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abstract

¿e structure of genomes, how they encode function, and how they evolve is still
quite mysterious. Even the best understood functional elements – regions that code
for proteins – are far from exhaustively annotated. Other functional elements, such
as the cis-regulatory modules that control gene transcription, are even more poorly
understood. Comparisons between the genomes of di�erent species can be a useful
tool to understand the structure of these elements and improve our ability to identify
them. However, such comparisons also raise new questions as we observe regions
with distinctly atypical evolutionary patterns but no clear relationship to any known
function. Other sequence signals, such as base composition and speci�c motifs,
are also useful for identifying functional regions, but the speci�c signals to use for
identifying a given class of elements are not always obvious. When training data
for a class of functional elements is available, applying a machine learning method
to learn the relevant sequence and evolutionary patterns has the potential to better
identify functional elements. In this work we describe a computational method,
called ESPERR (Evolutionary and Sequence Pattern Extraction through Reduced
Representations), which uses training examples to learn encodings of multi-genome
alignments into a reduced form for predicting a chosen class of functional elements.
We show that ESPERR gives excellent performance on several problems. We �rst
describe using ESPERR for discriminating two classes of regions, with particular
focus on discriminating cis-regulatory regions from neutral DNA, producing a score
called “Regulatory Potential” that has excellent predictive power. We also consider
additional pairwise discrimination problems: discrimination of DNAseI hypersensi-
tive sites using training data produced by the ENCODE project; and screening highly
conserved regions for developmental enhancer activity using training data from
the VISTA Enhancer Browser. We also demonstrate the �exibility in the ESPERR
procedure with respect to the type of problem addressed by showing a generalization
to multi-class classi�cation: predicting whether cDNA 5′ ends are tissue-speci�c
promoters, widely expressed promoters, or not promoters.
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chapter 1

introduction

A genome is the DNA sequence that encodes the full genetic information for an

organism, and, to the best of our current knowledge, contains the complete set of

information necessary to create a living example of that organism. Genomes contain

regions associated with a variety of known functions, including regions that code for

proteins or functional RNAs (genes), regions that control gene expression, regions

involved in controlling the structure of the DNA and its location in the cell’s nucleus,

and others. Additionally, genomes likely contain both non-functional regions and

regions associated with functions that are not currently understood. Identifying all of

the functional regions in genomes, and assigning speci�c functions to those regions,

is a critical step toward understanding the complexity and variety of living organisms.

1.1 genes and gene regulation

¿e class of genomic functional elements that is currently best understood is protein

coding genes. ¿ese regions of the genome encode the information the cell uses to

create proteins by assembling strings of amino acids. In eukaryotic genomes, each

gene is encoded in the genome as a series of exons, separated by introns. ¿e process

of reading a gene and producing a protein product is complex, but roughly consists

of these stages:

• ¿e gene is copied from DNA into an RNA transcript by a process called

transcription.

• ¿e introns are removed by a process called splicing.

• A sequence of amino acids corresponding to the protein coding portion of the

spliced transcript is produced by a process called translation. ¿e coding region

is read as triplets of bases, each of which speci�es an amino acid determined

by the genetic code.
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Controlling the amount of gene expression at a given time, place, and set of

environmental conditions is critical, and the process of gene expression can be

regulated at every stage. We are going to focus our attention on one regulatory step:

the regulation of gene transcription, which controls when and at what rate transcripts

are produced from a gene.

Figure 1.1 illustrates many of the components involved in transcriptional regu-

lation. Genomic DNA is normally tightly packed into chromatin. For genes to be

transcribed the chromatin must be unpacked so that the machinery of transcription

can access the DNA. Once the gene is accessible, the transcription initiation complex,

consisting of an RNA polymerase and other factors assembles at the promoter region

of the gene. Once fully assembled this complex then produces the transcript.

Accessibility of the promoter region and transcription initiation are both reg-

ulated by transcription factors, proteins that bind to the DNA.¿e targets of these

factors are called transcription factor binding sites or TFBSs. ¿ese sites can be

found in the promoter region, proximal to the gene start site, as well as far from the

gene they control. TFBSs o en occur in clusters called cis-regulatory modules or

CRMs. Transcription factors bound at di�erent sites, along with co-factors, work

combinatorialy to allow complex control of gene expression.

1.2 sequence signals allow computational prediction of functional
elements

¿e structure of functional DNA is constrained – changes in functional regions

would a�ect their associated function. Functional regions that encode instructions

for building products such as proteins are constrained by the need to interact properly

with the machinery that reads them, and to encode the correct product. Functional

regions where the DNA interacts directly with other factors are constrained by their

biochemical interactions. In both cases, this results in constraint on the DNA se-

quence in these regions. ¿e amount and type of constraint on the sequence is highly

variable however, ranging from a preference for a certain base composition to ensure

a certain DNA structure (di�erent bases behave di�erently biochemically, and thus
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Distal TFBS

Proximal TFBS

Transcription initiation 
complex 

CRM

Co-activator
complex

Chromatin

GenePromoter

Figure 1.1: Diagram illustrating the regulation of gene transcription. Adapted from
Wasserman and Sandelin (2004).

change the shape of DNA), to a requirement that a precise sequence of bases be

present.

Computational methods can take advantage of these constraint signals to predict

functional elements in the genome. Consider, for example, the signals associated

with genes. Speci�c sequence signals are required at the start of the gene for the

transcription initiation complex to bind and initiate. Signals near the intron/exon

boundaries are required to guide the splicing process. Translation reads the spliced

transcript as a series of triplets called codons, and only certain sequences of codons

result in a viable protein being produced. Because the signals associated with genes

are so well characterized, a wide variety of computational gene prediction algorithms

based solely on sequence signals (and no other biological evidence) have been created.

For example, GENSCAN (Burge and Karlin, 1997), one of the most popular gene

predictors, uses a probabilistic model that takes into account a variety of signals

including splicing signals, the length distribution and 3-periodic structure of exons,

and the base composition of genic features compared to non-genic DNA.

While the mechanisms for non-genic functional elements are much less well
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understood, properties that confer sequence-level constraint can still be identi�ed.

Transcription factors bind speci�cally to their DNA targets (TFBSs), and the speci-

�city is determined by the biochemical interaction between the protein and the DNA

(see Figure 1.2, top). Binding site speci�city is important to ensure that genes are

expressed correctly. ¿us the DNA sequence at these sites is constrained by the need

to bind the right transcription factor at the right rate in the right conditions.
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Figure 1.2: Example of a protein-DNA binding interaction (Top). ¿e protein is the
E. coli transcription factor CAP (Schultz et al., 1991). Also shown is a sequence logo
for a position weight matrix determined using 59 CAP binding sites (Crooks et al.,
2004).

Computational methods have also been applied to the identi�cation of the targets

of DNA binding proteins, speci�cally transcription factors. In many of these methods

a large number of experimentally identi�edTFBSs are used to infer a commonbinding

site sequence or motif, a short sequence of DNA bases frequently associated with

binding of that factor. Motifs are o en generalized to a probabilistic form called a

position weight matrix or PWM, in which each position in the motif is represented

by probability distribution of observing each DNA base at that position. An example



5

of a PWM for the binding site of the E. Coli transcription factor CAP is shown in

Figure 1.2 (bottom).

1.3 comparative genomics improves functional element
identification

Evolution is the process by which genomes change over time. Changes to the genomic

sequence are generated by many mechanisms that result in changes of a single base

to another base (point mutations), as well as the insertion or deletion of multiple

consecutive bases (indels). However, the persistence of changes in a population

is determined by the process of selection. Changes to sites in functional regions

may a�ect their functional role, resulting in di�erential �tness of individuals with

such a change. If the change gives the organism a �tness advantage relative to other

individuals in the population, that change may be favored and become more frequent

in the population (this form of selection is called positive selection). However if

the change produces a decrease in �tness, individuals with such a change might be

selected against, resulting in the change becoming infrequent or vanishing from the

population (negative selection or purifying selection).

Because of the di�erent evolutionary pressures a�ecting functional and non-

functional sites, comparisons between genomes of di�erent organisms can be an

e�ective tool for identifying functional elements. Computational methods for pre-

dicting functional regions using genomic sequence alone o en have poor speci�city

in large genomes because the signals they capture also occur frequently by chance.

Using multiple genomes to look for signals that are conserved between di�erent

organisms can greatly improve speci�city. Further, some signals are only evident

when considering multiple genomes. Consider again the example of protein coding

genes: the genetic code that speci�es which codon produces which amino acid is

degenerate (multiple codons produce the same amino acid), certain changes to the

genome sequence (usually at the third position in a codon) do not a�ect the en-

coded protein. ¿us when comparing sequences of a gene from di�erent organisms,

changes are more frequently observed at these degenerate positions than at other
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sites. ¿is distinct pattern of constraint can be used to greatly improve computational

prediction of genes – see for example the TWINSCAN (Korf et al., 2001) adaptation

of GENSCAN.

