results in a set of the same class.

3. The computational complexity of performing the required set operations and the
complexity of the set representation itself should be considered, as this strongly

2

determines scalability given limited computational and memory resources.

Common operations used for propagation and analysis of reachable sets include
linear transformations, Minkowski sums, Minkowski differences, generalized intersections,
intersections with halfspaces, Cartesian products, complements, and unions. An overview
of many commonly used set representations with their closure and complexity for various
set operations can be found in [12, Table 1], and the relationship between various sets
representations is depicted in [12, Figure 1]1.

Ellipsoids have been used effectively for reachability analysis, however of the set
operations listed above they are closed only under linear transformation. Because
ellipsoids are convex and symmetrical, for many system dynamics and applications they
provide over-approximations of reachable sets rather than exact sets [13]. Polytopes,
represented either as the intersection of halfspaces (H-rep) or the convex hull of vertices
(V-rep), can represent asymmetrical convex sets. Both H-rep and V-rep are closed under
the set operations listed above, with the exception of unions and complements. However,
Minkowski sums exhibit exponential computational complexity in H-rep and generalized
intersections are NP-hard in V-rep [14].

Polynomial zonotopes [15] and Taylor models [16] express an equivalent class of
nonconvex sets related to polynomial functions, but use different representations. Their
nonconvexity allows for reduced error when approximating nonlinear and hybrid dynamics
as compared to convex methods. Both are closed for key set operations, with the exception
of intersections. Constrained polynomial zonotopes [17] extend polynomial zonotopes to
allow for closure under intersection and union operations, for which identities are known.
Star sets [18] represent an even more general class of nonconvex sets and are closed under
many set operations, however there are no closed-form identities for their unions and
intersections.

Logical zonotopes [19] and their more generalized form, polynomial logical zonotopes
[20], are set representations for reachability analysis of logical systems, e.g., Boolean
functions. Polynomial logical zonotopes are closed under all fundamental Boolean
functions.

The remainder of this section discusses zonotopes, constrained zonotopes, and hybrid
zonotopes, the latter of which is the set representation used within this thesis. Numerical
examples will be used to compare the reachability methods developed for hybrid zonotopes
to the state-of-the-art.

1The set representation used in this thesis, namely the hybrid zonotope, is not included in the
reference as it was proposed more recently.

3

Zonotopes are centrally symmetric convex polytopes. They are computationally
efficient for linear transformations and Minkowski sums and scale well to high-dimensional
state spaces. Introduced in 2016, constrained zonotopes [21] extend zonotopes by
introducing linear equality constraints to the set definition. In doing so, constrained
zonotopes can represent asymmetric polytopes (equivalent to H-rep and V-rep) while
still enabling computationally efficient linear transformations, Minkowski sums, and
generalized intersections. Due to their convexity, constrained zonotopes are not closed
under unions or complements.

Hybrid zonotopes further extended constrained zonotopes by introducing binary
factors into the set definition [22–24]. This allows them to represent non-convex sets and
enables closure under unions and complements. Many operations that are closed and
efficient for constrained zonotopes have been extended to hybrid zonotopes, including
linear transformations, Minkowski sums, generalized intersections, intersections with
halfspaces, and Cartesian products.

1.1.3 Set Propagation Techniques for Discrete-Time Hybrid Systems

Hybrid system models have found increased use in recent years due to their ability
to capture mixed continuous and discrete dynamics, such as those exhibited by cyber-
physical systems and logic-based controllers [25]. While they are incredibly expressive,
hybrid system models are inherently complex to analyze. Basic properties of hybrid
systems, such as stability and controllability, are not easily determined from the system
model even in the case of linear hybrid systems [26,27].

Set propagation techniques can be deployed to guarantee constraint satisfaction and
performance of hybrid systems. The forward reachable sets of linear hybrid systems
may be determined using a collection of convex sets by partitioning the state space
into locations separated by guards and applying techniques developed for linear systems
within each location [25, 28]. However, successive intersections with guards at each time
step result in worst-case exponential growth in complexity, leading to computational-
intractability for long time horizons. Over-approximation techniques like clustering-based
methods reduce the complexity of sets at the cost of conservatism [29]. The extent of
this conservatism is application-dependent and difficult to quantify [30].

Hybrid zonotopes have been shown to enable scalable closed-form solutions of forward
reachable sets for broad classes of discrete-time linear hybrid systems. This includes
Mixed Logical Dynamical (MLD) systems [22] and linear systems in closed loop with
MPC [23], of which the explicit solution yields piecewise affine (PWA) control laws [31,32].

4

MLD systems are equivalent2 to many discrete-time hybrid systems including Linear
Complementarity (LC) systems, Extended Linear Complementarity (ELC) systems,
PWA systems, max-min-plus-scaling (MMPS) systems, and Discrete Hybrid Automata
(DHA) [31–33]. Tools for generating equivalent MLD systems, e.g., converting a DHA
to an MLD system using HYSDEL [34], allow for forward reachability analysis of these
equivalent systems by first converting to an MLD system. Previous work does not address
reachability of the classes of systems directly using hybrid zonotopes or the ability to
calculate backward reachable sets or invariant sets.

In general, backward reachable sets of linear hybrid systems are challenging to
calculate. Even for autonomous hybrid systems, there may be many states that converge
to a single state at the following time step, which can cause backwards reachable sets to
grow quickly. This complexity is often compounded when considering disturbances, as
analysis relies on computing or approximating Minkowski differences [35, 36]. Similar to
finding forward reachable sets of hybrid systems, backward reachable sets may be found
by considering collections of convex sets within each location, with worst-case exponential
growth in set complexity with time [37, 38]. Backward reachability is often used to
calculate invariant sets. Lacking scalable methods to calculate backward reachable sets
under the PWA control laws of MPC, artificial constraints based on the invariant set
under a simpler control law are introduced to ensure recursive feasibility, resulting in
conservatism [31].

Logical systems represent a subset of DHA3, and reachability can be performed using
the techniques developed for MLD systems [22]. Recent work using logical zonotopes and
polynomial logical zonotopes has provided methods for reachability of logical systems
that do not require conversion to an equivalent MLD [19, 20]. Previous work using
hybrid zonotopes did not address direct reachability of logical systems, i.e., without first
converting to an MLD.

1.1.4 Set Propagation Techniques for Nonlinear Systems

This dissertation addresses nonlinear system in closed loop with PWA controllers, e.g.,
neural networks using Rectified Linear Unit (ReLU) activation functions. Discussion
herein focuses on the four state-of-the-art reachability tools (CORA [39], JuliaReach [40],

2See [33] for additional assumptions required for LC→MLD, ELC→MLD, MLD→PWA, and
PWA→MLD.

3DHA consist of an event generator (EG), finite state machine (FSM), mode selector (MS), and
switched affine system (SAS). Logical systems can be represented using an FSM only.

5

NNV [41], POLAR [42])4 included in the Artificial Intelligence and Neural Network
Control Systems category of the Applied veRification for Continuous and Hybrid systems
(ARCH) competitions in 2022 [43] and 2023 [44]. In later chapters, benchmark problems
from [43, 44] are used to demonstrate and compare the proposed methods to these
state-of-the-art tools.

COntinuous Reachability Analyzer (CORA) [45, 46] uses polynomial zonotopes to
approximate the input-output relationship of activation functions and nonlinear dy-
namics. Over-approximated reachable sets are calculated by efficient mappings via the
over-approximated activation functions of the neural network and nonlinear functions
associated with the plant dynamics. JuliaReach [47] converts structured zonotopes to
and from Taylor models, and then performs reachability using structured zonotopes for
the neural network and Taylor models for the plant, to efficiently construct reachable
sets for the closed-loop system. The Neural Network Verification (NNV) tool [41] uses
star sets for efficient computation of exact or approximated reachable sets through
neural networks, and utilizes CORA for nonlinear plant dynamics. The POLynomial
ARithmetic-base (POLAR) framework [42] computes functional over-approximations
of the flowmap. POLAR uses univariate Bernstein polynomial abstractions to address
non-differentiable activation functions.

In most cases, each of these state-of-the-art tools performs well for the benchmark
examples in [43,44], though it is noted that the initial sets for the benchmark problems
are relatively small. Large initial sets pose computational challenges as stated in a
review of set propagation techniques in [12], which includes techniques used by these
tools: “Several challenging research problems remain to be addressed in the field, such as
handling large initial sets for nonlinear systems and many guard intersections in hybrid
systems. Both aspects are especially relevant when verifying systems involving neural
networks.” To avoid these challenges, large initial sets may be partitioned, though for
systems beyond a few dimensions the partitioning itself introduces worst-case exponential
complexity.

1.1.5 Set-Based Methods for State Estimation and Parameter Iden-
tification

In addition to safety verification as discussed above, set-based methods can also be used
for state estimation and parameter identification. In contrast to classical approaches for

4Many of these tools contain multiple methods to address different classes of systems, however a
more detailed discussion of each of their capabilities falls beyond the scope of this dissertation.

6

estimation and identification, such as Kalman filters, set-based methods do not require
knowledge or assumptions about stochastic properties of uncertainties. Instead, set-based
methods only require enclosures that bound uncertainties [48, 49]. Numerous techniques
for linear system dynamics are available in the literature, e.g., [21,50], however developing
set-based approaches for hybrid and nonlinear systems has been identified as an open area
for study [51, 52]. A key challenge is that most set representations capable of accurately
representing the non-convexities of these systems are either computationally expensive
or not closed under required set operations. Methods that rely solely on convex sets and
linearization can yield conservative results with significant approximation error.

1.2 Contributions
This thesis proposes fundamental theoretic contributions to set-based methods for reach-
ability analysis and demonstrates their utility for verification, state estimation, and
parameter identification of hybrid and nonlinear systems in open-loop and in closed-loop
with advanced controllers. Applications to benchmark systems illustrate the impact of
new methods as compared to the state-of-the-art. The key research contributions are as
follows.

1. Reachability of discrete-time linear hybrid systems: Enable scalable and efficient
methods for forward and backward reachability analysis of

• Mixed Logical Dynamical (MLD) systems,

• linear systems in closed-loop with Model Predictive Control (MPC),

• Discrete Hybrid Automata (DHA),

• logical systems.

2. Reachability of nonlinear systems with neural network controllers: Reduce compu-
tational complexity, memory complexity, and error of over-approximated forward
reachability analysis of nonlinear systems in closed-loop with neural network con-
trollers.

3. State Estimation and Parameter Identification: Reduce approximation error for
set-valued state estimation and set-valued parameter identification in the case of
highly nonlinear models.

7

The above contributions are achieved using novel techniques that combine graphs of
functions, hybrid zonotopes, special-ordered set approximations, and functional decom-
position. A MATLAB-based toolbox for hybrid zonotopes, named zonoLAB [53], has
also been developed, although it does not yet include all the capabilities proposed in this
thesis.

1.3 Document Organization
The remainder of this thesis is structured as follows. Chapter 2 provides preliminaries
including introducing hybrid zonotopes, set operations, and conversion from vertex
representation. Chapter 3 provides the general framework using graphs of functions
which are constructed using functional decomposition and special ordered sets, and for
which input-output identities are produced. Chapter 4 proposes forward and backward
reachability analysis techniques specific to several classes of hybrid and nonlinear systems
and provides comparison to the state-of-the-art using benchmark examples. Chapter 5
extends the results from Chapter 3 and Chapter 4 for state estimation and parameter
identification of highly nonlinear models and provides comparison to an idealized approach
using convex sets. Chapter 6 concludes the thesis. Figure 1.1 depicts the high-level
connections between the key concepts within each chapter.

The thesis attempts to places results in an order convenient for the reader. In
doing so, contributions of this thesis and its associated publications are often amongst
existing contributions from literature by other authors. In addition to clearly citing each
theoretical and numerical result that is published, each section indicates which results
are considered contributions of this thesis.

8

Figure 1.1: Chapter Overview and Key Concepts: Solid lines indicate the flow of
theoretical concepts and dashed lines are used to indicate how specific system models
and problems are posed in terms of the fundamental theoretical framework in Chapter 2
and Chapter 3.

9

Chapter 2 |
Preliminaries

2.1 Notation
Vectors and scalars are denoted by lowercase letters, e.g., x ∈ Rn. Matrices are denoted
by uppercase letters, e.g., G ∈ Rn×ng . The element in the ith row and jth column of
a matrix G is denoted G(i,j). The ith row and jth column are denoted G(i,·) and G(·,j),
respectively.

Sets are denoted by uppercase calligraphic letters1, e.g., Z ⊂ Rn, and uppercase
Greek letters, e.g., Φ ⊂ Rn. The topological boundary of a set is denoted by ∂Z and
its interior by Z◦. The closure of a set is denoted by Z such that Z includes both the
interior and boundary of Z. Subscripts are used to distinguish between properties that
are defined for multiple sets, e.g., ng,z describes the complexity g of the representation of
Z while ng,w describes the complexity g of the representation of W . The n-dimensional
unit hypercube is denoted by

Bn
∞ = {x ∈ Rn | ∥x∥∞ ≤ 1} , (2.1)

and the n-dimensional constrained unit hypercube is denoted by

Bn
∞(A, b) = {x ∈ IRn : ∥x∥∞ ≤ 1, Aξ = b} . (2.2)

The set of all n-dimensional binary vectors is denoted by {−1, 1}n, e.g.,

{−1, 1}2 =


1
1

 ,

 1
−1

 ,

−1
1

 ,

−1
−1

 . (2.3)

1O is an exception, reserved for computational complexity.

10

The concatenation of two column vectors to a single column vector is denoted by
(ξ1 ξ2) = [ξT

1 ξT
2]T and diag(x) yields the diagonal and square matrix with diagonal

elements corresponding to the elements of x ∈ Rn, e.g.,

diag(x) =


x1e1

...
xnen

 , (2.4)

where ei denotes the ith row of the identity matrix.
Bolded 1 and 0 denote matrices of all 1 and 0 elements, respectively, and I denotes

the identity matrix. Subscripts are used to identify the dimension of these matrices when
not easily deduced from context. The interval between two scalars a and b is denoted[
a, b

]
⊂ R1. A comma is used to distinguish from the matrix

[
a b

]
∈ R1×2.

2.2 Set Operations
This section provides definitions for set operations used throughout the thesis. Given
the sets Z, W , X ⊂ IRn, Y ⊂ IRm, and matrix R ∈ IRm×n, we define the following set
operations:

RZ = {Rz | z ∈ Z} , (2.5a)

Z ⊕W = {z + w | z ∈ Z, w ∈ W} , (2.5b)

Z ⊖W = {x ∈ IRn | x + w ∈ Z, ∀w ∈ W} , (2.5c)

Z ∩R Y = {z ∈ Z | Rz ∈ Y} , (2.5d)

Z ∪W = {x ∈ IRn | x ∈ Z ∨ x ∈ W} , (2.5e)

Zc = {x ∈ IRn | x ̸∈ Z◦} , (2.5f)

CX (Z) = {x ∈ X | x ̸∈ Z◦} , (2.5g)

Z × Y = {(z, y) | z ∈ Z, y ∈ Y} . (2.5h)

The linear mapping of Z by R is given by (2.5a), the Minkowski sum of Z and W is
given by (2.5b), the Minkowski difference ofW from Z is given by (2.5c), the generalized
intersection of Z and Y under R is given by (2.5d), the standard intersection for R = I
is denoted by ∩, the union of Z and W is given by (2.5e), the closure of the complement
of Z is given by (2.5f), the closure of the complement of Z defined over the set X is
given by (2.5g), and the Cartesian product is given by (2.5h).

11

2.3 Set Representations
This section provides a review of several set representations with emphasis on closure
and complexity of set representations under key set operations defined by (2.5).

Definition 2.1 (Closure of Sets) A class of sets is said to be “closed” if a set operation
acting on that class results in a set of the same class.

Complexity regarding sets and their operations are discussed in two distinct ways,
referred to as “memory complexity” and “computational complexity”.

1. Memory complexity refers to the number of variables required to represent a set in
a particular set representation, e.g., an n-dimensional hypercube can be represented
by 2n vertices in V-rep. It is also important to consider memory complexity growth
under set operations as a function of the memory complexities of argument sets.

2. Computational complexity refers to how the bound on worst-case run time of a
given computation scales as a function of the memory complexities of arguments.
For example, the computational complexity of vector addition in Rn is O(n),
meaning that the computation time of vector addition scales linearly with the state
dimension. Computational complexities of set operations are found by summing
the computational complexities of the required calculations. As is common practice,
coefficients and lower-order terms are often dropped for conciseness. A review of
computational complexity can be found in [54].

For a more comprehensive review of set representations, the reader is directed to [12,
Table 1] and [21,22].

2.3.1 Ellipsoids, Convex Polytopes, and Zonotopes

Definition 2.2 (Ellipsoid) Let E ,P ,Z ⊂ Rn. The set E is an ellipsoid if there exists
Q ∈ Rn×n and c ∈ Rn such that

E = {Qξ + c | ξ ∈ Bn
2} . (2.6)

Ellipsoids are computationally efficient under linear mapping (2.5a) with complexity
O(max(mn2, m2n)) [55, Section 2.2.1] but are not closed under several key operations
including Minkowski sum (2.5b) and generalized intersection (2.5d).

12

Definition 2.3 (Polytope - Vertex Representation) A set P ∈ Rn is a convex
polytope if and only if it is bounded and ∃ V ∈ Rn×nv with nv <∞ such that

P =
{
V λ | λj ≥ 0 , ∀j ∈ {1, ..., nv}, 1T λ = 1

}
.

When a convex polytope is represented using a collection of vertices as in Definition 2.3,
it is said to be in vertex-representation (V-rep). Polytopes can be equivalently defined
by the intersection of halfspaces as follows.

Definition 2.4 (Polytope - Halfspace Representation) A set P ∈ Rn is a convex
polytope if and only if it is bounded and ∃ H ∈ Rnh×n and f ∈ Rnh such that

P = {x ∈ Rn | Hx ≤ f} ,

When a polytope is represented by a collection of halfspace constraints, it is said to be
in halfspace-representation (H-rep). Convex polytopes are closed under linear mapping
(2.5a), Minkowski sum (2.5b), and generalized intersection (2.5d). The complexity of
performing Minkowski sum in H-rep is O(2n) [56, Table 1] while generalized intersection
in vertex representation is NP-hard due to required facet and vertex enumeration, limiting
its use in higher dimensions [12,14].

Definition 2.5 (Zonotope) The set Z is a zonotope if there exists G ∈ Rn×ng and
c ∈ Rn such that

Z = {Gξ + c | ξ ∈ Bng
∞ } .

Zonotopes are computationally efficient under linear mappings with complexity O(mn2)
[57, Table 1] and Minkowski sums with complexity O(n) [57, Table 1] but are not closed
under generalized intersection as they are limited to representing centrally symmetric
sets.

2.3.2 Constrained Zonotopes

Definition 2.6 (Constrained Zonotope) [21, Definition 3] Let Zh ⊂ Rn. The set
Zh is a constrained zonotope if there exists G ∈ Rn×ng , c ∈ Rn, A ∈ Rnc×ng , and b ∈ Rnc

such that
Zc = {Gξ + c | ξ ∈ Bng

∞ , Aξ = b} . (2.7)

The constrained zonotope is given in constrained generator representation (CG-rep)
and the shorthand notation of Zc = ⟨G, c, A, b⟩ ⊂ Rn is used to denote the set given by

13

(2.7). While zonotopes must be centrally symmetric and are therefore not equivalent
to convex polytopes, the addition of linear equality constraints allows constrained
zonotopes to represent any convex polytope while providing efficient identities for linear
mapping with complexityO(mn2), Minkowski sum with complexityO(n), and generalized
intersection with complexity O(n) [12, Table 1].

Example 2.1 [21] Consider the constrained zonotope Zc = {Gz, cz, Az, bz} ⊂ IR2 given
by

Zc =
〈 1.5 −1.5 0.5

1 0.5 −1

 ,

0
0

 ,
[
1 1 1

]
, 1

〉
. (2.8)

From the definition of the constrained zonotope, it is clear that the zonotope defined by
Z = {Gz, cz} ⊂ IR2 will satisfy Zc ⊆ Z, because affine mappings preserve set containment
and a constrained unit hypercube is a subset of a hypercube. This is depicted in Fig 2.1.

-2 0 2 4
-2

0

2

(a) (b)

Figure 2.1: Example of a constrained zonotope.
(a) Constrained unit hypercube B3

∞(A, b). (b) Constrained zonotope Zc = {Gz, cz, Az, bz},
generated as the affine image of the constrained unit hypercube. This is plotted over
zonotope Z = {Gz, cz}, generated as the affine image of the entire unit hypercube [21,
Figure 1]

.

2.3.3 Hybrid Zonotopes

2.3.3.1 Introduction

The following sections provide preliminaries for the hybrid zonotope set representation
used throughout this thesis, including its definition, set operation identities, and set
conversion identities. The sections contain results from the literature, many of which are
included in [58]. In addition, the following contributions by the author are presented.

14

1. Proposition 2.5 presents an identity to reduce memory complexity growth when
computing unions of many hybrid zonotopes.

2. Proposition 2.6 presents an identity for computing the Minkowski difference of a
hybrid zonotope with a zonotope.

3. Theorem 2.1 provides an efficient identity for converting a collection of V-rep
polytopes into a hybrid zonotope. The memory complexity of the resulting hybrid
zonotope grows linearly both with the total number of vertices across all polytopes
and with the number of polytopes.

Remark 2.1 Also note the important work proposed in [22] and later extended in [58]
on exact order reduction techniques for hybrid zonotopes, which is not reproduced in this
thesis.

2.3.3.2 Definition

Definition 2.7 (Hybrid Zonotope) [22, Definition 3] The set Zh ⊂ Rn is a hybrid
zonotope if there exists Gc ∈ Rn×ng , Gb ∈ Rn×nb, c ∈ Rn, Ac ∈ Rnc×ng , Ab ∈ Rnc×nb, and
b ∈ Rnc such that

Zh =

[
Gc Gb

] [
ξc

ξb

]
+ c

∣∣∣∣∣∣
[

ξc

ξb

]
∈ Bng

∞ × {−1, 1}nb ,[
Ac Ab

] [
ξc

ξb

]
= b

 . (2.9)

A hybrid zonotope is the union of 2nb constrained zonotopes corresponding to the
possible combinations of binary factors ξb ∈ {−1, 1}nb . The hybrid zonotope is given in
hybrid constrained generator representation (HCG-rep) and the shorthand notation of
Zh = ⟨Gc, Gb, c, Ac, Ab, b⟩ ⊂ Rn is used to denote the set given by (2.9). Continuous and
binary generators refer to the columns of Gc and Gb, respectively. By inspection, a hybrid
zonotope with no binary factors is a constrained zonotope, Zc = ⟨G, c, A, b⟩ ⊂ Rn, and a
hybrid zonotope with no binary factors and no constraints is a zonotope, Z = ⟨G, c⟩ ⊂ Rn.

The hybrid zonotope consists of a continuous portion equivalent to that of the
constrained zonotope shifted by contributions from a discrete, finite set. This is depicted
in the following example.

Example 2.2 [58] Consider the hybrid zonotope Zh =
{
Gc, Gb, c, Ac, Ab, b

}
⊂ IR2 given

by

Zh =
〈 1.5 −1.5 0.5

1 0.5 −1

 ,

1
1

 ,

0
0

 ,
[
1 1 1

]
, 1, 1

〉
, (2.10)

15

and shown in Fig. 2.2 where a single binary factor having Gb = 1 and Ab = 1 is added
to the constrained zonotope from a previous example (2.8).

-2 0 2 4 6
-2

0

2

4

(a) (b)

-2 0 2 4 6
-2

0

2

4

(c) (d)

Figure 2.2: Example from [58] of generating a hybrid zonotope by adding one binary
factor to the constrained zonotope (2.8) for Gb = 1 and Ab = 1.
(a) Constrained unit hypercube B3

∞(Ac, b). (b) Constrained zonotope taken as the affine
image of (a), Zc = GcB3

∞(Ac, b) ⊕ c. (c) Adding one binary factor to the constrained
unit hypercube results in two possible shifts in the hyperplane, Acξc = b − Abξb

1 and
Acξc = b−Abξb

2, one for each entry of the discrete set ξb
i ∈ {−1, 1}. (d) Hybrid zonotope

taken as the affine image of (c) with shifted centers, Zh = GcB3
∞(Ac, b − Abξb

1) ⊕ (c +
Gbξb

1) ∪GcB3
∞(Ac, b− Abξb

2)⊕ (c + Gbξb
2).

In a second example, a “chessboard” set is used to demonstrate how hybrid zonotopes
make use of binary factors to represent collections of polytopes with significantly lower
memory complexity than if represented using convex polytopes.

Example 2.3 Consider the hybrid zonotope Zh =
{
Gc, Gb, c, Ac, Ab, b

}
⊂ IR2 given by

Zh =
〈 1

8 0
0 1

8

 ,

1
2

1
4 0 0 1

8
0 0 1

2
1
4

1
8

 ,

0
0

 , ∅, ∅, ∅⟩ , (2.11)

16

and shown in Fig. 2.3. The set is the union of 32 zonotopes, each corresponding to〈 1
8 0
0 1

8

 ,

0
0

 〉
shifted by various combinations of binary generators. The fifth binary

generator encodes coupling between the dimensions, which gives the checkered pattern. To
represent this set as a collection of convex sets would require 32 convex sets, whereas a
single hybrid zonotope represents the set compactly with only 7 generators (2 continuous,
5 binary) and no constraints.

Figure 2.3: “Chessboard” set given by the compact representation of the hybrid zonotope
defined in (2.11).
The chessboard could be represented as a collection of 32 V-rep polytopes with 4 vertices
per polytope, as a collection of 32 H-rep polytopes with 4 halfspace inequalities per
polytope, or as a collection of 32 G-rep/CG-rep polytopes with 2 generators per polytope.

Example 2.3 provides a simple example of the memory complexity advantages of
hybrid zonotopes, though it may not yet be clear how to extend hybrid zonotopes beyond
shifting convex sets in a structured way. Later results including conversion of collections
of V-rep polytopes into a hybrid zonotope and utilizing functional decomposition will
further highlight the expressiveness of hybrid zonotopes.

2.3.3.3 Analyses

This section includes point containment, emptiness, and support function sampling
that are commonly used to analyze reachable sets for the purposes of verification and
falsification. This section specifically discusses these analyses in the context of hybrid
zonotopes.

17

Proposition 2.1 (Point Containment) [58, Proposition 3.2.8]
For any Zh =

〈
Gc, Gb, c, Ac, Ab, b

〉
⊂ IRn,

z ∈ Zh ⇐⇒

∥ξc∥∞ ≤ 1 , ξb ∈ {−1, 1}nb

∣∣∣∣∣∣
Gc Gb

Ac Ab

 ξc

ξb

 =
z − c

b

 ̸= ∅ . (2.12)

Proof Omitted for brevity. See [58, Proposition 3.2.8].

Proposition 2.2 (Emptiness) [58, Proposition 3.2.8]
For any Zh =

〈
Gc, Gb, c, Ac, Ab, b

〉
⊂ IRn,

Zh ̸= ∅ ⇐⇒
{
∥ξc∥∞ ≤ 1 , ξb ∈ {−1, 1}nb

∣∣∣ Acξc + Abξb = b
}
̸= ∅ . (2.13)

Proof Omitted for brevity. See [58, Proposition 3.2.8].

For hybrid zonotopes, checking for point containment and emptiness can be seen from
Proposition 2.1 and Proposition 2.13 to require solution of mixed-integer linear feasibility
programs (MILPs).

Calculating support functions is another set analysis tool commonly used to eval-
uate sets in the directions of constraint functions and/or to construct convex over-
approximations. The support function is defined generally as follows.

Definition 2.8 (Support Function) The support function of a set Z ⊂ Rn in the
direction l is

ρX (l) = max
{
lT x

∣∣∣ x ∈ X
}

, (2.14)

and it holds that X ⊂ H−
l for the supporting halfspace

H−
l =

{
z ∈ IRn

∣∣∣ lT z ≤ ρZh
(l)

}
. (2.15)

The support function of a hybrid zonotope Zh =
〈
Gc, Gb, c, Ac, Ab, b

〉
⊂ IRn can be

evaluated by solving the MILP,

ρZh
(l) = max

lT (Gcξc + Gbξb + c)

∣∣∣∣∣∣ Acξc + Abξb = b ,

∥ξc∥∞ ≤ 1 , ξb ∈ {−1, 1}nb

 . (2.16)

18

The support function evaluated for each direction l1, l2,...lN is denoted

ρX(L) =


ρX(l1)

...
ρX(lN)

 , (2.17)

where L =
[
l1 l2 · · · lN

]
.

Remark 2.2 The analysis of hybrid zonotopes is significantly more computationally
expensive than that for convex sets, e.g., constrained zonotopes require solving linear
programs (LPs) rather than MILPs. However, hybrid zonotopes admit closed and efficient
identities for nonconvex sets in many instances where convex approximation would incur
unacceptable error, as is demonstrated using numerical examples in Chapter 4 and
Chapter 5. Furthermore, structure inherent in the hybrid zonotope representation such as
underlying binary trees can be analyzed and leveraged by MILP solvers like GUROBI [59]
to increase computational speed.

2.3.3.4 Set Operations

Hybrid zonotopes have been shown to be closed and have identities under linear mapping,
Minkowski sum, generalized intersection, generalized halfspace intersection, Minkowski
difference, union, Cartesian product, and bounded complements. Identities for each are
presented herein, with the exception of bounded complements [24, Section IV].

