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ABSTRACT

The last several decades have experienced an editraidly focused effort on
developing general-purpose numerical methods inpedational electromagnetics (CEM) that
can accurately model a wide variety of electrom#égrsystems. In turn, this has led to a number
of techniques, such as the Method of Moments (Mdh®,Finite Element Method (FEM), and
the Finite-Difference-Time-Domain (FDTD), each dfieh exhibits their own advantages and
disadvantages. In particular, the FDTD has becomiealy used tool for modeling
electromagnetic systems, and since it solves Mdsaegjuations directly—without having to
derive Green'’s Functions or to solve a matrix eignabr—it experiences little or no difficulties
when handling complex inhomogeneous media. Furtbexnthe FDTD has the additional
advantage that it can be easily parallelized; hadce, it can model large systems using
supercomputing clusters. However, the FDTD metlatbt without its disadvantages when used
on platforms with limited computational resourdést many problems, the domain size can be
extremely large in terms of the operating waveleagivhereas many of the objects have fine
features (e.g., Body Area Networks). Since FDTDunexg a meshing of the entire computational
domain, presence of these fine features can Signifiy increase the computational burden; in
fact, in many cases, it can render the probleneettho time-consuming or altogether impractical
to solve. This has served as the primary motivatidhis thesis for developing multi-scale
techniques that can circumvent many of the problasseciated with CEM, and in particular
with time domain methods, such as the FDTD.

Numerous multi-scale problems that frequently anseEM have been investigated in
this work. These include: 1) The coupling probleetween two conformal antennas systems on
complex platforms; 2) Rigorous modeling of Body Afdetworks (BANSs), and some

approximate human phantom models for path lossachenization; 3) Efficient modeling of fine



features in the FDTD method and the introductiothefdipole moment method for finite
methods; and, 4) Time domain scattering by thirewstructures using a novel Time-Domain-
Electric-Field-Integral-Equation (TD-EFIE) formuian. Furthermore, it is illustrated, via several
examples, that each problem requires a unique appréinally, the results obtained by each
technique have been compared with other existimgemical methods for the purpose of

validation.
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Chapter 1

Introduction

1.1 What is Multi-scale Electromagnetics?

The term multi-scale has become an increasinglylflaofut difficult topic amongst the
computational electromagnetics community. In sharlti-scale electromagnetics pertains to
those geometries in which both electrically largd amall features are present, and they continue
to push modern computational techniques to thaiitdi For finite methods (FDTD, FEM) the
multi-scale nature of the problem exacerbates iffiewdties in generating a good quality mesh
that does not suffer from ill-conditioning behavibr principle, finite methods can model an
arbitrary geometry but the CPU time and memory irequents posed by multi-scale problems
can quickly render these techniques either too-tioresuming or altogether impractical. In many
multi-scale problems the number of unknowns canhrédllions and these problems quickly
become unmanageable without sufficient computinggroThe bottleneck is most often
attributed to the fine features of the problem arahy attempts have been made to circumvent
the meshing requirements dictated by these geasetiiowever, most approaches have met with
limited success, either because of instability fgois arising in the FDTD or the matrix size in
FEM. In contrast, the Method of Moments (MoM) hasdifficulty when dealing with multi-
scale structure because the approach does noteegeshing the entire computational space.
Although MoM avoids these meshing constraints &tber, it does require a knowledge of the
Green’s function for the medium. In many practigadblems the Green’s function is either

unavailable or its computational implementationdrees overly complicated. Therefore, the
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MoM is seldom used when complex inhomogeneous nadianvolved and finite methods are

generally regarded as best suited for these typgoblems.

1.2 Emerging research in Body Area Networks (BANsand its electromagnetic Multi-scale
nature

Recently, the need for accurate modeling of peréoree of antennas and sensors
operating in the human body environment, and tldi@hges encountered when attempting to do
this by using conventional numerical methods, Hasen widely recognized. The process of
modeling on-body and in-body sensors truly brirgyiote the problematic features of finite
methods when applied to the simulation of objedth multi-scale inhomogeneous geometries
such as the human body which is electrically lavgegreas the antennas or sensors mounted on it
are comparatively very small. The interaction betwelectromagnetic energy and biological
media has long been a source of focused reseadchaandrawn the attention of researchers in
both the measurement and analytical communitiexeSine early years of electromagnetic
engineering, researchers have attempted to modedsiimate the effects of human exposure to
RF radiation. These early attempts where limitesingple measurement of dielectric properties
of biological tissue samples and approximate cattns of specific absorption rates (SAR) by
using simplified models that made the problem #ilet even when available computing
resources were limited. For example, prior to teestbpment of the Geometrical Theory of
Diffraction (GTD) by Kelleret al., estimates of the SAR were based on the solafigane
wave scattering for both spherical models of thenéw head and oblate spheroids for the torso. It
has been recognized, however, that it is highlyrdeke to improve the accuracy of SAR
calculations, since the measurements entails thiging of live specimens that not only may pose

ethical problems, but may be highly costly as we#spite these limitations, early researchers



relied on simple models in an attempt to understmadtering and absorption properties of
biological media, involving scatterers, which vkt referred to herein as anthropomorphic forms.
Although these simple models did yield some usgftid, they were often found to be much too
crude when attempting to simulate the scatteriog@nties of objects with anthropomorphic
geometries. The GTD was first introduced for RG®l&r cross-section) computation of radar
targets by utilizing combinations of canonical gebnes to represent a fairly realistic model of
the problem at hand. It is recognized, howevet, dieapite its success in the area of RCS
computation, the GTD is neither well suited for Sé&culations involving human bodies, nor is
it commonly used to analyze radiating elementfiéndresence of an inhomogeneous scatterer
except in limited cases. For instance, some rekesdave used hybrid techniques to analyze the
propagation of creeping waves in the asymptoticoregon the body to estimate the coupling
between two antennas that are located close todthe. However, despite the extensive
developments of the GTD and related asymptoticriigeies over the last our decades, these
methods have not rivaled the accuracy and vettyatiiithe numerical techniques.

Thus far, many of the modeling tools mentioned &bwawve primarily focused on
scattering and absorption of electromagnetic wéwes biological media; and, in fact this was
the primary interest in the early days of radio ommication. However, with the unabated
growth of personal computing devices, cell phoE3A’s, medical implants, etc., a recent wave
of interest has focused tody-centriccommunications or body area networks (BANs). Tagid
of this research is an attempt to implement thdéogiie of wireless land area networks (WLAN)
in the human body environment. The standard opey&iand assigned to body-centric
communications is 3-10 GHz. This poses a verydiifif task for the engineer since the human
body is a very complex platform in which to operetgciently. Some unique features of the

human body are: 1) it is very lossy and highly imogeneous; 2) it has non-Debye dispersion
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properties; 3) it is electrically large; 4) it iman-stationary environment. All these features enak
the study of BANs unique, complex and highly chadjieg.

To-date, most preliminary research related to BAbs focused on measurement efforts
(Hall et al.,[7]). For example, much research has been dedi¢atthe mutual coupling between
antenna elements mounted on the body. These stoaie characterized the coupling coefficient
as a function of the distance around the torsahodigh these results are useful, they are limited
to specific antenna configurations and fail to agaedor SAR within the body. Furthermore,
these measurements cannot address the behavinteahas inside the body, which is crucial
information for medical implants. Nevertheless stheneasurements do serve as a benchmark for
numerical codes that attempt to model the samequhenon.

The growing need to model electromagnetic radiatiberacting with biological media
along with the limitations of measurements havenedt researchers to rely upon the numerous
advances in numerical methods. Although severalemiga techniques, such as MoM, FEM, and
FDTD, are available for CEM modeling, the FDTD nwtthas been viewed as the most
desirable approach to modeling these types of prol The major reason for this is that FDTD
has many advantages over other methods, namelyisBighly parallel; 2) it can handle highly
inhomogeneous media; 3) it can handle dispersivdianand 4) it generates a wideband
response. However, as with other numerical methibeds=DTD is not without its limitations.

For instance, the conventional FDTD does not eitplibandle curved geometries. Typically,
these types of structures require a modified varsidhe basic update equations usually referred
to as the conformal FDTD or CFDTD [28] for shorhi§ technique has been well tested and has
been demonstrated to yield accurate results foyrnanonical geometries, e.g., spheres, for
which an analytical solution is available for reflece. Unfortunately, this embellishment of the
conventional FDTD does not help address the prolofeatcurate modeling thin structures that

neither fill the Yee cell only partially, nor lienghe cell grid. Additionally, wire structures tha
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are orientated at an angle with respect to the FDESh cannot be conveniently handled by the
FDTD. For example, it has difficulty in modelinginn curved wires, e.g., helical antennas, unless

the cell size is made extremely smaik(/ /20) to accurately capture the nuances of the thin
curved structure. Note thdt/20is the well known nominal cell-size taken at th@epfrequency

limit of the source excitation and the largestelitlic contrast from free space. This inability to
accurately handle thin, curved and arbitrarily otéel structures poses a formidable challenge to
modeling antennas or scatterers in the FDTD sinaulaif BANS.

There are additional subtle points to be made atheutimitations of FDTD specifically
related to the problem of BANS. First, many of #mennas used in BANs can be geometrically
thin and also electrically very small, whereashhbenan body is an electrically large object in the
band 3-10 GHz. These two extreme conditions pgeelalem for FDTD simulations.

Obviously, the dimensions of the small antennafecat will dictate the global cell size in the
computational domain, and the computational castoeahigh when this size is small. Secondly,
in many cases the antenna can be significantlylenthian the required cell size needed to model
the human body. The brute force approach to simetiasly modeling these antennas together
with the entire human body can require simulatiores that are several orders of magnitude
larger than they would be if the antenna/scatteaerdimensions on the order of the nominal
FDTD cell size. Therefore, if it is highly desitalio devise techniques that avoid the
computational expense of using small cell sizesadel the antenna/human body composite,
there are two approaches that may be proposediiog this. The first is to model the local
problem involving the radiating structure and d@sdl environment. This essentially means that
we only consider the local properties of the bodg eodel the fine geometrical details of the
antenna/scatterer with the required mesh size.i$ksiable solution if only the terminal

properties of the antenna, e.g., the impedancetendear-field behavior, are of interest.
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However, if we are interested in estimating theptiog between two antennas, whose separation
distance is large, and we wish to maintain the mal¥DTD cell size, with respect to the body,
then we must seek alternative solutions. The teghas for handling these types of problems will
be referred to herein as multi-scale methods.

Thus far, the limitations of FDTD have been ideatfin the context of the simulation of
BANSs or electromagnetic interaction with biologicaédia. It should be recognized that there are
a whole host of problems, with BANs being a specéae, that exhibit multi-scale features that
tax the conventional numerical approaches. In the section we will present a summary of the

multi-scale techniques developed in this thesisheg relate to several issues alluded to above.

1.3 Thesis overview

Chapter two introduces some novel techniques tieatapable of handling general planar
complex multi-scale electromagnetic coupling praidewhere they can be applied to many
applications in addition to BANs. In many scenatios antenna or array system is conformal to a
surface and operating in the presence of multipgéesns that are similar. This is typically the
case for radar systems, and especially for the BANi®n the separation distances are large
compared to the operating wavelength — exceedingrakor even tens of wavelengths — but
the system is highly sensitive so that the couplietyveen two such systems is of great concern.
For example, two array systems comprising of mdesnents with fine features conformal to a
RAM material is commonplace in military applicat®nin BANs, the problem geometry usually
consists of several sensors placed strategicallyral the body. Such a problem is electrically
large and would require expensive computationalueses if full-wave solvers, such as FDTD,
were used. Furthermore, the antenna or array eksrmoan have fine features which require high

resolution meshing and thus exacerbate the diffesiencountered in the computational effort.
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One approach that has been used in the past tororemt this problem is to use a serial/parallel
version of the FDTD. This approach decomposes ithielg@m into subdomains and assumes that
multiple reflections between the subdomains candugected at large distances. Each
subdomain, starting with the domain containingabtve elements, is rigorously solved by using
the conventional FDTD. Subsequently, each subdomaircited by the equivalent field sources
saved on the boundary of the previous domain. Thegss marches on in time for each
subdomain until the final receiving elements areited. The method inherently saves the
computational resources needed to model the goitdem, though not the simulation runtime.
However, we can obtain a very accurate approximdtdhe full-wave solution and further limit
the computational cost by reducing the problem gmhaller parts using various techniques.
Toward this end, we introduce a time-domain Greémistion approach to solving these types of
problems.

The time-domain Green’s function method is a mstiép algorithm, each requiring
special numerical techniques to arrive at the fawalpling calculation between two radiating
elements. The antenna or array system is assuniiedoto a planar complex substrate, which
may be a RAM material for military-type array syate and the human body is modeled as a
locally planar, complex half-space for BANs. Théf space problem for BANSs is reasonable for
antennas mounted on the same side of the torsochwdha common location for sensors. The
method begins by rigorously simulating the excidgiments in their respective local environment
by using the conventional FDTD and storing the aperfield in a matrix. The aperture field is
determined by setting a threshold level, say -20l#Bow which the fields can be neglected.
These aperture field distributions subsequenthaa&quivalent sources radiating into the
medium. It is important to point out that we hawglected the contribution of the equivalent
sources residing on the surface inside the matduialto the lossy nature of the substrate.

Therefore, the equivalent sources exist only orpthear aperture above the antenna/array.
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Once the aperture field is stored, we turn to #s& bf deriving a time-domain Green’s
function for both electric and magnetic sourcethst we may simply use the convolution
integral to find the total field anywhere in thend&in. In the context of the reaction theorem, only
the fields on the aperture of the receiving antéamnay would be needed and, hence, we choose
the substrate surface as the observation poimtuorerically determining the time-domain
Green'’s function.

The time-domain Green’s function is calculated kspacial version of the FDTD
algorithm, known as the Body-of-Revolution FDTD (R&DTD). The reason for using this
version of the FDTD is that it removes the azimubehavior of the fields and yields only the

Fourier coefficients that are functions of z anel thdial distance; . After obtaining a

numerical solution for the time-domain Green’s fiuime well into the asymptotic regions, we can
apply Prony’s method to extrapolate these fieldarhitrary radial distances on the aperture
surface of the receiving unit. The coupling betwtese two systems can now be computed in a
straightforward manner via the use of the ReacTio@orem.

Chapter three deals with the rigorous full-waveausoh, via the FDTD method, in an
attempt to obtain realistic communications channadi@hs for on-body communications in
BANSs. The problem of modeling the coupling betwbedy mounted antennas is often not
amenable to attack by hybrid techniques owing éocttimplex nature of the human body. For
instance, the time-domain Green’s function apprdsedomes more involved when the antennas
are not conformal. Furthermore, the human bodsrégjular in shape and has dispersion
properties that are unique. Therefore, it mustréatéd with a modified version of the basic
FDTD algorithm, which will be introduced in Chap&rOne consequence of this is that we must
resort to modeling the antenna network mountecherbody in its entirety, and the number of
degrees of freedom (DoFs) can be on the ordedladrs. Even so, this type of problem can still

be modeled by employing a parallel version of tBa B algorithm running on a cluster. Lastly,
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we note that the results of rigorous simulatioBA&Ns can serve as benchmarks for comparison
with the abundance of measurement data.

Despite the capability of FDTD to model the comptexnan body in its original form, it
is often desired to seek out good geometrical apmations. This has been documented in the
literature for both measurement and simulation pseg. However, to-date a quantitative study
that demonstrates the accuracy of the results w&nplified models has not yet been reported.
Therefore, it is highly desirable to carry out ardepth study of these approximations and to see
how well the results based on these approximationgpare to the rigorous simulation of the
human body. A detailed characterization of this panison has been carried out and will be
presented in Chapter 3.

Next, in Chapter 4 we will introduce an entirelyanbybrid approach to modeling fine

geometrical features in the FDTD without reducing hominal cell size (typically taken to be

/h‘g%o), where/ ,,, is the wavelength at the highest simulation fregye The general nature

of the problems described thus far can be simfdgled as electrically large in nature as they
relate to the inhomogeneous host medium, e.g.infdance the human body. However, in most
cases, the radiating or imbedded scattering strestiave geometrically fine features so that they

would be nonintrusive, and the size of these atrestare typically smaller than the FDTD cell

size, which is nominally chosen to 6@9%0 , as needed to remain nonintrusive. It is evident,

therefore, that the problem at hand is multi-saaleature. The computational burden to model
both fine features and the large host medium resr@icommon problem in the simulation of
BANSs, as well as in the modeling of medical sensbngarious types. Although attempts have
been made by a number of researchers to incorpaonaltescale techniques in the FDTD — and
it has been an active research area during thedaside — a robust approach to modeling the

one or more small structures located in a host umadias yet to be reported. This has motivated
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us to pursue the developments of a multi-scale ogebiased on the dipole moment concept that
will enable us to model these problems in the cdraéthe FDTD.

The principal motivation for using the dipole morm@M) approach is that the near-
field behavior of the DM representation is quaatistin nature. In fact, we show in this work
that any small scatterer/antenna can be represbptadlipole moment representation, regardless
of its geometrical shape, and it is this propengt enables us to couple the quasi-static solution
to the FDTD. Thus the problem at hand is to firdipole moment representation for an arbitrary
geometry which is electrically small. In Chaptewd describe how the scattered field of an
electrically small structure can be computed by etiod it as a continuous chain of spheres each
having an analytically known dipole moment. Thiprgach has been validated for straight wires,
bent wires, loops, etc., when used to computedatesed field.

By expanding on the dipole moment concept it willdemonstrated how we can couple
the scattered field of a sphere — or any knowrriBigtion of dipole moments for that matter —
to FDTD for lossless and lossy media when the esgatis contained either within a single or
multiple FDTD cells. The scattering results for #phere are compared with the Mie series to
serve as a benchmark test to validate the approach.

Of course, in many applications there may be mlgltimall scatterers located near each
other and it is desired to have an FDTD formulatizam can account for this coupling. It has
been demonstrated that the formulation given inpBdrad can accurately model the scattered
fields of two small spheres located in adjacent BIZEIlls.

Often the geometrical details may be fine in soagards but not in others. For instance,
simulating a thin wire is problematic for FDTD rmcause of its length but due to the small
radius desired to be modeled. Therefore, an apbriteat can apply the dipole moment
formulation to structures that pass through mutigglls in the FDTD but posses some fine

geometrical features, e.g., zig-zag, loop and hktiotennas will be presented.
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In Chapter 5 we will introduce a new approach ®Time-Domain-Electric-Field-
Integral-Equation (TD-EFIE). This approach relig®mn the known closed-form solution for a
wire carrying an assumed sinusoidal current distidim. This closed-form solution for the
electric field has been generalized in this workt¢oount for bent wire geometries. Furthermore,
it has many attractive features that make it amenalformulating the TD-EFIE. Specifically,
the electric field produced by a wire carrying gssumed current distribution is represented as a
sum of complex exponential terms, which providéngpte representation of the fields in the time
domain in terms of delays. By expanding on thisiitasis possible to construct a matrix
equation for the current distribution in the timanthin for a given geometry. The ability to
construct a TD-EFIE has the potential for futurbfigization with the FDTD in scenarios where
the propagation along wire geometries must be densd. In contrast, the dipole moment
approach cannot account for this behavior. Theegf@mnovel formulation based on this concept
along with some results for simple wire and looprgetries will be presented.

The results and contributions of this thesis wdldummarized in Chapter 6. Finally, we
will provide some avenues of future research thatapply the results of Chapter 5 towards a

hybridization with the FDTD.

1.4 Background Material

The Finite Difference Time Domain (FDTD) technigee very popular tool for
analyzing many electromagnetic problems due tfiaxgbility in modeling complex media and
suitability for parallelization in large computimtusters. In addition, it has the advantage over
other methods in modeling planar antenna geomaetiithsayered media. Furthermore, since the
FDTD method is performed in the time domain, it tlesbenefit of generating wide-band

frequency domain results from a single simulatientiie Fourier transform.
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The FDTD technique is based on Maxwell’s curl epuret, which quantify the fields for

all time and space. Explicitly they are given by

R H=J+00
Tt (1.1)

N E=-M-1B

Tt

In the FDTD technique, central differences are useapproximate Maxwell’'s curl
expressions in (1.1). The development of this axipration is based on the Yee algorithm,
which uses central differences to relate the deviea of the neighboring discrete fields. The unit
cell in Fig. 1.1 graphically shows the spatial agement of the fields in the Yee algorithm and is
known as a Yee cell. In order to accurately descgdometrical parameters, source excitations,
and observation points, it is necessary to havengtete understanding of where the fields are

located in the FDTD mesh.