A common approach for capturing the evolutionary relationships among a set of

sequences is through a sequence alignment. A sequence alignment is an arrangement

of the sequences, or portions of the sequences, that identi�es DNA bases derived

from a common ancestral base (called orthologous bases). ¿is can be viewed as a way

of “lining up” the sequences, and inserting gaps at positions where sequence segments

were inserted or deleted, so that each column of the resulting alignment contains only

orthologous bases or gaps. Such an arrangement of sequences contains a substantial

amount of information about both the extant species and their phylogenetic history,

and is thus a natural starting point for comparative genomic analysis. A variety of

methods for pairwise and multiple sequence alignment exist, and it continues to be

an active area of research (Batzoglou, 2005).

1.4 learning the right signals for classifying functional elements

Our knowledge of the structure and function of protein-coding regions allows us to

build models that exploit speci�c signals to e�ectively predict genes. However, for

non-coding functional elements which are less well characterized the right signals to

use are not always obvious. For example, consider signals currently used for identify-

ing cis-regulatory modules, including: (1) speci�c sequence patterns, such as motifs

associated with elements involved in protein-DNA interactions (e.g. transcription

factor binding sites), (2) general sequence composition patterns, such as the high

density of CpG dinucleotides found in most ubiquitous promoters, and (3) evolu-

tionary patterns, particularly a high level of between-species conservation, which

should characterize functional regions under purifying selection.

While each of these signals is associated with some cis-regulatory modules, all of

them have limitations (Tompa et al., 2005). Motif-based approaches can have high

speci�city, particularly when using a stringent consensus sequence, but when the
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patterns are degenerate (o en the case with transcription factors), they can have both

poor sensitivity and a very high false positive rate.

Consider the binding data produced by the Transcriptional Regulation group

of the ENCODE project – an e�ort to comprehensively annotate 1% of the human

genome (Consortium, 2004). Using ChIP-chip1 they identi�ed genomic regions

bound by 18 di�erent transcription factors in a variety of conditions and cell lines.

Of these 18 factors nine bound to sequences that were not statistically enriched for

the factor’s putative binding motif (Weng et al., 2006). ¿ey also applied ab initio

motif �nding2 methods to these regions. Motif �nding could identify the known

TFBS motif for only seven of the nine enriched factors. ¿ese results suggest that for

a comprehensive set of binding sites, motif-based approaches have weak power.

Similarly, the ENCODE Multiple Sequence Analysis group (Margulies et al.,

2006) found a complex relationship between function and evolutionary constraint.

¿ey discovered that while many classes of functional elements do show signi�cant

association with constrained elements as a whole, a large number of experimen-

tal annotations of every type considered by ENCODE (other than protein-coding

regions) do not overlap constrained elements, and many constrained elements do

not coincide with experimental annotations. ¿ese results suggest that interspecies

sequence constraint also provides only weak power for comprehensive identi�cation

of functional elements.

¿us it seems that while non-coding functional elements show association with

various sequence and evolutionary characteristics, rarely will a single signal be su�-

cient for accurate and comprehensive prediction. While simple descriptive features

can be very useful to better understand functional mechanisms, the e�ects of func-

tional constraint on these elements are myriad – too complicated to be captured

e�ectively by such features alone.

An alternative approach for identi�cation of a class of functional elements – when
1ChIP-chip isolates fragments of genomic DNA bound by certain a speci�c protein (chromatin

immunoprecipitation), and maps those regions back to the genome by hybridization to amicroarray.
2ab initio motif �nding attempts to �nd a shared motif using only sequence data. ¿e regions

identi�ed by ChIP-chip are larger than typical protein binding sites, the motif �nder attempts to identify
the motif for the actual functional sites within these regions.
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training data is available – is to apply a computational learning method with the

potential to capture both the clear strong signals and the many subtle signals that

characterize the class. In this work we describe such a method, denoted ESPERR

(Evolutionary and Sequence Pattern Extraction through Reduced Representation).

ESPERR uses models capable of learning patterns in multiple genomic sequence

alignments that characterize speci�c classes of functional elements.



chapter 2

the esperr approach

Genomic sequence alignments contain information about the primary sequence of

a set of species and the evolutionary relationships among them, and thus provide

useful information for discriminating functional elements. However, two major

obstacles must be overcome to develop an e�ective method for learning characteristic

patterns from genomic sequence alignments. First, the number of possible alignment

columns increases exponentially with the number of sequences in an alignment. ¿is

number (over 70,000 for a seven-species alignment) is much too large an “alphabet”

to use to �nd patterns in alignment columns, and thus a reduced representation of

the alignment is required. Second, the rules for distinguishing between functional

classes based on patterns in alignments are not known a priori, and thus a training

regimen is required.

ESPERR solves these problems using models capable of learning patterns both

among the species at a given position (evolutionary patterns) and among aligned

positions (and thus across the sequence). Underlying these models is a translation

or “encoding” of alignments into a simpli�ed representation that preserves a subset

of the original information. ¿is reduced representation should remove noise and

irrelevant information, but retain all the signals useful for characterizing a particular

class of functional elements. We �rst present ESPERR in the context of pairwise

classi�cation, where our training data consists of two sets of alignments (referred to

as the positive and negative sets), ESPERR is used to learn an encoding and produce

a score that e�ectively discriminates these sets.

2.1 overview

¿e key component of our method is the selection of such an encoding using (1)

phylogenetic relationships to de�ne a reasonable starting point, followed by (2)
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a heuristic search procedure that optimizes the encoding based on classi�cation

performance. Encodings produced by this procedure, and the models based on them,

produce excellent classi�cation performance on a variety of problems.

¿e ESPERR procedure �nds an encoding frommultiple alignment columns into

a reduced alphabet that retains information useful for discriminating a chosen class

of functional elements. ¿e procedure consists of two stages, summarized graphically

in Figure 2.1. In the �rst stage, we reduce the “alphabet” of alignment columns to a

size where �tting classi�cation models becomes tractable. ¿is is done by grouping

multiple alignment columns based on evolutionary similarity (Figure 2.1A). We

start by inferring the ancestral base probability distribution corresponding to each

alignment column (section 2.3) – for this we use an extended HKY substitution

model, treating alignment gaps as a � h base (section 2.2). ¿is inference provides a

natural way to handle missing data; if data for a species is missing at a given position it

is not included in the inference (Figure 2.1A, middle tree). In practice the number of

missing species allowed must be limited to ensure good inference. Next, we compute

the frequency with which each ancestral distribution occurs in the training data,

and apply a novel clustering algorithm (section 2.4) that forms groups of columns

preserving both “neighborhood” (similarity of ancestral distributions) and frequency

structure. Ancestral distributions correspond to points in a 5-dimensional probability

simplex, a 2-dimensional projection of which is used to visualize the clustering step

in Figure 2.1B.

¿e clusters resulting from the initial alphabet reduction in stage 1 provide an

encoding that retains a substantial amount of information from the original alignment

data, and reduced representations produced in this way can be used e�ectively for

many applications. However performance can be improved substantially by taking

such an encoding as a starting point and then using classi�cation performance to

optimize the encoding for a particular problem. ¿e second stage of the ESPERR

procedure achieves this through an iterative search (Figure 2.1C, section 2.5). At each

stage of this search, candidate encodings are generated from the current encoding

by either joining two groups or breaking a group into two (a random sample from
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classification rate:

Figure 2.1: Overview of the ESPERR procedure.

each type of candidate is considered). Using the training data, cross validation is run

to evaluate the prediction performance of each candidate, and the candidate with

the best performance is accepted as the new current encoding. A er many iterations

without seeing an improvement in performance the search is terminated, yielding an

optimized encoding, usually to many fewer symbols (groups) than the starting point.

While this approach could be applied using any classi�cation method, we gener-

ally use a log-odds classi�er (section 2.7) based on a type of variable-order Markov

models (VOMM; Buhlmann andWyner, 1998; see section 2.6). ¿ese models capture

variable-length dependencies among positions in sequences. ¿us, when applied to

strings of encoded alignment columns, VOMMs are able to capture sequence and

evolutionary patterns that span multiple alignment columns.

2.2 extended hky model

Tomake inferences on ancestral base distributions, wemust �rst introduce amodel of

nucleotide substitution for estimating the probability of a given substitution event over
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a given branch of the phylogenetic tree. We assume a continuous timeMarkov process

in which a rate matrix Q speci�es the instantaneous rate of each substitution event,

and express the rates in Q through a smaller number of parameters. In particular,

we use the parameterization provided by the HKY model of Hasegawa et al. (1985)

consisting of equilibrium probabilities for each base (4 parameters; πA, πC, πG, πT),

and the ratio between the rates of transitions and transversions (κ)1. We extend

this model to accommodate gaps as if they were a � h nucleotide, introducing an

additional equilibrium probability (πGap) and rate ratio (gaps to transversions σ),

yielding the rate matrix:

Q =

�
����������
�

− πC κπG πT σπGap
πA − πG κπT σπGap
κπA πC − πT σπGap
πA κπC πG − σπGap
σπA σπC σπG σπT −

�
����������
�

¿eparameters ofQ are estimated using the ExpectationMaximization algorithm

implemented in the PHAST so ware package (Siepel and Haussler, 2004), generally

using a �xed tree topology and a sample of genome-wide alignments.

2.3 ancestral base distribution inference

To infer the ancestral base probability distribution corresponding to a given alignment

column we use Felsenstein’s algorithm (Durbin et al., 1998; Mayrose et al., 2004). We

allow species to be missing for any column, in which case the corresponding leaves

of the tree were le out of the inference (treated as “Felsenstein wildcards”).