2.3.3.4.1 Linear Mapping, Minkowski Sum, Generalized Intersection, and
Generalized Halfspace Intersection

The identities for linear mapping, Minkowski sum, and generalized intersection of
constrained zonotopes from [21, Proposition 1] can be extended to hybrid zonotopes by
accounting for the additional binary constraint, as proven in [22, Proposition 7].

Proposition 2.3 (Linear Mapping, Minkowski Sum, Generalized Intersection,
and Generalized Halfspace Intersection) [22, Proposition 1]

For any

Zh = ⟨Gc
z, Gb

z, cz, Ac
z, Ab

z, bz⟩ , (2.18)

Wh = ⟨Gc
w, Gb

w, cw, Ac
w, Ab

w, bw⟩ ⊂ IRn , (2.19)

Yh = ⟨Gc
y, Gb

y, cy, Ac
y, Ab

y, by⟩ ⊂ IRm , (2.20)

19

R ∈ IRm×n , and (2.21)

H− = {x ∈ IRm | hT x ≤ f} , (2.22)

the following identities hold:

RZh =
〈
RGc

z, RGb
z, Rcz, Ac

z, Ab
z, bz

〉
, (2.23)

Zh ⊕Wh =
〈[

Gc
z Gc

w

]
,
[
Gb

z Gb
w

]
, cz + cw,

Ac
z 0

0 Ac
w

 ,

Ab
z 0

0 Ab
w

 ,

bz

bw

〉
, (2.24)

Zh ∩R Yh =
〈[

Gc
z 0

]
,
[
Gb

z 0
]

, cz,


Ac

z 0
0 Ac

y

RGc
z −Gc

y

 ,


Ab

z 0
0 Ab

y

RGb
z −Gb

y

 ,


bz

by

cy −Rcz


〉

, (2.25)

Zh ∩R H− =
〈[

Gc
z 0

]
, Gb

z, cz,

 Ac
z 0

hT RGc
z

dm
2

 ,

 Ab
z

hT RGb
z

 ,

 bz

f − hT Rcz − dm
2

〉
,

dm = f − hT Rcz +
ng,z∑
i=1
|hT Rg(c,i)

z |+
nb,z∑
i=1
|hT Rg(b,i)

z | .

(2.26)

Proof Omitted for brevity. See [22, Proposition 7].

The time complexity of linear mappings given by (2.23) is O(mn(ng + nb)). That of
Minkowski sums given by (2.24) is O(n), and that of generalized intersections given by
(2.25) is O(mn(ng + nb)) and O(n) when R = In. The time complexity of generalized
halfspace intersections given by (2.26) is O(mn(ng + nb) and O(n(ng + nb)) for R = In.

2.3.3.4.2 Unions of Hybrid Zonotopes
The closure and identity for the union of two hybrid zonotopes is as follows.

Proposition 2.4 (Union) [24, Proposition 1]
For any

Zh = ⟨Gc
z, Gb

z, cz, Ac
z, Ab

z, bz⟩ ⊂ IRn , and (2.27)

Wh = ⟨Gc
w, Gb

w, cw, Ac
w, Ab

w, bw⟩ ⊂ IRn , (2.28)

define the vectors Ĝb ∈ IRn, ĉ ∈ IRn, Âb
z ∈ IRnc,z , b̂z ∈ IRnc,z , Âb

w ∈ IRnc,w , and b̂w ∈ IRnc,w ,
such that  I I

−I I

 Ĝb

ĉ

 =
Gb

w1 + cz

Gb
z1 + cw

 ,

20

−I I

I I

 Âb
z

b̂z

 =
 bz

−Ab
z1

 ,

−I I

I I

 Âb
w

b̂w

 =
−Ab

w1
bw

 .

Then the union of Zh and Wh is the hybrid zonotope

Zh ∪Wh = ⟨Gc
u, Gb

u, cu, Ac
u, Ab

u, bu⟩ ⊂ IRn , where

Gc
u =

[
Gc

z Gc
w 0

]
, Gb

u =
[
Gb

z Gb
w Ĝb

]
, cu = ĉ ,

Ac
u =


Ac

z 0 0
0 Ac

w 0
Ac

3 I

 , Ab
u =


Ab

z 0 Âb
z

0 Ab
w Âb

w

Ab
3

 , bu =


b̂z

b̂w

b3

 ,

Ac
3 =



I 0
−I 0
0 I

0 −I

0 0
0 0
0 0
0 0


, Ab

3 =



0 0 1
21

0 0 1
21

0 0 −1
21

0 0 −1
21

1
2I 0 1

21
−1

2I 0 1
21

0 1
2I −1

21
0 −1

2I −1
21


, b3 =



1
21
1
21
1
21
1
21
0
1
0
1


.

(2.29)

Proof The proof is given in [24, Proposition 1] and is omitted here for brevity.

Note that the number of constraints grows rapidly when Proposition 2.4 is used itera-
tively, e.g., ⋃N

i=1Wi, as the number of additional continuous generators and constraints
in (2.29) is dependent on the size of the argument sets [58, Equation 3.32], resulting
in increasing memory complexity growth in these variables with each iteration. Only
one binary generator is added per union operation. An alternative identity for unions
that is advantageous when taking the union of many hybrid zonotopes is presented in
Proposition 2.5. It is important to note that (2.29) is used to execute the union in (2.30).

Proposition 2.5 (Efficient Union of Many Hybrid Zonotopes)
Consider the hybrid zonotopes given by

Zh,i = ⟨Gc
z,i, Gb

z,i, cz,i, Ac
z,i, Ab

z,i, bz,i⟩ ⊂ IRn , ∀ i ∈ {1, 2, ..., N} .

21

Their union is given by

Ui =
 In

0

Zh,i +
0

1

  ∪ {
0

}
, (2.30)

N⋃
i=1

Zh,i =
[
In 0n,1

]  N⊕
i=1
Ui

 ∩[
01,n 1

] 1


 . (2.31)

Proof By applying the set operation definitions for linear transformations and unions,
(2.30) yields

Ui =


zi

bi

 ∣∣∣∣∣∣
bi ∈ {0, 1} ,

zi ∈

Zi , if bi = 1

{0} , if bi = 0

 . (2.32)

Thus the right side of (2.31) gives


N∑
i=1

zi

∣∣∣∣∣∣
bi ∈ {0, 1} , ∀i ∈ {1, 2, ..., N} ,∑N

i=1 bi = 1 ,

zi ∈

Zi , if bi = 1

{0} , if bi = 0
, ∀i ∈ {1, 2, ..., N}


. (2.33)

Use of the additive identity and reasoning from the constraints on bi that there exists
exactly one i such that bi = 1 completes the proof. □

When executed with hybrid zonotopes, the memory complexity of unions by (2.31) is
proportional to the total complexity of all Zi. Example 2.4 demonstrates key concepts
associated with the identity (2.31) and Example 2.5 compares the growth in memory
complexity to iterative use of the identity given by (2.29).

22

Example 2.4 Consider the four hybrid zonotopes given by

Z1 =
〈

I2, ∅,

2
2

 , ∅, ∅, ∅
〉

,

Z2 =
〈  1 1
−1 1

 , ∅,

−3
−3

 , ∅, ∅, ∅
〉

,

Z3 =
〈 −1

2 0 0
−2 −1

2 0

 , ∅,

−5
2
5
2

 ,
[
−1 −1 −1

]
, ∅, 1

〉
,

Z4 =
〈  0 −1

2 0
2 1

2 0

 , ∅,

 5
2
−5

2

 ,
[
−1 −1 −1

]
, ∅, 1

〉
,

and plotted in Figure 2.4(a). The hybrid zonotope resulting using the union identity (2.31)
is plotted in Figure 2.4(b), though significant insight into the identity is provided by plotting
an intermediate result shown in (c), ⊕4

i=1 Ui with the third dimension corresponding to
how many sets are “chosen”. The plot demonstrates the Minkowski sum of combinations
of Z1, Z2, Z3, and Z4. We briefly adopt standard “n-choose-r” notation (N

r), where
N = 4 corresponds to the total number of hybrid zonotopes. Each value in the third
dimension of Figure 2.4(c) relates to r, e.g., for r = 1 the Minkowski sum where only
one set Zi is chosen, and the remaining sets are the origin, which corresponds to the
union. This gives insight into the generalized intersection in (2.31) with {1}. For r = 2
there are six convex sets plotted which correspond to (4

2) potential Minkowski sums of two
sets from four possible sets, given by

Z1 ⊕Z2, Z1 ⊕Z3, Z1 ⊕Z4, Z2 ⊕Z3, Z2 ⊕Z4, and Z3 ⊕Z4 .

Example 2.5 In this example, consider N zonotopes Zi ∈ R2 , ∀ i ∈ {1, 2, ..., N}, each
with two generators, i.e., ng,i = 2. The union

Zu =
N⋃

i=1
Zi , (2.34)

is calculated using two methods for N ∈ {2, 3, ..., 20}. Method 1 (M1) iterates over (2.29)
and Method 2 (M2) calculates the union via (2.31). Resulting memory complexities are
plotted in Figure 2.5 demonstrating the memory complexity advantages of Method 2.

23

(a) (b)

(c)

Figure 2.4: Example of supplemental union of hybrid zonotopes using (2.31).
(b) shows the resulting hybrid zonotope from the union of the sets Zi , ∀i ∈ {1, 2, 3, 4}
plotted in (a) using the identity given in (2.31). (c) plots an intermediate set which relates
to all (4

0), (4
1), (4

2), (4
3), (4

4) combinations for the Minkowski sum of Zi , ∀i ∈ {1, 2, 3, 4}.

24

(a)

(b)

Figure 2.5: Memory complexity growth comparison of two methods to compute unions
of hybrid zonotopes.
M1 uses iterative unions by (2.29) and yields quadratic growth in ng and nc. M2 calculates
unions via (2.31), which results in linear growth in ng and nc. Both M1 and M2 result in
linear growth in nb.

25

2.3.3.4.3 Minkowski Difference with a Zonotope
The identity for a Minkowski difference of a zonotope from a hybrid zonotope is given

in Proposition 2.6.

Proposition 2.6 (Minkowski Difference with Zonotope) [60, Proposition 1]
For any Zh = ⟨Gc

z, Gb
z, cz, Ac

z, Ab
z, bz⟩ andW = ⟨Gw, cw⟩ ⊂ Rn for Gw = [g(1)

w . . . g(ng,w)
w],

the Minkowski difference Zd = Zh ⊖W is a hybrid zonotope computed by the recursion:

Z(0)
int = Zh − cw , (2.35a)

Z(i)
int =

(
Z(i−1)

int + g(i)
w

)
∩

(
Z(i−1)

int − g(i)
w

)
, (2.35b)

Zd = Z(ng,w)
int . (2.35c)

Proof The proof mirrors that for Minkowski difference of zonotopes [35, Theorem 1].
There, only the subtrahend W is specified as a zonotope, while the minuend Zh is an
arbitrary set. The hybrid zonotope’s closure under Minkowski sums and intersections
allows the recursion (2.35) to be generated through a finite number of set operations. □

Time complexity of Minkowski differences given by Proposition 2.6, dominated by
vector addition, is O(nng,w). Complexity of the resulting set, Zd, is ng,d = 2ng,wng,h,
nb,d = 2ng,wnb,h, and nc,d = 2ng,wnc,h + nng,w. These can be derived by applying the
Minkowski sum and intersection operation results of [22].

2.3.3.5 Exact Set Representation Conversions

This section overviews methods to exactly convert between common polytope repre-
sentations (H-rep, V-rep, CG-rep) and hybrid zonotopes. Many sets are naturally and
efficiently expressed as a collection of polytopes, e.g., polytopic obstacle maps in two
dimensions [61]. While hybrid zonotopes can compactly represent complex2 sets and
have efficient identities for many set operations, it can be challenging to construct a
hybrid zonotope to represent a complex set of interest. This section presents methods to
convert sets represented as a collection polytopes to a hybrid zonotope.

2.3.3.5.1 Collections of CG-rep Polytopes to HCG-rep Conversion from a
single CG-rep to HCG-rep is trivial, i.e.,

⟨Gc, c, Ac, b⟩ = ⟨Gc, ∅, c, Ac, ∅, b⟩ . (2.36)
2unions of exponential numbers of polytopes

26

Once each CG-rep polytope is converted to a hybrid zonotope, a single hybrid zonotope can
be obtained either by iteration of (2.29) or by the identity given in (2.31). Computational
advantages of the latter are discussed in Example 2.5 and preceding text.

2.3.3.5.2 Collections of H-rep Polytopes to HCG-rep
The conversion from H-rep to HCG-rep first generates an interval, represented in

HCG-rep for each H-rep polytope such that each H-rep polytope is contained within its
corresponding interval. Then halfspace intersections (2.26) are enforced on each interval
to generate an equivalent HCG-representation for each H-rep polytope. Finally a single
hybrid zonotope can be obtained either by iteration of (2.29) or by the identity given
in (2.31). Computational advantages of the latter are discussed in Example 2.5 and
preceding text.

The process to convert an H-rep polytope to HCG-rep, which is a natural extension
of [21, Theorem 1], is now summarized for the H-rep polytope

H =


x

∣∣∣∣∣∣


h1

h2
...

hnh

 x ≤


f1

f2
...

fnh




⊂ Rn . (2.37)

Single H-rep Polytope to HCG-rep

1. Generate a set P such that H ⊆ P . This can be achieved by sampling the support
functions

x̄ = ρH(In)

x = −ρH(−In)

and generating the zonotope

P =
〈

diag
(x̄− x

2
)
,

x̄ + x

2

〉
, (2.38)

which by construction is the interval hull of H. Note that sampling the support
functions to generate x̄ and x requires solving 2n linear programs.

27

2. Trivial conversion to HCG-rep is given by

P =
〈

diag
(x̄− x

2
)
, ∅, x̄ + x

2 , ∅, ∅, ∅
〉

. (2.39)

2.3.3.5.3 Collections of V-rep Polytopes to HCG-rep

Theorem 2.1 (V-rep Collection to Hybrid Zonotope) [62, Theorem 5]
A set S consisting of the union of N V-rep polytopes, S = ∪N

i=1Pi, with a total of nv

vertices can be represented as a hybrid zonotope with memory complexity

ng = 2nv ,

nb = N , (2.40)

nc = nv + 2 .

Proof Define the vertex matrix V = [v1, . . . , vnv] ∈ Rn×nv and construct a corresponding
incidence matrix M ∈ Rnv×N with entries M(j,i) ∈ {0, 1} , ∀ i, j, such that

Pi =

V λ

∣∣∣∣∣ λj ∈

[0 1], if j ∈ {k | M(k,i) = 1}

{0}, if j ∈ {k | M(k,i) = 0}
,

1T
nv

λ = 1

 . (2.41)

Define the hybrid zonotope

Q = 1
2

〈Inv

0

 ,

 0
IN

 ,

1nv

1N

 ,

1T
nv

0

 ,

 0
1T

N

 ,

2− nv

2−N

〉
,

and the polyhedron H = {h ∈ Rnv | h ≤ 0}, and let

D = Q∩[Inv −M] H . (2.42)

Then the set S is equivalently given by the hybrid zonotope

ZS =
[
V 0

]
D . (2.43)

By direct application of set operation identities provided in [22, Section 3.2], it can be
shown that ZS has the complexity given by (2.40). The remainder of the proof shows
equivalency of ZS and S. For any (λ, δ) ∈ D there exists some (ξc, ξb) ∈ Bnv

∞ × {−1, 1}N

28

such that 1T
nv

ξc = 2 − nv, 1T
Nξb = 2 − N , λ = 0.5ξc + 0.51nv , δ = 0.5ξb + 0.51N ,

and λ −Mδ ∈ H =⇒ λ ≤ Mδ. Thus λ ∈ [0, 1]nv , δ ∈ {0, 1}N , ∑nv
i=1 λi = 1, and∑N

i=1 δi = 1 results in δi = 1 =⇒ δj ̸=i = 0. Let δi = 1, then λ ≤ Mδ enforces
λj ∈ [0, 1] , ∀ j ∈ {k | M(k,i) = 1} and λj = 0 ∀ j ∈ {k | M(k,i) = 0}. Therefore given
any z ∈ ZS corresponding to δi = 1,

z =
∑

λjvj , ∀ j ∈ {k | M(k,i) = 1} , (2.44)

thus z ∈ Pi ⊆ S and ZS ⊆ S.
Conversely, given any x ∈ S, ∃ i such that x ∈ Pi = ∑

λjvj , ∀ j ∈ {k | M(k,i) = 1}.
This is equivalent to (2.44), therefore x ∈ ZS , S ⊆ ZS , and ZS = S. □

Applying Theorem 2.1 results in complexity O(n(nv + N)2), both improving the
computational complexity and memory complexity of representing a collection of V-rep
polytopes as a single hybrid zonotope as compared to pre-existing methods. The pre-
existing approach would be to convert each polytope from V-rep to H-rep to HCG-rep,
and then take iterative unions using the method given in [24]. However, this would
involve greater computational complexity as conversion between V-rep and H-rep alone
has worst-case exponential computational complexity [21], and produces a set with
memory complexity that scales quadratically with the number of polytopes. Furthermore
Theorem 2.1 allows for the intuitive representation of sets as hybrid zonotopes through
the use of the vertex matrix and incidence matrix, as demonstrated in Example 2.6.

Example 2.6 Consider a vertex matrix V = [v1, v2, v3] consisting of the vertices of a
triangle. The set of vertices, the set of points along the edges of the triangle, and the
convex hull of the vertices can be found as a hybrid zonotope using Theorem 2.1 and the
respective incidence matrices

Mvertices = I3 , Medges =


1 0 1
1 1 0
0 1 1

 , M∆ =


1
1
1

 .

2.3.3.6 Approximate Set Representation Conversion

Set complexity often grows as set operations are performed, as can be seen for all set
operations in Section 2.3.3.4 except for linear mappings. One method to curb growth in
memory complexity is take a convex over-approximation of the set. First we define an
interval over-approximation.

29

2.3.3.6.1 Interval Over-approximation of HCG-rep Consider the hybrid zono-
tope Zh = ⟨Gc

z, Gb
z, cz, Ac

z, Ab
z, bz⟩.

1. Generate a set P such that Zh ⊆ P . This can be achieved by sampling the support
functions

x̄ = ρZ(In)

x = −ρZ(−In)

and generating the zonotope

P =
〈

diag
(x̄− x

2
)
,

x̄ + x

2

〉
,

which by construction is the interval hull of Z. Note that sampling the support
functions to generate x̄ and x requires solving 2n MILPs.

2. Trivial conversion to HCG-rep is given by

P =
〈

diag
(x̄− x

2
)
, ∅, x̄ + x

2 , ∅, ∅, ∅
〉

. (2.45)

2.3.3.6.2 Polytope Over-approximation of HCG-rep More generally, convex
approximations for arbitrary support function directions L = [l1, ..., lN] are generated as
follows. Consider the hybrid zonotope Zh = ⟨Gc

z, Gb
z, cz, Ac

z, Ab
z, bz⟩.

1. Construct an interval approximation via (2.45).

2. Sample the support function in the desired directions, i.e.,

f = ρZh
(L) .

3. Generate the polyhedron

H =
{
x |LT x ≤ f

}
.

4. The convex over-approximation Z̄h is given by

Z̄h = P ∩H . (2.46)

30

Chapter 3 |
Graphs of Functions

This chapter presents results for graphs of functions. Section 3.1 defines graphs of
functions, presents identities to calculate a set of outputs that are achievable for a
function given a set of inputs, and vice versa. These are fundamental methods used
in this thesis to compute reachable sets in Chapter 4 and perform set-valued state
estimation and parameter identification in Chapter 5. The promising computational
complexity and memory complexity growth of the input-output identities when sets are
represented using hybrid zonotopes motivates following sections. Section 3.2 provides
several methods to construct hybrid zonotope graphs of functions using special ordered
sets (SOS). Section 3.3 presents methods to extend results in Section 3.2 to sets in
higher dimensions using functional decomposition and Section 3.4 provides several hybrid
zonotope representations for several common functions.

3.1 Definition and Input-Output Identities
Consider a set-valued mapping ϕ : Dp → Dq which assigns each element p ∈ Dp ⊂ Rnp

to a subset of Dq ⊂ Rnq . A graph of a function is defined as the set of ordered pairs
associated with ϕ and the domain Dp as follows.

Definition 3.1 (Graph of a function) Given a set-valued mapping ϕ : Dp → Dq, the
graph of the function ϕ, denoted Φ, is defined as

Φ ≡


p

q

 ∣∣∣∣∣ q ∈ ϕ(p)
p ∈ Dp

 . (3.1)

A graph of the function q = sin(p) for Dp =
[
0 , 2π

]
is shown in Figure 3.1, along

with the sets Dp and Dq.

31

Figure 3.1: Example graph of a function for q = sin(p).
The sets Dp and Dq are also shown projected onto the axes and sin(p) is plotted over a
larger domain than Dp.

Using graphs of functions, the set of outputs given a set of inputs, and vice versa, are
given by the identities1 presented in Theorem 3.1 and Theorem 3.2, respectively.

Theorem 3.1 (Input Set to Output Set) [63, Theorem 2]
If the set of inputs satisfies P ⊆ Dp, then the set of outputs, defined as

Q ≡ {q | q ∈ ϕ(p), p ∈ P} , (3.2)

can be calculated using the graph of the function ϕ, Φ = {(x, ϕ(x))|x ∈ Dp}, as

Q =
[
0 Inq

] Φ ∩[
Inp 0

] P
 . (3.3)

Proof Direct application of the definitions of generalized intersection and linear trans-
formation to the right side of (3.3) yields

[
0 Inq

] Φ ∩[
Inp 0

] P
 = {q | q ∈ ϕ(p), p ∈ P ∩Dp} .

By the assumption P ⊆ Dp =⇒ P ∩Dp = P. □
1Similar identities specific to reachable sets of hybrid systems were first presented by the author in [60].

Later they were used for nonlinear reachability in [62]. In [63] they were generalized to input-output
identities as presented here.

32

The assumption that P ⊆ Dp is not restrictive as Φ can be constructed for a domain
of interest Dp.

Continuing the example above, Figure 3.2(a) demonstrates how (3.3) can be used to
calculate the set of outputs Q given a set of inputs P =

[
5π
6 , 7π

6

]
. If (3.3) is used when

the condition that P ⊆ Dp in Theorem 3.1 is not met, e.g., P =
[

3π
2 , 3π

]
̸⊆ Dp, the

identity yields the set of outputs corresponding to the set P ∩Dp. An example of this is
shown in Figure 3.2(b) and the proof is the first line of the proof for Theorem 3.1.

Theorem 3.2 (Output Set to Input Set) [63, Theorem 3]
The set of inputs PDp within a region of interest Dp and consistent with the output

set Q, defined by

PDp ≡ {p | q ∈ ϕ(p), q ∈ Q, p ∈ Dp} , (3.4)

can be calculated using the graph of the function ϕ, Φ = {(x, ϕ(x))|x ∈ Dp}, as

PDp =
[
Inp 0

] Φ ∩[
0 Inq

] Q
 . (3.5)

Proof By direct application of the definitions of generalized intersection and linear
transformation, the right side of (3.5) yields (3.4). □

The condition on the input set of (3.4) that p ∈ Dp is not restrictive as Φ can be
constructed for a domain of interest Dp. An example of calculating an input set, given
an output set and graph of a function is depicted in Figure 3.3.

3.1.1 Set Representations for Graph of Function Input-Output Iden-
tities

In this section, set representations are considered for use with the input-output identities
presented as (3.3) and (3.5). The identities in (3.3) and (3.5) use linear transformations
and generalized intersections, therefore the chosen set representation should be closed
and ideally computationally efficient and scalable for these operations. Furthermore, the
set representation must be able to represent the graph of functions of interest. When
the function is nonlinear, it becomes important that the set representation can capture
nonconvexities and potential discontinuities inherent to its graph.

In addition to hybrid zonotopes, other set representations such as sublevel sets,
constrained polynomial zonotopes [17], and polynomial logical zonotopes [20] exhibit

33

(a)

(b)

Figure 3.2: Example of input set to output set via graph of a function (3.3) for q = sin(x).
(a) The identity (3.3) is used to calculate the set of outputs Q achievable given a
set of inputs P =

[
5π
6 , 7π

6

]
. The condition that P ⊆ Dp in Theorem 3.1 is met as[

5π
6 , 7π

6

]
⊂ Dp =

[
0 , 2π

]
, shown in Figure 3.1. (b) If (3.3) is used when the condition

that P ⊆ Dp in Theorem 3.1 is not met, e.g., P =
[

3π
2 , 3π

]
̸⊆ Dp, the identity yields

the set of outputs for the intersection P ∩ Dp. Grey dashed lines correspond to the
generalized intersection and linear transformations in (3.3)

.

some/all of these properties for various functions. Sublevel sets are expressive, but their
general representation often makes order reduction and analysis challenging. Constrained
polynomial zonotopes appear to be a viable set representation for the input-output

34

Figure 3.3: Example of output set to input set via graph of a function (3.5) for q = sin(x).
Note that the resulting set of inputs PDp is both nonconvex and disjoint. Grey dashed
lines correspond to the generalized intersection and linear transformations in (3.5).

identities but cannot exactly represent PWA functions of interest to this thesis. Logical
zonotopes are limited to use with logical systems. The interested reader is referred
to [12, Table 1] and references therein for alternative set representations.

3.1.1.1 Hybrid Zonotopes for Graph of Function Input-Output Identities

The remainder of this thesis uses hybrid zonotopes for three reasons. Firstly, the use of
hybrid zonotopes to execute the identities given in (3.3) and (3.5) results in linear growth
in memory complexity. Specifically, the identities in (3.3) and (3.5) of Theorem 3.1 and
Theorem 3.2, respectively, result in memory complexity

Theorem 3.1

ng,q = ng,p + ng,ϕ ,

nb,q = nb,p + nb,ϕ ,

nc,q = nc,p + nc,ϕ + n ,

Theorem 3.2

ng,p = ng,q + ng,ϕ ,

nb,p = nb,q + nb,ϕ ,

nc,p = nc,q + nc,ϕ + n .

Secondly, the computational complexities of (3.3) and (3.5) scale linearly with np and
nq. Thirdly, later sections will show how piecewise-affine approximations of nonlinear
functions, such as SOS approximations and neural net approximations, can be represented
exactly and efficiently using hybrid zonotopes.

A fundamental challenge is that a given set representation and its operations can

35

only achieve computation of exact input and output sets for a limited class of functions
[64]. It follows that graphs of functions can only be exactly computed for a limited
class of functions. To obtain formal guarantees for a broader class of functions, over-
approximations of graphs of functions can be computed instead. To this end, Corollary 3.1
extends the previous results by considering the effect of using an over-approximation of
the graph of a function.

Corollary 3.1 (Effect of Using an Over-Approximated Graph of a Function)
For the identities (3.3) and (3.5) provided by Theorem 3.1 and Theorem 3.2, respectively,
if Φ is replaced with an over-approximation Φ̄, then the identities will instead yield
over-approximations of the left sides.

Proof Set containment is preserved under linear transformation and generalized inter-
section. □

Corollary 3.1 motivates the following section on SOS approximations, which can be
used to generate hybrid zonotope over-approximations of graphs of nonlinear functions.
Furthermore, the classes of functions for which hybrid zonotopes can be implemented
can now be formally stated.

Corollary 3.2 (Exact Graph of a Function Using HCG-rep) Hybrid zonotopes can
exactly represent the graph of a function if and only if the graph of a function is the
union of a finite number of polytopes.

Proof A hybrid zonotope can represent any polytope (Theorem 2.1 provides a constructive
proof) and hybrid zonotopes are closed under union (Proposition 2.4), which implies that
a hybrid zonotope can represent the graph of a function if the graph of the function is
the union of a finite number of polytopes. If the graph of a function is not the union of
a finite number of polytopes, then it can be reasoned that there does not exist a hybrid
zonotope that can exactly represent the graph of the function. This is because a hybrid
zonotope is the union of 2nb constrained zonotopes corresponding to each combination of
binary factors, and constrained zonotopes are polytopes. □

Corollary 3.3 (Over-Approximated Graph of a Function Using HCG-rep)
Hybrid zonotopes can over-approximate a graph of any function if and only if the graph
of the function is bounded.

Proof A hybrid zonotope is the union of 2nb constrained zonotopes corresponding to
each combination of binary factors, and constrained zonotopes are polytopes. Therefor

36

hybrid zonotopes cannot represent unbounded graphs of function. Furthermore, if a set
is bounded, then there exists a polytope that contains the set.2 Any polytope can be
represented as a hybrid zonotope (Theorem 2.1 provides a constructive proof). □

Corollary 3.2 and Corollary 3.3 are the provide necessary and sufficient conditions for
using hybrid zonotopes to represent exact and over-approximated graphs of functions.
Later sections will use of hybrid zonotopes to represent graphs of functions for several
classes of hybrid and nonlinear systems wherein the ability to represent each class of
system will be discussed in detail.

In Corollary 3.3, the restriction that the graph of the function applies to both the
input and output space of the function, i.e., hybrid zonotopes cannot represent the graph
of a function where Dp is unbounded, nor can they represent the graph of a function if
∃x ∈ Dp such that ϕ(x) is undefined.

While the proof of Corollary 3.3 uses the existence of a single polytope, in practice
such an approximation often would incur lead to large approximation error. The following
section on special ordered set approximation presents more sophisticated methods for
over-approximating graphs of nonlinear functions.

3.2 Special Ordered Set Approximations

3.2.1 SOS Approximations Using Hybrid Zonotopes

Piecewise affine approximations, and related theory [30,65], provide fundamental tools
used for system identification [66, 67], control of nonlinear systems [38, 68, 69], and
reachability of nonlinear systems [70,71].

