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Abstract

This dissertation concerns the relationship between education and health.

While this is not a new topic, the focus of this research is to explicitly model

the education and health decision process and estimate such a model. Com-

pared to current literature which focuses on statistical modeling as opposed

to economic modeling of the decision, this project allows for deeper intuitive

and policy analysis.

Chapter one reviews the Economics literature on the relationship between

health and education. It then discusses the current issues in the literature

and proposes a solution to some of those problems. This chapter also provides

a simple economic model of health and education choice from which a more

complicated dynamic model is derived in chapter two.

Chapter two proposes a dynamic model of health and education choice

allowing for unobserved heterogeneity. This model is then estimated using

data from the Health and Retirement Study. Results from the estimation

suggest that an exogenous increase in education only increases expectation of

life by approximately one third of the amount typically reported in the current

iii



literature.

Chapter three performs various robustness checks on the structural estima-

tion described in chapter one. One test is to simulate data from the estimated

model and perform statistical analysis analogous to what the current litera-

ture would perform on real data. This analysis shows that while the model

predicts a far less mortality decline from a year of school, simulated data still

generates the same results as real data when put to the standard analysis. The

other major test performed in this chapter is to vary the amount of unobserved

heterogeneity allowed in the model to see how sensitive it is to this number.

Chapter four performs various policy experiments using the model esti-

mated in chapter one. It examines the cost and benefits of compulsory ed-

ucation policy, college cost policy, and smoking policies. While all of these

policies have various effects, this chapter only looks at the health benefits of

these levers and compares the various cost benefit ratios. Ultimately the con-

clusion is that even with the reduced benefit of education compared to the

current literature, education investment as a health policy is most likely ef-

fective. However, policies that target health decisions, especially smoking are

superior in terms of cost benefit ratios.
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Chapter 1

Introduction

This dissertation examines the well known, robust link between higher educa-

tional attainment and lower mortality rates. According to the National Center

for Health Statistics, “The age-adjusted death rate for those with less than 12

years of education was 650.4 deaths per 100, 000 U.S. standard population,

36.2 percent higher than the rate of 477.6 deaths per 100, 000 U.S. standard

population for those with 12 years of education and 3.2 times the rate for those

with 13 years of education or more.”(Kung et al., 2008) At every age and level

of education, incremental education lowers mortality at every subsequent age.

A rule of thumb is that this divergence of mortality rates translates into a raw

statistical relationship that life expectancy rises by about a year and a half for

every incremental year of education.

The correlation between longevity and educational attainment has been

known and studied for decades. Kitagawa and Hauser (1973) are widely re-
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garded as the originators of modern work on this topic, albeit with a focus

on socioeconomic status. By using education as a main indicator of socioeco-

nomic status the authors inadvertently showed the correlation. A host of other

studies throughout the years have reinforced that this correlation is present

and strong even controlling for many other factors(see Deaton and Paxson

(2001) for a direct study or Grossman (2005) for a review of the literature).

The predominant theoretical framework of these studies has been an ap-

plication of Becker (1962), in which a persons health status is represented as a

stock of human capital. This application was suggested by Ben-Porath (1967)

and was worked out in detail by Grossman (1972). Grossman considered the

role of education in detail, modeling it as a complementary investment that

increases the rate of return on other human capital investments specific to

health.

Of course, the rule of thumb mentioned above is only a statistical correla-

tion, which could reflect any combination of the following four mechanisms:

1. that education gives people lower mortality by making them better able

to maintain their health than they would otherwise be;

2. that education gives people lower mortality by providing them with

stronger incentives to maintain their health than they would otherwise

have;

3. that, conversely, (an expectation of) lower mortality disposes people to

acquire more education than they would otherwise acquire, or
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4. that some third attribute leads people both to acquire high education

and also to make other decisions that reduce their mortality.

Mechanisms 1 and 2 speak to forward causation: more education causes better

health outcomes. Mechanism 3 relates to what some call reverse causation.

This mechanism has not been widely considered in the literature, however the

model presented in this paper will allow for it. Mechanism 4 being mostly

operative would suggest that the association between education and health is

purely due to self selection into better health and more education. The next

section discusses how the literature has tried to examine these mechanisms.

1.1 Instrumental Variables and Natural Ex-

periment Literature

For health economists it seems that for the most part the prior expectation is

that the health education gradient is generated primarily through mechanisms

1 and 2. Grossman’s seminal model of health choice specifically assumes that

education is a productivity enhancing input into a health production function

Grossman (1972). The theory that the association may come mostly from

selection into better health and more education is widely attributed to Fuchs

(1982). Specifically Fuchs postulates that time discounting could be a root

cause for the association. The argument is that those individuals who discount

the future heavily will neither invest in the long term payoff of extra schooling;

nor will they invest in costly but beneficial health choices like not smoking or
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exercising since these carry little value for a myopic person.

If Fuchs’ argument is correct, simply running a linear regression assuming

education causes better health outcomes will lead to the over estimation of the

effect of education on health. To address this issue there is a literature that

uses instrumental variables to try and control for this selection. For instance,

Sander (1995) uses family background and the region in which an individual

lives at at age 16 as instruments for education in a regression on the probability

of smoking cessation. This literature finds that education and healthy behav-

ior is still quite correlated even after attempting to control for endogenaity.

These type of studies unfortunately have the flaw that the instruments can be

suspect. Ideally an instrument would only be correlated with education and

not health, however given the strong association in the data this is unlikely

to be true for any observable characteristic. For instance family background

is likely related to education, but it is also likely related to health behaviors.

This will again bias the effect of education on health in a standard regression.

The most recent literature takes a different approach. Since instruments

that are correlated with education but not health outcomes are likely hard

to find in the data, an interesting identification strategy is to find a policy

that exogenously changes educational attainment (a so called quasi-natural

experiment) and see if there is a health response to that policy. Lleras-Muney

(2005) uses compulsory schooling laws in the United States as instruments

for exogenous shifts in education in a two stage least squares approach to

estimating the health returns to education. Lleras-Muney finds that even in
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this framework, the effect of health on education does not diminish, suggesting

that mechanism 4 may not be important. Similar research strategies have

been employed with mixed results. Arendt (2005) (Denmark), and Spasojevic

(2003) (Sweden) find that education remains a strong determinant of mortality

or health outcomes. Reinhold and Jürges (2009)(West Germany) Clark and

Royer (2007) (UK), and Albouy and Lequien (2009) (France) come to the

opposite conclusion.

Outside of the compulsory schooling papers, there have been a number of

attempts at using other schooling policies. Kenkel et al. (2006) uses variation

in GED policies by state as an instrument to see if there is a difference between

the health behaviors of high school drop outs and GED recipients. de Walque

(2007) uses Vietnam draft lottery numbers as an instrument for exogenous

schooling shift and finds that extra schooling decreases smoking behavior.

All of the aforementioned literature is concerned with eliminating bias

problems caused by the possibility of unobserved heterogeneity (mechanism

4). As is noted in Cutler and Lleras-Muney (2006), even if mechanism 4 has

no effect on the correlation, little is known about the difference between the

direct effects of education on health (mechanism 1), and the incentive effects

(mechanism 2). One reason for this is that while quasi-natural experiments

are well suited to examine if causation exists, they do not technically tell us

much about pathways of causation. For that we need more detailed economic

modeling; of which is presented in this paper.

It seems that policy makers have responded to literature’s uncertainty
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about mechanisms by trying to cover all of their bases. The current pro-

posal for the next decade’s national health objectives (Healthy People 2020)

reflect the power of this association by including several goals related to ed-

ucation. Of interest to this research are goals ECBP HP20201 and ECBP

HP202011. ECBP HP20201 focuses on increasing general high school comple-

tion as a health policy. ECBP HP202011 focuses on a very narrow set of skills

to promote in public schools. If schooling has a direct cause on health levels

we would expect direct skill enhancement to be an appropriate and produc-

tive policy. If schooling mostly affects health through the other mechanisms,

then general education would be the best policy. General education is how-

ever quite expensive and it would be helpful to know why general education

enhances health levels in this case.

The research reported in this dissertation contributes to the literature in

a several ways. It uses individual panel data from the Health and Retirement

Study on health decisions instead of aggregate data as in Lleras-Muney (2005).

This is the first study in which the decision process is explicitly modeled

and can apportion weights to the different mechanisms that may generate

the health and education gradient as seen in data. In this regard the paper

draws on the models of Rust (1987) for structure and Arcidiacono and Jones

(2003) to allow for permanent unobserved heterogeneity across a finite mixture

of types.1 The estimation procedure used in this dissertation is an extension of

1The general method for dealing with finite type mixtures in this setting was first put
forth by Heckman and Singer (1984) and later used in dynamic discrete choice models
starting with Keane and Wolpin (1997). Arcidiacono and Jones (2003) greatly reduces the
computational burden of this model feature for the class of models descendant from Rust
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Arcidiacono et al. (2007) which also uses HRS data to explain health decisions,

however the current research focuses on the relationship between endogenous

education choice and health behaviors, whereas the former research does not

allow for education choice.

1.2 A Motivating Example

To understand how variations in time preference may be important in un-

derstanding how education affects aggregate mortality figures, we present a

simple two period discrete choice model. This model retains several charac-

teristics that will be present in a more rigorous empirical study: investment in

education reduces early life utility (think of lost wages or dislike of studying)

and increases end of life utility; investment in health reduces utility in early

life and increases the probability of survival in later life; and traditional time

preference modeling looks enters into a life-cycle model the same way death

probability might.

There are two time periods t = 1, 2 and an agent is characterized by a

time preference parameter β ∈ [0, 1]. In the first period an agent has to make

two choices: an dichotomous education level, e or e, and a dichotomous health

investment level, h or h. For notational clarity any underlined variable is the

low value and any variable with an upper bar is a higher value. There are

explicit costs to these decisions and for simplicity we assume that e = h =

(1987).
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0 and that ch and ce are the respective marginal costs of a unit of health

investment and a unit of education. Thus a choice of e has a cost of cee and a

choice of h has a cost of chh. Wages depend on age as well as education choice

so that we can write wages as w(e, t). These wages have the property that

w(e, 1) < w(e, 1) = w(e, 2) < w(e, 2). Finally, there is a survival probability

s(h) that determines the ex ante chance of mortality in the second period

given a level of health investment. We assume that with high investment an

individual lives to the second period for sure, s(h) = 1, and that if a person

does not invest in health related issues they face an uncertain future life span,

i.e. s(h) < 1

The agent makes all decisions in the first period at which point she realizes

the explicit costs of her decisions and the wage in period one. At period

two if the agent is alive she generates her second period utility, and if not

generates a zero utility. This leads to an agent choosing between high and low

education, and choosing between high and low health investment to maximize

the following expression:

w(e, 1)− chh− cee+ βs(h)w(e, 2)

Since there are only four choices we can list all of the payoffs in a small payoff

matrix:

Due to the simplicity of the model, if we give some numeric values to the

variables we can easily solve for the optimal choice given a particular s(h)

and β. The following parameter values were derived from the Panel Study of
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Table 1.1: Payoffs for Descriptive Model

h h

e w(e, 1) + βs(h)w(e, 2) w(e, 1)− chh + βw(e, 2)

e w(e, 1)− cee + βs(h)w(e, 2) w(e, 1)− cee− chh + βw(e, 2)

Income Dynamics: The solution to this problem for all values of s(h) and β is

Table 1.2: Parameter Values for Descriptive Model

w(e, 1) w(e, 2) w(e, 1) w(e, 2) ch ce e e

700 700 583 1124 100 50 12 16

shown in figure 1.1. Note that in general as the marginal value of health in-

vestment goes up (s(h) goes down) more and more β values emit a high health

investment. This graph also highlights a fundamental identification issue: rel-

atively high levels of β with low levels of marginal value of health investment

emit the same decision as low levels of β with high marginal values of health

investment. This suggests any empirical strategy may need information about

either β or expected mortality risk in order to have an identified model.