Given an alignment column x = (x1, ...,xm), the posterior distribution for the
1DNA bases are divided into two types by their chemical structure: purines (A and G) and pyrim-

idines (C and T). Mutations from a purine to a purine or a pyrimidine to a pyrimidine are called
transitions, all others are transversions. Transversions result in a more extreme change to the structure
of the DNA, and thus occur less frequently. ¿e rate ratio parameter κ allows for this di�erence in
mutation rates.
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base in the common ancestor of them species is:

P(ySx) = P(xSy)πy

Pz>�A,C,G,T,Gap� P(xSz)πx

Felsenstein’s algorithm evaluates the likelihood P(xSy) in this equation, recursively

proceeding bottom-up along the phylogenetic tree through a series of “triangulations”.

For a generic stage, let y0, y1 and y2 be, respectively, the position for the ancestor

currently under consideration (0), and its two immediate descendants (1 and 2). ¿e

basic recursive relation is:

P(x(0)Sy0) =Q
y1
P(x(1)Sy1)Πy0�y1(τ(0, 1))Q

y2
P(x(2)Sy2)Πy0�y2(τ(0,2))

where x(A) indicates the subset of x corresponding to observed species descending
from A , τ(A,B) the length of the branch linking Aand B, andΠyA�yB(τ(A,B)) the
corresponding transition probability obtained through:

Π(τ) = exp�−Qτ� =
ª

Q
j=0

(−Qτ)j
j!

¿e Q and the π’s in these equations are respectively, the rate matrix and equilibrium

distribution of the of the HKY+Gap substitution model described in section 2.2.

2.4 clustering based on proximity and entropy

¿e novel clustering algorithm underlying the �rst stage of ESPERR groups align-

ment columns agglomeratively1, based on distance between corresponding ancestral

distributions, and their frequency (occurrence counts for columns create a frequency

distribution over ancestral distributions). For distance calculations, each cluster is

represented by a centroid de�ned as the “average ancestral distribution” (weighted

with frequencies). To preserve the neighborhood structure, at each stage of the ag-

glomeration we consider merging each cluster with its nearest neighbor (Euclidean

distance between centroids). To preserve the frequency distribution, the merger that

is accepted at each stage is the one that maximizes the mutual information between
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the distributions prior and post merging (in practice this is equivalent to accepting

the merger with the maximum entropy; see below). Because the algorithm is based

on entropy, clusters must not have zero frequency. ¿us we perform an initial pre-

clustering, grouping columns that never occur or are very seldom in the training

data (occurring less than �ve times) with their nearest neighbor (having �ve or more

occurrences). ¿e agglomeration is terminated once a desired number of clusters is

reached. For all applications described in this work we have stopped at 75. Regardless

of the number of species in the training alignments (and corresponding number of

initial alignment columns), the appropriate number of symbols at which to transition

to the second stage is determined by the amount of training data. ¿is number must

be small enough so that the underlying classi�er can be learned with some power,

yet large enough to allow the second stage �exibility. For the applications presented

here, using a VOMMwith a maximum order of two as the underlying classi�er, 75 is

a reasonable size.

In more detail: ancestral base distributions are points in the 5D simplex. At each

iteration, a merger is chosen among a set of candidates so as to maximize entropy of

the resulting partition. Let G indicate the current partition of alignment columns

into groups g > G, each of which contains a fraction of the alignment columns:

p(g) = ng
n , where n is the total number of alignment columns in the training data.

LetC indicate a set of candidate mergers c > C, andGc the partition in groups gc > Gc

(each containing a fraction p(gc) of the occurrences) resulting from applying merger

c to G. We select the merger:

c� = argmax
c>C

(H(Gc)) = argmax
c>C

�
�− Qgc>Gc

p(gc) log(p(gc))
�
�

Because Gc is “nested” in G, the entropy of the former coincides with the mutual

information between the two so that, at each iteration, selecting amerger tomaximize

entropy is the same as selecting a merger to retain maximal information relative to

the current partition. Speci�cally, the information content between G and Gc is:
1In general, agglomerative clustering algorithms initially start with each data point forming a single

cluster, and then progressively join clusters together to form a smaller set of clusters.
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I(G,Gc) = Q
g>G
Q
gc>Gc

p(g, gc) lg p(g, gc)
p(g)p(gc)

Because Gc is a partition of G, the probability mass of any of its clusters is p(gc =
Pg>gc pg, and the joint probability of two clusters is p(g, gc) = p(g) if g is in gc,

otherwise 0. ¿us:

I(G,Gc) = Q
gc>Gc

Q
g>gc

p(g) lg p(g)
p(g)p(gc)

= Q
gc>Gc

�
�Qg>gc

p(g)�� lg
1

p(gc)
= − Q

gc>Gc

p(gc) lg p(gc)

= H(Gc)

the entropy of Gc. Because it employs entropy, this algorithm tends to create clusters

of similar mass (number of alignment columns), located depending on the frequency

of occurrences in the simplex.

Proximity is used as a constraint; by limiting the set of candidates C in each

iteration to mergers involving “neighboring clusters”, we ensure that clusters remain

spatially contiguous. ¿is can be implemented in several ways, as to give stronger of

weaker roles to proximity. For the applications presented in this work, we consider

merging each cluster with its nearest neighbor. In other words, we let a merger

c = g1, g2 be a candidate if:

d(g1, g2) = min
g>G

d(g1, g) or min
g>G

d(g, g2)

2.5 iterative search

¿e second stage of ESPERR – the search – generates candidate encodings, accepts the

best based on a �gure of merit (FOM), and repeats until an optimal encoding is found.

¿e FOM is the cross validation success rate (see section 2.8), and does not include
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“unclassi�able” elements. ¿e search is initialized with the encoding determined by

agglomerative clustering in the �rst stage. We refer to the symbols (groups) produced

by clustering as “atoms”, because they are never split during the search. At each stage,

candidates are generated from the current encoding by either merging two symbols

(groups) or extracting an atom from one of the symbols. When the current encoding

is large, many candidates will perform close to (a poor) best. ¿us we evaluate only

a random sampling, e.g. γ = 50 mergers and η = 20 extractions, which reduces

computations while still producing reasonable moves with high probability. As the

current encoding shrinks, γ represents a larger fraction of the possible mergers, and

η random extractions continue to a�ord a degree of reversibility to the search.

Large encodings require more parameters, are more susceptible to over-�tting

and thus score more elements in the unclassi�able range, reducing the FOM. Conse-

quently, the search strongly prefers small encodings, and it is possible that evaluating

single atom extractions will not be enough to by-pass local optima. We overcome this

problem with a heuristic: if the FOM does not increase over w (e.g. 20) consecutive

iterations, we consider only extractions for e (e.g. 5) consecutive steps, which allows

us to move out of local optima through poorer performing, larger encodings.

Even with this heuristic, it is still possible for the search to make bad moves

which then take a long time to be reversed. To recover e�ciency, we add a “restarting”

heuristic: if we proceed for r (e.g. 50) iterations without reaching an encoding better

than the best seen so far, we restart the search at that best encoding. Termination

is similar but extends to a much larger number of iterations – we stop if we go for

1,000 iterations without reaching an encoding better than the best seen so far, and

adopt that best encoding as the �nal one.

2.6 variable order markov models and their estimation

A Markov model of �xed order T on a state space S containing symbols s > S is

usually represented through a #(S)T by #(S) transition probability matrix, whose
entries p(sSs−1...s−T) express the chances of s conditional to the symbols in the T
preceding positions. An alternative and more intuitive way of representing Markov
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models is through a tree structure; each node in the tree correspond to a context of a

given length, say a,b of length 2, and contains transition probabilities p(sSb,a). ¿e

children of such node correspond to contexts extended forward by one symbol, say

a,b, c, and contain transition probabilities p(sSc,b,a). A tree comprising all contexts

up to length T contains in its leaf nodes all the transition probabilities required to

specify a Markov model of �xed order T. A variable order Markov model (VOMM)

of maximal order T can be thought of as a “pruned” version of such a tree, where a

reduced number of leaf nodes correspond to contexts of variable lengths with distinct

transition probabilities.

Fitting a VOMM on training data consists of extending contexts and estimating

the corresponding transition probabilities. We extend contexts using a pruning

criterion; considering each order t from 0 to T, we augment the tree to include a

node for each context s−t...s−1 that occurs more than p (e.g. 10) times in both the

positive and the negative training sets. While this criterion is naïve compared to

other VOMM pruning strategies, it does not require the maximal model (where all

contexts are considered) to be built before pruning, and thus allows quicker model

�tting. For each node included in the tree, we then need to compute the transition

probabilities p(sSs−1..s−t). Of course a node may not have a full set of children, and
there may even be extended contexts s−t...s−1, s that never occur in the data. To

produce non-zero estimates for the corresponding probabilities, we use a “discount”

smoothing rule, which redistributes a small amount of mass d (e.g. 0.01) through

the formula:

p(sSs−1...s−t) = (1 − d) #(sSs−1...s−t)
Ps̃>X #(s̃Ss−1...s−t)

+ dp(sSs−1...s−(t − 1))

where #(ċSs−1...s−t) indicates number of occurrences a er s−t...s−1 (in otherwords, the
rule reallocates d mass relative to the distribution of the parent context s

−(t−1)...s−1).

