The Pennsylvania State University
The Graduate School
College of Arts and Architecture

TONAL AMBIGUITY AND SET RELATIONSHIPS
IN LISZT’S DEATH PIECES

A Thesis in
Music Theory
by
Jeffrey M. Schaeffer

© Jeffrey M. Schaeffer

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Arts

May 2009
The Thesis of Jeffrey M. Schaeffer was reviewed and approved* by the following:

Eric McKee
Associate Professor of Music Theory
Thesis Adviser

Taylor Greer
Associate Professor of Music Theory

Maureen Carr
Distinguished Professor of Music Theory

Sue Haug
Professor of Music
Director, School of Music

*Signatures are on file in the Graduate School.
Abstract

The late music of Franz Liszt is problematic for analysts. One source of difficulty is Liszt’s use of dissonance, which is often prolonged for long periods of time. For example, the famous opening of Liszt’s Faust Symphony (1857) enunciates the augmented triad for the entirety of the 22-measure introduction. At a deeper level, the same augmented triad forms the key structure (A♭, C, E) of the first movement.¹ In La Lugubre Gondola I and II (henceforth LG1 and LG2), the augmented triad and the fully-diminished seventh chord are used as associative sonorities.² These two chords are especially enigmatic as they can each potentially have multiple roots due to their symmetrical properties. Any of the pitches of the A♭-C-E chord, for example, can serve as its root, and, when used as the root of a dominant chord, can lead to three separate tonics (Db, F, and A). The same applies to the fully-diminished seventh chord. In previous repertoires the fully-diminished seventh chord and the augmented triad function as unstable sonorities in need of resolution. One of Liszt’s signal achievements is that he treats these sonorities as contextually stable.³

Indeed, acoustically dissonant sonorities in Liszt’s late music are often left unresolved, sometimes never achieving a tonic resolution throughout the entire work (which, I feel, heightens its association with death). This is especially puzzling because Liszt’s music often alludes to keys without, what David Carson Berry calls, “key

² Most sources list the date of composition of the first Lugubre Gondola as 1882 and the second as 1885. Recent research, however, suggests the second Lugubre Gondola was actually composed before the first. See Rosanna Dalmonte, “Liszt and the Death of The Old Europe: Reflections on La lugubre gondola” in Liszt and the Birth of Modern Europe (Hillsdale: Pendragon, 2003): 304-305.
confirmations.” These confirmations are further problematised when one considers Zdenek Skoumal’s idea of “androgy nous harmony,” whereby the augmented chord can potentially function as a tonic substitute or as a dominant chord, depending on the context.⁵

Not only is Liszt’s late music problematic for musicians today, but it was also nearly incomprehensible for his late 19th-century audience. A newspaper article published in 1860 with the signature of Brahms went so far as to protest Liszt’s new music.⁶ During the last two decades of his life, his lifelong friendship with Wagner became strained, and he experienced the death of many friends and family members, causing his music to become dark and morose; his depression is certainly audible. In a letter to Princess Carolyne, Liszt discusses LG1: “I doubt that it will obtain any success at concerts – in view of its sad, somber character, scarcely mitigated by a few dreaming shadows. The public demands other things.”⁷ Despite these reactions, Liszt would continue to compose experimental music.

Current research has shed some light onto these analytical issues, but there is still much work that needs to be done. One important tool in analyzing music, post-tonal or tonal, is the idea of prolongation. In his seminal 1987 study, Joseph N. Straus lays out four conditions for prolongation. He applies them to post-tonal music in order to demonstrate that prolongation cannot exist in this style; it can only occur, he argues, in tonal music. The conditions are as follows:

1) A consistent, pitch-defined basis for determining relative structural weight.
2) A consistent hierarchy of consonant sonorities.
3) A consistent set of relationships between tones of lesser and greater structural weight.
4) A clear distinction between the vertical and horizontal dimensions.⁸

Given these conditions, one may wonder if any dissonance can be prolonged. Indeed, Straus’ conditions are consistent with the principles of Schenkerian theory where dissonance is always in the service of prolonging a conceptually prior consonance. But many theorists disagree. Robert Morgan, Fred Lerdahl, and Steve Larson have written important articles using concepts such as network models, chord distance algorithms, attraction algorithms, and other mathematical applications to demonstrate the possibilities of dissonant prolongation.⁹ Howard Cinnamon, on the other hand, uses an approach based on voice leading. He postulates that LGI can be viewed as an example of dissonant prolongation through equal subdivision of the octave, in which a linear descent in the bass, composes out the augmented triad.¹⁰ While all sides of the argument are well thought out and interesting, I agree more with Morgan and Cinnamon in that dissonance, in fact, can be prolonged, and I will use my voice-leading graphs to support my conclusion.

This leads back to the question of Schenkerian analysis. Given that the late music of Franz Liszt is at the borderlands between tonality and atonality (according to James Baker, Liszt achieves atonality in the work Richard Wagner – Venezia, henceforth RW-Venezia), can one analyze Liszt’s music using principles of Schenkerian theory?¹¹

Among other things, Schenkerian analysis requires structural dominants and tonics to support stepwise melodic descents through either a third, fifth, or octave span. How can such linear descents be supported in works like *LG1*, where structural dominants and/or tonics are often absent and the melodic descents are not always clear? While it may seem contradictory to use Schenkerian analysis (which assumes functional tonality and a consonant outer-voice framework) to analyze works that are extremely dissonant and tonally ambiguous, I have found that by adapting Schenkerian principles to these works, I am able to uncover underlying voice-leading structures that, I believe, display convincing interpretations regarding their respective tonalities.

Upon analyzing *LG1*, *LG2*, *RW-Venezia*, and *Am Grabe Richard Wagners* (henceforth *AGRW*), it is apparent that many similar musical characteristics link the works together. Besides the topic of death and dates of completion, the pieces are linked melodically, harmonically, programmatically, and symbolically through the use of specific keys. The ordered sets that are formed are *LG1/LG2* and *RW-Venezia/AGRW*. I will also compare the first and last pieces of each set for similar characteristics.

To tackle these analytical interests, I propose to study four late piano pieces by Liszt, all dealing with the topic of Wagner’s death. Chapter 1 is an introduction to the terminology used throughout this thesis. Chapter 2 individually studies the tonality and form of each of the four death pieces: *LG1*, *LG2*, *RW-Venezia* and *AGRW*. Chapter 3 examines set relations among the four pieces. The overall goal of this thesis is to provide a thorough theoretical analysis of the four death pieces and explain how they are musically and extra musically related to one another.
Table of Contents

List of Figures ... viii

List of Musical Examples .. ix

Chapter 1 ... 1

Chapter 2 ... 12
 * _La Lugubre Gondola I_ ... 12
 * _La Lugubre Gondola II_ .. 29
 * Richard Wagner – Venezia 37
 * _Am Grabe Richard Wagners_ 44

Chapter 3 ... 48
 * _LG1 and LG2_ .. 50
 * _RW-Venezia_ and _AGRW_ 52
 * _LG1_ and _RW-Venezia_ ... 55
 * _LG2_ and _AGRW_ .. 58

Conclusion ... 62

Appendix
 A. _La Lugubre Gondola I_ ... 63
 B. _La Lugubre Gondola II_ .. 67
 C. _Richard Wagner – Venezia_ 73
 D. _Am Grabe Richard Wagners_ 75

Bibliography ... 77
List of Figures

Diagram 2.1: Form of LG1 ... 13
Diagram 2.2: Form of LG2 ... 30
Diagram 2.3: Form of RW-Venezia .. 38
Diagram 2.4: Ternary form in AGRW ... 44
Diagram 2.5: Introduction + Large Section in AGRW 45
Diagram 2.6: Through-Composed Form in AGRW 46

Graph 2.1: Voice-Leading Sketch Supporting F Minor 19
Graph 2.2: Voice-Leading Sketch Supporting Db Minor 24
Graph 2.3: Voice-Leading Sketch Supporting Ab Augmented 27
List of Musical Examples

Example 1.1: Mozart, *Piano Sonata in B♭ Major*, III (mm. 1-8) 2
Example 1.2: Contextual Instability of the Octave 2
Example 1.3: *Prometheus* Op 60, Underlying Bass Progression 3
Example 1.4: Bach, “Esurientes” from *Magnificat* (mm. 40-43) 4
Example 1.5: Bach, *Prelude no. 1 in C major* (mm. 24-31) 7
Example 1.6: Schenker’s Interpretation .. 8
Example 1.7: Morgan’s Interpretation .. 8
Example 1.8: Beethoven, *Sonata* Op. 57 ... 10

Example 2.1: T10 Transpositions ... 13
Example 2.2: Subsection a .. 14
Example 2.3: Subsection b .. 14
Example 2.4: Subsection c .. 14
Example 2.5: Treatment of D♭ (mm. 7-13) .. 15
Example 2.6: Voice Exchange .. 16
Example 2.7: Structural Bass Notes in *LG1* .. 17
Example 2.8.1: Scale Degrees in F Minor (m. 1-11) 18
Example 2.8.2: Scale Degrees in D♭ Minor (m. 1-11) 20
Example 2.9: Dominant Prolongation in D♭ (mm. 3-19) 21
Example 2.10: Resolutions of the Augmented Sonority 22
Example 2.11: Voice-Leading Graph Showing Prolongation of A♭ 26
Example 2.12: T10 and T11 in *LG2* (m. 1-32) ... 31
Example 2.13: D♭-Centered Melody in *LG2* (mm. 33-42) 31
Example 2.14: Textural Comparison (mm. 35-39, 109-113) 33
Example 2.15: Comparison mm. 46-48 and 121-124 33
Example 2.16: Comparison mm. 41-42 and 115-116 33
Example 2.17: Comparison of mm. 19-22 and 140-144 35
Example 2.18: Chromatic Voice-leading in *RW-Venezia* 38
Example 2.19: Chromatic Alterations of the Ostinato 38
Example 2.20: Tonalities in Section B .. 39
Example 2.21: Chromatic Descending Tetrachord 40
Example 2.22: Resolutions to B♭ ... 41
Example 2.23: B-natural Neighbor Tone ... 41
Example 2.24: Link between *RW-Venezia* and *AGRW* 45
Example 2.25: Arpeggiations of B major, G# minor and E Major 47
Example 2.26: Voice-leading graph showing D♭ as a Neighbor Tone to E 47

Example 3.1: Comparison of Melody and Ostinati in *LG1* and *LG2* 51
Example 3.2: Comparison of Subsection c in *LG1* and *LG2* 51
Example 3.3: Depiction of Archangel Michael ... 54
Example 3.4: Rising Augmented Triads .. 55
Example 3.5: Comparison of Ostinati .. 56
Example 3.6: Chromatically filled-in Minor Third in *LG1* 57
Example 3.7: Chromatically filled-in Perfect Fourth in *RW-Venezia* 57
Example 3.8: Augmented Triads creating Formal Divisions in \(LG1 \) 58
Example 3.9: Augmented Triads creating Formal Divisions in \(RW-Venezia \) 58
Example 3.10: Half-Steps in Section B of \(LG2 \) .. 59
Example 3.11: Half-Steps in \(AGRW \) ... 60
Example 3.12: Genesis of the solo line in \(LG2 \) .. 61
Example 3.13: Ab Ending of LG2 ... 61
Example 3.14: C# Bell Motive in \(AGRW \) .. 61
This purpose of this chapter is to expose the reader to concepts and terminology used in my analyses. In the process I will show how my work intersects with the research of other scholars. The definitions will cover aspects of tonality, tonal stability, implied tones, set relationships, and dissonant prolongation.