For a thought experiment also consider a case where an agency has taken

away the education choice and imposes a requirement of e. This is a crude

approximation of the compulsory schooling law changes that Lleras-Muney

(2005) and others use. The decision is reduced to only a health invest-

ment choice, where an individual will choose h if and only if w(e, 1) − cee +

βs(h)w(e, 2) < w(e, 1)− cee− chh+ βw(e, 2).

Figure 1.2 shows the optimal decisions in this case. Note that for all points,
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Figure 1.1: Cutoff regions (unregulated)

Figure 1.2: Cutoff regions (compulsory education)
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health investment is at least as much as in the no policy case, and at some

points what was once a h decision is now a h decision. In this example,

compulsory schooling causes a reduction in mortality without education having

any direct ability to do so. Instead education changes the incentives of certain

types of people such that they choose to invest more in health and thus live

longer.

1.3 Agenda of Dissertation

The dissertation will formalize and estimate an individual decision model in

chapter 2, evaluate the robustness of the estimation in chapter 3, and examine

the policy implications of these exercise in chapter 4. The goal of the project

is to gain insight into the mechanics of how education and health are related

and to then evaluate several policies that could be implemented depending on

a policy maker’s goal.



Chapter 2

A Structural Estimation of

Health and Education Choice

As discussed in chapter 1, the goal of this dissertation is to explore the mor-

tality education relationship through the lens of an economic model. In order

for this exercise to have any meaning, the decision model must satisfy three

features: it should be able to allow for several pathways of the relationship,

it should not deviate from traditional decision models, and it must be simple

enough to solve and estimate. The reason for the first is so that the data does

not “force” the model into one particular pathway of a relationship because

the true pathway does not exist. The second is an attempt to stay as agnostic

as possible so that the model does not favor one pathway over another. The

last feature is just a matter of feasibility.

This chapter sets forth a decision model that satisfies these features and

12



13

estimates it using a large national set of data from a panel of retirees in the

United States.

2.1 Decision Model

Consider a world in which an individual optimizes over his lifespan using the

following structure common to the dynamic discrete choice estimation litera-

ture.1 An individual begins his decision life at time t = 0 and lives until at

most T discrete periods. To pin this to the data assume that t = 0 relates to

age 14, each period is two years and T = 40 so that the model covers from ages

14 to 96. Each individual is characterized by a pure time preference parameter

β ∈ [0, 1].2 In each period there are Jt number of mutually exclusive options

available. In order to reduce the choice space, I assume that at time 0 each

agent makes an education choice e ∈ {8, . . . , 17} and then follows through

with that decision. For all t ≥ 1 there are only health choices about smoking

and drinking so that Jt = 4.3. Let djt take the value of 1 if the jth option is

taken at time t and 0 otherwise and dt = [d0t, . . . , dJtt]. Since these options

1This setup extends the model in Arcidiacono et al. (2007) to allow for endogenous
education choice.

2The distinction between pure time preference and discount rate in this model related
to an individual’s expectation of mortality. The intention of β is to capture a preference for
time rather than combine that with a subjective risk of reaching the next period.

3There are four possible joint values of the two dichotomous variables for smoking and
heavy drinking
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are defined as mutually exclusive:

∀ t,

Jt
∑

j=1

djt = 1

All of the information needed to make a decision at time t is contained in

a parameter vector θ and a state Xt which evolves over time according to a

Markov transition function F (Xt+1|Xt, dt, θ). I assume that Xt is composed

of both an observable component xt and an unobservable component ǫt so

that Xt = [xt, ǫt]. An agent knows the full state Xt at time t, however any

outside observer cannot see ǫt which will therefore not be in a data set while xt

may be. Each agent is rational, such that ex ante beliefs about future states

are consistent with the transition function F . For tractability I assume the

following about the structure of the transition function:

F (Xt+1|Xt, dt, θ) = G(ǫt+1|ǫt, dt)Fx(xt+1|xt, dt, θ) (CI)

which simply states that the unobserved state variables evolve independently

from the observed state variables conditional on decisions.4 Specification of

the transitions is explained further in section 2.1.1

I assume that preferences can be characterized by a time separable utility

function with payoff Ut(Xt, dt) at time t. Furthermore, denoting the time

4Note that this does not necessarily imply that xt and ǫt are independent: since both
are known to an agent at the time of decision making, dt may (and in this setup will) be a
function of both xt and ǫt.
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invariant payoff function for option j as uj(xt, θ); Ut takes the following form:

Ut(Xt, dt, θ) =
Jt
∑

j=0

djt [uj(xt, θ) + ǫjt] (AS)

2.1.1 Function Specifications

For clarity, partition the parameter vector as θ = {θd, θe, θy, θs}, where θd is

the portion of the parameter vector used in the per period utility functions, θe

affects education decisions, θy will be used in wage transition functions, and

θs is used in the survival probabilities.

Each option in the health choice has its own parameter values, and the

intercept is interpretable as the difference in utility level between option j and

a baseline option (in this case the no smoking and no heavy drinking option

is the baseline). For all t > 0, uj takes the following specification:

uj(xt, θ) = θdj0 + θdj1ln(yt) + θdj21(qsmoke) + θdj21(qdrink)
For t = 0 (the education choice period) uj is specified as:

uj(x0, θ) = θe01(eduj ≤ 12)eduj+θe11(12 < eduj ≤ 16)eduj+θe21(eduj ≥ 17)eduj

where 1(x) is an indicator function returning 1 if the statement x is true. I also

specify the form of Fx(xt+1|xt, dt, θ), specifically the transitions of unknown fu-

ture states such as next period income and next period mortality state. I have
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assumed that there are no unobservable state variables in these transitions,

so I simply induce transition probabilities from the data using the following

regression forms.

Survival probabilities take a simple logit form:

Pr[survivet+1|Xt, dt, θ] = S(Xt, dt, θ) =
1

1 + exp(−xstθs)

Where:

xstθ
s = θs0 + θs1aget + θs2edu+ θs31(drinkt) + θs41(ex− smoker) + θs51(smoket)

Income transition probabilities are backed out from a log-normal regression

function of the form:

yt = θ
y
0 + θ

y
1edu+ θ

y
2age+ θ

y
3age

2 + θ
y
4yt−1

+ θ
y
51(12 < edu ≤ 16) + θ

y
6age1(edu ≥ 17) + ν

2.1.2 Solution

Given the prior environment, a rational agent simply solves the following dis-

counted lifetime problem:

max
(ρ0,...,ρT )

Eρ

[

T
∑

t=0

βtUt (Xt, dt, θ) |X0

]
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Where ρt is a policy rule that transforms a state to a decision, i.e. dt = ρt(Xt).

The rationality assumption implies that the beliefs used in the expectation

operator Eρ are consistent with the transition probabilities for uncertain states

according to the Markov function F . It also implies that agents make decisions

considering the ex ante expected payoff from education and health investments

(as opposed to their ex post realizations).

2.2 Estimation

According to Rust (1987), given assumptions (AS) and (CI) above and as-

suming that ǫt comes from the type I extreme value distribution, this model

can be formulated as a dynamic multinomial logit and estimated by maximum

likelihood. Specifically, with the distributional assumption on ǫt, the value

functions for each option can be written as follows:

VjT (xT ; θ) =ujT

(

xT , θ
d
)

(2.1)

Vjt(xt; θ) =ujt

(

xt, θ
d
)

+ βS(xt, dj, θ
s) (2.2)

×

∫

(

ln

[

Jt+1
∑

k=1

exp
{

Vk(t+1) (xt+1; θ)
}

])

Fx (dxt+1|xt, dj, θ)

The dynamic multinomial logit form then implies choice probabilities of the

form:

Pr(djt = 1|xt) =
exp {Vjt (xt; θ)}

∑Jt−1
k=0 exp {Vkt (xt; θ)}

(2.3)
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Given θ and the specifications listed above, the likelihood can be calculated

for each state and choice for each observation. If each individual is indexed

by i in the data where i = 1, . . . , N and is observed from model period ti to ti

then the contribution to the log likelihood from observation i is:

Li(θ) = ln (Pr (dij0|x0, θ)) +

ti
∑

t=t
i
+1

ln (Pr (dijt|xt, θ))

+

ti
∑

t=t
i
+1

ln (Pr (xt|xt−1, dt−1, θ
y, θs)) (2.4)

In principle the parameters of this objective function could be jointly estimated

by full information maximum likelihood (FIML). The number of iterations

needed to optimize a log-likelihood function increases rapidly in the number

of parameters needed to be estimated. To estimate this model by FIML would

require many iterations, and each one would have to solve the dynamic choice

problem which is computationally expensive. For tractability Rust (1987)

suggests maximizing the log likelihood
∑N

i=0 li(θ) via a two step process. Since

the log likelihood is additively separable, the state transition log likelihood is

maximized first by choosing θy and θs. Then taking θy and θs as given θe and

θd are then chosen to maximize the decision variable log likelihood.

2.2.1 Unobserved Heterogeneity

In order to study the effects of heterogeneity on health and education choices,

this model must be extended to allow for heterogeneous agents. As noted in
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Arcidiacono and Jones (2003), unobserved heterogeneity spoils the separability

that allows for two step procedure described above. Instead one must maximize

the likelihood function by optimizing over the full parameter space, which

given the scope of this problem is computationally infeasible. Arcidiacono and

Jones (2003) specify, and Arcidiacono et al. (2007) implement an algorithm

that reintroduces the ability to estimate the parameter space in steps. A brief

explanation of how that is achieved in this model is presented below. For more

details see the prior mentioned papers.