Fig. 1.1: The Yesl used in FDTD.
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Since the Yee algorithm centers tkeandH -field components in time, it is commonly

termed deapfrogscheme. The resulting update expressions fottiee tomponents of thie -

and H -fields in a cubic lattice witlDx = Dy = Dz = Ds, each corresponding to the Cartesian

coordinate system, are given by
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(1.2a)

(1.2b)

(1.2¢)

(1.2d)

(1.2e)

(1.2f)

where (i, j,k) represent the spatial index ands the time index, [51]. The electric and magnetic

field coefficients at the poir(ti, j,k) are given by
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As the Yee algorithm indicates, the choice of gpatiscretization is key to obtaining

numerically stable and accurate results. It has fi@end that the choice of cell size should be no
larger than approximatelg% to provide for sufficient sampling of the fieldsdato minimize the

effects of numerical dispersion. Much smaller seles are necessary in cases where the
geometry has fine features. To guarantee numesiahllity in the general case, it has been

shown that the following condition must be satidfj0]:

Dt £ ! (L4
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The expression in (1.4) is referred to as the Qawtbility condition and is a necessary
requirement when constructing the FDTD mesh foigds@metry under analysis.

As for most finite methods, the FDTD algorithm meshhe entire computational space,
and therefore requires proper treatment of the dayntruncation. Specifically, the finite
computational domain boundaries should yield littteno reflections in order to accurately
analyze open boundary radiation problems. Oveyéaes, several absorbing boundary
conditions (ABCs) have been proposed, and oneeo$ithplest has been developed by Mur, [51].
The FDTD simulations presented in Chapter 4 utilimeMur type ABC since it gave sufficiently
low reflections while reducing the computationasicddowever, for some cases the Mur ABC
has been known to introduce reflections that caiseahe simulation accuracy to suffer. In recent
years, the ABC proposed by Berenger, [47], hasibhedbe most popular choice for handling the
FDTD boundaries. This type of ABC is commonly reéerto as the Perfectly Matched Layer
(PML) in the literature. It has been demonstrated this technique can lower reflections from
the outer boundaries by several orders of magnitten compared to other approaches. The
PML formulation introduces an artificial anisotropnedium and uses a modified set of
Maxwell's equations in which the fields are spilitd two components at the interface of the ABC
and simulation space. In effect, the resulting wiaygedance is perfectly matched to the
simulation space and is independent of the incidagte. In principle, the outgoing waves are
attenuated in a direction normal to the layerdefdrtificial medium as they impinge on the
PML. Although accurate results can be achievedlagipg as few as 4 or 5 cells between the
radiating structure and the PML boundary, it ig¢gfly preferred to maintain a minimum of 10
cells. The FDTD simulations presented in Chaptean@®3 are based on a modified variation of
Berenger’'s PML, which consists of six layers. Tdlternate approach has been shown to enhance
the computational efficiency while obviating theedeo modify the FDTD update equations for

the split field formulation.
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Chapter 2

A Numerically Efficient Technique for Determining the Coupling in
Electrically Large Conformal Array Systems
In this chapter we provide a novel approach toifigdhe Green’s function for layered
media using the Body-of-Revolution-FDTD. From thiformation we can extrapolate the fields
to electrically large distances using Prony’s mdthis an application of this approach we

determine the coupling between two large Ku-bardi>tband arrays using the reaction concept.

2.1 Methodology

Green’s functions for layered media play an impartale in RF and microwave circuit
applications and they are time-consuming to constracause of the computationally intensive
nature of the Sommerfeld integrals. Several tealegdor expediting the construction of the
layered-medium Green’s functions have been propiwstee literature [1, 2], notable among
them is the closed-form Green’s function appro@hHowever, these techniques are still not as
efficient as one would desire, especially whensingrce and observation points are not strictly
located in the same plane. Furthermore, if the edatpnal domain size is large and the
observation points are many wavelengths away, ¢beracy of the closed-form Green'’s function
is known to suffer.

In this work we present a novel approach to coostrg the layered medium Green’s
function using the BOR (body of revolution) versiointhe FDTD, which has several desirable
attributes: (a) It poses no difficulty when handlimlayer problems, even whenis large; (b) it is

easy to analyze lossy layers, including RAM matsrig) the location of the observation point
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can be arbitrary in terms of horizontal and vettaiatances from the source; (d) the electric and
magnetic fields (all six components) are computieectly at all observation points in the
computational domain and, hence, they can be coeviyused to compute MoM matrix; (e)
surface wave contributions, which play an importaf at large distances from the source, can
be obtained without any difficulty; (f) the dieleictlayers can be truncated at an arbitragial
distance from the source to estimate truncatioecedfand, (g) the mutual interaction between
two sources (e.g., antennas) can be obtained Hyiagphe Reaction concept once the field due
to the first source at the location of the secomnel loas been obtained. The Green’s function
results are then combined with superposition testract the fields due to a distributed source.

To demonstrate the powerful efficiency of this noethve have chosen to analyze the
problem of EM I-type coupling between two arraygm@ing in the X- and Ku-bands, each with
18 elements. The arrays are mounted on a lossy Rilrial over a ground plane that mimics
the mast of a ship. The procedure for arrivinghatdolution is outlined as follows: ($)mulate
the antenna structure in isolation to obtain teahparameters and fields on an aperture just
above the conformal antenna; (2) Treat the fielddis aperture distribution as equivalent
sources,J andM , in the analysis that follows. We assume tha itifiormation can either be
obtained or givem priori; (3) Use the BOR-FDTD to simulate the problem offifontal electric
and magnetic incremental sources residing on texdal model, and construct the appropriate
Green’s functions for the layered media; (4) Ustany-type analysis of the fields at large
distances from the source where only surface wdwgsnate; (5) Break up the obtained
transmitting aperture into a discrete number oféntental sources (both magnetic and electric)
and apply superpaosition to an arbitrary receivetape size; (6) Apply th®eaction concefib

compute the coupling between the two arrays bygudia fields obtained on the receive aperture.
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2.2 The Body-of-Revolution FDTD (BOR-FDTD)

The Body-of-Revolution Finite Difference Time DomgBOR-FDTD) algorithm
enables one to analytically extract the azimutledlavior of fields that exhibit symmetric
behavior around the axis of revolution. The BOR-ED$ well suited for problems such as
circular waveguides, corrugated circular horn amésnand many other common geometries that
posses circular symmetry. The formulation of theRBEDTD presented below closely follows
that of [4]. It is based on the fact that thedgebenerated by these geometries and corresponding

sources can be represented in a cylindrical coateisystem as follows:

¥ ~ ~
E(r.f,zt)= E(r,m, z,t) gyenCOSMF + E(7, M, Z,t) y4q SINMF 2.1)
m=0
¥ . ~
H(r,f,zt)= H(r,m, zt).e,COSM  +H(r,m z1t),4q SINM/ (2.2)
m=0

wheremis the index for the harmonics in the azimuthahplarhe even and odd modes are
independent as long as the medium is isotropicréfbiee, we begin the analysis with Maxwell's

equations in the time-domain

o, IE
N H TS +sE (2.3)
< - H
N E:'/T’ﬂ—t'smH . (2.4)

Substituting (2.1) and (2.2) into (2.3) and (2r@tpddition to removing the cosine and

sine parts of the field components yields
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where the field components represent the Fouriefficeents to the even or odd modal

expansions, respectively. In final form, the fiettmponents are then found as

~ sinmf ~ cosmf
Ef = Ef H r = H r H
cosmf sinmf
~ cosmf ~ sinmf
E,=E . H, =H, (2.7)
sinmf cosmf
~ sinmf ~ cosmf
E,=E, H,=H, )
cosmf sinmf

The cosine and sine expressions in the bracketespective to the plus and minus signs
in (2.5) and (2.6). For brevity, we have omitted th 7 and z dependence in the Fourier
coefficients.

Equations (2.5) and (2.6) have now been reducadaom with only two spatial
dependencies, namely,and z . This serves as the motivation for using the BAR-B
formulation, since it reduces the original 3D pehlinto an equivalent 2D version. Specifically,

the FDTD formulation of equations (2.5) and (2. @stantially reduces the computational costs
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in comparison to those of the conventional 3D FDaMalysis. To formulate the FDTD update

equations for the BOR problem, we refer to Fig. 2.1

@
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Fig. 2.1: Configuration of field locations: (agkl locations in 3-D and (b) field
locations in 2.5-D (source from [4]).

For nonmagnetic materials, the expressions forthend H coefficients, resulting from an

application of the central-difference scheme (giegdly shown in Fig. 2.1), are given by

equations (2.8a-f) below:
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The plus and minus signs in the above equationeetated to which basis function has
been chosenin (2.1) and (2.2), respectively. Al@matic feature in the above equations is the

point wherer ® 0. It has been suggested that the most suitablegavdgal with this singular
point is to force theH, component to align with the z-axis. Consequertlig,first cell in ther -

direction will be offset by a half-cell inside themputational domain.
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2.3 Dipole Sources in BOR-FDTD

For rectangular-shaped conformal antennas, asasdtir aperture sources, the
equivalent problem is most conveniently represebted andy-oriented electric and magnetic
sources. However, the BOR-FDTD can only represamtces with azimuthal harmonic
symmetry, which the x- and y-oriented sources dqongses. This apparent obstacle to using the
BOR analysis can be overcome by decomposing thage<ian sources into their corresponding
cylindrical components, namely, - andf - oriented sources. Specifically, let us consider an

impressed electric field sourde;*"*® = E,, in the FDTD. This source can be represented in

cylindrical coordinates as

source —
E; =E, cosf

source — H
E; =-E,sinf

EEOUI’CE - EfOUI’CECOSf _ EfSOUI‘CeSinf = Eo (29)

Also note that the corresponding harmonic variaittneach field component
automatically satisfies (2.7). Therefore, we haweethod for implementing x and y-oriented

sources in BOR-FDTD.

In reality, the equivalent sources a#&™"**, J;"””e, M ¢ andM j"“me. Since the
FDTD primarily deals with Electric and Magneticléls, the source excitations it works with are
EZO, Ej"”rce, H "¢, andH j"“me. Therefore, the relationship between the FDTD sesiand
the physical sources will involve a normalizati@nstant that must be determined in order for

the two results agree.

source
EX

is an incremental source in free space, the nizatian constant
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will be the dipole moment of the corresponding &lecurrent source as shown in Fig. 2.2. In a

similar manner, the dipole moment can be foundaforagnetic current source fropng°""e.

N BOR-FDTD implementation
Z A

E’SOUI'CQ = EO COSf

)) Efource: _ EO sinf
Esource = ESecosf - EF°Csinf = E
3, =Idl E|
X

v

»
»

y

Fig.2.2: Simulating Horizontal Electric dipoles (BEin Free-Space using BOR- FDTD.

To demonstrate that these BOR-FDTD sources belatreeghysical ones mentioned in

source —

the previous paragraph, we have simulated a pointe excitationE = E,=1, at the

X

origin for 10 GHz, and have compared it to theahdariation of the analytical expressions for a
unit dipole moment in thg = Pl plane. In Fig. 2.3 we observe a near-perfecteageat

between the analytical and numerical results inginaitative behavior of the magnitude.
However, we also note that we need to utilize amadization factor in the magnitude of the
numerical results for it to agree with the analftione. For convenience, we choose to normalize
the fields to those that represent a unit dipolenert excitation throughout subsequent
simulations. In Fig. 2.4, we present a comparisetwben the analytical and numerical results,

for both the magnitude and phase, after they haea bormalized.
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Fig. 2.3: Electric field from an x-oriented HED @halytical results (b) Numerical results for

magnitude along radial.
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Fig. 2.4: Analytical and numerical results for miigde and phase after normalization.

At this point it is important as well as worthwhtle relate the purpose for the preceding
analysis to the problem at hand. Recall that thee@®s function represents the fields generated
by a point source of unit strength radiating in tiedium under consideration, which can be
possibly inhomogeneous. To numerically performdbevolution integral of an aperture source
distribution with the Green'’s function, it is nesasy to approximate the distribution as a
summation of weighted incrementaandy-oriented electric and magnetic sources, which is
precisely what has been simulated here. ThereffloeeBOR-FDTD can be used as a tool to
directly determine the Green’s function of an infog@neous medium throughout the entire
volume of the computational domain, and it enabketo calculate the fields generated by an

arbitrary aperture source distribution via supeitjpos
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2.4 Prony’s Method and the Time Domain Green’s Furton

The BOR-FDTD has the distinct advantage in thaliitws us to reduce the
computational space from 3D to 2D when simulatiognpsources. However, if we wish to
compute the fields at some very large distance, 834 , the computational cost can become
prohibitive. In order to circumvent this problemg Wwave used Prony’s method to extrapolate the
behavior of the fields in the asymptotic regionatbitrarily large distances, by using the Prony
parameters that we have extracted.

A full discussion of Prony’s method is providedAppendix A and excellent references
can be found in [3]. In summary, Prony’s method gowerful tool that estimates the field

behavior as a weighted some of complex exponertgiaés by
Nk
—_ r
g(r)=Ae™ | (2.10)
n

For our purposes of estimating the coupling betwteenwidely-spaced antenna arrays,
we are interested in extrapolating the fields geteer by the arrays in the asymptotic region. A
graphical illustration of how we use Prony’s methodddress this problem is shown in Fig. 2.5.
Also, a numerical example is presented in FigsaBd2.7 for a horizontal electric dipole source,
located at the origin of the BOR-FDTD computatiodaimain and radiating at the interface

between free space and a RAM material backed lsgung plane.
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Fig. 2.5: lllustration of Prony’s method for fieldsthe asymptotic region.
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Fig. 2.7: Numerical example of Prony’s method fdrosizontal dipole source at the interface
between free space and a RAM material backed lsgung plane.

For our purposes it was desired to find the Grefmistion for a RAM material with

parameters given 8 = 3.1, s = 0.134, whose height is 0.34,, and backed by a ground
plane. The BOR-FDTD computational domain extends fength of 13  along the radial

direction, and 1.7 ; along the vertical. The sources were placed aaithdielectric interface and
the Green’s function was computed in the same pana Fig. 2.7 (i.e., the source plane). The
data used for the Prony algorithm was derived énasymptotic region, beginning at 13/33
(see Fig. 2.9), after all fields were normalizedy dipole moment determined in the previous
section. The Green'’s function fdt, is shown in Fig. 2.8 for a vertical cut plane with

f = 0excited by an x-oriented magnetic point sourcemgsin the surface. It can be observed

that a surface wave along the air-dielectric irtegfis indeed present and is the primary
contributor to the planar antenna coupling. Fora@asing vertical distances, the behavior tends

towards that of a space-wave.
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dielectric interface for x-oriedtmagnetic point source.



31

2.5 Coupling Analysis Using the Time Domain Green’Bunction and the Reaction Concept

The numerically-determined Green’s function, useddnjunction with Prony’s
approach to extrapolating the fields to large radistances, enables us to determine the fields
generated by an arbitrary aperture-type sourcsikigle superposition. First, consider the system
shown in Fig. 2.10, where an 18-element X-bandapiray is placed on the same RAM material
described in the preceding section, and is seghlsta distance of approximately 30 free-space
wavelengths at 10 GHz from a spiral Ku-band array10 GHz, the X-band array is operating in
a transmit mode for the non-scanning case and thbafd array has only the center element
excited. The problem consists of determining tivéase wave coupling to the center element of
the Ku-band array. Although trivial, it is still portant to note that any contribution of the
incident power reradiated by the Ku-band arrayegligible, insofar as the estimation of coupling

level is concerned, and can be ignored in the dogiglalculation.

Transmitting array, no scanning

A | free space wavelength at 10.0 GHz = 3 cm

Fig. 2.10: An 18 elemepiral X-band array separated by 30 free space
wavelengths at 10 GHz framsimilar spiral Ku-band array.
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To formulate the equivalent problem we construgltamar surface just above each array.
From the equivalence principle, we know that tieéd generated by a particular source
distribution are exactly those obtained by an egjeint distribution of sources on a surface
enclosing the original sources and satisfying txendary conditions. Furthermore, the excitation
sources can be removed from the original probledhtee material within the surface can be
chosen arbitrarily provided that the boundary ctiods are satisfied. To obtain the equivalent
sources on the aperture, each array must be seuulaisolation and the fields calculated by any
numerical method of choice. For our analysis, talel$ obtained on the aperture of each array
were obtained by using the conventional 3D FDTDRhéligh, induced equivalence is
mathematically satisfied only when the surfacddased, for planar conformal antennas it is
sufficient to work with a surface that is not clddsut large enough to satisfy the condition that
the contributions from the side surfaces be esagntiegligible. This point is further illustrated
in Figs. 2.11 and 2.12 where it can be seen thia farge planar surface the equivalent problem

can be accurately defined, and is pictorially repr¢ed in Fig. 2.13.

Fig. 2.11: E, for the X-band spiral array in transmit mode noarming at 10 GHz.



Fig. 2.12: E, for the Ku-band spiral array with only center eégrhactive at 10 GHz.

Fig. 2.13: Representation of the equivalent pnobier the two array system.

33
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Once we have obtained the equivalent source digioi on the X-band array aperture,
as well the Ku-band equivalent sources when aaialgiment of the latter array is excited, we
can determine the fields induced by the X-bandyasrathe aperture of the Ku-band array in the
absence of its own equivalent sources. The reasqguefforming this calculation would be
evident when we introduce theactionconcept. The fields from the X-band array that are
induced on the Ku-band array aperture can be edsisrmined from the Green'’s function via the
convolution integral. To perform this integratiom first note how the sources are numerically

calculated on the FDTD grid, as depicted in Fig4Zor electric current sources.

Fig. 2.14: Equivalent electric sources on aperkb@D mesh.

It important to note that, in general, the FDTD gaational mesh is non-uniform; as a
consequence, it yields an equivalent surface nresratso has non-uniform sampling. This is

especially true for the case of each array bectesimdividual array elements possess very fine

features that can require cell sizes on the orﬂe{%c or smaller to accurately compute mutual

interaction between elements. However, the apefiglids used to form the equivalent surface do

not vary nearly as rapidly and, hence, we can dsample the mesh—while still retaining its
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non-uniform nature—by a factor of 4 or even 8 withsignificant loss of accuracy. The down-
sampling can significantly reduce the computatiamesi, in view of the fact that the number of
computations required to perform the superposiioeach source on a receiving aperture mesh
can be quite large.

In performing the convolution integral, we notetttitee FDTD results are spatially
sampled points and therefore the equivalent sounzgsbe treated as a planar array of equivalent
incremental sources. A key point to note is thahtapertures (with dimensions of approximately

10/, on each side at 10 GHz), which are separategpzrimately30/,, arenotin the far-field

of each other; therefore, we cannot use far-fiplor@ximations. This, in turn, leads to the

convolution sum of the Green'’s function obtained #re array distribution of the aperture.

Y b cosf - : -
F(r.f)= "G, (r - 1)y S (211)

n I m Slnfml

.1 rsinf -y,

wheref;, =tan
m r cosf - X

and F(r,f) can be any one of the six field components. The

bracketed cosine and sine terms are results @@R-FDTD formulation and the first
summation corresponds to the Prony parametersnalotan order to estimate the Green'’s

function in the asymptotic region. The second dewwimmation is the weighting distribution of
the transmitting array aperture. The tefm corresponds to the dipole moment of each
equivalent incremental source and is defined gy, Dx, for electric (magnetic) current

sources both x- or y-orientations.
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2.6 The Serial-Parallel FDTD

One approach to circumventing the difficulties tlzatse when attempting to solve
electrically large problems with limited computersources is to use the FDTD method with
domain decomposition\serial-parallel processing.isTmethod is based on dividing the
computational domain into relatively small sub-oeg along one direction and applying the
parallel FDTD serially in each of these sub-regiovith parallelization along the transverse
directions, if desired. The tangential E-field iwred at the interface between each adjacent
subdomain and is used as a boundary conditiorhéfdilowing subregion. The FDTD algorithm
is then continued serially along the computatiat@hain until the last subdomain is reached and
the induced voltage and currents on the receivenaé can be calculated. This method is
pictorially shown in Fig. 2.15 and it has been daled for many geometries [46]. Therefore, we
have used it to simulate the X-band and Ku-bandyaooupling and field distributions as a

benchmark comparison with the Green’s function eth

Fig. 2.15: lllustration of domain decompositionkigkeparallel processing.
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2.7 Results and Discussion

Constructing the equivalent problem by using Hgfields from Fig. 2.11, as well as the
other tangential components, namely, , Hy and H y (not shown here) along with (2.11) forms

the basis for performing the calculation of thédgeover the Ku-band aperture. To reiterate that
the FDTD mesh of the Ku-band aperture, over whiehane performing the superposition, is non-
uniform we have again shown the single elementataen on the Ku-band array along with the
spatial discretization in Fig. 2.16. The resulttaggential electric field distribution (magnetic
fields not shown here) induced from the X-bandyolaserved over the Ku-band array aperture
are shown in Figs. 2.17-2.18 where they have bempared with the results obtained using the
Serial-Parallel FDTD. For the purpose of comparjsba results from the two different
approaches were normalized to unity. Clearly, tle distribution generated by the Serial-

Parallel FDTD and the Green’s function approachiradose agreement.

Fig. 2.16: Single active element and the spatsdr@tization of the Ku-band equivalent
surface.



