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ABSTRACT 

The purpose of this dissertation is to investigate an efficient finite element model for fiber 

reinforced composites to use in the design of armors with complex shapes, incorporating multi-

scale modeling, high strain rate behavior, and damage by utilizing the embedded element method. 

Particularly, the focus is on modeling Dyneema®, a composite consisting of Ultra High Molecular 

Weight Polyethylene (UHWMPE) fibers set in a polymer matrix. The embedded element method 

is used to model bundles of fibers as truss elements embedded in the matrix material modeled by 

standard continuum elements. The truss elements can support both tensile and compressive loads, 

but not buckling. A large part of this effort involves modifying the embedded element method to 

make it more conducive to modeling such composites with large fiber volume fractions. To this 

end, an central difference finite element code is introduced that is programmed to correct the 

volume redundancy in the embedded element method on an algorithmic level. It is shown that this 

code is accurate when compared to a commercial code and correctly removes the volume 

redundancy. Additionally, the embedded element method is implemented in the commercial code 

Abaqus to model ballistic impact test. The method is shown to be able to capture plate back face 

deformation, delamination, indirect tension failure, and fiber snap back.  

 

The main research questions can be summarized as follows: 

1. Can a truss element mesh be easily created for curved or complex geometry? 

2. Can the embedded element method be modified to correct the volume redundancy 

and eliminate the need for material property smearing? 
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3. Does using embedded truss elements to model fiber bundles provide accurate 

predictions of material behavior on small scales (tension/compression tests) and 

larger scales (full plate impact)? 
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Chapter 1 
 

Literature Review and Background Information 

1.1 Fiber Reinforced Composites 

1.1.1 Description 

Ultra-high molecular weight polyethylene (UHMWPE) fiber is thermoplastic fiber in the 

polyolefin family that is made up of extremely long chains of polyethylene. It was first produced 

using a gel-spinning process by DSM® (Netherlands) in the late 1970s [1], [2]. Fibers are made of 

small fibrils of material twisted together to make fibers between 10-20 μm in diameter[2], [3]. The 

current producers of UMMWPE fibers are DSM® based in the Netherlands under the brand name 

Dyneema, and Honeywell based in the USA with the brand name Spectra®[1], [3].  The UHMWPE 

fiber is highly anisotropic with extremely high toughness and high impact strength due to the very 

strong carbon bond in the longitudinal direction and weak van der Waals interactions that hold the 

fiber together in the radial direction[1], [2]. This high tensile strength (3.4 GPa) combined with the 

low density (980 kg/m^3) of the fibers makes them an excellent material choice for making ropes, 

sails, tear resistant fabrics, and ballistic impact protection[3], [4].  

Sheets of UHMWPE can be made by weaving fibers together to create a woven sheet or 

by creating layers of unidirectional (UD) fibers held together by a matrix resin. These layers are 

usually about 60 μm thick[3]. The woven sheet can be left as a flexible fabric or made into a solid 

composite sheet by the addition of resin matrix material. The UD fiber layers can also be stacked 

together in alternating patterns to form different types of composite layups. Most popular are the 

0°/90° layups where layers are rotated 90° relative to the previous layer to create a quasi-orthotropic 
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composite material. Figure 1- 1 shows a schematic of the 0°/90° layup. Sheets of the fiber and 

thermoplastic matrix material are bound together by a high-pressure low temperature consolidation 

process. The heating of the composite facilitates the distribution of the resin across the fibers and 

between plies as well as removes air pockets that would otherwise become voids in the material[4]–

[6]. The matrix material, usually polyurethane, serves to hold the fibers together and give the 

material rigidity and some shear strength[4].  

 

Figure 1- 1: Schematic of 0°/90° oriented layers of fibers in a composite, from Liu et al. [7].  

 

This dissertation will focus on Dyneema® and the cross-ply [0°/90°] laminate grade HB26. 

This material uses a matrix of polyurethane (PUR) which is reinforced by a gel-spun fiber known 

as grade SK76. This composite contains about 85% fibers by volume. Specifically, we look at the 

potential of modeling Dyneema® using the embedded finite element method, discussed in further 

detail in Section 1.2. 

1.1.2 Uses in Armor   

Armor systems are designed to protect against a variety of threats including shock waves, 

fragments, and direct fire while also optimizing for low weight, cost, and volume of the material. 
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In addition to these requirements, armor needs to be designed as a specific category of armor: 

personnel or body armor, which includes helmets and vest inserts, vehicle armor, or aircraft armor. 

These different classes change what “optimal” means and there is no best armor for all 

categories[6]. Effectiveness of armor is often measured by a metric called the ballistic limit or V50 

of the armor. V50 is the projectile velocity at which the projectile will penetrate the amor for 50% 

of shots at that velocity. Because of the cost of running ballistic tests, which are always destructive, 

characterization experiments are usually limited to 20 or fewer shots[8]. However, for modern 

armors V50 may no longer be sufficient to characterize the armor[8]. Another important 

characteristic of armor is the back face deformation (BFD)[1]. This is the amount deformation from 

the original back face of the amor is created after the armor has successfully captured a projectile. 

Significant back face deformation can still cause damage (potentially lethal damage in the case of 

personnel armor) to whatever the armor is protecting[1], [9], [10]. The allowable BFD is different 

for different armor applications but requires much additional ballistic testing to quantify.  

 

Before the introduction of UHMWPE, steel and ceramics were the most common armor 

materials. Steel has high strength and high V50 but is quite heavy. Ceramics stop projectiles and 

absorb the energy by fracturing, making them poor defense against multiple sequential impacts. 

Both materials are still widely used in amor, but the strength to weight ratio of UHMWPE along 

with its ability to take multiple impacts makes it ideal, particularly for body armor where weight is 

important for the mobility of the wearer.  

Although woven UHMWPE fabrics have excellent ballistic protection performance, their 

ballistic protection greatly depends on the weave density, which limits its applications. The 

nonwoven unidirectional (UD) fabrics consisting of multi-plies with 0°/90° or 0°/90°/±45° 

orientations can overcome the deficiency and have become preferred for armor designs[1], [11]. 

The typical deformation and failure mechanisms of [0°/90°] plates of UHMWPE can be divided 
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into three phases. The initial stage of impact is usually referred to as a shear plugging stage, where 

the strain rate is very high and fibers directly under the projectile fail with little delamination 

damage to allow the projectile to create an tunnel into the material[6]. However, as shown by 

Attwood et al., O’Msta et al., and Liu et al., the actual failure mechanism is an indirect tension 

mechanism which causes the tensile failure of the fibers, not a shear failure[3], [5], [12], [13]. In 

the second stage of impact, the projectile has slowed enough that principal fibers stretch instead of 

break, causing significant strain and delamination between layers of the of the composite. In the 

final stage, a combination of bending and membrane stretching resulting in tensile ply fracture on 

the back surface can cause the plate to fail entirely allowing the projectile to completely penetrate 

the plate, or all the projectile energy is absorbed by continued fiber stretching, fiber breakage, and 

delamination, and the projectile motion is halted[3], [6].    

To optimize armor for so many different threat protections and use case scenarios, it is 

important to have a prediction tool to be used in the design process to minimize the amount of 

ballistic testing needed to produce a new armor package. Because of the complexity of the failure 

mechanisms involved, ballistic testing will always be necessary, but these tests are costly and time 

consuming. Computer modeling of UHMWPE is critical both for understanding failure 

mechanisms, effects of various design parameters, and creating high-quality cost-effective armor 

packages[6], [8], [11].  

1.1.3 Curved Plates 

While traditional armor plates are flat inserts that go into a holding vest, curved plate armor 

conforms to the shape of the wearer for increased coverage, comfort, and mobility[14], [15]. 

Curvature in composite armor is already found in helmets as well as aircraft armor[1], [16], [17]. 

There is evidence that the ballistic limit and maximum back face deformation of curved composite 
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plates are dependent on the radius of curvature[18]–[21]. This makes modeling ballistic impacts of 

curved UHMWPE plates important for future amor package development. Helmets are also an 

example of curved armor. The orientation and architecture of UHMWPE composite helmets has 

been shown to affect the material response after the peak BFD and delamination damage[1], [9], 

[10].    

Fiber reinforced helmets are also widely used but difficult to model because of fiber 

orientation from the manufacturing process[1], [16]. A common method is to layer darted pinwheel 

patterns of the composite material and then press the layers into the helmet shape, as shown in 

Figure 1- 2 from Li et al. [1]. Curved composite plates can be more simply made by creating the 

[0°/90°] layup the same way a flat plate is started, but then bend into a curved configuration during 

the time the matrix resin sets[17], [18]. The embedded element method could be adapted to work 

for either of these types of curved plates by layering the embedded trusses in the same orientation 

as the fibers in the material. The orientation of the fibers in these plates may make the usual 

orthotropic material assumptions less accurate, and the embedded element method would be an 

easy way to model the correct material orientations. Additionally, there is evidence that the ballistic 

limit and maximum back face deformation are dependent on the radius of curvature[18]–[21]. 

Curvature actually increases the ballistic limit up to a certain, optimal, radius of curvature for a 

particular plate thickness[18], [21] so having an accurate model of curved composite plates would 

be useful for finding the optimal thickness for the desired curvature. 

 

Figure 1- 2: Images of the darted pinwheel pattern and the compression press used to mold fiber 
reinforced composite helmets from Li et al. [1]. 
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1.2 History of the Embedded Element Method 

The embedded element method is a superposition technique in finite element analysis 

(FEA) where two independent element meshes are superimposed on one another. One mesh is 

embedded in the other by tying the degrees of freedom of the embedded nodes to the degrees of 

freedom of the host elements. The embedded element method has evolved both in its 

implementation and application since it originated and has been used under many different names. 

Initially, it was used as a localization method, similar to the extended finite element method, where 

the element shape functions were modified to include embedded regions that could accommodate 

highly localized strain fields[22], [23]. Fish and Markolefas adapted this into a superposition 

method that they called the s-version of the finite element method (s for “superposition”) to be used 

for capturing high stress gradients on the free edges of composite laminates[24]. Instead of 

modifying the element equations, a patch of higher order elements was overlaid on the finite 

element mesh in the locations where high strain gradients would occur. A modified numerical 

quadrature scheme is used to calculate the resulting stiffness of the combined elements[25].   

 

Cox et al. [26] developed the Binary Method for modeling woven fiber reinforced 

composites. Instead of having a homogenized material with refined strain regions, two components 

of the composite were modeled by different element types. 1D line elements represented the axial 

stiffness of the fibers while the transverse properties of the composite were represented in an 

‘effective medium’ meshed with 3D continuum elements. The two meshes were coupled together 

by their displacement degrees of freedom[26], [27]. Utomo used a similar method of truss elements 

in an effective medium to model a unidirectional reinforced composite in a model for ballistic 

impact[4]. Embedding truss or spring elements into a medium of continuum elements has also been 

a popular method for modeling reinforced concrete[28]–[31].  
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The M-cube method, proposed by Zako et al. applied the superposition technique to woven 

composites. The domain of interest was discretized into micro, meso, and macro scale models and 

the total stiffness matrix was created from the superposition of the three models[32]. As an attempt 

to further simplify previous methods by eliminating iterative procedures, Jiang et al. created, the 

domain superposition technique for woven composites[33]. Fiber tows and matrix material were 

meshed separately with continuum elements and superimposed with displacement coupling 

equations. It was later modified to be used for braided composites[34]. Iarve et al.’s Independent 

Mesh Method is similar to the domain superposition technique, but rather than directly couple the 

two full meshes, parts of the matrix mesh covered by the tow mesh were discarded. Connections 

between the tow and remaining matrix elements were then enforced by a penalty function[35]. 

While one of the benefits of embedded element method is that the host mesh does not need to 

conform around the embedded sections, some authors suggest meshing techniques that do this in 

order to ensure a smoother transition in the strain mapping throughout the model[36], [37].  

 

Embedded element techniques have been used for modeling a range of materials. 

Belytschko and Fish’s s-method was developed for modeling shear bands in metals. Others have 

used the method for reinforced concrete[28]–[31], fiber reinforced composites[26], [27], [35], and, 

more recently, bio-material such as white matter in the brain[38]–[40]. Fiber reinforced composites 

made from ultra-high molecular weight polyethylene have been increasingly used in the design of 

ballistic armor due to their low density and high strength[11], and there is a need for development 

of a reliable model to both assist with armor design and understand penetration mechanisms. Most 

embedded element models of composites have been for woven composites, often these are 

microscale models with the goal of understanding how the weave pattern carries stress[33]–[36], 
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[41], [42]. It has been shown that unidirectional and cross-ply composites perform better in ballistic 

armor applications than woven composites[43]–[45].  

 

Most models for unidirectional and cross-ply composites have been based on a 

homogenization approach, where either layers of the composite or the entire composite is modeled 

as a homogenous continuum[4], [6], [7], [44], [46]–[55]. These models have worked well for 

modeling quasi-static or elastic events. However, in order to model something like a ballistic 

impact, models must include damage mechanics. The homogenization model makes defining the 

different types of damage (fiber failure, delamination, matrix cracking) and interpreting the damage 

modes predicted by the model difficult. Using the embedded element technique, the definition of 

these failure mechanisms could be easier since each material is defined independently, rather than 

averaged into a continuum model[56]. Additionally, if fibers could be modeled as an independent 

mesh of truss elements, it would simplify mesh generation while maintaining a distinction between 

the fiber and matrix material, which is useful for meso or macro scale modeling[25], [41].  

 

However, in the implementation of the embedded element method, the volume of the host 

elements are not modified to “make room” for the embedded elements. The volumes of the two 

meshes occupy the same space. In cases where this is left uncorrected, it causes internal energy and 

kinetic energy to be miscalculated by double counting volume of the embedded mesh[40], [41]. 

Fiber reinforced composites typically have a high fiber volume ratio, so the redundant volume adds 

unacceptable amounts of additional stiffness and mass. There have been several different methods 

introduced to account for the redundant volume[23], [32]–[35], [41]. The most common way is, 

rather than using the matrix material’s true properties, to use an effective medium. This is found 

from taking measured properties (stiffness, density) of the total composite and subtracting the 

stiffness of the embedded elements[33], [34], [36], [39], [41]. Some authors have used modified 
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integration schemes, averaging or ignoring overlapping integration points[23], [35]. Vanalli 

modified the host elements’ energy to include the stiffness of randomly distributed fibers[28]. 

Radtke used a method similar to XFEM where an enrichment function was added to the host 

elements to represent fibers. This method could also model fiber slip[57]. However, these methods 

were all created for elastic problems, and none for time dependent dynamic problems. In a paper 

on modeling brain matter, Garimella proposed a modification to the explicit finite element method 

to internally correct the volume redundancy that examined the stress response but did not analyze 

energy and was limited in application.  

1.3 Finite Element Modeling of Fiber Reinforced Composites 

Modeling fiber reinforced composites is difficult due to the complexity of the materials 

involved and the many failure modes and our lack of understanding about exactly how each mode 

initiates and which are important to include in a particular model[48]. Models are built on one of 

three scales: micro-scale, where the individual fiber and matrix are explicitly modeled and meshed 

separately, meso-scale, where the properties of individual plies are modeled and stacked together 

and macro-scale, were the composite is modeled as a continuum and the properties are 

homogenized into an orthotropic material[48], [58]. These three size scales are illustrated in Figure 
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Figure 1- 3: The different size scales of modeling fiber reinforced composites. 

Micro-scale modeling is useful for investigating the physics of the interactions between the 

fiber and matrix materials but is computationally expensive for modeling a large system. In macro-

scale methods, the behavior of the entire [0°/90°] composite is approximated as an orthotropic 

material[51]–[55], [59], [60]. Using this method, it’s easy to apply the material definition to a large 

or complicated mesh and the computation time is reduced by assuming the composite is a single 

continuous material rather than two types of combined material. These aspects make the total 

homogenization method good for large scale models, like for ballistic plate impact, but as you go 

to a smaller length scale the assumption that the material behaves as a continuum will break down 

and the fiber and matrix materials need to be meshed separately for more accuracy. In this total 

homogenization method, damage and failure are usually defined using classic composite failure 

measures such as Hashin damage or a custom combination of maximum directional stress[11], [53], 

[54]. This type of modeling makes delamination, an important damage mechanism, difficult to 

identify[4], [37], [46]. Meso-scale modeling addresses this by modeling distinct layers of material. 