Following Heckman and Singer (1984) and Keane and Wolpin (1997) as-

sume that there a finite number of discrete types of agents m = 1, . . . ,M .5

These types may affect transition probabilities as well as preferences. If type

were observed equation (2.4) becomes:

Li(θ,m) = ln (Pr (dij0|x0, θ,m)) +

ti
∑

t=t
i
+1

ln (Pr (dijt|xt, θ,m))

+

ti
∑

t=t
i
+1

ln (Pr (xt|xt−1, dt−1, θ
y, θs, m)) (2.5)

Unfortunately the type of an individual is unobserved so more structure is

needed. Define πm
i as the probability that individual i is of type m. The

5In theory there can be as many types as individuals in the sample, in practice this is
typically set at some low number. In this case I use 2 types
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contribution to the log likelihood from an observation then becomes:

Li(θ) = ln





M
∑

m=1

πm
i



leim(θ)

ti
∏

t=t
i
+1

ldimt(θ)lysimt(θ
y, θs)







 (2.6)

This form is computationally problematic since it destroys the additive separa-

bility of the log likelihood. To maximize (2.6) would require an optimization

routine to cover the full parameter space. Instead Arcidiacono and Jones

(2003) suggests the following:

1. Allow time invariant individual data zi to affect πm
i using the following

specification

πm
i (γ) =

exp(γmzi)

1 + exp(γmzi)
(2.7)

2. Calculate the conditional probability of individual i being type m as:

Pm
i =

πm
i (γ)leim(θ)

∏ti
t=t

i
+1 ldimt(θ)lysimt(θ

y, θs)
∑M

j=1 π
j
i (γ)leij(θ)

∏ti
t=t

i
+1 ldijt(θ)lysijt(θ

y, θs)
(2.8)

3. Calculate the type-qqqqweighted log likelihood of the sample

N
∑

i=1

M
∑

m=1

Pm
i Li(θ,m) (2.9)

Equation (2.9) reintroduces separability and thus θ can be optimized in two

steps as before. The algorithm to estimate the full model is as follows: pick

a starting value for θd and θe and choose θy and θs to maximize the state
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transition log likelihood. Given this value for θ choose γ to maximize equation

(2.6). Calculate πm
i and then Pm

i and then maximize equation(2.9) in two

steps. Repeat this process until the log likelihood converges.

Unobserved heterogeneity is supposed to influence agents decisions, so type

must enter into the specification of the technology and utility functions. For

this project heterogeneity enters in several ways. The wage transition regres-

sion and survival regression include type dummies. The intercept of the utility

function for each option varies by type. In some specifications the discount

factor β will be allowed to vary by type.

The time invariant data used to separate out types and help control for un-

observed differences in initial conditions include: wave 1 smoking and drinking

choice, subjective probabilities of surviving to age 75 divided by calculated life

table probabilities (as a measure of relative optimism about health), whether

or not the individual’s mother lived past 70, and mother’s education.

2.3 Data

The primary source of data for the estimation is the RAND version (I) of the

Health and Retirement Study (HRS) sponsored by the National Institute of

Aging. The HRS is a large longitudinal study of individuals 50 years of age

and older along with their spouses or partners. The RAND data have been

cleaned and documented to clear up some inconsistencies in the raw HRS data

and add to usability. The survey over samples African-Americans, Hispanics,
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and residents of Florida. The first wave of the HRS was conducted in 1992

and has been followed up on every two years, with the latest published wave

for the HRS being the 2006 wave. The sample is divided into several cohorts

for which interviewing started during different waves. This paper focuses on

the so called HRS cohort since it has data for 8 waves (16 years of the life

cycle). The HRS cohort contains 13434 individuals: a sample of individuals

born between 1931 and 1941 and their spouses. The HRS cohort was chosen

over the AHEAD cohort (a more mature sub-sample in the HRS data) because

the AHEAD cohort is likely to have had significant mortality even before the

survey and as such is probably a highly selected sample of healthier people.

So as to not confuse age, period, and cohort effects; we assume that all

individuals in the HRS cohort born between 1931 and 1941 have the same

cohort experience (i.e. the structural estimates should be the same) Future

research may be able to use more of the data, however for this project we want

to use as large a life span as possible.

The HRS has a full range of demographic, financial, health, family, and

work related variables. Mortality rates in various sub-populations are es-

timable because there has been significant mortality in the sample since the

first survey wave. By wave 8 of the HRS 24.7% of the HRS cohort has died.

Since a key component of any dynamic model is future expectations rather

than actual outcomes, I use the fact that the HRS contains a set of questions

asking people what they think is their probability of surviving until ages 75

and 85 to help separately identify mortality expectations from other future
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discounting mechanisms. These data, while relatively noisy, have been shown

to vary appropriately with known risk factors, and respond reasonably to new

information (Hurd and McGarry, 2002).

Currently this study only examines the life experience of males. For HRS

cohort it is quite clear that the education and health choice incentives differ

for males and females especially in the wage dimension. Dealing with males

simplifies the model by not having to worry as much about labor force partici-

pation and non pecuniary benefits from schooling. Also the males and females

in this particular sample are (at least in part) married to each other. Since the

choices of spouses are likely to be correlated in some unknown way, modeling

these decisions would be prohibitively costly.

There are 4594 males in the HRS cohort born between 1931 and 1941.6 Of

these 1402 are lost to attrition not caused by a mortality event. It is assumed

that education decision making starts at age 14, so any observation with an

education below 8th grade is dropped. Dropping some missing values takes

the sample to 2293 males covering 14402 person-waves.

Summary statistics for the data used is in tables 2.1 and 2.2. Income house-

hold income which includes all income from all sources including a spouses in-

come. Age is in years at time of interview. Note that the average age is falling

in the sample. This is due to a mortality effect that is biased towards later

life. Heavy drinking is defined as drinking more than two drinks per day, and

6There are more males in the cohort born outside of this range due to marriage and data
collection error. These observations are dropped since it is unlikely that they are making
decisions in the same structural environment as the cohort this study is focused on.
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Table 2.1: Summary Statistics: Time Variant Data

Variable Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

Wave 2 Wave 3 Wave 4 Wave 5

Log income 10.715 0.939 10.796 0.897 10.771 0.943 10.784 0.917
Age 57.416 3.174 59.404 3.181 61.26 3.171 63.159 3.167
Heavy Drinker 0.072 0.258 0.072 0.259 0.063 0.243 0.058 0.234
Ex-smoker 0.489 0.5 0.5 0.5 0.527 0.499 0.545 0.498
Smoker 0.244 0.429 0.229 0.42 0.196 0.397 0.173 0.379

Wave 6 Wave 7 Wave 8

Log income 10.756 0.914 10.804 0.874 10.811 0.820
Age 65.283 3.162 67.187 3.18 69.135 3.141
Heavy Drinker 0.065 0.246 0.066 0.249 0.07 0.255
Ex-smoker 0.551 0.498 0.572 0.495 0.584 0.493
Smoker 0.162 0.368 0.135 0.342 0.121 0.326
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seems to have little trend. Smoking has a tremendous drop over the course of

the sample starting at over 24% of respondents smoking down to just 12%.

Table 2.2: Summary Statistics: Time Invariant Data

Variable Mean Std. Dev

Mother lived past 70 0.772 0.419
Wave 1 Smoking 0.227 0.419
Wave 1 Heavy Drinker 0.079 0.270
E(Prob Survive 75)/life table 1.057 0.453
Mothers Education 9.934 3.254
Wave 1 Ex Smoker 0.477 0.500
Years of Education 13.20 2.543

For information about family health that may be useful for health expecta-

tions the HRS has data on how old the individual’s mother was when she died

(or age if alive), as well as a subjective probability of surviving. Mothers age

is turned into a dummy variable which takes the value of 1 if an individual’s

mother lived past 70. The subjective probability of survival in the HRS has

been shown to correspond fairly well with actual mortality.7 This study uses

subjective probability of living to 75 divided by the United States life table

probability. One could consider this variable a relative optimism variable. If

it is over 1, an individual is relatively optimistic about their survival chances

given their age compared to the rest of their peers.

Table 2.3 is where the correlation between education and mortality shows

up strongest. Period by period mortality is small, however after 14 years it is

7Hurd and McGarry (2002) present evidence that this variable responds well to health
shocks and mortality risks.
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Table 2.3: Percentage of Population Remaining

Wave

Education 2 3 4 5 6 7 8

8 0.96 0.92 0.88 0.80 0.72 0.67 0.65
9 0.96 0.89 0.86 0.82 0.78 0.73 0.70
10 0.96 0.91 0.89 0.85 0.81 0.76 0.72
11 0.96 0.90 0.86 0.80 0.76 0.71 0.69
12 0.97 0.94 0.91 0.88 0.84 0.81 0.77
13 0.97 0.95 0.93 0.90 0.85 0.83 0.79
14 0.97 0.92 0.88 0.84 0.79 0.77 0.73
15 0.99 0.95 0.93 0.90 0.87 0.84 0.79
16 0.98 0.94 0.93 0.91 0.88 0.85 0.81
17 0.99 0.96 0.94 0.93 0.90 0.87 0.85

clear that those who have more education are surviving at a much higher rate

than those with less. The next section will set out a formal model that will

try and describe these data.

2.4 Results

The model is estimated under two separate specifications. Both specifications

allow for unobserved heterogeneity as described above. They are different in

the discount factor that is used in each case. The fist model assumes that both

types have a one year rate of β = 0.95, and the second assumes that type 1

has a one year discount rate of β = .75 and type 2 has a one year β = 0.95.8

There are four sets of parameters to estimate: survival function parameters

8The values were chosen based on a grid search for the best fit of the data.
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(table 2.4), wage transition parameters (table 2.5), utility parameters (table

2.6), and type probability parameters (table 2.7).

The survival function and wage transition function makeup the beliefs that

an agent has in the model about the value of the future. These of course can

only be estimated from observed data, and if an agent has different subjective

beliefs than what the data suggest, the solution to the dynamic programming

problem will be incorrect. Therefore, I assume that the observed mortality

transitions and wage transitions correspond with the subjective beliefs of the

agents in the model.

Table 2.4: Survival Function Parameters

β 0.95 Heterogeneous

Coeff. Std. Err. Coeff. Std. Err.

constant 7.7037 0.7806 7.7472 0.7816
education 0.0536 0.0196 0.0541 0.0197
age -0.0724 0.0108 -0.0726 0.0108
heavy drinking 0.1158 0.2018 0.1031 0.2007
ex-smoker -0.5993 0.1397 -0.6025 0.1395
smoker -1.1153 0.2204 -1.1472 0.2205
type 1 0.0436 0.1800 0.0072 0.1811

The survival transition estimates seem to have appropriate magnitudes as

well as signs with the exception of heavy drinking. Of particular interest to

this paper is the coefficient of education on survivability. It seems as if consid-

ering unobserved heterogeneity in the survival function has no effect or may

actually increase the effect of education on two period survival probabilities. If
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education had no direct effect on mortality this coefficient should be zero. Note

that because of the non linearity of the survival function, as age increases (and

therefore drags down the survival probability) the marginal effect of survival

from smoking increases, thus increasing the cost of smoking as one ages.

Unobserved type is not significant in the survival function suggesting dif-

ferences in survival rates come through choice rather than chance. If there

were a difference between types in the survival function, this would suggest

that different types have different baseline survival probabilities which would

affect the choice decision. A significant value of this parameter then could be

evidence for reverse causation (those that have higher subjective survival prob-

abilities may invest more or less in various human capital; or mechanism 3).

As such this model does not lend evidence to the theory that reverse causation

is operative.