(@)

(b)

Fig. 2.17: Field distribution on the receiving dpee (a) E, Green’s function approach (l&),
Serial-Parallel FDTD.
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(b)

Fig. 2.18: Field distribution on the receiving apee (a) E, Green’s function approach (i),
Serial-Parallel FDTD.
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At this point we proceed to demonstrate how thaltesf Figs. 2.17-2.18 are used in the
context of the reaction concept to calculate thgpting between the two arrays. First, we briefly
summarize the reaction theorem as it applies t@oaslem. It can be shown from Maxwell’s

equations that for a closed region containing taarses (electric and magnetacandb that

-o(Ea’ H- E°” Ha)xolsz (Eabe- H2xM" - beJa+Hb><Ma)jV. (2.12)

However, if we extend the radius of the surfac® ¥ we know that for each source the fields

are related as

E, =hH, E, =-fH, (2.13)
and the integral in (2.12) reduces to
(Eabe-HaXIVIb)jV: (EbXJa-HbXMa)jV. (2.14)
Equation (2.14) is one form of the reciprocity trezo and the integral
<a,b>= (Eabe- HaXMb)jV (2.15)

has been given the namesaction
In our problem, the sources are defined over asarind the volume integral reduces to

a surface type as follows:
<ab>= (E*x3°- H*xM®}s . (2.16)
Since J® and M® form the equivalent sources on the aperture rieiessary that the reaction of

the equivalent problem be the same as that ofriganal one, consisting of a source current on a

probe-feed and some unknown incident field. In reathtical form
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<ab>= (E*x3°- H*xM"Hs= (2.17)
E?eed x| lI‘JeeddI =-vaP :(8)
ya=<ab> (2.19)

- 1P
Equation (2.19) can be used to calculate the induokdge. However, it is more
convenient to use the power induced in the ternandoad. This requires a knowledge of the
terminal input impedance of the antenna, as wedlfdlse source impedance. For our case, the
source impedance was assumed t&0é4 and the input impedance of the single active efeme
on the Ku-band array was found to B28- j44.3W. Therefore, the power delivered to the

single Ku-band active element can be found by ufiegexpressions

2

1 el v R
P.=—R allnd — L
‘ 2 4\/ } 2 (RL +Rrad)2 +(Xrad)2
_[<abf R,

Z‘Ib‘z (RL +Rrad)2+(xrad)2

(2.20)
Pd

wherel™ is the induced current in the receiving load.ngshe results shown in Fig. 2.12 and
the other corresponding equivalent sources on thbatd aperture (not shown) along with the
results of Figs. 2.17-2.18, the reaction integngly.16) was computed in order find the power
delivered to the victim array.

To find the power radiated by the X-band array wendt use the sources of the original
problem, but follow a simpler approach instead. d&keulate the surface integral of the Poynting

vector for the equivalent problem given by

I:)inc =Re (Einc ’ Hinc)xCB . (221)

aperture
surface
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An electric field normalization factor is used satt(2.21) equals 1 Watt. This normalization
does not affect the final coupling result. To shthig we define the coupling as

|- ety R
2o (RL+Rag)® + (Xaa)® (2.22)

P

S;, =10log =10log

inc
Re (Einc ’ H inc)xCS

aperture
surface

From Maxwell's equations we know that

N° E=-jwm (2.23)
where E = E;. at the transmitting aperture plane afc= E® at the receiving aperture plane.
We know that both of these fields must satisfy 2 since they are produced by the same source.

Therefore, if we leE¢. = CE,,. then E¢ = CE¢, where C is some scale factor. Substituting

(2.23) in (2.22) we obtain

2

E2xJP - #N’ E? xM P d%
- jwm R

2 (R +Rea)” + (Xpaa)? - (2.24)

S, =10log Ll 10log
inc 1
Re E%nc ’ :44]4;;;;;“ ’ EEinc xds

aperture
surface

From (2.24) itis evident that if we normali&g,. by some value to force the surface integral to

be 1 Watt, the correspondirig® will scale by the same value and the result &Zpwill be the

same. Likewise, if we chos’=1 A, the equivalent!® and M ®sources will scale by the same
amount. Therefore the coupling calculation is petedent of different source values used in each
array simulation and the final result of (2.22) gavcoupling value of about5.2 dBfor the

non-scanning case.
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The method which we have described here providgsi@matic way in which the
coupling in an electrically large problem, bothténms of array size and separation distances, can
be solved with limited computational resources. éamparison, the coupling was determined
through the use of the serial-parallel FDTD. Thaltsimulation time to determine the array
coupling using the serial-parallel FDTD (two stggesk about 192 hours using 64 3.2 GHz
processors. However, by utilizing the Green'’s fiorctnethod described in this chapter the total
simulation time is about 97 hours (48 hours fotheatay in isolation and 1 hour for the
convolution integrals). Therefore, we have substiptreduced the total simulation time and the
results of both methods have been shown to bedd ggreement and we can reliably apply this
method to other similar problems, such as thogeattise in the modeling of BANSs.

In this chapter, we have demonstrated two new aghes and have discussed
conventional ways that utilize the FDTD algorithonobtain the coupling information of antennas
and/or arrays on mounted on complex layered madliey have been termed the following: full-
domain computation; domain decomposition\seriabf@lrprocessing; and Green’s function
method. Each approach has distinct advantagesisadvdntages, in terms of computational
resources required and simulation time.

As an additional example we apply these variousout to a common scenario found in
BANSs, namely, the coupling between two antennasntezlion the same side of a human torso.
The full-domain approach places the entire bodyrgeoy and all radiating elements in the
FDTD computational domain (see Fig. 2.19). Thisrapph is direct and leads to coupling results
that are consistent with available measurementd{Gijvever, the amount of data contained in the
entire human 3D-CT scan can place an extraordjnlagi&vy burden on the computational
resources. Furthermore, simulating the entire hubealy can take an unreasonable amount of

time owing to the electrically large nature of fireblem. In most cases, using this approach is
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not a viable option and other methods which brgatkhe problem size into smaller ones must be

employed.

Fig. 2.19: FDTD human torso composite.

The Green'’s function method offers a more efficemategy for determining coupling
effects than do the other approaches. First, walammthe antenna structure with the body
present in isolation to obtain the terminal parareand fields on an aperture just above the
conformal antenna. Then the aperture field distiiimg are represented in terms of equivalent
electric and magnetic sources. This information&#mer be obtained or givenpriori. Using
FDTD, we simulate horizontal electric and magnét&al dipole sources resting on the human
body layered model to estimate the Green’s funadfaoihe media. Since the coupling distances
can reach a large number of wavelengths, we usg/RBrmethod yet again to approximate the

fields at distances from the source where onlystiréace waves are sustained and higher order
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contributions are negligible. Furthermore, we brepkhe obtained transmitting aperture into a
discrete number of ideal dipole sources (both migaad electric) and apply superposition to
derive the fields on the receive aperture. Usimgfidlds obtained on the receive aperture, we can
apply the reaction concept in conjunction with ig@ated port characteristics to calculate the
coupling
For our purposes we are interested in the couplatgeen two identical rectangular

patches with dimensions 30 mm x 28 mm on a 2mnk thibstrate withe, = 4nd separated by

24.5 cm (approximate distance from the chest tawhist). The patches are designed to operate at
2.45 GHz, and they rest on the human body repreddyt a layered medium model. The patch
antenna was simulated via the conventional FDTRdtation using a microstrip feed with a
characteristic impedance of 50 Ohms. The input tapee was found to be 37 — j20 Ohms. In
addition, we applied the conventional FDTD to detiele theS,,and it is shown in Fig. 2.20 for

the case when the body is present and absentofdiesimulation time using the conventional

FDTD for the entire geometry with the body preseas approximately 48 hours.

Fig. 2.20: Coupling for patch antarmystem on the human body.
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In the conventional FDTD the human body model wasprised of three tissue types.
Specifically, they are muscle, fat, and skin areldlectrical parameters of each tissue type is well
documented in the literature [10]. Therefore, whpplying the Green'’s function approach to this
model, we approximated the human torso as a plabrconsisting of these three materials, as

shown in Figs. 2.21and 2.22.

Fig. 2.21: Horizontal electric dipole (HED) resting a 3-layer human body model.

Fig. 2.22: Two patch antennaisformal to the human body layered model.
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The computed Green’s function was obtained by uiagBOR-FDTD and the results
for the electric and magnetic fields from an eleatipole on the source plane (i.e. patch plane)
are shown in Figs. 2.23 and 2.24. The Prony algorivas applied to these fields and the
resulting electric field distributions on the redeg patch are shown in Fig. 2.25. Furthermore,
since the electric current distribution is primyarigésponsible for the radiation of the rectangular
patch operating with its dominant mode excited; @nly necessary to calculate the Green’s

function for electric dipole sources.

Fig. 2.23: E-field for an x-directed electric idetpole source 2 mm above the 3-layer body
model observed on source plane.

Fig. 2.24: H-field for an x-directed electric idehpole source 2 mm above the 3-layer body
model observed on source plane.
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Fig. 2.25: (a)J, electric current distribution on the transmittipatch (b) The MPA
configuration to calculate th8,, (c) E, on receive aperture (&}, on receive aperture.

By using the aforementioned approach, the finapting value was found to be around
-34.8 dB at 2.45 GHz and the total simulation wagraximately 50 min., including all patch
simulations and post-processing. For comparisopgaas, the 3-layer planar tissue slab with the
corresponding MPA configuration was simulated usimgfull-domain FDTD approach and the

S,,was computed as shown in Fig. 2.26. The agreensweklen the results obtained by using

the full-domain FDTD for the human body phantone, fill-domain FDTD for the planar 3-
layer model, and the Green'’s function methodsés ge be excellent, and the shorter run time

clearly demonstrates the advantages of the Gréamesion approach for estimating the coupling.
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Fig. 2.26: TheS,, using the full-domain FDTD for the MPA configuration the 3-layer human
body model.

In conclusion, the three approaches outlined & ¢hapter can be used to model and
simulate the performance of antenna systems mowaméide human body. The full-domain
approach offers a robust but computationally inteng/ay to obtain coupling information of
body-centric networks. In contrast, the domain dgoasition\serial-parallel method can alleviate
much of burden on the computational resources regubut without any reduction in simulation
time. Finally, the Green'’s function method requirelatively small computational resources and
simulation time, but has several additional stepgenerate the final result in comparison with
the previous two. However, much of the post-FDTDBcgissing is very simplistic in nature.
Therefore, useful information pertaining to bodyvrie networks can be obtained by any one of

the methods mentioned in this chapter, and thecehisileft to the user.
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Chapter 3

Electromagnetic Wave Propagation in Body Area Netwds using the Finite-
Difference-Time-Domain
As wireless technologies continue to evolve, theettiyment of personalized devices

which exchange data with unprecedented ease antkefy is certain to grow unabated.
Recently, such technologies have garnered muchtiattefrom those interested in biomedical
sensing and Body-Area-Networks (BANs). However,abmplexity of integrating efficient
communication systems in the human body environpes¢s many challenges to the future of
this emerging technology. The excitation of surfand space waves from radiating antennas
mounted on the body can have a large impact opahfermance of co-site body-centric antenna
systems. Maoreover, the presence of multiple antenonahe body can lead to unexpected
coupling due to creeping wave interaction. Fortalyatecent developments in powerful
numerical methods, such as the FDTD running onlleapatforms, has made it feasible for us

to carry out a detailed study of these body-cemtnienna systems.

3.1 Simple Models for BANs

For many years researchers have used simplifiechgii®s to model the interaction of
electromagnetic energy with biological tissue. Sgebmetries typically lend themselves to
simple shapes, such as cylinders, ellipses andepfa which past research has typically treated
these as perfectly conducting objects. This typteeaitment was convenient due to the
availability of well known analytical methods ussalve these problems, such as the uniform

theory of diffraction (UTD), ray tracing (RT), amigenfunction analysis. Indeed, these models
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have been shown in recent years to yield reasomgay results for simple cases that compare
well to those derived numerically rigorously wittodern CEM techniques. However, the
asymptotic techniques fail to perform well when theectric medium they deal with is
arbitrarily shaped, inhomogeneous and lossy, aod gtoblems must be handled by using
general-purpose numerical methods, such as the FN€iertheless, these simple geometries
can still provide a computationally efficient waydtudy the propagation around and through the
human body. Therefore, these models remain ugmfgtudying BANSs.

In this section we provide the results of a sinptifmodel for the human body torso. The
proposed model is a 3-layer elliptical structurgihg major and minor axis of 150 cm and 120
cm, respectively. This model has been used ing@vestigate the coupling around a 2-D ellipse
using the sub-band FDTD, UTD/RT and measuremehntgques at UWB frequencies. However,
in that work the model was assumed to be perfeathducting when applying the UTD/RT
method while a homogeneous muscle phantom was gepfor the sub-band FDTD analysis.
Additionally, a conformal FDTD algorithm was notegsto improve the accuracy of the curved
surface whereas the author has done so in this.\warkhermore, it neither accounted for the
multi-layer dielectric properties of the tissudle human torso, nor did it simulate the actual
radiating element, i.e., viz., the monopole antemyarously.

The 3-layer ellipse model incorporates the skit)y,dad muscle layers. In [24] simple 3-
layer planar slab model using 3 mm skin layer, 5 fantayer and muscle was used to study the
penetration depth of an incident plane wave forinseplantable medical devices. In this work
we have used the same thickness for the skin anayfs in the elliptical model.

Although the FDTD method enjoys a significant adege over MoM in terms of its
ability to simulate complex structures and losgyimogeneous materials, it has been known to
require far more computational resources than swally available to accurately model,

simultaneously, the fine features of the radiagtegnent, the layered structure of the geometry
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and the electrically large size of the entire gutetypically encountered in the study of BANSs.
To circumvent this problem, most research done AN8by utilizing the FDTD have been
carried out using a point source approximation. l&/biich an approximation is adequate for
directly estimating the path loss associated withiiody, it does not rigorously account for a
number of crucial antenna factors that affect titerena performance, such as finite ground size,
radiation pattern and efficiency. Furthermore, fielg behavior in either the near or the
intermediate region is inherently neglected ingbit source approximation, whereas the
physical structure of the radiating element musihbkided to properly model the physical
system.

In this Chapter we have used a parallel versidrWFD that can handle such electrically
large geometries as well as the fine featuresefddiating element. To this end, we have used a
guarter-wave monopole resonant at 2.45 GHz with mih x 75 mm square ground plane.
Although other antennas could be used, the chditeeanonopole antenna has the distinct
advantage in that the radiation pattern in theg@kBzimuthal to the monopole is inherently stable
across the bandwidth of interest. Thus, polariratiod radiation pattern deviations of the
transmitter across the frequency band can moressride neglected when performing coupling
calculations.

The setup used in the simulation is shown in Figj.véhere the receiver is located first in
the source plane and then displaced verticallyl$yn®n and 400mm, respectively, from the
above plane. For each observation plane the radsinmeoved around the elliptical trunk model

and theS,, is recorded. The mode of propagation is knowneta loreeping wave and the direct

ray paths are shown. For each observation plan&the/as calculated along the elliptical path

in the level plane and plotted for frequencies leet0.8-6 GHz as shown in Figs. 3.2-3.4.



Fig. 3.1: 3-layer ellipse model of the human tossth transmitting antenna at the front and
receiving antenna at the back.

Fig. 3.2: Path loss around the cylindrical humamnkrmodel at the source plane.
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Fig. 3.3: Path loss around the cylindrical hurtrank model 210 mm above source plane.

Fig. 3.4: Path loss around the cylindrical hurtrtank model 400 mm above source plane.



55
For BANSs it is typically assumed that the wave @ggtion through the body is so
attenuated that its contribution can be ignoredvdiify this we have plotted the fields for the
cross-section of the ellipse in the source plangedkas a vertical cross-section along the extent
of the ellipse model. The electric field plots al®wn in Figs. 3.5 and 3.6. From these figures it
can be seen that the field magnitude inside theefriedess than -100 dB and the main source of

energy transfer is along the surface of the trunthé form of a creeping wave.

Fig. 3.5: Electric field distriban in the source plane.
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Fig. 3.6: Electric field distribution on a verticalit plane bisecting the cylindrical model.

In Figs. 3.7-3.9 the path loss is plotted versesdistance around the elliptical model in
each of the different observation planes. As shimwkig. 3.7, which depicts the observations
made in the source plane, the attenuation at higbguencies exhibit a clear monotonic behavior
and is characteristic of a creeping wave. The tesulFig. 3.7-3.9 have been found to agree
closely with those in the literature for other badgdels [6]-[15]. These results can be useful as
reference points when approximating the rate eiaiition along the trunk in body-centric

network scenarios.
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Fig. 3.7: Path loss versus separation distancereithiving antenna at the source plane.

Fig. 3.8: Path loss versus separation distancereithiving antenna 210 mm above the source
plane.
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Fig. 3.9: Path loss versus separation distanceregbiving antenna 400 mm above the source
plane.

3.2 Numerical Phantoms for BANs

Although simplified geometries have their use ialgpning body-centric communication
networks, the availability of realistic human badgdels enables us to use a more rigorous
approach to understanding how the irregular shapieedbody affects the performance of BANs.
One of the most commonly used body models is shovang. 3.10, where the original data set is
comprised of voxels (i.e., 3D matrix data set).tRemmore, a hypothetical BAN configuration is
shown with the transmitting and receiving antenitasteduce the computational resources
needed in the simulation, a lossy homogeneous nveakelused.

Additionally, the resolution of the original voxghta set, which is 1mm x Imm x 1mm,

was down-sampled to 3 mm x 3 mm x 3 mm. Even atldwer resolution the computational
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resources needed are high, specifically 8 hoursgpentium 4 cpu’s. Although this may seem

too coarse for the convention%c cell size, the fields couple on or near the s@rfaicthe

body, where the mesh can be coarser, and we arested in separation distance well into the
asymptotic region of the transmitting antenna. €mdnstrate that the loss of accuracy is
negligible in doing so, we have performed a sing¥periment by computing the difference in
field magnitude at 3 GHz —far away from the trartsimgy antenna on the same plane as shown
in Fig. 3.11. It is evident from the results thathe asymptotic region there is little loss in

accuracy by utilizing a down-sampled phantom model.

Fig. 3.10: Numerical human body phantom based o€3can voxel set with transmitting and
receiving antennas in typical BAN scenario.
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Fig. 3.11: Experiment to determine if the down-skldghuman body voxel set causes numerical
inaccuracies { =10cm).
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3.3 Dielectric Properties and Dispersion Models dBiological Tissue

It is commonly claimed in the literature that a d@pproximation for the body can be
made by using a full muscle phantom or a two-thimdsscle equivalent phantom, the later being
more commonly used in EMC analysis for SAR [256]] However, realistic biological tissues
exhibit dispersion characteristics that are ndheftraditional Debye type used in the FDTD

model, whose spectral behavior is usually represey the form

N

D

S (3.1)
n 1+ JWE, jwe,

&w)=e, +

wheret , is the relaxation time constable, is the spectral coefficient argl, is the static ionic

conductivity. This model can be handled in FDTDotigh a simple convolution extension of the

basic FDTD algorithm. In general, biological tissuhibit a broadened spectrum which is
empirically accounted for by the parame@£ a, < , (dee Gabriett al [27]) and is typically

referred to as the Cole-Cole model. It is given by

. N De, s,
= 3.2
e(W) e + n:11+(ijn)1_a” + jwe, (3.2)

The difficulty in this model lies in the fact thiditere are no simple closed form
expression amenable to the FDTD algorithm dueeddbt that the inverse Fourier transform is

non-trivial.