For order zero (empty context) we set d = 0.

Note that the maximal order is a hard limit on the size of a VOMM, since contexts

cannot extend beyond T. Pruning also limits the size of the model, as it determines

how many transition probabilities need to be estimated. Preliminary investigations
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showed that our �ts are robust to changes in p and d, at least for relatively small

values of these parameters.

2.7 log-odds classification

For classi�cation, we �t two variable-order Markov models on the positive and

negative training sets, as described in section 2.6. Any training or independent

alignment segment, say a = (a1...an) comprising n columns, is then scored with the
equation:

L(a) = Q
i>(1...n)

log
�
�
pPOS(aiSa(i−)POS )
pNEG(aiSa(i−)NEG)

�
�

where a(i−)POS and a(i−)POS represent the relevant contexts (symbols in position i − 1,

i − 2, ...) under the positive and negative model. L(a) is positive if the patterns
in a resemble those characteristic of the positive training data, and negative if the

resemblance is to the negative training data, so the segment can be classi�ed by the

sign of its score.

2.8 evaluation of encodings through cross validation

To evaluate the classi�cation performance of an encoding during the iterative search,

we use k-repeated h-fold cross validation. ¿e training data is partitioned at random

into h (e.g. 10) folds, a fold is withheld, and two VOMMs are estimated with the

remaining positive and negative data. ¿e estimated models are used to produce

log-odds scores for all the data (including the withheld fold). If the sets of scores for

positive and negative data used in training overlap, withheld data is classi�ed into

positive and negative based on the sign of their scores. If the sets do not overlap, the

withheld data is classi�ed as positive if their score is larger than the minimum score of

the positive data, as negative if it is smaller than the maximum score of the negative

data, and as “unclassi�able” if it falls in between. ¿is yields counts of correctly

classi�ed, erroneously classi�ed, and unclassi�able elements in the withheld fold.

¿e process is repeated for the h folds, and for k (e.g. 10) random partitions of the
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data. Counts are averaged in correct classi�cation (success), erroneous classi�cation,

and unclassi�able rates associated with the alphabet.

Unlike the success rates used to evaluate encodings during the search, those

reported in outcome of ESPERR applications reported below, i.e. the success rates

obtained on optimal encodings, are recomputed with leave-one-out cross validation

for stability (instead of withholding folds, the data elements are withheld one at a

time).

2.9 implementation details

¿e ancestral base inference, agglomerative clustering, and iterative search were

implemented in Python with performance-critical portions implemented in C –

these include code for estimating VOMMs and scoring alignment segments, which

are run to perform cross-validation over thousands of candidate encodings. ¿e

simple pruning and smoothing rules used in VOMM estimation are amenable to

e�cient implementation, making the iterative search tractable. ¿e search can be

spread over multiple cluster nodes using MPI. Running time for the search varies

depending on speci�c data and the random component; for the RP application

(chapter 3) convergence is generally achieved in � 10,000 iterations, requiring a day

on a 2Ghz Athlon machine – substantially less on a small cluster.



chapter 3

regulatory potential scores

Despite years of intense study, cis-regulatory elements remain di�cult to predict. In

previous work (Elnitski et al., 2003; Kolbe et al., 2004) it has been shown that using

Markov models to capture patterns in encoded genomic alignments can be e�ective

for discriminating these regions from ancestral repeats – a model for likely neutral

regions (Waterston et al., 2002). Applying ESPERR to learn an encoding for this

problem yields a substantial improvement in discrimination over previous methods.

3.1 learning regulatory potential with esperr

To discriminate regulatory elements from ancestral repeats with ESPERR we de�ned

two training sets. ¿e positive training data consists of a set of 97 experimentally

validated regulatory elements (Elnitski et al., 2003), and the negative training data of

repetitive elements that stabilized before the divergence of human, mouse, and dog.

Alignments of seven species (human, chimpanzee, macaque, mouse, rat, cow, and

dog) corresponding to the training regions were extracted from the UCSC Genome

Browser (Karolchik et al., 2003). To improve the resolution of our cross-validation

procedure, these alignments were chopped into 100-column pieces, and the ancestral

repeats were randomly sampled to produce a training set equal in size to the positive

set. We allowed alignment columns to be considered if they had no more than

three missing species, and required each 100-column segment to have at least 50

such columns. ¿is resulted in positive and negative training sets containing 357

elements, covering approximately 31,000 human bases each. ESPERR with a log-odds

classi�er based on VOMMs (with a maximal order of 2) yielded a �nal encoding

into 17 symbols, with a leave-one-out cross-validation success rate of � 94% on the

training data.

¿is performance is a considerable improvement over previous Regulatory Po-
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tential scores (� 82% for the scores of Kolbe et al. (2004), based on human-rodent

alignments). Cumulative distributions of RP scores computed on the training sets

and similarly prepared random samples of exonic and all (“bulk”) genomic regions

are show in Figure 3.1A. RP scores do an excellent job discriminating regulatory

regions from bulk and neutral DNA, as well as separating them from exons.
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Figure 3.1: RP score performance demonstrated by (A) cumulative distributions of
scores on various genomic elements and (B) ROC plots for discrimination of 23
elements in the human beta-globin locus.

As an additional evaluation of RP performance, we considered 23 experimentally

con�rmed regulatory elements in the hemoglobin beta gene cluster. ¿ese likely

include most of the sequences with regulatory function for this extensively studied

locus, and only �ve are part of our regulatory training set – providing reasonably

exhaustive and independent test data for sensitivity and speci�city assessments (King

et al., 2005). ¿eROCplot (Figure 3.1B) shows that performance of the ESPERR-based

RP scores on this dataset, in terms of both sensitivity and speci�city, is uniformly bet-

ter than previous RP scores (from human-rodent alignments) and two conservation

scores: phastCons (Siepel et al., 2005) and MCS (Margulies et al., 2003). Figure 3.2

shows a portion of the beta globin locus control region. Known regulatory elements

are shown along with the ESPERR based RP score and the previous human/rodent

RP scores of Kolbe et al. ¿e ESPERR based score clearly identi�es more regulatory

elements, in particular HS3.1, HS3.2, and HS4 were all missed by the older score.
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3.2 esperr captures a variety of signals in regulatory elements

To begin unraveling the signals that contribute to the excellent performance of the

ESPERR based RP score, we must examine the variability structure in the training

data, and how this structure relates to the score. We would like to understand which

features of the training data lead to good performance, but this is a challenging

prospect given that a very large number of alignment columns are grouped together

by ESPERR in each symbol of the reduced representation. Because RP is a log-

odds score based on VOMMs with maximal order 2, we consider the frequencies

of words of length 3 in the training data a er applying the encoding learned by

ESPERR. One approach for understanding the variability structure of a dataset is

principal component analysis (PCA), which �nds a transformation of a dataset to

a new coordinate system in which the �rst component has the greatest variance,

the second (orthogonal to the �rst) and has the next greatest variance, and so on.

Applying PCA to these word frequencies shows that a large amount of their variability

is explained by the �rst few principal components (Figure 3.3 top panel). However a

substantial amount of variability is spread across the many remaining components,

consistent with the presence of both strong and weak signals in this dataset.

Our �rst insight into the nature of the strong signals comes from our analysis of

the performance of RP scores. We note that while RP can discriminate regulatory

elements better than conservation scores can, exons also have very high RP values

(Figure 3.1A). Two signals o en associated with exons (as well as regulatory elements)

are conservation and GC content. Computing a regression of RP score on GC content

and conservation (measured as the average phastCons score) shows that these two

quantities alone explain � 68% of the variability in RP. Another factor typically

associated with ubiquitous promoter regions is CpG dinucleotide density (Cooper

et al., 2006); however, while this does explain some within-class variability of the

regulatory elements in our training set, it does not signi�cantly improve our ability

to explain RP (when CpG density is added to the regression its coe�cient is not

signi�cant, and the correlation is almost unchanged).

Pinpointing the nature of other factors that systematically contribute to RP is
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complicated, due to the enormous reduction induced by our encoding, and the

random component involved in the search algorithm. Nevertheless, these factors

are crucial for discrimination; about a third of RP is likely a composite of weaker

signals. A practical way to measure this composite is to consider the residuals from

the regression of RP on GC content and conservation, which we will denote as

F = RP − (β̂0 + β̂1 ċGC + β̂2 ċ Cons), where β̂0, β̂1, and β̂2 are the coe�cients from

the RP score regression. ¿e bottom panel of Figure 3.3 shows the correlation of RP

and each of these three quantities with the �rst 25 principal components. We see that

the strongest component that has high correlation with RP also has high correlation

with conservation and GC content. However RP also shows substantial correlation

with many of the weaker components, which are less exclusively dominated by the

strong conservation and GC content signals.

