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Abstract
Numerical modeling is one of the most important methods used for understanding and
developing physical systems in different scientific and industrial fields. Particularly in
the simulation of ultrasound waves, modeling linear and nonlinear wave equations can
endure several complications, including the Curse of Dimensionality (CoD), exhaustion
of computational resources, and the development of discontinuities in finite time. In
the machine-learning sector, Deep Neural Networks (DNNs) have gained a noticeable
acceleration of development in the last decade, branching into applications in almost
every professional and academic field. This introduced a new architecture for DNNs to
solve Partial Differential Equations (PDEs). Physics-Informed Neural Networks (PINNs)
are capable of predicting the PDE solution that governs a physical phenomenon. The
training for a PINN revolves around minimizing a loss function that utilizes the governing
physics PDE, along with the initial and boundary conditions of the defined physics
problem. This work aims to utilize the capabilities of DNNs in the form of PINN as
a tool for modeling linear and nonlinear wave equations in one of the most essential
tools in ultrasound therapeutics: Focused Ultrasound (FUS) transducers. Predicting
the solution of linear and nonlinear wave PDEs via PINNs enables the simulation of
medical FUS Transducers using a mesh-free approach without requiring training data
from a previous solution. These two main characteristics of PINNs overcome issues
typically encountered in traditional numerical modeling methods and, in turn, eliminate
problems such as the CoD and other related computational complexities. Our work
focuses on modeling the propagation of linear and nonlinear ultrasound waves from single-
and multi-element transducers using PINNs. The predicted solution is compared to a
synthetic ground-truth solution produced by the Finite-Difference Time-Domain (FDTD)
method for accuracy and correctness insights. This effort is steered towards studying and
developing FUS transducers in contribution to their applications in various noninvasive
medical treatments for a variety of tissue abnormalities. FUS beams have the potential
to be focused in small volumes, which allows for a range of bioeffects depending on beam
intensity. The ultimate goal of this work is to present an accurate and computationally
efficient modeling tool for FUS transducers.
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Chapter 1 |
Introduction

In Chapter 1, we present an overview of the significance of numerical modeling in com-
putational science in Section 1.1.1. The shortcomings of traditional modeling techniques
are discussed in Section 1.1.2, while the potential of physics-informed machine learning
approaches is elaborated upon in Section 1.1.3. This chapter also serves to establish the
foundational motivation behind this research and emphasize the specific objectives and
hypotheses of the proposed methodology in Section 1.2.

1.1 Motivation and Problem Statement

1.1.1 The Landscape of PDEs Numerical Modeling

Since the 17th century, the research community has been employing Partial Differential
Equations (PDEs) as a fundamental tool to describe a plethora of events and phenomena
in our world [1]. These mathematical constructs have been pivotal in elucidating major
life concepts and the processes driving evolution. For elementary PDEs, acquiring an
analytical solution is straightforward. However, real-world scenarios are seldom this
simplistic. In more complex systems, a multitude of factors interact, adding layers of
complexity to the associated PDEs. Consequently, as these equations become more
complicated, the inclination towards numerical solutions intensifies over their analytical
counterparts. Arguably, having an approximate solution is preferable to having no
solution at all, and sometimes a very close estimation is just as useful as the exact
solution. The research community heavily relies on numerical methods and system
modeling because of this strong belief.

Numerical modeling has emerged as a classic tool, finding common applications
across medical, industrial, and academic domains [2, 3]. To model a physical system
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numerically is not just to represent it mathematically, but to forge a channel through
which we can gain insights into complex systems and the variables influencing their
formation [4,5]. Whether addressing the forward or inverse problems of a specific physical
model, numerical modeling offers an advantage. Watching how a model changes over
time helps us understand the effects of both planned and unexpected shifts.

The extensive body of literature on numerical modeling stands testament to its
significance, continually motivating the evolution of innovative modeling paradigms and
refinements. This evolution does not aim to replace traditional numerical methodologies
but to explore alternate avenues like machine learning, with a focus on achieving a
harmonious blend of efficiency and precision [6, 7].

Scientific numerical modeling is a cornerstone of computational science, facilitating the
simulation and understanding of complex systems. Predominantly, numerical techniques
such as the Finite Difference Method (FDM) or the Finite Difference Time Domain
(FDTD) [8], the Finite Element Method (FEM) [9], and the Finite Volume Method
(FVM) [10] have been at the forefront. Additionally, methods employing the fast Fourier
transforms, like the spectral methods, are also common [11]. These traditional ‘finite’
methods operate by discretizing the problem domain into grids or meshes, essentially
translating the continuous problem into a numerically solvable discrete counterpart. While
such discretization is relatively straightforward in one-dimensional problems, representing
more complex geometries, especially in higher dimensions, becomes challenging. The
model can require very precise meshing to capture the subtleties of problems, like airflow
around dynamic vehicles or particle-level interactions. This often proves to be both
resource and time-intensive, sometimes spanning months [12].

The limitations of such finite methods, particularly concerning the construction of
high-quality meshes for difficult geometries and the complications posed by higher order
or discontinuous PDEs, have pivoted research focus towards mesh-free methods [12].
Some of these meshless approaches, rather than relying on traditional grids, employ
kernel functions. This paradigm shift makes the resolution dependent on the proximity
of a point to its neighboring points [13], rather than on a predefined grid. Mesh-free
methods can be broadly classified based on their formulation into weak and strong forms.
Galerkin’s methods, which adopt the weak formulation, necessitate the integration of
both the domain and boundary conditions through specialized techniques. This often
leads to the need for either transformation methods for strong enforcement of boundary
conditions or penalty methods for their weak enforcement. Moreover, even in the strong
form, as employed by collocation methods, challenges around domain and boundary
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condition integration remain. These methods, such as the finite point method, frequently
use radial basis functions for approximation in order to ensure convergence and to address
integration challenges [12].

In light of these developments, there is a growing emphasis on exploring and refining
mesh-free techniques. The pursuit promises not only enhanced computational efficiencies
but also broader applicability across diverse scientific domains.

In the evolving landscape of scientific modeling, recent advancements in machine
learning—most notably deep learning—have fostered the growth of physics-informed
learning techniques. These methods present a promising approach to model PDEs
without the necessity for mesh-based solutions. The acceleration in the development
and accessibility of computational resources has played a crucial role in pushing toward
this deep learning-centric shift. The newfound computational capabilities have not
only facilitated this transition but have also stimulated widespread explorations and
applications of such methodologies. Recent works such as those by Wight et al. [14],
Moseley et al. [15], Bharadwaj et al. [16, 17], Liu et al. [18], Gao et al. [19], and Lu et
al. [20] show some of the flourishing interest and tangible advancements in this domain.

1.1.2 Conventional Numerical Modeling

In many computational domains, traditional numerical techniques most commonly
employ polynomials, piece-wise polynomials, or other foundational basis functions for
approximation purposes. This methodology behind these strategies mandates that
the problem in question be structured on a mesh or grid consisting of finite points.
While these techniques have been known for their elegance and practicality in many
applications [4, 21–25], their utility becomes notably harder when the dimensions of the
problem escalate. This complication arises from the mesh-based nature of the solutions.
Specifically, as the number of dimensions swells, there’s a proportional surge in the
computational resources and memory required to depict the multidimensional system,
an issue aptly termed the “Curse of Dimensionality (CoD)” [26]. This phenomenon
presents a major impediment, particularly when modeling PDEs which are foundational
to numerous scientific and engineering disciplines.

The nomenclature "conventional methods" or "traditional methods" as used herein
encapsulates techniques that yield solutions in the form of convergent series. While
offering potential pathways to solutions, they introduce other layers of complication.
For instance, when the solution is expressed in a series, ensuring rapid convergence and
miniature error could necessitate a vast number of terms in the series. Although it is
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possible to simplify specific PDEs to make them amenable to solutions, this can often lead
to the neglect of critical nonlinear components of the equation, thereby compromising
the physical implications these terms might encapsulate [27]. Thus, a persistent obstacle
in modern-day research is crafting methods to approximate multi-dimensional possibly
nonlinear equations effectively, without significantly compromising on accuracy [28].

As outlined earlier in Section. 1.1.1, discretization is a persistent issue linked with
mesh-based strategies. At its core, traditional methodologies deconstruct the PDE
solution into a discretized form and then engage in time-stepping to solve it. If the
grid size is inadequate, failing to capture the necessary resolution of the system, the
resultant discretization error can yield erroneous outcomes [29]. For dynamic systems,
such as wavefields with diverse wavelengths, the time sampling rate has to be exceedingly
fine-tuned, adhering to the constraints imposed by meshing. Yet, given the computational
thresholds, it remains uncertain whether this is consistently achievable [30]. Adding to
this challenge, certain computational nuances like specific nonlinear behaviors, shock
phenomena, or multi-dimensional attributes can amplify the difficulties faced when
addressing a PDE problem with conventional techniques.

1.1.3 Physics-Informed Neural Network (PINN) Modeling

Machine learning, specifically the realm of deep learning, has surged to the forefront of
numerous application domains due to its strong ability to recognize patterns in data [7].
A notable instance of this is the potential exhibited by machine learning algorithms
in addressing PDE-related problems. PDEs are foundational in various scientific and
engineering disciplines, and the novel application of deep neural networks (DNNs) to
them has accumulated significant attention.

Historically, DNNs have demonstrated success in areas including, but not limited
to, pattern recognition, natural language processing, computer vision, and various
classification tasks [31–33]. While neural networks’ application to solving PDEs has been
a topic of interest for some time [34], a novel paradigm, known as Physics-Informed
Neural Networks (PINNs), has been brought forward [35–37]. The main feature of
PINNs lies in their ability to infuse the fundamental physics of the PDE system into
the neural network’s loss function. This blend allows for an enhanced approximation
of PDE solutions by harnessing both the intrinsic strengths of DNNs, like automatic
differentiation [38] and optimization strategies [39], in conjunction with the foundational
physics of the problem being modeled.