Special Ordered Set approximations, a type of PWA approximation, were originally
developed to approximate solutions of nonlinear optimization programs by replacing non-
linear functions with piecewise-linear approximations [72]. Herein an SOS approximation
is defined equivalently to the definition given in [73, Section 1.2]. An incidence matrix
is introduced to mirror the structure given to collections of V-rep polytopes earlier in
(2.41).

Definition 3.2 (SOS Approximation) An SOS approximation S of a scalar-valued
function g(x) : Rn → R is the union of N polytopes, i.e., S = ∪N

i=1Pi. The collection
of polytopes is defined by a vertex matrix V = [v1, . . . , vnv] ∈ R(n+1)×nv , where vi =

2e.g., the interval hull of the closure of the set

37

(xi, g(xi)) , ∀i, and a corresponding incidence matrix M ∈ Rnv×N with entries M(j,i) ∈
{0, 1} , ∀ i, j, such that

Pi =

V λ

∣∣∣∣ λj ∈


[
0 , 1

]
, if j ∈ {k | M(k,i) = 1}

{0}, if j ∈ {k | M(k,i) = 0}
1T

nv
λ = 1

 , (3.6)

([In 0]Pi)◦ ∩ [In 0]Pj = ∅ , ∀i ̸= j , and (3.7)

1T M(·,i) ≤ n + 1 , ∀ i ∈ {1, ..., N} . (3.8)

The set of points xi, i ∈ {1, ..., nv} are referred to as the sampling of the first n

dimensions. Each polytope Pi given by (3.6) is the convex hull of the vertices given
by V(·,i) corresponding to the index of all entries of M(·,i) that equal 1. The constraint
(3.7) enforces that none of the simplices’ interiors “overlap” while allowing for sharing
of topological boundaries. The constraint (3.8) enforces that Pi will be at most an
n-dimensional simplex (1T M(·,i) = n + 1) and a lower dimensional simplex otherwise
(1T M(·,i) < n + 1).

Example 3.1 Consider y = sin(x) for x ∈ [−4, 4]. An SOS approximation with 11
evenly spaced breakpoints is given by vertex matrix

V =

 −4 −3.2 −2.8 . . . 4
sin(−4) sin(−3.2) sin(−2.8) . . . sin(4)


and incidence matrix

M =
 I10

01×10

 +
01×10

I10

 . (3.9)

The first column of the incidence matrix

M(1,:) =
[
1 1 0 · · · 0

]T

corresponds to one section of the SOS approximation for the domain x ∈ [−4, −3.2],
which is a 1-dimensional simplex. The SOS approximation is plotted in Figure 3.4. Dotted
vertical lines correspond to breakpoint locations and the domains between breakpoints
correspond to the 10 columns of the incidence matrix M (3.9).

Because SOS approximations are the union of a finite number of polytopes, they can
be exactly represented as a hybrid zonotope. Furthermore, because SOS approximations

38

Figure 3.4: SOS approximation of y = sin(x) for x ∈
[
−4 , 4

]
with 11 evenly spaced

breakpoints.
Dotted vertical lines correspond to breakpoint locations and the domains between
breakpoints correspond to the 10 columns of the incidence matrix M (3.9) and 10 1-
dimensional simplices.

are defined by their breakpoints, they are conveniently written as a collection of polytopes
in vertex representation, which can be efficiently converted to a hybrid zonotope using
Theorem 2.1 with resulting memory complexity

ng = 2nv , (3.10)

nb = N , (3.11)

nc = nv + 2 . (3.12)

3.2.2 Hybrid Zonotope Over-approximations for Graphs of Nonlinear
Functions

By accounting for the worst-case error of the approximated graphs of functions, generated
as SOS approximations or otherwise, hybrid zonotopes that contain graphs of nonlinear
functions can be generated. The following result does not depend on the use of HCG-rep,
though hybrid zonotopes have efficient identities for linear mapping and Minkowski
summation used in (3.14).

Corollary 3.4 (Construct Envelope Given Error Bounds) Given an approxima-
tion ĥ(x) of a scalar-valued function h(x) : Rn → R, its corresponding graph of a function
Ĥ defined over the domain DĤ, and an error bound given by the interval [a, b] such that
h(x) ∈ [ĥ(x) + a, ĥ(x) + b] for all x ∈ DĤ, an over-approximation of the graph of h(x)

39

over the domain DĤ

H =


x

y

 ∣∣∣∣∣∣ y = h(x)
x ∈ DĤ

 (3.13)

is given by

H ⊆ Ĥ ⊕

0
1

 [
a, b

]
. (3.14)

Proof Defining the right side of (3.14) as H̄,

H̄ =


x

y

 ∣∣∣∣∣∣
 x ∈ DĤ,

y ∈ [ĥ(x) + a, ĥ(x) + b]

 .

By assumption, h(x) ∈ [ĥ(x) + a, ĥ(x) + b] for all x ∈ DĤ. □

3.2.2.1 Bounding SOS Approximation Error

Corollary 3.4 assumes that bounds
[
a, b

]
on the approximation error are known. Gen-

erally, for a function h(x) approximated over a domain by a PWA approximation h̄(x),
error bounds can be posed as the mixed integer nonlinear programs

a = min
x∈X

h̄(x)− h(x) (3.15)

b = max
x∈X

h̄(x)− h(x) (3.16)

where X is the domain of the approximation. In general these programs are challenging to
solve, though by decomposing functions into unary or binary functions, as will be proposed
in Section 3.3, (3.15) and (3.16) only need to be solved for x ∈ R1 or R2. Additional
properties such as whether h(x) is continuous, differentiable, convex, or concave can
significantly reduce the complexity of solving (3.15) and (3.16). Error bounds for affine
approximations of some nonlinear functions can be found in [74, Chapter 3], e.g., for
x2 a closed-form solution to (3.15) is found by leveraging the convex and differentiable
properties. In the case of PWA approximations, the process can be repeated for each
partition of the domain and the worst-case error bounds should be used.

Example 3.2 demonstrates the construction of a hybrid zonotope over-approximation
of the graph of a nonlinear function.

40

Example 3.2 Consider the SOS approximation given in Example 3.1 of y = sin(x), x ∈[
−4 , 4

]
. Using error bounds provided in [73, Proposition 3.2] over each piece of the

PWA approximation, it can be shown that E =
[
a, b

]
=

[
−0.0736, 0.0736

]
provides

adequate error bound, i.e.,

h(x) ∈
[
ĥ(x) + a, ĥ(x) + b

]
, (3.17)

where ĥ(x) is the PWA approximation defined by linear interpolation between breakpoints.
Thus, a hybrid zonotope enclosure of the graph of sin(x) for over the domain x ∈

[
−4, 4

]
is created by representing S as a hybrid zonotope and applying Corollary 3.4. The resulting
set is plotted in Figure 3.5

Figure 3.5: Hybrid zonotope over-approximation of the graph of the function y = sin(x).
Dotted vertical lines correspond to breakpoint locations and the domains between
breakpoints correspond to the 10 columns of the incidence matrix M (3.9). A hybrid
zonotope over-approximation is generated by representing S using Theorem 2.1 and
applying Corollary 3.4.

3.2.3 Unary SOS Construction

Due to the sampling of breakpoints in the input space, SOS approximations require
additional tools to avoid exponential scaling with the number of inputs. This is addressed
in Section 3.3 using functional decomposition methods, which allow for the composition
of unary and binary functions to represent higher-dimensional functions. Specific results
for “separable” functions allow for representing common binary functions, e.g., xy, x

y
and

xy, by affine combinations of unary functions. The remainder of this section provides
methods to construct SOS approximations of continuous unary nonlinear functions.

41

A trivial and often inefficient placement of breakpoints is to uniformly sample the
state space given a fixed number of breakpoints. Many methods exist to generate PWA
approximation for different classes of functions. The methods in [75–79] all solve nonlinear
optimization programs to determine coefficients to minimize various forms of error, e.g.,
least-squares or maximum bounds. Alternatively, the methods presented here generate
SOS approximations with a tolerance and interval domain set by the user, and the
algorithms use as many breakpoints as are required.

When constructing SOS approximations, the resulting memory complexity, defined
by the number of breakpoints, and the computational cost of constructing the SOS
approximation must be considered. Two approaches are considered including 1) a
technique that produces minimal resulting complexity but is computationally expensive
to generate, and 2) a technique that is computationally efficient at the expense of
added memory complexity. The proposed methods allow for the construction of hybrid
zonotopes that contain a nonlinear graph of a unary function and limit the memory
complexity of the resulting sets, though these techniques have uses outside the scope of
hybrid zonotopes.

3.2.3.1 Method 1 (Bisection Advance):

The first technique is given by Algorithm 1 and summarized as follows. Lines 1-2:
Initialize the index k, first breakpoint x1, and assign ε to the maximum error associated
with a domain spanning [x1, x̄]. Line 3: Check if x̄ is the last breakpoint. Line 4:
Initialize upper, lower, and cut values for a bisection method. Line 5: Check if the
bisection method has converged. Lines 6-15: Evaluate the maximum error with an
upper bound associated with the region spanning [xk, m] and reassign bisection upper,
lower, and cut values appropriately. Lines 16-18: Assign next breakpoint xk+1 equal
to the lower bound, ensuring tolerance satisfaction, update the error for the domain
spanning [xk+1, x̄], and increment k. Line 20: Assign xk+1 as the final breakpoint. A
visual depiction of the algorithm is shown in Figure 3.6.

The evaluation of the maximum error using the function evalErr(f(·), [x1, m]) is
defined in general by

evalErr(f(·), [xk, m]) = max
x∈[xk,m]

|f̄(x)− f(x)| , (3.18)

42

where f̄(x) is given by the SOS approximation on the domain [xk, m] as

f̄(x) = f(xk) + f(m)− f(xk)
m− xk

(x− xk) . (3.19)

In general, the evaluation of (3.18) requires solving a nonlinear program. Additional
properties such as whether f(x) is continuous, differentiable, convex, or concave can
significantly reduce the complexity of solving (3.18).

Algorithm 1: Generate SOS approximation (C0). Given: continuous unary
scalar-valued function f(·), output error tolerance τ , breakpoint tolerance δx,
input domain x ∈ [x, x̄].

Result: Vector of breakpoints x
1 k ← 1, x1 ← x
2 e← evalErr(f(·), [x1, x̄])
3 while e > τ do
4 ℓ← xk, u← x̄, m← (ℓ + u)/2
5 while u− ℓ > δx OR e > τ do
6 e← evalErr(f(·), [xk, m])
7 if e < τ then
8 ℓ← m
9 else if e > τ then

10 u← m
11 else
12 ℓ← m, u← m
13 end
14 m← (ℓ + u)/2
15 end
16 xk+1 ← ℓ
17 e← evalErr(f(·), [xk+1, xu])
18 k ← k + 1
19 end
20 xk+1 ← x̄

3.2.3.2 Method 2 (Thrice Differentiable Functions):

Algorithm 2 assumes f(·) is a thrice differentiable unary scalar-valued function, and a
bound on the magnitude of the third derivative over the domain is given by

d3 ≥ max
x∈[x,x̄]

|f ′′′(x)| . (3.20)

43

(a)

(b)

(c)

Figure 3.6: Bisection-based construction of SOS approximation.
Method 1 (Algorithm 1). (a) Bisection to determine x2. (b) Bisection to determine x3.
(c) The upper bound x̄ = 2π satisfies the error tolerance therefore the bisection method
to find the next breakpoint is not required and Algorithm 1 terminates.

Algorithm 2 exploits these assumptions and leverages a closed-form bound on the error
presented in Theorem 3.3.

Theorem 3.3 Given a thrice differentiable unary scalar-valued function f(·) over a

44

domain x ∈ [x, x̄], and a bound on the third derivative d3 over the domain (3.20), then

max
x∈[x,x̄]

|f̄(x)− f(x)| ≤ d3
4 (x̄− x)3 + d2

4 (x̄− x)2 , (3.21)

where d2 = |f ′′(x)|.

Proof The proof begins with the result given in [80, Theorem 4.1], modified to match
notation herein and specified to f(·) : R→ R,

max
x∈[x,x̄]

|f̄(x)− f(x)| ≤
maxx∈[x,x̄] |f ′′(x)|

4 (x̄− x)2 . (3.22)

By the fundamental theorem of calculus and triangle inequality

f ′′(x̄) = f ′′(x) +
∫ x̄

x
f ′′′(t) dt ,

|f ′′(x̄)| = |f ′′(x) +
∫ x̄

x
f ′′′(t) dt| ,

≤ |f ′′(x)|+
∫ x̄

x
|f ′′′(t)| dt ,

≤ |f ′′(x)|+ max
t∈[x,x̄]

|f ′′′(t)|(x̄− x) . (3.23)

Replacing the maximum magnitude of the second derivative in (3.22) with an upper bound
given by (3.23) yields (3.21). □

Algorithm 2 is summarized as follows. Line 1: Initialize index k, first breakpoint x1,
and magnitude of the second derivative at the current breakpoint. Line 2: Assign ε̄ to
the error bound associated with a domain spanning [x1, x̄]. Line 3: Check if x̄ is the
last breakpoint. Lines 4-5: If x̄ is not the last breakpoint, assign the next breakpoint
xk+1 to the largest real solution of

d3

4 (xk+1 − xk)3 + d2

4 (xk+1 − xk)2 = τ , (3.24)

which falls in the domain [x, x̄]. Note that the function roots(c(x)) simply returns the
three roots s1, s2, and s3 of a cubic polynomial c(x). Lines 6-9: Update the error bound
ε̄ and d2 associated with the last breakpoint xk+1 and increment k. Line 10: Assign x̄

as the final breakpoint.

Remark 3.1 The variation in breakpoint separation is obtained by updating d2, e.g.,
when d2 is small, the next xk+1 can be further away.

45

Algorithm 2: Generate SOS approximation (Thrice Differentiable). Given:
thrice differentiable unary scalar-valued function and its second derivative f(·),
f ′′(·), output error tolerance τ , input domain x ∈ [x, x̄], and a bound on the
magnitude of the third derivative d3 ≥ maxx∈[x,x̄)] |f ′′′(x)|

Result: Vector of breakpoints x
1 k ← 1, x1 ← x, d2 = |f ′′(x1)|
2 e← d3

4 (x̄− x1)3 + d2
4 (x̄− x1)2

3 while e > τ do
4 {s1, s2, s3} ← roots(d3

4 (x− xk)3 + d2
4 (x− xk)2 − τ)

5 xk+1 = max(s) s.t. s ∈ [x, x̄] ∩ {s1, s2, s3} ∩ R
6 d2 ← |f ′′(xk+1)|
7 e← d3

4 (x̄− xk+1)3 + d2
4 (x̄− xk+1)2

8 k ← k + 1
9 end

10 xk+1 ← x̄

3.2.3.3 Comparison of SOS Construction Methods

Figure 3.7 compares construction of SOS approximations using Method 1 and Method 2
in computation time and the number of breakpoints for the functions and domains given
in Table 3.1. Method 1 is slower to compute but produces SOS approximations with
fewer breakpoints for all the functions tested. Because the techniques in this thesis will
be directed at problems solved offline, lower resulting complexities using Method 1 are
often worth the longer computation times.

Table 3.1: Functions and domains used to compare Method 1 and Method 2 for SOS
construction.

Function sin(x) x2 x3 1/x

Domain x ∈ [0, 2π] x ∈ [−5, 5] x ∈ [−5, 5] x ∈ [1, 10]

Because the number of breakpoints is discrete, as the tolerance is varied the number
of breakpoints required to achieve the tolerance will “jump” at critical tolerance values.
This is demonstrated in Figure 3.8 for SOS approximations of sin(x), x ∈ [0, 2π] using
Method 1 (Algorithm 1). Dotted lines are projected onto the tolerance axis to indicate
critical tolerance values. For a given interval of tolerances, the number of breakpoints
does not vary. Red points indicate the tightest tolerance achievable given a specified
number of breakpoints. The results in Figure 3.8 were obtained by uniformly sampling
the logarithm of the tolerance 500 times. Critical values of tolerances in red correspond to

46

(a)

(b)

Figure 3.7: Comparison of SOS Construction Methods.
Method 1 (Algorithm 1) and Method 2 (Algorithm 2) for constructing SOS approximations
for various functions and domains given in Table 3.1). (a) and (b) show the number
of breakpoints and computation time, respectively, as a function of tolerance. Across
all functions tested, Method 1 is significantly slower to compute than Method 2, but
constructs an SOS approximation with a specified error tolerance using fewer breakpoints.

solutions of optimal placements of breakpoints given a specified number of breakpoints.

47

Figure 3.8: Number of Breakpoints required to meet a specified tolerance for the function
sin(x) x ∈ [0, 2π] using Method 1 (Algorithm 1).
Dashed lines indicate values of tolerances at which the number of breakpoints “jumps”.

3.3 Functional Decomposition

3.3.1 Introduction and Definition

The Kolmogorov-Arnold Representation Theorem [81,82] proves that every multivariate
continuous function can be written as the composition of continuous functions of a
single variable and addition. In [83], the authors represent function decompositions via a
parsing tree and describe an algorithm to generate parsing trees. Additionally, [76,83]
define separable functions as those which can be expressed as the sum of functions of a
single variable, and show how such functions are easily decomposed into unary functions.
Work to approximate nonlinear optimization programs uses functional decompositions to
avoid exponential scaling of SOS approximations [73,74] .

The following form of a functional decomposition is modified from [73]. A gen-
eral nonlinear function h(x) : Rn → Rm is decomposed by introducing intermediate

48

observables

wj =

xj , if j ∈ {1, ..., n} ,

hj(wj1{, wj2}) , if j ∈ {n + 1, ..., n + K} ,
(3.25)

where j1, j2 < j, giving

h(x) =


wn+K−m+1

...
wn+K

 .

The first n assignments directly correspond to the n elements of the argument vector
x, assignments n + 1, ..., n + K are defined by the unary function or binary function hj,
and the final m assignments are associated with h(x). In the case that hj is unary, the
second argument is omitted.

Remark 3.2 Because hybrid zonotopes are closed under linear mapping, functional
compositions are also allowed to admit functions hj(·) that have more than two in-
puts, provided the function hj(·) is an affine function of lower-indexed variables, i.e.,
wk , ∀ k < j.

Example 3.3 Consider inverted pendulum dynamics given byẋ1

ẋ2

 =
 x2

g
l
sin(x1) + u

I

 , (3.26)

with gravity g = 10, length l = 1, mass m = 1, and moment of inertia I = ml2 = 1.
The continuous-time nonlinear dynamics are discretized with time step h = 0.1 using a
2nd-order Taylor polynomial T2(xk) given by

T2(xk) =


 x1,k + x2,k

10 + sin(x1,k)
20 + uk

200
x2,k + sin(x1,k) + x2,k cos(x1,k)

20 + uk

10

 . (3.27)

A functional decomposition of T2(xk) is shown in Table 3.2. For a chosen DH = D1×D2×
D3, bounds on the intermediate and output variables can be found by domain propagation
via interval arithmetic.

49

Table 3.2: Functional decomposition of T2 (3.27)

wj hℓ Dℓ

w1 = x1,k [−4, 4]
w2 = x2,k [−8, 8]
w3 = uk [−20, 20]
w4 sin(w1) [−1, 1]
w5 cos(w1) [−1, 1]
w6 w5w2 [−8, 8]
w7 w1 + w2

10 + w3
200 + w4

20 [−4.95, 4.95]
w8 w2 + w4 + w3

10 + w6
20 [−11.4, 11.4]

3.3.2 Construction of High-Dimensional Graphs of Functions

The Kolmogorov-Arnold Representation Theorem proves the existence of a functional
decomposition for continuous multivariate functions. This allows for a theoretical scaling
of the approaches herein in spite of the fact that functional decompositions are system
specific and are not unique. Unfortunately, decompositions based on the Kolmogorov-
Arnold Representation Theorem are not always immediately obvious. This section first
provides identities to construct high-dimensional graphs of functions assuming a functional
decomposition is given in addition to graphs of functions for each nonlinear unary or binary
function within the decomposition. Then the computational and memory complexity
of the identities is analyzed assuming decomposition based on the Kolmogorov-Arnold
Representation Theorem.

While Theorem 3.4 addresses nonlinear functions with a single vector argument x, it
is easily applied to functions with multiple arguments by concatenating arguments into a
single vector.

Theorem 3.4 (Construct Graph of a Functional Decomposition) [62, Theo-
rem 4] Consider a general nonlinear function h(x) : Rn → Rm and its decomposition
(3.25). Define the set H as

H ≡




w1
...

wn+K


∣∣∣∣∣∣

(w1, w2, . . . , wn) ∈ DH,

wj = hj(wj1{, wj2}) ,

∀j ∈ {n + 1, ..., n + K}

 . (3.28)

50

Given Dj ⊇ [ej]H , ∀j = n + 1, ..., n + K,3 and

Hℓ =




wℓ1

{wℓ2}
wℓ


∣∣∣∣∣∣ (wℓ1{, wℓ2}) ∈ Dℓ1{×Dℓ2},

wℓ = hℓ(wℓ1{, wℓ2})

 , (3.29)

for ℓ ∈ {n + 1, ..., n + K}, then H is given by initializing H1:n = DH, iterating K times

H1:ℓ = (H1:ℓ−1 ×Dℓ) ∩
eℓ1

{eℓ2}
eℓ


Hℓ . (3.30)

After K iterations, the result is given by H = H1:n+K.

Proof From H1:n = DH and (3.30),

H1:n+K =




w1
...

wn+K


∣∣∣∣∣∣

(w1, w2, ..., wn) ∈ DH,

wj ∈ Dj , ∀j ∈ {n + 1, ..., n + K},
wj = hj(wj1{, wj2}) , ∀j ∈ {n + 1, ..., n + K}

 . (3.31)

The constraint wn+1 ∈ Dn+1 is redundant given that (w1, w2, ..., wn) ∈ DH and wj =
hj(wj1{, wj2}) for j = n + 1, and therefore can be removed. The same is then true
∀j ∈ {n + 2, ..., n + K}, yielding H as defined by (3.28). □

Corollary 3.5 addresses the special case when the decomposition includes affine
functions.

Corollary 3.5 (Efficient Construction of Affine Observables) [62, Corollary 1]
Consider a general nonlinear function h(x) : Rn → Rm, its decomposition (3.25), the
set H defined by (3.28) and the recursion (3.30). For all ℓ where hℓ(·) is affine, i.e.,
hℓ(wℓ1{, wℓ2}) = mℓ1wℓ1{+mℓ2 wℓ2}+ bℓ where mℓ1, {mℓ2}, bℓ are scalars, the set H is
equivalently given when (3.30) is replaced by

H1:ℓ =
 Il−1

mℓ1eℓ1{+mℓ2eℓ2}

H1:ℓ−1 +
0

1

 bℓ . (3.32)

3Domains Dj ⊇ [ej]H , ∀j = n + 1, ..., n + K can be found as intervals using domain propagation.

51

Proof The proof only requires recognizing that mℓ1wℓ1{+mℓ2 wℓ2}+ bℓ = hℓ(wℓ1{, wℓ2})
when hℓ(·) is affine to arrive at (3.31) and then follows the same procedure as the proof
of Theorem 3.4. □

Although Corollary 3.5 is written for unary or binary affine functions, it is easily
extended to functions with an arbitrary number of arguments, i.e., hℓ(w1, ...) = bℓ +∑

i mℓiwℓi. Applying Corollary 3.5 can reduce the memory complexity of H (3.28) when
implemented with hybrid zonotopes. This is because the affine transformation in (3.32)
does not increase the memory complexity of the hybrid zonotope, whereas the generalized
intersection in (3.30) does. This is the reasoning for allowing affine functions in functional
decompositions to have more than two inputs (see Remark 3.2).

Often, the intermediate observables created in the process of functional decomposition
do not need to be retained as dimensions of the final set. Therefore, Corollary 3.6 provides
an identity to remove intermediate observables, only retaining dimensions corresponding
to the n arguments and m outputs of h(x).

Corollary 3.6 (Remove Intermediate Observables in Graph of a Functional
Decomposition) [62, Corollary 2] Consider a general nonlinear function h(x) : Rn →
Rm and its decomposition (3.25). Given the set H as defined by (3.28), the graph of the
function h(x) defined over input domain DH is given by

Φ =


x

y

 ∣∣∣∣∣∣ x ∈ DH

y = h(x)

 =
In 0 0

0 0 Im

H . (3.33)

Proof By definition of the linear transformation, the right side of (3.33) yields




w1
...

wn

wn+K−m+1
...

wn+K



∣∣∣∣∣∣
(w1, w2, . . . , wn) ∈ DH,

wj = hj(wj1{, wj2}) ,

∀j ∈ {n + 1, ..., n + K}


.

Substitution of hj(·) , ∀ j ∈ {n + 1, ..., n + K} yields the desired result. □

Corollary 3.7 (Constructions using Over-Approximated Sets) For the identities
(3.30), (3.32), and (3.33) provided by Theorem 3.4, Corollary 3.5, and Corollary 3.6

52

respectively, if argument sets are replaced with an over-approximations, then the identities
will instead yield over-approximations of the left sides.

Proof Set containment is preserved under linear transformation and generalized inter-
section. □

Example 3.4 A functional decomposition of xk+1 = cos(π sin(xk)) over a domain DH =
[−π, π] and its visual representation are given by Table 3.3 and Figure 3.9, respectively.
Over-approximations H̄2 and H̄3 are constructed using SOS approximations and closed-
form solution error bounds from [74], which are combined using Corollary 3.4. The effect
of over-approximation per Corollary 3.7 is demonstrated in Figure 3.9(e)-(h). In Figure
3.9(d) and (h), Corollary 3.6 is used as the last step in construction of the state-update
set Φ and its over-approximation Φ̄, which are shown in magenta.

Table 3.3: Functional decomposition and domain propagation of xk+1 = cos(π sin(xk))
over a domain DH = [−π, π].

wj Hj Dj

w1 = xk [−π, π]
w2 π sin(w1) [−π, π]
w3 = xk+1 cos(w2) [−1, 1]

53

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 3.9: Visual depiction of functional decomposition and Theorem 3.4 applied to
xk+1 = cos(π sin(xk)) with the decomposition shown in Table 3.3.
Subfigures (a-d) show the exact case while subfigures (e-h) show the effect of using
over-approximations H2 ⊂ H̄2, and H3 ⊂ H̄3.

54

3.3.2.1 Avoiding the Curse of Dimensionality

This section provides a theoretical bound on the memory complexity of the graph of
the function given by Theorem 3.4 and Corollary 3.5 to quantify the scalability of the
proposed methods with respect to the state dimension and number of vertices used to
approximate nonlinear functions.

Consider a general nonlinear function h(x) : Rn → Rm. It is assumed that the
functional decomposition consists of n intermediate observables corresponding to the
dimensions of x, Kaff intermediate observables corresponding to multivariate affine
functions, and KNL intermediate observables corresponding to nonlinear functions that
are unary or binary. The set of indices such that hℓ(·) is nonlinear is denotedN . Assuming
DH and Dℓ are intervals, the memory complexity of H as constructed by Theorem 3.4
and Corollary 3.5 in terms of complexities of Hℓ , ∀ℓ such that hℓ(·) is nonlinear, is given
by

ng,H = n + KNL +
∑
ℓ∈N

ng,Hℓ
, (3.34)

nb,H =
∑
ℓ∈N

nb,Hℓ
, (3.35)

nc,H =
∑
ℓ∈N

(nc,Hℓ
+ nℓ) , nℓ =

2 if hℓ(·) is unary ,

3 if hℓ(·) is binary .
(3.36)

The computational complexity of constructing H using Theorem 3.4 and Corollary 3.5
is dominated by the KNL generalized intersections in the recursions of (3.30). Each
generalized intersection has computational complexity O(ℓ(ng + nb)), where ng and nb

grow with the complexity of Hℓ.
For a given system, the functional decomposition plays a critical role in both the

computational and memory complexity of building a graph of the function. This presents
a challenge to quantifying the scalability of the proposed approaches with the state
dimension as it can be expected that KNL will grow with n. This challenge is exacerbated
when considering that functional decompositions are dependent on the system and are
not unique, i.e., multiple functional decompositions exist for a single system.

In order to provide a theoretical bound for the proposed method, let us assume that
a decomposition based on the Kolmogorov-Arnold Representation Theorem [81, 82] is
performed for each hi(x) , ∀ i ∈ {1, ..., m}. Then the number of unary nonlinear decom-

55

position functions is given by KNL = 2mn2 + mn and no binary nonlinear decomposition
functions are required. Assuming that each unary nonlinear decomposition function is
approximated using an SOS approximation with nv vertices, the resulting complexity of
H is given by

ng,H = n + (2mn2 + mn)(2nv + 1) ,

nb,H = (2mn2 + mn)(nv − 1) , (3.37)

nc,H = 8mn2 + 4mn .

It is clear from (3.37) that the memory complexity of H scales as a polynomial with n,
avoiding the exponential growth associated with the curse of dimensionality. In compari-
son, any method that sampled the n-dimensional space to generate an approximation
would scale as nn

v , not including any additional complexity incurred to generate H from
those samples.

3.3.3 Automated Functional Decomposition

This section presents methods to automate production of a functional decomposition in
the form of (3.25) from an expression in infix notation, which represents mathematical
operators placed between operands. The process uses an existing algorithm to convert
from infix notation to another standard notation, and then presents a novel algorithm to
convert the result to a functional decomposition. The proposed approach addresses two
challenges when constructing functional decompositions, namely removing redundant
observables4 and avoiding excessive decomposition of unary functions.

