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Abstract 

The target reservoirs in many CO2 sequestration projects exhibit point bar geology 

characterized by the presence of shale drapes that can act as barriers to prevent the leakage of CO2. 

However, these shale drapes can also act as flow barriers and impede the displacement of CO2 in such 

reservoirs and restrict the storage volume. Therefore, developing a framework for modeling point bars 

and their associated heterogeneities is important. Yet, for the point bar model to be geologically 

realistic and reliable for predicting the displacement of the CO2 plume during sequestration, it should 

be calibrated by assimilating historical production/injection data to reduce the uncertainties associated 

with predictions of flow performance. Even so, due to the complex geologic heterogeneity exhibited 

by point bars, there is likely to be significant residual uncertainty even after assimilating historical flow 

performance related data. The calibrated models are further refined by assimilating timelapse seismic 

data in a Bayesian model selection workflow to sub-select the most-probable models that best reflect 

the reservoir characteristics closely. Given the interlinked nature of these modeling efforts, this 

dissertation proposes an integrated modeling workflow to accomplish the research objectives. The 

workflow begins with detailed geometric and geologic modeling of point bar reservoirs, and 

subsequent calibration of the models by assimilating CO2 injection data and time-lapse seismic 

information.  

A stochastic approach that considers the processes leading to the deposition of the point bar is 

proposed to model the point bar and its associated heterogeneities. The method uses geometric 

functions to model the areal and vertical dimensions of the point bar reservoir. Preserving the 

curvilinear continuity of the point bar geometry is very difficult and this has been accomplished by 

implementing a gridding scheme that accounts for the aerial geometry of the accretion surfaces as well 

as the sigmoidal geometry of the inclined heterolithic stratifications. Also, the spatial continuity of the 

unique heterogeneities that characterize point bar reservoirs was honored by incorporating a grid 

transformation scheme in the geostatistical simulation of the reservoir properties. The residual 

uncertainty associated with the geological modeling process was represented by generating several 

realizations of point bar reservoir models.  

The model calibration workflow seeks to reduce the uncertainty associated with the prediction 

of reservoir properties over the ensemble of point bar reservoir models. The workflow developed in 

this research addresses two challenges common to many history matching techniques: (1) failure to 

account for uncertainties in reservoir geometry despite the influence that the reservoir architecture can 

have on reservoir response variables, (2) inability to handle the non-Gaussian relationship between the 
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primary state variables and secondary variables for reservoirs with complex heterogeneities (such as 

point bars) within current ensemble-based schemes. 

These challenges were addressed in a hierarchical, two-step approach using ensemble-based data 

assimilation techniques. In step 1, we tackled the first challenge by implementing ensemble Kalman 

Filter (EnKF) to update the geometry of the point bar reservoir. For step 2, we used the updated 

reservoir geometry determined in step 1 to tackle the second problem by implementing a modified 

Indicator-based Data Assimilation (InDA) to update the permeability distribution in the point bar 

system. To accommodate the curvilinear geometry of the reservoir implemented while still 

implementing InDA in a Cartesian framework, we incorporated a grid transformation scheme.  

This two-step model calibration approach reduces but does not eliminate the uncertainty 

associated with the models for the point bar reservoir. Further reduction in uncertainty is possible by 

integrating additional data in the form of time-lapse information. In this research, we implement a 

Bayesian model selection workflow to further reduce the uncertainty associated with the models for 

the point bar reservoir. The model selection algorithm is used to create a posterior set of models that 

reflect the time-lapse seismic information that may be available for the field site. The algorithm 

proceeds by: (1) computing discrete Fréchet distances to quantify the similarity in post-injection 

seismic responses obtained from a large prior ensemble of models, (2) combining multidimensional 

scaling with k-means clustering, to partition the models into subgroups based on their seismic 

responses, (3) performing Bayesian computations in the reduced model space to select the subgroup 

of models that yield response closest to the observed seismic information, and (4) iteratively sampling 

the posterior models, to further refine the selection of the model clusters. The applicability of the entire 

integrated workflow to a real field scenario is demonstrated, using the CO2 injection and timelapse 

seismic dataset for the Cranfield reservoir in Mississippi. The final ensemble of selected models can 

be used to assess the uncertainty in predicting CO2 storage capacity and the future displacement of CO2 

plume.  
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Chapter 1 Introduction 

Point bars (Fig. 1.1) are channel sediments that accumulate when sinuous or meandering rivers 

or channels migrate laterally over a geologic period. The migration is due to the erosion of channel 

sediments from the outer bend of the channel (cut bank) , and subsequent deposition of the eroded 

sediments into the inner bed of the channel (Nanson and Croke, 1992; Willis & Tang, 2010). Point 

bars can serve as high storage capacity reservoirs. For example, the Athabasca Oil Sands deposit in the 

Lower Cretaceous McMurray Formation in Canada—which hosts one of the world’s largest heavy oil 

accumulations—is predominantly composed of point bar deposits(Austin-Adigio et al., 

2018;Labrecque et al., 2011). The Widuri field (Carter, 2003) and the Little Creek Field in 

southwestern Mississippi (Werren et al., 1990) are other examples. Also, the Cranfield, Mississippi 

reservoir which is considered by several studies ( e.g., Daley et al., 2014; Delshad et al., 2013; Lu et 

al., 2013a; Yang et al., 2013; Zhang et al., 2013) as a viable candidate for CO2 sequestration 

experiments is characterized as a point bar reservoir. 

 

Fig. 1.1 Aerial view of a point bar. As the meandering channel migrates outwards towards the outer 

bend, channel sediments are eroded from the outer bend of the channel meander (i.e., the cutbank) and 

are deposited at the inner bend of the meander. Adopted from (Güneralp & Marston, 2012). 
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However, point bars exhibit complex spatial heterogeneity (Su et al., 2013) that can influence 

their exploitation for hydrocarbon production and CO2 sequestration. The heterogeneity varies in 

different spatial directions due to the changing flow dynamics of the meandering river as it interacts 

with the topography. Accurate and efficient modeling of the point bar requires an understanding of the 

river flow dynamics and how that impacts the patterns of heterogeneities. As a sediment-charged river 

flows from upstream to downstream, the energy associated with the flow reduces(Leopold and 

Wolman, 1960; Thompson, 1986). Consequently, the coarser sediments (i.e., sand-prone sediments) 

are deposited first while the finer ones (i.e., mud-prone sediments) are carried in suspension until they 

are deposited later when the flow medium energy is low enough. This gives the point bar a fining trend 

in the downstream direction (Fustic et al., 2012; Labrecque et al., 2011; Thomas et al., 1987). The same 

difference in energy of the flow is seen if one progresses laterally across the channel meander. At the 

outer bank (i.e., cut bank), the energy associated with the flow medium is high while the flow weakens 

at the inner bank (Nanson, 1980). This encourages deposition of sediments in a manner that fines into 

the inner bend of the channel (Jackson, 1976). In the vertical direction, the contrasting densities in 

sediments causes an overall fining upward succession(Allen, 1965). Lateral migration of the channel 

leads to the formation of lateral accretion surfaces, the vertical component of which is the inclined 

heterolithic stratification (IHS) surfaces (Fig. 1.2). Within each IHS unit, grain sizes decrease in the 

direction perpendicular to the inclined surfaces. Shale draping occurs along the surfaces of the lateral 

accretions and the IHS (Pranter et al., 2007). 

The impact of the shale drapes on hydrocarbon fluid flow and production can be significant 

(Willis and White, 2000). They are potential flow baffles (Hartkamp-Bakker and Donselaar, 1993; 

Richardson et al., 1978), as they interrupt reservoir connectivity and impede fluid flow (Awejori & 

Radonjic, 2022). This in turn affects the distribution of fluids, sweep efficiency, breakthrough time and 

the overall recovery efficiency of recovery schemes in point bar reservoirs (Awejori et al., 2021, 2022; 

Davies & Haldorsen, 1987; Jackson & Muggeridge, 2000; Pranter et al., 2007; Stephen et al., 2001). 

In CO2 storage scenarios, the heterogeneities can affect the migration of the CO2 plume and the storage 

capacity of the reservoir (Issautier et al., 2013, 2014). 
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Fig. 1.2 Point bar schematic showing laterally accreting inclined heterolithic stratifications formed by 

lateral migration of a sinuous river. Adapted from (McMahon & Davies, 2018). 

 

Several studies have attempted to model or characterize point bar reservoir heterogeneities. 

Some works have relied on outcrop analogs to model point bars (e.g., Pranter et al., 2007; Musial et al, 

2013). As impactful as these works have been, it is worth mentioning that outcrop data are generally 

sparse and are affected by factors such as weathering. Therefore, models derived solely from outcrop 

observations may not accurately reflect the reservoir characteristics under subsurface conditions. This 

may lead to a difficulty in reconciling subsurface information with surface or outcrop observations. 

This observation has also been  reinforced in  earlier works by (Nardin et al, 2013; Li and Srinivasan, 

2015; Durkin et al., 2017). Some of these prior modeling approaches are largely deterministic (e.g., 

Musial et al., 2013) and do not allow for the assessment of uncertainties. However, considering the 

high level of uncertainty associated with the precise pattern of heterogeneity exhibited by point bar 

features such as the shale drapes, deterministic predictions of process performance such as recovery of 

hydrocarbons or injection of CO2 for subsurface sequestration may completely miss the mark. In 

contrast, stochastic schemes (e.g.Pyrcz and Deutsch, 2004; Pyrcz et al., 2009; Yin, 2013) account for 

uncertainties. Stochastic-based models used for representing fluvial bodies could be object-based 

models, process-based models, surface-based models, or geostatistical models.  

Object-based methods (e.g., Boisvert, 2011; Deutsch & Wang, 1996; Deutsch & Tran, 2002; 

Yin, 2013) model fluvial reservoirs as spatial objects defined by a conceptual geometric model and 

stochastically embed the objects within a background matrix. The placement of these objects is driven 

by a probabilistic criterion such as a Poisson distribution. These methods are particularly applicable 
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when the geometry of the geobody is well understood and can be defined using simple parametric 

objects (Hassanpour et al., 2013). Some object-based methods are iterative (e.g., Deutsch & Tran, 

2002), and data conditioning is realized via an objective function that accounts for the mismatch 

between facies proportions and the conditioning data. For the iterative object-based methods, data 

conditioning is difficult when there is a large dataset to be honored. Some non-iterative object-based 

approaches can overcome this drawback. Viseur et al., (2001) and Shmaryan and Deutsch, (1999) 

developed an object-based technique that efficiently generates channels such that, by construction, the 

well or hard data is honored non-iteratively. Well data is interpreted as channel sand or non-channel 

sand facies (e.g., shale, levee, splay). The algorithm works such that the objects by construction pass 

through the data locations. The non-iterative techniques can easily honor large datasets; they are also 

very fast in simulating channelized bodies. However, the non-iterative techniques can be challenged 

when implemented on spatially dense data such as those from horizontal wells, because then the 

process of conditioning while preserving the geometric description of the objects becomes difficult.  

Process-based models, on the other hand, represent reservoir geology by simulating the 

fundamental processes that cause migration of meandering rivers (e.g., point bars). Sun et al., (1996) 

proposed a process-based model to study channel meander migration process. The model is based on 

the bend theory of river meanders by Ikeda, et al., (1981), and is similar to the work of Howard, (1983). 

Other process-based studies include (Pyrcz, 2001; Pyrcz and Deutsch, 2004; Pyrcz et al., 2009; Shu et 

al., 2015). For all these works, channel meander migration is determined from equation 1.1 (Ikeda, et 

al., 1981; Sun, et al., 1996)  

𝜉 =  𝐸𝑢𝑠𝑏                                                                                                                                                  (1.1) 

where   is the meander migration rate, E  is the erosion coefficient and sbu is the near-bank velocity 

which is determined from equation (1.2) (Sun, et al., 1996).    

𝑢𝑠𝑏 = −𝑏𝑢𝑠𝑜𝐶   +  
𝑏𝐶𝑓
𝑢𝑠𝑜

[
𝑢𝑠𝑜
4

𝑔ℎ𝑜2
 + (𝐴′ + 2)

𝑢𝑠𝑜
2

ℎ𝑜
] ⋅ ∫ 𝑒𝑥𝑝(

−2𝐶𝑓𝑠′

ℎ𝑜
) ⋅ 𝐶(𝑠 − 𝑠′)𝑑𝑠                     (1.2)′

∞

0

 

where b  is the channel or river half width, sou  is the mean flow velocity, C  is the local channel 

curvature of the channel centerline, fC  is the frictional coefficient, g  is the gravitational constant, 

oh  is the average depth of channel, A' is the scour factor (A'>0) and s is the coordinate along the river 

central line. 
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Process-based methods can produce geologically realistic models because they account for the erosion, 

deposition, and sedimentation processes in fluvial reservoir formation. Due to this, they have found 

many applications in fluvial reservoir modeling, particularly in reproducing the geologic heterogeneity 

in point bar reservoirs. Pyrcz and Deutsch, (2004) used this method to generate IHS models by 

simulating the lateral migration of channels, while Willis and Tang, (2010) applied this method to 

develop 3D models for architectural connectivity in point bars to capture flow barriers. However, just 

like object-based methods, conditioning process-based models to data remains an unresolved 

challenge. 

Surface-based methods (e.g., Niu et al., 2021; Pyrcz et al., 2005) model fluvial bodies using 

the bounding surfaces of architectural elements. The surfaces represent the transition between 

sedimentary events that have been preserved during the processes of erosion and deposition. The 

underlying principle for this method is to initiate the modeling process from a given base surface and 

generate a new surface from the base surface, by stacking the depositional or erosional events. The 

process is subsequently repeated by taking the new surface as the base surface upon which the next 

event is stacked (Bertoncello et al., 2013). Some of these methods (e.g., Ruiu et al, 2016; Zhang et. al, 

2018) are very efficient in modeling complex geometries of fluvial reservoirs like point bars. For 

surface-based methods, if one does not have a good working knowledge of the surfaces, accurate 

delineation of the bounding surfaces of architectural elements can be elusive. Thus, aliasing can occur 

at the interfaces between successive fluvial bodies. Additionally, surface-based methods can be very 

difficult to constrain to data (Bertoncello et al., 2013). Another concern with these methods is that their 

implementation can be time-consuming and computationally burdensome due to the fine mesh that is 

required to preserve the smoothness of the surfaces.  

Geostatistical methods (e.g., Sequential Indicator Simulation (Deutsch, 2006)) have also 

featured prominently in the modeling of point bars and are very useful particularly in the case of sparse 

or insufficient dataset. These methods use statistical measures such as semi-variograms or multiple 

point statistics (MPS) to describe the spatial continuity of reservoir rock types. As these methods 

increasingly become popular among researchers and modelers, so are research attempts targeted at 

solving the challenges in their implementation. In recent times, some studies have focused on reducing 

the computational burden associated with geostatistical methods using multiple point statistics (e.g., 

Cui et al., 2021) or hybrid MPS and machine learning based methods (e.g., Bai & Tahmasebi, 2021). 

Others (e.g., Yao et al., 2021) have addressed the problem of using training images as statistical 

analogs, which stem from the conflicts that occur between training images and sample data, especially 
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in the MPS method. In simulating spatial attributes, the authors use kernels to develop a learning-based 

algorithm for geostatistical interpolation, based on high-order spatial statistics that matches the spatial 

attributes of the target model. de Figueiredo et al., (2021) have also proposed the Direct Multivariate 

Simulation method to handle the modeling problems associated with generating multiple realizations 

of random fields, particularly where there is complex multivariate distribution with heteroscedastic and 

non-linear relations among variables.  

The geostatistical methods offer the greatest advantage in terms of reproducing geological realism 

while representing the high degree of associated uncertainty. Yet, despite these successes, geostatistical 

methods are faced with a common problem regarding the preservation of heterogeneities for reservoirs 

with complex curvilinear architecture like point bars. Geostatistical methods rely on rectilinear grids 

(i.e., orthogonal grids) to model spatial properties. However, given the curvilinear architecture of point 

bars, modeling the properties on a rectilinear grid cannot properly represent the curvilinear continuity 

of the heterogeneities. Even the geostatistical simulation techniques that can be constrained to multiple 

point statistics (e.g., Caers and Zhang, 2005; Eskandari and Srinivasan, 2010)), cannot sufficiently 

capture the erosional surfaces (Li and Srinivasan, 2015), which are major discontinuity surfaces that 

typify point bars. And as has long been recognized (Giordano et al., 1985; Haldorsen & Chang, 1986), 

the continuity of channels or shale drapes controls the fluid flow in heterogeneous porous media such 

as point bars. For this reason, the inability of the conventional geostatistical methods to adequately 

preserve these salient heterogeneities may compromise flow simulation results from geostatistically 

generated point bar models. 

Furthermore, owing to the thinness of the shale drapes, if they are modeled using an extremely fine 

mesh—as is typically the case—the computational cost can escalate steeply, and subsequent upscaling 

may also destroy the shale drape continuity. The modeling difficulties are further compounded by 

uncertainties stemming from multiple sources. An example is the high level of uncertainty associated 

with the location and proportion of shale drapes on the IHS surfaces. The location and proportion of 

shale drapes are difficult to infer from well data and seismic information, due to the sparsity of well 

data and the insufficient resolution of seismic data to adequately capture such thin features. Other 

sources of uncertainty are the geometry of the point bar, and the location of the channel path, which 

are again, difficult to infer due to the sparsity of well data. 

To reduce model uncertainties, dynamic data such as production and injection data are typically 

assimilated into geologic models. This data assimilation process (i.e., history matching) is a model 

calibration procedure that adjusts the reservoir model parameters to reflect field observations. Many 
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of the proposed history matching methods capture prior uncertainty in models by generating initial 

ensemble of models using geostatistical simulation. The most commonly used ensemble-based method 

is the Ensemble Kalman Filter (EnKF) (Geir Evensen, 2003), in which updates are performed on the 

initial ensemble of models by assimilating observed secondary variables (e.g., pressure). The EnKF 

can assimilate multiple data and is computationally efficient. The underlying assumption of the EnKF 

is that the joint relationship between the primary state variables (e.g., permeability) and the secondary 

state variables (e.g., flow rate) is multivariate Gaussian, and therefore optimally represented using a 

linear update equation. However, this is a simplification that renders the EnKF incapable of performing 

optimal updates in cases where the state variables describing the reservoir are described by a non-

Gaussian distribution and hence the optimal form of the update equation for state variables is nonlinear.  

Apart from the ensemble-based methods, there are non-ensemble based data assimilation methods like 

the gradual deformation method (Hu, 2000), which reduces the history matching problem to a basic 

optimization problem. This method requires the reservoir geology to follow a Gaussian distribution; 

therefore, it is ill-suited for complex reservoir geologies with curvilinear architecture such as point bars 

that exhibit a high degree of continuity that is impossible to preserve in a Gaussian model. A more 

suitable history matching method for complex reservoirs is the probability perturbation method (Caers, 

2003a). However, a common problem with both methods is deterioration of performance due to poor 

convergence. The parameterizations used in these methods limit the search space for optimization, 

which results in a poor convergence (Johansen & Stenby, 2005). Detailed discussions of different 

history matching techniques are done later in this dissertation. 

Data to be assimilated in reservoir modeling workflows can come from several sources. Apart from 

production and injection data that are commonly integrated, timelapse seismic information is also 

assimilated using both ensemble-based and non-ensemble-based methods. Seismic forward models are 

obtained by using rock-physics modeling, commonly based on the (Gassmann, 1951) method, to derive 

elastic properties and seismic properties from reservoir (e.g., porosity, mineral composition) and fluid 

properties (e.g., saturation, pressure, density). 

Time lapse seismic data integration poses some challenges to the data assimilation workflow. For one, 

due to the frequency of seismic surveys, time lapse seismic data can be exceptionally large volumes of 

data to be integrated into the data assimilation workflow. This can be computationally demanding and 

time consuming (Yin et al., 2019). In the case of EnKF, the degree of freedom available for data 

assimilation is dictated by the ensemble size, which limits the ability of the EnKF to assimilate seismic 

data for large reservoirs (Emerick &Reynolds, 2012). Additionally, integrating time-lapse seismic 
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information directly into the data assimilation workflow without prior evaluation of the data may lead 

to the inheritance of errors being propagated within the data assimilation workflow(Alfonzo et al., 

2017). As noted by Li, (2017), data assimilation is sensitive to errors, which implies that small errors 

in data can cause large fluctuations in predictions. This problem can worsen with the increased size of 

seismic datasets (Yin et.al, 2019)  

 

1.1 Problem Statement 

Point bar reservoir geology is frequently encountered in oil and gas developments projects, and 

in CO2 sequestration projects worldwide. Reliably predicting subsurface CO2 displacement in these 

projects requires accurate models for the point bar reservoir geology. However, a comprehensive 

modeling method that adequately preserves point bar internal architecture and its associated 

heterogeneities is still not available. Traditional geostatistical methods cannot adequately capture the 

curvilinear architecture of point bars. Even geostatistical simulation techniques that can be constrained 

to multiple point statistics cannot capture the architecture of the point bars because they use regular 

grids to represent the heterogeneity. The modeling challenges are further compounded by the high level 

of uncertainty that characterizes models that are used to represent point bar reservoirs. These 

uncertainties stem from various sources. Firstly, the well data that provides reliable source of 

information for reservoir modeling are sparse especially in the case of CO2 sequestration projects. 

Additionally, the precise pattern of heterogeneities in the subsurface reservoirs is fraught with 

uncertainties such as due to erosion, that are difficult to capture in subsurface reservoir models. Even 

3D seismic data collected in the field may sometimes miss salient reservoir heterogeneities, especially 

in thin bed reservoirs like the Cranfield reservoir because the seismic resolution is not enough to 

capture the heterogeneities. 

The data assimilation methods that are commonly used to resolve the prior geologic 

uncertainties are unable to properly account for the strong non-linear relationship between the highly 

heterogeneous point bar reservoir properties (e.g., permeability), and the reservoir flow response 

variables like flow rate, bottom-hole pressure etc. Also, assimilating time-lapse seismic data into 

history matching workflow is challenging computationally challenging due to the large volumes of 

seismic data that needs to be integrated within modeling workflows. Further, ensemble-based data 

assimilation methods like EnKF are unable to faithfully represent time-lapse seismic information 

because of the computational expense associated with generating a large ensemble, of rather large 
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reservoir models. These challenges leave significant amount of residual uncertainty in the updated 

reservoir models even after integrating all available data. Therefore, in addition to the need for a 

modeling framework that can adequately preserve the reservoir heterogeneity, a data assimilation 

workflow that can handle the non-linear characteristics of the reservoir while realistically representing 

the residual uncertainties in the updated models is necessary.  

 

1.2 Proposed Approach  

The prior discussions call for a modeling framework that can 1) accurately preserve point bar 

architecture and heterogeneities, 2) accomplish model calibration using dynamic injection data while 

preserving the non-Gaussian characteristics of the reservoir and 3) faithfully represent the time-lapse 

seismic information. In this dissertation, an integrated modeling framework is proposed to address 

these challenges in three broad steps. First, a flexible and stochastic process-based model (conditioned 

to well data) is proposed for representing the point bar reservoir, while honoring its typical structural 

characteristics and geologic heterogeneities. This is done by combining geometric modeling with 

geostatistical property modeling. Ensemble of models are generated to account for uncertainties. The 

preservation of the curvilinear architecture of the reservoir and the heterogeneities is done respectively 

by 1) developing a gridding scheme that generates highly representative curvilinear grids to account 

for the point bar curvilinear geometry, and 2) incorporating a grid transformation scheme that maps 

the curvilinear grid to a rectilinear grid where the geostatistical modeling can be take place. Essential 

element of the proposed workflow is the stochastic representation of shale drapes across interfaces 

between successive accretion surfaces and inclined heterolithic stratification surfaces. The dissertation 

also examines the geological modeling of the point bar reservoir within the context of fluid flow. The 

impact of point-bar reservoir model parameters on fluid flow and flow response variables (e.g., bottom- 

hole pressure) is investigated. The second major aim of this dissertation is to assimilate field flow 

response data to calibrate the ensemble of point bar models. Specifically, it focusses on reducing the 

uncertainties in the ensemble of models by assimilating CO2 injection data. This is accomplished by 

implementing a two-step model update process. In the first step the structure of the point bar model is 

perturbed within the EnKF framework. That is followed by a second step where the reservoir property 

(permeability) is perturbed using a non-Gaussian Indicator based Data Assimilation (InDA) approach. 