Layers are chosen either to be only a 0° material layer that is rotated to get the 90°, or homogenized 

as a full [0°/90°] ply similar to the total homogenization method[13], [44], [46], [47], [49], [50]. 

These layers are stacked and held together either by cohesive elements or a cohesive contact layer 

that will be removed once the delamination damage criteria is met, allowing the layers to peel apart 

as they do in the real composite[11].  
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Multi-scale modeling of composites attempts to combine aspects of all three size scales. A 

homogenized macro-scale mesh is used as the main mesh in a large-scale analysis[61]. The 

homogenized material properties are used to calculate a first estimate of the stress in specific 

locations. The material loads are then mapped to a micro-scale unit cell model where the interaction 

between the fibers and the matrix are considered, and their specific stresses, internal forces, and 

failure initiation criteria are calculated. These final values are then mapped back to the main 

homogenized mesh to continue the analysis. This can be a good method for combining the strengths 

of different length scales of modeling, but also can be difficult to program and computationally 

expensive.  

1.4 Thesis Statement 

We hypothesize that the embedded element method of FEA could be used to create meso-

scale and macro-scale models of fiber reinforced composites, particularly for ballistic applications. 

By using a continuum material to represent the composite’s matrix and embedded line elements to 

represent bundles of fibers, the orthotropic nature of the material would be naturally captured. It 

would also have the ability to model curved plates. This element mesh is easy to create yet retains 

distinction between the fiber and matrix components for meso-scale analysis. Since fiber reinforced 

composites have a large fiber volume fraction, it is important to take into account the effects of the 

volume redundancy in the embedded element method in order to get accurate measures of the 

amount of energy absorbed and dispersed by the material. 

  



12 

 

Chapter 2 
 

MATLAB Script for Embedded Fiber Creation 

Using the embedded element method to model fiber bundles requires defining a truss (or 

beam) element mesh that precisely fits inside of the matrix material elements. This process would 

be tedious to do by hand if there are many truss elements to create, but the process is well suited 

for automation. Initial work on such an automation process has focused on the ability to take an 

existing input file from the existing finite element software Abaqus (usually generated from 

Abaqus’s well established user interface called Abaqus CAE) and add layers of truss elements to 

represent fiber bundles in a 0/90° orientation. This results in a new input file that can be 

immediately run by Abaqus’s solver to obtain results. Abaqus has an established input file format 

which lends itself towards automation, but the principles used to read the file and determine the 

locations of the truss elements can later be used to automate other types of finite element solver 

input files.  

2.1 Flat Plate 

Initial work simplified the problem further, assuming that the matrix material part would 

have a constant cross-sectional area and have a specific orientation with respect to Abaqus’s 

underlying Cartesian coordinate system. The Abaqus input file must also specify a node set that 

contains all the nodes on the external boundary of the part. With these limitations, a MATLAB 

script was written that calculated the endpoints of two node truss elements based on the shape of 

the part’s cross section. These truss elements created a single layer along the bottom surface of the 

part.  The layers are then rotated 90° and copied along the entire part to create the 0/90° layers. An 

example of this is shown in Figure 2- 1 based on a simple cylinder-shaped part that was created in 
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Abaqus. This method worked well for simple shapes but would not work if the part was not 

symmetric. While this was a good start, the script needed to be more robust.   

 

Figure 2- 1: a) Fibers defined in MATLAB based on the cylinder cross section. b) Cross 
section of the cylinder model imported into Abaqus from the MATLAB output. c) Whole 

cylinder part as imported into Abaqus, with truss elements in a 0/90° orientation. 
 

A new MATLAB script was written to handle more complex shapes. Instead of looking at 

only one cross section, this code works by reading in the nodes and element connectivity of the 

external boundary of a part, and recreating the surface in  MATLAB (Figure 2- 2a). A grid of points 

in and around the part are defined by the script. A function then determines which points in this set 

are located inside of the surface (Figure 2- 2b). From these points, the script determines which ones 

are closest to the edges of the part, these are designated as truss endpoints (Figure 2- 2c). Finally, 

the trusses are defined by drawing lines between the endpoints, and these lines are subdivided into 

truss elements depending on the user defined mesh density (Figure 2- 2c). This method works for 

complex shapes, such as the tensile test specimen and the quarter circular plate in Figure 2- 3. The 

contact surfaces and embedded element constraint needed to run a simulation in Abaqus are 
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automatically defined so the new input file can be submitted to the Abaqus solver without any 

additional work by the user.  

 

Figure 2- 2: Progression of creating embedded truss elements in a cylinder-shaped part. 

 

 

Figure 2- 3: Examples of truss element meshes created by the MATLAB script. 

The size of the truss elements are determined by assigning a number of fibers to be 

represented by a single truss element, similar to the process in Utomo et al [4]. The cross-

sectional area is then calculated by Equation 2-1, where 𝑛𝑛 is the number of fibers assigned to a 

truss and 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the fiber diameter, assuming a fiber diameter of 17 microns (which is common 

for Dyneema fibers). A larger number of fibers per truss (FpT) yields less, but larger, truss 

elements for a courser mesh, while a smaller number creates a finer mesh. The MATLAB script 

then stacks truss elements in 0°/90° layers based on the outline of the shape. Trusses are not 
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placed more than ½ a truss element diameter away from the edge of the part to avoid trusses that 

fall outside of the part.  

 𝐴𝐴𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑛𝑛 π
4
𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2   Eq. 2-1 

2.2 Curved Plates 

Part of the draw of using the embedded element method to model composites is its ability 

to model more complex fiber orientations. A particular application of this is modeling curved 

plates that could be used for human conformal armor or vehicle armor. To model the composite 

correctly, the truss elements representing the fibers need to conform to the curved shape of the 

plate. Previously, a MATLAB script was developed to add [0°/90°] fibers to any shape. A simple 

way to reuse the current script for the curved plate geometry is to convert the curved plate 

geometry to a flat shape, use the old script to add [0°/90°] truss elements, and then convert this 

flat shape, along with the truss elements, back to the curved geometry. Error! Reference source 

not found. shows a graphic of this process.  

  

Figure 2- 4:  Illustration of the Curved – Flat – Curved mapping process to include truss element 
in a curved plate. 
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The curved plate is mapped to a flat shape by creating a parallelogram using the arc 

length of the plate as the length and the plate thickness as the height. Then the distances to each 

of the 8 corners of the curved plate are used to map the rest of the points on the curved plate to 

the flat plate. Truss elements are added to the flattened shape based on the truss diameter and 

truss mesh density specified by the user. The node locations of these truss elements are mapped 

back to the curved shape. The reverse mapping for the 𝑥𝑥 and 𝑦𝑦 directions (defined in Figure 2- 

4) is done by measuring the distance to the 8 corner nodes of the flat shape and transferring that 

measurement to the corners of the curved shape. The curvature in the z direction is added by 

interpolating between the two radii of the top and bottom of the curved plate. These radii, along 

with the concentric center of both arcs can be calculated based on the curvature of the plate. 

Then, the z coordinate of any node in the flattened space can be used to interpolate between the 

two radii and find the correct z coordinate for the node in the curved space. This process is 

illustrated in Figure 2- 5.    

 

Figure 2- 5: An illustration of the process to interpolate between the two radii curved plate arcs 
and the calculation of z coordinates in the curved space from the flattened space. 

The completed MATLAB script reads an Abaqus input file of the desired curve geometry 

including boundary and loading conditions that will be used in the simulation, adds truss elements 
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in a [0/90°] configuration, and writes a new Abaqus input file that can be run with no further edits 

by the user. Figure 2- 6 shows an example of a curved plate made in Abaqus and the truss 

elements added by MATLAB as they are rendered in Abaqus’s output database reader. The 

MATLAB script has several limitations on the types of curved shapes it can manage. The curved 

plate must be made from an extruded curved shape, which must be the area between two 

concentric circles (such as the shape shown on the left in Figure 2- 5). Additionally, the plate 

needs to be oriented so that the global z direction defined by Abaqus is perpendicular to the 

curvature direction and the x and y directions are along the other major axes of the plate. The 

method used in this script could be expanded to more types of curved plates but would require 

adjustments. However, the shape being used in this model will be sufficient for demonstrating the 

embedded element method in a curved plate.   

 

Figure 2- 6: A curve plate created and meshed in Abaqus along with a rendering of the embedded 
truss elements added by the MATLAB script. 

2.3 Limitations 

The code still has a few drawbacks. The original part still must be oriented such that one 

surface is on the plane 𝑧𝑧 = 0 and the user must define a node set of the outside surface while 

creating the Abaqus input file. Using this point method for determining the truss endpoints 

(illustrated in Figure 2- 2a) means that the truss endpoints will never quite reach the part boundary. 

The number of points in the point cloud can be increased by the user, but using a larger number of 

points slows the code down significantly. With a modest number of points, the distance between 
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the edges of the part and the start of the fibers is small and likely has negligible effects on any 

simulation results. Additionally, the code can only handle parts that are meshed with hexahedral 

elements. Adding the ability to recognize multiple element types should be straightforward but has 

not been done yet. For the embedded mesh to be used in the custom embedded element 

implementation discussed later, the truss elements can span no more than two host elements, and 

the user must make sure they set the truss element discretization length accordingly. Some finite 

element codes will remesh embedded elements so that embedded elements do not cross host 

element boundaries, but creating an efficient software further divide the truss mesh was outside the 

scope of this work. In addition to these limitations, for the curved plate version the plate can only 

have one direction of curvature (not a spherical section) and must be made of two concentric arcs 

for the mapping process to work. The curved plate also must have a constant thickness and the 

edges of the plate need to be perpendicular to the two curves.  
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Chapter 3 
 

Embedded Element Finite Element Code 

For this project, we want to modify the implementation of the embedded element method 

to eliminate the current volume redundancy. Since we are modifying the implementation itself, we 

need access to the base code of an explicit dynamic finite element program (since this project’s 

target application is high-rate impact events). A MATLAB-based finite element code called 

FLagSHyP (Finite element Large Strain Hyperelasto-plastic Program) from the textbook 

Nonlinear Solid Mechanics for Finite Element Analysis[62] was chosen to test volume redundancy 

correction in the embedded element method. A MATLAB based code, while slower than other 

programming languages, is easy to debug and this code is available free online. At the time of 

starting the project, FLagSHyP only had a Newton-Raphson solution method for static (zero 

acceleration) problems, so a time integration algorithm needed to be added. We chose to do this in 

the form of a central difference time integration. This extra step was helpful for better understanding 

how the solution method works. For example, it was discovered that artificial bulk viscosity 

damping needed to be added to FLagSHyP to help reduce “ringing” in the system. The 

documentation for the finite element program Abaqus contains a description for how damping is 

added as an artificial pressure term[63]. Figure 3- 1 shows the 𝑦𝑦𝑦𝑦 stress of a cylinder model where 

a tension force is applied in the z direction. Without the artificial damping, the Poisson’s effects 

cause stress waves to reverberate through the model.  
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Figure 3- 1: Effects of damping showed on a four element cylinder in tension. a) With no 
damping, the model is very unstable. b) Damping added to the cylinder model, but the damping 

coefficient is too high, and the system is still unstable. c) With the damping applied, the wild 
oscillations in the stress are eliminated. 

Throughout the process of programming the dynamic explicit solver and adding the basic 

embedded element method, the commercial code Abaqus has been used as a standard to verify 

FlagSHyP’s results. Some verification could be done using analytical calculations, but the material 

models being used are nonlinear and make analytical solutions complicated.  

3.1 Addition of Neo-Hookean Truss Elements 

The ability to run a model with multiple element types needed to be added to FLagSHyP 

since the method of embedded elements we want to do consists of truss elements embedded in a 

host. We also want to be able to test nonlinear materials, so a method for calculating the one-

dimensional truss stress using the generally 3D Neo-Hooke material model was developed. The 

derivation of this model is included in Appendix A.  The final model can recreate the results from 
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Abaqus as shown in Figure 3- 2 with the exception of incompressible materials, which can be 

avoided for now.  

 
Figure 3- 2: Stress results from Abaqus and FLagSHyP for a neo-Hookean truss element in 

tension using some contrived material types. Several different materials were tested to show that 
the final version of FLagSHyP works for different properties. 

3.2 Addition of Embedded Element Method 

Once the explicit dynamic finite element code was working, the ability to use embedded 

elements was added to FLagSHyP. For the embedded element method to work, the embedded 

elements need to move with the displacement of the host elements, and the host element motion 

needs to be influenced by the presence of the embedded elements. In normal finite element 

practices, both interactions between elements are achieved by elements sharing nodes with 

neighboring elements. Forces applied to nodes by the connecting elements determine the motion 

of the nodes, and the motion of the nodes determines the elements’ deformations and therefore the 

amount of force they apply to the nodes. In the embedded element method, host and embedded 

elements do not share any nodes, the embedded element nodes are located somewhere inside of the 

host elements. There needs to be a different mechanism for them to communicate with each other.  
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In a general framework, the governing equations of the embedded element method are 

found by finding the stationary point of the energies of both meshes. Let 𝐷𝐷𝐹𝐹  be the fiber domain 

located in the host body 𝑀𝑀 as illustrated in Figure 3- 3. The displacement of a point 𝑋𝑋 the fiber is 

𝑢𝑢𝐹𝐹�𝑋𝑋 , 𝑡𝑡� and the displacement of the background host body is𝑢𝑢𝑀𝑀�𝑋𝑋 , 𝑡𝑡� . The total energy of both 

meshes includes the sum of the internal and kinetic energies of both meshes minus the external 

work done on each mesh.  

 

Figure 3- 3: Illustration of a fiber structure embedded in matrix material.  

 𝑊𝑊𝑀𝑀�𝑢𝑢𝑀𝑀� = 𝑊𝑊𝑓𝑓𝑖𝑖𝑡𝑡�𝑢𝑢𝑀𝑀� +𝑊𝑊𝑘𝑘𝑓𝑓𝑖𝑖 �𝑢𝑢𝑀𝑀� −𝑊𝑊𝑓𝑓𝑒𝑒𝑡𝑡�𝑢𝑢𝑀𝑀�  Eq. 3-1 

 𝑊𝑊𝐹𝐹�𝑢𝑢𝐹𝐹� = 𝑊𝑊𝑓𝑓𝑖𝑖𝑡𝑡�𝑢𝑢𝐹𝐹� + 𝑊𝑊𝑘𝑘𝑓𝑓𝑖𝑖�𝑢𝑢𝐹𝐹� −𝑊𝑊𝑓𝑓𝑒𝑒𝑡𝑡�𝑢𝑢𝐹𝐹�  Eq. 3-2 

 𝑊𝑊 = 𝑊𝑊𝑀𝑀�𝑢𝑢𝑀𝑀� +𝑊𝑊𝐹𝐹�𝑢𝑢𝐹𝐹�  Eq. 3-3 

This is the total energy for two separate meshes. To add the embedded constraint, we need 

the embedded (fiber) mesh to follow the displacements of the host mesh, that is, the displacement 

at any point in the embedded mesh needs to be equal to the displacement at the same location in 

the background matrix mesh.  

 𝑢𝑢𝐹𝐹(𝑋𝑋, 𝑡𝑡) − 𝑢𝑢𝑀𝑀(𝑋𝑋, 𝑡𝑡) = 0, 𝑋𝑋 ∈ 𝐷𝐷𝐹𝐹  Eq. 3-4 

 This constraint can be enforced by using a Lagrange multiplier to create an augmented 

work equation for the system.  

 𝑊𝑊𝑎𝑎𝑡𝑡𝑎𝑎 = 𝑊𝑊𝑀𝑀�𝑢𝑢𝑀𝑀� + 𝑊𝑊𝐹𝐹�𝑢𝑢𝐹𝐹� + ∫ 𝜆𝜆(𝑢𝑢𝐹𝐹�𝑋𝑋, 𝑡𝑡� − 𝑢𝑢𝑀𝑀�𝑋𝑋 , 𝑡𝑡�) 𝑑𝑑𝐷𝐷𝐹𝐹𝐷𝐷𝐹𝐹
 Eq. 3-5 
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The variation in 𝑊𝑊𝑎𝑎𝑡𝑡𝑎𝑎  (that is 𝛿𝛿𝑊𝑊𝑎𝑎𝑡𝑡𝑎𝑎) can be found by introducing variations relative to 𝑢𝑢𝑀𝑀 , 𝑢𝑢𝐹𝐹 , 

and 𝜆𝜆. Setting 𝛿𝛿𝑊𝑊𝑎𝑎𝑡𝑡𝑎𝑎  equal to zero and substituting in the finite element discretization leads to the 

finite element solution. However, to evaluate the integral in Equation 3-5 𝑢𝑢𝑀𝑀�𝑋𝑋, 𝑡𝑡� must be 

evaluated in 𝐷𝐷𝑓𝑓 , so there needs to be a map between the domain of the matrix, 𝑀𝑀, and the domain 

of the fibers, 𝐷𝐷𝑓𝑓 . If we limit the application to isoparametric elements for the matrix, this map can 

be achieved by using the matrix element shape functions, as will be described in the next section.  