3.3.3.1 Reverse Polish Notation

Infix notation is commonly used to represent mathematical expressions with operators
placed between operands, e.g., x + y ∗ z. Reverse Polish Notation (RPN), also referred to
as reverse Likasiewicz notation and postfix notation, represents a mathematical expression
with operands preceding their operators. The Shunting Yard algorithm (SYA) [84] uses
precedence and associativity to parse infix notation and outputs an equivalent expression

4Redudant observables are referred to as multiple presence in [74].

56

in RPN, e.g.,

Infix Notation SYA RPN
x + y × z −→ x y z ×

(3.38)

The SYA can similarly handle functions, e.g.,

Infix Notation SYA RPN
3× y × cos(x)2 −→ 3 y x cos 2 ∧ × ×

(3.39)

Each number, variable, operator, and function is referred to as a token. The RPN
expressions in (3.38) and (3.39) have 5 and 8 tokens, respectively. To read RPN, start
at the left of the expression and push tokens onto a stack until a operator or function
token is reached. Then pop the appropriate number of tokens off of the stack, perform
the operation to produce a single token, and push the resulting token to the stack. The
process is repeated until there are no remaining tokens in the expression and the result
is on the stack.

3.3.3.2 RPN to Functional Decomposition (Scalar-valued Function)

A string of tokens is denoted by E and E1 denotes the first token of E . As tokens are
pushed or popped to a stack, the value of E1 changes. For ease of notation and without
loss of generality, it is assumed that the input variables of the expression of interest are
w1, ...wnx where nx is the number of input variables.

Algorithm 3: RPN to Functional Decomposition. Given: a string of n tokens
E in RPN.

Result: Function Decomposition
1 k ← nx + 1
2 while E is not empty do
3 while E1 is a number or a variable do
4 push E1 to stack.
5 end
6 pop tokens from stack associated with the operator or function E1, form

observable expression and save as wk.
7 k ← k + 1
8 end

Algorithm 3 provides and automated method to convert a string of tokens in RPN
into a functional decomposition of the form (3.25) by leveraging the order of operations

57

and evaluations of sub-expressions to generate observables. Algorithm 3 has two apparent
flaws when used with piecewise affine and piecewise polytope approximations, which are
described as a) redundant observables, and b) excessive decomposition of unary functions.

3.3.3.2.1 Redundant Observables First, consider the expression

sin(w1) + sin(w1)2 . (3.40)

The SYA yields the RPN expression

w1 sin w1 sin 2 ∧ + (3.41)

and Algorithm 3 gives the functional decomposition

Input: w1

w3 = sin(w1) ,

w4 = sin(w1) , (3.42)

w5 = w2
4 ,

w6 = w4 + w5 .

Note that w3 and w4 are redundant as they represent the same quantity. When consid-
ering use of the functional decomposition with piecewise affine or piecewise polytopic
approximations of nonlinear functions, this redundancy should be avoided because 1) un-
necessary complexity will be accrued in approximating the quantity sin(w1) twice instead
of once, and 2) for piecewise polytopic approximations, w3 and w4 will be uncoupled,
i.e., values within over-approximations of w3 and w4 are not required to be equal to
each other given the same w1. This motivates a modification of Algorithm 3 to avoid
constructing a functional decomposition containing redundant observables.

Algorithm 4 builds on Algorithm 3 and addresses redundant observables by introducing
a check to see if an equivalent observable already exists. New observables are only created
if an equivalent observable does not already exist. Applying Algorithm 4 to the RPN
expression given in (3.41) results in the more compact functional decomposition

Input: w1

w3 = sin(w1) , (3.43)

58

w4 = w2
3 ,

w5 = w3 + w4 .

Figure 3.10 and Table 3.4 demonstrate the accuracy and memory complexity benefits of
accounting for redundant observables (Algorithm 3 vs. Algorithm 4). In this case, hybrid
zonotope over-approximations of the nonlinear sinusoidal and quadratic observables are
generated using the following steps.

1. Algorithm 1 generates breakpoints for an SOS approximations of sin(x) and x2

with tolerances of τsin(x) = 0.1 and τx2 = 0.01.

2. Using Theorem 2.1, the SOS approximations of sin(x) and x2 are represented as
hybrid zonotopes.

3. Using Theorem 3.4, Corollary 3.5, and Corollary 3.6, over-approximated graphs of
sin(w1) + sin(w1)2 are computed for resulting functional decompositions given by
both Algorithm 3 and Algorithm 4.

Because Algorithm 3 creates a redundant observable, the resulting hybrid zonotope
is both less accurate and more complex than achievable with Algorithm 4. Table 3.4
provides complexities of the resulting graphs of functions without and with using hybrid
zonotope order reduction methods [22,58]. Checking for redundant observables comes
with computational cost, as Algorithm 3 scales with the number of tokens n as O(n)
whereas Algorithm 4 scales as O(n2), however this is often negligible compared to the
benefits of a more accurate and compact functional decomposition.

Table 3.4: Memory complexity of hybrid zonotope over-approximations of graphs of
sin(w1) + sin(w1)2 with (3.43) and without (3.42) redundancy in the functional decom-
position.

Decomposition Memory Complexity
(ng, nb, nc)

Algorithm 3 (58, 24, 36)
(53, 19, 32)red

Algorithm 4 (43, 18, 26)
(39, 15, 23)red

59

Figure 3.10: Hybrid zonotopes generated using functional decompositions with and
without redundant observables.
Over-approximations of the graph of a function of (3.41) obtained using functional
decompositions generated by Algorithm 3 and Algorithm 4 are shown in cyan and
dark blue, respectively. Both over-approximate nonlinear functions with identical error,
however Algorithm 4 is obtained without redundant observables, leading to less error
and lower memory complexity.

3.3.3.2.2 Excessive Decomposition of Unary Functions Consider the expres-
sion

cos(sin(w1 × w2)) + sin(cos(sin(w1 × w2))) + sin(w1 × w2) .

The SYA yields the RPN expression

w1 w2 × sin cos w1 w2 × sin cos sin + w1 w2 × sin + , (3.44)

and Algorithm 3 gives the functional decomposition

Inputs : w1, w2 ,

w3 = w1 × w2 ,

w4 = sin(w3) ,

w5 = cos(w4) ,

w6 = sin(w5) ,

w7 = w5 + w6 ,

w8 = w4 + w7.

(3.45)

60

Algorithm 4: Modified RPN to Functional Decomposition. Given a string of n
tokens E in RPN

Result: Function Decomposition: w1, ..., wnx+K

1 k = nx + 1
2 while E is not empty do
3 while E1 is a number or a variable do
4 push E1 to stack.
5 end
6 pop tokens from stack associated with the operator or function E1 and form

candidate observable expression, wc.
7 if wc ̸= wi , ∀i ∈ {1, ..., k − 1} then
8 Save wk = wc

9 k ← k + 1
10 else
11 Substitute previously defined and equivalent observable for wc and push to

stack.
12 end
13 end

A more concise decomposition may be realized by combining w4, w5, w6, w7, e.g.,

Inputs : w1, w2 ,

w3 =w1 × w2 ,

w8 = sin(cos(sin(w3))) . . .

+ cos(sin(w3)) + sin(w3) .

(3.46)

Graphs provide a convenient and powerful representation to detect and reduce excessive
unary decompositions. The example is briefly set aside to introduce and review graphs
as they are used within this thesis.

A directed graph G, not to be confused with a graph of a function, consists of a set of
nV vertices V = {V1, V2, . . . , VnV

} and a set of nE directed edges E which connect pairs
of vertices. The structure of G can be represented by an adjacency matrix A ∈ RnV ×nV

where

Aij =

1 , if there exists an edge from Vi to Vj ,

0 , otherwise .

If there exists an edge with vertex Vi as its tail and vertex Vj as its head (i.e., Aij = 1),
then Vj is a successor of Vi and Vi is a predecessor of Vj . Herein, the adjacency matrix is
not symmetric, yielding a “directed” graph. The transpose of a graph, G ′, is a directed

61

graph with the same vertices as G, but with edges of opposite orientation. For a vertex
Vi, the number of edges entering it, referred to as its indegree, is denoted by d−(Vi), and
the number of edges leaving the vertex, referred to as its outdegree, is denoted by d+(Vi).
A walk is an ordered list of vertices V1, V2, ..., Vk where Ai,i+1 = 1 , ∀i ∈ {1, ..., k − 1}.
A reverse walk, also called a moonwalk [85], is the walk of the transposed graph, G ′. A
directed graph is said to be acyclic if ∀Vi ∈ V , there exists no possible walk from Vi to
itself.

The more compact functional decomposition of (3.46) as compared to (3.45) allows
for the approximation of fewer nonlinear functions, reducing the number of nonlinear
approximations that need to be made. These excessive unary decompositions can be
detected and eliminated by representing the functional decomposition structure as a
directed acyclic graph. For example, the composition of (3.45) can be represented as a
graph with adjacency matrix

A =



0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0



, (3.47)

where Ai,j ∈ {0, 1} and Ai,j = 1 ⇐⇒ wi is an argument of hj(·). The associated graph
of (3.45) represented by adjacency matrix (3.47) is plotted in Figure 3.11.

Detection of an excessive unary decomposition can be achieved by finding a pair of
vertices, Vi and Vj, i ̸= j, such that observable wj is only a function of wi. Then, the
subgraph between Vi and Vj can be replaced by a single edge which captures the unary
function composition. The proposed detection process, given as Algorithm 5, starts by
forming two sets for each vertex. The first set, Wi, is the intersection of travelled vertices
on all forward walks from Vi and the second set, Mi, is the intersection of travelled
vertices on all reverse walks from Vi, i.e., Wi and Mi contain vertices that must be
visited on every forward and reverse walk, respectively. Then, the graph is searched for
pairs of vertices Vi and Vj which have mutual dependency in the original and transposed
graphs, i.e., Vj ∈ Wi and Vi ∈ Wj.

To perform the simplification step of this method, a recursive composition function

62

Figure 3.11: Visualization of graph defined by adjacency matrix (3.47).

comp(·) is defined as

comp(Vi, Vj) =

wi , if i = j

fj(comp(Vi, P1){, comp(Vi, P2)}) , if i ̸= j

 , (3.48)

where P is the set of one or two predecessors of Vj. The result of comp(Vi, Vj) is
the composition of unary and binary functions with the single input wi. A graphical
representation of reducing (3.45) to (3.46) is demonstrated in Figure 3.12. Note that
Algorithm 5 does not simplify the graph in Figures 3.12(a)-(c) as V1 /∈ M3, V2 /∈ M3,
and d+(V3) = 1, respectively. Repeating Algorithm 5 until the number of observables
remains the same will result in the desired and concise functional decomposition.

Remark 3.3 When generating a functional decomposition, it may be desired to protect
certain intermediate observables from simplification, e.g., in the case with multiple outputs.
Therefore, forward and reverse walks in this method are terminated when they reach either
a vertex with zero outdegree or a vertex contained in a predefined set of protected vertices.

3.3.3.3 RPN to Functional Decomposition (Vector-valued Function)

The proposed method in Section 3.3.3.2 completes and simplifies the functional decom-
position of a scalar-valued function. This result is now extended to vector functions of
finite output dimension, h(·) : Rnx → Rny . Creating a functional decomposition for

63

each element if h(·) may result in redundant observables across decompositions, e.g.,

h(w1) =
 sin(w1)
cos(sin(w1))

 , (3.49)

has similar terms in h1 and h2. The functional decomposition of each element would be

Inputs: w1 Inputs: w1

w2 = sin(w1) w3 = sin(w1)
w4 = cos(w3)

(3.50)

The simplest way to address this is to concatenate the functional decompositions of
each element of h(·) into one single decomposition, ensuring the observables maintain
unique indices, e.g.,

Inputs: w1

w2 = sin(w1)
w3 = cos(w2)

(3.51)

One way to accomplish this while protecting output observables from simplification is
to introduce a new function •(·), which evaluates its argument, i.e., •(x) = x, and run
Algorithm 5 on the function ∑ny

i=1 •(hi). This prevents redundant observables across
elements of h as these are detected using Algorithm 4 and allows for easy identification
of output observables of h.

While performing the conversion from RPN to a functional decomposition in Algo-
rithm 4, output observables are identified as the tokens which the identity operators
act on. When E1 = •(·), the first token is popped from the stack, the observable it
corresponds with is noted and pushed back onto the stack, and E1 is discarded. The
vertices corresponding to these noted observables will be added to the set of protected
vertices, as described in Remark 3.3.

Again, consider the functional decomposition given in (3.45), but with two ouputs
w4 and w8, which are added to a set of protected variables. Algorithm 5 results in the
functional decomposition

Inputs : w1, w2 ,

64

w3 = w1 × w2 ,

w4 = sin(w3) ,

w8 = sin(cos(w4)) + cos(w4) + w4,

(3.52)

and the process is depicted in Figure 3.13.

(a)
(i, j) = (1, 3)

(b)
(i, j) = (2, 3)

(c)
(i, j) = (3, 4)

(d)
(i, j) = (3, 8)

(e)
Result

Figure 3.12: Graph representation of (3.45) being simplified to (3.46) according to
Algorithm 5.
Gray-filled vertices indicate Vi and Vj . Blue and red-outlined vertices indicate elements of
the intersection of forward walks Wi from Vi and reverse walks Mj from Vj , respectively.
(a) V1 /∈ M3. (b) V2 /∈ M3. (c): Ai,j = 0. (d) This iteration satisfies all conditions
in lines 6, 7, and 8 of Algorithm 5. (e) The resulting graph from lines 9 and 10 of
Algorithm 5.

3.3.4 Separable Bilinear Functions

It has been assumed in Section 3.3.1 that functional decompositions can include unary or
binary nonlinear functions and identities to construct graphs of functional decompositions
from graphs of unary and binary functions were given in Section 3.3.2. Section 3.3.3
then presented methods to automate the process of decomposing functions into unary
and binary functions. To this point, only methods for constructing hybrid zonotope
approximations of unary functions have been addressed (Section 3.2.1).

For some binary functions, existing over-approximation techniques can be leveraged,
as will be shown for the bilinear function xy. This section presents a class of functions
called “separable” functions which are compatible with methods for constructing hybrid

65

(a)
(i, j) = (4, 8)

(b)
Result

Figure 3.13: Graph representation of (3.45) being simplified to (3.46) according to
Algorithm 5 with V4 and V8 listed as protected vertices.
Note the difference between (b) and the result in Figure 3.12(e), as V4 is no longer
removed. This is because forward walks terminate at protected nodes, thus V8 is no
longer in W3.

zonotope approximations of unary functions. Several key binary functions, xy, x
y
, and

xy, can each be represented using functional decompositions composed exclusively of
separable functions.

Definition 3.3 A function is separable if it can be equivalently expressed as a summation
of unary functions i.e., f(x1, ..., xn) is separable if there exist fi(xi) , ∀ i ∈ {1, ..., n} such
that

f(x1, ..., xn) =
n∑

i=1
fi(xi) . (3.53)

Note that an affine term, while not explicitly written, can be included in any combination
of the unary functions fi(·). The interested reader is referred to [86, Chapter 7.3]
and [76, Section 4.2] for a comprehensive review of separable functions.

Proposition 3.1 (Separating Common Binary Functions) Using an affine change
of variables, w1w2, w1

w2
, and ww2

1 , can each be represented using a functional decomposition
composed exclusively of separable functions.

Proof A constructive proof is given for each binary function. Recursive substitution of
the last observable in each decomposition, until the result is only a function of w1 and
w2, verifies equality with each expression.

66

Algorithm 5: Given a functional decomposition H, generate a functional
decomposition Hs which has fewer unary redundancies.

Result: Hs

1 Generate directed graph G from H, with vertices V , edges E, and adjacency
matrix A

2 for Vi ∈ V do
3 Generate Wi and Mi

4 end
5 for i ∈ {1, ..., nV } do
6 for Vj ∈ Wi do
7 if Vi ∈Mj then
8 if Aij = 0 OR d+(Vi) > 1 then
9 wj ← comp(Vi, Vj)

10 Remove all observables wk associated with vertices visited on all
walks between Vi and Vj, k ̸= i, j

11 end
12 end
13 end
14 end
15 Hs ← functional decomposition from G with re-indexed observables

w1w2:

Inputs: w1, w2 ,

w3 = w1 + w2 ,

w4 = w1 − w2 ,

w5 = w2
3 ,

w6 = w2
4 ,

w7 = 1
4(w5 − w6) = w1w2 ,

w1
w2

:

Inputs: w1, w2 ,

w3 = 1
w2

,

w4 = w1 + w3

w5 = w1 − w3 ,

67

w6 = w2
4 ,

w7 = w2
5 ,

w8 = 1
4(w6 − w7) = w1

w2
,

ww2
1 :

Inputs: w1, w2 ,

w3 = ln w1 , (3.54)

w4 = w2 + w3 ,

w5 = w2 − w3 ,

w6 = w2
4 ,

w7 = w2
5 ,

w8 = 1
4(w6 − w7) ,

w9 = ew8 = ww2
1 .

□

In the following example, three methods to compute hybrid zonotope over-approximations
of the graph of a bilinear function are compared.

Example 3.5 Three methods for building hybrid zonotope over-approximated graphs of
functions for the bilinear function xy are considered. These methods are:

• Method 1 (M1)

1. uniformly samples the two dimensional input space, i.e., nx = ny where nx

and ny are the number of breakpoints in the x and y dimensions,

2. constructs V-rep polytopes over-approximations using [73, Theorem 3.4] for
each partition, and

3. represents their union as a hybrid zonotope using Theorem 2.1.

• Method 2 (M2)

1. adopts the functional decomposition composed of separable functions given in
Proposition 3.1,

68

2. constructs uniformly spaced SOS approximations 5 for both quadratic functions
within the decomposition using identical sampling, i.e., nu = nv where nu and
nv are the number of breakpoints to approximate each quadratic function,

3. converts SOS approximations of quadratic function to HCG-rep using Theo-
rem 2.1,

4. generates hybrid zonotope over-approximations of quadratic functions using
error bounds from [73, Proposition 3.1] and Corollary 3.4, and

5. constructs HCG-rep over-approximation of the graph of the bilinear function
using Theorem 3.4, Corollary 3.5, Corollary 3.6, and Corollary 3.7.

• Method 3 (M3) constructs approximations in a manner similar to Method 1, but
only partitions one dimension using nx breakpoints. The intuition of M3 is that for
a fixed value of x, xy is linear with respect to the y dimension; thus it is possible to
to obtain tighter over-approximations of xy just by sampling the x dimension (or y

dimension).

The domain of interest is specified as (x, y) ∈
[
−1 , 1

]2
. The number of samples for M2,

nu, is chosen as nu = ⌈
√

2nx⌉ to ensure that the spacing of the approximation for M2
partitions the domain into squares with a side length at least as small as those using
M1. To compare scalability with M2, the sampling for M3 is chosen to result in the same
number of binary factors as M2 by setting nx,M3 = 2nu,M2

Table 3.5 compares the complexity of the three methods, demonstrating how the
separable decomposition in Proposition 3.1 enables more scalable over-approximations
of the bilinear function as sampling is increased and over-approximations become more
accurate. Figure 3.14 plots over-approximations of the bilinear function using all three
methods corresponding to Case (M1 : nx = 6, M2 : nu = 17, M3 : nx = 34) in Table 3.5.
The partitioning in Figure 3.14(a) and Figure 3.14(c) corresponds to sampling in the
(x, y) space, while the partitioning in Figure 3.14(b) corresponds to sampling quadratic
functions in a rotated space.

Remark 3.4 For the bilinear function xy, M3 has been found to outperform M2 when the
domains of x ∈

[
x , x̄

]
and y ∈

[
y , ȳ

]
are such that x̄−x << ȳ− y or x̄−x >> ȳ− y.

5Uniform sampling is optimal for quadratic functions as the error is dependent only of the difference
between breakpoints [73, Proposition 3.1].

69

(a): M1 nx = ny = 6

(b): M2 nu = nv = 17

(c): M3 nx = 34, ny = 2

Figure 3.14: Comparison of 2-D and 1-D sampling methods for over-approximating
{xy | x, y ∈ [−1 1]}.

3.4 Hybrid Zonotope Graphs of Common Functions
This section provides explicit examples of commonly used and foundational functions for
which hybrid zonotopes are well-suited. For each function, the following are provided,

• an assumed domain,

• a corresponding vertex and incidence matrix for which Theorem 2.1 would generate
a hybrid zonotope graph of the function (or its over-approximation), and

70

Table 3.5: Complexity comparison of three methods for approximating the bilinear
function f(x, y) = xy.

The leftmost column denotes (nx for M1, nu for M2, nx for M3) and these values are
selected for parity in the comparison.

Case M1:
nx = ny

M2:
nu = nv

M3:
nx (ny = 2)

(3,9,18)
ng = 19
nb = 5
nc = 11

ng = 24
nb = 10
nc = 14

ng = 41
nb = 10
nc = 22

(6,17,34)
ng = 73
nb = 26
nc = 38

ng = 40
nb = 18
nc = 22

ng = 73
nb = 18
nc = 38

(9,26,52)
ng = 163
nb = 65
nc = 83

ng = 56
nb = 26
nc = 30

ng = 105
nb = 26
nc = 54

(12,34,68)
ng = 289
nb = 122
nc = 146

ng = 72
nb = 34
nc = 38

ng = 137
nb = 34
nc = 70

• resulting memory complexity with and without order reduction methods.

SOS approximations are not included again in this section, as they are previously discussed
in detail in Section 3.2

3.4.1 Absolute Value (Exact)

Consider the function

y = |x| . (3.55)

The domain is given as x ∈
[
x x̄

]
and it is assumed that x < 0 and x̄ > 0, which

corresponds to the most general case. The exact graph of the function (3.55) over the
domain can be generated using the vertex and incidence matrices given by

V|x| =
 x 0 x̄

−x 0 x̄

 , M|x| =


1 0
1 1
0 1

 ,

71

which when converted to HCG-rep results in the memory complexity below.

Theorem 2.1
ng = 6
nb = 2
nc = 5

Order Reduction via [22,58]
ng,red = 4
nb,red = 1
nc,red = 2

3.4.2 Satisfaction of Inequality (Approximate)

Consider the function

y =

1 , if x ≤ c ,

0 , if x > c ,
(3.56)

where c is a finite constant. The domain is given as x ∈
[
x x̄

]
and it is assumed that

x < c and x̄ > c, which corresponds to the most general case. The approximate graph of
the function (3.56) can be generated using the vertex and incidence matrices given by

Vx≤c =
x c c + δ x̄

1 1 0 0

 , Mx≤c =


1 0
1 0
0 1
0 1

 ,

which when converted to HCG-rep results in the memory complexity below.

Theorem 2.1
ng = 8
nb = 2
nc = 6

Order Reduction via [22,58]
ng,red = 8
nb,red = 1
nc,red = 5

Over-approximations are given when δ = 0 and inner-approximations when δ > 0. For
the best inner-approximation, δ can be set to the machine precision. Then the graph of
the function (3.56) is open, and therefore cannot be represented exactly using a collection
of V-rep polytopes.

72

3.4.3 Sign (Approximate)

Consider the function

y =


−1 , if x < 0 ,

0 , if x = 0 ,

1 , if x > 0 .

(3.57)

The domain is given as x ∈
[
x x̄

]
and it is assumed that x < 0 and x̄ > 0, which

corresponds to the most general case. The approximate graph of the function (3.57) can
be generated using the vertex and incidence matrices given by

Vsign(x) =
 x −δ 0 δ x̄

−1 −1 0 1 1

 , Msign(x) =



1 0 0
1 0 0
0 1 0
0 0 1
0 0 1


,

which when converted to HCG-rep results in the memory complexity below.

Theorem 2.1
ng = 10
nb = 3
nc = 7

Order Reduction via [22,58]
ng,red = 9
nb,red = 3
nc,red = 7

Over-approximations are given when δ = 0 and inner-approximations when δ > 0. For
the best inner-approximation, δ can be set to the machine precision. Then the graph of
the function (3.57) is open, and therefore cannot be represented exactly using a collection
of V-rep polytopes.

3.4.4 Rectified Linear Unit (Exact)

Consider the function

y =

x , if x > 0 ,

0 , if x ≤ 0 .
(3.58)

73

The domain is given as x ∈
[
x x̄

]
and it is assumed that x < 0 and x̄ > 0, which

corresponds to the most general case. The exact graph of the function (3.58) over the
domain can be generated using the vertex and incidence matrices given by

VReLU(x) =
x 0 x̄

0 0 x̄

 , MReLU(x) =


1 0
1 1
0 1

 ,

which when converted to HCG-rep results in the memory complexity below.

Theorem 2.1
ng = 6
nb = 2
nc = 5

Order Reduction via [22,58]
ng,red = 4
nb,red = 1
nc,red = 2

The graph of the function (3.58) is represented exactly in spite of the inequality constraint,
x > 0, because the graph of the function can be represented exactly as the union of two
polytopes.

3.4.5 Minimum (Exact)

Consider the function

y =

x1 , if x1 ≤ x2 ,

x2 , if x1 > x2 .
(3.59)

The domain is given as (x1, x2) ∈
[
x x̄

]
×

[
x x̄

]
, though cases of independent domains

for x1 and x2 can also be handled via minor extension. The exact graph of the function
(3.59) over the domain can be generated using the vertex and incidence matrices given by

Vmin(x1,x2) =


x x x̄ x̄

x x̄ x x̄

x x x x̄

 , Mmin(x1,x2) =


1 1
1 0
0 1
1 1

 ,

74

which when converted to HCG-rep results in the memory complexity below.

Theorem 2.1
ng = 8
nb = 2
nc = 6

Order Reduction via [22,58]
ng,red = 6
nb,red = 1
nc,red = 3

The graph of the function (3.59) is represented exactly in spite of the inequality constraint,
x1 > x2, because the graph of the function can be represented exactly as the union of
two polytopes.

Remark 3.5 The maximum function can be achieved over the same domain using the
matrices

Vmax(x1,x2) =


x x x̄ x̄

x x̄ x x̄

x x̄ x̄ x̄

 , Mmax(x1,x2) =


1 1
1 0
0 1
1 1

 ,

and has the same memory complexity reported for the minimum function.

3.4.6 Boolean (Exact)

Consider any boolean function y = fbool(x1, x2), where

y =



fbool(0, 0) , if (x1, x2) = (0, 0) ,

fbool(0, 1) , if (x1, x2) = (0, 1) ,

fbool(1, 0) , if (x1, x2) = (1, 0) ,

fbool(1, 1) , if (x1, x2) = (1, 1) .

(3.60)

The domain is given as (x1, x2) ∈ {0, 1}2. The exact graph of the function (3.60) over
the domain can be generated using the vertex and incidence matrices given by

Vbool =


0 0 1 1
0 1 0 1

fbool(0, 0) fbool(0, 1) fbool(1, 0) fbool(1, 1)

 , Mbool =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

75

which when converted to HCG-rep results in the memory complexity below.

Theorem 2.1
ng = 8
nb = 4
nc = 6

Order Reduction via [22,58]
ng,red = 0
nb,red = 4
nc,red = 1

Note that the graph of a function is the union of four V-rep polytopes, each with a single
vertex.

3.4.7 Identity with Boolean On/Off Switch (Exact)

Consider the function y = f(x, b), where

y =

x , if b = 1 ,

0 , if b = 0 .
(3.61)

The domain is given as (x, b) ∈
[
x x̄

]
× {0, 1}. The exact graph of the function (3.61)

over the domain can be generated using the vertex and incidence matrices given by

Vbool =


x x̄ x x̄

1 1 0 0
x x̄ 0 0

 , Mbool =


1 0
1 0
0 1
0 1

 ,

which when converted to HCG-rep results in the memory complexity below.

Theorem 2.1
ng = 8
nb = 2
nc = 6

Order Reduction via [22,58]
ng,red = 8
nb,red = 1
nc,red = 5

76

Chapter 4 |
Reachability Analysis

4.1 Introduction
Reachability analysis—the process of calculating reachable sets—is used to evaluate
system performance and ensure constraint satisfaction in safety-critical applications, while
accounting for the effects of input, disturbance, and parameter uncertainties. However,
the scalability of existing approaches for hybrid, logical, neural networks, and nonlinear
systems is limited by their nonconvexity and the computational complexity that this
induces.

For discrete-time systems, reachable and invariant sets are calculated by recursion
of precursor and successor sets, also referred to as one-step backward and one-step
forward reachable sets, respectively [31]. Set propagation techniques for continuous-time
systems often resemble their discrete-time counterparts, as the former often still propagate
reachable sets over discrete time intervals [87]. For this reason, there are many shared
challenges in calculating reachable sets for continuous-time and discrete-time systems.
Notionally, the successor set and precursor set are defined as follows.

Definition 4.1 (Successor Set) The successor set from a given set is the set of states
that are achievable from a current set of states in exactly one time step.

Definition 4.2 (Precursor Set) The precursor set from a given set is the set of states
from which the given set can be achieved in exactly one time step.

Successor and precursor sets depend on the given set at the current time step, the
system dynamics, and the presence of inputs, disturbances, and parameter uncertainties.
Definition 4.1 and Definition 4.2 are left intentionally vague as assumptions vary between
the classes of systems presented herein. Within each section, formal definitions of
successor and precursor sets are given.

77

Verification and Falsification via Forward Reachability: Forward reachable sets,
calculated by recursively finding successor sets, are used to assess the safety of a dynamic
system by determining whether any state starting in an initial set can reach an unsafe
state in a finite number of time steps. The system safety is falsified, i.e., the system is
proven to be unsafe, if the exact forward reachable sets have a non-empty intersection with
an unsafe state or set. Rather than exact forward reachable sets, if over-approximations
of forward reachable sets are computed instead, then the system is again verified to be
safe if the intersection of these sets with the unsafe set is empty. Otherwise, the safety of
the system cannot be decided, e.g., the portion of the over-approximated reachable set
that intersects the unsafe region may, or may not, be in the exact forward reachable set.