Tonality and Tonic

Tonality is a hierarchical musical system in which pitches operate in predictable patterns. These patterns allow for one tonal center to exist, which is known as *tonic*. Tonic is the pitch or pitches that a piece revolves around in order to create a feeling of stability.

Common practice tonality, often referred to as “functional tonality,” uses a progression of triads to create a sense of tension and resolution back to the tonic pitch. Triads are categorized by their function within progressions. The paradigmatic sequence of functions for tonal music is tonic (T) – predominant (PD) – dominant (D) – tonic (T). Example 1.1 shows a typical T-PD-D-T progression. This progression emphasizes root movement by a second or fifth. This system is called “functional” because the chords are not an equal distance apart; each chord has a specific function, ultimately combining to create a phrase that leads back to tonic. In late 19th century music, a group of three or four pitches may assume similar characteristics of stability, which previously was associated with a single pitch.
Example 1.1: T-PD-D-T Progression in Mozart’s Piano Sonata in B♭ Major (K.333), III (mm. 1-8)

Stability

According to Steve Larson, two types of stability exist in tonal music: contextual and inherent. Inherent stability deals with intervals or chords in isolation. A perfect fifth, an octave, and a major triad all exemplify intervals of inherent stability because on their own, they sound perfectly consonant and are not in need of resolution due to their acoustical properties. Contrasting to this, contextual stability is comparative in nature and is determined by a larger intervallic tonal context.

Larson argues that inherently stable sonorities may, at times, be heard as contextually unstable. Example 1.2 shows that within a particular context even an octave may be heard as contextually unstable. The F-natural, the seventh of a dominant seventh chord, is more contextually stable because the octave G-natural acts as a neighbor tone to the F. Given that a consonant sonority such as the octave can be considered unstable in traditional harmony, it should be no surprise that in certain contexts dissonant sonorities may be considered contextually stable.

Example 1.2: Contextual Instability of the Octave in a V7 chord

Example 4 from Ibid., 107.
For example, Alexander Scriabin’s so-called “mystic chord” would normally be considered unstable because of the abundance of dissonant intervals (four major seconds, a minor second, and two tritones). However, in the context of his fifth symphony, *Prometheus: Poem of Fire*, in which the mystic chord governs both the melodic and harmonic material, this six-note chord functions as a contextually stable sonority. Example 1.3 shows James Baker’s graph depicting underlying progressions of the mystic chord throughout *Prometheus*. Note that the treatment of this chord as a tonic is similar to operations within a conventional tonal system.\(^{14}\)

![Example 1.3: Prometheus Op. 60: Underlying Bass Progression](image)

Scriabin, of course was not the only famous composer to write in this manner. In discussing the music of Belá Bartók, for example, Milton Babbitt argues for “the presence of non-triadic ‘harmonic regions.’ These regions acquired primacy “by ‘contextual’ means unique to the individual compositions.”\(^{15}\) As I shall argue, Franz Liszt is one of the earliest composers to experiment with unstable sonorities as contextually stable “tonics.” The augmented triad the and fully-diminished seventh chord are the governing sonorities of his four death pieces and can thus be heard as contextually stable. Chapter 2 covers this topic in detail.

\(^{15}\) Morgan, “Dissonant Prolongation,” 50.
Implied tones

If a listener hears notes that are not physically present, those notes are implied “because their existence is indicated by surrounding events.”16 Perhaps the most famous example of implied tones is a passage from J.S. Bach’s \textit{Magnificat}, shown in Example 1.4. Bach leads to the cadence with a ii^6 –V – I progression. On the fourth beat of m. 42, there is no bass note, and the upper voices sound an F# and an A. When the bass restates the E-natural in m. 43, the mind imagines a G# in the flute, even though it is not aurally present. The tones are implied because of the dominant-tonic relationship in common practice tonal works. When the music is abruptly cut off, the text states, “He hath filled the hungry with good things, and the rich he hath sent away empty.”17 Bach uses implied tones in this instance to fulfill the programmatic nature of the piece. Because the last two notes sounded, A and F#, are passing tones, the listener auralizes the missing pitches in the upper voices.

Tones are not only implied as part of melodic lines. Rothstein goes so far as to say that every time a dissonance is present, a consonant sonority is implied because “dissonance is always a dependent element, deriving its meaning from surrounding consonances; all dissonance stems from consonance and resolves to consonance.”18

17 Ibid., 289.
18 Ibid., 302.
A discussion of implied tones ultimately leads to referential sonorities, which are chords that a listener recalls throughout a work in order to identify the function of any given musical event. Without a referential sonority, a listener cannot determine if a sound is consonant or dissonant. For example, if a piece opens with a fully-diminished seventh chord, the listener cannot determine if the chord in question belongs to the diatonic collection (harmonic minor) or if it is a secondary chord. A referential consonance (tonic) must be previously sounded in order to determine if a given sonority is dissonant or consonant. The notes of the referential sonority are implied tones because while they are not physically present, their conceptually prior existence governs consonance and dissonance throughout a work.

This theory is not without criticism. If a tone is not aurally present, then how can one possibly include it in an analysis? I believe implied tones can be used to analyze a work where the tonic is not explicitly stated. As I will show in Chapter 2, one may interpret Liszt’s *La Lugubre Gondola I* as operating in the key of Db minor, even though there is no cadential confirmation of the key, nor is there a structural descent to 1. Db minor is nonetheless heard because of a 5-4-3-2 descent that implies Db (see Example 2.5 in Chapter 2). In this case, Db is implied as tonic even though it never occurs structurally.

Set relationships

Sets are a series of musical pieces that are grouped together based on a text (i.e., song cycle) or by some musical means. Arthur Komar, writing about Schumann’s *Dichterliebe*, presents seven criteria for determining whether or not a group of pieces can be considered a set:
1) Similarity of style, construction and subject matter of the poetry; style of the music.
2) Similarity (i.e. cross-reference) between thematic, rhythmic, harmonic or tonal configurations in different songs.
3) Thematic, harmonic, or tonal cross-references as above, but untransposed.
4) Pairing of songs so as to achieve local continuity (e.g. pairing of adjacent songs in a dominant-tonic relationship)
5) Existence of a coherent key scheme throughout the cycle
6) The presence of a general plan that ‘embraces all of the songs of the cycle in their given order’
7) The presence of all the features of No. 6, plus the use of a single key to govern the cycle.19

I believe Komar’s guidelines can be applied to Liszt’s four death pieces in order to show that they operate as a coherent, ordered set. The four pieces represent different aspects of the same subject matter (i.e., Wagner’s death); they cross-reference musical ideas; there are key relationships that provide coherent movement from one piece to another; and when all pieces are considered together, a logical musical narrative emerges around a central idea. I discuss these inter-textural relationships in Chapter 3.

Dissonant Prolongation

The idea of dissonant prolongation is a controversial topic. The controversy revolves around what type of sonority can be prolonged. Proponents of dissonant prolongation argue that the same prolongational techniques that are used to prolong major and minor triads can be used to prolong dissonant triads, seventh chords, and other non-tertian sonorities. In his 1976 article, Robert Morgan argues that despite Schenker’s beliefs, Schenkerian analysis can be adapted and used to show dissonant prolongation.20

This type of prolongation is a problem for orthodox Schenkerians. According to Schenker, dissonance prolongs consonance. Thus, all dissonances are subservient to the

A well-known example is Bach’s Prelude in C Major from the Well-Tempered Clavier. One particular section (mm. 24-31, shown in Example 1.5) clearly composes out a dominant seventh chord. What do theorists say about this section? Schenker describes this as a large-scale (dissonant) dominant sonority, which eventually falls back to a consonant C major. He analyzes this dominant seventh as “only a means of prolongation … [unable] to produce a prolongation; only its transformation into a consonance renders a prolongation possible.” Ultimately, this sonority is subservient to the tonic and only functions as a large-scale which resolves back to . Example 1.6 provides Schenker’s interpretation of the passage in question.

Example 1.5: J.S. Bach, Prelude no. 1 in C major (mm. 24-31)

22 Ibid., 54.
Morgan, however, has a different idea as to how this section should be handled. He believes that the only triad in the passage, a second inversion C major triad, functions as an upper neighbor to the dominant seventh chord. Thus, it “is shown as performing a prolonging function relative to a conceptually prior dissonance – in which case the consonance must be said to ‘resolve’ to the dissonance … It is the seventh chord that represents the polar harmony defining the limits of the prolongation.”

Example 1.7 shows Morgan’s interpretation of this same passage. Here, the seventh chord is the referential sonority; the major triad embellishes and prolongs a dissonant seventh chord within the duration of this passage (mm. 24-31).

25 Example 2 from Ibid., 55.
In the latter half of the 19th century, composers started to take a new direction regarding tonality. Composers were no longer dependent on the major and minor triads as the basis for their pieces. Instead they turned to other referential sonorities as the basis of their compositions. Commonly used sonorities during this period include the augmented triad and fully-diminished seventh chords, while early 20th-century composers explored the use of tone rows and post-tonal sets. Morgan describes these 19th-century phenomena as “harmonies commonly found in tonal music; yet they are nonetheless dissonant and thus unstable. According to the traditional view, they are incapable of generating prolongations.”26 This, however, will be shown in Chapter 2 to not be accurate.