To further explore the di�erence between these strong signals, and the composite

of weak, subtler signals represented by F, we correlate each of these three quantities

with individual word frequencies in the training data. Figure 3.4 (bottompanel) shows

box-plots of these correlations. ¿e positive correlation with both conservation and

GC content are dominated by a small number of words, which are the outliers at

the top of the distribution. In contrast, F shows far fewer dominant outliers and

is associated with many di�erent words. Further insight into the nature of these

signals is obtained by examining the speci�c words that have the strongest positive

correlation with each feature. Figure 3.4 (top panel) shows “logos” for the words

most strongly correlated with each signal (the height of each character in the logo

is determined by the ancestral probability distribution centroid for the columns

encoded to that symbol). Again, conservation and GC content are dominated by

words clearly associated with these signals (the search procedure has grouped fully

conserved C and G columns together, so the symbol with strong G and C components

shows up frequently in the highly conserved set). ¿e words most strongly associated

with F on the other hand are more diverse, consistent with indications that a variety

of di�erent patterns contribute to F.
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Figure 3.4: Distributions of the correlations between word frequencies in the RP
training data and three component signals (GC content, conservation, and the resid-
uals F). For each signal, representative logos of the most strongly correlated words
are shown.
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3.3 rp weak components help to identify truly distal regulatory
elements

Distal cis-regulatory elements – those that are far from the start site of any gene – have

proven particularly di�cult to identify. ¿e ENCODE Transcriptional Regulation

group (Weng et al., 2006) used ChIP-chip to identify binding sites for a variety of

transcription factors and other DNA binding proteins. We selected a subset of their

experiments, emphasizing experimental platforms with high-resolution site identi�-

cation and sequence-speci�c binding not exclusively associated with transcription

start sites. We eliminated all sites overlapping repetitive regions or coding exons, and

expanded the remaining sites to cover at least 100bp. Next, we restricted attention to

sites supported by at least one additional line of experimental evidence suggesting

regulation, such as ChIP-chip evidence for certain histone modi�cations associated

with activation or factors associated with general chromatin modi�cation1, as well

as DNaseI hypersensitivity and nucleosome depletion2 (Stamatoyannopoulis et al.,

2006). Finally, to focus on distal regulation, we removed sites falling within 2.5kb of a

transcription start site (Guigó et al., 2006). ¿is resulted is a set of 617 elements with

multiple lines of evidence suggesting a distal regulatory function. Aggregate charac-

teristics of these regions suggest that they are enriched for function; in particular, they

show evidence of evolutionary constraint both in terms of average phastCons scores

(Siepel et al., 2005) and in terms of overlap with evolutionarily constrained regions

(moderate MCS set from Margulies et al., 2006). ¿is set may also contain some

non-functional elements, as well as unannotated promoters and proximal elements,

because there are likely transcription start sites that have not been identi�ed (Guigó

et al., 2006; Weng et al., 2006).

Su�cient aligning sequence was available to calculate the RP score, GC content,

average phastCons score, and F for 583 of the 617 elements in our set. For each of
1Histones are themajor proteins that DNA is packed around in its packed form (chromatin). Certain

changes to the histones have been found to be associated with the activation of transcription.
2In packed chromatin, histones and DNA are arranged into larger structures called nucleosomes.

Nucleosomes prevent polymerase from accessing the promoter regions of genes. ¿us absence of
nucleosomes is another marker for activation.
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the three RP components (GC, conservation and F) we examined the 50 highest

scoring elements. Among those with high GC content we see a strong enrichment

for possible unannotated promoters: 21 overlap an ENCODE ChIP-chip binding site

for factors associated with transcription initiation (PolII, Taf250, TFIIB). Elements

with high conservation also appear to contain possible unannotated promoters, with

12 regions overlapping such a binding site. In contrast, among the 50 putative distal

elements with the highest F, only three overlap such a binding site. ¿is suggests

that, although strong signals such as GC content and constraint are still likely to play

a role, true distal elements may be better characterized by the subtler, weaker signals

proxied by F.

3.4 data preparation

RP training sets were prepared using the 17-speciesMultiz alignments from theUCSC

genome browser (Karolchik et al., 2003; Blanchette et al., 2004). We used the subset

of mammalian species in these alignments with higher sequence quality; namely

human (hg17), chimpanzee (panTro1), macaque (rheMac2), mouse (mm7), rat (rn3),

dog (canFam2), and cow (bosTau2). Alignments corresponding to each element of a

training set were extracted. Gaps between alignment blocks were annotated as such,

and all other gaps (including complex insertion/deletion events) were annotated as

missing data. ¿e training sets were then chopped to 100 column alignment segments.

Training elements were also required to have at least 50 good alignment columns

(those having three or fewer missing species) to be included.
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application to other problems

Next we consider the application of ESPERR to two other pairwise classi�cation

problems. In the computation of RP scores, we discriminate experimentally validated

regulatory regions from a neutral model – these two training sets represent extremes

relative to the entire genome. In the following two examples we instead construct

positive and negative training sets from the result of experimental assays which were

applied comprehensively to a set of regions. Speci�cally, for the �rst example we

construct a training set from a comprehensive evaluation of DNaseI hypersensitivity

in the ENCODE regions. For the second, the training set is constructed from highly

conserved elements tested for developmental enhancer activity. ¿us the overall

composition for these training sets is di�erent from that used to train RP.¿eDNAseI

hypersensitivity training set as a whole is representative of the genome since the assay

was performed comprehensively. In contrast, both the positive and negative training

sets for distinguishing developmental enhancers are drawn from the most highly

conserved regions of the genome. ESPERR performs well for both of these problems,

indicating that our method is able to e�ectively learn encodings for a variety of

problems.

4.1 discriminating encode dnasei hypersensitive sites with esperr

Sensitivity to cutting by the non-speci�c endonuclease DNaseI in vivo can be used to

identify local disruptions in the DNA chromatin packaging structure. ¿ese disrup-

tions, which span sequences of length � 250bp, are reliable markers for regions that

are functional in the nucleus, including transcriptional regulatory elements. High-

throughput quantitative chromatin pro�ling techniques (Sabo et al., 2004; Dorschner

et al., 2004) allow the identi�cation of large numbers of DNaseI hypersensitive sites

in speci�c cell lines (e.g. K562 erythroid cells).
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¿e ENCODE chromatin and chromosomes group (Stamatoyannopoulis et al.,

2006) has assayed a large portion of the ENCODE regions in several cell lines for

hypersensitivity to DNaseI. From their data we extracted a set of high-con�dence

positive calls (empirical p-value < .001 and plate quality > 0.5 in any cell line; 369

elements), and high-con�dence negative calls (empirical p-value > .1 for all cell lines

with plate quality > 0.5, and no overlap with other ENCODE functional elements as

compiled in (Margulies et al., 2006); 477 elements). Prior work on predicting DNaseI

hypersensitive sites with a linear support vector machine based on short motifs in the

primary genomic sequence (length 1-6, ignoring strand) showed good performance

(Noble et al., 2005). Using their methods and training data we were able to con�rm

their reported success rate of �85%. However applying this approach to the ENCODE

dataset achieves a success rate of �64%, suggesting that this more comprehensive set

of sites is substantially more di�cult to discriminate.

We applied ESPERR to this dataset, using the same seven-species alignments as

for the RP scores. Training data consisted of 319 positive elements and 379 negative

elements with su�cient alignments, prepared as was done for RP scores (except that

these elements were not chopped to 100 column segments since the training sets

are larger and the elements are of less variable length). ¿e procedure identi�ed an

encoding to 18 symbols, which achieved a success rate of �80%. ¿us, for this more

comprehensive dataset, the additional information available in multiple alignments

and captured by ESPERR achieves substantially better performance than does a linear

SVM using sequence motifs.

4.2 identifying conserved regions with developmental enhancer
activity

It has been observed that many of the highly conserved non-coding regions of

the genome are transcriptional regulatory enhancers common to vertebrates. For

example, Woolfe et al. (2005) tested regions conserved between human and pu�er�sh

(F. ruprides). Of 25 elements tested (all near four developmental genes), 23 showed

signi�cant enhancer activity in at least one tissue. ¿us, screening conserved elements
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appears to be an excellent approach for experimentally identifying more enhancer

elements. However, computational methods could improve the e�ciency of these

screens by predicting which elements are more likely to show activity in a given

experiment.

¿e VISTA Enhancer Browser (http://enhancer.lbl.gov) contains 253 con-

served regions that have been tested for consistent enhancer activity in transgenic

mouse embryos. A region was declared positive (validated) if at least three embryos

showed the same pattern of expression for that element. Here, ESPERR produces

a score to predict which of the numerous other conserved regions in the genome

would be validated by this assay. For positive and negative training sets we used 108

validated and 138 non-validated regions (a small number of regions with ambiguous

results were excluded).

Because both the positive and negative training sets for this problem consist of

highly conserved elements, alignments spanning a much deeper evolutionary tree

were used as compared to the previous applications. Speci�cally, we used alignments

of human, mouse, opossum, chicken, frog, zebra�sh, and pu�er�sh. Training ele-

ments were not chopped, and alignment columns with at most three missing species

were considered valid, with at least 50 such columns required for an element to be

used, resulting in a positive set of 108 elements covering 143,688 human bases and

a negative set of 134 elements covering 165,272 human bases. ESPERR identi�ed

an encoding to 15 symbols, and yielded a very good cross-validation success rate of

�83%. ¿us, using our method to score conserved elements for potential enhancer

activity could greatly increase the rate of discovery and validation of new conserved

embryonic enhancers.