As uncertainties in inputs, disturbances, and parameters increase, forward reachable
sets become larger. In the case of an additive uncertainty, this corresponds to a Minkowski
sum with a larger set. Disturbance and parameter uncertainties are unknown, and for this
reason, if a forward reachable set intersects a region of interest, it cannot be concluded
that “the system can be driven into the region of interest”. When disturbance and
parameter uncertainties are present in a system with a closed-loop controller, it can
concluded that it is possible to drive a system into the region of interest in a manner
that is robust to disturbance and parameter uncertainty if and only if the entire forward
reachable set is contained within a region of interest.
Verification and Falsification via Backward Reachability: Backward reachable
sets, calculated by recursively finding precursor sets, are often calculated in a manner that
is robust to disturbance and parameter uncertainties. Robust backward reachable sets
are often used for verification of systems with a closed-loop controller as they represent
the set of states that will be driven to a target set for any disturbances and/or parameter
uncertainties within some assumed bounds. Robust backwards reachable sets can also be
calculated for open-loop systems with a set of feasible inputs and represent the set of
states that can be driven to a target set given a suitable control sequence.

As uncertainties in disturbances and parameters become larger, robust backward
reachable sets become smaller, and potentially even empty. In the case of an additive un-
certainty, this corresponds to a Minkowski difference with a larger set. One interpretation
is that disturbance and parameter uncertainties can be viewed as adversarial/non-
cooperative agents working to prevent the evolution of a trajectory to the target set,
whereas the input can be viewed as a cooperative agent to drive the state trajectory to
the target set.

78

4.2 Hybrid Systems

4.2.1 Literature Review

Forward reachable sets of linear hybrid systems may be calculated using a collection
of convex sets by partitioning the state space into locations separated by guards and
applying techniques developed for linear systems within each location [25,28]. Successive
intersections with guards at each time step result in worst-case exponential growth
in complexity, leading to computational-intractability for long time horizons. Over-
approximation techniques like clustering-based methods reduce complexity of sets at the
cost of conservatism [29]. The extent of this conservatism is application-dependent and
difficult to quantify [30].

Hamilton-Jacobi reachability is applicable to nonlinear dynamics including hybrid
systems; however, its computational complexity scales exponentially with the system
state dimension. Techniques to reduce computational complexity decompose the system
into subsystems based on its structure [6–9].

Hybrid zonotopes have been shown to enable scalable closed-form solutions of successor
sets for broad classes of discrete-time linear hybrid systems. This includes Mixed Logical
Dynamical (MLD) systems [22] and linear systems in closed-loop with Model Predictive
Control (MPC) [23], of which the explicit solution can yield piecewise affine (PWA)
control laws [31]. Previous work does not address the use of hybrid zonotopes to calculate
precursor sets for backward reachability.

In general, precursor sets of hybrid systems are challenging to calculate. Even for
autonomous discrete-time hybrid systems, there may be many states that converge
to a single successor state. This complexity is often compounded when considering
disturbances, as analysis relies on computing or approximating Minkowski differences
[35, 36]. Similar to finding successor sets of hybrid systems, precursor sets may be found
by considering collections of convex sets within each location, with worst-case exponential
growth in set complexity with time [37,38]. Many MPC formulations leverage invariant
sets to guarantee properties such as recursive feasibility. Lacking scalable methods to
calculate precursor sets under the PWA control laws of MPC, artificial constraints are
introduced to ensure recursive feasibility, resulting in conservatism [31].

This section proposes exact, closed-form identities for calculating robust precursor and
successor sets of discrete-time linear hybrid systems using hybrid zonotopes. Using graphs
of functions for the dynamics, called state-update sets, successor sets of MLD systems,

79

closed-loop MPC, and DHA can be computed with lower computational complexity and
set representation complexity than in previous work. Robust precursor sets can also
be calculated with state-update sets. This in turn enables calculation of invariant sets
for linear systems under MPC with reduced conservatism as compared to conventional
methods.

4.2.2 Mixed Logical Dynamical Systems

4.2.2.1 Introduction

Introduced in [88], the MLD system modeling framework combines continuous and binary
variables with logical relations in mixed-integer inequalities to express complex system
dynamics. MLD systems can be used to model mixed continuous and discrete states
and inputs, PWA and bilinear dynamics, finite state machines, and those with any
combination of the former [33,88]. An MLD system with an additive disturbance may
be expressed as

x+ = Ax + Buu + Bvv + Baff + w , (4.1a)

s.t. Exx + Euu + Evv ≤ Eaff , (4.1b)

where x ∈ Rnxc × {0, 1}nxl are the system states, u ∈ Rnuc × {0, 1}nul are the control
inputs, v ∈ Rnrc × {0, 1}nrl are auxiliary variables, and w ∈ W ⊂ Rxc × {0, 1}nxl is a
disturbance. The number of inequality constraints is denoted by ne such that Eaff ∈ Rne .
The total number of system states is denoted by n = nxc + nxl.

When formulating an MLD system model (4.1), the so-called “big-M” constants used
in the mixed-integer inequalities to relate continuous values to logical statements [89]
are chosen for a user defined subset of the state space, X ⊂ Rnxc × {0, 1}nxl , and set of
admissible control inputs, U ⊂ Rnuc ×{0, 1}nul [88]. It follows that for the bounded state-
input domain over which the MLD model is defined, the auxiliary variables will belong
to a bounded set V ⊂ Rnrc × {0, 1}nrl and may be found through domain propagation.

Assumption 4.1 (Well-Posed) The MLD system given by (4.1) is well-posed, meaning
that x+ is uniquely determined by x, u, and w.

Definition 4.3 (Robust Successor Set) [60, Definition 2] The robust successor

80

set from Rk ⊆ X by the MLD system (4.1) is given by

Suc(Rk,U ,W) =

x+

∣∣∣∣∣∣
x+ = Ax + Buu + Bvv + Baff + w

x ∈ Rk, u ∈ U , v ∈ V , w ∈ W ,

Exx + Euu + Evv ≤ Eaff

 . (4.2)

Definition 4.4 (Robust Precursor Set) [60, Definition 3] The robust precursor
set for Rk ⊆ X by the MLD system (4.1) is given by

Pre(Rk,U ,W) =



x ∈ Rnxc × {0, 1}nxl | ∃u ∈ U , s.t.
Ax + Buu + Bvv + Baff + w ∈ Rk,

∀v ∈ V s.t. Exx + Euu + Evv ≤ Eaff ,

∀w ∈ W


. (4.3)

4.2.2.2 Proposed Method

The state-update set encodes all possible state transitions of (4.1) for a specified input
set U and no disturbance, i.e., W = {0}, thus the state-update set is defined as the
graph of the function ϕ(x) = Suc(x,U , {0}) over a domain x ∈ DΦ. Identities are
given for precursor and successor sets using the state-update set, and closely mirror the
input-output identities (3.3) and (3.5).

Definition 4.5 (State-Update Set) The state-update set Φ ⊆ R2n is defined as

Φ =


 xk

xk+1

 ∣∣∣∣∣ xk+1 ∈ Suc({xk},U , {0}),
xk ∈ DΦ

 . (4.4)

We refer to DΦ ⊆ X as the domain set of Φ, typically chosen as the region of interest for
analysis. Similarly, the range set of Φ is defined as RΦ = {xk+1|(xk, xk+1) ∈ Φ}. Given a
state-update set Φ, DΦ and RΦ can be calculated as DΦ =

[
I 0

]
Φ and RΦ =

[
0 I

]
Φ.

Theorem 4.1 (Robust Successor Set Identity) [60, Theorem 1] Given a set of
states Rk ⊆ Rn and state-update set Φ, if Rk ⊆ DΦ, then

Suc(Rk,U ,W) =
[
0 I

] (
Φ ∩[I 0] Rk

)
⊕W . (4.5)

81

Proof By definition of the generalized intersection and Definition 4.5,

Φ ∩[I 0] Rk =


 xk

xk+1

 ∣∣∣∣∣∣ xk+1 ∈ Suc({xk},U , {0}),
xk ∈ Rk ∩ DΦ

 .

If Rk ⊆ DΦ, then Rk ∩DΦ = Rk. Thus (4.5) yields {xk+1|xk+1 ∈ Suc({xk},U ,W), xk ∈
Rk}. □

The containment condition in Theorem 4.1, Rk ⊆ DΦ, is not restrictive as modeled
dynamics are often only valid over some region of interest, which the user may specify as
DΦ. If Rk ̸⊆ DΦ, it can be shown that the right side of (4.5) gives Suc(Rk ∩DΦ,U ,W).
We now consider the robust precursor set.

Lemma 4.1 (Equivalent State-Update Set Definition) [60, Lemma 1] The state-
update set (4.4) is equivalently defined in terms of the precursor set as

Φ =


 xk

xk+1

 ∣∣∣∣∣ xk ∈ Pre({xk+1},U , {0}),
xk ∈ DΦ

 . (4.6)

Proof This may be shown for well-posed MLD systems (Assumption 4.1) by expanding
(4.4) and (4.6) using the successor (4.2) and precursor (4.3) set definitions. □

Theorem 4.2 (Robust Precursor Set Identity) [60, Theorem 2] Given a set of
states Rk ⊆ Rn and state-update set Φ, if Rk ⊖W ⊆ RΦ, then

Pre(Rk,U ,W) ∩ DΦ =
[
I 0

] (
Φ ∩[0 I] (Rk ⊖W)

)
. (4.7)

Proof By definition of the Minkowski difference, generalized intersection, and Lemma
4.1,

Φ ∩[0 I] (Rk ⊖W) =


xk−1

x̂k

 ∣∣∣∣∣∣
xk−1 ∈ Pre({x̂k},U , {0}),

xk−1 ∈ DΦ,

x̂k + w ⊆ Rk , ∀w ∈ W

 .

The linear transformation in (4.7) yields the desired result. □

When Φ is generated for a domain DΦ corresponding to a region of interest for
analysis, the condition of Theorem 4.2 is not restrictive. If Rk ⊖ W ̸⊆ RΦ, then
∃xk ∈ Rk that can be reached, but for which no combination of xk−1 ∈ DΦ, u ∈ U and

82

w ∈ W can account. Regarding the left side of (4.7), DΦ can be chosen such that
Pre(Rk,U ,W) ⊆ DΦ =⇒ Pre(Rk,U ,W) ∩DΦ = Pre(Rk,U ,W).

Time complexity of the successor set given by (4.5) is O(n), as the linear mapping [I 0]
under the generalized intersection amounts to matrix concatenation. This is a reduction
from O(n3) reported for successor sets of MLD systems in [22]. Time complexity of the
precursor set given by (4.7) is O(nng,w) due to the Minkowski difference. Set complexity
growth of the successor and precursor sets is given by

ng,Suc = ng,r + ng,ϕ + ng,w ,

nb,Suc = nb,r + nb,ϕ ,

nc,Suc = nc,r + nc,ϕ + n ,

ng,Pre = 2ng,w ng,r + ng,ϕ ,

nb,Pre = 2ng,w nb,r + nb,ϕ ,

nc,Pre = 2ng,w nc,r + 2ng,w n + nc,ϕ .

Iterative calculation of successor sets (4.5) results in linear complexity growth dependent
on the complexity of Φ and W. If ng,w = 0, time complexity of precursor sets (4.7)
reduces to O(n) and iterative applications give linear complexity growth. In order to
obtain the reported computational and memory complexity for MLD systems given by
(4.5) and (4.7), the state-update set for an MLD system must be represented as a hybrid
zonotope. Theorem 4.3 provides a closed-form hybrid zonotope solution for state-update
sets of MLD systems.

Theorem 4.3 (Construct MLD State-Update Set) [60, Theorem 3] Given a
well-posed MLD system (Assumption 4.1), defined over X and described by (4.1), let

Q =
[
0 BT

u ET
u

]T
U ⊕

[
0 BT

v ET
v

]T
V ⊕

[
0 BT

aff 0
]T

,

and define H = {x ∈ Rne : x ≤ Eaff}. Then a state-update set with DΦ = X for the
MLD system is given by

Φ = [I2n 0]
[(

[I AT ET
x]TX ⊕Q

)
∩[0 Ine] H

]
. (4.8)

Proof Let Φ̂ be the hybrid zonotope given by the right side of (4.8). For any ϕ̂ ∈ Φ̂,
there exists p ∈ [I AT ET

x]TX ⊕Q, x ∈ X , u ∈ U , and v ∈ V such that

p =


p1

p2

p3

 =


x

Ax + Buu + Bvv + Baff

Exx + Euu + Evv

 ,

ϕ̂ = [I2n 0]p, and [0 Ine]p ∈ H. By [22, Theorem 8], p2 ∈ Suc(p1,U , {0}), thus ϕ̂ ∈ Φ.

83

The MLD is defined ∀x ∈ X , therefore D(Φ̂) = X and Φ̂ = Φ. □

4.2.2.3 Numerical Examples

4.2.2.3.1 Two-Equilibrium System [60]
Consider the PWA system with two equilibria,

x[k + 1] =

A1x[k] + B1 + u[k] + w[k] , if x1[k] ≤ 0

A2x[k] + B2 + u[k] + w[k] , if x1[k] > ε
,

A1 =
[

0.75 0.25
−0.25 0.75

]
, B1 =

[
−0.25
−0.25

]
, A2 = AT

1 , B2 =
[

0.25
−0.25

]
.

where ε is the machine precision. The inputs and disturbances are constrained to belong
to scaled unit hypercubes such that u[k] ∈ U = suB2

∞ and w[k] ∈ W = swB2
∞. Forward

(R4,R5,R6) and backward (R0,R1,R2) reachable sets are calculated from

R3 =
〈  0.15 0.05
−0.05 0.15

 ,

−0.0520
0.8465

 〉
,

and shown in Figure 4.1 for three cases of input and disturbance sets defined in Table
4.1. This example system and choice of R3 are intended to facilitate comparison with
forward reachability results from [22]. The state-update set for Case 1 and Case 2 (no
input) is calculated and found to have complexity ng,ϕ = 16, nb,ϕ = 1, nc,ϕ = 10. The
state-update set for Case 3 has 2 additional continuous generators associated with the
input. Computation times and reachable set complexities are reported in Table 4.1.

Figure 4.1: Forward (R4,R5,R6) and backward (R0,R1,R2) reachable sets of a two-
equilibrium system from R3 for three cases of input and disturbance sets. Sets from the
Case 1 subplot are also shown in wire frame in the Case 2 and 3 subplots for comparison.

84

Table 4.1: Forward and backward reachable set complexities and computation times for
the two-equilibrium system.

Case Direction/Set ng,r nb,r nc,r Time [ms]

1) su = 0 , sw = 0 Forward: R6 50 3 36 0.13
Backward: R0 50 3 36 0.12

2) su = 0 , sw = 0.05 Forward: R6 56 3 36 0.23
Backward: R0 464 21 378 2.92

3) su = 0.10 , sw = 0.05 Forward: R6 62 3 36 0.24
Backward: R0 506 21 378 3.12

In Figure 4.1, forward reachable sets are shown to split along the guard, while
backward reachable sets branch when their precursor sets span both sides of the guard.
Comparison of Case 1 and Case 2 demonstrates that backward reachable sets are smaller
when required to be robust to a disturbance, while forward reachable sets become larger.
Comparison of Case 2 and Case 3 demonstrates that adding control authority causes
forward and backward reachable sets to become larger.

In Case 1, backward and forward reachable sets are calculated with similar compu-
tation times and have identical complexity growth when there is no disturbance. The
addition of a disturbance in Case 2, and both a disturbance and an input in Case 3,
has a small effect on computation times and complexity growth of forward reachable
sets. However, because the robust precursor set relies on a Minkowski difference, when
a disturbance is present, the computation time and complexity growth of backward
reachable sets increase significantly.

Using the methods from [22] for exact order reduction, 5 continuous generators and 3
constraints are removed from the state-update set. The 6-step backward reachable sets
from R3 for Case 2 using the nominal (R−3) and reduced (Rred

−3) state-update sets are
shown in Table 4.2. Computation time of the reduced set includes 0.5 seconds to reduce
the state-update set prior to iteration over precursor sets. This enables a 62% reduction
in total computation time, 22% reduction in number of continuous generators, and 6%
reduction in number of constraints.

Table 4.2: Backward reachability with nominal (row 1) vs. reduced (row 2) state-update
set for the two-equilibrium system.

Case 2 Direction/Set ng,r nb,r nc,r Time [s]

su = 0 , sw = 0.05 Backward: R−3 30032 1365 24570 50
Backward: Rred

−3 23207 1365 23207 19

85

4.2.2.3.2 Thermostat-Controlled Heated Room [60]
To demonstrate scalabality, backward reachability is performed for a benchmark room

heating example with 6 rooms and 2 heaters, previously studied for forward reachability
as “Case (6,2)” of [22, Section 6.2]. This example extends the heated room scenario
given in [90], where the thermostatic control and heat exchange among adjacent rooms is
modeled as a hybrid system. The continuous temperature dynamic of the ith room is
modeled as

ẋi = c · hi + bi(u− xi) +
∑
i ̸=j

aij(xj − xi) , (4.9)

where the heat transfer coefficient aij is 1 between adjacent rooms and 0 otherwise, the
heat transfer coefficient between the room and the outside environment is bi = 0.08q

where q is the number of exposed walls, the heating power is c = 15 with hi ∈ {0, 1}
for rooms with heaters and hi = 0 otherwise, and the outside temperature may take
on any value within the interval u ∈ [0, 0.1] [90]. Heaters located in select rooms are
controlled by discrete-time thermostats that turn on when the sampled temperature in
the room decreases below 22− ε ◦C and turn off when it increases above 24 + ε ◦C where
ε is machine precision. The closed-loop temperature dynamics of the building may be
discretized for a time-step of 0.01 assuming a zero-order hold on u, and converted to
a MLD system using HYSDEL [34]. This introduces one binary state, three auxiliary
binary variables, and nine inequality constraints for each heater.

Figure 4.2: Room layout and heater locations for a varying number of rooms. [58]

The state-update set has complexity ng,ϕ = 24, nb,ϕ = 8, nc,ϕ = 18. Backward
reachable sets, shown in Figure 4.3, are found from R50 (chosen to facilitate comparison
with [22]), which has complexity ng,50 = 68, nb,50 = 13, nc,50 = 62. The 50-step backward

86

reachable set R0 is calculated in 0.34 seconds with complexity ng,0 = 1268, nb,0 =
413, nc,r0 = 1362.

An alternative to the proposed approach is to calculate the reachable set as a collection
of convex sets, as done for forward reachability in [28] and backward reachability in [37].
This exhibits worst-case exponential growth in set complexity over time, while the
proposed approach has linear complexity growth. At every time step, each convex
set in the collection is propagated backward under the dynamics of each mode, and
sets corresponding to inactive modes are eliminated. For comparison to the proposed
approach, R0 is calculated using [37, Section IV] and implemented using constrained
zonotopes [21]. This results in a collection of 1125 constrained zonotopes with 147,637
total generators and 28,387 total constraints and takes 202 seconds to compute. This is
nearly 600 times longer than the proposed approach due to the large number of convex
sets to be propagated and eliminated.

This example is revisited in Section 4.2.4.2.2, without the need to convert the dynamics
to a MLD system.

Figure 4.3: Projections of backward reachable sets calculated from R50 for 50 steps.
Guards determining heater logic (green dashed lines) and the region over which the MLD
is defined (black dashed lines) are also plotted.

4.2.3 Linear Systems with Model Predictive Controllers

4.2.3.1 Introduction

Consider the linear time invariant discrete-time system,

xk+1 = Axk + Buk , (4.10)

87

where xk ∈ Rn is the vector of states and uk ∈ Rnu is the vector of inputs at time k, and
the linear dynamics are defined by A ∈ Rn×n and B ∈ Rn×nu . Under MPC, the control
input is determined by solving the optimization program

min
u,x

xT
NQNxN +

N−1∑
k=0

xT
k Qxk + uT

k Ruk

s.t. xk+1 = Axk + Buk , uk ∈ U , ∀ k ∈ {1, ..., N − 1} ,

xk ∈ X , ∀ k ∈ {1, ..., N − 1} , xN ∈ XN ,

(4.11)

where U , X and XN are convex bounded polytopes and the initial state is given as x0.
States and inputs have weights Q, QN ⪰ 0 and R ≻ 0, respectively. For ease of readability
the MPC formulation is provided as a regulator problem. However, it can be modified
for other cases [91]. Explicit solution of (4.11) results in PWA control laws [31].

4.2.3.2 Proposed Method

It is possible to construct an MLD system equivalent to the closed-loop dynamics and
then calculate a state-update set using the results of Section 4.2.2.2, though the number
of critical regions can grow exponentially with the number of constraints and limits the
process of generating explicit MPC control laws needed to construct the MLD system.
Alternatively, we now describe a more direct method using results from [23], which
defines a hybrid zonotope (implicit) representation of the parametric solution using
the Karush-Kuhn-Tucker conditions of optimality. Given the system (4.10) and MPC
formulation (4.11), consider the augmented system

Â =
0 I
0 A

 , B̂ =
0
B

 , Q̂ =
0 0
0 Q

 , Q̂N =
0 0
0 QN

 ,

R̂ = R , X̂ = X × X , X̂n = X × Xn , Û = U . (4.12)

The augmented system (4.12) stacks a static system with the linear system of interest.
Static states are not penalized and have no effect on the optimal inputs. Leveraging [23,
Theorem 2] to find the one-step forward reachable set of (4.10) under closed-loop MPC
from the initial set X̂0 = [0 I]TX yields the state-update set with DΦ = X . This allows
for the computation of forward and backward reachable sets of linear systems with MPC
to be computed without solving optimization programs.

88

4.2.3.3 Numerical Example

4.2.3.3.1 Maximal Positive Invariant Set for a Double Integrator Under
MPC [60]

The maximal positive invariant set OMP C
∞ of a closed-loop system under MPC consists

of all initial conditions that generate recursively feasible trajectories. We next exemplify
how the proposed methods enable computation of a less conservative OMP C

∞ as compared
to conventional methods.

Consider the double integrator from [31, Example 12.1],

x[k + 1] =
1 1
0 1

 x[k] +
0
1

 u[k] ,

under MPC (4.11) with P = Q = I, R = 10, and N = 3. Input and state trajectories
are constrained by u[k] ∈ U = 1

2B
1
∞, x[k] ∈ X = 5B2

∞ , ∀k ∈ {1, ..., N − 1}. Two cases of
terminal state constraints are considered.

Case 1: For this case, we set XN = X . Algorithm 10.1 of [31] provides a general
method for calculating O∞ for autonomous dynamics using precursor and intersection
calculations, but its application to hybrid systems was previously limited, in part, due to
the lack of a scalable precursor set identity. However, this algorithm can be applied using
hybrid zonotopes and the precursor set identity in Theorem 4.2 to calculate OMP C

∞ , as
plotted in Figure 4.4(a). Also plotted is Xfeas, the set of states for which the optimization
program has a feasible solution but not necessarily recursively feasible trajectories.

Case 2: Absent efficient methods to compute OMP C
∞ under the PWA control laws,

conventional approaches ensure recursive feasibility by artificially constraining XN to a
positively invariant set associated with a simpler control law. This results in OMP C

∞ =
Xfeas [31, Chapter 12.3.1]. A common choice is XN = OLQR

∞ , where OLQR
∞ is the maximal

linear quadratic regulator (LQR) invariant set [31, Definition 11.1]. This set and the
resulting Xfeas are shown in Figure 4.4(b).

Comparison of cases 1 and 2 in Figure 4.4 demonstrates that introducing the terminal
constraint XN = OLQR

∞ results in a smaller maximal region of recursive feasibility than
when XN = N . Thus the proposed methods enable reduced conservatism in the control
design by allowing OMP C

∞ to be computed for a less restrictive terminal constraint. The
terminal constraint in case 2 may also negatively affect performance [31, Remark 12.2].

Remark 4.1 (Convergence and Complexity Growth) Using [31, Algorithm 10.1],
directly will result in exponential complexity growth due to an intersection with the

89

(a) Contribution (b) Conventional

Figure 4.4: Maximal positive invariant sets under MPC for a double integrator.
(a) The maximal positive invariant set under MPC OMP C

∞ is calculated using the scalable
precursor set identity presented in this paper. (b) Conventional methods use an artificial
terminal constraint to obtain OMP C

∞ , however this makes the set smaller.

previous iteration. This results in more than a doubling of memory complexity at each
time step, and can quickly overwhelm memory limitations if the algorithm does not
terminate in a relatively small number of time-steps. Complicating matters, the check to
detect convergence is computationally expensive. It requires detecting whether two hybrid
zonotopes are equal, which can be achieved by check set containment in both directions.
Set containment of hybrid zonotopes requires solving a bi-level MILP. Methods aimed at
overcoming the complexity growth and convergence detection challenges are now presented,
though in general, complexity growth and convergence detection remain open challenges.

Method 1) By design, each iteration after initialization results in a positively invariant
set, thus the algorithm could be iterated until computational resources are spent or
convergence is detected, whichever comes first.

Method 2) To avoid exponential memory complexity growth with iterations, the in-
tersection in [31, Algorithm 10.1] could be ignored, which results in linear memory
complexity growth This eliminates the guarantee that each iteration is positively invariant.
Nonetheless, if the algorithm converges and terminates, the maximal positive invariant
set produced.

90

4.2.4 Discrete Hybrid Automata

4.2.4.1 Introduction

DHA are a class of discrete-time hybrid systems that combine four components, namely
1) an event generator (EG), 2) a finite state machine (FSM), 3) a mode selector (MS),
and 4) a switched affine system (SAS). The interested reader is referred to [31, Chapter
16] for a detailed review of DHA.

Previous work by the author provided reachability methods for an equivalent class
of systems called mixed-logical dynamical (MLD) systems [22, 60], thus a DHA could
be converted to an MLD system using techniques and tools such as HYSDEL [34], and
reachability analysis could be performed on an equivalent MLD system. This section
presents an alternative approach that avoids an unnecessary conversion to an equivalent
MLD system by exploiting the structure of DHA subsystems for functional decomposition.

The approach is demonstrated first by exposing the exploitable structure of DHA for
functional decomposition using an example DHA adopted from [31, Example 16.6]. Then
the method is used to generate an alternative but equivalent state-update set for the
heated room example from Section 4.2.2.3.2.

4.2.4.2 Numerical Examples

4.2.4.2.1 Example DHA Functional Decomposition
Consider the DHA system [31, Modified from Example 16.6] consisting of a continuous

state xk ∈ R, a continuous input uk ∈ R, a mode indicator signal ik ∈ {1, 2, 3}, and event
signals δ1, δ2 ∈ {0, 1} given by

SAS: xk+1 =


xk + uk − 1 , if ik = 1 ,

2xk , if ik = 2 ,

2 , if ik = 3 ,

EG:



δ1 =

0 , if xk ≤ −ε ,

1 , if xk ≥ 0 ,

δ2 =

0 , if xk + uk − 1 ≤ −ε ,

1 , if xk + uk − 1 ≥ 0 ,

91

MS: ik =


1 , if (δ1, δ2) = (0, 0) ,

2 , if δ1 = 1 ,

3 , if (δ1, δ2) = (0, 1) ,

where ε is machine precision. A functional decomposition is obtained as

Inputs:

w1 ← xk,

w2 ← uk

EG:



w3 =

0 , if w1 ≤ −ε ,

1 , if w1 ≥ 0 ,

w4 = w1 + w2 − 1

w5 =

0 , if w4 ≤ −ε ,

1 , if w4 ≥ 0 ,

MS:

w6 =


1 , if (w3, w5) = (0, 0) ,

2 , if w3 = 1 ,

3 , if (w3, w5) = (0, 1) ,

SAS:



w7 =

1 , if w6 = 1 ,

0 , if w6 = 2 ∨ w6 = 3 ,

w8 =

1 , if w6 = 2 ,

0 , if w6 = 1 ∨ w6 = 3 ,

w9 =

1 , if w6 = 3 ,

0 , if w6 = 1 ∨ w6 = 2 ,

w10 = w1 + w2 − 1 ,

w11 = 2w1 ,

w12 = 2 ,

w13 = w7w10 ,

w14 = w8w11 ,

w15 = w9w12 ,

w16 = w13 + w14 + w15 .← Output

92

The DHA is represented by a functional decomposition with only unary and binary
functions with the exception of w16 which is affine. Using results from Chapter 3, a graph
of the function for the dynamics, also called a state-update set, can be generated.

4.2.4.2.2 Thermostat-Controlled Heated Room Revisited
Consider again the heated room example from Section 4.2.2.3.2. The goal of this

example is to demonstrate how a state-update set can be generated without the need for
conversion to an MLD system, and to compare the resulting state-update set complexity.
Additionally, this example explicitly demonstrates each step used to generate the state-
update set using methods from Chapter 3.

The room temperature dynamics for Case (6,2) are equivalently written as

xk+1 = Axk + Bhhk + Buuk (4.13)

where x ∈ R6 are the room temperatures, h ∈ {0, 1}2 are the on/off modes for heaters in
rooms 3 and 6, and u ∈ R1 is the outside temperature. The matrices A, Bh, and Bu can
be found by discretizing the linear dynamics (4.9) with a time step of δ = 0.01, assuming
a zero-order hold on h and u, and are given by

A =



0.9787 0.0097 0.0000 0.0000 0.0001 0.0098
0.0097 0.9698 0.0097 0.0001 0.0097 0.0001
0.0000 0.0097 0.9787 0.0098 0.0001 0.0000
0.0000 0.0001 0.0098 0.9787 0.0097 0.0000
0.0001 0.0097 0.0001 0.0097 0.9698 0.0097
0.0098 0.0001 0.0000 0.0000 0.0097 0.9787


,

Bh =



0.0000 0.0007
0.0007 0.0000
0.1484 0.0000
0.0007 0.0000
0.0000 0.0007
0.0000 0.1484


, Bu =



0.1600
0.0800
0.1600
0.1600
0.0800
0.1600


.