The last important aim of this research is to assimilate time-lapse seismic information within the 

modeling framework. Time-lapse seismic data reveals important information about CO2 migration 

paths that can further constrain the geologic models. In this research, a unique Bayesian model 
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selection workflow is implemented that uses a rock physics to synthesize the seismic response of the 

reservoir model ensemble, perform multidimensional scaling to identify clusters of models and finally, 

utilize a Bayesian approach to retrieve the cluster closest to the observed time-lapse seismic response 

model. For each stage of the data assimilation workflow, value of information analyses is conducted 

to evaluate whether the expected improvement in the model that is realized by assimilating additional 

information justifies the cost of obtaining that information. 
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Chapter 2 Stochastic Modeling of Point bars 

The process for modeling point bars commences by first interpreting facies and categorizing them into 

channels and point bars based on available log data. Based on that interpretation, we developed a 

stochastic algorithm for modeling the channel flow path, and migrating the channel path to capture the 

lateral accretions and inclined heterolithic stratifications (IHS). Curvilinear grids are subsequently 

generated for representing these heterogeneities and then, the geometries of the lateral migrations and 

IHS are combined to form a 3D grid to represent the entire point bar geometry. Geostatistical 

simulation is then performed by first transforming the curvilinear geometry to a cartesian grid and 

subsequently performing geostatistics on the transformed grid to model the point bar reservoir 

properties. Finally, the modeled grid is mapped back to the original curvilinear grid. The proposed 

workflow for modeling the point bar is summarized in Fig. 2.1. This workflow will be discussed in 

detail in subsequent sections. 
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Fig. 2.1 Proposed flow chart for modeling the point bar reservoir. 
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2.1 Details of point bar heterogeneities and depositional trends 

The main heterogeneities in point-bar systems are lateral accretions and inclined heterolithic 

stratifications (IHS) which are formed as a result of lateral migration of the channel. Moving along 

section AB in Fig. 2.2a, first the channel is encountered. As one progresses further towards B, some 

curvilinear features are observed. These are remnants of past channel migrations which are referred to 

as lateral accretions. In cross section, these accretion surfaces make up the IHS as shown in 2.2b. The 

channel migrations are characterized by an abrupt erosion on the convex part of the bend (closer to A 

in 2.2a) and a gradual deposition on the concave part (closer to B in 2.2a). The arrows in 2.2b indicate 

direction of depositional trends to be captured in the geostatistical modeling process. Details of these 

depositional trends will be discussed later. 

 

 

Fig. 2.2 (a) lateral accretions, (b) Cross sectional view illustrating IHS. Arrows indicate direction of 

fining of sediments which would be accounted for in the geostatistical simulation (Thomas, et al., 1987; 

Pyrcz & Deutsch, 2004b). 

  

2.2 Modeling Steps 

i. Channel and point bar identification. 

Different techniques have been used to identify point bars and channels. Some of these are based on 

outcrop examinations (e.g., Pranter et al., (2007), and well log interpretations (e.g., Durkin et al., 2017; 

Nazeer et al., 2016; Odundun & Nton, 2011). In those works, it has been shown that a bell shape 

signature in Spontaneous Potential (SP) logs and Gamma Ray (GR) logs is an indication of point bar, 

while a blocky or cylindrical shape signal indicates a channel sand (Fig. 2.3). In this research, we used 

well logs (SP logs and GR logs) from the Cranfield, Mississippi dataset to identify the facies in the 

A B 

https://www.sciencedirect.com/science/article/pii/S0098300422000851#fig2
https://www.sciencedirect.com/science/article/pii/S0098300422000851#fig2
https://www.sciencedirect.com/science/article/pii/S0098300422000851#fig2
https://www.sciencedirect.com/science/article/pii/S0098300422000851#fig2
https://www.sciencedirect.com/science/article/pii/S0098300422000851#fig2
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study area. The wells from Cranfield were chosen because they are located at the site of a geologic 

sequestration experiment, which is of interest to this study. In addition to the well logs that provide 

facies information at those locations, there is CO2 injection data available for this site and that will be 

used in a follow up study for a history matching/model calibration exercise. Fig. 2.4 shows some of 

the well logs used in this research and how the facies interpretation was done based on the signatures 

documented in Fig 2.3. 

 

Fig. 2.3 Classification of SP log profiles for point bar and channel identification. Blocky or cylindrical 

shape is an indication of a channel while a bell shape is an indication of a point bar. Adapted 

from(Wilson & Nanz, 1959)  

 

Point Bar 

Channel 
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Fig. 2.4 Well log readings for wells 28F-3, 48–2, 28–1, 31-F1 and 31F-3 at Cranfield.  The first four 

well logs show SP reading while the last represent GR logs. Identified channel facies (blocky shape 

signals) are demarcated in black. Point bar facies (bell shape signals) are in red demarcations. 

 

ii. Modeling the channel flow path 

To model the point bar, it is necessary to recreate the channel flow path as the point bar itself is a 

manifestation of the migration of that channel path. It is the migration of the channel that allows for 

modeling the main heterogeneities, which would be combined to form the 3D point bar model. The 

proposed procedure for recreating the channel path is as follows:  

Identifying meander direction: Channel direction can be inferred considering the variation 

in channel thickness which decreases as the channel migrates from upstream to downstream 

(Brierley & Hickin, 1985; Pitlick & Cress, 2002). Based on well log interpretation, well 

coordinates can be sorted accordingly in the direction of channel progression. Fig. 2.5 

illustrates the stepwise procedure for recreating the meander path; the blue points are channel 

nodes, and the red points are point bar nodes. The direction of channel or meander progression 

is in the East-West direction from channel node 1 through 13.  

Conditioning meander path through channel nodes: Here, two constraints can be imposed; 

the primary constraint is that the meander path must go through channel nodes sequentially in 

the direction of channel progression. In the case of insufficient channel nodes, additional nodes 

(i.e., secondary nodes) are stochastically generated to guide the meander path. The secondary 
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constraint is that the meander path must bend around the point bar locations. As can be seen in 

all the modeling stages in Fig. 2.5, the meander path, while going through the channel nodes, 

is conditioned to bend around the point bar nodes. This secondary constraint is necessary to 

satisfy the geological and morphological phenomenon that point bars are formed at the bends 

of meandering fluvial bodies. The meander path is defined by a parametric natural cubic spline 

which passes through the given sequence of channel nodes. 

The basic form of cubic spline, with coefficients  𝑎, 𝑏, 𝑐 and 𝑑 is given as:  

dctbtattP jjj +++= 23)(                      (2.1) 

The parameter value t  for the thj  channel node, denoted by 
jt is the cumulative sum of the 

square root of chord length defined according to the centripetal scheme by (Lee, 1989), 

expressed as: 




+ −=
ji

iij nodeschannelnodeschannelt
21                    (2.2) 

The coefficients (𝑎, 𝑏, 𝑐, 𝑑) which are weights for interpolating the channel nodes, which can 

be determined by following the formulations of (Bartels et al., 1995). For details, see appendix 

A. 
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Fig. 2.5 Workflow for modeling the meander path demonstrated on a synthetic example. (a) Modeling 

stage 1 – marking channel path passing through channel nodes and bending to accommodate point bars 

on the concave side of the bends, (b) Modeling stage 2 – insertion of secondary node to define channel 

path while accommodating a point bar on the concave side of the bend, (c) Modeling stage 3 and (d) 

Modeling stage 4 – final channel path accommodating all the well data. Blue points are channel 

locations and red points are point bar locations. 

 

iii. Geometric modeling of IHS and lateral accretions 

The IHS were modeled using sigmoidal function as described by (Thomas et al, 1987). Suppose h  is 

the height of the point bar, and a  controls the slope of the IHS over a horizontal distance 𝑥 as shown 

in Fig. 2.6, then the sigmoidal function (equation 2.3) can be used to define the geometry, 𝑍𝑖ℎ𝑠 of the 

IHS. 
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Fig. 2.6  Cross-section of a point bar deposit illustrating IHS. Adapted from (Pranter et al., 2007). 

𝑍𝑖ℎ𝑠  =  
ℎ

1 + 𝑒−𝑎𝑥
                                                                                                                                      (2.3) 

Equation 2.4 defines sine generation function (SGF) as proposed by (Langbein and Leopold, 1966). 

This would be used in later discussion to approximate the meander path and migrate the meander to 

model the geometry of the lateral accretion.  









=

L

l
l




2
sin)(               (2.4) 

where, for our case, L , is the total length along the channel, l  is the length at any point along the 

channel, 𝜃(𝑙) defines the direction at each point along the channel and   is the maximum angular 

displacement of the channel with the horizontal. The parametric forms which express the SGF in 

Cartesian coordinates are equations 2.5a and 2.5b (Hathout, 2015; Movshovitz-Hadar & Shmukler, 

2000) 

( )  















=

t

dl
L

l
tx

0

2
sincos


           (2.5a) 

( )  















=

t

dl
L

l
ty

0

2
sinsin


          (2.5b) 

where t and   satisfy the conditions Lt 0 and 
 900   , respectively. 
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2.3 Channel Path Migration 

Migrating the current channel path back in time to recreate the initial channel path allows us to capture 

the geometry of lateral accretions. In doing so, channel path is approximated using the SGF. The SGF 

gives a close approximation of the original channel path as the channel migrates (Langbein and 

Leopold, 1966; Hathout, 2015). The backward migration of the channel is done by decreasing the 

angular placement (⍵) in the SGF to recreate the initial channel path (Fig. 2.7).  

 

 

 

 

 

 

 

Fig. 2.7 Recreating initial channel path using SGF. Arrow points to the direction of backward migration 

 

However, the use of SGF to migrate the current channel path to recreate the initial channel path may 

not yield realistic approximations for channels with asymmetric aerial geometry (Fig 2.8a). In such 

cases, a cubic spline function can be used. Migration of the channel path can be done by perturbing the 

spline coefficients. This approach is problematic because ensuring that the coefficients of the spline 

exhibit consistency among themselves is extremely difficult. Instead, we accomplish the migration task 

by defining a focal point towards which 𝑛 possible channel meander paths can be migrated (Fig. 2.8b). 

That is, if there are 𝑝 points along the current channel path with coordinates (𝑥𝑖, 𝑦𝑖) 𝑖 = 1, 2…𝑝, then 

equation 2.6 can be used to generate 𝑛 possible initial channel paths between the current channel path 

and the focal point (𝑥𝑓 , 𝑦𝑓)  

(𝑥𝑖𝑗 , 𝑦𝑖𝑗) =  (𝑥𝑖  + (𝑗 − 1) ∙
(𝑥𝑖 − 𝑥𝑓 )

(𝑛 − 1)
, 𝑦𝑖  + (𝑗 − 1) ∙

(𝑦𝑖 − 𝑦𝑓 )

(𝑛 − 1)
)                                                  (2.6) 

where  𝑖 =  1,2,3…𝑝;  𝑗 =  1,2,3…𝑛; 𝑥𝑖 and 𝑦𝑖 are respectively, the 𝑥 and 𝑦 coordinates of each point 

at node 𝑖 along the current channel path, and (𝑥𝑓 , 𝑦𝑓) are defined as: 
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(𝑥𝑓 , 𝑦𝑓) =

{
 

 (𝑥|𝑑𝑦
𝑑𝑥
 =0
,max(𝑦𝑖 , 𝑖 = 1,… , 𝑝)) , if   channel concaves up

 

      (𝑥|𝑑𝑦
𝑑𝑥
 =0
, min(𝑦𝑖, 𝑖 = 1,… , 𝑝)) , if   channel concaves down

       (2.7) 

𝑥|𝑑𝑦
𝑑𝑥
 =0

 is the x-coordinate at the bend where the local slope of the channel path is zero.  

Please note that in all our discussions, it is assumed that the channel progresses in the E-W direction. 

In case the channel path is oblique, then additional coordinate rotation is necessary for the formulations 

to work.  

 

Applying equations 2.6 and 2.7 yields the focal point (red point) and the possible initial channel 

meander paths in Fig. 2.8b. To select the most probable initial meander path, we make use of the idea 

of erosion coefficients for each of the possible initial channel meander paths. The use of erosion 

coefficients is guided by the observation that before lateral migration of the channel, the channel path 

is linear (see Fig. 2.8c). The channel begins to bend when erosion occurs at the banks. Therefore, the 

extent of channel curvature is an indication of the degree of erosion. Thus, we can capture the extent 

of curvature or erosion coefficient (𝛼), by using the area bounded by the curves (i.e., the channel paths), 

as shown in equation 2.8.  

𝛼   =   1 −
𝐴′  

𝐴
                                                                                                                                                   (2.8) 

where 𝐴 is the area bounded by the pre-migration channel path and the current channel path (Fig. 2.8c), 

and 𝐴′ is that bounded by the initial meander path and the current channel path (Fig. 2.8d). If knowledge 

or field data about the erosion co-efficient is available, we can select the initial meander path as the 

one that yields the closest match to the erosion coefficient from field data, after applying equation 2.8. 

Otherwise, one can assume equal likelihood of occurrence for each of the paths and randomly select 

one of the generated initial channel meander paths. In this demonstration, we randomly sampled the 

initial meander path (Fig. 2.8d). 

 

Finally, the region bounded by the initial and current channel paths, in Figs. 2.7 and 2.8d can be gridded 

by following the grid generation procedure that will be discussed in the ensuing sections. 
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Fig. 2.8 Migration of asymmetric current channel path to recreate initial channel path. a) current 

channel path, (b) current channel path migrated back to recreate possible initial channel meander paths, 

(arrow indicates the direction of backward migration, i.e., migration starting from today’s channel path 

to the ancient path), c) area covered by the current channel path and the pre-migration path and d) 

current channel path and the most probable initial channel path. 

 

2.4 Rendering point bar model on curvilinear grids 

The grid generation was implemented separately for the two main heterogeneities – the lateral accretion 

surfaces and the IHS. The problem was tackled sequentially, first, as a 1D problem by gridding along 

the meanders only, then as a 2D problem by gridding in-between the prior gridded nodes along one 

meander path and their corresponding pairs on the other meander. Subsequently, the gridded lateral 

accretions and the IHS were combined to generate 3D gridded surfaces for the current position of the 

channel and its initial position prior to the migration. Finally, the region bounded by the two 3D gridded 

surfaces is also gridded to complete the gridding of the entire point bar.  
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The grid generation procedure begins by defining a domain of interest. This domain is the region 

bounded by the initial and current position of the channel. The length, L , of meander path, m , denoted, 

mL , is then determined from equation 2.9 (Hartman et al., 2014) 

dx
dx

dy
L

b

s

m  







+=

2

1             (2.9) 

where s  and b are respectively, the coordinates at the beginning and end of the channel, the subscript 

m  can range from the initial position to the current position of the channel meander, and 
𝑑𝑥

𝑑𝑦
 represents 

the local slope of the channel. 

The number of grid blocks along each meander path and that between the meanders are specified as 

𝑛𝑥 and 𝑛𝑦, respectively. To compute the grid nodes along the channel meanders, the block size along 

the channel meanders is determined from the ratio 
𝐿

𝑛𝑥
, and the cumulative distance lx  along each 

channel meander at grid node 𝑖 becomes 
𝐿

𝑛𝑥
⋅ (𝑖 − 1), 1....,3,2,1 += nxi . Using this cumulative 

distance lx  at node 𝑖, the grid nodes along the channel meanders are determined by revisiting equation 

2.5a and 2.5b, where lx  replaces l . 

The grid generation procedure for the lateral accretions is summarized in Fig. 2.9. Figs. 2.9a and b, 

show the domain to be gridded and the grid nodes that were determined along each meander path 

respectively. Next, we determine the grid nodes between the meanders. In Fig. 2.9b, every grid node 

in any of the meanders has a corresponding pair in the other meander path, and for these corresponding 

pairs, we determine the Euclidean distance between them, denoted ijD  ∀𝑖 = 1,2,3…𝑛𝑥 + 1 and ∀𝑗 =

1,2,3…𝑛𝑦 + 1. Between these pairs, the grid size for each grid block is
ny

Dij
. By computing the angles 

between these pairs as
ij , the grid coordinates between the pairs at node ij  are determined from 

equations 2.10a and b as follows: 

( ) ij

ij

ijij
ny

D
jXx cos1 −=         (2.10a) 

( ) ij

ij

ijij
ny

D
jYy sin1 −=          (2.10b) 
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Here, ijX  and ijY  are the grid nodes or coordinates for either of the meanders (red points or green 

points in Fig. 2.9b). In computing ijx  and ijy , one may choose ijX  and ijY  from either the current 

meander only or the initial meander path only, and the signs in equations 2.7a and 2.7b is dependent 

on this choice. 

Equations 2.10a and b complete the gridding in 2D which yields Fig. 2.9c whose equivalent grid is 

displayed in Fig. 2.9d. 

 

Fig. 2.9 Workflow for gridding the lateral accretions. (a) Domain to be gridded defined by the current 

channel path (green) and the initial channel path (red) (b) grid nodes computed along the channel paths, 

(c) grid nodes computed between the channels and (d) curvilinear grid  

 

In situations where the point bar is aerially asymmetric as discussed earlier, the above procedure is still 

capable of generating a suitable curvilinear grid. To illustrate this, we revisit Fig. 2.8d and apply the 

above grid generation procedure as illustrated in Fig. 2.10. The grid nodes and the equivalent 

curvilinear grids are displayed in Fig 2.10c and d, respectively. 
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Fig. 2.10 Workflow for gridding the lateral accretions for asymmetric point bar geometries. (a) Domain 

to be gridded defined by the current channel path (blue) and the initial channel path (red), (b) grid 

nodes computed along the channel paths, (c) grid nodes computed between the channels and (d) 

equivalent asymmetric curvilinear grid.  

 

The process for gridding the IHS surfaces is the same as that of the lateral accretions and requires 

specification of the number of grid blocks along the z-axis (Fig. 2.11). 

 

Fig. 2.11 Workflow for gridding the IHS. (a) domain to be gridded defined by the top (blue) and the 

bottom IHS surface (red) (b) Gridded IHS 
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The equivalent 3D grids for each channel path, formed by combining their respective aerial and vertical 

grids, are as shown in Figs 2.12a and b. The region bounded by the two gridded surfaces as illustrated 

in Fig. 2.12c is also gridded using equations 2.8a – c. Equations 2.8a – c show the final x, y, z grid 

coordinates ( )*** ,, zyx  at node ijk  1,...,3,2,1 += nxi  and 1,...,3,2,1 += nyj , and 

1,...,3,2,1 += nzk . 

𝑥𝑖𝑗𝑘
∗   =  𝑋𝑖𝑗𝑘

∗  ± (𝑗 − 1) ⋅
𝑫𝒊𝒋𝒌
∗

𝒏𝒚
⋅ cos 𝜃𝑖𝑗𝑘

∗                                                                                            (2.11a)   

𝑦𝑖𝑗𝑘
∗   =   𝑌𝑖𝑗𝑘

∗  ± (𝑗 − 1) ⋅
𝐷𝑖𝑗𝑘
∗

𝑛𝑦
⋅ sin 𝜃𝑖𝑗𝑘

∗                                                                                             (2.11b)   

𝑧𝑖𝑗𝑘
∗   =  𝑍𝑖𝑗𝑘

𝑚  ± (𝑗 − 1) ⋅
|𝑍𝑖𝑗𝑘
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −  𝑍𝑖𝑗𝑘

𝑖𝑛𝑖𝑡𝑖𝑎𝑙|

𝑛𝑦
                                                                           (2.11c) 

        

where, 
*

ijk  and 
*

ijkD  are respectively, the angle and distance of separation between a grid node at 

location ijk  in a gridded meander in Fig. 2.12c and the corresponding nodal pair in the other gridded 

meander also in Fig. 2.12c. 
*

ijkX , 
*

ijkY  and 
m

ijkZ are the grid nodes or coordinates for either of the 

meanders in Fig. 2.12c. One may choose 
*

ijkX  , 
*

ijkY  and 
m

ijkZ  from either the gridded current meander 

only or the initial meander path only, and this choice dictates the signs in equations 2.11a-c. 
current

ijkZ  

and 
initial

ijkZ are the z-coordinates at node ijk  for the current and initial meanders respectively.  

Applying equations 2.11a-c on Fig. 2.12c completes the gridding of the point bar in 3D with the final 

results shown in Fig. 2.12d.  
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Fig. 2.12 Grid generation procedure for the entire point bar, a) 3D grid for current channel b) 3D grid 

for initial channel gridded c) overlap of gridded surfaces showing region to be gridded d) 3D gridded 

point bar. 

 

The above grid generation procedure produces grids in a corner-point format. To allow for 

geostatistical computations, a conversion to a block-centered format is needed. For a 3D case (i.e., 

number of dimensions 𝑛 =  3), the block centered grid coordinates at node ijk  nxi ,...,3,2,1=  

nyj ,...,3,2,1= and nzk ,...,3,2,1= , can be computed from the corner point grid nodes, denoted as 

(𝑥𝑖𝑗𝑘
∗ , 𝑦𝑖𝑗𝑘

∗ , 𝑧𝑖𝑗𝑘
∗ ) ∀𝑖 = 1,2,3…𝑛𝑥 + 1, ∀𝑗 = 1,2,3…𝑛𝑦 + 1, and ∀𝑘 = 1,2,3…𝑛𝑧 + 1 using the 

following: 

)(
2

1 *

111

*

11

*

11

*

1

*

1

*

11

*

1

*

++++++++++++ +++++++= kjikjikjikjikjikjikjiijkn

center

ijk xxxxxxxxx   (2.12a) 

)(
2

1 *

111

*

11

*

11

*

1

*

1

*

11

*

1

*

++++++++++++ +++++++= kjikjikjikjikjikjikjiijkn

center

ijk yyyyyyyyy   (2.12b) 

)(
2

1 *

111

*

11

*

11

*

1

*

1

*

11

*

1

*

++++++++++++ +++++++= kjikjikjikjikjikjikjiijkn

center

ijk zzzzzzzzz   (2.12c) 
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Essentially, a block centered grid node at any grid location is the average of all its immediate 

surrounding corner-point grid nodes.  

2.5 Geostatistical modeling on transformed grid. 

Petrophysical property modeling for the different IHS sets can be performed using any geostatistical 

modeling scheme such as Sequential Gaussian Simulation, SGSIM (Deutsch & Journel, 1998). The 

petrophysical data (e.g., porosity) can be obtained from wells that penetrate the point bar at different 

locations. Various aspects of the geostatistical modeling workflow such as the inference of 

semivariograms and the subsequent computation of spatial correlation values within the estimation and 

simulation algorithm are much more intuitive when performed in a rectilinear grid. In order to 

transform the curvilinear grid to a rectilinear basis, a suitable grid transformation scheme must be 

incorporated. Basically, in the grid transformation, the point bar is unraveled aerially and vertically. 

To unravel the point bar in section, (i.e., vertically), the inclined beds (IHS layers) are unraveled and 

stretched into a rectilinear form. This is done starting from the middle of the IHS layer either at the 

bottom or top of the point bar. For this discussion, we start from the bottom layer. Using few points in 

this section (see points indicated on the bottom layer in Fig. 2.13a), we can determine 𝑆𝑖ℎ𝑠, which is 

the slope of this bottom layer and ∝, the angle of inclination of this layer with respect to the horizontal. 

If 𝐿𝑖ℎ𝑠 is the total length along the IHS, we can calculate the coordinates at the ends of the unraveled 

IHS (see round red makers on the bottom layer in Fig. 2.13b) as follows: 

(ystart , zstart)    =   (ymid −
𝐿𝑖ℎ𝑠
2
∙ sin(90−∝) , zmid −

𝐿𝑖ℎ𝑠
2
∙ cos(90−∝))                           (2.13a) 

(yend, zend)       =   (ymid +
𝐿𝑖ℎ𝑠
2
∙ sin(90−∝) , zmid +

𝐿𝑖ℎ𝑠
2
∙ cos(90−∝))                            (2.13b) 

where (ystart , zstart) and (yend, zend) are respectively, the coordinates at the beginning and end of the 

unraveled IHS surface. (ymid, zmid) is the coordinate at the midpoint of the IHS. The IHS length 𝐿𝑖ℎ𝑠 

can be approximated numerically by dividing the IHS into 𝑛 subintervals, to generate 𝑃 points, so that 

𝐿𝑖ℎ𝑠 = lim
n→∞

∑ |Pi+1 − Pi|
n
i=1 . To unravel the top IHS surface, we combine the slope of the line orthogonal 

to the bottom surface, i.e., −(𝑆𝑖ℎ𝑠)
−1, with the perpendicular distance between the two IHS surfaces to 

compute coordinates perpendicular to (ystart , zstart) and (yend, zend). This produces the plots shown 

as round blue markers in Fig. 2.13b. The grid generation process within the unraveled domain in Fig. 