3.2.1 Tying the Displacement Degrees of Freedom 

If slip between the host and embedded elements is not allowed, then the displacement 

degrees of freedom of the embedded elements can be tied to the host element motion. To achieve 

this, there are three steps that need to be programed. First, the nodes of the embedded elements 

must be identified from the user input and differentiated from the nodes of the host elements. 

Second, the location of the embedded nodes inside of the host elements needs to be found. 

Specifically, we need to know which host element contains each embedded node so finally, the 

displacements of the embedded nodes can be set equal to the displacement of the host elements at 

the location of the embedded node. 

 

In the finite element method, when using Lagrangian elements, the displacements of an 

element are only calculated at the nodal coordinates. Displacements anywhere else in the element 

are interpolated from these values. Interpolation is generally done via the element shape functions, 

usually denoted in matrix form 𝑵𝑵. Additionally, for isoparametric elements, these shape functions 

are used to map the element to its “natural” space. In the case of a linear hexahedral element being 

used here this is a perfect cube centered at the origin of its coordinate system. All calculations on 
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the element (numerical integration, internal force, deformation) are done in this natural space. The 

shape functions only take coordinates in the natural space as arguments (𝑵𝑵(𝜉𝜉)). For the embedded 

element method, we need to set the displacement of the embedded nodes equal to the displacement 

inside of the host element, which means using the shape functions to interpolate between host nodes 

and get the displacement of the host element at the location of the embedded node. This is 

represented by the Equation 3-6.  

 𝑢𝑢𝑓𝑓  = 𝑵𝑵𝑎𝑎
𝐻𝐻(𝜉𝜉𝑓𝑓 )𝑢𝑢𝐻𝐻

𝑎𝑎  Eq. 3-6 

where 𝑢𝑢𝑓𝑓  is the displacement of the embedded node, 𝜉𝜉𝑓𝑓  is the natural coordinates of the embedded 

node, and 𝑢𝑢𝐻𝐻𝑎𝑎 are the known displacements of the host element nodes. Figure 3- 4 shows a two-

dimensional equivalent of the scenario: the host element with nodal coordinates 𝑥𝑥𝐻𝐻𝑎𝑎 and 

embedded node (located at 𝑥𝑥𝑓𝑓) are shown on the right as they are in the global finite element 

model. The natural space of the element, including the nodes of the embedded element are shown 

on the left. 𝜉𝜉𝑓𝑓  are the coordinates of the embedded node in the natural space of the host element. 

These natural coordinates are necessary for interpolating the displacement of the host element 

nodes to find what the displacement of the embedded nodes should be. The shape functions 

(along with the degrees of freedom) only work to map the natural space to the model space, the 

inverse function cannot be found explicitly. But since 𝑥𝑥𝑓𝑓 is known and we want 𝜉𝜉𝑓𝑓 , we need the 

inverse. We can get an approximate value of 𝜉𝜉𝑓𝑓  using a Newton-Raphson root finding method as 

outlined below and the right side of Figure 3- 4. 

 𝑥𝑥𝑓𝑓 and 𝜉𝜉𝑓𝑓  are related by 

  𝑥𝑥𝑓𝑓 = 𝑵𝑵𝑎𝑎
𝐻𝐻(𝜉𝜉𝑓𝑓)𝑥𝑥𝐻𝐻

𝑎𝑎  Eq. 3-7 

Where 𝑵𝑵(𝜉𝜉), 𝑥𝑥𝑓𝑓, 𝑥𝑥𝐻𝐻𝑎𝑎 are known. Subtracting  𝑥𝑥𝑓𝑓 from both sides 

 𝑓𝑓 �𝜉𝜉� = 𝑵𝑵𝑎𝑎
𝐻𝐻

(𝜉𝜉𝑓𝑓)𝑥𝑥𝐻𝐻
𝑎𝑎 − 𝑥𝑥𝑓𝑓 = 0  Eq. 3-8 
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Newton-Raphson can be used to find an approximate value of 𝜉𝜉𝑓𝑓 .  

 

 
Figure 3- 4: Relation between host element, embedded node, and natural space, and the 

algorithm for Newton-Rapson method used to approximate an inverse relation. 

 
With this approximate value of 𝜉𝜉𝑓𝑓  the displacement of the host element at the location of 

the embedded node can be assigned to the embedded node.  

3.2.2 Interaction of Forces 

The embedded element method is essentially solving two interdependent finite element 

problems. It is more efficient than solving two full problems because only the displacements of the 

host elements need to be calculated. The embedded node displacements are simply interpolated 

from the host displacements. The embedded elements contribute to the stiffness of the host elements 

and the rest of the solution method focuses on how the combined forces of the embedded and host 

element stiffness influence the motion of the host nodes. The explicit finite element method does 

not calculate stiffness directly, rather, the element stresses are calculated based on the deformation, 

then those stresses are used to find the internal forces on the element nodes. Figure 3- 5 shows the 

general algorithm for the implementation of explicit dynamics[64]. In the implementation of this 

algorithm, FLagSHyP uses a lumped mass matrix to simplify the inversion of the matrix (𝑴𝑴) for 

the acceleration calculations.  
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Figure 3- 5: Explicit time integration flowchart from Nonlinear Finite Elements for Continua and 
Structures by Belytschko et al. [64]. 

Garimella et al. [40] presents a method on how to add the interaction of the embedded 

element forces with their respective host elements. The subroutine shown in Figure 3- 6 is meant 

to replace the get force subroutine in Figure 3- 5. 

 
Figure 3- 6: Subroutine for internal force calculation from Garimella et al. [40]. 
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The internal force vector is assembled in point 4.e.iii.E. This equation is shown in Figure 

3- 7, with each term labeled with the type of force they represent. The volume redundancy 

correction will be discussed later. An interesting feature of this equation is that, while the second 

term is essentially a numeric integral over the embedded element, the shape function derivatives 

of the host elements are used. Since the embedded elements displacements are tied to the host 

element in the first step, the displacement of the host element and embedded element is 

represented by the host element shape functions, provided that the coordinates of the embedded 

element in the host natural domain are used.  

 
Figure 3- 7: Calculation of the host element internal force vector with the influence of embedded 

elements and volume redundancy correction. 

  
This method was implemented for the case of a smaller hexahedral element embedded in 

a larger hexahedral element and worked well. But since this is just adding embedded element forces 

to the host element internal forces, it seemed unnecessary to use Gauss Quadrature and integration 

over a one-dimensional truss element. Truss element volume can be integrated exactly so there is 

no need for Gauss Quadrature. Therefore, it would be easier to calculate the internal forces of the 

embedded elements exactly as they would be in a normal finite element program, then distribute 

the internal forces that are concentrated at the embedded nodes to the host element. The distribution 

is done using the host element shape functions which serve as weighting functions so a host node 

will get more force if it is closer to an embedded node and less force if it is further away. A new 

version of getForce_effective that uses this method is included in Appendix B.  
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3.3 Volume Redundancy Correction 

The classic embedded element superimposes an embedded mesh onto a host mesh without 

changing the volume of the host mesh to account for the space that is now occupied by the 

embedded mesh. Figure 3- 8 shows an illustration of this. The finite element method is based on 

energy methods in which the internal energy of each element is calculated by and approximation 

of the integral of the strain energy over the element volume. Similarly, mesh mass is calculated as 

a volume integral of the material density. Having extra volume leads to increased mass and strain 

energy. This causes changes in the internal energy and the kinetic energy of the system and 

therefore influences the system solution[40].   

 
Figure 3- 8: a) How volume redundancy is created in the embedded element method. b) How the 

system should be correctly modeled. 

3.3.1 Numerics of Additonal Mass, Internal Force, Kinetic Energy 

The energy issues created by double counting volume can be shown by how the model’s 

energy terms are calculated. For embedded element models, the total energy terms are the sums of 

the energies of the host element and of the embedded element. Here we will begin to refer to the 

host elements as the matrix elements and the embedded elements as fiber elements. This is the 

terminology that would be used for modeling a fiber-reinforced composite. The internal energy, 

𝑊𝑊𝑓𝑓𝑖𝑖𝑡𝑡 , (Eq. 3-9) is found by integrating the strain energy over the volumes of the two meshes The 
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kinetic energy, 𝑊𝑊𝑘𝑘𝑓𝑓𝑖𝑖(Eq. 3-10) is an integral of momentum times velocity over the volume, and the 

external work, 𝑊𝑊𝑓𝑓𝑒𝑒𝑡𝑡, (Eq. 3-11) is the summation of the body forces on the two meshes plus any 

applied traction forces, multipled by their respective displacements.  

     Eq. 3-9 
 

    Eq. 3-10 
 

   Eq. 3-11 
 

In these equations, 𝑢𝑢𝑓𝑓  is the displacement field of the system and 𝜎𝜎𝑓𝑓𝑖𝑖 is the Cauchy stress  

tensor, ρ is the material density, 𝑏𝑏𝑓𝑓  is a vector representing body forces (such as gravity), and 𝑡𝑡𝑓𝑓  is 

the vector of the surface traction (applied force per unit area) applied as a boundary condition on 

the surface 𝑆𝑆2 (assuming 𝑏𝑏𝑓𝑓  and 𝑡𝑡𝑓𝑓  are constant and the initial displacements are zero). The subsript 

𝑀𝑀 refers to material properties of the matrix and volume integrals over the matrix volume. 

Likewise, 𝐹𝐹 refers to material properties of the fiber elements and volume integrals over the fiber 

volume.  

To avoid volume redundancy, the integral over the matrix volume should not include the 

volume occupied by the fibers. However, in finite element programs these integrals are caluclated 

via Gauss Quadrature, so the simplest way to account for the volume occupied by the embedded 

fiber is to subract the volume integral of the matrix energy density over the fiber volume.  
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   Eq. 3-12 

   Eq. 3-13 

   Eq. 3-14 
 

It can be seen that if the fibers and matrix have the same material properties, both integrals 

over the fiber volume cancel and what remains are the equations for only the matrix energy, which 

would be the same situation as having the matrix elements and no embedded elements.  

3.3.2 Proof of Volume Redundancy  

Volume redundancy is not corrected in most commercial codes. This is aknowleged[65], 

leaving it up to the analyist to account for the redundant mass if it would cause any significant 

effect. Since the embedded element method is mostly used in quasi-static models, the redundancy 

can be addresssed by reducing the density and stiffness of the host or embedded material[4], [7], 

[31], [33], [34]. For applications in ballsitic fiber reinforced composites, this is unacceptable. Since 

the fiber volume ratio is large, it will alter the wave speed of the matrix material and any internal 

energy calculations that may be used in material damage models.  

The negative effects of volume redundancy in embedded elements can be shown by a 

simple test. A model of unit cube with embedded truss elements ought to behave as if it was a single 

homogenous cube if the cube and the embedded truss elements have the same material properties 

(ie, the embedded element should have no effect on the model). Comparing this model with an 

identical cube with no embedded truss, any differences will be due to the volume redundancy. Four 
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versions of a unit cube model were created with 0, 2, 10 or 25 embedded truss elements to represent 

bundles of fibers.  All of the truss elements had the same cross sectional area so increasing the 

number of trusses would increse their volume fraction. 25 truss elements result in a fiber volume 

ratio of 0.5. Examples of the models are shown in Figure 3- 9a.  

 

Figure 3- 9: a) Unit cube models containing 0, 2, and 25 embedded elements. b) Applied 
displacement boundary conditions for the embedded element models. 

The simulations were run using the dynamic explicit solver in Abaqus with the boundary 

conditions shown in Figure 3- 9b. Abaqus was chosen as a representive commercial code because 

it is widly used industry and it is the most familiar commercial code to the authors. The boundary 

conditions an applied displacment of 0.05 𝑚𝑚 was applied to the four nodes of the positive 𝑦𝑦 face, 

while the nodes of the negitive 𝑥𝑥 𝑦𝑦 and 𝑧𝑧 faces were pinned in those directions. The results of these 

simulations are discussed in Section 3.5.  

 

3.3.3 Method of Volume Redundancy Correction  

Garimella et al. [40] suggested a way to correct the volume redundancy in the algorithm 

for dynamic explicit finite element analysis. Adding this correction to the code itself rather than 

modifying the material properties (via a user subroutine or otherwise) is attractive because then the 
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true fiber and matrix properties can directly be entered in the model without the in-between step of 

creating an effective matrix model (which requires knowledge of the overall composite response).  

The illustrations in Figure 3- 10 demonstrate how the volume correction works. During 

mass calculation, the mass of the host that is occupied by the embedded (fiber) element is subtracted 

from the total host element mass. To correct for the energy redundancy, the strain energy of the 

host element is integrated over the embedded element volume and subtracted from the total host 

element energy. In practice, this is done by calculating the equivalent internal forces of these 

integrals and distributing them to the host element nodes as discussed in the section on Interaction 

of Forces.  

 

Figure 3- 10: Algorithm suggested by Garimella et al. [40] to address mass and force 
redundancy. 

3.4 Verification of FLagSHyP Modified 

To assess the accuracy of this correction, it was incorporated into a dynamic explicit code 

implemented in MATLAB. This code is a modified version of Bonet and Wood’s FLagSHyP code 

that was written to go along with their textbook. When this work started only the static implicit 
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version of FLagSHyP was available, so the structure and functions used by FLagSHyP were built 

upon to create a dynamic explicit solver that could be modified to include the volume redundancy 

correction. The algorithm suggested by Garimella was implemented so that the user can choose to 

use the correction or run the standard dynamic explicit algorithm without the new volume 

correction code. The resulting FE code will be referred to as FLagSHyP Modified (FM). When the 

volume correction feature is in use, the code will be referred to as FM Corrected.  

 

 To validate this code, a single continuum element in tension was compared with an 

identical element but with an embedded truss. The truss had the same material properties as the 

host element, and so should have no effect on the total energy or stiffness. This test case was also 

run in Abaqus. Since the truss element and the host element have the same material properties, they 

should produce the same response. As shown previously, this is not the case for the Abaqus models. 

However, the results in Figure 3- 11 show that with the volume redundancy correction algorithm 

turned on, our code was able to reproduce the results for a single solid element when the truss and 

the host were the same materials.  
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Figure 3- 11: Raw energy data comparison from FLagSHyP Modified verification tests. A solid 
element is compared with an identical model with the addition of an embedded element. The 
embedded element was assigned the same material properties as the host element so that the 

system equivalent behavior should be the same as the solid element model. The volume 
redundancy in the embedded element method causes increases in internal energy, stiffness, and 
kinetic energy. The correction method shown can remove this extra energy and returns the same 

results as a solid cube. 

3.5 Proof of Volume Redundancy Impact 

In the initial Abaqus tests, the embedded elements and the host elements are the same 

material, according to the rule of mixtures there should be no difference between the stiffness and 

behavior of the models even as more embedded elements are added. Figure 3- 12 shows a plot of 

the strain energy of each model as a function of displacement.  For a given displacement, adding 
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more embedded elements increases the amount of stored internal energy. Figure 3- 13 shows a few 

other types of energy plots. The energy balance shows that in all cases energy is conserved. The 

difference between the models is that the total amount of energy increases with the number of 

embedded elements. The artificial viscous disipation that is added for solution stablity also 

increases with increasing number of embedded elements. The increase in kinetic energy with 

increase in fiber elements shows that the redudancy in the mass matrix calculation does have an 

effect. The applied displacement ensures that all three models will have the same velocity as a 

function of time. Therefore, the only difference in their kinetic energies is due to their differences 

in mass. In a low strain rate analysis such as this, incorrect kinetic energies have little effect on the 

final result, but might be a significant problem in problems with large velocites or high strain rates. 