Table 2.5: Wage Transition Parameters

0.95 Heterogeneous

Coeff. Std. Err. Coeff. Std. Err.

constant 6.1012 1.1266 6.1009 1.1267
education 0.0437 0.0073 0.0436 0.0073
age -0.0683 0.0356 -0.0683 0.0356
age2 0.0864 0.0200 0.0873 0.0201
lagged income 0.5898 0.0101 0.5898 0.0101
college 0.0280 0.0311 0.0279 0.0311
postgrad 0.0897 0.0480 0.0900 0.0480
type 1 0.0005 0.0003 0.0005 0.0003

The wage parameters suggest a concave wage-age profile with relatively
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high persistence as is typically seen in wage data.9 Of note is that educa-

tion changes the growth rate of wages so that higher educated people have

steeper wage paths. Again the heterogeneity parameter for this transition is

insignificant.

The utility parameters in table 2.6 seem to be what one would expect given

the model. Compared to non-smoking and not heavy drinking, smoking and

not heavy drinking has a large utility benefit. Just heavy drinking is utility

enhancing but not as much as just smoking. Choosing to drink and smoke has

a utility benefit; just not as much as smoking alone. There is a fairly large

penalty for quitting smoking attesting to the large persistence in smoking in

the data. Without this parameter there is not enough stickiness to the smoking

choice. The education parameters can be interpreted as cost of foregone wages

on top of psychic cost of an extra year of education. It seems reasonable to

expect that the cost of college is higher than the cost of high school on a per

year basis.

The type parameters in table 2.7 seem to suggest that only smoking in

wave 1 has an appreciable effect on type probabilities. The type estimation

is semi-parametric in the sense that it puts more weight to type probabilities

that maximize the log likelihood and then adjusts the type parameters to

match these weights. The high coefficient on the constant implies that the

nonparametric type selection dominates the parametric part of the algorithm.

More research is necessary here to determine which variables would best affect

9See Heckman et al. (2008) for more information on this phenomenon.
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Table 2.6: Utility Parameters

0.95 Heterogeneous

Coeff. Std. Err. Coeff. Std. Err.

smoking=1, heavy driking=0
constant 6.2928 0.0195 5.6504 0.0642
income 0.8440 0.0000 0.8709 0.0001
type 1 1.7667 0.0022 1.5187 0.0015

smoking=0, heavy driking=1

constant 1.5459 0.1805 0.5977 0.1799
income 1.0059 0.0004 1.0458 0.0004

quit smoke -4.2414 0.0296 -3.8925 0.0291
type 1 -5.1518 0.0061 -4.9940 0.0049

smoking=1, heavy driking=1
constant 3.4997 0.1758 2.0986 0.1874
income 0.8928 0.0004 0.9507 0.0004
type 1 0.0805 0.0197 1.1472 0.0087

education
high school/yr -0.4827 0.0005 -0.4955 0.0005

college/yr -0.9863 0.0002 -1.0045 0.0002
post-graduate/yr -1.0773 0.0001 -1.0916 0.0002

log likelihood -29407 -29012
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Table 2.7: Type 2 Parameters

0.95 Heterogeneous

constant 8.2010 8.2099
oldmom 0.0117 0.0120
wave 1 smoking 0.1141 0.1251
wave 1 drinking 0.0686 0.0627
wave 1 outlook (75) -0.0030 -0.0091
mothers education -0.0003 -0.0006
wave 1 ex-smoker 0.0094 0.0109
avg prob type 1 0.1695 0.1828
avg prob type 2 0.8305 0.8172

type probabilities instead of just letting the choice probability estimation shift

the type weights.

2.5 Model Fit

One comparison between the model and the data that is striking is the pro-

portion of the sample that remain alive by education after all of the waves of

the HRS.

Table 2.8 compares the actual survival proportions in the data to the pre-

dicted survival proportions from the heterogeneous model broken down by

education. Note the strong association between higher education and survival

proportion in the data. The model however does not estimate a very high

direct marginal health return to education. Since the data and the model pre-

dictions match fairly well, the model must predict less healthy behavior from
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Table 2.8: Proportion Alive After 8 Waves

% Remaining

Education Data Predicted
8 0.65 0.66
9 0.70 0.63
10 0.72 0.67
11 0.69 0.73
12 0.77 0.75
13 0.79 0.78
14 0.73 0.73
15 0.79 0.77
16 0.81 0.79
17 0.85 0.83

less educated individuals.

Table 2.9 shows aggregate smoking and drinking choice across types. In all

versions of the model Type 1 is less likely to smoke and drink as well as have

higher education. Since improved education and improved health choices are

correlated across types it is clear that unobserved heterogeneity plays some

role in the overall correlation.

To examine how well this model fits the data table; 2.10 compares predicted

choice probabilities to the choice proportions in the data. Generally speaking

the heterogeneous discount specification fits better, although both over-predict

smoking in the early waves which drops off too quickly. In the data drinking

drops and then recovers, the heterogeneous model also fits this pattern better

than the single discount rate model.

Table 2.11 describes the model’s fit to the education distribution of the
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Table 2.9: Choices by Type

Mean Edu. Wave 2 Wave 3 Wave 4 Wave 5

β = 0.95

Type 1 9.38
Smoking 0.59 0.54 0.50 0.45
Drinking 0.42 0.46 0.48 0.52

Type 2 12.95
Smoking 0.28 0.20 0.14 0.09
Drinking 0.04 0.04 0.04 0.04

Heterogeneous β

Type 1 9.37
Smoking 0.59 0.54 0.50 0.45
Drinking 0.41 0.44 0.47 0.51

Type 2 13.09
Smoking 0.27 0.19 0.13 0.08
Drinking 0.07 0.07 0.06 0.06

Wave 6 Wave 7 Wave 8

β = 0.95

Type 1 -
Smoking 0.40 0.35 0.30
Drinking 0.56 0.59 0.63

Type 2 -
Smoking 0.05 0.03 0.01
Drinking 0.04 0.05 0.05

Heterogeneous β

Type 1 -
Smoking 0.40 0.35 0.30
Drinking 0.54 0.58 0.62

Type 2 -
Smoking 0.05 0.03 0.01
Drinking 0.05 0.05 0.06

data. The model has a hard time fitting the data without heterogeneous dis-

counting. Chapter 3 discusses how different formulations of the model perform.
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Table 2.10: Choice Probabilities

Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8

Data

smoke=0, drink=0 0.715 0.726 0.767 0.791 0.794 0.820 0.828
smoke=1, drink=0 0.213 0.202 0.171 0.151 0.141 0.114 0.102
smoke=0, drink=1 0.041 0.046 0.038 0.036 0.044 0.045 0.051
smoke=1, drink=1 0.031 0.026 0.025 0.022 0.021 0.021 0.019

smoking % 0.244 0.229 0.196 0.173 0.162 0.135 0.121
heavy drinking % 0.072 0.072 0.063 0.058 0.065 0.066 0.070

0.95

smoke=0, drink=0 0.584 0.646 0.698 0.740 0.768 0.794 0.808
smoke=1, drink=0 0.339 0.274 0.222 0.176 0.143 0.114 0.089
smoke=0, drink=1 0.039 0.046 0.050 0.057 0.064 0.071 0.084
smoke=1, drink=1 0.037 0.034 0.030 0.027 0.024 0.021 0.018

smoking % 0.377 0.308 0.252 0.203 0.167 0.135 0.108
heavy drinking % 0.077 0.079 0.080 0.083 0.089 0.092 0.103

Heterogeneous

smoke=0, drink=0 0.613 0.668 0.714 0.750 0.774 0.796 0.807
smoke=1, drink=0 0.288 0.236 0.195 0.159 0.133 0.108 0.086
smoke=0, drink=1 0.042 0.048 0.052 0.059 0.067 0.073 0.088
smoke=1, drink=1 0.056 0.047 0.039 0.032 0.027 0.022 0.018

smoking % 0.344 0.284 0.234 0.191 0.159 0.130 0.105
heavy drinking % 0.098 0.095 0.091 0.091 0.093 0.096 0.106
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Table 2.11: Education Distribution

scooling data 0.95 Heterogeneous

8 0.046 0.076 0.079
9 0.039 0.074 0.074
10 0.048 0.093 0.089
11 0.040 0.142 0.135
12 0.346 0.242 0.232
13 0.063 0.065 0.064
14 0.107 0.068 0.068
15 0.037 0.069 0.071
16 0.123 0.069 0.071
17 0.152 0.103 0.119

High School 0.519 0.627 0.607
College 0.329 0.271 0.274
Post-grad 0.152 0.103 0.119

2.5.1 Life Expectancy From Exogenous Education

The since the model predicts mortality relatively well one would expect that

the model generates a large correlation between life expectancy and education.

Specifically define life expectancy at age 14 as:

e14 =

47
∑

t=14

2 · E[S(Xt, dt, θ)]

Where the expectation is taken with respect to optimal choice probabilities and

the state evolution. Using the heterogeneous model the value for the sample

is 71.12. This value is a bit high most likely because the data does not contain

the very high mortality ages that push down life expectancy. It is easy in this
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Table 2.12: Marginal Life Expectancy Gains From an Extra Year of Education

edu Marg. LE

8 1.42
9 1.07
10 0.71
11 0.42
12 0.35
13 0.14
14 0.16
15 0.14
16 0.15
17+ 0.13

model to vary education exogenously. For every observation just add one more

year of education without changing the parameters of the model and rerun the

life expectancy calculation. The counterfactual value is 71.44. Since the model

has nothing to say about adding education to postgraduates, the 0.31 average

years of life added does not include an effect from the postgraduates in the

sample.

The current literature suggests that this value should be close to 1.5 years

for an exogenous shift in education. One theory is that the health returns

to education are concave in education. Prior research has only focused on

exogenous shifts in education on very low levels of education. If the returns

are negligible for high levels of education and strong for low levels; that would

account for the disparity. Table 2.12 shows the predicted life expectancy gain

at age 25 for each level of education. It shows strong decreasing marginal
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returns to education, and is consistent with the current literature. If it is true

that the current literature is only measuring exogenous shifts in education at

low levels of education as described in chapter 1 then the reported result that

the marginal increase in life for one year of education being 1.5 years is close

to the 1.42 of grade 8 in this model. This result is explored more carefully in

chapter 3.

2.6 Conclusion

This chapter has set forth a standard life cycle model adapted to fit the health

and education lifetime decision. Results suggest that this model can fit various

features of the data fairly well. They also call into question the common result

that education causes one and a half years of life gain; as this model suggests

that an exogenous shift in education will result in an average of only one third

of a year of life. Further chapters will explore this result more and examine

some policy implications.



Chapter 3

Estimation Robustness

Structural estimation has two major advantages: it allows for more advanced

policy and counterfactual analysis, and it allows economic theory to have a say

in estimation of data. The down side is that it is computationally intensive

and can feel like a “black box” from which results are pulled. The goal of

this chapter is to examine the estimation and results described in chapter 2

with the intent of validating them in order to perform policy analysis with the

model in chapter 4.

3.1 Simulations

The solution method to the model described in chapter 2 results in a series of

decision rules that map an optimal choice from the information that the model

has at any given state. These rules, while for the most part intuitive, are hard

38
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to describe in any systematic way. This is the reason why these models can

feel like an opaque system. Indeed, counter intuitive results are difficult to

convincingly explain since one cannot just follow the model through and see

what is happening. To alleviate this problem sometimes simulations will be

used in this chapter. The technical details of how a simulation is performed

in this model is can be found in appendix A.1.