2.13b is same as discussed earlier. We generate grid nodes along and between the unraveled IHS 

surfaces to produce Fig. 2.13c, whose rectilinear grid is shown in Fig. 2.13d.   
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Fig. 2.13 Grid Transformation procedure for the HIS. (a) Domain to be transformed. Top and bottom 

layers are shown in blue and red, respectively. (b) IHS layers unraveled (c) Generated grid nodes for 

the IHS (d), rectilinear grid for the IHS. 

 

In unraveling the point bar aerially, we begin from the section where there is maximum continuity, 

which occurs along the middle of the channels. Throughout this demonstration, it is assumed that the 

local axis of the channel coincides with the global x-y axis. However, if this is not the case, rotation of 

the coordinates is necessary for the grid transformation scheme to work well. Suppose the initial and 

current channel paths are respectively, the green and red curves in Fig. 2.14a. For each channel path, 

the coordinate at the middle of channel (𝑥𝑚𝑖𝑑, 𝑦𝑚𝑖𝑑) is determined (see blue points on Fig. 2.14a). Next, 

the length 𝐿𝑐ℎ , which is the length of the longest channel path is determined. Using this length (𝐿𝑐ℎ) 

and the coordinates (𝑥𝑚𝑖𝑑 , 𝑦𝑚𝑖𝑑), we can determine the coordinates at the beginning and end of each 

channel path as:  

(𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑠𝑡𝑎𝑟𝑡) = (𝑥𝑚𝑖𝑑 −
𝐿𝑐ℎ

2
 , 𝑦

𝑚𝑖𝑑
)                                                                                                           2.14c  

(𝑥𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑)    = (𝑥𝑚𝑖𝑑 +
𝐿𝑐ℎ

2
 , 𝑦

𝑚𝑖𝑑
)                                                                                                           2.14d 
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Appling equations 2.14c and d yields the blue points in Fig. 2.14b. The region bounded by the 

coordinates at the ends of the unraveled channels represents the domain to be gridded (Fig. 2.14b). By 

repeating the grid generation procedure as discussed earlier, we have Fig. 2.14c, and the corresponding 

rectilinear grid is shown in Fig. 2.14d. 

 

Fig. 2.14 Grid Transformation procedure for the lateral accretions (a) domain to be transformed. Initial 

and current channel paths are shown in green and red respectively. (b) channel paths unraveled (c) 

generated grid nodes (d), rectilinear grid for the lateral accretions. 

 

For the entire point bar, the coordinates of the transformed grid (𝑥𝑇 , 𝑦𝑇, 𝑧𝑇) can be computed as:  

(𝑥𝑇 , 𝑦𝑇, 𝑧𝑇) = (𝑥𝑠𝑡𝑎𝑟𝑡 + (𝑖 − 1) ∙
𝐿𝑐ℎ
𝑛𝑥

, 𝑦𝑠𝑡𝑎𝑟𝑡 + (𝑗 − 1) ∙
𝐿𝐼,𝐶
𝑛𝑦

, 𝑧𝑠𝑡𝑎𝑟𝑡 + (𝑘 − 1) ∙
𝐿𝑖ℎ𝑠
𝑛𝑧
)           (2.14e) 

where 𝐿𝑐ℎ is the length of the longest channel meander, 𝐿𝐼,𝐶  is the maximum distance of separation 

between the initial channel meander 𝐼 and current meander 𝐶, which occurs at the middle of the point 

bar.  
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Applying equation 2.14e yields Fig. 2.15a, which is the transformed grid nodes for the entire point bar. 

The corresponding rectilinear grid is shown in Fig. 2.15b. 

 

Fig. 2.15 Transformed grid for the entire point bar. (a)Transformed grid nodes for the entire point bar, 

representing the computational space for geostatistical simulation, and (b) equivalent rectilinear grid 

for the entire point bar. 

 

The geostatistical modeling of the point bar properties for each IHS set is performed on the transformed 

grid where the point bar geology, guided by depositional trends, is modeled conditioned to the available 

well data. After simulation, each grid node is indexed to map the modeled properties in the rectilinear 

grid into the curvilinear grid. Fig. 2.16 illustrates the outline of the geostatistical simulation 

incorporating grid transformation. Details of the geostatistical modeling scheme for incorporating the 

depositional trends typically observed in point-bar systems are described for the field modeling 

scenario in the subsequent sections. A detailed description of the stochastic modeling method for 

representing shale drapes that have undergone erosion is also included. 
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Fig. 2.16 Outline of property modeling. (a) Point Bar Curvilinear Grid (b) Rectilinear Grid 

Transformation (c) Geostatistical Simulation of porosity (d) Back Transformation, indicating the 3D 

distribution of porosity in the final Point Bar Model.  
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2.6 Application to field Data 

The algorithm was tested on the Cranfield, Mississippi reservoir—a test site for CO2 injection and 

sequestration experiment. The geology of the reservoir is a point bar formed as a result of lateral 

migration of fluvial channels. The reservoir is about 13.72 to 24.38 m thick and is located at a depth 

approximately 3000 m below sea level. The injection zone is characterized by a fining upward fluvial 

depositional trend where cross-bedded conglomerates occupy the bottom of the sequence, followed by 

sandstones, and muddy sandstones. (Hosseini et al., 2013; Lu et al., 2013b). To establish fluvial 

continuity, an attempt was made to correlate well logs using the channel signature. By analyzing well 

logs, facies were identified either as channels or point bars. Well log signatures that showed bell shapes 

were interpreted to be point bars while those that showed blocky signatures were inferred to be 

channels. Fig. 2.17 shows the application of the above workflow for modeling the channel path based 

on the Cranfield dataset.  The encircled region in the last modeling stage (see Fig. 2.17d) is the Detailed 

Area of Study (DAS) which is the Cranfield injection site. This area would be selected for developing 

the detailed model of the point bar. 

 

Fig. 2.17 Channel Meander Simulation for the Cranfield dataset. (a) Point bar locations and channel 

locations (b) Modeling stage 1 (c) Modeling stage 2 (d) Final Modeling stage. Blue points are channel 

facies interpreted using well logs. Red points are point bar facies. The circled area in the final Figure 

is the Detailed Area of Study at the Cranfield injection site.  
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2.6.1 Modeling Channel Path Migration 

Channel meander migration is necessary to capture the main heterogeneities, which are the lateral 

accretions and IHS. To model the accretions, the Sine Generation Function (SGF) was used to migrate 

the channel for the reasons that: 1)  the current channel path in the area of interest as shown in Fig.2.17d 

is symmetric, making SGF better suited for channel migration, and 2) as indicated in earlier section, 

migrating the channel using a cubic spline is extremely challenging due to the difficulty in ensuring 

that the coefficients of the spline exhibit consistency among themselves.  

As indicated earlier, the SGF provides a convenient closed-form approximation of channel path as the 

channel meanders from one point to another (Hathout, 2015). To confirm that the SGF does 

approximate the meander generated using the cubic spline, the comparison between the meanders is 

illustrated in Fig. 2.18a. By stochastically varying the angular displacement in the SGF, the channel 

can be laterally migrated back in time to recreate the initial meander path (Fig. 2.18b). A cross-section 

across the initial and current position of meander (Fig.2. 18c) reveals the vertical heterogeneity of the 

point bar, which is the IHS as shown in Fig. 2.18d. The aerial and vertical surfaces would be gridded 

and combined to generate 3D surfaces for the initial and final meander.  
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Fig. 2.18 Meander migration process focusing on the DAS region. (a) Illustration of close match 

between SGF prediction and the original meander path modeled using a spline function, (b) Current 

and initial meander path location after backward migration of channel (arrow indicates direction of 

backward migration i.e., migration starting from today’s channel path to the ancient path), red line 

shows section across the meanders, and (d) IHS revealed along section in (c)  

 

2.6.2 Curvilinear Grid Generation 

i)    Lateral accretions 

As discussed before, the grid generation process was implemented separately for the two main 

heterogeneities. The workflow for gridding the lateral accretions is shown in Fig. 2.19. 

The domain of interest bounded by the initial and current meander is shown in Fig. 2.19a, while Fig. 

2.19b illustrates the grid nodes that were determined along each meander path. Next, we determine the 

grid nodes between the channel meanders. In Fig 2.19b, every grid node in any of the channel paths 

has a corresponding pair in the other meander path, and the grid coordinates are determined. The 

https://www.sciencedirect.com/science/article/pii/S0098300422000851#fig9
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corresponding location of the grid nodes are shown in Fig. 2.19c while the gridding in 2D is displayed 

in Fig. 2.19d. 

 

Fig. 2.19 2D gridding process for the lateral accretions. (a) Domain to be gridded, (b) grid nodes 

computed along the meanders, (c) Grid nodes computed between the meanders for each pair, and (d) 

curvilinear grid. 

 

ii)    Inclined heterolithic stratifications 

By specifying the number of grid blocks along the z-axis as nz  and repeating the above procedure for 

the IHS, we can generate a grid for the IHS domain to be gridded (Fig. 219a) to generate Fig. 2.19b. 
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Fig. 2.20 (a) IHS domain to be gridded, (b) Gridded IHS. Grids between the top and bottom surfaces 

are perpendicular to the bedding orientation. (c) Computation grid from (Niu et al., 2021), grid does 

not conform to the beddings 

 

As demonstrated in Fig.2.20b, the results from the grid generation conform to the geometry of the 

lateral IHS (bedding). Generating a grid that conforms to, for example, the bedding orientation can be 

challenging. Fig.2.20c shows the computational grid used in a surface-based study by (Niu et al, 2021). 

Comparing Fig. 2.20b and c, one can realize that Fig. 2.20c does not properly define the structure 

perpendicular to the bedding plane. This can affect the preservation of the heterogeneities in the 

geostatistical simulation because the vertical range of correlation may be improperly inferred and 

modeled. 
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The equivalent 3D grids for each meander, formed by combining their respective aerial and vertical 

grids, are as shown in Fig. 2.21a and b. The region bounded by the two gridded surfaces as illustrated 

in Fig. 2.21c is also gridded. This completes the gridding of the point bar in 3D as illustrated in Fig. 

2.21d.  

 

Fig. 2.21.  a) Current channel meander gridded in 3D, b) initial channel meander gridded in 3D c) 

Overlap of gridded surfaces showing region to be gridded d) 3D gridded point bar. 

 

2.6.3 Geological Data 

The petrophysical properties (i.e., porosity for our case) that were used in the geostatistical simulation 

were obtained from wells that penetrated the point bar at different locations. For Cranfield, available 

well log data span the across the entire injection zone of the reservoir. Fig. 2.22 shows some of the 

porosity log data that were used to condition the geostatistical model. A common observation with 

these wells is the upward decrease in porosity, suggesting a fining trend in sediments.  
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Fig. 2.22 Porosity logs for wells a) 31-F1, b) 31-F2 and c) 31-F3 

 

2.6.4 Grid transformation and Geostatistical simulation 

As indicated earlier, the geostatistical simulation method used for modeling property variations within 

the point bar was SGSIM. To account for spatial depositional trends, mean porosity maps were 

generated to reflect the spatial trends and used within the simulation procedure with locally varying 

mean. That is, given the porosity data 𝑧, the porosity estimate, 𝑧𝑜
∗ can be estimated as: 

𝑧𝑜
∗   = 𝑚𝑜 +∑𝜆𝛼(𝑧𝛼 −𝑚𝛼)

𝑛

𝛼=1

                                                                                                                (2.15) 

where 𝑚𝑜 refers to the local mean, which is in the form of the fining upward depositional trends and 

𝑚𝛼 refers to the mean at the data location. The weight term 𝜆𝛼 can be determined by solving the 

following system of equations, derived by minimizing the error variance at the estimation location: 

∑𝜆𝛽𝐶(ℎ𝛼𝛽) = 𝐶(ℎ𝛼0)

𝑛

𝛽=1

 ∀𝛼 = 1,… , 𝑛                                                                                                    (2.16) 

The term 𝐶(ℎ𝛼0), which is the covariance between the data and and a simulation node, accounts for 

the information in the data towards the quantity to be estimated/simulated, such that data at locations 

that are structurally closer to the estimation/simulation location exhibit higher correlation. 𝐶(ℎ𝛼𝛽) 

accounts for the redundancy between the data themselves. 
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Equation 2.15 is incorporated during the kriging stage in the SGSIM workflow. The SGSIM algorithm 

used to model the reservoir properties as detailed by (Deutsch & Journel, 1998; Remy, 2004) is 

summarized in Fig. 2.23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.23 Sequential Gaussian Simulation workflow. modified after (Bai & Tahmasebi, 2022) 
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To condition the reservoir model to the fining upward trend, a soft input for 𝒎𝒐 is incorporated in the 

geostatistical simulation. That input is basically in the form of mean porosity maps that could be based 

on the proportion of high to low porosity facies at a grid location as one moves from the bottom to the 

top of the reservoir. In this research, the mean porosity in a grid cell at a particular depth is determined 

by averaging the porosity data for all the wells at that depth. The result of this is a map showing locally 

varying mean of porosities with depth. Fig. 2.24 shows sections taken from this mean porosity volume. 

The wells 31-F1, 31-F2 and 31-F3 are contained with these sections. The maps show a decreasing 

porosity trend from the bottom to the top of the reservoir. From this map, the stratigraphic succession 

of the reservoir can be inferred. That is, the high porosity sedimentary rocks like conglomerates, 

sandstones or sand-prone sediments dominate the bottom of the point bar, and this transitions into low 

porosity rocks like the fine-grained shales, siltstones, or mud-dominated sediments as one moves to 

the top of the reservoir. 

 

 

 

 

 

 

Fig. 2.24 vertical variation of mean porosity along a section containing the wells a)31-F1, b) 31-F2 

and c) 31-F3. 

 

The SGSIM algorithm is variogram-based and it is difficult to infer and model the variogram in a 

curvilinear geometry. To overcome this problem, a grid transformation scheme is employed. 

Essentially, the grid transformation straightens the point bar curvilinear geometry into an equivalent 

rectilinear form as discussed previously. Variogram modeling was guided by depositional trends or 

continuities that are typical of point bars. Point bars are laterally extensive compared to the vertical, 

this results in maximum continuity in the downstream flow direction while the least continuity is in 

the perpendicular direction between successive IHS (i.e., accretion direction). Between these limits, 

we have the medium continuity which occurs in the dip direction. Fining trends are observed along 

 

[a] 

 

[b] 

 

[c] 
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these directions (Hickin, 1986; Thomas,et. al., 1987). In accordance with these trends, the maximum 

range (ℎ𝑚𝑎𝑥), medium range (ℎ𝑚𝑒𝑑) and minimum range (ℎmin.) were chosen to be in the direction 

of continuity along the downstream flow direction, dip direction and accretion direction, respectively. 

These assumptions were necessary given the sparse data available to infer the semi-variogram. Fig. 

2.25 shows the directions along which the variogram ranges are inferred as depicted in the curvilinear 

and the equivalent rectilinear space for the point bar. 

 

Fig. 2.25 Variogram directions in (a, b, c) curvilinear grid and d) rectilinear grid.   ℎ𝑚𝑎𝑥, ℎ𝑚𝑒𝑑 and 

ℎ𝑚𝑖𝑛 are in the downstream direction, accretion, and dip direction, respectively. Please note: the lengths 

of arrows indicated here do not depict the magnitude of the ranges; they are just guiding the reader in 

identifying the major, miner and vertical directions of spatial continuities.  

 

The hmax, hmed and hmin used as the major, medium, and minor axis of anisotropy, respectively, for 

the variogram model. Six migration episodes, totaling 5 IHS sets were modeled. These IHS sets are 

the inclined layers that make up the point bar. The IHS sets were modeled separately on a rectilinear 

grid with dimensions 150 × 30 × 25. Table 2.1 shows some of the variogram inputs for each IHS set. 
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Table 2.1 Variogram inputs for SGSIM 

IHS Set Nugget Sill hmax (ft) hmed(ft) hmin (ft) 

1 0.1 1 1734 120 80 

2 0.1 1 1592 120 80 

3 0.1 1 1262 120 80 

4 0.1 1 1074 120 80 

5 0.1 1 1566 120 80 

 

Fig. 2.26a shows an arbitrary realization in rectilinear grid for IHS set 1 after incorporating these 

probability maps in the SGSIM implementation. The arrow points to the front view, which shows a 

fining upward trend (see Fig. 2.26b) The complete 3D point bar model was obtained by stacking the 

IHS sets in an orderly fashion from set 1 to 5 and mapping their properties into the point bar curvilinear 

grid of dimensions 150 × 150 × 25 (Fig. 2.27).  

 

Fig. 2.26 Single SGSIM realization for IHS set 1. (a) realization on rectilinear grid (b) front view 

showing fining upward (Arrow points to the front view) 
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Fig. 2.27 Single realization of the 3D Point bar. Downstream direction is from left to right.  

The point bar property model displayed here is one of the several realizations that were generated for 

the point bar. The reservoir response computed over the suite of realizations would provide an 

assessment of uncertainty associated with response predictions. In the ensuing chapter we will discuss 

the process for further conditioning the reservoir models to the observed injection data in order to 

minimize the uncertainties in the model.  

In order to confirm that the fining upward trend is preserved as the reservoir properties are mapped 

from the rectilinear grid into the original curvilinear grid, horizontal slices are taken across the point 

bar at the different depths. Fig. 2.28 shows horizontal slices taken at the bottom, middle and top of the 

reservoir. The horizontal arrow shows the bottom to top direction. As can be seen, as one moves from 

the bottom (Fig.2.28a) to the top (Fig. 2.28c), porosity decreases, indicating that the fining upward 

trend is honored in the geostatistical simulation workflow and preserved during grid transformation. 

This trend reflects the stratigraphic succession at the Cranfield, Mississippi. At Cranfield, the coarser 

and heavier sediments (e.g., conglomerates) that have high porosity tend to settle at the bottom of the 

sequence followed by relatively lower porosity sediments like finer and lighter granular materials like 

muddy sandstones, and mudstone.  

 

 

 

Fining upward 

direction 
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Fig. 2.28 Fining trend captured in the geostatistical simulation,(a) bottom slice (taken at the last layer 

from top), (b) mid slice (taken at the 14th layer from top), and (c) top slice (taken at the 6th layer from 

top). Please note: the arrow indicates direction of fining in sediments from bottom to the top of the 

point bar. 

 

2.6.5 Stochastic Representation of Shale drapes across interfaces 

The interfaces between successive accretion surfaces are erosional surfaces that mark a flooding event 

in the depositional history of the point bar reservoir. These surfaces form internal heterogeneities that 

are characterized by the existence of shale drapes on the IHS and accretion surfaces. These shale drapes 

could act as flow baffles, which could impact hydrocarbon recovery and CO2 storage potential in the 

case of sequestration, hence the need to model them. The continuity of the shale may be interrupted 

due to erosional processes (Weber, 1982; Hartkamp-Bakker and Donselaar, 1993; Jackson and 

Muggeridge, 2000;Barton et al., 2010; Ayawah et al., 2022). 

Before capturing the erosional surfaces, shale was first simulated as a continuous layer lying at the 

interfaces between successive IHS sets. Fig. 2.29a shows the sectional view of the simulated shale 

layers at the interface between two successive IHS sets. The variation in porosity along the continuous 

shale layer observed in front view is shown in Fig. 2.29b. For modeling the shale drape, the GSLIB 

program called ELLIPSIM (Deutsch & Journel, 1998) was used to simulate Boolean objects of 1s 

(ones) and 0s (zeros), with 1 indicating a location lying within the ellipsoid and 0 indicating a location 

outside the ellipsoid. These ellipsoids were dropped at random in the border region near the top surfaces 

of the internal IHS sets until a target proportion of ellipses was reached. The shale within the ellipsoids 

were assumed to be eroded (see Fig. 2.29c). We simulate shale drape properties, as has been reported  

by earlier researchers,(e.g., Stewart et al., 2008; Eikeland and Hansen, 2009; Alpak and Van Der Vlugt, 

2014;Kadingdi et al., 2022) as very low permeability and zero-porosity facies. Porosity values between 

2.05% and 5.87% has been reported by (Chen et al., 2019), while others (e.g., Goral et al., 2020) have 

reported typical values less than 5%. In simulating shale, we simulated values between 2.05% and 
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5.87%. Fig. 2.30 shows a cross-section through the point bar structure before and after modeling the 

eroded shale drapes.  

 

 

 

Fig. 2.29 a) Sectional view showing shale simulated as a continuous layer on top of the IHS sets. Black 

rectangular demarcation is the continuous shale layer at the interface between two adjacent IHS sets 

2 b) Variation in porosity along the continuous shale layer at the interface between the two IHS sets, 

and c) front view of IHS set 2, illustrating shale drapes captured as erosional surface. 

(c) 
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Fig. 2.30 Cross-section slice of the point bar across all IHS sets before (a) and after (b) modeling shale 

drapes.  

 

2.6.6 Point Bar Geometry Perturbation 

The point bar modeling algorithm is stochastic in that it is possible to alter the point bar geometry and 

thereby represent the uncertainty in reservoir geometry. Geometry perturbation is done by altering the 

angular displacement (⍵) in the SGF equation, and the uncertainty in the point bar geometry is defined 

by drawing samples of ⍵ from a predefined probability distribution. In this study, a Gaussian 

distribution is assumed. 50 samples of ⍵ were drawn from 𝑁(35,10) to generate ensembles of point 

bar geometries using SGF. In the perturbation process, any alteration in the channel sinuosity (by 

changing   in the SGF) reflects in the bedding orientation, and therefore, the IHS orientation. Fig. 

2.31 is a demonstration of some perturbations. The minimum and maximum heights of the IHS surfaces 

can be used to constrain the distribution of ⍵. Potentially, perturbation of the ⍵ value can change the 
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thickness of the point bar at a well location. Consequently, non-local perturbation scheme for the ⍵ 

value may be necessary to preserve the thickness of the point bar at a well location. These concepts 

will be explored in the next chapter, where injection data at the Cranfield site will be used to calibrate 

the initial set of geologic models for the point bar. 

 

Fig. 2.31 Point bar geometry perturbed at different channel displacements. Channel displacement (and 

therefore sinuosity) increases from a to c, which: 1) affects the slopes of the IHS or beddings as one 

moves from d to f and 2) increases the areal extent of the point bar as we move from a to c or d to f. 

 

It is important to point out that, once the point bar geometry is altered, the position of the well within the 

grid representing the point bar, will change and that will lead to perturbations in the flow response. The 

point bar reservoir algorithm in this dissertation can perturb the meander or point bar geometry—spanning 

from low to high angular sinuosity channels—and recreate the grids accordingly. The new grid location of 

wells within the reservoir is determined and reported during the geometry perturbation. As an example, the 

well locations before and after perturbation are shown in Fig. 2.32, and the reported grid locations are 

presented in Table 2.2. 

The point bar perturbation also accounts for the deformation process that the point bar undergoes over a 

geologic period. In previous works, the Thin Plate Spline method (D. W. Thompson, 1917) has been used 
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to capture perturbations in the subsurface. For example, based on this method, (Tahmasebi, 2017) used 

some interpolation functions to perturb the geologic model to match point data. Similarly, in this 

dissertation, perturbation of the point bar geometry is done by altering the ⍵ in the SGF.  

 

 

Fig. 2.32 Geometry perturbation and variation in grid coordinates of wells (see red points). (a) 

Geometry perturbation at 𝜔 = 50𝑜, and subsequent regeneration of grid. (b) Geometry perturbation at 

𝜔 = 43𝑜, and subsequent regeneration of grid.  
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Table 2.2 Well locations before and after geometry perturbation 

  

Grid block indices 

 Before After 

Well Name i-index j-index i-index j-index 

Well 1 12 11 12 7 

Well 2 15 21 14 19 

Well 3 15 17 14 14 

Well 4 15 9 14 5 

Well 5 18 15 18 13 

 

2.7 Flow Simulation Study 

A CO2 flow simulation study was conducted using the GEM reservoir simulation package from the 

Computer Modeling Group (CMG-GEM, 2019)—an advanced Equation of State (EOS) compositional 

and unconventional reservoir simulator. The objective of conducting flow simulation study using the 

point bar models was to gain an insight into how the migration and storage of reservoir fluids (in our 

case CO2 migration and storage) are affected by the shale drapes. This is an important step to 

demonstrate the need to model the internal heterogeneity in point-bars especially the shale drapes on 

the IHS surfaces. In addition, we seek to investigate the sensitivity of flow response variables (in this 

case, bottom hole pressure) to the point bar reservoir geometry. In a subsequent discussion, we will 

incorporate the knowledge gained in this study to design and implement a scheme for sub-selecting a 

subset of reservoir models that best represent the injection data observed at a field site. 