Conventional DNNs often operate in an abstract space, with little to no regard for the
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physical insights of a given problem. Contrarily, a PINN seamlessly embeds the physical
equations, along with their corresponding initial and boundary conditions, within the
loss function. During the training phase, the network works to minimize the discrepancy
between the predicted solutions and these physical constraints. Thus, the architecture
penalizes points that deviate from observed data (i.e., initial and boundary conditions)
while simultaneously minimizing the PDE’s residual error.

However, it is imperative to distinguish PINNs from another closely related concept:
Physics-Constrained Neural Networks (PCNNs) [40,41]. While PINNs treat the physical
equations, initial conditions, and boundary conditions as soft constraints within the
loss function, PCNNs integrate these conditions as hard constraints directly into the
architecture of the neural network. Both methodologies are guided by the overarching
reasoning of infusing physics into the learning process. A primary feature of PINNs is
their ability to eliminate the need for two typically needed elements: a priori solutions
(or labeled data) for training and a mesh (or grid) for discretizing the problem space.
The prevalence and abundance of literature concerning PINNs relative to PCNNs have
resulted in it becoming a widely accepted term for this class of networks.

The research community has witnessed a stream of PINNs adaptation and customiza-
tion for diverse applications in various scientific domains. Prominent areas of application
include fluid mechanics [42], power systems [43], heat transfer [44–46], and the simulation
of single-pulse waves in seismic studies [15]. Dedicated research has also delved into
the optimization of PINNs by examining potential improvements in aspects such as
the choice of activation functions [47], refinement of the loss function through gradient
enhancements [48], and architectural modifications to accommodate scalability [49]. Fur-
thermore, the principles of PINNs have been ingeniously applied to address FDTD steps
reformulations [50]. Given this trajectory, it is anticipated that interest in PINNs will
remain robust, pushing the boundaries of conventional numerical modeling techniques.

The groundbreaking attribute of PINNs in the context of PDE modeling primarily
resides in its mesh-free approach. Contrary to traditional methods like the Finite
Difference Method (FDM) or Finite Element Method (FEM), PINNs negate the necessity
for precomputed solutions to facilitate neural network training. The inherent ability
of PINNs to predict PDE solutions without the mandate for finely constructed grids
effectively sidesteps the complexities associated with CoD that can hinder other numerical
models. Instead of a mesh-based solution for spatiotemporal discretization, PINNs pivot
towards a strategy that samples training points irregularly across the defined domain.
A number of sampling distributions, such as Sobol, uniform, pseudo-random, Latin
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Hypercube (LHS), Hammersley, and Halton, can be seamlessly integrated into the
PINN framework [20]. While the solution prediction post-training shows competitive
performance metrics in relation to conventional methodologies, it is noteworthy that
PINNs drop reliance on prior solutions for training, setting them apart in the area of
deep learning dedicated to PDE approximations. This characteristic presents PINNs with
a distinctive edge, making them a precise and data-efficient PDE modeling algorithm.
Admittedly, the training phase might be more time-intensive, but a trained PINN can
quickly predict solutions for any domain point. The inherent architecture of PINNs,
grounded in deep learning principles, is also manageable with parallel processing. This
allows for accelerated training on multiple GPUs [51].

Table 1.1. Key differences between PINNs and traditional methods like FEM or FDTD.
Feature PINN FEM/FDTD

Basis function Nonlinear NN Linear piecewise polynomial
Domain points Mesh-free(Scattered) Mesh points

Parameters to optimize Weights and biases Point values
PDE embedding Loss function Algebraic matrices (System)

Solver Gradient optimizer Linear solver

Errors Considered MSE of observation loss and
residual loss

Quadrature error/error of
approximation

It is essential to outline the fundamental distinctions between PINNs and traditional
numerical modeling techniques such as FDTD method and the FEM. A comparative
overview of these methodologies is presented in Table. 1.1, explaining the advantages of
PINNs for PDE solutions.

FDTD and FEM, being classical numerical approaches, rely on piecewise polynomial
approximations for rendering solutions to PDEs [52]. This necessitates the development of
a computational grid or mesh, which can often be a source of errors, especially in problems
with complex geometries or requiring adaptive refinements [53]. On the other hand,
PINNs employ neural networks as the approximating entity, leveraging the network’s
trainable parameters, weights, and biases, to model the PDE’s solution.

Another pronounced distinction lies in the method of approximation. While FEM and
FDTD employ linear solvers to incrementally approach the solution of the PDE, PINNs
utilize a gradient-based optimizer. This nonlinear optimization by neural networks aims
to minimize the Mean Squared Error (MSE) of the combined loss. This loss encompasses
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both the residual of the PDE and the constraints derived from the initial and boundary
conditions, which we can refer to as the observation loss [35]. These observation losses
are meticulously set based on the domain’s spatiotemporal geometry, ensuring that the
neural network’s approximation adheres to the physical laws prescribed by the PDE.

Further adding to the versatility of PINNs, they have demonstrated proficiency in
addressing both forward problems, where data-driven solutions are sought, and inverse
problems, where system parameters or governing equations are inferred from available
data [35]. This dual capability amplifies the applicability and significance of PINNs in a
wide range of scientific and engineering domains.

1.2 Hypothesis and Specific Aims
Given the impact of numerical modeling on different ultrasound therapeutics tools and
treatments [54–60], we focus on this particular application in our research. The use of
PINNs presents a transformative approach to modeling by integrating the principles of
deep learning with the governing laws of physics [35]. Given the potential advantages and
the innovative nature of the PINN modeling method, this dissertation aims to harness
PINNs for several key applications:

• Modeling fundamental principles of focused ultrasound wave propagation in both
one and two spatio-temporal dimensions. A particular emphasis will be placed on
the consideration of a continuous wave with a time-dependent source function.

• Extending the modeling to encapsulate the challenges of multi-element focused
ultrasound transducers, indispensable devices in numerous clinical procedures, and
advanced research related to ultrasound therapeutics [61].

• Illustrating the forward and inverse modeling of shock waves, particularly those
described by the nonlinear Burgers’ equation, across one and two-dimensional
spaces.

• Exploring further PINN enhancements to improve prediction accuracy in more
complex wavefields.

• Drawing future tracks with obtained preliminary prediction results of using different
PINN architectures to solve inhomogeneous wavefields such as domains containing
obstacles of different shapes.
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To achieve this, linear and nonlinear wave PDEs in 1D and 2D are crafted into loss
functions in PINNs. To assess the accuracy and reliability of our models, we compare our
PINN prediction results with solutions obtained through FDTD which acts as our ground
truth. The aspiration of this research is not only to achieve a modeling accuracy that
parallels, if not surpasses, prevailing methods but also to leverage the unique strengths
of deep learning.

All computational modeling tasks were executed interchangeably on three high-
performance computing platforms: NVIDIA GeForce RTX 3090 housed within a local
workstation, NVIDIA A100, and Tesla P100, provided by The Pennsylvania State
University’s Super Computer "Roar". The libraries employed for our experiments are
DeepXDE [20], and NVIDIA Modulus [62] supported by a Tensorflow [63] and PyTorch
[64] backends, respectively.

This research track launches from the base PINN paper by Raissi et. al. [35] as
shown in the schematic in Fig. 1.1 We first establish a foundation implementation of
PINNs for modeling the linear wave PDE in a single dimension with a single continuous
time-dependent source element [46, 65], which is then expanded to a two-dimensional
model with multiple source points [66,67]. Consequently, we implement another PINN to
model the forward and inverse problems of the nonlinear Burgers’ PDE in both one and
two dimensions [68]. Furthermore, this work is extended to explore and design enhanced
PINN implementations to leverage prediction accuracy [69–71].
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Figure 1.1. An abstract schematic of how this research track developed in published work,
and future work submitted for publication

9



Chapter 2 |
The Physics of Ultrasound

The expansive utilization of medical ultrasound procedures in clinical applications is
primarily driven by their non-invasive nature, portability, and cost-effectiveness, thereby
drawing significant research investments into this field [72–75]. The versatile characteris-
tics of ultrasound waves allow their application to serve a myriad of purposes in medical
ultrasound, contingent upon the wave intensity, frequency, targeted anatomical site, and
application direction [76–80]. An understanding of ultrasound physics is indispensable
for physicians and professionals involved in ultrasound diagnosis and treatment. An
in-depth knowledge of the properties of ultrasound waves and their propagation behavior
in various mediums can facilitate informed decision-making in potentially critical clinical
situations. The development of a flexible, precise, and efficient model for simulating
ultrasound wave propagation can lead to substantial enhancements in clinical design and
engender innovative contributions in both therapeutic and diagnostic applications. The
subsequent part of this chapter 2 provides an introduction to the fundamental concepts
of medical ultrasound, the computational interpretation of corresponding PDEs, and the
inherent challenges involved in modeling these PDEs’ forward or inverse problems.

2.1 Ultrasound Waves
In order to gain a comprehensive understanding of ultrasound waves, we look deeper
into an examination of numerous key physical characteristics. One such attribute is
ultrasound frequency, which is defined as the count of ultrasound waves generated per
second. Ultrasound waves typically have a frequency exceeding 20kHz, a range that
lies beyond the maximum threshold of human auditory capacity. Furthermore, the
transmission and reflection properties of ultrasound waves are largely contingent on
the density of the medium they propagate through. The transmission and reflection of
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ultrasound waves are significantly influenced by the density of the medium they traverse.
Ultrasound waves propagate through different mediums at varying speeds, dictated by
the medium’s density and elasticity. Consequently, the propagation behavior of these
waves carries crucial information about the medium’s properties, providing valuable data
diagnosis and treatment [72].

The term acoustic impedance is used to denote the resistance a medium presents to
the propagation of the wave. For instance, ultrasound waves transmit more efficiently
through liquid mediums compared to solid ones, attributable to the difference in particle
structure of the two mediums. Thus, the acoustic impedance of liquid substances like
blood is lower than that of solids such as kidney stones [76].

Ultrasound waves are absorbed or reflected when they encounter solids, leading to a
shadow effect behind the solid structure. This phenomenon can result in an artifact. One
approach to mitigate these artifacts is by altering the direction of the ultrasound wave
transmission [81]. While the understanding of ultrasound wave physics is undoubtedly
crucial, it presents its own set of modeling challenges.