4.3 data preparation

Training sets were again prepared using the 17-species Multiz alignments from the

UCSC genome browser (Karolchik et al., 2003; Blanchette et al., 2004). For the com-

putation of hypersensitive site predictions we used the same subset of mammalian

species used in RP scores; namely human (hg17), chimpanzee (panTro1), macaque

http://enhancer.lbl.gov
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(rheMac2), mouse (mm7), rat (rn3), dog (canfam2), and cow (bosTau2). For predic-

tion of highly conserved regions with embryonic enhancer activity we used a subset of

species spanning a larger evolutionary distance; namely human (hg17), mouse (mm7),

opossum (monDom2), chicken (galGal2), frog (xenTro1), zebra�sh (danRer3), and

pu�er�sh (fr1). Alignments corresponding to each element of a training set were

extracted. Gaps between alignment blocks were annotated as such, and all other

gaps (including complex insertion/deletion events) were annotated as missing data.

For both applications, training elements were also required to have at least 50 good

alignment columns (those having three or fewer missing species) to be included.
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predicting promoter activity with esperr

A transcriptional promoter, by de�nition, is the genomic segment required for ini-

tiation of transcription. Increased precision of the de�nition of a promoter can be

attained by tying it to a speci�c experimental protocol. Here we focus on compu-

tational prediction of the promoter data generated by Cooper et al. (2006), who

identi�ed 921 potential promoters based on full length cDNA libraries. A cDNA is

generated by reverse transcribing (copying back into DNA) a mature mRNA, these

sequences are thus good evidence for the presence of a gene. Potential promoters

were evaluated in 16 diverse cell lines by a transient transfection assay, in which

a construct is made containing the tested region followed by a reporter gene in a

piece of circular DNA called a plasmid, which is then introduced into the cell. If the

promoter is active in that cell the reporter gene is expressed. Usually the reporter

gene codes for a luciferase protein that produces light when expressed, which can

then be used to measure the expression level.

We thus address the following problem: given the genomic position of the 5′ end

of a putative full-length human cDNA, predict whether transient transfection reporter

assayswill determine that the surrounding genomic sequence (1) has promoter activity

in almost all human tissues (i.e., is a ubiquitous promoter), (2) has promoter activity

in just a few tissues (tissue-speci�c promoter), or (3) has no promoter activity.

Several kinds of genomic data are potentially useful for predicting promoter

activity. It is well known that ubiquitous promoters are frequently associated with

a high density of CpG dinucleotides, and some predictive success can be attained

using this association (e.g. Down and Hubbard, 2002; Bajic and Seah, 2003). ¿e

presence of a TATA box (a sequencemotif thought to be associated with transcription

initiation) is potentially informative, but the Stanford team reported that only 16%

of the functional promoters contain one (Cooper et al., 2006). Available promoter
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predictors, which typically rely heavily on the presence of CpGs and/or TATA boxes,

have limited overall success with the Stanford data. For instance, promoters predicted

by FirstEF (Davuluri et al., 2001) overlap 87% (92 of 106) of the ubiquitous Stanford

promoters but only 11% (14 of 130) of the tissue-speci�c promoters. Similarly, only

45% of ubiquitous and 5% (7 of 130) of speci�c Stanford promoters are within 500bp

of a transcription start site predicted by Eponine (Down and Hubbard, 2002). Evolu-

tionary constraint has been measured in promoters and found to have only slight

predictive value (Margulies et al., 2006; Weng et al., 2006). For example, Cooper et al.

(2006) report that the fraction of conserved bases is very similar between functional

and non-functional promoters – 12.5% vs. 10%. Another potential data source for

promoter prediction are the genomic locations of 5′ ends of transcripts (Liu and

States, 2002), which are employed here. Finally, a variety of data showing associations

with transcriptional promoters, such as ChIP-chip data on binding by PolII or TAF1,

are available for the ENCODE regions. However, this study is limited to data that are

currently available genome-wide.

Here we extend ESPERR to predict the activity of potential promoter regions

using genomic positions of the 5′ ends of human putatively full-length cDNAs and

genome wide multiple alignments of human with four other mammals – chimpanzee,

mouse, rat, and dog – obtained from the UCSC Genome Browser (Kent et al., 2002;

Karolchik et al., 2003). We compare the performance of ESPERR with other machine

learning methods trained on additional signals computed from primary sequence

and alignments: G+C content and CpG frequencies in arbitrary genomic intervals,

and genomic locations of regions predicted to be under purifying selection, and the

average phastCons score for arbitrary intervals (Siepel et al., 2005).

For training data, we used the Stanford results to label each assayed 5′ end posi-

tion as a ubiquitous, tissue-speci�c or nonfunctional promoter. ¿ere are a variety

of computer techniques that can combine these sources of data to classify 5′ ends

according to promoter activity; we tried linear discriminant analysis (see for instance

Seber, 1984), support vector machines (Cortes and Vapnik, 1995), classi�cation trees

(Breiman et al., 1984) and a multi-class generalization of the ESPERR approach. Our
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results show that ESPERR signi�cantly out-performs the other approaches, presum-

ably because it is not limited to pre-de�ned signals, but can extract the sequence and

evolutionary patterns relevant to a particular problem from the training data.

5.1 assessment of promoter activity in the encode regions

Cooper et al. (2006) identi�ed 921 potential promoters based on full-length cDNA

libraries. Of these they tested all those associated with multi-exon transcripts (528)

and a sample of those associated with single exon transcripts (114) in 16 diverse

cell lines using transient transfection reporter assays. ¿ey additionally assayed 102

negative control fragments and declared a tested promoter fragment as functional in

a given cell line if it showed signi�cant activity relative to negative controls.

¿e criteria used by Cooper et al. for declaring positive fragments are stringent,

although fragments not declared positive by this standard might still have substantial

activity. For labeling of negative fragments we also need stringent criteria for absence

of activity. ¿us we declare each tested promoter fragment as positive in a cell line

if the activity is more than four standard deviations over the mean of the negative

controls, negative if the activity is less than one standard deviation over the mean,

and ambiguous otherwise. We then group fragments into three classes: “ubiquitous”

having positive calls in all 16 cell lines (106 fragments), “speci�c” with positive calls

in only one to �ve cell lines (130 fragments), and “negative” with negative calls in all

16 cell lines (123 fragments). ¿e remaining 304 fragments assayed by the Stanford

group, which could not be clearly assigned to one of these stringently de�ned classes,

were not used for this analysis.

5.2 signals that distinguish different classes of promoters

To distinguish these three classes of promoters we �rst considered three signals:

density of CpG dinucleotides, GC content, and multi-species conservation. Con-

servation was measured both as the fraction of non-coding bases overlapping a

highly constrained region (moderate MCS Margulies et al., 2006) and as the average

non-coding phastCons score (Siepel et al., 2005), which can be computed for all
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intervals with alignments, not just those with strong constraint. Figure 5.1 shows the

distributions of these signals across the three classes of tested regions. Clearly these

signals vary among classes, and in particular CpG content is very strongly associated

with ubiquitous promoters.

We evaluated the predictive power of each of these signals (Table 5.1, le columns).

Performance was evaluated using leave-one-out cross validation. Each element in

the training data is withheld, a threshold on the score is found that best classi�es

the remaining elements, and the withheld element is classi�ed according to that

threshold. ¿e success rate is the percentage of elements classi�ed correctly. As

expected, CpG density does a very good job of separating ubiquitous promoters

from the other two classes (over 90% success rate). Additionally, GC content does

quite well for separating ubiquitous from negative promoters (over 80% success rate).

Otherwise these signals discriminate fairly poorly, with all other success rates less

than 65%. In particular all of these signals do a very poor job of distinguishing tissue

speci�c promoters from negative regions.

As an alternative to classi�cation based on prede�ned signals computed from

sequences or alignments, we can instead attempt to learn the relevant signals for clas-

si�cation from training data using ESPERR. Training data was extracted fromMultiz

alignments of chimpanzee (panTro1), mouse (mm6), rat (rn3), and dog (canFam1) to

the human genome. Positions overlapping coding sequences were eliminated from

the training data. We allowed any column in the training data with at most two

missing species to be used. Handling missing data in this way allowed us to cover

most potential promoter regions, however a small number of training regions (4

Datasets phastCons MCS overlap GC CpG ESPERR
Ubiquitous vs. Negative 54.15% 61.14% 80.79% 90.83% 96.31%
Ubiquitous vs. Speci�c 46.19% 53.81% 64.41% 90.68% 96.21%
Speci�c vs. Negative 52.96% 60.08% 63.24% 58.50% 83.81%

Table 5.1. Pair-wise classi�cation success rates using quantities computed from genomic
sequence (GC content and CpG density), alignments (phastCons and MCS overlap), and
ESPERR.
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Figure 5.1: Distributions of (A) GC content, (B) CpG density, (C) non-coding phast-
Cons and (D) non-coding MCS overlap for widely expressed, tissue speci�c, and
negative regions.

ubiquitous, 12 speci�c, 12 negative) were eliminated from the analysis because they

did not have at least 50 valid alignment columns.

Applying ESPERR to the pair-wise classi�cation of ENCODE promoter regions

is very e�ective (Table 5.1, right column). In addition to performing better than CpG

density for classi�cation of ubiquitous promoters, this method is the �rst to show

good performance for discriminating speci�c from negative promoters, having a

success rate of �84%.
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5.3 extension to simultaneous three-way classification

To e�ectively identify both tissue speci�c and widely expressed promoters across the

human genome, pair-wise discrimination is insu�cient. We would instead like to be

able to predict for a given element which of the three classes it most likely belongs to.