The heater state for each room with a heater depends on the room temperature and the
state of the heater at the previous time step. The room heater logic for room 3 (heater 1)

93

and room 6 (heater 2) are given by

h1,k+1 =


1 , if x3,k+1 ≤ 22− ε ,

0 , if x3,k+1 ≥ 24 + ε ,

h1,k , if 22 ≤ x3,k+1 ≤ 24 ,

(4.14)

h2,k+1 =


1 , if x6,k+1 ≤ 22− ε ,

0 , if x6,k+1 ≥ 24 + ε ,

h2,k , if 22 ≤ x6,k+1 ≤ 24 ,

(4.15)

where ε is a small number. The graph of the function is visualized in Figure 4.5, and
two methods to generate a hybrid zonotope representation are discussed.

Figure 4.5: Graph of the heater logic function for (4.14) and (4.15)

Construct Hheater via Method 1: The graph of the function for the heater logic,
denoted Hheater, is generated using the vertex and incidence matrices

Vheater =


20 22− ε 20 22− ε 22 24 22 24 24 + ε 26 24 + ε 26
0 0 1 1 0 0 1 1 0 0 1 1
1 1 1 1 0 0 1 1 0 0 0 0

 (4.16)

94

Mheater =



1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1



, (4.17)

for temperatures between 20◦C to 26◦C. This method is visualized in Figure 4.6.

Figure 4.6: HCG-rep graph of the heater logic function for Method 1.
The graph of the function is represented as collection of V-rep polytopes, converted to
HCG using vertex matrix (4.16) incidence matrix (4.17), and Theorem 2.1. The segments
are color-coded for each column of the incidence matrix (4.17). After application of order
reduction methods, the resulting complexity is ng = 24, nb = 6, nc = 14.

Construct Hheater via Method 2: Alternatively, the graph of the heater logic

95

function can be represented as the union of the two hybrid zonotopes

Hin =
〈

1
0
0

 ,


0
1
2
1
2

 ,


23
1
2
1
2

 ∅, ∅, ∅
〉

, and (4.18)

Hout =
〈

1
0
0

 ,


0 2 + ε
1
2 0
0 −1

2

 ,


23
1
2
1
2

 ∅, ∅, ∅
〉

, (4.19)

which are plotted in Figure 4.7. Both sets are equivalent, though constructing H using
Method 2 results in lower memory complexity, i.e., (ng, nb, nc) is (24, 6, 14)M1 for Method
1 vs. (7, 4, 5)M2 for Method 2.

96

(a)

(b)

Figure 4.7: HCG-rep graph of the heater logic function for Method 2.
(a) The graph of the function is represented as the union of two hybrid zonotopes
given by (4.18) and (4.19), converted to a single hybrid zonotope using Proposition 2.4.
Combinations of the centers shifted by binary factors are plotted as dashed lines, and (b)
shows these combinations by themselves, i.e., without plotting Hheater. After application
of order reduction methods, the resulting complexity is ng = 7, nb = 4, nc = 5.

97

Functional Decomposition: A functional decomposition is given by

time step
k



w1 = x1,k ,

w2 = x2,k ,

w3 = x3,k ,

w4 = x4,k ,

w5 = x5,k ,

w6 = x6,k ,

w7 = h1,k ,

w8 = h2,k ,

w9 = uk ,

= w1:9

room temp.
k + 1



w10 = x1,k+1 ,

w11 = x2,k+1 ,

w12 = x3,k+1 ,

w13 = x4,k+1 ,

w14 = x5,k+1 ,

w15 = x6,k+1 ,

=
[
A Bh Bu

]
w1:9

heater state
k + 1

w16(w12, w7) = h1,k+1(x3,k+1, h1,k) ,

w17(w15, w8) = h2,k+1(x6,k+1, h2,k) .

Constructing the State-Update Set: Construction of graph of the functional
decomposition of the heated room dynamics and reduction to a state-update set is as
follows. The state-update set is built to include the room temperature states and the
heater states, and encodes the dynamics from (x, h)k to (x, h)k+1.

1. Initialize DH ←
[
20 26

]6
× {0, 1}2 ×

[
0 0.1

]
and set H1:9 = DH.

2. Encode the linear room temperature dynamics using Corollary 3.5,

H1:15 =


I6 0 0
0 I2 0
0 0 1
A Bh Bu

H1:9 .

98

3. Encode the dynamics of heater 1 using (3.30) from Theorem 3.4,

H1:16 = (H1:15 ×D16) ∩
e12

e7

e16


Hheater ,

where D16 = {0, 1} is the possible states for h1,k+1.

4. Encode the dynamics of heater 2 using (3.30) from Theorem 3.4,

H1:17 = (H1:16 ×D17) ∩
e15

e8

e17


Hheater ,

where D17 = {0, 1} is the possible states for h2,k+1.

5. By Corollary 3.6,

Φ =
[
(e1, e2, ...e8, e10, e11, ..., e17)

]
H1:17 . (4.20)

Generation of Φ in this section did not require the conversion to an MLD system and
results in an equivalent state-update set to the state-update set generated using (4.8),
and can be used to generate equivalent reachable sets. This can be seen by comparing
reachable sets in Figure 4.8 with [22, Figure 4]. The complexity of the state-update
set built with H constructed using Method 1 is (ng, nb, nc)M1 = (47, 11, 25) and using
Method 2 is (ng, nb, nc)M2 = (21, 9, 13). For comparison, the complexity of the state-
update set constructed by converting to an equivalent MLD system in Section 4.2.2.3.2
was (ng, nb, nc)MLD = (24, 8, 18); thus, the state-update set can be constructed with
comparable memory complexity using functional decomposition.

4.3 Logical Systems

4.3.1 Introduction

Logical system dynamics with inputs are written as

xk+1 = f(xk, uk) ,

99

Figure 4.8: Forward reachable sets of heated room example case (6,2) using state-update
set calculated using functional decomposition. See [22, Figure 4] for comparison.

where f : Bnx × Bnu → Bnx, xk ∈ Bnx = {0, 1}nx , uk ∈ Bnu = {0, 1}nu , and f(·) is
exclusively composed of logical functions, e.g., OR ∨, XNOR ⊙, AND ∧, and NAND
∼∧. Logical systems are a subset of hybrid systems as they do not include continuous
dynamics. Logical zonotopes [19] and polynomial logical zonotopes [20] are novel set
representations for which identities have been developed for reachability analysis of logical
systems. In this section, it is demonstrated that hybrid zonotopes are capable of exact
and efficient reachability analysis of logical system, using the same methods developed
for hybrid systems.

4.3.2 Proposed Method

This section demonstrates the ability of hybrid systems to represent Boolean sets (sets
with elements that exclusively exist in {0, 1}) and graphs of logical functions. Consider

100

the AND ∧ function

b1 ∧ b2 =



0 , if (b1, b2) = (0, 0) ,

0 , if (b1, b2) = (1, 0) ,

0 , if (b1, b2) = (0, 1) ,

1 , if (b1, b2) = (1, 1) .

The graph of the AND ∧ function consists of four points, which can be represented as
the union of sets consisting of each point, i.e.,

Φ∧ =



0
0
0

 ,


1
0
0

 ,


0
1
0

 ,


1
1
1


 (4.21)

=



0
0
0


 ∪



1
0
0


 ∪



0
1
0


 ∪



1
1
1


 . (4.22)

It is apparent that hybrid zonotopes can represent (4.22). This is because each singleton
can be represented as a hybrid zonotope with no continuous factors, binary factors,
or constraints by assigning the center of each hybrid zonotope to the value of the
corresponding singleton. Iterative unions using Proposition 2.4 result in the desired set
represented as a single hybrid zonotope. Alternatively, one can observe that the set is
the union of four V-rep polytopes, each with a single vertex, thus a hybrid zonotope
representation can be generated using Theorem 2.1 with vertex and incidence matrices
given by

V =


0 1 0 1
0 0 1 1
0 0 0 1

 , M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

resulting in the hybrid zonotope Φ∧ = ⟨Gc,∧, Gb,∧, c∧, Ac,∧, Ab,∧, b∧⟩ where

Gc,∧ =

0 0 1
2

1
2 0 0 0 0 0

0 1
2 0 1

2 0 0 0 0 0
0 0 0 1

2 0 0 0 0 0

 , Gb,∧ = 03×5 , c∧ =

1
1
1
2

 , b∧ = −16×1 ,

101

Ac,∧ =



1
2

1
2

1
2

1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 −1 0 0 0
0 1

2 0 0 0 0 −1 0 0
0 0 1

2 0 0 0 0 −1 0
0 0 0 1

2 0 0 0 0 −1


, Ab,∧ =



0 0 0 0 0
0 1

2
1
2

1
2

1
2

0 − 1
2 0 0 0

0 0 − 1
2 0 0

0 0 0 − 1
2 0

0 0 0 0 − 1
2


.

Due to the large number of generators and constraints, it is challenging to see how these
matrices result in the desired set, though using order reduction methods from [22,58],
the state-update set can be represented equivalently by

Φ∧,red = ⟨Gc,∧,red, Gb,∧,red, c∧,red, Ac,∧,red, Ab,∧,red, b∧,red⟩ ,

Gc,∧,red = ∅ , Gb,∧,red =


0 0 1

2
1
2

0 1
2 0 1

2
0 0 0 1

2

 , c∧,red =


1
1
1
2

 ,

Ac,∧,red = ∅ , Ab,∧,red =
[

1
2

1
2

1
2

1
2

]
, b∧,red = −1 .

The single linear equality constraint

1
2ξb,1 + 1

2ξb,2 + 1
2ξb,3 + 1

2ξb,4 = −1 ,

coupled with ξb,i ∈ {−1, 1} , ∀ i ∈ {1, 4} enforces that exactly one of the four binary
factors equals one, i.e., ξb,i = 1 and ∀j ≠ i, ξb,j = −1. There are four combinations of
binary factors that satisfy the constraints, given by the columns of

B =


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 .

By considering each column of B, the four points in (4.22) are achieved. For exampled,
consider B(·,1), thus

x =


1
1
1
2

 +


0 0 1

2
1
2

0 1
2 0 1

2
0 0 0 1

2




1
−1
−1
−1

 =


0
0
0

 .

102

In fact, all 16 binary Boolean functions can be represented exactly using the same
process (see Section 3.4.6) and all have reduced complexities of 0 continuous factors, 4
binary factors, and 1 constraint. Because logical functions are defined as the composition
of unary and binary logical functions, there will always exist a functional decomposition
consisting of unary and binary logical functions. Therefor hybrid zonotopes can represent
the graph of logical functions exactly.

4.3.3 Numerical Example: High Dimensional Boolean Function

We adopt the following example from [20]. In this example, notation is abused to
accommodate the higher dimensional state and input space. It is assumed that operators
act element-wise on the vectors and elements of the functional decomposition are allowed
to be vectors. Consider the Boolean function with xi, ui ∈ {0, 1}10, i ∈ {1, 2, 3}

x1,k+1 = u1,k ∨ (x2,k ⊙ x1,k) ,

x2,k+1 = x2,k ⊙ (x1,k ∧ u2,k) ,

x3,k+1 = x3,k∼∧ (u2,k ⊙ u3,k) .

A functional decomposition is given by

Inputs:



w1 = x1,k ,

w2 = x2,k ,

w3 = x3,k ,

w4 = u1,k ,

w5 = u2,k ,

w6 = u3,k ,

Intermediate:


w7 = w2 ⊙ w1 = x2,k ⊙ x1,k ,

w8 = w1 ∧ w5 = x1,k ∧ u2,k ,

w9 = w5 ⊙ w6 = u2,k ⊙ u3,k ,

Outputs:


w10 = w4 ∨ w7 = u1,k ∨ (x2,k ⊙ x1,k) ,

w11 = w2 ⊙ w8 = x2,k ⊙ (x1,k ∧ u2,k) ,

w12 = w3∼∧ w9 = x3,k∼∧ (u2,k ⊙ u3,k) .

A hybrid zonotope graph of the functional decomposition is constructed using methods

103

Figure 4.9: Computation time of reachable sets of a logical function.
Two lines are plotted for HCG-rep, one including the time to generate the state-update set
(Total) and one that only included the computation time associated with the generation of
reachable sets using (3.3). The latter better demonstrates the scaling of the computation
time with N , as it does not include the one-time computation time cost of generating Φ.
Computation times for polynomial logical zonotopes are also shown.

from Chapter 3, from which the state-update set is generated using Corollary 3.6.
Generating Φ in HCG-rep, including order reduction, took slightly less than 0.6 seconds.

An initial set for (x1,k,x2,k,x3,k) consists of 8 possible values. Input sets for (u1,k, u2,k,
u3,k) also consist of 8 possible values. Reachable sets are calculated for 1-12 time steps.
Computation times are plotted in Figure 4.9 comparing the methods presented here
using HCG-rep to those developed for polynomial logical zonotopes. Computation time
using the methods developed for polynomial logical zonotopes grow rapidly for time steps
N > 8. Computation time using hybrid zonotopes appears to scale polynomially, as
expected, and is significantly faster to compute than polynomial logical zonotopes for
N = {10, 11, 12}.

4.4 Neural Network Control Systems

4.4.1 Introduction

This section addresses systems with neural network controllers using Rectified Linear
Unit (ReLU) activation function and focuses on comparisons to the four state-of-the-art

104

reachability tools included in the Artificial Intelligence and Neural Network Control
Systems category of the Applied veRification for Continuous and Hybrid systems (ARCH)
competitions in 2022 [43] and 2023 [44]. Benchmark problems from [43,44] are used to
demonstrate the proposed methods.

COntinuous Reachability Analyzer (CORA) uses polynomial zonotopes to approxi-
mate the input-output relationship of activation functions and nonlinear dynamics [45,46].
Over-approximated reachable sets are calculated by efficient mappings via the over-
approximated activation functions of the neural network and nonlinear functions as-
sociated with the plant dynamics. JuliaReach utilizes methods to efficiently convert
structured zonotopes to and from Taylor models, and then leverages existing reachability
tools using structured zonotopes for the neural network and Taylor Models for the plant,
to efficiently construct reachable sets of the closed-loop system [47]. The Neural Network
Verification (NNV) tool uses star sets for efficient computation of exact or approxi-
mated reachable sets through neural networks, and utilizes CORA for nonlinear plant
dynamics. The POLynomial ARithmetic-base (POLAR) framework computes functional
over-approximations of the flowmap. POLAR uses univariate Bernstein polynomial
abstractions for activation functions to address non-differentiable ReLU function.

In most cases, each of these state-of-the-art tools performs well for the benchmark
examples in [43,44], though it is noted that the initial sets for the benchmark problems
are relatively small. Large initial sets pose computational challenges as stated in a
review of set propagation techniques in [12], which includes techniques used by these
tools: “Several challenging research problems remain to be addressed in the field, such as
handling large initial sets for nonlinear systems and many guard intersections in hybrid
systems. Both aspects are especially relevant when verifying systems involving neural
networks.” To avoid these challenges, large initial sets may be partitioned, though for
systems beyond a few dimensions the partitioning itself introduces worst-case exponential
complexity.

While hybrid zonotopes have previously been used for reachability analysis of neural
networks [92,93], the methods proposed here achieve improved scalability and go beyond
the scope of these previous works by analyzing the coupling of a neural network controller
to a nonlinear plant. Parallel work presents methods to over-approximate nonlinear graphs
of functions using hybrid zonotope representations of graphs of nonlinear functions [94],
which can be coupled with exact representations of the graph of the neural network.
Those methods are very similar to those proposed in Chapter 3, many of which were
previously presented in [62].

105

4.4.2 Proposed Method

In this section we present methods based on the combination of graphs of functions and
hybrid zonotopes for reachability analysis of nonlinear systems in closed-loop with neural
network controllers. It is shown how ReLU neural networks have an exploitable structure
for functional decomposition, and how graphs of the plant dynamics and controller can
be generated separately and then combined to produce a closed-loop state-update set.

4.4.2.1 Dynamics

Consider a class of discrete-time nonlinear dynamics given by

xk+1 = f(xk, uk) , (4.23)

where f : Rn × Rnu → Rn, with state and input constraint sets given by X ⊂ Rn and
U ⊂ Rnu . The ith row of f(xk, uk) is a scalar-valued function and denoted by fi(xk, uk).
Disturbances are omitted for simplicity of exposition, although the results here are
easily extendable to systems with disturbances. Because hybrid zonotopes are inherently
bounded, the following assumption regarding the dynamics is made.1

Assumption 4.2 (Boundedness) For all (x, u) ∈ X × U , ||f(x, u)|| <∞.

The successor set is defined as follows.

Definition 4.6 (Successor Set) [95, Definition 2] The successor set from Rk ⊆ X
with inputs bounded by Uk ⊆ U is given by

Suc(Rk,Uk) ≡
{
f(x, u) | x ∈ Rk, u ∈ Uk

}
. (4.24)

The kth forward reachable set, Rk, from an initial set R0 can be found by k recursions of
successor sets (4.24), i.e., Rk+1 = Suc(Rk,Uk).

4.4.2.2 Open-Loop and Closed-Loop State-Update Sets

This section first introduces the open-loop state-update set (Definition 4.7), which encodes
all possible state transitions of (4.23) over a user-specified domain of states and inputs,
and is used to calculate successor sets over discrete time steps (Theorem 4.4). Then,

1See Corollary 3.3.

106

Figure 4.10: The closed-loop successor set identity uses a set-based representation of the
closed-loop dynamics, called the closed-loop state-update set Φ, to generate the one-step
forward reachable set Rk+1 from Rk. The closed-loop state-update set is created by
combining sets representing the open-loop dynamics and a state-feedback controller,
called the open-loop state-update set Ψ and the state-input map Θ, respectively.

after defining a state-input map as all possible inputs of a given control law over a
user-specified domain of states (Definition 4.8), the set of possible state transitions of the
closed-loop system is constructed by combining the state-input map and the open-loop
state-update set (Theorem 4.5). It is shown how this closed-loop state-update set can be
used to calculate successor sets of the closed-loop system (Theorem 4.6). This process is
depicted in Figure 4.10.

Remark 4.2 Note that the open-loop state-update set, state-input map, and closed-loop
state-update set are graphs of the functions describing the open-loop dynamics, state-
feedback control law, and closed-loop dynamics, respectively. The identities to generate
successor sets correspond to that given in Theorem 3.1. The combination of an open-loop
state-update set and a state-input maps to produce a closed-loop state-update set is a
special case of how graphs of functions are constructed via (3.30) and (3.33).

Definition 4.7 (Open-Loop State-Update Set) [95, Definition 4] The open-loop
state-update set Ψ ⊆ R2n+nu is defined as

Ψ =




xk

u

xk+1


∣∣∣∣∣ xk+1 ∈ Suc({xk}, {u}),

(xk, u) ∈ DΨ

 . (4.25)

107

We refer to DΨ ⊂ Rn+nu as the domain set of Ψ, typically chosen as the region of interest
for analysis, and RΨ = [0 In]Ψ ⊂ Rn as the range set of Ψ.

Theorem 4.4 (Open-Loop Successor Set Identity) [95, Theorem 1] Given a
set of states Rk ⊆ Rn, a set of inputs Uk ⊆ Rnu, and an open-loop state-update set Ψ, if
Rk × Uk ⊆ DΨ, then the open-loop successor set is given by

Suc(Rk,Uk) =
[
0 In

] (
Ψ ∩[In+nu 0] (Rk × Uk)

)
. (4.26)

Proof By definition of the generalized intersection,

Ψ ∩[In+nu 0] (Rk × Uk) =




xk

u

xk+1


∣∣∣∣∣∣

xk+1 ∈ Suc({xk}, {u}),xk

u

 ∈ DΨ ∩ (Rk × Uk)

 .

If Rk × Uk ⊆ DΨ, then DΨ ∩ (Rk × Uk) = Rk × Uk, and (4.26) gives {xk+1|xk+1 ∈
Suc({xk}, {u}), xk ∈ Rk, u ∈ Uk} . □

The containment condition in Theorem 4.4, Rk × Uk ⊆ DΨ, is not restrictive as
modeled dynamics are often only valid over some region of states and inputs, which the
user may specify as DΨ = X × U .

Consider a set-valued function C(xk) corresponding to a state-feedback controller,
such that C(xk) is the set of all possible inputs that the controller may provide given the
current state, xk. For example, for a linear feedback control law given by u(xk) = Kxk

with no actuator uncertainty, C(xk) = {Kxk} would be a single vector. In the case of
a linear feedback control law with actuator uncertainty given by u = Kxk + δu where
δu ∈ ∆u, we would have C(xk) = {Kxk + δu | δu ∈ ∆u}. The state-input map encodes
the feedback control law given by C(xk) as a set over a domain of states.

Definition 4.8 (State-Input Map) [95, Definition 5] The state-input map is de-
fined as Θ = {(xk, u) | u ∈ C(xk), xk ∈ DΘ}, where DΘ is the domain set of Θ.

Next, the closed-loop state-update set under a controller given by C(xk) is defined.
Then it will be shown how to construct a closed-loop state-update set given an open-loop
state-update set and a state-input map.

108

Definition 4.9 (Closed-Loop State-Update Set) [95, Definition 6] The closed-
loop state-update set Φ ⊆ R2n for a controller given by C(xk) is defined as

Φ =


 xk

xk+1

 ∣∣∣∣∣ xk+1 ∈ Suc ({xk}, C(xk)) ,

xk ∈ DΦ

 , (4.27)

where DΦ ⊂ Rn is the domain set of Φ.

Theorem 4.5 (Closed-Loop State-Update Set Construction) [95, Theorem 2]
Given an open-loop state-update set Ψ and state-input map Θ, the closed-loop state-update
set Φ with DΦ =

[
In 0

]
(DΨ ∩Θ) is given by

Φ =
In 0 0

0 0 In

 Ψ ∩[
In+nu 0

] Θ
 . (4.28)

Proof By definition of the generalized intersection,

Ψ ∩[
In+nu 0

] Θ =




xk

u

xk+1


∣∣∣∣∣

xk+1 ∈ Suc({xk}, {u}),
(xk, u) ∈ DΨ ∩Θ,

u ∈ C(xk)

 .

Thus the right side of (4.28) equals


 xk

xk+1

 ∣∣∣∣∣ xk+1 ∈ Suc ({xk}, C(xk)) ,

xk ∈ [In 0]
(
DΨ ∩Θ

)
 .

Comparison to Def. 4.9 completes the proof. □

Theorem 4.6 provides an identity for the successor set of a closed-loop system with
the feedback control law described by the set-valued function C(xk). For closed-loop
successor sets, the input set argument Uk is omitted and the successor set is instead
denoted by Suc(Rk, C).

Theorem 4.6 (Closed-Loop Successor Set Identity) [95, Theorem 3] Given a
set of states Rk ⊆ Rn and closed-loop state-update set Φ, if Rk ⊆ DΦ then the closed-loop
successor set is given by

Suc(Rk, C) =
[
0 In

] (
Φ ∩[In 0] Rk

)
. (4.29)

109

The identities in (4.26), (4.28), and (4.29) utilize the open-loop state-update set
and state-input map. Over-approximated open-loop state-update sets for nonlinear
plant dynamics can be generated using methods from Chapter 3. The following section
demonstrates how neural network controllers have an exploitable structure for functional
decompositions, which can then be used in conjunction with methods from Chapter 3 to
generate the state-input map.

4.4.2.3 Functional Decomposition of Neural Networks

Feed-Forward Neural Networks (FFNN) with unary activation functions have a structure
that is conducive to a functional decomposition. Consider a fully connected neural
network with nx inputs and ny outputs. Without loss of generality and for simplicity
of exposition, it is assumed that there are two hidden layers, each with kN nodes that
utilize an activation function ϕ(·) and weights and biases for the ith layer are given by
Wi, bi. A functional decomposition is readily given by

Inputs: w1 ,

w2 = W1w1 + b1 ,

w3 = ϕ(w2) ,

w4 = W2w3 + b2 , (4.30)

w5 = ϕ(w4) ,

w6 = W3w5 + b3 ,

where w6 corresponds to the ny outputs of the FFNN. For ease of reading, (4.30) abuses no-
tation as it does not assign an independent index to each scalar observable, i.e., w1 ∈ Rnx ,
w2, w3, w4, w5 ∈ RkN , and w6 ∈ Rny . Additionally, it is assumed that ϕ(·) acts element-
wise when given an argument of a vector, e.g., ϕ(w3) =

[
ϕ(w(3,1)) · · · ϕ(w(3,kN))

]T

where w3,j represent the jth element of w3.
The resulting memory complexity for constructing the graph of a FFNN as a hybrid

zonotope is only dependent on the total number of nodes with nonlinear activation func-
tions, ktot and the complexity of the graph of the unary activation function (ng,ϕ,nb,ϕ,nc,ϕ),
and is given by

ng,NN = n + ktot(ng,ϕ + 1) ,

nb,NN = ktotnb,ϕ ,

110

nc,NN = ktot(nc,ϕ + 2) .

Assuming a ReLU activation function is used and its graph is produced using the method
from Section 3.4.4, an exact graph of the neural network is given by

ng,NN = n + 5ktot ,

nb,NN = ktot ,

nc,NN = 2ktot + 4 .

4.4.3 Numerical Examples

This section presents two numerical examples,

1. Single Pendulum with Neural Network Controller (Adapted from ARCH-COMP),
and

2. Vertical Collision Avoidance System (Adapted from ARCH-COMP).

4.4.3.1 Single Pendulum with Neural Network Controller

Two cases of parameters and controllers are presented. The latter correspond to those
used in ARCH-COMP, and are discussed in Section 4.4.3.1.2 with comparison to state-
of-the-art reachability tools. The former, presented in Section 4.4.3.1.1, is uses a less
complex neural network than that used in ARCH-COMP, so that state-update sets and
state-input maps can be visualized.

4.4.3.1.1 Case 1:
Consider the dynamics of an inverted pendulum given by (3.26) with gravity g = 10,

length l = 1, mass m = 1, and moment of inertia I = ml2 = 1. The continuous-time
nonlinear dynamics are discretized with time step h = 0.1 using a 2nd-order Taylor
polynomial T2(xk), given by (3.27) and over-approximated as

xk+1 ∈ T2(xk)⊕ L , (4.31)

where L is constructed using the Taylor inequality to bound the error due to truncating
higher-order terms. The input torque is controlled in discrete time with a zero-order
hold and bounded as uk ∈ [−20, 20] , ∀k.

111

Table 4.3: Memory complexity of the open-loop state-update set, state-input map, and
closed-loop state-update set.

Set ng nb nc

Ψ̄ 113 45 63
Θ 76 20 56
Φ̄ 184 63 117

A functional decomposition of T2(xk) is shown in Table 3.2. For a chosen domain
(D1, D2, D3), bounds on the intermediate and output variables can be found by domain
propagation via interval arithmetic. This choice of the domain also yields L in (4.31)
as L =

[
−0.02, 0.02

]
×

[
−0.26, 0.26

]
. The sets H̄ℓ , ∀ℓ ∈ {4, 5, 6} are constructed using

methods from Section 3.2. The set H̄ constructed using methods from Section 3.2 with a
Minkowski summation to account for the Taylor remainder L yields an over-approximation
of the open-loop state-update set,

Ψ ⊂ Ψ̄ = H̄ ⊕



0 0
0 0
0 0
1 0
0 1


L . (4.32)

A projection of Ψ̄ is shown in Figure 4.11(a). The thickness of the set in the x2,k

dimension is primarily due to the open-loop state-update set capturing variability in the
input uk ∈ [−20, 20], though some of this is also a result of the Taylor remainder L and
over-approximation of nonlinear functions, with H̄ℓ ⊃ Hℓ , ∀ℓ ∈ {4, 5, 6}.

Computing H̄ℓ , ∀ℓ ∈ {4, 5, 6} required 0.02 seconds, and application of exact com-
plexity reduction techniques from [22, 58] required an additional 2 seconds. From this, Ψ̄
was computed in 8 milliseconds using Theorem 3.4 and Corollary 3.5.

112

(a)

(b)

(c)

Figure 4.11: (a) Projection of over-approximated open-loop state-update set Ψ̄ bounding
dynamics of a pendulum at discrete time steps. (b) State-input map Θ of a neural network
trained to mimic NMPC. (c) Projection of over-approximated closed-loop state-update
set found using Theorem 4.5 by coupling Ψ̄ and Θ.

113

To train the neural network controller, a nonlinear MPC is formulated as

min
u(·)

10∑
k=1

xT
k

100 0
0 1

 xk + uT
k−1uk−1 (4.33)

s.t. trapezoidal discretization of (3.26) holds ,

uk ∈ [−20, 20] , ∀k ∈ {0, ..., 9} .

The solution of (4.33) is found using the MATLAB Model Predictive Control Toolbox
[96] for 400 uniformly sampled initial conditions. The sampled initial conditions and the
first optimal input of the solution trajectory u∗

0 are then used as input-output pairs to
train a neural network with 2 hidden layers, each with 10 nodes and ReLU activation
functions, using the MATLAB Deep Learning Toolbox. A functional decomposition of
the neural network with saturated output to obey torque constraints is performed and
Theorem 3.4 is used to generate the state-input map Θ. The state-input map is shown in
Figure 4.11(b). Using Theorem 3.4 and Corollary 3.5, this took 4 seconds to compute and
an additional 45 seconds to apply the exact complexity reduction techniques from [22,58].