 

2.7.1 Simulation grid 

It was realized that given the areal extent of the point bar reservoir, flow simulation would be 

computationally expensive and time consuming if the whole reservoir is used for simulation. 

Moreover, the CO2 injection period at the Cranfield site (based on the available data) is relatively short, 

and thus the CO2 plume will most likely affect the immediate surroundings of the injection well and 

not the regions far from the injection zone. The simulation grid was therefore defined as a sub-section 

of the detailed area of study (DAS) at the Cranfield site. The selected region does reflect the shale 

drape related heterogeneity and the depositional trends observed in the reservoir. The sub-section of 

the grid to be used for this simulation is the region bounded by the dark rectangular box shown in Fig. 

2.33a. The simulation grid dimensions used are 20 × 20 × 25 making up 10000 grid bocks. The 
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injection well (31 F1) is in the middle of the demarcated section in Fig. 2.33. Table 2.3 presents the 

reservoir properties at initial conditions. 

 

Fig. 2.33 (a) Portion of the Cranfield point bar model used for simulation. Injection well 31-F1 is 

centrally located within the demarcated region. (b) Simulation grid cut from the point bar model. 

 

2.7.2 Simulation Parameters 

The simulation parameters are detailed in Table 2.3. 

Table 2.3 Reservoir Properties at Initial Conditions 

Reservoir Property Value Source (if applicable) 

Approximate Reservoir Depth 

Average Reservoir Thickness 

Rock Compressibility 

Initial Reservoir Temperature 

Initial Reservoir Pressure 

Salinity 

Boundary Condition 

3000 m 

15 m 

7.3 × 10−7kPa−1    
125 oC 

3200 kPa 

155752 ppm 

Open 

(Hovorka et al., 2013) 

(Hosseini et al., 2013) 

 

(Delshad et al., 2013b) 

(Delshad et al., 2013b) 

(Lu et al., 2013b) 

 

2.7.3 Rock-Fluid Interaction Property 

The relative permeability curves  used in this study were obtained from experimental data presented 

by Bennion and Bachu, (2005)  for supercritical CO2 displacing brine system. The water relative 

permeability curve has an end point of 1.0 at a residual CO2 saturation of zero. For the CO2 relative 

permeability curve, it has an end point of 0.54 at an irreducible gas saturation of 0.45 (Fig. 2.34). 
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Fig. 2.34 . CO2-brine relative permeability curve used for simulation (Bennion and Bachu, 2005).  

  

2.7.4 Fluid Property Modeling 

CMG-WinProp was used to model the phase behavior and the reservoir fluids properties (CMG-

Winprop, 2019). The Peng and Robinson, (1976) EOS was used to model phase-equilibrium 

compositions and derive EOS parameters characteristic of supercritical CO2. CO2 solubility was 

modelled with Henry’s law as discussed in Li and Nghiem, (1986) for brine at a brine salinity consistent 

with what has been reported for the Cranfield reservoir. A salinity of 155752 ppm as reported by Lu et 

al., (2013a) was used. The brine phase viscosity and density were respectively estimated using the 

correlations in Rowe and Chou, (1970) and Kestin et al (1981). 

 

2.7.5 Well and Recurrent Data 

The Cranfield injection well, which is centrally located in the domain of interest and exhibits point bar 

facies, was perforated in two layers located at the lower half of the injection zone. The injection well 

was set under two operating constraints: a primary constraint operating at a daily injection rate obtained 

from the Cranfield injection dataset (Fig. 2.35), and a secondary constraint operating at a maximum 

bottom-hole pressure 38000 kPa. (See Table 2.4 for details).  
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Fig. 2.35 Field injection rate schedule used for simulation. Please note, the original Cranfield injection 

rate was in terms of mass flow rate in  𝑘𝑔𝑚𝑖𝑛−1owever ever in this study, it has been converted to 

volumetric flow rate in m3/day using a super-critical CO2 fluid density of 576.72 kg/ m3. 

 

 

Table 2.4 Injection Well Parameters and Specifications. 

Injection Well Parameter  Specification 

Well Perforation Address (i, j, k) 

Injection Period 

Well Radius 

Skin 

CO2 Mole Fraction 

Injection Rates 

Maximum Bottom-hole Pressure 

10, 12, 8 

Dec 1, 2009 – Feb 25, 2011 

0.0762m 

0 

1 

See Fig. 2.23 

38000 kPa 

These injection conditions mimic the actual field injection strategy adopted at Cranfield. 

 

2.7.6 Simulation Strategy 

The numerical simulation model was developed for two cases: reservoir model accounting for the 

effect of shale drapes and that without considering shale drape effects—all evaluated for structural, 

residual and dissolution trapping mechanisms. The injection well was run such that the total amount 

of supercritical CO2 injected was the same for both cases under consideration. Additionally, we also 

simulated the effect of reservoir geometry perturbation on injection well response (bottom-hole 

pressure). 

2.7.7 Shale drape effects 

To understand the impact of shale drapes on CO2 plume migration and storage, two simulation cases 

were run. The first simulation run ignored the effect of shale drapes demarcating accretion episodes 

and on inclined heterolithic stratification surfaces. As could be observed in Figs. 2.36a and 2.37a, the 
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CO2 plume preferentially migrates laterally within the lower layers before rising upwards towards 

shallower depths due to buoyancy. This resulted in a CO2 plume with a broader base (see encircled 

regions in Figs. 2.36a and 2.37a) and an overall relatively larger contact area with the reservoir rock.  

In the second simulation run, the effect of shale drapes was considered. Contrary to the first simulation 

run, the lateral migration of the CO2 plume is restricted, forcing more of the gas to flow in the sandstone 

facies bounded by the IHS and the plume rises upwards towards shallower layers (see Figs. 2.36b and 

2.37b). CO2 plume had a relatively narrower base within the lower layers in the injection zone (see 

encircled region in Figs. 2.36b and 2.37b) and had a relatively smaller contact area with the reservoir 

rock. The shale drapes clearly serve as barriers to CO2 displacement. 

The relatively rapid upward movement of gas observed in the second simulation run could lead to a 

situation where an excess volume of CO2 accumulates below an overlying seal and increases the risk 

of seal failure and potential CO2 leakage. This has been reported by (Hovorka et al., 2004). 

 

 

Fig. 2.36 The effect of shale drapes on the dissolved CO2 concentration. (a) Spatial distribution of 

dissolved CO2 molality for the case when shale drape effect is ignored and (b) Dissolved CO2 molality 

for case when shale drape effect is considered. When the shale drape is absent, the dissolved plume 

moves laterally in the injection zone before moving upwards. In the presence of shale drapes, the shale 

curtails lateral movement of the plume and consequently the vertical migration of the CO2 plume is 

favored. 

 

https://www.sciencedirect.com/topics/computer-science/lateral-movement
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Fig. 2.37 The effect of shale drapes on the free gas CO2 saturation. (a) CO2 saturation for simulation 

run when shale drape effect is ignored, and (b) CO2 saturation for simulation run when shale drape 

effect is considered. The shale drape causes vertical migration of the CO2 plume. 

 

 

2.7.8 Trapped CO2 

CO2 trapping occurs after drainage of formation water brine when injection has ended and that is 

followed by imbibition of water to into the injected zone. The water re-occupies the pores and displaces 

the injected gas. However, not all of the gas is displaced from the pores. Consequently some residual 

amount of gas is left in the pores as trapped gas (Delshad et al., 2013b). Fig. 2.38 shows the trapped 

gas saturation in the two simulation runs. It can be observed that more gas is trapped in the simulation 

case where shale drape effects were not considered. In that case, the CO2 flow paths are more dispersed, 

implying that CO2 contacts larger area of the rock and that increases trapping capacity (Hovorka et al., 

2004). It can be argued that the relative permeability characteristics primarily affects trapped CO2 

saturation. However, in this study, the relative permeability input data is same for all the simulation 

cases, and therefore its influence on trapped CO2 saturation is the same in all cases. 
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Fig. 2.38 Trapped CO2 volume as a function of time. 

 

2.7.9  Geometry Perturbation and its effect on bottom hole pressure and CO2 Plume 

As the geometry is perturbed from low to high angular channel displacements, the size of the reservoir 

is also increased, and the CO2 plume spreads over a relatively larger area. The CO2 plume contact area 

with the reservoir is correspondingly higher (Fig. 2.39). It can also be observed in that figure that the 

amount of dissolved CO2 (i.e., CO2 molality) decreased at the highest angle. This is because dissolution 

is pressure driven (Duan & Sun, 2003; Portier & Rochelle, 2005;Ayawah, 2014), therefore, an increase 

in point bar size will result in a decline in pressure at the fringes of the plume and result in less 

dissolution.  

Bottom-hole pressure also declines with increasing angular displacement (Fig. 2.40). The behavior 

observed in Fig. 2.40 is because pressure has an inverse relationship with the volume that the CO2 

plume occupies. Therefore, as the point bar size increases, bottom-hole pressure is expected to drop. 
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Fig. 2.39 CO2 plume in the injection zone as the point bar geometry is altered at (a, d) ⍵=30 deg when 

viewed in plan as well as cross-sectional view. (b, e) ⍵=40 deg when viewed in plan and in section. 

(c, f) ⍵=50 deg when viewed in plan as well as cross-sectional view. 

 

  

Fig. 2.40 Sensitivity of bottom hole pressure to point bar geometry.  An inverse relationship is observed 

as the point bar is perturbed at different angular displacements or channel sinuosities. Please note: 

Higher angular displacement is an indication of higher sinuosity. 
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2.8 Concluding Remarks 

A framework for modeling point bar heterogeneities using a stochastic process-based approach has 

been presented. The method uses geometric functions to model the areal and vertical heterogeneities. 

Modeling point bar properties is difficult due to its complex geometry, but this was overcome by first 

developing a gridding scheme that accounts for the aerial shape of the accretion surfaces as well as 

sigmoidal shape of the inclined heterolithic stratifications. Subsequently, a grid transformation scheme 

was implemented to allow for optimal geostatistical simulation of the point bar properties. The 

application of the workflow to the Cranfield, Mississippi dataset has been demonstrated. A novel 

stochastic scheme for modeling eroded shale drapes on the surface separating successive accretions is 

also presented. Subsequently, a flow simulation study was conducted to study the effect of point bar 

geometry and heterogeneities, not only on well response variables like bottom-hole pressure, but also, 

reservoir fluid flow and storage (i.e., CO2 flow and storage in our case). In the next chapter, the point 

bar models will be conditioned to the CO2 injection data available for the Cranfield in an effort to 

calibrate the geologic models to reduce the uncertainty in the models. The sensitivities observed by 

performing flow simulations on the point bar models will provide important insights into how the 

calibration process can be implemented. 

Overall, the modeling approach in this dissertation assumes that the geometry of the point bar can be 

parametrized using smooth interpolation functions such as cubic splines as mentioned earlier. 

However, the issue of calibrating the parameters of the interpolation scheme is a challenge, especially 

when only sparse data is available to guide the inference of the parameters. The presented approach is 

also subject to the interpretation of channel flow path, which is always difficult based on indirect 

information available along wells.  
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Chapter 3 Reservoir Model Calibration 

3.1 Introduction 

A geologically realistic description of the heterogeneities associated with point bars is essential for 

field development planning of the reservoir. One way to assess the accuracy of the geologic model and 

to calibrate it is to assess if it accurately reflects historical injection data. Because the prior models 

developed are characterized by high uncertainties, the predictive accuracy using any one model is 

usually poor. This leads to inaccurate forecast of the reservoir performance. Model calibration or 

history matching is typically performed to address this issue. History matching is premised on the fact 

that spatial distribution of static or primary reservoir properties (e.g., porosity, permeability, etc.), 

influence the dynamic or secondary response of the reservoir (e.g., bottom-hole pressure, CO2 

saturation, CO2 injectivity etc.). Accordingly, history matching involves a systematic adjustment of the 

static reservoir variables to ensure that simulated dynamic variables acceptably agree with observed 

dynamic variables. Assuming that the reservoir properties do influence the dynamic response, it is then 

reasonable to expect that the uncertainty associated with the prediction of spatial variations of reservoir 

properties reduces as the models are calibrated to reflect the dynamic response. Traditional history 

matching, e.g. Agarwal et al., (2000), usually relies on engineering expertise and experience to 

manually adjust the static reservoir variables (Oliver and Chen, 2011). This can be frustrating, time-

consuming and expensive (Cancelliere et al., 2011). That has stimulated a growing body of research in 

automated history matching methods like gradual deformation methods, probability perturbation 

methods and ensemble-based methods. Some details on these methods are presented in the following 

section. 

 

Hu, (2000) introduced the gradual deformation method (GDM) for calibrating realizations of Gaussian 

reservoir models using dynamic data. This method uses a weighted linear combination of independent 

Gaussian random functions to gradually deform realizations in a stochastic process while preserving 

their spatial variability. Deformation parameters are used as weights for each independent realization 

and are adjusted to minimize the mismatch between observed and simulated flow responses. At the 

end of the process, a realization that maintains the target spatial variability of the reservoir as well as 

yields a flow response close to the observed response is obtained. GDM has been extended to handle 

dependent realizations by (Hu, 2002). Other modifications have been made to include elements of 

sequential simulation (Hu et al., 2001). GDM is simple and easy to implement; however, it guarantees 
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optimality only within a Gaussian framework. This makes GDM unsuitable for complex reservoirs 

exhibiting complex connectivity, and where the relationship between the primary state variables and 

the secondary variables is non-Gaussian. GDM is also computationally expensive and slow to 

converge, however, these were improved through the incorporation of gradient information by Hu and 

Le Ravalec-Dupin, (2004), and partitioning of the reservoir into sub-regions by (Le Ravalec-Dupin 

and Nœtinger, 2002).  

A closely related technique to GDM is the probability perturbation method which was introduced by 

Caers, (2003), applied to large data set by Hoffman and Caers, (2004), and efficiently used to integrate 

production data into reservoir models by (Kashib and Srinivasan, 2006; Kashib and Srinivasan, 2003; 

Barrera and Srinivasan, 2009). Like the GDM, updates are realized via the optimization of locally 

varying deformation parameters. However, instead of using the deformation parameter to merge two 

Gaussian realizations, the deformation parameter is used to morph the conditional cdf for permeability 

at a location into a posterior distribution. Subsequently, an updated permeability value is obtained by 

drawing from the updated conditional distribution. Fundamentally, these methods exploit the 

algorithmic structure of sequential simulation by updating the conditional probability of the static 

variables upon the availability of dynamic data. Because the probability perturbation method works 

directly on the conditional distributions regardless of their shape or other characteristics, it is not 

restricted to Gaussian models. The probability perturbation method, though elegant, exhibits slow 

convergence. Some avenues to speed up the convergence are discussed in (Barrera and Srinivasan, 

2009). 

The use of ensemble Kalman filters (EnKF) for history matching subsurface models has also generated 

a vast literature, starting with the pioneering contributions of (Evensen, 1994; Burgers et al., 1998; 

Evensen, 2003), and on to the application of the method for data assimilation (Evensen and van 

Leeuwen, 1996). Other contributions particularly to reservoir characterization and hydrocarbon 

production include (Gu and Oliver, 2005; Haugen et al., 2008; Mantilla, Srinivasan and Nguyen, 2011; 

Thomas et al., 2011; Gharamti et al., 2014; Katterbauer et al., 2015; Tavakoli, Srinivasan and Wheeler, 

2014; Kumar and Srinivasan, 2019; Awejori et al., 2022), and several other researchers as well. This 

method uses the ensemble mean and covariance between the state variables to perform updates on an 

ensemble of models with spatial distribution of rock properties. The mismatch between the observed 

and predicted reservoir response is used to update the state variable values at all locations within the 

reservoir using the Kalman gain, that primarily depends on the covariance between the state variable 

and the observed dynamic response. As advantageous as EnKF is in terms of computational efficiency 
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and ability to perform updates on a suite of models, it works optimally under the assumptions that: )1(  

the joint distribution of the static reservoir variable (e.g., porosity and permeability) as well as that 

between the state variables and the mismatch error between the observed and predicted dynamic 

response is multivariate Gaussian; )2( the mismatch between the simulated and observed responses 

can be linearly related to updates of the state variables. Unfortunately, these assumptions may not hold 

for several hydrocarbon reservoirs given that the relationship between the static and dynamic 

characteristics is highly non-linear. Hence the applicability of EnKF may be limited. In an effort to 

improve EnKF in this context, Schniger et al, (2012) developed a technique to handle non-Gaussian 

distributions. Their method applies univariate transformation to the state variables (i.e., the static 

reservoir variables), rendering them univariate Gaussian. This same strategy was also adopted by 

(Zhou et al., 2011) However, the transformations implemented may not be efficient as ensuring 

univariate Gaussianity does not imply multivariate Gaussianity, a condition necessary for optimal 

performance of EnKF. Other ensemble-based techniques and EnKF variants abound, e.g., Enseble 

Kalman Smother, (EnKS) (Evensen & van Leeuwen, 2000). Van Leeuwen and Evensen (1996) provide 

a comprehensive discussion of these ensemble-based methods.  

 

The techniques discussed earlier have been used in history matching studies using injection data from 

CO2 sequestration projects (Mantilla et al., 2009; Mantilla et al., 2009 Bhowmik, Srinivasan and 

Bryant, 2011) . Since the workflow in this study is being implemented for the Cranfield reservoir which 

is a site for a field CO2 sequestration experiment, the history matching techniques discussed in previous 

CO2 sequestration studies are of interest. In the history matching approach implemented by Delshad et 

al., (2013) and Hosseini et al., (2013), they observed a decrease in the rate of bottom-hole pressure 

increase as the injection rate is increased. At an injection rate of 175 kg/min, the change in pressure 

was about 6.29MPa; upon increasing this rate to about 330 kg/min, the change in pressure was expected 

to be larger, however, it was surprisingly as low as 0.35MPa, and another rise in injection rate (500 

kg/min) yielded only 0.35MPa. The authors explained that this decreasing trend in injection pressure 

increase may be because the increase in injection rate must have induced fractures around the injection 

well that serve to divert the injected fluid to regions away from the well. Consequently, they introduced 

permeability modifiers to match the bottom-hole pressure. However, just as many other reservoirs, the 

Cranfield reservoir has a complex geology; therefore, introducing permeability modifiers though may 

guarantee a history-matched model, the predictive accuracy of the matched model may be 
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compromised. The reservoir model may give a completely misleading picture of future performance 

even though it may show an impressive match to historical data. 

3.2 History Matching within an Indicator Framework 

A common drawback with the history matching techniques discussed thus far is their inability to handle 

complex reservoirs exhibiting non-Gaussian characteristics. The point bar geology characterizing the 

Cranfield reservoir is likely non-Gaussian given the complex connectivity exhibited by the reservoir 

facies and the depositional trends observed within such a reservoir. Working within an indicator 

formalism of reservoir properties (Journel, 1983; Zhu and Journel, 1993) can help us address this 

challenge. In order for the indicator transformation, the static reservoir variables have to be transformed 

into binary variables of 1s and 0 s by specifying a suitable threshold. In the binary space, the expected 

indicator outcome at a location conditioned to the available data is directly the conditional cumulative 

distribution function (ccdf). Hence, subsequent to the development of the ccdf, outcomes can be 

sampled from this ccdf. This method is free from Gaussian assumptions as there is no assumption made 

regarding the form of the ccdf. In this dissertation, we implemented an ensemble-based history-

matching method using indicator transformation called Indicator-based Data Assimilation (InDA) 

developed by (Kumar and Srinivasan, 2018, 2019), to history match the data for the Cranfield reservoir. 

Directly deploying InDA that has been developed for linear geometries to a reservoir exhibiting 

curvilinear characteristics would yield sub-optimal results. Consequently, we implemented InDA to 

accommodate such reservoirs by incorporating the reversible grid transformation scheme.  

Another common drawback in most of the previous studies is that history matching techniques 

exclusively focus on perturbation of static reservoir variables and ignore uncertainty related to the 

reservoir geometry. Yet, flow simulation studies in previous works (e.g. Deveugle et al., 2011; Pranter 

et al., 2007; Willis and White, 2000) have shown that geometry of the reservoir exerts important 

controls on reservoir fluid flow. In this chapter, it would be seen that the reservoir geometry and 

associated uncertainty, and their potential influence on dynamic variables (e.g., bottom-hole pressure) 

are too significant to be ignored. We therefore propose that geometry calibration should be done even 

before proceeding to update the static reservoir variables. We assume that the state space describing 

the geometry follows a Gaussian distribution and would accordingly be calibrated using EnKF.  

This results on the following two-step model calibration or history matching process: 

1) Implement EnKF on ensemble of reservoir model geometries to update the geometry. Pick the 

model that yields the closest match to the observed injection data.  
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2) Perform InDA updates on ensemble of spatially distributed permeabilities within the optimal 

reservoir geometry determined in step1 .  

 

3.3 Application to the Cranfield Reservoir 

As evidenced by the description in the previous chapter, the Cranfield reservoir exhibits several 

geologic patterns that would typically suggest non-Gaussian characteristics. The reservoir exhibits 

porosity and permeability trends (Kim & Hosseini, 2014) and complex depositional patterns (Tao et 

al., 2013) that vary from core to field scale. The reservoir unit consists of fluvial sandstones with 

conglomerates in fluvial point-bar and channel deposits ( Lu et al., 2012), with shale intercalations and 

erosional surfaces. The depositional trends show a fining upward sequence, where cross-bedded 

conglomerates occupy the bottom of the sequence, followed by sandstones, and muddy sandstones. 

This fluvial depositional setting imparts a high level of heterogeneity, and non-Gaussian characteristics 

to the Cranfield reservoir. Chlorite is an important authigenic mineral in the sandstones  because it 

preserves porosity by forming a grain coating, which inhibits formation of quartz cementation 

(Hosseini et al., 2013). For an extensive description of the Cranfield, Mississippi reservoir, readers 

may refer to (Doetsch et al., 2013; Hosseini et al., 2013; Zhang et al., 2013;Alfi & Hosseini, 2016). 

 

3.4 Reservoir Model Calibration 

With the limited coverage of wells in the CO2 injection area, there is likely to be significant uncertainty 

associated with the prediction of reservoir geometry. Therefore, the first step towards constraining the 

reservoir model is to use dynamic data to update initial models of the reservoir geometry using EnKF. 

The geometry of the reservoir under study (i.e. the Cranfield, Mississippi reservoir), as indicated 

earlier, is that of a point bar reservoir that has been modeled using a Sine Generation Function (SGF) 

to represent the lateral aggradation of the channel (Langbein and Leopold, 1966) , and a sigmoidal 

function as described by Thomas, et al., (1987) to model the inclined heterolithic stratifications. The 

aerial and vertical geometries were combined to form a 3D point bar geometric model. Details of the 

procedure for modeling the structure of the point-bars are presented in chapter 2. In this framework, 

the geometry of the point bar is jointly controlled by the angular displacement parameter specified in 

the SGF and the slope parameter of the sigmoidal function. These parameters were perturbed to 

generate ensembles of equally likely reservoir geometries. The perturbation was done such that any 

change in the angular displacement of the SGF automatically reflects in the slope of the sigmoidal 
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function, leading to a joint perturbation of the aerial and vertical dimension of the reservoir (Fig. 3.1).  

This joint perturbation was necessary to accurately represent the geometry-related uncertainty.  

 
Fig. 3.1 . Randomly selected realizations of point-bar reservoir geometries used for performing EnKF. 

(I) Shows the case when the angular displacement of the sine generation function was perturbed by 

19.4°.  Correspondingly, the slope of the beddings denoted by the sigmoidal function also change and 

is shown on the right.  (II) The results when the angular displacement of the sine generation function 

is perturbed by 45°.  