 
Figure 3- 12: Internal strain energy plotted with displacement of the 0 fiber, 2 fiber, 10 fiber, and 

25 fiber models with an applied displacement boundary condition. Although all the models 
should be equivalent systems, adding embedded elements increases the amount of internal strain 

energy. 
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Figure 3- 13: Energy plots from the 0 fiber, 2 fiber, 10 fiber, and 25 fiber analyses with the 

applied displacement boundary condition. The addition of embedded elements affects all types of 
energies. 

3.5.1 Specific Effects of Redundancy  

To explore the amount of difference the volume redundancy makes in different cases, 

several more applied displacement models were run to create plots of energy vs fiber volume 

fraction and energy vs. strain rate. The redundant volume should affect the internal and kinetic 

energies. With extra volume the model can store more internal energy for a given displacement. 

The extra volume also comes with extra mass, which will show up in the kinetic energy terms. As 

the fiber volume fraction increases, the amount of redundant volume increases and should make 
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these energy differences larger. Increasing the strain rate will increase the nodal velocities. In this 

case, the strain energy should not be changing but the kinetic energy, which depends on velocity, 

will increase.  

Table 3- 1: Fiber Volume Fraction Dependency Tests 

 Number of 
Truss Elements 

Volume 
Fraction 

Total Mass 
(kg) 

Applied 
Displacement (m) 

Strain Rate 
(1/s) 

Abaqus 0 0 7800 0.05 5 
 2 0.04 8112 0.05 5 

10 0.2 9360 0.05 5 
25 0.5 11700 0.05 5 

FLagSHyP 0 0 7800 0.05 5 
 2 0.04 8112 0.05 5 

10 0.2 9360 0.05 5 
25 0.5 11700 0.05 5 

FLagSHyP 
Corrected 

2 0.04 8112 0.05 5 

 10 0.2 9360 0.05 5 
25 0.5 11700 0.05 5 

 
 
 
The tests on fiber volume fraction involved running the displacement simulation in both 

FM and Abaqus with zero, two, ten, and twenty-five embedded truss elements, where the host and 

embedded elements had the same material type. The truss elements all had the same cross-sectional 

area so adding more trusses increased their volume fraction. Additionally, the embedded element 

simulations were run in FM again, but this time with the volume redundancy correction turned on. 

Table 3- 1 shows all the test cases. In order to compare the effect of the embedded elements, the 

internal and kinetic energy of each model was compared with the solid element model. Abaqus 

embedded element models were compared to the Abaqus solid element model and FM embedded 

element models were compared to the FM solid element model. With the embedded elements 

having the same material as the host, they should all be equivalent to a solid element, which is why 

the zero-truss case is used as the reference. These comparisons resulted in a relative difference, or 

error introduced by added the embedded elements which is shown in the plots in Figure 3- 14. As 
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expected, as the fiber volume fraction increased, both the total internal kinetic and internal energies 

increased as well as their relative error. The exception to this was the models where FM’s volume 

redundancy correction was used. As shown in Figure 3- 14, the correction nearly completely 

eliminated the error and internal energy and drastically reduced the kinetic energy error. The 

remaining error is likely due to other small numerical errors associated with the central difference 

algorithm and the small size of the test problem being used. Considering that the uncorrected FM 

models almost exactly match the data from Abaqus, this shows that the volume redundancy is 

causing error, we know where it is, and we know how to correct it.   
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Figure 3- 14: Comparison of internal and kinetic energy from Abaqus and FM embedded element 
models with different fiber volume fractions with reference to the energy of solid element cases 
with no embedded elements. Increasing the fiber volume fraction increases the amount of volume 
redundancy and increases the error in the system. FM Corrected drastically reduces the errors in 

energy. 
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A second set of tests was run to check the dependency of energy on strain rate. These 

consisted of an applied displacement boundary condition. The total displacement in each case was 

the same, but the speed at which it was applied was changed to result in approximate strain rates of 

5, 10, 50, and 200 1/s. A reference set of models at each of these strain rates was run in both Abaqus 

and FM using a solid hex element. Each test was then repeated with 25 embedded truss elements 

of the same material type as the host element. Finally, the 25 truss element models were repeated 

in FM, but with volume redundancy correction. Table 3- 2 lists all of the test cases.  Internal energy 

was expected to remain constant since the total displacement was unchanged. Kinetic energy was 

expected to increase. Similar to the volume fraction cases, each embedded element model was 

compared with its’ system equivalent solid element at the same strain rate. These comparisons 

resulted in a relative difference, or error introduced by added the embedded elements which is 

shown in the plots in Figure 3- 15. Again, FM was able to completely correct for the error in the 

internal energy. The relative error in kinetic energy was expected to increase as the strain rate and 

nodal velocity increased, yet the error remained constant. This could be because the change in 

velocity was not relatively large.  
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Table 3- 2: Strain Rate Dependency Tests 

 Number of 
Truss Elements 

Volume 
Fraction 

Total Mass 
(kg) 

Applied 
Displacement (m) 

Applied Strain 
Rate (1/s) 

Abaqus 0 0 7800 0.05 5 
  0 7800 0.05 25 

 0 7800 0.05 50 
 0 7800 0.05 200 

25 0.5 11700 0.05 5 
 0.5 11700 0.05 25 
 0.5 11700 0.05 50 
 0.5 11700 0.05 200 

FLagSHyP 0 0 7800 0.05 5 
  0 7800 0.05 25 

 0 7800 0.05 50 
 0 7800 0.05 200 

25 0.5 11700 0.05 5 
 0.5 11700 0.05 25 
 0.5 11700 0.05 50 
 0.5 11700 0.05 200 

FLagSHyP 
Corrected 

25 0.5 11700 0.05 5 

  0.5 11700 0.05 25 
 0.5 11700 0.05 50 
 0.5 11700 0.05 200 
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Figure 3- 15: Comparison of internal and kinetic energy from Abaqus and FM models with 

twenty-five embedded elements with reference to the energy of a solid element with no embedded 
elements. The additional strain energy from the volume redundancy is constant with changes in 
strain rate as expected and is easily corrected for using FM Corrected. The volume redundancy 
also adds extra mass which ought to increase the error as the nodal velocities increase with the 

increasing applied strain rate. This effect occurs at high strain rates. FM Corrected can bring the 
error in energy down to less than 10% for all velocities. 
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3.6 Validation with Multiple Host Elements 

The next stage in the work on FM was validating the code for problems with larger numbers 

of elements.  A cube meshed with 8 hexahedral elements with 4 embedded truss elements was 

tested in both Abaqus and FM. Figure 3- 16 shows the layout of the elements in the model. Notably, 

the truss elements span multiple host hex elements. It is important for FM to be able to handle 

embedded elements crossing multiple hosts to allow for easy generation of larger models. Some 

finite element codes will remesh embedded elements so that embedded elements do not cross host 

element boundaries. To avoid the difficulties associated with remeshing, FM allows embedded 

trusses to be associated with two host elements. Displacements of the nodes are found in the same 

way as normal. The magnitudes of the forces from the embedded elements to the host elements are 

determined by the percentage of the percentage of the total embedded element located in that 

specific host element.  The 8 host, 4 truss model was run with three loading conditions: tension, 

compression, and shear. The tension and compression results are correct when compared between 

the two cases. Characteristic results from these models are shown in Figure 3- 16.  
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Figure 3- 16: a) 8 hexahedral elements with the 4 embedded truss elements b) Abaqus and 
FLagSHyP results for the 8 host and 4 embedded element models for tension and compression 

tests. 

3.7 Tension/Compression Comparison to Experiment 

One of the draws of using the embedded element method for modeling UHMWPE 

composites is the ability to scale the mesh size up and down to create models at multiple scales 

while using the same modeling method and material definitions. By using denser embedded 

element distributions to represent UHMWPE fibers, various deformation mechanisms can be more 

clearly represented when comparing to experimental data. Additionally, by eliminating volume 

redundancy, the material properties used will be closer to the true properties of the fiber and matrix 

materials while still producing accurate predictions of material behavior. In this work, we focus on 

exploring how sensitive the overall stress response of a model is to the number of truss elements 

used to represent the fibers in the material. This will give insight into the ability of this method to 

function as a multiscale modeling technique. 
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3.7.1 Literature Data 

As part of the preliminary testing for using the embedded element method to model 

UHMWPE composites, experimental data on two types of quasi-static material tests of Dyneema® 

HB26 were chosen. The papers of Russell et al. [66] and Attwood et al. [12] both used the same 

type of Dyneema® and are widely cited in the Dyneema® modeling community. Russell et al. [66] 

ran tensile tests of custom tension sample shown in Figure 3- 17 at strain rates of 10⁻²-10⁻⁴ 1/s. 

Attwood’s paper [12] was focused on the indirect tension mechanism discovered due to the 

interactions of the composite’s cross plies in compression, so while this paper included tension test 

data, we chose to compare to the through thickness compression test data. Finite element models, 

shown in Figure 3- 17, of each of these sample were generated using Abaqus. Only the gauge 

section of the tensile specimen was modeled for simplicity. A mesh convergence study was 

conducted in Abaqus to determine the smallest converged mesh, which are shown in Figure 3- 17.  

 

 

Figure 3- 17: Finite element models with boundary conditions generated for this study. 
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3.7.2 Embedding Elements 

In the embedded element method, one finite element mesh is superimposed on another. 

The embedded mesh is constrained to follow the motion of the other mesh (the host mesh) by tying 

the degrees of freedom of the embedded nodes to the degrees of freedom of the host elements. 

Additionally, the stiffness of the embedded mesh resists the motion of the host mesh, thus creating 

a coupling system between the two meshes. The displacement degrees of freedom of the embedded 

elements are tied to the host element motion. Displacements anywhere in the host element are 

interpolated from the displacement of the host element nodes via the element shape functions, 

usually denoted in matrix form as 𝑵𝑵. For the embedded element method, this same interpolation 

can be used to find the displacement of the embedded nodes. This is represented by Equation 3-6. 

  𝒖𝒖𝑓𝑓 = 𝑵𝑵𝐻𝐻
𝑎𝑎 (𝝃𝝃𝑓𝑓)𝒖𝒖𝐻𝐻𝑎𝑎  Eq. 3-6 

where 𝒖𝒖𝑓𝑓  is the displacement of the embedded node, 𝝃𝝃𝑓𝑓   is the coordinates of the embedded node in 

the isoparametric space of the host element, and 𝒖𝒖𝐻𝐻𝑎𝑎  are the known displacements of the host 

element nodes. Figure 3- 18 shows a two-dimensional equivalent of the scenario: the host element 

with nodal coordinates 𝒙𝒙𝐻𝐻  and embedded node (located at 𝒙𝒙𝑓𝑓) are shown on the right as they are in 

the global finite element model. The natural space of the host element, which includes the nodes of 

the embedded element, is shown on the left. 𝝃𝝃𝑓𝑓  are the coordinates of the embedded node in the 

natural space of the host element. Equation 3-6 adds another constraint equation to the combined 

finite element model, which reduces the total degrees of freedom to only the degrees of freedom 

associated with the host mesh. 
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Figure 3- 18: Definition of variables in the mapping between host element natural space and the 
model global coordinates. 

 

Embedded truss elements were added to these models using a custom MATLAB script. 

The size of the embedded truss elements were determined by assigning a number of fibers to be 

represented by a single truss element, similar to the process in Utomo et al. [4]. The cross-sectional 

area of a single truss element was then determined by multiplying the cross-sectional area of a 

single fiber (diameter of 17 microns) with the number of fibers per truss. The MATLAB script then 

stacks truss elements in 0°/90° layers based on the outline of the shape. Trusses are not placed more 

than ½ a truss element diameter away from the edge of the part to avoid trusses that fall outside of 

the part. An example of several embedded element meshes are shown in Figure 3- 19. The non-

ideal stacking sequence used leaves the fiber volume fraction lower than that of the true composite, 

and fiber volume fraction increases slightly as the number of fibers per truss increases (and the total 

number of truss elements decreases). In this study, we are investigating how well this method does 

with different truss mesh densities, correcting the volume fraction will be addressed in later work.  
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Figure 3- 19: Examples of truss element stacking in the tension test model. A) shows the matrix 
material mesh used for all embedded element models. The truss meshes were made by assigning 

b) 5,000, c) 1,000, and d) 100 fibers per truss. The cross-sectional areas reflect the equivalent 
cross-sectional area of the total number of fibers. 

3.7.4 Material Properties 

Ideally, the embedded element method would allow for the true properties of the matrix 

and fiber materials to be explicitly used in the meshes that represent those respective constituents. 

Many people have tested the stiffness of individual fibers in various different ways[4], [67]–[69], 

but since the matrix is small percentage of the total composite, there is no data on that material’s 

response alone. To get material data for our finite element models, a literature review was 

conducted and the basic material properties from different experiments and finite element models 

were compiled to get an average of the acceptable material properties. Most finite element models 

are homogenized orthotropic models, but a general idea of the stiffness of the components can be 

backed out by assuming that the stiffness in the fiber directions is dominated by the fibers, and the 

stiffness in the third direction is solely a result of the matrix stiffness. Using these criteria, we 

compiled data from several sources[4], [11]–[13], [67], [70] and decided on a starting material for 

our model. From this starting material, the stiffness of the fibers and matrix material were adjusted 
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independently until a good fit to the experimental data was achieved. The results of this testing are 

shown in Figure 3- 20, and material 5 (𝐸𝐸𝑓𝑓 = 180 𝐺𝐺𝐺𝐺𝐺𝐺,  𝜈𝜈𝑓𝑓 = 0.49,  𝐸𝐸𝑚𝑚 = 1.1 𝐺𝐺𝐺𝐺𝐺𝐺,  𝜈𝜈𝑚𝑚 = 0.3) was 

chosen as the best fit. Experiments have shown that Dyneema® fibers are orthotropic[71], [72], but 

here we are simplifying them to an isotropic material so that they can be modeled with the one-

dimensional truss elements.  
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Figure 3- 20: Overall model response of the embedded finite element models for the tension and 
compression tests when a consistent truss element size and varying the truss and matrix material 

behavior. 
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After selecting a material, the number of fibers assigned per truss was adjusted for both the 

tension and compression models to determine the influence on the density of truss elements on the 

models’ response. Initially, the number of fibers per truss was 12: this gave each truss layer a 

thickness of about 60 microns, which is the laminate thickness of Dyneema® HB26. From there, it 

was increased to 100, 500, 1000, and then 5000, and increasing the number of fibers per truss 

decreased the total number of truss elements allowing for faster computational time. If the same 

response is achieved for 5000 fibers per truss as 12, it would show the scalability of this method 

for easy multiscale modeling.  

 

3.7.5 Results and Discussion 

When adjusting the material properties, the tension model was only dependent on the fiber 

stiffness, while the compression response mainly depended on the matrix material. This is what 

others have observed, although we were hoping to get more of the indirect tension mechanism 

discussed by Attwood[12] in compression. We found that to get a good representation of the 

composite tensile response, the fiber stiffness needed to be somewhat higher than is reported in the 

literature. This is because the truss embedding algorithm, we used does not optimally stack the 

truss elements, so the fiber volume ratio of our models was closer to 60% rather than the 83% of 

the true composite. Currently there is space allowed between the edges of the part and the 

mathematical volume of the truss element to avoid truss elements that extend beyond the edge of 

the part. This space can be removed with the knowledge that some parts of the truss will be outside 

of the part, but still be used in the volume redundancy elevation algorithm. Since the current volume 

fraction is so low, this may be acceptable. Also, since in real Dyneema®, fiber bundles are 
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compressed to be not perfect cylinders and push the packing efficiency much higher, so this would 

be a way to artificially increase the packing efficiency.  

Another method is to implement a [0°/90°] stacking pattern of the fibers where each layer 

is offset to allow for higher packing efficiently. Figure 3- 21 shows three different ways of packing 

the truss elements, the original way used in this work, a version where the space between fibers is 

eliminated, and the [0°/90°]. The reduced spacing version gives a fiber volume fraction of 78%, 

which is much closer to the fiber volume fraction of Dyneema®. The [0°/90°] gives an even higher 

packing efficiency, but with the disadvantage of the fiber layers being thicker and the 0 and 90 

layers less evenly distributed. This fiber embedding algorithm will be updated to use one of the 

latter two packing mechanisms for future work.  