2.2 Ultrasound Transducers

2.2.1 Functionality and Design

Ultrasound Transducers, one of the most prevalent clinical acoustic systems, are exten-
sively employed in therapy. Their design incorporates specific materials that facilitate
the transmission and reception of ultrasound waves. A commonly utilized material in the
construction of ultrasound transducers is piezoelectric crystals. These crystals function
by transforming energy from one form to another - electrical to mechanical and vice versa.
When the electrical energy that powers the Focused Ultrasound (FUS) Transducers
reaches the transducer probe, it is transmuted into mechanical energy. This energy is
manifested as vibrations, which agitate the particles surrounding the transducer’s surface,
thereby generating ultrasound waves perpendicular to the transducer’s surface [81].

The type of ultrasound transducer selected is dependent upon the clinical application.
Transducers come in a variety of designs including linear, convex, pencil-like, and
endocavitary among others. Custom designs are also developed to cater to the specific
requirements of particular clinical procedures [82].
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2.2.2 Single-element Transducers

Single-element transducers, also known as fixed-focus transducers, feature a fixed focal
depth, which is set during the design phase of the transducer [82]. These transducers can
be further classified into internally focused or externally focused types. Internally-focused
transducers utilize an active curved element or an internal mirror to establish the focal
point [83]. Conversely, externally focused transducers are designed with an acoustic lens
that performs the focusing [84].

Despite their economical and compact design, the usage of single-element transducers
is relatively limited in clinical applications. Their focal depth is fixed and cannot be
adjusted according to varying diagnostic requirements [82]. Moreover, their operational
capacity is severely compromised if a single crystal malfunctions, leading to functional
failure of the entire transducer [83].

2.2.3 Multi-element Transducers

A more functional and flexible alternative to single-element transducers is multi-element
transducers. These devices allow the independent operation of each transducer element,
hence enabling capabilities like steering and electronic focusing. Additionally, several
elements can operate collectively to provide beam functionality. A variant of the multi-
element transducers is the continuous-wave Doppler transducer, where its two elements
are constantly active, one transmitting and the other receiving [84]. This unique design
enhances the flexibility and functionality of ultrasound applications, furthering their use
in diverse clinical contexts.

2.3 Focused Ultrasound Waves in Therapy
The utility of Focused Ultrasound (FUS) Transducers has been significantly broadened
with several emerging noninvasive therapeutic applications [23,76,85–92]. They precisely
deliver energy to targeted tissues deep within the human body. Adequate study and
modeling of procedures that involve FUS Transducers can help to prevent clinical
complications, such as standing waves and unintended tissue heating [93–95]. Among
the many applications, three prominent treatments that incorporate FUS Transducers
are Low-intensity Transcranial Ultrasound Stimulation (TUS) or Low-Intensity Focused
Ultrasound (LIFU) [96], High-Intensity Focused Ultrasound (HIFU) [97], and Medium-
intensity Focused Ultrasound (MIFU) also known as power-efficient FUS [98].
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2.3.1 Low-intensity Focused Ultrasound (LIFU)

Recent advancements in medical ultrasound have led to the development of non-invasive
techniques such as Transcranial Ultrasound Stimulation (TUS). In TUS and Neuromodu-
lation, this method facilitates precision-targeted treatments through the skull and into
the brain, offering impressive depth control and spatial resolution [85,99]. Remarkably,
the focal volume of a TUS can be reduced to approximately 0.5µm3 [100]. Leveraging
the brain’s sensitivity to change, TUS treatments bypass the need for invasive surgical
measures, such as incisions or skull penetration.

The capability of directing ultrasound waves to any brain location has been high-
lighted in numerous non-invasive FDA-approved procedures to treat conditions such
as Parkinson’s Disease, epilepsy, and depression [101]. In instances requiring real-time
monitoring, TUS can be synchronized with imaging modalities [102–106]. For exam-
ple, image-guided FUS Transducers can stimulate specific regions within the brain [85].
Such techniques hold promising implications for neuromodulation procedures, garnering
increased attention in the clinical research arena [107].

2.3.2 Medium-intensity (Power-efficient) Focused Ultrasound

This segment can discuss the intermediate intensity of FUS applications, including tissue
imaging, stimulation without ablation, and other therapeutic modalities that require a
balance of power efficiency and efficacy. MIFU has proven effective for procedures like
brain tumor ablation and blood-brain barrier (BBB) disruption [108].

MIFU has also been explored as a method to enhance drug delivery, especially
in targeted cancer treatments. The medium-intensity ultrasound waves cause mild
hyperthermia and can also temporarily increase the permeability of cell membranes and
capillary walls. This facilitates improved penetration and concentration of therapeutic
agents in targeted areas. By controlling the ultrasound’s intensity, it is possible to
induce localized drug release from carriers like liposomes without damaging surrounding
tissues [109].

Additionally, sonoporation is the use of ultrasonic waves to transiently permeabilize
cells, facilitating the intake of compounds like DNA, RNA, and other therapeutic agents.
MIFU can be used to localize the sonoporation effects to specific tissues or tumors,
enabling targeted gene therapy. This allows for the transfer of genetic material into cells
with greater precision and reduced side effects [110].
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2.3.3 High-intensity Focused Ultrasound (HIFU)

High-Intensity Focused Ultrasound (HIFU) stands out as an application of FUS Transduc-
ers, presenting a non-invasive solution to numerous conditions, from diverse cancers [111]
to gynecological ailments [112]. HIFU can operate in a pulsed form to induce mechanical
effects, notably acoustic cavitation, or continuously for thermal effects.

Acoustic cavitation, a result of the mechanical impact of FUS, arises due to rapid intra-
tissue pressure changes, resulting in surpassing the peak rarefaction pressure amplitude
(PRPA). Thermal effects, conversely, stem from friction between vibrating molecules in
target tissue cells. The latter can establish a clear demarcation between the intended and
surrounding areas, attributable to inadvertent cellular impacts via thermal processes [86].

HIFU has a broad treatment spectrum, including several neurological conditions and
tumors. For instance, it can tackle Atherosclerosis, affecting medium to large arteries [87].
Procedures often begin with conventional ultrasound imaging to visualize arterial plaque,
followed by using a Dual-Mode Ultrasound Array (DMUA) for HIFU treatment [113].
Other notable applications include invoking robust anti-tumor immune responses, assisting
in combatting residual tumor cells [86], and drug delivery for Alzheimer’s patients
by targeting the BBB [86]. The therapeutic promise of HIFU propels research to
devise efficient numerical modeling methods, which hold significance in refining HIFU
techniques [114].

2.4 PDEs in Ultrasound Waves
In this section, we explore the role of the linear wave PDE and the nonlinear Burgers’
PDE in modeling ultrasound waves. The physical implications and importance of these
equations are central to understanding the physics of ultrasound waves. Ultrasound
therapeutics is grounded in the science of propagating acoustic waves through tissues
to produce therapeutic outcomes. To understand these wave-tissue interactions, we
study the wave equation, which governs the propagation of these waves. In its simplest
form, the wave equation is linear, meaning that the properties of the propagating waves
remain consistent regardless of the wave’s amplitude. The linear wave equation plays a
crucial role in modeling the behavior of low-intensity ultrasounds, often used in diagnostic
imaging, where the acoustic waves generated by the transducer do not significantly alter
the properties of the medium they travel through [115]. For example, in techniques
like B-mode imaging, where contrast and resolution are important, the predictable,
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non-changing nature of linearly propagating waves is instrumental.
However, when the intensity of the ultrasound increases, as often seen in therapeutic

applications, the waves can induce changes in the medium’s properties, leading to
nonlinear effects. Nonlinear wave equations come into play in these scenarios, capturing
the complex behaviors of waves as they interact with and modify tissue properties. HIFU,
for instance, relies on these nonlinear effects to produce localized heating and cavitation
in target tissues, thereby treating diseases such as tumors or facilitating drug delivery.
The nonlinear propagation results in a higher harmonic generation, which, when properly
harnessed, can be advantageous for both therapeutic effect and improved imaging contrast
in certain diagnostic applications [116,117]. Recognizing and accurately modeling these
linear and nonlinear wave behaviors are fundamental to the safe and effective deployment
of ultrasound in clinical scenarios.

2.4.1 The Linear Wave Equation

The linear wave equation is a widely studied second-order hyperbolic PDE in the
realm of ultrasound applications. Propagation, compression, and expansion of waves
through different regions of a medium create a complex wavefield domain [15]. The
numerical simulation of these complex wave dynamics is a significant interest in ultrasound
therapeutics and is a challenge currently being discussed in the literature [30, 61, 118].
The 1D and 2D wave equations are presented in eq. (2.1), and eq. (2.2), respectively.

f(x, t) = ∂2u

∂t2
− c2

∂2u

∂x2

, (2.1)

f(x, y, t) = ∂2u

∂t2
− c2

∂2u

∂x2 + ∂2u

∂y2

 (2.2)

In these equations, u(x, t) represents the displacement of point x, or (x, y) in the 2D
case, at a time instance t. The constant c denotes the wave velocity [119]. The solution
to the wave PDE is computationally challenging due to the oscillatory, dispersive, and
multi-scale nature of the solution [15, 120]. Unique solutions to this PDE require specific
initial and boundary conditions, demanding advanced numerical algorithms.
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2.4.2 The Nonlinear Burger’s Equation

The nonlinear Burgers’ equation is used to model wave propagation and diffusion effects,
with applications ranging from viscous flow to shock theory. Its usage extends to
medical ultrasound simulations, due to the crucial role nonlinear effects play in safety
regulations and diagnostics [121]. The solution to the forward and inverse problems of the
Burgers’ equation provides insights into physical and clinical applications of ultrasound
therapeutics [61]. However, the inverse problem is naturally ill-posed, meaning that small
perturbations can lead to significant changes in the computed solution, a challenge well
studied in the research field [122].

f(x, t) = ∂u
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+ u
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∂y2 ) (2.4)

In these equations, u(x, y, t) represents the velocity, and ν is the kinematic viscosity
[27]. Both nonlinear and diffusive terms are incorporated, posing a numerical challenge
for approximation methods [27]. These equations serve as a benchmark for evaluating
numerical schemes and solvers developed for modeling, and their solutions are key in
understanding ultrasound waves’ behavior in different layers of the human body for
therapeutics [22, 23,113].