 

In total, 50 angular displacements were drawn from a normal distribution with mean 35 and standard 

deviation 10 to generate ensembles of point bar reservoir geometries. This ensemble of geometries 

represents the initial or prior uncertainties that would be updated upon the availability of a secondary 

variable (e.g., bottom-hole pressure, reservoir pressure, injection rate). Using CMG-GEM simulator 

(CMG-GEM, 2019), a flow simulation was run on the ensembles for a period of 450 days. The 

simulation was run on a curvilinear grid with dimensions150 × 150 × 25, making up 562500 grid 

blocks in total. Reservoir properties like porosity and permeability for each model in the ensemble 

were the same and set according to a base case porosity and permeability distribution. The location of 

the injection well F1 within the reservoir, the injection schedule and the well parameters used for 

simulation are shown in Figs. 3.2, 3.3, and Table 3.1, respectively. 
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Fig. 3.2 Illustration of the gridding employed for performing the flow simulation and the location of 

injection well F1 within the reservoir. 

 

 

Fig. 3.3 Cranfield injection schedule used for simulation at injection well F1. 

 

 

Table 3.1 Injection well parameters used for simulation. 

Injection Well Parameter Specification 

Well Perforation Address (i, j, k) 
Injection Period 

Well Radius 

Skin 

CO2 Mole Fraction 

Injection Rates 

Maximum Bottom-hole Pressure 

75,77,9 

Dec 1, 2009 – Feb 25, 2011 

0.0762 m 

0 

1 

See Fig. 3.3 

3800 kPa 
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Flow simulation was performed on the ensemble to obtain the corresponding simulated dynamic 

bottom-hole pressures that can be used to estimate errors and infer the required covariance between 

state parameters, and subsequently update the initial ensemble. Updates were performed on the 

reservoir geometries using the EnKF formulation in equation 3.1 (Kumar and Srinivasan, 2019). 

𝑧𝑜
𝑎 = 𝑧𝑜

𝑓
+ [𝐶𝑝𝑧(ℎ𝑗𝑜)]1×𝑛

[[𝐶𝑝(ℎ𝑙𝑗)]𝑛×𝑛 + 𝑑𝑖𝑎𝑔
[𝐶∈∈(ℎ𝑙𝑗)]𝑛×𝑛

]
−1
[𝑃𝑜𝑏𝑠 − 𝑃𝑠𝑖𝑚]𝑛×1     (3.1) 

In Equation 3.1, 𝐶𝑝𝑧(ℎ𝑗𝑜) terms are the covariance between the state variables and the mismatch, the 

matrix containing the 𝐶𝑝(ℎ𝑖𝑗) terms are the covariance between the state variables. Equation 3.1 yields 

the updates 𝑧𝑜 for the ensemble member index ; 𝑧𝑜
𝑓
 is the initial value of the primary 

variable, which is angular displacement at this stage. 𝑧𝑜
𝑎 represents the updated value of the primary 

variable. 𝑃𝑜𝑏𝑠 and 𝑃𝑠𝑖𝑚 are respectively, the observed and simulated secondary variable, which is 

bottom-hole pressure in our case. ∈ is a vector of uncorrelated observation errors, 𝐶∈∈ is therefore a 

diagonal matrix. To account for possible errors in the observations, samples drawn from the 

distribution 𝑁(0, 𝐶∈∈) are added to the observed data.  

 

The update (or error) term constitutes all the terms after the first term in equation 3.1. Fig. 3.4b 

illustrates the updates realized after EnKF implementation. It can be observed that the updates at higher 

angles are higher than those at lower angles. After performing EnKF updates and running flow 

simulation on the updated ensemble, a reduction in the spread (i.e., uncertainty) in the simulated 

bottom-hole pressures is observed (see comparison between Fig. 3.4A and C). The reservoir geometry 

with the least uncertainty (i.e., error) has an approximate angular displacement of 19.4°, illustrated as 

the black point in Fig. 3.4b. The figure also indicates that as the algorithm progresses (from right to 

left) the updates become smaller indicating that the updates using the injection data have stabilized. 

The simulated bottom-hole pressure after EnKF updates is shown in Fig. 3.4c. The BHP response after 

the final update corresponding to the lowest error is shown in red in Fig. 3.4c and the updated geometry 

is shown in Fig. 3.4d. This reservoir geometry was selected for the next phase of the history matching 

process. 

Fig. 3.4 also suggests that geometry alone does not fully explain the dynamic response characteristics 

of the reservoir under study. A further confirmation is seen after running flow simulation on the 

updated reservoir geometry ensemble. As shown in Fig. 3.4c, after EnKF updates, the simulated 

bottom-hole pressures still exhibit considerable spread, indicating appreciable albeit reduced residual 
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uncertainty. In addition, the model with the least error still does not show much consistency with the 

observed bottom-hole pressure data. Even so, this calibration step is important as it allows us to select 

a reservoir geometry and a grid that will ensure a more successful history match of static reservoir 

properties.  

 

 

Fig. 3.4 Results obtained at the end of the simulation period by applying the EnKF procedure, a) BHP 

before EnKF. (b) the updates to the angular displacement obtained by EnKF for various members of 

the initial ensemble. (c) BHP after EnKF. Red plot indicates BHP from geometry with least error (d) 

Updated point bar geometry with the least error to be used in the next phase of workflow. 

 

3.5 Permeability updating using InDA 

The InDA procedure is discussed extensively in Kumar and Srinivasan (2019) and is summarized in a 

flow chart as shown in Fig. 3.5. A grid transformation scheme has been incorporated to accommodate 

the curvilinear geometry of the reservoir under study. The colored boxes are the updated portions of 

the InDA workflow to allow for curvilinear grid accommodation.  

 

. 
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Fig. 3.5 Modified InDA procedure incorporating grid transformation scheme. Color-coded sections 

represent modifications in InDA. Adapted from (Devesh Kumar & Srinivasan, 2018).I 
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3.5.1 Defining indicator thresholds for the static variable. 

In order to perform indicator transformation of static variables, thresholds(𝑧𝑘) need to be applied. 

These thresholds are retrieved as quantiles of the 𝑐𝑑𝑓 of the static variable. One strategy for defining 

the thresholds would be to use relatively a greater number of quantiles for the portions of the 𝑐𝑑𝑓 

exhibiting major variations.  

 

3.5.2 Indicator definition for the static variable 

Consider a static variable 𝑍 to be transformed into binary variables of 1𝑠  and  0𝑠; the corresponding 

indicator definition for the static variable at location 𝒖 for 𝐾 thresholds 𝑧1, 𝑧2… 𝑧𝐾, denoted 

𝐼(𝑍 (𝒖)∝
𝑓  , 𝑧𝑘), is given as: 

𝐼(𝑍 (𝒖)𝛼
𝑓  , 𝑧𝑘)   =   {

1     if 𝑍𝛼
𝑓 ≤ 𝑧𝑘

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      𝑘 = 1,2,3…𝐾                                                                         ( 3.2) 

In equation 3.2, the superscript 𝑓 represents the 𝑧 value before update during EnKF, the subscript 𝛼 =

1,2, 3…𝑛 corresponds to the realization index in the ensemble. 

 

3.5.3 Indicator threshold definition for the dynamic variable  

By running flow simulations on 𝑛 ensemble of models, we can output the corresponding ensemble of 

simulated dynamic data (𝑃〗𝑠𝑖𝑚𝛼

𝑓
), 𝛼 = 1,2, 3…𝑛. If  𝑃𝑜𝑏𝑠𝛼

𝑓
 is the observed dynamic data, we can 

perform updates using the mismatch between the observed and simulated dynamic data. This 

mismatch, denoted |∆P|, is defined as: 

 |∆P|   =    |Pobsα
f − Psimα

f |        α = 1,2,3…n                                                                                        ( 3.3) 

The indicator definition for |∆P| at a given threshold |∆P|p, denoted Yp is therefore given as: 

Yp   = Yp(|∆Pα
f|, |∆P|p)   =  {

1     ∀|∆Pα
f| ≤ |∆P|p

0    otherwise           
        p = 1,2,3…n                                           ( 3.4) 

The theory behind InDA, and the procedure for coming up with the thresholds for the indicator variable 

based on the data mismatch is presented in (Kumar and Srinivasan, 2019). The key idea is that the 

thresholds are chosen such that the updated conditional cdf of pressure does not change significantly 

when the threshold for the data mismatch is perturbed around the optimum. 
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3.5.4 Updating the static variable using InDA Procedure 

The indicator-based data assimilation (InDA) is used to estimate the spatial distribution of permeability 

by assimilating the bottom-hole pressure data available at wells. After the static variable ( Z ) and 

dynamic variable ( Y ) are transformed into binary indicator values of 1s and 0s, updates are performed 

to the conditional cumulative density function (cdf) describing the distribution of permeability. The 

updated cdf for 𝑛 ensemble of models and 𝐾 thresholds at location 𝐮, expressed as a conditional 

expectation of the indicator variables is shown in equation 3.5. 

𝐹(𝑍𝛼
𝑓
(𝑢) ≤ 𝑧𝑘|𝑌𝛼)  =  𝐸((𝐼(𝑍𝛼

𝑓
(𝑢), 𝑧𝑘)) + ∑ 𝜆𝑖

𝑖=𝑚

𝑖=1

(𝑌𝛼 − 𝐸(𝑌𝑖))                                      (3.5)   

where 𝑍𝛼
𝑓(𝑢) is the InDA update of the primary variable at a given location 𝐮, the realization index 

; 𝑧𝑘is the threshold value for the primary variable and there are K such thresholds or 

cutoffs; 𝑌𝛼 is the indicator variable corresponding to the mismatch between the observed and simulated 

bottom hole pressures ∀𝑝 = 1,2,3,… , 𝑛; 𝜆𝑖  is the Kalman Gain, 𝐼(𝑍𝛼
𝑓(𝑢), 𝑧𝑘) is the binary indicator 

variable corresponding to the threshold 𝑧𝑘 Like the EnKF update equations discussed previously, 𝜆𝑖 are 

the Kalman gain computed on the basis of the indicator cross-covariance between the primary indicator 

data I (corresponding to the variable 𝑍) and the secondary indicator data 𝑌.  

As mentioned earlier, InDA is immune to non-linear transformations because of the binary nature of 

the indicator variable. The indicator variable is immune to any non-linear operations performed with 

it.  In addition, working within the indicator space renders the algorithm free of any Gaussian 

assumptions, as applying equation 3.5 directly generates the conditional cdf without making any 

parametric assumptions. 

 

3.5.5 Incorporating grid transformation scheme. 

The original indicator-based data assimilation method performs updates within a rectilinear grid 

system. However, rectilinear grids cannot preserve the curvilinear continuity of point bar reservoirs. 

To ensure realistic estimates of the spatial continuity of the point bar properties, incorporating a grid 

transformation scheme is necessary. The grid transformation scheme unravels the point bar curvilinear 

layers into an equivalent rectilinear form, so that the update can proceed in a manner that preserves the 

point bar heterogeneity. After updates, the results are transformed back into the original curvilinear 

grid. Details of the grid transformation algorithm are discussed in chapter 2. 
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3.6 Implementation of InDA on the Cranfield, Mississippi reservoir model 

3.6.1 Generation of initial ensemble and reference model 

The details of the geologic and geostatistical modeling procedure for generating the initial ensemble 

of models for the point bar reservoir are detailed in chapter 2. We first modeled the porosity distribution 

for each layer separately, and subsequently stacked them to obtain a 3D point bar model. Since the 

hard data for permeability for the Cranfield injection area was not available, we modeled the 

permeability 𝑘 from the porosity ∅ models determined in chapter 2, using equation 3.6 (Boisvert et al., 

2012), which was derived from micro-modeling for developing an enhanced small scale porosity-

permeability relationship. 

ln(𝑘) = 4121.2 ∙ ∅4 + 3963.6 ∙ ∅3 − 1353.3 ∙ ∅2 + 202.05 ∙ ∅ − 4.3571                                   (3.6) 

 

For point bar reservoirs like Cranfield, key geologic attributes in flow simulation models include the 

existence of shale drapes, overall fining up trend, and fining trend in the direction perpendicular to 

each inclined layer. The conditioning data used for generating the initial ensemble was obtained for 

the F1 injection well, and the observation wells F2 and F3 whose location are shown in Fig. 3.6a. The 

grid geometry used in InDA corresponds to the best base geometry from the previous EnKF step.  
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Fig. 3.6 One of the permeability models in the initial ensemble of models shown (a) with sections along 

the F1 injection well (b), and observation wells F2 and F3 (c, d).  

 

3.6.2 Defining primary and secondary indicator thresholds. 

The use of equation 6 for performing updates is contingent upon defining appropriate indicator 

thresholds for the primary and secondary variables. These thresholds are quantiles retrieved from the 

cumulative probability distribution computed on the basis of the available data such that they can 

adequately describe the cdf of the variable under consideration. Because the data available for 

modeling the Cranfield reservoir are sparse and moreover, there are trends that the reservoir properties 

such as porosity and permeability exhibit, a base case model exhibiting realistic property variations in 

the reservoir was assumed and Fig. 3.7 shows the cdf of this base case permeability model. The figure 

also shows the thresholds that were identified.  

The secondary data thresholds were defined using the mismatch between the simulated and observed 

bottom-hole pressure data from the Cranfield injection well (Fig. 3.8). Were these based on the 

ensemble of models or based on the base case model only? 

(d) 
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Fig. 3.7 Cumulative distribution function for permeability based on a base case permeability model 

developed using the modeling workflow in Chapter 2. The primary indicator thresholds retrieved for 

permeability distribution are also shown. Note the non-Gaussian characteristics of the permeability 

distribution. 
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Fig. 3.8 Indicator definitions for Bottom-hole pressure (BHP) at a well location. The underlying 

behavior of the bottom-hole pressure is also non-Gaussian.  

 

3.6.3 Updating permeability using InDA. 

Once the thresholds were defined, flow simulations were run on the entire ensemble of models for one 

time step of data assimilation. The mismatch between observed and simulated bottom-hole pressure is 

calculated according to equation 3.3. Fig. 3.9 shows the initial and InDA updated cdf at each location. 

To determine an updated permeability value at a particular location, the probability corresponding to 

the old value of permeability is retrieved. Then using this probability, the updated permeability value 

is sampled from the updated cdf. This procedure is summarized in Fig. 3.9 as starting from 1 and 

following the arrow direction to 4. The spatial distribution of the initial and updated ensemble average 

of permeability is seen in Fig. 3.10. As could be observed in Fig. 3.10 and f, the depositional trends 

that characterize the base model are captured in the updated models. In contrast, these important trends 

are not apparent in the initial models. The ability of the updated models to capture the underlying 

geologic structure of the reference model reflects in the low variance in the spatial distribution of the 

permeability variance after the updates (see Fig. 3.11).  
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Fig. 3.9 Update of primary variable (permeability) using InDA. 
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Fig. 3.10 Permeability distribution in the base model in the vicinity of a) injection well F1 and b) 

observation well F2. Ensemble average permeability distribution before InDA in the vicinity of c) 

injection well F1 and e) observation well F2. After InDA in the vicinity of d) injection well F1 and f) 

observation well F2.   
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3.7 Ensemble Permeability Variance 

The uncertainty represented by the reservoir models prior to and after the data assimilation can be 

assessed by looking at the ensemble variance of permeability. Figure 3.11 shows the ensemble 

variance of permeability at each grid location.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11  Permeability variance in the vicinity of injection and observation wells before InDA (a, c, e) 

and after InDA (b, d, f). 
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3.8 Bottom-hole Pressure response after InDA 

Just as in the case of the EnKF results, another simulation was run on the updated permeability models 

to assess the extent to which the simulated dynamic data (i.e., simulated bottom-hole pressure) matches 

observed dynamic data (i.e., observed bottom-hole pressure).  

We observed an improvement in the match of the updated simulated BHP ensemble to field BHP data 

(see Fig. 3.12). This can be attributed to the more accurate spatial distribution of permeability obtained 

using InDA. The small spread, and therefore the small variance in the simulation results is due to the 

overall low variance of permeability realized after performing updates. Additionally, history matching 

within an indicator framework allows relatively big updates to be made to the static properties, which 

speeds up convergence as well.  
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Fig. 3.12 History Matching Results (a) Simulated bottom-hole pressure before InDA, and (b)Simulated 

bottom-hole pressure after InDA. The line indicated by the black points are the field observed data  

 

3.9 Forecast and Analyses of CO2 sequestration parameters. 

Using the updated models, CO2 injection simulation was run for about 25.1  years after which the 

injection well was shut in; the simulation was then run in a forecast mode for the next 50  years, and 

the uncertain evolution of the CO2 plume was analyzed. Fig. 3.13 shows the uncertainty in the flow 

(a) 
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responses before and after ensemble permeability updates using InDA. As observed in this figure, the 

simulation results show a reasonable match with the reference results (black points). In addition, there 

is a reduction in the variance associated with the predictions and therefore, with the uncertainty in the 

prediction of CO2 displacement after performing InDA updates. The trapped CO2 (also called residual 

trapped CO2) in millions of moles saw the most significant reduction in uncertainty as illustrated in 

Fig. 3.13a and b. The reduction in uncertainty is due to more accurate representation of the reservoir 

architecture and spatial distribution of rock properties. Point bar reservoirs (including the reservoir 

under study) exhibit unique depositional trends. For example, shale drapes that are found on the 

surfaces of the inclined beds in the point bar act as flow barriers due to their low permeability.  These 

shale drapes are better captured after the hierarchical EnKF and InDA updates and could even be seen 

in the overall ensemble permeability average as shown in Fig.3.10. Because the low permeability 

barriers favor trapping tendencies, updating permeability to capture them would significantly affect 

the uncertainty in the trapped CO2. Unlike residual trapped CO2, pressure and temperature drive 

dissolved CO2 (Duan and Sun, 2003; Portier and Rochelle, 2005). Because the temperature is held 

constant and the pressure response is diffused, the updating process would not significantly reduce the 

uncertainty associated with pressure and temperature as much as it does to the volume of residual 

trapped CO2. 
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Fig. 3.13  CO2 sequestration responses before and after permeability updates. Moles of residual trapped 

gas (a) before InDA and (b) after InDA. Moles of dissolved gas (c) before InDA and (d) after InDA. 

Black scatter plots represent the reference. 

 

3.10 Summary and Concluding remarks. 

A two-step ensemble-based history-matching procedure for calibrating heterogeneous geological 

formations exhibiting complex connectivity and non-Gaussian characteristics was implemented using 

EnKF and InDA. These ensemble-based techniques were modified to handle curvilinear grids. We 

emphasize the importance of considering uncertainties in the reservoir geometry and argue that the 

calibration of geometry must be done before perturbing the static variables. The study used data from 

the Cranfield, Mississippi CO2 injection reservoir to assess the uncertainty in CO2 sequestration 

potential in the long-term, after updating permeability. 

The following points are important: 

1 Uncertainty in the reservoir geometry can have an appreciable impact on the history-

matching results and must therefore not be overlooked. 
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2  InDA is a robust technique for updating complex reservoirs with non-Gaussian 

characteristics as it can predict the underlying non-Gaussian spatial distribution of the static 

variables of such reservoirs. As permeability distribution in reservoir such as the point bar 

system in Cranfield significantly affect CO2 flow migration and storage, InDA’s ability to 

history-match these variables makes it a promising technique for probabilistic assessment 

of reservoir response and uncertainty quantification.    

3 Despite the assertions made in point 2, it is important to note that direct implementation of 

InDA on reservoirs with curvilinear geometry (e.g., point bars) may not be successful 

unless a suitable grid transformation scheme is implemented to allow InDA to handle the 

curvilinear geometry of such reservoirs.  
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Chapter 4 Rock Physics Modeling 

4.1 Introduction 

In the previous chapter, we presented a method to calibrate the point bar model using dynamic data. 

The practicality of the method was demonstrated using the Cranfield, Mississippi injection data. The 

injected supercritical CO2 introduces changes in fluid saturation within the point bar reservoir. This 

potentially affects the elastic properties, and consequently, the seismic velocity propagation within the 

reservoir. The exploration of this relationship between the distribution of CO2 in the reservoir and the 

corresponding seismic response is the focus of this chapter. 

 

4.2 Gassmann Theory 

To further increase the reliability in monitoring and characterizing the test site for CO2 sequestration, 

the seismic response of the point bar model that is subjected to CO2 injection must be investigated and 

compared to any available seismic data. In doing this, rock physics modeling is critical as it links the 

reservoir rock properties, typically porosity and fluid saturations, to the seismic velocity propagation 

across the reservoir. Many studies (e.g., Willie et. al., 1956; 1958; Raymer et. al., 1980; Han et al., 

1986; Eberhart-Phillips et al., 1989) have made attempts to establish empirical relationships between 

seismic velocity and porosity from measurements and analyses of core and log data. However, these 

empirical correlations are not based on physical principles. Therefore, the use of these empirical 

correlations usually renders an unsatisfactory modeling of the rock physics (Smith et al., 2003). An 

alternative approach, that has risen to prominence is the fluid substitution method proposed by 

(Gassmann, 1951). This approach relates the elastic properties (e.g., bulk modulus) of the formation to 

its pore space, the fluid occupying the pore space, and matrix (or stiffness of the rock material).  

Specifically, Gassmann’s equation relates the porosity of the reservoir rock to bulk moduli of the dry 

rock, the saturated rock, the mineral grains, and the pore fluid as: 

𝐾𝑠𝑎𝑡    =     𝐾𝑑𝑟𝑦   +    

(1 −
𝐾𝑑𝑟𝑦
𝐾𝑔𝑟

)
2

𝜙
𝐾𝑓𝑙

+
1 − 𝜙
𝐾𝑔𝑟

−
𝐾𝑑𝑟𝑦
𝐾𝑔𝑟2

                                                                                          4.1 

where 𝐾𝑠𝑎𝑡 is the bulk modulus of the saturated (or wet) rock; 𝐾𝑑𝑟𝑦 is the bulk modulus of the dry (or 

unsaturated) rock; 𝐾𝑔𝑟 is the bulk modulus of the mineral grain; 𝐾𝑓𝑙 is the bulk modulus of the pore 
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fluid; 𝜙 is the porosity of the reservoir rock. In Gassmann’s formulation, the shear modulus is constant 

and is not a function of the presence of pore fluids in the reservoir rock (Biot, 1956a, 1956b; Berryman 

and Milton, 1991). A mathematical proof of this constant shear modulus behavior has been provided 

by Berryman, (1999). 

 

The velocity of the compressional wave in a saturated rock , 𝑉𝑝
𝑠𝑎𝑡, is calculated from equation 4.2 (Aki 

& Richards, 1980)  

𝑉𝑝
𝑠𝑎𝑡       =        √

𝐾𝑠𝑎𝑡  +  
4
3
𝜇𝑠𝑎𝑡

    𝜌𝑠𝑎𝑡 
                                                                                                               4.2 

where 𝜇𝑠𝑎𝑡 is the shear wave velocity across the reservoir rock. As stated earlier, in Gassmann’s 

formulation; shear wave velocity at saturated and unsaturated conditions are the same (𝜇 =

𝜇𝑠𝑎𝑡);    𝜌𝑠𝑎𝑡   is the density of the reservoir rock and it is calculated from equation 4.3. 

𝜌𝑠𝑎𝑡    =       𝜙𝜌𝑓𝑙   +   (1 − 𝜙)𝜌𝑔𝑟                                                                                                          4.3 

At in-situ conditions, bulk modulus for the saturated rock 𝐾𝑠𝑎𝑡 could be calculated using log data 

(density and velocity logs) as: 

𝐾𝑠𝑎𝑡 = 𝜌𝑏 (𝑉𝑝
2 −

4

3
𝑉𝑠
2)                                                                                                                              4.4 

ρb is the bulk density of the rock, 𝑉𝑝 and 𝑉𝑠 are respectively, the primary wave velocity (i.e., p-wave 

velocity) and shear wave velocity at in-situ conditions. 

 

4.3 Rock and Fluid Property Modeling 

4.3.1 Porosity 

Porosity of the reservoir could be determined from laboratory experiments on core samples, wireline 

logs etc. The available observed data can be interpolated to all other locations in the reservoir using 

geostatistical techniques as discussed in the previous chapter. 

4.3.2 Density and bulk modulus of the pore fluid mixture 

The fluid density, 𝜌𝑓𝑙 is a mixture density of all the fluid components in the reservoir. Using the 

saturation of each pure fluid component as weight, the mixture density of the fluid could be calculated 

by a weighted sum as shown in equation 4.5. 
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𝜌𝑓𝑙 = ∑𝑆𝑖𝜌𝑖

𝑛

𝑖=1

                                                                                                                                            4.5 

where 𝑛 is the total number of pure fluid components in the reservoir; 𝜌𝑖 and 𝑆𝑖 are respectively, the 

density and saturation for a pure fluid component 𝑖. 