 

 

Figure 3- 21: Different packing arrangements for embedded truss elements in a cube of material. 
The original arrangement, used in this work, only gives a fiber volume fraction of 52.9%, which 
is much less than the typical 83% found in Dyneema®. By reducing the buffer space between the 
trusses, and by changing the stacking arrangement to [0°/90°] increases the fiber volume fraction 
to 78.0% and 92.0%, respectively. One of these latter two packing arrangements will be used in 

future work. 
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An exciting result, shown in Figure 3- 22, is that when the material properties and fiber volume 

fraction are kept constant, changing the number of fibers represented by each truss element has 

almost no effect on the total model response. Since the volume occupied by the truss elements 

remains relatively constant, and the stiffness per volume is also constant, it makes sense that the 

response is unchanged. This is promising for larger models, such as full plate impact problems. The 

material properties for the embedded element method can be verified at a smaller experimental 

scale and then applied to a larger model with fewer truss element representing more fibers for a 

more efficient run time. The same material properties can also be used for micro and macro scale 

modeling.  
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Figure 3- 22 : When the truss and matrix element material is kept constant, changing the cross-
sectional area and number of truss elements does not significantly affect the model response if the 

truss volume fraction is kept relatively constant. 
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3.8 Speed Updates 

Since FLagSHyP Modified is based on a MATLAB program written with the primary 

purpose of teaching finite element analysis theory and not for efficiently running large models, FM 

is not a fast-running program. It works well as proof-of-concept tool for the volume corrected 

embedded element method, but we would like to test the method on larger scale models. To make 

this feasible the code needed to be sped up. First, all global variables were removed and replaced 

with variables that are passed only to functions that need them. There were a few variables and 

structures that did not have pre-allocated sizes; this was corrected. With these simple updates, the 

code became nearly 10 times faster, but still too slow to run large jobs. Next, the run and time 

profiler built into MATLAB was used to identify the functions that took the most time to run. This 

led to the discovery that some functions were being called more often than they should. Removing 

this oversight approximately halved the run time. 

 

With these updates, the Attwood compression test discussed in the previous section was 

run in FM with a total of 1820 embedded truss elements. The total time to be modeled was 0.1 s. 

After a run time of 36 hours only about 40% of the simulation was completed. The next easiest way 

to speed up the code was to implement MATLAB’s parallel computing capabilities. By replacing 

a for loop with the command parfor, MATLAB will run the loop in parallel on available separate 

worker computers. There are some conditions on the types of variables that can be used in such a 

loop, so some edits needed to be made, but the parfor loop was added to the code during the element 

internal force calculation step where it must loop through all elements, calculate their internal force, 

and distribute internal forces of the truss elements to their connected hosts. This is the most repeated 

time intensive activity. With the parallelization, the compression simulation ran to completion in 
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6.9 hours. Figure 3- 23 shows the results of FLagSHyP before and after the speed updates 

compared with the results from Abaqus.   

 

Figure 3- 23: Comparison of the progress of an embedded element compression model in 
FLagSHyP where run time was capped at 36 hours. A small amount of mass scaling was used in 

the FLagSHyP model. 

 

This timeframe was still unacceptable, so we returned to single core processing to work on 

speeding up the base code. The MATLAB Profiler tool was used to identify the 5 functions that 

ran for the longest amount of time. These functions were: 

 

Gradients – Used in stress calculations and involves the time-consuming operation of 

inverting two matrices.  

InternalForce_explicit – Runs inside of a loop to calculate the internal force applied to 

the nodes of each element. Time consuming parts of this function include calling gradients and 

kinematics_gauss_points, as well as a complicated loop to identify embedded elements associated 

with a host.  

Calc_element_size – Finds the largest and smallest side lengths of an element. This 

function is also run in loop to find the smallest characteristic element length for the stable time 

increment calculation.  



57 

 

Kinematics_gauss_points – All this function does is pull data from a structure called 

Kinematics. There is no real way to speed this process up, we can only look for places where it is 

being called too often.  

TrussCorrectedInteralForce_explicit – This function calculates the internal force from 

embedded truss elements and distributes it to the nodes of the host element. This is done for each 

host element, so the forces in each embedded element end up getting calculated multiple times 

(since truss elements can span two host elements).  

 

Once the functions were identified, the following edits were made to the code to help 

improve efficiency and speed: 

 

Gradients - Calculated and saved initial gradients instead of recalculating every time step. 

Additionally, the stress data for all elements is now saved in each step and the saved data 

is used for the output write step (previously the output writing recalculated stress for each element, 

which includes running gradients). This reduces the number of times gradients is called.  

InternalForce_explicit - Created a cell based structure to hold lists of the embedded 

elements associated with each host instead of searching through the embedded element-host list 

ever time InternalForce_explicit is called.   

Calc_element_size – Replaced this function with calc_min_element_size which finds only 

the smallest element length (instead of largest and smallest, since only smallest is needed). The 

original version of this code also used a complicated looping system that ended up calculating some 

element side lengths twice. Simplifying this to a direct calculation of each of the 12 side lengths 

sped this function up by nearly 56%.  

Kinematics_gauss_points – Similar to gradients, this function was run less often due to 

using saved stress data rather than recalculating stresses so often. 
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TrussCorrectedInternalForce_explicit_from_mem – This function was modified to use 

the newly saved stress data of the embedded elements to get the internal force instead of 

recalculating it for every single host element of the embedded element. 

 

With these edits to FM, the total runtime of the entire code was increased by about 49%. 

With this improvement in the base code, parallel computing was reimplemented. The new speed 

when using different numbers of processors was compared with the old version of FM, before the 

speed edits were added. A rectangular tension model with 420 hex elements and 402 embedded 

truss elements was run with a simulation time of 0.1 sec. The stable time increment was 4.30e-6 

seconds meaning the total number of steps needed was 23,258. The comparisons between the two 

versions of the code is shown in Figure 3- 24, where the blue dots are the original speeds and the 

green stars are the new.  

 

Figure 3- 24: Wallclock time needed to run an 800 element model with embedded elements using 
different numbers of parallel cpus for before speed edits to FLagSHyP (blue circles), after edits 

(green stars), and removing the saved stress data to reduce overhead (red x’s). 
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We found that the speed edited FM with parallel computing was no faster than the old 

version. This was because some of the new edits created more overhead cost when passing 

information to multiple processors. For example, instead of recalculating the stress during the 

output writing function, the stress is now saved in a structure during the main code loop and then 

passed to the output function. This means that a copy of the stress structure needed to be passed to 

each processor for them to update the saved stress. When the process of saving the stress at each 

time step was removed, parallelization did improve the program speed, as shown in Figure 3- 24 

by the red x’s.  

 

Because the code is not optimized for parallelization, running in parallel did not increase 

the speed much. FM is still significantly faster than before the effort to increase the speed, but still 

very slow for models with more than a few hundred elements. Increasing the speed of the code 

more would at this point require rewriting and restructuring much of the code. For this reason, we 

will not continue improving the code’s efficiency as it is. Rather, the principles of the embedded 

element method learned from programing FM will be used to incorporate the embedded element 

method into an existing finite element software developed by our lab that is specifically designed 

for efficiency in parallel computing. This will be a part of future work by subsequent students on 

this project.  

3.9 Conclusion 

It has been shown how incorrect volume and mass affect the energy calculations in the 

embedded element method, which in turn affects the analysis solution. Leaving this uncorrected in 

commercial codes can cause erroneous results especially in cases with wave propagation. A simple 

test of a single host element with embedded elements using the same material properties was 
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created and compared to the solution for the same continuum element with no embedded elements. 

Since the embedded elements were the same material as the continuum element the effective system 

is equivalent to having no embedded elements at all. Due to the volume redundancies in the 

calculation, the model with embedded elements could store more internal energy. The volume 

redundancy also added mass and increases the kinetic energy of the system. The differences in 

internal energy between the embedded element model and the control continuum element were 

shown to be accounted for by the additional matrix volume in the calculation. A modified explicit 

finite element code was shown to be able to correct the effects of the volume redundancy for small 

models. This technique could be extended to model larger objects with embedded elements, 

particularly fiber reinforced composites.  

Additionally, we have shown that accurate models of Dyneema® can be made for quasi 

static tests using various numbers of embedded truss elements to represent fiber bundles. This 

means that the method could be used to model Dyneema® on different length scales: from a small 

specimen used in Split Hopkins Pressure Bar to a full-sized plate impact experiment, but just 

changing the number of fibers per truss without greatly impacting the overall material response. 

The embedded element method is more effective when the volume redundancy is corrected and 

some work has been done to make our embedded element code usable for modeling small material 

specimens, but the code is just not capable of the speed for it to be feasible. Future work on this 

method will be to move the elements of FM to a more optimized code. This is further discussed in 

Chapter 5.  
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Chapter 4 
 

Finite Element Impact Models 

4.1 Steel Plate Models 

The main application of this project is to eventually model ballistic impacts on plate armor 

to improve on current armor designs. While the embedded element method was being established, 

there was some preliminary work on modeling impacts so that difficulties could be dealt with ahead 

of time. We had a few image results from an initial ballistic impact experiments that included steel 

and Dyneema® plates impacted by spherical fragment simulating projectiles (FSP). While actual 

stress and strain data is not available for these experiments, slow motion video capture provides 

some reference that can be visually compared to finite element models to show if the models are 

on the right track.  

 

Before the sizing of the plates was determined, a model of a 10” diameter, ½” thick steel 

plate being struck with a 3/8” diameter steel sphere was created in Abaqus. The material in the 

experiment was identified as a mild steel, so the Johnson-Cook material defined in Table 4- 1 was 

used for the FE material properties. While this was not actually the same material as in the 

experiments, part of the preliminary modeling is to understand how element erosion and deletion 

work under these high-rate impact situations. The Johnson-Cook model had already been studied 

and should behave similarly enough to the real plate to visually compare the two, since stress and 

strain data for the experiments does not exist.  

The plate impact problem was modeled as a quarter symmetry. In later tests, plates are 

planned to be clamped inside of a ring. This was modeled by constraining the surface of the outside 

ring of the plate to be constrained in all directions (rotations were left free). This surface is shown 
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in Figure 4- 1Error! Reference source not found. and corresponds to the amount of plate that will 

be clamped inside of the testing ring.   

 

Figure 4- 1: Boundary conditions for the initial test plate problem, based plans for future ballistic 
impact tests with clamped edges. 

The projectile was modeled first with only elastic properties defined. Later, the simulation 

was run again using a projectile with the same plastic and element deletion properties as the plate 

material. The results of these simulations are shown in Figure 4- 2. Both models show believable 

deformations and stresses, and the plasticity and element deletion definitions are working as 

expected.   
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Table 4- 1: Johnson-Cook flow stress parameters and damage evolution parameters used in the 
steel plate impact model. 

A (MPa)  980  

B (MPa)  996  

n  0.45  

c  0.0024  

D1  0.09  

D2  0  

D3  0  

D4  -0.060  

 

 

Figure 4- 2: Johnson-Cook material model used in a ballistic model with and without plasticity. 

4.1.1 Mesh Convergence  

A mesh convergence study was done on the ballistic impact FE model. Choosing 

criteria for convergence was difficult since we would like to know the stresses in the model 
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over time and that element deletion can cause numerical noise in the stress response near 

where the deletion occurs. In the end, the model stress history was pulled from three points 

near the impact point, shown in Figure 4- 3 and the peak stresses over time were compared 

across different meshes. Additionally, the radius of the hole produced by the projectile, the 

penetration depth, and the percent change in mass of the projectile (due to element deletion 

in the projectile) were also estimated from the different meshes and compared.   

 

Figure 4- 3: Points used for extraction of stress data in the mesh convergency study. 

A range of mesh sizes, beginning at 3,700 elements to nearly 180,000 elements 

were tested. A few of these meshes are shown in Figure 4- 4. The mesh sizes were named 

for the number of elements through the thickness of the plate (i.e., Mesh16 has 16 elements 

though the plate depth). The stress results over the time of impact for five different meshes 

are shown in Figure 4- 5.   



65 

 

 

Figure 4- 4: Three of the meshes used in the mesh convergence study. a) Mesh8 (3,700 elements) 
b) Mesh16 (?) c) Mesh26 (180,000 elements). 
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Figure 4- 5: Stresses at Points 1, 2, and 3 (locations shown in Figure 4- 3) for the five different 
mesh sizes. Mesh8 is the coarsest and Mesh 26 is the finest mesh with the most elements. 

Mesh 8, the coarsest mesh, is clearly not converged. Further away from the impact (Point 

3), the stresses are more consistent and converge more quickly. However, from the closer two 

points, it seems that the solution does not converge at the times of max stress until Mesh 24, and in 

between peak stresses there is less agreement. Figure 4- 6 shows the other three metrics of 

convergence, hole radius, penetration depth, and percent change in projectile mass for all the mesh 

sizes tested. The changes in these three metrics become minimal by Mesh 16. Based on these 
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requirements, Mesh20 should provide reasonable accuracy with a less than 3-hour runtime on two 

computer cores. 

 

Figure 4- 6: Three other metrics of convergence that were used in the mesh refinement study. 
Changes in hole radius, penetration depth, and change in projectile mass become minimal in 

meshes larger than Mesh16. 

4.1.2 Mild Steel Plates 

After the circular plate model was established, a set of ballistic tests using 

rectangular steel plates and circular Dyneema® plates was run at Los Alamos National 

Lab. Little data was collected from these experiments since they mainly served as a test for 

a larger set of experiments being planned, but the data collected is shown in Table 4- 2. The 

steel plates used in the experiments were of a mild steel, with a clamp on the bottom surface 

to hold it in place during impact. These plate impact experiments were modeled in Abaqus 

as ½ symmetry models shown in Figure 4- 7. The bottom of the plate was pinned in the z 

direction on both sides to represent the clamp used in the actual test. The 3/8” diameter 

projectile is modeled as a purely elastic tool steel. The material model for the mild steel 

plate was taken from Iqbal et al. [73] who fitted a Johnson-Cook plasticity and damage 

model to a similar mild steel using both dynamic tension tests and Kolsky bar testing. 
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Abaqus requires a fracture energy value to implement element erosion. The ASM 

Handbook for properties of irons, steels, and high-performance alloys lists the average 

Charpy impact energy for mild steels as 18-135 J. With a standard Charpy impact specimen 

cross section of 10x10 mm, that is a fracture energy of 180-1,350 MJ/m^2. This data was 

used to find an approximate value for the mild steel Abaqus model. A full list of the 

material behavior is included in Appendix C. Both the plate and projectile were meshed 

with linear hexahedral elements. The site of impact has a refined mesh with element size 

of 1 mm.  The experiments included three different shots on three identical plates.  

Table 4- 2: Preliminary ballistic impact testing data from Los Alamos National Lab taken 
November 2019 

Shot  Powder load Target DIC Velocity Penetration 
1 150 grains AR500, 6-in square, 0.5-in thick - 1145 m/s no 
2 150 grains Mild steel, 6-in square, 0.25-in thick yes 1071 m/s yes 
3 150 grains Dyneema®, 8-in disk, 0.5-in thick - N/A yes 
4 50 grains Dyneema®, 8-in disk, 0.5-in thick - 291 m/s no 
5 150 grains Dyneema®, 8-in disk, 0.5-in thick yes 1065 m/s yes 
6 120 grains Dyneema®, 8-in disk, 0.5-in thick yes N/A no 
7 200 grains AR500, 6-in square, 0.5-in thick yes 1376 m/s yes 
8 175 grains AR500, 6-in square, 0.5-in thick - 1252 m/s no 
9 185 grains AR500, 6-in square, 0.5-in thick - 1284 m/s no 
10 75 grains Mild steel, 6-in square, 0.25-in thick - 582 m/s no 
11 75 grains Mild steel, 6-in square, 0.25-in thick - 475 m/s no 
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Figure 4- 7: Mild Steel plate Abaqus model, boundary conditions, and mesh.  

 

Shot 2 was simulated by setting the initial velocity of the projectile to -1071 1/s. This speed 

should penetrate the plate, based on the experimental results. The first attempt at running the 

simulation was prematurely terminated because the deformation rate was too high. Initially, this 

was thought to be a fault of the Johnson-Cook model used. The highest strain rate used in this 

model fit was 1700 1/s; the highest strains in the simulation were on the order of 1x10^6 1/s. 