Intuitively a simulation of the model simply creates multiple copies of the

sample in the data at some time period and then draws random noise ac-

cording to the model specification. Using this noise it determines what every

simulated individual would choose based on the estimated model and informa-

tion at the base period from the data and records their choice. Based on this

choice, the simulation calculates the mortality probability of each individual

and determines a random mortality event based on this probability. If the

simulated individual survives, the simulation determines their state of being

in the next period and then repeats the choice and mortality simulation. This

continues until the simulated has completed its full life cycle.

3.2 Validation Against Existing Results

Since this project was started in response to a growing literature using quasi-

natural experiments stemming from Lleras-Muney (2005) one way to validate

the model would be to simulate data from the model described in chapter 2

using the parameter estimates and see if similar results can be be generated. If
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it can then it could be argued that the model does well in describing the rules

that individuals use when making choices related to education and health.

3.2.1 Technical Review of Current Methods

The standard model currently used to test the causal effect of education on

health is summarized in this section. Typically the data must contain individ-

uals that have been forced to obtain more schooling or identifiable groups of

individuals of whom some subset have been forced to obtain more schooling

than they otherwise would have. The most common type of data are those

data that include individuals that live in a region that has had a change in

minimum compulsory schooling laws. In this case, observations are grouped by

state of birth, and a subset of the individuals in each group have been forced

to obtain more schooling (it is unknowable which observations were forced to

more schooling without asking each individual directly).

These data must also contain mortality information in at least two time

periods and personal characteristics of observations. If this type of data is

available a two stage least squares estimation procedure can be performed

using the following model:

ditr = bd + eiπd +Xitβd +Wrδd + αdr + ǫditr

eir = be + crπe +Xiβe +Wrδe + αer + ǫeitr

Where dit is whether or not individual i from region r is alive at time t, b is
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a constant, e is an education level, X is a set of individual characteristics, W

is a set of region characteristics, α is a set of region dummies, and c is a set

of dummies that describe the compulsory schooling laws that individual i was

subject to.

The fist stage is to estimate the second equation and then use the pre-

dicted results as the values for in the second stage. In the second stage the

first equation is estimated and then standard errors are corrected. Note that

identification of this model requires exclusion restrictions: in this case meaning

the first stage include some variables that are not included in the second stage.

Only c is excluded from the second stage. Furthermore if c were correlated

with an unobservable that is also correlated with d, this exercise will result

in biased results. For instance states may have a general sentiment of better

health and more education that is not captured in W .

Upon estimating a model similar to the one above Lleras-Muney (2005)

concludes by reporting that at the average, a one year increase in education

can account for a decrease in mortality rate of 1.3 over a 10 year span (or

πd = −0.013).

3.2.2 Simulation of the Model

To compare the estimated model to Lleras-Muney’s results, it must be sim-

ulated. This is done according to the procedure outlined in appendix A.1

starting from t = 0 (age 14). The only exception to this procedure is that if a

simulant dies before their respective individual would have entered the sample,
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that simulant is kept until it dies again after the entry point of the individ-

ual. Each observation is simulated 50 times for a total number of 114, 650

simulations.

Lleras-Muney (2005) uses cross sections ten years apart. To perform a

similar analysis I will take cross sections from the simulated data at 1992 and

2002. Unfortunately I do not have access to state of birth in the HRS. I do

however have information on census division of birth. As is further examined

in section 4.2 this is not the best grouping since census divisions have simi-

lar compulsory schooling laws in the 1950’s. The flexibility of the structural

model helps here. I randomly choose several regions and increase its minimum

education to grade 11. That information is used as the exclusion restriction

in the first stage thus simulating an exogenous law change.

This method ensures that the policy instruments are strictly exogenous in

the simulation. One must keep in mind however that in the real data the

state policies are likely endogenous insofar as laws are made with the wishes

of the people in mind. If state policy is endogenous in the real data it would

likely bias the results upward and as such I would expect the simulated data

to produce two stage least squares estimates that are lower than the real data.

3.2.3 2SLS Estimation

The model is simulated such that all simulants that are born in census division

3, 4, 5, and 6 have had an exogenous policy increasing the minimum grade

required to grade 11. First the simulated data is estimated using a simple
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linear probability model specified as follows:

di = b+ eiπd +Xiβd +Wirδ + αir + ǫi

X includes age, mother’s education, and if the mother lived past age 75.

W includes information about the census division as obtained from the 1960

United States Census. These variables are the percentage individuals in an

living in an urban area, percentage of workers employed in manufacturing, and

percentage of foreign born individuals in the division. These variables were

chosen to match as closely as possible to the estimations in Lleras-Muney

(2005). The actual values of these variables are listed in appendix A.2.

This particular regression does not attempt to control for the endogene-

ity problem of education in this regression. The standard result reported by

Lleras-Muney is a value between −0.011 and −0.017 on the education coeffi-

cient in this type of model.1 Table 3.1 lists the results of this estimation on

data simulated from the structural model after estimation. The results from

the linear probability model run on simulated data show an effect of education

on mortality comparable to the current literature.

The next step is to use the information on simulated policy to run a two

stage least squares estimation using the policy as an instrument as described

in the previous section. In the prevailing literature the value of the coefficient

on education generally increases in magnitude to between −0.017 and −0.060

1The variation comes from performing the estimation on different samples.
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Table 3.1: Linear Probability Regression of Simulation

Variable Coeff. Std. Err. pval

Education -0.0142 0.0005 0.0000
Age 0.0096 0.0004 0.0000
% Urban 0.0009 0.0003 0.0010
% Manufacturing -0.0010 0.0002 0.0000
% Foreign -0.0006 0.0007 0.4440
Mother’s Edu 0.0001 0.0004 0.8680
Mother Lived > 75 0.0062 0.0030 0.0390
Constant -0.3273 0.0297 0.0000

the standard errors become larger.2

Table 3.2: First Stage Estimates (2SLS)

Variable Coeff. Std. Err. pval

Age -0.0147 0.0021 0.0000
% Urban 0.0252 0.0021 0.0000
% Manufacturing -0.0295 0.0025 0.0000
% Foreign 0.0233 0.0045 0.0000
Mother’s Edu 0.2557 0.0022 0.0000
Mother Lived > 75 0.1152 0.0176 0.0000
Comp School 0.2369 0.0324 0.0000
Constant 10.0590 0.1913 0.0000

Table 3.2 shows the first stage of this procedure. The key item to note

is that the policy variable is positive and significant, suggesting that that is

creating an exogenous increase in the average of education. This is expected

2Lleras-Muney (2005) uses both aggregate census data and samples from individual panel
data sets. The lower bounds on the point estimates generally come from an estimation using
individual data as opposed census data which resembles this exercise most closely.
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since the model is forcing a subset of the simulants to have more education

than they would have had they been born in a different census division.

Table 3.3: Second Stage Estimates (2SLS)

Variable Coeff. Std. Err. pval

Education -0.0281 0.0236 0.2330
Age 0.0094 0.0005 0.0000
% Urban 0.0011 0.0004 0.0140
% Manufacturing -0.0012 0.0004 0.0060
% Foreign -0.0004 0.0008 0.6490
Mother’s Edu 0.0036 0.0061 0.5500
Mother Lived > 75 0.0078 0.0040 0.0530
Constant -0.1789 0.2538 0.4810

Table 3.3 displays the estimation results from the second stage of the 2SLS

estimation. The coefficient on education increases and has larger standard

errors just as in real data. Indeed this mirrors almost exactly the type of

results the prevailing literature reports, even thought the structural model

estimates a far weaker effect of education on health.

3.3 Marginal Effect of Each Year

In chapter 2 it was shown that the predicted life expectancy gain from one extra

year of education decreased as the level of education obtained went up. This is

a standard decreasing marginal benefits argument. It is not immediately clear

how the model can generate such an outcome. The answer becomes apparent

when looking at the difference in life expectancy for each type.
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During estimation the model apportions a probability that an individual is

of a certain type. It turns out in the model it is more likely that an individual is

type 2 the lower the education level. If it were the case that type 2 individuals

have a high benefit from an exogenous shift in education and type 1 individuals

have a low benefit from extra education regardless of level a downward sloping

marginal benefit curve can be constructed.

For example compare grade eight to grade sixteen. The model will ap-

portion almost full weight to type 2 if the observation attended only grade

eight. Likewise it will apportion almost all weight to type 1 if an observation

attended grade 17. So an experiment that shifts grade eight observations by

one year has all the characteristics of increasing only type 2 observations by

one year. The grade sixteen experiment will be pushing almost only type 1

individuals up one year. To see if this is the case the type distribution by

education, and the life benefit by type need to be examined.

Table 3.4 details the average type probabilities assigned to each education

group. Notice how as education grows it is more and more likely that an

individual is assigned to type 2. So any composite average will start trending

quickly towards the type 2 benefit as education increases.

Table 3.5 shows the stark difference in life expectancy from each type at

each level of education. Type 2 individuals are generally healthier and thus

have less to gain from any education benefit. There is still some decreasing

benefit from education by type, but this combined with the type distribution

by education shifting towards type 2 exaggerates the aggregated curve.
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Table 3.4: Type Distribution by Education

edu Type 1 Type 2

8 0.35 0.65
9 0.36 0.64
10 0.37 0.63
11 0.25 0.75
12 0.20 0.80
13 0.23 0.77
14 0.17 0.83
15 0.11 0.89
16 0.07 0.93
17 0.05 0.95

Table 3.5: Education Benefit by Type

edu Type 1 Type 2

8 3.15 0.55
9 2.45 0.28
10 1.71 0.22
11 1.21 0.21
12 1.14 0.20
13 0.47 0.11
14 0.39 0.13
15 0.40 0.11
16 0.68 0.12
17 0.46 0.11

3.4 Unobserved Heterogeneity

Adding unobserved heterogeneity into the model introduces considerable com-

plexity in both the computation and intuitive interpretation of results. In
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chapter 2 the model and estimation presented used a form of heterogeneity in

which there are only a small number of types. If we imagine that every indi-

vidual has unobserved characteristics that may matter, we would ideally like

a model that has as many types as individuals. Unfortunately in a dynamic

model this puts insurmountable stress on the computation of parameters.

Since in these type of models not accounting for unobserved heterogeneity

in the data can seriously bias the results; a compromise is necessary. Typically

the number of unobserved types ranges from two to four with the hope that

that can capture most of the relevant variation in unobserved type. The results

reported in section 2.4 were obtained by setting the number of types to 2. In

this section I report the results and some analysis about the results when

there is no unobserved heterogeneity, and when there are four types. These

are compared to the two type results.

3.4.1 Two Types

For convenience the two type parameter values are listed here to serve as

a baseline for comparison to the other model specifications described below.