Morgan continues his argument by tracing the history of dissonant prolongation, citing examples that include Schubert, Liszt, Wagner, and Scriabin. Schubert’s Die Stadt (1828) is composed with a referential sonority of a fully-diminished seventh. Three decades later, Liszt’s Faust Symphony (1855) composes out the augmented triad as the referential sonority for the entire introduction and dictates the keys of the first movement. Regarding late Liszt, Morgan’s analysis of Liszt’s Bagatelle ohne Tonart treats the F fully-diminished seventh chord as tonic, creating dissonant prolongation using an inherently unstable sonority.27 Matthew Bribitzer-Stull shows that dissonant prolongation is present in Beethoven’s music. In his Sonata Op. 57, Beethoven prolongs the augmented triad for more than one hundred measures (shown in Example 1.8).28

27 Ibid., 74.
Example 1.8: Beethoven’s *Sonata* Op. 57 Showing Dissonant Prolongation

Allen Forte uses an alternative analytical approach, set theory, to analyze Liszt’s late music, showing how Liszt prolongs dissonance by using pitch-class sets as referential sonorities and tonal centers. Forte describes Liszt’s *Unstern* (c. 1880) as achieving atonality, prolonging the set 4-19; *Nuages Gris* (1881) prolongs 4-19, 4-7, and 3-10 and 3-12, the augmented and diminished triads. \(^{29}\) *Via Crucis* extends 3-10 and the octatonic. 3-10 is more prominent than it appears, because adding any note to the octatonic (8-28) produces set 9-10, the compliment of 3-10. However, even if these sets serve a structural role in late Liszt works, their presence does not negate all tonal implications these same sets may have.

Not all theorists agree that dissonance can be prolonged. Straus believes that prolongation should not be confused “with mere contextual reinforcement or repetition. Prolongation exists precisely when the prolonged object is *not* literally present.”\(^{30}\) Coming from a Schenkerian point of view, Straus states, “Except for isolated moments, post-tonal music does not meet these conditions and therefore is incapable of sustaining a

prolongational middleground or of being meaningfully described in terms of prolongation.”

Thus those operating within a Schenkerian framework, such as Straus, disagree about the viability of dissonant prolongation both in tonal and non-tonal music. They believe that dissonant prolongation cannot exist as a consequence of the fundamental principle that every dissonance must resolve to a conceptually prior consonance. The other theoretical camp, represented by Cinnamon, Bribitzer-Stull, and Morgan, however, believes that dissonant prolongation can exist when the referential sonority ceases to be a major or minor triad. I believe that dissonant prolongation is possible, and I will show this through my analyses in Chapter 2.

Chapter 2 – Analysis of Individual Works

I. La Lugubre Gondola I

Four characteristics define the music of LG1: a non-developing form, the prominence of the minor 6th interval and the augmented triad, and ambiguous tonality. Liszt approaches the form in an unusual way by treating the middle of the three sections as a large-scale passing tone between the first and third sections. Liszt treats the minor sixth as the most important interval by allowing it to have both a melodic and harmonic function. Unprecedented for his time, Liszt uses the augmented triad as the primary referential sonority of the piece. Lastly, due to the ambiguous nature of the augmented triad and the lack of clear cadences, the tonal center of LG1 is highly debatable. I will look at each of these ideas in depth and provide my conclusion about the tonality of LG1.

Form

Liszt composes LG1 in ternary form, shown in Diagram 2.1. The remarkable concept about this form is that A’ is a literal T10 repetition of A. A’’ continues the pattern, transposing A’ by T10. This time Liszt adds an extra octave below the melody, changes the accompaniment to tremolo, and uses more rapidly changing harmonies.

32 Augmented triads differ from major and minor triads because they are unstable to most listeners. While two sets of major thirds (an interval that is typically heard as consonant) create the augmented triad, the combination of two major thirds creates instability by equally dividing the octave. Furthermore, the major and minor triads are stable because the outer interval is a perfect fifth; the augmented triad is unstable because its outer interval is an augmented fifth.
Example 2.1 shows T10 transpositions between each section. A” ends the LG1 the way it began, sounding the augmented E-C-A♭ sonority in its original inversion.

\[
\begin{array}{ccc}
A & A' & A'' \\
a & b & c & a & b & c & a & a & a \\
1 & 39 & 77
\end{array}
\]

Diagram 2.1: Form of LG1

Example 2.1: T10 Transpositions Between A, A’, and A”

Each section (signified by capital letters) in Diagram 2.1 can also be divided into smaller subsections, labeled as lowercase a, b, and c. Sections A and A’ consist of three distinct melodic ideas. As seen in Example 2.2, the minor sixth motive and an implied cadence on D♭ (the implied D♭ is presented in the box) characterize a (mm. 1-18). This subsection also features a descending scale from A♭ to C with the extremes embellished by a half step higher or lower (A-natural and B-natural). Oscillating major and minor
thirds in the middle and lower voices and a chromatically filled in minor third in the upper voice comprise subsection b (Example 2.3). Finally, Example 2.4 shows the descending scale accompanied by descending chromatic thirds that defines subsection c. Section A' is nearly identical to A in its organization.

The opening displays two characteristics of $LG1$ (refer back to Example 2.2).

First, the mysterious opening sonority (E, C, Ab) is the augmented triad, accompanied by
a neighboring Db. Second, the vertical order of the pitches twice displays the minor 6th interval (E-C, C-A\(^b\)).

Measure 3 sounds a C-A\(^b\) minor sixth in the melody, which upon its immediate repetition is delayed for two beats by a chromatic upper neighbor tone in mm. 6-7. A scalar descent in mm. 7-9 implies a Db, as shown in Example 2.5. Liszt, however, avoids a sense of closure by circling around the Db and using it as a passing tone. A Db major chord is heard in m. 19, but it is inverted and placed on the weak upbeat.

Example 2.5: Treatment of Db in mm. 7-13

Measures 19-38 trump any sense of arrival on Db by immediately moving to subsection b that may be heard as \(^{\wedge}5-4-3\) in F minor.\(^{33}\) The lower voices play straight eighth-notes, the lowest of which is a pedal tone. Above this new rhythmic ostinato is a highly chromatic melody which circles around a minor 3rd (C-B\(^b\)-A-B\(^b\)-B-C). After the second repetition, Liszt shifts the register and texture at m. 27, the start of subsection c. The high A\(^b\) in m. 27 falls chromatically to a B\(^3\), now accompanied by three chromatically descending minor thirds and a major third (Example 2.4). While F minor and A\(^b\) may be considered structurally important and divert from Db, it can also be seen that the three pitches support Db by prolonging the notes in a Db major triad: Db-F-A\(^b\).

Section A’’ (beginning at m. 77) differs substantially from Sections A and A’.
Liszt eliminates subsections b and c; A’’ simply varies and expands a at different pitch levels. The first three iterations are transposed in two different directions simultaneously. The melody starts on three different notes (G\(^#\), B\(^b\), and C), each statement a T2

\(^{33}\) For the full score of all pieces in this chapter, see the Appendix.
transposition of the previous one. The bass counters T2 and descends by T10 (C, B♭, and A♭). Because T10 and T2 are inversions of each other, they allow the melody and harmony to expand symmetrically, creating a voice exchange between C and A♭/G#, seen in Example 2.6. Section a closes by repeating the notes C, D♭, E♭, and B, leaving the final tonality in question.

Example 2.6 – Voice Exchange in A’’

Tonality

The tonality of LG1 is rightfully subject to debate because, due to its ambiguous nature, several possibilities exist. In the published literature, theorists have argued for D♭ minor, F minor, and the idea of the augmented sonority as “tonic.” In this section, I will present the strengths and weaknesses of each position. Lastly, I will defend D♭ as the overall tonality of LG1 due to several scalar implications of D♭.

The Case for F minor

Perhaps the strongest argument for F minor is the structural bass line of the opening section in which the E pedal moves to an F beginning in m. 19. Furthermore, the circling chromatic melody above an F pedal sounds strongly in F. However, the pedals E and F travel through D-natural in section A’ in order to arrive at a pedal C in section A’’. While the C-natural does move down by step to an A♮, the augmented sonority inverts itself in order to let E-natural become the pedal tone once more. Looking at a graph of
the pedal tones in Example 2.7.1 that spans the entire work, the pattern E-F-D-D♯-C-Bb-
Ab-E emerges. Given that the pitches F and D♯ are temporary resolutions, the next
underlying level consists of E-D-C-Bb-Ab-E (Example 2.7.2). Bb functions as a passing
tone connecting C to Ab, which inverts back to E. The bass line now reads E-D-C-E
(Example 2.7.3). As mentioned in the section on form, D-natural (representing section
A’) is a large-scale passing note connecting E to C. The final reduction, Example 2.7.4,
shows E-C-E. Clearly, in the context of F minor, the structural harmony of LG1 supports
the dominant chord. While there are no dominant-tonic cadences in F minor, many
theorists choose F as the key because aurally, the C-E strongly implies resolution to F.

James Baker writes in favor of the F-minor tonality. He states that the overall
bass motion spans an octave (E to E) through arpeggiation of the augmented triad, which
wants to resolve to F.”34 Still, however, conventional tonal theory requires a structural
dominant chord to establish any sort of tonality. Baker identifies the structural dominant
at the beginning of section A”, starting at m. 77. He continues, “The strategic
occurrence of the dominant in m. 77 conforms strikingly to the traditional tonal
placement of the structural dominant.”35 Given that the dominant is truly structural and
that the E-natural pedal does in fact resolve up by a half step, F minor can strongly be
considered as a tonic for LG1.

34 Baker, “The Limits of Tonality,” 158.
35 Ibid., 158.
Furthermore, the key signature of four flats, whether F minor or A♭ major, has long been associated with death. Very often, F minor is the key of choice for funeral pieces. Thus, because of the morbid nature of LG1, which depicts a deceased Wagner carried through Venice on a gondola, it is only natural to assume the piece is in F minor. My voice-leading sketch supporting F minor is shown in Graph 2.1.36

While F minor is strongly supported, there are weaknesses in this position. If the key is F minor, how is the drive towards and arrival on D♭ explained? The melodic 5-4-3-2 in mm. 6-9 and mm. 99-102 do not conform to F minor. Zdenek Skoumal states, “[F minor] is possible only through chromaticism [mm. 6-9]. It moves to A (possibly explainable as modal mixture), then G♭, F♭, E♭ – hardly an F minor gesture” (see Example 2.8.1).37 Even if the chromaticism supports F minor, the structural dominant does not appear until m. 77.38 The structural dominant adds ambiguity because it is not a typical V or V7; it is augmented. Having the structural augmented dominant appear over fifty measures after the last melodic confirmation of F minor stretches the boundaries of aural perception.

![Example 2.8.1: Scale Degrees Explained in F Minor (mm. 1-11)](image)

36 Note: melodic fragments which are immediately repeated at the same pitch level are only included once in each voice-leading sketch.
38 Baker, “The Limits of Tonality,” 158.
Graph 2.1: Voice-Leading Sketch Supporting F Minor
The Case for D♭

While there are also no strong dominant-tonic progressions supporting D♭ as a key, there are moments where such progressions are implied. For example, the opening melody strongly implies D♭. The opening minor sixth (C–Ab) can be heard as 7–5, as shown in Example 2.8.2. After the chromatic neighbor A-natural, melody descends 5–4–3–2, thus creating a strong expectation of D♭. Measures 93-102 provide the same context.