2.5 Significance of Modeling FUS Transducers
FUS Transducers play a significant role in treatment as highlighted in Section 2.3.
Accurate and efficient numerical modeling of FUS Transducers is crucial in designing
and developing FUS Transducers applications [123]. Traditional numerical modeling
methods for FUS Transducers have been explored in the literature [72, 124–126], but
the limitations of mesh-based methods necessitate exploration of other computational
paradigms [26,127–130].

FUS Transducers applications range from kidney stone fragmentation to drug delivery,
with wave modeling playing a critical role in treatment planning and design [72, 131].
High-quality simulations can minimize errors, reduce planning time, and lower the
overall cost of medical procedures [72]. The study of FUS Transducers for therapeutic
applications is at the intersection of various scientific disciplines, encompassing physics,
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medicine, and mathematical modeling [132]. The underlying physical dynamics involved
in FUS Transducers are inherently complex, involving intricate wave propagation and
interaction mechanisms that span different spatial and temporal scales. Overcoming
these complexities is a key challenge in the field, as it is critical to achieving accurate
simulations of ultrasound wave propagation and their consequent bio-effects.

The treatment planning for FUS Transducers involves wave propagation through
different biological tissues, all having different acoustical properties. Furthermore, each
tissue’s specific response to the ultrasound wave energy adds another layer of complexity
to the problem [133]. Advanced numerical algorithms that solve the wave equations
governing these phenomena can offer insights into the mechanics of ultrasound wave
propagation in biological tissues, leading to more precise therapeutic outcomes [72].

A more patient-centered application of FUS Transducers is the idea of real-time control
during noninvasive surgical procedures. This technology could allow clinicians to adjust
the focus of the ultrasound beam intraoperatively to maximize treatment efficiency. Such
an approach would require a careful balance of multiple considerations - the immediate
visualization of the treatment effect, minimizing collateral damage to surrounding tissues,
and maintaining the patient’s comfort throughout the procedure [134].

Real-time feedback during FUS transducer procedures is an active area of research,
with potential benefits ranging from improved safety and efficacy of the treatment
to a decrease in overall procedure time [135]. However, this is a challenging area of
development due to the rapid dynamics of ultrasound wave propagation and the need for
immediate response to changing conditions during treatment.

As FUS Transducers continue to evolve, advancements in the understanding of
wave propagation physics, improvements in control techniques, and developments in
the formulation and solution of complex mathematical models will all contribute to the
improved efficacy and safety of these treatments. While the challenges are significant,
the potential benefits for patient health and well-being make the achieving of these goals
a worthy pursuit.
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Chapter 3 |
Physics-Informed Deep Learning

In this chapter,our discussion delves into the algorithmic design of PINNs. We explore
the chosen neural network architecture, dissecting how the physics-based PDEs are
incorporated into this unique setup. Additionally, the inclusion of known initial and
boundary conditions into the PINN model is systematically analyzed. Further, we
conduct an exhaustive review of the pivotal elements of PINNs, understanding their
dynamic behavior and identifying the key factors influencing their performance. This
comprehensive analysis is detailed in the ensuing discussion.

3.1 The Role of Deep Learning in Solving PDEs
Amidst the broad spectrum of Neural Networks (NN) like Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), PINNs predominantly employ Feed-
forward Neural Networks (FNNs). As indicated by numerous studies, FNNs are competent
in managing a vast majority of PDE-related tasks [20,35].

In the formulation of a typical NN, symbolized by Eq.(3.2), the structure comprises L
layers, including L− 1 hidden layers. In each layer l, Nl, Wl, and bl respectively denote
the neurons, weights, and biases. A high-level depiction of the operation of a PINN is
presented in Fig.3.1. The input to the FNN is transformed through a sequence of linear
and nonlinear processes to produce the anticipated output at the final layer.

In contrast to the traditional operation of NNs, which adjust themselves to data pairs
of states and values in a supervised training methodology, PINNs employ a fundamentally
different approach. They are designed to take random input points from a pre-determined
domain, such as a 1D line or a 2D rectangular region, and predict the physical attributes of
these points within that domain over a specified time period. This prediction incorporates
a specific physical formula into its loss function, a marked distinction from conventional
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training methodologies [20,35]. These randomly sampled domain points are often referred
to as collocation points, which, under the constraints of boundary conditions and the
system’s initial state, allow PINN to estimate their behavior within the defined spatial
and temporal scope [136].

The terminology for blending physics laws with deep learning is yet to be standardized.
In literature, this concept is known by various labels, such as "physics-informed," "physics-
guided," or "physics-constrained" NNs. For the purpose of this dissertation, we will use
the term "Physics Informed Neural Networks" or PINNs to refer to this class of deep
neural networks [20,35,136].

3.2 Physics-Informed Neural Networks (PINNs)
Physics Informed Neural Networks (PINNs) are a distinctive category within Deep
Neural Networks (DNNs) known for their aptitude as an approximation tool for Partial
Differential Equations (PDEs) [35]. Uniquely, PINNs can analyze PDEs of a system
without requiring any linearization processes, or local time-stepping. The primary
attribute that distinguishes PINNs is their capacity to predict solutions for linear and
nonlinear PDEs without requiring a known solution as training data, thus qualifying
them as an unsupervised learning method for forward problems. This positions PINNs as
an effective mesh-free mechanism for modeling multi-dimensional physical systems [35].

For inverse problems, wherein a PINN aspires to infer the parameters of the physics
equation governing the system from potentially noisy solution data points, PINNs operate
as a supervised learning method. The technique applied by PINNs involves incorporating
the PDE representing the physical system within the Neural Network’s loss function.
This method obliges the Neural Network to consider the physical law, the boundary,
and the initial conditions of the physical system during the process of loss function
optimization [20,35].

The utilization of initial and boundary conditions as prior information linked to the
PDE solution has been previously demonstrated in academic literature [137]. This feature
has been ingeniously harnessed in PINNs, supplemented by the discrete time-stepping
mechanism while considering observed points within the system domain. This technique
significantly enhances the prediction efficiency of PINNs [35,138].

The implementation of PINNs has enabled accurate inferences of the PDE solution,
offering an accompanying uncertainty measure for the evaluated physical problem [139].
As per the works cited [20,35], PINNs are equipped to handle both forward and inverse
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problems. In the case of forward problems, the parameters of the governing physics PDE
are known, and the PINN undertakes the role of inferring the PDE solution. Conversely,
in inverse problems, the solution is known and is used to deduce the parameters governing
the physical system. The governing physics equation coefficients will be represented as λ
in this document, in conformity with the referenced literature."

f
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, ...,
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We discuss the formal representation of the PDE intended for modeling using PINNs.
The PDE is typically expressed in a generic form as shown in equation (3.1) to facilitate
straightforward integration into the loss function [140].

In this context, the input is denoted as x = x1,x2,x3, ...,xd, where d signifies the
highest dimension. Notably, the vector xd, the last dimension vector, can also represent
time, particularly in a multidimensional physical system where time is embodied by a
temporal vector t [35].

The solution of the PDE is noted by u(x). This representation offers a concise way
to express the complex phenomena under investigation and facilitates the computational
implementation of PINNs. The parameters λ represent the coefficients of the physical
PDE, working in coherency with the derivative terms. Their determination is crucial
as they encapsulate the intrinsic physics of the problem and influence the accuracy and
generalizability of the PINN-based solution [34].

3.2.1 The PINN Architecture

We now turn our attention to the fundamental structure of a standard PINN model,
as illustrated in Fig. 3.1. The architecture of this model is primarily divided into two
distinct component networks, namely, the ’Approximator Network’ and the ’Residual
Network’ [35].

The Approximator Network functions as the predictive NN that approximates the
solution of the problem under consideration, essentially acting as the core solver of our
PINN model. On the other hand, the Residual Network serves to measure the discrepancy
between the predictions made by the Approximator Network and the actual physical
principles described by the governing PDEs [139].

These two networks are not standalone entities but are interlinked, providing a cohesive
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structure to the PINN model. To this end, a feedback mechanism plays a critical role in
enhancing the effectiveness of the PINN as a PDE numerical modeling tool. This feedback
loop allows the system to continuously adjust and refine its performance, using the output
from the Residual Network to fine-tune the predictions of the Approximator Network,
thereby better aligning the model’s output with the underlying physical laws [35,139].
In essence, this dynamic interaction is what endows PINNs with the ability to converge
toward solutions that are not only mathematically sound but also physically plausible.

In the upcoming sections, we delve deeper into the mechanics of these networks and
their interplay, further expounding the operational dynamics of PINNs.

3.2.1.1 The Approximator Neural Network

In alignment with the universal approximation theorem [141], which suggests that a
perceptron with a single hidden layer and a finite number of neurons can approximate
any given function, PINNs employ the approximator network to predict the model result
u at the collocation point location x. This concept leverages the unique capacity of NNs
to compactly represent complex functions. Essentially, the approximator NN consists of
interconnected neurons arranged in layers where calculations are executed sequentially.
These networks can either be shallow, comprising of a single hidden layer, or deep with
multiple hidden layers. Notably, these configurations can produce approximations for
any continuous function, regardless of linearity or non-linearity [142]. However, even
given this capacity, the optimization of weights and biases for accurate PDE solution
prediction remains a formidable task for the NN. This challenge hence demands the
incorporation of the second part of PINNs - the residual network.

The mathematical representation of the approximator network is given by eq. (3.2),
where the NN NN consists of L-layers, including L− 1-hidden layers each denoted by
Wl and bl for weights and biases respectively, applied to the input x. This input can be
single or multi-dimensional. The spaces of input and output are defined as Rdinput and
Rdoutput with dimensions dinput and doutput, respectively. The PINN input comprises a set
of irregularly sampled domain points, while the output represents the predicted result.