 

The bulk modulus of the fluid mixture could be determined based on factors such as fluid saturation 

(Smith, et al., 2003) and the direction of stress propagation with reference to the component 

stratification (Vasco et al., 2019). For a uniform saturation, or for a case where the stress propagation 

is in the direction perpendicular to the component stratification, the Reuss (1929) harmonic average 

can be used (see equation 4.6). Alternatively, if the saturation is non-uniform or patchy, the arithmetic 

average developed by Voigt, (1928) is suitable (see equation 4.7). Equation 4.7 also works for a 

situation where the propagation is parallel to the stratification of components in the reservoir. Hill, 

(1952) discovered that the bulk modulus lies between the Reuss and Voigt limits, and proposed an 

arithmetic average of the Reuss and Voigt approximations (See equation 4.8). 

 

 𝐾𝑓𝑙  =   𝐾𝑓𝑙
𝑅𝑒𝑢𝑠𝑠     =      [∑

𝑆𝑖
𝐾𝑖

𝑛

𝑖=1

]

−1

                                                                                                         4.6 

 

𝐾𝑓𝑙     =   𝐾𝑓𝑙
𝑉𝑜𝑖𝑔𝑡

   =      ∑𝐾𝑖𝑆𝑖

𝑛

𝑖=1

                                                                                                             4.7 

𝐾𝑓𝑙     =   𝐾𝑓𝑙
𝐻𝑖𝑙𝑙       =      

(    𝐾𝑓𝑙
𝑉𝑜𝑖𝑔𝑡

+  𝐾𝑓𝑙
𝑅𝑒𝑢𝑠𝑠)

2
                                                                                   4.8 

The properties of the pure components such as fluid bulk modulus 𝐾𝑖 and density 𝜌𝑖 are calculated 

using the empirical correlations of Batzle and Wang, (1992) or by applying an equation of state (as in 

McCain, 1990; Danesh, 1998). 

The saturation of the fluid components could be obtained from field measurements (e.g., reservoir 

saturation tool (RST) data) or from compositional flow simulations. 

When working with results from compositional flow simulation, densities and saturations for brine and 

CO2 could be imported from the flow simulation into the rock physics modeling workflow.  
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4.3.3 Bulk modulus of the mineral matrix 

To find the bulk modulus of the mineral matrix 𝐾𝑔𝑟 it is essential to determine the mineral composition 

of the reservoir rock. This can be obtained in different ways such as clay volume estimation from 

wireline logs (gamma ray logs), laboratory examination of core samples e.g., X-ray diffraction ( Lu et 

al., 2011), or by assuming that the only dominant minerals are clay and quartz (Smith et al., 2003; 

Kumar, 2006). Upon determining the mineral abundance, the bulk modulus of the mineral matrix can 

be calculated either by the Reuss (1929) method using a harmonic averaging scheme (Equation. 4.9) 

or by the Voigt, (1928) approach using a weighted mean scheme (Equation 4.10).  

𝐾𝑔𝑟
𝑅𝑒𝑢𝑠𝑠     =      [∑

𝐹𝑖
𝐾𝑔𝑟,𝑖

𝑚

𝑖=1

]

−1

                                                                                                                   4.9 

and  

𝐾𝑔𝑟
𝑉𝑜𝑖𝑔𝑡

    =      ∑𝐾𝑔𝑟,𝑖𝐹𝑖

𝑚

𝑖=1

                                                                                                                         4.10 

𝑚 is the number of minerals making up the rock matrix, 𝐹𝑖 is the fraction of mineral 𝑖 in the rock mass; 

and 𝐾𝑔𝑟,𝑖 is the bulk modulus of mineral 𝑖. 

 

(Hill, 1952) combined these two formulations as seen in equation 4.11. 

𝐾𝑔𝑟    =   𝐾𝑔𝑟
𝐻𝑖𝑙𝑙       =      

(    𝐾𝑔𝑟
𝑉𝑜𝑖𝑔𝑡

+  𝐾𝑔𝑟
𝑅𝑒𝑢𝑠𝑠)

2
                                                                                4.11 

 

4.3.4 Frame Bulk modulus 

The bulk modulus of the frame represents the bulk modulus of the reservoir when all pore fluids are 

drained. It can be obtained from laboratory measurements, empirical correlations, or wireline log data 

(Budiansky and O’connell, 1976; Gregory, 1976; Zhu and McMechan, 1990; Murphy et al., 1993; 

Spencer et al., 1994). If wireline log data is available, equation 4.1 could be re-expressed to determine 

the bulk modulus of the frame as equation 4.12 (Zhu & McMechan, 1990) 

𝐾𝑓𝑟𝑎𝑚𝑒 = 𝐾𝑑𝑟𝑦 =

    𝐾𝑠𝑎𝑡 (
𝜙𝐾𝑔𝑟
    𝐾𝑓𝑙

+ 1 − 𝜙) −     𝐾𝑔𝑟

𝜙𝐾𝑔𝑟
    𝐾𝑓𝑙

+
𝐾𝑠𝑎𝑡
    𝐾𝑔𝑟

− 1 − 𝜙

                                                                          4.12 
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The procedure for calculating the bulk modulus of the frame, and the post-injection seismic velocity is 

detailed in Table 4.1.  

 

Table 4.1 Procedure for the application of Gassmann’s formulations 

Step Action 

1 Analyze data from wireline logs (sonic, velocity logs, and porosity logs)  

2 Estimate the bulk modulus of the mineral grain 𝐾𝑔𝑟 using eq. 4.9 – 4.11 

3 Estimate the bulk modulus and density of brine from (Wang, 2001). 

 With the results from step 2, estimate the fluid bulk modulus 𝐾𝑓𝑙 (use eq. 4.6 -4.8) and 

density 𝜌𝑠𝑎𝑡 = 𝜌𝑏 (use eq. 4.3) at in-situ conditions 

4 Calculate the bulk modulus at in-situ conditions 𝐾𝑠𝑎𝑡 (use eq. 4.4) 

5 Calculate the bulk modulus of the frame 𝐾𝑑𝑟𝑦 = 𝐾𝑓𝑟𝑎𝑚𝑒 (use eq. 4.12) 

6 Estimate the bulk modulus 𝐾𝑓𝑙 (use eq. 4.6 - 4.8) and density 𝜌𝑓𝑙 (use eq. 4.5) of the fluid 

mixture after CO2 injection. Density of the saturated rock after CO2 injection is calculated 

using eq. 4.3 

7 With the bulk modulus from step 6, estimate the post-injection bulk modulus of the 

saturated rock using eq. 4.1.  

8 Estimate the post-injection seismic velocity of the saturated rock 𝑉𝑝
𝑠𝑎𝑡 use eq. 4.11 

 

4.4 Application to the Cranfield reservoir  

In this section, the Gassmann formulation described earlier will be applied to model the post-injection 

seismic velocity of the Cranfield reservoir rock. We begin by computing the bulk modulus of the rock 

matrix. As discussed previously, the mineral composition of the reservoir must be known for doing 

this calculation. Lu et al., (2012) presented X-ray diffraction test on core samples that were retrieved 

from the Cranfield well F-2 within a depth range of about 3178 – 3200 m. It was shown that the 

reservoir is mainly composed of quartz (79.4%), chlorite (11.8%), kaolinite (3.1%) and illite (1.3%). 

The less dominant minerals were calcite, albite, and dolomite. Of these three minerals, calcite is the 

most abundant (1.1%). In this study, the mineral compositions have been standardized to sum up to 1 

as shown in Table 4.2. The elastic properties of quartz, calcite and the other minerals were obtained 

from (Carmichael, 1989), (Mavko et al.,, 1998) and (Wang et al., 2001), respectively. Details of the 

elastic properties of the minerals and fluids are shown in Table 4.2.  
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In order to calculate the saturated bulk modulus at in situ conditions 𝐾𝑠𝑎𝑡 and the dry bulk modulus 

𝐾𝑑𝑟𝑦, some other inputs are needed and for that purpose, the rock physics model is conditioned to well 

data for the detailed area of study in the Cranfield test site. The density, GR, 𝑉𝑝 and 𝑉𝑠  logs used for 

data conditioning in the rock physics modeling are shown in Fig. 4.1. The saturation and density of 

CO2 and brine were imported from the compositional flow simulation conducted in chapter 3. Also, 

the reservoir porosity was obtained from the ensemble of geologic models that were calibrated in 

chapter 3. The bulk modulus of the brine and the injected CO2 were estimated from (M. L. Batzle & 

Wang, 1992; Wang, 2001). The procedure described in Table 4.1 was followed to model the rock 

physics over all the updated ensemble of models. For a practical demonstration of how to calculate the 

p-wave velocities, please refer to appendix B, which implements the Gassmann’s fluid substitution 

procedure on one of the ensemble realizations. Continuing these calculations for all depths, the post-

injection seismic velocity profiles for the F-1 and F-2 wells can be obtained and shown in Fig. 4.2. A 

close match between the log data and the modeled velocity is expected because the conditioning data 

along the F-1 and F-2 wells were used to model the post-injection velocities.  

A reduction in the seismic velocity is observed after CO2 is injected (see Fig. 4.3). The introduction of 

CO2 reduces the bulk density of the reservoir fluids. The reduction in seismic velocity as the fluid bulk 

density reduces is directly attributable to equation 4.2. Similar observation has been reported earlier in 

(Daley et al.,, 2014).  

 

Table 4.2 Properties of minerals and fluid for the Cranfield Reservoir. 

Mineral/Fluid Standardized Fractions Density 

(g/cm3) 

Bulk Modulus 

(GPa) 

Shear Modulus 

(GPa) 

Quartz 0.8211 2.650 38 44 

Chlorite 0.1220 2.681 127 81.9 

Kaolinite 0.0321 2.444 47.9 19.7 

Illite 0.0134 2.706 60.1 25.3 

Calcite 0.0114 2.710 76.8 32 

CO2  0.577 0.128  

Brine  1.11 2.21  
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Fig. 4.1 Wireline logs from Observation well F-2 at Cranfield. a) density log, b) gamma ray log, c) S-

wave velocity log (black) and P-wave velocity log (green). The black rectangular demarcation across 

the panels highlights the zone of interest, which is the injection zone. 
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Fig. 4.2 Post-injection p-wave velocity (Vp) at the well locations for a) injection well F-1 b) 

observation well F-2. Black plots are profiles from log data and red are those computed from rock-

physics modeling.  
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Fig. 4.3 P-wave velocities that were determined from fluid substitution. Pre-injection P-wave velocity 

(red) and post-injection velocity (black) at a) injection well F-1 b) observation well F-2. 

 

The post-injection seismic velocity profiles at F-1 and F-2 wells closely follow the velocity signature 

from logs (see Figs 4.2a and b). This is expected because the modeling process was conditioned data 

along the F1 and F2 wells. However, there is a great difference in the velocities at locations other than 

the F-1 and F-2 well locations. Fig. 4.4 shows the grid location for the conditioning wells F-1 and F-2 

(red), and another grid location away from the conditioning wells (black). The modeled velocity 

profiles over the entire ensemble of realizations at the grid location away from the conditioning wells 

are shown in Fig. 4.5. As can be seen, there is considerable uncertainty associated with the prediction 

of seismic velocities at locations away from the conditioning wells. In order to refine this uncertainty, 

we would like to use the available 3D seismic information to sub-select a set of models that mimic the 

seismic signature observed in the field. The next chapter develops a model selection workflow to 

accomplish this. Fig. 4.5 also shows the velocity profile at the location away from the conditioning 

wells based on the field 3D seismic survey data. 
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Fig. 4.4 Grid locations for the conditioning wells (red) and another location away from the conditioning 

wells (black) 

 

Fig. 4.5 P-wave velocity profiles at a location away from the conditioning well locations computed 

using the ensemble of history-matched models described in Chapter 3. 
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Chapter 5 Model Selection 

5.1 Introduction 

It has been demonstrated in previous chapters that model calibration methods that are implemented are 

generally capable of producing models that are geologically consistent with field data. However, the 

results in the previous chapter demonstrate that there can still be significant residual uncertainties even 

after integrating all available injection data. One reason for the residual uncertainty is the sparsity of 

data available for modeling subsurface reservoirs, particularly when it comes to modeling CO2 

injection and storage in reservoirs. Further, the dynamic data that is integrated into the model 

calibration/history-matching workflow is more prone to be influenced by the overall reservoir 

connectivity characteristics, rather than the individual permeability values at a grid location that is 

updated during the model calibration process. This can affect the predictive accuracy of the updated 

models. Therefore, for better management of the geologic storage of CO2, a framework for further 

reducing the residual uncertainty associated with the reservoir models is necessary. This study proposes 

a Bayesian model selection workflow to accomplish this task. In principle, the model selection 

workflow sub-selects a prior ensemble of models to create a posterior set of models that reflect the 

time-lapse seismic information collected in the field. The model selection workflow is especially vital 

within the context of CO2 injection and storage, as it allows regulators and operators to probabilistically 

quantify the uncertainty and risk associated with the CO2 injection process. 

The idea of using model selection to sub-select reservoir models that honor data from various sources 

has been pursued in the seminal works of Srinivasan and Cesar, (2012), Bhowmik et al., (2013), and 

Bhowmik, (2014;). Subsequently, there have been various derivative works and applications of this 

concept. Min et al., (2016) applied this idea to select reservoir models by accounting for the flow and 

geomechanical responses of the reservoir, and demonstrated its applicability to a real field CO2 

sequestration scenario using the gas storage site at Salah, Algeria. In another study, Nwachukwu et al., 

(2017) developed a model selection workflow that utilizes a particle tracking algorithm to mimic flow 

paths of injected CO2 within reservoir models. Singh, (2019) also demonstrated the possibility of using 

model selection to extract information from microseismic data regarding natural fracture network. 

In this dissertation, the model selection workflow is implemented to sub-select history-matched 

reservoir models on the basis of observed timelapse seismic data for the Cranfield reservoir. The model 

selection technique delivers a unique workflow that allows: 1) assessment of reservoir connectivity 
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paths, and delineation of the dominant heterogeneities that drive CO2 migration, and 2) sub-selection 

of more representative reservoir models that can be used to predict the CO2 plume displacement more 

accurately.  

5.2 Model selection workflow  

Table 5.1 summarizes the model selection workflow that is implemented in this research. Details of 

each stage in the workflow are discussed in subsequent sections.  

 

Table 5.1 Model selection workflow 

Step Action 

1 Generate initial ensemble of reservoir models. 

2 Generate model responses for the ensembles of reservoir models 

 Obtain a dissimilarity matrix of simulated waveforms between various members of the 

ensemble  

3 Partition models into cluster on the basis of the dissimilarity matrix. Retrieve a 

representative model for each cluster 

4 Calculate the prior probability of each cluster 

5 Update the prior probabilities to posterior probabilities by comparing the response of the 

representative models to the observed time-lapse seismic data 

6 Select cluster with the highest updated posterior probability 

7 Sequentially repeat steps 3 to 6 until a reasonable match to the observed data is obtained 

 

5.2.1 Generation of initial ensemble of reservoir models 

As discussed previously, there is a high level of uncertainty associated with modeling the precise 

pattern of heterogeneity exhibited by the point bar system. Some level of uncertainty persists even after 

calibrating the models using observed injection data. This uncertainty can be represented using the 

ensemble of history-matched models.  

 

5.2.2 Generation of model responses. 

Generating model responses (e.g., bottom-hole pressure) allows us to compare the flow or injection 

response behavior of all the models, and group them accordingly. A traditional way of obtaining model 

responses is by running full-physics flow simulations on the ensemble of models. This can be 
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computationally expensive and time-consuming especially when there is a large ensemble of models. 

Instead, fast approximation proxies have been developed to replace the conventional reservoir flow 

simulators. Examples are: 1) the fast-marching method (e.g., Sharifi et al., 2014) for efficiently 

computing time for pressure propagation time in heterogeneous geological formations, 2) Graph theory 

algorithm adopted by Jeong and Srinivasan (2016), Hirsch and Schuette (1999) for assessing the 

connectivity of multidimensional geologic models. In this method, the edges that connect grid blocks 

within the reservoir are weighted based on the properties that control fluid transmissibility such as 

permeability. The magnitude of the weights reflects the degree of connectivity. Particle tracking 

proxies have also been developed (e.g., Bhowmik, 2014) to mimic the physics of CO2 displacement in 

reservoir models. 

 

5.2.3 Computing dissimilarity between models 

The Fréchet distance measures the shape similarity between signals or curves by considering the 

location and ordering along the curves. The Fréchet distance between two signals or curves 𝑓: [𝑎, 𝑏] 

and 𝑔: [𝑎′, 𝑏′]  can be defined as equation 5.1 (Eiter and Mannila, 1994) : 

𝛿𝐹(𝑓, 𝑔) = 𝑚𝑖𝑛 [𝑚𝑎𝑥𝑡∈[0,1] {𝑑 (𝑓(𝛼(𝑡)), 𝑔(𝛽(𝑡)))}]                                                                            (5.1) 

where 𝑑(∙)  is the distance between the curves; 𝛼 and 𝛽 are reparametrized non-decreasing functions 

mapping from [0,1] onto [𝑎, 𝑏] and [𝑎′, 𝑏′] , respectively. In our model selection workflow, a variation 

called the discrete Fréchet distance would be used to determine the similarity between the model 

responses. 

Fig. 5.1 is a demonstration of how the discrete Fréchet distance is computed between curves A (blue) 

and B (red) assuming that there are only two possible combinations of 𝛼(𝑡) and 𝛽(𝑡). In the first case 

(Fig. 5.1a), the maximum distance is 𝑑 (𝑓(𝛼(𝑡3)), 𝑔(𝛽(𝑡3))), while in the second case (Fig. 5.1b) the 

maximum distance is 𝑑 (𝑓(𝛼(𝑡2)), 𝑔(𝛽(𝑡2))). The discrete Fréchet distance then becomes the 

maximum of these two distances assuming 𝛼(𝑡) and 𝛽(𝑡) have only two possible combinations. 
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Fig. 5.1 Discrete Fréchet distances computed for curves A(red) and B(blue) 

 

The discrete Fréchet distances between 𝑀 model responses can be computed and a dissimilarity matrix 

𝐷 is obtained as:  

𝐷    =       

[
 
 
 
 

0 𝑑1,2 … 𝑑1,𝑀−1 𝑑1,𝑀
𝑑2,1 0 … … 𝑑2,𝑀
… … … … …

𝑑𝑀−1,1 … … 0 𝑑𝑀−1,𝑀
𝑑𝑀,1 𝑑𝑀,2 … 𝑑𝑀,𝑀−1 0 ]

 
 
 
 

                                                                                  (5.2) 

 

5.2.4 Model Grouping 

After obtaining the dissimilarity matrix 𝐷, the next task is to project the elements in matrix 𝐷 into a 

lower dimensional space so that the dissimilarity between the observations could be visualized and 

grouped. This can be accomplished by using a dimensionality reduction technique such as Principal 

Component Analysis (PCA) (Pearson, 1901) or Multidimensional Scaling (MDS),(Boyden & Noble, 

1933; Torgerson, 1958). In this dissertation, MDS was implemented. Fundamentally, MDS uses an 

optimization algorithm to minimize the error between the pairwise dissimilarities in the original 

dimensional space 𝑑𝑖,𝑗  , by projecting it into a lower dimensional space 𝛿𝑖,𝑗.That is, given the matrix 

𝐷, we want to find 𝑀 vectors 𝑥𝑖 = {𝑥1, 𝑥2, … , 𝑥𝑀} in a 2D space such that: ‖𝑥𝑖 − 𝑥𝑗‖ ≈ 𝑑𝑖,𝑗   ∀𝑖, 𝑗 =

1,… ,𝑀. The normalized stress criterion, which is expressed as equation 5.3 (Kruskal, 1964) can be 

used to accomplish this.  

𝑠𝑡𝑟𝑒𝑠𝑠   =    [
∑ (𝑑𝑖,𝑗 − 𝛿𝑖,𝑗)

2

𝑖,𝑗

∑ 𝑑𝑖,𝑗
2

𝑖,𝑗

]

1
2

                                                                                                       (5.3) 
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To give practical meaning to this, let us assume that there are four models, P, Q, R and S. The pairwise 

dissimilarities between these models can be computed to obtain a dissimilarity matrix, 𝐷∗ as seen in 

Eq. 5.2∗. Then MDS can be performed on matrix 𝐷∗to project it into a lower dimensional space using 

the stress function given above to group the models based on their proximity. Fig. 5.2 illustrates the 

models in a lower dimensional space. Model responses Q and R have the least dissimilarity and are in 

the closest proximity to each other in space. P and S have the highest dissimilarity; therefore, they are 

furthest from each other. Simply put, closer points in the transformed space indicate similar response 

behaviors, and that in turn may suggest similar geological structures.  

 

 𝐷∗   =    [

0 2.028 1.748 4.312
2.028 0 0.400 4.400
1.748 0.400 0 3.544
4.312 4.400 3.544 0

]                                                                                        (5.2∗) 

 

Fig. 5.2 D map generated by MDS. 

The drawback of MDS is that its performance deteriorates as the ensemble size becomes larger. This 

is because MDS requires higher dimensions in order to properly transform the dissimilarity matrix D, 

and the associated computational cost for computing the corresponding basis vectors can be very high. 

Nonetheless, if ensemble size is relatively small, MDS is very useful for visualizing the relationship 

between models. 
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5.2.5 k-means clustering  

The models that are projected into a lower dimensional space are partitioned into clusters based on 

their common characteristics. A data-partitioning algorithm, k-means clustering, is used to group the 

models into clusters. The k-means clustering procedure based on  the algorithm by  (Lloyd, 1982) 

proceeds iteratively as follows: 

• Choose 𝑛 initial cluster centroids at random. 

• Compute point-to-cluster-centroid distances for all models  

• Assign each observation to the cluster with the closest centroid.  

• Compute the average of the observations in each cluster to obtain n new centroid locations. 

• Repeat steps 2 through 4 until cluster assignments do not change, or the maximum number of 

iterations is reached. 

The implementation of the above procedure is dependent on a predefined number of clusters. An 

appropriate predefined cluster number can be arrived at by minimizing the silhouette function 

(Rousseeuw, 1987). This function is given as the ratio of the intra-cluster distances of all models from 

a cluster centroid to the inter-cluster distances between the cluster centroids. This is shown as equation 

5.4. 

𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 =  
∑ ∑ 𝑑𝛼→𝛽𝛼∈𝛽
𝑛
𝛽=1

∑ ∑ 𝑑𝛽𝛾
𝑛
𝛽=1

𝛽≠𝛾

𝑛
𝛾=1

                                                                                                     (5.4) 

𝛽 and 𝛾 are the cluster indices; 𝛼  is index of a model within a cluster; 𝑑𝛼→𝛽 is the distance between 

model 𝛼 in cluster 𝛽 from the centroid, and 𝑑𝛽𝛾 is the distance between centroids of cluster 𝛽 and 𝛾. 

 

5.2.6 Update of prior probabilities. 

Initially, all the models in the ensemble have equal probability of occurrence since they have been 

conditioned to the same data. Suppose there are 𝑁 clusters where each cluster has 𝑚𝑛 models (𝑛 =

1,2,…𝑁). We denote the representative (closest to centroid) model for each cluster as 𝑧𝑛. If the clusters 

were all similarly populated, then the prior probability of each cluster 𝑃(𝑧𝑛) could be written as: 

𝑃(𝑧𝑛) =
1

𝑁
                                                                                                                                                         (5.5) 

However, due to the limited size of the ensemble and the conditioning influence of the available data, 

the clusters may have unequal number of models and in that case, the prior probability can be expressed 
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as the ratio of the number of sub-models (𝑚𝑛) in a cluster to the total number of ensemble of models 

(𝑀), i.e., 𝑃(zn) =
𝑚𝑛

𝑀
. 