¿is problem is even more challenging than distinguishing two classes, especially

given that the signals do not separate the classes very cleanly, since there are now

more ways to misclassify each element.

A variety of machine learning methods exist for multi-way classi�cation, and

we have evaluated the performance of several on this problem (Table 5.2). We �rst

considered linear discriminant analysis (LDA) using each of the prede�ned signals

independently as predictors, as well as combinations of the signals. At best, using

CpG density, GC content, and MCS overlap as predictors, LDA achieved a leave-one-

out cross validation success rate of �66%. Because the e�ectiveness of the di�erent

predictor signals for classi�cation varies substantially depending on which classes

are considered, we next attempted to use classi�cation trees (Breiman et al., 1984).

Several combinations of predictors were again attempted, and the best performance

was again achieved combining CpG density, GC content, and MCS overlap, giving a

leave-one-out cross validation success rate of �63%. Finally, because the classes are

not easily linearly separable we tried to discriminate them using a support vector

machine, achieving a 10-fold cross validation success rate of �69%. For SVM 10-fold

cross validation was used rather than leave-one-out for this portion of the analysis

due to the computational cost of parameter optimization.

ESPERR can also be generalized to multi-way classi�cation. Rather than pro-

ducing a log-odds score for two probability models, a model (VOMM) is trained

for each class and test segments classi�ed according to the model under which they

have the highest probability. Using the correct classi�cation rate under this scheme

as the new “�gure of merit” to evaluate candidate encodings in the heuristic search

allows selection of an encoding optimized for multi-way classi�cation. On our 3-class

problem this approach yields a much better performing classi�er than any of the

other methods evaluated, with a �nal success rate of �81%.
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5.4 predicting widely expressed and tissue specific promoters
genome wide

While our approach relies on ENCODE experimental data for training, for prediction

it only requires genomic alignments. ¿is allows us to predict promoter activity

in regions immediately upstream of existing cDNAs in the entire human genome.

Following the approach of Cooper et al. we used alignments of Genbank cDNAs to the

human genome to identify 79,616 possible 500bp promoter regions associated with

36,416 gene models (clusters of cDNAs with exonic overlap). From these candidates

we predicted 19,239 widely expressed promoters (of which 13,967 overlap CpG islands)

and 23,315 tissue speci�c promoters. We also predict that 29,988 of the candidate

regions would not be active in the transient luciferase assay, while 7,704 could not

be reliably classi�ed due to insu�cient alignment data. Among our gene models,

14,692 have a predicted ubiquitous and 15,500 have a predicted speci�c promoter.

Interestingly, 6,584 models have both a ubiquitous a and speci�c promoter. Predicted

ubiquitous promoters have the strongest association with existing gene annotations:

61% of our predictions are within 500bp of a RefSeq annotated start site. Predicted

speci�c promoters coincide less frequently – 20% – consistent with lower quality

Method (predictors) Performance
LDA (MCS) 39.83%
LDA (phastCons) 34.09%
LDA (GC) 48.60%
LDA (GC, CpG) 65.46%
LDA (MCS, GC, CpG) 66.85%
LDA (phastCons, GC, CpG) 65.06%
Tree (GC, CpG) 57.94%
Tree (phastCons, GC, CpG) 63.07%
Tree (MCS, GC, CpG) 63.23%
SVM (MCS, gc, cpg) 63.83%
ESPERR 80.98%

Table 5.2. Multi-way classi�cation success rates using several machine learning methods
and predictors: Linear discriminant analysis (LDA), class�cation trees (Tree), support vector
machines (SVM), and ESPERR.
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annotation for tissue speci�c transcripts. ¿e predicted negative promoters show by

far the least associated with RefSeq start sites, with only 12% falling within 500bp.

Inspection of the predictions for several well-studied tissue-speci�c and ubiq-

uitous promoters shows that they are accurate in these cases. An example of a

tissue-speci�c gene is NFE2, which encodes the erythroid subunit of the protein

NF-E2 that binds to strong enhancers such as hypersensitive site 2 of the beta-globin

locus control region. Two di�erent mRNAs (L13974 and S77763, Figure 5.2) arise

from di�erent promoters and encode the same protein, but they are di�erentially

synthesized during development (Ney et al., 1993; Pischedda et al., 1995). Both of

these are correctly predicted as tissue-speci�c promoters by our method. A third

promoter is inferred from large scale cDNA sequences (e.g. mRNA CR450284), but

no further information is available on it.

Another example of a tissue-speci�c promoter that is correctly predicted is that of

ZFPM1. ¿is gene encodes the proteinFOG-1 (Friend ofGATA-1), amulti-zinc-�nger

protein that interacts speci�cally with the erythroid transcription factor GATA-1 and

other proteins (Tsang et al., 1997). Although the promoter is within a CpG island, the

gene is expressed primarily in hematopoietic tissues. Most predictors would classify

this as a ubiquitous promoter because it is a CpG island, but our method correctly

predicts it as being tissue-speci�c (Figure 5.3).

An example of a gene with ubiquitous and tissue-speci�c promoters that are

correctly predicted is POU2F1which encodes PO2F1, also known asOCT1, an impor-

tant transcriptional regulator. ¿e transcript beginning at the most 5’ exon (Figure

5.4) is ubiquitously expressed, associated with a CpG island, and correctly predicted

by our method. However a second isoform initiating �108kb downstream exhibits

tissue speci�c expression, predominantly in B cells, in activated T cells, and in the

nervous system (Luchina et al., 2003). ¿is highly tissue speci�c promoter is also

correctly identi�ed by our method.
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5.5 data preparation and methods

For all analysis restricted to the ENCODE regions, coding sequences were de�ned by

Gencode gene annotations (Guigó et al., 2006). For genome-wide analysis, coding

sequences were de�ned by UCSC knownGenes (Karolchik et al., 2003). MCS overlap

for an interval was de�ned as the fraction of non-coding positions overlapping a

moderate MCS (Margulies et al., 2006). Average phastCons scores were computed

using the eight-species conservation track at the UCSC browser (Kent et al., 2002).

Linear discriminant analysis was performed using the R statistical so ware pack-

age (R Development Core Team, 2006). Classi�cation tree analysis was performed

using the RPART package for R, based on CART (Breiman et al., 1984). Performance

for both schemes was evaluated with leave-one-out cross validation.

Support vector machine tests were performed using LIBSVM (Chang and Lin,

2001) which implements the “one-against-one” approach for multi-way classi�cation

(Hsu and Lin, 2002). Linear, Gaussian, and polynomial kernels were tested with a

grid-search to select the best parameters.

Potential promoter regions for genome-wide predictionswere identi�ed following

the methods of Cooper et al. (2006). ¿e 200,825 Genbank cDNA Alignments from

the UCSC browser human mRNA track were merged into 36,416 clusters of elements

having any exonic overlap. Potential start sites were identi�ed by taking the most

5′ base in each cluster and 500bp upstream. For clusters containing any multi-exon

transcript we additionally required the �rst start site to be de�ned by a multi-exon

transcript. Additional start sites were then identi�ed for each cluster by progressively

taking the next-most 5′ end at least 500bp downstream from the last, yielding a total

of 79,616 potential promoters sites.
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conclusions and future work

We have presented ESPERR, a method to learn encodings of multiple alignments

that retain useful information for a chosen classi�cation problem. We have shown

excellent performance for predicting three di�erent types of functional elements,

each of which involves a binary (e.g. positive versus negative) classi�cation, as well

as excellent performance in multi-way classi�cation of potential promoter regions.

We have also begun exploring the application of this method to gene prediction.

Alignment encodings have already been used e�ectively to improve gene prediction;

for example, TWINSCAN encodes positions as match, other aligned, and unaligned,

and estimates models over the encoded sequence (Korf et al., 2001). ESPERR may be

able to �nd e�ective encodings of multiple “informant” species in related gene pre-

diction algorithms (e.g. N-SCAN, Gross and Brent, 2006). ¿e �rst stage of ESPERR

could also be employed to create reduced representations of multiple alignments for

analyses where there is not a natural performance metric for driving the iterative

search. One such application is the identi�cation of encodings for the unsupervised

characterization of alignments from highly conserved sequences (Bejerano et al.,

2004).

ESPERR-based Regulatory Potential scores have proven e�ective for identifying

enhancer elements. Wang et al. (2006) identi�ed 75 regions having a positive RP score

as well as matches to the binding site motif for the essential erythroid transcription

factor GATA-1. ¿ey tested these regions with reporter gene assays in transiently

transfected human K562 cells and/or a er site-directed integration into murine

erythroleukemia cells, and found that regions with high RP score were validated

frequently (at least 50%), with even higher validation rates at higher RP scores. In

contrast, segments with low RP tended to be inactive.

ESPERR is most appropriate when the loci in question are under selection among
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the species examined, and at the very least requires that the loci can be aligned (though

for all applications presented here we lose a small number of training sequence due

to lack of su�cient alignment). For most applications, including those described in

this work, elements do not necessarily exhibit strict nucleotide-level conservation.