NN L(x;Wl, bl) : Rdinput → Rdoutput (3.2)

The selection of the optimal type and structure of the approximator neural network to
solve a given PDE problem remains an active area of research. Usually, the approximator
neural network adopts a Deep Neural Network (DNN) structure comprising two or more
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Figure 3.1. A PINN architecture. The upper left neural network represents the approximator
network that estimates the solution û(x, t) of the PDE. The lower residual network enforces the
PDE, IC, and BC to compute the loss value. This PDE model represents a nonlinear equation
composed of different orders of derivatives obtained from the fully-connected FNN.
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hidden layers that facilitate the interaction between neurons and activation functions
(such as tanh, ReLU, etc.). The Fully-Connected Feed Forward Neural Network (FNN) is
a widely used approximator neural network [20]. However, depending on the application,
other DNN types like Convolutional Neural Networks (CNNs) or Recurrent Neural
Networks (RNNs) can be utilized [143,144]. While it is a common assumption that larger
network architectures yield better approximations, training a large network may prove
to be challenging, especially with limited resources. Conversely, smaller networks may
not provide accurate approximations. Consequently, depending on the type of problem,
different approximator NN topologies may be more suitable [35]. The use of multiple
FNNs as opposed to a single network has also been proposed, offering a potentially
effective alternative [145, 146]. This is further supported by a finite-basis approach
for multiple subdomains as proposed in [49]. We explore particular approximator NN
architectures in this research in chapter 6.

3.2.1.2 The Residual Network

This part of PINNs is tasked with applying the terms of the governing physical equations
as a loss function to the outputs of the approximator network, a key feature that gives
PINNs their unique characteristics. The residual network computes the so-called residuals
or losses, and interestingly, this process does not necessitate additional training [147].
These computed losses are then iteratively funneled back into the approximator network,
moving the optimization procedure one step ahead.

Diving deeper into the inner workings of the residual network, we note that the
derivatives of the partial differential equations are computed using a technique known
as Automatic Differentiation (AD). AD, a highly efficient method, computes derivatives
by applying the chain rule [148] to fundamental arithmetic operations such as addition
and subtraction, as well as to basic functions like exponentiation, thereby producing
derivatives that adhere to a form similar to Equation (3.3).

Often interchangeably referred to as computational or algorithmic differentiation, AD
is an integral part of several machine learning libraries, including TensorFlow [63] and
PyTorch [149] which are the backbones to two of the main tools we utilize in this research,
DeepXDE [20] and Modulus [62]. The utilization of AD for derivative computation in the
residual network emerges as a significant point of departure for PINNs from traditional
methods such as Finite-Difference Time-Domain (FDTD).
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3.2.2 The Dynamics of PINNs and The Optimization Process

The residual loss constitutes a central component of the Physics Informed Neural Network
(PINN) training. As part of the training, error minimization is achieved by employing
variants of Stochastic Gradient Descent (SGD) methodologies, such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [150] and Adam [151].

In this iterative process, the outcome of the loss function, which is generated from
the minimization procedure, is fed back to the approximator network. Subsequently,
the weights and biases are updated in accordance with the learning rate, leading to the
network advancing to a new cycle of training. The error value produced in the PINN
model is governed by a comprehensive loss term comprising the formula of the PDE, the
initial conditions (ICs), and the boundary conditions (BCs), and some observed (known)
points if available.

The PDE loss, initial condition loss, and boundary condition loss can each be assigned
varying weights to control the focus of the optimization process. This tunable weighting
mechanism allows the emphasis on individual losses to be modulated, thereby refining the
prediction accuracy of the PINN model. As proposed by [152], such weight adjustments
can be developed into an adaptive process to further enhance the model’s performance.
For instance, if the weight wf of the physics PDE loss, as described in Eq (3.6), is set
to zero, this effectively removes the physics loss from the optimization process, and the
PINN model is then trained with no regard for the underlying governing equation.

The size of input data, output data, the number of hidden layers, and the number of
neurons in every layer all have an effect on the number of trainable parameters in the
FNN. Larger-sized FNNs with large inputs increase the number of trainable parameters.
This large number of trainable parameters raises the chances of having the gradient-based
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optimizer stuck in one of the many local minima of the loss function. This makes finding
the global minima a problem that is classified as NP-hard [153]. The common methods
of optimizing PINN residual loss values, according to the implementation of multiple
problems in [20], are Adam [151] and L-BFGS-B [150]. Training starts by applying the
Adam optimizer to the constructed model. This stage of training stops according to
a predefined number of training epochs. Then sequentially, another stage of training
is applied with the L-BFGS-B optimization method. This setup of optimizer sequence
compensates for the limited amount of training data by reducing computational loss and
hopefully, achieving a faster convergence.

3.2.3 The Activation Functions

Activation functions are fundamental components that introduce non-linearities into the
network, thereby enabling it to capture complex patterns [154]. Prominent among these
are the hyperbolic tangent function (tanh), the Sigmoid function, and the Rectified Linear
Unit function (ReLU). Further, the Swish function, an advanced modification to the
Sigmoid-Weighted Linear Unit function (SiLU), has also gained notable acceptance [155].

While a wide array of activation functions exists, it is imperative to select a smooth
function to ensure stability and convergence within the PINNs. This requirement limits
the use of functions like Exponential Linear Units (ELU) and their scaled variants, as
they can disrupt the consistency of the learning process.

Interestingly, the speed of training can be significantly enhanced through the incorpo-
ration of additional parameters within each hidden layer. This adjustment modulates the
slope of the activation function, thereby optimizing the network’s learning potential [47].

An illustrative breakdown of the mathematical formulas for the most frequently
employed activation functions in the realm of PINNs can be found in Table 3.1. These
functions play an integral role in shaping the learning dynamics of the network and
contribute significantly to its performance capabilities.

3.2.4 The Loss Function

Elaborating further on the critical components of the PINN model, we discuss the loss
function, specifically portrayed in Eq. (3.4), which represents the comprehensive loss
that PINNs endeavor to minimize. This loss function essentially integrates three primary
loss terms, each of which serves a unique purpose in the PINN model.

The first term, denoted in Eq. (3.5), accounts for the approximation error at known

25



Table 3.1. Formulas for commonly used activation functions in DNNs

Activation Function Function Formula

Hyperbolic Tangent Function tanh(x) = sinh(x)
cosh(x)

Sigmoid Function sigmoid(x) = 1
1 + e−x

Rectified Linear Unit Function ReLU(x) = max(0, x)

Sigmoid Weighted Linear Unit Function SiLU(x) = x× sigmoid(x)

data points. During forward problem modeling or inverse problems, this term signifies the
deviation between the approximation result and the actual solution value at a particular
data point if known [35].

Next, Eq. (3.7) embodies the constraints arising from the initial and boundary
conditions as they adhere to the physics of the defined system [20]. It ensures the
accuracy of the PINN predictions at the boundaries and initial states of the system.

Finally, the loss term specified in Eq. (3.6) plays a crucial role in enforcing the
prescribed equations on the collocation points set, which is systematically sampled from
the geometric domain. This enforcement is achieved by penalizing solutions that diverge
from the physics equation [35]. Thus, the physics of the system are coherently integrated
into the optimization cycle, ensuring that the model’s predictions adhere to the physical
laws governing the system.

The entirety of these loss terms leverage the Mean Square Error (MSE) formulation
for consistency and mathematical convenience. The collocation points sampled from the
geometric domain are assumed to be relatively sparse, yet strategically chosen [156].

The optimization process within PINNs targets minimizing the residual error. This
process is instrumental in regulating the weights and biases, denoted as θ = (w, b), of
the approximating neural network [20]. It is this optimization of weights and biases that
ensures the solution complies with both the given data and the governing physical laws.
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MSE = wuMSEu + wfMSEf + wbMSEb (3.4)

MSEu = 1
Nu

Nu∑
i=1
|| û(xiu, tiu)− ui ||2= Lu(θ) (3.5)

MSEf = 1
Nf

Nf∑
i=1
|| f(û(xiu, tiu))− f(xiu, tiu) ||2= Lf (θ) (3.6)

MSEb = 1
Nb

Nb∑
j=1
|| fb(û(xju, tju)− fb(xju, tju)) ||2= Lb(θ) (3.7)

Eq.(3.7) is the discrepancy values between the defined initial/boundary conditions and
the prediction of the approximator NN. Eq.(3.5) represents the loss value computed with
respect to any known value aligned with the physics of the system under examination.
This loss term is not necessarily included. Concurrently, the loss defined in Eq.(3.6)
imposes the prescribed equation onto the selected set of collocation points. This set is
drawn from the geometrical domain, utilizing Eq. (3.1), thus penalizing any solutions
inconsistent with the equation and, thereby, encapsulating the system physics into the
optimization process [35].

Optimization within PINNs is fundamentally a strategy aimed at minimizing the
residual error, thereby guiding the weights and biases of the approximating network. By
employing Nf collocation points to encode the physical law, a highly precise, data-efficient
algorithm can be crafted [141].

In the context of solving a forward problem (inference), PINNs do not necessitate prior
solution data as a training set. Rather, they utilize the locations of the collocation points
within the required domain as training points [35]. The prevalent distribution samplings
for these points in PINNs include Sobol, uniform, and pseudo-random distributions [20,23].
PINNs can encode an array of standard boundary conditions, such as Dirichlet, Neumann,
Robin, and periodic boundary conditions. Factors like the number of training points,
the distribution of data samples, the quantity of training epochs, and the architecture of
PINN (layers and neurons) are largely dependent on the problem under study [139].
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The Algorithm 1 outlines the generic procedure for employing a Physics-Informed
Neural Network to solve a PDE:

Algorithm 1 Physics-Informed Neural Network for solving a PDE
Step 1: Define the training set domain, governing physical formula, initial and
boundary conditions.
Step 2: Initialize the parameters for the approximator network.
Step 3: Compute the approximate solution u(x, t).
Step 4: Calculate the residual loss encompassing the physical loss, initial and boundary
condition losses.
Step 5: Employ the residual loss to train the approximator network and optimize its
parameters θ by minimizing the residual loss value.
Step 6: Repeat steps (3 - 5) until achieving a designated halt threshold.