However, it turned out that there were only two elements causing the error. Changing the mesh of 

the model eliminated this problem and the projectile penetrated the plate as the tests showed. Figure 

4- 8 shows the stress, plastic equivalent strain, and strain rate during penetration. Unfortunately, 

the back-face deformation could not be compared to the test since the test video is obstructed after 

the projectile penetration. 
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Figure 4- 8: Stress, plastic equivalents stress, and strain rate results from the completed mild 

steel ballistic model.  

  
The plate size was reduced to a ¼ symmetry model, and a mesh refinement study was done 

to ensure that the mesh would not continue causing problems. The results are shown in Figure 4- 

9. It appears that the plate meshed with 120,000 elements has the same stress distribution as the 

largest model, so that mesh was chosen for the rest of the analyses (the projectile stress is different 

in these two meshes, due to the large number of elements and the difficulty of meshing spheres 

with hex elements. Mainly we are concerned with modeling the response of the plate which seems 

generally unaffected by this discrepancy).   
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Figure 4- 9: Three different meshes of the steel plate. The top and bottom rows represent two 

snapshots in time. 

  
  

Plasticity, damage, and element erosion were then introduced to both the plate and 

projectile parts. All the parameters for Johnson-Cook stress and failure are in Iqbal et al. [73] (and 

listed in Appendix C), which was the chosen source of strain rate dependent material properties. 

However, the fracture energy of the material is not included. This parameter is necessary for 

element erosion in Abaqus. The fracture energy of a similar metal was found from the result of the 

Izod impact test data from ASTM to be 180,000 J/m^2 and it was tested in Abaqus by modeling a 

dynamic dog bone tension test. By slightly adjusting the value of the fracture energy (since the 

exact material is unknown), the stress strain curves from the model were similar to the paper’s 

experimental results. Figure 4- 10 shows a graph of the experimental results and the results from 

our Abaqus model for a few different strain rates. A fracture energy of 180,000 J/m^2 was chosen 

as the best approximation, although the model does not appear to adequately cover the entire strain 

range presented in the paper. Potentially this is the case because the Johnson-Cook model is not 

used to cover such a wide range of strain rates (at least not with constant model parameters).  
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Figure 4- 10: Stress strain results of experimental tensile tests from Iqbal[73] and tensile tests 

that were simulated in Abaqus at different strain rates. 

4.1.3 Element Erosion 

Despite this Johnson-Cook model not being exact, it was used to test ballistic impact 

model. Abaqus does not distribute the mass of eroded elements to adjacent nodes, so element 

erosion destroys some mass. An investigation of how element erosion affects the model mass was 

conducted. The amount of mass lost is dependent on the quality of the mesh. In a fine mesh, each 

element contains less mass and so their loss is not as impactful as it would be in a coarser mesh. 

This was shown by comparing the initial and final masses of both the steel plate and the projectile 

for three different mesh sizes. Figure 4- 11 shows a visual representation of the mass loss due to 

element erosion and Table 4- 3 lists the total masses and the total mass lost in each mesh. The loss 

of mass did decrease with increasing mesh size. It was also much more significant for the projectile, 

as a large amount of the projectile’s surface is involved in the impact while only a fraction of the 

plate experienced any element erosion. The entire mass of the plate was considered when it really 

should be only some affected zone.  
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Figure 4- 11: Ballistic impact model of the steel plate and projectile. The amount of element 

erosion is compared between three different mesh sizes. 

Table 4- 3: Mass loss of the steel plate and the projectile for each mesh 

Projectile      Plate  

Mesh #  Initial Mass  Final Mass  Percent 
Difference  

  Mesh #  Initial Mass  Final Mass  Percent 
Difference  

2  8.98760  5.67077  36.90451  2  0.28944  0.28814  0.44880  
2.5  8.95328  6.30355  29.59508  2.5  0.28944  0.28828  0.39940  
3  9.00412  7.60222  15.56954  3  0.28943  0.28844  0.34367  

4.2 Embedded Element Modeling  

4.2.1 Initial Tests 

While the embedded element method in Abaqus should be improved before being used to 

model plates with high fiber volume ratios, a plate of Dyneema® was modeled in Abaqus using 

the embedded element method to visually compare results to the preliminary ballistic experiments 

discussed earlier. This also provided an opportunity to test the MATLAB embedding code in a true 

model. The MATLAB script was used to add embedded elements to a 10” diameter, ½” thick 

Dyneema® plate shown in Figure 4- 12. The added truss elements had diameters of 5.38𝑥𝑥10−4𝑚𝑚 

representing 10,000 fibers per truss. Only elastic properties were assigned to the fibers (embedded 
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truss elements) and the matrix (continuum elements) based on material properties used in a thesis 

paper from Delft University of Technology[4], also included in Table 4- 4. The bottom of the plate 

was constrained to represent a clamped boundary condition and a modeled tool steel 3/8” diameter 

steel ball impacted the plate at 1376 m/s. Since only elastic properties were modeled with no 

damage mechanisms specified, the sphere did not penetrate the plate, but the initial displacement 

response looks correct when visually compared with images from the ballistic test in Figure 4- 

13.  

 
Figure 4- 12: Dyneema® embedded element mesh from three different views.  

Table 4- 4: Material properties used for the embedded element model of Dyneema®[4] 

 Fibers Matrix 
𝐸𝐸 200 GPa 5.08 MPa 
ν 0.3 0.4 
ρ 981 kg/m³ 980 kg/m³ 

Fibers per Truss (FPT) 10000  
Truss Element Diameter 2.269E-5 m²  

# Elements 2840 8000 
 
  



75 

 

 
Figure 4- 13: Embedded element elastic model of Dyneema® shows similar deformation patterns 

as the ballistic tests. 

 

One of the goals of using the embedded element method for modeling Dyneema is to 

naturally capture some of the deformation mechanisms that are intrinsic to having fibers in the 

[0°/90°] orientation. The back face deformation cone, shown in Figure 4- 14, is where the fibers 

that bear the main load of the impact stretch out to the edges of the plate and create a sort of tent 

like deformation pattern. This initial model, as shown in Figure 4- 15a, produced some of the 

tenting effect, but not as pronounced as we would like. The plate was modified to be ¼” thick rather 

than ½” to increase the amount of elastic back face deformation. Additionally, the matrix material, 

which was initially modeled as an orthotropic material based on Utomo et al. [4], was changed to 

be isotropic, since the embedded elements should be creating all the orthotropic response. These 

modifications helped to increase the visibility of the tenting effect and create a much more 

symmetrical deformation pattern as often seen in the literature. The results of the modifications are 

shown in Figure 4- 15Error! Reference source not found.b and c. At this point, we had no 
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numerical data to compare the simulation results with, but based on visual comparisons of images 

such as Figure 4- 13, Figure 4- 14, and Figure 4- 15, we concluded that the chosen material model 

was behaving in a reasonable manor.  

 

Figure 4- 14: The back face deformation shape that we refer to as tenting. 
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Figure 4- 15: Maximum back face deformation of plate impact test. a) the initial iteration of a 
1/2" thick plate with an orthotropic matrix material. b) 1/4" thick plate with an orthotropic matrix 
material) 1/4" thick plate with an isotropic matrix material. This model gives the most realistic 

looking symmetrical tenting effect. 

4.2.2 Karthikeyan Plate Impact 

After getting a decent result from the initial models, we decided to attempt a comparison 

to experimental data available in the literature. Karthikeyan et al. [74] reports a test using shadow 

moiré images to measure back face deformation. It was not difficult to modify the embedded finite 

element model to match the specifications for this experiment and then numerically compare the 

amount of back face deformation. The parameters for Karthikeyan’s experiment are shown in 

Figure 4- 16, along with the finite element mesh used. Two different embedded truss meshes were 

used to investigate the effect on truss mesh size on the back face deformation, one used 100 fibers 

per truss and the other 500 fibers per truss. The same material properties as the earlier plate impact 
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tests were used. Figure 4- 17 shows the model back face deformation for two points in time. There 

is little difference in the finite element deformation when different numbers of fibers per truss are 

used, and both are close to what is observed in the experiment. The deformation in the shadow 

moiré images is determined by counting the fringes in the light interference pattern and multiplying 

by 1.58 mm for each fringe to get the displacement, so there is a fair amount of error in this 

measurement (as each fringe contains a deformation range of 1.58 mm so we do not know for sure 

the maximum deformation). Also given that the material properties used in the finite element model 

were not calibrated or chosen exactly, this is a very good result for a proof-of-concept model.  

 

Figure 4- 16: Set up used in Karthikeyan’s impact experiment[74] and the finite element mesh 
used to create the embedded element model. 
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Figure 4- 17: Results of the embedded element models of Karthikeyan’s impact experiment[74]. 
Both the 100 and the 500 fibers per truss cases produce good results. 

4.3 Using the Embedded Element Method to Simulate Full Impact 

After the success of the back face deformation modeling of the plate from the Karthikeyan 

experiment, we attempted a model that included damage and failure using our own experimental 

data. Here, we present a proof-of-concept model of a plate of Dyneema® under impact conditions 

using the embedded element method to represent the cross-ply fibers grouped into truss elements. 

We want to show that the embedded truss elements provide an easy way to implement the 
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orthotropic material properties and capture specific failure mechanisms observed in experimental 

data.  

4.3.1 Methods 

Plate impact experiments 

A series of experimental tests were conducted to characterize the response of HB26 

composite panels, a subset of which is used here as validation data for the model.  The test being 

used for comparison had a single HB26 circular panel measuring one inch thick by eight inches in 

diameter.  The plate was held in the fixture shown in Figure 4- 18.  For this test, a single plate was   

 

Figure 4- 18: Experimental test fixture (left) and a close up of the clamping rings which fit into 
the fixture (right). 

clamped in rings with the bolts torqued down to 16.27 Nm (12 ft-lbs), which was selected 

to replicate a roughly fixed boundary condition in the clamped region, which not permanently 

deforming the plate due to the clamping pressure.  Once clamped inside the support rings, the 
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exposed diameter of the plate is 171.45 +/- 0.762 mm (6.750 +/- 0.03 in).  For this test, a 9.525 mm 

(3/8 in) diameter hardened tool steel ball was fired from a .50 caliber barrel with the use of a plastic 

sabot, which was captured/deflected using a series of stripper plates to minimize the potential for 

sabot interaction with the target panel.  High speed cameras and a chronograph were used to 

independently measure the velocity of the projectile, which was 1028 m/s.  With this impact 

velocity and impact occurring at the center of the panel, the projectile was successfully captured in 

the target. 

CT scans and results 

After the testing was completed, the plate was scanned in a micro-CT scanner with an 

image resolution of 55 micrometers.  While this is not enough to capture the roughly 17-19um 

diameter fibers, it is enough resolution to see plies, cracks, and other meso-scale features while 

maintaining a large field of view of approximately four inches by four inches and through the entire 

deformed thickness.  A view centered on the main penetration channel is show in Figure 4- 19.     



82 

 

 

Figure 4- 19: X Y view (left) and X Z view (right) of the 8-inch diameter by 1 inch thick HB26 
plate when impacted by a 3/8 inch diameter steel sphere traveling at 1028 m/s at impact. 

Of note is the thickness of consolidated or non-delaminated composite measuring 12.85-

12.90 mm representing the thickness of the shear plug or fiber cutting zone, as well as the 4.09 mm 

thickness of unpunctured plate remaining ahead of the projectile. Additionally, we see significant 

fiber/ply curling at the transition between the shear plug dominated zone and into the delamination 

dominated zone.  This curling is due to non-trivial deformation of  fibers that have debonded from 

the matrix when breaking, as opposed to the little to no deformation in the shear-plug failure while 

the projectile velocity is still high at the beginning of the penetration event.  This axial deformation 

or tension in the fibers causes them to retract into the plate when the fibers are broken and the 
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energy released, creating what we call a fiber snap-back zone highlighted in Figure 4- 19 at the 

end of the shear plug failure area of the target. 

Finite Element Modeling 

To model delamination as well as fiber and matrix failure, the embedded element method 

is combined with a layered mesh with cohesive contact between the layers. One quarter of the 1 

inch thick, 8 inch diameter plate was modeled with 20 1.27mm thick layers as shown in Figure 4- 

20a and Error! Reference source not found.b. Each layer is meshed with 8880 hexahedral 

elements for a total of 177,600 matrix mesh elements. The mesh is seeded at 0.5mm in the 25mm 

radius near the impact zone and is allowed to be a courser seeding of 5mm closer to the clamped 

edges. Each layer has 3 through thickness elements. The cohesive contact properties in Table 4- 5 

are taken from Hazzard et al. [11] Boundary conditions on the model in Figure 4- 20b are symmetry 

conditions on the two cut sides and the clamp boundary condition from the experiment is modeled 

by fixing all of the displacements of the front and back surfaces of the plate that would be under 

the clamp. The 3/8 inch spherical steel projectile is modeled as a rigid body since no deformation 

was observed in the impact experiment. The full mesh of the host elements is shown in Figure 4- 

21. 
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Figure 4- 20: a) A single layer of matrix material b) quarter symmetry finite element model with 
20 matrix layers connected by cohesive contact constraints and the clamp boundary conditions 
(red) and symmetry boundary conditions imposed on the model. 

Table 4- 5: Cohesive contact properties for the matrix layers. 

 
Mode I 

Strength 
Mode I 

Stiffness 
Mode I Fracture 

Energy 
Mode II 
Strength 

Mode II 
Stiffness 

Mode II Fracture 
Energy 

Hazzard 
2018[11] 1.2 MPa 60 N/mm^3 0.544 N/mm 1.8 MPa 36 N/mm^3 1.088 N/mm 
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Figure 4- 21: Host element matrix mesh of 177,600 hexahedral elements. 

The embedded fibers were added using a custom MATLAB script. The MATLAB script 

takes an Abaqus input file and reads in the node connectivity of the part to host the embedded 

elements (Figure 4- 22a). The endpoints of the truss elements are determined by creating a point 

grid around the part and then determining which points lie within the part (Figure 4- 22Error! 

Reference source not found.b). The points on the edges of these bounds are specified as the 
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endpoints (Figure 4- 22Error! Reference source not found.c) and the lines between the endpoints 

define the truss elements (Figure 4- 22Error! Reference source not found.d). Using this method 

allows the script to add truss elements to complex geometries that may include concave surfaces or 

internal holes. Finally, the MATLAB script writes a new input file, complete with Abaqus’s 

embedded element constraint that can be run by Abaqus without any further edits by the user. The 

number of truss elements added is determined by how many can be packed together in the part 

based on their cross-sectional area. The area is determined by the user by specifying the number of 

fibers they want each truss to represent. The area is then calculated by Equation 2-1, repeated here, 

where 𝑛𝑛 is the number of fibers assigned to a truss and 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the fiber diameter. We assume a 

fiber diameter of 17 microns (which is common for Dyneema® fibers). A larger number of fibers 

per truss yields less but larger truss elements for a courser mesh, while a smaller number creates a 

finer mesh. For this model, we tested two different fiber meshes. The first used 1380 fibers per 

truss (FpT) which created truss elements with a 0.632mm diameter and 405,000 total truss elements 

in the model. The second used 5581 FpT which created truss elements with a 1.3mm diameter and 

100,740 total truss elements. Both create a fine mesh of truss elements, as shown in Figure 4- 

23Error! Reference source not found.. These two FpT numbers were chosen because the truss 

diameters correspond to having two layers of 0°/90° trusses (for the 1380 FpT) or one layer of truss 

elements (for 5580 FpT) per 1.27mm thick matrix layers. 

 𝐴𝐴𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑛𝑛 π
4
𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2   Eq. 2-1 
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Figure 4- 22: Progression of creating embedded truss elements in a cylinder-shaped part. 

 

Figure 4- 23: Truss element meshes for the 5581 FpT and 1380 FpT meshes. 

Material properties for the matrix and fiber materials were chosen from literature sources 

and are listed in Table 4- 6. Both components were modeled as elastic brittle, which is how the 

overall material as well as individually tested fibers are assumed to behave in high rate loading 

conditions.[4], [11], [44], [67] Material properties for just the matrix material are scarce as the 

overall response of the Dyneema® is assumed to be dominated by the fiber response[75], [76]. 
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There are several studies on the high strain rate response of fibers that suggest they are rate 

dependent[67] so a rate dependency was added to the damage behavior of the fibers.  

 

 

 

Table 4- 6: Material properties for isotropic matrix material and fibers. 