For example, binding sites in regulatory elements may change relative order or motif

(Ludwig et al., 1998; Dermitzakis and Clark, 2002; Costas et al., 2003). Also, some

elements may only be functional in a speci�c lineage – see for instance studies

by Valverde-Garduno et al. (2004) on lineage-speci�c hypersensitive sites in the

GATA1 locus in humans and mice. However, as long as the elements retain su�cient

alignability, ESPERR can still achieve very good performance: in fact, our method

can tolerate some degree of local change, and even capture such change if it occurs

with a consistent pattern. In the future we would like to modify ESPERR to better

capture rearrangements in functional elements, perhaps guided by alignments but

allowing more �exibility in small scale rearrangement. ¿is has the potential to

greatly improve our ability to recognize elements containing these sorts of changes.

To infer the ancestral base distribution, ESPERR extends traditional nucleotide

substitution models by treating gaps like a � h nucleotide (see section 2.2). While

this extension has been used e�ectively (McGuire et al., 2001), it is naïve, in that it

treats indels a�ecting multiple consecutive positions as multiple independent events,

and thus is overly sensitive to all but very short indels. Nonetheless, the extended

HKYmodel works well in ESPERR,most likely because it is combined with a classi�er

that incorporates context and thus captures dependencies among neighboring sites.

More sophisticated modeling of indels for ancestral distribution inferences would

integrate naturally into our procedure, and we expect this to become more important

as we apply ESPERR using other classi�ers, as well as to unsupervised classi�cation

(clustering) problems.

All of the applications presented here are limited by the available training data and

the experimental procedure that generated it; for instance, for promoter prediction

we focus on predicting the result of transient transfection reporter assays. It remains

unclear how accurately this assay recapitulates the regulatory behavior of promoter
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fragments in their natural genomic context since the plasmids constructed for tran-

sient transfection lack distal elements, chromatin structure, and other epigenetic

modi�cations. Because ESPERR was trained on data produced by this assay, our

predictions must be interpreted in this context. Encouragingly, however, Cooper et al.

(2006) do observe a strong correlation between activity in the assay and endogenous

transcript levels in the cell lines studied, suggesting that a signi�cant proportion of

gene regulation is contained within promoter fragments of this size, and that this

activity can be reliably measured to a large extent in the transient reporter assays.

Furthermore, because precisely de�ned promoter fragments are assayed out of their

genomic context, it is highly certain that the activity observed comes directly from

that speci�c fragment. ¿is decreases the search space for speci�c regulatory motifs

and establishes de�ned boundaries for the regulatory module su�cient for gene

regulation.

ESPERR predicts many promoters in the human genome not associated with start

sites of known genes (as annotated by the UCSC genome browser). ¿is is consistent

with a number of recent �ndings suggesting that there are more promoters in the

human genome than previously believed. Cooper et al. (2006) �nd a substantial

number of genes with functional alternate promoters, and suggest that these might be

due to highly tissue-speci�c alternate isoforms. ¿e ENCODE Genes and Transcripts

group (Guigó et al., 2006) annotated and veri�ed a substantial number of novel

transcription start sites. ¿e ENCODE Transcriptional Regulation group (Weng

et al., 2006) similarly integrated the results of more than 100 ChIP experiments to

predict the presence of many novel promoters.

For the applications presented here we used ESPERR on alignments of at most

seven species. Further increasing the number of species could add predictive power

in some problems; our method can easily scale to incorporate more genomes, and

because of the way we handle missing data, these could be picked from the many

low-coverage genomic sequences currently becoming available. However, care must

be taken in selecting what species to use. Very low coverage genomes may in some

cases add more noise than exploitable signals, and in general the type of functional
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elements under consideration should dictate species selection (McAuli�e et al., 2005).

For example, if elements are not expected to be under very strong constraint, com-

parisons should be restricted to closely related species, while if the elements are very

constrained, using more distant species increases the chance of seeing systematic

patterns of change that can be captured by ESPERR (as in section 4.2).

Another challenge of our current methodology is a common di�culty in data

mining: techniques that are strongly data-driven, and incorporate a random compo-

nent, result in models that work quite well in practice but can be di�cult to interpret.

Developing methods to systematically interpret the encodings we produce will allow

us not only to predict elements well, but describe the characteristics of such elements.

¿is has the potential to aid in understanding the speci�c mechanisms involved. ¿e

integration of phylogenetic modeling and a data-driven algorithm in our current

methodology is a �rst step in this direction. In the future we intend to develop

approaches that strike a balance between adaptability to the provided training data

and biological interpretability.

¿e intense e�orts to characterize and improve predictions of regulatory regions

and other functional intervals in the genome are yielding many helpful resources.

Biochemical assays of protein binding and chromatinmodi�cations at high resolution

(Weng et al., 2006; Stamatoyannopoulis et al., 2006), predictions of clusters of con-

served transcription factor binding sites (Blanchette et al., 2006), re�ned estimates

of nucleotides under constraint (Siepel et al., 2005; Cooper et al., 2005), and other

experimental and computational e�orts provide a plethora of resources from which

investigators can build hypotheses to test. ESPERR di�ers from other methods in its

emphasis on training to discover both strong and weak signals in alignments, and

in its broad applicability – as signals can be learned to discriminate potentially any

functional classes for which training data are available. ESPERR can be applied to

new sets of functional elements, such as those explored by the ENCODE project,

to generate genome-wide predictions for many functional classes. Future e�orts to

better understand the many subtle signals discovered by ESPERR should provide

new insights into the mechanisms underlying speci�c functions, which could then



48

be tested experimentally. Another avenue of future work will be to combine augment

our classi�cation models to take advantage of other datasets – such as ChIP-chip

predictions of protein occupancy – in addition to genomic alignments data.



appendix a

pseudocode for the esperr search algorithm

¿e search is initialized using some mapping, either a one-to-one mapping of the

training data symbols (e.g. all alignment columns) or the result of another encoding

selection procedure (e.g. the clustering based on ancestral base distributions). A er

each iteration, this will be replaced with the best mapping found in that iteration.

mapping = initialize_mapping()

We keep track of the best mapping seen, and its �gure of merit. When the search

terminates this best mapping corresponds to the �nal encoding.

best_merit_overall = −ª

best_mapping_overall = None

¿e search iterates until it has performed 1,000 iterations without any improvement

over the best mapping seen.

while steps_since_best < 1,000:

Within each iteration, we keep track of the best candidate mapping found.

best_merit = −ª

best_mapping = None

¿e �rst set of candidate mappings is created by merging symbols in the current

encoding. We consider a random sample of γ such candidates. For practical

reasons we set a lower bound (e.g. 5) on the encoding size and skip this step if the

encoding is already too small.

if symbol_count > minimum_alphabet_size:

Sample γ pairs from all possible pairs of symbols that could be collapsed.

for pair in sample( all_collapsible_pairs( mapping ), γ ):
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Generate a new mapping in which that pair of symbols are merged

new_mapping = collapse( current_mapping, pair )

Evaluate the �gure of merit when this mapping is applied to the training

data. If it is the best so far for this iteration, save it.

merit = calc_merit( new_mapping )

if merit > best_merit:

best_merit = merit

best_mapping = new_mapping

¿e second set of candidates is created by extracting atoms which are currently

grouped with other symbols. We consider a random sample of η such candidates.

Again for practical reasons we only break out seeds which occur more than 10

times in the training data, since they will not comprise any context that can be

incorporated in the model (see VOMM estimation).

for atom in sample( expandable_atoms( mapping ), η ):

Generate a new mapping with that atom separated.

new_mapping = expand( mapping, atom )

Evaluate the �gure-of-merit when this mapping is applied to the training data.

If it is the best so far for this iteration, save it.

merit = calc_merit( new_mapping )

if merit > best_merit:

best_merit = merit

best_mapping = new_mapping

We accept the best mapping from either the collapse or expand steps as the new

mapping for the next iteration

mapping = best_mapping

When the new mapping is better that the best seen so far, we save it and reset the

counters used to trigger the two heuristics and termination.
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if best_merit > best_merit_overall:

best_merit_overall = best_merit

best_mapping_overall = best_mapping

steps_since_best = 0

steps_since_restart = 0

steps_since_forced_expansion = 0

We now check if the “restarting” heuristic should be triggered. If we have gone r

iterations without an improvement over the best mapping, we restart from that

mapping and reset the counters for the heuristics.

if steps_since_restart >= r:

steps_since_restart = 0

steps_since_forced_expansion = 0

mapping = best_mapping_overall

Next we check if the “forced expansion” heuristic should be triggered. If we

have gone w iterations without improvement over the best mapping, we force e

consecutive expansion steps. ¿ese expansions are part of a single iteration and

do not a�ect the counters (the expansion procedure is otherwise identical to that

above).

if steps_since_forced_expansion > w:

steps_since_forced_expansion = 0

for i from 0 to e:

best_merit = 0

best_mapping = None

for atom in sample( expandable_atoms( mapping ), η ):

new_mapping = expand( mapping, atom )

merit = calc_merit( new_mapping )

if merit > best_merit:

best_merit = merit
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best_mapping = new_mapping

mapping = best_mapping

Finally we increment the counters that keep track of when each heuristic is trig-

gered and when the search terminates.

steps_since_best += 1

steps_since_restart += 1

steps_since_forced_expansion += 1
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