The modeled problems are designed across a horizontal line in 1D cases or within
a rectangular domain in 2D cases. Within these defined domains, the PINN algorithm
irregularly samples the training points using one of the commonly applied sample training
distributions. The algorithm then predicts the physical behavior of these points within
the domain by minimizing a loss function that is tied to the formula of the governing
physical law.

3.2.5 PINN Soft and Hard Constraints

In the process of training PINNs, the stipulated initial and boundary conditions for the
associated physics PDEs serve as a substantial knowledge source [35]. These conditions
can be incorporated within the PINN model through two primary methods, namely soft
constraints or hard constraints.

Soft constraints are introduced through the MSE term MSEb in Eq.(3.4), encouraging
the PINN model to utilize collocation points that are situated at the borders of the
spatial domain, in addition to the initial (or final, if defined) time collocation points [138].
This validation of initial and boundary conditions helps in penalizing predictions made
by PINN that contravene the represented conditions in the loss term. Nevertheless, this
approach does not guarantee complete compliance with the conditions. The weight wb
assigned to these conditions needs to be proportional to the other weights wu and wf

in Eq.(3.4) to ensure balance in the model. However, a definitive guiding theory to
determine the optimal weight values is still an ongoing area of research, underscoring the
need for further investigation [41].

On the other hand, hard constraints provide a direct way to impose the initial or
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boundary conditions on the PINN architecture. This approach treats these conditions in
a manner akin to labeled data, compelling the approximating NN to adhere to them [157].
The implementation is achieved through an output transform function, which effectively
reduces the number of loss terms that the PINN model needs to optimize. However, this
comes with the trade-off of increasing the number of parameters that need to be trained,
potentially adding to the complexity of the model [20, 158]. A detailed understanding of
these methods and their implications can further refine the performance and precision of
PINNs in various scientific computations. A study of using soft and hard constraints on
the linear wave equation PINN model is further discussed in chapter 4.

3.2.6 Tools for PINNs Implementation

In this segment, we round up numerous comprehensive implementations of the PINN
concept through a suite of Python libraries such as DeepXDE [20], SciAnn [159], NVIDIA
SimNet [160] and its later development, Modulus [62], along with PyDens [161]. A
large majority of these frameworks rely on TensorFlow [63] and PyTorch [64] backends,
credited to their extensive machine learning capabilities and packages that greatly enhance
convenience.

DeepXDE, as an implementation of PINN, exhibits notable adaptability and ap-
plicability, capable of catering to different PDE types such as standard, fractional,
integrodifferential, and stochastic [20]. One salient feature of the PINN algorithm lies
in its versatility, and ability to tackle inverse as well as forward problems with slight
modifications in implementation. Furthermore, PINNs, given multi-fidelity data, have
demonstrated their ability to approximate functions [36] and learn nonlinear opera-
tors [162].

Nvidia Modulus, another robust implementation of PINNs, showcases considerable
flexibility and broad applicability and is well-equipped to handle diverse PDE categories.
A standout characteristic of the PINN algorithm in Nvidia Modulus is its agility, capable of
addressing forward problems via multiple architecture designs with minimal adjustments
in the implementation process. Furthermore, given a domain space, Nvidia Modulus is
proficient in rolling out a space of training data points without a geometrical discipline
such as importing data points of an obstacle in the domain simulating an example of an
anomaly in a homogeneous domain [62].

In the context of this dissertation, earlier experimental tasks are performed utilizing
the DeepXDE. The later experiments are performed with Nvidia Modulus to take
advantage of the more recent advantages of the library. These choices are primarily
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driven by the simplified wrapper functions these tools provide for executing PINN-based
tasks. Another consideration is the vibrant online discussion space for these tools, which
facilitates troubleshooting and exploration. Moreover, these tools offer the advantage of
being open-source and well-documented, providing a structured platform for potential
future customization and adaptation to our specific modeling requirements.

3.2.7 Challenges of PINNs

We examine several notable challenges associated with using PINNs for the resolution
of linear and nonlinear wave PDEs. One such challenge is characteristic of all deep
learning methodologies, specifically, the fine-tuning of neural network hyperparameters.
The task of selecting optimal values for parameters such as network layers, neurons,
activation functions, learning rates, and the number of collocation points, among others,
is often complex and requires considerable effort and experimental trials [20,35]. This is a
problem-dependent challenge, and various strategies have been proposed to allow PINNs
to dynamically adapt to the complexity of the problem, aiming to improve prediction
accuracy, accelerate convergence rates, and minimize training time [14, 47, 152]. We
discuss some of our proposed approaches in Chapter. 6.

Furthermore, PINNs encounter difficulties predicting values outside their trained
domain, an issue highlighted in the works of Moseley et al., and Kim et al. [15, 163].
Although some solutions involve using multi-fidelity data, this compromises one of the
key advantages of PINNs, namely the ability to provide solutions without requiring
previously solved problem data. The aspiration of extrapolative prediction with PINNs,
based solely on the physical attributes of the problem, is a crucial objective. It would
enable training the network within a specified domain and then applying this trained
model to resolve point sets outside the domain. However, it is a topic of ongoing research
that our scope is yet to cover.

The issue of scalability also poses a significant hurdle. Most problems modeled in
this investigation fall within the order of O(1), which implies that a domain x[0, 1] offers
a better prediction accuracy than a domain x[0, 100], where PINNs might not provide
a correct prediction at all. To overcome this issue, a solution has been suggested by
Moseley et al. [49]. Yet, the outcomes of several conducted experiments suggest that the
downsizing of the problem offers superior results and lessens the training time.

As the investigation of PINNs continues to grow, so too does the emergence of
new challenges and the proposition of innovative solutions. Given its relatively recent
emergence, the field of PINNs harbors immense potential for growth and enhancements.
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A plethora of PINNs enhancement strategies, not explored in this document, could
significantly improve prediction accuracy or efficiently manage the scalability problem
[14,164,165].
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Chapter 4 |
Modeling The Linear Wave Equa-
tion

In this chapter, the complexities associated with modeling the linear wave equation
are discussed, especially when presented with a forcing term such as a spatiotemporal
source point. Such modeling still remains a subject of extensive research across multiple
applications [72, 166, 167]. The linearity and second-order PDE do not simplify the
equation; counterintuitively, it might not always be more straightforward than its
nonlinear counterparts. Recent investigations into the efficacy of PINNs in unraveling
the linear wave equation have indicated the vast potential, albeit with challenges [15].
For example, Moseley et al. [15] concentrated on the linear wave equation by introducing
a singular pulse term. In contrast, Brink et al. [136] extended the model by examining
the wave equation with a continuous forcing term rather than a singular source point.
Focused Ultrasound (FUSTs) predominantly emphasize efficiently modeling the linear
wave equation by incorporating aspects like continuous pulse time-dependent source term,
localization of the source term at a particular point, and the ability to represent singular
and multiple source points to accurately depict their anticipated physical interactivity
in the wavefield. This is instrumental for simulating the functionality of single and
multi-element FUSTs.

Chapter 4 spearheads an endeavor to address this intricate problem through the lens
of PINNs. By posing the results with an FDTD-based solution for the identical issue, we
aim to shed light on the proficiency of PINNs. The cardinal objective of the subsequent
PINN demonstrations is to model the nature of the linear wave PDE. This involves
incorporating a single and multiple-point time-dependent signal, for instance, sin(πft),
positioned as a forcing term in the equation, emanating from a source point. Sections 4.1,
4.2, and 4.3 elucidate the modeling intricacies related to the forward problem of both 1D
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and 2D linear wave equations, focusing on single and multiple source points, respectively.

4.1 Modeling the 1D Linear Wave Equation
In the realm of modeling wavefields influenced by wave sources, the use of Physics Informed
Neural Networks (PINNs) necessitates careful consideration of how the source point
is represented and incorporated. For a one-dimensional linear wave partial differential
equation, there exist primarily two methodologies considered for this integration. The
initial strategy involves assimilating the point source term directly within the linear wave
PDE. By doing so, it becomes an intrinsic component of the governing physics equation.
Subsequently, when a PINN optimizes the loss function, this incorporated source term
plays a pivotal role in directing the minimization of the training loss. The alternative
strategy brings into play an impulse function. This function, when applied to the PINN’s
output transformation function, seamlessly infuses the wave source’s behavior. This is
presented as a stringent constraint, ensuring the desired physical behavior is inherently
captured by the PINN [157]. Detailed insights into these methodologies, alongside a
comparative analysis of their implementation and the resultant predictions by the PINN,
are elaborated in Section.4.1.1 and Section.4.1.2

4.1.1 Modeling the Source as a PDE Term

In order to construct a PINN for the simulation and prediction of the 1D linear wave
forward problem that is expressed mathematically in eq.(6.4)—it necessitates a reformu-
lation to be compatible with the PDE framework that the PINN employs, as represented
in eq.(3.1). This transformation effectively recasts the 1D linear wave equation into
a specific loss term. This term then finds its place in the overall loss function in the
PINN architecture. The PINN, throughout its training epochs, works to minimize this
transformed loss [35]. Incorporation of the initial and boundary conditions is pivotal to
the proper functioning of the model. These conditions are not merely passive parameters;
rather, they play an integral role in guiding the neural network. The strategies to
assimilate these conditions can differ; they can either be implemented as rigid (hard)
constraints or more flexible (soft) constraints. A more in-depth discourse comparing
these two methodologies can be found in Section.4.1.3 [156]. As we delve deeper into
the incorporation of the physics of the 1D wave equation, we employ Eq.(4.1) as an
indispensable loss term within our PINN model. Such an approach ensures that the
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embedded physics is not just a static component but a dynamic, trainable aspect of the
network [139].

f(x, t)− ∂2u
∂t2 − c2

∂u2

∂x2

− S(x, t) = 0 (4.1)

where,

S(x, t) = Gs(x)× sin(πt) (4.2)

and

GS(x) = exp
(
− 0.5

(x− x0

σ

)2
)

(4.3)

Including the time-dependent source function into the defined wave, PDE is done
by including a source term S(x, t) in the equation of the physical loss. The designated
location of the source point is specified using a Gaussian function such as in Eq. (4.3)
multiplied by the time-dependent sin function in Eq. (4.2) to compose a Gaussian source
point. This Gaussian source can be used to simulate plane waves or compactly supported
Ricker wavelets. The x0 variable in the Gaussian function GS(x) is essentially the
location of the source in the one-dimensional domain, and the variable σ represents the
width of the Gaussian pulse, which is set to 0.5 in this setup.