Matrix Material 
Properties Ref Truss Material Properties Ref 

𝐸𝐸 700 MPa [50] 𝐸𝐸 135 GPa [50] 

𝜈𝜈 0.45 [50] 𝜈𝜈 0.45  

𝜌𝜌 980 kg/m^3 [50] 𝜌𝜌 981 kg/m^3 [50] 

𝜎𝜎𝑦𝑦𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦 70 MPa [50] 𝜎𝜎𝑦𝑦𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦,  𝜖𝜖 ̇

3.5 GPa, 0.01 1/s 

4.3 GPa, 1.0 1/s 

4.5 GPa, 1000 1/s 

[67] 

Fracture 
strain, 𝜖𝜖 ̇

0.1, 0.01 1/s [50] Fracture 
strain, 𝜖𝜖 ̇

0.0391, 0.01 1/s 

0.0251, 1.0 1/s 

0.01167, 1000 1/s 

[67] 

Fracture 
Energy 1460 J/m^2 [70] Fracture 

Energy 1 J/m^2  

 

Modeling Challenges 

We have not accounted for volume redundancy in this model, which is inherent to the 

embedded element method[77]. The embedded element method overlays two meshes and since it’s 

only mathematical the volumes of both meshes exist in the same space. Commercial finite element 
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solvers do not remove any of the host element volume to account for the space occupied by 

embedded elements and instead leave it to the user to decide what to do about the redundancy.[78] 

Generally the redundancy is delt with by reducing the stiffness and density of one or both of the 

mesh materials[33], [34], [36], [39], [41]. This has worked well for models with only small amounts 

of inclusions and quasi static deformation but could be problematic for modeling a high fiber 

volume fraction material like Dyneema® in a dynamic environment where kinetic energy is non-

trivial and the material sound speed matters. Since the goal of this model is to provide a proof-of-

concept model to show if the embedded element method can capture some of the specific 

deformation mechanisms of Dyneema®, we are not addressing the volume redundancy at this time. 

We have other work on a way to remove the redundancy from the finite element calculations on an 

algorithmic level, but that work is not advanced enough to model an impact event[77]. 

4.3.2 Results 

Both embedded element models were run in Abaqus Explicit with parallel processing on 

four CPU cores. The 1380 FpT model took about 30 minutes to complete while the 5581 FpT model 

finished in under 15 minutes. Additionally, we tried running the 1380 FpT model using beam 

elements instead of the truss elements. Shear plug failure is the main failure mechanism for the first 

part of the impact, and we were interested in differences between using truss and beam elements 

since beam elements have shear stiffness and can fail in a shear mode where trusses only support 

tension and compression. We found that although failure initiated sooner in the beam elements due 

to the addition of the shear component, the beam model took significantly longer to run than the 

truss model. For the same number of elements, the beam model took 12 hours to run. The results 

between the two models in Figure 4- 24Error! Reference source not found. look similar, so for 

the rest of the analysis we chose to use the truss model.  
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Figure 4- 24: Running the embedded element model with truss elements and with beam elements 
produced visually similar results, with the beam elements showing more early failure and less 
matrix delamination than the trusses. The beam element model takes significantly longer to run. 

With this embedded element model, we were looking to see if we could capture the 

deformation cone, shear plug failure, fiber snap back, and indication of the indirect tension 

mechanism. Comparison between the 1380 FpT model and the CT imaging of the plate cross 

section in Figure 4- 25 shows that, although the model projectile did not penetrate the plate as far 

as in the experiment, we were able to replicate some of the failure features. The initial failure zone 
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appears to be a shear plug failure where the material plies hold together and the projectile creates a 

gap just wide enough for itself. The shear plug zone is also a similar size to experimental data, 

10mm depth versus the experimental depth of 12.85mm. After the shear plug failure, ply 

delamination becomes more dominate. With the delamination, fibers are stretched further before 

they fail, causing them to elastically snap back, which can be seen in both the CT imaging and in 

the finite element model. A direct comparison could not be made between the back face 

deformation between the model and experiment because the penetration depth was not great enough 

in the model. To accommodate for this, the Von Mises stress profiles for the front and back of the 

plate, as demonstrated in Figure 4- 26 Error! Reference source not found. are used to draw a 

comparison between the experiment and model. The characteristic deformation cone on the back 

face of the plate during impact is due to the stretching of the main 0 and 90° fibers across the plate. 

The embedded finite element model shows this mechanism in the Von Mises stress profile on both 

the front and back of the plate.  
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Figure 4- 25: When compared to CT images of the impact experiment, the embedded element 
model shows a similar shear plug failure zone and the fiber snap back although the projectile 

penetration distance is shorter. 
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Figure 4- 26: a&b) Examples of the deformation cone created by the stretching of the principal 
fibers from other impact experiments. c) Front and (d) back face stress patterns on the fully 

mirrored plate reveal the characteristic deformation cone associated with Dyneema® and other 
0°/90° composites. 

The indirect tension mechanism is described as the mechanism where the transverse 

compressive loading of the projectile generates tension in the plies due to anisotropic expansion of 

the alternation 0° and 90° plies[12], [13]. Figure 4- 27 from Liu et al. shows an illustration of the 

mechanism[13]. Tension in the 0° layer is transferred across the 90° layer by shear in the matrix 
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interface between the two layers. This causes compression in the 90° layer and then the same matrix 

shear transfers this load to a tension stress in the next 0° layer.  

 

Figure 4- 27: Sketch of the indirect tension mechanism from Liu et al. [13] with added 
description of the mechanisms involved. 

We investigated the degree to which our embedded element model reflected this indirect 

tension by looking at the tensile/compression stress in the fiber layers and the shear stress in the 

matrix in the first microseconds of the impact, displayed in Figure 4- 28. Both the 1380 FpT and 

5581 FpT models showed the first 0° layer in tension, and there is a shear coupling between the 

first two layers of matrix material. There is significantly more shear in the 5581 FpT case, since 

this is the case where each matrix layer contains only a 0° or 90° layer of truss elements, while the 

1380 FpT model has one of each for each matrix layer so there is less anisotropy between layers. 

The compression of the second fiber layer (the 90° layer) does appear somewhat, but it’s unclear if 
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this is simply from the compressive forces of the projectile or caused by the indirect tension caused 

by the interlaminate shear. It can be argued that this shear driven compression will not be captured 

by this model since it is dependent on the change in cross sectional area/shape of the fibers as they 

compress together in a group and get closer together and this model only includes one row of truss 

elements for each 0° and 90° layer instead of multiple as in the Error! Reference source not 

found. diagram. Additionally, Abaqus does not allow for change in cross sectional area of truss 

elements and assumes they are incompressible, which will decrease the ability of the truss element 

layers to reproduce the compression in the 90° layer[79].  

 

Figure 4- 28: Tensile/compressive stresses in the truss elements and shear stress between the 
matrix layers shows characteristics of the indirect tension mechanism which facilitates the tensile 

failure of the truss elements early in the impact process. 
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4.3.3 Discussion 

Failure mechanisms 

We set out to see if modeling Dyneema® using embedded truss elements would capture 

some specific deformation and failure mechanisms in an impact experiment. We used cohesive 

contact constraints between layers of continuum element matrix material which was able to capture 

the delamination of Dyneema® almost exactly how it is observed in the CT images of experiments. 

The characteristic deformation cone that is formed from the stretching of the principle 0°/90° fibers 

during impact can also be captured by the truss elements embedded in the matrix layers. Since this 

is mainly seen on the back face deformation, which the experiment used here did not experience 

much of, we looked at the stress profiles in the plate and were able to identify where the truss 

elements representing the principal fibers took most of the tensile stress. Related to this, when those 

principal fibers stretch and then fail, they have some elastic recovery and snap back in a distinct 

pattern near the beginning of the delamination regime in the penetrator’s pathway. Modeling the 

fibers explicitly as truss elements was able to capture this feature very well. Finally, we investigated 

if the proposed indirect tension mechanism would appear in the model. Our model shows some 

features of the indirect tension mechanism, notably the shear coupling between the matrix layers. 

Since the truss elements only support longitudinal tensile and compression loading, they can only 

fail via those loadings. The fact that the embedded element model showed an initial shear plug 

failure zone like the experiment means that the fibers were loaded in tension by something like the 

indirect tension mechanism. More work needs to be done with the arrangement of the truss elements 

and potentially tests using finer truss and matrix meshing to see what the size effects of the mesh 

are on this mechanism. 
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Volume Redundancy  

An important feature of the embedded element method that was not addressed was the 

volume redundancy that occurs when two meshes are superimposed on one another. This adds 

additional mass and stiffness to the model which impacts how the whole model behaves. Generally, 

redundancy is delt with by reducing the stiffness and density of one or both mesh materials[33], 

[34], [36], [39], [41]. This has worked well for models with only small amounts of inclusions and 

quasi static deformation but could be problematic for modeling a high fiber volume fraction 

material like Dyneema® in a dynamic environment where kinetic energy is non-trivial, and the 

material sound speed matters. We did not want to compromise those mechanics in this model so 

we did not modify stiffness or density. However, we think the extra mass and stiffness is one of the 

main reasons the model predicted far less penetration distance than the experiment did; there is 

more mass to push out of the way and the overall material is stiffer so harder to break. Future work 

will include comparing ways to address the redundancy and hopefully show that the redundancy 

needs to be delt with on a solver level rather than just adjusting the material properties.   

Future work  

In addition to addressing the volume redundancy problem, there are a few other things that 

could be done to improve this model. The matrix material stiffness and failure properties could be 

calibrated better. There is very little research on the behavior of the matrix material since failure is 

assumed to be dominated by the fibers[7], [80]. The properties used in this model have been inferred 

from other papers that model the entire composite by simply assuming that the matrix stiffness and 

failure strength is the same as the total composite in the through thickness direction. This is likely 

not the case and it can be seen in our embedded element model that the matrix material fails far 
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ahead of the actual location of the projectile. Further efforts in using this type of modeling will 

need more information about the matrix stiffness and failure properties. Another component of the 

model that can be improved is the plate boundary conditions. The clamp boundary condition was 

applied as a fixed displacement to just the outside surfaces of the plate. This does not accurately 

capture the clamp boundary that is used in the experiment, since the added pressure could affect 

stress wave propagation. Additionally, the clamp would allow the edges of the plate to slide if the 

force was large enough to overcome the friction.  

There are some studies on fiber material properties that show that the fibers have a different 

transverse stiffness and strengths than their longitudinal direction[69], [72], [81]. This could impact 

how the initial shear failure of the impact works since the reduced through thickness strength could 

mean it’s easier to fail the fibers in that direction. Truss elements could not capture this type of 

anisotropy since they only support longitudinal loads. Using a beam type element would allow for 

a different through thickness stiffness, but as shown earlier in this work, the beam type elements 

are far less computationally efficient than truss elements, but if such a failure mechanism is shown 

to be important to the impact failure they could be implemented.  

4.4 Curved Plate 

A benefit of the embedded element method is that the truss elements can be embedded in 

any orientation, so this method could be used to model curved plates of UHMWPE for body 

conforming armor or helmets. There is some evidence that fiber curvature changes the behavior of 

the material[18]–[20], [82]. Embedded elements could also be used in modeling the formation 

process, which is of interest for tracking areas of increased strain or material consolidation[1]. As 

a proof of concept, we created a curved plate impact model using the embedded element method to 
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show that the method is acceptable for curved plates and to investigate some of the differences 

between the curved and flat plate behavior.  

 

A curved geometry was created in Abaqus CAE by extruding the arc shown in Figure 4- 

29 by 250 mm. This created a plate with one dimensional curvature in the x direction that is 

compatible with the MATLAB Script for Embedded Fiber Creation discussed in Chapter 2. This 

code was used to add embedded truss elements with 1380 fibers per truss element resulting in a 

truss element diameter of 0.635 mm. The curved plate itself was divided into 5 0.635 mm layers 

with cohesive contact defined between the layers with the properties defined in Table 4- 5. The 

mesh of the truss elements, host elements of the curved plate, and a close-up comparison of the two 

meshes are shown in Figure 4- 30. The same 9.525 mm (3/8 in) diameter hardened tool steel ball 

mesh from Section 4.3 was used as the projectile in this model with an initial velocity of 600 m/s. 

The plate and truss element material properties also used the properties listed in Table 4- 6.  

 

 

Figure 4- 29: Geometric defintions of the extruded cross section of the curved plate. 
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Figure 4- 30: a) Fiber mesh embedded in the curved plate model b) hexahedral mesh of the 
curved plate matrix material c) close up comparision of the the mesh density of the host mesh and 

the embedded truss mesh.  

Von Mises stress results for the curved plate impact model are shown in Figure 4- 31. At 

600 m/s, the thin plate was easily penetrated with a residual velocity of 350 m/s. The very 

distinctive deformation cone from the 0°/90° fibers is clearly visible. In the view of the back face 

stress in Figure 4- 32, it’s clear that the fibers in the direction of curvature (fibers oriented along 

the x direction) take far less of the load than the fibers in the y direction. Measuring the speed of 

the stress wave in both directions, the y direction wave speed was significantly faster at 7500 m/s 

while the x direction wave speed was only 6000 m/s. This is because the stress wave is also 
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changing direction and not purely moving in the x direction, so it takes longer to cover an equivalent 

distance to the y direction stress. This shows that there are differences in the behavior of flat and 

curved plates that need to be taken into account when designing and modeling them.  

 

Figure 4- 31: Stress magnitudes of the impact on the curved plate from two different angles. The 
characteristic defomration from the 0°/90° can clearly be seen in the top image.   
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Figure 4- 32: Stress magnitudes part way through pennetration viewed from the underside of the 
curved plate. From the stress magnitues, it is observed that the curved fibers (alligned in the x 

direction) take very little of the stress load, while the flat fibers (alligned in the y direction) 
support most of the load.  

4.5 Conclusions  

Here, we have presented a proof-of-concept model of a plate of Dyneema® under impact 

conditions using the embedded element method to represent the cross-ply fibers grouped into truss 

elements. Fibers bundled together to create truss elements of 0.632mm (1380 FpT) and 1.3mm 

(5581 FpT) were embedded into layers of matrix mesh bonded together by cohesive contacts. The 

results showed that the embedded element model was able to capture several salient features 

including the initial shear plug failure zone and subsequent delamination and fiber snap back. 

Investigation of the fiber tensile stresses and the matrix shear stress under the projectile early in the 
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impact shows features of the indirect tension mechanism, but it is unclear if the stresses are driven 

by the anisotropic expansion of the layers or other mechanisms. We have shown that, while beam 

elements have the potential to perform better, the truss element model captures these mechanisms 

with an efficient run time. Future work on this model includes addressing the volume redundancy 

inherent in the embedded element method as well as performing more validation tests with 

experimental data and different sized plates and acquiring more information about the matrix 

strength and failure mechanisms. 

Additionally, we have shown the capability of using the embedded element method to 

model the impact of a curved plate. The curved plate model shows that the curved fibers take far 

less of the impact stress than the non-curved fibers, and the stress waves travel more slowly in the 

curved direction, which will impact the interaction with the plate boundary conditions. The findings 

on the curved plate will need to be confirmed experimentally but show that there are new 

mechanisms in play during the impact of the curved plate as opposed to the flat plate that will need 

to be investigated to improve the design of curved plate armors.   

  



104 

 

Chapter 5 
 

Conclusions and Future Work  

5.1 Conclusions  

As a recap, the fundamental questions to be addressed in this effort are: 

1. Can a truss element mesh be easily created for curved or complex geometry? 

2. Can the embedded element method be modified to correct the volume redundancy and 

eliminate the need for material property smearing? 

3. Does using embedded truss elements to model fiber bundles provide accurate 

predictions of material behavior on small scales (tension/compression tests) and larger 

scales (full plate impact)? 

 

The work done to address each of these research questions will be discussed below: 

5.1.1 MATLAB Script for Embedded Fiber Creation 

Chapter 2 described a MATLAB script for adding embedded truss elements to a host mesh 

created in Abaqus. This script includes versatility for changing the size of the embedded elements 

and how close the fiber mesh should be to the shape by changing the size of the initial point grid 

used to draw the lines of the truss elements. The script creates an input file that can be immediately 

run in Abaqus to simplify the process of model creation. We have a modified version of this script 

that can map a specific type of curved plate to a flat shape to easily add the embedded truss elements 

and then map the whole shape along with the new embedded elements back to the original curve. 