3.3.1 Dielectic Spectrum Approximation

In this Section we will introduce a technique tbaih be used to implement the Cole-Cole
model into the desired frequency band of inter@ssimple geometries relevant to BANs (e.qg.,

planar human tissue phantoms) in FDTD. Since thticstonductivity term can be handled easily
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in the FDTD update equations we turn our attentwothe term containing , . First we postulate

that each term in the Cole-Cole model can be remrias an integral representation of a Debye

spectrum as follows

Do 1+(jw) " 1+(jw)" ,/ +iw

Then the expression for the electric field dentitiow as

D(w)= & (WE(w) (3.4)
=)
= De, /+—ngd/ . (3.5)

whereby the inverse Fourier transform yields
¥
Dt)=F {& (mEMWM}(t)= E(t)Ae " g( s (3.6)
0

D(t)=E(t)A L{g; (/ }t) (3.7)
Therefore, if it is possible to find a time domaépresentation for the Laplace transform

of the unknown spectrurg; (/) and, hence, we may extend the basic convolutiebalD to

implement non-Debye types of materials.
The problem at hand is to determine a suitabletfondor which we can derive the

Laplace transform. To do this we first rewrite tebye integral representation as

)" o) 4 ") e
= L_d/ = g(/) e™e” u(r)drd/ (3.8)
De ,/+jw 0 y

¥¥
= g(/)e” e™drdr (3.9)

00

whereu(r ) is the Heaviside step function. Now by Fubini’ssbhem
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é(W) — ¥ - jwr ¥ - Ir
2= e o(/)e” d/ dr (3.10)
De 0 0

To find g(/) we expand it in terms of some complete basiseathich we know the

Laplace transform. Specifically, we chose Bessetfions of the first kind which form a
complete setiA:/ 1 [0,¥ )Therefore, we have

o)= c,a, () (3.11)

n=0
wherea is a fitting parameter. Obviously we must trundais infinite series for numerical

purposes; hence we write

o)>  C,a,(ar) (3.12)

n=0
Now we use the Laplace transform relation given by

¥ 1 a"
J.(a/)e" dl = (3.13)

2 2 n
0 retan per+a’®

Of course, we could have used (3.13) directly iB)}(Ghowever, we have found that the

integral converges much more slowly than that efréformulation given in (3.10). After

inserting (3.13) into the equation given in (3.4@) have

~ ¥ N
i 1
&) _" o jur c. (3.14)
n=0

an
— dr
Jri+a? e 2. .2 "
r?2+yr?+a

De'0

Next, we can apply the method of least squaremdbthe coefficient<C,. However,
from (3.7) it is obvious that we must require tB¢e’s to be real. Therefore we have a constrained

least squares system of equations given by thewall:



¥ A ¥ A ¥ A ¥ A
—T w w e(w, w
b = Re ﬂlodw Im ﬂlodw Re Qlldw m &
De De De
0 0 0 0
-7
X :[Cl C, G CN]
¥ ¥ ¥
Re Iy, dw Re Il l,dw Re I,l,dw
0 0 0
¥ ¥ ¥
Im Iylodw Im I l,dw  Im 1,l,dw
0 0 0
¥ ¥
Re I,l,dw Re I,l,dw
0 0
— ¥ ¥
A= Im Llgdw Im Ildw
0 0
¥
Re | l,dw
0
¥
Im 1 l,dw
0
where A is2NxN, bis2Nxl, x isNx1, X=A"b and
¥ - juwt 4n
e '"a
| = dt

n

oNt?+a® xt?+4t?+a? ’

[, dw
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Re [ | dw

Im Iyl dw

(3.17)

Im 1l,d

(3.18)

In common with most over-constrained inverse pnaisiewe must use the Moore-Penrose

pseudoinverse foA" to solve the system of equations. In practicejrtegral cannot be

evaluated over all possible frequencies; hende typically replaced by a discrete summation

over all frequencies of interest where the speatitich is desired.
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As an illustrative example of this approach, thiedn Cole-Cole model was taken for

the tissue corresponding to the muscle. Althoughptteceding formulation corresponds to a
single Cole-Cole term, the postulated Debye spettan equally well be applied to the entire

summation of Cole-Cole terms. The parameters diye@abriel [27] listed in Table 3.1.

Table 3.1: 4 term Cole-Cole modelgpaeters for muscle.

De, =50 t,=723- 12 a,=01
De, =7000 t, =353.68e- 9 a,=01
De, =1.2e6 t,=3183%- 6 a,=01
De, = 2.5e7 t,=227e- 3 a,=0

Using the proposed algorithm we have obtaineddheviing coefficients for an 11th-
order expansion that are listed in Table 3.2. didition, we have found that a good match was
achieved when the fitting parameter was choser@$505e- 9. Although initially the order of
the expansion may seem to be large, the exparsamy 2.75 times that of the original 4-term
Cole-Cole model. Figs. 3.12-3.13 show the magnitutte phase spectrum match for the band of
interest, specifically 1-10 GHz. Furthermore, HdL4 shows that the relative error is less than 5
percent over the entire band, for both magnitudemrase, and this can be considered a very

good match for simulation purposes.

Table 3.2: Calculated coefficients from the spectpproximation method.

C1 0.0002e6

Cc2 -0.0032¢6

C3 0.0394e6
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C4 -0.2759¢6
C5 1.1027e6
C6 -2.4578€6
c7 2.7137e6
Cc8 -0.5489¢6
C9 -1.7652€6
C10 1.6288e6
Ci1 -0.4334e4

Magnitude spectrum of relative permitivitt
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1 2 3 4 5 6 7 8 9 10
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Fig. 3.12: Magnitude spectrum of the relative pétiaiiy for the 4 term Cole-Cole model and the
spectrum approximation.
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Fig. 3.13: Phase spectrum of the relative perniytior the 4 term Cole-Cole model and the

spectrum approximation.
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Fig. 3.14: Magnitude and Phase relative errorbiefspectrum approximation and the 4 Cole-

Cole model.
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As an example, the calculated coefficients alonfy Wie fitting parameter were used to
model the frequency response in a muscle mediuingule convolution sum of (3.7) for a
Gaussian pulse excitation in the medium yieldséselt shown in Fig. 3.15. It can be seen from
Fig. 3.15 that the electric field density inside thuscle medium is influenced by its frequency

domain characteristics as modeled by the propdsgeditim.

Fig. 3.15: Time domain response of the electeldfdensity using the spectral approximation.

3.3.2 Recursive Convolution Method for Debye Matedls

The problem with incorporating the spectral appmation algorithm proposed in the
previous section is that FDTD requires a recordakegof all past time values of the electric
field components. If either the problem size is bnoa reflection properties from an infinite
planar slab are of interest then this approach lmeafeasible. However, for practical problems,

the computational domain can become exceedinghelée.g., upward of 1 billion unknowns for
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realistic human body phantoms), and other appraximanethods must be used. Often times, the
dispersion properties of biological tissue can fygraximated by a Debye model over a finite
frequency bandwidth. In this case it is possibleotmulate an FDTD updating scheme for
dispersive materials that does not require keepilngast histories of the fields.

The recursive convolution FDTD is one such methadiia discussed in [4]. The

essential features of this method are based oDé¢bge dispersion model given by

e(w)=e,e, +e,c(w) (3.19)
where c(w) is explicitly given as
P A
c(w)= P (3.20)
p=1 W~ Wp

After some extensive manipulations the final forimh@ FDTD updating equations for the

electric field become

6eff seff 6’0
T T . P
e Dt 2 gy 1 qymh,_ Db v (3.21)
eeff S eff eef'f S eff eeff S eff p=
+ + +— P
Dt 2 Dt 2 Dt 2
andyg is given by
y 3, =E"Dc; +e'"™y, "t 23)

The formulation given in (3.21) can be used to ipooate materials that exhibit Debye-
type dispersive properties into the FDTD. If themetry is simple (e.g., a dispersive sphere),
this method has been shown to give improved acguksmwever, in the case of the human body,
where the object has irregular features, and mé&pedsive dielectric layers, the CFDTD,
combined with the recursive convolution method, leaal to unstable results. In fact, when using

the parameters in Table 3.1with = t0 simulate the body shown in Fig. 3.10, the rtsswkre
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found to diverge. This problem further demonstraéiesdifficulties when trying to rigorously
simulate a realistic human body. Therefore, we heseal a common approximation [26] for the

human body as consisting of a non-dispersive myle52.7, s = 1.7) or its two-thirds

equivalent phantom in the band of 0.8-3 GHz.

3.4 Simulations and Results

Using the muscle and the two-thirds muscle equitdieman body phantom, the
CFDTD algorithm was used to simulate the setupiptesly shown in Fig. 3.10. For each model,

the network configuration was simulated and 8)¢ was calculated. Additionally, the network

was also simulated in the absence of the bodydardp understand the influence of its presence.
The free-space case (body absent) is shown irBFi§.and the results of the two body models
are shown in Figs. 3.17 and 3.18. To gain insigtd the field distribution around the body the
electric field is shown in Fig. 3.19 at 3 GHz.idtevident from the results that the line-of-sight
(LOS) or near LOS paths are not greatly influenogdhe presence of the body for monopole
antennas. However, for the non-line-of —sight (N)@fre is a noticeable difference in the path
loss, especially at frequencies above 1 GHz, wtherelifference is approximately 35 dB

compared to the free-space case.



Fig. 3.16:S,, of the BAN network scenario with body absent.

Fig. 3.17:S,, of the BAN network scenario with muscle phantom.

71



Fig. 3.18:S,, of the BAN network scenario with 2/3-muscle phamto

Fig. 3.19: Electric field distributions on a verticut plane bisecting the body.
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To determine the accuracy of the elliptical moged,compare two cases, namely when
the receiver is located on the back of the bodyanthe shoulder-side. Additionally, in order to
improve the elliptical model from the previous $&ct two muscle tissue arms, composed of
cylinders and spheres, were placed alongside liptied! torso model and are shown
superimposed on the actual physical model in E@0.3The results for the case when the receiver
is located on the back of the body and on the sleotdide are shown in Figs. 3.21 and 3.22. For
the case when the receiver is located on the biitledody the addition of the arms improves
the accuracy of the results when compared to tlgsipdl model. This indicates that the arms can
have a significant effect on the coupling betwesteianas mounted on the body. However, for
the case when the antenna is placed on the shaittiieof the body, neither the elliptical model
nor the ellipse with arms yielded accurate resaltsl there was approximately a 10 dB
discrepancy between the results obtained with thedehe physical models. Therefore, we
surmise that the addition of other scattering fiesstisuch as the head, irregular arm position and
shape — not exhibited in the simplified models —y@acrucial role in accurately capturing the

behaviors of the fields around the human body.
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Fig. 3.20: Simplified model superimposed on the Aormhody numerical phantom.

Fig. 3.21: Comparison of the path loss for diffengimantom models with receiving antenna on
the back of the body and transmitting antennaeattist.



75

Fig. 3.22: Comparison of the path loss for diffengimantom models with receiving antenna on
the shoulder side of the body and transmitting ramdeat the waist.
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Chapter 4

A New Hybrid Dipole Moment Based Approach for Handing Sub-Cellular
Structures in FDTD
As emerging technologies have continued to prouilwith increased computational

power, the well established FDTD method has kepe fiiy enhancing its capabilities to
rigorously simulate electromagnetic systems andcdewvith ever-increasing complexities. Of
course, in principle most systems can be modekedh FDTD method provided that the
computational resources are available. Yet, in n@ases the method can quickly become
unattractive if the computational domain size is@xely large (on the order of tens of
wavelengths) and several of the features withimtbeel are much less than the wavelength (on
the order of hundredths or thousandths of a wagdh@nThese scenarios frequently arise when
we attempt to model BANs and other similar systeansl, they continue to create a “bottleneck”
effect in Finite Methods. This chapter will begin teviewing some previous sub-cell approaches
to the FDTD method and their shortcomings. Nextwiteintroduce a completely new approach
to handling these sub-cellular features based @ulipole moment (DM) concept and provide
some benchmark results for several canonical ge@sgto validate the results and, also, to

illustrate the computation efficiency both in terofSCPU memory and time.

4.1 Review of Previous Sub-Cell FDTD Methods

The attempt to model features whose dimensionstloaincide with the conventional
Yee cell on a staggered Cartesian mesh has hajdoistory, ever since the FDTD method was

adopted as a powerful computational approach in CEMse attempts can be categorically
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divided into two categories, namely, the contouhpproach and the auxiliary differential
equation model (ADE). Each approach is distinciffedent in its respective formulations and

underlying assumptions that inherently limit theyse of problems that they can solve.

4.1.1 The Contour-Path FDTD Approach

By far the easiest and most simplest approach ttetimy features that do not fill an
entire FDTD cell is based on a modification of agh integrals in Maxwell’'s equations. Since
the FDTD method can be viewed as a locally piecewbnstant approximation to the integral
form of Maxwell's equation, it is straightforward visualize the computational domain as a
series of interlinked contour integrals. The conpath modeling approach is then a modification
of these path integrals based on either a knowletigee boundary conditions, or an assumed
local behavior of the fields.

In many cases, the object may occupy a signifipartion of the computation domain
and partially fill several FDTD cells. If the stituce is a PEC then the Yu-Mittra technique [28]
has been used as a stable, simple, and effectiyeéonaodel these objects. The basis of this
method is to simply remove those portions of thth rategral using Faraday’s law where the
PEC has partially filled the cell. The geometragsartially filled cell is show in Fig. 4.1, where

the object is assumed to extend several FDTD cells.
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Fig. 4.1: The contour-path of the Conformal FDTaideformed cell (source from [28]]).

Clearly, the electric field inside the PEC is zamal only those portions of the path
integral that are non-zero will enter into the updegquations. Upon applying Faraday’s law to the

model shown in Fig. 4.1, we find the update equetoo the H,, (other magnetic field

components are found similarly) component in thetigidy filled cell given by equation (4.1)

below.

H;,”yz(i, j,k):H;"%(i, j.k)
L, b0 b i KED, j,k)- De(i+1, ,K)ED (i +1, j,K) (4.1)
DX ()Dzo (k) +Dx{, j,k+1)EN(, . k+1)- Dx(i, },K)E (i, j. k)

The form of equation (4.1) shows that the onlyeféct on the conventional FDTD
algorithm is a modification of the integral patmdghs in front of each electric field component.
To implement this approach we simply introduce exqalculated reduction factor for the electric
field components affected by the partially filleglicwithout making any other basic changes to

the conventional updating scheme.
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There are several key issues related to this metiaidecome troublesome when one
tries to generalize this approach to arbitrarycitmes. First, notice that only the magnetic fisld
updated without any regard to the effect of theially filled cell on the electric field
components. A simple example which demonstratdsglecting the effect on the electric field
will not give the correct results is that of a slefpng straight wire— aligned with the grid and
partially filling several FDTD cells. Using the aémentioned approach, the electric field is
assumed to have no variation away from (but sithiw the partially filled FDTD cell) the wire
along the radial path when computing the path iate¢iowever, since it is well known that the
electric field strength decays rapidly near theewihis method would not be suitable for
analyzing these types of geometries. Furthermangalrupt discontinuities or sharp corners in
the geometry, at or near the partially filled celill not provide the correct fields near this
location. Secondly, the approach obviously entiradglects the actual curvature of the PEC
structure inside the cell. Thus, all that matterthis formulation is the net effect on the path
integrals and not the actual structure of the gennikself. Therefore, any straight or curved wire
structures passing through the cell cannot be reddsith this method.

A version of the contour-path approach can be agb thin wires and enables a more
accurate representation of wire geometries (tlits slan be similarly treated) and was first
proposed by [29]. This formulation relies on #hpriori assumption that we have a static-field
spatial distribution for the electric and magnditd components in the near vicinity of the wire
and that it is aligned with the computational gradresponding to any one of the three Cartesian
electric field components. In turn, the relevarmield components are essentially being
generated by the currents and charges on the mirewihich we have assumed the local static

field behavior. According to [30], the method imply described as follows:
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The circumferentiaH components immediately adjacent to the wire haediap

variation proportional tc% .

The radialE components immediately adjacent to the wire haatiapvariation

proportional to}/.

The axial E component on the wire is zero for all time as tisbathe boundary
condition.
The rest of the field components inside the contprtal domain are left unchanged in the
updating scheme. The geometry under consideraishawn in Fig. 4.2 with all relevant field

components.

Fig. 4.2: Faraday’s law contour path for thin wigeurce from [29]).
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Further improvements to this method are discuss§8d], and these additional
considerations into the near-field effects of theeveads to the following modification to the
finite-difference update equations for the fieldmrest the wire. The modifications for the

loopingH , and radiak, component (other corresponding components can tagnel from a

simple permutation of the subscripts) as indicagéig. 4.2 are given by

n+}/2 + n
DYzono |% Yo.Zo nz,Dz |% Yo.%0- 0%, - X|%'VO’ZO+D72 4.2)
.\ 2Dt £ '
mDxIn(Dx/r,) *'DxYo.0
E 5 Ec Hylor o
X%vyo,zO-D% %yozo D% &, Dz %Yozo oz D%ono 4.3)

+ Dt |n+}/

H,™
oy 055 2000, el S oy o)

wherek; = [(Dx/Dy)tan‘1(Dy/Dx)]'1 andk,, =(Dx/Dy)tan *(Dy/Dx). Furthermore, a special
treatment of the end open-circuited wire is avdddiut the modifications to the update equations
are rather complex leading to the evaluation ofcibraplete elliptic integrals of the first and
second kinds [30]. As such, the open-circuitedtineat finds limited practical use as it requires a
significant change to the basic FDTD update equatio

The thin wire contour-path sub-cell technique ramfl some useful applications to
power surge analysis on transmission lines; bedate, it has not been utilized extensively in
most computational simulations with fine featut®@ae major reason for this lies in the fact that it

is limited to straight wires that must coincidewihe FDTD mesh at the electrical field nodal
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points. Finally, the assume% variation is only valid for long wires; thus, sharres and

objects within a single cell cannot be modeled eately even when the open-circuit type of end

condition is implemented.

4.1.2 The Auxiliary Differential Equation Method

The Auxiliary Differential Equation (ADE) method & approach that allows for the
treatment of thin wires or slots that are arbityguiaced inside the FDTD mesh and was first
proposed by Holland [31]. Many extensions and nicdlifons have been made to the basic
algorithm to improve its range of applications [J33]. In contrast to the contour-path model for
thin wires, this method does not require the wicelée on the FDTD grid. However, similar

assumptions are made about the nature of theielaon magnetic fields near the wire, namely,

that the fields near the wire have%\ spatial variation. The details of this method miee

involved than the contour-path model and we onlyieithe basic principles of the approach as
given by [31] in order to point out some of itstigas.

A typical straight wire parallel to the z-axis gpassing through an FDTD cell is shown
in Fig. 4.3. In this case the wire is shown off4egro the electric field grid points in the
computational domain. The analysis begins by séipagrthe electromagnetic fields into their

incident and scattered counterparts as

E=ES+E' (4.4)

H=HS+H' (4.5)
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Fig. 4.3: Geometry of a wire inside a rectangulaP cell (source from [31]).

Naturally, for wire geometries it is easiest to wor polar coordinates and we proceed to

write Maxwell’'s equations for the -component of the curk equation as

TEF L ESEDSEL . THG TH

(4.6)
fz 9z I fit it
At r =a, we enforce the boundary condition
ES+E! =0. (4.7)
If we integrate out to an arbitrary radiuswve have
EX(0)+EL)=m g (R +H b
a
I ey o
ﬂZ a r r

Since it is assumed that the FDTD cell size, ardetiore the radii are small compared to
the wavelength, we can write the expressions ®mnthgnetic and electric fields in terms of

currents and charge per unit length in averageesgimaindy . Specifically, these are given by
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s i |S+|I
Hy+Hg = o (4.9)
ES +E =2§e (4.10)

where' is any locally injected current source in the motiemost cases, we would have

eitherl' =0, or E' = 0because the scatterer is unlikely to be simultasigalluminated by an
incident field and driven by an injected current®e. In the absence of any current injected
sources, we assume that the incident fields areviaopriori. Inserting (4.9) and (4.10) into

(4.8) gives us an expression for the electric firlterms of currents and charges as

_ syl In{r s Inlr
ce=2 ), ”Z(f)ﬂﬁz me @.11)

A similar analysis for the -component of the curH equation yields

£ -5 412
it 9z 9z ( )

To remove the radial dependence on (4.11), itg&a} to carry out an averaging operation. This
process introduces a numerical factor known asitheell” inductance of the wire, and is a key
step that makes the accuracy of the method questienThe result of this averaging process and

its “in-cell” inductance are given by

L o), 1o = (E3)+(EL) (4.13)

=—0a -0 |n(Ra)- =+— . (4.14)

The choice ofRis entirely arbitrary and its value for which thesbresults were obtained has

empirically been found to be related to the arethefFDTD cell cross-section. Once all these
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preliminary calculations have been carried ouinigeFdifferencing scheme consistent with the

FDTD is performed on (4.12) and (4.13), and theststepping process as described by [31]

begins as follows:

1)

2)

3)
4)

5)

6)

7

8)

9)

<Ei> and ' /1t are calculated at the® mesh points.

<ES> is calculated at thé® mesh points.

Updatel ° based on the conventional finite-differencing sohe
UpdateH ® from the curl€ equations.

Increment time byP/ .

Partition 15 +1' to the four nearesES mesh points. The partitioning is based on
a weighting of the current density from the caltediacurrent and its location
within the cell.

UpdateE® from the curlH equations. In these equations an added source term
J*® is included, which is found by the appropriatetiianing of 15 +1".

UpdateQ® based on the conventional finite-differencing sobhe

Increment time b3,Dt/2 and repeat step 1).

The additional update equations for the currentaratge is the basis of the ADE

method, and it has garnered some success. Margrchases continue to modify and improve this

basic approach, including wires that are not aligwéh the FDTD mesh. However, as in the thin

wire contour-path method, this approach has thewyidg assumption of z% spatial variation

for the fields near the wire. Furthermore, thistipalependence behavior is only reliable if the

wire is sufficiently long, i.e., it spans sever® D cells. Therefore, short wires or those that
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have curvatures inside the cell — which do not keithhis type of spatial variation—cannot be

modeled by using this technique.