The forward problem of the 1D wave equation is set up in a spatial domain x : [0, 5] and
a time interval t : [0, 5]. The problem has a neutralized initial state of zero as in Eq. (4.4),
and the boundary conditions are as shown in Eq. (4.5). These are defined in the PINN
implementation using Dirichlet boundary conditions to set up the modeling environment.
Input features to the approximator neural network are the spatial vector x, which contains
the locations of the randomly sampled data points from the single-dimensional spatial
domain, and the temporal vector t, which is the time instances.

f(x, 0) = 0, x ∈ [0, 5] (4.4)

f(0, t) = f(5, t) = 0, t ∈ [0, 5] (4.5)
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Once the domain limits, initial, and boundary conditions have been established, an
approximator neural network is paired with these data to start training. The PINN
approximator for this experiment is a 6-layer neural network with 32 neurons in each
hidden layer used to predict the PDE solution. This model is set to be trained through
15,000 epochs with a learning rate of 1e− 3. These training epochs are optimized with
Adam, and then the training proceeds with the L-BFGS optimizer to find the local
minima of the residual error curve in a refined manner. A Sobol distribution algorithm
is utilized to randomly sample 12,500 domain points, 3,000 boundary points, and 16,000
initial points from the defined spatiotemporal domain during each training epoch. A
resampling technique is applied to these points to resample a new mini-batch on every
training iteration in order to cover a larger space of the domain when randomly choosing
the training points and enhance the prediction of the approximator neural network. The
activation function used is an adaptive tanh function to avoid the vanishing gradient
problem and to accelerate the training process through its adaptive activation function
coefficient [47].

As shown in Fig. 4.1, the trained PINN is able to predict the behavior of a one-
dimensional wavefield that has an initial state of zero value and a source term at location
x = 0 with a residual error value of 0.002016 and an L2 relative error of 0.1531. The
resulting displacement values u(x, t) are shown through different instances in the time
domain. In comparison to a previously published work, [65], using hard constraints for
the initial condition improved the L2 relative error value in this case.

4.1.2 Modeling the Source Point Using Hard Constraints

Another approach that was tested to model a 1D linear wave equation with a time-
dependent source point via PINNs is applying the source point behavior by implementing
the source function as a hard constraint enforced on the PINN approximator. This can
be thought of as applying the Dirac delta distribution function (unit impulse) to the
approximator neural network output via an output transform function. Therefore, the
source term is handled as in Eq. (4.7) where the variable x0 is the location of the point
source in the one-dimensional domain. The physics loss function now does not consider
the source point term in its formula hence it is re-written as in Eq. (4.6).

f(x, t) = ∂2u
∂t2 − c2

∂u2

∂x2

 = 0 (4.6)
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Figure 4.1. The PINN prediction for a 1D linear wave equation with a time-dependent source
point f (x; t ) = sin (�t ) shown in the red dashed line in comparison to the FDTD solution
indicated in the blue solid line. The PINN approximator used for predicting the solution is an
FNN of 6 layers with 64 neurons in each layer to process input features of space units (x) and
time instances (t) and then predict the output ( u(x; t )). The L2 relative error is 0.15.

S� (x; t ) = � (x0)sin(� t ) (4.7)

As shown in Fig. 4.2, the PINN prediction was learning the behavior of the wave-

�eld disturbed by the Dirac source term in Eq. (4.7) which is enforced on the PINN

approximator as time proceeds. However, it only manages to successfully capture the

correct pattern of the wave propagation in the last time instance. The L2 relative error

for the last time instance is 0.16725, which, in comparison to the approach used in
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Figure 4.2. The PINN prediction results for a 1D wave equation with a time-dependent source
S� (x; t ) = � (x0)sin (�t ) shown in the blue dashed line in comparison to the FDTD solution
with an enforced source function shown in the red solid line. The PINN approximator used for
prediction is an FNN of 5 layers with 32 neurons in each hidden layer. The L2 relative error is
1.17.

Section. 4.1.1, is actually closer to the value of theoverall L2 relative error for that PINN

model implementation. The mean residual error when embedding the source in the PDE

formula as in Section. 4.1.1 has a lower residual error than using the Dirac function in

the form of an enforced hard constraint in this PINN implementation.
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4.1.3 Hard Constraints versus Soft Constraints in the 1D Linear

Wave Forward Problem

For a one-dimensional linear wave equation, using PINNs with hard constraints for

the initial or boundary conditions presented lower approximation errors. Nevertheless,

enforcing hard constraints removes these initial and boundary conditions from being part

of the loss term and converts them to an enforced output transformation function applied

to the PINN approximator, thus, bringing PINNs closer to the concept of PCNNs. In

Fig. 4.3, a comparison between enforcing hard constraints and using soft constraints in

PINNs using the same randomization seed and a uni�ed PINN approximator FNN of 5

hidden layers and 32 neurons in each of these layers. The training data points used are

12; 500, 16; 000, and 3; 000for the domain, boundary, and initial points, respectively. The

learning rate is set to1e� 3, and the number of Adam training epochs is15; 000. Adam

optimization is followed up with an L-BFGS-B optimizer for loss optimization re�nement.

The sequential usage of these two Stochastic Gradient Descent (SGD) variants throughout

the experiments performed in this work of research as it is observed that the Adam

optimizer has faster performance, but L-BFGS-B has a better performance in �nding the

local minima controlled by the gradient error tolerance [20].

The shown results in Fig. 4.3 yielded L2 relative errors with values of 0.1281 and 0.1552

for hard constraints and soft constraints, respectively. In the same experiment, the mean

residual errors when enforcing hard constraints and using soft constraints are 0.00107

and 0.00141, respectively. The mean residual error when using hard constraints for initial

or boundary conditions is almost24%lower than when using soft constraints. As for

the L2 relative error enforcing hard constraints achieves a reduced error value by nearly

17%. This motivates exploring using soft or hard constraints when extending this work

to higher spatial dimensions and more wave source points. Studying these design options

can assist the extended implementation and further make compensations if necessary

with emerging PINN enhancement schemes such as in [14,152]. We further explore the

usage of soft and hard constraints in PINNs in Chapter. 6 to provide an analysis of how

this implementation choice can a�ect performance and prediction precision.

4.2 Modeling the 2D Linear Wave Equation

In the previous sections, the one-dimensional linear wave equation has provided foun-

dational insights. Extending this to two dimensions has a similar similar PINN imple-
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mentation with minor modi�cations. The two-dimensional linear wave equation can be

reformulated with a loss term, represented as Eq.(4.8). Pertaining to this, the initial and

boundary conditions for the two-dimensional wave partial di�erential equation (PDE)

are set in Eq.(4.11) and Eq. (4.5), respectively. In the current implementation, these

conditions are treated as soft constraints. This methodology appears to integrate well

with other hyperparameters, and, based on a series of experiments, soft constraints

demonstrate a more accurate solution prediction compared to hard constraints.

As for the source functionS(x,t) , the one-dimensional time-dependent source function

presented in Eq.(4.2) is adapted to accommodate a second dimension. This adaptation

can be observed in Eq.(4.9). To specify the source point within the two-dimensional

domain, the Gaussian function from Eq.(4.10) is employed in tandem with the time-

dependent sinusoidal function presented in Eq.(4.9). Notably, Eq. (4.9) leverages the

Gaussian function to precisely localize the source point in the two-dimensional wave�eld.

Here, x0 and y0 denote the coordinates of the source point, while the terms� x and � y

signify the widths of the source point along the x and y axes, respectively. To ensure a

symmetrical, circular source �point�, the � values, speci�cally � x and � y , are both set to

the same magnitude,0:5 in the presented implementation.

f (x; y; t ) =
@2u
@t 2

� c2

0

@@u2

@x2
+

@u2

@y2

1

A � S(x; t ) = 0 (4.8)

where,

S(x; y; t ) = G s(x; y) � 2 � sin(2� t ) (4.9)

and

GS(x; y) = exp
�

� 0:5
� � x � x0

� x

� 2
+

� y � y0

� y

� 2
��

(4.10)

The forward problem of the 2D linear wave equation is set up in two spatial dimensions:

x : [0; 5] and y : [0; 5] to form a square domain. The temporal domain ist : [0; 5]. A

Dirichlet boundary function is used to implement the initial and boundary conditions as

in Eq. (4.11) and Eq. (4.12). The PINN model used for modeling the linear 2D wave PDE
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has an approximator neural network architecture composed of 10 layers with 32 neurons

in each hidden layer to process input coordinates of space units (x; y) and time instances

(t) and then consequently predict the solutionu(x; y; t ). The activation function used is

an adaptive Sigmoid Linear Unit (SiLU) function with a slope scaling factor equal to

10 [47,155].

f (x; y; 0) =0; x 2 [0; 5]; y 2 [0; 5] (4.11)

f (0; y; t) = f (x; 0; t)

= f (x; 5; t)

= f (5; y; t)

=0; t 2 [0; 5] (4.12)

The PINN approximator NN is trained for 20,000 epochs with an Adam optimizer,

followed by re�ning 50,000 epochs with the L-BFGS-B optimizer for local minima

re�nement. The learning rate was set to5e� 6. The PINN model uniformly sampled

24; 500 domain points, 4; 900 boundary points, and32; 700 initial points for training.

Points are resampled in every 100 training iterations. When training with the Adam

optimizer, the loss weights are set to be 1, 1, and 100 for the PDE loss, boundary loss,

and initial loss, respectively. For the L-BFGS-B optimizer, loss weights are set to 10, 1,

and 1 in the same order. In this experiment, we applied static loss weights in the loss

function. We later discuss the impact of dynamic (adaptive) loss weights implementation

in Chapter. 6.