This greatly simplifies the process of adding embedded elements to complex and curved 
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geometries. The curved plate script will need some more work to make it robust enough to handle 

more shapes, but in general, curved plates of fiber reinforced composite are created as a flat plate 

first then bent to be a curve, so the method presented here is following a similar method as the 

manufacturing process so most plates will fit the requirements to be mapped to a flat plate first.  

5.1.2 Embedded Element Finite Element Code 

 Chapter 3 demonstrated that the finite element code we have developed here known as 

FLagSHyP Modified (FM) is able to correct the volume redundancy inherent in the embedded 

element method and eliminates the need for using material property smearing as a method for 

addressing the redundancy. Comparing the internal and kinetic energy of a simple tension model 

with increasing numbers of embedded elements showed that increasing the number of embedded 

elements artificially increased both energy types, proving that for a model with a large percentage 

of the volume modeled as inclusions (such as in a model of a fiber reinforced composite) the volume 

redundancy must be corrected. The FM code uses a correction algorithm that can be included in 

other finite element codes so that the embedded element method can be used to model composite 

materials using true material densities and stiffness measurements which will allow for a truer 

modeling of the physics involved in impact or other processes and improve our understanding of 

material behavior and our ability to predict behavior and design for it.  

5.1.3 Embedded Element Finite Element Code and Finite Element Impact Models 

In Chapter 3, we showed that an accurate model of Dyneema® can be made for quasi-static 

tests using various numbers of embedded truss elements to represent fiber bundles. By increasing 

or decreasing the size of the embedded elements while keeping their total volume relatively 
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constant, we showed that these changes in mesh sizing did not impact the response of the model. 

This shows that the mesh is scalable for situations where we are looking at the full material 

response, such as tension and compression tests. This method could be used to model a small 

specimen, for example a specimen used in a Split Hopkins Pressure Bar, to calibrate the material 

properties of the fibers and the matrix materials used in the finite element model. The model could 

then be scaled up for a full plate impact test by increasing the size of the embedded truss elements, 

decreasing the fidelity of parts of the model in exchange for getting a model of a whole system 

response but still using the same material properties that were used in the small calibration model.  

Chapter 4 proves examples of larger scale plate impact models of Dyneema® successfully 

modeled using the embedded element method. By combining the embedded element method with 

a matrix mesh divided into layers and held together with cohesive contacts, we were able to capture 

many of the salient features of the impact and failure mechanics of a Dyneema® plate when 

compared to experimental images. Unfortunately, the plate impact models could not be run with 

the volume redundancy correction. Even so, we showed that using the embedded element method 

allowed the stresses in the truss elements (fibers) and matrix material to be examined independently 

and can help show the transfer of load between the components as it occurs in the indirect tension 

mechanism, which is important for gaining an understanding of how the material behaves and what 

components drive failure. We also showed a proof-of-concept curved plate geometry modeled 

using embedded elements. The curvature of the fibers seems to influence the stress wave 

propagation through the material and will be important to investigate for the design of curved plate 

amors.  
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5.2 Future Work 

5.2.1 Volume Redundancy Guidelines Paper Concept 

This section documents the progress for the paper on recommendations for how the volume 

redundancy in the embedded element method should be addressed for different situations. While 

the volume redundancy correction does not exist in Abaqus, we would like to demonstrate some of 

the possibilities using the embedded element method for this type of modeling has. Most papers 

that use the embedded element either state (without showing) that the volume redundancy is 

negligible or reduce the stiffness and density of one of the two materials in the model. In this paper, 

we would like to show when or if these are acceptable solutions and when the redundancy should 

be removed in the solution method itself. We plan to do this by modeling simple 

tension/compression test of cubes of three different materials: Dyneema®, rebar reinforced 

concrete, and brain white matter. Each material will be modeled using embedded elements with 

three implementation methods: Abaqus (volume redundancy uncorrected), FLagSHyP Modified 

(with volume redundancy correction), and Abaqus with the “matrix” stiffness and density reduced 

to correct for volume redundancy. We hope to show that the two types of correction are similar for 

the concrete material, since it has a low fiber volume fraction, but significantly different for the 

high-volume fraction materials of Dyneema® and brain matter.  

To that end, we selected material properties for each of the materials (Dyneema®, rebar 

reinforced concrete, and brain white matter). Material properties for Dyneema® in Table 5- 1 are 

the calibrated properties from the work done for the IMECE conference in November, concrete 

properties in Table 5- 2 are from a paper by Garg et al. 2009[29] on FE modeling of reinforced 

concrete box culverts, and the brain material properties in Table 5- 3 are from a paper by Garmella 

et al. 2017[83]. Note that while Dyneema® and the concrete can be modeled as linear elastic 
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materials, the brain material model consists of a Mooney Rivlin matrix material and an Ogden fiber. 

These two material types are not available in FLagSHyP Modified yet and will need to be added to 

accurately model this material.  

 

 

Table 5- 1: Material properties used in our previous embedded element models for Dyneema® 

Dyneema® 
     

  Density   
Elastic 
Modulus   ν 

Matrix 1100 kg/m^3 1.1 GPa 0.3 

Fibers 980 kg/m^3 180 GPa 0.49 

Fiber Volume Fraction 83%         

 

Table 5- 2: Material properties for steel reinforced concrete taken from Garg et al.[29] 

Concrete, Garg et al. 2009[29] 
   

  Density   
Elastic 
Modulus   ν 

Matrix 2400 kg/m^3 27.579 MPa 0.17 

Fibers 7850 kg/m^3 200,000 MPa 0.3 

Fiber Volume Fraction ~1.05%         

 

Table 5- 3: Material properties for brain white matter taken from Garmella et al. [83]. Note that 
the matrix material is modeled as a Mooney Rivlin material and the fibers as Ogden. 

Brain, Garmella et al. 2017[83] 
       

  Density   C10   C01   D1   

Matrix 1040 kg/m^3 -100 Pa 1.2 kPa 9.09E-10 1/Pa  

      α   μ   D1   

Fibers 1040 kg/m^3 5   2.5 kPa 9.09E-10 1/Pa  

Fiber Volume Fraction 79%               
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5.2.2 Move FLagSHyP Modified to a Faster Language 

As discussed in Chapter 3, FLagSHyP Modified (FM) is a MATLAB based finite element 

code developed from a code used for teaching the algorithm basis for large strain finite element 

analysis and is therefore not optimized for efficiency or computing on multiple processors. 

Currently it takes several hours to run a model with only a few hundred host and embedded 

elements. There are two options to make this code more usable. One would be to rewrite the code 

in a faster coding language like C. The other is to use the concepts and processes in FM to create a 

custom process that can be used with an established code like Abaqus. Abaqus allows the creation 

of user subroutines, material types, and even element types. Coding the volume corrected 

embedded element into Abaqus might be difficult because it involves correcting both the mass and 

the stiffnesses of all the host elements and some information (such as which embedded elements 

are located in which host elements) is unavailable to user subroutines. It may require combining 

several types of user subroutines to correct for volume redundancy. This complexity is why creating 

a MATLAB code that we have full control of was pursued for this project rather than adding the 

capability to Abaqus. However, the subroutine option is possible, it would allow the corrected 

embedded element method to be used for modeling composites far sooner than rewriting the code 

from scratch and attempting to make that new code competitive with the speeds of established 

commercial codes.  

5.2.3 More Experimental Validation 

Some experimental validation was presented for using the embedded element method for 

modeling Dyneema® in Chapters 3 and 4. However, confidence in this method would be improved 
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by more extensive experimental validation. Chapter 3 presented a first look at tension test data but 

the data was used to show that the overall response of the model did not depend on the mesh density 

of the embedded elements. The material properties used in those finite element models were 

calibrated from the experimental data. For the embedded element method to be useful in the way 

that we hope it will, independent measurements for fiber and matrix properties should be taken 

from tension tests on just fibers and just matrix material. Those properties should then be used in 

the embedded element model and compared to tests on the full composite to see if the combination 

of the two components using the embedded element method does truly represent what we see in 

composite behavior. This was not done in this work partially because, while experimental data 

corresponding to single fibers is available in the literature, data on the matrix material is incredibly 

scarce. Some sources claim that is impractical to test the matrix material because it is such a small 

percentage of the total composite and the thermosetting process in the creation of the composite 

alters the matrix properties anyway[13], [50], [80].  

In addition, the effect of high strain rates on models using the embedded element should 

be further researched. We have shown in Chapter 3 that the additional kinetic energy from the 

volume redundancy increases with increasing strain rates (i.e., increasing velocity) but have not 

determined how important this is for impact simulations. We have also not investigated wave 

propagation through the model, though we believe this is also negatively impacted by the volume 

redundancy.  

 Finally, the curved plate model has no comparison to experimental data and is only a 

proof-of-concept. Obviously doing plate impact experiments on Dyneema® plates and then 

comparing those to an embedded finite element model would be a good step to see how much the 

curvature of the fibers effects the failure when compared to the failure and deformation of a flat 

plate. From a finite element standpoint, more modeling could be done with just different sizes of 

plates and types of curvature to see how the model responds to these changes and try to determine 
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what effects could be physical and which may just be numerical or due to assumptions imposed on 

the model itself.  
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Appendix A 
 

Derivation of a One-Dimensional Neo-Hookean Truss Element Material 
Model 

The neo-Hooke material model gives a stress strain relation that is dependent on the 

material properties and the deformation gradient as shown below.  

𝛔𝛔 =
3λ + 2μ

3
(𝐽𝐽 − 1)𝑰𝑰 + 𝜇𝜇𝐽𝐽(−5/3) �𝑩𝑩 −

1
3
𝐼𝐼1𝑰𝑰� 

Here bold values are 3x3 matrices, λ and 𝜇𝜇 are the Lame constants of the material. For a 

deformation gradient 𝑭𝑭, 𝑩𝑩 = 𝑭𝑭𝑭𝑭𝑻𝑻 , 𝐼𝐼1 = 𝑡𝑡𝑡𝑡𝐺𝐺𝑡𝑡𝑡𝑡(𝑩𝑩), and the Jacobian, (which also represents the 

change in volume of the material), is 𝐽𝐽 = 𝑑𝑑𝑡𝑡𝑡𝑡(𝑭𝑭). Truss elements only support tension and 

compression along their axis. However, there is not much information on how this material model 

should be applied to one-dimensional elements so it was derived based on the description of the 

nonlinear truss element from Bonet and Wood and the normal 3D neo-Hookean model.  

 

The common measure of deformation in a truss element is the stretch. For this one-

dimensional element, the deformation “tensor” becomes 𝐹𝐹 = Λ, where Λ is the ratio of the current 

element length to the reference length.  

 

The rest of the deformations follow from this in a 1D sense: 𝐵𝐵 = 𝐹𝐹𝐹𝐹𝑇𝑇 = Λ2 , 𝐼𝐼1 =

𝑡𝑡𝑡𝑡𝐺𝐺𝑡𝑡𝑡𝑡(𝐵𝐵) = Λ2 ,  𝐽𝐽 = 𝑑𝑑𝑡𝑡𝑡𝑡(𝐹𝐹) = Λ. Then it should be a matter of simply replacing the matrixies in 

the truss equation with these scalars. These stress results were checked against a single truss 

element in Abaqus, with the assumption that Abaqus knows how this 3D model should be applied 

to a 1D element, even if the documentation does not explain how that works. As shown in , this 

was the wrong approach and did not agree with Abaqus at all.  
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Figure A- 1: Stress results of a single truss element in Abaqus and FLagSHyP where FLagSHyP uses an 

assumed 1D neo-Hooke material formulation. 

In their textbook, Nonlinear Solid Mechanics for Finite Element Analysis: Statics, Bonet 

and Wood explain that the Jacobian of a nonlinear truss element should be 𝐽𝐽 = Λ1−2𝜈𝜈 

where ν is the Poisson’s ratio of the material. This comes from the fact that when strains are large, 

the cross-sectional area of the truss will change a non-negligible amount. With the assumption that 

the change in radius of the truss can be expressed as a linear function of the axial stress: ϵ𝑓𝑓 = −νϵ𝑎𝑎  

(ν can be calculated from Lame’s constants), the change in volume of the element can then be 

calculated. 

 

In this case, nonlinear truss elements do actually have multi-dimensional strain and stress, 

since the radial strain is ϵ𝑓𝑓 = −νϵ𝑎𝑎 . Then, the deformation measures are 

 

𝑭𝑭 = �
Λ 0 0
0 Λ−𝜈𝜈 0
0 0 Λ−𝜈𝜈

� ,  𝑩𝑩 = �
Λ2 0 0
0 Λ1−2𝜈𝜈 0
0 0 Λ1−2𝜈𝜈

�, 𝐼𝐼1 = Λ2 − 2Λ−2𝜈𝜈 

 
(As a check, 𝑑𝑑𝑡𝑡𝑡𝑡(𝐹𝐹) = 𝐽𝐽 = Λ(1−2ν)  which is what was initially assumed). The deformation 

gradient in this case is oriented so that the [1,1] term is the deformation in the direction of the truss 
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axis, [2,2] and [3,3] are the radial deformation (assuming radial symmetry). The other terms are 

zero since the truss element can’t describe shear motion.  

 

With this representation, a 3D stress tensor can be calculated for the truss. But since we are 

only interested in the axial stress of the truss (technically still a 1D element), the primary stress is 

in the [1,1] spot and we can take that as the truss stress. This method matches Abaqus almost 

exactly.  shows analytical formulation compared to Abaqus for several different material types. The 

agreement is almost exact, except for when the material is nearly incompressible.   

 
Figure A- 2: Stress results from Abaqus and FLagSHyP for a neo-Hookean truss element in tension. Several 

different material types were tested to show that the final version of FLagSHyP works for different 
properties. 

 
According to the Abaqus documentation, incompressibility is delt with by using an 

augmented stress equation. This would take some time to understand and there is currently no need 

to model incompressible materials, so the truss material model described above should be sufficient 

so long as incompressible test materials are avoided analytical.  

 



121 

 

Something discovered about Abaqus is that even though the model using 𝑱𝑱 = 𝚲𝚲(𝟏𝟏−𝟐𝟐𝛎𝛎)   

seems to give the stress results that Abaqus produces, the documentation states that truss elements, 

even under large strain, are treated as incompressible, therefore 𝐽𝐽 = 1. Abaqus certainly uses this 

assumption when calculating truss reaction forces. This is shown in  . The reasons for this apparent 

discrepancy are unknown. It seems that nonlinear hyperelastic truss elements are not of much 

interest to the Abaqus community so there is limited information. But FLagSHyP can now 

duplicated the results of an Abaqus neo-Hooke truss element, even if the internal force in the truss 

is technically wrong. Modeling a neo-Hookean truss perfectly is not the goal here, we want to show 

that Abaqus’s embedded element method has a volume redundancy, and we can do this as long as 

FLagSHyP can get the same results as Abaqus’s code, regardless of minor inaccuracies.  

 
Figure A- 3: Abaqus stress and reaction force for a truss element in tension. In this case, the reaction force 
should be equal to the element stress times the current cross-sectional area. Abaqus uses the assumption 

that the material is incompressible (J=1) for this. 
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Appendix B 
 

Modified getForceEffective Subroutine  
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Appendix C 
 

Mild Steel: Johnson-Cook Material Properties 

Table C- 1: Material properties used for the Abaqus model of the rectangular mild steel plates. 

E (GPa) 203 Iqbal et al. 

ν 0.33 Iqbal et al. 

ρ (kg/m^3) 7850 Iqbal et al. 

Ref rate 

(1/s) 

0.001 Iqbal et al. 

A (MPa)  304.33 Iqbal et al. 

B (MPa)  422 Iqbal et al. 

n  0.345 Iqbal et al. 

c  0.0156 Iqbal et al. 

m 0.87 Iqbal et al. 

D1 0.1152 Iqbal et al. 

D2 1.0116 Iqbal et al. 

D3 -1.7684 Iqbal et al. 

D4 -0.05279 Iqbal et al. 

D5 0.5262 Iqbal et al. 

G (J/m^2) 180,000 ASTM 

Ultrahigh-

Strength 

Steels 
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  Appendix D  
 
Information on the GitHub Repository for FLagSHyP Modified (FM) 

The code for FM, its documentation, and the MATLAB scripts for embedded fiber creation 

can be found at https://github.com/Valerie96/ExplicitFiniteElementEmbeddedVolumeCorrection.  

https://github.com/Valerie96/ExplicitFiniteElementEmbeddedVolumeCorrection
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