Given an over-approximation of the open-loop state-update set Ψ̄ and the exact
state-input map Θ, an over-approximation of the closed-loop state-update set Φ̄ was
constructed using the identity in Theorem 4.5 in less than 1 millisecond and exact
reduction methods were completed in an additional 35 seconds. A projection of Φ̄ is
shown in Figure 4.11(c). This projection is a subset of the projection of Ψ̄ in Figure
4.11(a), as variability in the input is eliminated when creating the closed-loop state-
update set using the state-input map Θ. Although difficult to perceive in the figure,
some thickness in the xk,2 dimension remains as a result of the Taylor remainder L and
over-approximating nonlinear functions of the plant model. Table 4.3 reports the memory
complexity of Ψ̄, Θ, and Φ̄ for this example.

Using (4.29), over-approximations of forward reachable sets Ri, i ∈ {1, ..., 15} are
calculated from an initial set given by

R0 =
〈π 0

0 0.1

 ,

0
0

〉
. (4.34)

The over-approximated reachable sets up to R3 are plotted in Figure 4.12(a), overlaid by
exact closed-loop trajectories found by randomly sampling points in X0 and propagating
using (3.26). Examination of the exact trajectories suggests that a successful nonconvex
over-approximation of the reachable sets is achieved. Computation time to execute the

114

successor set identity was 5 milliseconds per time step on average.
To handle growth in set memory complexity over time steps, set propagation methods

often utilize over-approximations to reduce complexity. Using techniques from [58],
over-approximations of the reachable set are taken periodically every three time steps
beginning at k = 3, resulting in 4 total approximations that took an average of 49
seconds each to compute, in a manner similar to [97]. At the time steps corresponding to
over-approximations, the set is first saved and analyzed before being over-approximated.
The over-approximation is used to calculate the reachable set of the subsequent time
step. Figure 4.12(b) plots the over-approximated reachable sets and Figure 4.12(c) plots
the corresponding memory complexity. The periodic memory complexity reduction is
apparent in Figure 4.12(c). It is clear that the containment condition of Theorem 4.6,
Ri ⊆ DΦ, is met at each time step.

While plotting the reachable sets can be used to visually confirm performance and
the containment condition of Theorem 4.6, this is a computationally expensive process,
taking 7378 seconds to produce Figure 4.12(b). Much of the same information can be
obtained with lower computational burden by sampling the support function in the
axis-aligned directions, which took a total of 34 seconds for all 15 steps, less than 0.5%
of the time to plot.

115

(a)

(b)

(c)

Figure 4.12: (a) Over-approximation of reachable sets R0 → R3 of the inverted pendulum
in closed-loop with a saturated neural network controller, overlaid by samples of exact
trajectories in green. (b) Over-approximated reachable sets R0 → R15 with over-
approximations taken every three time steps. (c) Memory complexity of the over-
approximated reachable sets.

116

4.4.3.1.2 Case 2 (ARCH-COMP Single Pendulum):
This case uses the single pendulum example found in [44, Section 3.5], with two

alterations. Firstly, the goal of falsification/verification is removed so that each method
will generate reachable sets over the time period t ∈

[
0 1

]
seconds with a time step

of 0.05 seconds. In [44, Section 3.5], the example is constructed such that it is unsafe
and may be falsified. Many of the existing methods leverage specialized algorithms to
generate trajectories to prove that the system is unsafe. In order to compare reachability
tools, the consideration of an unsafe region is removed. Secondly, two initial sets are
considered, one smaller initial set matches that given in [44, Section 3.5], and the case
with a larger initial set is also considered. The sets are given by

Small Initial Set: R0 =
[
1 1.2

]
×

[
0 0.2

]
, and

Large Initial Set: R0 =
[
0 1

]
×

[
−0.1 0.1

]
.

The proposed method follows the same procedure to construct the open-loop state-
update set, state-input map, closed-loop state-update set, and reachable sets as done in
the previous example. The changes amount to adjusting the parameters, including such
that the controller has 2 hidden layers with 25 nodes each (50 total ReLU nodes). The
complexity of the closed-loop state-update set is ng,ϕ = 321, nb,ϕ = 75, nc,ϕ = 240. As
was done for the previous example, reachable sets are over-approximated every 3 time
steps to handle growth in memory complexity.

The proposed method is compared to four state-of-the-art tools from the literature.
Computation times and an indication of whether reachable sets undergo diverging
over-approximation error for the small initial set and large initial set are given in
Table 4.4 and Table 4.5, respectively. For the small initial set, all methods successfully
generate reachable sets without diverging approximation error and the proposed method
is substantially slower than the other tools. For the larg initial set, the proposed method
was the only method to compute the reachable set without diverging approximation
error, though it required almost 40 minutes to do so.

Tuning Parameters and Partitioning the Initial Set: CORA, JuliaReach,
NNV, and POLAR each have tuning parameters that allow the user to adjust a trade-off
between computation time and error. The results reported for the larger initial set were
generated without altering these the tuning parameters as chosen for the small initial
set, though the author did make several attempts to adjust tuning parameters for each
to handle the larger initial set. The author was unable to find tuning parameters that

117

Table 4.4: Comparison of state-of-the-art tools for reachability analysis of an inverted
pendulum with a neural network controller from a small initial set.

Tool Small Initial Set
Computation

Time [s]
Approximation

Error
Proposed
Method 312 Does not

diverge

CORA 0.5 Does not
diverge

JuliaReach 0.5 Does not
diverge

NNV 2086 Does not
diverge

POLAR 0.2 Does not
diverge

yield better results for the four state-of-the-art tools, but a solution via adjusting the
tuning parameters cannot be ruled out. Additionally, it is possible for CORA, JuliaReach,
NNV, and POLAR to analyze the larger initial set by partitioning, e.g., when the initial
set is split into 160 partitions, NNV can compute the reachable sets without diverging
approximation error. In general, this may require a significant number of partitions,
especially for systems with many states, that must be tuned to the problem at hand;
thus addressing large initial sets remains an open challenge.

Breakdown of Proposed Method Computation Time: Over 96% of the pro-
posed method computation time is spent calculating periodic convex over-approximations.
The time to reduce the order of the closed-loop state-update set is 82 seconds (> 3%).
Thus the time spent to construct the open-loop state-update set, state-input map,
closed-loop state-update set, and successor sets for all time steps is only 8 seconds. The
periodic over-approximations are taken so that the analysis of the resulting sets can be
achieved, i.e., if no periodic approximations are taken, GUROBI was unable to solve
for the support function (2.14) beyond the first 6 times steps. This motivates work to
efficiently generate hybrid zonotope over-approximations with acceptable approximation
error, though approximations of hybrid zonotopes are challenging due to their implicit
nature [58].

118

Table 4.5: Comparison of state-of-the-art tools for reachability analysis of an inverted
pendulum with a neural network controller from a large initial set.

Tool Large Initial Set
Computation

Time [s]
Approximation

Error
Proposed
Method 2377 Does not

diverge
CORA 0.6 Diverges

JuliaReach 0.7 Diverges
NNV >7200 Diverges

POLAR
0.15∗

Terminates after
7 steps.

Diverges

4.4.3.2 Vertical Collision Avoidance System

The Vertical Collision Avoid System (VCAS) example (see [43] and [44] for details) is
adopted for comparison between the proposed methods and state-of-the-art reachability
tools. The plant is a linear discrete-time model with 3 states

• hk: the relative height of the ownship from an intruder flying at a constant altitude,

• ḣ0,k: the derivative of the height of the ownship,2

• τk ∈ {25, 24, ..., 15}: the time until the ownship and intruder are no longer horizon-
tally separated,3 and

hk+1 = hk − ḣ0,k −
1
2 ḧk ,

ḣ0,k+1 = ḣ0,k + ḧk ,

τk+1 = τk − 1 .

An additional state advk ∈ {1, 2, ..., 9}, denotes the flight advisory, for which there are
corresponding choices of ḧ to be selected by the pilot. At each time step, one of 9 neural
networks, each with 5 fully connected hidden layers and 20 ReLU nodes per layer, is
selected based on the previous time step advisory. Each neural network has 3 inputs,
corresponding to hk, ḣ0,k, and τk, and has 9 outputs. The index of the largest output (of

2h and ḣ0 have opposite sign convention.
3τ decrements by one each time step, i.e., τk+1 = τk − 1. There appears to be a sign error in [44].

119

the neural network corresponding to the previous time step advisory) determines the
advisory for the current time step. If the previous advisory and current advisory coincide,
and ḣ0,k complies with the advisory, then ḧ = 0. Otherwise, ḧk is selected according
to the current advisory. Advisories and associated ranges of ḣ that are compliant, and
choices of ḧ, are listed in Table 4.6.

CORA, JuliaReach, and POLAR are not capable of modeling the VCAS dynamics.
In [43], POLAR does not participate in the VCAS benchmark problem. In both [43, 44],
CORA and JuliaReach provide custom simulation algorithms to falsify the VCAS, and
do not employ reachability algorithms. NNV is the only tool to employ reachability algo-
rithms for this benchmark problem and is able to verify/falsify various initial conditions
by partitioning the set. Additionally, NNV considers simplified versions of the problem
where uncertainty in ḧ given an advisory is eliminated by assuming a “middle” (middle
ḧ is chosen) or “worst-case” (ḧ that results in driving h closest to 0) strategy.

Table 4.6: VCAS Advisories

adv Advisory Compliant ḣ0,k Choice of ḧk

1 COC ∅ {−g
8 , 0, g

8}
2 DNC ḣ0,k ≤ 0 {−g

3 , −7g
24 , −g

4}
3 DND 0 ≤ ḣ0,k {g

4 , 7g
24 , g

3}
4 DES1500 ḣ0,k ≤ −1500 {−g

3 , −7g
24 , −g

4}
5 CL1500 1500 ≤ ḣ0,k {g

4 , 7g
24 , g

3}
6 SDES1500 ḣ0,k ≤ −1500 {−g

3}
7 SCL1500 1500 ≤ ḣ0,k { g

3}
8 SDES2500 ḣ0,k ≤ −2500 {−g

3}
9 SCL2500 2500 ≤ ḣ0,k { g

3}

Proposed Method: The proposed method first generates HCG-representation
graphs of the 9 neural networks associated with each advisory. To reduce the complexity
of the problem, it is first shown that for a large region of the state space, only 4 advisories,
advk ∈ {1, 5, 7, 9}, are achievable for trajectories of the aircraft starting from an initial
set where the previous advisory is COC, advk−1 = 1, and that do not exit the constraints
h ∈

[
−400 −100

]
, and ḣ0,k ∈

[
−100 100

]
. The following functional decomposition

relates the inputs of hk, ḣ0,k, τk, and advk to the next advisory. It is clear that the
compliant regions of advisories 4− 9 would never be met for the domain chosen. It will
be shown that under these assumptions, advisories 2 and 3 are never achieved, and thus

120

the logic associated with compliant regions can be neglected.
Consider the functional decomposition in Table 4.7. Note that the inequalities associ-

ated with −→w 16,1:8 are non-strict in both directions. This is consistent with uncertainty
when two outputs of the active neural network produce exactly the same value. Using
the proposed methods and the functional decomposition, the graph of the function
advk = f(hk, ḣ0,k, τk, advk−1) can be generated. Using the identity (3.3), the set of
advisories that can be active, given the set of states and previous advisory, is calculated.
This is done iteratively in Table 4.8. Iteration 4 results in the same potential advisories
{1, 5, 7, 9} in the output set as the input set. The assumption that advisories 2 and 3 are
not visited is confirmed, and the only advisories ever achieved starting from the input
set in iteration 4, and remaining within the bounds for (hk, ḣk, τk), is {1, 5, 7, 9}. This
is a powerful result, as for analysis within a large domain can neglect 5 of the neural
networks, significantly reducing the complexity of the problem.

121

Table 4.7: Functional decomposition of VCAS: States →Advisory

w1 = hk

w2 = ḣ0,k

w3 = τk

w4 = advk−1

−→w i+4,1:9 =
{

fNN,i(w1, w2, w3) if advk−1 = i

0 otherwise
, ∀ i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}

−→w 14,1:9 =
∑13

i=5
−→w i

−→w 15,1:7 =



max(w14,1, w14,2)
max(w15,1, w14,3)
max(w15,2, w14,4)
max(w15,3, w14,5)
max(w15,4, w14,6)
max(w15,5, w14,7)
max(w15,6, w14,8)



−→w 16,1:8 =



w16,1 =
{

0 if w14,1 ≥ w14,2

1 if w14,1 ≤ w14,2

w16,2 =
{

0 if w15,1 ≥ w14,3

1 if w15,1 ≤ w14,3
...

w16,8 =
{

0 if w15,7 ≥ w14,9

1 if w15,7 ≤ w14,9



w17 =



1 if (w16,1:8) = 0
2 if (w16,2:8) = 0 ∧ w16,1 = 1
3 if (w16,3:8) = 0 ∧ w16,2 = 1
4 if (w16,4:8) = 0 ∧ w16,3 = 1
5 if (w16,5:8) = 0 ∧ w16,4 = 1
6 if (w16,6:8) = 0 ∧ w16,5 = 1
7 if (w16,7:8) = 0 ∧ w16,6 = 1
8 if (w16,8:8) = 0 ∧ w16,7 = 1
9 if w16,8 = 1

122

Table 4.8: Iterative domain propagation of advisories for an assumed domain of interest.

Iteration Input Set
(hk, ḣk, τk, advk−1)

Potential Advisories
advk

1

[−400, −100]...
×[−100, 100]...
×{25, 24, ...15}...
×{1}

{1, 5}

2

[−400, −100]...
×[−100, 100]...
×{25, 24, ...15}...
×{1, 5}

{1, 5, 7}

3

[−400, −100]...
×[−100, 100]...
×{25, 24, ...15}...
×{1, 5, 7}

{1, 5, 7, 9}

4

[−400, −100]...
×[−100, 100]...
×{25, 24, ...15}...
×{1, 5, 7, 9}

{1, 5, 7, 9}

123

Figure 4.13: Reachable sets for VCAS, calculated and falsified in 0.8 seconds, and plotted
in 4.3 seconds.

Now consider the domain

(hk, ḣ0,k, τk, advk) ∈ D1 ×D2 ×D3 ×D4

=
[
−400 −100

]
×

[
−100 100

]
× {25, 24, ..., 15} × {1, 5, 7, 9} .

Using the domain and the functional decomposition given by Table 4.9, a closed-loop state-
update set is generated in 2.8 seconds with complexity (ng,ϕ, nb,ϕ, nc,ϕ) = (2339, 842, 2049),
which encodes the transition from (w1, w2, w3, w4)→ (w14, w15, w16, w12). Reachable sets
are generated by recursion of (4.29) and checked for falsification each step, taking a total
of 0.8 seconds to falsify the VCAS without restricting the inputs sets via “middle” or
“worst-case” assumptions or partitioning the initial set. The reachable sets are plotted in
Figure 4.13.

Although the proposed methods are able to falsify the VCAS system without restricting
the potential inputs or partitioning the initial set, a closed-loop state-update set and
reachable sets are generated for the the so-called “worst-case” scenario,4 and are plotted
in Figure 4.14. Worst-case reachable sets were calculated in 16 seconds. Portions of the
reachable set that go beyond the domain of the state-update set are not propagated

4See [44] for details regarding the worst-case assumption.

124

Table 4.9: Functional decomposition of VCAS: States →Updated States

w1 = hk

w2 = ḣ0,k

w3 = τk

w4 = advk−1

−→w i+4,1:4 =
{

[eT
1 , eT

5 , eT
7 , eT

9]T fNN,i(w1, w2, w3) if advk−1 = i

0 otherwise
, ∀ i ∈ {1, 5, 7, 9}

−→w 9,1:4 =
∑8

i=5
−→w i

−→w 10,1:2 =
[

max(w9,1, w9,2)
max(w10,1, w9,3)

]

−→w 11,1:3 =



w11,1 =
{

0 if w9,1 ≥ w9,2

1 if w9,1 ≤ w9,2

w11,2 =
{

0 if w10,1 ≥ w9,3

1 if w10,1 ≤ w9,3

w11,3 =
{

0 if w10,2 ≥ w9,4

1 if w10,2 ≤ w9,4



w12 =


1 if (w11,1:3) = 0
5 if (w11,2:3) = 0 ∧ w11,1 = 1
7 if (w11,3:3) = 0 ∧ w11,2 = 1
9 if w11,3 = 1

w13 ∈


{−g

8 , 0, g
8} if w12 = 1

{g
4 , 7g

24 , g
3} if w12 = 5

{g
3} if w12 = 7
{g

3} if w12 = 9
w14 = w1 − w2 − w13
w15 = w2 + w13
w16 = w3 − 1

through subsequent time steps.5 The reachable sets can be compared to those for NNV
in [44, Figure 30] and correspond to overlaying the four subplots therein, minus the
portions that are lost due to portions of the reachable sets leaving the domain of the
state-update set.

5See assumption in 4.6.

125

Figure 4.14: Reachable sets for VCAS with a simplifying “worst-case” assumption are
calculated in 16 seconds. The reachable set loses pieces associated with the portion of a
reachable set at the previous time step not included in the domain of the state-update
set h /∈

[
−400 −100

]
.

126

Chapter 5 |
Set-Valued State Estimation and
Parameter Identification

5.1 Introduction
Estimation methods are often needed to implement state-feedback controllers [98] or
detect faults and failures within a system [99]. Approaches for state estimation include
stochastic methods such as Kalman filtering [98] and set-based methods [51, 100, 101].
Stochastic approaches have been successfully applied to a wide range of systems due
to their efficient implementation and ability to provide a statistical characterization of
the estimate uncertainty. This is contingent upon accurate representation of random
processes, e.g., measurement noise. Statistical methods do not seek to provide guaranteed
bounds on estimate uncertainties.

This chapter addresses set-valued state estimation (SVSE) methods, also referred to as
set-membership state estimation, which compute sets containing all possible state values
consistent with a dynamic plant model, output measurements, and uncertainty bounds.
Additionally, this chapter addresses set-valued parameter identification (SVPI) methods,
which compute sets containing all possible parameters consistent with a dynamic plant
model, output measurements and uncertainty bounds.

SVSE and SVPI methods commonly use convex set representations, such as zonotopes
and constrained zonotopes [12,21,51,102–105], as these are closed under key set operations
for propagating linear dynamics [12]. However, convex sets are not closed under nonlinear
mappings. To address a larger class of dynamics and measurement models, a common
approach is to generate linear approximations, e.g., via mean value and first-order Taylor
extensions [51,105].

Convex approaches are successful when the dynamics are represented well using affine

127

approximations and when the exact set of states/parameters consistent with a given
measurement can be tightly approximated with a convex set. When the true set of
states/parameters consistent with the dynamic model, measurements, and uncertainty is
significantly nonconvex, over-approximations using affine and convex approaches incur
significant error. Methods considering collections of convex sets coupled with piecewise-
affine approximations have been developed, though computational challenges arise, for
example successive intersection with guards can result in exponential growth in the
number of convex sets with time [12]. It is especially challenging to compute successor
sets used in the dynamic update of nonconvex SVSE when the set-valued state estimate
is large [12]. Similar difficulties arise in the measurement update.

Contribution: This chapter proposes a new approaches for SVSE and SVPI of nonlinear
systems. Graphs of functions are represented with a nonconvex set representation called
the hybrid zonotope, providing set estimates tighter to the true state than possible using
convex methods while admitting efficient and scalable calculations.

5.2 Set-Valued State Estimation
Consider a class of discrete-time nonlinear systems given by dynamic plant model
f : Rnx × Rnu × Rnw → Rnx and measurement model g : Rnx × Rnv → Rny , where

xk+1 = f(xk, uk, wk) , (5.1)

yk+1 = g(xk+1, vk+1) , (5.2)

with bounded state x ∈ X ⊂ Rnx , input u ∈ U ⊂ Rnu , process uncertainty w ∈ W ⊂ Rnw ,
and measurement noise v ∈ V ⊂ Rnv .

Assumption 5.1 The functions f(·) and g(·) are defined and bounded over their respec-
tive domains corresponding to X , U , W, and V, which themselves are also bounded.1

The set X̂k+1|k denotes the set of states that can be achieved by the dynamics at time
step k + 1 that are consistent with all measurements through time step k and may be
found as the successor set of X̂k|k, Suc(X̂k|k,Uk,Wk).

Definition 5.1 The successor set from Rk ⊆ X with inputs and process uncertainty
1See Corollary 3.3.

128

bounded by Uk ⊆ U and Wk ⊆ W, respectively, is given by

Suc(Rk,Uk,Wk) ≡

f(x, u, w) |
x ∈ Rk, u ∈ Uk ,

w ∈ Wk

 . (5.3)

Definition 5.2 The set X̂yk+1 is the set of states consistent with measurement yk+1 and
measurement noise Vk+1 ⊆ V within the feasible region X and is given by

X̂yk+1 ≡ {x | yk+1 = g(x, v), x ∈ X , v ∈ Vk+1} . (5.4)

Assuming the initialized set-valued state estimate contains the true initial state, i.e.,
x0 ∈ X̂0|0, SVSE combines dynamic and measurement updates using the recursion

X̂k+1|k = Suc(X̂k|k,Uk,Wk) , (5.5)

X̂k+1|k+1 = X̂k+1|k ∩ X̂yk+1 , (5.6)

to generate set-valued state estimates guaranteed to contain the true state. The dynamic
update (5.5) can be addressed with methods from Chapter 4, which demonstrates the
hybrid zonotopes effective use in calculating successor sets for many classes of hybrid
and nonlinear systems. The measurement update (5.6) consists of generating X̂yk+1 and
a generalized intersection, for which hybrid zonotopes are well-suited (2.25), with the
result of the dynamic update. The generation of X̂yk+1 is accomplished using methods
in Chapter 3 by 1) generating an over-approximation of the graph of the measurement
function represented as a hybrid zonotope, and using the identity (3.5) to generate a set
of states (inputs to the graph of the function) that are consistent with a measurement
(outputs of the graph of the function).

5.2.1 Numerical Example: Sum of Signal Strengths

Consider the integrator dynamics and measurement

xk+1 = xk + uk , (5.7)

y =
4∑

i=1

1
d2

i + 1 , (5.8)

129

Table 5.1: Memory complexity for set-based over-approximations of (5.8).

Method ng nb nc

M1 (100 breakpoints) 202 163 102
M3 (2 layers, 20 nodes each) 127 31 93

where di = ||x− si||2 and

s1 = (1, 3), s2 = (−2, 2), s3 = (3, 0), s4 = (−1,−4) . (5.9)

with xk, uk ∈ R2. One interpretation is that y is a measurement of the summation
of signal strengths emitted by four sources located at si , ∀i ∈ {1, 2, 3, 4}, where the
strength of signal from each source decreases with the inverse square of the distance
from the source. While the proposed methods account for input uncertainty, process
uncertainty, and measurement noise, for simplicity of exposition this example omits these.
This makes it easier to assess the effect of using an over-approximated graph of the
nonlinear measurement function.

Figure 5.1 shows two methods (M1 and M3)2 for over-approximating (5.8) over a
domain of (x1, x2) ∈ [−5, 5] × [−5, 5]. M1 uses 100 uniformly spaced breakpoints to
generate an SOS approximation, which is represented in HCG-rep using Theorem 2.1.
Bounds on the worst-case errors are found by solving (3.15) and (3.16), and an over-
approximated graph of the function is constructed using Corollary 3.4. M3 trains a
ReLU neural network using the MATLAB Deep Learning Toolbox [96]. The ReLU
network has 2 layers with 20 nodes each. The neural network is represented exactly
as a hybrid zonotope using methods from Chapter 3 and a functional decomposition
of the form presented in Section 4.4.2.3. Bounds on the worst-case error are found by
solving nonlinear programs similar to (3.15) and (3.16) over each PWA region of the
graph of the neural network function. Table 5.1 and Figure 5.1 show that M3 can achieve
a much tighter approximation with less than a quarter of the maximum error of M1 and
considerably lower memory complexity. For these reasons, Method M3 is chosen as the
over-approximation of a graph of a function Φ̄meas used for the remainder of the example.

For this example, the dynamic update (5.5) specifies to

X̂k+1|k = X̂k|k ⊕ {uk} , (5.10)

where uk is known to the estimator. The set X̂yk+1 in (5.4) is calculated using Theorem
2M2 from [63] is not presented here but the names are unchanged for consistency with that publication.

130

(a)

(b)

Figure 5.1: Comparison of methods for hybrid zonotope over-approximation of (5.8).
M1: uniformly spaced breakpoints and M3: trained neural network. A surface plot of
(5.8) is also shown in both (a) and (b).

3.2, Corollary 3.1, and Φ̄meas as

X̂yk+1 =
[
I2 0

] Φ̄meas ∩[
0 1

] {yk+1}

 ,

for use in (5.6). The set-valued estimate is initialized as the interval set corresponding to
state constraints

X̂0|−1 = X = [−5, 5]× [−5, 5] , (5.11)

131

and the true initial state and input trajectory are given by

x0 =
[
1 0

]T
, (5.12)

[u0 u1 u2 u3] =
−1 −2 −1 2

1 −1 −1 −1

 . (5.13)

Figure 5.2 shows the set-valued a priori state estimate ¯̂Xk|k−1, a posteriori state
estimate ¯̂Xk|k, exact set of measurement-consistent states X̂yk

and its over-approximation
¯̂Xyk

, and true state xk for several time steps. This shows how the initial state estimate
is gradually reduced to a small region by combining knowledge of the dynamics and
measurement, and highlights how the nonlinearity of the measurement model is tightly
captured by the nonconvexity of the hybrid zonotope set representation. When k = 2,
the state estimate consists of several disjoint regions, and after the third measurement,
the state estimate consists of only two disjoint regions. After the fourth dynamic update,
one of these regions escapes the set of feasible states, so only one region remains.

For comparison, a convex approach Mconvex is shown that estimates X̂k|k using convex
methods by taking an inner convex approximation of X̂yk

. This is achieved using the
same dynamic update (5.10) and initialization (5.11), but samples the exact level set
of (5.8) within X at each time step to generate a polytope in vertex representation
to approximate X̂yk+1 . It can be seen from Mconvex that any convex approach would
produce a much larger over-approximation than the proposed approach, which leverages
nonconvex representations of X̂yk+1 .

Set-valued state estimates for k ∈ {0, 1, ..., 4} are computed by the proposed method
in less than 0.2 seconds. Plotting requires 740 seconds as this involves solving mixed-
integer linear programs to find each nonempty convex set within the hybrid zonotope,
associated with specific values of the binary factors. However, upper and lower bounds
on each of the states can be calculated much more quickly by sampling the support
function in the axis-aligned directions. For this example, these bounds are obtained for
all time steps in a total of 6 seconds.

In some applications it may be desirable to obtain a single point within the set-valued
set estimate, for example as state feedback for a controller. This becomes nontrivial for
nonconvex and/or disjoint set-valued state estimates, for which the “center” of a set may
not be within the set, such as a toroid. A natural alternative would be to find a single
feasible point within the set, which in this case can be found by solving a mixed-integer
linear feasibility problem. This required 0.8 seconds for X̂4|4.

132

5.3 Set-Valued Parameter Identification
Consider a bounded3 nonlinear measurement model with additive measurement noise
given by g : Rnx × Rnv × Rnp → Rny , where

yk = gx,p(xk, p) , (5.14)

ŷk = g(xk, vk, p) = gx,p(xk, p) + vk , (5.15)

with bounded state xk ∈ X ⊂ Rnx , measurement noise vk ∈ V ⊂ Rnv , and bounded
uncertain and time-invariant parameters p ∈ P ⊂ Rnp . It is assumed that the state xk is
estimated as x̂k sufficiently well such that error is bounded, i.e.,

x̂k − xk ∈ W , ∀ k , (5.16)

and ||w|| <∞ , ∀w ∈ W .
The set P̂k|k denotes the set of parameters that are consistent with all state estimate

and measurement pairs (x̂1, ŷ1), (x̂2, ŷ2), ..., (x̂k, ŷk) and may be found as the intersection
of sets that are consistent each measurement P̂k, i.e.,

P̂k|k =
k⋂
1
P̂k , (5.17)

where

P̂k =

p

∣∣∣∣∣∣
yk = gx,p(xk, p) ,

(xk, yk) ∈ (x̂k ⊕ (−W))× (ŷk ⊕ (−V)) ,

xk ∈ X , vk ∈ V , p ∈ P .


The process to generate P̂k is an extension of the methods from Chapter 3. The identities
given in (3.3) and (3.5) map a set of inputs of a function to a set of outputs and vice
versa, while the process of generating ¯̂

Pk, maps a set that contains outputs and a subset
of inputs (x̂k, ŷk) to a subset of the inputs of g(·), associated with the parameters p.

3See Corollary 3.3.

133

Consider the graph of the function (5.15) given by

Φ =




xk

vk

p

ŷk


∣∣∣∣∣∣

ŷk = g(xk, vk, p) ,

xk ∈ X ,

vk ∈ V ,

p ∈ P


, (5.18)

and the set S given by

S =
[
0 0 Inp 0

]
Φ ∩Inx 0 0 0

0 0 0 Iny

 ((x̂k ⊕ (−W))× (ŷk ⊕ (−V)))

 . (5.19)

By direct applications of the generalized intersection and linear mapping identities,
S is equivalent to P̂k. The relationship of (3.5) to (5.19) is as follows. The set
((x̂⊕ (−W))× (ŷ ⊕ (−V))) from (5.19) can be cast as the set of outputs Q from (3.5).
Then the only differences are in the matrices of the generalized intersection and linear
mapping, which are needed to accommodate a relationship that is not a strict mapping
from outputs to inputs of the function g(·). If an over-approximation of Φ̄ ⊃ Φ is used,
then S ⊃ P̂k, as set containment is preserved under generalized intersection and linear
mapping.