In the 2D training process, it is noticed that including the domain points close to the

source location in the training epochs aids the prediction accuracy. Therefore, a �xed

point distribution is implemented as anchor observation points included in all training

iterations to better optimize the computed error values. The implementation of the �xed

observation points is as shown in Fig. 4.5. In the 2D spatial domain, having the anchor

points included in the training iterations assists in capturing the correct pattern of the

propagating wave starting from the source point.

In Figure 4.4, we present the PINN model's prediction results at various time points

compared with the corresponding results derived from the FDTD method under the same

problem conditions. The source point is experimentally positioned at the coordinates

(x0; y0) = (0 :5; 2:5), emulating a source element located at these coordinates. A detailed

account of the L2 relative errors at distinct time instances can be found in Table 4.1. These
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errors o�er insights into the wave dynamics within the 2D domain. While these error

values provide a snapshot of accuracy at speci�c times, it is pertinent to note that re�ning

the predictions across various time intervals can substantially decrease the cumulative

L2 relative error. The observed L2 relative error over the entire duration stands at

1.308. The average residual error recorded during this study is 0.00161. Advancing this

work by enhancing the results of the 2D linear wave equation through specialized PINN

methodologies is a prospective avenue for future research.

Table 4.1. The L2 relative error of the PINN prediction for di�erent sampled time instances
in modeling the 2D Linear wave equation with a single source element.

time t (s) L2 Relative Error
t = 1:010s 0.7414
t = 2:020 0.6421
t = 3:030 0.5454
t = 4:040 0.4314
t = 5:00 0.3172

4.3 Modeling Multiple-Source 2D Linear Wave Equation

In the further development of the 2D linear wave PDE with a singular source point,

we present a multiple-source implementation using Physics-Informed Neural Networks

(PINNs). While retaining the integral structure and equation presented in Equations

(4.8) and (4.9), it becomes imperative to modify the Gaussian source function to ac-

commodate the multiplicity of source points. This modi�cation is shown in Equation

(4.13). Herein, GSi (x; y) distinctly symbolizes the Gaussian source function centered at

the �xed coordinates (x i , yi ), with i indexing from 1 throughm, wherem denotes the

total number of source points the PINN seeks to simulate. This is further elaborated in

Equation (4.14).

In this advanced model, each source point symbolizes a transducer element emanating

a consistent sinusoidal wave. For the scope of this study, we focus onm = 5 transducer

elements, geometrically positioned in a curved con�guration at the coordinates:(1:2; 0:7),

(0:7; 1:6), (0:5; 2:5), (1:2; 4:3), and (0:7; 3:4). Notably, all these transducer elements

propagate an identical sinusoidal signal, expressed asS(x; y; t ) = 2 � sin(2�t ), throughout

a uniform medium.
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GS(x; y) =
mX

i= 1

GSi (x; y) (4.13)

where,

GSi (x; y) = exp
�

� 0:5
� � x � x i

� x

� 2
+

� y � y i

� y

� 2
��

; i = 1; 2; :::;m (4.14)

To simulate a 5-element transducer, a PINN model is implemented to predict the

behavior of a wave�eld a�ected by 5 Gaussian source points. A PINN approximator

neural network composed of 5 layers with 32 neurons in each hidden layer is trained.

The activation function used for the PINN approximator is a Sigmoid Linear Unit

(SiLU) [155]. The initial and boundary condition is applied as hard constraints to the

PINN approximator. Resampling training points in mini-batch [14] are applied on3; 600

domain points, 820boundary points, and7; 380 initial points. As in Section. 4.2, The

PINN approximator utilizes the anchor points to raise the quality of training. Point

resampling was done throughout 50,000 epochs using the Adam optimizer, followed by an

L-BFGS-B optimizer. The L-BFGS-B optimizer gradient tolerance is set to1e� 15, and

the maximum number of training iterations to reach that threshold is set to105. Each of

the source points was assigned a time-dependent functionS(x; y; t) = 2 � sin(2�t ).

Table 4.2. The L2 relative error of the PINN prediction for di�erent sampled time instances
in modeling the 2D Linear wave equation with multiple source elements.

time t (s) L2 Relative Error
t = 1:010s 0.3003
t = 2:020 0.2197
t = 3:030 0.2018
t = 4:040 0.2556
t = 5:00 0.2540

The mean residual error for this PINN model is 0.01082. Results in Fig. 4.6 show a full

prediction on the left column, a section in the middle of the y-axis in the middle column,

and a section in the middle of the x-axis in the right column. Table. 4.2 shows the L2

relative error for multiple instances in the modeling time interval. The PINN model
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can successfully capture the wave propagation in the de�ned domain in every sampled

time index with an L2 relative error of around 0.3 or less. However, the overall L2

relative error is approximately 1.096, which can be reduced further with the appropriate

combination of hyperparameters and PINN enhancement schemes.

4.4 Modeling Execution Times

The execution time, referring here to the duration required to run a numerical model and

retrieve the resultant solution, remains a paramount criterion in assessing the e�ciency of

numerical modeling methodologies. Traditional mesh-based techniques gained momentum

with the incorporation of vectorization and other mathematical enhancements. However,

these improvements could not withstand the challenges introduced by the dimensions

increase. A salient advantage of employing PINNs in modeling PDEs resides in their rapid

prediction capabilities. Upon completion of the training phase, a PINN can swiftly predict

outcomes for any location within the domain or any arbitrary ensemble of points sourced

from the problem domain, avoiding the necessity for retraining the PINN approximator

NN.

Table 4.3. Execution times for the modeling of discussed linear wave PDEs using PINNs and
FDTD.

Problem PINN time FDTD time
1D linear wave PDE
w/ Source term in PDE

Training:
Prediction:

3m 5s
125ms

20.8ms

1D linear wave PDE
w/ Dirac Source

Training:
Prediction:

3m 45s
285ms

2.5ms

1D linear wave PDE
w/ Hard Constraints

Training:
Prediction:

3m 4s
117ms

3.5ms

1D linear wave PDE
w/ Soft Constraints

Training:
Prediction:

3m 6s
118ms

3.4ms

2D linear wave PDE
w/ Single Source point

Training:
Prediction:

1h 7m
1.4s

1m 12s

2D linear wave PDE
w/ Multiple-Source points

Training:
Prediction:

5h 37m
24.3ms

1m 14s

In Table. 4.3, the execution times for both the PINN model and the FDTD model,

which were discussed in this chapter, are tabulated. The PINN models were deployed

and executed using the Python interpreter within Visual Studio Code on a Windows-

powered machine equipped with an NVIDIA GeForce RTX 3090 GPU. For consistency
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in comparison, the FDTD models were also implemented and executed on the same

computational platform. The 1D linear wave FDTD implementations were realized using

MATLAB R2020a, while the 2D linear wave PDE's FDTD solutions utilized the 2D

FDTD simulator, as introduced by [49]. This simulator underwent minor modi�cations

to incorporate the source points. The same Python interpreter in Visual Studio Code

was employed for this 2D execution.

Within the context of 1D problems, it was observed that the FDTD approach

solved the model in a time frame under30ms. However, this execution time witnessed

a substantial surge to nearly a minute for the 2D models. In contrast, the PINNs

demonstrated a markedly elongated training duration when transitioning from 1D to 2D

models. Nevertheless, their prediction phase did not experience as pronounced an e�ect

as was evident in the 2D model's FDTD implementation.

A further observation is shown in Table. 4.4. Elevating the spatio-temporal resolution

from 10� 10� 10 to 1000� 1000� 10 in the 2D linear wave PDE with a singular source

led to an approximate escalation of244%in the FDTD's execution time. Contrarily, the

PINN's prediction duration for the same problem only saw a modest rise of approximately

25%. This increase was achieved without necessitating any retraining. This behavior was

also seen in the entries pertaining to the multiple source 2D linear wave PDE. Although

problems encompassing higher dimensions remain unexplored in this present work, such

observations provide valuable foresight into the anticipated model performance when

scaling the number of dimensions.
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Table 4.4. Modeling 2D linear wave PDEs using PINNs and FDTD for di�erent spatiotemporal
resolutions.

Problem PINN Time FDTD Time
10 � 10 � 10

Single Source
2D linear wave PDE

Training:
Prediction:

-
3.78s

53.5s

Multiple Source
2D linear wave PDE

Training:
Prediction:

-
2.09s

47.9s

100 � 100 � 10
Single Source
2D linear wave PDE

Training:
Prediction:

-
4.23s

1m 4s

Multiple Source
2D linear wave PDE

Training:
Prediction:

-
4.9s

1m 3s

100 � 100 � 100
Single Source
2D linear wave PDE

Training:
Prediction:

-
4.15s

1m 5s

Multiple Source
2D linear wave PDE

Training:
Prediction:

-
4.5s

1m 4s

1000 � 1000 � 10
Single Source
2D linear wave PDE

Training:
Prediction:

-
4.73s

3m 4s

Multiple Source
2D linear wave PDE

Training:
Prediction:

-
4.8s

3m 21s
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Figure 4.3. PINN prediction for a 1D wave equation with a time-dependent sourceS(x; t ) =
sin (�t ). The solid red line shows the FDTD solution. The black dash-dotted line represents
the PINN prediction with hard constraints. The blue dashed line shows the PINN prediction
with soft constraints. The PINN architectures for both hard constraint and soft constraint
models are uni�ed to have 5 hidden layers with 32 neurons in each hidden layer to process
input features of space units (x) and time units ( t) and output the resulting prediction value
(u(x; t )). The hard constraint and soft constraint models' mean residual errors are 0.00107 and
0.00141, respectively. The L2 relative error for the hard constraint model is 0.1281, which is
less than the soft constraints model error at a value of 0.1552.
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Figure 4.4. PINN prediction for a 2D wave equation with a time-dependent source point
f (x; t ) = 2 � sin (�t ) is shown in the solid red line in comparison to the dashed blue line that
represents the FDTD solution. The PINN used for prediction was an architecture composed of
10 layers with 32 neurons. The L2 relative error on the last time instance is 0.317. The mean
residual and overall L2 errors are 0.00161 and 1.308, respectively.
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