While there are no direct dominant-tonic progressions in this piece, dominant prolongations can be heard. The accented melodic notes in mm. 1-19 are Ab, C, and Eb (notated by the arrows in Example 2.9), which outline a D♭ minor’s dominant. Subsection c contains a structural Ab that appears as the first note in the solo chromatic scale starting in m. 27. As expected, subsection a in A’’ accents the notes Ab, C, and E, creating another implied prolonged dominant.
Additionally, extended harmonies imply D♭. The underlying harmony for virtually all small and large sections is the augmented triad. The benefit of the augmented sonority is that because it has no definitive root, all three notes can potentially serve this function. To support F minor, the augmented triad is written E-A♭/G♯-C, a first inversion augmented dominant. However, to support D♭, the same E-A♭/G♯-C sonority is now considered as a second inversion augmented dominant.39

As LGI progresses, the augmented sonority’s support for D♭ strengthens. The relatively weak second inversion augmented dominant, E-A♭-C, passes through a D augmented triad in A’ to arrive at the stronger first inversion dominant, C-E-A♭.

Arriving through a stepwise progression, the “correct” root position dominant exists from mm. 95-100 before giving way to the second inversion yet again. Significantly, this root-position arrival occurs when the melody returns to the original pitch level. Cycling through the inversions of this sonority shows that Liszt regards it as structurally important to the work. Thus, with the structural weight given to this triad, which rights itself at the thematic return, and through the melodic drive towards D♭, the underlying harmony of the entire piece supports D♭ as tonic.

39 A second inversion augmented dominant further distorts tonality, which would be a likely goal during Liszt’s experimental period.
Berry’s explanation of Liszt’s Bagatelle ohne Tonart (Bagatelle Without Tonality) provides support for a tonic D♭ in LG1. In his award-winning essay, he argues that the Bagatelle contradicts its own title as it is not truly without tonality. It merely functions “without fulfillment of a tonic. It maintains harmonic tension not only by avoiding anticipated resolutions but also by preserving a sense of ambiguity as to what the actual ‘missing’ key is.”

This explanation makes perfect sense in the context of LG1. D♭ is never fulfilled, but it can still be considered tonic. Liszt avoids these anticipated resolutions, which creates the sense of ambiguity. My voice-leading graph of the D♭ minor interpretation is provided in Graph 2.2.

Like the F minor mindset, D♭ minor has problems as well. The main issue is that the augmented dominant, A♭-C-E, is just an inversion of F minor’s augmented dominant, C-E-A♭; it can resolve either way (see Example 2.10). In addition, the supposed D♭ cadence in m. 19 has been described as “illusory.” It appears to be a passing tone between E♭ and C, the latter of which is the dominant scale degree of F minor.

Example 2.10: Two Possible Resolutions of the Augmented Sonority

The Case for Augmented Tonality

For most of music history, tonality involves a coherent and predictable system of relationships among a diatonic collection of scale degrees in which one triad (tonic) serves as a stable point of reference for the remaining triads. However, during Liszt’s life and continuing after his death, composers began to experiment with new types of

40 Berry, “The Meaning(s) of ‘Without’,” 246.
tonalities. Schönberg’s serial techniques allow a twelve-tone row (the P row, tonic), which is subject to forty-eight variations (tonality), to serve as a “tonic key”. The tonic of set theory compositions can be [012347], [0137], [045] – literally any combination of any amount of notes from the aggregate. It should not then be a stretch to recognize the augmented triad as the tonic of a work.

Howard Cinnamon illustrates the harmonic layout of LG1, stating that the work is “an example of an entire piece based upon an equal division of the octave by successive major thirds.”[42] Later, and perhaps more significantly, Cinnamon writes, “[LG1] is based on the prolongation of an augmented chord, E-C-A♭. This prolongation is achieved through the unfolding of that augmented chord via an equal division of the octave that produces an arpeggiation of that harmony in the bass.”[43] Morgan agrees, identifying “the overall motion of the piece is defined by movement through the tonic augmented triad, completed when the opening position … is reestablished.”[44] The augmented triad is thus the foundation of LG1’s melodic and harmonic output.

If one thinks in terms of the augmented sonority being stable, a dominant to tonic relationship is established. Similar to the D♭ minor and F minor traditional tonalities, a case can be made to establish either D♭ augmented or F augmented as the stable tonality. The main augmented triad, A♭-C-E, is able to function as an augmented dominant in both D♭ and F. This establishes a V+ to I+ tonality in either key.

[43] Ibid., 17.
Graph 2.2: Voice-Leading Sketch Supporting Db Minor
Without the dominant-tonic relationship, another possibility exists: A♭ augmented. This key is supported by the key signature of A♭ major. It is expected, though, that A♭ augmented have only 3 flats – B♭, A♭, and D♭, since the E is natural. While visually intriguing, this key signature would be impractical for the composer and the performer. The given key signature lends further credibility to the A♭ tonality, because, according to the 19th-century theorist Josef Schalk, “A♭ is linked to slumber, darkness, and death” and “[Flat keys] strive towards the depths, into darkness.”45 This symbolization fits perfectly with the morbid nature of LG1.

The second piece of supporting evidence is that LG1 begins and ends on the A♭ augmented triad. A’ is merely a passing section that allows the triad to pass through two inversions. A B♭ augmented triad serves as another passing tone in mm. 86-93.

Lastly, section A outlines a scale on A♭, seen in Example 2.11. The minor sixth motive establishes the first melodic A♭, which descends down to E♭. The E♭ is prolonged until a strong D♭ is reached in m. 19. This D♭ immediately descends to A♭ by passing through C and B♭ in the chromatic line of mm. 19-26, landing on the structural A♭ in m. 27. This scale prolongs A♭ for nearly the entire first section, only giving way to another pitch in the transition to A’. Underneath this scalar descent, the A♭ augmented triad lends further support in mm. 1-18. Thus, through prolongation, key signature, a possibility of a new tonality and harmonic support, the augmented sonority can be considered as the tonal center for LG1. A voice-leading graph for all of LG1 is provided in Graph 2.3.

Example 2.11: Voice-leading Graph Showing Prolongation of Ab

As expected, an augmented tonality is problematic. The foremost problem threatens to eliminate the idea of an augmented tonic: can one perceive a tonality in a piece that equally divides the octave? Do our ears need to hear some sort of dominant-tonic in order to provide stability? To hear a piece in a key, functional dominant to tonic progressions are traditionally needed. Furthermore, an augmented tonality does not explain the implied D♭ minor or F minor cadences.

My Interpretation

By now, it should be clear that there are three possible tonalities for LG1. Ultimately, the listener determines the tonality, so no one true answer can exist. At first, I analyzed the piece using an approach similar to Howard Cinnamon’s. I believed that because the augmented triad is a structural and referential sonority, it could be considered a new type of tonality.

After all, Liszt is often regarded as a pioneer; he anticipates 20th-century techniques, so establishing a new tonality should not be eliminated as a possibility. Baker identifies Liszt as “if not the first atonalist, he was at the very least the first major composer to embark on a course of such radical experimentation.”46 The structural use of the augmented triad paves the way for other non-triadic 20th-century sonorities that alter our perception of tonic. Even before Schönberg established his famous serial techniques, Scriabin invented a new tonality over a decade earlier. Starting in his Fifth Piano Sonata,

Graph 2.3: Voice-Leading Sketch Supporting Ab Augmented
Scriabin composed what he called the “synthetic chord,” more commonly known as the “mystic chord.” It is comprised of six tones, represented by the set class 6-34. This sonority is exploited in every way imaginable in Scriabin’s *Prometheus: Poem of Fire*, serving as the foundation for nearly all melodic and harmonic material. Thus it is entirely possible that the augmented triad is a gateway into the future, where major and minor triads are no longer the referential foundation of music. I was almost convinced that the LG1’s tonality could be A♭ augmented.

However, as I continued to listen I ultimately heard the piece in D♭ minor. My reason is very simple: cadences. While there are no explicit cadences in D♭ minor, Liszt nonetheless creates strong motion to D♭ at mm. 7-9 and mm. 99-102. While I acknowledge that mm. 19-27 can be heard as functioning in an F minor context, I hear it as an abrupt shift that merely disrupts the D♭ minor progression. What the F-minor advocates hear in m. 19 (a resolution of ♯7 to 1 as part of a tonic substitute VI6 chord), I hear as a tonic D♭ major triad in first inversion.

The D♭ that persists in the alto cannot be explained as a neighbor or a passing tone because it does not resolve to an E♭ or a C. The circular chromaticism that emphasizes C natural is merely a passing tone, completing a descent from E♭ to A♭, the dominant of D♭ minor. The augmented triad is thus an unstable sonority in this context.

While Liszt certainly expands the harmonic vocabulary by equally dividing the octave (eliminating any sense of dominant-tonic drive), LG1 still has many tonal characteristics, most notably the drive to an unfulfilled cadence. In addition to the

48 It is not unprecedented that a piece can imply a key without ever sounding the tonic. Recall what Berry states about *Bagatelle ohne Tonart*.
49 Certainly, E♭ is an emphasized pitched, brought out by dotted half-notes in mm. 9, 12 and 17. After being established yet again in m. 19, E♭ cadences on D♭ before moving down (by octave displacement) to C and B♭ in the circular chromatic line. Through another octave displacement, the B♭ lands on a structural A♭, the dominant of D♭, in m. 27.
opening drive to Db, the final measures also similarly support Db. The C cuts off two measures before the end, leaving only an E and an Ab. Enharmonically, these two pitches form a major 3rd and thus should sound stable. Why, then, does this major third sound dissonant and mysterious? Because Liszt bases the entire piece on the augmented triad, the ear is accustomed to hearing the major third as unstable. Since the augmented triad is symmetrical and has no root, the ear cannot tell if the E or Ab is the root, third, or fifth. Because the ear cannot decide, the major third that ends the piece, is not consonant. I hear the final measures as strongly implying a resolution to Db. This resolution is present in both the A and A’’ sections, and is thus my reason for hearing Db minor as the tonality of LG1.

II. La Lugubre Gondola II

LG2 is very similar to LG1. It shares many of the same characteristics and has some of its own. The new features are as follows: LG2 opens with an introduction and closes with a coda; instead of using the augmented triad, Liszt in the introduction uses the fully-diminished seventh chord as a referential sonority; instead of using the middle section as a T10 transposition of Section A, Liszt brings forth new ideas in Section B; the coda, unlike LG1, slows down in activity and density; LG1’s minor sixth interval changes to a major sixth; and lastly, there is a constant battle between the major and minor second. I will discuss in depth all of these characteristics and provide my own conclusions about the piece.