Since the model fits better with heterogeneous discount rates, the baseline will

be the two type model with a two year discount rate of β2 = .9 for type 1 and

β2 = .56 for type 2. Table 3.6 repeats the parameter values from the survival

function of the two type model. The important parameters in this estimation

are the education and type 1 parameters. Education is small but significant

and the type parameter is insignificant.
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Table 3.6: Survival Function Param-
eters: Heterogeneous 2 Type Model

Coeff. Std. Err.

constant 7.7472 0.7816
education 0.0541 0.0197
age -0.0726 0.0108
heavy drinking 0.1031 0.2007
ex-smoker -0.6025 0.1395
smoker -1.1472 0.2205
type 1 0.0072 0.1811

Table 3.7: Wage Transition Parame-
ters: Heterogeneous 2 Type Model

Coeff. Std. Err.

constant 6.1009 1.1267
education 0.0436 0.0073
age -0.0683 0.0356
age2 0.0873 0.0201
lagged income 0.5898 0.0101
college 0.0279 0.0311
postgrad 0.0900 0.0480
type 1 0.0005 0.0003

Table 3.7 lists the results for the wage regression for the two type model.

Keep in mind that this is an AR(1) model in log wages. Each value is inter-

preted as the effect on the difference between two wage periods. The results

of this regression are consistent with the common parabolic wage path in the

labor literature.

Table 3.8 simply lists the utility parameters estimated from the two type
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Table 3.8: Utility Parameters Heterogeneous 2 Type Model

Coeff. Std. Err.

smoking=1, heavy driking=0
constant 5.6504 0.0642
income 0.8709 0.0001
type 1 1.5187 0.0015

smoking=0, heavy driking=1

constant 0.5977 0.1799
income 1.0458 0.0004

quit smoke -3.8925 0.0291
type 1 -4.9940 0.0049

smoking=1, heavy driking=1
constant 2.0986 0.1874
income 0.9507 0.0004
type 1 1.1472 0.0087

education
high school/yr -0.4955 0.0005

college/yr -1.0045 0.0002
post-graduate/yr -1.0916 0.0002

log likelihood -29407



51

model. A full discussion of these results is presented in section 2.4.

3.4.2 One Type

The two type model uses two year discount rates of 0.9 and 0.56. To get a

reference point and to see why heterogeneity must be accounted for, a one

type model has been estimated twice: once with a discount rate of .9 and once

with a discount rate of 0.56.

Table 3.9: Utility Parameters, 1 Type, β2 = 0.9

Coeff. Std. Err.

smoking=1, heavy driking=0
cons 31.4198 0.0198

income -0.2325 0.0000

smoking=0, heavy driking=1

cons -12.3373 0.0329
income 1.4867 0.0001

quit smoke -2.5587 0.0289

smoking=1, heavy driking=1
con 2.9286 0.1263

income 0.9391 0.0003

education
high school/yr 0.3283 0.0005

college/yr -0.1568 0.0003
post-graduate/yr -0.2403 0.0003

log likelihood -29407

Table 3.9 shows the utility parameters when β2 = .9 and table 3.10 shows

the parameters when β2 = .56. In both cases the model has a hard time fitting

the data since it is hard for a rational model to reconcile strong investment in

the future (education) and high rates of detrimental behavior. This shows up
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Table 3.10: Utility Parameters, 1 Type, β2 = 0.56

Coeff. Std. Err.

smoking=1, heavy driking=0
cons 36.617 0.010

income -0.639 0.000

smoking=0, heavy driking=1

cons -8.361 0.079
income 1.268 0.000

quit smoke -2.928 0.029

smoking=1, heavy driking=1
con 19.827 0.133

income 0.047 0.000

education
high school/yr 0.551 0.000

college/yr 0.163 0.000
post-graduate/yr 0.163 0.000

log likelihood -29407

in the positive utility from a year of education and the very high (in relation

to the two type model) parameter on the utility values for smoking choices. In

order to come close to generating the education distribution in the data the

model has to set education as a positive utility choice. This clearly goes against

the idea that education generally causes dis-utility at the time of education

and then generates a future payoff.

Since there are no heterogeneous types in these models, both the survival

transition functions and the wage transition models will be the same for each

specification. These would be the same no matter what specification is used as

long as there is only one type (an artifact of the particular estimation method

used).
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Table 3.11: Survival Parameters, 1 Type

Coeff. Std. Err.

constant 7.760 1.1260
education .0542 0.0072
age -.0727 0.0356
heavy drinking 0.101 0.0101
ex-smoker -0.603 0.0311
smoker -1.153 0.0480

Table 3.11 lists the survival parameters of both models. Note that the

value of education in the survival function is similar to the two type model.

This is some evidence that there is little heterogeneity in the pure effect of

education on health. Indeed the only real effect of heterogeneity here is to

increase the health effects of smoking. This is due to the fact that some of the

effect of smoking is being attributed to being an unhealthy type as opposed

to just smoking.

Table 3.12: Wage Parameters, 1 Type

Coeff. Std. Err.

constant 6.16388 1.12656
education 0.04659 0.00724
age -0.07114 0.03557
age2 0.00052 0.00028
lagged income 0.59420 0.01006
college 0.02121 0.03109
postgrad 0.08473 0.04802

Finally table 3.12 lists the wage parameters of the one type model under
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both specifications. Again this is not too different from the two type model.

3.4.3 Four Types

In the previous section it was shown that one type models seem to capture raw

wage and survival transitions that the two type model captures. The difference

came in the utility parameters. In this section the four type specification is

examined.

The four type model is an attempt to see if more can be gained from adding

types without running into computational difficulties. The two type model is

good at showing the difference between a particular low investment and high

investment set of types. There may be differences even within these groups.

For the best comparison between two and four type models I set type 1 and

type 3 to have β2 = .9; and type 2 and type 4 to have β2 = .56. This creates

a model where type 1 and 3 relate to the first type of the two type model and

type 2 and 4 relate to type 2 through the discount rate.

Tables 3.13 and 3.14 show the survival and wage transition parameters

respectively. Somewhat surprisingly there is still little difference between the

two type model. Almost all of the type parameters are insignificant suggesting

that all of the heterogeneity enters through the utility parameters.

Table 3.15 describes the utility parameters of the four type model. The

only qualitatively different result is that the smoking and heavy drinking pa-

rameter dropped significantly (thus reducing its probability of being chosen).

The general patterns are similar: smoking is unconditionally preferred; quit-
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Table 3.13: Survival Parameters, 4 Types

Coeff. Std. Err.

constant 7.849 0.789
education 0.053 0.020
age -0.074 0.011
heavy drinking 0.351 0.231
ex-smoker -0.589 0.139
smoker -1.109 0.195
type 2 0.000 0.184
type 3 -0.643 0.649
type 4 -0.378 0.262

Table 3.14: Wage Parameters, 4 Types

Coeff. Std. Err.

constant 6.171 1.127
education 0.044 0.007
age -0.069 0.036
age2 0.000 0.000
lagged income 0.591 0.010
college 0.026 0.031
postgrad 0.089 0.048
type 2 -0.067 0.030
type 3 -0.058 0.066
type 4 -0.079 0.027

ting cigarettes is costly; heavy drinking is not as favorable as smoking (even

though its health effects seem quite a bit less). With one caveat the types are

interesting, in relation to type 1; type 3 (which has the same discount rate)

likes smoking less and drinking more; type 2 (which has a lower discount rate)
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Table 3.15: Utility Parameters, 4 Types

Coeff. Std. Err.

smoking=1, heavy driking=0
cons 8.726 0.017

income 0.802 0.000
type 2 1.121 0.025
type 3 -9.564 0.941
type 4 -1.499 0.010

smoking=0, heavy driking=1

cons -7.152 0.416
income 1.006 0.001

quit smoke -3.884 0.041
type 2 -2.423 1.001
type 3 12.881 0.132
type 4 8.482 0.015

smoking=1, heavy driking=1
con 4.068 0.152

income 0.908 0.000
type 2 0.011 0.038
type 3 2.783 2.064
type 4 -0.954 0.014

education
high school/yr -0.373 0.000

college/yr -0.908 0.000
post-graduate/yr -1.000 0.000

log likelihood

is more likely to smoke and less likely to drink; and type 4 is much more likely

to drink.

The one caveat here is that the standard errors on some parameters are

expanding in some cases greatly. This is the result of a practical limit on

the number of types that can be incorporated into the model. In general it
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seems that adding another type to the same discount rate simply allows more

flexibility in the model to separate drinkers from smokers. The expense is that

the estimates start becoming unstable as more types are added. It seems like

four types is the limit here. As we will see in the next section this has little

impact on the overall choice probabilities and as such the two type model will

be used in the policy chapter.

3.4.4 Heterogeneity Discussion

While the parameter values make sense for the four type model, the choice

probabilities just do not do as well as the two type model in fitting the data.

Table 3.16 shows the choice probabilities for the four type model and compares

it to the data and the two type model. Clearly the four type model has trouble

fitting the choice data. The question then is: what gives the four type model

a likelihood advantage? It comes from fitting the model slightly better on the

education choice. Table 3.17 shows the distribution of education for the four

type model. It seems to do slightly better predicting the education distribution

but not enough to justify this as a superior model.

While it is clear that using only one type to try and fit the data results in

unrealistic parameter values, the difference between two types and 4 types is

not so clear. Computationally two types is vastly preferred as the time needed

to compute estimations and simulations increases rapidly in the number of

types.3 The two specifications do not offer much difference in performance (in

3For instance the estimation of a two type model once specified as desired may take
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Table 3.16: Choice Probabilities: 4 Type

Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8

Data

smoke=0, drink=0 0.715 0.726 0.767 0.791 0.794 0.820 0.828
smoke=1, drink=0 0.213 0.202 0.171 0.151 0.141 0.114 0.102
smoke=0, drink=1 0.041 0.046 0.038 0.036 0.044 0.045 0.051
smoke=1, drink=1 0.031 0.026 0.025 0.022 0.021 0.021 0.019

smoking % 0.244 0.229 0.196 0.173 0.162 0.135 0.121
heavy drinking % 0.072 0.072 0.063 0.058 0.065 0.066 0.070

Two Type

smoke=0, drink=0 0.613 0.668 0.714 0.750 0.774 0.796 0.807
smoke=1, drink=0 0.288 0.236 0.195 0.159 0.133 0.108 0.086
smoke=0, drink=1 0.042 0.048 0.052 0.059 0.067 0.073 0.088
smoke=1, drink=1 0.056 0.047 0.039 0.032 0.027 0.022 0.018

smoking % 0.344 0.284 0.234 0.191 0.159 0.130 0.105
heavy drinking % 0.098 0.095 0.091 0.091 0.093 0.096 0.106

Four Type

smoke=0, drink=0 0.499 0.571 0.633 0.686 0.728 0.765 0.789
smoke=1, drink=0 0.318 0.262 0.218 0.179 0.150 0.123 0.102
smoke=0, drink=1 0.032 0.034 0.036 0.040 0.044 0.048 0.056
smoke=1, drink=1 0.152 0.133 0.113 0.095 0.078 0.064 0.053

smoking % 0.469 0.396 0.331 0.274 0.228 0.186 0.154
heavy drinking % 0.184 0.167 0.149 0.135 0.122 0.112 0.109
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Table 3.17: Education Distribution: 4 Type

scooling Data 2 Type 4 Type

8 0.046 0.079 0.072
9 0.039 0.074 0.071
10 0.048 0.089 0.088
11 0.040 0.135 0.137
12 0.346 0.232 0.246
13 0.063 0.064 0.059
14 0.107 0.068 0.066
15 0.037 0.071 0.071
16 0.123 0.071 0.075
17 0.152 0.119 0.114

High School 0.519 0.627 0.607
College 0.329 0.271 0.274
Post-grad 0.152 0.103 0.119

some cases the four type is worse). Which gives confidence in using the two

type model for policy analysis (since the model must be solved and simulated

a number of times the two type model is preferred).