5.3.1 Numerical Example: Sum of Signal Strengths

Consider the measurement

y =
2∑

i=1

1
d2

i + 1 , (5.20)

where di = ||x− pi||2 and
p1 = (−3, 2), p2 = (2,−2) , (5.21)

with xk, uk ∈ R2. One interpretation is that y is a measurement of the summation of
signal strengths emitted by two sources located at p1 and p2, where the strength of
signal from each source decreases with the inverse square of the distance from the source.
While the previous example focused on estimating the location of a vehicle based on
measurements from signals at known locations, the current example focuses on estimating
the signal locations as parameters.

134

The proposed methods account for estimation uncertainty and measurement noise, for
simplicity of exposition this example omits these, i.e., W = {0} and V = {0}. As in the
previous example, this makes it easier to assess the effect of using an over-approximated
graph of the nonlinear measurement function.

A functional decomposition is given by

w1 = x1, w11 = w2
7 ,

w2 = x2 , w12 = w2
8 ,

w3 = p(1,1) , w13 = w2
9 ,

w4 = p(1,2) , w14 = w2
10 ,

w5 = p(2,1) , w15 = w11 + w12 + 1 ,

w6 = p(2,2) , w16 = w13 + w14 + 1 ,

w7 = w1 − w3 , w17 = 1
w15

,

w8 = w1 − w4 , w18 = 1
w16

,

w9 = w2 − w5 , w19 = w17 + w18 ,

w10 = w2 − w6

and using the methods in Chapter 3 an over-approximation of graph of the function Φ̄ as
defined by (5.18) is constructed in 12 seconds for a domain xk, p1, p2 ∈

[
−5, 5

]2
. Using

the recursion (5.17), ¯̂
Pk|k , ∀ i ∈ {1, 2, ..., 10} are constructed in 0.2 seconds for ordered

pairs of states, shown in Figure 5.3, and outputs given by (5.15). The parameter sets
¯̂
Pk|k , ∀ i ∈ {1, 2, ..., 10} for the locations of each source p1 and p2 are shown in Figure 5.4,
and support functions taken at each time-step are shown in Figure 5.5. The 80 support
functions4 to generate the plot in Figure 5.5 were evaluated in 132 seconds, and indicate
that signal locations were narrowed down to a relatively small set containing the true
locations.

42 directions per dimension, 2 dimensions per per source, 2 sources, 10 steps

135

(a) k = 0 (b) k = 1

(c) k = 2 (d) k = 3

(e) k = 4

Figure 5.2: Set valued state estimation (5.5)-(5.6) of (5.7) with measurement model (5.8)
and its over-approximation represented as a hybrid zonotope given by Figure 5.1(b).

136

Figure 5.3: Measurement and signal source locations.

137

(a)

(b)

Figure 5.4: (a) Parameter identification of the location of the first source, p1 = (−3, 2).
(b) Parameter identification of the location of second source p2 = (2,−2).

138

(a)

(b)

Figure 5.5: (a) Bounds in axis-aligned directions for p1 = (−3, 2) found by support
functions. (b) Bounds in axis-aligned directions for p2 = (2,−2) found by support
functions. The 80 support functions used to find the axis-aligned bounds were evaluated
in 132 seconds.

139

Chapter 6 |
Conclusion

This thesis provides fundamental theoretic contributions to set-based methods for reach-
ability analysis and demonstrates their utility for verification, state estimation, and
parameter identification of hybrid and nonlinear systems. The proposed methods share a
common framework that leverages graphs of functions, hybrid zonotopes, special-ordered
set approximations, and functional decomposition.

The reachability analysis techniques address several classes of systems including
mixed-logical dynamical systems, linear systems in closed loop with MPC, discrete hybrid
automata, logical systems, and nonlinear systems in both open loop and closed loop with
neural network controllers. By generating sets that represent dynamics over a domain of
interest, the techniques can efficiently produce accurate reachable sets from large initial
sets, which often pose challenges to existing techniques, including state-of-the-art software
tools. Because analysis of reachable sets represented as hybrid zonotopes requires solving
mixed-integer linear programs, the approaches may be too computationally expensive for
online verification in many applications. However, because they can efficiently analyze
large initial sets and broad classes of systems, the proposed methods are well suited for
offline design and verification of complex systems and controllers.

The proposed state estimation and parameter identification techniques address non-
linear systems. Numerical examples demonstrate their ability to handle highly nonconvex
estimation problems, where more efficient convex approaches would incur excessive
approximation error.

While propagating the implicit reachable sets is fast, a fundamental challenge of the
methods in this thesis is that the analysis of resulting sets requires solving computationally-
intensive MILPs. Future work will seek to address these challenges through the use of
novel order reduction methods. Additionally, future work will seek to apply the proposed
methods for verification of real-world systems.

140

Appendix |
Computer Hardware Specifications

All numerical results were generated on a desktop computer using a 9th Generation
Intel® Core™ i7 processor with 16GB of random access memory storage.

141

Bibliography

[1] T. J. Bird, “Hybrid zonotopes: A mixed-integer set representation for the analysis
of hybrid systems,” Ph.D. dissertation, Purdue University, 2022.

[2] T. J. Bird, H. C. Pangborn, N. Jain, and J. P. Koeln, “Hybrid zonotopes: A new
set representation for reachability analysis of mixed logical dynamical systems,”
Automatica, vol. 154, p. 111107, 2023.

[3] M. Althoff and J. M. Dolan, “Online verification of automated road vehicles using
reachability analysis,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 903–918,
2014.

[4] M. Chen, Q. Hu, C. Mackin, J. F. Fisac, and C. J. Tomlin, “Safe platooning of
unmanned aerial vehicles via reachability,” in IEEE Conference on Decision and
Control, 2015, pp. 4695–4701.

[5] L. C. Barrett, “Applied reachability analysis for time-optimal spacecraft attitude
reorientations,” Ph.D. dissertation, Air Force Institute of Technology, Wright
Patterson Air Force Base, Ohio, 2021.

[6] A. A. Geraldes, L. Geretti, D. Bresolin, R. Muradore, P. Fiorini, L. S. Mattos, and
T. Villa, “Formal verification of medical cps: A laser incision case study,” ACM
Transactions on Cyber-Physical Systems, vol. 2, no. 4, 2018.

[7] A. Olama, P. R. Mendes, and E. F. Camacho, “Lyapunov-based hybrid model predic-
tive control for energy management of microgrids,” IET Generation, Transmission
& Distribution, vol. 12, no. 21, pp. 5770–5780, 2018.

[8] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability: A
brief overview and recent advances,” in IEEE Conference on Decision and Control,
2017, pp. 2242–2253.

[9] M. Bui, M. Lu, R. Hojabr, M. Chen, and A. Shriraman, “Real-time hamilton-jacobi
reachability analysis of autonomous system with an fpga,” in IEEE/RSJ Conference
on Intelligent Robots and Systems, 2021, pp. 1666–1673.

[10] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin, “De-
composition of reachable sets and tubes for a class of nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 63, no. 11, pp. 3675–3688, 2018.

142

[11] M. Chen, S. Herbert, and C. J. Tomlin, “Fast reachable set approximations via
state decoupling disturbances,” in IEEE Conference on Decision and Control, 2016,
pp. 191–196.

[12] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier
certificates,” in ACM Conference on Hybrid Systems: Computation and Control,
2004, pp. 477–492.

[13] Z. Yang, M. Wu, and W. Lin, “An efficient framework for barrier certificate
generation of uncertain nonlinear hybrid systems,” Nonlinear Analysis: Hybrid
Systems, vol. 36, p. 100837, 2020.

[14] M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques for reachability
analysis,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4,
no. 1, pp. 369–395, 2021.

[15] A. Kurzhanski and P. Varaiya, “On ellipsoidal techniques for reachability analysis.
part i: External approximations,” Optimization Methods & Software, vol. 17, no. 2,
pp. 177–206, 2002.

[16] H. Tiwary, “On the hardness of computing intersection, union and minkowski sum
of polytopes,” Discrete & Computational Geometry, vol. 40, p. 469–479, 2008.

[17] N. Kochdumper and M. Althoff, “Sparse polynomial zonotopes: A novel set
representation for reachability analysis,” IEEE Transactions on Automatic Control,
vol. 66, no. 9, pp. 4043–4058, 2021.

[18] K. Makino and M. Berz, “Taylor models and other validated functional inclusion
methods,” International Journal of Pure and Applied Mathematics, vol. 6, pp.
239–316, 2003.

[19] N. Kochdumper and M. Althoff, “Constrained polynomial zonotopes,” Acta Infor-
matica, vol. 60, pp. 279–316, 2023.

[20] P. S. Duggirala and M. Viswanathan, “Parsimonious, simulation based verification
of linear systems,” in Computer Aided Verification, 2016, pp. 477–494.

[21] A. Alanwar, F. J. Jiang, S. Amin, and K. H. Johansson, “Logical zonotopes: A set
representation for the formal verification of boolean functions,” arXiv: 2210.08596,
2022.

[22] A. Alanwar, F. J. Jiang, and K. H. Johansson, “Polynomial logical zonotopes: A
set representation for reachability analysis of logical systems,” arXiv: 2306.12508,
2023.

[23] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz, “Constrained
zonotopes: A new tool for set-based estimation and fault detection,” Automatica,
vol. 69, pp. 126–136, 2016.

143

[24] T. J. Bird, N. Jain, H. C. Pangborn, and J. P. Koeln, “Set-based reachability and
the explicit solution of linear mpc using hybrid zonotopes,” in American Control
Conference, 2022, pp. 158–165.

[25] T. J. Bird and N. Jain, “Unions and complements of hybrid zonotopes,” IEEE
Control Systems Letters, vol. 6, pp. 1778–1783, 2022.

[26] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,”
Theoretical Computer Science, vol. 138, no. 1, pp. 3–34, 1995, hybrid Systems.

[27] A. Bemporad, F. D. Torrisi, and M. Morari, “Optimization-based verification and
stability characterization of piecewise affine and hybrid systems,” in ACM Hybrid
Systems: Computation and Control, 2000, pp. 45–58.

[28] D. Liberzon, Switching in Systems & Control. Springer, 2003.

[29] A. Bemporad, “Modeling, control, and reachability analysis of discrete-time hybrid
systems,” University of Sienna, 2003.

[30] G. Frehse, R. Kateja, and C. Le Guernic, “Flowpipe approximation and clustering
in space-time,” in ACM Conference on Hybrid Systems: Computation and Control,
2013, p. 203–212.

[31] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reachability analysis
of piecewise-linear dynamical systems,” in ACM Conference on Hybrid Systems:
Computation and Control, 2000, pp. 20–31.

[32] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid
systems. Cambridge University Press, 2017.

[33] A. Bemporad, W. Heemels, and B. De Schutter, “On hybrid systems and closed-
loop mpc systems,” IEEE Transactions on Automatic Control, vol. 47, no. 5, pp.
863–869, 2002.

[34] W. Heemels, B. De Schutter, and A. Bemporad, “Equivalence of hybrid dynamical
models,” Automatica, vol. 37, no. 7, pp. 1085–1091, 2001.

[35] F. D. Torrisi and A. Bemporad, “Hysdel-a tool for generating computational hybrid
models for analysis and synthesis problems,” IEEE transactions on control systems
technology, vol. 12, no. 2, pp. 235–249, 2004.

[36] M. Althoff, “On computing the minkowski difference of zonotopes,” arXiv:
1512.02794, 2016.

[37] L. Yang and N. Ozay, “Scalable zonotopic under-approximation of backward
reachable sets for uncertain linear systems,” IEEE Control Systems Letters, vol. 6,
pp. 1555–1560, 2022.

144

[38] S. V. Rakovic, M. Baric, and M. Morari, “Max-min control problems for constrained
discrete time systems,” in IEEE Conference on Decision and Control, 2008, pp.
333–338.

[39] L. G. Giovanni Palmieri, Miroslav Barić and F. Borrelli, “Robust vehicle lateral
stabilisation via set-based methods for uncertain piecewise affine systems,” Vehicle
System Dynamics, vol. 50, no. 6, pp. 861–882, 2012.

[40] M. Althoff, “An introduction to cora 2015,” in Applied Verification for Continuous
and Hybrid Systems, vol. 34, 2015, pp. 120–151.

[41] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling, “Juliareach:
A toolbox for set-based reachability,” in ACM Conference on Hybrid Systems:
Computation and Control, 2019, p. 39–44.

[42] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen, W. Xiang,
S. Bak, and T. T. Johnson, “NNV: The neural network verification tool for deep
neural networks and learning-enabled cyber-physical systems,” in Computer Aided
Verification, 2020, pp. 3–17.

[43] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “Polar: A polynomial arithmetic
framework for verifying neural-network controlled systems,” in Symposium on
Automated Technology for Verification and Analysis, 2022, pp. 414–430.

[44] D. M. Lopez, M. Althoff, L. Benet, X. Chen, J. Fan, M. Forets, C. Huang, T. T.
Johnson, T. Ladner, W. Li et al., “ARCH-COMP22 category report: artificial
intelligence and neural network control systems (AINNCS) for continuous and
hybrid systems plants,” in Applied Verification of Continuous and Hybrid Systems,
2022.

[45] D. M. Lopez, M. Althoff, M. Forets, T. T. Johnson, T. Ladner, and C. Schilling,
“ARCH-COMP23 category report: Artificial intelligence and neural network con-
trol systems (AINNCS) for continuous and hybrid systems plants,” in Applied
Verification of Continuous and Hybrid Systems, vol. 96, 2023, pp. 89–125.

[46] N. Kochdumper, C. Schilling, M. Althoff, and S. Bak, “Open- and closed-loop
neural network verification using polynomial zonotopes,” in NASA Formal Methods,
K. Y. Rozier and S. Chaudhuri, Eds., 2023, pp. 16–36.

[47] T. Ladner and M. Althoff, “Automatic abstraction refinement in neural network
verification using sensitivity analysis,” in ACM Conference on Hybrid Systems:
Computation and Control, 2023.

[48] C. Schilling, M. Forets, and S. Guadalupe, “Verification of neural-network control
systems by integrating taylor models and zonotopes,” in AAAI Conference on
Artificial Intelligence, vol. 36, no. 7, 2022, pp. 8169–8177.

145

[49] F. Schweppe, “Recursive state estimation: Unknown but bounded errors and system
inputs,” IEEE Transactions on Automatic Control, vol. 13, no. 1, pp. 22–28, 1968.

[50] L. Chisci, A. Garulli, and G. Zappa, “Recursive state bounding by parallelotopes,”
Automatica, vol. 32, no. 7, pp. 1049–1055, 1996.

[51] H. Wang, I. Kolmanovsky, and J. Sun, “Zonotope-based set-membership parameter
identification of linear systems with additive and multiplicative uncertainties: A
new algorithm,” in American Control Conference, 2017, pp. 1481–1486.

[52] B. S. Rego, J. K. Scott, D. M. Raimondo, and G. V. Raffo, “Set-valued state
estimation of nonlinear discrete-time systems with nonlinear invariants based on
constrained zonotopes,” Automatica, vol. 129, p. 109638, 2021.

[53] B. S. Rego, D. Locatelli, D. M. Raimondo, and G. V. Raffo, “Joint state and
parameter estimation based on constrained zonotopes,” Automatica, vol. 142, p.
110425, 2022.

[54] J. Koeln, T. J. Bird, J. Siefert, J. Ruths, H. Pangborn, and N. Jain, “zonolab:
A matlab toolbox for set-based control systems analysis using hybrid zonotopes,”
arXiv: 2310.15426, 2023.

[55] G. Brassard and P. Bratley, Fundamentals of algorithmics. Prentice-Hall, Inc.,
1996.

[56] A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal toolbox (ET),” in IEEE Conference
on Decision and Control, 2006, pp. 1498–1503.

[57] S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling, “Reach
set approximation through decomposition with low-dimensional sets and high-
dimensional matrices,” in ACM Conference on Hybrid Systems: Computation and
Control, 2018, pp. 41–50.

[58] M. Althoff and G. Frehse, “Combining zonotopes and support functions for efficient
reachability analysis of linear systems,” in IEEE Conference on Decision and
Control, 2016, pp. 7439–7446.

[59] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online].
Available: https://www.gurobi.com

[60] J. A. Siefert, T. J. Bird, J. P. Koeln, N. Jain, and H. C. Pangborn, “Robust
successor and precursor sets of hybrid systems using hybrid zonotopes,” in IEEE
Control Systems Letters, vol. 7, 2023, pp. 355–360.

[61] J. Glunt, J. Siefert, H. Pangborn, and S. Brennan, “Challenges in integrating
low-level path following and high-level path planning over polytopic maps,” in
Modeling, Estimation, and Controls Conference, 2023.

146

https://www.gurobi.com

[62] J. A. Siefert, T. J. Bird, J. P. Koeln, N. Jain, and H. C. Pangborn, “Reachability
analysis of nonlinear systems using hybrid zonotopes and functional decomposition,”
arXiv: 2304.06827v1, 2023.

[63] J. A. Siefert, A. F. Thompson, J. J. Glunt, and H. C. Pangborn, “Set-valued state
estimation for nonlinear systems using hybrid zonotopes,” in IEEE Conference on
Decision and Control, 2023.

[64] T. Gan, M. Chen, Y. Li, B. Xia, and N. Zhan, “Reachability analysis for solvable
dynamical systems,” IEEE Transactions on Automatic Control, vol. 63, no. 7, pp.
2003–2018, 2017.

[65] A. Bemporad, G. Ferrari-Trecate, and M. Morari, “Observability and controllability
of piecewise affine and hybrid systems,” IEEE Transactions on Automatic Control,
vol. 45, no. 10, pp. 1864–1876, 2000.

[66] J. Roll, “Local and piecewise affine approaches to system identification,” Ph.D.
dissertation, Linköping University, 2003.

[67] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A bounded-error approach to
piecewise affine system identification,” IEEE Transactions on Automatic Control,
vol. 50, no. 10, pp. 1567–1580, 2005.

[68] C. Y. Lai, C. Xiang, and T. H. Lee, “Identification and control of nonlinear systems
via piecewise affine approximation,” in IEEE Conference on Decision and Control,
2010, pp. 6395–6402.

[69] ——, “Data-based identification and control of nonlinear systems via piecewise
affine approximation,” IEEE Transactions on Neural Networks, vol. 22, no. 12, pp.
2189–2200, 2011.

[70] E. Asarin, T. Dang, and A. Girard, “Reachability analysis of nonlinear systems using
conservative approximation,” in ACM Conference on Hybrid Systems: Computation
and Control, 2003, pp. 20–35.

[71] R. Baier, C. Büskens, I. A. Chahma, and M. Gerdts, “Approximation of reachable
sets by direct solution methods for optimal control problems,” Optimisation Methods
and Software, vol. 22, no. 3, pp. 433–452, 2007.

[72] E. M. L. Beale and J. A. Tomlin, “Special facilities in a general mathematical
programming system for non-convex problems using ordered sets of variables,”
Operational Research, vol. 69, no. 447-454, p. 99, 1970.

[73] S. Leyffer, A. Sartenaer, and E. Wanufelle, “Branch-and-refine for mixed-integer
nonconvex global optimization,” Mathematics and Computer Science Division,
Argonne National Laboratory, vol. 39, pp. 40–78, 2008.

147

[74] E. Wanufelle, “A global optimization method for mixed integer nonlinear non-
convex problems related to power systems analysis,” Ph.D. dissertation, Facultés
Universitaires Notre-Dame de la Paix, 2007.

[75] S. Kozak and J. Stevek, “Improved piecewise linear approximation of nonlinear
functions in hybrid control,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 14 982–
14 987, 2011.

[76] A. Szűcs, M. Kvasnica, and M. Fikar, “Optimal piecewise affine approximations
of nonlinear functions obtained from measurements,” IFAC Proceedings Volumes,
vol. 45, no. 9, pp. 160–165, 2012.

[77] E. H. S. Diop, A. Ngom, and V. S. Prasath, “Signal approximations based on
nonlinear and optimal piecewise affine functions,” Circuits, Systems, and Signal
Processing, vol. 42, no. 4, pp. 2366–2384, 2023.

[78] A. Magnani and S. P. Boyd, “Convex piecewise-linear fitting,” Optimization and
Engineering, vol. 10, pp. 1–17, 2009.

[79] S. Rebennack and J. Kallrath, “Continuous piecewise linear delta-approximations
for univariate functions: computing minimal breakpoint systems,” Journal of
Optimization Theory and Applications, vol. 167, no. 2, pp. 617–643, 2015.

[80] M. Stämpfle, “Optimal estimates for the linear interpolation error on simplices,”
Journal of Approximation Theory, vol. 103, no. 1, pp. 78–90, 2000.

[81] A. N. Kolmogorov, “On the representation of continuous functions of many variables
by superposition of continuous functions of one variable and addition,” in Doklady
Akademii Nauk, vol. 114, no. 5, 1957, pp. 953–956.

[82] V. Kůrková, “Kolmogorov’s theorem is relevant,” Neural Computation, vol. 3, no. 4,
pp. 617–622, 1991.

[83] M. Kvasnica, A. Szücs, and M. Fikar, “Automatic derivation of optimal piecewise
affine approximations of nonlinear systems,” IFAC Proceedings Volumes, vol. 44,
no. 1, pp. 8675–8680, 2011.

[84] E. Dijkstra, “Algol 60 translation : An algol 60 translator for the x1 and making a
translator for algol 60,” 1961.

[85] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang, “Worm origin
identification using random moonwalks,” in IEEE Symposium on Security and
Privacy, 2005, pp. 242–256.

[86] H. P. Williams, Model building in mathematical programming. John Wiley & Sons,
2013.

148

[87] M. Althoff, “Reachability analysis and its application to the safety assessment of
autonomous cars,” Ph.D. dissertation, Institute of Automatic Control Engineering,
Technische Universität München, 2010.

[88] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics, and
constraints,” Automatica, vol. 35, no. 3, pp. 407–427, 1999.

[89] A. Lodi, Mixed Integer Programming Computation. Springer Berlin Heidelberg,
2010, pp. 619–645.

[90] M. Althoff, O. Stursberg, and M. Buss, “Computing reachable sets of hybrid
systems using a combination of zonotopes and polytopes,” Nonlinear Analysis:
Hybrid Systems, vol. 4, no. 2, pp. 233–249, 2010.

[91] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear
quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20,
2002.

[92] Y. Zhang and X. Xu, “Reachability analysis and safety verification of neural
feedback systems via hybrid zonotopes,” in American Control Conference, 2023,
pp. 1915–1921.

[93] J. Ortiz, A. Vellucci, J. Koeln, and J. Ruths, “Hybrid zonotopes exactly represent
relu neural networks,” in Machine Learning Research, 2023.

[94] H. Zhang, Y. Zhang, and X. Xu, “Hybrid zonotope-based backward reachabil-
ity analysis for neural feedback systems with nonlinear system models,” arXiv:
2310.06921, 2023.

[95] J. A. Siefert, T. J. Bird, J. P. Koeln, N. Jain, and H. C. Pangborn, “Successor sets
of discrete-time nonlinear systems using hybrid zonotopes,” in American Control
Conference, 2023, pp. 1383–1389.

[96] MATLAB, “version 9.10.0 (r2021a),” The MathWorks Inc., Natick, Massachusetts,
2022.

[97] J. A. Siefert, D. D. Leister, J. P. Koeln, and H. C. Pangborn, “Discrete reachability
analysis with bounded error sets,” IEEE Control Systems Letters, vol. 6, pp.
1694–1699, 2021.

[98] D. Simon, Optimal State Estimation. John Wiley & Sons, Ltd, 2006.

[99] D. M. Raimondo, G. R. Marseglia, R. D. Braatz, and J. K. Scott, “Closed-loop
input design for guaranteed fault diagnosis using set-valued observers,” Automatica,
vol. 74, pp. 107–117, 2016.

[100] N. Loukkas, J. J. Martinez, and N. Meslem, “Set-membership observer design based
on ellipsoidal invariant sets,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 6471–6476,
2017.

149

[101] Y. Wang, V. Puig, and G. Cembrano, “Set-membership approach and kalman
observer based on zonotopes for discrete-time descriptor systems,” Automatica,
vol. 93, pp. 435–443, 2018.

[102] V. T. H. Le, C. Stoica, T. Alamo, E. F. Camacho, and D. Dumur, “Zonotopic
guaranteed state estimation for uncertain systems,” Automatica, vol. 49, no. 11,
pp. 3418–3424, 2013.

[103] C. Combastel, “A state bounding observer for uncertain non-linear continuous-time
systems based on zonotopes,” in IEEE Conference on Decision and Control, 2005,
pp. 7228–7234.

[104] B. S. Rego, D. M. Raimondo, and G. V. Raffo, “Set-based state estimation of
nonlinear systems using constrained zonotopes and interval arithmetic,” in European
Control Conference, 2018, pp. 1584–1589.

[105] B. S. Rego, G. V. Raffo, J. K. Scott, and D. M. Raimondo, “Guaranteed methods
based on constrained zonotopes for set-valued state estimation of nonlinear discrete-
time systems,” Automatica, vol. 111, p. 108614, 2020.

150

Vita
Jacob A. Siefert

Jacob Siefert received his B.S. degree in Mechanical Engineering from the University
of Maryland in 2016, and went on to complete his M.S. degree in Mechanical Engineering
from the University of Minnesota in 2021. In 2020 he began working as a Ph.D. student
and Research Assistant with his advisor, Professor Herschel Pangborn, at The Pennsylva-
nia State University. He has accepted a Research Faculty position at The Pennsylvania
State University starting in January 2024. His research interests include optimal control,
co-design, hybrid systems, and reachability-based verification.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Motivation and Background
	Reachability Analysis
	Set Representations
	Set Propagation Techniques for Discrete-Time Hybrid Systems
	Set Propagation Techniques for Nonlinear Systems
	Set-Based Methods for State Estimation and Parameter Identification

	Contributions
	Document Organization

	Preliminaries
	Notation
	Set Operations
	Set Representations
	Ellipsoids, Convex Polytopes, and Zonotopes
	Constrained Zonotopes
	Hybrid Zonotopes
	Introduction
	Definition
	Analyses
	Set Operations
	Linear Mapping, Minkowski Sum, Generalized Intersection, and Generalized Halfspace Intersection
	Unions of Hybrid Zonotopes
	Minkowski Difference with a Zonotope

	Exact Set Representation Conversions
	Collections of CG-rep Polytopes to HCG-rep
	Collections of H-rep Polytopes to HCG-rep
	Collections of V-rep Polytopes to HCG-rep

	Approximate Set Representation Conversion
	Interval Over-approximation of HCG-rep
	Polytope Over-approximation of HCG-rep

	Graphs of Functions
	Definition and Input-Output Identities
	Set Representations for Graph of Function Input-Output Identities
	Hybrid Zonotopes for Graph of Function Input-Output Identities

	Special Ordered Set Approximations
	SOS Approximations Using Hybrid Zonotopes
	Hybrid Zonotope Over-approximations for Graphs of Nonlinear Functions
	Bounding SOS Approximation Error

	Unary SOS Construction
	Method 1 (Bisection Advance):
	Method 2 (Thrice Differentiable Functions):
	Comparison of SOS Construction Methods

	Functional Decomposition
	Introduction and Definition
	Construction of High-Dimensional Graphs of Functions
	Avoiding the Curse of Dimensionality

	Automated Functional Decomposition
	Reverse Polish Notation
	RPN to Functional Decomposition (Scalar-valued Function)
	Redundant Observables
	Excessive Decomposition of Unary Functions

	RPN to Functional Decomposition (Vector-valued Function)

	Separable Bilinear Functions

	Hybrid Zonotope Graphs of Common Functions
	Absolute Value (Exact)
	Satisfaction of Inequality (Approximate)
	Sign (Approximate)
	Rectified Linear Unit (Exact)
	Minimum (Exact)
	Boolean (Exact)
	Identity with Boolean On/Off Switch (Exact)

	Reachability Analysis
	Introduction
	Hybrid Systems
	Literature Review
	Mixed Logical Dynamical Systems
	Introduction
	Proposed Method
	Numerical Examples
	Two-Equilibrium System
	Thermostat-Controlled Heated Room

	Linear Systems with Model Predictive Controllers
	Introduction
	Proposed Method
	Numerical Example
	Maximal Positive Invariant Set for a Double Integrator Under MPC

	Discrete Hybrid Automata
	Introduction
	Numerical Examples
	Example DHA Functional Decomposition
	Thermostat-Controlled Heated Room Revisited

	Logical Systems
	Introduction
	Proposed Method
	Numerical Example: High Dimensional Boolean Function

	Neural Network Control Systems
	Introduction
	Proposed Method
	Dynamics
	Open-Loop and Closed-Loop State-Update Sets
	Functional Decomposition of Neural Networks

	Numerical Examples
	Single Pendulum with Neural Network Controller
	Case 1:
	Case 2 (ARCH-COMP Single Pendulum):

	Vertical Collision Avoidance System

	Set-Valued State Estimation and Parameter Identification
	Introduction
	Set-Valued State Estimation
	Numerical Example: Sum of Signal Strengths

	Set-Valued Parameter Identification
	Numerical Example: Sum of Signal Strengths

	Conclusion
	Computer Hardware Specifications
	Bibliography