Form

As shown in Diagram 2.2, LG2 is also in ternary form, although it is somewhat different and more complex when compared to the ternary form of LG1.
The introduction is divided into three parallel sections (Example 2.12). Each section is divided into two segments, which I call segments a and b. The opening interval, F♯-Eb, is enharmonically a major sixth, as opposed to LG1’s ever-present minor sixth. At each appearance, segment a is transposed at T11. The material of segment b cycles through T2 transpositions. In contrast to its first two iterations, segment b’s final appearance is a solo line without accompaniment. This change signals the end of the introduction, which occurs at m. 32.

A three-note chromatic line (A-B♭-B natural) leads into the melody at m. 35. While the melody is slightly different from LG1, it contains the important minor sixth interval as well as the augmented accompaniment, re-written in common time. Even more so than LG1, the melody strongly sounds in Db. The first two notes of the melody imply 7-1. After a chromatic appoggiatura to 7, the melody leaps up to 5. The line descends 5-4-3-2-1, supported briefly by a Db and Ab in the bass (see Example 2.13). The melody repeats and descends to Db once again in m. 42. Measures 43-49 bring back themes b and c from LG1, however each one is shortened.

50 Due to the absence of the major or minor third, it can only be said that the current key is in Db, rather than proclaiming a major or minor tonality. The third, F-natural or F♭, does exist in mm. 37-38 (the F♭ reinterpreted as an E-natural), however the “correct” third can only be interpreted through performance; either one can be considered a chromatic passing tone.

51 In LG1, theme b repeats; in LG2, it is only stated once. In addition, Liszt shortens theme c by eliminating two G-naturals.
Example 2.12: Opening of LG2 Showing T10 and T11 Transpositions (mm. 1-32)

Example 2.13: D♭-Centered Melody in LG2 (mm. 33-42)

The struggle of the major and minor second seems to be solved at the thematic return in m. 50. Earlier, the two transpositions seemed to battle for supremacy.
(especially if one considers the importance of T10 in LG1). Beginning in m. 50, however, T11 reasserts itself as the more important transpositional level.

The main characteristic of Section B (mm. 67-108) is its constant repetitions. The accompaniment is similar to what was used in Section A, but with two differences. First, it has an extra tie. The placement of the two ties prevents an articulation on beats 1 or 3. Any displaced metrical feeling, however, is corrected by the melody, which articulates beat 1 every other measure. Secondly, the pedal outlines fourths and fifths. This emphasis on consonant sonorities contrasts with the fully-diminished seventh in introduction of LG2 and the augmented sonority found in Section A of both LG1 and LG2.

Measures 69-84 continuously repeat the same pairs of triads: F# major and F# minor, and B major and B minor, each sounding for an entire measure. The pattern causes the melody to ascend gradually from an A#4 to a D#6. This large ascent is broken up by a return of segment b in m. 85. Liszt alters segment b by changing its opening interval from a M6 to a P5. Given that the primary melodic interval of LG1 and thus far in LG2 is some sort of sixth (major in LG2, minor in LG1), the change to a P5 is likely to indicate some sort of important change to the piece.

Liszt uses this interval transformation to signal a change in transposition level. Measures 69-84, which present a series of F# and B triads, are in mm. 89-104 countered by E and A triads, both of which are presented in their major and minor forms, identical to mm. 69-84. These measures are thus a T10 transposition of mm. 69-84. This adds further confusion to the major and minor second battle that has been active throughout LG2. As expected, segment b returns again in m. 105 with the “wrong” interval of the P5. This time, the interval change functions as a link to Section A’.

Section A’ is very similar to A, but with some slight variations. The most obvious example is that Liszt composes the melody in octaves. For a few measures (mm. 121-123), the melody is homorhythmic and in three octaves at fff. This dramatic moment
serves as the climax of *LG2*. Secondly, in mm. 115-116, Liszt uses diminution to develop the melody. Lastly, the left hand changes from two voices to a much denser three-voice accompaniment. Examples 2.14, 2.15, and 2.16 compare the melodic and harmonic material of sections A and A’.

Example 2.14: Comparison of Texture in Sections A and A’ (mm. 35-39 and 109-113)

Example 2.15: Comparison of The A_b Scale in Sections A and A’ (mm. 46-48 and 121-124)

Example 2.16: Melody in Section A compared with its Diminution in A’ (mm. 41-42 and 115-116)
At m. 125, Liszt brings back material from the introduction. As expected, the return of the introduction is slightly varied. The last note sounded in m. 124 is a B natural. To get back to the opening F#, Liszt descends by repeating segment b at pitch levels A♭ and G. He also uses a combination of major and minor sixths as the intervals of each iteration of segment b descend chromatically (a T11 operation). Measures 129 into 130 present a problem as the tetrachord E-Db-B♭-A♭ does not produce a sonority seen before in LG1 or LG2. Enharmonically, it is a half-diminished seventh chord on B♭, which has no function in the context of D♭. However, the A♭ can be viewed as a suspension that resolves to the third of an E fully-diminished seventh chord in m. 131.

Immediately following this chord, Liszt oddly brings back the material spanning mm. 23-31 nearly verbatim, only changing the last measure. Why would Liszt return melodic material so precisely? I believe it is to lead into the coda. A repeated melodic statement needs to have a new destination that contrasts with what was previously heard otherwise the music will be static. This is precisely what Liszt does, composing the chordal and homophonic coda from mm. 140-end.

The coda is divided into two sections, mm. 140-151 and mm. 152-168. The first section appears to be a series of meandering minor chords that chromatically descend to and ascend from a G# minor triad. Upon closer inspection, however, it is clear that the top voice has already been heard in LG2: it is the same as the melody in mm. 43-36 (recall that this pattern is also subsection c in LG1) except the bottom note of the chromatic line is one half step lower (G# instead of A). A comparison of these sections is shown in Example 2.17. In the coda each melodic note is harmonized as the root of a first-inversion minor triad. After one statement of the chromatic line, Liszt suspends the fifth of each chord over the changing harmonies. In m. 148, the harmonic rhythm is augmented, allowing more freedom in the melodic line. The new chromatic line, F#-G-G♭-F, is then repeated at T10.
Example 2.17: Comparison of mm. 19-22 to mm. 140-144

The coda of LG2 summarizes what has already happened throughout the work. Measures 140-end strongly suggest the tonality of Ab minor. The homophonic C-Ab seen in Example 2.16 begins the tonicization by using G#/Ab as the lowest note. Liszt presents the minor sixth (G-D#) both as a descending interval (mm. 152 and 154) and as an ascending interval (mm. 164-166). Measures 156-163 expand the outer range of the previous chromatic line by one half step. The G-A-B-C#-D# is a whole-tone segment that leads back to G and finally to G# (enharmonically Ab). This line can be heard as $\hat{7} \rightarrow \hat{2} - 3 - \hat{4} - 5 - 7 - 1$. The importance of ending in Ab will be discussed in Chapter 3, which deals with the relationships between all four pieces.

Tonality

As opposed to LG1, LG2’s tonality is much clearer. While the introduction is tonally ambiguous, once the main theme is reached at m. 33, it is clear that D♭ is the governing tonality. Supporting this interpretation are strong D♭ arrivals in mm. 39, 42, 113, and 116. These cadences are not found in LG1. Identical to LG1, LG2 contains a
structural Ab in mm. 47 and 121, the latter serving as the musical climax. Furthermore, LG2 ends with a melody that strongly implies Ab minor – the minor dominant of Db.

In contrast to Section A, Section B is tonally ambiguous. The pattern (which includes major and minor triads for each note) is F#-B-E-A. This first glance reveals that Liszt is cycling downward through the circle of fifths. If this is the case, then A (major or minor) would be the arrival harmony. However, that does not seem to be the case. The second of each pair of major and minor chords has the feeling of \(^\hat{6}\) descending to \(^b\hat{6}\) (a second-inversion chord) while the first of the pairs sounds like \(^\hat{3}\) descending to \(^b\hat{3}\), which would mean that F# and E are the main tonal centers of Section B.

The key signature (two sharps) adds further confusion. Two sharps typically signal either B minor or D major. D is easily eliminated, as it is not tonicized at any point in Section B. The statements of B minor and major, however, seem to be leading to E. Identical to the Ab dominant 7\(^{th}\) leading to an arrival at Db, B minor turns into B major at m. 85 and eventually into a dominant chord leading to E major at m. 89.

Given that B acts as a root of a dominant seventh that leads to E, and that there is no dominant chord to F#, it can be concluded that E major is the main tonality of Section B. E major is traditionally seen as bright, uplifting, and cheerful. Liszt uses this middle section as a contrast to the introduction, A, and A’ sections. Additionally, it foreshadows key choices in RW-Venezia and AGRW that depict Wagner’s ascent into Heaven. Lastly, the three main tonalities of LG2, when grouped together, summarize the main tonality. The Db of Section 1, E of Section 2, and Ab of section 3 combine to form a Db minor triad.

III. Richard Wagner – Venezia

The most prominent characteristic of RW-Venezia is tonal ambiguity. He achieves this through chromatic voice leading, augmented sonorities, tritone relationships, and an ostinato combined with a pedal tone. With regard to voice leading between two chords, Liszt often keeps one or two common tones, only to lead the other voice(s) by half step into a new chord.54 The augmented triad, while only present for the first half of the piece, functions similarly to the augmented triad in LGI in that it obscures tonality. Lastly, just as the tonal center seems to be revealed, Liszt shifts the tonality by a tritone. To counter the obscure tonality, Liszt composes RW-Venezia with a simple form.

Form

As shown in Diagram 2.3, RW-Venezia is a simple binary form. Section A (mm. 1-30) is characterized by a left-hand ostinato pattern that arpeggiates a series of augmented triads. This ostinato, along with the C# pedal tone, is found in the lowest register of the piano, which adds to the morbid nature of the piece. When the melody begins in m. 3, it too is in a low register. The static melody uses repetition to chromatically outline two perfect fourths (F-B♭ in mm. 4-10 and F♯-B in mm. 15-20). The F-B♭ line (mm. 5-8) resolves to a B♭ augmented chord (mm. 9-10), which is accompanied by the same sonority in the accompaniment, not including the C# pedal. It would be logical to assume that the F♯-B line (mm. 15-18), which transposes the F-B♭ up a half step, would resolve to a B augmented triad in mm. 19-20.

54 This procedure is commonly referred to as “parsimonious voice-leading.”
Liszt creates this resolution through his use of chromatic voice leading. All three voices resolve by a half step: D-D#, F#-G, Bb-B, shown in Example 2.18. Example 2.19 shows that in each iteration of the ostinato, at least one voice stays the same while the others are altered by a half-step. The result of this procedure is that while the C# pedal remains intact, each remaining voice of the ostinato chromatically ascends. Liszt concludes Section A by using a chromatic rising scale made up entirely of augmented triads to transition into Section B.