3.5 Conclusion

A dynamic structural estimation of health and education can generate the

same type of data patterns that generate results in the current literature of

48 hours on eight computer cores running at 2Ghz. The four type model in theory would
take at least 4 days simply from doubling the amount of computations needed to solve the
model. On top of that there are more parameters to estimate so the minimization algorithm
requires more model solutions to converge. In this case the 4 type model once specified as
desired takes around 10 days to compute in practice.
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1.5 years of life expectancy per year of education. The same model however

only suggests an average increase from a true exogenous increase in education

to be approximately 0.33 years of life per year of education. The discrepancy

comes from both marginal effects being different than average effects, and

this author also questions the assumption that compulsory schooling laws are

exogenous to the model in the current literature.

In general it seems that adding types to the structural model quickly puts

strains on the practical estimation of this model. The minimum number of

types necessary to get a stable estimation should be used in order to best fit

the data. In this case jumping from two to four types has little practical gain

but large practical costs. For that reason the rest of the dissertation uses only

the two type model.



Chapter 4

Is Education a Health Policy

Lever?

On top of all of the other benefits education (see Behrman and Stacey (1997)

for a review of the social benefits of education) education seems to have a

qualitatively large effect on health. Given this fact and the prior literature that

seems to support the hypothesis that education causes health improvements, it

is natural to think about using national education policy as a lever to improve

public health.

Lleras-Muney (2005) and the literature that follows attempts to isolate the

effect of an exogenous increase in education in her sample. That is to say we are

interested in the effect of life expectancy for different years of education only

from education. To see why this is difficult to isolate, consider two different

situations: the first is the level of education one would choose with no outside
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intervention, and the second is the level of education one higher than the no

intervention choice. The level of education chosen by any individual is clearly

driven by social status and possibly a whole host of other effects so variation in

educational attainment and variation in health behaviors and outcomes may

be jointly determined by other factors. The strategy used in the past is to

find a way to look at a forced change in schooling and assume that this year of

school has nothing to do with any other factors. This has potential problems

since a policy may have different impacts at different levels of schooling which

could be varying with other factors that affect health.

As an example, imagine a policy that increases the minimum level of ed-

ucation required by law from grade seven to grade eight. First we have to

control for whatever decision process created the original decision of leaving

school at grade seven, and then we have to see what the effect of that addi-

tional year of school would have for that particular type of person. If we cannot

generalize this effect to other types of people then all we have identified is a

“local average treatment effect” (Imbens and Angrist, 1994). In this case we

have only shown the effect of a policy of forcing seventh graders to take an

additional year of schooling.

To avoid these problems I will lean on an economic model that has been

estimated to fit a large national data set. Keane (2009) argues that this ap-

proach to answering policy questions does not have the interpretive drawbacks

that the prior literature has, at the expense of some additional assumptions

and complicated computational modeling. The details of this estimation can
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be found in chapter 2.

As noted in chapter 1 one goal in the national health policy platform is to

increase educational attainment. This chapter will address four policies that

are related to the education and health decisions that generate the strong cor-

relation between both outcomes. These four policies are: changing compulsory

schooling laws, subsidizing college, late life lump sum payments, and simply

addressing health behavior directly.

4.1 Education Cost and Value of a Statistical

Life

In order to do cost benefit analysis we must know how much a policy would

cost should it be implemented. Some relevant variables for the policies that

will be presented are the cost of public education, the cost of college education,

and the statistical monetary value of a year of life.

The cost of education that is used will be $6, 692 for secondary education

in 1992 dollars (since all of the policies will have to be dealing with schooling

in the 50’s). Higher education cost will be values at $14, 652. Details of these

values are in appendix A.3.

Value of life is a hotly debated topic with values ranging from several

hundred thousand dollars to tens of millions of dollars. Clearly placing a

dollar amount on life is subject to various interpretational assumptions which

this dissertation will remain silent on. For policy purposes it helps to have a
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number for costs and benefits to be compared.

Viscusi (2008) discusses in depth various different values taken by regula-

tory agencies (between $1 and $8 million) and strongly argues for a value of $7

million based on his view of the literature and prior work. Ashenfelter (2006)

performs an estimation using data on speed limit changes in the united states

to come up with an estimate with a lower bound of $1.6 million and an upper

bound of $6 million. In light of the consistent orders of magnitude of modern

estimates and levels at which current policy makers choose as the value of a

statistical life I will use a value of $7 million.1 I must note however that small

variations in these values can potentially significantly change the cost benefit

analysis of any policy. As long as these values are consistent across all of the

simulations it will give a basis for comparison. The actual costs and benefits

have no real meaning on a simulated cohort.

4.2 Life Gains From Compulsory Schooling

In order to align with the current literature, I will first examine the effect of

additional compulsory schooling requirements. The the effect of a compulsory

schooling law will be maximized when it affects the most people. In chapter

2 I examined a case in which everyone is required to obtain one more year of

education than they would have absent any law. This is of course an irrelevant

policy since it is impossible to enforce such a law. For the most part states

1I will also use $100,000 in 2008 dollars as the value of a statistical life as in Viscusi
(2008) when necessary.
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have instituted complicated laws mandating either a certain number of years

of education or a minimum age at which schooling is no longer required.2

The sample of people used to estimate the model in chapter 2 was born

between 1931 and 1941 meaning that the relevant compulsory schooling laws

would be the ones in effect from 1945 to 1960.

Tables 4.1 and 4.2 list the various minimum ages at which schooling is

compulsory by state and year (Edwards, 1978). Since the HRS does not have

data on state of birth but does have data on census region of birth, table

4.3 groups these policies into averages by census region. Note that the mode

policy during this time frame is 16 years and there is not much variation.

This suggests that even given data on state of birth, a difference in differences

estimator as used by Lleras-Muney (2005) may not have enough state variation

in this period for inference. It does however suggest a baseline minimum

schooling level of tenth grade in most states.

One could imagine that a national minimum education level was passed

such that everyone is required by law to obtain at least eleven years of educa-

tion. For the sake of simplicity assume that these laws are perfectly enforce-

able. If an observation has over the minimum education level no action needs

to be taken; they would not have been affected by such a law. If an observation

has below the minimum level of education in reality I assume that observation

would be affected by the law and be forced to attend more schooling (as if

2Some states have or have had combined rules such as must go to school until sixteen
years of age or have had passed at least eighth grade. See Lleras-Muney (2002) for details on
state laws from 1915 to 1939, Angrist and Krueger (1991) for laws from 1960 to 1980, and
Edwards (1978) for state laws from 1939 to 1960 (the relevant period of the HRS sample).
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Table 4.1: Minimum Age At Which Schooling is Mandatory: 1939-1960

Year 839− 840 844− 845 854− 855 859− 860

Alabama 16 16 16 16
Arizona 16 16 16 16
Arkansas 16 16 16 16
California 16 16 16 16
Colorado 16 16 16 16
Connecticut 16 16 16 16
Delaware 16 17 16 16
Florida 16 16 16 16
Georgia 14 14 16 16
Idaho 18 18 16 16
Illinois 16 16 16 16
Indiana 16 16 16 16
Iowa 16 16 16 16
Kansas 16 16 16 16
Kentucky 16 16 16 16
Louisiana 14 15 16 16
Maine 16 16 16 15
Maryland 16 16 16 16
Massachusetts 16 16 16 16
Michigan 16 16 16 16
Minnesota 16 16 16 16
Mississippi 16 16 16
Missouri 14 14 16 16
Montana 16 16 16 16
Nebraska 16 16 16 16
Nevada 18 18 18 17
New Hampshire 16 16 16 16
New Jersey 16 16 16 16
New Mexico 16 16 17 17
New York 16 16 16 16
North Carolina 14 14 16 16
North Dakota 17 17 17 16
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Table 4.2: Minimum Age At Which Schooling is Mandatory: 1939-1960 (con-
tinued)

Year 839− 840 844− 845 854− 855 859− 860

Ohio 18 18 18 18
Oklahoma 18 18 18 18
Oregon 16 16 18 18
Pennsylvania 18 18 17 17
Rhode Island 16 16 16 16
South Carolina 16 16 16
South Dakota 17 16 16 16
Tennessee 16 16 17 17
Texas 16 16 16 16
Utah 18 18 18 18
Vermont 16 16 16 16
Virginia 15 16 16
Washington 16 16 16 16
West Virginia 16 16 16 16
Wisconsin 16 16 16 16
Wyoming 17 16 16 17

Table 4.3: Years of Compulsory Schooling by Census Region

Year 839− 840 844− 845 854− 855 859− 860

New England 16 16 16 15.83
Mid Atlantic 16.67 16.67 16.33 16.33
EN Central 16.4 16.4 16.4 16.4
WN Central 16 15.86 16.14 16
S Atlantic 15.38 15.63 16 16
ES Central 16 16 16.25 16.33
WS Central 16 16.25 16.5 16.5
Mountain 16.88 16.75 16.63 16.63
Pacific 16 16 16.67 16.67
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they had complied with the law).

This policy can be simulated and compared with a simulation of the model

with no policy modifications.3 Specifically it can compare the simulated num-

ber of life years a base HRS cohort will live to a simulated number of life years

an HRS cohort would have had if it were subjected to the education policy.

Figure 4.1 shows the mortality results of this exercise. The data has 2,293

individuals simulated 50 times each for a simulated cohort size of 114,650. The

education policy seems to have increases survival rates, however to compare

to the rest of this chapter it will be necessary to compute cost benefit ratios

for all for the policies. In this case the policy increases the number of years of

education obtained by the simulated cohort by 30,276. At a value of $6,692

per year of education this would imply a cost of $202,606,992. The benefit

is 10,814 life years over the life span of the simulated cohort for a total un-

discounted value of $707,505,950 (1992 dollars) using the statistical value of a

life year as described in the prior section.

Since the benefit of such a program happens decades after implementing

the program I discount the benefit value. Using a discount rate of 0.95 for

policy purposes the discounted total benefit of the policy is $106,048,247 with

a benefit to cost ratio of 0.52. For this policy to have a benefit to cost ratio of

1 (break even) the discount rate would have to be 0.967.

3The details of these simulations are in appendix A.1.
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Figure 4.1: Life Year Gain With a National Compulsory Schooling Law
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4.3 Subsidizing College

Another way to interpret the Healthy People 2010 goal of increased education

is to try and increase college level attainment. Typically policy levers at the

college level come from decreasing various attainment costs. These type of

policies have different effects than education mandates. There is a direct and

an indirect effect of changing college costs in a dynamic model. The direct

effect is simply the change in incentives from increasing the value of attaining

a certain year of schooling. The indirect comes from changing the option values

of each level of schooling prior to the level targeted by a policy.