4.2 The Dipole Moment (DM) Method

The previous section presented an overview of mwibdte popular sub-cell techniques

for handling either partially filled cells or longire sections. It was frequently pointed out that

the % near field behavior is not an accurate represemtati the fields if the wire is short,

contained within a single FDTD cell, and exhibits\ved features within the cell. All these
features are becoming more commonplace in largemgsthat contain fine features. As an
example, antennas and sensors in BANs invariabtg Bame or all of these attributes. Some
typical geometries are shown in Figs. 4.4 and hérer it becomes rather obvious that many
common sub-cell techniques would be totally inadeg|if they attempted to handle these
features. Currently, there are advanced techniguesferred to in the literature as sub-gridding
methods—that attempt to address these issues. dsiecammon is referred to as the Alternating
Direction Implicit FDTD (ADI-FDTD) in which the rdgn containing the fine features is sub-
gridded to match the local feature resolution. Thethod is unconditionally stable, which has
made it an attractive option for dealing with musitiale problems. Unfortunately, the interface
region between the local fine mesh and the glolehsize is known to introduce artificial
numerical reflections and has rendered the methadazcurate and unreliable. Additionally,
despite eliminating the need to create a fine nielughout the entire computational domain,
the fine mesh region still requires additional comagional resources—need to invert a matrix for
instance — whereas the aforementioned sub-celhigabs do not. Furthermore, many fine -

featured structures that are integral parts of BANd other complex systems have dimensions
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that are smaller than the nominal FDTD cell siakeh to be/hig%o, and it is these type of

geometries that are of interest in many practipglieations. This motivates us to develop a new
technique that can handle these fine features witindroducing any modifications to the FDTD

grid structure.

Fig. 4.4: A retinal implant with antensensor (source from [34]).

Fig. 4.5: Charge eleceddm a pacemaker (source from [34]).
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It is well known that the electromagnetic propexti¢ objects that are significantly

smaller than the wavelength (maximum dimension/20 ) can be accurately and conveniently

characterized by a dipole moment representatiofadt) any arbitrary structure that is
significantly smaller than the wavelength can ingral be decomposed into three electric and
three magnetic dipole moments along the princigaka Furthermore, these dipole moments can
be uniquely obtained by the fact that their faldfipatterns form a vector space. As an example,

suppose we have a far field patte¥, 7,g) that is generated by the scattered field of alsmal
object. If P(r,7,g) belongs to the vector space of all possible famstihaving an electric dipole
moment pattern, then we may form a basis for thitef3-dimensional (not spatial but vector

space dimension) space from the{%@tfy,fz} , Wheref , is a dipole pattern with orientation.

A basis forms a Hilbert space if and onI;(ﬁa ,f;> =0whena? b, is non-zero otherwise, and

is complete. To show that these dipole momentiédd patterns satisfy this condition we
consider the particular far fields produced by mxd a-oriented electric dipole moments (EDMs)
without any loss of generality to the basic analyghen multiple EDMs are present. The far field

for a z-oriented EDM is given by
E:-c}ﬂnejkrllzsinq (4.15)
4
and that for an x-oriented EDM is given by
E:ﬂnejkrllx(c}cosqcosf- fsinf) . (4.16)
4
For this vector space a suitable inner producefsdd as

*\ o  FE e 2p p xF* 2
(farth)° Of, Fods= " fofor? singdgds (4.17)
S

By inserting (4.15) and (4.16) into the inner proidgiven in (4.17) it is straightforward to show

that the resulting inner product is
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<fz,f;> =0. (4.18)

The same is true for the orthogonality betweenradifle moment orientations, be they electric
or magnetic. Therefore, we can write the far fiedflany small object in terms of a superposition
of three electric and three magnetic dipole momantsuse the orthogonality properties similar
to (4.18) to find their respective weights.

The problem with using the far fields to obtain thigole moments is that it leaves us
without any knowledge of the relationship betwasninhduced dipole moments and the incident
field. It can be shown [35] that finding an EDM (dDM) representation amounts to solving
three quasi-static near field problems with threbagonal excitations, each having weights
determined by the projection of the incident fiplalarization on the principal axes, and defining
a phase center. This establishes an equivalenaebatproving the orthogonality of the far field
patterns, and solving quasi-static problems withagonal incident field excitations. The later
path is more advantageous to follow because itigesvus with a means to relate the polarizibilty
of the object with the incident field. However,\dol these quasi-static problems can only be
done analytically for a few cases and, hence, wie&jly rely on numerical solutions of the
guasi-static problems to derive the charge distidinuon the object. Furthermore, these numerical
approaches use conventional integral equation rdsttimt are cumbersome and not
conveniently amenable to hybridization with the EDTt is for this reason that we introduce a
new approach for solving these quasi-static probjemhich is based on the dipole moment of a

sphere, and its simple implementation into a hyBidd'D scheme.
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4.2.1 Dipole Moments and Scattering from a PEC Sphe

We begin our discussion by considering the proldéplane wave scattering by a small
PEC sphere of radius illuminated by an incident wave traveling in thegative z-direction
whose electric field is polarized along the x-a=isd it is well known that the scattered far-field

for this small ka® 0) PEC sphere is given by the following equations:

ES = E ﬂ(ka)3 cosf cosg- = (4.19)
k@0 ° kr 75 '

R - jkr 3 . 1
E; s (ka)® sinf 50089+ 1 (4.20)

where E, is the magnitude of the incident electric fieldldnis the wavenumber in the medium.
When this result is compared with the radiatedifedf a dipole whose electric and
magnetic moments ateand kl , respectively, we find that the same fields, as¢hof the

original sphere, are produced with

A A 4p 3

all =a,E, /7k_2 (ka) (4.22)

akl=a,E, % (ka)? . (4.22)
j

It is not surprising that, in the far-field regidhge fields from any small scatterer can be
characterized by a superposition of those origngatiom electric and magnetic dipole moments
with appropriate weights. However, to the bestwfknowledge, the question of whether or not
these dipole moment representations are valid Bowell in the near-field region of the scatterer
has not been addressed in the literature. Furttrersme may inquire about the limits of the DM

representation and ask the question of how closigetgcatterer surface can we come before they



91
become inaccurate. To answer these questions erelatk to the Mie series representation of
the scattered electric field for a small spheresthive consider the-component of the electric
field, which is of most interest because it is doeninant backscatter contribution in the near

region and satisfies the boundary condition ofRE€ sphere. It is expressed as:

_Eo oA 2) ingpd A A@ Pnl(cosq)
E, = o COan:1 joH ¢ (kr)singP$(cosq)- c,H ! (kr)—sinq (4.23)

whereb, andc, are given by
(4.29)

2n+l

2
-2n 2"(n-1) - K . ka® 0. (4.25)

Ch = jn+1(n_|_1) (zn) 7

Next we apply an asymptotic analysis to the Migesesolution by lettingr ® 0. The resulting

expressions for the Hankel function and its deivessttake the form of

o, 02 e
b 2

(4.26)
HeD » /2 JnG(m%) kr (4.27)

where the notatior= %(kr) is used. Utilizing (4.24) and (4.26)-(4.27) in atjan (4.23) we

obtain the asymptotic form for thegcomponent given by

¥ n+1 n+}é)

E
E,=—cosf c, -—- singP¢(co
q 2 . n 2 2 Qpn( Sq

G(m%) Palcosg) (4.28)

2 sing
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If we retain only then=1term in (4.28), note thag(3/2)=+/p/2, P}(cosg)=- sing, P¢ =cotg,
andc, = 4(ka/2)® from (4.25), we obtain
3 3
a . ka
E, = E, cosf " Cosg + j o (4.29)
However, we observe théd/r)® >>ka®/2r? sincer ® a anda® 0. Therefore, the near field for

the g component is given by

3
a
E, =- E, cosf cosg " (4.30)

and forg=0,f =0 we have shown tha; =- E' as required by the boundary conditions on
r=a

the PEC sphere. The other near field componentsedPEC sphere can be derived in a similar
manner.
Now we turn to the expression for tpecomponent of the electric fields produced by an

x-oriented electric dipole moment. It is given by

:”_Xe' he dwm, A,
4p r r’ jue

cosf cosq (4.31)

Substituting (4.21) into (4.31), and retaining otifg 1/r® term, yields exactly the same result as
derived in (4.30). It then becomes clear that thetdc dipole moment representation for the
PEC sphere remains valid even in the near-field.

There are some key points which we need to maktdésapoint. First, we have neglected
to address how the magnetic dipole moment conggbtd the electric field in the near region if
we choose to use these representations. The ine¢d4l80) demonstrates that the electric dipole
moment is sufficient to represent the near fieldtfie g -component. If the magnetic dipole

moment were to contribute to the near-field it mustduce TEy fields. Clearlyg, is TEy for

g =0,f =0 and we have already shown that the electric dip@eent alone completely
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represents this field for al} and 7 in the near region. In view of this, we conclubattthe
magnetic dipole moment contribution in the nealdfis negligible for all the electric field
components. Furthermore, the result of (4.30) @alternatively derived from solving an
electrostatics problem for the PEC sphere. Theeefoe conclude that the near-fields for a PEC

sphere can be completely described by a singlérielelipole moment.

4.2.2 The Dipole Moment Formulation for PEC Structues

Suppose the PEC sphere is located at the origingliise dipole moment equivalence
for the scattered field we can write for the elieetlipole momentz - oriented(corresponding

to Ez incident plane wave) as

h 1
—+

|
E, =—e co 4.32
r 2p |"2 J[/,/Er3 Sq ( )
E, :le' Jhr M+i2+ sing (4.33)
4p rr° jua

wherell is given in (4.21).
. . _ . /
In FDTD, we consider the sphere located withinlg wdich is typically £ % along

each spatial dimension. In this case, the gricslioiethe cell are located very close to the sphere

and we can make the following quasi-static appratioms:
1) kr <<1sointhe phase ter® e * »1.

1 . _
2) The — term dominates close to the sphere and insidarthiéDTD cell.
r

Therefore, by using theregsion in (4.21) along with (4.32)-(4.33) itcan b
shown that
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cosq (4.34)

a’” .
E, =E " sing (4.35)

which shows that the fields close to sphere‘tamge-independent’and identical to those from a
static charge doublet (dipole). This result is #seey in order to implement the modified fields
into the FDTD algorithm, since the spatial variataf the fields cannot be frequency-dependent
if they are to be coupled to the FDTD, which we aleening to do.

When working with FDTD, it is convenient to deserithhe scattered fields produced by
the sphere(s) in Cartesian coordinates, to av@chéed to carry out coordinate transformations
between respective spherical origins of the mudtggdheres. This approach is easily implemented
since we are only retaining the first term in teées expansion and the spatial variations can be
most conveniently described between the two diffeceordinates systems. By defining a global
origin in the FDTD, the respective fields produdsdx, y, and z-oriented dipole moments in

Cartesian components can be written as

For x-oriented dipole-moment

E. = EincaS 2(X' ng - (y' ygz B (Z' Zgz
X X

[(x- x92 +(y- y92 + (2~ 29|72 (4.36)
E =3E)i(nca3 (y' y(Q(X' X(D
' [ x02 + (y - y9? +(z- 2072
Ez =3E)i<nca3 (Z' Z(Q(X' Xg

(- %02 + (y - y92 + (2 292]
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For y-oriented dipole-moment

E _Elnc 3 2(y ygz (X ng (Z Zgz

[(x- %02+ (y - yo2 + (2 292] (4.37)
EX=3Einca3 (y y(Q(X X(D
B O A IR 1
E =3Einca3 (Z' Z‘D(Y' yq
z y

o %92+ v v92 + 2~ 297]2

For z-oriented dipole-moment

E _Elnc 3 2(2 Zqz (X ng (y ygz
[(x- %92 + (y- y9? + (z- 29°]2

E, = 3EMa’ (y- y9(z- 29 (4.38)
[(X' x9? +(y- y92 +(z- 2(1)2]%
E, :3Eiznca3 (z- z9(x- x9

[(x- %02 +(y - y92 + (2~ 292]

where the primed coordinates represent the sgattion of the sphere with respect to the
global FDTD origin.

In general, a single sphere will have a dipole mumethe direction coinciding with the
polarization of the incident field. However, if wascade these spheres in such a way that they
provide a conducting path through which the cureetfitflow, then we must enforce a criterion
of ‘preferred direction,” and assume that the ddpmloments are all oriented along this direction.
This will provide a consistency between the di@ttdf the dipole-moments calculated and that
of the current path through the network of cascagdtbres which comprise the conducting
structure. For a wire, each sphere will have alsiagsociated ‘preferred direction’

corresponding to the position of the adjacent spHeor a surface-type structure, each sphere will
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then have two associated ‘preferred directionstesponding to the two adjacent spheres. The

calculated ‘preferred directions’ are pictoriallgstribed in Fig. 4.6.

Fig. 4.6: Method for calculating the preferred dtren of the dipole-moments.

From Fig.4.6, the corresponding unit vector ofpheferred direction is seen to be

" :ﬁ{(xm A+ Yo YAy + (Fs - 2)4,) (4.39)
|L| =2a= [(Xi+1 - X)Z+ (Yisr - Y1)+ (2 - zi)z]%
and we define
a, = (Xis1 - Xi)
L]
b, =—(y”TL'| %) (4.40)
C = (Zi+1 Z|)
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The corresponding dipole momentlisi; = a;ll;a, + b;1l;a

iay + ¢;ll;a, , orin vector algebra

notation

I =1 b, (4.41)

Next, we define the spatial Green’s Dyadic, whielates the scattered fields in Cartesian
components to those of the arbitrary directed @pobments. This function describes our kernel
in a manner analogous to the Moment Method madrig, is entirely frequency independent —an
attribute that is crucial for our hybridizationtbie DM formalism with the FDTD. In matrix form

the Green’s Dyadic is given by

20¢- )% - (y- )2 (z- %)? 30x- x)(y- ¥i) 3(x- x)(z- 7)
Ir - r|5 Ir - r|5 Ir - r|5 (4.42)
G = 3(x- %)y~ ¥i) 2Ay- yi)*- (x- %)%~ (z- 7)* 3(y- yi)z- 7)
= P r-rf -
3Ax- x)(z- 7) 3Ay- W)z 7) 2z- )%~ (x- x)%- (y- w)?
5 5 5
|r-r| |r-r| |r-r|

where |r - 1| =\/(x- x)%- (y- y;)?- (z- z)? and the subscripted coordinates are the locations

of thei™ dipole moment. The un-subscripted coordinatesidrgrary observation points
provided that they are located in the near fielfiae of the scatterer. In simple matrix notation

we can now write the expression for the scatteiedd 6f asinglesphere as

scat
EX

E scat = E;cat :Gi“_' (443)

i
scat
E z
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Or equivalently
4
E*=G Il =Gll; 4
G

(4.44)

Now suppose that we wish to know the scattered firesome arbitraryi -direction.

Then the scattered field components in the diraatiou is given by

U-E*®=0"E**=1,0" Gu, =E*™ (4.45)

u- direction

where the superscript denotes the transpose of the column vector.
Now, for a PEC structure we must impose the boyndandition that satisfies the total

tangential electric field equal to zero. Supposs tor a single sphere we have forced the dipole
moment to be orientated along some directipnNote that for either a single sphere, or a ctuste

of disjoint spheres this assumption is not gengiradcurate since the dipole moments will be
directed in the same direction as the impingingevaiowever, when the spheres are connected
by using the directional constraint imposed ondipele moments, then the formulation below is

valid under this assumption. Therefore, assumiagttre for a single sphere the dipole moment is

directed in theu; direction, we have

Escat - Einc =-Gi . Einc =_GiT Einc (446)

u;j - direction u;j - direction
and in terms of the dipole moment

-0 E™ =llu’ Gu, =E,a’t’ Gu (4.47)
where E_ is the solution to this equation and will satiifg boundary condition under the

assumption that the dipole moment is in thedirection. The constara® is included as



99

convenience so that the quantity on the right hede is unity when testing point is on the
boundary and has the physical interpretation asghbie radius of the sphere.

Again, we have stated that the above formulatiorafsingle sphere is not generally
accurate unless the impinging wave is in the sanmeetibn as the assumed dipole moment.
However for a linear cluster of spheres that aeetatally connected we can build on this
formulation, which would indeed be correct sincewaild have an imposed the directional
constraint on each of the dipole moments. Theretbeescattered field at any spatial point (with

the near field constraint) of a single sphere i®gias

B =Ea’Gh (4.48)

and forN-spheresve have

N
ETotaI— scat _ Ei as Gi UI (4)49
i=1 =
where theE;'s are the unknown constants to be determined tisfgag the boundary
conditions in the same manner as before. If we vadmow the total scattered field at some

point r; on the PEC structure, then we can use

N
Ej‘l’otal— scat — Ea’G.T . (4.50)

Also, to satisfy the boundary conditions at thisnpove must have
N

U]T E]_Total— scat _ U]T E. a3 G U =- U]T E
i=1 =

" j=123...N. (4.51)

This sets up andN = N matrix equation for the unknown weight coefficeht’s, with the

E]—"‘c assumed known from the specified incident field.
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It is worth commenting on how the formulation emisaliin (4.51) relates to approaches
based on conventional integral equation methodst, kve note that we have chosen a dipole
moment representation corresponding to the smdll §there for several points along a PEC
structure. Although, this choice of representir@eC structure out of a “string’ of small PEC
spheres may seem initially unusual, we will showvlitoclosely resembles an alternative basis
function for the electric field integral equatiddRIE) convenient for use in the FDTD. The

equation constituting the starting point for sotyi{feFIE) is given in potential form by
- E'(r)=- juA- Nf (4.52)

For all r on the surface of the PEC surface. Expressingtf&6potentials in terms of the electric

currents on the PEC scatterer (4.52) can be writsen

)=, Jwm g olr-ré et S g Jeolr-r¢ ¢
E'(r) o SJS(N)—I““F ds N—%WGOSN Js(rff)mds. (4.53)

The first term in (4.53) accounts for the magnetitinductive part” while the second one
contributes to the electric or “capacitive part'tioé field. For small PEC scatterers it becomes
evident that the “capacitive part” dominates in tiear field and thus only the contribution from

the scalar potential is needed to approximateidhe ih this region. Furthermore, we note that the
divergence of the current can be expresseli&s] = jur ¢ and the result is a static equation

for the charge. It follows that the dipole momemtfiulation is then a quasi-static approximation
to the EFIE in the near field with the delta bdsisctions with magnitude of (4.21) and point

matching the fields at designated source point&ldetly, using a delta function representation
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creates an uncertainty into how many delta funstia should use and what should be the
discretization size of the PEC scatterer. By ratathe discretization to the radius of our small
PEC spheres, we have found that an optimal sife59.5a for PEC wire structures and about
D = 0.75a for dielectrics. This has been validated for marmgweometries [37] and we will
therefore follow this guideline when hybridizingetdipole moment (DM) method with the

FDTD.

4.3 Hybridization with FDTD

Once we have found the dipole moment distributi@rmost effective approach to
coupling the scattered/radiated fields to the FOI D “collapse” the DM distribution to a single
DM located at the center of the Yee cell. Althoulgis approach fails to model the fields in the
immediate vicinity of the scatterer, we have demmated that it nevertheless becomes quite
accurate within a few cells (typically two FDTD Is3lfrom the scatterer. It is worthwhile to point
out that we can obtain the very near field acclyasmy time we desire, directly from the DM
distribution. The reason for collapsing the DM disition can be most easily understood by a
closer inspection of how the electric field is exatkd in the FDTD. As mentioned previously in
this chapter, the FDTD path integrals assume tietield is piece-wise constant at the nodal
points where the field is evaluated through fimitferences. Assuming that we have accurately
determined the quasi-static near fields from the D&thod it becomes clear that a static solution

coupled back to the FDTD must satisfy

oE>xdl =0 (4.54)
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which follows from the fact that the for staticlle E =- N/ and the potential function must be
a conservative field. Since, our quasi-static sotusatisfies this conservative property it follows
that the updated electric fields at the nodal pomust exhibit a symmetry for which the
evaluated fields are piece-wise constant. In anageesense, this can be done by collapsing the
DM solution to the center of the electric fieldlc@l the process defining a phase center. In
theory we know the quasi-static near fields exafttdyn their DM solution and a rigorous
integration of these fields in the FDTD would si3tigl.54). However, we are seeking a method
that does not require any sophisticated modificatibthe basic FDTD algorithm and we have
found that this approach is best suited for ouectbye.

At first glance, it may seem that defining a pheseter and solving a static problem are
contradictory. Furthermore, one may incorrectlyaode that introducing a quasi-static solution
into the FDTD at special points within the grid ieyield a quasi-static solution throughout the
computational domain. In fact, a novel featurehif proposed hybrid scheme is that the FDTD

algorithm automatically performs the analytic canation of the coupled quasi-static solution as

a consequence of the dynamic nature of Maxwelltt &1 and curlH equations in the FDTD.
Additionally, the continual updating of the scatééffield in the quasi-static near region, where
the DM method is used, gives rise to a dynamicaresg of the FDTD algorithm, which, in turn,
propagates the scattered field outwards, captadirtge nuances of this field, including its full
dynamic (as opposed to quasi-static) behavior. @ésacteristic of the FDTD has not been
previously reported in the literature and we haxgated this feature to incorporate the
hybridization of small features into an unmodiffedTD grid structure.