The second half of *RW-Venezia* (mm. 31-49) strongly contrasts with Section A. Liszt purges the section of the ostinato and pedal tone. The high and bright major triad...
replaces the low and morbid augmented triad. Liszt sounds a series of major triads: B♭, D♭ and E major from m. 31 to m. 42 (see Example 2.20). The coda descends back to the deathly feel of Section A, shown in Example 2.21. After an F augmented triad, a 4-note pattern emerges: C#-B♭-A-F. This tetrachord can be interpreted a few ways. First, if B♭ is the root, then it outlines a B♭ minor-major seventh chord. This interpretation is supported by the fact that B♭ is used as a point of resolution several times in the work (mm. 5, 7, 8-9, 31). But given that Liszt had not yet used this quality of seventh chord in RW-Venezia (nor does he in the two La Lugubre Gondola pieces), this scenario is unlikely. The second interpretation is an extension of the sonority in m. 43: it appears to be an F augmented triad with an added fourth. Either way, the coda’s function is to descend back to the morbid character of section A.

Example 2.20: B♭, D♭, and E Tonalities in Section B

55 The programmatic meaning will be discussed in depth in Chapter 3.
Even though Section B starts in B♭ major, the tonality of RW-Venezia remains in doubt. Section A contains strong chromaticism supported by augmented triads and a C# pedal (recall Example 2.18). When it appears that the line will resolve, Liszt repeats it by a half step and resolves all three notes outward by a half step, converting the B♭ augmented triad into a B augmented triad. The repeated, chromatically altered ostinato adds further ambiguity. With all this chromaticism, a clear interpretation of the tonality is very difficult to develop.

One interpretation is to assume that Liszt composed RW-Venezia in B♭. The first sonority heard (mm. 1-4) is F augmented, which is the augmented dominant of the enharmonically spelled B♭ minor (B♭-C♯-F) in m. 5 (Example 2.22). After the pattern is repeated, B♭ minor is chromatically altered to become B♭ augmented in mm. 9-14. Furthermore, the same F augmented triad that is found in m. 4 resolves to a structurally significant B♭ major triad at the beginning of Section B (m. 31). Liszt, however, seems to ignore B♭ until it serves as an added fourth to the F augmented arpeggiation (Example 2.21).
Further support of Bb exists in mm. 15-20. These six measures function as a chromatic repetition of mm. 5-10. In LG1, the A’ section was a near exact T10 repetition of A, serving as a large-scale passing section which lead to A’’. Similar thinking can be applied to mm. 15-20. The important note, B-natural, is a half step higher than the Bb reached in mm. 5-10. After a T11 transposition, a Bb major triad is reached in m. 31, the start of Section B. The repetition that tonicizes B-natural can be interpreted as a chromatic neighbor tone to Bb (see Example 2.23). This half-step motion of Bb-B-Bb can potentially foreshadow the series of augmented triads in mm. 25-27, which move upwards by half-steps. After three measures, however, Liszt abandons this procedure and moves by major, minor, and augmented seconds.

A Bb tonality does not ultimately explain the pedal C# that begins and ends RW-Venezia. Some theorists explain this scenario by describing RW-Venezia as atonal. The most vocal of the group, James Baker, states, “Liszt did attain true atonality … in a very
limited number of works, including ‘Richard Wagner – Venezia.’ Baker notes several prominent reasons as to why atonality is a possible conclusion. He regards the B♭ minor triad reached in m. 5 to be a false arrival, as the true arrival is the D-F♯-B♭ augmented triad in m. 9. The major triads in Section B are illusory because the bass notes essentially arpeggiate 4-28 (the fully-diminished seventh chord). He continues,

In fact, the entire pitch content of the second section (mm. 31-41) forms a seven-element subset (7-31) of the octatonic scale (8-28) – the complement of 4-28. Underlying this motion, however, the tritone is a fundamental structural interval: the melody traverses the tritone from B♭ to E, while the corresponding bass moves from D to G#. These four pitches form a subset of the whole-tone scale. Moreover, the form of the whole-tone scale underlying the second section is the compliment of the underpinning of the first, the whole-tone scale comprising the original form of the augmented triad and the auxiliary forms at T2 and T10. Each whole-tone element of the second section serves as a chromatic auxiliary to an element of the fundamental augmented triad with which the piece concludes.

In the following paragraph, Baker even acknowledges that the augmented triad may be regarded as the fundamental harmony because it shows no need to resolve to a consonant harmony. Baker later concludes that there is no underlying support for B♭ to be regarded as tonic and thus the piece is atonal. Using his ideas, an atonal conclusion is strongly supported.

I, however, believe that a B♭ tonality is possible in RW-Venezia. Zdenek Skoumal writes,

The tonic is B♭, though its existence is precarious. It seems to be established only through one augmented-V to I6 motion (bs. 30-4) and is supported by the key signature of two flats in bs 31-8. However, the true confirmation of B♭ comes within the outer sections of the piece.

57 Ibid., 169.
58 Ibid., 170.
59 Ibid., 170.
I completely understand Skoumal’s take on the tonality. The first and last sections (the latter I describe as the coda) emphasize the augmented dominant of B♭, while Section B opens by proudly declaring B♭ major.

Ultimately, however, Liszt incorporates too great an amount of ambiguity for a B♭ tonic to govern all aspects of the piece. A B♭ tonality does not explain the E major section (mm. 39-42). This key, a tritone away from the proposed tonic B♭, is significant because of its symbolic nature. The purpose of Section B is to depict Wagner’s ascent into Heaven. With this idea in mind, Liszt arpeggiates E major as the ultimate depiction of the salvation of Wagner’s soul. The briefness of this tonality (3 measures) should not cause it to be disregarded as passing or illusory. Rather, because of the history of key symbolism and the programmatic aspect of RW-Venezia, it must be considered as a strong structural sonority. Furthermore, the three triads of Section B (E, B♭, D♭) outline a fully-diminished seventh chord, creating further ambiguity.

To determine a tonal center of RW-Venezia, all four tonal aspects must be considered:

1. The ambiguity of the augmented triads found in Section A, the link to Section B, and the coda;
2. A C# pedal that both opens and closes the piece;
3. The importance of B♭, both as a brief tonal center of Section B and a point of resolution in Section A;
4. The structural significance of the E major sonority, a tritone above B♭.

Given these four characteristics, I agree with James Baker that if analyzed as a solo work, RW-Venezia can be considered atonal. However, as we will see in Chapter 3, an

61 During Liszt’s lifetime, both the keys of E and B♭ major were considered cheerful, light, and tender, which can represent Liszt’s comfort of Wagner’s soul resting in Heaven. However, E major’s symbolism is much stronger than that of B♭ major. See Chapter 9 of Steblin, A History of Key Characteristics, 160-161.

63 See Chapter 3 for an in-depth analysis of the symbolism in RW-Venezia.
independent analysis of *RW-Venezia* limits a wider range of analytical interpretations. Only when analyzed along side of *AGRW* can one discover the tonality.

**IV. ** *Am Grabe Richard Wagners*

Liszt’s final Wagner-centered death piece is characterized by its extreme simplicity. The harmonies are uncomplicated, only briefly sounding any chord other than a major or minor triad. The melody either slowly arpeggiates a chord or alternates between two chords by chromatically altering one note. The only exception to *AGRW*’s simplicity is the surprisingly problematic form.

Form

Upon first glance, it seems that there are just three moments that can be used to determine the form of *AGRW*. Measures 1-8 are characterized by the same tonal ambiguity that ends *RW-Venezia*. Measures 9-44 slowly arpeggiate major and minor triads, occasionally including an augmented sonority. The third section quotes a borrowed melody from Wagner that ends conclusively in C# major. It seems logical to describe *AGRW* as a ternary form (see Diagram 2.4).

```
A     B     C
Ambiguity Arpeggiations Tonal
```

Diagram 2.4 – Ternary Form

However, upon a deeper analysis, ternary form must be discredited as a possibility. The introductory eight measures do not seem to start *AGRW*. Rather, it
serves as a link between *RW-Venezia* and *AGRW* (displayed in Example 2.24). Because the purpose of the first eight measures seems to only resolve *RW-Venezia*, I believe it can be concluded that the first section of *AGRW* begins at m. 9 (Diagram 2.5).

Example 2.24: Link Between *RW-Venezia* and *AGRW*

<table>
<thead>
<tr>
<th>Intro</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>m.1</td>
<td>m.9</td>
</tr>
</tbody>
</table>

Diagram 2.5 – Intro + Large Section

Measures 9-43 consist of a series of arpeggiated chords, each ascending higher than the previous. Liszt flirts with ambiguity by returning to a *RW-Venezia’s* C# pedal tone, but he eliminates it for good at m. 24. After he rids the ear of a pedal tone, Liszt doubles the melody until m. 44. At m. 37, Liszt creates tension by alternating between C# major and C# augmented triads. This return of the augmented sonority brings the possibility that Liszt will revert back to the tonal ambiguity in his other three death pieces. However, it appears Liszt is finally content with the thought of Wagner reaching Heaven. He shows this musically by resolving the major-augmented conflict by quoting Wagner’s *Parsifal* and ending in C# major.

The form now takes a new shape. The final ten measures are a resolution of the conflict found between C# major and C# augmented. Because it immediately resolves

64 Interestingly, the opening of *AGRW* uses the same rhythmic pattern of Liszt’s *Excelsior*.
this conflict, I believe it cannot be counted as a separate formal section. The form is presented in Diagram 2.6.

<table>
<thead>
<tr>
<th>ARGW Completion</th>
<th>Triads, Conflict</th>
<th>Resolution</th>
</tr>
</thead>
</table>

Diagram 2.6 – Through-Composed Form

I believe the best choice is to consider AGRW to be just one section; it is a through-composed work. While three musical ideas exist (mm 1-8, 9-44, and 45-55), Liszt uses these ideas to create an arch. The opening eight measures emerge out of the depths of RW-Venezia and continue to rise until the climactic note in m. 44. From here, the bell motive from Wagner’s Parsifal resolves the conflict in AGRW. The notes gradually descend and a tonal center is established.

Tonality

While AGRW begins in ambiguity, it gradually moves toward a tonal center. As seen in Example 2.23, the first four pitches are the retrograde of the final bars of RW-Venezia. From here, Liszt enharmonically spells a B♭ minor triad that resolves to an F#. Continuing this pattern of T8, an F# major triad resolves to a D-natural. Instead of continuing the pattern, Liszt repeats only the D-natural and resolves it to a D#, which is the third of the B major chord heard in m.9.