Given the observed response data 𝑆𝑅, the posterior probability (i.e., updated probability) for each 

cluster can obtained by applying Bayes’ rule: 

𝑃(𝑧𝑛|𝑆𝑅)     =    
𝑃(𝑆𝑅|𝑧𝑛)

𝑃(𝑆𝑅)
× 𝑃(𝑧𝑛)                                                                                                            (5.6)  

The likelihood 𝑃(𝑆𝑅|𝑧𝑛) can be approximated by drawing a probability envelope around the observed 

response 𝑆𝑅  and computing iso-probability intervals corresponding to a prescribed probability 

distribution. In this dissertation, a Gaussian distribution is assumed whose mean is the observed 

response 𝑆𝑅 and variance 𝛿2. 𝛿2 is assumed to be the mean squared error between the simulated seismic 

response 𝑆𝑅
𝑠𝑖𝑚 and the observed seismic response, 𝑆𝑅 computed over the entire ensemble. In order to 

ensure closure, the prior probability of the observed response data 𝑃(𝑆𝑅), is computed from: 

𝑃(𝑆𝑅)   =   ∑𝑃(𝑆𝑅|𝑧𝑛) ×

𝑁

𝑛=1

𝑃(𝑧𝑛)                                                                                                              (5.7) 

The cluster whose representative has the highest posterior probability is chosen for further refinement 

in the next level of iteration. As the process continues, a smaller set of models that are more consistent 

with the observed data remains. A situation can arise where we run out of models to reliably compute 

the probabilities and to assess the posterior uncertainty. To avoid this, a stopping criterion can be 

imposed. The process can be terminated when i) a predefined minimum number of remaining models 

is reached or ii) the updated probabilities do not show any additional improvement based on the 

available data. Alternatively, the selection of models at every step of the process can be augmented 

using a sampling scheme. One approach would be to sample additional conditioning data that are 

common to all the models in the selected cluster and use that to create an additional set of models. This 

would create a set of models that reflect features common to models within the clusters. 

 

5.3 Application to the Cranfield dataset 

5.3.1 Initial ensemble of models. 

In chapter 2, an ensemble of geologic models was generated using the process for representing the 

spatial heterogeneity in a point bar system. That ensemble of models was conditioned to the well log 

data available for the Cranfield site. A follow up study was presented in chapter 3, where the models 

were updated to reduce the uncertainty by integrating CO2 injection data. For implementing the model 
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selection procedure, these injection-history matched models constitute the initial ensemble. To 

demonstrate the need to further improve the initial ensemble of models, the average ensemble 

uncertainties before and after applying the injection history-match process are compared. Fig. 5.3 

compares the uncertainty, expressed as permeability variance for the ensemble of point bar models 

before (Fig. 5.3a) and after updates (Fig. 5.3b) using the injection history. Figs. 5.3 c and d show the 

distribution of variance along sections S1 and S2, respectively. As can be seen, even though the 

uncertainty is greatly reduced after updating using the injection data, there is still considerable residual 

uncertainty. 

 

 

 

Fig. 5.3 Ensemble permeability variance for the 3D point bar models (a) before and (b) after updates, 

with sections along S1 and S2 displayed in c) and d) respectively. 

 

5.3.2 Model selection objective 

The objective of implementing model selection is to further refine the suite of calibrated models to 

create a posterior set of models that best reflect the reservoir characteristics most closely. This will be 

accomplished by: 
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• Incorporating the fluid saturation and pressure distribution at the end of the history matching 

into rock physics models to compute seismic responses that can be compared to 3D seismic 

data recorded in the field.  

• Implementing the Bayesian model selection workflow to sub-select a set of reservoir models 

that are closest to the observed seismic responses. 

 

5.3.3 Cranfield Seismic Data 

A description of the Cranfield seismic datasets and the processing of the data to obtain various elastic 

properties such as p-wave velocity, and acoustic impedance have been discussed in the original works 

of Zhang et al. (2014); Zhang, et al. (2013) and Zhang et al. (2013). In the following, a summary of 

the available data is presented and the processing steps to derive the 3D p-wave velocity model used 

in this dissertation are described.  

The CO2 injection project in the Cranfield, Mississippi reservoir commenced in July 2008. Prior to 

injection, 3D seismic data was acquired in 2007. There were 23 pre-existing wells at the time of the 

3D survey. Following this, post-injection 3D seismic data was acquired in September 2010. A key 

anomaly in the seismic data is the misalignment in time shift in the time-lapse post stack and pre-stack 

seismic datasets. This anomaly is generally considered as an artifact induced by data acquisition or 

data processing or both(Zhang et al., 2013).To correct this anomaly, Zhang et al, (2013) applied 

registration to the time-lapse pre-stack datasets by warping the post- to the pre-injection datasets based 

on the local correlation between them in order to isolate the time shift effect from the amplitude 

changes. After registration, pre-stack seismic inversion (Basis Pursuit Inversion) was applied on the 

original pre-stack time-lapse data and the registered post-injection data to derive estimates for the 3D 

p-wave velocity model that was used in this dissertation. The 3D p-wave velocity model (Fig. 5.4) is 

what will be used to guide the model selection process. 
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Fig. 5.4 Seismic p-wave velocity data that will be used to constrain the model selection process. a) p-

wave velocity for the entire Cranfield area b) Top view demarcating the area used for CO2 injection, 

c) Extracted seismic volume corresponding to the injection zone. 
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5.3.4 Model selection implementation 

The model selection workflow is implemented by initially applying the rock physics modeling 

procedure described in chapter 4 to compute p-wave velocity (𝑣𝑝) responses for the models. The 

updated geologic models and their corresponding fluid saturations and densities at the end of the 

injection history matching process were taken into consideration for computing the seismic response. 

Since the density of CO2 is a function of pressure, incorporating fluid density into the rock fluid 

computations indirectly takes care of pressure changes induced by CO2 injection. To account for the 

CO2 displacement through the reservoir, the model response is expressed as the difference between the 

pre- and post-injection p-wave velocities. That difference is computed for each member of the 

ensemble of models. The Fréchet distances between these model responses are subsequently computed. 

Finally, the Fréchet distances are projected into a lower dimensional space using multidimensional 

scaling as shown in Fig. 5.5. Each point in that plot corresponds to the response of a single model in 

the ensemble. 

 

Fig. 5.5 Projection of models into a 2D space after applying MDS. 

 

Next is to determine the optimum number of clusters to be used to partition the projected set of models. 

This is done by applying equation 5.4 to compute the silhouette distance corresponding to a range of 

possible cluster numbers (Fig 5.6). Based on this, the models were partitioned into three clusters P, Q 

and R (Fig. 5.7). 
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Fig. 5.6 Plot of Objective Function (i.e., Silhouette score) against number of clusters. 

 

Fig. 5.7 Clustering of ensemble of models in the MDS projection space. 
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5.3.5 Bayesian update of prior probabilities. 

The probability update begins with calculating the prior probability P(zn) for each cluster. Each cluster 

is equally likely; therefore, the prior probability is 
1

3
. The likelihood 𝑃(𝑆𝑅|𝑧𝑛) is determined from a 

probability envelope that is constructed by assuming a Gaussian distribution as shown in Fig. 5.8. The 

mean of the Gaussian is assumed equal to the observed seismic response and deviation is calculated 

on the basis of the mean square mismatch between the observed and simulated responses. The model 

responses for each cluster are plotted within this envelope, and the probability is read from the point 

in the envelope where there is maximum deviation from the observed response (See Point A in Fig. 

5.8). After performing Bayesian updates, the posterior probabilities for the cluster representatives for 

cluster P, Q, and R, are respectively 0.33, 0.47, and 0.20. The cluster that has the highest updated 

probability is selected for the next stage of model selection, and the above procedure is repeated. Fig. 

5.9 summarizes the entire iterative model selection workflow. In stage 1 (Fig. 5.9 a), cluster Q (red) 

was selected for the next stage because it had the highest updated probability. This cluster was further 

partitioned in stages 2 (Fig. 5.9b), and 3 (Fig. 5.9c). The corresponding seismic profiles for models in 

the selected clusters at each stage of the model selection are shown in (Figs. 5.9 d – f). As can be 

observed, the model responses converge towards the observed response as the model selection process 

advances. 
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Fig. 5.8 The calculation of Bayesian likelihood by assuming a Gaussian probability envelope centered 

on the observed response and with a variance equal to the mean squared error between the simulated 

and observed response corresponding to all ensemble members. 
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Fig. 5.9 . Model Selection workflow in three stages. Top row shows the clustering and selection process 

at each stage. Second row shows the time-lapse velocity difference for all models within the selected 

cluster. Red plots in second row represent the observed time-lapse seismic velocity data. 

 

5.4 Discussions. 

The model selection workflow discussed herein can refine an ensemble of geologic models by using 

the time-lapse seismic data to constrain the uncertainty. The maps in Fig. 5.10 show a reduction in the 

variance of the permeability distribution after model selection.  

The refinement of the models allows us to delineate the dominant depositional trends and 

heterogeneities that drive fluid flow. Figs. 5.11 a, b, and c show sections of the cluster representatives 

during the final stage of the model selection workflow. Figs. 5.11 d, e, and f are a representation of 

these models in a rectilinear grid to allow us to properly visualize the key geologic patterns that control 

CO2 flow. 
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For all the models, we observe an overall trend of decreasing porosity as we move from the bottom to 

the top of the reservoir, suggesting a fining upward depositional trend. This trend has been documented 

in earlier literature (e.g., Hosseini et al., 2013) as a key depositional trend that characterizes the 

Cranfield reservoir.  

Again, a close observation of the models shows five distinct inclined units, called inclined heterolithic 

stratifications (IHS). At the interfaces between two successive IHS are thin layers with very low 

porosity. These thin layers are shale drapes that act as baffles to CO2 migration. 

 

 

 

Fig. 5.10 Permeability variance computed using the ensemble of selected 3D point bar models, (a) after 

model calibration using injection history data and (b) after model selection using time-lapse seismic 

information, with sections along S1 and S2 displayed in c) and d) respectively. 
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Fig. 5.11 Representative geologic model after implementing the model selection workflow to illustrate 

the porosity distribution in curvilinear space (figures (a, b, c)), and the corresponding distribution in 

rectilinear space (figures d, e, f). 

 

Fig. 5.12 is an ensemble average of p-wave velocity difference that shows the mapped CO2 plume 

locations before and after model selection. The difference maps are compared to the observed response, 

and those computed using models obtained after assimilating the injection data as well as those 

obtained after assimilating the time-lapse seismic data. The observed response based on the field 

acquired seismic data shows CO2 plume at shallower depths. This CO2 plume migration to shallower 

depth is better captured after model selection, and the plume connectivity or migration path is better 

delineated.  

Finally, we compare the simulated bottom-hole pressures at all iterative stages of the model selection 

workflow to assess the evolution of uncertainty in injection response (Fig. 5.13). We observed a 

reduction in uncertainty (in terms of scatter around the observed pressure profile) and a better 

prediction of the field data as model selection proceeds.  
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Fig. 5.12 Average p-wave velocity difference for a representative section a) observed seismic data, b) 

before model selection (after injection data assimilation), and c) after model selection assimilating 

time-lapse seismic data. 
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Fig. 5.13 Bottom-hole pressure response at different iterative stages of the model selection process. 

 

5.5 Summary and Concluding Remarks. 

This chapter proposes a Bayesian model selection method that uses time-lapse seismic data for refining 

a suite of point bar models that have been calibrated using CO2 injection data. The process updates the 

uncertainty associated with reservoir geology using time-lapse seismic information. The model 

selection algorithm offers an efficient way for selecting an optimum set of models conditioned to 

seismic data that reflect the observed injection characteristics. Rock physics models provide a proxy 

model for the effect of CO2 on seismic velocity in the point bar reservoir in a manner that is effective 

for discriminating the connectivity characteristics exhibited by different models. Bayesian probability 

updates are performed by considering the deviation of the simulated response of representative models 

from the observed data. 
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Application of the workflow to a suite of models that have been calibrated using injection data from 

the Cranfield yielded: 1) an assessment of the reservoir connectivity paths, and delineation of the 

dominant heterogeneities that drive fluid migration, and 2) a sub-selection of more representative 

reservoir models that can be used for more accurate forecasts.  

The next chapter will more formally explore the value of information from each source of information: 

injection data and time-lapse seismic data. 
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Chapter 6 Value of Information Analyses for Monitoring CO2 

Plume During Sequestration 

6.1 Introduction 

The prediction of CO2 plume displacement during sequestration in subsurface geological formations 

is associated with high uncertainties and potential risks. A key aspect of subsurface CO2 sequestration 

is our ability to monitor the storage reservoir and the injection wells to ensure that the injected fluid  

permanently remains in the subsurface(Trainor-Guitton et al., 2013). Several techniques have been 

employed to monitor the CO2 injected in the subsurface. Gasperikova & Hoversten, (2008) modeled the 

gravity anomaly associated with density changes due to CO2 injection in deep brine aquifers and coal 

formations, while others have used seismic wave velocities (e.g., Mito & Xue, 2011), and electrical 

resistivity measurements (e.g., Dafflon et al., 2012; Ramirez et al., 2003; Schmidt-Hattenberger et al., 

2011) to explain the physical changes induced by the injected CO2 and thereby monitor the 

displacement of CO2 in the subsurface. With regards to the Cranfield injection project, the monitoring 

techniques range from the use of timelapse seismic data (e.g., Zhang et al., 2013;Daley et al., 

2014;Zhang et al., 2013; Ajo-Franklin et al., 2013;Alfi et al., 2015)) to the deployment of rock physics 

models (e.g., Ghosh et al., 2012). 

In order to build robust reservoir models that can be used for monitoring and assessing the storage of 

CO2, information from various sources are integrated into data assimilation workflows to calibrate the 

models to reduce uncertainties(e.g., Alfi & Hosseini, 2016; Dawuda & Srinivasan, 2022; Delshad et 

al., 2013; Hosseini et al., 2013). These data assimilation techniques only assess the impact of additional 

information on model predictions, and do not explicitly account for how the additional information can 

be deployed to make better decisions. That is, it is assumed that the improved models automatically 

lead to better decisions, which is not necessarily the case. To adequately design a robust CO2 

monitoring program, we must account for the value of information (VOI) in the data that is assimilated. 

This allows us to evaluate whether the improvement in the reservoir model that is achieved by 

assimilating additional data justifies the cost of gathering that data, given the uncertainty associated 

with the fate of the injected CO2 plume. 

 

An early work (Howard, 1966) considered VOI in a bidding framework, and formalized the idea that 

information could be valued within the context of decision making under uncertainty. Since then, VOI 

analyses have found applications in many fields including health sciences (e.g., Welton et al. 2008; 
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Yokota and Thompson, 2004), and earth sciences, particularly, in the petroleum industry, where it is 

used in decision-making during reservoir management (e.g., Begg et al., 2002; Cunningham and Begg, 

2008). Bhattacharjya et al, 2010) introduced a VOI methodology to capture the spatial dependence of 

reservoir sands and shales using Markov random field and estimated the value of seismic information 

to guide drilling decisions. Gaussian models have also been used to estimate the value of information 

for seismic attributes (Bickel et al., 2006), and spatially correlated continuous variables such as oil 

saturation and porosity (Eidsvik et al., 2008). Nakayasu et al. (2016) presented an algorithm that 

evaluates the value of measuring one physical property (e.g., porosity) at different locations using 

reservoir simulation, Gaussian random field models, Monte Carlo integration and an expectation 

maximization algorithm. This approach is fraught with many assumptions. An example is the 

assumption that the physical parameters, except the heterogenous spatial distributions of reservoir 

permeability and porosity, are known exactly. In well completions optimization, valuing future 

measurements to maximize production has also been investigated (Bailey, et al., 2011).  

Within the realm of carbon capture and storage (CCS) operations, applications of VOI studies have not 

gained much visibility. Attempts at VOI studies in CCS have focused on methods to monitor the CO2 

stored in the subsurface. The applicability of the proposed methods has been tested on synthetic cases 

(e.g., Sato 2011; Trainor-guitton et al. 2013). In this study, we will apply our method to the updated 

simulation results which were obtained for the CO2 injection dataset for the Cranfield reservoir.  

  

6.2 VOI Computation 

The concept of VOI can be traced to the field of decision analysis (Howard, 1966; Raiffa, 1968), and 

it quantifies the expected utility or monetary value gained by gathering information under uncertainty. 

Assuming risk neutrality, i.e., if one is neither risk-averse nor risk-prone (Pratt, et al., 1995), VOI can 

be defined as equation. 6.1 (Bratvold et al., 2009; Trainor-Guitton et al., 2013). 

𝑉𝑂𝐼 = 𝑉𝑝𝑜𝑠𝑡 − 𝑉𝑝𝑟𝑖𝑜𝑟                                                                                                                            (6.1) 

where 𝑉𝑝𝑟𝑖𝑜𝑟  is the expected value if a decision is made without additional information, and 𝑉𝑝𝑜𝑠𝑡 is 

the expected value after additional information. If the information assimilated in the workflow is 

relevant and reliable, 𝑉𝑝𝑜𝑠𝑡 will be greater than 𝑉𝑝𝑟𝑖𝑜𝑟 , and VOI will be positive. 

The literature is replete with a variety of methods for computing expected value (e.g., Nakayasu et al. 

2016; Sato 2011). In some works (e.g., Raiffa, 1968), the expected value (i.e., expected monetary 

value) is computed as the probability weighted sum of all monetary outcomes. To illustrate this, let us 

follow the exposition of Nakayasu et al. (2016). Suppose 𝑎 is a single option among a set of 𝐴 options 
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under uncertainty 𝑋, where 𝑋 is a random variable defined on Ω. For every option 𝑎 ∈ 𝐴, a monetary 

value function 𝑓𝑎: Ω → ℝ is assigned. If risk neutrality is assumed, then optimality lies in maximizing 

this expected monetary value function as: 

𝑉ℳ = ∫𝑓𝑎(𝑥)
.

Ω

𝑃𝑋(𝑥)𝑑𝑥                                                                                                                               (6.2) 

where 𝑃𝑋 ∶  Ω → ℝ is the probability density function for the continuous random variable 𝑋. The 

expected monetary value without additional information is therefore: 

𝑉𝑝𝑟𝑖𝑜𝑟 = max
𝑎∈𝐴

𝑉ℳ                                                                                                                                        (6.3) 

 

If there is an information 𝑌 to be assimilated, then the probability term 𝑃𝑋  in equation 6.2 becomes a 

conditional probability as: 

𝑃𝑋|𝑌(𝑥|𝑦) =
𝑃𝑌|𝑋(𝑦|𝑥)𝑝𝑋(𝑥)

𝑝𝑌(𝑦)
 

 where 𝑝𝑌(𝑦) =  ∫ 𝑃𝑌|𝑋(𝑦|𝑥)𝑃𝑋(𝑥)𝑑𝑥
.

Ω
  ∀𝑋 = 𝑥 and ∀𝑌 = 𝑦 

A Gaussian likelihood is commonly used for 𝑃𝑌|𝑋(𝑦|𝑥) (Goda et al., 2017). 

The conditional expected monetary value, given 𝑌 = 𝑦 becomes: 

𝑉ℓ(𝑦) = max
𝑎∈𝐴

∫𝑓𝑎(𝑥)
.

Ω

𝑃𝑋|𝑌(𝑥|𝑦)𝑑𝑥                                                                                                      (6.4)    

Since we want to determine the value of additional information 𝑌 defined on Ω′, the function 𝑉ℓ must 

be integrated over the domain Ω′ with its probability density function 𝑃𝑌 as: 

𝑉𝑝𝑜𝑠𝑡 = ∫ 𝑉ℓ(𝑦)𝑃𝑌  (y)𝑑𝑦
.

Ω′
                                                                                                                    (6.5) 

The new domain Ω′ represents a collection of samples that are drawn from 𝑃𝑌 

Finally, the value of information can be computed by substituting equations 6.5 and 6.3 into equation 

6.1. 

 

In this dissertation, our approach to the computation of expected value is based on the work of Barros 

et al., (2016), that uses 𝑁 ensembles of models {𝑚1, 𝑚2, 𝑚3 … ,𝑚𝑁} to account for uncertainties in 

order to determine the optimum production/injection strategy that maximizes a given objective 

function over the ensemble. 

The objective function is defined as the ensemble mean (i.e., expected value) of the monetary values 

of all the individual realizations, 𝑣𝑖(equation 6.6).  
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𝑉 =
1

𝑁
∑𝑣𝑖

𝑁

𝑖=1

                                                                                                                                                (6.6) 

For a single realization, the objective function can be defined as: 

𝑣𝑖 = ∫𝑞𝐶𝑂2(𝑡, 𝑚𝑖) ∙ 𝐶

𝑇

𝑡=0

𝑑𝑡                                                                                                                          (6.7) 

where 𝑡 is time, 𝑇 is the total CO2 injection period, 𝑞𝐶𝑂2  is the variable of interest (it can be CO2 

injection rate, dissolved CO2, residual CO2 etc.), 𝐶 is the cost term. If  𝑟𝐶𝑂2  is the cost of the variable 

of interest, 𝑏 is the discount factor, and  𝜏 is the discounting time, then 𝐶 can be defined according to 

(Barros et al., 2016), as: 

𝐶 =
𝑟𝐶𝑂2

(1 + 𝑏)𝑡 𝜏⁄
                                                                                                                                          (6.8) 

 

Throughout this chapter, the term 𝑞𝐶𝑂2  defined in equation 6.7 will denote the amount of CO2 that is 

trapped in the form of dissolution. Also, since cost information is not available for the Cranfield, 

equation 6.7 will be re-expressed in terms of the amount of CO2 dissolved per unit cost of gas injected 

(equation 6.9). This allows us to focus only on the amount of dissolved gas, which is a known quantity 

that can be obtained from running flow simulation. 

𝑣𝑖
𝐶
= ∫ 𝑞𝐶𝑂2(𝑡,𝑚𝑖)

𝑇

𝑡=0

𝑑𝑡                                                                                                                             (6.9)     

Equation 6.9 is applied for each realization before and after data integration, and the expected value is 

computed using equation 6.6.  

 

6.3 Methodology  

The workflow for implementing VOI analyses within the context of data assimilation begins by 

generating an initial ensemble of N realizations to capture the prior uncertainty in the reservoir model 

parameters. Next, reservoir response or flow variables are generated from reservoir simulation or rock 

physics models. These response variables are then compared to the observed injections and/or time 

lapse seismic response within a data assimilation workflow to perform updates in order to obtain a 

posterior ensemble of models. The economic outcomes before, 𝑉𝑝𝑟𝑖𝑜𝑟  and after data assimilation 𝑉𝑝𝑜𝑠𝑡 

are then evaluated, and the difference between these outcomes is computed. The above procedure is 
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repeated over all the ensemble of models, and the average of the difference in monetary outcomes 

becomes the expected VOI, which in our case is simply the VOI.  

The complete workflow used in this study for computing VOI is shown in Fig. 6.1. Most of the steps 

in the workflow have been covered in previous chapters. Therefore, the portion of the workflow 

demarcated in dashed box is what will be the focus of our attention. 

The two main datasets that were assimilated in this study (i.e., CO2 injection data and time-lapse 

seismic data) only cover the injection period. Within this period, pressure builds up as the CO2 is 

injected, hence, trapping of CO2 will be primarily driven by pressure. As dissolution is pressure driven, 

our VOI discussions will only focus on the CO2 that is trapped by dissolution. 

By starting with history matching, the flow simulation results before and after assimilating injection 

data are imported into the VOI workflow, and the portion of the workflow demarcated in dashed box 

in Fig. 6.1 is implemented, to compute the VOIs. This procedure is repeated for the model selection 

workflow as well.  
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Fig. 6.1 Workflow for computing VOI for assimilating data into models for point bar deposits.  Adapted 

from (Barros et al., 2016). 

 

6.4 Results and Discussions 

One criterion that can be used to assess the value of any information could be that it must hold the 

potential to change our understanding, or reveal very important information about the reservoir that 

can possibly change our decisions regarding reservoir management. It is also reasonable to expect the 

cost of obtaining that information to be less than the value it generates. To summarize, the information 

Start 

Generate N initial 

ensemble of models, 𝑀 

Select a realization,  𝑚𝑝𝑟𝑖𝑜𝑟
𝑖  

from ensemble 𝑀. 

Run simulation on  𝑚𝑝𝑟𝑖𝑜𝑟
𝑖  

to obtain initial flow 

response 𝑟𝑝𝑟𝑖𝑜𝑟
𝑖  

Update 𝑚𝑝𝑟𝑖𝑜𝑟
𝑖  by 

assimilating response, 𝑟𝑝𝑟𝑖𝑜𝑟
𝑖  

to obtain posterior 

models, 𝑚𝑝𝑜𝑠𝑡
𝑖  

Run simulation on  

 𝑚𝑝𝑜𝑠𝑡
𝑖  to obtain posterior 

flow responses,  𝑟𝑝𝑜𝑠𝑡
𝑖 . 