The dipole moment formulation mentioned in the pras section has some features that
require a slight modification of the basic updagaations in the FDTD algorithm. In the dipole
moment formulation it is the incident field thakoals us to set up the matrix equation for

satisfying the boundary conditions on the PEC stinec However, the FDTD algorithm is
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essentially a total field formulation and we mustifa systematic way to separate the scattered
field and incident fields when hybridizing the DMethod with the FDTD. There does exists a
scattered field formulation for the FDTD where aterior region calculates the total field and the
exterior region calculates the scattered fielccdntrast, we are seeking the opposite of this
approach. Namely, we wish to know the incidentfiad the cell where the scatterer is, for which
the scattered field can be obtained by the DM nekthad the total field at points away from the
scatterer. The reason for this approach is thajeireral, the small scatterer may be in the
presence of a larger scatterer conventionally leghiti the FDTD. In this case, the incident field
on the small scatterer will have contributions frbath the source and scattered field of the larger
object. For convenience, we refer to this “totakident field simply as just the incident field,
which must be calculated at points on the PEC eseatin the DM formulation of (4.51). Since
the object of interest is small and usually corgdiwithin one or a few FDTD cells, the fields
vary little in this region. In FDTD, each field cgonent has four nodal points with respect to the
center of a cell in the electric field grid (seg.H.7). A simple bi-linear interpolation of these
fields at points where the scatterer is locatedpramide a good approximation to the incident

field and is given by (4.55).

Fig. 4.7: Bilinear Interpolation.
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f(Qu)

f(x, Y) » (X2 i Xl)((y2 5 yl)(xz - X)(Yz - Y)
f{Qy
' (Xz - Xl)(yz - yl)(x- Xl)(yz - y) (4.55)
Q) gy ) |
(Xz - Xl)(yz - yl) ’ '
+ f(QZZ) yl)(x' Xl)(y' Y1)

(Xz - Xl)(yZ -

where Q; in this case would represent thg component and the subscripts relate to the pasitio

in the FDTD grid. A simple interchange of the cdoedes yields the same interpolation scheme
for the other electric field components.
Our next step is to find an appropriate updatirtgeste that will allow us to extract the

incident field from the total field, which is calated in the FDTD, in order to utilize it in the DM

method. For the Electric Dipole Moment (EDM) losdtat ceII(I,m, n), we seek to formulate a

Total Field algorithm. For th€otal Field Formulation(TFF) we need, for instanc(al,—'_zmc)n

I,m,n

t0 find (EZyear) ' NG thUS(EZgy )} 1 10 UpdAte(HY o N iaamnesso - THE steps involved in

the implementation of this algorithm are preserteldw:

n+1/2
1+1/2,mn+1/2*

1) Assume we have foun(E... )., (Eqw ), @nd thus (H )

I,mn ? I,m,n
2) Incrementtime tn+ 1

3) Update E field:

If (,j,k)* (I,mn)
=>UpdateEr conventional way

total

Else
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Dt ~ Dt ~
+1 _ I +1/2 - +1/2
Eigc - Etrc])tal - Egcatl +?N Htr(])tal - ?N H sncat
- NE /
- Et?)tal - Egcatl +?N Htggl 2 - (Esr:zralt - Esr:]cat)

E . . . .
But near the EDM we know th ﬂstcat » 0, since the near-field has a quasi-static

behavior: consequently, the difference of the tastterms, appearing inside the parentheses in
the RHS of (4.56), can be neglected. Thereforeyutidate equation for the field at the cell

(I,m,n) becomes

inc total scatl total

EM =ED - EL, + AR HY2 (4.57)
e
End If

4) Update(E ey and (Ega S = (Eines oy + (Exae) ey uSing DM method for

I,m,n I,mn 1,m,n

finding the EDM.

5) Increment time ta + % :

6) Update H field:

Update as usual (no modification).

We now have a modified updating scheme that allesvio extract the incident field information
and only requires an updating of the total eledteiltls nearest the object contained within the
FDTD cell. Notice that this approach incorporates known quasi-static scattered field, via the
DM method, and adds it to the incident field at BHi#TD nodal points, thus avoiding any
complex contour path integration or the need toausdliary updating equations. Therein lies the
attractive feature of this proposed method andipaly, it is relatively simple to integrate into

existing FDTD codes.
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4.4 Benchmark Examples

In this section we will present some tests thatalestrate how the FDTD can perform
the analytic continuation of the quasi-static Solubbtained for some simple geometries. Since
many commercial codes are unable to handle feasizes that we are interested in, specifically
objects with dimensions<//20 , we will compare the results with some analytaUtions.

Our objective is, then, to gain confidence in thalgtic continuation of the quasi-static fields
performed by the FDTD, so that we may subsequenxtignd this hybrid technique to more

complex geometries, which is the goal of our resear

4.4.1 Hybrid Method for Scattering by a small PEC phere in a Lossless Dielectric Medium

For our first test case we simulated the scattdrimm a small PEC sphere with radius
a= /%oo in a lossless homogeneous dielectric medium wjtk . W& excite the sphere with a
time-harmonic, z-oriented point source operating fiequency of 300 MHz. Although a plane
wave excitation could have been used in this aasdake advantage of the fact that the wave
front impinging on the sphere locally looks likplane wave since the scatterer is small and we
can avoid the complications presented by a planevgaurce implementation in the FDTD. The

point source was located5/ , away from the sphere and the backscatteretiviab calculated.

The simulation setup is shown in Fig. 4.8 whereRba D cell size was kept at the nominal value
of /%O , Where/ 4 is the wavelength in the dielectric medium. For panison with the

calculated results obtained by the hybrid methagpresent the solution based on the Mie series

and the equivalent electric dipole moment contrdyut
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Fig. 4.8: Test geometry for calculating backscditdd from a PEC sphere in a lossless dielectric
medium.

Figs. 4.9 and 4.10 clearly show that the resultainbd with the hybrid method closely match

those based on the Mie series. The results showigia.9 show how the magnitude of the

backscattelE, component has taken tl%g, near field solution obtained from the DM solution

for the PEC sphere and performed the analytic noation of the near-fields into the region

where the}{2 and% terms dominate. Furthermore, the phase graphsrshofig. 4.10

demonstrate the dynamic behavior of the fields afn@y the sphere in the computational
domain. In fact, we can conclude from these reshits given any dipole moment representation
of an antenna in the transmit mode, we can cortdfnecsolution in the computational domain

through a coupling of the quasi-static near figtdthe FDTD grid.
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4.4.2 Hybrid Method for Scattering by a small PEC $here in a Lossy Dielectric Medium

One of the advantages of using the quasi-statidtesor small PEC sphere is that the
solution for the scattered field is independenthef surrounding medium. This can be seen from
(4.21) and (4.33) where the medium parameters taotén the expression for the scattered
field. For this test case we choose the same setinp Section 4.4.1, and consider a lossy
medium whose parameters are= antls = 05. We again compare the results for this case
with the Mie series solution for a plane wave iecilon a sphere embedded in a lossy medium,
and once again we only account for the electrioldipnoment. As in the previous example for
the lossless medium, we see an excellent agreemittnthe Mie series in Figs. 4.11 and 4.12 for
the lossy medium case. The main difference inrdgsilt as compared to the lossless medium

case can be seen in the graph for the phase wvariftithe backscatterel, field.

X 1C'7 abs(Ez scattered) vs. distar

Mie series keeping only EDM contributi [
Mult-S cale FDT

Amplitude in V/m

1 L 1 1 1
0.14 0.1€ 0.1¢ 0.2 0.2z 0.24 0.2€
distance in free space wavelengt

Fig. 4.11: Magnitude of the scatter&qd field versus distance for a PEC sphere in a lossy
dielectric medium.
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Fig. 4.12: Phase of the scattergd field versus distance for a PEC sphere in a ldgsgctric
medium.

4.4.3 Hybrid Method for Scattering by Two Small Didectric Spheres

For our next case, we consider the scattering freondielectric spheres imbedded into
the FDTD computational domain. Although our preda@mnalyses were for PEC structures, and
in particular PEC spheres, the dipole moment metdaodbe generalized to dielectric structures
equally well, using a methodology similar to the@P&se, and with little additional cost. The
primary difference from the PEC case is that whealidg with dielectric structures we must
remove the restriction imposed by a “preferredaiom” and recognize that, in general, a
dielectric sphere will contain three electric dpohoment representations, whose weights are
determined by the polarization of the incidentdigfrom the analytical solution (Mie series), it
can be easily shown that for a dielectric spheth afibitrary medium parameters we have both

electric and magnetic dipole moment representatiginen by
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4,q 3 € -1
=g, A (ka)® & 4.58
o A o (4.58)
K=E, 22 (kafp 2L (4.59)
k m+2

For the special case when = wa have only the electric dipole moment presentthad

magnetic dipole moment contribution is exactly z&noall regions, near and far. Notice that the

limits e, ® ¥ and m ® Oyield the dipole moment representations for thellsR&C sphere.

Using this relationship we can go generalize tipoléi moment method to composite structures,
since the basic formulation for dielectric struetuis a simple extension of the PEC case. The
hybrid scheme for calculating the scattering by tielectric spheres uses the relationship given
in (4.58), although this time we must not assigmeferred direction since the incident field on
each sphere will now be the summation of both thece contribution and the fields scattered by
the other sphere. Furthermore, we must assign theetric dipole moments for each of the
dielectric spheres. The simulation setup is shawfig. 4.13 where the source is the same as

those in Sections 4.4.1-4.4.3, except it is nowaesl to be y-polarized. The dielectric spheres
have a radius OTI%OC , where/ ,is the free space wavelength, and they are losgligss

medium parameteg, = . this case the spheres were in adjacent FDTIS agt the

backscattered electric field was once again conaployeusing the hybrid scheme.
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Fig. 4.13: The two dielectric spheres af200 thick. They are placed at +/40along Y. The
fields are measured along Z passing through YH0, from /20 to . Frequency of interest is
300 MHz. , = 6.

The results for the two sphere problem were contpaith the T-matrix method (TMM)
where the small radius approximation was made lansl it reduces to the DM method for
separated dielectric spheres. The T-matrix meth@ddowerful tool that enables us to analyze
several small discrete scatterers [38]. The resbitsvn in Figs. 4.14 and 4.15 clearly
demonstrate a close agreement with the TMM. Wergoviy and model these spheres in a
typical conformal FDTD (CFDTD) code the computatiboost would be large. For example, in
this case the computational domain was made to%e” 05/~ 05/ (i.e., a relatively large
domain size for the geometry of interest) but simceeduction in the FDTD cell size is required
with the hybrid scheme the simulation time was tbas 5 minutes. However, a simulation
utilizing the conventional CFDTD for the same conational domain size and sphere radius

would easily exceed 1 hour.
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4.4.4 Hybrid Method Applied to Slanted PEC Wire

The next example that we will consider is a smalhted PEC wire. The ability to model
wire geometries that do not coincide with the FDMBsh is an extremely beneficial feature of
the hybrid method being proposed. For example AN8the human body model is fixed relative
to the FDTD grid and any objects (e.g., antenrexss@'s) that are desired to be conformal to the
body must also conform to the FDTD mesh otherwisride staircase approximation must be
made (see Fig. 4.16). This poses a severe resirioti the geometry of the simulation model for
many types of configurations that are of practintdrest. In Chapter 3 we used monopole
antennas mounted on the human body phantom anceveefarced to place the antennas where

the body was locally planar so that the monopoldaroned to the FDTD grid and to the surface

of the phantom. In this section we show the redaltshe scattering by a small PE5 slanted
wire with Iength/%c and wire radius/O 50C via the hybrid technique. The slanted wire

confined to a single FDTD cell is shown in Fig. Zdnd the source excitation is the same as that

used in the previous sections.

Fig. 4.16: lllustration of staircase approximatfonslanted wires in FDTD.
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Vg
\ Unit E-cell
= X

Slanted PEC wire represented
By EDM at cell center

Fig. 4.17: A slanted PEC wire in a sing2TD cell.

In this case the full DM formulation was used ttvedor the dipole moment distribution

and the backscattered field was calculated. Simeevire length is smaller than the conventional

segment size used in MoM (e.g., typica‘l%c) the MoM matrix condition number was poor

(CN > 0(10%)) and we are unable to compare directly with argilalsle commercial codes

suitable for thin wire structures. In any case,rfa@n motivation here is to demonstrate the
analytical continuation of the quasi-static fieldiDTD and we will compare the validity of the

DM method with MoM in later examples for which thmatrix condition number was reasonable
(CN» O(L0%)). To that extent we present the field patternsst, for g and7 cuts generated
by the hybrid method (i.e., numerical results) #r@lDM method (i.e. analytical results including
%3 ,%2 % terms) directly as shown in Fig 4.18. Once aglaéresults clearly demonstrate

the analytic continuation of the quasi-static Digldis into the FDTD computational domain with

the correct direction of maximum radiation for titeed wire problem.
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(@)

(b)

Fig. 4.18: Comparison of hybrid FDTD fields and #relytical DM solution for (a) E field = 0
cut (b) E fieldg = 90cut.
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4.5 Hybrid Method for Complex Geometries

Thus far we have only considered simple test cabese the objects were confined
within a single FDTD cell. However, the quasi-statpproximation combined with the DM
method can still be used for objects that penetratiéiple FDTD cells provided they continue to
be small compared to the wavelength. In this seatie will present some cases where the object
is not confined to within a single FDTD cell andyrextend to multiple cells as long as the
guasi-static approximation is still accurate whemamalyze the scattering from the object by
using the DM approach. Furthermore, we have alrsaédy that the FDTD can perform the
analytic continuation given the near fields, andwigh to validate our results with some
available commercial codes. To that extent, we mm@eided some comparisons with a popular

commercial MoM code that is suitable for thin wiygometries.

4.5.1 Straight Wire in Multiple FDTD Cells

In this section we explain how to apply the hyldedhnique to a straight PEC wire that is
parallel with the z-axis and extends two FDTD celace again the hybridization scheme
requires us to solve for the dipole moment distrdyufor the entire wire structure. These dipole
moments are then lumped together at the centtiedfDTD cells where the aggregation depends

on those portions of the wire that are containdtiiwithe respective cells, as shown in Fig. 4.19.
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Fig. 4.19: The cell separation technique usedmtplthe DMs in the hybrid FDTD.

The source excitation, computational domain sind,cell size are the same as in previous

sections. For this case, we have chosen a wirength /%C’ with radiusa = /%OC' Since the

radius for this wire is very small, we have chogenompare the computed hybrid results with
MoM. The results for the backscattered field arevghin Figs. 4.20 and 4.21 where the

agreement with MoM is within 10 percent even in tlear to intermediate regions.

Fig. 4.20: Magnitude of the scatter&d field versus distance foré\{c PEC wire at 300 MHz.
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Fig. 4.21: Phase of the scatterd field versus distance for%c PEC wire at 300 MHz.

4.5.2 Helix Wire in Multiple FDTD Cells

In this section we extend the approach used fostifaéght wire passing through two
FDTD cells to that of a helical wire scatterer. §geometry provides a good example for a case
which is not amenable to accurate treatment irctdmyentional FDTD. The curved-wire helical
scatterer is known to be problematic, even whemsesthe conformal FDTD method and
accurate results are seldom reported for thin,ediwire geometries when Finite Methods are

used. A typical wire helix scatterer is shown ig.F.22, where the radius of the Wire/i 150C

and the radius of curvature {%O' The vertical length of the helix 1/5042 and it occupies two

FDTD cells. The source excitation is a plane waith the electric field z-polarized and traveling

along the x-axis at 300 MHz. In contrast to all pinevious examples we have looked at, the
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helical scatterer will generally have dipole monsentiented along the three principal axes.

Therefore, its lumped representation will have,y - , and z - oriented dipole moments.

Fig. 4.22: A helical scatterer in two FDTD cellsdats DM representation.

Using the DM method and the hybridization scheménane computed the near fields on
the radiation sphere at a distance0d/ away from the scatterer and the backscatteler fi
variation versus distance. The reason for plottivegnear fields is that many applications (e.g.,
medical sensors, implants) require knowledge dddtwuantities for analyzing sensing and
coupling phenomena. The results using the hybridEDMD and the regular DM method have
been compared with simulations performed by udiegstandard MoM and are shown in Figs.
4.23 and 4.24. We note that there is close agreebetween the results from the MoM solution
and the hybrid scheme, though there are some gliffetences as expected when two entirely
different algorithms are used to solve the samélpm. The important thing to realize is that the
hybrid method is an approximation that allows umtwdel the helical scatterer, which cannot be

handled by using the conventional FDTD, and this déstinct improvement.
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Fig. 4.23: E-field patterns for the principal ptacuts using hybrid FDTD and MoM.

Fig. 4.24: Magnitude of the scatter&g field versus distance for the helical scatterengi®M,
MoM, and the hybrid FDTD at 300 MHz.
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4.5.3 Short Dipole Antenna

In many cases, the small object of interest imasmitting element rather than a
scatterer. The dipole moment method for scattesingbjects can be easily extended to the
transmitting case by impressing a voltage sourtleeaterminals of the antenna. This approach
follows the same methodology as in conventional Mokinulations. Specifically, we discretized
the wire geometry using the DM representation afthd a voltage source along those elements

that comprise the feed gap region. To illustragetthnsmitting case we consider a dipole

extending through four FDTD cells for a total lemgf /% and aligned with the z-axis was

considered. The wire radius of the dipole v@zﬁoc and it was located within the center of the

FDTD cell, thus, making it a suitable test geomébryour multi-scale method. Notice that in this
case the dipole penetrates several FDTD cellsyanichust consider whether the quasi-static
analysis is valid for this size geometry. It is Wmothat the current distribution on the dipole is

triangular for very short dipoles and becomes assital distribution as the electrical length
approaches[% , at which point the antenna becomes a resonarttste. It has been found that

the quasi-static DM method can accurately calcutadecurrent distribution when the antenna is
smaller than its resonant length, and we can usafiproach even for wire geometries extending
several FDTD cells. A dipole antenna located inRBa'D mesh is shown pictorially in Fig. 4.25,
along with the voltage gap excitation of 1 VolB380 MHz and its lumped DM representation

required for the hybrid scheme.
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Fig. 4.25: The cell separation technigque usedntplthe DMs in the hybrid FDTD for a short
dipole occupying four FDTD cells.

The hybrid FDTD was used for this dipole antenné thie near field pattern &15/ was
computed. In addition, it has been found that &cation factor of 2 is necessary to couple the
fields to the FDTD for transmitting cases when gdime hybrid scheme. For comparison we
simulated the same dipole antenna in MoM, and eulsiirat the defined voltage gap was the
same as in the DM method. The results are showigind.26 for thef = @ut and the other
principal cuts are omitted due to the symmetryhefdipole antenna. Once again, we see that the

hybrid FDTD matches the MoM results very well (vifithen percent) with some slight

differences for both components of the electritdfie
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Fig. 4.26: E-field patterns for the= ¢t using hybrid FDTD and MoM.

4.5.4 Short Monopole Antenna

For the transmitting case we are often times isteckin the input impedance of the
antenna. We will now proceed to test if the DM fatation along with its hybridization in FDTD
can accurately determine the terminal parametensafds this end, we have chosen to apply the

hybrid technigue to the case of a short monopadiersra operating in the transmit case. The
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methodology follows that of the dipole case witmgsoadditional modifications. Specifically,
since the monopole typically operates above a gf@lane, this additional feature must be
accounted for in the hybrid scheme. The approdamtéo model this antenna utilizes the
principle of images. In practice, the ground planibe finite and the image theory will only
provide an approximation to the correct solutioowdver, this approximation can be very
accurate if the ground plane is sufficiently largjbe approach we follow is then described as
follows: 1) Solve for the DM distribution of the mopole using images, which is tantamount to
solving the dipole problem: 2) Lump the DMs inteithrespective FDTD cell centers and only
update the fields above the ground plane: 3) Letd@lDMSs radiate in the presence of the ground
plane which has been defined in the conventiondlB-Rlgorithm. The procedure is shown

pictorially in Fig. 4.27.

Fig. 4.27: DM representation in the hybrid FDTD foe monopole using image theory
approximation.
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The monopole geometry is shown in Fig. 4.28, wiieeemonopole extends over two
FDTD cells (i.e.,/%c), and has a wire radius A%OC' In addition, the source is 1 Volt at a
frequency of 300 MHz. For this case, we have cha@ssquare ground plane whose length is

/ .
% on each side.

Fig. 4.28: Monopole geometry usethe hybrid FDTD.

For the geometry in Fig. 4.28 the current distiitnuobtained with the DM method is
compared with the results calculated from MoM, leman in Fig. 4.29. It is evident that the DM
method is a novel technique for calculating theenirdistribution and results are in excellent

agreement with MoM.

Fig. 4.29: Current distribution obtdéhby the DM method and MoM for the monopole.
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As in previous examples, we have plotted the rields in Fig. 4.30 aD.5/ away from
the monopole and the results are compared wittetbbtined from MoM. Similar to the dipole

case, only the = Out is shown due to the symmetry of the monopoteground plane

geometry. The results indicate that applying thegentheory method to this configuration is a

very good approximation and the effect of the érgtound plane is clearly visible in the backside

radiation (i.e.,g =180 ).