From here, Liszt composes in a more tonal setting. He arpeggiates several triads in the following order: B major, G# minor, E major, A major, F# major, D# minor, B major, G# minor, and E major. The opening of this progression is provided in Example 2.25. This progression operations in groups of three. The roots of B major, G# minor,
and E major arpeggiate an E major triad. Next, A major, F# major, and D# minor arpeggiate a D# minor triad. Liszt then repeats the E major process again. The D# minor triad serves as a lower chromatic neighbor tone to E major (Example 2.26). The significance of E major is that, as shown before, Liszt uses this tonality to depict Wagner’s ascent into Heaven.

Because of the key significance, it is surprising that E major does not serve as the overall tonality of AGRW. There are two possible reasons for this. First, the C# pedal in mm. 9-23 is not treated as an insignificant pitch that is used solely to provide dissonance and ambiguity. Rather, it has the feeling of stability. Second, after E major is established, Liszt immediately shifts to C#. After sounding C# major and C# augmented twice each, he closes by quoting Wagner’s Parisfal bell motive in C# major. Thus, because Liszt uses a stable C# pedal and ends in C# major, AGRW can be heard as operating in the key of C# major.
Chapter 3 – Set Relationships

In this chapter I will discuss various combinations of Liszt’s four death pieces and describe how they function as sets. I will compare pieces motivically, tonally, and symbolically. Recalling Chapter 1, Komar defines sets by

1) Similarity of style, construction and subject matter of the poetry; style of the music.
2) Similarity (i.e. cross-reference) between thematic, rhythmic, harmonic or tonal configurations in different songs.
3) Thematic, harmonic, or tonal cross-references as above, but untransposed.
4) Pairing of songs so as to achieve local continuity (e.g. pairing of adjacent songs in a dominant-tonic relationship)
5) Existence of a coherent key scheme throughout the cycle
6) The presence of a general plan that ‘embraces all of the songs of the cycle in their given order’
7) The presence of all the features of No. 6, plus the use of a single key to govern the cycle.65

While this was written to define what contributes an ordered song cycle, I will show through my analyses that these guidelines can be used to define set relationships in these four piano works. The ordered sets I will be looking at are as follows:

I) LG1 and LG2
II) RW-Venezia and AGRW

I will also analyze the first and last piece of each ordered set for similar characteristics:

III) LG1 and RW-Venezia
IV) LG2 and AGRW

Before further discussing sets, the symbolic nature of key symbolism must be discussed. It is interesting that even though musical styles and techniques change over time, key characteristics tend to have the same meanings. Rita Steblin’s research tracks

the history of key characteristics. Audiences have judged music by its relationship to C major because its key signature has no accidentals. According to the sharp/flat principle, sharp keys depict brightness, while flat keys sink into darkness. The compositional extremes were four sharps or four flats in either direction: E major and C# minor, and Ab major and F minor. Ab and Db minor, which are clearly emphasized in the two Gondola pieces and are extremely distant from C major, are not discussed in Steblin’s book. I thus refer to the characteristics for Ab and Db major, which, as expected, are described as morbid. Given that their parallel major keys depict sadness, one must only assume that these two minor keys would also represent extreme grief. Other important key areas in Liszt’s death pieces are F minor, B♭ major, and E major. Heinrich Weikert describes these keys in his 1827 Kunswörterbuch:

E major expresses fire and wildness, noise shouts of joy and laughing pleasure … B♭ major- lovely and tender; it is the key of cheerful love, of hope, of a clear conscience … Ab major sounds dark and gloomy; death, grave, putrefaction lie in its radius … D♭ major indicates a degeneration into grief and rapture, a smirk, dallying tears. Only unusual characters and feelings are proper to this key … F minor is the key of extreme grief; deep depression, funeral lament, misery, and the grave is the impression of this key.

In his 1830 treatise Die höhren Lehrzweige der Tonsetzkunst, the composer-organist G. F. Ebhardt has a different take than Weikert on E major, but agrees on the remaining keys.

E Major: Not wild, but rather moderate ardour, steadiness, firmness, prudent courage … B♭ major: Loveliness, tenderness, and a sense of calm … Ab major: Dark Feelings … F minor. Extreme grief.

August Gathy comments on keys in 1835’s Lexicon. While “noble womanliness” may not be an adjective that accurately describes Wagner, the religious symbolism and the mentioning of the grave certainly applies.

67 Ibid., 161-163.
68 Ibid., 164-165.
E major, noisy shouts of joy, laughing pleasure … B♭ major, noble womanliness, cheerful love, hope, longing for a better world … A♭ major, key of the grave. Death, grave, eternity. Consolation in religion … D♭ major, the feeling of grief and rapture in wondrous combination … F minor, deep depression, longing for the grave.⁶⁹

It should be clear that the main key areas of LG1, LG2, RW-Venezia and AGRW are ripe with symbolism. Areas of the pieces that deal with death are read in four flats. Despite the conflicting key signature, symbolism supports my theory that LG1 is in D♭ minor because its theoretical key signature (eight flats), would surely have represented extreme sadness and grief. Ultimately, it matters not if the listener hears LG1 in F minor, D♭ minor, or an augmented tonality; all of these interpretations draw on the same symbolism.

I. LG1 and LG2

LG1 and LG2 share many common traits that allow them to be considered a set. The most obvious similarity between the two pieces is that the melodies are kindred, as shown in Example 3.1. Both excerpts are in D♭ minor, centered on the minor sixth interval, and contain the same augmented ostinato, which is re-written in LG2 to suit the metrical change. LG2’s subsection b contains identical notes to LG1’s, but subsection c’s A♭ scale eliminates pitches G and B and adds a D (shown in Example 3.2).

The melodic differences between the two Gondolas are what make the pieces interesting. Liszt incorporates an introduction in LG2 that displays a series of diminished seventh chords at T11 that counters the sectional T10 transpositions of LG1. The minor sixth in LG1 is changed to a major sixth in the introduction before transforming back to a minor sixth. Another variance is the fact that LG2 cadences in D♭, while LG1 avoids this cadence (see Example 3.1).

Example 3.1: Comparison of Melody and Ostinati in LG1 (mm. 3-10) and LG2 (mm. 35-39)

Example 3.2: Comparison of Subsection c in LG1 (mm. 27-31) and LG2 (mm. 47-49)

The most striking peculiarity between the pieces is that Liszt includes a contrasting middle section in LG2. It initially appears to have no important function to the work. Closer inspection, however, reveals programmatic symbolism. The overall tonality of this section is E major, the key of joy and pleasure, which represents Wagner’s ascent into Heaven. Liszt also adds a coda in A♭. Its purpose is to provide tonal closure for both LG1 and LG2. Any question regarding the tonality of LG1 is answered by LG2. The A♭ ending, along with the tonalities of D♭ (subsection a) and F (subsection b), combine to create a D♭ minor triad: the tonality of both pieces.

The second factor that relates these pieces together is that they are both composed in response to Liszt’s 1882 vision of Wagner’s death. While LG1 is ordered before LG2, upon analyzing the extra sections in LG2 it appears that LG1 is a condensed version of LG2. It does not have a coda that modulates to A♭, there is no middle section (nor E major symbolism), and the nonfunctional introduction is absent in LG1. It would appear
that LG1 is a revision of LG2. Rossana Dalmonte proves this theory to be true. Many sources list the date of composition of LG1 as 1882 and LG2 as 1885. Dalmonte, however, suggests the LG2 was actually composed before the LG1.\(^{70}\) Even though the compositional order is now changed, the pieces still function as a set. In the context of all four pieces, LG1 will still come first because the date of composition matters less than its musical content. Thus, through melodic and harmonic similarities, tonality, creative inspiration, and dates of composition (before Wagner’s death), LG1 and LG2 function as a set.

II. RW-Venezia and AGRW

RW-Venezia and AGRW are linked as a set based on their dates of composition, their programmatic nature, triadic arpeggiation, key symbolism, tonal unity, and quotations.

RW-Venezia and AGRW were written after Liszt received word of Wagner’s death (February 13, 1883). RW-Venezia is the more morbid of the set, written immediately after his death. Three months later, Liszt completed AGRW. Both of these works are ripe with symbolism as they deal programmatically with the destination of Wagner’s soul. David Cannata believes that “although R. W. Venezia begins with the despair of separation, it represents Liszt’s prayer for the salvation of Wagner’s soul;” and while the ending of RW-Venezia is a remembrance of Wagner’s death, “Am Grabe Richard Wagners rises in resignation and acceptance. Secure in his faith, Liszt is consoled by the belief of everlasting life.”\(^{71}\) The keys of B♭ major and E major strengthen the symbolism of the works. Both represent Heaven and a peaceful afterlife, but E major has a stronger structural influence. This key is approached in both pieces by a series of three triads.

\(^{71}\) Cannata, “Perception & Apperception,” 207.
RW-$Venezia$ passes through B^b major and D^b minor before arriving on E major (an ic3 cycle), and $AGRW$ passes through B major and $G#$ minor before sounding E major.

The pieces are tonally linked. I believe that for symbolic purposes, and despite the brief B^b, D^b, and E triads, RW-$Venezia$ is in C#. Not only is there a tonic pedal, but also the first and last notes are C#. Furthermore, the link between the two pieces contains identical notes (recall Example 2.24). Any doubt that RW-$Venezia$ is in C# is erased when $AGRW$ concludes in C# major. In Chapter 2, I stated that it serves little purpose to analyze RW-$Venezia$ alone. Only when studied alongside $AGRW$ can the truth be discovered: “Liszt had not avoided tonal closure in $R. W. Venezia$, he had merely postponed it – for three months.”

It should be noted that this set contains several quotations that have programmatic significance. To commence $AGRW$, Liszt employs a rhythm used in a previous composition, “Excelsior” (a prelude from his cantata, Die $Glocken$ des $Strassburger$ $Münsters$, written in 1874). At the point of quotation, the “Excelsior” text states “The Archangel, Michael flames from every window, With the sword of fire that drove us, Headlong, out of Heaven, aghast!” (Example 3.3 provides the quoted music). The rhythmic quotation is inserted into RW-$Venezia$ at the beginning of Section 2 (m. 31), depicting Archangel Michael escorting Wagner into Heaven. Michael’s presence in RW-$Venezia$ is needed because of his four offices, the latter two for the purpose of saving Wagner’s soul:

1. To fight against Satan
2. To be the Guardian Angel of Mother Church
3. To rescue the souls of the faithful departed from the power of Satan; especially at the hour of death;
4. To call the souls of the dead away from earth and brings them to judgment.