Calculate the value corresponding 

to 𝑚𝑝𝑟𝑖𝑜𝑟
𝑖  to obtain 𝑉𝑝𝑟𝑖𝑜𝑟

𝑖  

Calculate the value corresponding to 

𝑚𝑝𝑜𝑠𝑡
𝑖  to obtain 𝑉𝑝𝑜𝑠𝑡

𝑖  

Calculate VOI for the 𝑖𝑡ℎ  realization, 

𝑉𝑂𝐼𝑖 = 𝑉𝑝𝑜𝑠𝑡
𝑖 − 𝑉𝑝𝑟𝑖𝑜𝑟

𝑖   

 

Compute expected VOI. 

𝑉𝑂𝐼 =
1

𝑁
∑𝑉𝑂𝐼𝑖
𝑁

𝑖=1

 

Are all 

realizations 

covered? 

YES 

NO 𝑖 = 𝑖 + 1 

END 



119 
 

must be relevant, observable, material and economical (Bratvold et al., 2009; Pickering & Bickel, 

2006). As noted by Abbas et al., (2013), these criteria can be summed up as the expected utility increase 

after assimilating a new information. This expected gain in utility is captured in equation 6.1, which 

forms the basis upon which the VOIs were computed in this study. 

Fig. 6.2 shows the VOI results obtained by assimilating injection data during history matching as 

detaild in Chapter 3 and time-lapse seismic data following the Bayesian model selection procedure 

detailed in Chapter 5. The figure reflects the amount of CO2 trapped as dissolved gas per unit cost of 

gas injected over all the observation times. The VOI plots for the injection data (black plot) and time-

lapse seismic data (red plot) show upward trends that are greater than zero over all the injection period. 

According to Trainor-Guitton et al., (2013), this trend suggests that the posterior data that were 

assimilated (i.e., injection data and time-lapse seismic data) are valuable and act as reliable sources of 

information. It can be further deduced that these data contain valuable information that can constrain 

models for subsurface heterogeneity, which is very important for CO2 monitoring and storage.  

The fluctuations in the VOI trends are due to the unsteady injection schedule used for the Cranfield.  

Observing the figures also shows that maximum VOI occurs at 450 days. This is perhaps due to the 

fact that as injection proceeds, more of the reservoir volume is contacted and the corresponding 

reservoir models are constrained to more information (Barros et al., 2016). Sato, (2011) argues that 

over time, the VOI can reduce due to the injection-induced pressure buildup that causes geomechanical 

degradation of seals and faults to cause leakage of CO2. This further suggests that the injection schedule 

that was adopted for the Cranfield leads to a pressure buildup that is within the sustainable pressure 

threshold that does not compromise the geomechanical integrity of any seals or faults. It is also 

interesting to note the difference in the rate at which the VOI profile increases at early times. It suggests 

that the injection data has more information about the near wellbore heterogeneities that cause the VOI 

plot to rise steeply at early times. However, as injection proceeds, the reservoir far from the injection 

well is informed and that causes the VOI corresponding to the time-lapse seismic to rise more steeply 

at later times. 

In addition, after assimilating time-lapse seismic information during model selection, the VOI is more 

than that revealed by assimilating injection data. This can be explained by the fact that the model 

selection allows us to determine which of the history-matched models best reflect the observed 

reservoir characteristics. Thus, the models are more refined to represent prior uncertainty while 

revealing additional details about key geologic patterns that drive CO2 plume migration and storage. 

After assimilating time-lapse seismic data within the model selection procedure, we find that the CO2 

plume is larger than what was earlier predicted from the history matching. This is clearly shown in Fig. 
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6.3, where the saturation map of the CO2 plume is larger after model selection, and the difference map 

(Fig. 6.3d) highlights the regions of the reservoir where the displacement of the CO2 plume was not 

captured during the history matching step (Fig. 6.3c). All these factors explain why the VOI is more 

after assimilating time-lapse seismic information using the model selection procedure.  

 

Fig. 6.2 VOI trends by assimilating injection data during history matching (black), and by assimilating 

time-lapse seismic data during model selection (red). 

 

Fig. 6.3 Map of predicted CO2 saturation after various stages of data assimilation. a) before history 

matching, b) after history matching, and c) difference in saturation between the two models., d) before 

assimilating time-lapse seismic data through model selection, e) after model selection, and f) difference 

in CO2 saturation between the two models.  
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6.5 Summary and Concluding Remarks  

The VOI analysis is introduced to assess the impact or value of data that were assimilated in the history 

matching and model selection workflows in this dissertation. The VOI formulation in this chapter is 

based on ideas adapted from (Barros et al., 2016) that demonstrates the concept in the context of 

production or injection optimization and history matching under uncertainty.  

The CO2 injection data and the time-lapse seismic information that were assimilated are valuable 

information that allow us to better characterize the point bar reservoir, and understand the CO2 plume 

behavior after injection. The results reveal that the integration of time lapse seismic data serves to 

identify spatial features away from the well that facilitate the lateral migration of the CO2 plume 

thereby resulting in additional value. 

There are also unresolved issues with regards to developing a detailed VOI workflow that can provide 

a comprehensive knowledge for designing an appropriate CO2 monitoring and storage program. For 

example, there are other non-technical factors (e.g., legal regulations, public acceptance) that affect the 

success of CO2 monitoring and storage programs. Yet, till date, there is no definitive means of 

converting these factors into monetary values so that they can be incorporated into the VOI workflow. 

A more complete framework for VOI analysis that addresses these concerns is therefore necessary.  
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Chapter 7 Limitations and Recommendations 

A versatile workflow for modeling geologic point bars and subsequently conditioning the models to 

injection and time-lapse seismic data has been presented in the previous chapters of this dissertation. 

The presented methods are flexible and yield realistic descriptions of the spatial heterogeneity 

associated with point bar methods. However, as with any modeling approach, the presented methods 

have assumptions and data requirements that may pose challenges. In this chapter, these challenges in 

the reservoir modeling, the model calibration, and the model selection workflows in this dissertation 

are presented. Possible recommendations have also been given to address these challenges. 

In the geological modeling framework, it is assumed that the geometry of the point bar can be 

parametrized using smooth interpolation functions such as cubic splines. However, the calibration of 

the parameters of the interpolation scheme is a challenge, especially when only sparse data is available 

to guide the inference of the parameters. The interpretation of the channel flow path, and its subsequent 

migration, is central to the modeling approach. That is always prone to uncertainty based on indirect 

information available along wells. The workflow could also be extended to accommodate the possible 

existence of discontinuities such as faults and fractures, which influence CO2 sequestration in the 

subsurface. The modeling will proceed with the simulation of point bars as if the faults were absent 

and subsequently applying vertical displacements consistent with those observed along faults.  

In the model calibration scheme, the reservoir geometry could change depending on the petrophysical 

properties such as porosity and permeability used in step 1 of the model calibration. A possible solution 

to this problem is to sequentially update both the geometry and the spatial distribution of the 

petrophysical variables, so that at convergence there are stable updates of both the geometry and the 

primary variables. However, this approach may quickly become intractable. This is because when the 

geometry is perturbed, the interpreted spatial correlation length of the petrophysical properties will 

change, and so the ensemble of models for the reservoir property will also change and that may result 

in a non-convergent history matching process. 

Also, the conditioning data used in the model calibration were either limited or unavailable. For 

example, there were only few wells available for the CO2 injection area, and therefore, the hard data 

used as conditioning information for generating the initial ensemble of models were limited. This is 

likely in most carbon sequestration projects. The proposed method tries to address this by emphasizing 

the calibration of models using injection and time-lapse seismic data. 
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With regards to the model selection workflow, two drawbacks are noteworthy. For one, there is the 

possibility of model collapse. This is a situation where we run out of models due to the fewer models 

that remain as the model selection process advances. To avoid this challenge, one can pursue strategies 

to augment the model suite using the common characteristics of models in a cluster. Others (Srinivasan 

& Mantilla, 2012) have also proposed imposing a stopping criterion, where the process can be stopped 

when a predefined minimum number of remaining models is reached, or the updated probability 

distribution does not show any preference for any cluster. 

During the Bayesian posterior probability calculation process, the resultant posterior probabilities may 

come out to be flat or equal for the various clusters.  This would then suggest that the prior set of 

models may not be rich enough and consequently, the prior uncertainties may not be wide enough to 

represent the observed data. As a result, the posterior distribution is unable to discriminate between the 

models. A potential solution could be to enrich the prior ensemble of models by simply increasing the 

ensemble size or by adding more scenarios. Admittedly, the flatness in these probability updates could 

also be a procedural artifact created by the assumptions made in the model selection workflow. For 

example, in constructing the probability envelope that was used to perform Bayesian updates, a 

Gaussian likelihood was assumed. This assumption could be flawed. To avoid the limitations posed by 

the Gaussian assumptions, a more data-driven approach for inferring the likelihood may be considered. 

 

 

 

 

 

 

 

 

 

 



124 
 

Appendix A 

The coefficients (𝑎, 𝑏, 𝑐, 𝑑) which are weights for interpolating the channel nodes, can be determined 

by following the exposition of (Bartels et al., 1995) to represent the 𝑗𝑡ℎ spline with n+1 set of points 

(𝑝0, 𝑝1, … , 𝑝𝑛) as: 

 𝑃𝑗(𝑡) =  𝑑𝑗𝑡
3 + 𝑐𝑗𝑡

2 + 𝑏𝑗𝑡  + 𝑎𝑗         (A1)  

where 𝑡 ∈ [0,1], and 𝑗 = 0,1…𝑛 − 1, then, it follows that: 

𝑃𝑗(0) =  𝑎𝑗 = 𝑝𝑗           (A2) 

 and 𝑃𝑗(1) =  𝑝𝑗+1 = 𝑑𝑗 + 𝑐𝑗 + 𝑏𝑗 + 𝑎𝑗       (A3) 

Taking the derivative of 𝑝𝑗(𝑡) at 𝑡 = 0 and 𝑡 = 1 yields: 

𝑃𝑗
′(0) = 𝐷𝑗 = 𝑏𝑗           (A4) 

𝑃𝑗
′(1) = 𝐷𝑗+1 = 3𝑑𝑗 + 2𝑐𝑗 + 𝑏𝑗          (A5) 

Solving equations (A2) – (A5) for 𝑑𝑗 , 𝑐𝑗, 𝑏𝑗  and 𝑎𝑗 gives: 

𝑎𝑗 = 𝑝𝑗            (A6) 

𝑏𝑗 = 𝐷𝑗            (A7) 

𝑐𝑗 = 3(𝑝𝑗+1 − 𝑝𝑗) − 2𝐷𝑗 −𝐷𝑗+1        (A8) 

𝑑𝑗 = 2(𝑝𝑗 − 𝑝𝑗+1) + 𝐷𝑗 + 𝐷𝑗+1        (A9) 

Since the second derivative must also pass through the same points, we have: 

𝑃𝑗−1(1) = 𝑝𝑗           (A10) 

𝑃𝑗−1
′ (1) = 𝑃𝑗

′(0)           (A11) 

𝑃𝑖(0) = 𝑝𝑖            (A12) 

𝑃𝑗−1
′′ (1) = 𝑃𝑗

′′(0)          

 (A13) 

Also, the interior points and the end points must satisfy the following conditions: 
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𝑃𝑗(0) = 𝑝0           (A14) 

𝑃𝑛−1(1) = 𝑝𝑛           (A15) 

For natural cubic spline, the second derivative at the end points must be zeros, therefore: 

𝑃0
′′(0) = 0           (A16) 

𝑃𝑛−1
′′ (1) = 0           (A17) 

Rearranging the above equations leads to a system of equations as: 

[
 
 
 
 
 
 
2 1 0 0 0 0 0
1 4 1 0 0 0 0
0 1 4 1 0 0 0
0 0 1 4 1 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 0 0 0 1 4 1
0 0 0 0 0 1 2]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝐷0
𝐷1
𝐷2
𝐷3
⋮

𝐷𝑛−1
𝐷𝑛 ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
3(𝑝1 − 𝑝0)

3(𝑝2 − 𝑝0)

3(𝑝3 − 𝑝1)
⋮

3(𝑝𝑛−1 − 𝑝𝑛−3)

3(𝑝𝑛 − 𝑝𝑛−2)

3(𝑝𝑛 − 𝑝𝑛−1) ]
 
 
 
 
 
 
 

     A18 

Upon solving these system equations for the 𝐷𝑗  (𝑗 = 0,1,… , …𝑛) terms, we can obtain the spline 

coefficients by revisiting equations A6-A9 
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Appendix B Implementation of Gassman’s fluid substitution 

procedure 

Step 1: Compute Bulk modulus of the mineral grains and the rock matrix 

𝐾𝑔𝑟
𝑅𝑒𝑢𝑠𝑠     =      [

𝐹𝑞𝑡𝑧
𝐾𝑞𝑡𝑧

+
𝐹𝑐ℎ𝑙
𝐾𝑐ℎ𝑙

+
𝐹𝑘𝑎𝑜
𝐾𝑘𝑎𝑜

+
𝐹𝑖𝑙𝑙
𝐾𝑖𝑙𝑙

+
𝐹𝑐𝑎𝑙
𝐾𝑐𝑎𝑙

]

−1

                                                         

𝐾𝑔𝑟
𝑅𝑒𝑢𝑠𝑠     =      [

0.8211

2.6500
+
0.1220

2.6810
+
0.0321

2.4440
+
0.0134

2.7060
+
0.0114

2.7100
]
−1

         =   42.3548 𝐺𝑃𝑎                   

𝐾𝑔𝑟
𝑉𝑜𝑖𝑔𝑡

= 𝐾𝑞𝑡𝑧 × 𝐹𝑞𝑡𝑧 + 𝐾𝑐ℎ𝑙 × 𝐹𝑐ℎ𝑙 + 𝐾𝑘𝑎𝑜 × 𝐹𝑘𝑎𝑜 + 𝐾𝑖𝑙𝑙 × 𝐹𝑖𝑙𝑙 + 𝐾𝑐𝑎𝑙 × 𝐹𝑐𝑎𝑙 

𝐾𝑔𝑟
𝑉𝑜𝑖𝑔𝑡

=  2.650 × 0.8211 + 2.6810 × 0.1220 + 2.4440 × 0.0321 + 2.7060 × 0.0134

+ 2.7100 × 0.0114 =  49.9143 𝐺𝑃𝑎 

𝐾𝑚𝑎𝑡𝑟𝑖𝑥    =   𝐾𝑔𝑟
𝐻𝑖𝑙𝑙    =      

(    𝐾𝑔𝑟
𝑉𝑜𝑖𝑔𝑡

+  𝐾𝑔𝑟
𝑅𝑒𝑢𝑠𝑠)

2
 =  

(49.9143 +  42.3548)

2
     =   46.1345 𝐺𝑃𝑎        

 

Step 2: Calculate the water and brine properties at in-situ conditions. 

Compute the p-wave velocity through pure water using the following equation (M. Batzle & Wang, 

1992): 

𝑣𝑤 =∑∑𝑤𝑖𝑗𝑇
𝑖−1

4

𝑗=1

𝑃𝑖−1
5

𝑖=1

 

where 𝑇 and 𝑃 are respectively, in-situ temperature and pressures 𝑤𝑖𝑗 are the coefficients 𝑤 for 

computing water properties at row 𝑖 and column 𝑗 as shown in Table A1. 

 

Table A1 Coefficients for computing p-wave velocity in water (M. Batzle & Wang, 1992) 

1403.9 1.524 0.0034 −1.2 × 10−5 

4.871 -0.0111 1.74 × 10−4 −1.63 × 10−6 
-.0478 2.747 × 10−4 −2.14 × 10−6 1.24 × 10−8 

1.487 × 10−4 −6.503 × 10−7 −1.46 × 10−8 1.33 × 10−10 

−2.197 × 10−7 7.99 × 10−10 5.23 × 10−11 −4.61 × 10−13 

 

For the Cranfield, the in-situ temperature, pressure, and salinity are as shown in Table A2 

Table A2 In-situ conditions at the Cranfield, Mississippi injection reservoir (J. Lu et al., 2013b) 

In-situ Conditions Value 

Temperature 125oC 

Pressure 32MPa 

Brine density 1.11 g/cm3 

Salinity  155752 ppm 
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Using the coefficients in Table A1, and the pressure and temperature in Table A2, p-wave velocity 

through water, can be computed as: 𝑣𝑤 =  1588 𝑚/𝑠 

The p-wave velocity through brine, 𝑣𝑏𝑟𝑖𝑛𝑒  is computed using the following correlation (M. Batzle & 

Wang, 1992): 

𝑣𝑏𝑟𝑖𝑛𝑒 = 𝑣𝑤 + 𝑆(1170 − 9.6𝑇 + 0.055𝑇
2 − 8.5 × 10−5𝑇3 + 2.6𝑃 − 0.0029𝑇𝑃 − 0.0476𝑃2)

+ 𝑆1.5(780 − 10𝑃 + 0.16𝑃2) − 1820𝑆2 

where 𝑃, 𝑇 and 𝑆 are respectively, the in-situ conditions for pressure (MPa), temperature (oC) and 

salinity (fraction) as detailed in Tabled A2. Substituting the values computed for p-wave velocity in 

water, and the in-situ conditions in Table A2, we have 𝑣𝑏𝑟𝑖𝑛𝑒 = 1689.1 𝑚/𝑠 

 

Bulk modulus of brine:  

𝑘𝑏𝑟𝑖𝑛𝑒 = 𝜌𝑏𝑟𝑖𝑛𝑒 ∙ 𝑣𝑏𝑟𝑖𝑛𝑒
2 ∙ 10−6 = 3.4807 𝐺𝑃𝑎 

 

Step 3: Determine fluid bulk modulus at in-situ conditions. 

The reservoir at initial conditions is assumed to be fully saturated with brine, therefore, the initial water 

saturation 𝑠𝑤𝑖 used in running simulation is about 0.9999 ≅ 1 . From Table 4.2, bulk modulus of CO2 

is 0.128, therefore the bulk modulus of the fluid becomes: 

 

𝑘𝑓𝑙 = (
𝑠𝑤𝑖
𝑘𝑏𝑟𝑖𝑛𝑒

+
1 − 𝑠𝑤𝑖
𝑘∗

)
−1

= 0.5579 𝐺𝑃𝑎  

 

 

Step 4: Determine the in-situ elastic moduli when the reservoir is fully saturated with brine. 

From Fig. 4.1 the p-wave velocity (𝑣𝑝), s-wave velocity (𝑣𝑠) and formation density (𝜌) at a depth of 

3200m are:   

𝑣𝑝 = 3.750 𝑘𝑚/𝑠  

𝑣𝑠 = 1.250 𝑘𝑚/𝑠  
𝜌 = 2.232 𝑔/𝑐𝑚3 

The bulk modulus 𝑘𝑠𝑎𝑡 and the shear modulus of the saturated rock 𝜇𝑠𝑎𝑡 are computed as: 

𝑘𝑠𝑎𝑡 = 𝜌 (𝑣𝑝
2 −

4

3
𝑣𝑠
2) = 26.7375 𝐺𝑃𝑎 

𝜇𝑠𝑎𝑡 = 𝜇 = 𝜌𝑣𝑠
2 = 3.4875𝐺𝑃𝑎 

 

Step 5: Calculate the bulk modulus of the dry rock, 𝑘𝑑𝑟𝑦 using the equation: 

𝑘𝑑𝑟𝑦 =

𝑘𝑠𝑎𝑡 (
𝜙𝑘𝑚𝑎𝑡𝑟𝑖𝑥
𝑘𝑓𝑙

+ 1 − 𝜙) − 𝑘𝑚𝑎𝑡𝑟𝑖𝑥

𝜙𝑘𝑚𝑎𝑡𝑟𝑖𝑥
𝑘𝑓𝑙

+
𝑘𝑠𝑎𝑡
𝑘𝑚𝑎𝑡𝑟𝑖𝑥

− 1 − 𝜙
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At a depth of 3200m, the porosity 𝜙 is 0.25. All input parameters have been calculated earlier; by 

substitution, we have: 𝑘𝑑𝑟𝑦 = 20.5373 𝐺𝑃𝑎 

 

Step 6: Calculate the density of the fluid 𝜌𝑓𝑙 and the saturated rock 𝜌𝑠𝑎𝑡  After CO2 injection, recalculate 

the bulk modulus of the fluid, 𝑘𝑓𝑙 , density of the fluid 𝜌𝑓𝑙  and that of the rock 𝜌𝑠𝑎𝑡 . 

Input parameters obtained from flow simulation: 

Brine saturation:  𝑠𝑏𝑟𝑖𝑛𝑒  =0.897  

CO2 saturation: 𝑠𝐶𝑂2 = 0.103 

Brine density:  𝜌𝑏𝑟𝑖𝑛𝑒  = 0.988 𝑘𝑔𝑚−3  

CO2 density: 𝜌𝐶𝑂2 = 0.6 𝑘𝑔𝑚
−3 

𝑘𝑓𝑙 = (
𝑠𝑏𝑟𝑖𝑛𝑒
𝑘𝑏𝑟𝑖𝑛𝑒

+
𝑠𝐶𝑂2
𝑘𝐶𝑂2

)

−1

 

𝑘𝑏𝑟𝑖𝑛𝑒  has been computed earlier as 3.4807 GPa, and 𝑘𝐶𝑂2  is 0.128 GPa (from Table 4.2). By 

substituting, we have: 

𝑘𝑓𝑙 = (
0.897

3.4807
+
0.103

0.128
)
−1

= 0.9192 𝐺𝑃𝑎 

 

𝜌𝑓𝑙 =  𝑠𝑏𝑟𝑖𝑛𝑒 ∙ 𝜌𝑏𝑟𝑖𝑛𝑒 + 𝑠𝐶𝑂2 ∙ 𝜌𝐶𝑂2 =  0.897 × 0.988 + 0.103 × 0.6 = 0.9480 𝑘𝑔𝑚
−3 

 

𝜌𝑠𝑎𝑡 =  𝜙 ∙ 𝜌𝑓𝑙 + (1 − 𝜙) ∙ 𝜌𝑚𝑎𝑡𝑟𝑖𝑥 = 0.25 × 0.948 + (1 − 0.25) × 2.6451 = 2.22  𝑘𝑔𝑚
−3  

 

Step 7: Compute the bulk modulus of the saturated rock after CO2 injection. 

𝑘𝑠𝑎𝑡 =  𝑘𝑑𝑟𝑦 +
(1 −

𝑘𝑑𝑟𝑦
𝑘𝑚𝑎𝑡𝑟𝑖𝑥

)
2

𝜙
𝑘𝑓𝑙

+
(1 − 𝜙)
𝑘𝑚𝑎𝑡𝑟𝑖𝑥

−
𝑘𝑑𝑟𝑦
𝑘𝑚𝑎𝑡𝑟𝑖𝑥
2

 

𝑘𝑠𝑎𝑡 =  20.5373 +
(1 −

20.5373
46.1345)

2

0.25
0.9192 +

(1 − 0.25)
46.1345 −

20.5373
46.13452

=  21.6423 𝐺𝑃𝑎 

 

Step 8: Compute the p-wave velocity after CO2 injection. 
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𝑉𝑝
𝑠𝑎𝑡       =        √

𝐾𝑠𝑎𝑡  +  
4
3
𝜇𝑠𝑎𝑡

    𝜌𝑠𝑎𝑡 
      

𝑉𝑝
𝑠𝑎𝑡       =        

√21.6423 + 
4
3
(3.4875)

2.22
  = 3.4414 𝑘𝑚/𝑠   
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APPENDIX C Publications 

Portions of this dissertation had been published in earlier works as follows: 

• Dawuda, I., & Srinivasan, S. (2022). A hierarchical stochastic modeling approach for 

representing point bar geometries and petrophysical property variations. Computers & 

Geosciences, 164, 105127.  

• Dawuda, I., & Srinivasan, S. (2021, July). Geometric and Geostatistical Modeling of Point 

Bars. In International Geostatistics Congress (pp. 63-79). Cham: Springer International 

Publishing. 

• Dawuda, I., & Srinivasan, S. (2022). Geologic Modeling and Ensemble-Based History 

Matching for Evaluating CO2 Sequestration Potential in Point Bar Reservoirs. Frontiers in 

Energy Research, 10, 867083.  

• Dawuda, I., and Srinivasan, S. (2022). A hierarchical ensemble-based data assimilation 

technique for improving prediction of CO2 plume displacement during sequestration: 

Computational Geosciences (Under Review) 

• Joon, S., Dawuda, I., Morgan, E., & Srinivasan, S. (2022). Rock Physics-Based Data 

Assimilation of Integrated Continuous Active-Source Seismic and Pressure Monitoring Data 

during Geological Carbon Storage. SPE Journal, 27(04), 2510-2524. 
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