Fig. 4.30: E-field patterns for the=  €ut using hybrid FDTD and MoM.
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With the current distribution obtained from the Diethod and the known source
voltage, it is possible to calculate the input icigece of the short monopole antenna. However,
we should mention that the feed model in diffeides (i.e., MoM, FDTD, FEM) can give very
different results, especially for the reactanceuwation. This is primarily due to the nature of th
feed structure with the numerical technique usedthérmore, we should expect some
differences between different numerical codes amted, this has been reported in the literature
[39]. In MoM the feed structure is typically a tade feed gap feed and it becomes difficult to
exactly relate this source model to other numeapgiroaches. A key point worth making is that
we are dealing with electrically small geometried as a result the MoM impedance matrix can
become very ill-conditioned leading to comparistiveg can be inconclusive. In any case, we
have performed the impedance calculation from thedblution obtained in the hybrid technique
and compared the results to that of MoM, as shawiigs. 4.31 and 4.32. The agreement
between the DM method and MoM is seen to be goothfvinput impedance with some

differences for both the real and imaginary parts.

Fig. 4.31: Reaitpa the input impedance for the monopole.
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Fig. 4.32: Imaginary part of the input impedafmethe monopole.

4.5.5 Thick Patch Antenna

The methodology used for the monopole antenna lsarba applied to simple feed
models for patch antennas. In this case the wedifig element plays the role of a probe feed.
This model is commonly used for numerical simulagibecause it is simple to implement in a
variety of codes. Furthermore, it reduces the cemipy of modeling the coaxial portion of the
feeding structure and has been found to give reddpaccurate results [39]. Expanding on the
approach for the monopole antenna we have modeladiapatch antenna with the dielectric

substrate material being that of air (i.e.,= ) fdr simplicity. The vertical thickness is two

FDTD cells (i.e.,/ (/10) and the rectangular patch has dimension8®f, ~ 025/, at 300 MHz.
The pin feed is modeled via the hybrid FDTD methothe same fashion as the monopole case
for a wire radius O{%OC and is offset from the patch center 0975 . The geometry is

pictorially shown in Fig. 4.33 with the square gndwplane of length’ , on each side.
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Fig. 4.33: A rectangular thick patch antenna amerfeed simulated using the hybrid FDTD.

The resonant behavior of the patch antenna isumelérstood and the fields underneath
the patch can be approximated by an eigenmodessaliya cavity with PMC walls. However,
because the patch we have chosen to model isiorialty thick, there will be a loading effect on
the input impedance from the wire feed and we cqeet that the reactance will not go to zero at
the frequency predicted by the cavity model. lmfjeleis was verified and the results for the
input impedance using the compensated feed-modbeichiFDTD was compared with those
obtained by a commercially available MoM (Fekohgd&DTD (GEMS) codes and are shown in
Figs. 4.34-4.35. It is evident that there is readdy good agreement between all three
approaches. Furthermore, as in many cases, thiésrsmn the various codes exhibit some
differences due to the feed model. Finally, usheghiybrid FDTD method results in considerable
time-savings, provided the feed model compensatiomade. The time-savings comes from the
fact that in the hybrid method we are not requtrethesh the fine feature of the probe feed

whereas this must be done in GEMS to accuratelyeihtheé fine features of the above feed.
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Fig. 4.34: Real part of the input impedance ofgrabe fed patch using the hybrid method, MoM
(FEKO), and the conventional FDTD (GEMS).

Fig. 4.35: Imaginary part of the input impedancéehef probe fed patch using the hybrid method
with feed model compensation, MoM (FEKO), and thewentional FDTD (GEMS).
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4.5.6 Coated Wire

Thus far we have only hybridized the DM approactilie FDTD for PEC scatterers
and antenna geometries. In many applications, sonehl geometries have the additional feature
of thin dielectric coatings. This can be the caseniedical implants where the dielectric coating
plays the role of separating the radiating devioenfdirect contact with human tissue. It is
possible to formulate a DM approach for integregtedctures containing both dielectric and PEC
materials. However, a simpler approach is to retdate the DM method from the scattering
behavior of a small coated PEC sphere. The Mieséor a dielectric coated PEC sphere can be
found in Appendix B and a parametric study of thatl dependence of the near field at 1 GHz

for various coating thicknesses and dielectric tamts, given that the PEC spherical core has
radius/0 20C was performed. The results for the backscattiedd] which isEq in this case

and corresponds to an x-polarized incident fiekhdal on the Mie series is shown for three

coating thicknesses and compared to the same spherethe coating is occupied by PEC. The

three cases are shown in Fig. 4.36a-c for coatiinggriesses off = /%OC ,d= /%C' and

a= /%C’ respectively. Furthermore, the dielectric constaach case was varied. It is known

that the near field of the small PEC sphere vame%3 , and one should expect that the

dielectric coated sphere to exhibit a similar bétravndeed, this is exactly what is found to be
the case, and the results presented in Figs. 4.36ggest that the scattered near fields produced
by a small dielectric coated PEC sphere can be lmddémply as a PEC sphere, but with a larger

effective radius than the original spherical PE@co
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Fig. 4.36: Electric field in the near region foc@ated PEC sphere with coating thickness (a)

/%oc (b) /%o and (c) /%C'

In order to test our hypothesis regarding the &ffeaadius concept we have performed a

numerical experiment for a specific PEC sphericaé@nd dielectric coating thickness. The

frequency of interest is 1 GHz and the PEC coreusaid again/%ocwith a dielectric coating

of d= /%C and e, = 4. Notice that in this case the coating thicknedariger than the PEC core

radius. The backscattered field, namEy, was calculated from the Mie series solution aed w

hypothesize is that in the backscatter directige ( ) the near field can be written as
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(4.60)

The Mie series solution and the functional forn{4a60) was plotted versus distanBen a log-

log graph in order to find the parametgy; . The results are shown in Fig. 4.37 from which it

was determined thad,; =0.014/ .

Fig. 4.37: Curve-fitting the electric near fieltitbe coated PEC sphere based on the effective
radius and DM concept.

The result fora,; can now be simply used the DM formulation that \aeehalready

developed. To demonstrate this, we now proceeiirtolate a simple coated wire using the
hybrid FDTD method, where the PEC core and codtifagkness are unchanged from the coated

sphere previously considered. The geometry of dlaec! wire is shown in Fig. 4.38, and it has a

length of /%O which extends across two FDTD cells and the diszon of the coated wire is
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D= 08a, . The test setup consists of a z-polarized planeewsacident on the wire and the

backscattered field was computed. In order to coenpar results using the hybrid FDTD, we
have plotted it alongside data obtained from a censially available MoM code (FEKO). The

results are shown in Fig. 4.39 where the agreermesgen to be excellent.

Fig. 4.38: A coated PEC wire simulated using thieridyFDTD.

Fig. 4.39: Magnitude of the scatter&d field versus distance foré\{C coated PEC wire at 1
GHz.
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4.5.7 Scattering From A PEC Loop

The PEC loop is a special geometry that cannotrbiéasly handled by the previous
approach used for hybridization with FDTD. The mrafor this is due to the fact that the
magnetic vector potential term is dominant for gtisicture and the near fields are in effect
guasi-magnetostatic. Since the DM method previodsicribed is useful for structures in which
the near fields are primarily quasi-electrostatie,must find an alternative approach for
hybridizing small PEC loops in the FDTD. One wayi@umvent this apparent obstacle is to
observe the relationship between a small loop o&grgn electric current and its magnetic dipole
moment equivalent. Consider a small PEC loop vathus a carrying a current . Then it is
well known that the fields produced by this curreatrying loop are equivalent to those from a
magnetic dipole moment given by

Kl = junlS. (4.61)

where S=pa? (i.e., the area of the loop). It can be shown tisitg the relationship for the fields
produced by magnetic dipole moments in accordaritte(4.61) give rise to magnetic near fields
that are quasi-static whereas the electric fietdsat. In fact, if we consider the dual problem of
the scattering from a PEC sphere, namely thate§tattering from a PMC sphere, it can be

shown that the induced magnetic dipole momentvsrgby
Kl = judpma’H (4.62)
where H , is the incident magnetic field. The difference betw (4.61) and (4.62) is based on the

nature of the problems analyzed. The result obtaim¢4.61) is based on the assumption that the
currentl is known (i.e., the transmitting case). In contrést result given in (4.62) is based on
the scattering properties of the PMC sphere. Sime@esult in (4.62) must represent some

equivalent PEC loop where the current is inducethbyincident magnetic field, there must exist
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some effective radiua that relates (4.61) to (4.62). Therefore, a serfesumerical

sphere

experiments were carried out to determine theicelship between the induced currdfit' and

the incident magnetic fieltH , from which we can extract the relationship betwegj,.
anday, -
The numerical test setup consists of a circular RI&f with radiusa,,,, in the x-y plane

excited by an incident plane wave with, =1 A/m polarized perpendicular to the surface area

of the loop at 1 GHz. The simulation was perforrasthg MoM and the induced current was
plotted versus loop radius (in wavelengths). Tuplradius was restricted to be small relative to

the wavelength so that it would fit inside at mwad FDTD cells. However, for very small loops
the MoM matrix condition number became poor (eQ{103)). Using these data we have

attempted to fit a linear relationship for the iodd current as a function of the loop radius and

incident magnetic field. This functional relatioisis given by

_ 2a
nd loop
I I » H o ><asurface Qg)

where a ... IS the unit vector perpendicular to the loop. Fitbis it can be shown that the
induced magnetic dipole moment equivalent is gimgn

Kl = jwn™S=jwmal H, . (4.64)
Comparing (4.64) with the PMC sphere magnetic @ipobment given in (4.62), we can

establish the equivalency .. = (Zp)'%a,oop » 0543, . The results from MoM are plotted in

Fig. 4.40 along with the expression found in (4,6@&)ich we have termed the PMC-sphere-
equivalent to an electric current loop. In addifitte MoM matrix condition numbers (given in
Fig. 4.40 asCN) are included to demonstrate where the numerigallations fail to accurately

predict the current in the loop. Once the equiviateagnetic dipole moment is known as a
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function of the incident magnetic field, it beconstightforward to implement the scattering of
a small PEC loop into the hybrid FDTD scheme byiypg duality to all the modified update

equations. Thus, it will be the scattered magretlds that will be updated in the FDTD and the
procedure is exactly the same as those for therielelipole moments. Therefore, we have used

the hybrid FDTD method to calculate the backscettelectric field (onlyE, is present for a

loop in the x-y plane) from a small PEC loop wisltlius ay,,, = /%o(i.e. the loop occupies

multiple FDTD cells) at 1 GHz, as shown in Fig. 4(#ormalized with respect to the incident
electric field), and compared it to the theoretiegbression given that we have already found the
current distribution in the loop using MoM. Cleartiie agreement in Fig. 4.41 suggests that
using the magnetic dipole moment approach is usefidimulating small PEC loop structures in

the hybridized FDTD algorithm.

Fig. 4.40: Induced current on the loop versus ditthe loop for plane wave scattering at 1
GHz.
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Fig. 4.41: Magnitude of the scatteré&qd field versus distance for a PEC loop with rad%% at
1 GHz.

4.5.8 Plasmonic Sphere

The dipole moment concept can be extended to thechiFDTD for the case where the
material parameters of the scatterer are frequdapgndent, which is difficult to handle in the
conventional FDTD. As an example, in this secti@nomnsider the problem of scattering by a

plasmonic sphere whose relative permittivity isegivoy

] we De W
wmw+igy) (W7 - W2 )+igw

€pL =& (4.65)

The expression in (4.65) is referred to as the Biugkrentz dispersion model. If we use the

conventional FDTD algorithm to handle dispersivatsrers described by this model, it requires
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extensive modifications to the basic update eqoatiblowever, dealing with plasmonic spheres
is relatively straightforward in the hybrid apprbage are proposing because, fortunately, many
researchers have been interested in the scatmapgrties of small plasmonic spheres, and an

equivalent dipole moment is readily available fustgeometry. It is given by

=€, A (o Eor =L (4.66)
hk? e +2

To model a small plasmonic sphere in a conformal BEhat can handle Drude-Lorentz
materials would considerably increase the simubdiime. However, in the hybrid FDTD scheme
the expression in (4.66) is treated like any othipole moment. Furthermore, an important

feature of the plasmonic sphere is the so called-field enhancement. For conventional non-

dispersive materials the polarization facigéljr—; is always less than unity. As a result, the
r

scattered field is always less than the incidexitifiThe special property of the plasmonic sphere
occurs due to the fact that the denominator opthlarization factor can approach zero and, thus,
the scattered field will be “enhanced” relativelte incident field.

The plasmonic properties of gold are often usedhéar field enhancement of
nanoparticles. In addition, it is often necessargdrform an optimization scheme to fit the Drude
—Lorentz model. These optimizations for gold hagerbdone in [41] for both Drude and Drude-
Lorentz models and are shown in Table 4.1. Alse résults for the real and imaginary parts of
ep, are displayed in Fig. 4.42 while the polarizabifigtor is shown in Fig. 4.43. It is evident
from Fig. 4.43 that the frequencies at which thiapzability factor rises above unity corresponds

to those at which near-field enhancement occurs.
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Table 4.1: The values of parameters used for thien@ation of the Drude and Drude-Lorentz
models (source from [41]).

Fig. 4.42: Real and Imaginary paftthe Drude-Lorentz model for gold.

Fig. 4.43: Polarization factor sjpam for gold based on the Drude-Lorentz model.
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As an example, a plane wave incident upon a srtedhponic gold nanosphere was
simulated using the hybrid FDTD approach. The sewas a modulated Gaussian pulse with

f, =200 THz and f_,,; = 1000 Hz traveling along the x-axis with the incider¢atic field z-

/h@h

polarized. The sphere radius was , Where/,,, is the wavelength af ;4. The result

for the time signature of the backscatter field&/ . is shown in Fig. 4.44. The frequency
spectrum of the near field using the hybrid FDTBhewn Fig. 4.45a and the results using a
modified conformal FDTD are shown in Fig. 4.45b domparison. It is worth noting that the
near-field spectrum of both methods exhibit netitlysame behavior. However, the hybrid
technique offers significant time and memory adagas over the conventional FDTD, because it

does not require mesh refinement to handle thel splaére.

Fig. 4.44: Time domain response for plane wavdegag) from of a small gold plasmonic
sphere.
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(@)

(b)

Fig. 4.45: Near field spectrum using the (a) hylsiRITD (b) Modified FDTD for Drude-Lorentz
materials (source from [42]).
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4.6 Concluding Remarks

The methods developed in this chapter have beaedéawards eliminating the need to
generate a fine mesh in the FDTD computational donvhen there are small features present. It
is well known that if fine features are involvedtire simulation they can exacerbate the problems
of long runtimes and the need for extensive contjmrtal resources when the conventional
FDTD algorithm is used. This problem has been ameented by a hybrid FDTD scheme,
presented herein, which is based on the dipole mbo@ncept. Its implementation has been

demonstrated for several canonical geometries dsgér more complex structures. And an

important feature of the hybrid scheme is thaliitves for the nominal cell size o/fhigh o to

remain unchanged. This, in turn, leads to signifiavings in simulation time and memory.
Lastly, the hybrid FDTD can solve many problemsfsas the small, thin wire helix, with
limited computing resources, whereas the convealiBBTD is often times unable to model

these problems accurately.
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Chapter 5

A New Time-Domain Electric Field Integral Equation Formulation Using A
Closed Form Basis Function
In this chapter we describe a new formulation ffier Time-Domain-Electric-Field-
Integral Equation (TD-EFIE). The key feature osthiew approach, which distinguishes it from
other available TD-EFIE algorithms, is that it izils a unique set of basis functions. As will be
detailed in the discussion that follows, we chom&asis function that has a known closed form
representation, which is amenable to a simple toreain representation in terms of time delays.
Furthermore, such a choice deviates from the cdioraal approach to modeling the unknown
current distribution by using a separable basistion expansion in both temporal and spatial
domains. Another important advantage of the newasgmh is that it leads to a tri-diagonal form
of the matrix in the updating scheme, which istieddy easy to handle. Therefore, this approach
leads to an algorithm which is simpler and compaitatly more efficient than conventional

algorithms, especially when dealing with large nemif unknowns.

5.1 Preliminary Analysis of the Basis Function fothe TD-EFIE

In our formulation we exploit the fact that the ureééd current on a simple PEC wire

whose dimension are less than the resonant Iehgth<(</% ) has a current distribution given

by
| =jlpsinlk(H - ) , |MEH 1p.
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where x extends the length of an arbitrarily oriented wiregeneral, the wire does not need to

be straight and may indeed have bends. Next, wigzntne fields produced by such a wire

element. Consider the geometry in Fig. 5.1

Fig. 5.1: A bent wire and the geometrical paransetisied for the field analysis.

where(,,V,,U,,V, are the tangential and normal unit vectors tadpeand bottom portions of
the wire, respectively. The electric field produdscthe electric current given in (5.1) can be

obtained from the equation given by

E=- jwih+— R xA) (5.2)
jwe

where the magnetic vector potentialis given in terms of the integral
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1 le jK[r-r¢
A=— 2 _4i¢ . (5.3)
4,0|¢ |r ) r(F

After some lengthy manipulations using (5.1)-(5tBg total electric field from the contributions

of the current on both top and bottom portions lbamvritten in closed form as
E=E,0 +E,V, +E, G, +E,V, 4b

whereE, ,E, ,E,,,E,, are given by

(VI uz? —vp

iRy ke 4
E, =30l ®  codkH)E— - ju, sin(kH) ri2+1k—1r3 e (5.5)
I e MR e ™ sin(kH) o)

E, =-30-" (u,- H - kH)=— - ku? + jvZ e 5.6
v v, (Ul ) R U COS( 1= J e (r u + JV1)e (5.6)
- kR ke 1 1

E,, =301, eTZ' cos(kH)er + ju, sin(kH) A ke (5.7)
- kR - jkr : _
E,, —.30/m (u, +H)E - u, codkH )< " j Sm(le)(rkuﬁ + jvﬁ)e' ke (5.8)
A R, r kr

In the time domain, the cosine and sine term&.iB){(5.8) become problematic due to
the noncausality they produce in conjunction wité éxponential factors. To circumvent this
problem we approximate these terms by their smngllraent (i.e kH << ] Taylor expansions.
Since this wire element will form a basis for the-EFIE, we will assume that its electrical

length is small and this justifies our use of tla/lor approximation. By applying this
approximation for the cosine and sine terms, najey(kH)»1- (kH)?/2 and

sin(kH)» kH we get

LG 2 )
€ . zH - WH o WH L1 e (5.9)
rc

E, =30l
1 " r2c r
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- kR 2 2 2 '

EV1=-3OI—”‘ (- H)E 4y WHp uiH vl e (5.10)

A R, 2rc? rc r3 o

g kR 2 u,H . uH 1 .

E,, =30l + W+ 2 jw+ 2—-= el 5.11
v " R, 2rc? rch ¢ (.11)

I KRy H 2 uzH . VZH u
E,, =-30-" (u2+H)e + 2w jw- 242 e (5.12)

v, R, 2rc

It is important to recognize that the form of (5(8)12) have only terms witlw or w? in the
numerator and exponentials containkig. Thus, it is straightforward to obtain a closed1io
expression for the electric fields in the tempa@nain, and this is the key to our new approach
for formulating the TD-EFIE. Specifically, the expential factors correspond to delays in the
temporal domain and the time derivatives are apprated by difference operators which give
rise to a marching on time (MOT) algorithm thatlwit presented in later sections.

If we define a global coordinate system, then weegress the electric fields for an

arbitrarily oriented bent wire, given in (5.9)-(8)lin a compact form as

E=I, T,xj +T,x, (5.13)
whereT, and T, are given by
e R - jkr 1, i, ~1 1
T, =30 Gg, +30e ™ WG] + juG; + G (5.14)
e' ijZ ik )
T, =30 Gg, +30e' ™ WG + juG! +G{ . (5.15)

_ 2

and the matrix terms are explicitly written as doik:
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-xly-H) -xz-H)
1
2 + 72 X2 + 2
— y?+z X2 +y
- Zx-H) -2y-H)
2, 2 2, 2 1
y2+z X2 +z
L yeH) ofeen)
2 + 72 2 +y?
Gy = MxH) o ylerH) (5.17)
— Yy +2z X +y
o) -dyen)
2, 2 2, 2 1
y2+z X2 +z
L - yX - zX
C+72 Xty
H?2 - xy -zy
1
= 1 8
=2 2r02 y2+22 X2+y2 1)
- Xz - yz 1
v+ X +7
. -yix o - 2%
C+2 XEtyl
H -x%y - z%y
Gy =— - A8
= 1% y?+7? Y X2 + y? 19)
- X’z - y%z _,
v+ X +7
xH 1 (x2+22)H y X (x2+y2)H z X
377 3 r 2+ 22 3 PNCIRY
2,2 2,2
e x v ! ey 2y
3 Y2472 3 +r 3 R (5.20)
(y2+22)H X z (x2+22)H y z zH
3 T 2 3 P



150

xH 1 (x2+22H y X (x2+y2)H_E X
PR 3 r 32+ 22 3 rX2+y?
2,2 2,2
N T
= 8 roy?+2° 3o r3 roxC+y?
2,2 2,2
(y+z)H+5 z (x +z)H+l z zH 1
3 r 2422 3 r Xty R

and it is possible to show that

G2=G, (5.22)
Gl =-G; . (5.23)

The equations in (5.16)-(5.23) pertain to the geloyr&hown in Fig. 5.1, when the object
is located at the global origin. If the objectasated at some other point in space away from the
global origin, it is a simple matter to transladte toordinate values with respect to the reference
origin.