For example: imagine if the first year of college became completely free.

The direct effect would be that those students who were on the margin between

choosing 12 and 13 years of school would choose 13 and the total number of

students acquiring at least 13 years of education would go up. The indirect

effect can be seen in grade 12 attainment: since the value of the 13th year went

up and grade 12 is a pre-requisite for grade 13, the incentives for completing

grade 12 also go up to keep the option of attending grade 13 open.

Since prior chapters have made a case that college levels of education should

have little effect on life expectancy one might think that a policy targeting

college years may not be effective at increasing health outcomes. Indeed sub-

sidizing college levels of attainment may have only a small direct effect on

mortality, however the indirect effect of increasing the incentives for lower

years of education should enhance the health effects of the policy. The fol-

lowing counterfactual experiment examines two cases: the first is the example
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above where the first year of college is free, and the second is just halving the

education cost for college.

Table 4.4: Education Shift: Free 13th Year

Year Baseline Policy

8 0.08 0.07
9 0.07 0.06
10 0.08 0.06
11 0.13 0.08
12 0.23 0.13
13 0.07 0.10
14 0.07 0.11
15 0.07 0.11
16 0.08 0.11
17+ 0.12 0.18

Table 4.4 highlights the education effect of just changing the incentives

for one particular year of college. Across the board it reduces the amount of

people terminating before college and even increases the attendance percentage

for years after the thirteenth. The former effect is described above, the latter

effect is simply because making the thirteenth year free decreases the total

lifetime cost of education for everyone that would have obtained more than

thirteen years.

Figure 4.2 shows the survival differential between the policy and the base-

line. This policy generates substantial life gain, but it also generates sub-

stantial increases in education across the board and this us quite costly. The

discounted total increase in life years is valued at $201,172,930 but the cost of
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Figure 4.2: Life Year Gain With a Fully Subsidized Thirteenth Year of Schooling
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this level of education shift is valued at $1,306,730,254 in 1992 dollars. The

benefit to cost ratio in this simulation is 0.154. Break even would require a

discount rate of 0.9999.

Halving the cost of an undergraduate degree expectedly has an even more

pronounced effect. The education shift is shown in table 4.5.

Table 4.5: Education Shift: Half College Cost

Year Baseline Policy

8 0.08 0.07
9 0.07 0.05
10 0.08 0.05
11 0.13 0.06
12 0.23 0.09
13 0.07 0.04
14 0.07 0.06
15 0.07 0.11
16 0.08 0.18
17+ 0.12 0.30

Figure 4.3 shows the life gain in this sample to be quite large. However this

particular policy increases education so much that the benefit to cost ratio is

about the same as the first college policy. In this policy the value of the life

years gained is $470,508,707 but the 1955 cost of the additional education is

$2,569,930,196 for a benefit to cost ratio of 0.183. A discount rate of 0.995

would make this a break even policy. This is a similar result to Cunha and

Heckman (2007) who notes that while subsidizing college can have quite large

effects, in the end there are usually other policies that are more cost effective.
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Figure 4.3: Life Year Gain When College is at Half Estimated Utility Cost
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4.4 Attacking Smoking Directly

It is well known that smoking is related with strong decreases in both expected

years of life and quality adjusted life years. Various studies of the personal

cost to smoking (ignoring externalizes) that include life loss show a staggering

cost per cigarette.4 Since this is the case it could be the case that a strong

anti smoking program or tax on consumption has a higher health benefit than

investing in education from the top. This comparison is not exactly fair (smok-

ing is so detrimental), but it is done as an exercise for comparison against the

other policies cost effectiveness.

Figure 4.4 shows the life year gain from a $1000 tax every period a person

smokes after 1992. This is relatively ineffective on these people since if they

are smoking at this age they really enjoy it. This is the classic case of an

inelastic good.

The next experiments are either a cessation program, or general anti smok-

ing programs. I set the effectiveness at 10%. In the simulation these experi-

ments simply take a random draw and if the 10% region is selected and the

simulant originally would have smoked; that simulant decides not to in that

period. For cessation programs the draw is only taken if the simulant smoked

last period and is about to smoke this period. General anti smoking policies do

not discriminate. The difference is that cessation programs can be targeted at

those who are smoking, and general anti-smoking campaigns might be treat-

ing individuals that would never smoke. Keep in mind that the cost values,

4Some estimates have been as high as $200 per pack of cigarettes Viscusi (2008)
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Figure 4.4: Life Year Gain With a $1000 Tax
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while in the right ballpark are just rough estimates for comparisons purpose.

A complete analysis of the costs and benefits of various smoking programs is

outside of the scope of this project. All smoking cost and benefit numbers

have been adjusted to 1992 dollars.

I use a value of $3.50 per capita per year as the cost for a general anti

smoking program that is 10% effective. Inflating this across all years of the

simulation generates a cost of $21,897,356. The life year gain equates to a

value of $177,020,095 for a benefit to cost ratio of 8.08.

I use a value of $275 per smoker per year as the cost for a general smoking

cessation program that is 10% effective. Inflating this across all years of the

simulation generates a cost of $55,299,081. The life year gain equates to a

value of $311,999,394 for a benefit to cost ratio of 5.64.

4.5 Comparison of Policies and Conclusion

Table 4.6: Comparison of Benefit to Cost Ratios (β = 0.95

Policy B/C

Comp School 0.52
Free Freshman 0.15
Half College 0.18
Smoking Program 9.50
Smoking Cessation 3.49

Table 4.6 compares the different programs at the base line β = 0.95 level.

While the anti-smoking programs are rough estimates of value, the big take-
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Figure 4.5: Life Year Gain With a 10% Effective Smoking Program
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Figure 4.6: Life Year Gain With a 10% Effective Smoking Cessation Program
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Table 4.7: B/C Ratios Under Different β

β CS Free 13 1
2
College Gen Smoke Smoke Quit

0.9999 3.46 0.99 1.20 8.96 6.25
0.98 1.64 0.47 0.57 8.60 6.00
0.95 0.52 0.15 0.18 8.08 5.64
0.90 0.07 0.02 0.02 7.26 5.06
0.75 0.00 0.00 0.00 5.04 3.52

away here is the magnitude differences between the smoking programs and the

education programs.

If the value of β is a concern table 4.7 shows the various benefit to cost

ratios at various different values of β. Of note is that the schooling policies are

quite sensitive to discount rates. This is because the life benefit is discounted

for many years to compare to the education cost in these policies. The smoking

policies are not as sensitive, but even for the most forgiving discount rates are

significantly higher than education policies. With a discount rate of 0.9 the

smoking policies have benefit to cost ratios that are orders of magnitude larger

than the education policies.

If indeed the goal is to improve public health, this research argues that

attacking the problems directly is bound to be more cost effective. This of

course ignores any external benefits from education (it also ignores the reduc-

tion of negative externalizes from smoking). It is not to say that both policies

should not be explored. Indeed if patience levels are high in the population,

many education policies have attractive health benefits. This research only

claims that the highest value policies seem to target health behaviors directly.



Appendix

A.1 Simulation

A typical simulation from period t is performed using the following algorithm:

1. Draw random shocks: There are several places in which random vari-

ables need to be drawn: a draw from a uniform over (0, 1) to determine

type, 9 type 1 extreme value draws are taken for education shocks, four

type 1 extreme value draws are taken for each period from t to T , a draw

from a normal distribution with mean 0 and standard deviation depend-

ing on the estimation value is drawn for each time period for wage shocks,

and a draw from a uniform (0, 1) is made for each time period to deter-

mine mortality in that period. This is done for each observation s times,

where s is the number of simulations run.

2. Simulate the type: Using the time invariant data for observation i

pull the conditional type distribution from the model. Use the random

81
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shock to determine what type simulant is is.

3. Simulate the education choice: Conditional on type and invariant

data calculate the contemporaneous utility from each education choice,

add in the shock for each choice, and add in the future value of each

choice. Pick the highest value of these choices and set that education for

observation is.

4. Simulate wage path: Conditional on type and education choice for is

use estimated wage equation and a starting wage to simulate the next

wage. Using the next wage and another shock determine the second

wage. Continue until time T and repeat for every simulant.

5. Simulate health decision: Starting at time t using the education

choice, wage draw, and type, and four utility shocks for simulant is

choose the optimal health choice. Set this as the last decision made and

calculate this again for time t+ 1. Repeat until time T .

6. Simulate mortality: Given the simulated type, health decision, educa-

tion decision, and wage path, calculate the survival probability in period

t for simulant is. Use the uniform random draw drawn for that simulant

at that time to determine if the simulant dies at that period.

These steps generate multiple full sets of data for every observation. The

default number of simulations in this dissertation is 50.1 Since there are 2293

1It is noted in the section if a different number is used
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observations in the data, this generates a data set with 114,650 simulated

individuals.

A.2 2SLS Simulated Estimation Details

Table A.1 lists the statistics used for each census division in section 3.2.3.

Manufacturing was constructed by determining the percentage of workers in

the 1960 public use micro sample were employed in a 300 level industry (man-

ufacturing). The other two variables are calculated directly from the public

use micro sample. All values are in percentages.

Table A.1: 1960 Census Division Statistics

Division % Urban % Manufacturing % Foreign

New England 76 20 10
Mid Atlantic 81 16 11
EN Central 73 23 05
WN Central 58 08 02
S Atlantic 57 08 02
ES Central 48 09 00
WS Central 67 06 02
Mountain 67 06 03
Pacific 81 14 08

Table A.2 lists the summary statistics for the individual characteristics

used in section 3.2.3.
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Table A.2: Simulant Individual Summary Statistics

Variable Mean Std. Dev.

Mother Lived 75 .818 .386
Mother’s Education 9.93 3.11

A.3 Policy Costs and Benefit Valuations

The general smoking program costs are derived from the California smoking

policies put in place in the early 1990’s as described in Pierce et al. (1998).

The program reduced smoking rates by approximately 10% at a value of 3.35

per capita per year in 1992.

Elixhauser (1990) reviews several studies on smoking cessation programs.

The various programs have wide ranging success rates from 5%-30% and per

patient costs between $22 and $400 (1984 dollars). The costs and effectiveness

of these type of programs seems to be subject to large uncertainty. So as not to

give an unfair advantage to this type of policy I choose conservative estimates

of $275 and a 10% success rate.

Viscusi (2008) uses a value of a statistical life year of $100, 000 in relation

to a $7 million value of a statistical life in 2008. Deflated to 1992 values, I use

$65, 425 per life year.

Schultz (1960) presents a detailed look at expenditures on education in

the United States in 1956. This research includes loss of income from school

attendance in the cost of schooling. For secondary schooling he calculates a

value of $1421 per year per student in costs in 1956 (adjusted to 1960 dollars).
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For college spending he calculates $3111 per student per year in 1956 (also

in 1960 dollars). Inflated to 1992 dollars these values increase to $6, 692 and

$14, 652 respectively.
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