73 Ibid., 184.
74 Example 5 of Ibid., 190.
75 Ibid., 189.
76 Ibid., 204-205.
Example 3.3: Depiction of Archangel Michael in the prelude from Liszt’s Cantata *Die Glocken des Strassburger Münsters* (mm. 170-177)

Interestingly, Wagner used material from Liszt’s cantata and placed it in his own *Parsifal*. Liszt returns the favor by concluding *AGRW* with quotation of *Parsifal’s* Monsalvat Bell motive. Additionally, the harmonic plan of *AGRW* follows the sequence that Liszt used when transcribing the coda of “Senta’s Ballad,” from Wagner’s *Der Fliegende Hollander*. Lastly, Liszt quotes another of his own pieces, “Angelus!” (mm. 176-189 in “Angelus!” and mm. 24-30 in *RW-Venezia*) in *RW-Venezia*. The series

\[77\] Cannata, “Perception & Apperception,” 184.
\[78\] Ibid., 188.
of inverted ascending triads is used to separate formal sections in both pieces, leading to drastic changes in melody and rhythm (see Example 3.4).

Example 3.4: Rising Augmented Triads in “Angelus!” (mm. 175-92)

III. **LG1 and RW-Venezia**

These two works, the first halves of their respective ordered sets, contain several characteristics that allow them to serve similar functions within their sets: tonal ambiguity, ostinati, the augmented triad, and the use of chromaticism.

The most striking characteristic of both pieces is their ambiguous tonality. Analyzed as individual works, neither provides a clear hint as to the governing tonality of each piece. LGI’s tonal ambiguity stems from its reliance on the augmented triad as its referential sonority and its avoidance of key confirmations. It can be heard in Db minor, F minor, or with an augmented tonic. RW-Venezia’s tonality also has three possibilities:

it can be heard in B♭, C#, or as an atonal work. If RW-Venezia is heard in C#, another tonal similarity exists because C# is the enharmonic equivalent of D♭ minor, the implied tonic key of LG1. Additionally, the last melodic pitch of LG1 is C#, which abruptly vanishes for the final two measures. I believe that it is no coincidence that RW-Venezia both starts and ends on a C#, providing the missing note of LG1’s conclusion. Ultimately, these two pieces do have tonal centers, but the key confirmations are not provided until LG2 and AGRW.

Both LG1 and RW-Venezia make use of an ostinato. In LG1, the augmented ostinato represents the gondola boat traveling through Venice while carrying Wagner’s body. I have not read any literature that interprets the ostinato of RW-Venezia, but I believe it has a similar, if not the same, meaning. In fact, upon close inspection, the two ostinati are very similar (see Example 3.5). The arching contours are nearly identical; they both have a length of two measures; and they both contain four notes. The only difference is that the arch’s descent in LG1 is repeated three times. The similarities are quite interesting because they suggest that RW-Venezia’s ostinato is merely a condensed version of LG1’s.

Example 3.5: Comparison if Ostinati in mm. 1-2 of LG1 and RW-Venezia

Through the use of chromaticism, the two pieces are further linked. They both contain a chromatically filled-in interval that is then transposed. LG1’s gesture spans a minor third, C-A, while RW-Venezia’s gesture outlines a perfect fourth, F-B♭, seen in

80 Keep in mind that the lowest C# in RW-Venezia’s ostinato is a pedal tone, and should be regarded as separate from the highest note in each arch.
Examples 3.6 and 3.7. Significantly, the chromatic gesture for each piece is repeated at its original pitch level before being transposed and repeated again. This nearly identical treatment (with only the transpositional level being altered) further unifies LG1 and AGRW.

The last similarity between these two works is the structural use of the augmented triad. It serves as the referential sonority throughout LG1 and is used to divide up the formal sections (see Example 3.8). The augmented triad also dictates the form in RW-Venezia, shown in Example 3.9. The parsimonious voice-leading, which was a defining characteristic of mm. 1-23, abruptly stops at m. 24. From here, a series of augmented triads ascends two octaves. After a grand pause, one final augmented triad occurs leading to Section B and the depiction of the Archangel Michael.

81 It is possible that this ascension of augmented triads is used to foreshadow the climax on E major, which is Liszt’s image of Wagner ascending into Heaven.
IV. LG2 and AGRW

These two pieces are considered the tonal second halves of LG1 and RW-Venezia. They function similarly because they answer the tonal questions of LG1 and RW-Venezia. Other similarities include the symbolic use of E major, ascending triads, ambiguous beginnings, and tonal endings using an unaccompanied melody.

The function of LG2 and AGRW is to complete the musical sentence that LG1 and RW-Venezia left unfinished. Example 3.1 shows that while LG1 avoids cadencing on the tonic D♭, LG2 provides these missing cadences. The ending of RW-Venezia, after boldly declaring heavenly chords of E and B♭ major, descends back into the depths via an augmented triad. AGRW uses the exact same pitch order to reverse the morbid spell and to lead upward into resolution. Example 2.23 shows the link between the pieces.

Both works contain an extended middle section that begins ambiguously but ends by tonicizing E major: the key of joy, happiness, and longing for a better world. As discussed, within the context of these pieces this key depicts Wagner’s soul ascending into Heaven. In both pieces Liszt arrives at E major by slowly ascending through major and minor triads. The sections after E major, however, are treated slightly differently in
each piece. Liszt, unsure of Wagner’s fate before his death, descends back into D♭ minor at m. 109 in LG2. In AGRW, Liszt moves from E major to its chromatic mediant C# major by m. 46.¹² I believe that Liszt ends AGRW by quoting Parsifal’s bell motive to symbolize that he is at peace and believes Wagner is now in Heaven.

The half-step is important in both middle sections. LG2 states two half-steps the provide tonal ambiguity: 3-♭3 and 6-♭6, shown in Example 3.10. In AGRW, instead of 6-♭6, Liszt creates tension by using ♭5 (A and G#) to create a battle between C# major and C# augmented with an added B natural, shown in Example 3.11.¹³ I believe the half-step tension in AGRW shows Liszt’s final doubts before coming to terms with the state of Wagner’s soul.

¹² C# major and D♭ minor may appear to be polar opposites but are, in fact, enharmonically parallel keys.

¹³ The augmented triad here certainly recalls memories of LG1. Liszt creates worry in the listener by briefly recalling the augmented triad instead of immediately sounding Parsifal.
Each piece contains both ambiguous beginnings and tonal endings. Liszt commences \textit{LG2} with a series of T11 diminished seventh chords. The ambiguity is strong enough that the listener does not get a sense of the tonic D\textsubscript{b} until m. 35. Similarly, \textit{AGRW} begins with a series of rising augmented triads. The tonality of C# major, though, whose tonic pitch is provided as a pedal tone, is not aurally confirmed until the appearance of a lone melodic C# in m. 45 followed by the Monsalvat Bell motive one measure later.84 It is obscured by the emphasis given to two E major triads prolonged by a neighboring D# minor triad. Because of the continual unrest of mm. 9-36, the C# major triad of m. 37 does not function as a stable point of reference.

\textit{LG2} and \textit{AGRW} end similarly. In both pieces, a harmonized melody breaks free of its accompaniment. This solo line sounds scale degrees that confirm either sectional (\textit{LG2}) or overall tonalities (\textit{AGRW}). The melody that ends \textit{LG2} has its genesis in an unexpected manner. After mm. 140-144 state the chromatic major third, which is an alteration of the minor third in \textit{LG1}’s subsection \textit{b}, the process is repeated. This time, the fifth of each minor chord is syncopated in the right hand, above what has just become the accompaniment. As the harmonies slow (mm. 148-151), this syncopated chromatic melody dominates the texture. After the left hand drops out completely, the melody outlines A\textsubscript{b} major (enharmonically G\#). Example 3.12 shows the genesis of the melody, and Example 3.13 provides the scale degrees of the melody in \textit{LG2}. The ending of \textit{AGRW} is slightly different, but retains the same characteristics. Instead of being accompanied by dense minor chords like in \textit{LG2}, the \textit{Parsifal} bell motive’s counterpoint with the left hand creates the feeling of C# major. Once the accompaniment fades away,

the scale degrees of the melody confirm that C# major is the overall tonality of AGRW. Example 3.14 provides the last eleven measures of AGRW with a scale-degree analysis.

Example 3.12: Genesis of the Solo Line in LG2 (mm. 140-151)

Example 3.13: A♭ Ending of LG2 (mm. 152-168)

Example 3.14: C# Monsalvat Bell Motive that Ends AGRW (mm. 45-55)
Conclusion

All four of Liszt’s death pieces are centered on the death of Richard Wagner. The first set was written before his death in response to a vision Liszt had of Wagner being transported through Venice on a funeral gondola. This morbid image is represented by the augmented sonority in the left hand, which, with its syncopation and arching ostinato, depicts the swaying of the boat. Liszt, obviously worried for Wagner’s life and afterlife, creates sadness through tonal ambiguity and his choice of key.

The combination of these four programmatic works creates a story. Liszt has essentially written an autobiography of his mindset from his first vision of Wagner’s death until Liszt accepted Wagner’s fate three months after the death took place. LG1 depicts Liszt’s initial reactions to his vision: extreme sadness and grief. He depicts this visually with four flats, but using a key that would theoretically contain eight flats. In LG2, through the use of E major, he depicts a positive image: even though Wagner will die, he will go to Heaven. Soon after Wagner’s death, Liszt writes another morbid work, RW-Venezia. It begins in deep despair, using a pedal tone and parsimonious voice-leading to depict his sadness. Upon realization that Wagner is in Heaven, he musically depicts Archangel Michael using celestial keys of B♭ and E major. The sadness of the loss of a friendship hits Liszt one more time, as he descends back into low augmented sonorities. AGRW is the vehicle in which Liszt finally comes to terms with Wagner’s death. Liszt’s overall key choice provides total unity to all four pieces. While LG1 implies D♭ and RW-Venezia implies C#, LG2 and AGRW confirm the keys. Lastly, all four death pieces are unified as a set because, enharmonically, they utilize the same tonic pitch (D♭/C#). Liszt composes an enharmonic journey that begins at his vision of Wagner’s death in LG1 and concludes with his acceptance of the afterlife in AGRW.
Appendix A – La Lugubre Gondola I

La Lugubre Gondola I
(The Funeral Gondola I)

Franz Liszt
1882
Appendix B – La Lugubre Gondola II

La Lugubre Gondola II
(The Funeral Gondola II)

Andante mesto, non troppo lento \(\text{\textit{j}\text{ss}} \)

Franz Liszt
1882

recitando

recitando

sempre legato

46086
Un poco meno lento \(\text{\#} \approx 104 \)

ped. simile

sempre legato
Appendix C – Richard Wagner - Venezia

F. Liszt, 22ten Mai, 83. Weimar
Bibliography