As a simple example, we consider the case whewitieehas both segments collinear
with the z-axis. For this example, we find that éhectric field has the form

e kR g kRe o
E=30l, R Gg, + 5 Gg, + 2mﬂG=;+G_§+G_g e, . (5.24)

For the E, component (5.24) reduces to

2
+ 2H2 W - ¥+E + @-1 el (5.25)
R, rc r r r r

- kR - JkR2
E,=4E=30, > +°

- kR - kRg 2 .
E, =301, eR1 +eR + (kH) - E g Ik
> r r

z

(5.26)

However, we recognize that the last term in (5i2@ur Taylor approximation for

- 2cogkH)and the exact analytical result for tBg component is
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KR g IR
el el 2cos(kH)e_ it

E, =30l
z m R2 r

, (5.27)

which is the three-term expression often foundhinliterature [48].

5.2 Formulation

Before proceeding directly to the time domain, wpagd upon our knowledge of the
basis function in the frequency domain from thevjings section to construct the matrix equation.
When using a particular basis function it oftendyaes convenient to normalize it to unity. Thus

the basis function for the current from the pregisection will have the form

b(x) = sin(k(H - |X|))

i . KEH (5.28)

o) that|b(0] »1 for kH << 1. Now, for a general wire geometry each basis lvéllveighted by
the unknown current values for which we seek atewiuThus, the total field produced by all

these contributions can be written as

1 N

- jkH "

—

X, +T, ><u2) SN (5.29)
e ij

wherenand m are the source and observation points respectikelythe case of point matching

the incident field at the source points we have

g, +U N . . (G, +4 :
(0, +6,) oo, 4T, 0, = g Gt le)l () g 50
|U1 +U2| nomel = m |U1 +u2| N
U, +0 . . . . L
The termH corresponds to the unit vector in the directiothaftangential electric field
u, +U,

component at the observation points, and it is afgwicable to the case when the basis function
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g, +0 . ,
straddles the two arms of a bent corner. By Ietﬁng , and using matrix algebra
u, +u,

n

notation, we can write

N - KRy - IRy .
0301, S Gl + Gy G, +Gj(d, + 0, Jue
m=1 - 2 = (5.31)
+ Gll(al - LA’z)j w+ Ggliy +Ggl, € ke = jkH (\7: Eriwnc)
= = = nm
The above equation can be written in a more confpact as
R N e jk(Rl)nm R e' jk(RZ)nm R
Vr11- Im e\ GR]_ (ul)m S w— GR2 (u2)m
m=1 (Rl)nm = nm (RZ)nm nm (532)
+ anmw/ze_ jk(r)nm + knmj M'e_ jk(r)nm + gnme_ jk(r)nm]:J:—CH (\7:‘— Efi1nc)
wherea ., K nm» 9o are given by
anm = k=2)nm(al + 0Z)m (533)
knm = E)nm(al - 0Z)m (534)
gnm = Gé (Ol)m + Gg (OZ)m (535)

== nm = nm
andG, =G, =G;, G, =G; =-G/ .
The result in (5.32) constitutes a matrix equatiothe frequency domain, where the

solution is obtained through point matching wheforaing the boundary condition. Furthermore,

it is apparent that (5.32) only contains compleganential terms and this enables us to evaluate
the time-domain form relatively easily. By performithe inverse Fourier transforﬂn‘l{ }on

(5.32), it can be shown that its time-domain repnéation is given by
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\ -(T G U +z—r G u
nm:l R1nm=Rlnm m c R2nm£nm Zhmem c (536)
2 .
H ~ .
anm%lm t (I’)% +knm%|m t _(rZ?m +Ghmlm t (2;"“ = OC%(VIEWC)

In discrete time the substitutiar® nDt is made and the differential operators are repladgh
backward differences. The resulting difference éiquds written as

N 1 o (Rl)ij 1 o (Rz)ij
u G Gy). | Bt + G U,): 1.
I j=1 (R1)| =R1 ij( )] ! (R2)ij i ij( 2)] !
O L N N 2 R ) B, ]
o S 2|]_ cht +1; cht +& |.ocbt o cDt +gil; cDt (537)

where the subscripts have been changed to avofdsion with the time index . In addition,
the right hand side of (5.37) contains the timavdgive of the incident field and this quantity is
assumed to be knowapriori . Therefore, it becomes unnecessary to numericaltypute this
term and, in fact, doing so can lead to unstatdelte

Returning to (5.37), we can see that a suitable sitee has yet to be chosen. The choice
of time step is not an obvious one and many TD-HBHnulations rely on conservative
estimates that provide the most stable results.d¥ew the form of (5.37) provides some insight
for the marching on time (MOT) scheme that is dkilf a straight wire is considered, then we
note that for terms other than the self term tiséadice from the source to the observation points
are integral multiples of the basis discretizatigpecifically the lengttH . Furthermore, the

distance from the source to its nearest observatamt will always beH regardless of the
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geometry. In view of this, a suitable choice foe thme step for this TD-EFIE schemeis: '% .

Using this prescribed time step, (5.37) can beite#mras

N L o (Ru; L o (Re)j
v Gr (G)1; M + Gr, (G2);1;
o Ry = (G
(r )ij (r )ij (r )I]
i i ™ 2a; Ky -l b &y n2-n
_ H T i
_ﬁﬁ(viTEnnc)

Noting that(r), ° 0, and collecting the terms without delays on ttieHand side while the

remaining terms are kept on the right hand sidddgithe desired MOT scheme. It is given by

G G
R Ry R R Ro N R K a::
W R (G40 y +97 = (Gp) oyl ha +07 g+ _(Dt")z I =
2
ii-1 ii+1
N G (Rl)ij N Gr (RZ)ij
H T (-1 cinc gy T2 (a )"
ﬁ—(\/i E ) Vi R (ul)jlj Ho- Vi R (UZ)jlj H
=1 . j=1 -
jri-1 I }1i+l I ) (539)
N kN ()i
T g e A Mg 2 Ky
2 ' 2 j
=1 Dt (D) o (@f D
i
N a: n-2-ﬁ
+ ol 1 |. H
Vi O
j=1

An important aspect of this MOT algorithm is thiag resulting matrix is tri-diagonal in form.
Therefore, even for large structures, (5.39) caddye relatively easily by well known matrix
techniques. This is in contrast with many other EBIE schemes where the matrix may be
sparse but would still require sophisticated treatfor large problems. We should point out
that, when using these basis functions, the temtb®right hand side of (5.39) must be given

special consideration when the geometry is curgetent, as this is the general case with most
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structures. For arbitrarily curved wires, the teanghe right hand side that contain the

associated time delays f@&);,(R,);(r); will in general not coincide with integral multes of

the discretization lengthi . Therefore, a time domain interpolation schemetrhasncluded to
accurately account for these delays and this hais 8ene when implementing the algorithm.
The matrix equation given in (5.39) requires ordynp matching to satisfy the boundary
condition that the electric field vanishes at thesimts. Consequentially, the boundary condition
may or may not be satisfied at points other thaselthat were chosen to construct the matrix
equation. It is therefore necessary to perform aathing operation in the form of a testing
function over the geometry so that on average thmtbary condition will be satisfied. This
approach is often designated as the Method of Mtsr@&hoM). However, in the MoM
formulation the basis and testing functions arerofthosen to be identical and this is referred to
as Galerkin’s method. In the MOT formulation thaslbeen derived here Galerkin’s method
cannot be easily applied. The reason for thisitigke fact that we have chosen a basis function
that is frequency dependent and therefore tesEr89) with the inverse Fourier transform of this
function will lead to numerous complications. Foidtely, the imposed constraint of identical
basis and testing functions is often unnecessatyaaralternative testing function may be used.
In fact, a suitable testing function for the MOTG@iithm is just a pulse. This function is simple
and the result of testing with it leads to a simpteension of (5.39). A graphical illustration of

pulse testing with the basis function of (5.28hewn in Fig. 5.2.

Fig. 5.2: The basis and testing functions usedherTD-EFIE.
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Using this pulse testing functiow, the resulting TD-EFIE algorithm can be derived

from (5.39) and is given by

GR G
T (1) T2 (42) n oT oy Ki @i n
WiV S W g *t{ winy Ry )41 lisg * (WY g+ 3 li =
i-1 i +1
" R )

N GRy Ry GRy (Rl
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=1 ij =1 ij

Jri-1 Jri+l

The above equation is the final form of the MOT EBIE algorithm that has been implemented

for some simple cases as shown in the next section.

5.3 Numerical Results

In this section the formulation of (5.40) has baead to simulate the transient behavior
of the induced current on some simple benchmarkigées. The first case is that of scattering
by a long straight wire for a normally incident péawave. For the second example we consider
the problem of scattering by a square loop wherpthpagation vector is normal to the loop area.
In the final case, we present the results for taesimitting case of the same square loop, where

we compute the Fourier transform of the currertrithistion and compare it to the corresponding

results obtained from MoM.
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5.3.1 Scattering From a Straight Wire

The scattering from a long straight wire servea geod benchmark test for the new TD-
EFIE method that we have introduced. The geomdttigeowire, which is 1 meter in length and
is collinear with the z-axis, is shown in Fig. SRairthermore, the incident electric field is z-

polarized, has a Gaussian time signature, Viite  N88@ f_,,; =800MHz, and travels along

the x-axis.

Fig. 5.3: Plane wave scattering of a 1 meter PE€.wi

The radius of the wire was chosen tode5e- madters, which is in accordance with

the thin wire approximation often made in MoM. kid#ion, the basis function discretization
parameter was chosen to be=0.  @&&ers, which corresponds {%C at 300 MHz. Of

interest are the current distributions and fardfiglots at 300 MHz and 600 MHz. In the time
domain the current undergoes reflections by thegmee of the discontinuity at the ends of the
wire and this in turn sets up standing wave digtrdns in the frequency domain. In the time

domain this process is not so easy to visualize vaaamust compute the Fourier transform from

the time histories of the solution vectbto compare with other existing codes. Therefore, th
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TD-EFIE algorithm was used and the computed cudettibutions and far-fields at 300 MHz

and 600 MHz are shown as well as compared with MoMigs. 5.4-5.7.

Fig. 5.4: The induced current distribution at 38z using Fourier transform of the TD-EFIE
solution and MoM.

Fig. 5.5: The induced current distribution at 608I&using Fourier transform of the TD-EFIE
solution and MoM.
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Fig. 5.6: Normalized far-fields fof = & 300 MHz using Fourier transform of the TD-EFIE
solution and MoM.

Fig. 5.7: Normalized far-fields fof = & 600 MHz using Fourier transform of the TD-EFIE
solution and MoM.
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5.3.2 Scattering From a Square Loop

A more complicated example is the scattering frosq@are loop. The wire radius and
incident field time signature were kept the samm&ection 5.3.1, and the total length of the
loop was chosen to be 0.5 meters. In this casentigent electric field is z-polarized and it
travels along the y-axis, while the loop lies ie ttz-plane (see Fig. 5.8). Furthermore, a sample

of the time signature of the current on one oftihsis segments is shown in Fig. 5.9.

Fig. 5.8: Geometry for plane wave scattering frosgaare loop.

Fig. 5.9: Time signature of the current on a ccagakd basis element.
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For the loop case, the corner elements requiredlageeatment in the way the testing
function was applied. The formulation previouslydebed generalizes the case for bent wire
geometries where the unit vector on the corneoiisputed as the vector sum of the orientations

of each arm of the basis function chosen. Thughd angle bend is accounted for by testing the

field at an angle ofl5 where the basis function straddles the cornenext¢. The results for the
current distribution at 300 MHz using the resultshe TD-EFIE and MoM are shown in Fig.

5.10.

Fig. 5.10: The induced current distribution at 3®z using Fourier transform of the TD-EFIE
solution and MoM.
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5.3.3 Transmitting Square Loop

In some cases, it is often desirable to simulaeatitenna in transmit mode. Many
formulations for the TD-EFIE have been put forthréigent years, but often times the results
presented are for the scattering cases only. Hmde attributed to the choice of the feed model,
which can lead to spurious or even unstable reduolthe frequency domain, the delta gap feed
model is used almost universally for wire type stuwes. However, for our new TD-EFIE
formulation, we have found that this model in timeet domain leads to spurious results at the
feed point. An alternative feed model is that dfilatype source where the electric field
excitation is distributed along the geometry. I$ h@en found that this model eliminates the
spurious effects of the delta gap model. To th&grixthe square loop of Section 5.3.2 was
analyzed in the transmit mode using the new TD-E#gerithm. The frill source was centered
along one of the arms of the loop, and the cumisttibution was computed by taking the Fourier
transform of the time domain solution. The resgltiurrent distribution is plotted in Figs. 5.11

and 5.12 for 300 and 600 MHz, respectively.

Fig. 5.11: Current distribution on the square laogransmit mode at 300 MHz using the Fourier
transform of the TD-EFIE solution.
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Fig. 5.12: Current distribution on the square laopransmit mode at 600 MHz using the Fourier
transform of the TD-EFIE solution.
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Chapter 6

Conclusion and Future Work

The overall theme of thesis has been the solutionuiti-scale problems that often occur
in computational electromagnetics, and are beinge@mtered, more and more frequently, as
engineers continue to attempt modeling realiststesys. The approach presented in chapter two
can be applied when large separation distancasakved on planar surfaces and meshing the
entire computational domain in FDTD becomes co§ligen the geometrical features are far too
complex to use any approximation schemes and drbes necessary to rigorously apply the
FDTD to the entire domain. This has been done feaéistic human body phantom in Chapter 3
in attempt to model realistic communication charpaameters in BANs.

The hybrid scheme presented in Chapter 4 atterogsive the problem when fine
features are included in a large computational donaad it is desired to maintain a relatively
course global cell size. This approach has beetesstully demonstrated for some sample
geometries and amounts to large simulation timengavHowever, the DM hybrid FDTD
method makes exclusive use of the fact that follsgeametries a quasi-static analysis can be
made, provided that the features are small andpycless than typically four FDTD cells.

In many cases, the wire geometries may extend aleivBTD cells and the quasi-static
approach is invalid if the retardation effect minstincluded. The new TD-EFEI algorithm
presented in Chapter 5 has been shown to compdiriowiee MoM results in the frequency
domain. The results using this new approach hawe gwwomising applications for hybridization
with other time domain codes when the wire georestare not small. In particular, future work
can focus on a hybridization with the novel TD-ERllgorithm and the FDTD. The approach

would entail a different methodology that the DMohig FDTD since the retardation effect must
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be included. Therefore, additional work can bealéd toward expanding on the range of
geometries that can be included in the FDTD andesturther improvements into the new TD-
EFIE approach would also be desirable.

As a final note, the introduction of the dipole memhconcept, and its hybridization with
the FDTD, can be adapted to other existing teclasguhich require meshing the computational
domain. A particular case is a novel frequency damarsion of the FDTD algorithm called the
recursive update frequency domain (RUFD) methods tbimputational approach makes use of
existing FDTD concepts, except that it is perforrirethe frequency domain. The advantage of
this approach is that no matrix inversion is reggirHowever, the RUFD still requires meshing
the computational domain, and, as a result, fiaeufes can still greatly increase the
computational resources needed. Fortunately, thadh#¥DTD method, based on the dipole
moment concept presented in this thesis, is eaddptable to the RUFD. Furthermore, due to the
fact that the RUFD is a frequency domain algoritiam,are not restricted by the quasi-static
approximation, which is required in time domaingd anmay be possible to extend this approach
to larger geometries for which the retardationeffe not negligible. To that end, further work is
required to demonstrate that the dipole momente&gincan be incorporated into to the RUFD

method.
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Appendix A

Prony’s Method

In Chapter 2 we found it necessary to approximagdidids by a sum of complex
exponentials. Prony’s method is a useful technighieh can be used to determine the
corresponding weights and exponents of each ingialiterm. The fact that we are able to obtain
these parameters is satisfying because in manyeegng problems the quantities of interest
behave exponentially. The algorithm below is adgpderivation of Prony’s method and can be

found in [3]. Initially, we will assume that tharfction can be approximated by the form
f(x)= A" + Ae™* e A e (A1)

where the data points are sampledkat X; (j = 12,....,n) . For convenience we can chose

X; =] - 1 without loss of generality. A simple variable stiision can be performed if the data

are taken at non-integer points. Furthermore, Wer@guire that the function of interest is
sampled uniformly (i.e., equally spaced). The lePtony’s method is the fact that each of the

exponential terms
i i i .
efil = (ea') ° i=01..k-1 (A.2)
is a solution to some homogeneol) -order, linear difference equation with constant

coefficients. In general, the coefficients may benplex. In any case, the difference equation can

be written as
Y(i +K)+ Croay(i +k- )+ Cpy(j +k- 2)+..+Coy(j)=0.  (A3)
The solutions can be determined by solving forrtiees of the characteristic equation given by

r*+C 1 r¥t+c ,r¥?%+...4C,=0. (A.4)
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Note that each exponential satisfies (A.3), soustibe the case that the linear combination of
these terms will also satisfy (A.3). Specificaliye function of (A.1) satisfies (A.3) and we have

the equation given by
f(j+k)+Cp f(j+k-D+...+Cof(j)=0 j=12....n-k. (A5)
In order to obtain a unique solution for tBk& unknowns in the assumed function we
must require that we know priori the values of the function &= 2k sample points. If this
information is available then we can sefupquations and uniquely determine @es.
Advanced matrix techniques can be used in othersoaben we do not have exactly
n = 2k samples of data. It is noted in [3] that tB¢’s can only be found if the persymmetric
determinant
D=|f(j+k) (A.6)
does not vanish. The exponeatss are found from the characteristic equation giwe(A.4) for

which we have already found the correspon@@ing. We note that when the roots are positive

then thez; s will be real. However, in Chapter 2 the data wasessarily composed of complex
data, and, in general, the roots can consist df kel and imaginary parts. Lastly, to determine

theAj 's we can use the calculat@d's and evaluate (A.1) at points were the functiatue is

already known.
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Appendix B

Plane Wave Scattering by a Coated PEC Sphere

In Chapter 4 we made use of the scattering progdriiea coated PEC sphere. Here we
briefly list the results for the Mie series reprasgion as given in [40]. Consider the problem of

plane wave scattering by a coated PEC sphere asishdvig. B.1.

Fig. B.1: Geometry for plane wave scattering by ated PEC sphere (source from [40]).

The incident electric and magnetic fields witheiff* time dependence are given by:

¥

; ., 2n+1 .
E=Ee™ "2~ |mW_ipl B.1
i 0 o n(n+1) oln eln] ( )
_ ) ¥
Ho=TE gm0 2Ll 4] ®2)
wm e N(n+D
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and the scattered fields outside the spherer(kda+ @ ) cah be written as:

- ¥ n 2n+1
E.=Ee™ "2 D asm (gl% ib ne(fg] (B.3)
n=1
-KEy im ¥ ., 2n+1
H=—"L2e™ i"—— [b meln +|ann§1,)1] (B.4)

wm e N(N+D

where m((j?e)ln and ﬁ((j?e)ln are given by:

m? —+—J (k,r )P} (cosg) cos” 4

eln ™= ging sinf 7
d sinf (B-5)
- jo(kyr)—Pr 2
jn( 1r)dq " (cosq) cosf as
—) :n(n+1) sinf
n(o,e)ln kll’ (k r) ( SC/) OSf ar
+ Ll (k]2 P (cosg) 3™ a (B.6)
ro T dg " cosf 7
¢ 1 cosf
* krsmq[k iy far ] R cosg) sinf &

The primes at the square brackets indicate diffexon with respect to the argumekyr . In

addition, j, is the spherical Bessel function of the first kindd Pnl(cosq) is the associated
Legendre polynomial of the first kind, first ordand nthdegree. Furthermore, the expressions

for m((o)e)ln and n((o)e)ln are obtained by replacing, in (B.5) and (B.6) with the spherical Hankel

function of the first kind,hr(}). By solving the boundary value problem the scattpdoefficients

become:

- n(a) Wi B]¢- WO2E) + e LER0)- Lo E)
as = (B.7)
WO(a) W)@ inclerd @) - [AAal]iEnde)- (e}




- in(#) [erte)fein (el e @Merf + 2 (a1 nENei(c] inelere)

b =

where

n9(a) [ere)lcin(c)® [inElicc)

A=k, (a+d)

B=k,(a+d)

- 2 [ efon(el® ineledic)f
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(B.8)

(B.9)

(B)1

(B.11)
(B.12)

(B.13)
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